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  i  

Abstract 
 

Measurements of viscosity and density allow for the monitoring of fluid quality and 

processes involving a fluid environment. There are various fields in which such 

measurements may be required, including oil exploration and production, environmental 

monitoring, process control, medicine, and the automotive industry. Existing MEMS 

viscometers and density meters typically measure vibrational characteristics such as 

resonant frequency, bandwidth and quality factor.  

This thesis reports on the development of a high-sensitivity resonant sensor.  In order 

to significantly improve sensitivity to changes in viscosity and/or density the proposed 

sensor will exploit nonlinear dynamic behaviour and measure the frequency separation 

between singular jump points in the frequency response function.  

By using a one-mode approximation when excited near resonance, the dynamics of a 

clamped-clamped slender beam immersed in fluid is that of a standard Duffing 

oscillator. With harmonic forcing of sufficient magnitude, a bistable region, bounded by 

amplitude jump points, is seen to occur. The width of this bistable region, Fδ , is 

dependent on the damping ratio of the system, which is shown to be a function of the 

dynamic viscosity and density.  

Experiments with clamped-clamped silicon <100> beams in a range of Newtonian 

gases demonstrate that the measurand Fδ can uniquely identify a fluid, and may be 

amplified to magnitudes greatly exceeding bandwidth measurements for the same 

device. In addition, the sensitivity of the proposed nonlinear sensor to changes in fluid 

properties at low viscosity can be at least an order of magnitude better than that of 

conventional devices. Forcing magnitude and control is identified as being critical to the 

measured width of the bistable region. Beam dimensions can be chosen to optimise 

measurements for the desired application. 
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Chapter 1 
 

Introduction 
 

1.1. Background 
 

Microelectromechanical systems (MEMS) is the integration of mechanical 

elements, sensors, actuators, and electronics in devices typically fabricated using 

integrated circuit batch-processing technologies. MEMS devices typically have 

characteristic dimensions in the region of 1µm to 1mm. 

MEMS technology has grown rapidly and has generated diverse developments in a 

wide range of fields, including automotive, aerospace, biotechnology and 

bioengineering, medicine and pharmaceutics, telecommunications and 

manufacturing. MEMS devices are used for a range of purposes in these fields, with 

applications including RF signal filtering, resonant mass sensing, inertial sensing, 

radiation sensing, magnetic field sensing, chemical sensing, cooling and optical 

scanning. 

MEMS devices function as integral components in a number of technologies, and 

may be used as, for example, actuators, motors, switches or sensors. Some specific 

examples of MEMS devices include accelerometers for automobile airbags [1], 

chemical and biological sensors [2,3,4], high-frequency signal filters [5,6] and 

atomic force microscopes (AFMs) [7].  

Silicon is the material used to create most MEMS devices. It possesses various 

advantages, including desirable mechanical properties and high purity [8]. In 

addition, silicon processing technologies are well established and enable batch 

production, reducing the cost of devices. 

Silicon micromechanical components are generally fabricated using processes that 

either selectively etch away parts of a silicon wafer (bulk silicon micromachining), or 

add structural layers (surface silicon micromachining) to form the devices [8].  
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MEMS devices can offer numerous advantages over their traditional macroscale 

counterparts. MEMS consume minimal power, occupy minimal space, are light, have 

fast response time, offer high precision and reliability, and are integrable with 

existing integrated circuit technologies. MEMS can be scaled such that effects not 

easily exploitable at macroscale become of interest: this is of pertinence to this study 

where devices are designed to exploit nonlinearities.  

1.2. Motivation 
 

This work investigates the possible use of nonlinear MEMS microresonators as 

sensors for measuring fluid viscosity and density. The vast majority of research 

related to microresonators has to date focused on oscillators utilising a linear 

frequency response structure. MEMS viscometers and density sensors have typically 

measured the linear vibrational characteristics of resonant frequency, bandwidth and 

quality factor [9,10].  

The measurement of viscosity and density is of interest as it allows for the 

identification of fluids, monitoring of fluid quality and monitoring of processes 

involving a fluid environment. Such measurements are required across a range of 

fields, from oil exploration and production, to environmental monitoring, process 

control, for medical applications and within the automotive industry 

[10,11,12,13,14].  

Suitably designed nonlinear microresonators are believed to be capable of 

performing in a superior fashion to their linear counterparts [15]. The sensor 

discussed in this thesis exploits the nonlinear dynamic behaviour of a rectangular 

beam microresonator in a novel way by measuring the frequency separation Fδ   

between singular points in the frequency response function. In doing so, a significant 

improvement in sensitivity to changes in viscosity and/or density is demonstrated. 

An increased sensitivity viscometer and/or density meter would prove valuable for 

applications currently requiring greater accuracy in measurements. Examples include 

measurements for clean fuels such as dimethyl ether [16], and medical applications 

such as monitoring of synovial fluid viscosity [14].  
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It is important to restate that while the system described here is believed to be 

novel, the use of linear or nonlinear MEMS devices as fluid sensors is not. Section 

1.7 outlines previous pertinent research. 

1.3. Aims and objectives 
 

This work focuses predominantly on the geometric nonlinearities which occur due 

to midplane stretching of clamped-clamped beam resonators of rectangular cross-

section. The frequency response of such devices shows the existence of jump 

phenomenon [17,18]. The jump points are singularities which can be measured to a 

high degree of accuracy. By utilising the existence of these jump points, and 

measuring the frequency difference between them, it may be possible to design novel 

MEMS sensors capable of measuring fluid properties with increased sensitivity.  

The overall aim of the research presented is to investigate the nonlinear response 

of resonator beams immersed in a range of gases. Experimental data will be 

presented and analysed, to establish whether nonlinear measurands may be used to 

identify gases directly. Further, the nonlinear results will be compared with linear 

measurements to compare the sensitivity of each approach to changes in gas 

properties. 

The specific objectives of the research are summarised as follows: 

• Establish a representative equation of motion for a harmonically displaced 

clamped-clamped rectangular beam immersed in a viscous fluid. 

• Derive the frequency response of the beam by means of modal analysis, 

using a single-mode approximation. 

• Examine the stability of the steady-state solution for the equation of 

motion. 

• Obtain numerical predictions of beam behaviour in a range of fluids. 

• Design and fabricate suitable resonator beams for experimental purposes. 

• Design suitable experiments and select or commission experimental 

equipment. 
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• Conduct appropriate experiments in order to gather necessary data and 

validate model predictions. 

• Present experimental results appropriately in order to demonstrate potential 

uses of devices as fluid sensors. 

• Analyse experimental data to evaluate and develop further the system 

model. 

• Use experimental data and model to comment on observed and predicted 

advantages of the nonlinear approach.  

 

1.4. Microresonators 

1.4.1. Linear microresonators 
 

Harmonically-forced, linear resonators are the most common of modern 

microresonators. Such resonators have a Lorentzian frequency response which is 

dependent on the resonator’s natural frequency nω , quality factor Q  and excitation 

amplitude [15]. A high quality factor indicates that a pronounced resonance will be 

clearly distinguishable from non-resonant vibrations. 

A variety of density and viscosity sensors have been developed based on the 

exploitation of resonance. Examples of devices operating in the linear regime include 

vibrating wire viscometers [19], oscillating plates [13] and quartz-crystal 

microbalances [20]. The frequency response of a resonator in a surrounding fluid 

depends strongly on the properties of the fluid. The resonance frequency and 

damping (and hence quality factor Q ) are influenced by the viscosity and density, 

and hence can be used to sense these properties. [10,21,22].  

However, there remain challenges in terms of sensor accuracy, flexibility, and use 

outside of the laboratory environment [10,13]. The behaviour of a finite rectangular 

beam resonator immersed in a viscous fluid needs careful consideration, as there is 

no analytical solution to this problem [23]. An analytic solution for the idealised 

geometry of a thin blade of zero thickness and infinite length has however been 

presented [24]. 
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1.4.2. Nonlinear microresonators 
 

MEMS devices frequently feature inherent nonlinearities. However, the 

exploitation of nonlinear frequency response structures has been limited compared to 

the linear case. Early investigations into the use of nonlinear microresonators focused 

on forced harmonic oscillators with nonlinearities occurring due to large elastic 

deformations [15]. Subsequent work showed electrically actuated nonlinear 

resonators being considered by various authors [25,26]. In recent years there has 

been increased attention to nonlinear microresonators, with studies considering such 

matters as the storage of vibrational energy [27], nonlinear response to piezoelectric 

actuation [28], effect of superharmonic excitation [29], and mass detection [30]. This 

increased attention has been attributed to the potential for increased tunability of 

devices and superior performance [15]. A review of nonlinear micro- and 

nanoresonators has been presented by Rhoads, Shaw and Turner [31]. 

1.4.3. Sources of nonlinearities 
 

Nonlinearities can arise in many different ways and take different forms. Any 

component of the equations of motion may be affected by nonlinearities, such as the 

inertial terms, terms describing restoring forces, dissipative terms, excitation terms, 

and boundary conditions [32,33,34]. An overview of nonlinearities common to 

MEMS devices is presented below. 

 

Geometrical nonlinearities 

Geometric nonlinearities arise from nonlinear strain-displacement relationships. 

Sources of geometric nonlinearities include large deflections of an element, large 

curvatures and large rotations. In this context, deformations are considered small 

where the standard small angle approximation of θθ ≈sin is valid (see section 2.3.2 

for a related discussion of curvature.) Examples of geometrical nonlinearities include 

the midplane stretching of a clamped-clamped beam subject to large transverse 

deflections, or the nonlinearity of the sine term in the pendulum equation at large 

rotations.   
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Material  nonlinearities 

All real materials exhibit a certain amount of nonlinearity in the relationship 

between stress and strain, due to nonlinearities in atomic interactions. There is 

therefore a nonlinear relationship between force and deformation when strain 

variations are large [32].  

 

Nonlinear body forces 

Body forces acting on a structure can vary nonlinearly. For example, the magnetic 

potential for a beam in a magnetic field is approximated by an expression including 

terms higher than quadratic, causing nonlinearities to appear in the equation of 

motion [32]. Fluid behaviour is governed by nonlinear equations, so consideration of 

fluid and aerodynamic forces on a body must recognise nonlinearity in these forces. 

 

Physical configuration nonlinearities 

The specific configuration of components in a system can introduce nonlinearities. 

This is true even when the individual components are linear, or operated within a 

linear regime [32].  

Consider again a clamped-clamped beam. The nonlinearity which arises due to 

midplane stretching is of a geometrical origin. However, if one of the clamped ends 

of the beam were free to move in a longitudinal direction, the nonlinearity would 

disappear. Thus the physical configuration determines whether the nonlinearity 

manifests itself or not.  

 

Inertia nonlinearities  

Inertia nonlinearities arise from nonlinear terms containing velocities and/or 

accelerations in the equations of motion. They may be a result of, for instance, 

concentrated or distributed masses. It is the kinetic energy of the system which is the 

source of these nonlinearities. Examples include centripetal acceleration terms [33, 

35]. 

Other nonlinearities may arise from, for instance, the boundary conditions, the 

presence of friction, or from impacts to a system. 
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1.4.4. Sources of damping 
 

Energy loss from MEMS devices occurs due to both internal and external 

mechanisms. Dissipative forces act to change the behaviour of the device. These 

forces are referred to as the damping forces on the system. 

For oscillatory MEMS devices, movement involves the dissipation of energy, 

which is drawn from the vibrational energy of the device. Energy losses are 

quantified by means of the quality factor, which is the ratio of the energy stored to 

the energy lost during one cycle of vibration. A damping coefficient may be 

expressed in terms of the quality factor. There follows an overview of the typical 

sources of damping affecting MEMS devices.  

 

Material damping 

Material damping is the dissipation of energy from solid bodies due to lattice 

defects or the internal structure of the body. During mechanical vibrations, 

deformations occur in the body which are accompanied by thermodynamically 

irreversible processes [36]. Molecular interaction in the material is the source of this 

damping.  

 

Fluid damping 

Fluid interaction with an oscillating body causes dissipative processes. These are 

covered in detail in chapter 3, but a brief description of the damping processes is 

provided here.  

• Acoustic radiation:  loss occurs when oscillations create sound waves in the 

fluid. 

• Skin friction drag: fluid viscosity acts against the oscillatory motion. 

• Added mass: the inertia of the fluid surrounding the body adds to the 

bodies effective mass. 

• Pressure drag: separation of the flow around an oscillating body causes a 

pressure gradient which acts against the oscillatory motion. 
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• Molecular damping: collisions between individual fluid molecules and the 

oscillating body cause a transfer of momentum, which acts against the 

oscillatory motion. 

• Squeeze- and slide-film damping: thin fluid films between a moving 

surface and a fixed structure generate a resistance to motion. 

 

Support or anchor loss 

This type of loss can occur as a result of the device structure. Vibrating MEMS can 

create elastic waves which are then propagated through the device supports or 

anchors. See section 2.5.1. for further discussion.      

 

Thermoelastic damping (TED) 

An oscillating body will create alternating regions of compression and extension. 

Compressed regions become hotter, extended regions cooler, resulting in temperature 

gradients across the body and hence heat flow [36]. Any resulting irreversible heat 

flow then causes energy to be dissipated. This is discussed further in section 2.5.2.    

 

Surface damping 

Surface damping has been identified as an important loss mechanism in MEMS 

devices. A loss in quality factor has been experimentally observed when device 

dimensions are reduced, increasing the surface-to-volume ratio. However, no precise  

mechanism has yet been determined. It is suggested that surface imperfections, 

adsorbents or oxidation are responsible. For a further discussion of surface damping 

see section 2.5.3.  

 

Other damping mechanisms which may affect MEMS device, but are not 

considered in this work, include volume losses, phonon-mediated damping, and 

coupling losses due to the coupling of different kinds of vibration [36]. 
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1.5. Beam theories. 
 

The two most popular beam theories in use today for modelling MEMS beam 

resonators are the Euler-Bernoulli beam theory and the Timoshenko beam theory.  

The simplest of these models is given by Euler-Bernoulli theory, and is discussed 

in detail in section 2.3.1. In brief, this theory assumes that plane cross-sections, 

which are normal to the neutral axis before deformation, remain plane and normal to 

the neutral axis on deformation. This then assumes that warping, shear deformation 

effects and transverse normal strains are negligible. These assumptions are assumed 

valid for slender beams [35]. 

Where the beam is not slender, or there are high-frequency modes excited, or the 

beam is made of a composite material, Euler-Bernoulli theory is insufficient and the 

Timoshenko theory must be used. In these cases, the transverse shear is not 

negligible and must be accounted for. With transverse shear, rotation of a cross-

section occurs due to both bending and transverse shear deformation. Timoshenko 

[37] derived correction terms for the effects of shear and of rotary inertia.  

In this work, the experimental beam dimensions are such that Euler-Bernoulli 

theory is deemed appropriate. The model is taken and adapted to include the effect of 

nonlinearities introduced by midplane stretching. 

1.6. Fluid damping models 
 

As a body oscillates in a fluid, the vibrating structure interacts with the fluid and 

energy is dissipated. Fluid damping models can be employed to account for this 

energy dissipation. Knowledge of the damping is essential if the dynamic behaviour 

of a structure in a fluid is to be fully understood. 

The damping mechanism on which fluid damping models are based depends 

largely on the pressure regime of the fluid. The pressure determines whether a fluid 

may be considered a continuum, or as a collection of non-interacting molecules. In 

the former case, fluid damping results from the viscous shearing of the fluid at the 

surface of the structure and from flow separation. In the latter, dissipation occurs due 

to momentum exchange between the oscillating structure and the surrounding 

molecules. 
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Fluid behaviour is governed by nonlinear equations. The behaviour of a fluid 

surrounding an oscillating body is affected by the shape of the body. These two 

factors mean that any fluid damping models developed for use with finite rectangular 

beams will necessarily be approximate.  

In this work, only Newtonian fluids are considered. The subject of fluid damping is 

covered in detail in chapter 3, where fluid damping models for use with a rectangular 

beam are presented. 

1.7. Previous work 
 

This section provides an overview of previous work relevant to the current study. 

1.7.1. Modelling nonlinear behaviour in MEMS 
 

There has been a vast amount of work conducted on the understanding of and 

solution to nonlinear equations. This section is then limited to a discussion of work 

directly related to MEMS devices or beams. 

Various authors have studied the nonlinear vibrations of MEMS resonators. 

Mestrom et al. [38] considered the nonlinear dynamics of a clamped-clamped beam 

resonator, as did Rhoads, Shaw and Turner [39], Veijola and Mattila [40], and 

Tadayon et al. [41]. Emam [33] investigated nonlinear dynamics in buckled beams. 

Malatkar [35] studied nonlinear vibrations in cantilever beams and plates subject to 

transverse excitations. Braghin et al [18] consider nonlinearities affecting a MEMS 

translation gyroscope. A nonlinear modal analysis approach was used by Xie, Lee 

and Lim [42] to obtain nonlinear normal modes for a clamped-clamped beam. A 

review of previous work regarding nonlinear beam vibration is presented by Marur 

[43]. 

1.7.2. MEMS as linear sensors 
 

One of the more common uses for MEMS devices as sensors is for the purpose of 

mass sensing. Rhoads [15] presents a thorough account of resonant mass sensing in 

MEMS. Resonant mass sensors are widely used in chemical and biological sensing 

applications. The sensitivity of such devices is such that Yang et al [44] have 
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reported the detection of zeptogram-scale mass particles with nanoscale beam 

resonators. 

Linear MEMS devices have been employed as viscosity sensors. For instance, 

Ronaldson, Goodwin and Wakeham [13] devised an oscillating-plate viscometer, 

whereas Agoston, Keplinger and Jakoby [21] use a cantilever to measure viscosity of 

complex organic liquids. 

Various other MEMS based sensors are encountered within the literature. 

Examples include 

• Gas sensors: Zribi et al [12] describe a resonant MEMS sensor for the 

detection of carbon dioxide and humidity. 

• Chemical sensors: Goeders, Colton and Bottomley [45] describe the 

sensing of chemical interactions with a microcantilever. 

• Atomic force microscopes: Sader [23] describes the application of 

cantilevers in viscous fluids towards the atomic force microscope. 

All of the above sensors are linear in nature. The next section considers nonlinear 

sensors.  

1.7.3. MEMS as nonlinear sensors 
 

The exploitation of nonlinearity in MEMS sensors is relatively limited to date. The 

subject of nonlinear resonant mass sensing, as discussed in detail by Rhoads [15], is 

however of increasing interest. Indications are that mass sensors based on nonlinear 

frequency response structures may be capable of higher sensitivities than their linear 

counterparts. The principle is that a given device is driven close to a known 

bifurcation point. Should a small amount of mass attach itself or interact with the 

resonator, then there is a sharp change in the behaviour of the resonator. An example 

of such a device is given by Buks and Yurke [30]. 

Greywall [46] proposed a scheme for measuring magnetic field strength using a 

nonlinear mechanical resonator. Measurements of the nonlinear beam resonance 

peak provide information regarding the surrounding magnetic field. 
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For the measurement of fluid viscosity, Sullivan et al [47] discuss a nonlinear 

vibrating wire viscometer. In this case, nonlinearities appear in the drag of the fluid 

and the transient response of the wire is measured. 

1.8. Thesis overview 
 

The thesis consists of nine chapters.  

Chapter 1 introduces the background and motivation of the work. The aims and 

objectives are stated. A brief discussion of microresonators, damping, nonlinearities 

and system modeling is presented. The chapter concludes with a review of related 

previous work.  

In Chapter 2, the equation of motion for a transversely oscillating clamped-

clamped beam in vacuum is derived using the Hamilton principle. Nonlinearities and 

intrinsic damping affecting the beam are discussed and evaluated. 

In Chapter 3, the effect of immersing and vibrating a rectangular beam resonator in 

a viscous fluid is considered. Fluid forces and energy dissipation are discussed, and 

models for the fluid damping on the beam, oscillating in fluids at various pressures, 

identified. 

In Chapter 4, the system equation of motion is developed, accounting for the 

presence of the surrounding fluid and the chosen actuation method. The system is 

analysed by means of modal analysis and approximation methods. Numerical 

predictions are then made from this analysis, informing subsequent design and 

experimental work. 

Chapter 5 describes the design and fabrication of silicon beam resonators for use in 

experiment. 

Chapter 6 presents the experimental equipment, setup and procedures. Problems 

encountered while performing experiments are described. 

In Chapter 7, the experimental results are presented for the fabricated devices. 

Comment is made on data reliability, measurement repeatability, and experimental 

limiting factors. 

Experimental data is analysed further in Chapter 8 to develop a damping model 

based on an elliptic cylinder approximation. Predictions are made from the resulting 
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model regarding the sensitivity of nonlinear measurements to changes in fluid 

properties. 

Finally, in Chapter 9, conclusions are presented with a summary of the 

contributions, discussion of study limitations and implications, and suggestions for 

future work.  
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Chapter 2 
 

Beam kinematics 
 

In this chapter, the equation of motion for a transversely oscillating clamped-

clamped beam in vacuum is derived. A variational approach is taken employing the 

Hamilton principle. Nonlinearities, temperature effects and simplifying assumptions 

are discussed and evaluated prior to and/or during the derivation. Finally, intrinsic 

damping mechanisms are described and evaluated. 

2.1. Dominant nonlinearity 
 

The various nonlinearities which may occur in MEMS devices have been outlined 

in section 1.4.3. For a transversely oscillating clamped-clamped beam, providing 

strains remain small and the beam material is Hookean, then the primary 

nonlinearities to consider are geometric. The differential equations of motion for an 

extensional beam will include nonlinear contributions to the curvature and inertia, 

with another nonlinearity due to midplane stretching. Crespo da Silva [1] showed 

that the midplane stretching is the dominant nonlinearity, allowing for the 

linearisation of curvature and inertial terms with no significant effect on analysis of 

the system. 

