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Abstract

A combination of environmental awareness, consumer demands and pressure from le-

gislators has led automotive manufacturers to seek for more environmentally friendly

alternatives while still meeting the quality, performance and price demands of their

customers. This has led to many complex powertrain designs being developed in

order to produce vehicles with reduced carbon emissions. In particular, within the

last decade most of the major automotive manufactures have either developed or an-

nounced plans to develop one or more hybrid vehicle models. This means that to be

competitive and offer the best HEV solutions to customers, manufacturers have to

assess a multitude of complex design choices in the most efficient way possible. Even

though the automotive industry is adept at dealing with the many complexities of

modern vehicle development; the magnitude of design choices, the cross coupling of

multiple domains, the evolving technologies and the relative lack of experience with

respect to conventional vehicle development compounds the complexities within the

HEV design space.

In order to meet the needs of efficient and flexible HEV powertrain modelling within

this design space, a parallel is drawn with the development of complex software

systems. This parallel is both from a programmatic viewpoint where object-oriented

techniques can be used for physical model development with new equation oriented

modelling environments, and from a systems methodology perspective where the

development approach encourages incremental development in order to minimize

risk. This Thesis proposes a modelling method that makes use of these new tools to

apply OOM principles to the design and development of HEV powertrain models.

Furthermore, it is argued that together with an appropriate systems engineering

approach within which the model development activities will occur, the proposed

method can provide a more flexible and manageable manner of exploring the HEV

design space.
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The flexibility of the modelling method is shown by means of two separate case stud-

ies, where a hierarchical library of extendable and replaceable models is developed in

order to model the different powertrains. Ultimately the proposed method leads to

an intuitive manner of developing a complex system model through abstraction and

incremental development of the abstracted subsystems. Having said this, the correct

management of such an effort within the automotive industry is key for ensuring

the reusability of models through enforced procedures for structuring, maintaining,

controlling, documenting and protecting the model development. Further, in order

to integrate the new methodology into the existing systems and practices it is imper-

ative to develop an efficient means of sharing information between all stakeholders

involved. In this respect it is proposed that together with an overall systems model-

ling activity for tracking stakeholder involvement and providing a central point for

sharing data, CAE methods can be employed in order to automate the integration

of data.
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Chapter 1

Introduction

1.1 Background

Increasing fuel prices, pressure from legislators to move away from fossil fuel de-

pendencies and the international drive to prevent global warming, places pressure

on vehicle manufacturers to develop “greener” vehicles. In this context, “greener”

refers to vehicles with reduced fuel consumption and carbon emissions. One way in

which automotive manufacturers are complying with these new demands is through

the development of competitive Hybrid Electric Vehicles (HEVs). In order to gain

market acceptance and efficiently commercialise HEVs, vehicle manufacturers need

to continuously diversify and change in order to secure competitive advantage [1].

Further, to offer variety to the market, manufacturers need to asses the merit of

many different hybrid powertrain topologies in a fast and cost effective manner

while maintaining quality and innovation [1].

In addition to the variety of HEV topologies, HEV powertrains make use of more

components than conventional vehicles [2]; particularly electric components such as

energy storage devices, controllers, power electronics and electric machines. These

additional components dynamically interact with the conventional mechanical com-

ponents. Therefore there are a much larger number of parameters and combinations

which need to be analysed in order to optimise a particular powertrain design. Ana-

lysis of such a system is difficult due to its multidisciplinary nature and testing

through prototyping can be both costly and time consuming [3]. The availability

and use of computer modelling and simulation tools is a key component in studying
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the complexities of HEV powertrain design [4].

Traditionally, many computer simulation models are built during the design life-

cycle of a new vehicle. With different models being built for different purposes

such as models to study fuel economy, models for controller evaluation, models for

optimization or models for design exploration [3]. This leads to the creation of

many models of the same system which all need to be maintained and managed.

As shown in Section 2.2.2, when traditional block oriented models are employed,

various versions of each model may be required in order to allow for different levels

of fidelity and different causalities.

For conventional vehicle design, even though the complexity of modern vehicles

is increasing, many of the systems being modelled are based on well known and

understood previous designs and architectures [5, 6]. The availability of existing

validated models and expert knowledge of the systems involved is an essential part

of the initial development of new designs. With HEVs, however, there is a much

smaller and limited amount of prior knowledge and many designs are still at a

conceptual phase, meaning that many changes may still occur to the system.

According to Schyr and Gschweitl [7], the primary reasons for looking at new ways

of developing HEV powertrains are:

• Reducing development time,

• Exploring new designs,

• Increased complexity,

• Higher expectations for reliability, and

• Reducing the amount of prototype testing needed.

In the software development domain, it has been shown that the time and effort

required to build a system increases exponentially with the size and complexity

of the design [8]. It can be argued that the same applies to modelling. The use

of traditional modelling methods for exploring different HEV design options, risks

reaching its limitations as far as managing the complexity of the design space is

concerned [9]. Further, it will be necessary to provide sufficient flexibility to the

designer to explore many possibilities in as short a time as possible. This leads to
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a model maintenance and management problem when considering the number of

models that such a process will generate and the potential number of different users

that would be involved.

1.2 Problem Statement

HEV powertrains are complex systems with many configurations that combine elec-

tronic, electrical, chemical, mechanical and control components. Vehicle system

analysis during the design process requires a multi-domain modelling approach due

to the increasing interaction between mechanical and electrical components in mod-

ern vehicles [10]. Modelling and simulation tools capable of handling the complex

interactions between these components are needed to explore designs before building

physical prototypes [7, 11].

It is argued that a design environment for HEV powertrains should exhibit the

following four characteristics [11]:

1. Modularity – allows for various systems to be built by combining different

components. Ideally a library of components should exist that can be used and

extended to build any powertrain configuration. The property of modularity

becomes a requirement of any system once the complexity increases above an

easily manageable point. With the objectives of producing a variety of HEVs

while reducing the development time and cost, the ability to reuse previous

design work is required.

2. Flexibility – to allow for varying levels of detail for each component and the

use of components for both forward and reverse dynamics studies. Ideally

the user should be able to select between simple steady-state components and

detailed dynamic components or optionally create a component with the level

of detail required. These components should be easily interchangeable. This

is particularly important in the case of HEVs since a variety of technologies

and topologies are still being investigated and the best practice still has to be

established.

3. Multi-domain – since HEV powertrain design incorporates multiple systems

such as mechanical, chemical, electrical and control systems. The simulation

environment needs to be able to represent each of theses systems with the



4 Introduction

same level of fidelity and accuracy.

4. Mathematical Rigour – since ultimately the true value comes from the correct-

ness of simulation results which depend on the accuracy of the mathematical

techniques employed. The methods used should be robust and efficient for

all the physical domains being modelled in order to achieve accurate and fast

results. Once again this is necessary for all design environments but since

HEV design incorporates more multi-domain interactions, the possibility of

“stiff” systems is much higher. Further, mechatronic systems such as HEVs

exhibit both discrete events and continuous time processes, thus the numerical

methods used to solve these systems should be particularly advanced [12].

Within the automotive industry, the development of HEV powertrain technologies

is a relatively new practice; there is limited practical experience and building pro-

totypes is expensive. Modelling and simulation is an ideal way to study and gain

experience in this area [11, 13]. Frontloading the product development process allows

for design validation and optimization during the early development stages through

the use of software prototypes of HEVs and their components. This allows for im-

portant design decisions to be made at an early stage in the development process,

rather than at later stages where changes could be more costly and problematic [7].

Obviously the benefit of such an approach is directly proportional to the amount

and accuracy of data that is available during the initial modelling stages. Often

valuable empirical data only becomes available during later testing stages. There-

fore, it is necessary for the model development process to have an iterative nature

that provides opportunity to modify an adapt models as data becomes available and

design decisions are made.

The author acknowledges that the problem of model complexity is by no means

new to the modern automotive industry. However, it is argued that this problem is

compounded in the much larger and less explored HEV design space.

1.3 Aims, Objective and Scope

The main objective of the research undertaken in this Thesis is to propose a mod-

elling method that can be used to more easily explore the multiple and complex

powertrain design options that are possible within the area of HEV development.
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Further, this development method should:

A. take advantage of OOM principles for more efficient development, and

B. be well suited for use within a systems engineering framework in order to

provide better stakeholder communication, data sharing, maintenance and

overall management.

In order to validate this objective the following aims are set out:

1. Apply object-oriented principles to the development of a powertrain modelling

library.

2. Validate the object-oriented models created via comparison with previously

validated Simulink models.

3. Use the proposed modelling method to investigate a new real world problem.

It is important to note that the main focus of the work presented in this Thesis is on

the benefits of employing an object-oriented development method within the specific

area of HEV powertrain design, and how this can provide further benefits when

integrated within the systems engineering life cycle processes. It is outside of the

scope of this work to define the specific systems engineering framework, methodology

or tools that should be employed by an automotive manufacturer.

1.4 Thesis Structure

This Thesis is structured in order to help the reader understand the intersection of

the research areas presented in Figure 1.1.

Chapter 2 discusses why the HEV design space is more complex than that of conven-

tional vehicles and highlights features that a modelling environment should provide

in order to effectively explore many feasible HEV designs.

Chapter 3 presents relevant features of object-orientation that promote the simpli-

fied development of complex systems.

Chapter 4 proposes a modelling method for the structured development of HEV

models that exploits the cited advantages of object-oriented modelling languages.

Chapters 5 and 6 present two example case studies that illustrate the use of this
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Figure 1.1: Diagram depicting the research focus and area of contribution.

method for developing HEV powertrain models suitable for a variety of investig-

ations such as energy management, vehicle performance and vehicle redesign or

modification.

Chapter 7 discusses model management features that need to be incorporated into

the management structure at both the development and systems integration level

in order to implement and benefit from an object-oriented modelling method.

Finally in Chapter 8, conclusions are stated and recommendations are made for

progressing this research with further work.
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Chapter 2

HEV Powertrain Modelling

This chapter presents the differences and similarities between HEV and conven-

tional powertrain modelling with the view of defining the requirements for a HEV

powertrain design environment. Particular focus is placed on the ability to de-

velop plant models for both lower and higher fidelity studies. For example those

models required for analysing vehicle energy management or longitudinal dynamic

effects. These two focus areas are selected due to the differences in the required

modelling fidelity, and the differences in simulation requirements. In describing

the modelling of powertrains, terminology and diagrams from the Unified Modeling

Language (UML) are introduced in order to better understand the link between

modelling, object-orientation and systems engineering that is explored within this

Thesis. The work presented in this Thesis will show that the proposed modelling

methodology is sufficiently flexible to accommodate the complexities associated with

HEV powertrain design; from the variability in architectural design choices to the

different levels of modelling fidelity required. Thereby assisting in achieving the

ultimate objective of faster, more efficient and more consistent evolutions of HEV

designs through model-based design and systems engineering techniques.

2.1 Complexities of HEV Powertrain Modelling

Automotive manufacturers are continuously redesigning their HEV products in or-

der to reduce costs, improve fuel efficiency, improve on performance and include

new features. This requires investigation into the many ways in which HEV power-
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trains can be constructed. The aim of this section is to discuss the main reasons

why HEV powertrain modelling is a more complex and extreme case of conven-

tional vehicle modelling. Further, the highlighted differences are the reason that

HEV development requires considerably more modelling effort, particularly during

initial investigation and optimization design stages. The remainder of this section

summarizes the differences in topologies, level of hybridization, electromechanical

integration and electrical power topologies.

2.1.1 Multiple Engineering Domains

Hybrid vehicles make use of many more components than conventional vehicles [3].

For example, the second generation Toyota Hybrid System used in the Prius contains

a combustion engine, high voltage generator and motor, power electronics, epicyclic

gears and custom built battery [14]. HEV powertrains are complex systems with

many configurations that combine these electronic, electrical, chemical, mechanical

and control components [4, 11].

From an analytical point of view, it can be said that the design of hybrid vehicles

deals with energy storage and conversion in the electrical, chemical and mechanical

domains [15]. In order for a HEV powertrain modelling tool to be able to analyse

the complete powertrain system there are two possible options [16]:

1. It can incorporate models from different domain specific packages via co-

simulation methods. An example of this method is seen in [17] where a co-

simulation approach is taken for the development of automotive control system

design. Many domain specific tools exist for performing computer aided ana-

lysis and design of specific components such as the very-high-speed integrated

circuit (VHSIC) hardware description language (VHDL) used for designing

electronic hardware, Maxwell for electromagnetic field simulation or SimPack

for kinematics and dynamics. The downside of this approach is that individual

models may have to be adapted to work with the powertrain modelling tool

and software patches or interfaces may be required to ensure compatibility

between the different modelling tools.

2. A multi-domain modelling environment can be used which enables all compon-

ents from the different engineering domains to be modelled using the same tool.

Simulink, Dymola and Simplorer are all examples of multi-domain or domain-
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neutral modelling environments. A possible downside is that the multi-domain

environment may not provide the functionality in each case that the domain

specific counterpart provides. However, it is argued that with increasing size

and complexity of the system models, the benefits gained from a common tool

also increase. Such benefits include reduced modelling effort and the possibil-

ity to standardize and streamline the model management as will be discussed

in Chapter 7.

2.1.2 Vehicle Topologies

Starting from a top-down perspective, HEVs can be broadly classified into three

main topological classes: series, parallel, and complex or series-parallel hybrid vehicles.

(a) Series Hybrid (b) Fuel Cell Hybrid

(c) Parallel Hybrid (d) Complex Series-Parallel Hybrid

Figure 2.1: Hybrid electric vehicle powertrain topologies.
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Series Hybrid

In a typical series hybrid, two powertrains are electrically coupled together via power

electronics. The driving force of the vehicle is produced via an electrical machine.

An example of a series hybrid architecture can be seen in Figure 2.1(a). The main

advantage of this layout is that the engine is mechanically decoupled from the wheels,

allowing the engine to operate in a high efficiency speed and torque region [18]. In

this region, more efficient combustion provides higher fuel efficiency and reduced

emissions. The absence of a mechanical link between the internal combustion en-

gine (ICE) and the wheels also provides the vehicle designers with more flexibility

as to the positioning of the ICE and generator within the vehicle.

The main disadvantage of this layout is the double energy conversion. First the

energy is converted from mechanical to electrical via the generator and then from

electrical back to mechanical via the electrical machine driving the wheels. There is

also additional weight and cost from the generator and the fact that the motor has

to be large enough to provide all the required tractive force [19]. It can be said that

the higher the continuous power demand on the vehicle, the larger the powertrain

components have to be in order to sustain the performance [20].

Since a fuel cell cannot provide a mechanical force, the vehicle must be driven by

the electrical machine only and the fuel cell provides electrical energy. Therefore the

fuel cell vehicle (FCV) is a form of series HEV. FCVs make use of hydrogen as an

energy source and a fuel cell as the converter. Compared to an ICE, hydrogen fuel

cells have zero toxic emissions and have a higher energy density [21, 22]. Further,

like the battery, fuel cells can directly provide the electrical machine with power

without the requirement of long recharging periods [19].

Vehicles powered by fuel cells alone suffer from a low power density, long start-

up time and slow power response [21, 23]. The fuel cell is not able to respond

efficiently to the transient load conditions that are typical for an urban vehicle. This

together with the fact that they have low efficiency at very low and very high power

outputs [19, 22, 23], makes fuel cell vehicles a good candidate for hybridization.

The fuel cell hybrid electric vehicle shown in Figure 2.1(b) has a fuel cell system as

the primary power source, and batteries or ultracapacitors as the secondary power

source also referred to as the peaking power source (PPS) [21]. Hybridization in

FCVs allows for more control over how the various power demands are met and can
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protect the fuel cell from peak power demands [24]. Further, since the secondary

power source is used to supply peak power, the fuel cell need only be sized to supply

the steady state power. This has the added benefit of size and weight reduction

which in turn helps increase the vehicle efficiency [25, 26, 27]. Another advantage

that comes from hybridization with a PPS, is the ability to absorb regenerative

power which the fuel cell alone cannot do [22].

Parallel Hybrid

In a parallel hybrid powertrain both the ICE and the electrical machine are mech-

anically connected to the wheels via a transmission as shown in Figure 2.1(c). It is

possible to drive the vehicle by using the ICE alone, the electrical machine alone or

by combining the use of both power sources. The power from the two sources has

to be mechanically coupled, either via a torque coupling or a speed coupling mech-

anical device. The parallel hybrid is also able to recover braking energy through

regenerative braking [28], using the electrical machine as a generator to charge the

battery or ultracapacitor.

This layout has the advantages, over the series layout, of not requiring an extra

generator and the electrical machine can be used as a generator when it is not

required for traction. This allows the batteries to be recharged using power from the

ICE, either when the vehicle is stationary or when the ICE can efficiently provide

more power than required. A further advantage is that the size of the ICE and

electrical machine can be reduced with respect to the series vehicle, for short-trip

operation. With vehicles designed for extended travelling purposes, the ICE should

be sized to meet the maximum continuous demand while the power output of the

electrical machine can still be reduced [20]. The sizing of the electrical machines

within a HEV is discussed further in Section 2.1.3.

Complex (Series-Parallel) Hybrid

It is possible to combine the previous two topologies in order to form the series-

parallel powertrain as shown in Figure 2.1(d). In this layout the ICE is able both to

provide mechanical force directly to the wheels as in the parallel set-up, and to be

used as a power source for the electrical machine as in the series configuration. The
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electrical machine is able to drive the vehicle both on its own or coupled with the

ICE for extra driving power. Typically this topology attempts to provide the best

of both worlds [18, 28] and HEVs of this type have been shown to outperform the

series and parallel counterparts in both fuel economy and driving performance [29].

Of course the performance and economy of hybrid vehicles is dependent on many

external factors such as driving style and typical usage of the vehicle. It is possible

that other topologies are better suited to a specific task such as short, medium to

low speed travel in congested areas; both from an efficiency and design complexity

viewpoint.

However, this hybrid topology also merges the disadvantages of the series and par-

allel HEVs. The series-parallel powertrain layout requires an additional electrical

machine to be mechanically linked to the ICE in order to use the ICE as an elec-

tric power source [20]. Apart from the increased weight and cost, there are also

complications with the space available for positioning the various components.

The complexity of the series-parallel HEV can be increased to allow for bidirec-

tional power flow for both electrical machines, providing more versatility in the

operation of the vehicle. HEVs with this topology demand an increase in computa-

tional complexity for managing and controlling the various subsystems in an efficient

way [20]. This allows for more flexibility in the control system design where various

control strategies and operating modes can be employed such as those described

in [21, 30, 31, 32].

2.1.3 Level of Hybridization

HEVs can be further classified in terms of their degree of hybridization or in other

words by the level of usage of the electrical machine as a driving power source. HEVs

are generally classed as either micro, mild or full hybrids [20, 29]:

Micro Hybrid

Micro hybrids are, in essence, conventional ICE powered vehicles with small elec-

trical machines acting as integrated starters and alternators [20]. With this class of

vehicle, the electrical machine never adds power or driving force to the powertrain.

This level of hybridization allows for a small energy saving, form 5% to 10% in city
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driving [20], through a stop-start strategy by preventing the ICE from idling when

the vehicle is stationary. Where “stop-start” refers to the ability of the HEV control

system to shut down the ICE when the vehicle brakes are applied and then use the

electrical machine to restart the ICE when the brakes are released. Additionally, the

added weight and cost are minimized due to the small size of the electrical machine

which is typically in the 3 kW range powered by a 12 V or 42 V supply.

Mild Hybrid

Mild hybrids are also known as assist hybrids since, although the electrical machine

is not able to propel the vehicle on its own, it is able to assist the ICE by adding

driving power at times of increased load [19]. In most cases the electrical machine

is directly coupled to the ICE and can be used as a generator for recharging the

batteries either while powered by the ICE or through regenerative braking. This

level of hybridization requires larger electrical machines running at higher voltages

as compared with the micro hybrid. Typical electrical machines for these vehicles

have power ratings in the range of 10 kW – 20 kW and nominal voltages between

100 V and 200 V [20, 29]. Mild hybrids provide a higher energy saving through

increased energy recuperation, from 20% to 30% in city driving [20], but have a

higher associated weight and cost.

Full Hybrid

A HEV is considered to be a full hybrid if it is possible to drive the vehicle using

either the ICE or the electrical machine. This means that both powertrains have

to be large enough to power the vehicle on their own, adding considerable size and

weight penalties to the vehicle design. Usually associated with a costly redesign of

the conventional vehicle’s powertrain [19]. Full hybrids are also differentiated from

other hybrids by their large electrical machines with typical power ratings in the

range of 30 kW – 50 kW, and their higher nominal voltages that are typically in

the range of 200 V – 600 V [29]. This level of hybridization allows for the greatest

energy saving, from 30% to 50% in city driving [20], but also the greatest weight

and cost penalty.

The powertrain design of full hybrid vehicles is dependent on the purpose of the
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vehicle and currently available models have taken two distinct directions [20]. Firstly

there are those that make a compromise on performance in order to increase effi-

ciency and emission reduction. In this category the size of the ICE is reduced with

respect to the conventional vehicle counterpart. Secondly there are the full hybrids

that are designed to improve on vehicle performance by providing extra power. Typ-

ically these vehicles are sport utility vehicles (SUVs) such as the Toyota Highlander

where the ICE size is not reduced and three electrical machines are added to the

powertrain.

2.1.4 Electromechanical Architecture

Taking a step down into the level of detail of the powertrain architecture, it is

also possible to differentiate HEVs by there electromechanical architecture. This

takes into consideration the number, type, placement and mechanical coupling of

the electrical machines with the ICE.

Electrical Machine Type and Placement

Design engineers choose the electrical machine based on the properties, such as speed

range, torque, power, size and cost, that best suit the vehicle’s speed, range and

power requirements. This choice also has a direct effect on the control techniques

employed. Most HEV designs make use of one of the following three electrical

machine types [19, 20]:

1. Induction machines – favoured as simple, robust machines with a wide

speed range, developed control techniques and no back emf. Induction motors

were commonly used in electric vehicle designs such as the Saturn by General

Motors and the Tesla Roadster [33].

2. Permanent magnet machines – have higher efficiency than induction mo-

tors and can provide the same power and speed with a smaller sized motor.

However, they typically have a short constant power range and large back

emf at high speeds. Therefore, the power electronics used to power the ma-

chine, such as the inverter drive, must be able to withstand this back emf [20].

This technology is used in the popular Toyota Prius [34] and Honda Civic [35]

hybrids.



HEV Powertrain Modelling 15

3. Switched reluctance machines – have low cost, high reliability, simple

control, high-speed operation with high efficiency over a wide speed range and

good torque-speed characteristics. However, they are not widely produced and

are difficult to design [36]. More recently, major automotive manufacturers

such as FIAT, Renault and Volvo have been involved in the research and

development of systems such as starter-generators and hybrid powertrains for

mild HEVs using switched reluctance machines [37].

Another important choice to be made, is that of the number and positioning of

the electrical machines within the powertrain. Typically there are three options

available for the number of electrical machines that will provide a driving force, not

including any additional non-driving electrical machines used for auxiliary purposes

such as for a starter/generator. These options are listed below:

1. One Electrical Machine – this can either be placed on the front axle for a

front wheel drive (FWD) or the rear axle for a rear wheel drive (RWD).

2. Two Electrical Machines – here each axle can be powered by a separate

electrical machine providing four wheel drive (4WD) operation, or alternatively

two wheel motors can be used for FWD or RWD.

3. Four Electrical Machines – this architecture allows for each wheel to be

driven by an individual electrical machine. Since it is possible to individually

control the speed of each wheel, no mechanical differential is required. Also,

either fixed or no gearing is needed between the wheel and the motor, with

the option of mounting the machines inside the wheel hub.

This architectural choice also has a direct impact on the controller design by adding

additional complexities such as individual wheel speed control and increased energy

management possibilities.

Electrical Machine Coupling

With parallel and series-parallel drivetrain architectures, the defining features of the

mechanical architecture are determined by the way in which the powers of the ICE

and the electrical machine are combined mechanically. There are three common

groupings for this mechanical coupling as listed below [19].
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(a) Two-shaft with two transmissions (b) Two-shaft with one transmission

(c) Pre-transmission single-shaft (d) Post-transmission single-shaft

Figure 2.2: Electrical machine mechanical coupling configurations in HEV power-

trains.

1. Two-Shaft Configuration – In this group the ICE and the electrical machine

each supply their power to separate shafts which are then coupled by a torque

or speed coupling device to the drive shaft. With this configuration it is also

possible to have two transmissions before the coupling as in Figure 2.2(a) or

one transmission after the coupling as in Figure 2.2(b).

2. Single Shaft Configuration – This configuration is common in parallel hy-

brid topologies, with the ICE and electrical machine occupying a common

shaft and the rotor of the electrical machine performing the function of torque

coupling. The main difference in how this configuration is implemented is

the location of the transmission. The pre-transmission configuration shown in

Figure 2.2(c) is used with small electrical machines such as in assist and mild

hybrid type vehicles. Whereas with the post-transmission configuration shown

in Figure 2.2(d), the transmission merely modifies the ICE operating point for
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improved performance and efficiency while the electrical machine is directly

coupled to the drive shaft. This configuration is used with larger electrical

machines such as those used in full hybrid vehicles.

3. Separate Axle – Often referred to as “through-the-road” hybrids. With this

configuration one axle of the vehicle is powered by the ICE while the other is

powered by the electrical machine. This has the design benefit of conventional

vehicle drivetrain on one axle and an electric vehicle drivetrain on the other,

also allowing for four-wheel drive operation. A major disadvantage is the extra

space taken up by the second axle powertrain. The separate axle configuration

can be used for parallel full hybrid vehicles.

2.1.5 Electrical Power Topology

Powertrain architectures can make use of many different power sources and devices,

from different types of batteries to inverters and converters. The electrical power

topology considers what power devices are used and how they are interconnected.

Power Sources

Within a hybrid drivetrain, the primary power source provides the steady-state

power, this could be a combustion engine or a fuel cell. Whereas the secondary

power source or PPS provides the dynamic power, this could be an electrical machine

powered by batteries and/or ultracapacitors. The way in which the different power

sources are used is dependent on the relative sizing of each power source as discussed

in Section 2.1.3, and the control strategy which has been employed.

Design engineers make a choice as to what type and combination of power sources

should be used, considering facts such as size, weight, cost, power density and cycle

life together with the overall purpose of the vehicle being designed. The choice of

the particular battery type such as lead-acid, nickel based or lithium-based, and the

ultracapacitor for the PPS, will directly affect the energy management strategy and

how the controller implements it. For instance, an important parameter of the PPS

that needs to be considered and controlled is the state of charge (SOC). Examples of

modelling considerations for the power sources are seen in the Chapter 5 case study

where a power supply consisting of a fuel cell in parallel with an ultracapacitor is
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modelled, and then again in Chapter 6 where this supply is replaced by an integrated

battery and ultarcapacitor alternative.

Converters and Inverters

HEVs make use of power electronic devices such as rectifiers, inverters and dc/dc

converters. These need to be precisely controlled to provide the desired voltage,

current and frequency, as well as bidirectional power flow [20]. The number of

inverters and converters used and the way they are interconnected with the power

sources and each other, such as for a floating or fixed bus voltage architecture, can

vary in different HEV designs depending on space, cost and weight requirements [38].

The complexity and implementation of energy management control functions are

directly affected by the chosen power architecture. For instance, it is crucial that

the power balance be maintained by matching electric consumption to battery and

generator output since excess demand will result in an overcurrent in the boost

converter and a drop in the battery voltage. Inverters also have limits on their

operating voltage range, which could be exceeded if a mismatch occurs. Tyre slip

can result in large transient power imbalances and must be corrected immediately

by the control system [20, 39].

2.1.6 Limited Experimental Data

Considering the variety of devices that can be used and the various ways in which

they can be coupled into the HEV powertrain, it is clear that there are many more

possibilities than in conventional powertrain design. For many of the possible HEV

designs, there is little or no empirical data, prior knowledge or best practice methods

available [11]. Investigating and analysing this large design space in a timely and

cost efficient manner requires the effective use of modelling and simulation [3, 4, 40].

2.2 Modelling Concepts

In order to enable the reader to follow more easily the work presented in the following

sections and chapters, a description of the significant terms used is presented here.
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2.2.1 Model Types

Powertrain models are traditionally classified as one of the following causal types [3,

41, 42, 43]:

1. Forward facing – Models of this type follow a “cause-effect” calculation process

in the direction of the driving vehicles physical power flow. Starting with a

demand setpoint, usually in the form of an accelerator signal, torque demands

for each subsystem can be calculated in a forward direction until the resultant

force at the wheel is found and from this the vehicle speed. A driver model,

typically consisting of a PI controller, is used to compare the desired and actual

speed in order to achieve the setpoint speed. Additionally driver models can

incorporate logic for steering commands, gear changes and clutch actuation.

These models are more representative of the real world system, making use of

measurable variables such as torque inputs, brake and accelerator demands.

This makes them well suited to controller development and testing, in par-

ticular real-time control strategies [3]. Also it is possible to include transient

subsystem models for studying the system dynamics [44]. This can include

phenomena such as slip in tyre dynamics, clutch shudder and shaft resonance

in driveline dynamics, pitch and roll in the vehicle body dynamics or electrical

transients in power electronic subsystems [45]. The downside of this approach

is that increased model complexity and bandwidth leads to smaller simulation

time steps and increased overall simulation time [46].

2. Backward facing – These models calculate in the opposite direction to the

power flow. In other words, calculations are performed backwards from the

wheels to the power sources in an “effect-cause” manner. By imposing a drive

cycle, tractive effort at the wheels can be calculated and continuing to move

backward through each powertrain subsystem until the energy required from

the input sources can be determined.

These models are generally computationally faster than forward facing models

and are therefore useful for architectural studies and optimization routines

that require many iterations of relatively longer cycle times [3, 47]. Further,

due to the fact that these models assume the vehicle is capable of meeting

the drive cycle demands, determining the performance limits of the included

subsystems is difficult. Steady-state efficiency maps and lookup tables are



20 HEV Powertrain Modelling

generally used to account for subsystem losses and hence these models tend

not to take dynamic effects into account [46].

3. Combined backward/forward – It is possible to combine both approaches by it-

erating backward simulations to achieve a target setpoint [43]. This approach

requires a forward and backward model for each component. First a back-

wards simulation determines component efficiencies and operating limits, and

then the forward facing models are used for a forwards simulation using the

previously calculated efficiency and limit values [48]. The ADVISOR simu-

lation software uses this “hybrid” approach, more details on the way this is

implemented are given in [46].

Using this type of model allows for faster simulation than the standard forward

facing approach since it is possible to make use of larger time-steps and lower

orders of integration [46, 49]. However, there are some drawbacks. Firstly

both forward and backward facing models must be produced before any mod-

elling activity can take place [48]. In particular the ADVISOR approach is not

well suited to transient analysis and requires co-simulation with external soft-

ware to perform dynamic analysis [44]. Further, designing control algorithms

suitable for usage on the real-world system is made difficult by this model-

ling method [50]. Essentially this is due to the fact that on a time-basis, this

approach is a backward facing model with forward facing loops introduced

between successive systems in order to overcome the problem of performance

limits mentioned previously. Therefore, the control inputs for these models

don’t directly translate to real-world equivalents as they do for the forward

facing models.

2.2.2 Causality

Causality in modelling refers to the cause and effect structure of a model and its

components, from inputs to outputs. A model is said to be causal if the relation-

ship between the inputs and outputs are described in a fixed sequential manner.

Causal modelling, more commonly referred to as block-oriented modelling, requires

the modeller to determine the causality of the model and describe the relationship

between the inputs and outputs in terms of ordinary differential equations (ODEs).

A popular environment that makes use of causal block-oriented modelling is the Sim-
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ulink package. Simulation packages such as Simulink require the user to rearrange

equations depending on the causality of the system being modelled, meaning that

separate models need to be maintained for each possible causality. This includes

different models for the forward and reverse dynamics of the same component.

Non-causal models, also called acausal, do not specify the direction of calculation

from input to output but describe this relation in the form of a differential algebraic

equation (DAE). In this way the modeller only has to describe the physical laws for

each component and the translator within the simulation environment will determine

the causality of each component and the overall model. This is done by examining

how each component is connected to the next one along with which variables are

known and which need to be determined, thereby stipulating inputs and outputs for

the final model.

Modelica is a physical modelling language, as defined in Section 3.1.2, that allows for

the creation of non-causal component models which can be used in both forward and

backward facing applications [51]. In other words, each component model can be

used in both a forward and a backward fashion by merely changing how the inputs

are defined [3]. This is because components are modelled without regard as to the

form of the equations, meaning that DAEs can be used in the model description;

or the direction of cause-effect relationships, otherwise termed causality. In this

case, the causality of the underlying component equations is determined during the

optimization and translation of the Modelica source code. It is the task of the

translator within the simulation environment to do this by examining the model

structure for inputs and outputs, and algebraically sorting the equations through

the process described in Section 2.2.4.

Figure 2.3: Causal vehicle mass models:(a) forward dynamics (b) reverse dynamics.
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Examples of Causal and Non-causal Modelling

A typical example of block oriented causal modelling is shown in Figure 2.3, where

two vehicle mass models required for forward and reverse dynamics are presented.

The highlighted areas in Figure 2.3 show how two different models must be built in

order to implement the force equation for the two different causalities. In (a) the

integral of F/m is solved to find the vehicle speed and in (b) the product m.dv/dt

is solved to find the required tyre force.

Figure 2.4: Description of mass component in non-causal language.

With an equation oriented language, a mass component can be defined by the rela-

tion F = ma as shown in Figure 2.4. The implementation defines a mass with two

flanges attached to it, a driving flange (flange a) and a driven flange (flange b),

where s is defined as the position at the centre of these two flanges. The resultant

force on the mass is then defined as the sum of the forces at each flange (flange a.f

+ flange b.f) since the positive direction is used for both flanges. This same com-

ponent can then be used in any model regardless of the causality.

Another example of how non-causal models can be used to model different causalities

is shown in Figures 2.5(a) and 2.5(b). In this example the non-causal plant is

represented by a simple DC motor model connected to a load inertia. Figure 2.5(a)

shows the DC motor model being supplied by a voltage ramp in order to determine

the resulting speed of the load in a forward facing manner. In Figure 2.5(b) a torque

is applied to the load so that the voltage and current at the input of the DC motor

can be calculated in a backward facing manner.

Alternatively, Figure 2.6 shows another method for modelling the reverse causality

of the model when using languages such as Modelica. In this case the model is

inverted by setting the speed output to a given speed-time profile and letting the
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(a) Voltage fed DC motor model (b) Torque fed DC motor model

Figure 2.5: Non-causal usage of DC motor model.

voltage input be the new output. The inverse plant model is calculated by the

code translator in order to calculate the power required to follow the given speed

profile. In order to use this method the model developer must make sure that the

original plant model is invertible. In other words, it may be necessary to make

some modifications to a complex plant model in order to avoid inversion errors such

as inverting table data or infinite inverse solutions [52]. The implementation of

invertible models was not considered in this Thesis as this is mostly applicable to

the development of controllers based on inverse dynamic models. The interested

reader is referred to the literature for further discussion [52, 53, 54].

Figure 2.6: Inverse DC motor model to for determining reverse dynamics.

In all three of these model examples, only one non-causal implementation of the DC



24 HEV Powertrain Modelling

motor and inertia has been developed. The same plant model can be reused in each

case, since it is the task of the code translator and not the developer to arrange the

model equations to suit the selected causality.

2.2.3 Model Fidelity and Stiffness

In basic terms fidelity can be described as a measure of how accurately a model

describes the properties and behaviour of the real object being modelled. Where

a model with the highest fidelity has the closest approximation to the real world

object. Another way of referring to fidelity from a programmatic or model building

point of view, is to refer to the logical complexity of the model.

Logical complexity of models is determined by the amount of detail that has been

incorporated into each component within the model. The target requirements of the

simulation dictate the level of detail needed in the components used. For instance:

low-fidelity models for feasibility studies are usually map-based, medium-fidelity

models for control strategy assessment typically make use of physical models for

describing important effects while empirical data can describe less critical parts, and

high-fidelity models for component design generally include detailed descriptions of

the physics concerned [2, 55]. For example, motor torque investigations can make use

of idealized voltage sources for motor control since simplified models reduce runtime,

whereas for transient investigations of the effects of power electronic switching, more

detailed power electronic and controller models are necessary [2].Two commonly used

divisions in modelling fidelity are those of steady-state and dynamic models.

