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1 Abstract 
 

 

Most of the efforts in optimisation so far have been focused on the development of novel 

or the improvement of existing numerical methods for an effective computation of 

optimal solutions. Particular attention has been put on balancing multiple conflicting 

objectives, handling the interaction between different disciplines, reducing computational 

cost and managing uncertainty. Nonetheless, specific issues of this design methodology 

still remain to be properly addressed. In this research, attention is concentrated on 

advancing engineering optimisation as a tool for design exploration. The work is put in 

the context of conceptual aircraft design. 

 

The overall aim of the present research is to develop a methodology that allows the 

designer to effectively conduct an exploration and analysis of alternative design solutions 

via a set of methods that can be used separately or conjointly. 

 

The initial part of the thesis introduces two novel methods for assisting the formulation of 

an optimisation problem, which generally is assumed to be given a priori. Nonetheless, 

the correctness of the optimisation statement, which is not addressed by established 

optimisation methods, turns out to be decisive for the feasible design set determination. 

The designer is thus provided with an adaptive formulation of functional and design-

variable constraints, which allows the exploration of further promising solutions initially 

not contained in the feasible design set. Meaningless results or the loss of important 

solutions can therefore be partially avoided.  

 

In a second instance, attention is focused on the visualisation needs for design 

exploration. A suitable visualisation methodology has been developed to make the large 

multidimensional results of complex design optimisation procedures fully readable and 

explanatory. This is achieved by integrating advanced visualisation techniques which 
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provide the designer with diverse perspectives of the data under study and allow him/her 

to conduct a number of analysis tasks on it, without the need to be an expert in numerical 

optimisation methods.  

 

Last, but not least, a methodology to address conceptual design change problems is 

proposed. The decision-maker is enabled to formally state the new design requirements 

and priorities introduced by the conceptual change via an adequate problem 

reformulation. All the data previously collected can thus be re-used and exploited to drive 

an effective exploration of alternative design solutions through design space regions of 

interest.  

 

The evaluation of the proposed methodologies has been carried out with a number of test 

cases. Analytical examples have been used for the assessment of effectiveness, whereas 

codes representative of aircraft sizing procedures have been adopted to evaluate the 

methodologies functionality. A visualisation user interface prototype has also been 

developed for demonstration and evaluation purposes. 

  



 iii 

 

2 Acknowledgements 
 

 

I would like to express my sincere gratitude to Prof. Marin D. Guenov for his invaluable 

guidance and patience, as well as for the opportunity to work with him. I also thank my 

past and present colleagues: Aditya, Atif, Jeremy, Libish, Mattia, Paolo, Varun, Vis and 

Yves. 

 

A very special thanks goes to Cinzia for being on my side with her indispensable support 

and encouragement throughout all these years, each and every day. Without you it would 

have been completely different if not impossible.  

 

I would like to warmly thank my parents and Fabrizio, who have always supported me in 

every possible way, notwithstanding the distance between us. I also would like to express 

my gratitude to all the rest of my family for the motivation and determination they 

provided me.  

 

Finally, my gratefulness goes to the BC (members and semi-members). All the memories 

of past battles have been precious, not mentioning the northern campaigns. 



 iv 

 

Contents 
 

 

 

 

List of Figures ... .................................................................................................................viii 

List of Tables ….................................................................................................................xvii 

Abbreviations ….................................................................................................................. xx 

1 Introduction ................................................................................................................... 1 

1.1. Problem Area .......................................................................................................... 1 

1.2. Research Aims and Objectives .............................................................................. 2 

1.3. Overview of Thesis................................................................................................. 3 

2 Literature Review ......................................................................................................... 5 

2.1. Engineering Design Optimisation.......................................................................... 5 

2.2. Problem Formulation.............................................................................................. 7 

2.2.1. Search Region Definition............................................................................... 7 

2.2.2. Non-rigid Constraints................................................................................... 10 

2.3. Suitable Visualisation Techniques for Design Optimisation ............................. 11 

2.3.1. Multidimensional Data Visualisation.......................................................... 12 

2.3.2. Carpet Plots................................................................................................... 16 

2.3.3. Recent Developments in MOO Visualisation............................................. 17 



 v 

2.3.4. Pareto Frontier Exploration via Approximations ....................................... 18 

2.3.5. Uncertainty Visualisation in Robust Design Optimisation........................ 20 

2.4. Design Change ...................................................................................................... 22 

2.5. Bayesian Global Optimisation ............................................................................. 24 

2.5.1. The Response Surface Model ...................................................................... 24 

2.5.2. Infill Sampling Criteria ................................................................................ 29 

2.5.3. Stop Criteria.................................................................................................. 33 

2.6. Summary and Conclusions................................................................................... 34 

3 Formulation of Optimisation Problems................................................................... 36 

3.1. Introduction ........................................................................................................... 36 

3.2. Proposed Method for an Adaptive and Efficient Setup of the Search Region.. 38 

3.2.1. Terminology.................................................................................................. 39 

3.2.2. Under-Determined and Over-Determined Search Regions ....................... 41 

3.2.3. Restriction Criterion..................................................................................... 42 

3.2.4. Relaxation Criterion ..................................................................................... 44 

3.2.5. Hybrid Optimisation..................................................................................... 47 

3.2.6. Implementation of ASOM ........................................................................... 50 

3.2.7. Analytical Example ...................................................................................... 52 

3.3. Local Relaxation Method for Non-rigid Constraints.......................................... 58 

3.3.1. Problem Formulation and Assumptions...................................................... 58 

3.3.2. Proposed Relaxation Method....................................................................... 58 

3.3.3. Analytical Example ...................................................................................... 62 

3.4. Summary and Conclusions................................................................................... 66 



 vi 

4 Visual Exploration and Analysis of Design Solutions ........................................... 68 

4.1. Introduction ........................................................................................................... 68 

4.2. Visual Exploration of Alternative Design Solutions .......................................... 69 

4.3. Proposed Visualisation Methodology.................................................................. 71 

4.3.1. Visualisation Techniques ............................................................................. 72 

4.3.2. Visualisation Interfaces................................................................................ 74 

4.3.3. Operation of the Visualisation Interfaces.................................................... 81 

4.3.4. Robust Optimisation Data Visualisation..................................................... 86 

4.4. Summary and Conclusions................................................................................... 88 

5 Exploration of Design Alternatives to Address Conceptual Design Changes ... 89 

5.1. Introduction ........................................................................................................... 89 

5.2. Problem Definition and Assumptions ................................................................. 91 

5.3. Proposed Method .................................................................................................. 94 

5.3.1. Surrogate Model Phase ................................................................................ 97 

5.3.2. Problem Reformulation Phase ..................................................................... 99 

5.3.3. Design Exploration Phase .......................................................................... 102 

5.4. Analytical Example ............................................................................................ 104 

5.5. Isocontours of Objectives and Constraints........................................................ 112 

5.6. Summary and Conclusions................................................................................. 118 

6 Application Example  -  Aircraft Conceptual Design Optimisation ................. 120 

6.1. Introduction ......................................................................................................... 120 

6.2. Test Case Description......................................................................................... 121 



 vii 

6.3. Adaptive Search Optimisation ........................................................................... 122 

6.4. Visual Exploration of Optimisation Results ..................................................... 128 

6.5. Introduction of Minor Design Changes Affecting Conceptual Design........... 134 

6.6. Summary and Conclusions................................................................................. 144 

7 Summary and Conclusions ...................................................................................... 146 

7.1. Introduction ......................................................................................................... 146 

7.2. Summary of Research......................................................................................... 146 

7.3. Contributions to Knowledge .............................................................................. 148 

7.4. Future Work ........................................................................................................ 149 

References ……. ................................................................................................................ 151 

Appendix A Parallel Coordinates Plot and Scatter Plot Matrix......................... 168 

Appendix B An Example of the Effects of Correcting the Search Region on the 

Optimal Solutions Set ....................................................................................................... 176 

Appendix C An Example of the Effects of Relaxing a Soft Constraint on the 

Optimal Solutions Set ....................................................................................................... 183 