2.2. Temperature effects 

2.2.1. Tension  
 

A clamped-clamped beam may be subject to an initial tension. Depending upon the 

boundary conditions, this tension can increase or decrease with a change in 

temperature. To account for this tension, suppose that a clamped-clamped beam of 

length L  has its supports a distance ( )Lη+1  apart, whereη  is a small initial stretch of 

the beam and 1<<η . For 0>η  the beam is pre-tensioned, whereas for 0<η  the 

beam is pre-compressed. 
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2.2.2. Beam dimensions 
 

An increase in temperature will lead to an increase in beam dimensions. In turn, 

this may have some effect on beam behaviour. The degree to which beam expansion 

(or contraction for temperature decrease) affects beam behaviour depends upon the 

size of the temperature change and the beam material properties. 

Consider for example a silicon beam. At a temperature of 300K, silicon has a 

linear thermal expansion coefficient Lα  of 2.616x10
-6
 [2]. Although this coefficient 

is temperature dependent, it can be reasonably approximated to show that 

temperature fluctuations of even +/- 50 K about the 300K point make only a 

negligible difference to beam dimensions.  

To illustrate, suppose the silicon beam has length L= 1500 µm at 20˚C, then is 

heated to 40˚C. The change in beam length is calculated using T
L

L
L∆=∆ α , where 

L∆  is the change in length and T∆  the change in temperature. Inserting the numerical 

values gives a predicted increase in length of 0.0052%. For the purpose of this work 

then, the effect of temperature on beam dimensions may be disregarded. This 

assumption is confirmed in section 8.1.3. 

2.3. Beam theory 
 

In order to approximate the behaviour of a clamped-clamped beam, Euler-

Bernoulli beam theory is employed. This theory makes certain general assumptions 

which are found to be approximately true for most beams. It applies particularly to 

slender beams, whose length is far greater than width or depth.  

2.3.1. Euler-Bernoulli theory 
 

The analysis of a thin beam undergoing small flexural vibrations can be simplified 

by using Euler-Bernoulli theory, in which shear effects, longitudinal inertia and 

rotary inertia are ignored [3]. Providing certain conditions are met, the theory allows 

for the neglection of warping and shear deformation. In turn, a differential beam 

element may be considered a body whose motion is completely described by three 

translational and three rotational displacements. Knowledge of the deformation of the 
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beam centerline allows for the determination of the deformation of any point on the 

beam [4]. The conditions are as follows [5,6]. 

1. The beam is long and slender i.e. beam length is far greater than beam width 

and depth. As a consequence, tensile/compressive stresses perpendicular to the 

beam are much smaller than tensile/compressive stresses parallel to the beam. 

2. The beam is initially straight with a uniform cross section along the beam 

length.  

3. The beam has an axis of symmetry in the plane of bending.  

4. The beam is subject to pure bending i.e. the shear force is zero and there are no 

torsional or axial loads.  

5. The beam material is isotropic and homogeneous.  

6. The material obeys Hooke's law, i.e. it is linearly elastic and there is no plastic 

deformation.  

7. Plane sections of the beam remain plane during bending. 

8. Deformations remain small, such that the radius of curvature of the bent beam 

is large compared to the beams depth. 

 

Although real structures never exactly meet these conditions, they are often 

approximately true enough to allow the theory to make useful predictions. Euler-

Bernoulli theory does not hold for thick and short beams, where it is necessary to use 

the Timoshenko model instead [7]. 

2.3.2. Bending and curvature 
 

Consider the centreline of a uniform beam, curved due to in-plane loading. Let θ  

be the slope angle of the tangent to the curve at any point, and s  be the arc length of 

the curve measured from an arbitrary starting point (see figure 2.1). The curvature of 

a planar curve is then defined as
ds

dθ
κ = . 
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Figure 2.1: Curvature 

 

Consider a differential element of the curve as illustrated in figure 2.2, where x  

and y  are local axes. 

 

 

Figure 2.2: Differential element of curve 

 

 

By inspection
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For small rotations, 1
2

<<






dx
dy . In this case, the curvature can be linearly 

approximated as 2

2

dx

yd=κ . For larger, finite rotations, the true nonlinear curvature 

term should be adopted. 

Euler-Bernoulli theory assumes that the following relationship exists between 

bending moment and beam curvature: 
EI

M
=κ , where M , E  and I  denote the 

bending moment, Young’s modulus of the beam material and second moment of area 

respectively. The bending potential energy in a beam of length L is given by 

dxEIU
L

B
2

0 2

1
κ∫= . 

2.3.3. Second moment of area 
 

The resistance to bending of a body is proportional to the second moment of area. 

For the beam cross section illustrated in figure 2.3, the second moment of area about 

the z  axis is given by ∫= Az dAyI 2 , where dA  is an elemental area and y  is the 

perpendicular distance to the element dA from the axis z . On computing, 

12

3
2 bd
dydzyI

Az == ∫ ∫ , where b  is the beam width and d  the beam depth. 

 

Figure 2.3: Second moment of area about z-axis 
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2.4. Equation of motion 
 

Consider a uniform clamped-clamped beam of length L , width b  and depth d  as 

shown in figure 2.4. The displacements in each direction correspond to ( )xu , ( )yv , 

( )zw . 

 

Figure 2.4: Transverse vibration of slender clamped-clamped beam 

 

For transverse displacement in the y-direction to be possible, the beam has to 

stretch axially as well as bend. Stretching of the beam’s midplane can therefore be 

expected to contribute to the transverse stiffness of the beam [8]. 

Now consider the centre line of the beam, running parallel to the x axis. Let u  and 

v  represent displacement on the centre line of the beam, where u  is longitudinal 

extension and v transverse extension. In addition to the slender beam assumptions 

outlined in the previous section, it is also assumed that extensions are small with 

v >>u , such that ( )2vOu =  [8,9]. 

2.4.1. Axial strain 
 

During transverse vibrations a beam element will be deformed and deflected. 

Suppose the length of the centre line in the element then changes from ds  to *ds  

(see figure 2.5). The axial strain on the centre line, xxε , is then calculated as  

( )
dx

dxvduddx

ds

dsds
xx

−++
=

−
=

22
*

ε . Let 
dx

udu =′  and 
dx

vdv =′ , then 

( ) ( ) 11
22 −′+′+= vuxxε .  
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Figure 2.5: Deformation of differential beam element 

 

Now ( ) ( ) { } 212222
211 vuuvu ′+′+′+=′+′+ .  Employing a binomial series 

expansion and retaining only the larger terms, it is possible to then 

write ( ) ( )2222 2
2
112

2
11 vuuvuuxx ′+′+′=−′+′+′+≈ε . As it has been assumed that 

( )2vOu = , so the term 2u ′  may be neglected in this formula, resulting in the 

approximation ( )
2

2

2

1
2

2
1 






+=′+′≈
dx

vd

dx

ud
vuxxε .              (2.1) 

Now consider elemental fibres parallel to, but displaced from, the centre line. For 

these fibres, the strain is reduced by an amount proportional to the y displacement 

from the centre line (see figure 2.6). Note that Euler-Bernoulli theory assumes that 

normals to the centre line remain normal under deformation. The gradient of a 

normal to the centre line is 
vd

dx
− . If the axial displacement on the centre line is u , 

then away from the centre line the displacement u  is given by 
dx

vd
yuu −= . With this 

reduction in displacement, so the strain along the x-axis direction is reduced. Let the 

reduction in strain be expressed 





−

∂
=

∂
−

=∂
dx

vd
y

xx

uu 1
ε . As 0→∂x  so the reduction 
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in strain becomes 
2

2

dx

vd
y− . Therefore the axial strain on any fibre in the beam, xxε , 

can be represented as
2

22

2

1

dx

vd
y

dx

vd

dx

ud
xx −






+≈ε              (2.2) 

 

 

Figure 2.6: Displacements away from centre line 

 

2.4.2. Kinetic energy 
 

With the assumption for a slender beam that all mass is concentrated on the centre 

line, the kinetic energy T  of the vibrating beam is given by 

dx
dt

vd

dt

udA
T

L


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⌡
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




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



+






=

0

22

2

ρ
, where ρ  is the beam material density and A  the cross-

sectional area of the beam (=bd  in this case).        

2.4.3. Potential Energy 
 

The potential strain energy in the vibrating beam is calculated by first considering 

the strain energy density ∫
2

0
0

2

1
xxxxxx EdEU

xx

εεε
ε

== . The strain energy U  is then 

given by ∫ ∫∫ ==
A LV

dAdxUdVUU 00 . Substituting and rearranging gives 
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where I  is the second moment of area about the z  axis. Now 0=∫
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The first term in this expression is the potential energy due to midplane stretching, 

whereas the second term represents the linearised bending potential energy. 

2.4.4. Hamilton’s principle 
 

The differential equations of motion for the beam can be obtained from a 

variational approach using Hamilton’s principle. This can be written 

( ) 0
2

1

2

1

=+− ∫∫ dtWdtUT
t

t
nc

t

t
δδ , where δ  is the first variation operator, T  is the total 

kinetic energy of the system, U  is the potential energy, and ncWδ is the virtual work 

done by the non-conservative forces and/or moments. For a beam in a vacuum, the 

non-conservative forces are taken to be zero, such that ( ) 0
2

1

=−∫ dtUT
t

t
δ . 

The variations in kinetic energy and potential energy are then given by 

dx
dt

vd

dt

vd

dt

ud

dt

udA
T

L


⌡

⌠














+






=

0

2
δδ

ρ
δ  and 

∫∫ 







+














+


















+=

LL

dx
dx

vd

dx

vdEI
dx

dx

vd

dx

vd

dx

ud

dx

vd

dx

udEA
U

2

2

2

22

22

1

2
δδδδ  

Consider the kinetic energy: ∫∫ 
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Separating integrals, reversing the order of integration then integrating by parts gives 
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By definition for Hamilton’s principle, uδ  and vδ  are both zero at 1t  and 2t . 

Therefore ∫ ∫∫ ∫∫ −−=
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Now consider the potential energy: 
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Separating the integrals and integrating by parts yields  
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Hamilton’s principle then requires that ( ) 0
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Consider uδ  terms: 0
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. Suppose now that the beam supports are fixed 
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at a distance of ( )Lη+1  apart. Letting the boundary condition at L  be ( ) LtLu η=, , 

then 











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+= ∫
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2

2

1
η . 

Now consider the  vδ  terms: 
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This can be rewritten as 0
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Therefore the equation of motion for the free vibrations of the beam in a vacuum 

becomes  
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2.5. Intrinsic damping 
 

The analysis to this point has yet to account for any of the intrinsic damping 

mechanisms outlined in section 1.4.4. As Bishop and Johnson [10] discussed, it is 

difficult to know the magnitude of these damping forces with great accuracy. In the 

presence of fluid damping this problem is compounded. Hao et al [11] suggested that 

for a beam resonator operating in a vacuum, the sources of energy loss mainly 

consist of support loss, thermoelastic loss and surface loss. By estimating the quality 

factor relating to each of these loss mechanisms, supQ , TEDQ  and surfQ  respectively, 

the overall quality factor intQ  due to intrinsic losses is given by 

surfTED QQQQ

1111

supint

++= . 
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2.5.1. Support loss 
 

An analytical model for support loss is presented by Hao et al [11]. An elastic 

wave is taken to be excited by a vibrating shear force at the clamped ends, which is 

propagated in the support structure. This model depends on the following 

assumptions: 

1. Dimensions of the supports in the x-y plane are much larger than the beam 

dimensions. 

2. The wavelength Tλ  of the transverse elastic wave is far greater than the width 

b of the beam. 

3. Beam vibration is described using Euler-Bernoulli theory. 

4. The behaviour of the supports is described using 2D elastic wave theory, and 

supports are modelled as infinite thin plates of width b. 

5. All of the vibration energy entering the support structure is considered to be 

lost. 

The transverse wavelength Tλ  can be expressed as 
f

CT
T =λ , where TC  is the 

propagation velocity for transverse waves, and f   is the resonant frequency of the 

beam. TC  is given by 
( )υρ +

=
12

2 E
CT , where υ  is Poisson’s ratio. If the elastic 

wavelength is also very large when compared to beam length, then the quality factor 

associated with support loss can be estimated using the following formula: 

( )( ) ( )

3

2sup

1

13

86.4






+−

=
d

L
Q

nnχβυυ
. nβ  and nχ  are, respectively, mode constants and 

mode shape factors. For a clamped-clamped beam vibrating in its first mode, these 

have the value 5056.11 =β  and 983.01 −=χ . 
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2.5.2. Thermoelastic damping (TED) 
 

In a vibrating structure, compressed regions become hotter and extended regions 

cooler, creating a temperature gradient in most materials. This is a consequence of 

the strain field causing changes in internal energy. Should any irreversible heat flow 

then occur, so energy is dissipated. This process is known as thermoelastic damping, 

or TED for short. A study of TED in vibrating beams was first presented by Zener 

[12], who noted that alternating compressive and tensile strains build up on opposing 

sides of the beam’s neutral axis, resulting in energy loss. Developing on from 

Zener’s work, Lifshitz and Roukes [13] presented the following formula for 

estimating TEDQ : 

( ) ( )
( ) ( )











+
+

−=
ςς
ςς
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coscosh

sinsinh
.
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2

p

T

TED C

TE

Q
, where 

T

pC
d

κ

ωρ
ς

2
= , T  is the absolute 

temperature, pC  the specific heat at constant pressure, Tκ  the thermal conductivity, 

and ω  the angular frequency of the resonator. 

2.5.3. Surface damping 
 

It has been experimentally observed that the quality factor of micro- and nano-

scale resonators decreases as surface-to-volume ratios increase. This dependence on 

dimension is believed to indicate the presence of surface loss mechanisms. The 

precise nature of these mechanisms has yet to be determined, although much of the 

literature attributes the losses to surface imperfections, adsorbents or oxidation 

[14,15,16,17,18,19]. It has been observed that surface treatments may reduce surface 

losses by reducing surface roughness [11,15,20,21]. 

For an approximation of the magnitude of surface losses, an analytic model is 

required. Yang et al [15] presented a formula for determining the quality factor 

associated with surface losses: 
sds

surf
E

E

db

bd
Q

δ23 +
= , where dsE  is the dissipation 

value of the Young’s modulus of the surface layer, and sδ  is the thickness of the 

surface layer. As Hao et al [11] discuss however, it is very difficult to know the 

values of dsE  and sδ . They proposed an experimentally determined 

value 38.1=sdsE δ  for beams of width 20µm and varying lengths and depths. Using 
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this formula and empirically determined values then allows for a rough 

approximation to the contribution of surface losses to the total intrinsic damping. 

2.5.4. Equation of motion with intrinsic damping 
 

Making the assumption that the intrinsic damping mechanisms are viscous in 

nature i.e. proportional to 
dt

vd
, the equation of motion for the free vibrations of the 

beam in a vacuum is modified to 
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where Ic  is an intrinsic damping coefficient. 
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Chapter 3 
 

Fluid damping 
 

The behaviour of the beam is now considered for the case of total immersion in an 

incompressible, homogeneous Newtonian fluid, of density fρ  and dynamic 

viscosityµ , at constant temperature and pressure. Operating the resonator in a fluid 

environment introduces further damping mechanisms to the system. Deformation of 

a fluid by resonator motion is inherently dissipative due to fluid viscosity, whereas 

fluid inertia allows for the propagation of sound waves. Fluid behaviour can vary 

greatly, depending on the relative importance of viscous to inertial forces. 

Newtonian fluids obey Newton’s law of viscosity. These fluids have constant 

dynamic viscosity and density at constant temperature and pressure, regardless of 

shear rate. Dynamic viscosity is temperature dependent but independent of the 

pressure [1]. Non-Newtonian fluids however show variable viscosity at a constant 

temperature and pressure, dependent on the rate of shear [2]. 

Gases may be considered as incompressible viscous fluids when the maximum 

speed of the vibrating beam in the gas is much lower than the speed of sound in the 

gas. The Mach number, which is the ratio of the magnitude of the fluid velocity to 

the speed of sound in the fluid, is used to measure the tendency of a fluid to 

compress on interaction with a structure. Various authors have suggested that a fluid 

may reasonably be considered incompressible when the Mach number remains 

significantly less than 1, since compressibility should not then influence the analysis. 

Blevins [3] suggested an upper limit of 0.3, whereas Weiss et al [4] presented an 

upper limit of 0.01. 

The governing equations for fluid behaviour are intrinsically nonlinear, and cannot 

be solved analytically for the beam in the fluid. Instead, an approximate solution is 

sought by using an established solution for a similar oscillating body. 

The fluid damping mechanisms of primary concern in this work are viscous drag, 

added mass and molecular damping. The experimental devices, apparatus and 
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procedure are designed to avoid or minimise any pressure drag or squeeze-film 

damping. The damping mechanisms are discussed below. 

3.1. Flow regimes 
 

The fluid damping on a resonator is greatly affected by the pressure of the fluid. 

Depending on the ambient fluid pressure, fluid motion can range from continuum 

flow to molecular flow. To simplify the analysis of fluid damping, it is convenient to 

define pressure, or ‘flow’, regimes. 

The appropriate approach to analysing the fluid field around a resonator depends 

upon the fluid flow regime. Flow regimes in gases, also referred to as pressure 

regimes, can be characterised by using the dimensionless Knudsen number Kn .  

w
Kn λ= , where λ is the mean free path of a fluid gas molecule and w  is the width 

of the gas layer in motion. λ  is defined 2
2 gB pdTk πλ =  where Bk  is the Boltzmann 

constant, T  the temperature, p  the gas pressure and gd  the diameter of the gas 

molecule. The parameter w  can be taken as the beam width [5]. The flow regime 

then directs the analysis: for certain regimes continuum theory may be employed, 

while in other cases molecular theory may be required. Table 3.1 outlines flow 

regimes and the associated Knudsen numbers. 
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Flow regime Kn range 

Continuum Kn<0.001 [6,7] 

Kn<0.01 [8,9] 

Slip 0.001< Kn<0.1 [6, 7] 

0.01< Kn<0.1 [8, 9] 

Viscous i.e. continuum 

plus slip 

Kn<0.01 [5] 

Kn<0.1 [10] 

Transition 0.01< Kn<10 [5] 

0.1< Kn<10 [6, 7, 8, 9, 10] 

Free molecular Kn>10 [5, 6, 7, 8, 9, 10] 

Table 3.1: Flow regimes 

 

The boundaries between each regime are not easily defined. It can be seen from 

table 3.1 that although there seems to be consensus over the Knudsen values for the 

free molecular regime, there is disagreement over the continuum, slip and transition 

regimes. 

3.1.1. Fluid damping in each flow regime 
 

The fluid damping on a resonator has different mechanisms according to the 

pressure range in which the resonator is operated. Gas rarefaction reduces the viscous 

effect of the gas, such that the fluid damping varies from the highest value in the 

continuum regime to the lowest value in the free molecular regime [8]. Damping 

models vary according to the flow regime under consideration. 

 

Viscous regime (continuum and slip) 
 

In the viscous flow regime, which includes both the continuum and slip regimes, 

gas properties are mainly governed by molecule-molecule collisions [5], and the 

fluid may be considered a continuum. In this regime, an incompressible fluid is 

governed by the Navier-Stokes equation [7], and viscous flow models are used to 
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predict the damping. The contributions to the damping are discussed in detail in 

section 3.2, and models in section 3.3. 

The continuum and slip regimes are differentiated by considering the conditions at 

the resonator surface. In the slip regime, the fluid velocity at the surface, with respect 

to the surface, is non-zero, and the Navier-Stokes equation starts to degenerate. The 

no-slip condition for viscous fluids states that at the surface, the fluid has zero 

velocity relative to the surface i.e. fluid velocity is equal to surface velocity. In the 

continuum regime, no-slip boundary conditions prevail [6,8].  

 

Free molecular regime 

In the free molecular regime, the fluid is considered a rarefied gas rather than a 

continuum. Damping occurs due to the molecular bombardment of an object by 

discrete, noninteracting gas particles. The viscous flow model is no longer valid and 

a free molecular model must be considered for the damping. Models similar to that 

proposed by Christian [11] are frequently used to estimate the damping on an 

isolated oscillator i.e. in the absence of any nearby structures. The momentum 

transfer between the oscillating body and the gas molecules is determined using the 

Maxwell-Boltzmann distribution function, from which the damping may then be 

calculated. An alternative approach by Bao et al [12] considers instead an energy 

transfer mechanism, and in doing so accounts for the presence of any neighbouring 

objects. A model based on momentum exchange considerations is presented in 

section 3.4.  

 

Transition regime 

In the transition flow regime, the mean free path of molecules is of the same order 

as the typical characteristic flow length. The collisions of the molecules with the 

surface of the body and intermolecular collisions are of similar importance and so 

analysis becomes very complicated [6,8]. In this regime, the Navier-Stokes equation 

and the Boltzmann equation start to lose validity [7]. 

There are generally two theoretical models used to explain behaviour in this 

regime: a molecular damping model as outlined above, or an ‘effective’ viscous 

damping model, used particularly in cases where squeeze-film damping is present 

[8,13,14]. With the latter, it is assumed that viscous damping is still dominant, but 
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with a modified ‘effective’ viscosity coefficient to account for rarefaction in the gas. 

Both approaches have their disadvantages: molecular damping models are only 

strictly valid at near vacuum pressures (for Kn >10) [10], whereas the concept of 

effective viscosity is questionable at low pressures where it may be inappropriate to 

consider the fluid a viscous fluid [12]. 

3.2. Damping force in a continuum 
 

The beam motion will induce an oscillating fluid force applied by the surrounding 

fluid to the beam, which acts as a damping force. Where device dimensions are such 

that the gap between the oscillating beam and the surrounding structure are small (i.e. 

gap << L ), then this damping is dominated by squeeze-film damping [7,8,15]. 