Steady-state models have the advantage of being faster to compute and can therefore

be used for longer simulations. Typically useful for evaluating high-level operating

strategies and architectural options of a design [3, 56].

Dynamic models incorporate a much higher level of detail through physics-based

equations describing time-varying attributes such as electrochemical and thermal

reactions within a battery. For example a steady-state model of a shaft can be

a rigid inertia whereas a dynamic model would include flexibility to enable the

modelling of shuffle effects within a driveline [57]. These models are used for detailed

subsystem analysis and design. More specifically, they are useful for determining the

requirements of power electronic devices within the HEV powertrain, the analysis of
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noise, vibration and harshness (NVH), and the analysis of vehicle handling [3, 56].

If a high level of detail is required from the simulation results, more time is re-

quired to construct, run and analyse the results of high-fidelity models [3, 56]. In

other words, the main disadvantages of using high-fidelity models are: the increased

development time; difficulty in parameterizing the model due to the many para-

meters needed to accurately describe devices, such as the stiffness and damping of

shafts; and the greater computation time required due to the increased number of

equations [56].

Another issue with the use of complex dynamic models containing many differential

equations is the increased likelihood of model stiffness. The model is said to be

stiff when it has both fast and slow varying dynamics in its solution [58]. Where

the stiffness of the model or system refers to phenomenon presented by the system,

rather than a specific property of the system, since there is no precise definition of

system stiffness [59]. This is often caused by different time scales in the dynamics,

for example when combining electrical systems with typical time constants in the

1–10 kHz range with mechanical systems having time constants in the 10–100 Hz

range or thermal systems with time constants less than 1Hz.

In order to deal with increased model stiffness and avoid incorrect results due to

numerical instability, appropriate numerical integration algorithms must be selected

when simulating the model. Stiff models usually require variable-step numerical

integration methods that are capable of reducing the step size for the fast dynamics

during the simulation, since reducing the overall step size increases the computa-

tional load. The topic of numerical techniques is discussed further in Section 3.3.3.

2.2.4 Symbolic Manipulation

Symbolic manipulation or computation refers to the ability of a code translator and

optimizer to take the system of initial equations set up in the model and solve them

in an algebraic manner rather than a numerical manner. A simulation front-end

for the Modelica language, such as Dymola, automatically rearranges the physical

equations describing each component via symbolic manipulation, deciding inputs

and outputs from the context in which each component is used. This manipulation

of the model equations is necessary in order to simplify the final system of equations



26 HEV Powertrain Modelling

needed for simulation into a form that is efficient for numerical analysis [60].

Since non-causal languages like Modelica allow for complex multi-domain models

of multiple components described by DAEs, this can lead to several hundred thou-

sands of equations. This feature is very useful in object-oriented modelling since it

allows a modeller to develop at a high level of abstraction by intuitively connecting

components and subsystems [61]. However, when object-oriented code is flattened

by removing the object-oriented structure and replacing inherited classes by their

complete code, the final code generated is much larger than the original model and

can no longer be intuitively correlated with the original system being modelled.

With equation-oriented models, this means that the flattened model contains many

sparse equations, of which many are repeated and some have high order derivatives.

Computer algebra techniques aid in reducing computation time and the possibility

of errors due to numerical differentiation [62]. Symbolic manipulation both reduces

the number of equations to be solved and the DAE index to 1 or 0 [58]. The

DAE index refers to the minimum number of differentiations required in order to

achieve an equivalent set of explicit ODEs [12]. This index reduction is done by

symbolically differentiating certain equations and substituting the derivatives back

into the original system of equations [58, 63]. Further, symbolic manipulation can

eliminate systems of simultaneous equations through substitution, thereby removing

algebraic loops and reducing simulation time [63]. The final code is optimized for

numerical integration to a level that would be a significant challenge for a developer

to derive from first principles [61], as would be necessary in a causal block oriented

environment.

Fritzson explains that the occurrence of high index equations is typical in mechanical

and mechatronic models due to the constraints between connected models, and that

this is a property of the object-oriented modelling method and not the system being

modelled. Therefore, the ability to automatically transform such equations through

symbolic manipulation is indispensable in order to allow for the effective object-

oriented use of reusable component models. For example, Tiller et al. [64] develop

a detailed vehicle powertrain model using the Modelica language which consisted of

approximately 250 000 equations before manipulation and 25 000 after the reduction

process.
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2.3 Generic Powertrain Modelling Features

Many aspects of HEV powertrain modelling can be thought of as generic and there-

fore a necessary feature in any powertrain modelling process, whether relating to a

hybrid vehicle or a conventional powertrain using an ICE.

2.3.1 Subsystem Modelling

If a multi-domain modelling tool is used, subsystem models can be constructed to

represent the counterpart subsystems of the real world powertrain. Most of the

subsystems used in a conventional powertrain design and their constituent compon-

ents are also needed in HEV powertrain design. These include the wheel and tyre

models, brake models, chassis models and engine models. Additionally the following

subsystem models can be reused but may need some adapting for HEV purposes:

• driveline models – which may need changing from the conventional vehicle

driveline models due to the possible unconventional mechanical architectures

in HEV powertrains such as wheel motors or separately powered axels,

• transmission models – depending on the chosen hybrid configuration a trans-

mission model may not be required or it may need to be changed or modified

in order to couple the mechanical and electrical torque systems,

• driver models – depending on the complexity of the driver model these may

have to be adapted to the specific needs of the hybrid vehicle but are generally

designed for the simulation test being performed.

Gao et al. [3] state that good modelling environments provide large varieties of

vehicle components for the flexible construction of vehicle models by users. Therefore

the ability of a tool to allow users to share and reuse previously built and tested

models and components by means of libraries can save considerable development

time and effort [9].

2.3.2 Connecting Subsystem

With physical modelling tools it is possible to apply the principle of conservation of

energy for dealing with the connection of subsystems. In other words, for a closed
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system, all energy flowing into a specific point should sum to zero if no storage is

assumed [7]. This can be applied to any domain provided that appropriate choices

are made for the variables representing the energy carrier. These variables are often

referred to as either flow or through variables.

Additionally a variable representing the amount of energy at a point, referred to

as either the potential or the across variable, should also be defined. At a specific

connection all potential variables should be equal. Example potential and flow

variables for different domains are given in Table 2.1 from [7].

Table 2.1: Potential and flow variables for different physical domains.

Physical Domain Potential Variable Flow Variable

Electrical Voltage Current

Mechanical (translational) Position Force

Mechanical (rotational) Angle Torque

Hydraulic Pressure Volume flow rate

Heat Temperature Heat flow rate

A direct benefit of using this method to define connectors for each type of domain

model, is that of acausal modelling, since the conservation law at the connector must

be upheld irrespective of the model causality.

2.3.3 Simulation

To gain the most benefit from the developed powertrain models, they should be

capable of both off-line and real-time simulation. Particularly if a model-based de-

velopment process is being employed, simulation of the physical models forms an im-

portant part in analysis, optimization and calibration of new powertrain designs [7].

In order to test the feasibility and predict the performance of any particular design,

off-line simulations are necessary. This type of simulation is also useful for devel-

oping initial control strategies. To further optimize and calibrate system variables

and controllers, real-time simulations are required.

The modelling tool must either contain the necessary numerical techniques to per-

form simulations, as is discussed in Section 3.3.3, or it should be able to convert
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the model into a format that can be used by other analysis and simulation tools as

described previously in Section 2.1.1.

2.4 HEV Powertrain Modelling Requirements

2.4.1 Conventional Powertrains Design

Conventional powertrains can almost be thought of as a subset of hybrid power-

trains, since many HEVs, such as micro and mild hybrids, are primarily modified

conventional vehicles. Using terminology from the systems modelling languages,

this relationship can be described as the conventional being a generalization of the

hybrid. Alternatively, another way of describing this relationship would be to say

that HEV powertrains are a specialized version of conventional powertrains. Of

course this is a simplification as it is not always as simple as merely adding an extra

component without making changes to some of the existing components such as the

control algorithms employed. However, it is arguable that many of the components

and features remain unchanged and the general principle that the HEV powertrain

requires additional features is correct. This general concept of specialization is il-

lustrated by the UML class diagram in Figure 2.7 which shows the inheritance

relationship between a hybrid and conventional class.

2.4.2 Electrical Subsystems

Clearly one of the main differences between conventional and HEV powertrains is the

major presence of electrical components such as batteries, ultracapacitors, inverters,

converters and electrical machines. For example, Schupbach and Balda [65] compare

three DC-DC converter topologies for interfacing with an ultracapacitor in a HEV

power management system. Burke [66] reviews different battery and ultracapacitor

technologies for use as energy storage in different types of HEVs and EVs.

HEV modelling requires that these electrical subsystems be adequately represented

within the powertrain model through an equivalent electric circuit model or other

representative model such as a lookup table or black-box model. It may also be

necessary to model any device specific controllers in order to correctly simulate the
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Figure 2.7: Relationship diagram.

functionality of the device as illustrated in Figure 2.8.

Figure 2.8: System consisting of plant and controller classes.

2.4.3 Architectural Studies

Many of the available simulation tools, such as ADVISOR, SIMPLEV and CarSim

make use of fixed powertrain architectures [49]. One of the main purposes for the

HEV modelling environment will be to investigate the possible advantages offered

by the many different architectural configurations that are possible with a hybrid
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vehicle powertrain. Therefore, a key requirement for HEV modelling is flexibility in

architectural design. Also the ability to perform trade-off and preliminary optimiz-

ation studies is important in making design decisions early in the design life-cycle.

2.4.4 Modelling and Simulation Based Analyses

A large part of the simulation and modelling activities in the automotive industry is

for the purpose of developing, testing, optimizing and calibrating the various vehicle

system controllers. For this work a broad distinction is made between the lower

fidelity and higher fidelity models. Where lower fidelity models are typically used

for initial investigations of long term effects such as vehicle fuel consumption or the

development of energy management control strategies. The higher fidelity models

are typically used for more detailed investigations of the vehicle dynamics and faster

transient effects and allow for more precise controller calibration.

Energy Management

Energy management can be described as the task of controlling how the power is

split or distributed between the various sources during vehicle operation [67]. It is

the precise control of the energy flow within the powertrain that allows the HEV to

realise its optimum potential in terms of fuel economy and efficiency [67, 68]. This

is typically achieved by implementing an energy management control strategy.

In a conventional vehicle or pure electric vehicle the energy flow between the subsys-

tems occurs in a fairly fixed fashion. Hybrid vehicles by definition must have more

than one power source and therefore require a system for determining how and when

each source gets used. In this case the power distribution does not occur in a phys-

ically predetermined manner [69], in other words, the energy management strategy

must be taken into account when simulating the performance of HEVs. Further,

since there are many possibilities for HEV designs there are also many possibilities

for energy management strategies.

Typically, specific powertrain models are used in energy management studies in

order to predict fuel usage and emissions and to develop and optimize the energy

management control strategies. For example, Koot et al. [70] investigate several

control strategies for managing the use of a power controlled alternator to influence
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the engine’s operating point. For this study the authors make use of a power-

based model where the mechanical output power of the engine is split between

the propulsion power and the alternator power, which is in turn split between the

battery and electric loads. Static map-based models are used to describe both the

engine, which maps the fuel rate to engine power for varying engine speeds; and

the alternator, relating input and output powers to the engine speed. The battery

model includes a quadratic loss function and represents the SOC as the integral of the

power over the capacity. Several control strategies were investigated by simulating

this model over the NEDC drive cycle having a duration of 1200s.

Ceraolo et al. [71] consider a generalized method for HEV energy management. They

too take a power based approach to constructing their models, where the propulsion

power is made up of power from a fuel converter which could be an engine or fuel

cell with electric motor, and power from an energy storage device such as a battery

or an ultracapacitor. The role of the energy management system in this case is to

use the driver inputs to determine how to proportion the propulsion power between

the available sources. Interaction between the plant model and the controller occurs

in three main areas:

1. Fuel converter – on/off signal for fuel or engine start/stop,

2. Energy storage device – energy level monitoring through SOC,

3. Electric motor – torque request.

Developing the energy management control system requires numerous simulations

of a sufficiently long duration, in the order of several minutes, to allow for plant and

controller parametrization. In [38] a low bandwidth model of the high voltage power

system for a HEV is used for this purpose, since the dynamics of the high bandwidth

model do not allow for sufficiently fast simulations. Simulations for energy manage-

ment analysis must consider all the vehicle operating modes, subsystem efficiencies

and the overall performance of the powertrain over one or more complete drive

cycles. Sample North American, European and Japanese drive cycles are shown in

Figure 2.9. Since long term effects such as fuel economy and SOC are more import-

ant in this type of analysis, the type of plant model required for these simulations

does not need to take into account the transient dynamics that are necessary for

higher fidelity investigations such as driveability. A lower fidelity quasi-static plant
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model can therefore be used in this case since the transient effects such as switching

and vibrations are much faster than the energy flow dynamics [67]. Typical outputs

for this type of study are; the fuel flow rate in grams or litres per kilometre, and the

change in SOC of the energy storage device, for a test cycle with a duration in the

order of several minutes to an hour.

It is clear that from a modelling perspective, the types of models used in energy

management studies must be capable of fairly fast simulation since typically these

investigations will have to cover all of the intended driving states and conditions

that the vehicle is being designed for.

Higher Fidelity Simulations

An example of modelling and simulation studies requiring higher fidelity is that

of driveability studies. Driveability is generally concerned with the longitudinal

dynamic behaviour of the vehicle in response to various driving conditions. Though

much of the evaluation of driveability is subjective and commonly performed by

test-driving prototype vehicles, objective evaluation criteria are necessary if this

evaluation is to be performed via modelling and simulation. In an effort to isolate

some objective criteria for some of the more subjective factors perceived to affect

vehicle driveability, Cacciatori [47] proposes the following three physical variables

as dominating the driveability perception:

1. Delay time – the delay between pedal push and acceleration change.

2. Acceleration value – the peak value of the initial acceleration phase.

3. Jerk value – first acceleration divided by its duration.

It is important to realise that driveability is not only determined from the perceived

or psychological expectations of the driver, but also from direct physiological effects

that may cause annoyance or discomfort. One of the main causes of this discomfort

is the existence of low frequency noise and vibrations [72]. Therefore it is important

to consider the low-frequency behaviour of the powertrain in order to be able to

assess and control unwanted noise and oscillations. In particular the frequency

range between 0.5 Hz and 80 Hz contributes significantly to agitating the human

body [72].
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Figure 2.9: Sample drive cycle speed profiles used in USA, Europe and Japan
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Grotjahn et al. [73] look at modelling driveline dynamics in order to design an “anti-

jerk” controller. To investigate the effect of large driveline torques on driveability,

the authors produce two lumped parameter driveline models. The first is a model

of two inertias linked by a spring and damper. The engine’s viscous friction is

also considered when defining their equations of motion. In the second model a

three-mass system is used to represent vehicles with a dual mass flywheel. These

models are then used with both off-line and on-line optimization methods in order to

determine the required controller parameters. In this study, a “tip-in” and “tip-out”

test is performed by stepping the engine torque from 0− 150 Nm and then back to

zero again.

Further, Grotjahn et al. [73] show how dynamic model-based simulations can be

employed to reduce the time/cost of the “anti-jerk” controller parametrization pro-

cess. In this study two performance constraints are used for determining the range

of controller parameters, being driver demand for sporty behaviour and comfort.

The authors highlight that these two aims are in conflict since sportiness requires

sharp acceleration whereas minimal oscillations are required for comfort. Their res-

ults show regions of parameter combinations constrained by sportiness and comfort,

with the simulated optimum having negligible difference from the expert tuned solu-

tion. Noting that these simulations should be used to reduce the set of parameters

that require testing to a smaller set or region of the most suitable parameters. Fol-

lowing this, faster fine-tuning by an expert in order to achieve the desired subjective

performance is possible.

Fredriksson et al. [74] research different control methods to actively damp driveline

oscillations due to the elasticity of components such as driveshafts. Accelerating

these components with high torques can cause low frequency resonant vibrations

known as shuffle. In their study they show that the resonant frequency of the

driveline model is dependant on the gear ratio. Higher gears having higher resonant

frequencies but lower magnitude peaks. These frequencies affect driveability when

induced and lie in the range of 0–40 Hz.

To perform this study Fredriksson et al. [74] make use of a third order model com-

prising of transmission, flexible driveshafts, wheels and chassis. The author’s state

that this model sufficiently represents the driveline with the assumption that the

driveshafts are the main cause of oscillations since they experience the largest torque

with respect to stiffness. Also a stiff clutch and propshaft is assumed, with the main
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drawback of this model being that it does not account for tyre slip. They conclude

that better driveability prediction requires the ability to simulate complete vehicle

dynamics.

Dempsey et al. [75] study the effect of tip-in and tip-out manoeuvres on the vehicle

acceleration. For this study the powertrain model includes: transient engine torques;

transmission, driveline, tyre-slip and chassis interaction; and an engine control sys-

tem. An existing mean-value engine model and controller from a fuel economy study

was reused and coupled to a lumped parameter transmission model with inertia,

damping, stiffness and backlash referred to the input shaft.

Different levels of driveline and chassis models were used in [75] to compare sim-

ulation accuracy and performance. For the basic driveline model, each shaft has

two inertias joined by a spring-damper and the basic chassis includes the vehicle

body, suspension and tyre slip models. In both cases more complex models included

a multibody differential and non-linear mount between the chassis and differential.

An “extreme” model was also built using multi-element models for the propshafts

and halfshafts in order to represent the joints and couplings. A comparison of results

for a tip-in test shows that the “extreme” and complex models both closely match

the test results but the simulation time is over 22 minutes in the “extreme” case

versus 8 minutes for the complex case. The complex model takes almost 4 times

longer than the simpler models which produce a comparable level of accuracy for

conducting sensitivity studies.

As far as the powertrain modelling is concerned, driveability studies can have several

implications on the construction and usage of the model. For instance:

1. Manoeuvre based scenarios replicate driver demand inputs rather than drive

cycles. Typically with a duration in the order of seconds, these simulations are

performed for particular situations that occur during driving such as tip-in,

tip-out, brake to zero speed and fast gear changes.

2. The fidelity of component models must sufficiently represent the phenomena

being investigated such as driveline shuffle and gearbox rattle. Some typical

examples of how bandwidth is added to the powertrain model are the inclusion

of low inertias, torsional compliance and non-linear effects including viscous

damping.
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3. These physical variables must be assessed under the different operating modes

or states (such as starting, accelerating, decelerating, regenerative braking

and recharging) of the vehicle in order to adequately calibrate a controller

for driveability. Therefore the model should be suitable for optimization and

parametrization studies.

Since the normal practice for assessing driveability is by means of experimental trials

conducted by an expert, requiring time-consuming test drives, having the ability to

perform simulations with different levels of models can help in narrowing down the

possible parameter values and thereby aid the engineer in reducing the number of

trials required to fine tune optimal performance [73].

2.4.5 Implications for the Modelling Environment

Considering the diverse topics covered in this section, a list of several requirements

for a HEV modelling and simulation tool can be generated. The following list sum-

marises some of the pertinent features which will enable a user to investigate multiple

HEV powertrain designs using models with a flexible and reusable structure. Two

categories have been defined, namely generic features which can be considered as

useful for any modern modelling environment and object-oriented features which are

considered necessary for implementing an efficient model-based design methodology.

Generic Features

1. Having established that HEV design incorporates a combination of mechanical

systems, electrical systems, controllers and possibly other systems, it stands

to reason that in order to effectively study HEV powertrains the environment

used should be capable of multi-domain modelling.

2. Storage of previously built and tested models, subsystems and components is

also necessary. If possible these should be stored in libraries that make them

available to other users of the environment in a consistent and well managed

manner as described in Section 7.1.1.

3. From a simulation point of view, the tool must be able to compile the model

into a mathematical form that can be simulated. The simulator must support
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various numerical integration techniques for solving the system of equations

described by the model. Additionally both fixed and variable step solvers

should be available for off-line and real-time simulation purposes.

4. Since modern powertrain designs are dependent on embedded control soft-

ware, the environment should make provisions for developing and evaluating

controller functions.

5. A means of graphically representing and interrogating all simulation results

and variables should also be provided. This is particularly useful during initial

component design and testing stages as it removes the need to export results

to an external analysis environment.

6. Different types of users are likely to make use of the modelling and simulation

tool. Typical users may have different specialities such as component or system

designers, control designers and computer aided design (CAD) technicians,

each having a different level of knowledge with respect to the functionality

of the overall model. The modelling and simulation tool should therefore be

intuitive to the extent that it can be used by all levels of users and at the

same time provide sufficient flexibility to expert users to perform detailed

work in their domain. This can both promote sharing of knowledge and work

between different user groups within an organization, and reduce the need

for redundant modelling. Further, this must be supported by management

decisions relating to documentation, model sharing and communication as

discussed in Chapter 7.

Object-Oriented Features

1. Equation oriented modelling is necessary in order to provide the non-causal

properties required for object-oriented design. Component and subsystem

functionality should be described mathematically and where possible this de-

scription should be as close as possible to the physical laws that define its

operation. The ability to offer a non-causal model description also promotes

the reuse of models in different applications, thereby reducing modelling time

and effort. In order to allow for non-causal equation oriented modelling, it

is necessary for the modelling environment to include a code translator that
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can symbolically manipulate the model equations for numerical integration in

order to produce an optimized simulation code.

2. A key feature for object-oriented modelling is a topological interface that al-

lows for model structures to more closely represent the real-world systems

being modelled. Together with the use of component libraries, this makes

the modelling process more intuitive and provides a simple method for visu-

ally modifying model architectures. This feature enables the user to model

large complex systems as a series of interconnected subsystems at different

hierarchical levels. Within the lower levels of the hierarchy the subsystems

are described by interconnected components. The importance of the model

library structure and availability of a means to navigate through the system

model at different levels is elaborated in Chapter 7 Model Management.

3. It is important to be able to clearly and accurately describe how these com-

ponents and subsystems can interface with one another. In other words, con-

nections must be defined for data transfer between the components used to

make up a model. If possible a connector should be defined to represent each

type of real-world connection used. For example connectors to represent data

signals, electrical connections, mechanical couplings, thermal coupling, etc.

Since each model or object definition must be independent of whatever other

object it may be connected to, the connector definition must itself provide

equations to ensure continuity at the connection point.

4. Since the tool is to be used by multiple users with different needs, it can be

assumed that there will be a need for different levels of model fidelity. In order

to reduce modelling effort, it should be possible to replace components and

subsystems within a model with higher or lower fidelity versions of those sub-

systems. This feature is closely linked with the specification and enforcement

of a specific library structure as is discussed in Section 7.1.1. Further, it is also

of importance for computer aided engineering as described in Section 7.2.2, for

the purposes of software integration and automation.

It is noteworthy that there are many modelling tools and software packages avail-

able on the market that are used in industry applications and meet the needs of

a specialized domain such as electronic design and finite element method tools for

mechanical and electromagnetic design. However, no tool is capable of the entire
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design life-cycle of a product in an integrated manner [76, 77]. King et al. [1] point

out that in this situation the best-of-class tools can be used and then integrated to

form a complete system. In practice it would seem that it is precisely this integration

step that forms the bottleneck in integrating an overall computer aided engineering

system, either due to incompatibility issues or lack of integration software.

The motivating factors for HEV powertrain modelling as referred to in this research

are mainly the reduction of time and cost through:

1. model-based analysis to increase confidence and reduce prototyping,

2. reduced modelling effort through the reuse of models both within a design

process and for new designs, and

3. management of complex design models using object-oriented and systems en-

gineering principles.

For this purpose the required tool does not have to support the entire design life-

cycle but should be capable of supporting the initial concept design and refinement

stages. Sufficient modelling accuracy is needed, in each of the represented domains,

to perform off-line and real-time hardware-in-the-loop (HIL) tests.



Object-Oriented Modelling and Simulation 41

Chapter 3

Object-Oriented Modelling and

Simulation

In the software engineering domain, “objected-oriented” is an adjective used to de-

scribe a programming language that can support a style of programming whereby

the program is described by self-sufficient code modules or objects, which can both

process data and interact with other objects. Object-oriented programming also

makes use of some fundamental concepts such as encapsulation, modularity, inher-

itance and abstraction, which allow for easier programming [8, 78, 79]. In order

to better understand how these concepts are useful in the development of simula-

tion models, definitions for some of the important terminology used in this field are

provided for reference in Appendix A.1.

3.1 History of Object-Oriented Modelling

Modelling and simulation is not new to engineering. Analogue simulators prevailed

between the 1920s and the 1950s. Systems were modelled using ordinary differential

equations (ODEs) and then mechanical devices were constructed that simulated the

equation characteristics. This was achieved using devices such as gear boxes, cams,

ball-and-disc integrators and torque amplifiers. Towards the end of the 1940s it

was shown that electronic devices could be used to perform these analogue simu-

lations, using potentiometers, operational amplifiers and voltages instead of angles

to represent system variables. This had the effect of commercialising the use of
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analogue computing and the associated paradigms and methodologies became more

widespread [80].

Various changes occurred in the field over the years, driven both by user needs and

advances in techniques and technologies such as a move from mechanical analogue

devices to electronic analogue devices. Another step change occurred with the in-

troduction of digital computers in the 1960s and then again in the 1990s with the

advances in personal computing. One particular example is the operational amplifier

which underwent a technology transition from vacuum tube, to solid state device,

to integrated circuit in this time period. This section highlights why the more wide-

spread modelling tools follow a block-oriented approach and the thinking that leads

to the development of non-causal physical modelling tools and languages, such as

Dymola and Modelica.

3.1.1 Analogue Paradigm

Figure 3.1: Sample form of an analogue simulation diagram.

Analogue simulation techniques required the system differential equations to be rep-

resented in terms of addition, multiplication, integration and function generation

[80]. To do this, suitable state variables are chosen, usually the differentiated vari-

ables, and the system equations are manually transformed into a state space form.

Once in this format, an analogue simulation schematic of the form shown in Figure

3.1 can be produced using only adders, multipliers and integrators. This process is

necessary, since trying to simulate the system equations in their basic physical law
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form as differential algebraic equations (DAEs), would cause algebraic loops due to

variables related only through an algebraic equation. It is argued that this method

becomes increasingly more difficult and error prone for larger and more complex sys-

tem models [61, 81]. Additionally, having undergone this manual transformation,

there is a loss of correlation between the simulation model and the physical domain,

since the individual components can no longer be uniquely identified.

With the advent of digital computers in the 1960s, many simulation programs were

produced to see if analogue simulators could be replaced. Initially these programs

made use of the same analogue simulation diagrams as textual inputs and mimicked

the operation of the analogue devices. This was partly due to the fact that numerical

integration techniques for solving ODEs were well established at the time, and also it

allowed for the continued use of tried and tested practices from analogue simulation.

In this way the analogue paradigm was transferred to the digital domain.

A standard known as the Continuous System Simulation Language (CSSL) helped

in collecting the various efforts and defining some common concepts for simulation

programs [80]. According to the CSSL standard, there were three ways in which a

system could be represented; interconnected blocks, mathematical expressions and

programming constructs. As technology advanced and graphics capable computers

became more common place in the 1980s, several graphical block modelling tools

became available. Simulink is one such tool that has gained widespread use in

both educational and commercial fields. These tools introduced the ability to build

models visually by putting together blocks, stored in libraries, with inputs and

outputs which can be connected by drawing lines between them. However, the fact

that the analogue paradigm is still in use with these programs and that there is a

need to describe the system in state-space form, gives rise to some problems such

as [58, 61, 80]:

• connections between blocks have a fixed causality (data transferred in one

direction),

• the model is still not visually representative of the system being modelled, and

• the use of physics based model descriptions is difficult (ODEs must be used in

favour of DAEs).

However, it must be recognized that this approach has been successful and given
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Table 3.1: Domain Specific Modelling Tools.

Domain Modelling Tools

Electronic SPICE, VHDL-AMS

Mechanical ADAMS, SIMPACK

Process SpeedUp, gPROMS

rise to many industry standard tools in specific domains. Domain-specific tools are

specialised and provide users in that domain with a library of components from

which they can easily build their models. Some examples of these tools are listed

in Table 3.1. These tools demonstrate the benefits of user friendly interfaces with

visual modelling front-ends, the use of component libraries and optimised numerical

methods. However, it is argued that the downside of these tools is their lack of

flexibility and adaptability when a problem does not exactly fit the tool as in the

case of mixed-domain modelling which is prevalent in modern technical systems such

as a HEV [82, 83]. Additionally, modification and customisation of such domain-

specific tools is often a challenging task. Some of the domain-specific tools and lan-

guages such as the general PROcess Modeling System (gPROMS) and an extension

of VHDL enabling analogue and mixed-signal system design (VHDL-AMS), have

provided increased levels of flexibility by moving away from the analogue paradigm

in favour of non-causal modelling with object-oriented concepts [80, 83].

3.1.2 Object-Oriented Physical Modelling

Physical modelling refers to a modelling approach where the natural physical laws

of components are used to define a system. System behaviour is then deduced from

the application of these laws and their interaction with one another. In object-

oriented physical modelling, a system can be modelled by connecting its constituent

components together. Using this approach to modelling leads to a new paradigm

where the model acts as a constraining relationship between system variables.

In the late 1970s, a language called the Dynamic Modeling Language (Dymola) made

use of physical modelling principles to try and avoid the problems encountered by

the existing analogue paradigm based tools. The idea was to reduce the gap between

the system description and the model description. The Dymola language drew on

features from the first object-oriented language Simula, and symbolic computational
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methods. By defining model classes and connection types such as shafts and wires,

along with the variable constraints for those connections, it was possible to build a

model in any domain using the same methodology. Furthermore, the model equa-

tions were presented as DAEs and symbolic manipulation used to convert these

DAEs into ODEs. The Dymola project was postponed at that time, since comput-

ing memory limitations meant that it could not be used to solve problems in the

order of 300 or more equations [80].

Technological advances in the 1980s as well as progress in the fields of numerical

integration for DAEs and object-oriented software caused a revival of interest in

object-oriented modelling (OOM). In 1989 the object-oriented language Omola was

developed which allowed for models to be broken down into a series of interconnected

components in a hierarchical manner. Interaction between components was defined

at connections and class structures were used for defining the components. Addi-

tionally, an interactive modelling environment OmSim was produced and a complete

tool formed that provided a graphical interface, symbolic manipulation, numerical

solvers for ODEs and DAEs, and plotting of results.

Progress with Dymola, Omola and other similar object-oriented and equation based

modelling languages that underwent parallel development during the 1990s, such

as ObjectMath, SIDOPS+, Allan and Smile, led to an international initiative for

defining a uniform modelling language. The developers of these languages brought

together their combined experience in order to unify and standardize the concepts

and structures required in an object-oriented physical modelling language [58, 84].

As a result of this effort the generic modelling language Modelica was produced,

with the first ratified version being released in December 1999.

Modelica is a freely available mathematical modelling language intended for mod-

elling complex systems in multiple domains [84]. It uses an equation based and

object-oriented approach to physical modelling and can support various formalism

such as DAEs, ODEs, bond graphs and Petri nets. The main motivation behind its

development was to enable models to be built in a standard way so that they could

be exchanged and reused between different users and domains [80]. The first com-

mercial tool to support Modelica usage was Dymola, this time meaning Dynamic

Modeling Laboratory, which was soon followed by MathModelica. Modelling and

simulation tools such as these provide the following generic features [58]:
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• a Modelica translator,

• a code compiler,

• a run-time simulator,

• a graphical modelling environment with access to model libraries,

• a textual editor for scrutinizing the Modelica code.

Åström et al. [80] point out that although the technology advancements started

occurring in the 1980s, it was not until the mid 1990s that the need for a paradigm

shift was recognized. A new object-oriented modelling approach was then taken

based on non-causal equation oriented modelling which allowed for increased levels

of sharing and model reuse.

3.2 Object-Oriented Modelling in Industry

The use of OOM principles is by no means new to the field of engineering. This

section presents some motivations and benefits of applying the OOM approach in

different industry sectors, with the aim of highlighting key concepts and features to

support HEV development.

3.2.1 Automotive Sector

Hong et al. [79] make use of OOM techniques to develop a powertrain model for a

vehicle with a petrol engine and automatic transmission. The purpose of the model

is the design and evaluation of the powertrain controller. Initially a hierarchical

abstraction is performed on the powertrain in order to reduce the complexities of

the design task, to give an intuitive structure to the model and to allow for a more

modular programming approach. Further, with each module defined as an indi-

vidual object, the property of reusability of objects is used to reduce programming

effort. To implement this work, the authors make use of the Matlab and Simulink

environment. The powertrain is initially abstracted into three independent classes;

namely the engine, transmission and driveline. Each of these top-level classes are
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developed independently of each other and abstracted further. For example the en-

gine is comprised of modules for the fuel injector, intake manifold, throttle body and

torque production. Simulation results are shown to agree with experimental results

and the model is used in refining the integrated engine and transmission control.

In [79] the author’s state that not only physical parts are treated as objects, but

also equations and algorithms. This is most likely due to the choice of modelling

environment, since all aspects must be represented in a block diagram form. Another

point that is not dealt with by the authors is that of causality. Using block diagrams

models such as those in the Simulink environment allows for information to flow in

one direction from a predefined output to a predefined input. In order to cover

all possible causalities between interconnected parts, a database of several options

for each class would be required with a precise description of required neighbouring

classes. This would then reduce the programming effort benefits by adding more

complexity and modelling requirements. It is possible to eliminated this particular

problem through the use of an OOM language where objects are non-causal.

3.2.2 Industrial Automation and Process Control

The application of OOM in the field of automation and process control is discussed

in [85]. Understanding the overall system behaviour requires the modelling of the

physical process objects in conjunction with control system objects. However, the

typical models used in these two areas, such as component models and block dia-

grams, are not easily integrated to form an overall system model. Maffezzoni et al.

[85] show that while object-oriented properties such as modularity, encapsulation of

model equations, independence from external connections and aggregation of sub-

models are easily and intuitively related to the process models, the applicability to

control system modelling is not as obvious. The abstraction and aggregation of con-

trol systems is largely dependent on how the system is analysed. For example the

system can be considered in terms of its functional behaviour, its architecture or its

software structure. Typically functional models are used, meaning control systems

require causal modelling unlike the non-causal process components. The authors

suggest that OOM is well suited to modelling control systems since the modularity

can be used to separate functional and behavioural features, and a hierarchical con-

trol structure can be defined with supervisory control at the top level and sensors

and actuators in the lower levels. An OOM language can then be used to develop
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both the non-causal process or plant models and the causal control system models

which can be integrated in a complex model by connecting the two model types

via sensors and actuators. Maffezzoni et al. also highlight the fact that the OOM

approach leads to very large model descriptions for complex systems which would

lead to unreasonably long calculations of the numerical solution during simulation.

However, this problem can be avoided if the simulation environment is capable of

performing symbolic manipulation on the model, thereby reducing the number of

equations and overall model order before attempting to determine the numerical

solution [85].

3.2.3 Aerospace

In the aerospace sector, modelling and simulation tools are critical in assuring safety

through the correct functioning of the control systems. When considering spacecraft

or multiple satellite missions, the complexity of the control task and the high cost

of failure, demand efficient modelling tools in all of the applicable domains and for

all stages in the development cycle. Pulecchi et al. [86] claim that though there

are several commercially available tools that provide the required functionality in

some areas, there is no unified environment that is sufficiently flexible to support the

entire development cycle. In this respect, the authors propose a unified modelling

approach based on object-oriented concepts. To implement this work, Pulecchi et

al. favour the use of the non-causal, object-oriented modelling language Modelica,

due to its systematic approach to modelling and the ability to support multi-domain

problems.

Modelica is used in [86] to create a library of classes describing the spacecraft dynam-

ics, sensors, actuators and controllers for developing a spacecraft model. Flexibility

is achieved through the creation of reusable classes and the modularity provided by

the use of objects. Further, classes can be updated in terms of modelling accur-

acy and complexity as the development progresses. The developed model library

provides sufficient flexibility for performing initial design and sizing studies as well

as detailed control system simulations. Pulecchi et al. illustrated this by presenting

results of three separate case studies. In the first study, a higher level of abstraction

is used during the preliminary design stages to model the spacecraft and asses the

external disturbances on it. The non-causal nature of the modelling language is

important here as it allows the modeller to provide the desired orbit and trajectory
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and let the simulator determine control forces required to remain on that trajectory.