Appendix D Engineering Change Problems that can Potentially Affect Aircraft 

Conceptual Design............................................................................................................. 188 

 



 viii 

List of Figures 
Figure 1. Shown in orange and blue are the non-dominated and feasible solutions sets of a 

generic optimisation problem formulated as in Problem (1) with n=2, J=2, and I=2......... 6 
 

Figure 2. Typical types of distributions: (a) Valid distribution, with a peak located in the 

central area of the normalised search region and a low density of samples near the 

bounds; (b) Invalid distribution, with the peak located in vicinity of the upper bound; (c) 

Invalid distribution, with the peak located in vicinity of the lower bound [53].................. 9 
 

Figure 3. Procedure for adaptive search region proposed by Jeong et al. [53]. ................ 10 
 

Figure 4. Representation of four three-dimensional points through the Cartesian-

coordinate system and a parallel coordinate plot. The point values per each dimension are 

specified on the table above.................................................................................................. 12 
 

Figure 5. Scatter plot matrix displaying a satellite design dataset [111]. .......................... 14 
 

Figure 6. Representation of the same dataset considered in Appendix A by means of the 

self-organising maps. The basic idea is that, through a learning process, the map is 

organised in such a way that all the cells close to each other represent all the inputs 

having similar features. The representation of any dataset is thus obtained via a set of 

two-dimensional plots, as many as the dimensions of the problem at hand. Each data 

sample is represented by a cell, which has always the same space position within all the 

plots. Each self-organising map is associated to a particular dimension and the values of 

its cells are encoded according to their colour-bar located besides the map. .................... 15 
 

Figure 7. Example of the carpet plots of two different design points, one in red and the 

other in blue. Hatching denotes inadmissible side of constraint curves [82]. ................... 17 
 

Figure 8. Visualisation scheme proposed by Rangavajhala et al. [90]. The exploration of 

the robust Pareto cloud can be conducted in the mean objective space by varying the filter 



 ix 

tolerances tolJ, tolh and tolg associated to objective variation σJ, probability of equality 

constraint satisfaction PCSh, and probability of inequality constraint satisfaction PCSg, 

respectively. ........................................................................................................................... 21 
 

Figure 9. Comparison of the robust and deterministic results of an aircraft MOO problem. 

By considering the mean objective space MTOW-RA, the mean and variance of the 

solutions are represented by the red points and yellow ellipses for the robust Pareto cloud, 

and by the green points and blue ellipses for the deterministic Pareto front (after 

conducting an a posteriori uncertainty analysis) [43]......................................................... 21 
 

Figure 10. Different change types. In contrast to change ripples and change blossoms, 

that finish within the required time t, change avalanches can behave like blossoms over a 

longer, or represent an uncontrolled increment of changes [28]. ....................................... 22 
 

Figure 11. Typical curves with time for a generic product development cycle [92]. The 

shape of the curve will vary depending on a number of factors, e.g. the project at hand, 

design strategy, technologies, etc. ........................................................................................ 23 
 

Figure 12. An example of response surface for a simple one-dimensional function f(x). 

The real objective function is visualised in green, and the black dots identify the points 

where it has been sampled. The red line represents a potential predictor that fits such 

observations, and its standard error is depicted in blue below........................................... 27 
 

Figure 13. Diagnostic plots: (a) the actual function values versus cross-validated 

predictions, (b) the standardized cross-validated residuals versus cross-validated 

predictions.............................................................................................................................. 29 
 

Figure 14. An example of response surface for a simple one-dimensional function f(x). 

The response surface is visualised in green, and the black dots identify the points where 

f(x) has been sampled. The predictor standard error is depicted in blue and the red line 

represents the current best sampled function value............................................................. 30 
 



 x 

Figure 15.  Notation taken into consideration in relation with the i-th variable search 

region...................................................................................................................................... 40 
 

Figure 16. The analysis of each variable distribution reveals if its corresponding search 

region is (a) valid, (b) under-determined, or (c) over-determined. The lower and upper 

adaptive bounds of the variable are represented by green lines, while the black part of the 

histogram represents the fraction of feasible samples out of the entire set of sampled 

points (in red)......................................................................................................................... 41 
 

Figure 17.  Notation adopted for the restriction criterion. .................................................. 43 
 

Figure 18. Probability bounds on normal and gamma distributions. ................................. 46 
 

Figure 19.  Comparison of the error trend for the Matlab function fmincon and the SPSA 

algorithm (averaged over 100 independent simulations). The proposed hybrid 

optimisation terminates the SPSA optimisation after obtaining a first considerable error 

decrement, switching to fmincon (in blue) to carry out the final phase of the optimisation 

search...................................................................................................................................... 50 
 

Figure 20.  Flowchart of the tasks that take place for each individual optimisation run. 

The variables bounds to be considered for the optimisation procedure starting from the   

j-th starting point are adequately determined by analysing the variables distributions of 

the overall feasible points previously evaluated. Note that the i-th design-variable can 

turn out to be over-determined with respect to its lower bound, and under-determined 

with respect to its upper-bound, and vice versa................................................................... 52 
 

Figure 21.  The bump function in two dimensions [57]...................................................... 53 
 

Figure 22. An example of ASOM results from solving problem (42) considering twenty 

starting points......................................................................................................................... 55 
 

Figure 23. An example of resulting adaptive variables bounds for problem (43)............. 57 
 



 xi 

Figure 24.  The four figures represent conceptually the four possible cases that may occur 

when relaxing a constraint of the same amount ε. Attention is here focused on the 

identification of the cases as in d), where a significant improvement of the objective can 

be achieved via a minor relaxation of one constraint.......................................................... 60 
 

Figure 25. Conceptual representation of the proposed relaxation method. ....................... 61 
 

Figure 26. Proposed loop to handle the relaxation of multiple constraints. ...................... 62 
 

Figure 27. Results obtained for Problem (47) by using the Matlab algorithm fmincon on 

six different starting points, which are represented by the green triangles. The proposed 

method for constrain relaxation was subsequently used for the solutions characterized by 

constraint activation. The contours of the objective f and constraints g1 and g2 are given 

by the red, black and blue lines, respectively. ..................................................................... 63 
 

Figure 28. Magnified view of the optimisation procedures started from the points A, C 

and D along with the respective constraint(s) relaxation execution................................... 65 
 

Figure 29. Default visualisation of the IEVI. The three most relevant data perspectives in 

optimisation problems are shown via the below-described interfaces: ESI (top-right 

window), SDTI (top-left window) and MDVI (bottom window). ...................................... 75 
 

Figure 30. Two magnified examples of the visualisation flexibility allowed in ESI. The 

feasible, non-feasible and non-dominated sets of points have been identified by means of 

Filtering and are represented through green points, grey points and yellow squares, 

respectively. ........................................................................................................................... 76 
 

Figure 31. Visualisation of the points obtained through the manual Selective PCP Ranges 

function for Filtering.  In  this  case,  the  solutions  within  the  ranges  x1=[0,0.5]  and  

f=[-0.67334,- 0.4] are highlighted in the ESI through cyan x-markers. ............................. 78 
 

Figure 32. Scatter plot matrix (SPM). .................................................................................. 79 
 



 xii 

Figure 33. Visualisation of solutions for a conceptual aircraft design optimisation. The 

sets of feasible, non-feasible and non-dominated points are depicted in the ESI 

considering the same graphical notation of Figure 30. In the same interface, it is shown 

how any solution of interest can be interactively selected, updating in real time the two 

other interfaces. The designer is thus allowed to assess the satisfaction of performance 

and to conduct a numerical analysis of the selected point on the SDTI and MDVI 

respectively. ........................................................................................................................... 80 
 

Figure 34. An example of an alternative use of the SDTI for a generic optimisation 

problem, offering a three-dimensional plot of the filtered data depicted in Figure 31. It is 

also shown how the interactive selection of points can be facilitated by zooming-in on the 

filtered solutions, as displayed in the ESI. ........................................................................... 81 
 

Figure 35. Comparison of three solutions interactively selected on the ESI from the 

clusters  of  points  for  which   the   objective    function     f     is    within    the    range 

[-0.67367,- 0.2]...................................................................................................................... 82 
 

Figure 36. Visualisation of the solutions that meet a tighter constraint 3)( xg by using 

the Selective PCP Ranges Filtering function. ..................................................................... 83 
 

Figure 37. Study of the non-feasible set of points. For this problem, from the analysis of 

the PCP, it is evident that no-improvement on the objective function f can be achieved 

via a relaxation of the constraint g. ...................................................................................... 84 
 

Figure 38. Identification of the design points for which the constraint g is active. .......... 85 
 

Figure 39. Shown in the SDTI is the adopted robustness visualisation in the mean space 

of objectives/constraints for a RDO problem [43]. ............................................................. 87 
 

Figure 40. Summary flowchart of the proposed exploration methodology to address 

conceptual design changes.................................................................................................... 95 
 



 xiii 

Figure 41. In this elementary example, the hypothetical original formulation of a one-

dimensional problem consists of a single objective )(xf  and a single constraint 0)( xg . 