Squeeze-film damping is caused by the squeezing of the fluid flow between a 

moving structure and fixed surroundings. When the beam moves towards the fixed 

surroundings, the pressure in the fluid between the two is increased, and the fluid is 

squeezed out from the edges of the beam. As the beam moves away, the situation 

reverses: the pressure drops between the beam and the surroundings, and fluid is 

sucked back into the space. The viscous drag of the fluid during the flow creates a 

damping force, opposing the motion – this is squeeze-film damping [15]. Where the 

gap between the oscillating beam and surrounding structure is large however, as is 

the case in this work, then fluid drag forces are the dominant loss mechanisms and 

squeeze-film effects may be considered negligible. 

In the absence of squeeze-film damping, a rectangular beam oscillating in an 

otherwise stationary fluid continuum may then be considered to experience a fluid 

damping force composed of three parts [16]: one part due to the inertia of the 

accelerating outer flow; another due to the influence of viscous boundary layers; and 

a third due to the separation of these boundary layers leading to vortex shedding. 

These shall subsequently be referred to as the added mass, skin friction drag and 

pressure drag respectively. 

3.2.1. Added mass 
 

Acceleration of the beam causes the surrounding fluid to accelerate also. For 

convenience, this can be modelled as an entrained volume of fluid moving with the 

beam.  The inertia of the entrained fluid is known as the added mass, and it acts with 
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the same sign, frequency and phase as the beam mass. Added mass acts to decrease 

the resonant frequency of the beam from the natural frequency measured in a vacuum. 

The effect of added mass becomes significant when fluid density is comparable to 

beam density. 

3.2.2. Skin friction drag 
 

Skin friction drag arises from the interaction between the fluid particles and the  

moving beam surface. The fluid exerts a shearing stress over the beam surface, 

opposing the motion. Across the surface of the beam, a boundary layer of low energy 

flow is generated, and it is this boundary layer which is responsible for the drag. The 

skin friction drag is the resultant, in the drag direction, of the shear stresses at the 

beam surface, and has a magnitude dependent upon the fluid viscosity.  

3.2.3. Pressure drag 
 

Pressure drag arises from differences of pressure over the surface of an oscillating 

body. Separation, where a fluid breaks free of a surface after being attached to it, can 

create a wake behind a moving body. In turn, the pressure acting on the front of the 

body may exceed that acting on the rear, resulting in a force opposing forward 

motion. Pressure drag depends on the shape of the body and is therefore also known 

as form drag. 

The regime for attached flow depends on two dimensionless parameters: the 

Reynolds number ( Re ) and the Keulegan-Carpenter number ( Kc ). The Reynolds 

number gives the measure of the ratio of inertial forces to viscous forces, and is 

given by µ
ρ mf DU

=Re , where D  is a characteristic length, and mU  the maximum 

velocity of the fluid free stream with respect to the surface. The Keulegan-Carpenter 

number describes the relative importance of drag forces over inertia forces for an 

oscillating body in a fluid otherwise at rest, and is defined
D

TU
Kc om= , where oT  is 

the period of the oscillation. 

For certain bodies, such as a circular cylinder, there is a regime at sufficiently 

small Kc  where the fluid remains attached, regardless of Re  [16]. For bodies with 
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sharp edges, such as a rectangular beam, separation will always occur to some extent 

at the sharp edges [16,17]. 

3.2.4. Resultant damping force 
 

The resultant inline damping force can be represented by the following equation. 

For an oscillating body with velocity )(tU  in an otherwise stationary fluid, the inline 

damping force is: 

( ) UAUCUVCtF Dfaf ρρ
2

1
+= &                (3.1) 

where 

• ( )tF is the total inline force on the object 

• )(tU  is the velocity of the object relative to the fluid 

• UVCaf
&ρ  is the inertial force due to the added mass 

• UAUCDfρ
2

1
 is the total drag force, or ‘profile drag’ [18], which acts in 

phase with )(tU  

• aC  is the added-mass coefficient 

• V  is the volume of the body 

• DC  is the drag coefficient 

• A  is a reference area, e.g. the cross-sectional area of the body 

perpendicular to the flow direction 

The inertia force acts in phase with the acceleration of the body, wherease the drag 

force acts in phase with the velocity. Viscous effects contribute to both of these 

forces [16]. The drag coefficient DC  accounts for both the skin friction drag and the 

pressure drag, allowing for the sum of the skin friction and pressure drag to be 

expressed as a single ‘profile’ drag. [17,18]. 

The profile drag is represented as a quadratic force. However, in the absence of 

separation, and therefore pressure drag, the drag coefficient DC  can be formularised 
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so as to reduce this to a linear viscous drag term i.e. the drag force becomes 

proportional to velocity.  

For a general approximation, the Reynolds number can indicate which form the 

profile drag term may take:   

• At very low Reynolds number, pressure drag may be neglected and the 

drag force may be considered proportional to velocity 

• At high Re, there is flow separation and the drag force is nearly 

proportional to the square of the velocity 

• At moderate Re, the drag force lies somewhere between the linear and 

quadratic forms [19]. 

For example, Douglas et al [18] suggest that for incompressible flow past a 

cylinder, pressure drag may be considered negligible where Re <0.5, whereas 

separation may occur at higher levels of Re , e.g. 2< Re <30. Shames [17] suggests 

that, for a cylinder, when Re <10, then the drag is overwhelmingly due to skin 

friction. 

Alternatively, considering the Keulegan-Carpenter number, the flow remains 

predominantly attached to a cylinder where Kc <0.1 [20]. 

3.3. Viscous regime damping models 
 

In the viscous flow regime, the flow of an incompressible fluid around an 

oscillating beam will be described by the Navier-Stokes equation. When the 

gravitational force on the fluid is neglected, this is expressed 

( ) vgradpvgradv
t

v
∆+−=+

∂
∂

ρ
µ

ρ
1

.                         (3.2) 

where v  is the velocity of the fluid at a given point in space and time. 

For oscillatory motion in an otherwise stationary fluid, the term ( )vgradv.  may be 

neglected where one of the following conditions is met [1]: 

• The viscous penetration depth δ >> D  and Re <<1. 

• D>>δ  and the amplitude of oscillations are small compared to D . 
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where the viscous penetration depth ωρ
µδ

f

2= , and ω  is the circular frequency.  

From the reduced equation, the flow distribution around a simple body (e.g. a sphere) 

can be determined, and consequently the fluid force acting on that body. 

However, even if the Navier-Stokes equation is simplified by neglecting ( )vgradv. , 

it still cannot be solved analytically for the rectangular beam in the fluid. Instead, an 

approximate solution is sought by using an established solution for a similar 

oscillating body. For a first approximation, modelling the beam as a string of spheres 

was considered, as this approach has been taken in several studies [21,22]. However, 

for greater consistency with the geometry of the beam, models based on circular and 

elliptic cylinders were favoured. 

3.3.1. Circular cylinder model 
 

To inform beam design, it is necessary to have an analytical approximation to the 

fluid damping in advance. For this purpose, the approach taken by Blevins [3] is 

considered, with rectangular beams being approximated as circular cylinders. 

Added mass 

The added mass coefficient for a circular cylinder in an oscillating flow of circular 

frequency ω  is given by 

( ) ( ) 2
3

2
1

41
−− ++= DDaC πβπβ                (3.3) 

where πµ
ωρ

β
2

2Df
D =   and D  is the characteristic length (here, the diameter of the 

cylinder) [3]. It is assumed that the added mass coefficient for an oscillating cylinder 

in an otherwise still fluid is identical. The added mass per unit length for a cylinder, 

AM , is then given by 
4

2bCM faA
πρ= . 

The added mass AM  for a rectangular beam under free vibration in a fluid has 

been specified using potential flow theory. It is given by 
4

2b
M f

A

παρ
=  where the 

coefficient α  depends upon the width to depth ratio of the beam, 
d

b   [23]. This is a 

factor of α  greater than the similarly determined added mass for a circular cylinder. 
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Therefore, for the oscillating case, it is assumed that added mass may be 

approximated as 
4

2bCM faA
πρα= . Values of α  are presented in table 3.2. 

d
b  α  

0.1 2.23 

0.2 1.98 

0.5 1.70 

1.0 1.51 

2.0 1.36 

5.0 1.21 

10.0 1.14 

∞  1.0 

Table 3.2: coefficient α  

 

Profile drag 

For slightly viscous fluids at 1<Kc , so that there is no flow separation, the drag 

coefficient for a smooth circular cylinder is given by [3]: 

( ) ( ) 



 −+= −−−−

2

3
312

2

1
31

8

3

2

3

2

3
DDDD KcC πβπβππβπ                (3.4) 

 

Sarpkaya [24] explains that the above formula only strictly holds for 1<<Kc ,  

1.Re <<Kc , 1>>Dβ . Outside of this range, the drag coefficient must be determined 

experimentally. 

The viscous drag force per unit length is then given by  

DfDrelrelfD DC
dt

dv
DCUUF

2

2

1

2

1







== ρρ  

This is a linear drag term. As Kuiper et al [20] point out, the inverse dependence of 

DC  on Kc  compensates for expressing the linear drag through a quadratic 

dependence on velocity. Letting DfD C
dt

dvD

µ
ρα

2

1
=  allows the drag force to be 

expressed 
dt

dv
F DD µα= .  

A rectangular beam will have a larger drag coefficient than a similarly sized 

circular cylinder [25]. Consequently, the beam drag is approximated by multiplying 
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the cylinder drag by a factor C  (to be determined experimentally). Letting DCα=Φ , 

the viscous drag force per unit length on a rectangular beam becomes
dt

dv
FD µΦ= . 

For the purpose of predicting approximate beam behaviour, it is simplest to use 1=C . 

The characteristic length is taken to be the width of the beam b . 

 

3.3.2. Elliptic cylinder model 
 

The previously outlined circular cylinder model is only valid for Reynolds 

numbers and Keulegan-Carpenter numbers significantly smaller than 1. When it 

comes to operating the resonators in the nonlinear regime it is likely that Reynolds 

numbers will be encountered in the region of, or in excess of, 1. It is therefore 

necessary to look for a more appropriate damping model. 

Zhang and Turner [26] proposed a linear fluid damping model based on 

experimental observations for MEMS cantilevers with rectangular cross-section 

shape. It seems reasonable to try extending this model to clamped-clamped beams of 

similar shape. 

In this model the damping coefficient is given by  

( )λπµ baCdamping +=                             (3.5) 

where (a,b) is a cross-section shape dependent constant pair, and λ is a dimensionless 

parameter defined as the ratio of the width of cantilever to the penetration depth δ  of 

the viscous fluid: δλ width= . The drag force is then given as
dt

dv
CF dampingD = . It 

should be noted that in this model, added mass is not considered. 

 

Parameter a 
 

Parameter a  cannot be analytically derived for a rectangular beam [27]. However, 

by treating the beam as an elliptic cylinder it is possible to approximate using the 

following expression as derived by Oseen [28]: 

( ) 






 +
−−+

=

2

21

21

1

16

Re
ln

4

d

dd

dd
d

a

γ
                          (3.6) 
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Here γ is the Euler constant and Re is the Reynolds number. Equation (3.6) 

assumes steady flow, that the minor axis (d1) is parallel to the velocity direction (see 

figure 3.1), and that the Reynolds number is smaller than 1. It has been shown that 

equation (3.6) offers a good approximation of parameter a  with less than 10% 

relative error [27]. In the case of oscillatory motion, rather than steady flow, the 

Reynolds number is not uniform across the beam. It is therefore necessary to 

interpolate an average value of a  to use in the approximation. For Reynolds number 

above 1, the approximation may no longer be valid, and it becomes necessary to 

experimentally fit a value of a . 

 

 

Figure 3.1: Comparison of elliptical cylinder to rectangular beam 

 
 

Parameter b 

Parameter b  is determined by numerical analysis and comparison to experimental 

results [27]. Numerical simulations indicate that the thickness d1 has negligible effect 

on the damping provided that the width to thickness ratio, d2/d1, is greater than 5 

[27]. Below this aspect ratio, the damping coefficient may not be as reliable since 

thickness effects become important.  
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3.4. Molecular and transition regimes damping 

model 
 

In the absence of squeeze-film damping, a molecular damping model is assumed 

for both the molecular and transition flow regimes. 

3.4.1. Molecular model 
 

In the molecular regime at low pressure, the drag force due to gas molecules 

impinging on the beam can be represented by
dt

dv

v
pbL

F
T

D 




= , where p  is the 

pressure of the gas, 
g

B
T m

Tk
v =  is the thermal velocity of the gas molecules, gm  

is the mass of a gas molecule, and ( )txv ,  is the displacement of the beam element 

with respect to the inertial frame [29]. 

3.5. Equation of motion with fluid damping 
 

The equation of motion for the free vibrations of the rectangular beam in fluid 

becomes 

( ) 0
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



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dx

vd
dx

dx

vd

L
Ebd

dt

dv
c

dt

vd
Mbd

dx

vd
EI

L

fAs ηρ                        (3.7) 

where fc  represents the appropriately selected fluid drag coefficient, according to 

the flow regime, intrinsic damping has been neglected, and v represents the 

displacement of a beam element with respect to the otherwise stationary fluid. 

3.6. Summary 
 

Models for the fluid damping on a rectangular beam, oscillating in fluids at various 

pressures, have been identified. The circular cylinder model facilitates the design of 

suitable resonators, whereas the elliptic cylinder model may be modified by use of 

subsequent experimental results. All of the models discussed may be incorporated 

into the beam equation of motion where appropriate. 
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Chapter 4 
 

Problem formulation and solution 

modelling 
 

In this chapter the system is analysed by means of modal analysis and 

approximation methods. Following this analysis, numerical predictions are made in 

order to inform subsequent design and experimental work. For these predictions, the 

circular cylinder approximation to the damping model is utilised. Although 

constraints of this damping model are expected to be broken, it is the most 

appropriate of the damping models considered as it requires no experimental data in 

advance. 

4.1. Harmonic displacement  
 

In chapter 3 the equation of motion for an unforced beam in fluid was developed, 

and this equation presented in section 3.5. The inclusion of forcing on the beam, in 

the form of an applied harmonic displacement, is considered in this section. 

Let the ends of the beam be displaced by an amount ( )txv ,ˆ  with respect to the 

inertial frame (see figure 4.1). Each infinitesimal beam element, and associated 

entrained fluid, is then also displaced by ( )txv ,ˆ . If both ends of the beam are 

displaced identically, then this reduces to ( )tv̂ .   

 

Figure 4.1: Harmonic displacement of resonator beam 
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Now let the total displacement of a beam element and entrained fluid, with respect 

to the inertial frame, be ( )txv , , where ( ) ( ) ( )txvtxvtxv ,ˆ,, += . The total displacement 

with respect to inertial frame is the sum of the applied displacement and that due to 

deformation. The equation of motion for the beam is thus: 
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As ηρ  

where c  represents the appropriately selected drag coefficient for the rectangular 

beam. This coefficient is assumed to account for all viscous damping on the body, 

including any intrinsic damping. This approach is justified on the grounds that 

intrinsic damping cannot be known with great accuracy (see section 2.5), the fluid 

damping coefficient is expected to dominate over the intrinsic damping coefficient in 

the continuum flow regime (confirmed in sections 8.3.1 and 8.3.2), and at the centre 

of the beam where velocity, and hence viscous damping, is greatest, so vv ≈  for 

nonlinear vibrations (see section 7.1.4). 

Note that the viscous damping on the body is dependent on the velocity of body 

with respect to the fluid. The fluid is assumed to be at rest with respect to the inertial 

frame. 

For a harmonic displacement of thv ωsinˆ =  applied at both ends (i.e. at x=0, L), 

where h  is the displacement amplitude, the equation of motion then becomes 

( )

( ) thcthMbd

dx
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4.2. Modal analysis 
 

A weakly damped, weakly nonlinear system can be analysed by employing modal 

discretisation to obtain a reduced-order model of the system [1]. Such a reduced-

order model should encapsulate most of the properties of the complete system. 
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The approach is to expand the system response in terms of the undamped, unforced 

linear mode shapes, and to introduce this expansion into the equation of motion. The 

effect is to replace the partial differential equation with a set of coupled ordinary 

differential equations. Subsequent approximation of the system response can then be 

achieved by selecting an appropriate number of modes to include in the expansion. It 

is essential though that neglected modes do not significantly affect the system 

response.  

4.2.1. Analysis of fundamental mode 
 

A solution to equation (4.1) can be sought by using the modal expansion 

( ) ( )xXtTv ∑= , where ( )tT  represents the temporal functions and ( )xX  spatial 

functions. This general solution consists of an infinite number of modes.   

The resonator will be operated at close to its fundamental mode of vibration. As 

Bishop and Johnson [2] noted, where the higher modes have much higher 

frequencies than this fundamental mode, so these higher modes may be neglected. 

The forced motion will be almost entirely in the fundamental mode. Where damping 

is present, those modes that are not directly or indirectly excited will decay with time 

[3]. It is therefore reasonable to consider only the fundamental mode shape 

( ) ( )xXtTv = . 

In the absence of damping, external displacement and midplane stretching, 

equation (4.1) then reduces to 0
2

2

4

4

=+
dt

vd
bd

dx

vd
EI ρ . Inserting the fundamental 

mode yields 
4

2

2

4

41
rk

dt

Td

TEI

A

dx

Xd

X
=−=

ρ
, where 

4

rk  is a constant. The general 

solution for the spatial component is then given by  

xkCxkCxkCxkCX rrrr sinhcoshsincos 4321 +++=                         (4.2) 

 

The boundary conditions on the clamped-clamped beam are as follows: 

00 ==xv   0==Lxv  

0
0

=







=xdx

vd
  0=





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

=Lxdx
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Applying the boundary conditions gives C1=C3=0, and the following relation: 

( ) ( )
( ) ( ) 0

coshcossinhsin

sinhsincoshcos

4

2 =















−−−

−−

C

C

LkLkLkLk

LkLkLkLk

rrrr

rrrr
 

For non-trivial solutions, the determinant of the first matrix must be zero, yielding 

1coshcos =LkLk rr . This has eigenvalues as shown in table 4.1: 

 

Solution Value 

k0L 0 

k1L 4.730041 

k2L 7.853205 

k3L 10.995608 

Table 4.1: First four eigenvalues for mode shape 

 

This approach predicts an infinite number of modes of vibration, with each mode 

having its own particular shape and natural frequency. The first non-trivial solution, 

i.e. the fundamental mode, occurs where 4.730041≈kL . This corresponds to the 

solution ( ) ( )kxkxkxkxX sinhsincoshcos0177.1 −+−−= . Figure 4.2 shows an 

illustrative plot of this fundamental mode shape. 

 

Figure 4.2: Fundamental mode shape 
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This fundamental mode is now inserted into equation (4.1): 
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Multiplying the equation through by the mode shape, and integrating from 0 to L 

gives 
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Now employ the following substitutions and relations: 

L
x=ξ  

kL=β  

ξdXFp ∫=
1
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Table 4.2: substitutions and relations 
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In order to evaluate the integrals, Matlab software was employed. The quad 

function was used to numerically evaluate the integrals using recursive adaptive 

Simpson quadrature. The numerical values are given in table 4.3. 

Parameter Value 

γ 1.0344
1
 

1ϕ  12.7473 

2ϕ  -12.7473 

pF  0.8455 

Table 4.3: Integral values 

 

It can now be observed that the undamped natural frequency (in Hz) for the 

fundamental mode is given by
4

42

0
122

1

L

Ed

sρ

β
π

ω = , where sρ  is the density of the beam 

and η  is assumed to be zero. This allows for the evaluation of 0ω  for the first mode 

for a range of dimensions.  This is of interest as the resonator response will be 

measured near this natural frequency.  

Consider the following proposed beams: 

Material Density ρs  

(kg.m
-3

 )  

Young’s  

modulus E 

(kg.m
-1

.s
-2

) 

Beam 

 

Length L 

(µm) 

Width b 

(µm) 

Depth d 

(µm) 

Silicon 100 2329 169E+9 A 1200 30 15 

Silicon 100 2329 169E+9 B 1500 75 15 

Table 4.4: Proposed silicon beams 

 

The first two natural frequencies for each beam are shown in table 4.5. It is 

apparent that the second modes are at considerably higher frequencies than the 

fundamental modes. This suggests that the higher modes may then be neglected 

when exciting the fundamental mode only. 

 Natural frequency (Hz) 

β Beam A Beam B 

4.730041 91,211 58,375 

7.853205 251,426 160,913 

Table 4.5: Natural frequencies for first two modes 

 

                                                           
1
 Note here that the true value for γ is actually 1 [2, p.323], and is subsequently adopted. 
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Equation (4.3) can be reformulated with nondimensional parameters, by making 

the following substitutions: 
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Table 4.6: Nondimensional parameters 

    

This gives 

ττλ
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τ
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+=+++                           (4.4) 

 

This equation is in the form of the damped Duffing equation. The equation can 

have 1, 2 or 3 real solutions, depending on system coefficients. In the latter case, the 

solutions exhibit two distinct jump points [4]. These singularities are separated by a 

frequency difference Fδ , as illustrated in figure 4.3. Note that the model predicts 

λ >0, which corresponds to a hardening spring i.e. the stiffness increases as a 

function of displacement, as a result of the mechanical restoring force from midplane 

stretching. 

Figure 4.3 shows the known frequency response of equation (4.4) for four different 

levels of forcing, where 2
2

2
1

2 KKP += . At the lowest forcing P1, the frequency 
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response of the beam is linear. The second level of forcing P2 is close to critical 

forcing at which jump phenomena appear. Forcing P3 is at a sufficient level to bring 

on nonlinear behaviour, and clear jump phenomena can be observed. If the frequency 

is increased from A, then a bistable region is reached at point U1, which shall be 

referred to as the upper jump point.  Here, the amplitude drops to U2, before 

following the path towards B. Conversely, on decreasing frequency from B, the 

amplitude makes a jump from the lower jump point L1 up to L2, then follows the path 

towards A. At higher forcing again, P4, the resonance peak is further deflected, plus 

the bistable region is wider [5]. 