For the second study, a higher fidelity model is required that takes structural dy-

namics into account in the form of flexible appendages. To do this the rigid body of

the spacecraft model is modified by connecting it to another rigid body via a flex-

ible beam component. Additionally, this spacecraft model is used to compare the

performance of attitude control using different types of actuator models. Finally,

the third study considers the validation of different control design approaches for

the attitude controller in the case of a “swarm” of three identical satellites. In this

case the satellite model is built through specialization of the spacecraft base class.

Particularly the actuator model is replaced by three orthogonal coil and thruster

assemblies, the sensor model is replaced with a multi sensor configuration and the

control model is replaced by the swarm attitude control system being tested.

Yu et al. [87] develop a simulation environment at the McDonnell Douglas Corpor-

ation for the purpose of modelling aircraft logistics and support systems. Working

from the premise that the available simulation and modelling tools made modelling

a difficult and time consuming activity that often led to inefficient, unrealistic and

costly models [87]. An OOM based tool is proposed in order to address the short-

comings of the then popular mathematical simulation languages such as Simscript

and SLAM. More precisely problems such as the absence of formalisms for including

domain specific knowledge, inefficient handling of increasing size and complexity of

system models and the rigidity of the modelling language. The main objective of

the authors is to provide a generic environment that offers a close link between real

and model objects, allows for hierarchical modelling and offers a simplified method

for modifying object behaviour. Yu et al. [87] claim that the implemented OOM

approach allows the users to concentrate their effort on understanding the system as

opposed to focusing on the simulation language. Further, the object based graph-

ical developed environment provides increased modelling flexibility and reduces the

development time.

3.2.4 Building HVAC

Modelling and simulation is intrinsic to the understanding of building heating, vent-

ilation and air conditioning (HVAC) and developing the associated control systems

for maintaining the indoor bioclimate. Comparative studies of OOM and procedural

modelling approaches for the analysis of thermal flows, radiation and ambient tem-
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perature are performed in [62, 81, 88]. These are discussed further in Section 3.3.3.

3.2.5 Summing Up

This section has shown that OOM techniques have been successfully adopted to

deal with the complexities arising in a variety of industrial applications. Further,

the techniques have been applied to deal with both logical complexity and model

flexibility in industries facing similar modelling challenges as in HEV development.

This implies that these techniques can be applied to task of evolving the HEV design

space in a more efficient and manageable manner. Also, the fact that traditional

modelling tools in the automotive sector are being used to explore the benefits of

OOM, suggests that the use of object-oriented modelling tools can be integrated

into the existing development methodology.

3.3 Key Features of the Modelica Modelling Lan-

guage

For a modelling language to represent a real-world system by means of mathematical

models, it requires the following two features [76]:

1. Structuring abilities for modelling complex component combinations as dis-

cussed in Section 3.3.1.

2. The ability to incorporate the necessary equations to describe the system be-

haviour as discussed in Section 3.3.2.

Modelica meets these requirements since it is both a declarative and object-oriented

modelling language. For example, in Modelica, the equation

F = ma (3.1)

describes the fundamental relationship between force, mass and acceleration, and

thus also has meaning if F and m are known and a is unknown. Hence, in Modelica,

equations are stated in a neutral form meaning that it is not necessary to consider

the computational order [60].
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Structural modelling languages are based on imperative programming. For example,

in Matlab equation (3.1) is seen as an assignment which describes how the force

variable (F ) can be calculated for a known value of a.

By not enforcing how a models behaviour should be calculated and only describing

what it should calculate, the declarative language provides more flexibility [76].

Additionally, this can save time in model development since the designer is not

required to manually transform equations for the system being modelled into state-

variable form and can rather concentrate on the logic of the problem [60, 89].

The following subsections aim to identify particular features of OOM languages that

aid in the design of modular, flexible and reusable models with emphasis on those

features appropriate to HEV modelling.

3.3.1 Model Structuring Features

This section describes the Modelica features that are most relevant for presenting

the structure of complex models. Further exploration of these attributes is provided

through examples in Chapters 5 and 6, Sections 5.2 and 6.2 respectively.

1. Models – These are the basic building blocks within the Modelica language

and are equivalent to classes as described in appendix A.1. A model is used to

describe the properties and behaviour of components and can contain instances

of other component models.

2. Hierarchical modelling – A complex system model can be built by aggreg-

ating simpler components. This can be done on several hierarchical levels

giving the model a structured design. For instance, on the top level, a HEV

model could contain an electric motor component, engine component and a

chassis component. In turn, looking a level deeper, the motor model could

contain resistor and inductor components. Each component made up of other

components is known as a structured component.

An important consideration is the connection between each component on each

level. In Modelica connectors are used to allow components to interact with

each other. A connector is itself an instance of a connector class, which is a type

of class that only contains variables and no equations. Connectors represent
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the actual “real world” interaction between components such as electrical or

rotational couplings. Each type of connector is defined by a variable that is

equal at the connection, known as the across or effort variable; and a variable

that sum to zero at the connection (through/flow variables) [2, 90]. Listing 3.1

shows an example of an electrical connector with Voltage v defined as the

across variable, and Current i defined as the flow variable.

connector Pin "Pin of an electrical component"

SI.Voltage v "Potential at the pin";

flow SI.Current i "Current flowing into the pin";

end Pin;

Code Listing 3.1: Connector class for electrical components.

3. Inheritance – The object-oriented property of inheritance is the main contrib-

utor towards class reusability. In Modelica a child class such as a component

model can inherit from a parent class or base model by using the keyword

extends. Often, at the lowest hierarchical level, abstract classes are used as

the parent class. The Modelica equivalent for the abstract class used in cre-

ating base models is the partial model, denoted by the keyword partial. A

major benefit of inheritance is that it allows the developer to produce one

piece of common code which is shared by multiple models, thereby making

maintenance easier [76]. In HEV development studies it may be necessary to

test different electrical architectures while maintaining the same mechanical

architecture. In this case the mechanical architecture can be defined in a base

model that will be inherited for each of the different electrical architectures.

4. Types – The ability to define data types is very important as it helps to

reduce ambiguity in model construction. Modelica provides the user with the

ability to define any needed variable types as in the following definition of a

Mass type:

type Mass = Real(quantity="Mass",final unit="kg");

The type definition also allows for quantity and unit variable definitions which

can be used by the compiler to perform dimension checking on the model. Also

effort and flow variables used in connector definitions are instances of a specific

type. For example, in Listing 3.1, the code line Voltage v means variable v is
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an instance of type Voltage and will thus have units in volts. This is important

in the development of HEVs considering the number of types occurring across

all the engineering domains combined in a HEV powertrain design.

5. Class Parameters – Instances of a class within another class can be declared

replaceable using class parameters. In Modelica class parameters have two

forms, instances and types. With instance parameters, components are de-

clared as replaceable inside the class definition. When that class is used, the

replaceable components can then be exchanged with compatible components

by using the keyword redeclare. With type parameters the type of a compon-

ent is declared replaceable before instantiating the components in the class.

In this way all components of that type can be replaced by another type at

once by redeclaring the type parameter. For instance, in order to test the use

of different electrical machines in an HEV design, the electric machine model

can be declared as replaceable, allowing for example a synchronous motor to

be replaced by an induction motor before simulation.

Design of Model Libraries

Model library design refers to the structure of the models, sub-models, components

and partial models; and also how these models are hierarchically linked. The struc-

ture of the library is chosen in order to simplify the understanding and usability of

the library for different potential users and is thus very dependent on the complexity

of the system being modelled and the scope of the modelling exercise. Library struc-

turing is a key part of the modelling method proposed in this Thesis as described

in Section 4.4.2 and its importance as a model management task is stressed again

in Section 7.1.1.

In the case of a HEV powertrain model, the system is complex with various domains

being represented and possibly various parties developing component models. Since

different domain specialists may already have their own libraries for their respective

domains, a new library for HEV powertrains could be defined to best make use of

these libraries or to provide a generic approach for investigating different architec-

tures.

Containers for similar classes, from models to partial models, are referred to as

packages and sub-packages. Packages help to prevent name conflicts in code by
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keeping related functions and classes together, and adding the package name as a

prefix to all definitions within the package. For example the line of Modelica code:

HEV Modelling.BaseSubsystems.PowerSupplies.FuelCellBase fuelCellOne

creates an instance of the FuelCellBase model called fuelCellOne and the name

prefixes indicate that his model is contained within the PowerSupplies subpackage

of the BaseSubsystems package in the HEV Modelling library. Or rather, this line

of code is created when an object from that subpackage of the library is added to the

model. This, together with formal naming conventions, is important for promoting

compatibility when large scale models are being developed by different parties [58].

Hierarchical composition is also very important since if it is not well planned, it can

lead to rapid growth in library size which is cumbersome to work with and time

consuming to manage. Tummescheit [76] points out that the overuse of inheritance

when structuring libraries is one of the main causes of oversized libraries that are

difficult to understand and use. This is because it leads to the creation of many

unnecessary intermediate partial models. For complex systems where many models

and sub-models are required, a better approach is to use a mix of inheritance and

aggregation in order to describe the system composition. In this way inheritance

can be used when there is a general commonality between several components or

models such as all car models inheriting a chassis model or electrical components

inheriting electrical connectors. Aggregation is then used to add extra components

to existing models in order to provide for variety and fidelity changes. Together with

the use of the replaceable class parameter, this strategy allows for instance, several

tyre models to be added to the chassis model which can be replaced by either linear

or non-linear model variants.

3.3.2 Model Behaviour

This section discusses the Modelica features that are most pertinent to describing

the model behaviour. Further exploration of these attributes is provided through

examples in Chapters 5 and 6, Sections 5.2 and 6.2 respectively.

1. Equations – A non-causal declarative form for expressing the underlying

physical laws that describe a components behaviour. These can be in the



Object-Oriented Modelling and Simulation 55

form of ODEs, DAEs or difference equations. It is important to point out that

while in object-oriented programming it is possible to override the methods

used in classes, in Modelica the methods are replaced by equations which can’t

be overridden. In Modelica it is however possible to achieve this effect by mak-

ing components or models replaceable and then redeclaring them before use.

This feature is very useful, for instance, in defining different levels of fidelity

for the same object.

2. Algorithms – Usually equations are most useful for modelling physical sys-

tems but in some cases there is a need for the use of imperative assignment

statements and logic statements such as if − then− else, for and while. Al-

gorithms are executed in the order they are stated. In particular, algorithms

are useful when implementing discrete logic control in the same manner as in

the control hardware. Algorithms may be used to model the logic in a su-

pervisory controller of a HEV, where different control strategy can be imple-

mented depending on different selected vehicle operating modes. For instance

if a driver selected sport mode in the vehicle the strategy for battery usage

may change from charge-sustaining to charge-depleting in order to provide

increased performance.

3. Functions – Algorithms can be encapsulated in functions. Many mathemat-

ical functions, such as sqrt(),mod(), sin(), are provided by Modelica’s stand-

ard math library. It is also possible for a user to define functions with specific

inputs and outputs calculated from encapsulated algorithms. The use of func-

tions together with equations does not constrain the causality as inputs can

still be calculated from a given output.

4. External functions – This feature of Modelica provides the user with a means

to include functions from external software libraries using either C or Fortran.

Thereby providing flexibility to the user through the use of existing legacy

code. It is also important in promoting code reuse and knowledge sharing

where possibly much time and effort has gone into developing complex model

descriptions in an external or domain specific environment. Together with

the need for sharing code in collaborative development efforts, is the need for

protecting the intellectual property contained within certain models. These

aspects of code sharing and protection are discussed further in Section 7.1.3.
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Through a combination of these features it is possible to fully describe any physical

system in terms of its mathematical behaviour. From an object-oriented perspective,

each object’s behaviour is determined by the equations, functions and algorithms

used to define the operations in that object’s class. In Modelica the component

behaviour is defined by the equations in the model.

3.3.3 Compiling and Simulating Models

It can be said that the natural world and therefore physics is non-causal [61, 81,

91] and that causality is invented in order to simplify computation. One of the

main features distinguishing new equation-based modelling tools from the more

traditional block-oriented tools is the way that they deal with causality. In the case

of block-oriented modelling, it is the task of the modeller to decide upon the desired

causality before hand and then proceed to develop the models with this causality

in mind. Considerable effort is required at this stage to describe the physical laws

governing each system and component in a manner that fits the chosen causality

in order to make computation possible [81]. With equation-oriented approaches the

modeller must decide what objects are needed to describe a system and how they

interact. The effort is then placed into describing the physical laws of each object

and its interactions, which can be done using DAEs without worrying about the

computation order. It is then the task of the translator to transform the model

equations into a computable order based on the given model parameters.

Wetter and Haugstetter [62] claim that the model development time in procedural

modelling is between 5 and 10 times longer than that associated with equation-

based methods. While Zupančič and Sodja [81] argue that not only is the traditional

method more time consuming but it is also more error prone and open to the creation

of algebraic loops which need to be dealt with by the modeller. However, this view

is slightly skewed by the use of library components with different levels of model

fidelity already being available. That is to say that the basic blocks available to start

modelling in the equation-based tool may be at a higher level of abstraction than

those in the block-oriented tool. It can be said though, that the equation-based

method is more conducive to the creation of reusable library components. Also,

since the causality is not of interest during development time, library components

can be developed independently from a specific modelling project. The ability to

develop a single subset of models is particularly advantageous for HEV modelling
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due to the great variety of technology options and architectures.

In terms of computation time Wetter and Haugstetter [62] state that the equa-

tion based approaches are 3 to 4 times slower than procedural approaches. Sah-

lin et al. [88] point out that although the superior numerical performance is often

quoted in the building industry as a reason for staying with procedural modelling

tools, the comparison is not straight forward and often misinterpreted. Consider-

ation should be given to the level of modelling and the accuracy of the solution

at each timestep [88]. Further, it must be remembered that the procedural tools

usually have specific numerical solutions for a particular problem domain while the

equation-oriented tools use general DAE solution methods. Also, it is noteworthy

that numerical techniques for solving ODEs were well established by the 1960s while

methods for solving DAEs only started appearing in the 1970s and are thus still

improving [80]. A brief description of numerical techniques is provided below for

completeness.

Numerical Techniques

Traditional modelling leads to a system description in ODE form that have the

explicit state space form shown in equation (3.2).

ẋ(t) = f(x(t), u(t)) (3.2)

where u(t) represents the input variables to the system and x(t) represents the state

variables with time derivative ẋ(t).

ODEs can usually be solved very efficiently by explicit integration methods such as

the Euler and Runge-Kutta method. A method is said to be explicit if the next state

is calculated from one or more previous states [58]. However, explicit methods tend

to have small regions of stability and can become unstable if the integration step

size is outside of this region and therefore produce incorrect solutions [58]. This is of

particular concern when the system description contains stiff differential equations

which require implicit forms of the integration methods to be used. According to

Moler [92] computational stiffness can be defined as follows:

“A problem is stiff if the solution being sought varies slowly, but

there are nearby solutions that vary rapidly, so the numerical method

must take small steps to obtain satisfactory results.”
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Implicit methods solve an equation involving both the current and previous step in

order to compute the next step. Further these methods have larger stability regions

than the explicit counterparts and are less computationally intensive when dealing

with very small time steps. The stability region can be defined as the time step

region within which a particular numerical method’s error will remain bounded [93].

In other words if the time step is outside of this region, that method will not succeed

in finding a precise solution. Moler [92] also argues that stiffness is mainly a time

efficiency issue since it is possible to find a solution with a non-optimized method,

only it will take a considerable amount of time. Sometimes it is necessary to use

variable step methods such as the Adams method in order to more efficiently find

a solution for stiff systems. These methods allow for the integration step size to be

changed during simulation.

For object-oriented modelling, since each object is defined independent of its con-

text in a non-causal or declarative manner [94], the system is described as a series

of connected differential and algebraic equations. DAE systems have the general

implicit form shown in equation (3.3).

f(x(t), ẋ(t), u(t), y(t)) = 0 (3.3)

where y(t) represents the output variables.

A compiler then extracts all the object equations within a model and the equa-

tions for all the connections to produce a flattened list of equations, constants and

variables. This list is then sorted and manipulated to give a computational caus-

ality based on data-flow dependencies which gives a system of high-index DAEs.

In general OOM and in particular mechanical and mechatronic modelling lead to

DAEs of index 3 [58]. Currently there are few numerical methods for solving DAEs

with index higher than 2. The most common method for solving index 1 DAEs is

the differential algebraic system solver (DASSL) which is an implicit variable step

method as are most DAE solvers. Therefore it is essential that a multi-domain mod-

elling and simulation tool also has the ability to perform a mixture of symbolic (see

section 2.2.4) and numerical techniques in order to reduce the DAE index to 1.

It is possible to reduce the index 1 DAE even further to an ODE (index = 0) but

not without a considerable increase in computation. Cellier [61] argues that there

is minimal benefit in converting DAEs into explicit ODEs when dealing with large

complex models since these systems are invariably stiff and therefore require implicit

solvers.
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3.4 Concluding Remarks

Modelling and simulation in the area of HEV development has similar problems to

those in other industries such as:

• complexity of design,

• the system is described by multiple engineering domains,

• control is an integral part of the system,

• the need for reduction of development time, and

• the need to reduce cost of errors through early detection.

OOM is a reasonable approach to help cope with or overcome these types of issues,

as shown within other industries. However, in order to provide the most flexibility

across all domains and to support as much of the development cycle as possible,

the modelling environment should be implemented with a truly object-oriented lan-

guage. This is in contrast to applying a OOM methodology in a procedural envir-

onment through a component based interface. It is necessary to be able to create

models from non-causal objects to maximize efficiency and to allow for parallel de-

velopment in different domains by the respective specialists.

The use of an equation oriented language is preferable in reducing the complexit-

ies of the modelling task as this allows for the direct use of physical equations in

modelling without the need for user manipulation and aids in the creation of non-

causal models. However, as discussed earlier, the use of such a modelling language

makes it necessary for the simulator to be able to implement specific symbolic and

numerical techniques. Finally the use of an object-oriented language for the entire

modelling and simulation tool makes it easier for data to be shared between different

tools within the development chain and therefore aids in reducing errors through

computer aided engineering (CAE), as is discussed in Section 7.1.1.
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Chapter 4

Object-Oriented Analysis and

Design for HEV Powertrain

Modelling

Referring back to the Venn diagram presented in Figure 1.1, this chapter deals

with the overlap of the HEV powertrain modelling and OOM elements discussed in

the Chapters 2 and 3 respectively. Further, it also introduces the third element of

systems engineering to the Thesis.

4.1 Proposed Solution

Recalling the problem statement in Section 1.2, a possible solution is the use of

OOM principles in order to perform a more robust evolution of the HEV powertrain

design space. An object-oriented design environment can provide benefits to both

developers and end users. In recent years, OOM techniques have been viewed as a

possible solution to model management issues for alternative vehicle development

such as HEVs. OOM promises higher flexibility in testing concepts, component

design and control strategy development [2].

Management of the many design models requires a well structured modelling ap-

proach. This approach must allow different users within the design process, such

as those who specialize in component design, vehicle analysis and controller design,
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to share and reuse models and data. Systems engineering design and management

principles can also be used to help manage the complexity of the HEV powertrain

design process.

This Thesis proposes a model-based design approach making use of systems en-

gineering principles and object-oriented software development methods for HEV

powertrain modelling, in order to deal with the increased model complexity and

variety within the growing HEV design space. In particular a modelling method is

presented that can be used to create flexible libraries for HEV powertrain design.

This method is intended to be used in conjunction with a systems engineering de-

velopment framework in order to increase the reliability, efficiency and speed of new

HEV developments.

An alternative to this solution, making use of traditional causal block oriented mod-

els, would require an appropriate interface for grouping multiple component models.

This interface would have to keep track of both the various causalities of each model

as well as the different levels of fidelity for each causal implementation. Addition-

ally a database or code structure would be required to keep track of the types of

inputs and outputs that each component used in order to prevent “impossible con-

nections” occurring. Further, a strict methodology would be necessary for building

and maintaining models so as to ensure model compatibility and propagation of

model changes to all relevant models.

4.2 Software Development and Modelling

It is important to understand that OOM and design does not refer to a specific

domain or tool but describes a means of approaching problems by relating models to

real-world concepts [95]. The applicability of object-oriented techniques to the field

of simulation and modelling stems from the fundamental OOM principle of thinking

in terms of physical objects so as to promote a clear link between program design

and the real world [96]. This chapter presents the reader with some background

on traditional object-oriented design techniques used for designing and developing

complex software systems. Ideas from these approaches are then used in order to

formulate a development method for the modelling of HEV powertrain systems and

exploring the associated complexities. It must be pointed out that the development
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methodology used in software and systems engineering refers to a set of procedures

or methods to be implemented throughout the life-cycle. Therefore, the model

development method proposed in this research is meant to be used as one of the

procedures within the framework of any given system development methodology.

4.2.1 Software and System Modelling Languages

Due to the growing interest and popularity of the object-oriented paradigm in the

late 1980s and early 1990s, different researchers and experts published methodologies

promoting their own approaches [97]. Furthermore, each used different terminology

and notation for describing the concepts of design while focusing on a preferred lan-

guage or application domain [8]. By the mid 1990s there were over 50 methodologies

for object-oriented analysis and design such as Booch [78], Rumbaugh [95] and Jac-

obson [98] methods, a period described in the literature as the “method wars” [99].

Describing the differences between the numerous development methods is beyond

the scope of this Thesis, the interested reader is referred to Fichman and Kemerer

[100] and Graham [97] for more detail. Fichman and Kemerer [100] compare the tra-

ditional structured methodologies with several of the object-oriented methodologies

and conclude that though object-orientation was still evolving and no methodology

had become standard, it was based on “powerful ideas...that have firm theoretical

foundations” and was considered the better approach by leading programmers and

academics.

Along with the abundance of methodologies was an equally large amount of differ-

ent modelling languages, or diagrams and notations for use with respective meth-

ods [97, 101]. At the time Booch, Rumbaugh and Jacobson, the developers of three

prominent methodologies, were all working for the same software company and were

tasked to unify their various terminologies and notations in an effort to produce a

general purpose object-oriented modelling language [102]. Ultimately this led to the

development of the Unified Modeling Language (UML), which was subsequently ad-

opted as a standard by the Object Management Group (OMG) [95, 103]. The UML

standardized a means for specifying, visualizing, constructing and communicating

software system structures, and aided in the further spread of object-oriented tech-

niques [102, 103]. It is worth noting that the UML was designed to be compatible

with the leading object-oriented methodologies and after its release gave rise to a

customizable software development framework called the Unified Software Develop-
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ment Process which was based on best practices of leading software companies.

The ability to visually represent the structure of a system throughout its develop-

ment life-cycle is not only useful in the software domain but in other engineering

domains too. Object-oriented descriptions are quite easily applied to physical sys-

tems since the physical system can be described in terms of its parts and their

constituent components. For example, in [79] the author uses a UML class diagram

to represent the abstracted architecture of a vehicle powertrain into engine, trans-

mission and driveline subsystems; and in turn the subsystems are abstracted into

components. Rachuri et al. [104] make use of the UML to create a model for repres-

enting electro-mechanical assemblies with the scope of facilitating the exchange of

knowledge and information between different systems. The authors of [104] propose

to achieve this by using the UML model as an integrated information model that

all stakeholders can use and contribute to.

In the automotive industry, where typical projects involve the collaboration of mul-

tiple parties encompassing engineering skills from a variety of domains, there is a

need for the availability of high level system models. This is particularly useful

for aiding the design of distributed control systems where developers could make

use of such a system model in order to understand how their control functions will

integrate with the overall system [105]. In this respect, the UML is a useful tool

as it offers a set of semantics designed for sharing information between different

stakeholders. Though it can be argued that the UML cannot adequately represent

all the requirements of a complex engineering design, it does allow for customisation

and extension of its semantics.

UML Extensions

The UML provides a means of customising its usage to meet particular needs by

extending its definitions to either modify existing or add new constructs, creating a

so called UML profile. In order to support model-based design, the OMG developed

a UML profile called the Systems Modeling Language (SysML) [106]. The SysML

is a general purpose language with constructs for modelling systems engineering

problems. It is based on a subset of the UML and extends its functionality to sup-

port the systems engineering activities in the development life-cycle [107]. Further,

the SysML supports the specification, analysis, design, verification and validation
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of multidisciplinary complex systems through the use of nine diagram types [108].

These diagrams allow for the representation of the structure, behaviour, require-

ments and parametric relationships of systems [108].

The use of the SysML is not without its shortcomings and may not be the correct

profile for meeting all the modelling requirements of complex mechatronic systems.

Marco and Vaughan [105] highlight problems with navigating between the many

diagrams created in the SysML and the transparency of the links between these

diagrams, also the use of software-centric semantics does not aid in communication

when many of the parties involved are not from software related domains. Johnson

et al. [106] point out that while the SysML is good for modelling large and complex

engineering systems in multiple domains, it does not provide a means for explicitly

modelling continuous system dynamics in a non-causal manner. Instead of develop-

ing a new UML profile, the authors propose a bidirectional mapping between the

SysML and the Modelica language in order to be able to benefit from the features

of both languages. In particular, the information models from the SysML can be

augmented with behavioural models capable of describing physical system behaviour

in a non-causal way using Modelica semantics.

In contrast, Schamai et al. [109] set out to achieve a similar goal by developing a new

UML/SysML profile called the ModelicaML. This new UML profile reuses features

from the UML and the SysML, while adding additional language constructs for

including Modelica concepts such as equation and simulation diagrams. Like the

SysML, the ModelicaML is only a graphical notation and not directly executable,

however, it is possible to generate Modelica code from the ModelicaML models [109].

With regards to this Thesis, no system modelling has been performed within the

UML or any of its derivatives. This is because the primary focus of this work is on

the physical modelling stage of the design process. However, the importance and

benefit of a systems level model is well noted by the author, both with regard to

the management of a modelling project as discussed in Chapter 7, and further work

on this area as mentioned in Chapter 8 Section 8.1. Generic UML class diagrams

are used for illustrative purposes to help the reader visualise the links between

the software and physical modelling domains. However, it is recognized that the

availability of an overall system model forms a necessary medium for communicating

and managing information in a multidisciplinary project. As pointed out by Marco

and Vaughan [105], the SysML provides an advantage when used to support other
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modelling environments, by providing developers and engineers a means of exploring

the system architecture through different levels of abstraction.

4.2.2 Software and System Development Approaches

Following the introduction of the UML and its popularity in the software develop-

ment industry, several new software development methodologies were conceived such

as the Dynamic Systems Development Method, Rapid Application Development

methodology and Rational Unified Process. Each of these methodologies provides a

framework within which the development activity can take place. Further, there are

also many models for describing the development approaches that can be implemen-

ted within this framework. This section describes the three most commonly cited

models in software and systems engineering literature, as these form the foundation

for defining the requirements for more modern methods.

Sequential Development Model

Figure 4.1: Waterfall development model stages [110].

One of the most commonly used development methods, especially before the unific-

ation of methods for the production of the UML, is the waterfall approach originally
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described by Royce [110]. The stages of the waterfall model are shown in Figure 4.1.

This approach follows a incremental sequence of events from the start of the devel-

opment to the end, requiring each stage to be fully completed before moving to the

next [8, 95]. The nature of this model made it easy to clearly define milestones

between separate development stages, manage them and measure the time spent in

each stage. This led to it being used as the basis of the US military standard for

mission critical defence system software development [111].

Though intuitive, this method is not well suited to the design of large scale and

complex systems, such as HEVs, where the requirements can change several times

during the development life-cycle. For example, in an article by Wong [112] on the

successful development of air defence system software, the author points out the in-

adequacy of the sequential model enforced by the Department of Defense standards.

In particular, Wong describes software development as “a complex, continuous, iter-

ative, and repetitive process” requiring iterative and parallel activities not reflected

in sequential models. Further, the author proposes that a model based on over-

lapping incremental development allows for parallel and iterative coding, and more

accurately depicts the complexities of software development.

It is noteworthy that though Royce [110] proposed that iteration should occur only

between adjacent stages, even then, he recognized that this was not what occurred

in practice. Often the first time a problem with the system design could be detected

would be during the testing and integration stage near the end of the development

process. This would then require a change in the design and possibly requirements

specification stages too. Consequently, risk management and requirements gathering

are two main reasons for the failure of this model [102]. More precisely there is a

high risk involved with discovering major system design errors towards the end of

the development and gathering complete requirements at the start of the project is

unrealistic since requirements change and evolve during the system’s development

life-cycle. Having said this, the work done by Royce [110] in identifying the main

stages in the development process is instrumental and is often cited further in more

modern development approaches.
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Figure 4.2: Spiral development model proposed by Boehm [113].

Iterative and Incremental Development Models

Object orientation is used in order to simplify the handling of complex system design,

and to promote the use and construction of reusable classes. Development of object-

oriented software therefore requires a more iterative approach. From an automotive

modelling perspective, a parallel can be drawn with the incremental development of

higher fidelity physical system models. The sequential stages of the waterfall model

are important and valid design stages, but need to be repeated incrementally as

the various subsystems and components are developed. One approach developed to

address the failures of the waterfall model is the spiral model proposed by Boehm

[113].

Unlike the linear approach of the waterfall model, this approach considers develop-

ment as a series of iterative cycles as illustrated in Figure 4.2. Development begins

at the centre of the spiral in the top left quadrant and spirals outward in a clock-

wise direction with each complete cycle through all four quadrants representing an

iteration. The four quadrants represent the main process actions in each iteration

starting with objectives and constraints, then risk analysis, followed by development
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and testing, finally ending with a review and plan of action for the next iteration.

One of the main benefits of this approach is its suitability for prototyping, where

each complete cycle can be used to develop prototypes which are further developed

with each cycle. Although it is possible to develop prototypes using conventional

methods, together with object-oriented properties such as modularity and reusabil-

ity, this can be achieved with less development time and effort [97]. Furthermore,

prototypes can be used to gather valuable user feedback for the early realisation of

requirements or specification changes. In a review of almost 500 software projects,

over 40% of maintenance costs are attributed to changes in requirements which are

either due to incorrect specifications or the need for adaptability in modern sys-

tems [97].

There are many accounts of the success and benefits gained when using object-

oriented approaches over traditional procedural approaches. For example, the re-

placement of a procedural customer management system for Brooklyn Union Gas

with an object-oriented equivalent achieved lower maintenance costs and a 40%

code reduction (from 1.5 million lines) due to code reuse; or the upgrading of a

procedural maintenance management system for General Motors where the object-

oriented replacement required one twelfth of the development time and code size

with an estimated 14:1 productivity gain [97]. In a comparison between prototyp-

ing and traditional development approaches, Alavi [114] shows that the use of a

prototyping approach increased communication between the system user and the

developer which in turn led to improved requirements specifications and increased

satisfaction as to the final system performance. However, the management and con-

trol of the prototyping process is often seen to be more difficult due to the increased

interaction of stakeholders and more frequently changing requirements [114].

Systems Engineering V-Model

Initially, as applied to software engineering, the V-model was used to avoid the

problems associated with managing complex system designs by promoting early

analysis and design [106], in the same way as the waterfall model. Forsberg and

Mooz [115] enhanced this model to include the best features of both the waterfall

and spiral models by adding development strategies which allow for iterative and

incremental development. Each iteration of the process allows for the development
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Figure 4.3: Iterative systems development V-model.

of new subsystems, thereby allowing the overall system to grow. It is also possible for

certain independent subsystems to be developed in parallel if there is no clash with

required resources. Additionally, the iterative process is more flexible to changes,

provides more feedback on overall development progress with each iteration and

therefore also minimizes the risk [95].

The iterative development V-model often used in systems engineering is shown in

Figure 4.3. As the process progresses down the left side of the model the system

definition and specification is found through decomposition. The red line in Figure

marks the transition from the system engineering activity to the domain specific

engineering activity where implementation takes place in the form of coding or

building the defined subsystem. On the right side of the model the built subsystems

are integrated into the overall system with validation results feeding back to the left

side for the next iteration.

Colombi and Cobb [116] provide an example of how a systems engineering approach

can be used together with rapid prototyping in order to meet critical user needs.

Specifically, the attack controller lacked a means of quickly pinpointing the location

of ground forces needed for directing an air attack. Colombi and Cobb [116] com-

bine the use of the both V-model and spiral model in order to provide incremental

prototype development as well as parallel development of alternative solutions in

order to minimize project failure.
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Irrespective of the chosen development model, it must be remembered that they are

models and are therefore approximations of the real development process. These

models serve as guidelines from which lessons can be learned, there is no model that

can precisely describe an error free development for all projects without the need for

adaptation to the particular problem being considered. However, the stages followed

in the development life-cycle are common to most models with main differences

being in the iterations between the stages or time spent at a particular stage. These

stages are listed below. A short description for each of these stages can be found in

Appendix A.2.

1. Specification of requirements.

2. System analysis.

3. Design.

4. Implementation.

5. Testing.

6. Maintenance.

As illustrated in Section 3.2, the use of object-oriented techniques is not new to in-

dustry and the same is true for the use of system engineering methods. For example,

Harrison et al. [117] describe an effort by the Ford Motor Company to implement

system engineering techniques in order to improve the automation of powertrain as-

sembly. Fisher [118] shows how models can be a better means of sharing information

between systems engineers and developers through an example development of an

on-board driver assistance system that performs various diagnostic and monitoring

functions. Broy [119], on the other hand, describes how the rapid and complex de-

velopment of embedded systems within modern vehicles not only requires software

and systems engineering but that it should be tailored to meet the specific needs of

the automotive domain.

In particular, with the increased dependence on digital technology and control soft-

ware in modern vehicles for implementing features such as anti-lock braking and

traction control systems, the automotive industry has for some time been making

use of systems engineering development techniques. It is therefore argued by the au-

thor, that since systems engineering practices are already in use within the industry,

making the transition required for complex HEV development using object-oriented

methods in a systems engineering environment should not be that difficult a process.
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4.3 Systems Engineering Standards

Seeing as the objective of this research is to provide a model development method

that can be used within a systems engineering environment, it is appropriate to

discuss some of the systems engineering standards at this point. This section is not

intended to review the many standards related to software and systems engineer-

ing [120, 121], but rather to make the reader aware of the processes required for

engineering a system.

Focus is placed on two particular standards, in order to illustrate how the pro-

posed modelling method can be employed within the context of a systems engin-

eering framework. The first, a standard developed by the Electronics Industry

Alliance (EIA) called EIA-632 [122], discusses the fundamental processes for en-

gineering a system. The second, developed by the International Organization for

Standards (ISO) and the International Electrotechnical Commission (IEC) named

ISO/IEC 15288 [123], defines a process framework for describing the life cycle of a

system.

4.3.1 EIA-632 Standard

This standard groups the fundamental processes for defining and implementing a

system into five categories. These are acquisition and supply, technical management,

system design, product realization, and technical evaluation. Within each of these

groups there are processes, as shown in Figure 4.4, from which an organization or

department can select those appropriate in order to best fulfil their part of the system

development process. These standards further specify a list of various requirements

for each of the identified processes, which again are to be selected as required by the

system developer.

EIA-632 defines a system as “An aggregation of end products and enabling products

to achieve a given purpose” [122]. Where “end products”, are the product delivered

to the customer or any user, and “enabling products” are those that enable the

production and maintenance of the end products. From a hierarchical point of view,

each enabling or end product, may have their own subsystems which need to be

described in the same manner.
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Figure 4.4: Categories and processes of EIA-632 [122].

Requirements are used as a means of decoupling the various development layers.

The system design group of processes, at each layer of development, produce a set

of specified requirements which become the assigned requirements for the next lower

layer. Additionally, working back up the hierarchy, the lower layers feed back results

in the form of data and enabling products, to the design and validation processes

of the layer above. The relationship between the various requirements described in

EIA-632 is illustrated in Figure 4.5.

Acquirer requirements refer to those requirements coming from either the customer

or the user of a particular end product. These, together with stakeholder require-

ments and any assigned requirements resulting from previous development layers,

are used to define a set of technical requirements for the system. The technical

requirements guide the solution development process, where the logical and phys-

ical aspects of the system are analysed and used to derive further requirements and

ultimately a design solution for that system [124]. This design solution specifies re-
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Figure 4.5: EIA-632 requirements relationships [122].

quirements which will become assigned requirements for the next level of subsystem

development.