The design change to accommodate is assumed to be formulated as a correction on the 

lower bound of x, which renders unfeasible the optimal point previously found (red 

square). The surrogate model )(ˆ xf  to be used will fit all the evaluations earlier computed 

(black points), allowing to approximate the system elsewhere along with a prediction 

error estimation. Once the predictor accuracy is ensured, if necessary, via additional 

observations (blue triangles), the new feasible region(s) where to focus design 

exploration can hence be identified (in orange). ................................................................. 97 
 

Figure 42. The   goal   attainment   method   with   two   generic   objectives   F1   and    

F2 [114][67]. ........................................................................................................................ 101 
 

Figure 43. Relaxation concept for the proposed constraint-handling approach, comparing 

for a generic constraint ( ) 0ig x   the search regions corresponding to: (a) constraint 

satisfaction based only on the function prediction ˆ ( )ig x ;  (b) constraint satisfaction based 

on the function prediction ˆ ( )ig x  and its associated error ( )is x . ........................................ 104 

 

Figure 44. Surrogate models of f(x) and g(x). ................................................................... 105 
 

Figure 45.  Diagnostic plots for the surrogate models of f(x) and g(x)............................ 106 
 

Figure 46.  Trend of the extended expected improvement function that yielded the first 

six evaluations conducted by considering the weighting coefficient vector (53). .......... 108 
 

Figure 47.  Solution found by considering the weighting coefficient vector (54). ......... 109 
 

Figure 48.  Trend of the extended expected improvement function that yielded the first 

three evaluations conducted by considering the weighting coefficient vector (55). ....... 111 
 

Figure 49.  Summary of the alternative solutions obtained with three different a priori 

articulations of preferences. The green crosses, the orange triangle and the red squares 

represent the design solutions identified by considering the weighting coefficient vectors 



 xiv 

(53),(54) and (55) respectively. The green x-markers, blue points and black points 

represent the sets of starting optimisation points, initial function observations and 

additional evaluations required for model validation, respectively. ................................ 112 
 

Figure 50.  Basic concept behind the proposed isocontour method................................. 115 
 

Figure 51.  Isocontour for the single degree-of-freedom problem (ωd,m) taken into 

consideration in de  Weck [21], where 35 isopoints were computed with a tolerance of 

1% and a discretization of the design space based on 441 points via the non-gradient 

algorithm Exhaustive Search. The application of the method proposed here by the author 

within the same variable ranges required 310 total evaluations for the identification of the 

depicted 36 isopoints, with a tolerance of 0.1%................................................................ 116 
 

Figure 52.  Displayed in red are the isocontours associated with 5 points (depicted in 

cyan) randomly selected across the design space of Problem (42). ................................. 117 
 

Figure 53. Distributions of the overall and feasible point sets, which are portrayed in red 

and black, respectively. The black and red vertical lines in the variable histograms 

represent the borders of the feasible and infeasible distributions..................................... 125 
 

Figure 54.  Comparison of the Pareto front obtained by means of ASOM (in green) with 

respect to the optimal points computed without ASOM by considering as bounds the 

adaptive and frozen bounds (in red and blue) given in Table 12. .................................... 126 
 

Figure 55. Distributions of the Pareto points displayed in Figure 54 by adopting the same 

colour notation..................................................................................................................... 128 
 

Figure 56.  Default optimisation data visualisation........................................................... 129 
 

Figure 57. Optimisation data visualisation by means of Filtering. The colour notation 

shown in the Filtering settings panel is used to identify the sets of feasible, infeasible, 

and non-dominated design points....................................................................................... 130 
 



 xv 

Figure 58.  Interactive selection of points on the ESI with a real-time visualisation update 

in the remaining interfaces. In this case, the selected point is identified in the BPR-Awing 

sub-space of the problem through an orange cross-symbol in the SDTI, whereas its exact 

numerical value for each dimension of the design and objective spaces are given in the 

PCP displayed in the MDVI................................................................................................ 131 
 

Figure 59.  One example of the visual exploration tasks that can be conducted by using 

the Selective PCP Ranges Filtering function in the PCP. The design points for which the 

constraint Kff is active are identified in the ESI and SDTI through cyan x-markers....... 132 
 

Figure 60. Analysis of Pareto solutions. ............................................................................ 133 
 

Figure 61. Example of the data visualisation via discipline-dependent techniques in the 

SDTI by representing the carpet plot corresponding to the design selected in a magnified 

inset of the objective space displayed in the ESI. Displayed in red are possible 

performance constraints that are not satisfied. .................................................................. 133 
 

Figure 62. Setup of the design sub-region to be explored in addressing the design change 

problem taken into account................................................................................................. 135 
 

Figure 63. Isocontours of objectives and constraints. ....................................................... 139 
 

Figure 64. Identification of the obtained solutions in the objective space....................... 143 
 

Figure 65.  Parallel coordinates plot of a dataset of 75 aircraft belonging to 11 different 

categories and considering 8 parameters, which are encoded by the table of Figure 67 

along with their corresponding value ranges..................................................................... 170 
 

Figure 66. Graphics enhancement obtained by performing the above-described analysis 

techniques for the analysis of parallel coordinate plots. The identification of the aircraft 

categories is depicted through the colour of the polylines................................................ 171 
 

Figure 67. Individual visualisation of the different aircraft categories and code of the 

parameters names displayed in Figure 65 and Figure 66.................................................. 173 



 xvi 

 

Figure 68. A possible interactive interface in which any bivariate plot selected by the user 

is magnified below the main diagonal. This example is also representative of those 

situations in which the user may be interested in identifying the equation which best 

describes the overall pattern of the relationship between two parameters (e.g., linear, 

quadratic, cubic, exponential, sinusoidal, etc.) [125]........................................................ 175 
 

Figure 69. Pareto fronts of Optimisation Nº1 and Optimisation Nº2. The two optimisation 

procedures were carried out within similar search regions, whose settings are specified in 

Table 31................................................................................................................................ 177 
 

Figure 70. Comparison of the design parameters distributions of Optimisation Nº1 and 

Optimisation Nº2, where the entire set of evaluated points and the set of feasible points 

are represented in red and black respectively.  The green lines represent the variables 

bounds considered throughout the optimisation procedures; whereas the dashed blue lines 

identify the lower and higher feasible sampled values of each variable distribution, which 

in some cases are not visible. It is important to notice how, normally, such lines coincide. 