 

Figure 4.3: Plot of frequency versus amplitude for a generic damped Duffing 

equation – hardening spring 
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4.3. Quantitative analysis 
 

It is required now to analyse equation (4.4) formally to confirm that it matches 

predicted behaviour. Commonly applied methods for approximately solving 

nonlinear systems will be used. First, the harmonic balance method is used to predict 

the frequency response of the system. Later, the stability of the system is examined 

by using the Krylov-Bogoliubov averaging method. Such methods are restricted to 

weakly nonlinear systems [6] so it is necessary here to establish whether this is true 

of the system. 

To evaluate the strength of the nonlinearity, it is necessary to fully 

nondimensionalise the problem, to allow comparison of the sizes of terms in equation 

(4.4). Take h , the displacement amplitude (subsequently referred to as the 

background displacement amplitude), as a characteristic length such that ThT ˆ= . 

Substituting into equation (4.4) then yields 
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The nonlinear coefficient is then 2

2

a

h
ω

λ . The ratio of this coefficient to the linear 

displacement coefficient is
2

2

42

2122 95.1
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d
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 −
=

γβ
ϕϕ

λ . Therefore there is a weak 

nonlinearity in cases where d >> h . Making the assumption that a ratio of 0.01 or 

less guarantees a weak nonlinearity, then it is approximately required that hd 14≥ . 

This is assumed to be the case, and is confirmed at the beginning of chapter 7. 
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4.3.1. Harmonic balance solution 
 

With the method of harmonic balance, a periodic solution is assumed in the form 

of a harmonic series. Upon substitution and matching (balancing) of harmonic terms, 

a set of coupled equations is obtained. In general, it is sufficient to consider the first 

few harmonics only, as they tend to dominate typical periodic behaviour. It should be 

noted though that neglected higher terms may be important in improving the 

accuracy of the solution [7]. 

Let a solution to equation (4.4) be expressed in the form  
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Inputting this series solution to equation (4.4) and matching where p=r yields 
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Harmonic terms are then collected and equated. Choosing only to consider terms 

of the order τire  yields ( ) 21

22 *
4

3
21 KiKAArAiAr rrrr +−=++− λζ  

Letting ri

rr eaA
φ= results in 

( )( ) ( ) ( )

21

32 sincos
4

3
sincos2sincos1

KiK

iairaiira rrrrrrrrr

+−=

+++++− φφλφφζφφ
 

Taking the real and imaginary parts of the equation, squaring and adding, yields  

( ) ( ) 2

2

2

1

2

2

32 2
4

3
1 KKraara rrr +=+



 +− ζλ             (4.5) 

This is a frequency-response relationship which can subsequently be used to 

approximate the behaviour of the system. 
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The phase rφ  is similarly determined to be given by the formula 

( )

( ) 1

32

2

2

32

1

2
4

3
1

2
4

3
1

tan

KraaraK

KraaraK

rrr

rrr

r

ζλ

ζλ
φ

−



 +−

−



 +−−

=             (4.6) 

 

In addition to harmonic oscillations, a nonlinear system will exhibit subharmonic 

and superharmonic oscillations [4]. With a forcing frequency of ω , and for 

N=2,3,4,…, subharmonic oscillations occur at frequencies  
N

N

ω
ω = , whereas 

superharmonic oscillations are at frequencies ωω NN = . For the system under 

consideration, of significance would be superharmonic resonance at 
3

0ωω ≈ , or 

subharmonic resonance at 03ωω ≈ [6]. However, operation will occur at close to the 

fundamental frequency. Therefore superharmonics and subharmonics are not 

considered further in this work. 

4.3.2. Frequency response  
 

The frequency-response relationship given in equation (4.5) was used to plot the 

behaviour of beams A and B in argon, with the background displacement amplitude 

h  fixed at 5nm. This was achieved using Matlab software, employing the roots 

function to solve the polynomial, and plotting the real solutions. Figure 4.4 shows 

this plot and illustrates the occurrence of jump points in the vicinity of the 

fundamental natural frequencies. 
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Figure 4.4: Predicted frequency response for beams A and B in argon, with an 

external displacement h=5nm. Jump points indicated by O 

 

4.4. Stability 
 

The discussion so far has predicted the occurrence of a bistable region when 

forcing is above some critical value. In the following sub-sections this is examined 

further in order to confirm these predictions. 

4.4.1. Jump points and peak response 
 

Examine equation (4.5). For convenience let 
2

2

2

1

2 KKP += , then expanding gives 

( ) ( ) 22224262222 4
2

3
1

16

9
1 Pararaar rrrr =+−++− ζλλ                      (4.7) 

From figure 4.3 it is apparent that jump points occur where 0=
da

dω
, and the peak 

response where 0=
ωd

da
. 
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Considering the jump points first, differentiate (4.7) with respect to a, and equate 

da

dω
 to zero. Note first that 

a

r
ω
ω

= , so
( )

da

d
r

da

dr

da

rd

da

d a
a

a ω
ω

ωω
+== . In the case 

that AM  is negligible, then 0≈
da

d aω  and 0ωω ≈a . This assumption is made here, and 

its validity confirmed in section 4.5.1. With this approximation then, 
da

dr

da

d
0ω

ω
= , 

meaning that to set 
da

dω
 to zero simply requires 0=

da

dr
. 

Differentiating as indicated results in the following formula from which the jump 

points can be determined: 







 +−





 +−+= 222222

4

3
1

4

9
140 rr ararr λλζ              (4.8) 

To predict the position of the peak response, follow a similar procedure, except 

differentiating (4.7) with respect to r  and equating 
dr

da
 to zero. This results in the 

formula 222 2
4

3
1 ζλ −+= ar .                           (4.9) 

This can be rewritten 





 −+= 2222 2

4

3
1 ζλωω aa , and indicates that the peak 

response frequency depends on the magnitude and sign of the nonlinearity, as well as 

the damping and displacement. It is apparent that in the linear case, at λ=0, the peak 

occurs at ( )221 ζωω −= a , indicating that damping reduces the peak frequency, as 

expected. 
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4.4.2. Stability condition 
 

To this point it has been stated that, given sufficient forcing, a bistable region will 

occur. To confirm this, the Krylov-Bogoliubov averaging method of slowly changing 

phase and amplitude may be employed. This is a perturbation method which looks to 

obtain the response of the nonlinear system by perturbing the response of the 

corresponding linearised system. It should be noted that the accuracy of such 

perturbation solutions typically decreases as amplitudes of motion increase [6]. 

Consider a linearised version of equation (4.4) with 0=λ . This could be 

investigated by using a solution of the form ( )00 sin ψτ += raT . It is assumed that 

the nonlinear solution is similar to the linear one, except with amplitude and phase 

allowed to vary with time. Consequently take 

( ) ( )( )τψττ += raT sin               (4.10) 

There are now three unknowns: T , ( )τa  and ( )τψ . A third equation is needed, in 

addition to (4.4) and (4.10), in order ensure uniqueness of the transformation. For 

this purpose the condition is posed that the velocity has a similar functional form to 

that of the linear case. The subsequent transformation, known as a Van der Pol 

transformation [6], then states the requirement that 

( )ψτ += rarT cos&                (4.11) 

Equations (4.4), (4.10) and (4.11) yield 
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Now it is necessary to introduce the approximation involved in Krylov-Bogoliubov 

averaging. a&  and ψ&  are taken to be small quantities, such that a  and ψ  change very 

little during one period of oscillation. It is then possible to replace the equations for 

a&  and ψ&  with their average values over one period. This gives 
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At stationary points, Ca =  sϕϕ = , so 
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which together yield 

( ) Cr
KK

K
CrC

KK

K
s ζλϕ 2

8

6
1sin

2

2

2

1

132

2

2

2

1

2 








+
−



 +−−








+
=   

( ) 



 +−−








+
+









+
= 32

2

2

2

1

1

2

2

2

1

2

8

6
12cos CrC

KK

K
Cr

KK

K
s λζϕ   

Now consider small perturbations such that  aCa ′+= , ϕϕϕ ′+= s . This gives 

( ) ( ) ( )aC
r

K

r

K
a ss

′+−′+



+′+



−=′ ζϕϕϕϕ cos

2
sin

2

21
&     

( ) ( ) ( ) ( )2221

8

3
1

2

1
sin

2
cos

2
aC

r
r

rra

K

ra

K
ss

′++−−′+



−′+



−=′

λ
ϕϕϕϕϕ&  



  62  

Using trigonometric identities, and linearising for small ϕ ′  : 
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Substituting and then linearising by ignoring 2a′ and 3a′ terms: 
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Linearising again by letting ( ) CaC =′+  (since aC ′>> ): 
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Take teea φ
1=′ , tee φϕ 2=′  and look for the characteristic equation. Inserting these 

values into (4.14) and (4.15) and combining yields 
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It is required for stability that the real part of φ  is zero or negative i.e. the 

perturbations do not grow. By defining a stability parameter S as 
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then it is found that S
r 2

2

4

1
−±−= ζζφ . 
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Consider three conditions as follows: 

S=0: 

In this case 





 +−





 +−+= 222222

4

3
1

4

9
140 CrCrr λλζ , which is identical to 

equation (4.8) which defines the jump points. φ  is zero and such solutions are said to 

be neutrally stable. 

S>0: 

φ  is negative and these solutions are asymptotically stable 

S<0: 

One of the real values of φ  is greater than zero and so these solutions are unstable.  

For accuracy, it is stated then that solutions are stable for 0,0 ≥> St . The regions 

as identified above are illustrated in figure 4.5. 

 

Figure 4.5: Stability condition 
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Using the above analysis it is possible to predict the region in the amplitude-

frequency domain where instabilities will occur. Figure 4.6 shows this prediction for 

beam B in air. The solid line represents the locus of points where S=0, i.e. the locus 

of jump points. The dashed lines represent the bistable region for the particular given 

forcing level. 

 

Figure 4.6: Unstable regions for beam B in air 
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4.5. Numerical predictions 
 

This section employs the circular cylinder model of damping in order to make 

predictions about beam behaviour in fluids at atmospheric pressure. The relevant 

properties of the chosen fluids can be found in Appendix A. The damping model 

constraints, regarding size of Reynolds number and/or the Keulegan-Carpenter 

number, are seen to be broken; however, the degree to which the constraints are 

broken suggests that this approach may still offer a useful indication of real system 

behaviour.  

Unless stated otherwise, the following predictions use beam A, under zero pre-

tension, at a temperature of 298.15 K, and with parameter C left at 1.0. 

4.5.1. Added mass effect 
 

The effect of including added mass was investigated for beam A. Figure 4.7 shows 

the predictions for immersion in gases, whereas figure 4.8 considers immersion in 

liquids. 

 

Figure 4.7: Ratio of added mass to beam A mass, for various gases in vicinity of the 

natural undamped frequency of the beam 
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Figure 4.8: Ratio of added mass to beam A mass, for various liquids in vicinity of 

the natural undamped frequency of the beam 

 
 

It is apparent from figures 4.7 and 4.8 that the ratio of the added mass to beam 

mass is insignificant for immersion in gases, but of importance for immersion in 

liquids. It may then be acceptable to neglect added mass in cases where the fluid 

density is far lower than the beam density. 

To investigate further, the effect of including or discluding added mass was 

examined. The resonant peak, bandwidth and Fδ  were calculated for beams A and B 

under both conditions, and the results compared. The gathered data is compiled in 

table 4.7, and demonstrates that added mass has little appreciable effect in the gases 

under consideration. Results for water however suggest that added mass is crucial 

when evaluating behaviour in liquids.  

In conclusion it can reasonably be assumed that added mass is negligible in the 

work with gases. This assumption then validates the approach in section 4.4.1. 
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4.5.2. Effect of fluid properties  
 

The resonant frequency, bandwidth and jump point separation were modelled for 

beam A in a range of gases at various values of background displacement h . Figures 

4.9, 4.10 and 4.11, respectively, illustrate the predicted behaviour. It is apparent that 

gases might be uniquely identified by using one or more of these measurands. 

 

 

Figure 4.9: Modelled resonant frequency for beam A 

 

 

 

 

 
 

Figure 4.10: Modelled bandwidth for beam A 
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Figure 4.11: Modelled Fδ for beam A 

 

Table 4.8 shows the maximum calculated values for Reynolds number, Keulegan-

Carpenter number and Mach number, for the data displayed in figure 4.11.  The 

constraints placed on the circular cylinder damping model are seen to be broken, 

with the Reynolds and Keulegan-Carpenter numbers exceeding the allowable values 

as discussed in sections 3.2.4 and 3.3.1. However it can be seen that Mach number 

remains low enough to allow the gases to be considered incompressible. 

 

Fluid Max Re Max Kc Max Mach 

Air 7.6151 1.2958 0.0107 

Helium 2.3654 2.9035 0.0095 

Argon 6.6702 1.0341 0.0090 

Carbon 

dioxide 

14.4212 1.2882 0.0137 

Table 4.8: Constraints 
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Figure 4.12 shows the jump point separation in gases for beam A with background 

displacement amplitude h=2E-9m. An increase in viscosity or density has the effect 

of reducing the jump point separation Fδ . There exist contours of equal Fδ across 

the plotted surface.  

 

Figure 4.12: Three dimensional plot of jump point separation Fδ versus density and 

viscosity 
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4.5.3. Effect of boundary conditions 
 

If the beam is subject to any pre-tension or compression, then this will affect the 

vibrations once it is actuated. To investigate the extent of this effect on the three 

pertinent measurands, the behaviour of beam A in argon was modelled. Temperature 

is assumed fixed as above, and extension term η varied to represent tension and 

compression. Figure 4.13 illustrates the predicted behaviour. 

 

 

Figure 4.13: Sensitivity to boundary conditions.  

Linear actuation at h=1.45E-11m, nonlinear actuation at h=2.2E-9m 

 

It is apparent that over the range of consideration, extension η has negligible effect 

on bandwidth and Fδ , but a significant effect on the resonant frequency. Any 

changes in boundary conditions which effect the tension will alter the resonant 

frequency by a noticeable degree. 
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4.5.4. Sensitivity to changes in fluid properties 
 

It was possible to investigate the relative effect of changing the density and the 

viscosity by equal amounts. Begin by assuming that the beam is immersed in carbon 

dioxide at 298.15K. Then model in two ways: the viscosity value is multiplied while 

the density is held constant, and vice versa. Resonant frequency, bandwidth and Fδ  

are then calculated, using appropriate values of h . 

Figures 4.14 illustrates that, over the range of consideration, the resonant 

frequency of beam A changes more with density than with viscosity. The opposite is 

true however for bandwidth and Fδ ; Figures 4.15 and 4.16 show that changes in 

viscosity have the greater effect. 
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Figure 4.14: Sensitivity of resonant frequency. h=8.5E-11 m 
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Figure 4.15: Sensitivity of bandwidth. h=8.5E-11 m 
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Figure 4.16: Sensitivity of Fδ . h=2E-9 m 

 

The extent of the effect on each measurand is examined in figures 4.17 and 4.18. 

The shift in each measurand value is plotted against the viscosity and density change 

respectively. It is apparent that, over the considered range, Fδ  is the most sensitive 

measure to changes in the fluid properties. 
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Figure 4.17: Sensitivity to viscosity. Constant density 
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Figure 4.18: Sensitivity to density. Constant viscosity  

 

4.5.5. Beam dimensions 
 

In order to investigate the effect of altering beam dimensions, the behaviour of 

beams A and B in carbon dioxide was modelled for a range of background 

displacement h . Figure 4.19 shows that, over the range of consideration, 

displacement h gives a greater value of  Fδ  for beam A than beam B. It also appears 

that Fδ  grows more rapidly with h  for beam A than beam B. 

 

 

Figure 4.19: Comparison of beams A and B in carbon dioxide 
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A similar approach to that in section 4.5.4 was then taken, and the sensitivity of 

Fδ to changes in viscosity or density was examined at h =2E-9 m. Figures 4.20 and 

4.21 indicate that the shorter, narrower beam A, with a higher resonant frequency, 

would exhibit the greater sensitivity to changes in fluid properties.  
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Figure 4.20: Shift in Fδ with density. Constant viscosity 
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Figure 4.21: Shift in Fδ with viscosity. Constant density 
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4.5.6. Beam materials  
 

The choice of beam material has an obvious effect on vibrational characteristics. 

As silicon devices are most likely to be used in the experimental work, it may be 

profitable to investigate the relative behaviour of silicon <100> and silicon <110> 

beams. As in section 4.5.4, behaviour was modelled in a gas initially with properties 

of carbon dioxide, then viscosity was varied and density held constant. Figure 4.22 

shows that a silicon <110>, with higher Young’s modulus, should outperform a 

similar <100> beam at equivalent h. It is apparent though that a relatively small 

increase in h can see the <100> beam reach the performance of its <110> counterpart. 

 

 

Figure 4.22:  Comparison of Silicon <110> with <100> 
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4.5.7. Using ODE solvers in Matlab 
 

Thus far, all modelling has been carried out using the single mode, single harmonic, 

frequency-response relationship developed in section 4.3.1. As a comparison, 

compare this approach to that of using an ODE solver in Matlab. 

The equation to solve with such an ODE solver would then be 







 −−−+=

•••
3

43221

1

cossin
1

TCTCTCtFtF
C

T ωω . This approach has the advantage of 

including all harmonics, but the disadvantage of only being able to predict one of the 

jump points, that for increasing frequency (i.e. the upper jump point). However, it 

can still be useful in indicating the correctness of the chosen harmonic balance 

method. 

Figures 4.23 to 4.25 were produced by incorporating an ode45 solution with a 

harmonic balance solution. The ode45 solver is based on an explicit Runge-Kutta 

formula, and is recommended as a first-try solution, with medium accuracy. 

 

 
 

Figure 4.23: Harmonic balance versus ODE45 solver – linear.  

Argon with h=2E-11 m 
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Figure 4.24: Harmonic balance versus ODE45 solver – nonlinear.  

Argon with h=5E-9m 

 

 

 

Figure 4.25: Harmonic balance versus ODE45 solver – nonlinear.   

Argon with h=2E-8m 
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Figure 4.23 shows a reasonable agreement between the two methods of solution. 

There is some discrepancy in resonant frequency and bandwidth but it is difficult to 

draw any particular conclusions. Figures 4.24 and 4.25 however indicate that, as 

forcing is increased, so differences between the solutions are amplified. It would 

appear that using ode45 accounts for more damping on the system. In subsequent 

experimental work then, it might be expected that the damping encountered is greater 

than that included in the harmonic balance solution. 

4.6. Summary 
 

In this chapter a solution to the problem has been modelled and predictions made 

regarding beam dimensions and materials, actuation levels and expected behaviour in 

a range of fluids. Using this information, it is possible to proceed to the design and 

manufacture of suitable devices for experimental work. 
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Chapter 5 
 

Design and fabrication of devices 
 

This chapter starts by examining the material to be used in device fabrication. 

Initial modelling results are then used as a guide for synthesising suitable beam 

designs. There follows an overview of the fabrication process, and finally the 

fabricated devices are described and illustrated. 

5.1. Material considerations 
 

In the manufacture of MEMS devices, the choice of material is crucial. Material 

and device properties, durability, reliability, fabrication processes and cost must all 

be taken into account. When manufacturing a MEMS resonator, it is also desirable 

for the material to exhibit low intrinsic damping, so as to allow the exploitation of 

amplitude multiplication at resonance. Crystalline silicon performs favourably with 

regards to all of these criteria and is heavily used in MEMS manufacturing.  

5.1.1. Crystalline silicon 
 

Crystalline silicon behaves as an almost perfect Hookean material. On flexure, 

there is virtually no hysteresis and hence negligible energy dissipation. This allows 

for the manufacture of durable devices with high intrinsic quality factors. However, 

crystalline silicon possesses significant anisotropy, and an understanding of crystal 

orientation is essential when designing silicon structures. 

Crystalline silicon has a cubic lattice structure. The lattice planes and directions are 

described by Miller indices. Crystalline silicon has three principal planes denoted 

(100), (110) and (111), as illustrated in figure 5.1. For a cubic crystal the direction 

<lmn> defines a vector normal to a particular plane (lmn) e.g. <100> defines the 

normal to plane (100). 
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Figure 5.1: The principal planes of a silicon crystal 

 

5.1.2. Silicon wafers 
 

Due to the presence of anisotropy, it is essential to consider the precise cut of the 

silicon with respect to the principal planes. The majority of silicon MEMS devices 

are fabricated from silicon wafers cut from ingots along the (100) or (111) planes. 

Process limitations mean that small deviations of the wafer plane from (100) and 

(111) are however inevitable [1].  

Wafers are characterised by their doping level, defined as n-type or p-type. Doping 

refers to the process of adding impurities to crystals to modify the electrical 

characteristics of the material. Dopants create mobile charge carriers in the silicon; n-

type carriers behaving like negatively charged species, p-type like positively charged 

[2]. The silicon purity however still remains very close to 100%. 

Figure 5.2 illustrates a (100) orientated silicon wafer and illustrates some of the 

planes within it. Flats are cut into wafers to indicate the planes.  

 

Figure 5.2: (100) type wafer, with various planes illustrated 

 



  83  

5.1.3. Silicon On Insulator (SOI) substrates 
 

Silicon on insulator technology (SOI) is commonly used in MEMS manufacture. 

SOI refers to the use of a layered silicon-insulator-silicon substrate, typically with 

silicon dioxide as the electrical insulator between a device wafer and a handle wafer. 

MEMS structures are fabricated in the device layer using processes which remove 

the underlying insulator to release the device. 

 

5.2. Design considerations and limitations 
 

Numerical predictions made in chapter 4 indicate some suitable beam dimensions 

and actuator displacements which will allow for the observation of jump phenomena 

in a range of gases (see sections 4.2.1 and 4.3.2). The beam depth is constrained by 

the choice of wafer. For the devices used in this work, a 15µm thick device layer 

wafer was used. The length and width of resonator beams were then chosen so that 

the following conditions were met: 

1. Jump phenomena can be observed with the available actuation technique. 

2. Beam dimensions stay within the parameters required for Euler-Bernoulli 

theory to hold. 