It is important to realise that the standard does not specify the methods or tools a

developer should use to implement the process. Instead, this decision is dependent

on the the developer and the internal policies of the organization within which he

works. The object-oriented model development method proposed in this Thesis

would be implemented in the system design stage shown in Figure 4.4. Specifically,

as a means of transitioning from the technical requirements to the design solution,

while feeding results on for production, analysis and management decisions.

4.3.2 ISO/IEC 15288 Standard

Quoting from the introduction of the 15288 standard documentation, its purpose

can be briefly summarised as follows [123]:

“The purpose of this International Standard is to provide a defined

set of processes to facilitate communication among acquirers, suppliers

and other stakeholders in the life cycle of a system.”

Further, ISO/IEC 15288 defines a system as “An integrated composite that con-

sists of one or more of the processes, hardware, software, facilities and people, that
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provides a capability to satisfy a stated need or objective” [123].

These standards provide a slightly higher level of abstraction than EIA-632, in that

they focus on describing processes within the system’s life cycle as a hierarchy of

systems while referring to other applicable standards for further development. For

example, ISO/IEC 12207 [125] is used for software component development and

IEEE 1471 [126] is used for developing architectural descriptions.

The system life cycle processes defined by this standard are arranged into four

groups: Agreement processes, Organizational Project-enabling processes, Project

processes and Technical processes. Within these groups 25 processes are defined

which are to be applied as required within an organization’s life cycle model. The

life cycle model to be used is not defined by this standard and is to be selected based

on the organization’s needs.

Typical life cycles can be of the form presented in Section 4.2.2. Further information

on life cycle management and the use of a life cycle model for systems in the context

of ISO/IEC 15288 can be found in IEEE Standard 24748-1-2011 [127]. In [127], an

example is made of a six stage life cycle as shown in Figure 4.6. It is noteworthy

that though the stages are shown sequentially, the arrows on the side of each block

indicate that it is possible to move forward or backward to a non-adjacent block.

Figure 4.6: Example system life cycle model [127].
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Continuing with this example, if this life cycle were to be applied to the development

of a HEV powertrain, the proposed object-oriented modelling method could form

part of the processes for either the Concept or the Development stages. If new

technologies or concepts are to be compared and assessed, the modelling activity

forms part of the concept stage. Ultimately the executable models will be used to

check the feasibility of the technologies and determine the technical requirements for

the development stage. Once technologies have been chosen and the requirements

sufficiently refined, the modelling activity forms part of the development stage. In

this case the chosen design solution is transformed into a prototype in the form of

a complete powertrain model. Also system diagrams, interface specifications and

design documentation are produced, while validation and testing is used to further

refine stakeholder and user requirements.

4.4 Proposed Modelling Method for HEV Devel-

opment

Figure 4.7: Iterative stages of the modelling method.

Just as objected-oriented analysis and design methods are used for building software

systems, so a parallel can be made with the method used for developing models

using a multi-domain component-oriented modelling language. In fact, Fishwick

[96] argues that it is precisely in this arena that the properties of software and
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systems engineering converge due to the ties between programming and physical

systems modelling.

As stated in Section 4.1, the author proposes using a software and systems engineer-

ing approach in order to define the iterative method to be followed when developing

object-oriented powertrain models for HEVs. Figure 4.7 illustrates the three main

iterative stages of this method along with the validation and testing loop which

provides feedback for those three stages.

The remaining sections of this chapter describe the rationale for each stage of this

process, with particular emphasis on the author’s suggested stepwise development

method for the modelling activities. It must be remembered that this method is

intended to be used within the design and development stages of a systems engin-

eering framework such as those described in Section 4.3. This enables the evolution

of new and complex HEV designs within a structured set of processes that enforce

system wide communication of requirements, while still maintaining design flexib-

ility. An overview of the flow of these steps through the three development stages

is shown in Figure 4.8. Each step in this flowchart is in turn a subprocess which is

elaborated further in the sections that follow. In order to place Figure 4.8 within

the context of the systems engineering standards presented in Section 4.3, it can be

regarded as a method of implementing the System Design processes of EIA-632 as

shown in Figure 4.4, or for the Technical processes of ISO/IEC 15288 such as archi-

tectural design and implementation during which would occur during the Concept

and Development stages of the system life cycle.
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Figure 4.8: Flowchart of the steps in the author’s development method.
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4.4.1 Functional Requirements Stage

Figure 4.9: Traditional life-cycle development tasks encompassed within the func-

tional requirements stage.

A model should not be overly complicated, yet it also needs to be complex enough to

accurately describe the phenomena that are to be studied with that specific model.

Williams [128] points out that when dealing with the accuracy and the simplicity of

a model, two general principals need to be balanced, namely “Occam’s razor” and

“requisite variety”. The first principle promotes simplicity in seeking for the least

complicated explanation and eliminating anything that is not absolutely necessary

to achieve the required result. While the second principal essentially states that the

ultimate usefulness is limited by the amount of information available. If there is too

little detail the results may be imprecise. In both cases, it is the model requirements

that dictate where the balancing point for complexity lies.

During the functional requirements stage of the proposed method, the main life-

cycle development tasks covered (as listed in Section 4.2.2) are the requirements

specification and the high level system analysis as shown in Figure 4.9. The testing

task at this stage encompasses both validation that all stakeholder requirements

are considered and in agreement, and defining the tests that will determine if the

requirements laid out have been met.

In order to determine the requirements and goals of the model, it is imperative that

all stakeholders are involved in this process, from management to the domain spe-
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cialists and end users. More specifically, this involves the key activity of questioning

all parties in order to understand the type of and purpose of model required, as well

as all initial constraints and assumptions. Points that need to be considered within

the context of HEV development are:

• Why the model is needed,

• What the model should achieve,

• What the intended applications for the model are,

• What level of fidelity is required for subsystem models, and

• What are the major modelling constraints.

A flowchart illustrating the data gathering of the requirements modelling step is

shown in Figure 4.10.

Figure 4.10: Flowchart for the Requirements Modelling Step.

This information is usually collected in requirements specification documents that

need to be managed in order to track, update and link these requirements to the

developed models as discussed in Chapter 7. Typically this consists of Word docu-

ments with tabular data and diagrams used to present the model description, model

configuration and model acceptance criteria [129]. Where the description lists the

purpose for model, diagrams the hardware and software subsystems and tabulates

the specific features to be modelled along with their respective I/O and paramet-

ers. The configuration is specific to the modelling environment and describes what

model libraries should be used, simulation requirements in terms of speed and step
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time, and how the model should be parameterized. Finally the acceptance criteria

stipulates the required accuracy for the simulation outputs, the test range for these

outputs and the data that they should be validated against.

Marco and Cacciatori [130] highlight the importance of requirements modelling since

the functional requirements of a system add value for the end user. Another means

of collecting and sharing requirements data from various stakeholders, with the

addition of modelling the flow of requirements within a system, is to make use of

the UML/SysML use case diagrams. The use cases describe the different tasks that

a system or model will be used for, in other words it describes what functions a

system will perform in response to different uses. Additionally, these diagrams are

linked with the textual requirements descriptions.

The ability of the use case diagram to show the requirements for several alternative

decisions, gives developers a more complete picture of the systems functionality. This

property helps prevent late changes in requirements due to a misunderstanding of

the alternatives, and is particularly useful for HEV controller design where there

are multiple possible alternative flows or control decisions [130]. Pressure to get on

with modelling and produce tangible results often leads to rushing the requirements

stage. However, a lesson from systems engineering shows the costs associated with

changing requirements at later stages in the development can be excessively high

and often lead to project failure [131].

Requirements Modelling (Step 1)

Ultimately this stage of the model design process should clearly establish the scope

for the rest of the modelling activity as well as provide the model developers with a

conceptual model as shown by the example in Figure 4.11. The conceptual model, in

the form of a class diagram showing the high level system breakdown, along with any

use cases and associated documents forms the initial phase of the system analysis.

4.4.2 Physical Representation Stage

Having determined the type of model that is to be built, the second stage of the

modelling method focuses on creating the actual model in a physically representative

format. As shown in Figure 4.12, within this stage, the main life-cycle development
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Figure 4.11: Example conceptual model for HEV partitioning.

Figure 4.12: Traditional life-cycle development tasks encompassed within the phys-

ical representation stage.

tasks performed are: a lower level of system analysis, a functional model design and

finally testing and maintenance. Here the testing refers to checking the functionality

of the developed model and component classes, and maintenance refers to changes

made due to feedback from the other stages in the form of requirements changes or

model implementation issues.

This stage can be compared to an engineer creating a blueprint for a prototype

design. The activities in this stage are devised to accomplish the following four

main tasks:

• the hierarchical decomposition of the system into subsystems and components,

• the abstraction of these subsystems and components in order to determine

common base structures,

• defining the interaction between subsystems and components, and

• constructing model libraries.
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It should be noted that the remaining stages of the proposed method are developed

to take advantage of OOM languages and the features they offer. In particular,

features provided by the Modelica language standard and its implementation within

the Dymola environment. For this reason the terminology and examples used in the

remainder of this report are consistent with those employed within these environ-

ments.

The first two steps of this stage can be regarded as furthering the system analysis

to a point where initial model design can commence.

Hierarchical Decomposition (Step 2)

Figure 4.13: Flowchart for the Hierarchical Decomposition Step.

Figure 4.13 depicts the actions taken during the hierarchical decomposition step. In

this step the system analysis is taken further by performing a hierarchical decompos-

ition of the powertrain into a logical grouping of subsystems and components that

will form the model classes and objects. Defining the necessary objects and classes

is relatively simple with respect to the software domain since the actual physical

components can be used as guides. As mentioned earlier a model is an approxim-

ation of the real-world system, therefore, if the model represents the system being

modelled more closely, it is beneficial for both developers and users for building

and understanding a model. This is particularly true when modelling large complex

multi-domain systems where physically representative models of the subsystems can

be aggregated to form the overall model [132].
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Figure 4.14: Sample subset of a HEV hierarchical decomposition model.

If used together with a suitable system modelling tool such as one based on the

SysML, this decomposition can lead to a high level system representation which

shows the principle components of the system and how they relate to each other

from a hierarchical perspective [105]. An example system decomposition model

showing some of the systems of a HEV at different hierarchical levels, is seen in

Figure 4.14. The decomposition model can be navigated both horizontally, to ex-

amine the various components at a certain level, or vertically in order to explore

more detailed decompositions to component level. Further, the availability of such

a model can form an invaluable part for managing the communication of data and

knowledge at different system and subsystem levels to the necessary stakeholders as

mentioned in Section 7.2.1.

The use of decomposition models is also useful for comparing, and possibly automat-

ically generating [133, 134, 135], the many possible architectural topologies that de-

scribe how the system and subsystems are interconnected. In this research a flexible

architecture similar to the vehicle model architecture (VMA) described in [5, 136]

is used. This allows for many configuration changes through replaceable models

without making major changes to the high-level architecture. However, the direct
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comparison of different logical structures or structural design patterns, for describ-

ing the powertrain architecture falls outside the scope of this research and is not

explored further in this Thesis. The interested reader is referred to work done by

Tummescheit [76] on the use of structural design patterns in mathematical model-

ling.

Abstraction and Partial Models (Step 3)

Abstraction is then introduced within the third step of the proposed process, where

the higher the level of abstraction, the more generic the definition and therefore

the more reusable that abstraction is. However, in order to reduce development

effort and allow for larger sections of code or models to be reused, a lower level

of abstraction is required. Both experience and iterative design help the developer

to decide on an appropriate level of abstraction. An overview of the actions taken

during this step is presented in Figure 4.15.

From a practical perspective, the abstraction process is used to create partial mod-

els for common vehicle subsystems such as the chassis, wheel, brake, databus and

driveline. Referring to the definitions given in Appendix A.1, a partial model is the

modelling language equivalent to an abstract class. This abstract or partial model

will form the starting point for all variants of that particular model. For instance,

chassis models with different levels of fidelity are all constructed by completing the

partial chassis model with the relevant dynamic equations.

One particular partial model that should be created after the common or generic

vehicle subsystems have been created, is the partial vehicle model. This is a partial

model that will be extended to create the base HEV model, later in Step 6, which in

turn will be extended to create the required vehicle variants in the Implementation

stage as illustrated by the inheritance relationship shown in Figure 4.16.

A sample of the code for the partial model used to build the electrical components

with a positive and negative terminal such as resistors, capacitors or voltage sources

can be seen in Listing 4.1. At this point, all that needs to be understood from this

code is that it is a partial model definition describing the relationship between

current and voltage variables at the positive and negative pins, and with no func-

tional components within it. By means of the extends clause, a resistor component

can then inherit the OnePort class and define a resistance variable along with an
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Figure 4.15: Flowchart for the Abstraction and Partial Models Step.

equation relating this variable to the inherited current and voltage variables, thereby

describing the physics of the resistor.

The remainder of the steps in the physical representation stage deal with extending

or specializing the conventional powertrain components and partial models created

in order to develop the hybrid powertrain design.

Specify Model Architecture (Step 4)

During the “Functional Requirements” stage, the purpose of the model and required

level of fidelity for components is decided, but no vehicle topology needs to have

been specified. It may be the case that the requirements are to develop models for
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Figure 4.16: Abstraction leads to the following inheritance relationship between the

partial, base and final vehicle models.

a specific vehicle type or for investigating several HEV architectures. In either case

it is necessary to formalize the vehicle architecture to be modelled at this point. If

various powertrain architectures are to be investigated, this step should be iterated

or performed in parallel depending on time and resource constraints. At this point,

the model developer must consider what additional components and subsystems are

required in order to model the chosen type of HEV architecture. This includes new

power sources such as ultracapacitors, generators and fuel cells, as well as subsystems

for achieving the desired HEV architecture such as drivelines and powersplit devices.

Subsystem Base Models (Step 5)

Having decided on what needs to be added to the already created components and

subsystems, it is now possible to create replaceable base classes as required. As

shown in Figure 4.8, this step iterates the modelling process back to Step 3 for the

new components and subsystems specific to the selected hybrid vehicle architecture.

Additionally, at this step there is a further requirement to create the base models

for all subsystems in the HEV powertrain being modelled.

The terms base model and partial model are often used interchangeably but for the

purpose of this work, “base model” will refer to a partial model which includes a

minimum set of constants (environment) and variables (I/O signals). Base models

need not be correctly parameterized and should be used to ensure that all models
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partial model OnePort "Superclass of Components with two

electrical pins p and n"

SI.Voltage v "Voltage drop between p and n";

SI.Current i "Current flowing from p to n";

Pin p;

Pin n;

equation

v = p.v - n.v;

0 = p.i + n.i;

i = p.i;

end OnePort;

model Resistor "Ideal linear electrical resistor"

extends OnePort;

parameter SI.Resistance R=1 "Resistance";

equation

R*i = v;

end Resistor;

Code Listing 4.1: Example Modelica source code to show usage of a partial model.

built from the base model can meet a minimum set of requirements. Further, the

base model will form the the minimum constraint for replaceable models as defined

in Section 3.3. Practical examples of replaceable models are given in Chapter 5.

During the three previous steps, hierarchical abstraction was performed, partial

models were built, and the specific HEV powertrain architecture being modelled

was determined. It is now possible to create base models at this step, whereby the

minimum I/O for engine, transmission, power supply, electrical machine and other

subsystems must be determined. The main logic for separating this process from

the previous steps, is to allow for the generic modelling activities to be performed

independently and as early as possible in the design process. This promotes a dis-

tributed development process where domain experts can contribute their respective

models independently, not having to wait for HEV specific design decisions to be

taken by the organisation. Also it is likely that there is a larger knowledge base for

the conventional subsystems and as a result, prior model libraries may already have
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been developed.

HEV Base Model (Step 6)

The final step in creating a physical representation of the powertrain system is to

extend the partial vehicle model created in Step 3 into a full vehicle base model.

The vehicle base model must contain all subsystems for the chosen HEV and should

be completely connected to represent the required architecture. This is done by

instantiating the base classes, created in Step 5, within the vehicle base model and

adding any connections not present in the partial vehicle model such as connections

to the HEV specific subsystems. At this point in the design process, the model

should represent the complete vehicle system being modelled and it must contain a

minimum set of parameters in order to meet the functional requirements.

Testing and Maintenance

As mentioned at the beginning of this section, testing and maintenance tasks are

performed during this stage of the modelling method. However, this task is not

manifested as a fixed step in the process but rather forms part of the object-oriented

development philosophy as implemented in the design tasks. Specifically during the

base model development steps (5 and 6), since with object-oriented modelling each

developed class is self-standing and should be tested on completion. In particular,

all models can be tested to check that the defined variables within those models

are defined using the correct units. This can be done by making use of the Types

feature mentioned in Section 3.3.1. All variables and parameters should be defined

using specific units, such as SI unit, corresponding to their physical quantity. If this

is done, the values and units can be exported for use in external models without

ambiguity, and a simulation tool like Dymola can automatically check equations for

unit compatibility.

Further, recognizing that the base vehicle model meets the minimum functional

requirements, testing this model via simulation allows for an initial validation of

the system correctness as a whole. The model developer is encouraged to use the

simulator in order to provide varying inputs to the model and gain a better under-

standing of how the outputs correspond to the range of inputs. Since the models
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should be built in a non-causal manner, different causalities should also be tested

by setting up new simulations with different inputs and outputs defined.

Maintenance is also not a fixed step but should be carried out in a flexible man-

ner as soon as feedback from the requirements and implementation stages action

a change, so as to minimize the risk of propagating incorrect models. Managing

the risks associated with modelling errors and maintenance are discussed further in

Section 7.2.3.

4.4.3 Implementation Stage

Figure 4.17: Traditional life-cycle development tasks encompassed within the im-

plementation stage

During the implementation stage of the modelling method base model are specialized

to the desired level of fidelity and parameterized with meaningful real-world data.

The end result of this stage is an executable vehicle model that is more represent-

ative of the real vehicle than the base model and can be verified against real-word

experimental data. Referring again to the life-cycle development tasks, Figure 4.17

shows that this stage completes the design task with specialization and through the

implementation task, converts the designed model into an executable system model.

Again, testing and maintenance of all specialized models forms part of the develop-

ment process, while validation and verification is performed by simulating the final

executable HEV powertrain model.
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Following from Step 6 in Figure 4.8, all components and subsystem models at this

stage are in a form that completely describes their functionality and interaction.

The ability to instantiate all models is necessary in order to put together an execut-

able model that can be simulated. Depending on the requirements set out during

the first stage of the method, it is possible that more than one version of a com-

ponent or subsystem will have to be created. This could be due to differences in

parameterization or differences in the required model fidelity. Creation of multiple

subsystem variants is done systematically for each subsystem being modelled by

iterating Steps 7 and 8 for each variant that needs to be created.

Specialization (Step 7)

Where possible the base level models created in Step 5 are specialized to the required

degree of fidelity for a particular study to be performed on the model. Specializing

models by extending from the base models allows for the maximum reuse of previous

development effort since the structure, functionality and interface has already been

defined in the base model. However, if it is not possible to extend the base model,

then the partial model for that subsystem should be used in order to maintain a

consistent interface for all model variants. This is done since if the extension of the

base model does not change the interface to other models, this provides maximum

flexibility in modelling choices since all variants will be able to replace each other.

For the case when the base model specialization leads to a change in the interface,

this should be used as a maintenance flag indicating that the partial models defining

the interface should possibly be revised.

Packages are used to group components and models with similar levels of fidelity.

As a means of organizing the multiple variants created within the model library,

packages can be nested meaning a package can contain other packages. For this

research it was decided to use a package for energy management related studies

and another package for high fidelity related studies. An example of the package

structure within the subsystems package is shown in Figure 4.18. Only the Elec-

tricalMachines and Drivelines subsystems are shown for clarity but this structure is

followed for each subsystem where a model fidelity change is required. Alternatively,

it is possible to create top level packages representing different levels of fidelity and

within these packages have all vehicle, subsystem and component models of that

particular level of fidelity. With this approach it may be possible to change the
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Figure 4.18: Example of Energy Management and High Fidelity packages within

the ElectricalMachines and Drivelines subsystem packages.

fidelity of a simulation model in one step by redeclaring the package but this would

mean that the development and changes to any model within one package would

have to be reflected in all packages.

Managing such a library may require strict control procedures and it may lead to

increased model management effort. Batteh and Tiller [136] point out that a lib-

rary structure should balance the needs of both the developer of the library and the

end user. In [136] the proposed structure for a HEV modelling library is to create

implementation packages for each vehicle which contain the specialized and para-

meterized controllers, subsystems and components required for that specific vehicle.

The structure should promote OOM, be easy to navigate, contain parameterized

models, separate generic and implementation models [136]. The implications of

the overall modelling library structure on the model management are discussed in

Chapter 7 Section 7.1.1.

Parameterization (Step 8)

All components, subsystems and models must be correctly parameterized with mean-

ingful values so that simulation results can be validated against real-world data.

Different real-world components such as different types of battery or engine mod-
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els have different parameter values and therefore various sets of parameterizations

should be stored. This can be done in the following ways:

1. Subsystems can be parameterized at instantiation. This promotes the reuse

of the same subsystem models while multiple variants of the complete vehicle

model can be created. This approach is often used during initial investigative

modelling stages when specific parameters are not known till much later in the

design life-cycle.

2. A duplicate class can be created and parameterized with new data represent-

ative of a specific real-world counterpart. This is the approach taken in [136]

and means that there is an implementation model reflecting each component

so that future model developments can be constructed as if by choosing parts

from a catalogue. In this case parameterization must occur within the creation

of each executable model.

3. Parameter values can be linked to records in a database or data file. It is

possible to store different data records for a single model, each record having

a different set of parameter values. The benefits of this approach is easier

re-parameterization since only the name of the data file needs to be changed.

However, this approach requires more effort during model creation in making

sure all component parameters link to the database. Model maintenance is

made easier since all versions make use of one model, but there is a new

additional task of maintaining a database of meaningful and correct parameter

data. A further advantage of such a database is that there is a common data

repository that can be used and updated by all stakeholders.

Executable Model (Step 9)

Finally the full vehicle base model from Step 6 is extended by replacing the base

subsystem models with the specialized and parameterized variants created in the

previous two steps in order to produce an executable HEV powertrain model with

the desired level of fidelity.
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Testing and Validation

Once each subsystem has been specialized and parameterized, those subsystems

are tested again via simulation testing as described in the previous stage. The

complete vehicle model is tested in a similar fashion and following this, simulation

results are validated against real-world data as supplied by the various stakeholders

and as stipulated in the requirements specifications. All specialized subsystems

should also be validated against real-world data and the results documented and

stored with the model in order to aid the reuse of these models in future model

development projects. Finally, all validated subsystem and vehicle models, along

with any associated documentation and variable data, must be committed to the

model library as the final and latest version. This is done in order to simplify the

management of model reuse and maintenance as described in Section 7.1.1.
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Chapter 5

Case Study 1: LifeCar

This chapter presents a case study on the development of a powertrain model for

the LifeCar HEV. LifeCar is a lightweight hybrid vehicle powered by a fuel cell in

parallel with an ultracapacitor. The driving force of the vehicle is provided by four

electrical machines, each directly coupled to a single wheel and connected in parallel

to a common voltage bus. Further information regarding the control, modelling and

simulation of the LifeCar vehicle can be found in [26, 27, 38, 137].

The primary aim of this case study is to illustrate the use of the author’s proposed

modelling method for constructing a HEV modelling library and developing power-

train models of different fidelity levels. This case study is a good starting point

for testing the proposed method, since it is based on an actual vehicle development

effort that had recently taken place, and therefore there was an availability of know-

ledge both in terms of experience and model data. In the following sections, this

case study will be used to demonstrate the application of the proposed modelling

method as used in developing a HEV powertrain model library, showing the various

modelling stages and steps taken until an executable model meeting a stated set of

requirements is achieved. Further, some pitfalls and observations made during this

process will be discussed.
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5.1 Requirements Analysis

As stated previously in Section 4.4, the first stage in the development process is that

of determining and communicating the Functional Requirements. This is arguably

the most crucial stage, as it is considered the root cause of most development prob-

lems [138, 139]. That is to say, having a good understanding of who is going to be

using the model, how they are going to be using it, and what their expectations from

the model will be, is of vital importance in minimizing the possible errors and poten-

tially the number of rebuild iterations required during the subsequent development

stages.

The main objective of this study is to design a powertrain library with reusability

and extendibility in mind, with the scope of exploring multiple designs reusing most

of the underlying components and subsystems. In the case of LifeCar, two variations

or instances of the base powertrain model are developed, one based on lower fidel-

ity subsystems for performing energy management studies and another using higher

fidelity subsystems for investigating phenomena such as tyre-slip. No real-time sim-

ulations were required for this initial investigation of the LifeCar powertrain. Since

developing models for real-time and HIL applications form an important part of

HEV modelling and development, especially if there is an aim to reduce the costs of

prototyping, future work in this area is recommended as mentioned in Section 8.1.

In the first instance a powertrain model is needed that can be executed fast enough

to perform drive cycle analyses of parameters such as the ultracapacitor state of

charge (SOC) and hydrogen fuel cell efficiency. As mentioned in Section 2.4.4, for

this type of model the focus is on determining the energy flow dynamics using quasi-

static models and therefore an integration step size in the order of 10 ms− 100 ms

is typically acceptable. Ultimately this type of model will be used to test an energy

management control strategy and perform parameter optimisation tests. Therefore

the model complexity and frequency range should be low enough to allow for multiple

runs over both legislative and real-world drive cycles which have durations over

1000 s.

The second powertrain model is to be used to investigate transient torques in the

vehicle powertrain, specifically through tip-in and tip-out manoeuvres in order to

examine their effect on the acceleration of the vehicle. Additionally, the chassis and

tyre subsystem fidelity is increased in order to investigate the effect of tyre-slip on
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the longitudinal dynamics of the vehicle. Once again, as mentioned in Section 2.4.4,

this type of model is typically used to investigate much higher frequency transient

dynamics such as power electronics switching losses and driveline vibrations. There-

fore, smaller integration step sizes below 1 ms are required and simulation tests are

in the order of several seconds.

As discussed in Section 4.4.1, the requirements analysis phase of any system design

process is a lengthy, iterative process involving discussions between all stakeholders,

including management, developers and end users. Management of this process is

vital in order to complete the project in a timely and efficient manner, since it allows

the various domain experts to voice their concerns and should ultimately lead to a

consensus between all stakeholders as to the final deliverables of the project. The

issue of stakeholder communication is discussed further in Chapter 7, Section 7.2.1.

5.2 Physical Modelling

The modelling activity begins with the Physical Representation stage of the proposed

modelling method. It is in this stage that the requirements are analysed from a

design viewpoint and the developer considers how these requirements are to be

enforced. The following subsections describe how the modelling steps described in

Section 4.4.2 are performed for the LifeCar model. It is worth noting that some of

the activities from the proposed method steps have been combined, for instance the

abstraction process is described together with the decomposition activity of Step 2.

This is done since the actions involved in these two activities follow one another

naturally. Also, there is no separate step for specifying the model architecture,

since the vehicle topology for this case study is known.

5.2.1 Hierarchical Decomposition and Abstraction

In Section 4.4.2, steps 2 and 3 of the method call for decomposing and abstract-

ing the target model design into a set of subsystems and components that can be

aggregated to form a complete model description. Initially, the focus is placed on

common subsystems that are likely to form part of all vehicle architectures. In the

case of the LifeCar modelling exercise, a HEV modelling library is constructed by
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firstly including more generic vehicle subsystems such as chassis, wheels and brakes.

Following this, the more specific HEV subsystems required to construct the LifeCar

powertrain, such as the power supplies and electrical machines, are then added.

Not all the required subsystems are built specifically for the HEV modelling lib-

rary, since use is made of the freely available VehicleInterfaces [140] library

and two commercial libraries, namely the PowerTrain [141] and SmartElec-

tricDrives (SED) [142] libraries.

• The VehicleInterfaces library defines standard interfaces for vehicle and

subsystem models with the intention of promoting compatibility between dif-

ferent automotive libraries.

• The PowerTrain library extends from the VehicleInterfaces library and

provides components and subsystems for modelling the rotational mechanics of

conventional powertrains and specifically focuses on modelling losses in gears

and flexible shafts. Additionally, basic components for modelling the vehicle

longitudinal dynamics, such as vehicle drag and chassis weight transfer models,

are provided.

• The SED library provides components and models for modelling electric drive

applications. This includes basic models for various DC power sources such

as batteries, ultracapacitors and fuel cells; ideal switching and power balance

power electronic converters for AC and DC applications; and various electrical

machine models such as induction motors, synchronous motors and permanent

magnet DC motors with integrated power electronics and control.

Further information on these libraries, along with the Modelica standard library,

can be found in [84, 140, 141, 142].

In theory, since all models in these libraries are based on components from the

freely available Modelica library of standard components, which is maintained by

the Modelica Association, compatibility between libraries should be ensured. When

the Modelica library version is updated, the modelling software is able to automat-

ically update components to their most recent version. However, when proprietary

components and models are created or code hiding features are used to protect intel-

lectual property as discussed in Section 7.1.3, this type of automatic model updating

is not possible. In this case it is up to the library developer to ensure that the library
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models are kept up to date and compatible with the most current version of the mod-

elling software. Since object-oriented programming requires that models or classes

be self-standing or encapsulated, it is only the interface or connection to other mod-

els that really needs to be compatible. One way of ensuring this compatibility is to

enforce the use of standard Modelica connectors. Another means for different sim-

ulation packages to ensured model compatibility is by incorporating standards such

as the Functional Mock-up Interface (FMI) for Model Exchange [143], as discussed

in Chapter 7 Section 7.2.2. The FMI defines a standardized interface for exchanging

models as Functional Mock-up Units (FMUs). FMUs contain a minimum of the

model equations, in C source or binary format, a separate variable definition file

and optional resources such as icons and help files.

The abstraction process calls for breaking down the powertrain into its constituent

subsystems, while trying to use as many generic subsystems from conventional ICE

powertrain models as possible. This is because the models for conventional ICE

vehicle subsystems are already tried, tested and reused in several designs. Thereby

increasing design flexibility and reducing both the model validation time and the risk

of modelling error through model reuse [144, 145]. For example, when developing

an prototype HEV model, a chassis model that has been developed, tested and

validated for a specific existing vehicle platform can be reused in a HEV model with

new paramterization. This re-parameterized model will then require only a reduced

amount of testing since its functionality has already been established.

Figure 5.1 shows the subsystem level abstraction of the HEV powertrain subsystems

in the form of a hierarchical aggregation diagram. For each subsystem where there

is no existing library model, such as those unique to the particular HEV design, the

subsystem must be further abstracted into common components. Once identified,

these subsystem models and their constituent component models are used to build

a library of partial models. These partial models are, in turn, reused through in-

heritance and extension to build base models and several complete specialized and

executable models. In the case of LifeCar, it was possible to make use of existing

chassis and brake models from the conventional vehicle powertrain library. The HEV

specific subsystems identified are those of electrical machines, power supplies and

the driveline subsystem. The driveline model is specific to the LifeCar architecture

since the vehicle does not make use of a differential and each wheel is individually

driven by a separate electrical machine.
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Figure 5.1: Class aggregation diagram showing subsystem abstraction of HEV

powertrain.

In terms of connecting the identified subsystems to each other, no new connection

types need to be defined. With reference to the model structuring features listed

in Section 3.3.1, the predefined Modelica connection types used are described as

follows:

1. Flanges (rotational) – for connecting rotational mechanical components such

as shafts and gears. This connector defines a variable of type “torque” as the

flow variable that will sum to zero at this connection, and a variable of type

“angle” as the across or effort that will be equal at this connection. Torques

of all components with a joined flange connector will then be summed to zero

during translation and the rotation angle for each component will be equal at

that connection point. Further the absolute angular velocity at the flange can

be determined by differentiating the rotation angle.

2. Flanges (translational) – for connecting translational mechanical components

such as masses and springs. This connector defines a variable of type “force”

as the flow variable that will sum to zero at this connection, and a variable of

type “position” as the across or effort that will be equal at this connection.

Forces of all components with a joined flange connector will then be summed

to zero and the position for each component will be equal at that connection

point. Further the longitudinal velocity at the flange can be determined by

differentiating the absolute position of the flange.

3. Pins – for connecting electrical components. This connector defines a variable

of type “current” as the flow variable that will sum to zero at this connection,

and a variable of type “voltage” as the across or effort that will be equal
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at this connection. This ensures that Kirchhoff’s current law can then be

automatically applied at each electrical node and that the electrical potential

is the same for each connected component at that point.

4. Input and Output – these are causal connectors used for defining continuous

input or output signals. Typically used for logic and mathematical blocks

where the signals are either real, integer or boolean. In this case a connector

is defined as being either for input or for output and like connectors cannot be

connected to each other. In other words, an input connector can only connect

to an output connector and not another input.

5. SignalBus (or controlBus) – for passing various signal types between subsys-

tems. This connector does not model a physical connection and thus does not

equate any variables. The controlBus connection is used to allow easy access

to all sensor and actuator signals used within the subsystem models and also to

simplify the process of defining inputs and outputs when exporting the model

to an external environment. Signals are placed on and taken off the controlBus

by means of the causal input and output connectors. Further this connector

is hierarchical and can therefore contain sub controlBus connectors, for ex-

ample the power supply subsystem model may contain a controlBus called

“powerSupplyBus” which is connected to the top level controlBus. Preserving

this hierarchy makes it easier to distinguish between the different signals that

are placed on the bus and helps prevent name clashes between similar sensor

signals.

Making use of a standard set of defined connectors in all developed models ensures

that it is not possible to incorrectly connect subsystem models since connector defin-

itions must match in order to equate the variables. This variable type checking can

be performed by the development environment without the need to translate or

compile the model. Additionally, the type definitions can specify the units for the

connection variables, which enables automated consistency checking in the defined

model equations that these variables are passed to.
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5.2.2 Partial Model Design for Common Vehicle Subsys-

tems

Following on from the decomposition and abstraction, the next part of the modelling

activity is to create partial models for the defined subsystems according to the

process illustrated in Figure 4.15. A partial model needs only to define how that

model should interface with other models and not any internal parameters, causal

functions or acausal equations. In this way the same partial model can be used to

develop various implementations of the same subsystem, for example where each

defines a specific level of fidelity.

The driveline, chassis and brake subsystem models all make use of a common partial

model for a two axle vehicle that defines connections to four wheel hubs via flange

connectors and a data sharing connection via an empty controlBus connector as

shown in Figure 5.2(a). Since all the available driveline models in the conventional

vehicle libraries make use of a single torque input and do not allow for individually

powered wheels, it was necessary to create a new partial driveline model specific

to the LifeCar vehicle. This is done by inheriting the two axle model and adding

two additional flanges to allow for dual torque input connections as shown by the

transmissionFlanges in Figure 5.2(b).

Even though the LifeCar requirements are for four driven wheels, a two input par-

tial model rather than a four input partial model was chosen, as this provides more

design flexibility. For example if it was decided to investigate a different HEV archi-

tecture such as a “through-the-road” hybrid with individually powered front wheels

and a separately powered rear axle with a conventional driveline and differential.

Four individually driven wheels can be achieved by using two of these dual input

driveline models in parallel or extending the two input model with a further two

flanges. Further, the dual input model can be used for developing partial two wheel

drive powertrain architectures which can then be inherited as the base model for

developing a four wheel drive powertrain.

Combining the common partial subsystems into a partial vehicle model is important

as this forms the starting point for all future powertrain designs. The partial vehicle

model is constructed using partial subsystem models, with each subsystem being

defined as replaceable. In this way any subsystem implementation designed at a

later stage can be used to complete the final powertrain model. Figure 5.3 shows
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(a) Partial model for two axle vehicle

(b) LifeCar driveline partial model

Figure 5.2: Partial models for (a) two axle vehicle subsystems and (b) the dual input

driveline subsystem for LifeCar.
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the partial vehicle model, where the red “NO” symbol (�) on each subsystem model

simply indicates that it too is a partial model and not executable.