Nonetheless, it may happen that either the sampled set of feasible points turns out to be 

narrower than the imposed corresponding search region (variable tuc and Mach_crz), or 

the optimiser occasionally samples design solutions located beyond the variables bounds 

(variable Awing). ................................................................................................................. 182 
 

Figure 71. F.A.R. take-off runway length requirements (standard day) –model 777-200 

(baseline airplane) [1]. ........................................................................................................ 184 
 

Figure 72. Distribution of field lengths at major European airports [51]. ....................... 184 
 

Figure 73. Future distribution of flights [15]..................................................................... 185 
 

Figure 74. Pareto fronts of Optimisation Nº3 and Optimisation Nº4. Displayed besides 

each one of the considered points of Optimisation Nº4 is the corresponding tofl value.186 

 

  



 xvii 

List of Tables 
Table 1. Setup of the frozen and adaptive bounds for the optimisation of the bump 

function in two variables................................................................................................... 53 
 

Table 2. Coordinates and value of the objective function for the feasible optimum located 

within the initial search region established in Table 1 (Point Nº1) and the corresponding 

set of semi-infeasible optimal points................................................................................ 53 

 

Table 3. The first column on the left-side contains the design solutions obtained via 

fmincon for Problem (47), where each subscript identifies the relative starting point. The 

remaining columns show, from left to right, the solution coordinates (x1 and x2), the 

corresponding objective value (f) and Lagrange multipliers ( 1  and 2 ), the estimated 

gains ( 1 1  and 2 2  ) in the objective due to a maximum relaxation of the constraints and 

the resulting values of left-side of inequality (46) ( 1
- f

f
  and 2

- f
f
 )................................. 63 

 

Table 4. Coordinates and objective values of the new design points obtained via a 

constraint relaxation of Problem (47). The first column on the left hand side identifies the 

three cases analysed in Figure 28 through the letter-subscript, standing for the 

corresponding starting point. The superscripts R1 and R2, instead, denote the solution 

coordinates and objective value resulting after a relaxation of g1 and g2 respectively.... 66 
 

Table 5. Deterministic visualisation methodology matrix................................................ 73 
 

Table 6. Comparison of x* with the solutions found by considering the weighting 

coefficient vector (53). The values that represent the best attainment of each of the four 

goals are highlighted in grey........................................................................................... 108 
 

Table 7. Comparison of x* with the solution found by considering the weighting 

coefficient vector (54)..................................................................................................... 109 
 



 xviii 

Table 8. Comparison of x* with the solutions found by considering the weighting 

coefficient vector (55)..................................................................................................... 111 
 

Table 9. Isopoints computed from x =[4.5594425,3.0524488]...................................... 118 

 

Table 10. Test case nomenclature................................................................................... 121 
 

Table 11. Conceptual aircraft design optimisation formulation..................................... 122 
 

Table 12. Setup of the frozen and adaptive bounds........................................................ 122 
 

Table 13. Final adaptive bounds..................................................................................... 123 
 

Table 14. Design to be changed *x ................................................................................. 134 

 

Table 15. Definition of the design sub-space to explore................................................ 134 
 

Table 16. Goals and weighting coefficients vectors considered for the first hypothetic 

design change scenario................................................................................................... 136 
 

Table 17. Variable values of the solutions obtained for the goals and weights vectors in 

Table 16.......................................................................................................................... 136 
 

Table 18. Objective and constraint values of the solutions obtained for the goals and 

weights vectors in Table 16............................................................................................ 137 
 

Table 19. Differences between the variable values of the explored designs and the sought 

point................................................................................................................................ 137 
 

Table 20. Differences between the objective and constraint values of the explored designs 

and the sought point........................................................................................................ 137 
 

Table 21. Summary of the isocontours computation...................................................... 138 
 



 xix 

Table 22. Goals and weighting coefficients vectors considered for the second hypothetic 

design change scenario................................................................................................... 140 
 

Table 23. Variable values of the solutions obtained for the goals and weights vectors in 

Table 22.......................................................................................................................... 140 
 

Table 24. Objective and constraint values of the solutions obtained for the goals and 

weights vectors in Table 22............................................................................................ 140 
 

Table 25. Differences between the variable values of the explored designs and the sought 

point................................................................................................................................ 140 
 

Table 26. Differences between the objective and constraint values of the explored designs 

and the sought point........................................................................................................ 140 
 

Table 27. Goals and weighting coefficients vectors considered for the third hypothetic 

design change scenario................................................................................................... 141 
 

Table 28. Variable values of the solutions obtained for the goals and weights vectors in 

Table 30.......................................................................................................................... 142 
 

Table 29. Objective and constraint values of the solutions obtained for the goals and 

weights vectors in Table 30............................................................................................ 142 
 

Table 30. Typical breakdown of a conventional design of a medium subsonic transport 

aircraft............................................................................................................................. 176 
 

Table 31. Variables bounds setup for Optimisation Nº1 and Optimisation Nº2............. 177 
 

Table 32. Narrow-body aircraft field performance [49][64].......................................... 185 



 xx 

Abbreviations 
 

 

   
ASOM – Adaptive Search Optimisation Method 
BFL – Balanced Field Length 
CIA – Change Impact Analysis 
DACE – Design and Analysis of Computer Experiments 
DoE – Design of Experiments 
ECO – Engineering Change Order 
EGO – Efficient Global Optimisation 
EI – Expected Improvement 
ESI – Euclidean Space Interface 
FAR – Federal Aviation Regulations 
GA – Genetic Algorithm 
GUI – Graphical User Interface 
IEVI – Integrated Exploration and Visualisation Interface 
MDVI – Multidimensional Data Visualisation Interface 
MSE – Mean Squared Error 
MOO – Multi-Objective Optimisation 
PCP – Parallel Coordinates Plot 
PDF – Probability Density Function 
RDO – Robust Design Optimisation 
RMSE – Root Mean Squared Error 
SDTI – Specific Design Tools Interface 
SOM – Self-Organising Map 
SPM – Scatter Plot Matrix 
SPSA – Simultaneous Perturbation Stochastic Approximation 
SQP – Sequential Quadratic Programming 
USMAC – Ultra Simplified Model of Aircraft 
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Chapter 1 

1 Introduction 

 
1.1. Problem Area 

The selection of the “best” or “optimum” solutions plays an essential role in many real-

life engineering problems. Mathematical optimisation algorithms are no longer 

considered as an esoteric approach for addressing theoretical problems only [1]. They 

have proven to be an effective tool for the design of complex systems and processes. 

Most of the efforts in optimisation so far have been focused on resolving the inherent 

trade-offs that exist between multiple and conflicting design criteria [31][44][76], 

handling the interaction among different disciplines [59][23], reducing computational 

cost [116][71], and managing uncertainty [85][86]. Nevertheless, specific issues of this 

design methodology still remain to be properly addressed. Attention is concentrated in 

this research upon three issues outlined below, within the framework of conceptual 

design optimisation. 

The importance of correctly formulating the problem to be solved has been emphasized 

by Statnikov and Matusov [108]. Broad experience has shown that although the 

mathematical model of engineering optimisation problems may be correct, unsatisfactory 

results often derive from an improper formulation [11]. This issue is not addressed by 

established optimisation methods and a formulation-solution cyclic process is typically 

required for most of the engineering applications, which takes up to 70-80% of the total 

time [108]. In this context, a proper definition of the functional and design-variable 
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constraints turns out to be fundamental for the determination of the feasible solutions set. 

A tight setup of such parameters may cause optimal solutions to be overlooked, while an 

excessively loose definition might lead to substantial or useless computational efforts and 

time. 

A growing interest has been directed towards methods with an a posteriori articulation of 

preferences on a set of potential solution points, denoting by preference the relative 

importance of different objective functions [72]. Visualisation tools play an essential role 

for such an approach in order to allow the designer to first explore various alternatives 

and then select the solution that best represents his/her preferences. Large 

multidimensional results need therefore to be made fully readable and explanatory by 

conducting a number of analysis tasks via adequate visualisation aids. 

Last, but not least, an important issue for consideration stems from the iterative nature of 

design [30][18], which is generally due to uncertainty or the lack of specific design 

information [124][42]. Unplanned iterations occur when unexpected design changes need 

to be undertaken as a result of the incomplete satisfaction of the design specifications due 

to process inefficiencies and/or cognitive limitations (e.g., unsuccessful execution of 

testing and integration activities, sudden change of customer needs and requirements 

[18], or the appearance of alternative highly attractive design solutions [89]). Adequate 

strategies are hence required for the exploration of design points that represent the best 

trade-offs for change accommodation with minimum disruption to the product 

configuration.  