3. Beam width is sufficient to allow optical measurement of the device 

response.  

4. Beam resonant frequencies remain within the range of signal analysing 

equipment.  

 

In the following chapter the experimental equipment is discussed in more detail. 

An optical measurement method is employed, requiring the focusing of a laser beam 

onto the beam surface, hence condition 3. Condition 4 requires knowledge of silicon 

material properties, which are outlined in Appendix 2. 
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5.3. Fabrication process 
 

The devices studied in this thesis were fabricated using an SOI-based 

micromachining process. The basic technique involves patterning of silicon layers 

using photolithography, followed by etching to produce the desired shapes. An SOI 

wafer with a 15µm device layer, 2 µm silicon dioxide layer and 500 µm handle layer 

(see figure 5.3) was used to produce the resonator beams. 

 

 

Figure 5.3: SOI wafer 

 

5.3.1. Summary of process 
 

Table 5.1 presents the steps involved in fabricating the beam resonators from the 

SOI wafer. Prior to fabrication, lithographic masks for beam definition were 

designed using L-Edit IC design software. The photolithography and etching 

processes are discussed in more detail in section 5.3.2. 
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Step 

No. 

Process 

Description 
Wafer Cross-Section Mask Required Notes 

1. 

Issue Silicon-

On-Insulator 

(SOI) wafer  
 

500 µm handle, 

2 µm BOX 

(insulator) and 

15 µm device 

layer 

thicknesses 

2. 
Deposit hard 

mask layer  
 

Used later as 

mask for deep 

reactive ion 

etching (DRIE) 

of handle 

silicon 

3. 

Photolithogra

phy for DRIE 

etch  

 

Positive photo-

resist  

4. 
Plasma etch 

hard mask  
  

5. 

Wet & dry 

removal of 

remaining 

photo-resist 
 

  

6. 

Photolithogra

phy of device 

side silicon 

pattern 
 

 

Photoresist used 

to define the 

beams 

7. 

DRIE of 

device side 

silicon, 

stopping on 

BOX layer 

 
 

Short DRIE 

etch process 

used to cut 

through the 

device layer 
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8. 
Protection 

layer  
 

Protective resist 

applied to 

protect the 

beams during 

the DRIE of the 

handle layer 

silicon 

9. Wafer bond 

 

 

Temporary 

bond to a 

backing wafer 

to assist with 

the DRIE etch 

process of the 

handle silicon 

10. 
DRIE Handle 

silicon layer 
 

 

Longer DRIE 

process used, 

stopping on 

BOX layer 

11. 
Plasma etch 

BOX layer 
 

 

This frees the 

beams from the 

BOX layer. 

They remain 

supported by 

the protective 

resist layer 

12. 

Solvent 

(acetone) 

release of die 

from backing 

wafer 

 
 

Also has a 

plasma clean 

once die are 

removed from 

solvent. 

Finished die are 

ready 

Table 5.1: Summary of fabrication process 
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5.3.2. Photolithography and etching processes 
 

In photolithography, a photomask containing a geometric pattern of opaque and 

transparent regions is brought into contact with a silicon wafer coated with light-

sensitive photoresist. Ultraviolet light is then directed though the mask, causing 

chemical changes in the exposed regions of the photoresist. If positive photoresist is 

used, then following processing the protected regions of the photoresist remain on 

the wafer. Subsequent etching removes clear regions on the wafer while opaque 

regions of the mask remain as oxide. 

Plasma etching involves directing a high-speed stream of glow discharge (plasma) 

of an appropriate gas mixture at the wafer. The plasma source can be either neutral 

(free radicals and atoms) or charged (ions). Neutral particles react with the wafer 

surface creating volatile etch products which may be removed e.g. by vacuum pump. 

Ions can also have this effect, plus can produce sputtering effects, removing material 

by direct bombardment. There are numerous gases which may act as a source for the 

plasma, and they normally contain small molecules rich in chlorine or fluorine. For 

example, silicon can be etched with CF4 and SF6, silicon dioxide with a CF4/H2 

mixture, silicon nitride with a CF4/O2 mixture [2].  

The shape of plasma-etched features depends strongly on the pressure in the 

plasma etcher. Reducing pressure also reduces the etch rate, but increases the 

directionality of the process. For a charged plasma source, at the extremes of low 

pressure and high directionality, the process is known as reactive ion etching. 

Etching processes may use a photoresist mask, although for very deep etches a 

harder mask may be required e.g. silicon nitride. 

Deep reactive ion etching (DRIE) can create deep, steep-sided features in wafers 

with high precision. A side effect of glow discharge is the creation of polymers, and 

the deposition of polymer from the etchant may be exploited. In a process developed 

by Bosch, a DRIE etch proceeds in alternating steps: 

• a standard reactive ion etch in a SF6 plasma 

• polymer deposition from a C4F8 plasma 

Each step lasts for several seconds.  Polymer at the bottom of the feature is 

removed rapidly by the reactive ion etch, but lingers on the sidewalls. As a 
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consequence, the top of the feature does not become wider as the sidewalls remain 

protected. Once the sidewall polymer is eventually eroded, so the polymer deposition 

step is repeated. By repeating these etch/deposit steps many times, it is possible to 

make a large number of very small etch steps with very little effect on the sidewalls. 

The DRIE process used for devices in this thesis was performed by INEX of 

Newcastle upon Tyne, using a STS Advanced Silicon ICP Etcher, and with an etch 

rate of between approximately 5 to 8µm per minute.  

5.4. Fabricated devices 
 

The resonator beams were fabricated on an SOI wafer divided into multiple 8mm 

square dies. Dies containing resonator beams held four identical beams, oriented so 

that the neutral axis was perpendicular to the primary flat. As a consequence, when 

considering transverse vibrations of the beams, it was appropriate to consider the 

Young’s modulus for the <110> direction. 

Beams of varying dimensions were produced, although in this work the focus is on 

beams of dimensions 1200x30x15µm (beam A), and 1500x75x15µm (beam B), with 

a 500µm thick handle layer in each case. Beams A and B, and the clearances around 

them, are shown in figures 5.4 and 5.5 respectively. 

 

Figure 5.4: Photograph of beam A 
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Figure 5.5: Photograph of beam B 

 

For the SOI wafer, it is recognised that there will be some degree of misalignment 

in the crystal orientation. There is also likely to be some variation in the thickness of 

wafers or layers. The dimensions, properties and tolerances of the SOI wafer used in 

this work is given in table 5.2. 

 

Manufacturer: 

 

Ultrasil Corporation, Hayward, 

California 

  

Device Layer:  

Diameter: 150+/-.2mm 

Type/Dopant: P/Boron 

Orientation: <100>+/-.5 degree 

Thickness: 15+/-1µm 

Resistivity: .01-.02 Ohm cm 

Flats: Semi std 1 

Finish: Polished 

  

Buried Thermal Oxide:  

Thickness: 2µm +/- 5% 

  

Handle Wafers:  

Type/Dopant P/Boron 

Orientation <100>+/-.5 degree 

Resistivity: .01-.02 Ohm cm 

Thickness: 500+/-15µm 

Finish: Polished 

Table 5.2: SOI wafer properties 
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Chapter 6 
 

Experimental methodology and test 

equipment 
 

 

This chapter describes the experimental equipment and procedures concerned with 

the testing of the beam resonators immersed in gases. The first section provides an 

overview of the optical workstation, comprising an optical profiler, laser vibrometer 

and signal analyser. The second section concentrates on the test jig and its 

component parts. Section three provides an overview of the gases used in the 

experiments. Section four outlines the testing and data gathering procedure. 

 

6.1. Overview of test equipment 
 

A suitable workstation was required to facilitate the measurement of the frequency 

response of the beam and the associated applied displacements. For this purpose an 

optical workstation was assembled, comprising of a Zygo NewView 5000 surface 

profiler alongside a Polytec OFV 3000 Vibrometer controller and OFV 501 Fiber 

Interferometer, with X-Y staging for control of device positioning, plus a HP 3562A 

dual channel dynamic signal analyser. Optical detection of device response is 

advantageous in that it is non-destructive. Figure 6.1 presents a schematic diagram of 

the workstation. 
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Figure 6.1: Schematic of optical workstation 

 

6.1.1. Surface profiler 
 

The Zygo NewView 5000 surface profiler uses scanning white light interferometry 

to acquire high resolution images. A white light source is collimated and a beam 

reflected down a microscope objective. This beam is split so that part of the light is 

passed to a reference mirror, while the remaining light is focused onto the surface of 

the sample to be imaged. The two beams are then reflected and recombined. The 

sample surface can be brought into focus by translating the objective so that the 

optical path lengths of each beam are identical. This then produces an intensity 

interference pattern on recombining the beams. When a vertical scan is performed 

across a surface, interference fringes appear on regions at the same height. 

The Zygo NewView 5000 has various advantageous features [1]. Measurements 

are noncontact and fast. Profile heights from <1nm up to 5mm can be scanned at 

speeds up to 10µm per second, with a vertical resolution of 0.1nm. A five-position 

motorised turret allows for the mounting of multiple objectives, with rapid access to 

each. A variable image zoom is provided, with six indexed positions for flexibility. 
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The field of view can range from 0.04 to 17.5mm, although this can be increased 

using image stitching capabilities. The instrument comes packaged with MetroPro 

metrology software, which provides full system control. 

For static measurements using scanning white light interferometry, a 10X Mirau 

objective was mounted on the turret. For vibratory measurements, an optical head 

was mounted for directing a laser beam from the interferometer onto the sample, and 

reflecting back to the interferometer. 

 

 

 

 

Figure 6.2: Zygo NewView 5000 surface profiler 
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6.1.2. Laser vibrometer 
 

Vibratory measurements were performed using a Polytec laser vibrometer system, 

consisting of a Polytec OFV501 single mode fibre optic interferometer and a Polytec 

OFV3000 controller unit for the signal processing [2]. These instruments are shown 

in figures 6.3 and 6.4 respectively. 

 

 

Figure 6.3: Polytec OFV 501 Fiber Interferometer 

 

 

Figure 6.4: Polytec OFV 3000 Vibrometer controller 

 

 

Vibratory motion is measured by measuring the Doppler frequency shift from laser 

light reflected back from the surface of the moving object. The optical arrangement 

of the vibrometer system is illustrated in figure 6.5. 
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Figure 6.5: Laser vibrometer schematic 

 

Light from a Helium Neon laser, of laser wavelength 633nm and cavity length 

205mm, is divided by a beam splitter, labelled here BS 1. The object beam passes 

through a polarising beam splitter BS 2 and a quarter wave-plate before entering a 

single mode fibre optic cable. The object beam is then focused onto the object 

surface and back scattered laser light travels back up the fibre optic cable. The 

combination of the polarising beam splitter BS 2 and the quarter wave plate ensures 

that the beam returning from the object is directed towards the beam splitter BS 3. 

The reference beam is frequency shifted by a Bragg cell and thereafter interferes with 

the returning beam at the beam splitter BS 3. The output signals from BS 3 pass 

through a pair of photodiodes and are converted into electrical signals. These signals 

then enter a differential amplifier. The output signal voltage outputV  from the 

amplifier is given by  


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λ
π

2
2cos                           (6.1) 

where K  is a constant denoting the conversion efficiency, Braggf  is the Bragg 

frequency shift, ov  is the velocity of the object and sourceλ  is the wavelength of the 

source. 

 



 96 

 

Equation (6.1) shows that the signal frequency is the sum of Braggf  and the 

Doppler shift sourceoDoppler vf λ/2= . The Bragg frequency shift is required to 

determine the direction of the motion of the object relative to the source. The output 

voltage is fed into a RF signal-processing unit, which produces a voltage output 

proportional to the velocity of the object.  

The vibrometer can provide both velocity and displacement signals. In this work 

the vibrometer was used to obtain velocity measurements, from which displacement 

amplitudes could then be calculated. For harmonic vibrations, the displacement 

amplitude x~  of the object is given by 

f

Vv
x R

π2

~
~ =                              (6.2) 

where v~  is the velocity amplitude reading (in volts),  RV  a velocity range setting on 

the vibrometer controller, and f  the actuation frequency. The velocity range RV  is 

chosen so as to give optimal resolution of displacement readings; in this work, the 

settings of 125mm/s/V or 1000mm/s/V were used. 

6.1.3. Signal analyser 
 

A HP 3562A dual channel dynamic signal analyser allows dynamic testing from 

64µHz up to 100kHz [3]. Channel 1 of the signal analyser is the source and delivers 

voltages of up to 5V. This was used to provide excitation to the devices under test. 

Channel 2 of the signal analyser is the output signal produced by the vibrometer 

controller. 

The HP 3562A is a Fast Fourier Transform (FFT)-based analyser. To calculate the 

frequency response function (FRF) of a device, the analyser begins by digitising the 

input at channel 1 by sampling at 256kHz. The sample data fills a data buffer. Once 

this buffer is full, a FFT of the data buffer calculates the frequency spectrum. The 

frequency response for the device is computed from the ratio of the cross spectrum to 

the power spectrum of channel 1, as referred to in figure 6.6. 
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where  

1F is the FFT of the channel 1 signal 

*2F is the complex conjugate of the FFT of the channel 2 signal and 

*11FF and *21FF are the direct and cross spectra 

Figure 6.6: Frequency Response Function from Signal Analyser operating in Linear 

Resolution Mode 

 

In order to measure the frequency response of the devices, the operation mode of 

the analyser was set to Swept Sine. The analyser generates a fixed amplitude sine 

wave which excites the system. The frequency is slowly swept through the frequency 

range of interest. The response of the device is processed as described above and the 

FRF obtained. Monitoring of the device response was achieved by graphically 

displaying the power spectrum of channel 2. 

 

Figure 6.7: HP 3562A Signal analyser 
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6.2. Description of test chamber 
 

For testing of the beam resonators, the devices were mounted within a sealable test 

chamber. Figures 6.8 and 6.9 show the test chamber in its open and sealed states. The 

devices are mounted above a piezo-ceramic vibrator in the centre. Three peltier 

plates on the inner walls allow for temperature control within the chamber in its 

sealed state. Feeding into the chamber are gas inlets/outlets for gas introduction and 

vacuum pumping, a pressure transducer for pressure monitoring, and feedthroughs 

for a thermocouple and electrical wiring. 

The test chamber was designed and drawn using Autodesk Inventor software, and 

is constructed from 303 stainless steel. 

 

 

 

Figure 6.8: Plan view of open chamber 
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Figure 6.9: Plan view of sealed chamber 

 

The test chamber allows for testing in low vacuum, in atmosphere, or at pressures 

reaching slightly above atmosphere when gases are introduced. Vacuum pumping 

achieved pressures down to approximately 2.8 mbar. The chamber is sealed by 

screwing a two-piece lid on top, resting upon a nitrile O-ring. Sandwiched between 

the lid pieces is a 2 inch diameter, 3mm thick Edmund Optics glass window with 

anti-reflection coating, secured with a nitrile O-ring. A 33mm diameter aperture in 

the lid then enables use of the laser vibrometer.  

 

6.2.1. Peltier heating and temperature measurement 
 

To provide some control of the ambient temperature within the test chamber, three 

Marlow Industries RC12-4 peltier plates were attached with Rite-Lok SL65 Silver 

Loaded Epoxy Adhesive to the inner walls of the chamber (see figure 6.8). When an 

electric current flows through a peltier plate, heat is absorbed at one face and 

liberated at the other. Heat is transferred from one side of the peltier plate to the other, 

against the temperature gradient. The direction of the temperature gradient is 
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determined by the direction in which the current flows. Peltiers are most commonly 

used as cooling devices. 

Temperature within the chamber was measured using a Maplin K type 

thermocouple wire (Code: N37CB) with a FLUKE 53 II Thermometer. The 

thermocouple wire enters the chamber through one of the feedthroughs, and the 

thermocouple end positioned so as to be close to the devices in the centre of the 

chamber, without touching any part of the assembly.  

Preliminary tests demonstrated that the peltiers could be used most effectively for 

introducing heat into the internal part of the chamber rather than extracting heat. By 

operating the peltiers in reverse, i.e. with a current flowing in the opposite direction 

to their normal mode of operation, it was possible to heat the chamber contents by an 

amount governed by the chosen operating voltage. Figure 6.10 shows how the 

temperature of the air within the chamber changed with time, for an operating 

voltage of 2V. The external air temperature is included for reference. 
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Figure 6.10: Internal temperature of test chamber versus time 

 

6.2.2. Piezo-vibrator actuation 
 

Actuation of beam resonator devices was achieved by means of a piezo-vibrator, as 

shown in figure 6.11(a). A Morgan Electro Ceramics PZT 5A1 piezo disk, of 

diameter 24mm and thickness 2mm, is sandwiched between a steel base and an upper 
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steel disk of diameter 35mm and thickness 2mm. Rite-Lok SL65 Silver Loaded 

Epoxy Adhesive fixes the piezo disk in place.  

When a voltage is applied across the thickness of the piezo disk, it undergoes a 

change in dimensions in this direction, proportional to the applied voltage. When the 

steel base is earthed, applying a sinusoidal voltage to the upper steel disk causes the 

piezo disk to sinusoidally expand and contract, providing an actuation mechanism. 

The silicon die containing the beam resonators were permanently attached to 2mm 

thick copper disks with Bond Lok B2012 Rapid 5-Minute Epoxy, to provide support 

to the fragile devices. These copper disks could then be temporarily attached to the 

top of the piezo-vibrator by using a wax resin – see figure 6.11(b). An electrical 

connection from the HP 3562A Dynamic Signal Analyser to the upper steel disk then 

allowed for control of actuation voltage and frequency, and hence a controlled 

method of transversely displacing the beam resonators. 

 

 

 

 
(a) 

 
(b) 

Figure 6.11: (a) Piezo-vibrator, (b) Piezo-vibrator with devices mounted 

 

6.2.3. Pressure transducer 
 

 A Gems Series 2200 pressure transducer fitted to the test chamber allows for 

pressure monitoring (see figure 6.8). This is a 4 bar absolute transducer, with a 0-

10V output. Attaching the output to a Wavetek Meterman Model DM9 digital multi-

tester allows for output monitoring, and subsequent conversion of the output to bar 

provides the pressure within the chamber. 
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6.2.4. Imperfections 
 

In setting up the experimental apparatus, certain imperfections were noted or 

anticipated. 

Test chamber imperfections 
 

To examine if the test chamber was perfectly airtight, the chamber was sealed and 

evacuated using a vacuum pump. The pump was then switched off, the pump outlet 

sealed and the pressure within the chamber monitored over a period of time. Figure 

6.12 shows how the internal pressure varied with time, indicating that air was 

seeping into the chamber. 

 

 

Figure 6.12: Pressure versus time for evacuated chamber 

 

To further investigate, the chamber was evacuated of air, then filled with helium to 

a pressure above atmospheric. The gas inlet was then sealed and the internal pressure 

again monitored over a period of time. The results are shown in figure 6.13, and 

show that helium was escaping from the chamber. 
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Figure 6.13: Pressure versus time for helium-filled chamber 

 

It was apparent that the chamber could not be considered totally airtight. Further 

investigations failed to definitively identify the source of any leaks. It is possible, for 

example, that gas molecules could be passing through the electrical wiring or the 

thermocouple cladding, or bypassing one or more of the nitrile O-rings. To 

counteract the effect of leakage, subsequent experiments in gases were conducted at 

pressures slightly above atmospheric, with a permanent feed from the gas source, to 

maintain the pressure and to minimise the chance of any air molecules entering the 

chamber and diluting the gas.  For experiments at low vacuum, the vacuum pump 

was kept continuously pumping so as to remove any air molecules which should seep 

into the chamber. 

Heat and temperature 

The test chamber is constructed from stainless steel and is not insulated, therefore 

there is potential for significant heat flow between the chamber and the surrounding 

atmosphere. The presence of leaks also allows for heat flow via convection in or out 

of the chamber. The temperature of any gas within the chamber cannot be guaranteed 

uniform, as there will be a slow introduction of gas from the pressurised source to 

maintain pressure, heat transfer between the gas and the chamber walls, and heat 

transfer between gas and peltier plates. Temperature is measured at one point in the 

chamber only, and cannot directly provide the temperature of the devices or piezo-

vibrator, which are subsequently found to be crucial to resonator behaviour. 
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Mounting and bonding issues 

When bonding the silicon dies to copper disks, there is a risk of introducing some 

deformation and tension or compression to the beams during the bonding process. 

Silicon, epoxy, copper, wax resin and stainless steel all have different linear 

expansion coefficients, so any change in temperature can also cause deformation and 

a change in the boundary conditions of the beams. Further complications can arise if 

any part of the silicon die handle layer has not been fully bonded to the copper disk, 

as this could allow areas of the silicon handle to vibrate out of synch with the piezo-

vibrator.  

Device inconsistencies 

Initial tests showed that each of the four beams on a particular die could have 

slightly differing resonant frequencies in a given medium. This can be explained by 

either manufacturing or material inconsistencies, and necessitates the labelling of die 

and beams (see figure 6.14). 

Impurities 

During operation it is possible for impurities such as dirt or water vapour to settle 

on the beam resonators, altering their physical properties. 

6.3. Test gases 
 

Gases selected for experimental work were required to be Newtonian, and safe for 

use given the laboratory environment and experimental design. Gases are preferable 

to liquids in this work for several reasons:  

• Piezo-vibrator actuation is useful in that it can provide high levels of 

displacement to the resonator beams. In the chosen gases it is easy to 

implement, but this may not be the case in liquids where electrical 

conductivity is far higher and the piezo can be shorted. 

• The lower density and viscosity of gases allows for greater magnitude Fδ  

readings to be available with the given actuator. 