Figure 5.3: Partial vehicle model

This partial vehicle model essentially follows the example set in the VehicleInter-

faces library with the exception of a driver environment. It was decided to omit a

driver environment from the partial vehicle model in order to allow for fully func-

tional plant models to be developed independently from driver and other high level

controller models. Separating the physical plant design from the controller design

allows the development of base level models to focus on physical functionality so

that initial concept studies can take place using existing or modified controller mod-

els. Further, if the plant model is to be exported for Simulink based controller tests

or HIL tests, a plant model that can be easily separated from the control functions

provided by the external tools is preferable.

Additionally the three models world, road and atmosphere are used for defining

typical constants that may be required for the physics based calculations used in

the completed models. For the purposes of this work, the world model defines a

coordinate system and gravitational constant necessary for determining resultant

forces affecting the longitudinal vehicle dynamics; the road model defines the road

friction coefficient that can be used with higher fidelity tyre models; and the atmo-

sphere model defines the temperature, humidity, ambient pressure and wind velocity

that are used with car resistance models in order to calculate drag forces and with
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high fidelity thermal loss models.

The relevant code that describes the partial vehicle model is shown in Listing 5.1.

Here it can be seen that the model class is defined using the keyword partial

signifying that this model is an incomplete model and cannot be executed, it can

only be used as a building block for other models through inheritance. Also all

instances of the subsystem within this partial model are defined using the keyword

replaceable so that they can be easily replaced with another version of the required

fidelity when the base model and executable models are constructed. An instance

of a controlBus connector is also defined in the partial model so that all subsystem

models can connect their controlBus connectors and share the data that they place

on the bus. Finally the equation section of the partial model definition contains only

connect statements which define the interaction between connected components. In

this case, the controlBus connections simply mean that any signals connected to

the controlBus connectors within the model will share that data on the top level

signal bus, and the wheelHub connections define the physical relation through the

connected rotational flanges of the driveline, chassis and brake subsystem models.

In other words, the rotation angle is equal and the torques sum to zero at each

wheelHub connection point.
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partial model PartialVehicle_NoDriver

"partial model for 4 wheeled vehicle without driver environment";

replaceable VehicleInterfaces.Chassis.NoChassis chassis

"Chassis subsystem";

replaceable VehicleInterfaces.Drivelines.NoDriveline driveline

"Driveline subsystem";

replaceable VehicleInterfaces.Brakes.NoBrakes brakes

"Brakes subsystem";

inner replaceable VehicleInterfaces.Roads.FlatRoad road

"Road model";

inner replaceable VehicleInterfaces.ConstantAtmosphere atmosphere

"Atmospheric model";

inner replaceable Modelica.Mechanics.MultiBody.World world

"Global co-ordinate system";

VehicleInterfaces.Interfaces.ControlBus controlBus

"Control bus connector";

equation

connect(controlBus, driveline.controlBus);

connect(controlBus, chassis.controlBus);

connect(controlBus, brakes.controlBus);

connect(driveline.wheelHub_1, chassis.wheelHub_1);

connect(driveline.wheelHub_2, chassis.wheelHub_2);

connect(driveline.wheelHub_3, chassis.wheelHub_3);

connect(driveline.wheelHub_4, chassis.wheelHub_4);

connect(chassis.wheelHub_1, brakes.wheelHub_1);

connect(chassis.wheelHub_2, brakes.wheelHub_2);

connect(chassis.wheelHub_3, brakes.wheelHub_3);

connect(chassis.wheelHub_4, brakes.wheelHub_4);

end PartialVehicle_NoDriver;

Code Listing 5.1: Modelica code for partial vehicle model.
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5.2.3 Partial Model Design for Hybrid Vehicle Subsystems

Recalling that Step 5 in Section 4.4.2 requires a repeat of the partial model develop-

ment in Step 3 for HEV specific subsystems, this task is performed before any base

model development occurs. When there are multiple developers, it is possible to do

this activity in parallel with the base model development for the common vehicle

subsystems.

In order to complete the powertrain architecture for the LifeCar vehicle, two more

subsystems are needed in the HEV model library. Firstly electrical machines are

required to drive the vehicle and secondly a power source for these machines is

required. Partial models for these subsystems must first be defined before proceeding

to implement any base models even if there are models readily available from existing

specialized libraries. The reason for this is that the partial model is what ensures

compatibility and will form the basis of new models should the available ones not

be appropriate.

Electrical Machines

The LifeCar architecture includes four axial flux permanent magnet (AFPM) ma-

chines. This type of electrical machine has the benefit of being light weight, compact

and having a higher torque density and efficiency than equivalent radial flux ma-

chines [146]. As mentioned previously, the SED library contains several commercial

off-the-shelf (COTS) models of different electrical machines.

However, it was found that this commercial library was not up-to-date with the

latest revisions of the other vehicle modelling packages being used. Consequently,

the connectors being used by the SED library models were not compatible with those

used in the conventional vehicle subsystem models. Figure 5.4 shows the new partial

model that was constructed in order to avoid connector compatibility issues between

the different component libraries and enable the use of the SED machine models.

This new model defines a data bus connection, positive and negative power terminals

and an updated version of the torque flange connector that can be connected to the

transmission flanges in the driveline model.

Boehm and Abts [147] points out that the user has no control over the performance,

functionality and evolution of COTS products and if that functionality is modi-
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Figure 5.4: Partial model used for encapsulating electrical machine models

fied by the user, the maintenance effort is then transferred to the user. Further,

the use of COTS packages requires a flexible development method that allows for

risk assessment through prototyping since the capabilities of COTS software are

not easily changed to meet requirements and therefore the requirements may need

changing [147]. Garlan et al. [148] describe a software development effort where four

separate COTS packages are used to produce a new development environment. Ul-

timately the study shows that the time and effort involved in resolving mismatches

between the products caused a two-man half-year project to become a five-man two-

year project. Working with several different commercial or free packages involves

certain risks and trade-offs which can be both costly and time consuming if not con-

sidered carefully [147]. The advantages and disadvantages of using COTS libraries

is discussed further in in Section 5.4.

One way to avoid this problem is for developers to make a practice of using a stand-

ard and maintained repository for partial models such as the one provided freely

by Modelica whenever creating interfaces. Additionally, model developers making

use of this library could also submit any new or improved connectors and partial

models created for specific application domains so that these can be incorporated

into the standard library. Following such a procedure will increase the likelihood
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of compatibility between models from libraries developed by third parties. Further,

by maintaining and updating this single freely available library it is possible to en-

sure all developers have access to the latest basic components and interfaces. Such

systems exist in the open source community and make use of online development

resources such as SourceForge.net to manage and communicate the many changes to

the developed code. SourceForge, for example, hosts over 260 000 software projects

and has a community of 2.7 million developers [149].

Electrical Power Supplies

As for the power supply, LifeCar makes use of a hybrid supply consisting of a fuel

cell in parallel with an ultracapacitor in order to provide a 400 V voltage bus which

supplies the four electrical machines. Although a fuel cell model was available in the

existing libraries, it was found impractical to use this model as it required specific

parameters which were not known about the fuel cell being used such as partial

pressures of the gasses and temperatures. If the only available model has a higher

complexity than required, it may be necessary to create a new model. This particular

issue can be one of the drawbacks of using models from pre-built libraries.

Availability of pre-parameterized models provides a non specialist user with the

opportunity to use a specialized model in order to get some meaningful initial results.

This is particularly valuable when designing a complex system with many possible

conceptual designs that need to be considered and compared in a timely fashion such

as in the field of HEV design. Although there are benefits from the use of shared

libraries with readily available functionality, it is also possible that the functionality

provided is more than required and leads to performance and usability issues [147].

This can be due to the shared libraries being produced for specialist applications in a

particular domain or requiring the user to have advanced knowledge of the particular

system. This means that models in these libraries may require specialized knowledge

in order to correctly parameterize them, as was the case with the available SED

library fuel cell model which was not used in the LifeCar design. In the modelling

domain the use of such third party models can lead to unnecessary complexity being

included in the model which can lead to stiff models and unreasonably long execution

times. Having said this, it is possible to make use of such models if:

1. the library is accompanied by sufficient documentation on the usage of the
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model, and more importantly,

2. the library provides parameterized variants of each model that represent actual

components that are commonly used. For example a parameterized battery

model of a particular type of battery technology such as lithium-ion.

Only a single generic partial model was required in order to construct a modular

power supply consisting of fuel cell subsystem and an ultracapacitor subsystem.

This is because each subsystem is a also a power supply. The general requirements

for an electrical power supply’s connections are “Pin” connectors for the positive

and negative electrical terminals and a “controlBus” connector for sharing data and

parameters that might be required by controllers such as current and voltage read-

ings. The power supply partial model used for creating the fuel cell, ultracapacitor

and the hybrid power supply is shown in Figure 5.5.

Figure 5.5: Partial model for power supplies

5.2.4 Base Model Development: Subsystems and Vehicle

It is now possible, within the defined process, to complete Step 5 by developing

all required subsystem base models and then conclude the Physical Representation
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stage of the modelling method with the construction of the complete HEV base

model. Base models are built by either inheriting the partial model and building

onto it by instantiating the required components, or by inheriting an existing base

model and extending its functionality as could be done to increase the fidelity of

the previous base model. This step in the development process is typically iterated

several times while developing and testing different subsystem models. For example,

during the final implementation stage of the model development, any specialization

of models implies a return to this step in the process.

Mechanical Subsystems

Starting with the mechanical subsystems, it was necessary to select or develop ex-

ecutable models for the driveline, chassis and brake subsystem, remembering that

a low fidelity model is suitable at this stage since the primary purpose is to define

functionality.

Figure 5.6: Base driveline subsystem model for individually driven front wheels.

To create a working base model of the driveline, an ideal gear is connected between

the input flanges and outputs to the wheels. In this case two base models were

created, one for front wheel connections as shown in Figure 5.6 and one for the
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rear wheels. The addition of the ideal gear makes the base model executable by

relating the angle and torque at the input flanges to those at the outputs through

the following equations:

igear = φin/φout (5.1)

0 = igear τin + τout (5.2)

where: igear is the gear ratio, φ is the rotation angle, and τ is the torque.

The ideal gear does not model inertia, elasticity, damping or backlash but this is

suitable for a base model since the main aim is to provide an initial functional

base from which further development can occur. During the specialization phase of

the design, the fidelity of base models can be increased in order to account for the

desired physical attributes. Since separate driveline models are used for the front

and rear wheels, a constant zero torque is applied to the unconnected wheel hubs for

completeness. Mathematically this has no implication since torques at a common

connection sum to zero but this does have the benefit of allowing a potential user of

this model to see that it is a complete model and not one with missing components.

Figure 5.7: Free body diagram showing translational forces acting on vehicle mass.

For the chassis base model, a simple lumped chassis model with no weight transfer

effects is selected from the PowerTrain library. A resistance model is used to

calculate the one dimensional translational movement of the vehicle mass as shown

by the free body diagram in Figure 5.7. The resistance model takes the aerody-

namic drag force (FAD) and rolling resistance (FRR) into account according to equa-

tions (5.3)–(5.5). The minimum inputs required by the conventional resistance force

model to solve for the net force on the vehicle are; the aerodynamic drag (Cw) and
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rolling resistance (µroll) coefficients, vehicle mass (mv) and vehicle frontal area (Af ).

FRR = mv g µroll (5.3)

FAD = 0.5 ρa Cw Af v
2 (5.4)

FTR =
τ TR

rw
(5.5)

where: ρa is the density of air, v is the vehicle velocity, FTR is the tractive force,

τ TR is the tractive torque and rw is the wheel radius.

Additionally the chassis model contains four constant radius wheel models with no

tyre slip, which relate the rotational torque and velocity quantities to linear quant-

ities of force and distance via the wheel radius and wheel inertia (Jw). Since there is

no weight transfer in the chassis model, each wheel receives an equal proportion of

the tractive force from the chassis model. During specialization this model can be

replaced with models having linear or non-linear tyre slip characteristics as is shown

in Section 5.3.3.

Finally a minimal brake model was added that scales the brake pedal position by a

combined maximum braking torque for all four wheels and splits this proportionally

between the four wheels. Once again this is suitable for the base model as this

functionality will be replaced at a later stage depending on the specific needs for

the model. For example, the need to maintain the required level of brake balance

between front and rear wheels. This model also requires an input from a driver or

other controller model to specify the brake pedal position, which needs to be placed

on the “controlBus” before the model can be executed.

Electrical Subsystems

As mentioned earlier, the LifeCar makes use of AFPM machines which are ideal for

HEV applications where weight and size can be critical constraining factors. Marco

et al. [26] show that these AFPM machines can be modelled as an equivalent torque-

controlled DC machine. The following physical equations are used to describe the

basic DC machine model:

Va = kφ ωm + Ra Ia + La İa (5.6)

τm = kφ Ia (5.7)

Jr ω̇m = τm (5.8)
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where: kφ is the torque constant, τm is the machine torque and the remainder of the

variables are defined in Table 5.1. The minimum set of parameters required in order

to parameterize this DC machine model are those listed in Table 5.1. Notice that

the torque constant is not supplied as a parameter input to the model, but rather

it is calculated within the model. This is done by considering equation (5.6) under

steady state conditions, where İa = 0, giving equation (5.9).

kφ =
Va − Ra Ia

ωm
(5.9)

Table 5.1: Minimum parameters for DC machine model.

Variable Description Unit

Jr rotor’s moment of inertia [kg.m2]

Va nominal armature voltage [V]

Ia nominal armature current [A]

ωm nominal speed [rad.s−1]

Ra warm armature resistance [Ω ]

La armature inductance [H]

Figure 5.8 shows the base model developed by extending the partial model with

a basic DC machine. Essentially the partial model is used as a “wrapper” for

encapsulating the existing DC machine library models and connecting them to the

other subsystem models. The minimum input variables defined by the basic DC

machine model are those required to solve equations (5.6)–(5.8) at steady state.

These parameter values are typically given on the nameplate of all DC machines

and are listed in Table 5.1. The base model does not make use of the “controlBus”

connector since the basic machine does not incorporate any power electronic drives

or controllers, but the connection is made available in the partial model for the

torque and speed controlled machine variants provided in the SED library.

The last subsystem base models to be discussed are the power supply models. The

battery and ultracapacitor models used in this study are based on a reduced order

equivalent circuit model of LifeCar power supply presented and verified in [137].

Marco and Vaughan [137] show that an accurate high fidelity model of the fuel cell,

boost converter and ultracapacitor power supply can be represented as a reduced

order resistor-capacitor network. The fidelity of the overall power supply model is
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Figure 5.8: Base model for DC machine subsystem

then reduced in order to facilitate controller design by reducing the simulation time

required for multiple drive cycle tests.

Firstly a base fuel cell model was built as an equivalent circuit model comprising of

a constant voltage source and series resistance. The minimum parameters required

for this model were therefore the number of cells, cell voltage and total fuel cell

resistance. Next the base ultracapacitor was simply modelled as a capacitor with

the option of specifying the starting voltage of the capacitor. Following this a

modular power supply base model was created by connecting instances of these

fuel cell and ultracapacitor models with a “boost” converter model from the SED

library as can be seen in Figure 5.9. The DC/DC “boost” converter from the SED

library was used to boost the fuel cell voltage to the ultracapacitor bus voltage by

means of a reference voltage Vboost. This setpoint voltage of the bus is determined

in the “voltageBoostLogic” component by means of a lookup table based on the

vehicle speed. This is done in order to maximize the benefit of the ultracapacitor

by equating its storage energy with the kinetic energy of the vehicle according to

equation (5.10). In this way the ultracapacitor will have maximum storage potential

when the vehicle speed is high and a braking event is likely, and will be fully charged
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when the vehicle speed is low and an acceleration event is likely.

1

2
C (Vmax − Vboost)

2 =
1

2
mv v

2

Vboost =

√
V2

max −
mv v2

C
(5.10)

where: C is the capacitance of the ultracapacitor, Vmax is the maximum bus voltage

of 400 V and Vboost is the reference voltage for the ultracapacitor.

Figure 5.9: Modular power supply model for LifeCar with fuel cell, boost converter

and ultracapacitor.

Additionally the fuel cell and ultracapacitor models are made replaceable so as

to provide design flexibility in choosing different energy source and energy storage

models. Designing the power supply in a modular way, as opposed to a single

equivalent circuit model, allows for more reusable subsystem models to be added to

the library for future designs. Further, this approach also provides more flexibility

to the existing powertrain model for exploring alternate electrical architectures as

demonstrated in Chapter 6.
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Complete HEV Powertrain

At this point in the modelling activity the final step of the Physical Representation

stage described in Section 4.4.2 is reached. The developed HEV modelling library

contains enough subsystems to define a base model which represents the complete

powertrain architecture for LifeCar. This is done by inheriting the partial vehicle

model, replacing the partial models of the common subsystems with base models

and then aggregating the new hybrid subsystem by adding instances of the base

models as illustrated in Figure 5.10. Specifically, four instances of the base DC

machine models and an instance of the hybrid power supply model are added.

Figure 5.10: Class diagram showing LifeCar base model structure

It is important at this stage to ensure that the newly added components are all

made replaceable so that the base model can be used as a parent class for further

specialization. With reference to Listing 5.2, the line starting with the keyword

extends shows how the LifeCar base model is formed by inheriting the partial

vehicle model and replacing its empty subsystems with base subsystems using the

keywords redeclare replaceable. The powertrain base model is then completed

by instantiating the remaining subsystems as replaceable models, namely the elec-

trical machines, a driveline for the front wheels and a powersupply.
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model LC_BaseModel

"Powertrain base model for LifeCar"

extends HEV_Modelling.PartialModels.Vehicle.PartialVehicle_NoDriver(

redeclare replaceable BaseSubsystems.Drivlines...

...Driveline_IRD_Ideal driveline,

redeclare replaceable PowerTrain.Chassis...

...ResistConventionalRconst chassis,

redeclare replaceable VehicleInterfaces.Brakes...

...MinimalBrakes brakes);

replaceable HEV_Modelling.BaseSubsystems.PowerSupplies powerSupply

"Hybrid supply with Fuel Cell, Boost Converter and Ultracapacitor";

replaceable BaseSubsystems.Drivlines.Driveline_IFD_Ideal frontWheels

"Driveline subsystem for front wheels";

replaceable BaseSubsystems.ElectricalMachines.DCMachine_Plain rearR

"Permanent magnet DC machine";

replaceable BaseSubsystems.ElectricalMachines.DCMachine_Plain rearL

"Permanent magnet DC machine";

replaceable BaseSubsystems.ElectricalMachines.DCMachine_Plain frontR

"Permanent magnet DC machine";

replaceable BaseSubsystems.ElectricalMachines.DCMachine_Plain frontL

"Permanent magnet DC machine";

equation

[connect statements]

end LC_BaseModel;

Code Listing 5.2: Modelica code for LifeCar powertrain base model.

The final base model for LifeCar is represented in Figure 5.11. As mentioned in

Section 5.2.2, a driver model is not included in the base model in order to develop

a plant model independently from controller functions. Further, not including a

driver model at this stage makes it simpler for powertrain models developed through

inheritance of the base model to be used for co-simulation and HIL studies where

the external software and hardware will inherently provide the control functions. As

is discussed in Section 5.3, the base model will then be extended by adding a driver

model in order to create the executable models during the Implementation stage of
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the modelling method.

Figure 5.11: Base model for the LifeCar powertrain.

5.3 Executable Model

The final stage in the modelling method is the Implementation stage. During this

stage new subsystem models are created, or existing subsystem models are extended,

wherever more detail is required in order to meet the modelling objectives. These

new subsystems are stored within the subsystem structure in a separate package

denoting their level of complexity. As discussed in Section 4.4.3, there are different

ways to configure a model library and it should be convenient for both the de-

veloper of the library and the end users. For this case study, an EnergyManagement

and a HiFidelity package were added within the subsystem packages where further

specialization was performed, such as in the “Drivelines” and “ElectricalMachines”

packages. The same package structure was used again in the “LifeCar” powertrain

package for specialized versions of the complete vehicle powertrain model. The struc-

ture of the packages within the model library are shown in Figure 5.12. The library
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structure was chosen in order to make future use and development more intuitive

by enabling users to search for models in a similar fashion to locating a compon-

ent in a catalogue. In other words the highest level is arranged by subsystems and

within each subsystem package are the various specializations of that subsystem.

Section 7.1.1 looks at the rational for choosing and managing a library structure in

more detail.

Figure 5.12: Tree list showing package structure within the model library.
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5.3.1 Energy Management Model Specialization

Driveline

Firstly the base driveline models were specialized by replacing the ideal gears,

between the transmission and wheel flanges, with gear models from the Model-

ica library that incorporate mesh efficiency due to friction in the gear teeth and

bearing friction losses as shown in Figure 5.13. This allows the user to specify a

table of mesh efficiency (ηmesh) and friction torque (τfriction) variables for different

input shaft speeds. For a more detailed explanation of how this is implemented in

Modelica code please refer to the Modelica Standard Library documentation [150].

These variables are then used to implement the following torque balance equation:

− τout = igear (ηmeshτin − τfriction) (5.11)

where: igear is the gear ratio.

Figure 5.13: Driveline subsystem specialized for energy management.

Since the bearing losses and mesh efficiency for the used gears was not know, the

model was parameterized with an overall gearbox efficiency of 90%. The overall

efficiency is a commonly cited efficiency value in gearbox catalogues which describes

the ratio of output power over input power [151].
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Power Supply

Figure 5.14: Model for calculating the air, hydrogen and total power usage of the

fuel cell.

The only change made to the hybrid power supply model was to add the balance

of plant model shown in Figure 5.14 within the fuel cell model. The balance of

plant in this case refers to the inlet air compressor for the fuel cell which places an

increased power demand on the fuel cell. This model takes that additional power

demand into account when calculating the hydrogen consumption of the fuel cell.

As can be seen in Figure 5.14, the model makes use of the “powerSupplyBus” which

is a SignalBus connector used by the power supplies to place shared data onto

the common “controlBus”. Current and voltage readings from the fuel cell model

are taken from the data bus and used to calculate the air mass flow rate (MFair),

hydrogen mass flow rate (MFH2), hydrogen mass (mH2) and total fuel cell power

usage (Pfctotal) by implementing equations (5.12)–(5.15).

MFair = 3.57× 10−7 λA

(
Pfcnet

Vcell

)
(5.12)

Pfctotal = Pfcnet + Pcomp (5.13)

MFH2 = 1.05× 10−8λH

(
Pfctotal

Vcell

)
(5.14)

mH2 =

∫
MFH2 (5.15)
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where: λA and λH are the stoichiometry scaling factors for air and hydrogen re-

spectively, Pcomp is the power required to drive the fuel cell compressor and Pfcnet is

the product of the fuel cell current and voltage.

A detailed description of the derivations of these equations can be found in [152].

Electrical Machines

As mentioned earlier, the SED library was used to provide the electrical machine

models. For the energy management application, the simple DC machine in the

base model was replaced by a controlled quasi-static DC machine. The quasi-static

model neglects transients electrical effects caused by the machines inductances, since

inductances have inertial effects on currents, in order to allow for faster simula-

tion [142]. Unfortunately, it was not possible to examine the detailed construction

or underlying code of this quasi-static DC machine in order to see how this model

simplification was implemented. Once again this is an issue that relates to the use of

COTS models and the protecting of intellectual property as discussed in Chapter 7.

This type of model was selected for the energy management specialization since the

long term energy consumption over one or more drive cycles is of primary concern.

Therefore, it is suitable to ignore the fast electrical transients which have minimal in-

fluence on the electrical machines power usage, and allow for faster simulation [153].

Further, this model implements a simplified control strategy based on the physical

system equations of the DC machine given in equations (5.6)–(5.8). Therefore this

model can be used in the LifeCar powertrain model as a torque controlled device.

Powertrain

Following from this, the complete executable LifeCar energy management powertrain

model shown in Figure 5.15 is developed. This is done by inheriting the base vehicle

model shown in Figure 5.11 and replacing the base subsystem models with the newly

created energy management subsystems. The chassis and brake models defined in

the base model were not replaced as they were deemed suitable for this purpose.

Further additions made to the model in order to make it executable included:

• a proportional-integral controller based driver model capable of providing ac-
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celerator and brake signals for predefined drive cycles was selected from the

PowerTrain library, and

• a torque reference input for the DC machine controller calculated by scaling

the accelerator signal by the maximum machine torque.

Figure 5.15: Executable energy management model of LifeCar

5.3.2 Energy Management Model Validation Tests

As stated in the introduction to this chapter, the main purpose of this case study

is to test the modelling method and not to support the LifeCar design activity. In

that light, the following validation tests were performed in order to establish that the

models created were in fact feasible plant models with reasonable results. This was

done in three ways; simulating the model over a drive cycle in the Dymola simulator,

porting the powertrain plant model into Simulink to perform a drive cycle test with

an existing energy management controller, and finally comparing the Dymola plant

results with an existing validated Simulink model of LifeCar. The existing Simulink

model was previously validated against experimental data, as described in [26, 38].
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Simulation Tests in Dymola Environment

The first part of the model validation involves testing the LifeCar energy manage-

ment model within the Dymola environment in order to asses if the results are

mathematically correct and to verify that there are no anomalies being introduced

by the model. This is done by checking the simulation output values at chosen

points with hand calculations, and visually comparing the overall trend of results

with those of the verified Simulink model. Since no energy management controller

was implemented within the Dymola environment, the magnitude of the simulation

results is not expected to be representative of the actual vehicle. Also since there is

no regenerative braking, all machine torque demands are positive. Simulation test

runs were performed on the model using European and American legislative driving

cycles such as the modal New European Driving Cycle (NEDC) and the transient

Urban Dynamometer Driving Schedule (UDDS).

Figure 5.16: European and North American (UDDS) drive cycles used for Dymola

based simulation tests

Transient cycles are more representative of actual driving, whereas modal cycles have

periods of constant speed and don’t represent a realistic driving pattern as can be
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seen in Figure 5.16. The NEDC cycle simulates some urban driving with a maximum

speed of 50 km/h followed by a high speed period reaching a maximum of 120 km/h

while the UDDS cycle represents a transient urban route with many acceleration and

deceleration events and a maximum speed of 91 km/h. A second more aggressive

North American driving cycle is given by the high speed and high acceleration US06

cycle with an average speed of 78 km/h and a top speed of 130 km/h.

Simulation results for the NEDC test are shown in Figure 5.17. The results show

that the vehicle follows the drive cycle speed and in doing so uses 43g of hydrogen

while discharging the ultracapacitor between 400 V and 331 V. Any recharging of

the ultracapacitor is due to the fuel cell providing enough current to bring the bus

voltage back to the setpoint.

Figure 5.17: Drive cycle test results for energy management model showing the

vehicle speed, bus voltage and hydrogen used by fuel cell.

A comparison of the hydrogen used by the fuel cell over these three legislative driving

cycles is presented in Table 5.2. The lack of an energy management controller means

that higher demands are placed on the fuel cell. In particular since the bus voltage is

set by the vehicle speed and there is no regenerative braking implemented, whenever

the vehicle slows down the ultracapacitor must be recharged by the fuel cell. This
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explains the higher amount of hydrogen usage compared with the controlled version

as shall be seen in the next section.

Table 5.2: Hydrogen usage and estimated range for different driving cycles in Dy-

mola. No regeneration or energy management control. 2.1 kg stored Hydrogen.

Driving Distance Hydrogen Used Consumption Range

Cycle [km] [g] [g/km] [km]

NEDC 11 43 3.9 538

UDDS 12 52 4.3 488

US06 12.7 90 7.1 296

Given that the total available mass of hydrogen stored on-board the LifeCar vehicle

is 2.1 kg, the vehicle range values can be calculated from the consumption ratio.

In terms of stored hydrogen gas, 2.1 kg is equivalent to a tank size of 70 litres at a

pressure of 35MPa, assuming a hydrogen gas density of 0.089g/l at ambient pressure.

Since the UDDS driving cycle is more aggressive in that there are a larger amount of

acceleration and deceleration events, this implies more charging and discharging of

the ultracapacitor leading to increased current demands on the fuel cell. The US06

drive cycle has much steeper acceleration gradients with the a maximum acceleration

of 3.8 m.s−2 which leads to increased torque demands from the electrical machines

and associated increased power demand which is transferred to the fuel cell.

Simulation of Translated Model in Simulink Environment

The ability to use the LifeCar plant model in the Simulink environment is tested

in order to establish the feasibility of using this type of object-oriented model for

controller design, which will invariably make use of the industry standard Simulink

environment. In order to be able to export the Dymola energy management model

into Simulink, the first step is to define the causality required by the controller within

Simulink. This is done by defining the blue input connector arrows and the white

output connector arrows as shown in Figure 5.18. When the model is translated

by the Modelica translator in Dymola, the equations are sorted and manipulated in

order to solve them for the specified outputs. In this way the model can then be

compiled with the correct mapping of inputs and outputs. Dymola then generates a

C-code file describing the model and a Matlab MEX file in order to allow Simulink
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Figure 5.18: LifeCar energy management model prepared for export to Simulink.

to interface with the generated C-file and incorporate the system as a causal block

in a standard Simulink model.

Figure 5.19 shows the LifeCar plant incorporated into a forward facing model with

an energy management controller. The main functions implemented by the energy

management controller in Simulink is to provide a regenerative braking strategy

and power limit the vehicle when the ultracapacitors are empty so as to prevent

excessive demands from the fuel cell. The regenerative braking strategy determines

the amount of electrical machine braking as a function of the vehicle speed and

ultracapacitor SOC, where maximum regeneration occurs when the SOC is below

80% and the vehicle speed is above 28km/h. The reason for this is that there is less

potential to store energy when vehicle speeds are low or the ultracapacitor is nearly

fully charge. This has an overall effect of increasing the usage of the ultracapacitor

and thereby reducing the power demand on the fuel cell.

The benefit of the Simulink controller on the Dymola plant model’s performance can

be seen by comparing the simulated hydrogen usage results from the uncontrolled

model in Table 5.2 with the controlled model in Table 5.3 column 2. For example,

with the NEDC driving cycle, the Dymola simulation resulted in 43g of hydrogen

usage while with the controller this was reduced to 29.4g. Hydrogen usage is reduced
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Figure 5.19: Dymola LifeCar plant model integration with Simulink controller.

by approximately 30% for each of the different driving cycle tests. This can be

directly attributed to the decrease in fuel cell current in all drive cycles since the

ultracapacitor recharching is not left to the fuel cell as it was in the model with no

regenerative braking.

As a final means of validation and verification, the Dymola plant model was sim-

ulated in parallel with an existing validated Simulink energy management model

for LifeCar. The Simulink controller was validated through tests performed on the

prototype vehicle using a powertrain dynamometer to emulate a series of driving

conditions as described in [154]. Comparison with the Simulink model provides a

means of verifying that the results provided by the translated Dymola plant are

in fact representative. Differences between the hydrogen usage calculated for the

Dymola and Simulink plant models for the three legislative drive cycles tested are

presented in Table 5.3.

Table 5.3: Hydrogen usage and estimated range for different driving cycle tests in

Simulink. Comparison of Dymola and Simulink plant models with regeneration and

energy management control.

Driving Hydrogen Used [g] Variation Range [km]

Cycle Simulink Dymola Simulink Dymola

NEDC 29.9 29.4 1.6% 766 780

UDDS 31 35 12.9% 805 714

US06 56 64 14.3% 480 420
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From Table 5.3 it can be seen that there is significant agreement between the two

models for the NEDC drive cycle, with a variation of only 1.6%. In the case of

the UDDS and US06 drive cycle tests, the variation in hydorgen usage is seen to

increase by over 10%. The main reason for this difference is that the Simulink energy

management controller has a control loop around the bus voltage which provides a

current command to the converter controller. This allows for more precise control of

the fuel cell current and consequently more efficient usage of the ultracapacitor as a

power supply. In the Dymola plant, the converter model does not accept a current

control command but is implemented in such a way that the load voltage is enforced

according to the given reference, and the current at the supply side is calculated in

order to balance the energy of the input with that of the output. In other words,

with the Dymola plant, the ultracapacitor voltage is set by the vehicle speed and

the fuel cell power must equal the ultracapacitor power.

Figure 5.20(a) shows a comparison of the vehicle speed, bus voltage and hydrogen

mass, for the NEDC drive cycle simulation results. This plot shows that the bus

voltage is on average kept high during this drive cycle due to the relatively low

vehicle speed and therefore there is not much usage of the ultracapacitor as a power

supply. Since the bulk of the power is supplied by the fuel cell, the functionality of

both plant models is similar.

Figure 5.20(b) shows the same comparison for the US06 drive cycle. Here it can be

seen that the Dymola model is not able to make as efficient use of the ultracapacitors

since the bus voltage is brought back to 400 V sooner than in the controlled Simulink

model. Ultimately, this means that when the drive cycle contains more acceleration

and deceleration events, the potential for energy recapture is reduced since the

ultracapacitor voltage is brought back to the upper limit much sooner than necessary.

Further in order to maintain the higher average voltage on the bus, the fuel cell

current must increase since its voltage cannot and hence the average hydrogen usage

increases.

In order to correct this error, a new version of the converter model must be imple-

mented that enables better control of its functionality. An example of this is shown

in Chapter 6 where a converter with a controlled power split is developed.
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(a) NEDC drive cycle

(b) US06 drive cycle

Figure 5.20: Comparison of Dymola and Simulink plant model results for an NEDC

and US06 drive cycles.
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5.3.3 High Fidelity Model Specialization

In order to test the flexibility of the modelling method to make changes to the

developed HEV library and LifeCar partial and base models, it was decided to

develop a second powertrain model with some higher fidelity subsystems that could

be used for performance testing. The main purpose being to test how much of the

previously developed models could be reused and the effort required to implement

fidelity changes within the vehicle subsystem models. In this case the intention

is to examine the effects of weight transfer, tyre slip and driveline shaft flexibility

on the vehicle’s longitudinal dynamics under tip-in and tip-out conditions. The

modelling steps of the Implementation stage of the method are repeated in order to

specialize the subsystem base models to a level suitable for the performance tests.

In particular, high fidelity packages were added within the driveline, and electrical

machine base subsystem packages, while the chassis model was replaced with a

higher fidelity version from the available libraries. Also a new wheel subsystem

model was created in order to model non-linear tyre characteristics.

An overall comparison of the energy management model and the high fidelity model

is given by the pole-zero map in Figure 5.21 and Table 5.4. Figure 5.21 shows that

the frequency range of the plant model is increased by a factor of 10 from 21Hz to

212Hz. In Table 5.4 it can be seen that the C-code generated when compiling the

high fidelity plant model is 40% larger than that of the energy management model.

Also comparing the runtime performance of a test simulation using a 200s ECE

drive cycle shows that simulating the high fidelity model requires almost 5 times

more CPU time than the energy management model.

Table 5.4: Comparison of High Fidelity and Energy management plant model per-

formance

Plant Model Lines of C-code CPU time for ECE cycle

Energy Management 8453 2.27 s

High Fidelity 12865 10.66 s

An explanation of the changes made to these subsystem models is presented in the

following subsections.
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Figure 5.21: Pole-zero maps comparing the Energy management and High Fidelity

plant models linearised under initial conditions at time t = 0.

Driveline

Once again the base driveline models were specialized, only this time the ideal

gears in the base model are replaced with flexible shafts as shown in Figure 5.22.

The flexible shaft model is essentially two inertias connected by a rotational spring

and damper system. A parameter input for the shaft inertia is divided equally

between the two inertias while the spring-damper system provides the stiffness and

damping constants necessary to examine the effects of shaft flexibility on vehicle

acceleration. By applying the spring-damper system, the relation of the torque

(τ) and relative rotation angle (φrel) between the two ends (a and b) is modified

according to equations (5.16)–(5.18).

φrel = φb − φa (5.16)

ωrel = ˙φrel (5.17)

τ = k φrel + d ωrel (5.18)

where: k is the stiffness constant, d is the damping constant and ωrel is the relative

angular velocity.

On the LifeCar vehicle, the actual drive shafts where very short as the driving motors

where mounted as close as possible to each wheel. This meant that the inertia of
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the shaft was very small compared with the inertias of the motor shaft and wheel

that it connected, also the damping characteristics of this shaft where not known.

For the purposes of this study no damping constant was used while stiffness and

inertia values were calculated from the physical dimensions of the shaft.

Figure 5.22: High fidelity driveline model with flexible shafts.