 

 

1.2. Research Aims and Objectives 

The overall aim of the present research is to propose a strategy to address specific design 

exploration aspects involved in conceptual design optimisation. In particular, a set of 

methodologies, that can be used separately or conjointly, are to be developed in order to 

support the problem formulation, evaluation of results, and introduction of design 

changes.  
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The first objective of the work is to develop a method to allow an adaptive formulation of 

functional and design-variable constraints. This should aid the designer in efficiently 

stating the optimisation problem at hand without the need for iterative refinements based 

on successive runs. Solutions initially not contained in the feasible design set can thus be 

explored, preventing to some extent the computation of meaningless results or the loss of 

important solutions.    

 

The second objective is to propose a suitable visualisation methodology for an effective 

analysis of optimisation results. The designer should be able to visually explore and 

trade-off promising design alternatives by performing a number of common analysis 

tasks aimed at selecting the most attractive solutions. Additionally, the methodology 

should render multidimensional results of complex design optimisation procedures fully 

readable and explanatory to the decision-maker, without the need for the latter to be an 

expert in numerical methods.  

 

The third objective is to develop a novel methodology to address design change problems 

which affect conceptual design. The proposed strategy would provide a means to identify 

the designs that represent the best trade-offs for change accommodation with minimum 

disruption to the product configuration. Data previously collected should be adequately 

re-used to drive an efficient exploration of new alternative design solutions within design 

space regions of interest.  

 

 

1.3. Overview of Thesis 

Presented in Chapter 2 is the literature review of the research. An introduction to multi-

objective optimisation problems is first provided, together with the generic problem 

formulation taken into consideration for this thesis. An investigation of the state-of-the-

art numerical methods and strategies relevant to the present research is presented next.  

Proposed in Chapter 3 are two different methods to assist the designer in stating an 

optimisation problem via an adaptive formulation of functional and design-variable 

constraints. The Adaptive Search Optimisation Method (ASOM) allows a recurrent 
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variable-bounds redefinition process to be conducted via an on-the-fly monitoring of 

variables distributions throughout the optimisation procedure. The second method, 

instead, permits to perform a controlled relaxation of functional constraints that are 

flexible to some degree with the intent of exploring points that could lead to a substantial 

improvement of single objective optimisation problems.  

A novel methodology for visual exploration of design solutions is presented in Chapter 4 

with the aim of supporting the designer in analysing and comparing large number of 

design concepts. Suitable visualisation techniques are integrated for addressing common 

data analysis scenarios occurring in deterministic and robust optimisation. A set of 

interactive visualisation interfaces provides the designer with a means to gain insight into 

the problem under study, as well as to build, debug, and understand the algorithms and 

models integrated within the optimisation architecture.  

The methodology proposed to support the introduction of design changes deriving from 

unplanned design iterations and affecting conceptual design is described in Chapter 5. It 

allows to retrieve available prior computational analysis information in order to drive an 

exploration process by means of surrogate models and the incorporation of key concepts 

from the goal attainment method and Bayesian global optimisation. Also presented is a 

complementary method based on the computation of objective and constraint isocontours 

through the evaluation of design points that keep invariant desirable design performance. 

The three proposed methodologies are evaluated in Chapter 6 with an aircraft sizing test 

case supplied by a major airframe manufacturer, demonstrating their capabilities in 

addressing problems of industrial relevance. The results obtained by means of ASOM are 

first compared with the solutions obtained via standard optimisation procedures. A 

demonstration of a thorough investigation of the obtained complex data structure by 

means of the proposed visual exploration methodology is then provided. The exploration 

of alternative solutions for addressing three hypothetic design change problems via the 

proposed strategy is finally shown. 

An overall summary of the present research is given in Chapter 7, along with the main 

contribution to knowledge and recommendations for future work.
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Chapter 2 

2 Literature Review 

 
2.1. Engineering Design Optimisation 

In the design of complex systems and processes, ad hoc methods are required to manage 

the interaction between various disciplines and to trade-off multiple design criteria, which 

are often conflicting in nature. Over the past few decades, mathematical optimisation 

algorithms have proven to be an effective tool for engineering design, no longer being 

considered as an esoteric approach for addressing theoretical problems only [1]. The 

establishment of algorithms capable of solving progressively larger and more difficult 

problems has been facilitated by the enhancement of computer power and speed [6], as 

well as parallel programming and integration frameworks. A wide range of different 

optimisation procedures have been developed depending on the problem under study, 

where the common aim is to identify the best solutions that satisfy a given set of 

constraints. Most of the efforts in optimisation so far have been focused on resolving the 

inherent trade-offs that exist between multiple and conflicting design criteria 

[31][44][76], handling the interaction among different disciplines [59][23], reducing 

computational cost [116][71], and managing uncertainty [85][86]. Nevertheless, specific 

issues of this design methodology still remain to be properly addressed. Attention is 

concentrated in this research upon three issues outlined in the following sections within 
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the framework of conceptual design optimisation. The generic problem formulation taken 

into consideration is as follows:  
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where the J real-valued objective functions )(xjf  are to be minimised with respect to the 

design vector ],...,,[ 21 nxxxx  in the n-dimensional design space S, subject to the I 

functional inequality constraints )(xig  and 2n design-variable constraints (the lower and 

upper bounds lbx  and ubx , respectively). 

Given in Figure 1 is a conceptual representation of the feasible and non-dominated1 

solutions sets.  
 

 
Figure 1. Shown in orange and blue are the non-dominated and feasible solutions 

sets of a generic optimisation problem formulated as in Problem (1) with n=2, J=2, 

and I=2. 

 
                                                   
1 The set of non-dominated solutions of an optimisation problem is also referred to as Pareto front. A 

feasible design point is said to be Pareto optimal if no other feasible solution can improve any of the 

objectives without simultaneously being detrimental to other objectives. 
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2.2. Problem Formulation 

The importance of correctly formulating the problem to be solved has been emphasized 

by Statnikov and Matusov [108]. Broad experience has shown that although the 

mathematical model of engineering optimisation problems may be correct, unsatisfactory 

results often derive from an improper formulation [11]. Amarger et al. [6] note that, 

despite the current algorithmic improvements and the availability of various powerful 

optimisation packages, it still remains to be far from trivial for design engineers to 

properly formulate optimisation models. Nonetheless, this issue is not addressed by 

established optimisation methods and a formulation-solution cyclic process is typically 

required for most of the engineering applications, which takes up to 70-80% of the total 

time [108]. In this context, a proper definition of the functional and design-variable 

constraints turns out to be fundamental for the determination of the feasible solutions set.  

 

2.2.1. Search Region Definition 

The determination of the search region within the design space is crucial in order to 

conduct an effective computation of optimal solutions. Formally, the search region is 

identified by the variables bounds specified in Equation (1): 

 

nixxx ubilb ,...,1for,   (2) 

 

where n is the dimensionality of the problem at hand. When the search region is 

inadequate the whole optimisation process may result to be incomplete and inefficient. If 

the specified variables bounds are too tight, a set of feasible points could have been cut 

out from the optimiser search and, as a consequence, promising optimal solutions may be 

overlooked. On the other hand, an excessively loose search region may lead to substantial 

or useless computational efforts and time. 

Statnikov and Matusov [108] show the importance of adequately defining the design 

search region by providing few examples of how often superior solutions may not be 

evaluated because they lie slightly beyond the established design-variable constraints. 
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Therefore, they focus their efforts on the problem of obtaining information about whether 

it is possible to improve the optimal and feasible solution sets and, on the other hand, 

how much the design-variable bounds should be changed in order to achieve a certain 

improvement. The strategy proposed by the authors is based on the employment of the 

Parameter Space Investigation (PSI) method, which was created by Sobol’ and Statnikov 

(see, e.g., Statnikov [107] and Sobol’ and Statnikov [103]) for identifying correctly the 

feasible solutions set to optimise. This is done through three stages and requires the 

evaluation of a number N of trial points that mostly depends on the problem formulation, 

the functions involved and the number of variables taken into consideration. To correct 

the design-variable constraints, the authors suggest analysing the histograms of the 

design-variable distributions over the ranges of their variation. These provide the 

designer with a tool to identify the variables bounds that could be revised in order to 

improve the feasible and Pareto optimal solutions. Such process can be iterated several 

times until satisfactory results are obtained. 