• Measurement of beam vibration with the laser vibrometer may be 

complicated by liquid opacity or reflection from the liquid surface. 
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The selected gases are listed in table 6.1. For the relevant gas properties, refer to 

Appendix A. 

 

Gas Source / 

Supplier 

Notes 

Air Atmospheric Susceptible to changes in 

humidity 

Argon BOC BOC Pureshield Argon 

UN 1006 

EC No. 2311470 

Helium BOC BOC Helium 

UN 1046 

EEC No. 2311685 

Carbon 

Dioxide 

Distillers 

Company 

Code 1013 

Table 6.1: Selected test gases 

 

6.4. Testing and data gathering procedures.  

6.4.1. Preliminaries 
 

Mounting 
 

Two die were selected: one including examples of beam A, the other of beam B. 

These die, once bonded to copper disks, were then attached with wax resin to the 

upper steel disk of the piezo-vibrator. The piezo-vibrator was then screwed into the 

centre of the test chamber. This left a minimum gap of 5mm between the beam 

resonators and the glass window.   Once mounted in place, the piezo-vibrator and 

devices remained there for the entire duration of the subsequent experiments to 

minimise any changes to either beam boundary conditions or piezo-vibrator response. 

Beams D3 (beam A type) and E4 (beam B type), as shown in figure 6.14, were 

selected as the beams for all subsequent experiments.   
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Figure 6.14: Dies and beams selected for experiments 

 

Levelling 
 

Before any vibratory measurements could be taken, it was necessary to adjust the 

staging so that the vibrometer laser beam would focus onto the beam surface at a 

normal to it. With the chamber open, the 10X Mirau objective, Zygo surface profiler 

and monitor were used together to illuminate the silicon beams. By adjusting the 

staging incrementally, devices could be positioned appropriately by looking to 

maximise the width of interference fringes. 

Introduce gas 

Where measurements were to be taken in argon, helium or carbon dioxide, the 

sealed chamber was first evacuated using the vacuum pump before opening the gas 

inlet valve and a regulator at the gas tank. Both inlet valve and regulator were left 

open to maintain pressure of gas in the chamber above atmospheric. 

For measurements in air, the chamber was again evacuated, then a gas inlet opened 

to let air from the atmosphere fill the chamber up to atmospheric pressure. The gas 

inlet was then sealed. 
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Set temperature 

The effect of temperature on measurements was anticipated to be of interest. To 

create temperature regimes above room temperature, the peltiers were operated in 

reverse at a range of voltages. Once an operating voltage had been set and the 

peltiers switched on, the apparatus was left in this state for at least one hour. This 

gave the apparatus a period of time in which the internal gas, devices and piezo-

vibrator could reach something approaching a constant temperature. Throughout this 

period, gas pressures were monitored and kept stable. 

 

Power for the pressure transducer and peltier plates was provided by a Farnell E30-

2BT Dual 30V 2A DC Power Supply. 

 

6.4.2. Static measurements 
 

Static measurements were performed using the Zygo surface profiler with the 10X 

Mirau objective and Metro Pro software. 

 

Beam dimensions 
 

The ability to measure beam dimensions accurately was limited by the 

experimental setup. It was not possible to measure beam depth with the arrangement, 

and so it had to be assumed to be within the stated manufactured limit of 15 +/-1µm. 

For beam width and length, it was necessary to adopt the following procedure due to 

a lack of calibration between the Zygo surface profiler and Metro Pro software. The 

X staging was adjusted so as to set a reference point with the software at a home 

position at one corner of the beam under consideration. The X staging, calibrated 

with the Metro Pro software, was then adjusted to place another reference point at 

another corner of the beam. Doing so allowed the beam width and/or length to be 

extracted from the Metro Pro data. In this process it was necessary to remove the 

chamber lid, exposing the beams and piezo-vibrator to the surrounding air. Although 

measurements could be performed rapidly, there was an inevitable effect on 

temperature in the vicinity of the beams. 
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Surface profile 
 

Stress in the silicon wafer, both intrinsic and as a consequence of the fabrication 

and mounting steps, will tend to bow the substrate. Although the extent of the 

resulting beam deformation could not be accurately determined due to calibration 

issues, it was still possible to check for the existence of bowing using the surface 

profiler. Figure 6.15 shows an example of an uncalibrated surface profile scan on 

beam E4, and confirms that bowing was present. 

 

 

Figure 6.15: Surface profile of beam E4 at 22.7˚C 

6.4.3. Vibratory measurements 
 

Vibratory measurements were carried out over a range of temperatures and applied 

actuation voltages in each gas, using the laser vibrometer with the optical head fitted 

to the Zygo surface profiler. A description of the procedure followed is now outlined: 

 

Analyser and vibrometer settings 

For actuation purposes, the signal voltage and frequency range were set on the 

signal analyser. For certain measurements, the actuation voltage was amplified using 

a TEGAM Model 2350 high voltage amplifier to achieve voltages up to 40V. The 

actuation signal was set to Swept Sine to provide a sweep of actuation frequency 

across the frequency range. Power spectrum measurements were selected to provide 

the absolute magnitude of beam displacements. The velocity range was set on the 

vibrometer controller to maximise the resolution of the displacement amplitude. 
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Laser focusing 

 

The incident laser beam was focused either onto the beam centre for beam 

displacement measurements, or slightly off the beam for measurements of the 

applied background displacement. This is illustrated in figure 6.16: background 

measurements were taken from positions close to either point A or B to avoid any 

areas of unconstrained silicon, due to either undercut or bonding issues, whereas the 

beam displacement was measured close to point C to maximise the amplitude 

measured in the first vibration mode. It was not possible to record and thus replicate 

the true position of measurements with the experimental setup. However, this did not 

appear to be of consequence for background measurements. Nor was it of particular 

importance to beam displacement measurements, where it is the frequencies at which 

jump points or the resonant peak occur which are of most interest. 

 

 

Figure 6.16: Focusing positions of incident laser on silicon device 
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Performing measurements and collecting data 
 

Swept Sine measurements were found to take approximately three minutes to 

sweep through the chosen frequency range, gathering 800 data points in doing so. 

For linear measurements, one sweep was performed to measure the beam frequency 

response, another to measure the background displacement, taking around six 

minutes in total to collect the complete data set. For nonlinear measurements it was 

necessary to perform two sweeps across the frequency range to measure beam 

response: one sweep beginning at the lowest frequency and increasing across the 

range, the other beginning at the highest frequency and decreasing. With another 

sweep measuring the background displacement, nonlinear measurements took around 

nine minutes. 

In the time taken to gather a complete data set, it was possible for there to be a 

certain degree of temperature or pressure change within the chamber. This introduces 

two particular uncertainties to measurements: the measured background cannot be 

guaranteed to exactly reflect the background present when the beam displacement is 

measured; for nonlinear measurements, jump points may move between the up and 

the down sweep. The consequence of this, with regard to the validity of data and the 

use of error bars, is discussed in chapter 7, sections 7.1.2 and 7.2.1. 

For background displacement data gathered in this fashion, the measurements 

obtained provide the true amplitude of actuation. For beam displacement 

measurements however, what is actually measured is the sum of the beam 

displacement plus the background displacement. This is not an issue, since, as 

mentioned above, it is the frequency of jump points or resonance peaks that is of 

interest. This is discussed in section 7.1.4, where it is shown that background 

amplitude may be considered negligible when compared to the beam displacement. 

Measurement data recorded on the signal analyser was copied to an external hard 

drive after each sweep had been performed. The data could be converted at a later 

time into suitable files to allow data analysis. 
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Chapter 7 
 

Experimental results for fabricated 

devices 
 

In this chapter the most pertinent experimental results for the two beams 

considered are presented. Across all of the gathered data, the maximum background 

displacement h  achieved is found to be 38.8nm. As discussed in section 4.3, the 

system can be considered weakly nonlinear where d >> h . d is approximately equal 

for both beams at 15µm. Therefore the minimum d  to h  ratio is given 

by 387
98.38

615
≈

−

−

E

E
. This suggests that the system does indeed remain weakly 

nonlinear throughout these experiments. In addition, Mach numbers were seen to 

remain below 0.01 for all gases at atmospheric pressure or above, and for all bar the 

most extreme cases of air at low pressure, ensuring that the gases may reasonably be 

considered incompressible. 

 

7.1. Overview 

7.1.1. Actuation 
 

The amplitude h  of the actuation, which is subsequently referred to as the 

background displacement, is known to vary with the voltage applied to the piezo disk. 

Figure 7.1 shows the frequency response of the background for beam A at two 

different voltages. The data was gathered at low pressure (below 0.017 bar – see 

table 7.2 in section 7.4.3), with temperature varying from 28.9 to 29.1˚C. 
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Voltage dependence
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Figure 7.1: Background displacement for beam A at two differing voltages: 30mV 

and 500mV 

 

It is apparent that applied voltage makes a significant difference to the background 

displacement. In addition, as the voltage is increased from 30mV to 500mV, so the 

frequency dependent behaviour of the actuator becomes noticeable. As the voltage is 

increased, this effect is seen to become more pronounced and highly influential. 

For an appreciation of how the surrounding gas might affect the background, 

measurements were taken for beam A in air and helium at 26.35 ˚C. The applied 

voltage was 20V in each case. Figure 7.2 is inconclusive but suggests that the 

background is damped further in air, as might be expected. 
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Figure 7.2: Effect of surrounding gas on background displacement, with an applied 

voltage of 20V  

 

7.1.2. Typical frequency response data 
 

The frequency response of the beams was investigated by applying a swept sine 

voltage to the piezo disk, and sweeping over an appropriate frequency range. In the 

case of linear vibrations, it was necessary only to sweep in one direction. For the 

nonlinear regime, a sweep up and a sweep down were necessary in order to obtain 

both jump points. For each set of these frequency response measurements, the 

frequency-dependent behaviour of the background displacement was also recorded. 

Figure 7.3a presents the frequency response of beam A in argon, operated within 

the linear regime. Figure 7.3b shows the associated background displacement. 

Similarly, figure 7.4 shows equivalent data at a higher voltage level. Jump points are 

clearly seen to occur, although the accuracy to which their frequency can be stated is 

dependent on the resolution of the analyser. The separation Fδ  is subsequently taken 

to be that illustrated in figure 7.4a: the separation between the points showing first 

clear evidence of a jump occurring in each direction of sweeping. 

It is apparent from figures 7.3(b) and 7.4(b) that the amplitude of the background 

displacement in the region of the resonant frequency cannot be considered single 
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valued. This is a diversion then from the modelling approach taken in chapter 4, and 

proves to be of significance (see section 7.2.1). 
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Figure 7.3: Frequency response (a) and background (b) for beam A in argon, 

operated within linear regime with applied voltage 50mV 
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Figure 7.4: Frequency response (a) and background (b) for beam A in argon, 

operated in nonlinear regime with applied voltage 5V 
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Figure 7.5: Drift in Fδ  
 

It was noted with some of the gathered data that, between performing an upward 

frequency sweep and a downward frequency sweep, there could be a slight change in 

the beam response. This is possibly a result of temperature changes. As a 

consequence, the up and down sweep data could not be exactly superimposed, 

resulting in the discrepancy labelled ‘drift’ in figure 7.5 (b). The frequency value of 

this drift parameter had to be either added or subtracted from the apparent Fδ  in 

some cases, to provide a more representative Fδ . This correction makes it very 

difficult to include meaningful error bars on plotted Fδ  data. 
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7.1.3. Nonlinear response data 
 

Measurements of Fδ  were taken for both beams in a range of gases, at various 

temperatures and applied voltage levels. The most appropriate way to present the 

results was deemed to be to plot Fδ  against some average value of the background 

displacement. The decision was taken to use the mean of the background 

displacement over the range from the lower to upper jump points. This mean is 

subsequently referred to as h .  

Figures 7.6 and 7.7 show the results for beams A and B respectively. In the case of 

beam A, there is a clear indication that measurements of Fδ  may be sufficient to 

identify certain gases. There is some indication of the same for beam B, although 

there appears more crossover between the data for each gas. For both beams though, 

differentiating between air and carbon dioxide would initially appear problematic.  

It is important to note that plotting Fδ against h  can result in the appearance of 

apparently spurious data. This is examined in detail in section 8.2.2, where the effect 

of the background profile is taken into consideration. 
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Figure 7.6: Fδ  versus h  for beam A 

 

 



 120  

Beam B  - Measured jump point separation
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Figure 7.7: Fδ  versus h  for beam B 
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In chapter 1 it was stated that existing sensors employ bandwidth measurements in 

identifying fluid properties (see sections 1.2 and 1.4.1). In this research the interest is 

in identifying any advantage in using measurements of Fδ  instead. Figure 7.8 

presents measurements of the two obtained for beam A in helium. 

 

 

Figure 7.8: Linear bandwidth and nonlinear Fδ measurements for beam A in helium 

 

It is clear that Fδ  can be made far greater than bandwidth for the given beam. This 

is of interest, but does not in itself indicate greater accuracy or sensitivity in 

identifying a gas, or distinguishing between two similar gases. This is discussed 

further in section 8.4.   

 

7.1.4. Amplitude of vibration 
 

As discussed in section 6.4.3, the amplitude of vibration at the centre of the beam 

cannot be directly measured, nor can the phase relationship between the background 

and this vibration. However, for later modelling purposes, a reasonable 

approximation of amplitude is required. In order to gain an impression of the 

contribution of the background (a) to the measured vibration amplitude (b), the ratio 

of the (b) to (a) amplitudes was briefly examined. Figure 7.9 illustrates one of the 

measurements for beam B in argon, chosen as this minimises this ratio. For this data, 

the minimum ratio (b)/(a) is approximately 11, maximum 91. This suggests that, for 
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the purposes of this work, the background contribution may be neglected when 

considering the measured vibration amplitude. 

 

Figure 7.9: Beam B in argon, with applied actuation voltage at 40V 

 

7.2. Temperature effects 
 

Measurements were taken over a temperature range of 19.7 to 33.3 ˚C. The effect 

of temperature on the background, boundary conditions and beam dimensions is 

investigated below. 

7.2.1. Background stability 
 

The background displacement for both beam A and beam B was measured at two 

temperatures in a near vacuum, at low pressure with actuation voltage set at 500mV. 

As each beam is mounted on a separate copper disk, it is necessary to measure the 

background for each beam separately. Figure 7.10 displays the measurements for 

beam A, figure 7.11 those for beam B. 
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Figure 7.10: Temperature dependent background displacement for beam A in a near 

vacuum at 500mV.  Lower temperature 21.65 ˚C, upper temperature 29.05˚C 
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Figure 7.11: Temperature dependent background displacement for beam B in a near 

vacuum at 500mV. Lower temperature 22.1 ˚C, upper temperature 29.05˚C 

 

Figures 7.10(a) and 7.11(a) indicate that that the frequency response profile of both 

backgrounds moves down in frequency as temperature is increased over the given 

ranges. Figures 7.10(b) and 7.11(b) focus on the effect on the backgrounds in the 

region of the pertinent beam’s fundamental resonant frequency. It is apparent that 

temperature can have a significant effect on the background, such that the 

background must be measured separately for each linear or nonlinear measurement. 

It is not sufficient to assume a consistent background displacement for a given 

applied voltage. 
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To investigate the stability of the background further, it is appropriate to use higher 

voltages in order to maximise readings and any differences between them. Consider 

the following cases: 

 

Case 1 – repeatability of measurements 
 

The background displacement was measured under near identical conditions on 

different days, to evaluate the repeatability of measurements. Figure 7.12 shows a 

typical example of such a reading, for beam A in air, with an applied voltage of 25V 

and a mean temperature of 29.2 ˚C. Very little difference can be observed in the 

backgrounds, and this is found to be consistently true for both beams, regardless of 

the voltage, gas or temperatures under consideration. Measurements may then be 

considered repeatable to a reasonable degree of accuracy. 
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Figure 7.12: Backgrounds for beam A on separate days 
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Case 2 – effect of moderate temperature changes 
 

There were found to be drifts in temperature over the course of obtaining a linear 

or nonlinear data set. A typical drift is of no more than 0.3 ˚C, although this is 

exceeded on rare occasion. It is necessary therefore to examine the effect of 

moderate temperature changes on backgrounds, in order to confirm whether or not a 

background may reasonably be associated with the preceding or subsequent beam 

vibration measurements (see section 6.4.3 for further discussion). Figures 7.13, 7.14 

and 7.15 illustrate the effect of temperature drifts in the region of 0.3, 0.45 and 0.7 ˚C 

respectively.  
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Figure 7.13: Beam A backgrounds in air. Applied voltage 35V. Temperature shift 

29.2 to 29.5 ˚C 
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Figure 7.14: Beam A backgrounds in helium. Applied voltage 30V. Temperature 

shift 22.9 to 23.35 ˚C 
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Figure 7.15: Beam A backgrounds in air. Applied voltage 30V. Temperature shift 

22.0 to 22.7 ˚C 

 

For a drift of 0.3 ˚C, it is difficult to detect any difference between the 

backgrounds over the frequency range of concern. As the size of drift increases, so 

the backgrounds begin to become distinct. For the drift of 0.7 ˚C, the distinction is 

clear. This trend is found to be true for both beam A and B at these higher voltages. 
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Summary 
 

In summary, the background displacement is shown to be repeatable where 

conditions remain identical. Changes in temperature cause shifts in the background, 

but these shifts may be negligible where the temperature change is of the order of 

0.3˚C or less. This suggests that it is justifiable to associate background readings with 

linear or nonlinear data sets, as the temperature is unlikely to shift significantly in 

this time. 

7.2.2. Boundary conditions 
 

As discussed in section 6.2.4, temperature-induced changes in boundary conditions 

can alter the tension in a beam, affecting the resonant frequency. Figure 7.16 shows 

how the resonant frequencies of beams A and B behave with temperature. The linear 

data for all gases and all applied voltages is plotted. 
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Figure 7.16: Resonant frequency dependence on temperature 
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The resonant frequency for both beams is seen to change with temperature. The 

trend for either beam though differs. The resonant frequency tends to decrease with 

temperature for beam A, yet increase with temperature for beam B. This discrepancy 

suggests that the change is dominated by the unknown boundary conditions, rather 

than changes in fluid or beam properties. This is examined further in section 8.3.1.  

7.2.3. Beam dimensions 
 

The dimensions of both beams were determined at varying temperatures, as 

described in section 6.4.2. The measurements, subject to the inherent uncertainties, 

are given in table 7.1. This data appears to show inconsistent behaviour with 

temperature. It is therefore assumed that this measurement technique is not 

sufficiently accurate to be reliable. The consequences of temperature-induced 

changes to beam dimensions are discussed further in section 8.1.3. 

 

Beam Temp. (˚C) L (µm) B (µm) 

A 21.4 1197.50 32.89 

A 28.25±  2.25 1202.35 31.06 

B 21.3 1498.63 76.90 

B 30.5±  2.25 1498.16 76.92 

Table 7.1: Beam dimensions 
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7.3. Beam comparison 
 

It is useful to appreciate the relative performance of beams A and B in various 

gases. For this purpose, Fδ  is plotted against the mean background displacement for 

both beams, by gas. Figures 7.17 to 7.21 show the results. 

Near vacuum

0

4000

8000

12000

16000

0.E+00 2.E-09 4.E-09 6.E-09

Mean background displacement (m)

delta F (Hz)
Beam A

Beam B

 

Figure 7.17: Fδ  for beams A and B at low pressure, in a near vacuum 

 

Argon

0

1000

2000

0.E+00 1.E-08 2.E-08

Mean background displacement (m)

delta F (Hz)

Beam A

Beam B

 

Figure 7.18: Fδ  for beams A and B in argon 
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Helium
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Figure 7.19: Fδ  for beams A and B in helium 
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Figure 7.20: Fδ  for beams A and B in air 
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Carbon Dioxide

0.00

1000.00

2000.00

3000.00

4000.00

0.E+00 1.E-08 2.E-08

Mean background displacement (m)

delta F (Hz)

Beam A

Beam B

 

Figure 7.21: Fδ  for beams A and B in carbon dioxide 

 

The results for carbon dioxide indicate a clear distinction between beams A and B, 

with beam A appearing to offer greater Fδ  for a given h . The results for the other 

media, however, suggest that further attention must be paid to the background profile 

before any firm conclusions can be drawn.  

 

7.4. Limits 
 

In this section consideration is given to the maximum of the measurements taken, 

plus the limiting factors on the experiments. 

7.4.1. Magnitude of readings 
 

As can be seen from figure 7.7, it was possible to achieve values of Fδ  in excess 

of 16 kHz. A reading of beam B in helium at 28 ˚C gave δF=16.8 kHz, with an 

applied voltage of 25V. This data set also yielded the largest measurement for the 

amplitude of vibration, at 16.7 µm (without correction for background contribution 

or position of measurement on beam, as discussed earlier). Although this 

displacement is of the order of the depth of the beam, it is still small when compared 

to beam length (of the order of 1%). 
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7.4.2. Achievable resonant modes 
 

Limitations in the experimental equipment were such that frequencies could only 

be measured up to a maximum of 100 kHz. Referring to section 4.2.1, table 4.5, this 

means that it was not possible to analyse the second mode for these beams. To 

examine the achievable resonant modes, wide frequency sweeps were performed on 

beams A and B at low pressure i.e. near vacuum (see section 7.4.3), in a temperature 

range of 28.8 to 29.1 ˚C, with applied voltage levels of 30mV and 500mV. The 

results are shown in figures 7.22 and 7.23. 
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Figure 7.22: Resonance in beam A 
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Figure 7.23: Resonance in beam B 
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For both beams, resonances occur where expected. At the lower voltage level, 

these resonances are only just perceptible, but become clear at the higher voltage. In 

the case of beam B, there appears to be some other resonant behaviour around the 

fundamental frequency. However, by examining the associated background for this 

reading, it becomes apparent that this is associated with the background profile. This 

is confirmed in figure 7.24 which shows a significant resonance at around 50kHz. 
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Figure 7.24: Background for beam B, 500mV measurement (see figure 7.23) 

 

7.4.3. Pressure regimes 
 

Pressure readings were gathered for all data sets, as outlined in section 6.4. The 

extremes of the measured voltage and converted pressure values are displayed in 

table 7.2 for readings in gas, plus readings taken at low pressure i.e. near vacuum. 