Additionally, for forward compatibility, the shaft components were attached to the

driveline mount so that future applications could make use of this subsystem model

within a future multibody dynamics model. This inclusion adds no overhead in

terms of code or calculations to the final simulation model since it is included as

an optional connection as shown by the dashed box around the mount block in

Figure 5.22. In other words, the model developer needs to specify the inclusion of

multibody dynamics by setting a boolean parameter in the top level of the model

to logical “true”. If this is not done, then all multibody connections, components

and associated code are ignored when the final model is compiled for simulation.

Electrical Machines

Since the high fidelity performance tests will also look at transient mechanical effects

in the driveline, it was decided to replace the base electrical machine models with
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controlled transient DC machines from the SED library. Unlike the quasi-static

variants used for the energy management model, the transient model allows the

user more access to the control variables and is designed for parameter calibration.

Using this higher fidelity model in the performance testing provides a means of

calibrating the model performance to known results so that they match the real

machines more closely.

Chassis and Tyre Models

The final extension to the LifeCar powertrain model for the high fidelity test was to

replace the chassis model with another version from the PowerTrain library contain-

ing a half-car suspension model. This new chassis model requires suspension stiffness

(kf,r) and damping (cf,r) rates, vehicle mass distribution between front (mf ) and

rear (mr) axles, the length of the wheelbase (a+ b) and the height (h) of the centre

of gravity (CoG) as seen in Figure 5.23. In order to parameterize this model, meas-

ured values from the prototype vehicle were used where available. Specifically the

vehicle mass distribution was taken from the validated Simulink model, while the

suspension data was not available and therefore the default values supplied by the

PowerTrain library were used. The suspension model is used to determine the weight

transfer effects of the vehicle due to changes in the pitch angle (θ) while accelerating

and braking. This is needed to determine the load force (FZ) on front and rear

wheels which in turn is required by the tyre-slip model to determine the friction for

each wheel and hence the driving force (FX). Further details on the mathematical

derivations in a half-car suspension model can be found in [155, 156].

Within the chassis model it is necessary to instantiate an environmental loss model

and four tyre models. For the purposes of this study, the same drag model as for the

energy management powertrain model was used, which includes aerodynamic drag

and rolling resistance. A new tyre-slip model was developed to assess the wheel slip

during a tip-in and tip-out performance simulation. The powertrain library made

available a linear tyre-slip model that proportioned the driving force to the slip ratio

by a stiffness constant, and two non-linear tyre models. The first non-linear model

is based on the model proposed by Rill [157, 158], which requires steady state force

and slip parameters under upper and lower weight conditions, and the second is

based on the commonly cited Pacejka magic formula [159, 160]. In order to evaluate

the tyre-slip on different road surfaces, such as dry or wet, the new non-linear tyre
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Figure 5.23: Free body diagram for the half-car suspension model.

model was based on Pacejka model but modified in order to allow parameterization

according to the coefficients in (5.20). Specifically the tyre model calculates the tyre

slip ratio (σ) and the friction coefficient (µ) according to equations (5.19) and (5.20)

respectively.

σ(f,r) =
(ωrw)(f,r) − v
max

(
v, (ωrw)

) (5.19)

µ(σ)(f,r) = D sin

(
C arctan

(
Bσ(f,r) − E

(
Bσ(f,r) − arctan

(
Bσ(f,r)

) )))
(5.20)

where: the subscript (f,r) represents front and rear, v is the vehicle velocity and (ωrw)

is the rolling velocity of the wheel given by the product of angular wheel velocity

and wheel radius. The max function is used to calculate the slip ratio under both

acceleration and braking conditions [161].

The value of slip ratio can be interpreted in the following way:

σ > 0 indicates the wheel velocity is greater than the vehicle velocity ⇒ accelerating.

σ = 1 indicates a much higher wheel velocity than vehicle velocity ⇒ “spinning”.

σ < 0 indicates the vehicle velocity is greater than the wheel velocity ⇒ braking.

σ = −1 indicates a much higher vehicle velocity than wheel velocity ⇒ “locked”.

With the load force from the chassis model and the friction from the tyre model,

the driving force (FX) can then be calculated according to equation (5.21).

FX(f,r) = µ(f,r) FZ(f,r) (5.21)

The coefficients B, C, D and E in equation (5.20) can be considered form factors

which describe the shape, peak, slope and curvature of the graph relating friction
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to slip. For the purpose of this study three parameter sets for different road condi-

tions [161, 162] were used. A plot showing the friction-slip relationship for the “Dry

Tarmac”, “Gravel” and “Ice” road surfaces is the shown in Figure 5.24. Further de-

tails on the modelling of tyre and vehicle dynamics can be found in [156, 159, 163].

Figure 5.24: Friction versus slip for different road conditions.

Powertrain

In order to create the final executable model, the base vehicle model shown in

Figure 5.11 is inherited and the subsystems are replaced with the high fidelity sub-

systems to produce the model shown in Figure 5.25. For these tests no drive cycle

or driver model was included, instead accelerator and brake commands are conver-

ted directly to a torque input reference for the electrical machines and a separate

friction brake input is also provided. This is done to mimic the action of the energy

management controller which would divide the brake torque demand between re-

generative braking and friction braking. As mentioned in Section 5.3.2, the braking

split to the electrical machines is dependant on the SOC of the ultracapacitor and
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the vehicle speed, with the balance of the demanded braking torque being supplied

by the friction brakes.

Figure 5.25: Executable high fidelity model of LifeCar powertrain for Tip-in Tip-out

testing.

5.3.4 High Fidelity Model Validation Tests

For this particular model, the main aim was to determine the effect that the high

fidelity subsystem models had on the longitudinal dynamics of the vehicle. To do

this, an open-loop test is performed on the high fidelity powertrain model within

the Dymola environment using different tyre model parameterizations to simulate

different road surfaces.

Simulation Tests in Dymola Environment

Three sets of simulations are performed with the tyre model parameters correspond-

ing to the road surfaces shown in Figure 5.24. For all tests, the chassis model is

parameterized with a mass distribution of 388.8 kg at the rear and 305.4 kg at the

front of the vehicle, a wheelbase length of 2.45 m and a CoG height of 0.4 m. During

the gravel and ice road surface tests, the input torque demand was scaled down from

the maximum 220 N.m until the point where wheel “spinning” first begins.
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Dry Road Surface

A tip-in tip-out demand is applied to the vehicle by providing a step input in torque

to each of the four electrical machines at their maximum rated value of 220N.m and

then demanding a braking torque of 250 N.m with the difference supplied by the

friction brakes. The vehicle speed and torque demands (per wheel) are shown in the

first two plots of Figure 5.26. Here it can bee seen that the main braking torque is

initially provided by the electrical machines until regeneration is no longer feasible.

Following this the friction brakes supply all the demanded torque. Regenerative

braking starts decreasing when the vehicle speed reaches 10m.s−1 and stops at speeds

below 5 m.s−1. This is because the kinetic energy of the vehicle is less than 2.5 Wh

at 5 m.s−1 and the generation efficiency of the electrical machines is lowest at low

speeds [146, 164]. For a given torque the electrical machines power is proportional to

the speed but the electrical and mechanical losses are relatively constant, therefore

at low speeds the losses are comparable to the output power and therefore reduce

the efficiency [165]. While regeneration decreases, the friction braking increases to

meet the braking torque demand.

Examining the net torque demand shown in the middle plot of Figure 5.26, it can be

seen that there is a torque disturbance when the regenerative braking decreases and

the friction braking increases. This is due to the motor torque decreasing exponen-

tially while the friction brake torque increases linearly. Further, torque oscillations

are visible whenever a torque transient occurs. The lower plot in Figure 5.26 shows

a closer view of the torque oscillations at the wheel shaft between 13.75 s and 13.8 s.

From this it can be seen that there are three oscillation periods between 13.754 s

and 13.795 s which gives a frequency of 73.17Hz.

This frequency can be described as the resonant frequency of a dual inertia sys-

tem [166], where two inertias are coupled by a flexible shaft. The resonant frequency

(ωn) can be described in terms of the shaft torsional stiffness (k) and the inertias

on either end of the shaft as shown in equation (5.22).

ωn =

√
k

(
1

Jr
+

1

Jw

)
(5.22)

where: Jr is the electrical machine’s rotor inertia and Jw is the wheel inertia.

Applying the model parameters to equation (5.22), where the motor shaft inertia

and wheel inertia are 0.04 kg.m2 and 0.8 kg.m2 respectively, and the shaft stiffness

is 8023 N.m/rad, gives a resonant frequency of 73Hz.
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Figure 5.26: High fidelity torque demand and oscillation due to flexible half-shafts.

The effect of the high fidelity chassis and tyre models on the vehicle’s longitudinal

dynamics can be seen in Figure 5.27.

In Figure 5.27(a) it can be seen that during the 10 s tip-in period, the vehicle

accelerates from 0 − 30 m.s−1 (100 km/h) in approximately 7 s and reaches a top

speed of 39 m.s−1 (140 km/h). While accelerating, the vehicle is said to “squat” and

the load force increases on the rear wheels and decreases on the front wheels due to

the weight transfer in the chassis model. This effect is reflected in the tyre models

by the slip ratio being higher for the wheels with less load on them. During braking

the vehicle is said to “pitch” or “dive” as the weight is transferred to the front of

the vehicle, thereby increasing the front load and decreasing the rear load. Also,

the slip ratio is negative during braking and again the ratio is higher for the wheels

with less load.

Since the vehicle must have a resultant force given by F = ma, the driving force at

each wheel must be equal to FX = mv a/4. Therefore, according to equation (5.21),

the wheels with less load require a higher coefficient of friction. Figure 5.27(b) shows

that the wheels with a higher slip ratio have a corresponding higher coefficient of

friction in order to produce the same driving force.
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(a) Tyre-slip and Load force

(b) Friction and Driving force

Figure 5.27: High fidelity Tip-In Tip-out simulation on dry road surface.
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Gravel Road Surface

For the gravel surface test it was found that for a torque step of 176 N.m, 80% of the

maximum, the front wheels can no longer achieve the required friction and begin to

spin as seen in Figure 5.28. Figure 5.28(a) shows that the front wheel rolling velocity

increases exponentially in comparison with the vehicle velocity meaning a rapidly

increasing slip ratio. In Figure 5.28(b) it can be seen that the friction coefficient

of the front wheels reaches the peak value for gravel after 1.7 s (µ̂gravel = 0.45),

at which point any further increase in slip ratio leads to a decrease in friction and

therefore a decrease in the driving force. After 5 s, the slip ratio of the front wheels

reaches 100% (σ = 1) and the simulation terminates soon after since the electrical

machines cannot support any further increase in speed.

Ice Road Surface

Similar results are found for the ice surface test only that in this case the maximum

torque step input before wheel spinning occurs is at 44 N.m or 20% of maximum

torque. Results are presented in Figure 5.29, where Figure 5.29(a) shows the vehicle

and wheel velocities and also the torque at the wheels. Once again the torque

oscillations can be observed only this time with the effects are not damped out by

the spinning front tyres. With 11 periods between 4.15 s and 4.3 s, the frequency is

still shown to be the resonant frequency of 73 Hz. Figure 5.29(b) shows that after

2 s the peak friction coefficient for the ice surface (µ̂ice = 0.1) is reached by the

front tyres. The friction then diminishes as the slip ratio increases and “grip” is lost

causing the driving force on the front tyres to decrease.

In real world driving conditions, this corresponds to a driver accelerating hard from

standstill and the wheels starting to spin. The driver would then ease off the accel-

erator pedal, reducing the slip ratio and returning to a higher value of friction, until

traction is restored.
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(a) Vehicle and Rolling Velocities

(b) µ, σ and FX for Front and Rear Tyres

Figure 5.28: High fidelity simulation results for gravel surface.
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(a) Vehicle Velocity, Rolling Velocities and Wheel Torques

(b) µ, σ and FX for Front and Rear Tyres

Figure 5.29: High fidelity simulation results for ice surface.
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5.4 Discussion

In all modelling domains it is necessary to decide what level of complexity or fidelity

will be used when constructing a model.

Reviewing the construction of the model library during the modelling stage of this

case study, design decisions and trade-offs in the following areas need careful con-

sideration:

1. Partial Model Construction

Deciding on a point or level where an item should be generic is not trivial.

Though both the properties of reusability and extendability are desired, it

stands to reason that reusability favours faster design and extending libraries

should only be done when necessary. Having said this, it is also not possible

or practical to have a library with an exhaustive set of components and sub-

systems to be reused. For a design where the technology and know-how is in

an advanced stage, various components and subsystems will become standard

and should form part of a generic library. Designs that are part of the initial

stages of the development of a certain technology will more likely require a

lower level of reusable subsystems and a higher degree of extendability.

2. “Off-The-Shelf” Model Libraries

Independently validated models in specialized areas are developed by third

parties, some freely available and others sold commercially. Though the avail-

ability of tested models is key to faster development of new technologies such as

HEVs, there are also associated risks when incorporating such models within

a development process. One of these was encountered during this case study

in the form of encrypted models. Use of such models places certain limitations

on the modelling process thereby reducing the flexibility of the overall design.

Having said this, in some cases, where there are no open source alternatives

or in-house expertise, it may be more beneficial from a time-cost perspect-

ive to purchase third party models rather than develop them. Equally, open

source solutions are not without their shortcomings such as multiple version

changes and poor documentation. This is why it is suggested by the author

that a well managed central repository of base models should be available so

that all developers can commence at a common point and incorporate the re-
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quired fidelity. If the end users then choose to share their upgraded models

by submitting them to the repository, the value of the common repository is

increased for all users. Various compromises made when using off-the-shelf

software are discussed further in Chapter 7-Model Management.

3. Model Abstraction

When breaking down a system into its subsystems and their respective func-

tions, or a program into classes and their underlying methods, one of the

decisions to be made is how much to include in a particular subsystem model.

In particular, the inclusion of controller functionality should be done in a mod-

ular manner, keeping the physical model separate from the control logic as far

as possible. Developing a model where the physical plant is totally separate

from controller models leads to a more flexible design since the plant model can

be used independently and the control logic can be modified without affecting

the plant models functionality. For example, in Section 5.2.4 the base model

for LifeCar was developed without incorporating a driver model allowing for

the same base to be used for various simulation models requiring different

driver types as well as exporting to external software such as Simulink. This

point is of particular importance when an acausal modelling language is be-

ing used since the plant model can be described by physical equations which

have no causality but a controller performs specific functions on its inputs to

give a required output and is thus causal by nature. Incorporating plant and

controller into one integrated model therefore reduces the benefits of acausal

modelling since the causality of the controller model will dictate a causality

for the overall model.

Pidd [167] proposes a simulation modelling doctrine composed of five principles to

help overcome some of the challenges associated with the development process.

1. The first principle suggests that it is not necessary to build a complex model

to describe a complex system, if the user’s knowledge and expertise is included

as part of the “requisite variety” of the modelling process. Meaning that the

modelling requirements are not only met by the model itself, but by the model,

its assumptions and the critical analysis of its results.

2. The second principle stresses the importance of the incremental development

of models. This allows for all modelling to initiate with a simple model from
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which some lesson is learnt in order to then refine the model. This also satisfies

the requirements of “Occam’s razor” since a developer can stop when the

model provides the required output without spending time and effort on more

complex modelling where it is not needed.

3. The third principle is modularize model development in order to avoid creating

large and complex models which are both difficult to use and understand. This

is the same philosophy behind object-oriented software development.

4. The fourth principle deals with the use of data in model development and

stresses that modelling should not be driven by the availability of data, but

instead data should be sourced as needed for the model.

5. The fifth and final principle is an observation that modelling activities do

not progress linearly even if the first four principles are followed. This is

due to the way in which developers need to continuously divide their time

between understanding the problem context and producing models throughout

the incremental modelling process, often having parallel lines of thought.

Object-oriented principles were devised to help cope with the growing complexity

of programs and are therefore well suited to dealing with the analysis and construc-

tion of complex systems. Abstraction and inheritance link well with the modelling

principles suggested by Pidd [167], in that they promote problem simplification and

the ability to add complexity where it is needed.

5.5 Conclusion

Seeing that a HEV is a product that combines systems from multiple engineer-

ing disciplines, it is appropriate to implement a modelling method that promotes

component orientated modelling of complex multi-domain systems. This case study

demonstrated that the proposed modelling method contributes to HEV development

in the following ways:

• It provides a structured multi-domain development approach that allows de-

velopers to focus on the system content and structure rather than on struc-

turing equations for a particular causal representation of the system,
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• This approach leads to the creation of hierarchical model libraries,

• The hierarchical nature of the model libraries promotes both model reuse and

flexibility in modifying or creating new versions of the models in a reduced

time frame,

• The object-oriented nature of the model library simplifies model maintenance

by reducing the number of core models that need to be maintained.

Further, the ability to easily integrate model development into the overall system

life cycle processes is integral in reducing the time, cost and effort involved in stake-

holder communication, prototyping and design iterations. Specifically, the proposed

method integrates well into the the systems engineering processes for:

• Requirements definition and refinement through early feedback of iterative

development method, and

• Resource management through the early identification of modelling bottle-

necks due to whole system view.

Referring to the aims and objectives stated in Section 1.3, the development method

has been applied to the implementation of hierarchical libraries of reusable models.

The use of which has allowed for the efficient evolution of a HEV powertrain design,

having comparable results to an existing validated model.
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Chapter 6

Case Study 2: LifeCar Extension

The automotive manufacturer Morgan intended using the original LifeCar project as

a prototype with the aim of building on lessons learnt and producing a production

ready lightweight HEV design. For the investigation presented in Chapter 5, which

was carried out after the actual prototype development had been done, a resource of

prior models, data and experience was available to aid in the powertrain modelling

task. In contrast, this extension to the LifeCar project was an actual development

project which started in the final year of the author’s PhD period. This created an

opportunity for the modelling method to be used in the initial stages of the design

and contribute to the development of the energy storage system for this vehicle [168].

As with the development of the new car being based on lessons learnt from the pro-

totype LifeCar vehicle, so the new models are developed by reusing and extending

the library of packages and subsystems produced in Chapter 5 in order to meet the

requirements for the new vehicle. In this chapter a second case study is presented,

focusing on the changes and additions made to the HEV modelling library discussed

in Chapter 5. The idea being to test the suitability of the modelling method in a

situation where existing model designs and packages are being reviewed and struc-

turally modified.
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6.1 Requirements Analysis

Once again, the key factor in the initial stages of the design process described

in Section 4.4, is communication between all parties involved in the design effort.

During a stakeholder meeting at the initiation of the new project, the producers of

the LifeCar vehicle stipulated that the new vehicle will take the form of a series HEV

with the fuel cell power supply being replaced by an ICE/generator combination and

a battery. It was further stipulated that the voltage bus should no longer be floating

with an ultracapacitor directly coupled to it, but should be fixed at a constant value

of 400 V. The option of adding an ultracapacitor for capturing braking energy, with

a converter between the ultracapacitor and the high voltage bus to provide more

control, forms part of this investigation. The scope of this study is firstly to examine

the electric vehicle (EV) range and energy requirements for the LifeCar powertrain

when used in an “electric only” mode while driving in an urban environment, and

secondly to assess the acceleration performance provided by the power supply in

that mode.

Since this study focuses on an “electric only” driving mode, the ICE and generator

are not modelled but are considered as part of the vehicle mass. More specifically

this study involves a comparison of EV powertrains supplied by; a battery alone,

or dual source supply of a coupled battery and ultracapacitor. This comparison is

performed through sets of test models for examining the vehicle range and vehicle

performance as described by the following considerations for the modelling process:

A Electric Vehicle Range

1. Battery Only Power Supply

– Account for energy losses in the system.

– Incorporate regenerative braking strategy.

– Determine the range provided by battery.

– Understand the trade-off between battery size and range.

2. Dual Source Power Supply

– Determine the size of ultracapacitor needed to capture lost braking

energy.

– Account for energy losses in the system.
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– Incorporate powersplit and regenerative braking strategies.

– Determine the range provided by hybrid battery and ultracapacitor

power supply.

3. Compare 4WD and 2WD Topologies

B Electric Vehicle Performance

1. Battery Only Power Supply

– Replace chassis and tyre models with high fidelity models.

– Determine the maximum vehicle acceleration.

2. Dual Source Power Supply

– Replace chassis and tyre models with high fidelity models.

– Determine the maximum vehicle acceleration.

3. Compare 4WD and 2WD Topologies

6.1.1 Initial Design Constraints

Manufacturer stipulated design targets for the new vehicle form part of the design

boundaries for this exercise. The initial design constraints most relevant to this

investigation are listed in Table 6.1.

Table 6.1: Initial design targets for LifeCar redesign.

Type Value [unit]

Top speed 185 [km/h]

Electric only urban range 30 [km]

Acceleration (0–100 km/h) 6.2–6.5 [s]

Maximum vehicle unladen mass 880 [kg]

Maximum vehicle laden mass 1100 [kg]

Vehicle bus voltage (fixed) 400 [V]

An example of a stakeholder initiated design change that needs to be considered

when modelling the new powertrain, is that the new vehicle uses more powerful
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electrical machines with respect to the original design. The specifications given by

the electric motor designers for the new electrical machines are shown in Table 6.2.

Table 6.2: Permanent magnet electrical machine parameters.

Type Value [unit]

Power rating 100 [kW]

Peak torque 500 [Nm]

Torque constant 1.43 [Nm/A]

Armature resistance 0.03 [Ω ]

Armature inductance 325× 10−6 [H]

Rotor inertia 0.5625 [kg.m2]

Machine mass 25 [kg]

As a starting point, the initial estimation of energy requirements and power supply

size are chosen in order to meet the target range of 30 km of urban driving, together

with an assumed laden vehicle mass based on initial mass estimates supplied by the

vehicle manufacturer and other stakeholders. The mass breakdown used for this

investigation is presented in Table 6.3. Since determining the mass of the power

supply forms part of the investigation, it is not show in this table and is discussed

later in Section 6.3.

6.2 Physical Modelling

For this case study, the main objective in the Physical Representation stage is to

reuse and add to the library of subsystems and partial models developed for the

original LifeCar case study in order to be able to develop and test the new powertrain

design. Doing this provides a method for testing; the reusability of the previously

developed library models, the suitability of the partial models for developing new

model versions and the overall adaptability of the object-oriented model design for

exploring and executing design changes. To achieve this, a new package of powertrain

models is produced within the HEV modelling library constructed for the initial case
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Table 6.3: Mass breakdown for new LifeCar vehicle.

Breakdown Unladen [kg] Laden [kg]

Rolling chassis 400 400

Electrical machines (x4) 100 100

Engine 150 150

Generator 25 25

Cooling 25 25

Electronics 50 50

Power Supply ?? ??

Driver and passenger 0 150

Total 750 900

study. Within this new package, two further packages EVRange and EVPerformance

are constructed as show in Figure 6.1. This is done to group models with similar

purpose and fidelity in the same way that the EnergyManagement and HiFidelity

packages were used in Chapter 5. Each package consists of a model for investigating

a battery as the sole power source and another model for investigating a dual source

power supply. It is worth noting that this does not imply a duplication of developed

models since any newly created subsystems are added to the model library within the

appropriate base subsystem package as shown in Figure 5.12. The powertrain models

then simply inherit a common base vehicle model and replace subsystem models as

appropriate. In this way, any changes made to the models in the subsystem package

will be effected on all powertrain models using that subsystem.

6.2.1 Hierarchical Abstraction and Partial Models

As mentioned in Section 4.2.2, the steps in an object-oriented design don’t need to

be carried out in a strictly sequential manner, thereby allowing tasks to proceed

without needing a prior step to be fully completed. In other words, an iterative

cycle can generally begin wherever is easiest within the cycle as long as the cycle is

then fully iterated. In this case the subsystem level hierarchical abstraction from the

design in Chapter 5 can still be considered valid since the focus of this study is on

the “electric only” capabilities of the new LifeCar architecture. This indicates that

the previously developed library structure and partial models should be well suited
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Figure 6.1: Package structure for new LifeCar powertrain models.

for the development of the new powertrain subsystem. Thus, further abstraction

and partial model development only need occur where a new subsystem specific to

the new architecture must be added to the model library. To maximize the reuse

of the existing library and reduce the modelling effort going forward, the developer

should focus on the differences in the model structure and architecture by taking

into account factors such as:

1. The model structure must allow for optional two wheel drive powertrain designs.

2. The model structure must allow for investigating both power supply options.

An example of how a suitably generic partial model can be reused in several differ-

ent instances, is seen in the partial vehicle model developed for the first case study

which is shown in Figure 5.3. Since this model does not specify any power supply

requirements and only enforces one driveline subsystem, it is suitably generic for

power supply investigations on both two wheel drive (2WD) and four wheel drive

(4WD) architectures. Therefore, for these preliminary investigations, no further

abstraction is necessary at this level. At a later stage in the design process, the

abstraction must be revisited when the final architecture of the new design is in-

vestigated. Fritzson [58] suggests that the ability to find a balance between model

simplicity and preciseness is more of an art than a science which is acquired through

experience. Further abstractions could then include the addition of the combustion

engine and generator as well as possible additions to the driveline architecture if,
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for example, it is decided to investigate the use of a differential in order to reduce

the number of electrical machines.

Partial Models

In Chapter 5 a converter from the SED library was used in the modular power

supply shown in Figure 5.9. However, this converter model did not account for

any energy losses and did not allow for two power supply sources and converters

to be connected in parallel due to the manner that the power balance between

input and output side is implemented. Additionally, in order to implement the two

power supplies in parallel it is also necessary to be able to control what portion of

the demanded power would be attributed to each supply. Therefore, a new partial

model for power electronic converters is constructed and added to the PartialModels

package in the HEV modelling library. As shown in Figure 6.2, this partial model

defines the connections to an electrical supply and an electrical load. The same

partial model can also be extended with an additional set of supply ports in order

to construct a dual input converter needed for the dual source power supply.

Figure 6.2: Partial model for a power electronic converter
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6.2.2 LifeCar Subsystem Changes

At this point it is possible to commence with the fifth step in the proposed modelling

method. This section discusses the subsystems used in the new LifeCar model that

differ from those already described in Chapter 5. In particular, models for the power

supplies, converters, power split controllers and braking controllers.

Batteries and Ultracapacitors

For this investigation a new battery model and ultracapacitor model are added to the

PowerSupplies subsystem package. Once again, in order to investigate the advant-

ages and disadvantages of off-the-shelf component libraries, pre-built components

from the SED library were selected. Both the battery and ultracapacitor models se-

lected represent the battery pack as a combination of series and parallel cells where

the number of cells, maximum cell voltage, maximum cell current, internal cell res-

istance and initial state of charge (SOC) can be defined. Additionally the battery

model requires a maximum and minimum SOC value to be specified in order to

track the instantaneous SOC as the voltage varies, and to terminate the simulation

with a warning message when the minimum SOC is reached. Both models are based

on ideal first order models with a capacitance and series resistance for each cell in

the pack. The battery model uses a capacitor instead of a voltage source in order

to better model the change in SOC [169].

Both these components were not used directly in the model but were placed inside

the previously constructed (shown in Figure 5.5) partial model for power supplies.

This is done in order to provide a connection to the ControlBus and to allow the

models to be easily replaced by any new power supply models constructed in the

future. Real world data is then used to parameterize these models. More specifically,

with regards to the particular battery and ultracapacitor technologies consulted

for this exercise, Lithium Iron Phosphate (LiFePO4) battery cells and Boostcap
R©

ultracapacitor cells were chosen. LiFePO4 are used due to the high discharge current

rating of this battery technology and the Maxwell Technologies are used due to

existing stakeholder experience with this technology in the initial LifeCar design.

Specific cell data used is shown in Tables 6.4 and 6.5.
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Table 6.4: LiFeBATTTM battery cell specifications.

Battery Value [unit]

Typical Cell Voltage 3.3 [V]

Cell Capacity 8 [Ah]

Max. Energy per Cell 24 [Wh]

Internal Cell Impedance (initial) 0.006 [Ω ]

Max. Discharge Current (25C) 200 [A]

Max. Charge Current (4C) 32 [A]

Cell Mass 0.29 [kg]

Energy Density 80 [Wh/kg]

Power Density 2000 [W/kg]

Table 6.5: Maxwell Technologies R© ultracapacitor cell specifications.

Ultracapacitor Value [unit]

Cell Capacitance 3000 [F]

Volume 0.414 [l]

Mass 0.55 [kg]

Equivalent Series Resistance 2.90x10−4 [Ω ]

Max. Cell Voltage 2.7 [V]

Max. Continuous Current 150 [A]

Energy Density 5.52 [Wh/kg]

Power Density 5400 [W/kg]

Power Electronics Bidirectional Converters

As mentioned earlier a new converter model was required in order to account for the

converter energy losses. These are determined by considering the switching (Psw)

and conduction (Pcond) power losses in the converter’s insulated-gate bipolar tran-

sistors (IGBTs) as described in equations (6.1)–(6.3). Switching losses are calculated

as a function of the the switching current (Isw) for a specific switching frequency

(Fsw), this function was implemented in the model as a look-up table of losses per

cycle taken from manufacturer data. The conduction losses are estimated as the
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power dissipated due to the constant voltage drop across the IGBT (VIGBT ).

Psw = Fsw f(|Isw|) (6.1)

Pcond = |Isupply| VIGBT (6.2)

PconvLoss = Psw + Pcond (6.3)

where: Isupply is the current delivered by the power supply and PconvLoss is the total

converter power losses.

Figure 6.3: Power electronics converter with switching and conduction losses.

The new converter model then adds the total converter losses to the load power in

order to calculate the required power at the supply side of the boost converter as

shown in Figure 6.3. The voltage at the load side of the converter is set to keep the

required constant bus voltage and the supply current is determined by balancing

the supply power with the sum of the load power and converter losses.

In order to implement a dual power supply, a new converter model was constructed

with a second set of supply connectors as shown in Figure 6.4(a). Since the addi-

tional supply port essentially represents a second converter, the inverter losses are

calculated in the same way for the second supply. Further, an idealized energy man-

agement strategy to split the load power between the two power sources is included

in order to perform the initial tests.
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The control logic used to implement this strategy is developed as a separate model

class as shown in Figure 6.4(b), which is added within a controller sub-package of

the converter base model package in the HEV library hierarchy. An instance of

this model is then included within the converter model as a replaceable controller

object. In this way, the fact that this converter requires a controller is clearly visible

to future users of the model and more importantly, the energy management strategy

can be easily updated and replaced in future applications by simply creating adding

new controller model to the library.

Since this investigation is performed primarily as a proof-of-concept, the idealized

energy management strategy makes use of a rather simplistic control logic to perform

the power split. The idealized control strategy is based on a hysteretic charging and

discharging cycle of the ultracapacitor according to the following rules:

1. While ultracapacitor is charging from minimum SOC to maximum SOC.

• Use the battery as the main source for powering the vehicle.

• Use the ultracapacitor as the main storage when braking.

2. While ultracapacitor is discharging from maximum SOC to minimum SOC.

• Use the ultracapacitor as the main source for powering the vehicle.

• Use the battery as the main storage when braking.

The hysteresis block seen in Figure is used to ensure the a cyclic charging and

discharging of the ultracapacitor between maximum SOC and minimum SOC lim-

its. This is used as a simplified manner of avoiding the phenomenon of chattering

when the ultracapacitor approaches a the border between charging and discharging

states [170].

Brakes Controller

One of the major implementation differences between the first and second case

studies is the inclusion of energy management control functions within the developed

models. For the case study in Chapter 5, the energy management functions were

only provided in Simulink and there was no regenerative braking implemented in

the Dymola model. Further, the vehicle brake balance was assumed to be evenly

distributed between front and rear wheels. For this case study, in order to size the
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(a) Dual input converter

(b) Power split controller

Figure 6.4: Dual supply power electronics converter with idealized energy manage-

ment strategy.
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power supplies, examine the vehicle range and compare 2WD and 4WD powertrain

options, a regenerative braking strategy is necessary. Therefore, a brake controller

is added to the base subsystem library. Figure 6.5 shows how the logic for the

regenerative braking strategy is implemented by this controller.

Figure 6.5: Regenerative braking strategy.

The controller uses the vehicle speed and battery SOC to determine a weighting

factor for regenerative braking (kregen) where; no regeneration is possible at speeds

lower than 4 m.s−1 and battery SOC above 80%, and full regeneration is allowed at

speeds above 8 m.s−1 and SOC below 70%. As was explained in Chapter 5, this is

done because of the low potential to store energy and low generation efficiency at low

speeds. This weighting factor is then used to scale the total driver demanded braking

torque (τdmd) so as to determine the balance between the regenerative machine

torque request (τreq) and the friction torque according to equation (6.4).

τreq = kregen τdmd (6.4)

In order to determine the actual torque demand (τregen) that can be passed on

to the electrical machines, the requested regenerative torque is compared with the

maximum regenerative torque (τmax). This maximum torque is dependent on the

maximum power that the power supply can accept during regenerative braking and

is calculated as described by equations (6.5) and (6.6).

τmax =
Vbat Icharge

ω
(6.5)

τregen = min
(
τreq, τmax

)
(6.6)

where: Vbat is the battery pack voltage, Icharge is the maximum charging current of

4C for the chosen battery technology and ω is the angular velocity of the wheel and

motor shaft.
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Finally, the remainder of the driver demanded braking torque that cannot be sup-

plied by the electrical machines constitutes the torque demand for the friction

brakes (τfriction).

τfriction = τdmd − τregen (6.7)

A user specified longitudinal brake balance is used to proportion the torque demands

between the front and rear axles. These axle demands are in turn distributed equally

between the left and right wheels since each wheel is powered by an individual

electrical machine.

The same regenerative braking strategy is followed for the dual power supply with

battery and ultracapacitor. The only differences being:

1. the ultracapacitor SOC forms part of the product defining the weighting factor,

and

2. the ultracapacitor’s energy storage capacity is added to that of the battery

before calculating the maximum acceptable regenerative torque for the power

supplies as described by equation (6.10) in Section 6.3.5.

6.2.3 New Powertrain Base Models

The final step of the Physical Representation stage in the proposed modelling method

requires the HEV base model to be defined. This can be regarded as a second iter-

ative spiral in the development method where the models developed in the first case

study are treated as prototype iterations as described by the Spiral Model in Fig-

ure 4.2. It is important that the development method allows for the both the reuse

and modification of previous development effort while not restricting the developers

flexibility by enforcing prior design decisions which may no longer be applicable.

Specifically, in this case, the new powertrain base model must allow for modifica-

tions to the original design that not only require changing component fidelity by

replacing existing components with different version, but also require architectural

changes such as removing components completely. For this reason it is not appro-

priate to extend or inherit the previous LifeCar base model, since inherited models

only permit addition or replacement of components but not removal. A better solu-

tion is to create a new base model by reusing and extending the more generic partial
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vehicle model shown in Figure 5.3, and thereby cater for the differences in the model

structure mentioned previously in Section 6.2.1.

As mentioned in Section 6.1, the models developed in this case study are to be used

for testing both the vehicle’s range and performance for the different powertrain

options. Since these tests would require different power supply and driver models

and it was not known initially whether the driver functionality would be developed in

the Dymola environment, it was decided not to include any driver or power supply

subsystems in the new LifeCar base powertrain model. This had the benefit of

allowing the power supply model development to occur independently and the plant

model not enforcing any architectural limitations on this development. In other

words the final vehicle plant model is developed by adding any driver and power

supply options to the base model. Additionally, if the power supply options have

already been developed in another modelling environment such as Simulink, this

base model can exported and more easily integrated with existing models.

A 2WD base model as shown in Figure 6.6 is then defined by adding two electrical

machines, a LifeCar driveline and a controlled brake subsystem from the created

HEV model library. This base can be used for both front and rear wheel drive

models by simply replacing a rear wheel driveline model with a front wheel driveline

model. In order to produce a base for the 4WD powertrain models, the 2WD base

model is inherited and extended with an additional driveline and two more electrical

machines.

6.3 Executable Models and Simulations

For this case study, the final or Implementation stage of the modelling method

is iterated several times in order to develop and test executable models for the

various powertrain options being investigated. More specifically, a set of models

is developed for drive cycle simulations in order to assess and compare the vehicle

range when powered by the different power supply designs. These models are then

modified with a higher fidelity chassis subsystem and tip-in tip-out simulations are

performed in order to compare the vehicle performance in terms of the maximum

achievable acceleration when powered by the different power supply options. Finally,

the effect and feasibility of reducing the vehicle mass and cost by removing two of
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Figure 6.6: Base model used for creating EV range and performance powertrain

models for the LifeCar extension.

the electrical machines is investigated by performing the same tests on both front

and rear 2WD powertrain models.