Jeong et al. [52] suggest a similar approach through an adaptive search region method for 

design optimisation. The validity of the search region is firstly assessed by analysing the 

probabilistic distribution of the design variables. If the search region turns out to be 

inadequate, it is changed adaptively. The procedure starts with the generation of the 

superior population, which is a set of samples satisfying all design constraints and 

assuring all objective function values are above a user-defined threshold. Thus, the search 

region for the i-th variable is considered relatively reasonable if the probability to find 

superior individuals outside of the current bounds is considered to be negligible. This 

implies that the mean of a valid distribution is located in the central area of the 

normalized search region and its tails are not close to the i-th variable bounds. In contrast, 

whenever a distribution is concentrated on the boundary region, the bound values of the 

corresponding variable should be expanded. This concept is illustrated in Figure 2. 
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Figure 2. Typical types of distributions: (a) Valid distribution, with a peak located in 

the central area of the normalised search region and a low density of samples near the 

bounds; (b) Invalid distribution, with the peak located in vicinity of the upper bound; 

(c) Invalid distribution, with the peak located in vicinity of the lower bound [53]. 

 

Formally, the validity criterion proposed by Jeong et al. [52] is: 
 

 
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endif
endif
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 (3) 

 

where   and   are the mean and standard deviation of the distribution in the normalised 

search region, respectively. Whenever the search region is invalid, it is suggested to 

redefine it as follows: 
 

otherwise)96.1,1max()96.1,0min(
95.005.0if)96.1,1max()96.1,0min(
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wxw
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


 (4) 

 

where w1 and w2 are two weighting parameters used to accelerate the convergence of the 

search region.  

Such an approach allows to define the normalised search region that would contain any 

normal distribution of design variables with a confidence interval of 95% [52]. 
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Nevertheless, the distributional assumption of normality is not valid for a wide range of 

problems, since often the distributions of design variables turn out to be skewed or 

multimodal. Furthermore, similarly to the approach suggested by Statnikov and Matusov 

[108], the assessment of the search region validity has to be performed after the 

optimisation procedure is completed, as shown in Figure 3. 
 

 
Figure 3. Procedure for adaptive search region proposed by Jeong et al. [53]. 

 

It is evident there is a need for defining an adaptive search region strategy which is 

capable of handling generic classes of design-variable distributions while reducing 

computational efforts and time by limiting the formulation-solution iterations that are 

inherent in the above approaches.  

 

2.2.2. Non-rigid Constraints 

The formulation of the constraints to be considered for a particular product/system design 

can be dictated by design criteria that may be both objective and subjective. Quantifiable 

(objective) figures of metric are generally employed along with an associated limit value 

given a priori (e.g. performance specifications, operational parameters, economical 

budget, direct operating costs, airworthiness/emissions/noise regulations, etc.). In other 

cases, however, the selection and formulation of optimisation constraints might be driven 

by non-objective factors, such as marketing strategies (based, for instance, on a return-

on-investment estimation, or the comparison of competing products), external aspects that 
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must be considered because of their potential effects on the product (i.e. political, 

economic, technological, sociological, environmental and so forth), or simply by 

designers’ knowledge, experience and intuition.  

In an optimisation context, the formal statement of the latter class of constraints, from 

here on referred to as “soft” (“non-rigid” or “manageable”) constraints [109], is a critical 

issue. Their formulation, in fact, can significantly influence the optimisation results and 

the subsequent design phases. On the one hand, the set of feasible solutions can 

drastically be reduced if unnecessary or over-stringent constraints are imposed; on the 

other hand, commercial penalties may subsequently arise when a fundamental 

requirement is overlooked. 

In the attempt to include further optimal solutions potentially lying slightly beyond the 

imposed constraint limits, Statnikov and Matusov [108] propose the concept of 

pseudocriterion. The basic idea is that of reformulating any soft constraint of an 

optimisation statement as an additional objective. Such an approach allows a relaxation of 

the entire feasible solutions set, leaving any decision with respect to soft constraints to be 

made upon considerations coming from the analysis of an expanded set of evaluated 

solutions. However, the complexity of the objective space turns thus to be increased, 

which may impact on the computational cost and the selection of suitable optimisation 

algorithms for multi-criteria problems.  

In an optimisation framework for reliability based design, Agarwal et al. [3] propose the 

use of homotopy2 methods for conducting a constraint relaxation and to obtain a relaxed 

feasible region. A series of optimisation procedures is then carried out by gradually 

transforming the relaxed optimisation problem to the original one via a homotopy.  

 

 

2.3. Suitable Visualisation Techniques for Design Optimisation 

A major requirement for an effective visualisation technique is to be able to translate 

numerical datasets into simple and meaningful graphical representations in order to 

facilitate data analysis and understanding. Previous efforts in this field have been based 
                                                   
2 Homotopy is the relation existing between two mappings in a topological space if one can be continuosly 

deformed into the other. 
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on the application of multidimensional visualisation techniques in MOO, so that both 

evaluation and exploration of the Pareto frontier could be performed. In some cases, well-

known methods have been implemented, while in others ad hoc methodologies have been 

developed. A brief summary is presented below. 

 

2.3.1. Multidimensional Data Visualisation 

Among all the multidimensional visualisation methods, scatter plot matrices, parallel 

coordinates plots and self-organising maps are widely used in MOO because of their 

capabilities to represent large multidimensional datasets. A synopsis of their main 

features follows. 

 

Parallel Coordinates Plot (PCP) 

Because of their effectiveness in simultaneously displaying high-dimensional datasets on 

a simple two-dimensional plot, parallel coordinate plots provide both a global vision of 

the entire data at hand and a tool to perform a local and accurate data examination by 

visualising only the axes and/or the samples of interest. The key concept is displayed in 

Figure 4.  
 X1 X2 X3 
Point A 1 1 1 
Point B 1 5 5 
Point C 8 2 7 
Point D 9 9 9 

 
 

 
 

Figure 4. Representation of four three-dimensional points through the Cartesian-

coordinate system and a parallel coordinate plot. The point values per each 

dimension are specified on the table above. 
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Furthermore, it allows to conduct data analysis by identifying one-dimensional features 

(e.g., marginal densities), two-dimensional features (e.g., correlations), and 

multidimensional features (e.g., clustering) [120]. 

Nonetheless, there are some shortcomings which must be kept in mind. Firstly, the fact 

that, although all the dimensions are simultaneously visualised in the plot, the entire 

space is not represented: since the axes are plotted side by side, the i-th dimension is 

linked at most to two other dimensions. Therefore, in an n-dimensional problem no 

information is visualised about the relationships among the i-th axis and the other (n - 3) 

axes which are not by its sides. This can be achieved by performing multiple 

permutations of the axes, in order to gain insight into the problem at hand via different 

perspectives of the same input dataset. 

A further deficiency is the unfriendly and unfamiliar nature of this visualisation 

technique, in contrast with our familiarity with the Cartesian-coordinate system. 

Consequently, the analysis of large multidimensional datasets may result to be 

excessively complex and onerous for the designers who are accustomed to traditional 

visualisation tools. However, such a drawback can be greatly reduced via a suitable 

intuitive and user-friendly interface, exploiting at the same time the capabilities of the 

parallel coordinate plots in visualising multidimensional data. In this context, McDonnel 

and Mueller [74] propose the Illustrative Parallel Coordinates (IPC). This is a set of 

rendering techniques (edge-bundling, branched clusters, silhouettes, shadows, halos, 

faded histograms within clusters and density plots) aimed at augmenting and improving 

the graphical aspects of the parallel coordinate plots so that as much information as 

possible can be conveyed also to non-expert data analysts. 