 

Medium Lower 

Voltage (V) 

Lower Pressure 

(Bar) 

Upper 

Voltage (V) 

Upper Pressure 

(Bar) 

Gas 2.475 0.99 3.561 1.4244 

‘Vacuum’ 0.007 0.0028 0.043 0.0172 

Table 7.2: Extremes of pressure 
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Using this data and considering the Knudsen numbers (see section 3.1) illustrates 

that: 

• All gas measurements are in the viscous regime. 

• The ‘vacuum’ measurements at low pressure are actually taken in the 

molecular/transition regime. For this reason, such measurements are referred 

to as ‘near vacuum’ rather than ‘vacuum’, and assumed to be air at low 

pressure.  

 

 

7.5. Summary 
 

In this chapter the essential experimental results have been presented. Fδ  was 

found to reach values up to 16.8 kHz, and the effect of temperature on the 

background displacement and the boundary conditions noted. In the following 

chapter the results are analysed in finer detail, and the model adjusted accordingly. 
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Chapter 8 

Analysis 
 

The circular cylinder damping model was used to direct the device and 

experimental design. In this chapter, experimental data is used to develop a damping 

model based on the elliptic cylinder approximation. In developing this model, the 

influence of the applied background displacement is noted. Finally, the modelled 

beam behaviour is employed to make predictions regarding the sensitivity of 

nonlinear measurements to changes in fluid properties. 

8.1. Approximations 
 

8.1.1. Errors and uncertainties 
 

As discussed in previous chapters, there are numerous uncertainties in the 

measured data and inherent inaccuracies in the single harmonic model for beam 

behaviour. Consequently it is extremely difficult to determine the uncertainty in any 

modelled data point. It would be misleading to include any error bars on plotted 

model data, and as such the figures in this chapter do not include any. 

8.1.2. Reynolds and Keulegan-Carpenter numbers 
 

In section 7.1.4 it was noted that the background displacement contributes only a 

negligible amount to the amplitude of vibration. As a consequence, any 

approximations for the Reynolds or Keulegan-Carpenter number do not consider the 

background contribution. 

8.1.3. Beam and fluid properties 
 

It is clear that the beam dimensions and fluid properties change with temperature. 

However, as discussed previously, it is not possible in this work to have an exact 

measure of the beam dimensions. Additionally, there is discrepancy in the literature 

regarding fluid properties at a given temperature (see Appendix A). It is useful 
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therefore to appreciate what effect such temperature induced changes will have on 

the pertinent measurand Fδ . 

The following procedure was adopted to estimate this effect.  

• Values for the viscosity and density of helium, carbon dioxide and argon at 

20 and 26.85 ˚C were taken from Appendix A, source [10].  

• Beam A was assumed to have ideal dimensions at 20 ˚C, and the expanded 

dimensions at 26.85 ˚C were calculated using properties given in Appendix 

B. 

• The circular cylinder damping model was used to predict Fδ  at two 

constant levels of  background displacement, for each gas and temperature. 

The results are plotted in figure 8.1. 
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Figure 8.1: Effect on Fδ  of temperature-induced changes to beam and fluid 

properties. 

 

It is predicted that Fδ  will typically change by less than 1% over this temperature 

range, at the given levels of background displacement. At lower displacement, this 

value can increase to around 2% in helium (whereas for carbon dioxide and argon, a 

reduction in background displacement quickly leads to linear behaviour.) 

Beam dimensions are predicted to vary only by an order of around 0.001%. The 

beam is not fully constrained as the anchors are made of the same material, and 

subject to same thermal expansion. (Note that axial compression is dealt with 
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separately by considering the extension η .) This confirms the statement made in 

section 2.2.2 to this effect. Fluid properties are predicted to change by less than 3%. 

It should be noted that, for all of the data in figure 8.1, the constraints of the 

circular cylinder model regarding Reynolds number and Keulegan-Carpenter number 

are broken. The maximum Reynolds number is estimated as 13.1 in carbon dioxide; 

maximum Keulegan-Carpenter number 2.91 in helium. However, the magnitude of 

the changes to beam dimensions and fluid properties over this temperature range 

suggest that any changes to fluid damping on the beam should be minimal. The 

circular cylinder model should then still be able to provide a qualitative description 

of the beam behaviour. 

As a consequence of the above, the beam dimensions and fluid properties are 

assumed to remain constant across the temperature range of the subsequent analysis. 

Beam dimensions are taken as being ideal for both beams A and B, and fluid 

properties taken as the values at 25 ˚C given by Fluent (see Appendix A, source [7]). 

8.2. Influence of background 
 

In sections 7.1.1 and 7.2.1 it was observed that the profile of the background 

displacement over the important frequency range is highly dependent on the applied 

voltage and the temperature of the actuation apparatus. In addition, figures 7.6 and 

7.7 in section 7.1.3 show that measurements of Fδ  with similar mean background 

displacement can vary widely in magnitude. 

To investigate the influence of the background further, measured background data 

is applied to the circular cylinder model to see what is predicted for beam response, 

and how this compares to the actual measured response. 

8.2.1. Shifting and scaling background data for modelling 

purposes 
 

One immediately apparent problem in applying measured background data to the 

modelled solution is that the model only accounts for the first harmonic at the 

fundamental mode. As hinted in section 4.5.7, damping encountered experimentally 

may be greater than that accounted for in the harmonic balance solution. This would 

in turn place any predicted resonance peak at a higher frequency than that measured. 
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In addition to this there are uncertainties regarding beam and fluid properties. The 

net effect is that a discrepancy is expected between the measured and modelled 

resonance peak. The consequences of this, and a proposed remedy, are outlined 

below.  

Case 1 – applying background data directly to model in linear regime 
 

A set of background and response data was selected for beam A in air. The 

background data was then input into a Matlab file based on the circular cylinder 

model, and the predicted frequency response plotted against the measured response – 

see figure 8.2. 

 

Figure 8.2: Measured and predicted response for beam A in air, where response is 

linear and background displacement is applied directly to the circular cylinder model. 

 

As predicted, the measured case exhibits a lower resonant frequency than the 

model. In addition, the measured vibrational amplitude is lower than for the model. 

As discussed in section 6.4.3, data measurements may not have been taken at the 

precise centre of the beam, whereas the model predicts for the centre of the beam, 

giving maximum displacement in the fundamental mode. In this particular case the 

Reynolds number and Keulegan-Carpenter numbers are predicted to be within the 
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applicable limits – 0.06 and 0.01 respectively – suggesting that the circular cylinder 

damping model may be more reliable in the linear regime than nonlinear. 

Note that the above plot is only achievable when the measured background is 

spread over a sufficient frequency range. For the vast majority of data gathered, the 

frequency range was minimised to improve resolution. The following case illustrates 

the consequence of this. 

Case 2 – applying background data directly to model in nonlinear regime 
 

Similarly to case 1, background data for beam B in air was applied directly to the 

circular cylinder model, and the results plotted in figure 8.3. 

 

 

Figure 8.3: Measured and predicted response for beam B in air, where response is 

nonlinear and background displacement is applied directly to the circular cylinder 

model 

 

In this case, the range of frequencies covered by the background data is such that it 

does not reach high enough frequencies for the model to make any useful predictions 

regarding resonant behaviour. To account for this it may be appropriate to ‘shift’ the 

background data up in frequency before applying it to the model. This translation 
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would allow an approximately equivalent background to be applied in the vicinity of 

the model’s resonant frequency.  

Case 3 – modifying and applying background data in nonlinear regime 
 

To estimate the required frequency shift in the nonlinear regime, it is first 

necessary to determine h  from the measured data, as outlined in section 7.1.3. This 

constant h  is then applied to the circular cylinder model, across a sufficiently broad 

frequency range so that the model predicts a nonlinear response. An example is 

shown in figure 8.4.  

 

 

Figure 8.4: Estimating required frequency shift for beam B in air, using circular 

cylinder model 

 

In this case it is apparent that simply applying h  to the model does not give a 

particular accurate prediction of Fδ . However, investigations show that the 

frequency of the lower jump point in any modelled data is far less susceptible to a 

change in h  than the upper jump point. With this in mind, the required frequency 

shift may then be approximated as the frequency separation between the measured 

lower jump point and the modelled lower jump point. 
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Before applying this translation to the background data, it is important to note that 

the actual forcing applied to the beam is proportional to h2ω , whereas fluid damping 

for both cylinder models is a function ofω . Both of these factors are crucial in 

determining beam behaviour, and so any translation must account for the effect of a 

change in frequency. Regarding the forcing, any increase in the frequency of the 

applied background data must be accompanied by an appropriate reduction in the 

background displacement amplitude, to maintain an equivalent forcing level. As for 

the damping, in order to match the measured case, any modelled data must calculate 

the fluid damping as if using the unshifted frequency. From this point forward, the 

frequency shift and amplitude scaling applied to the background data will simply be 

referred to as SHIFT. 

Figure 8.5 shows the result of applying the appropriate SHIFT to the data for 

figures 8.3 and 8.4. 

 

Figure 8.5: Applying SHIFT to circular cylinder model for beam B in air 

 

It is apparent that using this SHIFT, although crude, gives a far better agreement 

between measured and modelled Fδ . Again, it is noted that the constraints of the 
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circular cylinder damping model are broken in the nonlinear regime, but this should 

not detract from the effectiveness of using this approach. 

8.2.2. Effect of background profile 
 

To confirm that the aforementioned discrepancies in Fδ  at similar h  are not due 

to any measurement errors, a selection of data for beam B in air was chosen for 

investigation. Again, the circular cylinder model was adopted, and appropriate 

SHIFT applied to each data set, to compare predicted and measured Fδ . Figure 8.6 

shows the results. 
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Figure 8.6: Effect of using SHIFT on Fδ  and mean background displacement 

 

The mean background displacement for the model is calculated between the 

predicted jump points. The scaling inherent in SHIFT causes the mean background 

displacement to reduce in the model data. However, it is clear that the model follows 

the same trend as the measured data. These qualitative predictions indicate that the 

discrepancies in Fδ  are not due to any experimental errors, but are genuine 

phenomena to be explained. 

To investigate further, two of the shifted and scaled backgrounds used in figure 8.6 

are compared. Figure 8.7 shows a plot of these backgrounds, with the jump point 

frequencies indicated by circles, and note made of h  and Fδ  associated with each.  
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Figure 8.7: Comparison of shifted and scaled backgrounds for beam B in air. Jump 

point frequencies are indicated by circles placed on the relevant background profile 

 

It is apparent that these two backgrounds, though similar in h , demonstrate 

markedly different profiles in the vicinity of the associated jump points. For the case 

with lower Fδ , the background reduces in amplitude between the lower and upper 

jump points. The converse is true for the case with the higher Fδ . Noting that the 

model has so far not accounted for any extension term η, nor any other influencing 

factors, it is then concluded that Fδ  is highly dependent on the background 

amplitude and profile in the vicinity of the resonant frequency. 
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8.3. Detailed modelling 
 

In this section, the molecular damping and elliptic cylinder damping models are 

employed, along with experimental data, to develop a damping model for beam A. 

The aim is to develop a model which can predict, with reasonable accuracy, the 

behaviour of beam A over the range of temperature, pressure and displacement 

considered in the experiments. 

As discussed in section 1.4.4, fluid damping will not account for all of the damping 

on the beam. There will be contributions from other damping mechanisms. For 

modelling purposes, this additional damping will be accounted for by including a 

damping coefficient, which is referred to as OTHER.  In the molecular damping 

regime then, the damping coefficient is taken as OTHERMOLc += , where 

Tv
pb

MOL =  represents the molecular damping per unit length; in the viscous regime, 

OTHERc +Φ= µ , where OTHER is to be determined from experimental data. 

Preliminary modelling consistently showed that the circular cylinder model 

overestimates the damping in the nonlinear regime (where the relevant constraints on 

the Reynolds and Keulegan-Carpenter numbers are broken.) To adjust for this would 

require the inclusion of a negative OTHER term; this is nonsensical and 

consequently the circular cylinder model was considered insufficient for purposes of 

this section. 

In working with the elliptic cylinder model, it should be noted that the aspect ratio 

of beam A, and indeed beam B, is such that thickness effects may become important. 

This may negatively effect the validity of the damping coefficient model, but does 

not prevent attempts at a numerical fit being made. 
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8.3.1. Molecular regime - linear 
 

Analysis of linear data gathered in the molecular pressure regime allows for an 

approximation of the coefficient OTHER in this regime, as well as a working 

expression for the extension η. As outlined in section 4.5.3, η  may have a negligible 

effect on bandwidth and Fδ , but can significantly effect the resonant frequency. 

The low damping in the molecular pressure regime suggests that it is acceptable to 

use the following relationship between quality factor Q , damping ζ , damped 

resonant frequency dω  and bandwidth ( )12 ωω − : 
( )122

1

ωω

ω

ζ −
≈≈ dQ  [1]. This 

expression may be considered valid where 05.0<ζ , and subsequent investigation 

showed this to be true throughout the molecular regime measurements.  

Note that in the linear regime, any calculations for h  are determined over the 

bandwidth, and the frequency shift (SHIFT) determined by measuring the separation 

between the measured and the modelled resonance peaks. 

 

Determining the extension η 
 

As illustrated in sections 4.5.2 and 4.5.3, the resonant frequency does not change 

rapidly with h  orζ , but is highly sensitive toη . In section 7.2.2 it was confirmed 

that the resonant frequency changes with temperature, most probably as a 

consequence of changes to the boundary conditions, and hence η . Together, these 

observations suggest that an approximate temperature-dependent extension term η  

may be developed to account for variations in resonant frequency with temperature. 
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To determine an expression for η , the following procedure was followed: 

• The damped resonant frequency of the beam was read over a range of 

temperatures, where the pressure and h  were held approximately constant. 

• For each data set, the first aim was to match the measured and the modelled 

Q values, whilst holding η  at zero in the model. Consequently, rather than 

use the coefficient MOL for molecular damping, the coefficient c was set to 

allow matching. In this process, the mean h , with a suitable SHIFT for 

scaling, was used, rather than use the true background data. This was found 

to be necessary at the given level of applied displacement in order to 

accurately read the resonant frequency or bandwidth from the modelled 

data. Using the true background data in the Matlab model was found to 

produce indistinct resonant peaks and halfpower points; this may be 

explained by the presence of noise in the system, and the model’s 

interpretation of such noisy data. 

• The assumption was then made that η  was actually zero at the lowest 

temperature for the data sets under consideration. At the experimental stage 

it was not possible, given the equipment and methodology, to measure η 

directly, and so it is necessary to make an assumption of this type to allow 

for further modelling. 

• For the higher temperature data sets, η  and c  were then finely tuned. The 

aim was to maintain a match of Q  with the measured data, whilst 

simultaneously setting the resonant frequency of the model such that the 

rate of change with temperature closely matches that seen in the measured 

data. This is illustrated below in figure 8.8a. It was then possible to extract 

an approximate linear dependence of resonant frequency on temperature in 

the model. 

• The values of η  used at each temperature were then taken and plotted 

against temperature, as shown in figure 8.8b. Again, an approximate linear 

expression could then be extracted, giving a temperature-dependent 

formula for η .   
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The above procedure for beam A yielded the following: 

 

(a) Temperature dependence of resonant frequency 

for beam A
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(b) Modelled temperature dependence of extension 

term for beam A
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Figure 8.8: Determining a temperature dependent formula for tension η in beam A 

 

The expression for η  is then taken to be η  =(-1.44E-6*T)+0.00042, where T is the 

temperature in Kelvin, i.e. is represented in the form ( )Tηηη += 0  . Although this 

does not give a true absolute value for η, for reasons stated above, it is valuable in 

that it can closely predict the behaviour of the resonant frequency with temperature. 

This expression is included in subsequent modelling. 
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Determining damping coefficient OTHER 
 

 

The damping coefficient OTHER would be expected to include a contribution 

from the intrinsic losses. According to the formulae presented in section 2.5, support 

losses to beam A would be expected to contribute a value of approximately 1.82E-6 

to this coefficient, surface losses 2.27E-6, and thermoelastic losses 2.94E-11. 

To determine OTHER, this procedure was followed: 

• Maximum and minimum values for the measured quality factor Q were 

calculated by accounting for the resolution of the measurements. From 

these, maximum and minimum values for the damping coefficient c were 

then calculated. 

• The molecular damping coefficient MOL  was calculated in each case, 

using recorded pressure and temperature data. Maximum and minimum 

values for OTHER  were then calculated using OTHERMOLc += .  

 

In doing these calculations, several instances of OTHER  were found to have a 

negative value. As this cannot reflect the true situation, it is assumed that there is an 

inaccuracy in the calculation of the molecular damping coefficient MOL . 

Consequently, only positive values for OTHER  are considered. For a working value 

of OTHER  then, a mean is taken across all such positive values. This returned an 

approximate coefficient as OTHER =1.8E-5. This value exceeds that predicted for 

intrinsic losses and is thus adopted for subsequent calculations in the linear regime.  

Regarding the calculations of MOL , it is worth noting that for smaller MOL  values 

a larger Q  is observed, as would be expected. Although MOL  calculations may 

contain inaccuracies, they are still then of qualitative value. 
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Background discrepancies 
 

In analysing this linear data in the molecular regime, particular discrepancies were 

noticed in some of the background data. Several of the background displacement 

readings were found to be of a far higher magnitude than expected, such that using 

this data with the Matlab model produced nonlinear results. An explanation may 

come from the actuation arrangement and the measurement procedure, as discussed 

in sections 6.2.4 and 6.4.3. In attaching the silicon device to the copper disk, it is 

possible that certain regions on the device remained unbonded, and as such have a 

certain freedom to vibrate. These local regions may then have their own frequency 

response. It is impossible to ensure that background measurements were taken from 

precisely the same spot every time. It is possible that certain readings were taken in 

one of these local regions, skewing the results.  

The magnitude of these discrepancies was such that all background data for the 

linear regime had to be carefully evaluated. In the nonlinear regime however, the 

magnitude of the applied piezo displacement is such that these localised effects can 

largely be ignored. 

 

8.3.2. Molecular regime - nonlinear 
 

To approximate the coefficient OTHER  for beam A in the nonlinear regime, a 

similar process was followed as for the linear regime. In this case the previously 

determined formula for η  was adopted, and a match sought between the measured 

and modelled Fδ . Again, a mean was taken over the positive values obtained for 

OTHER , giving an approximate coefficient of OTHER =1.3E-4 to be used in 

subsequent calculations in the nonlinear regime. 

The apparent discrepancy between the values of OTHER  in the linear and 

nonlinear regime may require explanation. It may be that the damping on 

unaccounted harmonics, which will be greater in the nonlinear case than linear, are 

responsible for these model predictions. To verify this however is not within the 

scope of this work. 
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8.3.3. Viscous regime - linear 
 

Having determined values for η and OTHER  in the molecular regime, the next aim 

was to establish values for parameters a  and b  in the elliptic cylinder model. These 

values should be such that model predictions offer good agreement with measured 

data across the four chosen viscous gases. 

In the linear regime, it was found that the Reynolds number consistently remained 

below 1 in all of the gases. This allowed for an analytically determined parameter a  

in each gas. It was then noted that 05.0<ζ  in all gases, confirming that it is 

reasonable to use the aforementioned approximation for Q  when considering 

damping on the system. By adjusting parameter b  in the model for each gas, and 

using a mean h  of lower magnitude for reasons given above, it was then possible to 

match the measured and modelled Q . Having done this for several data sets for each 

gas, a mean value of parameters a  and b  was taken. 

Using a =0.75, b =2.85, and OTHER =1.8E-5, the Q  at three different 

temperatures was modelled for each gas and plotted against the measured value. In 

each instance the maximum and minimum values of Q  were calculated according to 

the resolution of the modelled and measured data, and a mean taken. These mean Q  

values are shown in figure 8.9. 

 

Figure 8.9: Quality factor for beam A in four viscous gases; measured and linear 

elliptic cylinder model 
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Although, as mentioned, it would be misleading to include error bars on modelled 

data, it may be worth investigating how closely this model and measured data appear 

to match. By considering the maximum and minimum Q values, it was possible to 

gain an impression of the difference between measured and modelled data. These are 

summarised in table 8.1. 

 

Fluid % Disagreement Comments 

Air  10 to 14 Model is over-damped 

Argon  1 to 5 Model is over-damped 

Carbon dioxide  2 to 5 Model is over-damped 

Helium  0 to 2 Model is under-damped 

Table 8.1: Disagreement between measured and modelled quality factors for four 

gases in viscous regime 

 

The agreement between the model and measured data appears to be strong, other 

than in the case of air. The model parameters are taken forward to section 8.4 below. 

 

8.3.4. Viscous regime - nonlinear 
 

In order to determine parameters a  and b  in the nonlinear regime, a similar 

process is followed as for the linear regime, except a match is sought for Fδ  as 

opposed to Q. At this higher level of background displacement, the Reynolds number 

remains below 1 only in the case of helium. As a result, a mean initial value for 

parameter a  was obtained using the analytical formula with helium only. 

Subsequently, a series of iterations were performed on each data set to establish 

values for a  and b  which provided a reasonable agreement between the measured 

and modelled δF in all gases. 

With a =1.1, b =1.2, and OTHER =1.3E-4, Fδ  was modelled at three different 

mean background displacements for each gas and plotted against the measured value. 

Again, mean values for Fδ  were calculated according to the resolution of the 

modelled and measured data. Results are shown in figure 8.10. 
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Figure 8.10: Fδ  for beam A in four viscous gases: measured and nonlinear elliptic 

cylinder model 

 

As before, the difference between measured and modelled data was examined with 

regard to resolution. Table 8.2 summarises these findings. 