Vehicle range and performance simulations are presented first for the battery powered

models and then for the dual source powered models. In order for any of the ex-

ecutable models to be correctly parameterized, the size of battery pack that would

allow the LifeCar vehicle to cover a distance of 30 km was estimated according to

the net energy required to cover this distance. Energy usage is affected by several

external factors such as road type, traffic congestion and driving style [171]. Consid-

ering that there are many possible ways that a vehicle can cover a certain distance,

with different speed and acceleration, a set of three urban drive cycles was used to

produce an initial estimate of the energy demands.

These three drive cycles are shown in Figure 6.7, where the first two are legislat-

ive urban cycles which are commonly used for assessing vehicle fuel consumption

and emissions via dynamometer tests. As mentioned in Section 5.3.2, the ECE is

a stylistic modal cycle which has been designed for better understanding during

analysis and the UDDS is a more realistic transient cycle. Even though the UDDS

drive cycle is more realistic than the ECE cycle, it is still an artificially constructed
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Figure 6.7: North American, European and recorded London drive cycles used for

initial energy requirements test.

cycle designed for testing and analysis. Further, the UDDS cycle has an extended

period at high speed which raises the average speed but is not typical for most con-

gested cities where zero emission driving is called for. Therefore, in order to get

a better estimation of the actual energy requirements for the EV mode testing, a

real world cycle recorded while driving in the city of London is also used for the

simulation tests. The London drive cycle represents a moderate driving style in an

urban environment.

A comparison of the net energy requirements for the different drive cycles is presen-

ted in Table 6.6. Here it can be seen that the net energy requirements for the vehicle

to cover 30 km under the transient cycle are 40% larger than those for the modal

cycle, and requirements for the real world cycle are a further 12% greater. In order

to arrive at an estimated battery pack size and mass, a mass sensitivity study con-

sisting of multiple simulation iterations was performed varying the number of cells

in the battery pack and the corresponding change in vehicle mass was performed.

This study revealed an increase in energy requirements of 2.7 Wh/kg and led to a

40 kg power supply being chosen to meet the simulated requirements for the 30 km
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range. Remembering that as a starting point, these initial net energy values are

independent of any particular battery technology and assume that the power supply

is able to recapture all the braking energy provided by the specific drive cycle.

Table 6.6: Comparative energy requirements over 30 km range (940 kg vehicle).

Drive Cycle

ECE UDDS London

Max. speed [km/h] 49.7 90.7 63.4

Avg. speed [km/h] 18 31.3 22.5

Simulated drive time [min] 100 55.5 80

Net Energy [kWh] 1.16 1.62 1.81

For this study it is assumed that the electric vehicle mode is required mainly when

in urban areas, therefore the recorded city drive cycle is used for the remainder

of the investigation. Using the calculated net energy requirement for the London

drive cycle, the final battery size is found by considering the LiFePO4 battery’s

charging limitations and assuming that the energy is provided by 80% of the batteries

capacity. A useful capacity of 80% is assumed in order to leave a safety buffer to

prevent either overcharging or completely discharging the battery and also to allow

the battery to be operated in a region where its voltage characteristics are more

stable. This depth of discharge is specific for EV mode operation as the battery is

the only power source, during HEV operation this would be reduced to around 60%

or less to increase the battery cycle life [165].

Figure 6.8 shows the current and power demands corresponding to the London drive

cycle data presented in column 3 of Table 6.6. In the second plot it can be seen that

the demanded supply current often exceeds the 32 A recharge limit for the chosen

battery type. In order to prevent these high braking currents, the excess braking

energy would have to be dissipated in the friction brakes. The bottom plot shows

the power demand on the battery (blue) and the lost power due to the recharge

current limitations (red). Also, noting that the net energy for this 30 km profile is

1.81 kWh (green) and the uncaptured energy is 0.25 kWh (red dotted), the required

battery energy is 2.06 kWh (blue dotted).

Since this energy comes from 80% of the battery capacity, the battery is sized for
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Figure 6.8: Required battery energy taking charging current into account.

2.5 kWh. Using the LiFePO4 manufacturer data from Table 6.4, this equates to a

356 V battery pack of 108 cells in series. A parrallel arrangement of battery cells

can be used in order to increase the current capacity of the battery but this was

not considered since the 25C current rating for this battery technology allowed for

sufficiently high currents of up to 200 A. The total pack mass for the battery and

packaging is 40 kg, which when added to the mass breakdown shown in Table 6.3,

gives a total laden vehicle mass of 940 kg for the battery powered model.

6.3.1 Battery Powered EV Range Model

At this stage of the development, there are sufficient additions and modifications

to the HEV model library in order to create the visually representative powertrain

models as was done in Chapter 5. The executable model for the battery powered

EV range model is created by inheriting the newly defined 4WD base model and

connecting the battery model via a single supply converter model to the electrical

machines. A drive cycle driver model is included and the new regenerative braking

controller model is added to the brake model.
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As with the original LifeCar model shown in Figure 5.15, the electrical machines

require a torque reference which in this case is produced by combining the driving

torque and regenerative braking torque demands. This combination is done extern-

ally at the top level of the model hierarchy, since it is likely that the driver func-

tionality, the energy management and regenerative braking strategies will change

during the initial development stages. At a later stage, once experience has been

gained, this functionality can be incorporated into a purpose built driver model for

example, and an appropriate level of controller replaceability defined. In the same

way, the battery and converter models are not combined into a single power supply

model since the power supply is the main subsystem being investigated. Also, it is

not possible to replace the single input converter with the dual input version since

they require a different amount of connectors.

Figure 6.9 shows the complete executable model used for the battery powered range

investigation. It is important to understand that up to this point the development

method has allowed the developer to focus on the subsystems which form the main

contribution to the study. Namely, development effort is focused on making addi-

tions to the HEV model library for the power supply, converter and regenerative

braking strategy. Changes to the base model involved setting the level of abstrac-

tion to a 2WD base instead of a 4WD base but did not require much development

effort since the originally defined partial model abstraction was reused. All other

subsystems in the executable model are carried forward from the study in Chapter 5

in the same manner as prototype models are refined within each cycle of the Spiral

development model.

6.3.2 Battery Powered Model: EV Range Simulations

Initially the battery was sized in order to provide power for a 30 km range with the

London drive cycle, but this assumed all braking energy could be recaptured. With

the regenerative braking strategy in place, the battery is no longer able to power the

vehicle for this distance due to the implementation of the weighting factor. Further,

the 4C charging current limit of the battery also limits the regenerative power to

just over 11 kW without taking the battery power losses into account. Simulations

are started at 90% SOC as the manufacturer of the battery stated that the battery

performance is more stable in the middle 60% of the operating range and it is

therefore assumed that the battery will not be recharged to 100%. Figure 6.10(a)
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Figure 6.9: Battery powered powertrain model for LifeCar EV range investigation.

shows the power and current demand at the battery terminals during a recursive

run of the London driving cycle.

After 19.2 km, the simulation terminates due to the battery current reaching the

maximum discharge limit of 25C or an upper current limit of 200 A when the SOC

reaches 27%. In the implemented battery model, the SOC is based on the internal

voltage (Vb) and the terminal voltage (Vt) is calculated by subtracting the voltage

drop over the internal resistance (IRb) according to equation (6.8).

Vt = Vb − IRb (6.8)

Considering that the battery pack consists of 108 series battery cells with a con-

stant internal resistance of 6 mΩ, at 200 A this voltage drop is 130 V and therefore

the vehicle becomes power limited. This ideal battery model was based on a con-

stant internal resistance due to the relatively constant voltage characteristics of the

LiFePO4 cells over stable operating range [172], and in order to acquire an initial

comparison of the power supply options. Further, the value of internal resistance

used corresponds to the maximum internal resistance for the LiFePO4 cell, and was

thus used as a worst case scenario.
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(a) Battery Power, Current and SOC

(b) Energy Usage

Figure 6.10: Simulation results for battery powered range test.
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The author recognizes that the results provided by this simplified battery model

are not conclusive but they still have value in a comparative capacity and as proof

of overall model functionality in the modelling process. Development of more ac-

curate electrical models for the LiFePO4 battery technology is the topic of current

research [173]. As better models are developed, they can be easily integrated into

the HEV library and replaced in existing powertrain models as an increased fidelity

of the battery subsystem model.

Figure 6.10(b) shows that the energy demand at the battery terminals is 1.5 kWh and

the energy lost in the battery due to I2R losses is 0.25 kWh giving a net energy usage

of 1.75 kWh after only 19.2 km of the London drive cycle. As stated in Section 6.2.2

the regenerative braking weighting factor does not allow for regeneration at speeds

below 4 m.s−1 and while the SOC is above 80%, thereby reducing the amount of

energy that can be recaptured. This can be seen clearly in the bottom plot of

Figure 6.10(b) where the regenerative braking power is seen to be zero for the first

400 s while the battery SOC is above 80% and also has distinct bands of zero

power whenever the speed drops below 4 m.s−1. It must be remembered that the

80% SOC limit is a control variable used to determine the regenerative braking

weighting factor and must be optimized and calibrated by the user during further

control implementation studies. In practice it is likely that a different SOC control

limit will be used depending on the whether the vehicle is operating in an EV or a

HEV mode.

Also seen in the bottom plot of Figure 6.10(b), is the difference in recaptured energy

at the front and rear axles due to the 60/40 brake balance implemented in the

regenerative braking controller for this test. Negative energy values are used to

denote the direction of energy flow as being into the battery and therefore the total

energy recaptured from all wheels is 0.77 kWh.

6.3.3 Battery Powered EV Performance Model

The performance model makes use of the same powertrain model as the range model

with the chassis subsystem replaced by a high fidelity chassis with weight transfer

effects and non-linear tyre models as used in Section 5.3.3 of Chapter 5. Without

knowing the final vehicle components and layout, the mass split between front and

rear axles was estimated from the wheelbase and the centre of gravity data provided
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by the chassis manufacturer. This resulted in a mass distribution of 451.5 kg on

the front axle and 488.5 kg on the rear axle. For test purposes the tyre model is

parameterized with a dry road surface parameter set taken from Short et al. [161].

6.3.4 Battery Powered Model: EV Performance Simula-

tions

The intention of the performance simulation is to determine the maximum acceler-

ation achievable by the vehicle in an “electric only” driving mode with the chosen

battery size. For this test the London drive cycle was replaced with a tip-in tip-out

speed profile with a maximum speed of 100 km/h. This maximum speed is used

since it is slightly greater than the maximum speed of both North American and

European legislative urban drive cycles.

Figure 6.11(a) shows the maximum acceleration achievable without power limiting

the battery. As can be seen the peak power demand reached in accelerating the

vehicle for 0-100 km/h in 26 s is over 65 kW. Considering that the battery starts at

a 90% SOC (342 V), the maximum power it can supply at 200 A is 68.4 kW. Ac-

celerating any faster would place a higher torque demand on the electrical machines

and hence increase the power demanded from the battery. There is no regenerative

power during the braking manouver since the battery SOC is still above 80% at this

point and the same charging control setpoints as for the vehicle range tests were

used. As mentioned earlier, in practice these setpoints are optimized and different

control logic is implemented during different vehicle operating modes.

Figure 6.11(b) shows the vehicle squat and pitch, with more weight transfer to the

rear while accelerating and to the front while braking. The middle plot shows that

the since there is less weight on the front wheels during acceleration but the same

input torque to all the electrical machines, the front wheels tend to slip more than

the rear wheels. Under braking the front wheels have a more negative slip ratio or

tend to lock more, since the front brakes provide 60% of the braking torque while the

rear brakes provide only 40%. This is confirmed in the bottom plot where the more

negative driving force on the front wheels shows that the majority of the braking

force occurs at the front wheels.
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(a) Battery Power, Battery Current and Machine Torque Demands

(b) Load Force, Slip and Driving Force

Figure 6.11: Simulation results for battery powered performance test.
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6.3.5 Battery and Ultracapacitor Powered EV Range Model

For the second set of test models, the converter model is replaced by the dual input

converter model so that an ultracapacitor can be added to the vehicle power supply.

The ultracapacitor is sized in order to store the 0.25 kWh of energy that could not

be captured by the battery due to its recharging current limit as shown in Figure 6.8.

Five types of ultracapacitor cells ranging from 650 F to 3000 F were considered as

shown in Table 6.7. In each case, the number of ultracapacitor cells required is

calculated according to the equation (6.9).

Euc =
1

2
C V2

max −
1

2
C V2

min

=
1

2

(
Ccell

ncell

)[
(ncellVcellmax)2 − V2

min

]
(6.9)

where: Euc is the required energy storage in the ultracapacitor of 0.25 kWh, Ccell

is the cell capacitance, ncell is the number of cells required, Vcellmax is the maximum

cell voltage of 2.7 V, and Vmin is the minimum allowable operating voltage for the

ultracapacitor bank of 133 V. The value of Vmin is derived from a rule of thumb

given by the converter supplier stating that a maximum converter boost ratio of 3

should be assumed in order to achieve the constant 400 V bus voltage for the LifeCar

application.

Table 6.7: Sizing of ultacapacitor bank for Euc = 0.25 kWh

Cell Number String String Max String String

Capacitance of Cells Mass Volume Voltage Capacitance

(Ccell) [F] (ncell) [kg] [l] (Vmax) [V] (C) [F]

650 390 78 58.5 1053.0 1.7

1200 219 65 51.0 591.3 5.5

1500 180 57 47.5 486.0 8.3

2000 142 56 44.3 383.4 14.1

3000 107 58 44.3 288.9 28.0

Only the 2000 F and 3000 F options had a voltage below the desired 400 V bus

voltage. Based on the smaller string size need, the 3000 F capacitor cell with lower

series resistance and higher continuous current properties shown in Table 6.5 was

chosen.
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More specifically, an ultracapacitor bank with the characteristics shown in Table 6.8

is required in order to store the 0.25 kWh of uncaptured braking energy. Further,

adding the 60 kg mass of the ultracapacitor bank to that of the 40 kg battery pack,

gives a new power supply mass of 100 kg and a total laden vehicle mass of 1000 kg.

Table 6.8: 0.25 kWh Ultracapacitor bank properties.

Ultracapacitor Value [unit]

Number of cells 107 [-]

Volume 44.3 [l]

Mass 60 [kg]

Equivalent Series Resistance 0.031 [Ω ]

Max. Voltage 289 [V]

Min. Voltage 133 [V]

Capacitance 28.04 [F]

Finally, the regenerative braking control strategy is modified to take both power

supplies into account. This is done by summing the maximum charging power of

the battery and ultracapacitor in order to calculate the maximum allowable regen-

erative torque. To realize this change, equation (6.5) in Section 6.2.2 is replaced by

equation (6.10).

τmax =
(Vmax − Vuc) Îuc + Vbat Icharge

ω
(6.10)

where: Vuc is the ultracapacitor bank voltage and Îuc is the maximum rated ultra-

capacitor current.

The complete executable model used for the dual source powered LifeCar investiga-

tions is shown in Figure 6.12. Here it can be seen that the vehicle base is the same as

for the battery powered powertrain model with the only difference being the change

of converter model and the addition of the ultracapacitor model. Also the change

of brake model icon indicates the change in the implemented regenerative braking

controller. It is important to note that the development method has not only al-

lowed for a different power supply architecture to be implemented while reusing the

existing architecture and models for the remainder of the powertrain model, but the
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changes are also visually evident at the top hierarchical level of the model so that

a new developer or user can easily identify differences between models. Having said

this, it is of course still necessary for the developer to document the purpose of each

saved model within the code description and link it to any related documentation

as discussed in Section 7.1.

Figure 6.12: Powertrain model for LifeCar using battery and ultracapacitor power

supply.

6.3.6 Dual Source Powered Model: EV Range Simulations

With the addition of the ultracapacitor to the power supply, the vehicle range in-

creases from the 19.2 km for the battery powered option to 25.5 km. The main

reasons for the original 30 km range that the power supply was designed for not

being achieved, are the increased vehicle mass and the SOC limits implemented in

the energy management strategy which are not optimized.

Figure 6.13(a) shows the current and power demands on the battery and ultracapa-

citor as well as their SOC over the 25.5 km distance of the London drive cycle. Here

it can been seen that during the ultracapacitors discharge phase, all power demand
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above 6.5 kW are met by the ultracapacitor while the bulk of the regenerative power

is absorbed by the battery with only the excess being absorbed by the ultracapacitor.

A base power limited by a battery current of up to 3C (24A) is always supplied by

the battery, even during the ultracapacitor discharge cycle. This is done to help

maintain a constant voltage since the LiFePO4 batteries can maintain a constant

voltage until a 30% SOC as long as the current drawn is below 5C [172] and increase

the cycle life of the battery by lengthening the charge-discharge rate [165]. The au-

thor aknowledges that this strategy is not consistent witht the constant resistance

battery model used but it was implemented with the idea of replacing the battery

model with a map-based model using measured voltage discharge characteristics

supplied by the battery supplier. Unfortunately this data was not obtained and the

battery modelling is to form part of future work.

During the ultracapacitor charge phase, the bulk of the power demand is provided

by the battery while all the regenerative braking power is absorbed by the ultra-

capacitor. Therefore, the battery SOC drops at almost double the rate it dropped

during the ultracapacitor discharge phase. This effect is primarily due to the hys-

teretic charging and discharging cycles of the idealized energy management strategy.

Ideally, a more precise controller would make use of the ultracapacitor for all peak

power demands and take priority for charging during all regenerative braking events.

The simulation ends when the battery SOC reaches the specified minimum value of

20%.

Figure 6.13(b) shows that the net energy demand for the covered distance is 1.88 kWh

and the internal energy losses of the battery and ultracapacitor are 0.24 kWh and

0.01 kWh respectively, giving a total energy usage of 2.13 kWh. Finally, in the

bottom plot of Figure 6.13(b), the energy recaptured at the front and rear axles

due to regenerative braking is shown. With 0.89 kWh captured at the front of the

vehicle and 0.59 kWh captured at the rear, the total amount of energy recaptured at

all wheels during regenerative braking is almost double that of the battery powered

model. These results indicate that hybridizing the power supply with the addition

of an ultracapacitor has a definite benefit in recapturing braking energy and redu-

cing the demands on the battery, thereby prolonging its duration and providing an

associated increase in vehicle range.
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(a) Current, Power and SOC

(b) Energy Usage

Figure 6.13: Simulation results for battery and ultracapacitor powered range test
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6.3.7 Battery and Ultracapacitor Powered EV Performance

Model

In the first case study, the high fidelity LifeCar model developed in Section 5.3.3

required new subsystems to be added to the HEV library according to the specializa-

tion step of the Implementation stage. In this case, since the specialized subsystems

already exist in the developed subsystem library and no further specialization is

required, considerable development time and effort can be saved by reusing these

subsystem models. It is in this situation that we see the value of applying an

object-oriented development method within a prototyping development methodo-

logy. With the development of each prototype, the object library keeps growing and

development effort can focus on those objects that need improvement while carrying

forward all useful objects from previous development cycles.

In particular, the performance model makes use of the same powertrain model as the

EV range model in Figure 6.12, but with the chassis and tyre subsystems replaced

with high fidelity models described in Section 5.3.3. Additionally, the vehicle mass

is adjusted to account for the ultracapacitor bank using the same assumed mass

distribution as for the battery powered EV model. This gives a vehicle mass of

519.7 kg on the rear axle and 480.3 kg on the front axle. Again, the data set [161]

representing a dry road surface is used to parameterize the non-linear tyre models.

6.3.8 Dual Source Powered Model: EV Performance Simu-

lations

With the addition of the high power density ultracapacitors to the power supply,

the maximum acceleration achievable is increased with the vehicle being able to

accelerate from 0-100 km/h in 10.6 s as shown in Figure 6.14(a). Examining the

middle plot of Figure 6.14(a), it can be seen that the battery current increases to

200 A at which point the ultracapacitor supplies additional current to maintain the

acceleration rate until it too reaches 200 A. The ultracapacitor current is limited by

the 200 A limit of the power electronics in the converter.

Since there is no dynamic control of the two power sources, the order in which

the power supplies are used is dictated by the power balance implemented in the

dual input converter model. The topic of managing and controlling the power split
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in EVs and HEVs forms the focus of much research [67, 68, 174, 175, 176]. As

pointed out in [177, 178], rule-based control approaches can be optimized in order

to operate each power source as efficiently as possible, or static optimization can

be performed for known drive cycles. However, these control approaches are only

optimal for specific conditions and not any random driving pattern. Fuzzy and

predictive control methods provide more flexibility in this regard but at the cost

of increased design variables and computation time. A more realistic and practical

control approach is to have a supervisory controller as proposed by Paganelli et al.

[179] and implement different optimized power distributions based on the vehicle

mode and the state of the power sources.

The net power demand during this acceleration peaks at 120 kW, which is almost

double that achieved by the battery powered vehicle model. Even so, the bottom

plot of Figure 6.14(a) shows that the torque demand on the electrical machines is

only 240 N.m, which is less than half of the rated peak torque of the machines.

In order to accelerate faster, a larger peak supply power is required, which can be

achieved for short durations by allowing the ultracapacitor to discharge with higher

currents. Since the ultracapacitor has a maximum peak current of 4000 A for short

bursts of up to one second, a converter with a higher power rating is needed to

allow currents above 200 A on the 400 V bus. If more power is required for longer

durations, in addition to increasing the converter rating, a larger battery pack is

required with cells connected in parallel in order to increase the current capacity of

the battery pack.

Figure 6.14(b) shows that with a heavier vehicle and greater acceleration, with

respect to the battery powered vehicle, there is a larger mass transfer to the rear

and hence a larger wheel slip ratio at the front wheels. During braking the vehicle

pitches forward placing more weight on the front wheels and together with 60% of

the braking torque, this causes slightly less slip on the front wheels than the battery

powered counterpart. The bottom plot shows that the vehicles braking force is split

between the front and rear tyres according to the specified vehicle brake balance.

These results also indicate that the hybrid power supply is a better option than the

battery alone. This is based on the fact that more power is delivered to the electrical

machines, reducing the 0-100 km/h acceleration time by almost 60%. Further,

with appropriate control, the ultracapacitor can be used to provide the peak power

demands and thereby spare the battery and prolong its cycle life.



Case Study 2: LifeCar Extension 181

(a) Power, Current and Machine Torque Demands

(b) Load Force, Slip and Driving Force

Figure 6.14: Simulation results for battery and ultracapacitor powered performance

test.
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6.3.9 Front and Rear Wheel Drive Powertrains

The final set of executable models and simulations in this case study are those for

the comparison of 4WD and 2WD LifeCar architectures. The main motivation for

investigating the 2WD option is to determine where the requirements could be met

by only two electrical machines given their high power and torque characteristics.

Additionally removing two machines can simply the complexity of the vehicle control

system requirements, reduce the number of auxiliary devices needed, reduce the

production cost of the vehicle, provide more space on the chassis and decrease the

overall vehicle mass.

More specifically, the powertrain mass reductions due to the removal of two electrical

machines is explained with respect to the 4WD counterparts as follows:

1. Front wheel drive options

• Two 25 kg electrical machines are removed from the rear of the vehicle.

Therefore, the battery powered FWD vehicle is 50 kg lighter than the

4WD counterpart.

• For the hybrid power supply option. Assuming that 60% of the braking

force is provided by the front wheels, the ultracapacitor only needs to

be sized for 60% of the uncaptured energy or 0.15 kWh. Sizing the

ultracapacitor bank for this new energy requirement using equation (6.9),

results in 81 cells of the 3000 F capacitors. This means that the new

ultracapacitor bank weight is 14 kg lighter than that of the 4WD. In

total the dual source powered FWD vehicle is 64 kg lighter than the

4WD counterpart.

2. Rear wheel drive options

• Two 25 kg electrical machines removed from the front of the vehicle.

Therefore, the battery powered RWD vehicle is 50 kg lighter than the

4WD counterpart.

• For the hybrid power supply option. Assuming 40% of the braking occurs

at the rear wheels, the ultracapacitor needs to be sized for 0.1 kWh. In

this case only 69 of the 3000 F ultracapacitor cells are required, thereby

reducing the 4WD ultracapacitor bank weight by 21 kg. In total the dual

source powered RWD vehicle is 71 kg lighter than the 4WD counterpart.
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Figure 6.15: Example 2WD powertrain model for LifeCar using battery and ultra-

capacitor power supply.

From a modelling perspective, this comparison exercise provides an example of how

the modelling method is suitable for investigating design changes. In particular, the

increased flexibility and reduced development effort gained by redefining the base

model created in Chapter 5 is seen. Since the 2WD base model shown in Figure 6.6

has been added to the HEV model library for this case study, developing the four

executable models required to investigate the 2WD vehicle architectures is greatly

simplified.

Specifically, all required subsystem models are now available in the HEV library,

and therefore creating the new architectures is a matter of inheriting the base model

and instantiating the desired power supply subsystems within the model. Addition-

ally, due to the decision to implement the driveline models as two input models as

discussed in Section 5.2.2, changing between FWD and RWD options is done by

redeclaring the driveline model from a front wheel to rear wheel driveline. Once

the complete vehicle model is defined, this same model is reused in the performance

simulations by redeclaring the chassis subsystem. Figure 6.15 shows an example of

a RWD drive powertrain with the hybrid power supply and the high fidelity chassis

subsystem for EV performance simulations.
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EV Range Comparison

A comparison of the maximum range achievable and energy recaptured through

regenerative braking over this range for each of the powertrain architectures and

power supply topologies is shown in Table 6.9. The vehicle range is determined by

repetitive cycling of the London drive cycle until the power supply becomes power

limited or the battery reaches the specified minimum SOC.

Table 6.9: Vehicle range comparison of 2WD and 4WD powertrains.

Power Supply Mass Range Captured Braking Energy

[kg] [km] [kWh]

RWD Battery only 890 17.1 0.25

RWD Hybrid 929 18 0.4

FWD Battery only 890 18.4 0.42

FWD Hybrid 936 20.36 0.7

4WD Battery only 940 19.2 0.77

4WD Hybrid 1000 25.5 1.51

Comparing the RWD and FWD architectures, it can been seen from this data that

the FWD powertrain recaptures more braking energy and provides a marginally

longer vehicle range. This is the case for both the battery and hybrid power supply

topologies, with the FWD battery powered architecture capturing 68% more braking

energy than the RWD, and the FWD hybrid powered architecture capturing 75%

more. These differences can be directly attributed to the longitudinal brake balance

and the fact that there is more kinetic energy in the front wheels due to the mass

transfer of the vehicle during braking. Also, when comparing the hybrid supply with

the battery supply, though the captured energy increases by over 60%, the vehicle

range increases by 2 km at best. This would indicate that hybridizing the power

supply does not provide much benefit in terms of extending the vehicle range.

With the 4WD architecture, the ability to recapture braking energy at all four wheels

does not provide much benefit when comparing the battery powered 4WD results

with the hybrid powered FWD results. In this case, the better option is the hybrid

FWD since it can recapture almost the same amount of energy but has a longer

range due to the vehicle being slightly lighter. However, when the hybrid power
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supply is applied to the 4WD architecture, this results in the heaviest vehicle and

an increase in captured braking energy of 96% which in turn extends the vehicle

range by 33% or 6.3 km.

EV Performance Comparison

A comparison of the acceleration performance of the 2WD and 4WD powertrains for

both power supply topologies is presented in Table 6.10. Here it can be seen that for

the battery powered vehicles, despite the 50 kg reduction in mass, both the FWD

and RWD are able to accelerate from 0-100 km/h less than 2s faster than the 4WD

counterpart. This is because the main limiting factor is still the maximum power

that can be supplied by the battery. Also, the RWD powertrain is slightly faster

than the FWD due to more mass and increased tractive force on the rear wheels

during acceleration.

For the hybrid supply powered vehicles, the mass advantage is smaller and the de-

creased ultracapacitor size is a disadvantage in terms of available power. Therefore,

the 4WD vehicle has the fastest acceleration due to the higher power availability.

In the case, the FWD vehicle is faster than the RWD counterpart despite the mass

transfer to the rear during acceleration. This is because the ultracapacitor of the

FWD powertrain was sized for 50% more energy storage than the RWD powertrain,

which resulted in the 17% more power availability from the ultracapacitor.

Table 6.10: Vehicle acceleration time comparison of 2WD and 4WD powertrains.

Power Supply Time (0-100 km/h)

[s]

RWD Battery only 24.55

RWD Hybrid 13.58

FWD Battery only 24.8

FWD Hybrid 12.8

4WD Battery only 26

4WD Hybrid 10.6
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6.4 Discussion

During the course of this case study, several lessons were learnt with regards to the

modelling and simulation process. These are listed below where the first two points

reinforce the observations made in the Chapter 5 and the last two points refer to

more general requirements of the modelling environment.

1. Flexibility and Modularity

The ability to create interchangeable models with varying degrees of fidelity is

key in providing design flexibility. Using an object oriented design approach

ensures that a design will be modular as far as the subsystems and components

are concerned.

2. Generic Models

Once again it was shown that it is difficult to make a decision as to where in the

hierarchical abstraction the design should make a transition from generic to

architecture specific. Having a good understanding of the scope of the design

and possible future developments can help in making this decision. Trade-

offs remain between the available design flexibility, the design effort and the

maintenance effort required.

3. Linked Database

In order to simplify the parameterization process, especially when iterative

studies need to be undertaken, with various parameter sweeps being performed

or any different parameterization of the same underlying model, it is possible

to make use of data records. A data record is an instance of a generic database

containing all required parameters for a model. The model is designed to point

to this database for all its parameter values and different parameterizations

can be achieved by simply changing the data record and not having to save

a new instance of the model. CAE applications can then be implemented to

automate the creation of data records, either from a central data repository or

directly from other software packages where the required data is known. This

helps both in minimizing the risk of human error when entering parameter

data into a model, and in moving towards a more automated development

environment as mentioned in Section 7.2.2.
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4. Debugging

The issue of debugging is directly related to the modelling environment being

used. In this case the equation-based modelling language makes debugging

more challenging since the language is designed to allow a high-level of ab-

straction. The higher abstraction level means that the abstraction between

compiled simulation code and the original model code is much greater and

hence it is more difficult for a compilation error to be traced back to its ori-

ginal source in the model.

6.5 Conclusion

Referring back to Chapter 1, the objective of this research is to provide a develop-

ment method that facilitates the exploration of the HEV powertrain design space.

In other words, the development method must offer the developers sufficient flexib-

ility to pursue many ideas in as fast and efficient a manner as possible. This case

study established the flexibility and suitability of the proposed method for exploring

multiple design options in a timely fashion. In this case the proposed method was

applied at the initial design stages of a real world HEV development project. The

method was employed for some concept evaluation and analysis with regard to the

vehicle topology and power supply architecture. Once again, the hierarchical nature

of the model library proved to be ideal for reducing model development time, while

the object-oriented properties lent themselves well to the extension and maintenance

of the developed model library. Using replaceable subsystem models allowed for the

efficient evaluation of several designs with minimal redundant modelling effort.

From a systems engineering viewpoint, this case study mimicked a prototyping or

spiral type life cycle where several design options are evaluated and improvement is

made in an incremental manner. The iterative nature of the development method

provides vital feedback to the systems processes for incremental design. Specifically,

by using OOM for concept analysis and evaluation through the development and

testing of executable subsystem models.

Further, analysis and feedback with regards to the sizing of the power supply in order

to meet the performance requirements, contributed to the refinement of requirements

and the selection of an initial battery pack solution for the Morgan LifeCar2 project.
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Chapter 7

Model Management

In order for any modelling and development project to be carried out successfully,

it is imperative that there be some form of appropriate management structure in

place. Furthermore, the management process is even more important when a major

change in development methods is being implemented. For example, Fayad et al.

[180] show that the management processes required for making the transition to

object-oriented software engineering had to be specifically designed for the object-

oriented paradigm. In particular the management activities included how object

development is tracked, evaluated, documented and maintained.

The field of software, systems and project management is vast with many methods,

tools and techniques being used in industry today. It is beyond the scope of this

Thesis to cover all the facets of managing a HEV modelling and development project.

Instead, this chapter will focus on those elements of management deemed most

relevant to the implementation of an OOM method with respect to the issues that

have been highlighted in the preceding chapters. The chapter first considers features

regarded as necessary at the modelling environment level, and then considers some

of the management aspects at the system integration level.
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7.1 Modelling Level Management Concepts

7.1.1 Maintenance and Modification

In Chapter 1 it was stated that the increased complexity of modern vehicle designs,

and in particular HEV designs, leads to increased model maintenance and manage-

ment issues. Further, object-oriented modelling was proposed as a possible solution

to this problem. Features of object-oriented design such as inheritance and encapsu-

lation may promote code reuse and simplified maintenance. However, the reusability

and efficiency of the models does not come from the use of object-oriented tools or

languages, but rather from how these features are implemented in the development

process and how well this process is managed [100, 180]. Jennings and Rangan [5]

claim that a pilot model management system implemented at Ford proved that the

management of models for reuse required increased effort and commitment from

developers as opposed to the management of stand-alone models.

Model Library Structuring

Fichman and Kemerer [100] point out the need for “harvesting” reuse by finding

and exploiting existing knowledge, components and models. The main mechanism

for sharing previous design knowledge and effort between different designs and de-

velopers is the use of a model library and corresponding data repository. At the

modelling level a model library is required to establish abstractions for different do-

mains and to provide the foundation for reusability, modularity and collaboration

by different users [5]. Further, the use of model libraries reduces the time spent on

testing and validation by allowing for the reuse of well tested models [76].

In this Thesis the model library structure is implemented as a Dymola library with

the abstractions for models in each domain being represented by partial models with

domain specific connectors. As was pointed out in Section 4.4.3, there are different

approaches that can be taken to create the model library structure. Two of the

more common and intuitive ways are to create a hierarchical structure classified by

either function or domain.

A more generic function based grouping on upper levels of the hierarchy, with models

becoming more specific on the lower levels. This is illustrated in Figure 7.1(a) with
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(a) Hierarchical library classified by function (b) Hierarchical library classified by domain

Figure 7.1: Example model library structures

the functional hierarchy of electric motors. At the upper level a generic or base model

for electric motors can be stored with lower levels inheriting the upper level class

and properties. In this way the code reuse is enforced and maintenance is simplified.

Further, when adding a new specific component to any level of the hierarchy, the

developer can concentrate on only implementing new features that are not present

in any of the upper level models. In other words only the specialization needs to be

implemented since all features of the upper levels will be inherited.

A domain hierarchy is better suited for bottom-up construction since there are many

basic component models which will be used for the creation of more complex system

models. This method is more intuitive for initial development efforts as component

models can be can be searched for in the same manner as they would in a real-world

design. An example of a domain based library structure is shown in Figure 7.1(b).

This structure is adopted by the Dymola tool in order to provide the basic component

models supplied by Modelica standard library.

The functional classification approach to library structuring is taken in [13] where the

inheritance mechanism in the structure is used to ensure that descendant component

models can replace their more generic ancestor models, thereby allowing the model to

evolve throughout the design life-cycle. Han et al. [13] also stress that one component

model can form part of different functional hierarchies if it can be classified in

different ways. For example a rotary motor can be seen as part of a transducer
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hierarchy and a mechanical hierarchy if it is considered as a rotational joint. This

has the added benefit of allowing future developers to find the model for reuse in

different application domains while still only having one model to maintain.

It is possible to make use of both of these library structures by having more than one

library. Eriksson and Jacobson [63] follow this approach by making use of a domain

based component library and a second system library where models are structured

hierarchically according to a specified system decomposition of a vehicle. A similar

method was employed for the case studies in Chapters 5 and 6 since the basic

components used were mainly sourced from external libraries while the developed

subsystem models were packaged according to the identified HEV subsystems.

Overall the objectives for a library design should be to promote object-oriented

modelling by providing developers with a structure within which object-oriented

properties, such as inheritance and encapsulation, can easily be implemented by

following the library structure. Further, users of the library are provided with an

easy and intuitive way to locate models for use in new modelling activities. As

with the design methodologies, there is not one approach that will provide the

best results for all development projects. However, it can be said that whatever

library structuring approach is decided upon, it is imperative that the management

structure enforces its adoption and does not allow developers to use an ad-hoc

structure. Some guidelines that can be used in the development of a library structure

are listed below [13, 136, 181]:

• promote decomposition and composition of subsystems and components,

• reflect model architecture in the library structure,

• make a clear distinction between generic and specific models,

• provide a means of implementing different levels of fidelity,

• facilitate locating components and subsystem models for new designs,

• define a means for making models replaceable,

• provide a basis for collaboration between domain specialists and other mem-

bers of the supply chain.