In the attempt to achieve the same goal, other approaches are based on the integration of 

the parallel coordinate plots with other visualisation techniques. Wegman and Luo [121], 

for example, suggest a coupling with the grand tour technique to allow the user to 

explore datasets which are both high-dimensional and massive in size.  

 

Scatter Plot Matrix (SPM) 

Scatter plots are well suited for discovering or checking correlations between two 

variables. Scatter plot matrices can be obtained by applying the same concept to every 

pair of the variables contained in multidimensional datasets. The systematic format of the 
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resulting visualisation technique allows the user to compare all the dimensions at hand 

with respect to each other in a simple and immediate fashion by moving along a single 

row/column of a matrix of bivariate graphs [50], as shown in Figure 5.  

 

 
Figure 5. Scatter plot matrix displaying a satellite design dataset [111]. 

 

The main limitation is of practical nature and arises from the visualisation of datasets 

with a large number of dimensions. In this case, the analysis of the single scatter plots 

may be significantly complicated because of their number and dimensions, especially if 

the plot is displayed on a computer monitor. Therefore, scatter plot matrices are advisable 

for the visualisation of datasets containing at most 8-10 variables. This limitation can be 

partially addressed by integrating the half-matrix version of scatter plots with an 

interactive interface which allows the user to steer data analysis and to select the 

information to be displayed on the graph [111][126].  

 

Self-Organising Map (SOM) 

The self organising maps are an efficient technique for visualising multidimensional data 

[63]. Through an unsupervised learning, the cells within the maps are organised to best 

describe the set of input data samples and allows projecting a high-dimensional space 

onto bidimensional component maps. Consequently, the main capabilities of the SOMs 

lie in providing an appropriate technique to identify data similarities and for clustering 
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[25][46]. An example is provided in Figure 6 for the same dataset considered in 

Appendix A.  

 

 
Figure 6. Representation of the same dataset considered in Appendix A by means of 

the self-organising maps. The basic idea is that, through a learning process, the map 

is organised in such a way that all the cells close to each other represent all the 

inputs having similar features. The representation of any dataset is thus obtained via 

a set of two-dimensional plots, as many as the dimensions of the problem at hand. 

Each data sample is represented by a cell, which has always the same space position 

within all the plots. Each self-organising map is associated to a particular dimension 

and the values of its cells are encoded according to their colour-bar located besides 

the map. 

 

As regards the dimensionality of the data samples, the SOMs are not suitable for 

visualising high-dimensional datasets containing more than about ten variables. When 

dealing with a large amount of variables, either the numerical analysis of the single maps 
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may be significantly deteriorated because of their number and reduced dimensions, or a 

global perspective of the problem under study is compromised (it may be impossible to 

visualise all the maps simultaneously on the same sheet or screen), which may affect the 

identification of data clusters and relationships. 

With respect to the number of input samples, the main limitation is related to the number 

of cells contained in the maps. The more input samples are taken into account the larger 

is the number of map units to consider. Therefore, such a limitation in terms of dataset 

size affects the PC processing capabilities: increasing the number of input samples makes 

the learning process more complicated, and consequently a longer time is required [118]. 

 

2.3.2. Carpet Plots 

Prior to the application of computational tools in aircraft conceptual design, optimization 

methods were based on the development of a set of parallel layouts, each one 

characterized by different combinations of the design parameters. Design optimization 

was carried out with the help of carpet plots [69][93] by estimating the impact of 

parametric variations on the aircraft layout and criteria such as mission, weight and cost. 

A typical carpet plot provides a means of visualizing performance requirements (e.g. 

cruise speed, second segment climb rate, take-off and landing field length distances) as a 

function of parametric variables such as thrust-to-weight-ratio (T/W) and wing-loading 

(W/S). A point on the carpet plot represents a particular aircraft design and provides the 

designer with information on how performance constraints are satisfied. 

In an optimisation context, carpet plots provide a straightforward and physical 

representation of the optimization results [82]. In the T/W-W/S space (or an equivalent 

parametric space), the users can immediately obtain information about the performance 

constraint satisfaction of the design under study.  

A simultaneous visualization of multiple optimal solutions in the carpet plot would 

present not only a distinct location of the design points, but also a different arrangement 

of their respective sets of performance constraints, as shown in Figure 7. This is due to 

the dependence of the constraints on design parameters which are peculiar to each 

solution, but not explicitly represented in the T/W-W/S space. 
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Figure 7. Example of the carpet plots of two different design points, one in red and 

the other in blue. Hatching denotes inadmissible side of constraint curves [82]. 

 

The integration of carpet plots in a visualization framework aimed at the exploration of 

optimisation results allows the designer to evaluate the design solutions with respect to a 

set of design constraints by using a traditional design tool without the burden of 

mathematical complexity. 

 

2.3.3. Recent Developments in MOO Visualisation 

Ad hoc methodologies have been developed for an effective visualisation of design 

optimisation data. Among them, mention can be made of the hyper-space diagonal 

counting (HSDC) method presented in Agrawal et al. [4]. Intended to visualize intuitively 

the Pareto frontier for large-scale MOO problems, this method exploits Cantor’s findings 

in set theory which enable the representation of multidimensional Pareto surfaces in a 2-

D or 3-D graph without any loss of information. 

In the framework of aircraft design, several authors have also stressed the importance of 

representing the physical layout of the airplane to simultaneously visualize the 

geometrical parameters characterizing each design solution [47][5][38]. This has been 

achieved either by using simple parametric CAD models or schematics of the aircraft 



Literature Review 
 

 18 

under consideration. These representations allow the designer to immediately understand 

the main features of different aircraft concepts (e.g. number of engines and their location, 

fuselage geometry, tail and wing plants, etc). However, such visualization might only be 

useful for experienced designers dealing with conventional aircraft design. Furthermore, 

such representations can only display limited information with regard to aerodynamics, 

performance, civil/military regulations, design-constraints satisfaction, and so forth. 

Finally, it does not allow to appreciate the subtle, but still important differences between 

similar design solutions. 

For constraint analysis and visualisation, mention should be made of the methodology 

presented by Deremaux et al. [26]. Through a CAD-based visualisation, the investigation 

of constraint behaviour is performed by intuitively displaying relevant information for 

each solution, such as active constraints, the sensitivity of each constraint to each of the 

design variables, and the identification of the constraints that drive the design. This is 

achieved by means of an interactive graphical user interface (GUI) composed of different 

windows that allows the designer to gain a better understanding of the design trade-offs 

made by the optimiser.  

An approach to trade space exploration is presented by Yukish et al. [126], allowing users 

to steer further model runs in desired regions of the design space by using 

multidimensional visualisation tools. This is obtained through the specification of point 

attractors and by graphically linking all the plots together. 

 

2.3.4. Pareto Frontier Exploration via Approximations 

Among the methods for conducting a trade-off analysis on a set of optimal design 

solutions, mention should be made of the advantages in employing local Pareto 

approximation methods. 

Generally, the Pareto frontier of MOO problems that are representative of real-life 

engineering problems cannot be described analytically because of their complexity. 

Numerical methods are hence required to obtain discrete Pareto solutions, which may 

turn out to be computationally demanding. In case that the optimisation is conducted by 

means of gradient-based algorithms, an advantageous strategy to extend the set of non-

dominated points is offered by local approximations of the Pareto frontier. In this 
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framework, approximation methods that reuse gradient information obtained throughout 

the optimisation procedure prove to be particularly efficient in terms of computational 

cost. These methods allow to derive new approximated Pareto solutions in the objective 

space and to obtain their corresponding design vectors in the design space [115][116]. 

Linear and quadratic local approximations can be computed via a Taylor expansion 

around a differentiable Pareto point as follows: 
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surface, whereas nf is the dimension of the largest family of linearly independent vectors 

ifP ,  where P  is the projection matrix onto the hyper-plane normal to all gradients of 

active constraints. The derivatives can be computed from the usual gradients of objectives 

and active constraints obtained during the optimization process. Thus further information 

in the vicinity of a Pareto point can be obtained at no extra computational cost. In this 

work, the term optimal family of solutions will be used to identify those designs 

belonging to the same local Pareto frontier and characterized by the same set of active 

constraints (including the active bounds of the variables). 