 

Fluid % Disagreement Comments 

Air  0 to 7 Model is over-damped 

Argon  9 to 42 Model is under-damped 

Carbon dioxide  0 to 12 Model is variable 

Helium  9 to 18 Model is variable 

Table 8.2: Disagreement between measured and modelled δF for four gases in 

viscous regime 

 

Agreement between the model and measured data varies noticeably between the 

gases. Air and carbon dioxide show good agreement over the range of background 

displacements considered. With argon, the percentage disagreement appears greatest 

at the lower levels of background displacement. For helium, the disagreement was 

seen to increase greatly at higher background displacements beyond the range 

considered in figure 8.10. With this in mind, the model parameters are taken forward 

to section 8.4. 
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8.4. Sensitivity 
 

In this section the practicality of using the resonating beam A as a gas sensor is 

examined. The effectiveness of using linear and nonlinear measurements is compared, 

and predictions made using the developed damping model. 

8.4.1. Identifying gases 
 

Referring back to figure 7.6 in section 7.1.3, it is apparent that helium and argon 

can clearly be identified by Fδ . Air and carbon dioxide however appear difficult to 

distinguish without thoroughly investigating the background displacement. It is 

therefore appropriate to examine whether linear measurements can distinguish 

between the gases. 
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Figure 8.11: Measured bandwidth of beam A in viscous gases 
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Figure 8.12: Measured resonant frequency of beam A in viscous gases 
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Figure 8.13: Measured quality factor of beam A in viscous gases 

 

Figures 8.11, 8.12 and 8.13 reveal the following: 

• Helium is identifiable by bandwidth and quality factor. 

• Argon may be identifiable by bandwidth and quality factor, but exhibits 

similarities to air and carbon dioxide. 

• Air and carbon dioxide exhibit small differences, but can be difficult to 

distinguish. 

 

Linear and/or nonlinear measurements then allow for the identification of helium 

and argon. A way of definitely distinguishing between air and carbon dioxide has yet 

to be identified. Investigation of the linear data shows that the bandwidth can differ 

between air and carbon dioxide by typically around 25Hz. To examine relevant 

nonlinear data requires selecting data sets with comparable temperatures and 

background displacements. Figure 8.14 presents Fδ  for five such comparable data 

sets.  
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Figure 8.14: Selected measured Fδ  data for beam A in air and carbon dioxide 

 

The data selected for figure 8.14 illustrates that a difference in Fδ  of up to 250 Hz 

can be achieved over the chosen background displacement range. In terms of 

distinguishing between air and carbon dioxide, this is an order of magnitude greater 

than that achieved by linear measurements. However, fluctuations in the data indicate 

that there remain uncertainties. 

To further investigate the usefulness of nonlinear measurements for distinguishing 

between these gases, the developed damping model was used to predict Fδ  for both 

gases at 25 ˚C, and the results plotted in figure 8.15. 
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(a) Delta F modelled for beam A
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(b) Difference in modelled delta F between gases
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Figure 8.15: Elliptic cylinder model predictions for beam A in air and carbon 

dioxide 

 

 

Figure 8.15 shows that the difference between Fδ  in air and carbon dioxide is 

predicted to grow with background displacement amplitude. At sufficiently high 

displacement then, differences in Fδ  may be amplified far beyond the differences in 

bandwidth. Nonlinear measurements may potentially be used to distinguish between 

similar gases with a degree of sensitivity higher than that available with standard 

linear measurements. 
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8.4.2. Model predictions 
 

The predicted sensitivity of linear and nonlinear measurands was investigated for 

beam A. Viscosity and density was varied in the model, to see the effect each had on 

resonant frequency, bandwidth and Fδ . The initial values for viscosity and density 

were taken to be those for carbon dioxide, as model predictions most often closely 

measured data for this gas, whether in the linear or nonlinear regime. 

For linear measurements, a value of h =8.5E-11 was adopted, as this ensured 

predictions remained linear. For nonlinear measurements, h =2E-9 so as to remain 

within the range considered in figure 8.10. Predictions were then made for each 

measurand where (a) viscosity was held constant and density increased in increments 

up to 150% of the initial value, and (b) the converse of this. Figures 8.16 to 8.20 

show the predicted measurements over this range. 
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Figure 8.16: Fluctuation of resonant frequency with viscosity or density; predictions 

for beam A using linear elliptic cylinder model 
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Figure 8.17: Fluctuation of bandwidth with viscosity or density; predictions for 

beam A using linear elliptic cylinder model 
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Figure 8.18: Fluctuation of Fδ  with viscosity or density; predictions for beam A 

using linear elliptic cylinder model 
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Figure 8.19: Sensitivity of bandwidth and Fδ  to fluctuations in viscosity 
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Figure 8.20: Sensitivity of bandwidth and Fδ  to fluctuations in density 

 

Over the range considered, no change in the resonant frequency was observed. Fδ  

and bandwidth did change with both density and viscosity, with Fδ  showing the 

greater sensitivity to changes in fluid properties. This confirms predictions made in 

section 4.5.4, and the implications of this are discussed in the following chapter. 
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Chapter 9 
 

Conclusions  
 

The aim of this work was to investigate the nonlinear response of rectangular 

MEMS resonator beams immersed in gases. The measurand Fδ  was identified as an 

indicator for gas properties. Suitable experiments were designed and conducted to 

provide data for two differently proportioned silicon beams operated in four different 

gases and two pressure regimes. The major contributions of the thesis are outlined 

below in section 9.1. This is followed by a discussion of the limitations of the study 

in section 9.2. Implications of the study are outlined in section 9.3. Finally, 

suggestions for further work are made in section 9.4. 

9.1. Contributions 
 

The equation of motion for a clamped-clamped beam in a fluid has been shown in 

section 4.2.1 to be of the form of the damped Duffing equation. Amplitude jump 

points are predicted to occur when the harmonic forcing is of sufficient magnitude, 

and the observation made that the frequency separation Fδ  between these points is 

dependent on the dynamic viscosity and density of the fluid. At low damping, 

nonlinear beam resonators are shown to be potentially more sensitive to changes in 

fluid properties than existing linear resonating devices.  

Experimental data presented in chapter 7 confirms the qualitative findings of the 

modelling and illustrates that measurements of Fδ  may be used to uniquely identify 

gases. The magnitude of Fδ  is seen to be dependent on beam dimensions. In 

addition, it is shown that Fδ  may be amplified to magnitudes far exceeding linear 

measurements of bandwidth with the same beam.  

Further analysis in section 8.2 demonstrates that the magnitude of Fδ  is highly 

dependent on the magnitude of the applied displacement and its frequency 

dependence (referred to as the ‘background profile’). 

Focusing on one of the rectangular beams only, a damping model was developed 

with parameters extracted from the experimental data. Numerical predictions from 
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this model indicate that a rectangular resonator beam operated in the nonlinear 

regime can show sensitivity to changes in fluid properties at low viscosity and 

density of at least an order of magnitude better than when it is operated in the linear 

regime.   

With respect to previous related research, this work extends the potential of 

clamped-clamped beam resonators as sensors, by introducing the new measurand Fδ . 

A review of the literature suggests that this is the first work to attempt this particular 

approach. Using the measurand Fδ  may allow for the development of high-

sensitivity viscosity or density sensors. However, numerical simulations do not show 

any advantage in using this measurand in mass sensing applications. 

9.2. Limitations of the study  
 

ぉThe study has a number of limitations, arising from both the experimental work 

and the system modelling. 

9.2.1. Experimental issues 
 

Beam imperfections 

 

With the given manufacturing procedure, it is not possible to produce a perfectly 

rectangular beam with an idealised geometry. There will inevitably be a certain 

amount of undercut or overcut around the beam, particularly at the beam ends. This 

was difficult to measure with the equipment available. In addition, profile scans 

revealed a certain degree of bowing in the beams. Both of these issues are likely to 

affect beam behaviour and therefore the accuracy of the model. 

 

Impurities 

Without a procedure for repeatedly cleaning the devices between measurements, it 

was not possible to know whether or not any impurities had attached themselves to 

the beams during the experiments. A particular concern would be moisture from 

humid air attaching itself to beams, reducing their resonant frequency in the process. 

This would negatively affect the accuracy of resonant frequency measurements.  
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Bonding issues 

The method for attaching devices to the piezo actuator introduces several 

uncertainties. On first attaching silicon devices to the copper disks, it is possible to 

introduce tension or compression across the beam, as well as potentially failing to 

fully adhere parts of the device handle layer. The differing coefficients of thermal 

expansion for silicon, copper, steel, epoxy and resin mean that temperature-induced 

fluctuations in beam boundary conditions are difficult to predict. These issues might 

be addressed by considering an alternative process for attaching devices to the 

actuator, or considering an alternative method of actuation. 

Temperature control 

The chosen of method of temperature control with peltier plates was limited. It was 

not possible to cool the inside of the chamber to below room temperature within a 

reasonable time, if at all; only to heat the chamber by running the peltiers in reverse. 

To set the temperature of the chamber accurately was also impossible: approximate 

temperatures could be achieved by manually adjusting the voltage of the power 

supply to the peltiers, keeping in mind the ambient room temperature. 

A more effective method for temperature control with peltiers may be to use some 

integrated control circuit, with a feedback loop, to continually monitor chamber 

temperature and adjust power supply automatically. The addition of thermal cladding 

around the chamber could aid in minimising heat flow in and out of the chamber.  

 

Sealing of chamber 

The chamber was seen to leak, allowing gases to escape or enter the chamber. This 

was particularly undesirable when trying to measure beam behaviour in a vacuum: 

only a low vacuum could be achieved, making it difficult to establish the degree of 

intrinsic damping present. In addition, gases would cease to remain 100% pure 

throughout the experiments. Variations in pressure resulting from gas loss from the 

chamber affect gas density, creating uncertainties in the results.  A thorough 

examination of the chamber, and possibly a redesign of certain features, might rectify 

this problem. 
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Background control 

As outlined in detail in chapters 7 and 8, the profile of the applied background 

displacement was very difficult to control. Temperature drift meant that background 

measurements could also not be linked to beam vibration measurements without 

introducing an unknown error. 

9.2.2. Modelling issues 
 

Flow separation 

The models adopted for the fluid drag on the beam assume that there is no 

separation of the flow. However, as discussed, since the resonator beam is not 

streamlined, a certain amount of separation must occur, leading to pressure drag. 

When operating the beam in the nonlinear regime, the Reynolds number and/or the 

Keulegan-Carpenter number can be seen to reach values where it would be necessary 

to consider pressure drag.    

 

Missing modes and harmonics 

Beam behaviour is approximated by considering only the fundamental mode of 

vibration and the first harmonic term. This approach is useful in that it simplifies the 

model sufficiently to allow for qualitative predictions to be made. The weakness 

though is that it may not account for the whole of the beam behaviour nor the 

damping on the beam.   

 

Beam aspect ratios 

Neither of the beams used in experiment have aspect ratios within the limits 

recommended for the elliptic cylinder damping model. This may affect the accuracy 

of the damping coefficient.   

 

Model parameters 

The parameters a  and b  determined for beam A have different values in the linear 

regime and the nonlinear regime. This is sufficient for approximating beam 

behaviour in the chosen regime, but indicates that the elliptic cylinder model is 

incomplete.   



 167 

9.3. Implications of study  
 

The results are of direct practical relevance. Using clamped-clamped beam 

resonators and the measurand Fδ , it should be possible to design a novel sensor 

capable of: 

• measuring viscosity or density directly 

• identifying fluids directly 

• responding to changes in fluid properties with a high degree of 

sensitivity. 

For the direct identification of a fluid, it may be necessary to use a combination of 

linear and nonlinear measurements, or alternatively to take two nonlinear readings 

with differently sized or proportioned beams. Figure 4.12 in section 4.5.2 indicates 

that, for a given beam and displacement magnitude, there should exist contours of 

equal Fδ  when plotting the measurand against fluid viscosity and density.  

Numerical simulation shows that, for two differing beams, there will however exist a 

unique Fδ  pair in a particular fluid. 

Remaining uncertainties in the model suggest that, at this stage, it would be 

necessary to calibrate any devices in known fluids before they could be reliably used 

as sensors.  

The principles of the work are extendable to more viscous fluids, including liquids. 

This would obviously require a higher level of displacement, and may require more 

sophisticated modelling to compensate for any breaking of the current modelling 

constraints.  It may also be true that the approach could be used in non-Newtonian 

fluids, but this has not been investigated. 

Although this study was conducted on MEMS devices, the results should be 

generalisable to larger scale devices. Using larger devices would require greater 

applied displacements to achieve Fδ  of similar magnitude to MEMS scale devices. 

However, there may be advantages in terms of manufacture, cost, robustness, and 

uniformity of beam geometry. In general, the beam dimensions and materials would 

have to be selected according to the desired application. 
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9.4. Further work 
 

There are various areas for further investigation, relating to both practical and 

theoretical issues. These are discussed below. 

9.4.1. Actuation 
 

To develop a reliable sensor, it would be necessary to have accurate control of the 

actuation. The amplitude of actuation has been shown to be crucial, and can have a 

far greater effect on measurements than small changes in fluid or device properties. 

Either the sensor is designed using a more appropriate or controllable piezoelectric 

actuator, or it may be desirable to consider an alternative method of actuation, such 

as electrostatic actuation [1], electromagnetic [1,2], thermal/electrothermal [1,3,4] or 

optical [1,5]. Any method of actuation chosen would have to be able to provide 

sufficient displacement or forcing to the beam, at levels above any noise in the 

system. 

9.4.2. Detection 
 

The chosen optical detection method may prove unsuitable for use with opaque 

fluids, or with nano-scale devices, due to difficulties in focusing a laser onto the 

resonator surface. In addition, it is possible that laser heating of a resonator could 

produce spurious results. It may be necessary therefore to investigate using an 

alternative method of detection. Stemme [1] discusses various methods of excitation 

and detection. Methods of detection covered include capacitive, dielectric, 

piezoelectric, piezoresistive and magnetic. 

9.4.3. Alternative fluids and materials  
 

The damping model developed in this work is sufficient to prove the concept of the 

proposed sensor. However, further work would be required to confirm that such a 

sensor may be developed for use in more viscous fluids such as liquids, or in non-

Newtonian fluids. 

Although silicon has been favoured as the beam material in this work, it may not 

necessarily be the most appropriate material for any given application. Alternative 

materials should be considered e.g. plastics, metals or glass. 
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9.4.4. Develop damping model 
 

The existing damping model could be extended to offer a more complete 

description of the damping forces. There are clear uncertainties with the current  

intrinsic and fluid damping models. The following modifications to the models may 

enhance their accuracy, although it is not apparent to what degree without further 

investigation.  

 

Pressure drag 

Since a certain degree of flow separation is inevitable with a rectangular beam, the 

profile drag might be better represented as a quadratic force. This would then 

account for both the skin friction drag and the pressure drag (see section 3.2).   

 

Added mass 

Although it was demonstrated as being negligible in a low viscosity gas, it may be 

appropriate to introduce an added mass term to the elliptic cylinder model for 

completeness. This might then help extend the validity of the fluid damping model to 

higher viscosities.    

 

Flow regimes 

Most fluid damping models in the literature are specific to a pressure regime. 

Work by Bidkar [6] describes a model for the gas damping which is valid over four 

orders of magnitude of Knudsen numbers spanning the free-molecular, the transition, 

and the low pressure slip flow regimes. Such an approach is worth investigating if it 

can deliver a more consistent damping model for gases.    

 

Nonlinear damping terms 

Several authors suggest the inclusion of nonlinear damping terms in the damping 

model. Zaitsev et al [7] demonstrated the need to include a nonlinear damping term 

in the analysis of a clamped-clamped nanomechanical beam in vacuum, in order 

correctly model the dynamics. Morfey and Tan [8] state that nonlinearities appear in 

the fluid drag once the beam displacement amplitude becomes comparable with the 

viscous penetration depth at the oscillation frequency.   
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9.4.5. Analysis of further modes and/or harmonics 
 

As discussed in sections 4.2 and 4.3.1, for simplicity of analysis, various modes 

and harmonics have been deliberately neglected. Off-resonant modes are unlikely to 

make a significant contribution to the behaviour of the beam when it is operated 

close to the fundamental resonant frequency. However, the subharmonic and 

superharmonic oscillations which occur in a nonlinear system may make a 

measurable contribution, and as such would merit further investigation. 

9.4.6. Alternative applications 
 

It has been demonstrated that the measurand Fδ  is highly susceptible to changes 

in the applied displacement. With this in mind, it may be possible to exploit this 

feature and create novel devices which seek to measure or react to the level of 

actuation, as opposed to fluid properties.  
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Appendix A – Fluid Properties 
 

Gas properties at atmospheric pressure (1 atm) 

 

 

 Temperature (K) 

 293.15 298.15 300 

Gas Density 

(kg/m
3
) 

Dynamic 

viscosity 

(10
-5

 Pa.s) 

Speed of 

Sound (m/s) 
Density 

(kg/m
3
) 

Dynamic 

viscosity 

(10
-5

 Pa.s) 

Speed of 

Sound 

(m/s) 

Density 

(kg/m
3
) 

Dynamic 

viscosity 

(10
-5

 Pa.s) 

Speed of 

Sound 

(m/s) 

Air (dry) 1.2041 [2] 

1.207 [5] 

1.205 [3] 

1.2047 [10] 

1.8205 [10] 343.3 [1] 1.225 [7] 

1.1845 [10] 

1.7894 [7] 

1.8444 [10] 

346.2 1.1771 [10] 1.983 [3] 

1.8531 [10] 

347.3 [1] 

Helium 0.1664 [3] 

0.16674 

[10] 

1.9561 [10] 

1.941 [11] 

1007.4 [1] 0.1625 [7] 

0.16394 [10] 

1.99 [7] 

1.9793 [10] 

1015.9 0.164 [5] 

0.16293 [10] 

1.9879 [10] 1019.1 [1] 

Argon 1.661 [3] 

1.6617 [10] 

2.2294 [10] 

2.217 [11] 

318.8 [3,4] 1.6228 [7] 

1.6337 [10] 

2.125 [7] 

2.2606 [10] 

321.9 1.449 [5] 

1.6236 [10] 

2.2721 [10] 323 [2] 

322.5 [3,4] 

Carbon 

dioxide 

1.839 [6] 

1.842 [3] 

1.808 [10] 

1.469 [6] 

1.4620 [10] 

1.480 [11] 

266.2 [3] 

266.6 [6] 

1.7878 [7] 

1.7774 [10] 

1.808 [6] 

1.37 [7] 

1.4831 [10] 

1.493 [6] 

268.5 

268.6 [6] 

1.797 [6] 

1.7662 [10] 

1.502 [6] 

1.4910 [10] 

269.3 [3] 

269.4 [6] 

Nitrogen 1.165 [3] 

1.1651 [10] 

1.7550 [10] 349.0 [3] 1.138 [7] 

1.1455 [10] 

1.663 [7] 

1.7782 [10] 

352.0 1.145 [5] 

1.1384 [10] 

1.7867 [10] 353 [2] 

353.1 [3] 

 

Note: speed of sound at 298.15 K is approximated from other available data. 



Liquid properties 

 

 Temperature (K) 

 293.15 298.15 

Liquid Density 

(kg/m
3
) 

Dynamic 

viscosity 

(10
-5

 Pa.s) 

Speed of 

Sound 

(m/s) 

Density 

(kg/m
3
) 

Dynamic 

viscosity 

(10
-5

 Pa.s) 

Speed of 

Sound 

(m/s) 

Water    998.2 [7] 0.001003 

[7] 

 

Glycerin    1259.9 [7] 0.799 [7]  

Cyclohexane 778.5 [8]    0.00098 

[9] 

 

 

 

Sources: 

[1] http://hyperphysics.phy-astr.gsu.edu/hbase/HFrame.html 

[2] http://en.wikipedia.org 

[3] http://www.engineeringtoolbox.com/ 

[4] http://www.diracdelta.co.uk/science 

[5] http://physics.info/density/ 

[6] http://www.peacesoftware.de/ 

[7] Fluent 

[8] http://www.simetric.co.uk/si_liquids.htm: 

[9] http://www.arb.ca.gov/db/solvents/solvent_pages/Hydrocarbon-HTML/cyclohexane.htm 

[10] http://www.mhtl.uwaterloo.ca/old/onlinetools/airprop/airprop.html 

[11] Handbook of basic tables for chemical analysis, Second edition, Thomas J Bruno, Paris D.N. Svoronos. CRC Press, 2003. 

 

 



Appendix B - Silicon Properties 
 

 

Density 2329 kg.m
-3
 at 300K [1] 

 

Young’s modulus 169x10
9
 kg.m

-1
.s

-2
 at 300K for <110> direction [2] 

 

Coefficient of linear thermal expansion 2.616x10
-6
 K

-1
 at 300K [1] 

 

Specific heat capacity 1.63x10
6
 J.K

-1
.m

-3
, 710 J.kg

-1
.K

-1 
[3, 4] 

 

Thermal conductivity=149 W.K
-1
.m

-1 
at 300K [5] 

 

Poisson’s ratio 0.28 [3] 

 

 

Sources: 

[1] Hull, R. Properties of crystalline silicon [electronic resource].  London: INSPEC, 

the Institution of Electrical Engineers, c1999. 

[2] O’Mara, W., Herring, R., Hunt, L. Handbook of semiconductor silicon technology. 

Noyes Publications, 1990. 

[3] Hao, Z., Erbil, A., Ayazi, F. ‘An analytical model for support loss in 

micromachined beam resonators with in-plane flexural vibrations’, Sensors and 

Actuators A, 109, 2003. 

[4] http://www.engineeringtoolbox.com/ 

[5] http://en.wikipedia.org/wiki/Silicon 

 