Model Management 193

Management of the library structure is not only needed at the development level,

but the model library should be closely tied to a data repository at the system level

of operation. This data repository should link all related documentation such as

CAD data, requirements specifications, design decisions and parameter data so as

to form a unifying collaborative base for capturing, sharing and reusing knowledge

from all stakeholders.

Version Control

Due to the multidisciplinary nature of HEV powertrain development, engineers from

different domains and with different specialities are required to develop the complex

model of the powertrain and its subsystems. Model developers range from engine

and battery specialists to electronics and control specialists, with each party making

their contribution to the powertrain model at different times. For this reason it is

imperative that there is a process of version control and management in place that

can assure that all parties are using the most recent model and that all contributions

are added to the same model.

Further, with development activities occurring in parallel and possibly in different

locations, it is necessary to have a system in place that ensures the correct model

data is stored and shared for all developers [60]. A version management system

should be used to keep track of model code, documentation, parameter files, test

scripts and simulation results. The task of version management is usually handled

by bespoke software if not built into the development environment. Some of the

basic features that should be supported are:

• Add models to a repository. This feature is necessary to support the extension

and evolution of the model library by making newly developed component and

subsystem models with associated documentation available to all collaborating

parties.

• Updating local files. This feature is useful when files or models have been

stored off-line for checking if there are differences from the repository version

and exactly what those differences are.

• Commit changes to repository. Once an developer has performed a mainten-

ance task on a model or has upgraded the model, those changes can be up-
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dated in the repository by comparing with the repository version and providing

comments as to what changes were made. These comments are necessary for

traceability over the design life-cycle.

• Merging different versions (with conflict handling). In a multidisciplinary col-

laborative design environment, it is not desirable to prevent access to models

by locking all files being used [60]. Since it is likely that more than one de-

veloper will need access to the same model, especially in an object-oriented

modelling environment, the system should allow for concurrent development.

Therefore, the ability to merge the concurrent changes made to a single model

is neccesary. If two developers have made changes to the same lines of code

or documentation, the system should issue a warning and allow the user to

resolve the problem.

• Revert to previous version. Modelling and analysis activities must not be

halted. If a version update to a particular subsystem model creates errors in

the working model, reverting to a previous working version allows for modelling

and integration activities to continue, while debugging of the version update

can occur in parallel.

7.1.2 Documentation

As mentioned before, HEV modelling is a multi-disciplinary task that requires the

involvement of many stakeholders. Communication between these stakeholders is

key in order to ensure project success. Much of this communication is done in

the form of documentation which is passed around via email or shared in a com-

mon workspace and may have the form of spreadsheets, text documents, diagrams

or presentations. Managing the documentation that accompanies each developed

model is important in order to track the progress of a project and trace any changes

that may have occurred during the development life-cycle. Often the documentation

is imperative for maintenance tasks as it is the only available link to the original

design [180]. Lohmann and Marquardt [182] explain that 50% of modelling time is

spent looking for known information and that this process can be supported with

improved documentation. This documentation should support model reuse by al-

lowing users to easily understand how a model can be used without going through

the underlying code. Model reusability is also aided by documenting experience
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gained such as solutions to particular design problems.

More specifically a documentation standard should be enforced for documents pro-

duced during the modelling activities. This standard should ensure that developers

correctly document their developed models by:

• stating the requirements for the model,

• stating the development rationale employed,

• tracking any decisions made with regards to implementation or maintenance,

• clearly stating any model dependencies.

If an overall system model is created using the UML or the SysML, the diagrams

developed to describe the system model will form a major part of the document-

ation containing knowledge and contributions from all stakeholders. Configuration

management can be employed in order to define what diagrams and documents need

to be created and controlled during the design life-cycle. Further, since these con-

figuration items are all constantly being modified during the development process,

they should all be added to the version control repository [180].

7.1.3 Model Sharing and Protection

Another factor that needs to be taken into account when dealing with large complex

projects such as those associated with HEV development, having multiple stakehold-

ers that are possibly distributed in different geographical locations, is the protection

of intellectual property (IP). Tummescheit [76] points out the fact that in the com-

mercial software industry, a line of validated code is given a value ranging from $50

to $200. This number is possibly even greater if the code is specialized modelling

code. Therefore, as the technology being investigated becomes more mainstream,

the value of the tested and validated models will increase. As these technologies are

taken up in industry, it is reasonable to assume that the parties who have invested

time, effort and money in developing the model library resources will seek to protect

there IP by encrypting or hiding proprietary sections of their model code.

The Dymola User’s Manual [60] explains that a common method of sharing models

or software without revealing the underlying source code is to provide users with
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compiled executable programs. It also points out that this method is not suitable

if the intention is to use that model within an equation oriented modelling environ-

ment. This is explained as follows [60]:

“This approach is not useful for Modelica models. To achieve robust

and efficient simulation, it is important that Dymola can make a global

analysis and manipulation of all equations. It is thus highly desirable to

give Dymola access to the equations in their original form. Encryption

of the textual Modelica representation of the model supports conceal-

ment of internal parts such as the equations, while still allowing Dymola

internally to access the equations as if the model was not encrypted.”

In practice this means that an encrypted model is made available as a black box

model meaning that the user is able to see connections, parameters and document-

ation but cannot see or change the internal equations describing the model’s beha-

viour. This is put into effect by the use of public and protected sections within

the Modelica code description. The implication of developing encrypted models and

libraries is an increased development and testing effort since care must be taken to

provide potential users with sufficient access to parameters during modelling and

simulation, while separating those parameters that should be concealed. Further,

since the user can not make modifications to the underlying code, more extensive

testing of the model should be performed since any errors experienced by users will

be relayed back to the developers for debugging increasing the maintenance costs.

The sharing and encryption features discussed so far are restricted to the use of

models within the same modelling and simulation environment, or at least one that

is able to make use of native Modelica models. However, with complex multi-domain

development projects, it is often necessary to be able to share models between dif-

ferent modelling and simulation environments. This ability is needed to allow for

further development of other aspects of the design without the need to recreate ex-

isting models in a different language. An example of this was seen in Chapter 5

when the Dymola vehicle plant model was exported to the Simulink modelling en-

vironment in order to test the plant with controller models developed in Simulink.

Since Simulink is the industry standard for controller development, most modelling

and simulation environments support the exporting of models into S-functions that

are suitable for use in the Simulink environment. A survey of vehicle simulation
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tools used in industry performed by Ricardo in August 2009 shows that 90% of the

surveyed tools support the generation of S-functions [183].

7.2 System Integration Management Concepts

Colombi and Cobb [116] highlight how well managed systems engineering can ef-

fectively be used for development projects in a critical environment, making the

following key observations:

• Early statement of key constraints helped in focusing all stakeholders, making

project decisions and conducting trade-offs.

• Understanding the larger system context helped tailor the development ap-

proach.

• Software engineering techniques could be used for rapid hardware development,

such as evolutionary development and rapid feedback.

• Selection of a suitable toolset was important in aiding the decision-making

process.

• Project risk could be reduced through parallel development.

• Responsive development can be achieved while maintaining the rigour of classic

systems engineering methodologies.

This section considers model management from a higher level by considering how

the modelling process fits into the overall system engineering process. Particular

emphasis is placed on the following three areas:

1. Managing stakeholder communication – stakeholder involvement is a key as-

pect in HEV design due to the multidisciplinary expertise required to support

the development life-cycle.

2. Computer aided engineering – considering the high number of tools already

being used within the automotive industry, introduction of new tools and

methods for HEV design needs to be well managed in order to move towards

a more streamlined and automated development environment.
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3. Risk management – since the proposed modelling method is to be used within

the framework of a systems engineering development methodology, risk ana-

lysis should form part of the development life-cycle. In particular, managing

the risks associated with implementing new technologies and changes to pro-

cedures.

7.2.1 Stakeholder Communication

When dealing with multiple stakeholders each needing to make a vital contribution

to the requirements of the project, it is crucial that the communication between the

stakeholders be well managed. McManus and Wood-Harper [131] analyse the causes

42 information system project failures and shown that 65% of the project failures can

be attributed to management issues, with poor stakeholder communication and risk

management being significant causal factors. Two specific aspects of the stakeholder

communication that need to be managed are the requirements capture and data

exchange mechanisms.

Stakeholder requirements need to be captured, analysed, shared, tracked, updated

and validated. Bahill and Henderson [184] stress the importance of requirements

development, verification and validation by offering examples of famous projects

where neglecting one or more of these steps led to project failure. Examples include

the HMS Titanic where poor quality control meant the verification process was not

performed correctly and the Mars climate orbiter where different stakeholders made

use of different measurement units causing the satellite to crash.

Capturing and modelling the requirements is a key role in designing HEV power-

trains [23]. Making use of an overall system model in the form of a SysML model is

a useful tool for communicating and capturing different stakeholder requirements as

well as sharing the captured data when used together with a version control system.

The SysML provides for requirements modelling through the use of requirements

diagrams that can be integrated for use with requirements management tools [185].

Since the requirements and associated documents will change as stakeholders in-

teract and the design evolves, the requirements management tool should provide a

database interface for capturing and tracing the changing requirements [186]. Addi-

tionally such a tool will help in preventing redundant document creation and thereby

promote data consistency.
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7.2.2 Computer Aided Engineering

In an effort to better support co-simulation between different modelling environ-

ments, the latest release of Dymola (version 7.4) includes support for a model ex-

change standard known as the functional mock-up interface (FMI). The FMI is an

initiative of the MODELISAR project of the Information Technology for Informa-

tion Advancement, or ITEA2, program [187] that defines a common interface for

exchanging models between different tools. The main objectives of MODELISAR

are to allow for the concurrent design of embedded software and systems by combin-

ing the Modelica and AUTOSAR standards and to ensure runtime interoperability

between different tools for co-simulation through the FMI [143]. Essentially this

means that the different modelling tools supporting the FMI interface can exchange

models in the form of a unit consisting of a standard model description, a source code

implementation model in C, input parameter resources and the documentation for

the model. As of 2010, several manufactures of modelling and simulation software

intend to incorporate support for the FMI into their simulation and modelling en-

vironments. This includes multi-domain simulation packages such as AMESim and

SimulationX, integration and co-simulation software such Silver 2.0 and EXCITE

ACE and 3D multibody simulation such as SIMPACK [84, 143].

In an interview with a technical specialist in the simulation group at Jaguar Cars

Ltd., it was revealed that the company had over 100 different computer aided engin-

eering (CAE) tools in use for different modelling purposes such as CFD, combustion

analysis and vehicle dynamics [129]. Further, the main method for data exchange

was via spreadsheets and presentations, and data consistency managed during meet-

ings with the different stakeholders.

In practice, well managed sharing of models and data can save time and effort

by avoiding duplication, and simplifies the task of checking the consistency of the

data. More specifically it is a necessity if the objective is to move towards a more

automated environment. Automating and controlling the exchange of data removes

many of the opportunities for errors to be introduced into the process, typically

caused by users manually transferring data from text based communications.
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7.2.3 Risk Management

When managing the development of a technological system, there is a risk of project

failure that can be caused by the management, the users, the hardware or the

software [188]. In the software domain risk is used to indicate the possibility of

factors such as delays, rising costs, low quality solutions or project failure [189]. Risk

management needs to be integrated into the design development methodology and

occur continually throughout the development life-cycle. During the first stage of

the modelling method, Functional Requirements, risk is reduced by defining realistic

requirements which will form the guidelines for later development efforts to focus in

the correct areas. Typically, risk is high at the start of the project when there are

more unknown variables and it is reduced through analysis, experimentation and

testing as the development advances [190].

As has been stated throughout this Thesis, HEV’s are highly complex systems and

their modelling and development requires the participation and collaboration of mul-

tiple stakeholders. Further, exploring the HEV design space involves investigating

new and emerging technologies in order to gain a competitive advantage. From a

software and systems point of view, it can be said that the risk likelihood or probab-

ility of failure is high when dealing with new and unproven technologies, or highly

complex components [190]. This is because such design efforts must significantly ex-

tend previous designs while working with minimal data availability, complex or newly

developed components and a general lack of data and practical experience [190].

Though there are many risks that can be associated with the running of any pro-

ject, it is beyond the scope of this research to highlight all the risks involved with

developing new products in the automotive industry. Rather, five risk aspects have

been chosen which directly relate to the implementation of an object-oriented model

development method such as the one proposed in this Thesis. The first four areas

of potential risk are related to model development and are discussed with reference

to the mechanisms that should lead to the reduction or elimination of that risk.

1. Modelling Errors

These are errors that could manifest at a subsystem level or once the overall sys-

tem model is put together. From a development point of view it can be said that
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these risks can be mitigated by means of a good development method [191]. Spe-

cifically, features of the development method such as abstraction, the model library

and simulation testing are designed to reduce the risk of model errors by reducing

complexity, reusing tested components and validating functionality. Further, em-

ploying a development methodology such as the one shown in Figure 4.2, provides

a means for the early identification of errors through the frequent iteration of the

model development.

From a risk management perspective modelling errors can be avoided by enforcing

technical reviews of developed model classes along with there associated document-

ation to ensure that models are corrected before being added to the model library

for reuse in other models. Further models that are particularly problematic to im-

plement should be tracked and reviewed more frequently in order to find a solution.

Also any problems specific to a particular model need to be documented and stored

so that the same problem can be avoided in the future.

2. Model Fidelity

The level of modelling fidelity is a risk factor both from an under performance and

an over performance point of view. An inadequate model fidelity will fail to meet

the modelling requirements while too high a fidelity could lead to an overrun on

development time. The first way this risk is reduced is through the requirements

specification and the iterative feedback from the development stage simulations to

check if requirements are met or being changed. During the object-oriented mod-

elling process, the properties of encapsulation (replaceable models) guarantee the

implementation of a specific fidelity level does not affect external subsystem models

and inheritance reduces the risk by allowing the incremental development of higher

fidelity levels.

The main management action that needs to be carried out in order to mitigate these

risks are to provide sufficient opportunity and mechanism for stakeholder commu-

nication so that requirements and data are up to date and consistent. Additionally

it may be necessary to consider the overall system and adjust the developer’s re-

quirements if the solution is not practical from a cost and complexity standpoint.

Also when a new technology is being introduced to the vehicle system such as a

new type of battery or fuel cell, it can be difficult for the correct model fidelity to
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be achieved either due to lack of in-house expertise or lack of available data on the

technology. In this case a management decision to acquire the services and expertise

of an external consultant may be necessary in order to reduce the risk of project

failure.

3. Design Changes

Design changes should generally occur either because of a requirements change due

to stakeholder needs, or technology changes, or a major model maintenance event.

The primary process for dealing with this risk is through an iterative development

process, where the use of prototype model designs can help inform early decisions on

possible design changes. Following this, the use of partial models together with the

model library means that compatibility of new model subsystems can be ensured

while minimizing design effort and error through reusable component models. Fur-

ther, through the property of encapsulation the affect of subsystem design changes

on functionality is reduced, and can be more easily propagated throughout the whole

model.

Once again, timely communication between all stakeholders is the key management

task for avoiding this risk factor. Further, to avoid the risk associated with imple-

menting a new technology into the vehicle design, that has not been successfully

implemented before, it may be prudent to manage an alternative option. This

alternative can serve as a backup in the event that the new subsystem’s implement-

ation fails to meet the anticipated objectives. A similar approach is used in software

development, when the perceived risk of using a new design technology is at the

highest level. Using a second design approach, at the risk of increasing cost and

reducing performance, is a preferable alternative to that of a non functional system.

In this way the success of the overall project does not depend on that of a single

subsystem.

4. Third Party Models

The use of third party models can be due to the availability of commercial model

libraries or external parties developing some of the required models. Possible short-

falls in using these models are due to poor functionality, inadequate documentation



Model Management 203

or model accessibility issues due to encryption. As in the case of model fidelity risk,

encapsulation and replaceable models help in shielding the overall modelling activity

from problems with third party models and allow for alternate models to be easily

substituted if necessary.

For this scenario the management policies that control the documentation are im-

portant both for keeping the external documentation with the third party models

and for link in-house documentation on experience with using these models so that

this knowledge can be shared with all users. If the problems cannot be resolved in-

ternally, a management action to have the third party developers or external know-

ledge source consult on the correct usage of the models is required. Failing this, an

alternate package should be acquired or a substitute model developed internally.

These four development risks and the recommended mitigation features of both the

development method and the management decisions are summarized in Table 7.1.

Table 7.1: Model development risk factors and mitigation features.

Risk Factor Development Feature Management Actions

Modelling error Abstraction Technical Reviews

Model Library Tracking

Simulation Tests Documentation

Model fidelity Requirements Stakeholder Comms.

Encapsulation Requirements Adjustment

Inheritance External Consultant

Replaceable Models

Design changes Iterative Development Stakeholder Comms.

Partial Models Alternative Option

Model Library

Third parties Encapsulation Documentation

Replaceable Models External Consultant

Alternative Option
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5. Changing Methods and Tools

The fifth risk area is related to the organizational management structure with re-

gards to how the change in model development methods and tools is implemented

within the organization. Building confidence in new procedures and tools requires

good stakeholder communication, particularly between developers and management.

Kwak and Stoddard [191] explain that disjointed relations between developers and

management leads to misunderstanding and trust issues. Khalifa and Verner [192]

study the driving factors for 82 software developers that lead them to choose between

a waterfall development method or prototyping method. In this study they determ-

ine that the two main drivers for adopting a particular method are: the “facilitating

conditions” within the organization, such as the companies adoption of new techno-

logies; and the “perceived consequence” on the development process quality rather

than the product quality. This latter fact is attributed to the belief that “a quality

process will result in a quality product”.

However, in a later study, Riemenschneider et al. [193] show that a primary driver

for developers is whether or not the methodology will improve their productivity

and perceived performance, due to organizational reward structures. They further

explain that the benefit of the methodology to the organization will not encourage

its adoption even if it is mandated. Therefore, in order to effectively introduce new

development environments and methods, the company must either demonstrate the

potential for improved individual performance or explain how individuals will be

rewarded for improvements in company performance.

Riemenschneider et al. also explain that developers will resist adopting methods that

are not compatible with their current work processes. Management should avoid

radical changes, clearly illustrate similarities between the development methods and

possibly introduce the new methods in an incremental fashion. One manner of

achieving this is to arrange pilot development programs within the company in

order to test new tools and methods. Finally, it is important that the new methods

are actively promoted by management in order to reduce the risk of them not being

adopted due to peer developer’s disapproval of the methods [193, 194].
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Chapter 8

Conclusions

Traditionally multiple models of the same plant have to be developed and main-

tained in order to perform the required simulation analysis during the vehicle design

life-cycle. Considering the increased time pressures, design alternatives, changes in

technologies and overall complexity of the modern vehicle design space; continued

usage of this approach creates more opportunities for the introduction of errors into

the design process. Further, with increased system complexity, development and

management of the many required models becomes more difficult and time consum-

ing. This PhD Thesis considers the problem of the increasing complexity of modern

automotive powertrain modelling and the fact that this problem is compounded

within the HEV design space. A modelling method using object-oriented modelling

principles within a systems engineering development environment was proposed as

a means of dealing with this complexity, from both a development and management

perspective.

The work presented in this Thesis focused on the intersection of three research

areas. The first area being that of HEV powertrain modelling. Within this area

it was established that the two main facets giving rise to the complexities in HEV

powertrain modelling are the cross-coupling of multiple engineering domains and the

varying levels of fidelity needed for different modelling objectives. Where the first

facet adds to the architectural diversity of the HEV design space, while the second

adds to the required logical complexity.

The second research area is that of OOM. Here, the concept of an equation oriented

object-oriented modelling language was introduced with the advantages of acausal
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component based modelling and visually intuitive model topologies, over traditional

block based modelling techniques. Additionally, benefits are gained from the struc-

tural and behavioural properties provided object-oriented languages. In particular

the use of inheritance within model development allows for reduced modelling effort

due to reuse of code, and simpler model maintenance since only the original model

class has to be maintained and not the individual instances.

The third research area considers the concepts of systems engineering methodologies

as applied to the intersection of the first two areas. More specifically the concepts

of systems modelling and development are applied to the HEV modelling domain in

order to produce an OOM method. The proposed modelling method aims to provide

a flexible manner of developing HEV powertrain models using object-oriented prin-

ciples to meet the complexity challenges, as well as providing a mechanism for struc-

turing model libraries so as to assist in the management, development and main-

tenance tasks. Further, it is intended that this modelling method should be easily

incorporated into and take advantage of the already existing systems engineering

practices within the automotive industry.

In Chapter 1 Section 1.3 an objective is set out for developing a modelling method

that can take advantages of OOM and can be integrated within a systems engineering

framework. This objective is met in Chapter 4, where a proposed a solution for the

efficient exploration of the HEV design space is placed within the context of a

systems engineering life cycle, and then explicitly defined as an OOM method for

developing HEV powertrain models. Further, the proposed method is tested and the

aims set to validate the objective in Section 1.3 are specifically met in Chapters 5

and 6.

In Case Study 1: LifeCar, the modelling method is used to develop a library for

modelling the LifeCar fuel cell hybrid vehicle powertrain. This study showed how

partial models can be inherited to more efficiently develop and maintain a variety

of complete models. With this regards it is also highlighted that a balance must be

achieved between the desired reusability and extendability of these models. Where

a partial model needing more extension to become functional is likely to be reusable

in more instances than one with more complexity, while the more complex partial

model saves can reduce the development effort in terms of the quantity of reusable

code. This case study also provided insight into the development and structuring

of a hierarchical model library. The library employed a high-level package structure
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based on function, with partial models and base models grouped by subsystem and

each subsystem package containing subpackages for the different levels of fidelity.

Though the best practice for structuring the model library remains an area for

further research, the chosen structure did prove to be both intuitive for further

development and flexible enough to accommodate the use of COTS libraries. Within

the powertrain development process an attempt is made to separate the controller

modelling from the physical plant modelling. This is in keeping with the object-

oriented development philosophy. Control functionality is included in subsystem

models but as a separate object that can be more easily modified and replaced,

and further allowing the physical plant model to be used separately or exported

to external software. Third party models were integrated into the developed HEV

library at both a component and a subsystem level. While the use of COTS models

proved beneficial in increasing the fidelity of certain subsystems where the time and

effort in acquiring the knowledge and experience to develop similar models is not

available, the risks of using third party models must be accounted for and managed.

Ultimately the developed Dymola powertrain models are shown to be valid through

comparison of simulation results with existing Simulink simulations that had been

validated against dynamometer tests.

Case Study 2: LifeCar Extension, provided an opportunity to test the proposed

development method along with a concurrent “real-world” development activity on

the LifeCar vehicle. It provided a chance to reiterate the development performed in

the initial case study in much the same way as would be done within a spiral type

development methodology. This case study shows the suitability of the hierarchical

model library structure for reuse and extension for new model development efforts.

Further, the development method is used in developing subsystem and powertrain

models for comparing power supply options for the HEV as well as powertrain models

for comparing 2WD and 4WD vehicle topologies. Apart from affirming observations

made in the first case study, new insights into the modelling requirements were

seen. In particular the use of a linked database with parameterization data for the

model can simplify the reparameterization task, where the use of central databases

for exchanging data between the different software in use in automotive companies

lends itself well to the benefits of CAE.

The importance of model management considerations, for achieving the goal of

more efficient modelling, and ensuring the successful integration of a new modelling

method into an already well established industry, are discussed. At the modelling
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environment level, there is a need for enforcing model maintenance features, docu-

mentation and encryption through management policy. At the system integration

level there is a need for an efficient method of communicating and sharing data and

requirements between all stakeholders, automating communication between the vari-

ous systems being used for increased efficiency and data consistency, and managing

the risks associated with implementing new technologies and changes to procedures.

This Thesis shows that the proposed modelling method makes use of the OOM prop-

erties of inheritance and encapsulation in order to develop reusable, replaceable and

ultimately more maintainable models. Further, the iterative nature of the proposed

method is shown to be well suited to development within a prototyping develop-

ment methodology and therefore should be reasonably easy to integrate into current

automotive modelling practices. The research has shown that the overall acceptance

of the development method is largely up to the support structure provided for it

within the management policies.

8.1 Future Work

In order to advance this work further, the author suggests that the proposed model

development method be tested in conjunction with a pilot project within an auto-

motive manufacturer. In this way it will be possible to make a direct comparison

between this method and traditional modelling methods. Gaining direct feedback

from model developers, model users and management will highlight any advantages

and disadvantages of changing the model management and development methods.

Also in this manner it will be possible to better quantify any benefits in terms of

development time and effort. All areas that prove hard to integrate within the cur-

rent development environment should then be revised, taking into consideration the

input from the various parties involved.

Specifically, this project should focus on the use of system modelling to convey

data between the stakeholders. The application of SysML or similar modelling

languages should be investigated with respect to its suitability for sharing model

information between stakeholders and also how well these models contribute to the

development of the final object-oriented physical models. In this respect, the CAE

aspects of the research should focus on the integration of the system models, data
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storage and physical models. Ideally, the aim should be to automate as much of the

physical model creation process as possible by drawing on the SysML models for

the structure, the model library for the subsystems and components and the shared

data storage for parameterization of the models. From the modelling perspective,

the benefits of different library structures should be investigated here with a focus on

how the structure can best make use of and support the CAE and systems modelling

activities.

The final stage of this project should look at the application of this method for

real-time and HIL simulation studies. This is necessary in order to establish the

suitability of object-oriented models for real-time applications. It is important to

understand how the models need to be changed for this purpose and whether these

changes can be performed as part of the iterative development process. Again it is

important to gain feedback on how this compares with current modelling methods

in terms of time and effort from a developer point of view and the implications it

may have on the model management process.
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and E. Özatay, “Modeling and Control of a Four Wheel Drive Parallel Hy-

brid Electric Vehicle,” in Proc. of the 2006 IEEE International Conference on

Control Applications, Munich, Germany, 4th − 6th Oct., 2006, pp. 155–162.

[32] M. Larsen, S. De La Salle, and D. Reuter, “A Reusable Control System Archi-

tecture for Hybrid Powertrains,” in SAE Technical Papers, no. 2002-07-2808.

Society of Automotive Engineers, 2002.

[33] I. Husain, Electric and Hybrid Vehicles: Design Fundamentals. New York:

CRC Press, 2003.

[34] Toyota Motor Corporation, “Hybrid Synergy Drive,” Last accessed: Oct.

2010. [Online]. Available: http://www.hybridsynergydrive.com/en/start.html

[35] Honda Motor Company, “Honda Civic Hybrid,” Last accessed: Oct. 2010.

[Online]. Available: http://world.honda.com/CIVICHYBRID/

[36] T. J. E. Miller, “Optimal Design of Switched Reluctance Motors,” IEEE

Trans. Ind. Electron., vol. 49, no. 1, pp. 15–27, 2002.

[37] Switched Reluctance Drives Ltd., “Automotive SR Drive Technology,”

Last accessed: Oct. 2010. [Online]. Available: http://www.srdrives.co.uk/

automotive.shtml

[38] J. Marco, “Electrical Architectures for Hybrid Vehicles: Implications for Mod-

elling and Control,” in Proceedings of the 2008 International Conference on

Control (UKACC), University of Manchester, UK, 2nd − 4th Sept., 2008.

http://www.hybridsynergydrive.com/en/start.html
http://world.honda.com/CIVICHYBRID/
http://www.srdrives.co.uk/automotive.shtml
http://www.srdrives.co.uk/automotive.shtml


REFERENCES 215

[39] R. McGee, F. Syed, S. Hunter, and D. Ramaswamy, “Power Control for the

Escape and Mariner Hybrids,” in SAE Technical Papers, no. 2007-01-0282.

Society of Automotive Engineers, 2007.

[40] L. Guzzella and A. Amstutz, “CAE Tools for Quasi-Static Modeling and Op-

timization of Hybrid Powertrains,” IEEE Trans. Veh. Technol., vol. 48, no. 6,

pp. 1762–1769, Nov. 1999.

[41] J. Van Mierlo, P. Van den Bossche, and G. Maggetto, “Models of energy

sources for EV and HEV: fuel cells, batteries, ultracapacitors, flywheels and

engine-generators,” in Journal of Power Sources, vol. 128, no. 1, 2004, pp.

76–89.

[42] C. Yunpeng, S. Xiaomin, and J. Peifa, “Forward-facing Modeling for an Elec-

tric Vehicle Powertrain,” in The 20th International Electric Vehicle Sym-

posium (EVS-20), Long Beach, CA, Nov. 2003.

[43] J. Van Mierlo and G. Maggetto, “Vehicle simulation program: a tool to eval-

uate hybrid power management strategies based on an innovative iteration

algorithm,” in Proc. IMechE Part D: Journal of Automobile Engineering, vol.

215, no. 9, 2001, pp. 1043–1052.

[44] T. Markel, A. Brooker, T. Hendricks, V. Johnson, K. Kelly, B. Kramer,

M. O’Keefe, S. Sprik, and K. Wipke, “Advisor: a systems analysis tool for

advanced vehicle modeling,” Journal of Power Sources, vol. 110, no. 2, pp.

255 – 266, Aug. 2002.

[45] B. K. Powell, K. E. Bailey, and S. R. Cikanek, “Dynamic modeling and con-

trol of hybrid electric vehicle powertrain systems,” IEEE Control Syst. Mag.,

vol. 18, no. 5, pp. 17–33, 1998.

[46] K. B. Wipke, M. R. Cuddy, and S. D. Burch, “Advisor 2.1: a user-friendly ad-

vanced powertrain simulation using a combined backward/forward approach,”

IEEE Trans. Veh. Technol., vol. 48, no. 6, pp. 1751–1761, Nov. 1999.

[47] E. Cacciatori, “Advanced Control Concepts for a Parallel Hybrid Powertrain

with Infinitely Variable Transmission,” Ph.D. dissertation, Cranfield Univer-

sity, Cranfield, 2007.



216 REFERENCES

[48] J. Van Mierlo, G. Maggetto, and P. Van den Bossche, “Simulation meth-

odologies for innovative vehicle drive systems,” in 11th International Power

Electronics and Motion Control Conference (EPE-PEMC’2004), Riga, Latvia,

2nd − 4th Sept. 2004.

[49] S. Wilkins and M. Lampérth, “The Development of an Object-Oriented Tool

for the Modeling and Simulation of Hybrid Powertrains for Vehicular Applic-

ations,” in SAE Technical Papers, no. 2003-01-2249. Society of Automotive

Engineers, 2003.

[50] T. Markel and K. Wipke, “Modeling grid-connected hybrid electric vehicles

using advisor,” in Proc. of the 16th Annual Battery Conf. Applications and

Advances, 2001, pp. 23–29.

[51] M. Tiller, P. Bowles, and M. Dempsey, “Development of a Vehicle Modeling

Architecture in Modelica,” in Proceedings of the 3rd International Modelica
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Appendix A

Glossary

A.1 Object-Oriented Terminology

This section serves as a reference with short descriptions of the most common con-

cepts used in object-oriented programming [58, 76, 195]. Examples of how these con-

cepts are applied within the modelling environment are provided in Sections 3.3, 5.2

and 6.2.

1. Abstraction – Abstraction is a key activity in developing an object-oriented

program. It is the skill of simplifying the detail of a given problem into the

essential features which can then be used to create class descriptions. This

process helps to break down the problem (programming task) into more man-

ageable (and reusable) portions. For example a car can be be abstracted into

a container of objects such as engine, transmission and wheels. When de-

fining the car it is not necessary to know how the internal components are

defined, only how they should be used together. Depending on the purpose

of the program, different levels of abstraction may be employed. For instance,

a transportation class could be a higher abstraction containing any means of

transportation such as bike, car or train and the transmission could be ab-

stracted further giving lower level objects such as a gear, clutch and torque

converter.

2. Object – Objects can be seen as the fundamental component of an object-

oriented program because it is their interaction that defines what the program
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does at execution. In addition objects have features which describe the object

and what it can do. These features are commonly referred to as attributes and

operations. Following from the previous example, a tyre might be an object

with radius and weight as attributes and slip angle as an operation.

3. Class – A class is sometimes described as the blueprint from which an object

is created. It is a grouping of similar types of objects and a direct result of

the abstraction process. The class should represent a real world abstraction

from the problem domain e.g. bank account in financial program or engine

in car model. The attributes and operations common to similar objects are

defined in the class. A visual way of representing classes during the design

of an object-oriented system is by means of the Unified Modeling Language

(UML) class diagrams as shown in Figure A.1.

Figure A.1: Example UML representation of a class

4. Abstract Class – This refers to a class whose level of abstraction is too high

for an object to be created directly from it. In other words it is an incomplete

class often used as a parent class (see inheritance).

5. Instance – When an object is created through the use of a class, this process

is called instantiation. In other words an object is an instance of a class. In a

car class we can create an instance of an engine class or an engine object with

relevant parameters for that car.

6. Encapsulation – Encapsulation describes the ability to hide the internal

workings (code) of a class from external objects. For example, in order for

the driver to see the speed of the car, it is not necessary to know what sensors

are being used to calculate it and how this is being done. This is an import-

ant factor in the maintainability of a program or system, since the external



Appendix–Glossary 233

objects will not be affected by changes to encapsulated code e.g. the method

of determining the speed can be changed without affecting the driver.

7. Modularity – The process of abstraction and the use of classes provides a

framework for modularity to the developed system since it enforces a logical

partitioning of the problem into more manageable and self-sufficient modules,

thereby also benefiting the maintainability of the system.

8. Inheritance – It is possible to form a child class by inheriting from a par-

ent class. A child class (or subclass) will automatically acquire all the code

(attributes and operations) that the parent class had. The parent class is a

more abstract class and its code can be reused by all its child classes. In our

example, the car class was a child of the vehicle class. It should be noted

that the child class can also have additional attributes and operations that

the parent class did not have.

Figure A.2: Example UML representation of a child class inheriting from a parent

class

9. Multiple Inheritance – This describes the ability of a class to inherit from

two or more parent classes. In general, these parent classes should themselves

be unrelated. For example, an electrical machine class can inherit both a

class that defines a torque connection and a class that defines an electrical

connection.

10. Aggregation – Is the term used to describe the grouping of the abstracted

objects to form a more complex class. In other words, a class can be made up

of instances of other classes. Therefore a car class can contain an instance of

a chassis class, an instance of a driveline class and so on.
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11. Declarative programming – defines “what” should be accomplished without

specifying the “how”.

12. Imperative programming – describes “how” to accomplish a task.

A.2 Common Stages of Development Life-Cycle

Models

Descriptions for the common stages are as follows [8, 95]:

1. Specification of requirements. During this stage questions need to be

posed about the systems functionality such as, “what must it do?”, “who will

use the system?” and “how will it be used?” Essentially this stage calls for

the developers and end-users to communicate their needs in order to refine a

formal set of requirements.

2. System analysis. Here the requirements from the previous step are analysed

in a hierarchical manner so that the system can be described in terms of classes,

objects and their relationships. Noting that the focus at this point is on what

the systems goals are and not how they are achieved.

3. Design. At this point the developer takes the analysis models and decides on

how the system will achieve its set of goals. In general this is done in two phases

with the first phase decomposing the model into smaller subsystems and the

second phase focusing on designing specific classes. This stage builds on the

analysis stage in order to produce a complete specification of all subsystems

and components, their functioning and relationships.

4. Implementation. This is the last stage in producing a working system. It is

only at this stage that considerations are made for any particular programming

language. Now that a complete set of functional and design requirements have

been defined, these can be implemented using the features provided by the

chosen language.

5. Testing. Though the system produced by this stage is functional and should

be largely error free if the prior stages were diligently carried out, it must be

tested in its entirety in order to verify that it meets the original requirements.
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It should be noted that testing of subsystems, components and specific code

is performed throughout the development process.

6. Maintenance. Complex system designs need to evolve in order to meet fu-

ture needs of the users, it is important to maintain the system even after

development has stopped and it has been passed on to the end-user. Mainten-

ance can take the form of debugging errors not found during the testing stage,

restructuring the system, adding enhancements and customization.
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