By understanding the trade-offs between objectives, the designer is hence enabled to 

articulate local preferences with the aim of improving some objectives at the expense of 

others and simultaneously ensuring the satisfaction of inactive constraints.  

A detailed description of the method along with its limitations and a strategy for detecting 

non-differentiable Pareto points can be found in Utyuzhnikov et al. [115] and Maginot 

[71]. 
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2.3.5. Uncertainty Visualisation in Robust Design Optimisation 

Generally, the visualisation of robust design optimisation (RDO) data represents a more 

demanding challenge in comparison with the corresponding deterministic case. On the 

one hand, it is due to the higher problem dimensionality deriving from the introduction of 

additional design parameters, typically formulated in terms of statistical variation of 

objectives and constraints. On the other hand, there is a need to visualise a wider diversity 

of information, such as constraint satisfaction probability. 

A survey of uncertainty visualisation techniques to aid data analysis and decision making 

in a number of disciplines is presented by Pang et al. [87]. A brief review of uncertainty 

sources together with a classification of the possibilities in uncertainty visualisation is 

also presented with the intent of highlighting apparent needs in visualisation. The 

importance of uncertainty visualisation to support decisions is also shown by Griethe and 

Schumann [40] by focusing the attention on the demand for new approaches. 

In the context of RDO, Mattson and Messac [73] introduce a multi-objective decision-

making tool using objectives uncertainty visualisation for supporting non-deterministic 

concept selection. In order to enhance the trade-off among various design alternatives, 

Rangavajhala et al. [90] propose an approach based on the visualisation of results in 

terms of three uncertainty attributes: mean objective performance, variation in 

performance, and constraint satisfaction. The selection and analysis of different 

alternatives is driven by the identification of design subsets meeting specific requirements 

on the above attributes. The decision-making process is thus enhanced by enabling the 

designer to trade-off not only the mean design performance, but also the robustness of 

objectives and the satisfaction probability of constraints. This is achieved by means of a 

filtering scheme aimed at discovering desirable regions of the mean objective space from 

an uncertain perspective, as shown in Figure 8.  

The main limitation of the above scheme is its applicability to RDO problems with a 

maximum of three objectives. Furthermore, it does not allow the analysis of results by 

considering the mean and variance of constraints separately. The latter can be addressed 

by means of the strategy suggested by Padulo [86], which allows the visualisation of the 

variance of any pair of objectives/constraints in their corresponding mean space. This is 

achieved by displaying around each design point an ellipse having the horizontal and 
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vertical semi-axis given by the standard deviations corresponding to the parameters 

displayed in the abscissa and ordinate directions, as illustrated in Figure 9. 

 

 
Figure 8. Visualisation scheme proposed by Rangavajhala et al. [90]. The 

exploration of the robust Pareto cloud can be conducted in the mean objective space 

by varying the filter tolerances tolJ, tolh and tolg associated to objective variation σJ, 

probability of equality constraint satisfaction PCSh, and probability of inequality 

constraint satisfaction PCSg, respectively.  

 

 
Figure 9. Comparison of the robust and deterministic results of an aircraft MOO 

problem. By considering the mean objective space MTOW-RA, the mean and 

variance of the solutions are represented by the red points and yellow ellipses for the 

robust Pareto cloud, and by the green points and blue ellipses for the deterministic 

Pareto front (after conducting an a posteriori uncertainty analysis) [43]. 
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2.4. Design Change 

This section provides an overview of design change problems occurring in engineering. 

The reasons for which a change may be required are various, and a number of examples 

are given in Appendix D. Generally, changes can be necessary when new needs and 

requirements emerge, or because of weaknesses or deficiencies of the design process that 

preclude the achievement of initially defined standards in the product [28]. Changes can 

also be required to modify existing designs, which could facilitate bringing innovative 

high value products to the market ahead of the competitors [81]; as well as to fulfil the 

need for mass customisation by supporting product variety [20][35]. 

Managing the change process is not trivial. The outcome is not always as expected or 

desired, especially for complex products, due to the intricate connections among design 

features. Even a single simple change can trigger a series of other changes, thus 

generating a flow of changes that propagates across the design [20]. It is therefore 

essential to establish effective strategies for Change Impact Analysis (CIA), so that the 

time, cost, and resources can be allocated to introduce it [28]. In addition to the overall 

number of changes required, the time each change might start being introduced together 

with its duration need to predicted. The illustration of different change types in Figure 10 

shows the difficulty in handling the cases where not all the potential effects deriving from 

the accommodation of a change are captured. This leads to an increment of the number of 

changes as the redesign progresses, which could lead to change avalanches if it gets out 

of control.  

 

 
Figure 10. Different change types. In contrast to change ripples and change 

blossoms, that finish within the required time t, change avalanches can behave like 

blossoms over a longer, or represent an uncontrolled increment of changes [28]. 
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In this context, Guenov [41] introduces an approach to trace and analyse the propagation 

of the knock-on effects of design and specification changes in distributed design models. 

A change prediction model (CPM) is suggested by Clarkson et al. [20] by combining 

Design Structure Matrices and risk management techniques to compute the indirect 

change propagation risks between design components. A probabilistic prediction of the 

change consequences along with a visualisation scheme of change propagation paths is 

instead provided by Eckert et al. [29].  

The potential advantages of employing efficient CIA methods for addressing changes 

raised during the early stages of product lifecycle are outlined by several authors 

[33][48][92]. This is illustrated in Figure 11 by representing the typical cost of an 

Engineering Change Order (ECO) curve in relation to the product development phases.  

 

  
Figure 11. Typical curves with time for a generic product development cycle [92]. 

The shape of the curve will vary depending on a number of factors, e.g. the project 

at hand, design strategy, technologies, etc.  

 

In general, the later a design change is introduced, the further it propagates and, therefore, 

the higher the costs are. It is therefore evident that changes should be managed and 

introduced early in the product life cycle. Keller et al. [58] propose an engineering 

change methodology to support conceptual design. It allows to analyse alternative 

solutions and to foresee potential problems arising from the product architecture by 



Literature Review 
 

 24 

predicting change propagation via connectivity models of past designs. However, the 

suggested approach is based on the CPM methodology as described by Clarkson et al. 

[20], although the components of a product may be not defined yet at conceptual stage. 

Moreover, the method involves the participation of different experts to obtain the data 

required in input.  

 

 

2.5. Bayesian Global Optimisation 

Analysed in this section are the salient aspects of Bayesian global optimisation methods, 

which allow to solve problems of the type of Equation (1) by means of response surfaces. 

In particular, attention if focused here on the Efficient Global Optimisation (EGO) 

algorithm developed by Jones et al. [56] and subsequently employed by other researches 

[98][100][102], which combines the use of kriging metamodels and the sampling 

criterion introduced by Mockus et al. [78]. Such an approach has proven to be 

particularly efficient also for nonlinear and multimodal models, providing an efficient 

trade-off between the optimisation of response surfaces (by evaluating the design points 

where the surrogate model is minimised) and the enhancement of the approximation (via 

a minimisation of the prediction error). This turns out to be particularly convenient for 

applications where time-consuming computer simulations are involved. 

 

2.5.1. The Response Surface Model 

During the last decades there has been a growing interest in developing fast surrogate 

models of objective and constraint functions used in optimisation problems. Additional 

advantages in using surrogate models apart from reducing computation time are outlined 

in the taxonomy of global optimisation methods based on response surfaces given by 

Jones [55]: 

 

 All the evaluations employed to fit the surfaces can be executed in parallel. 

 All the evaluations can be performed before formally stating the problem. 
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 All the evaluations can be reused for different formulations of the same problem 

(e.g., different constraint limits). 

 It is possible to use all the evaluations to conduct also sensitivity analyses aimed 

at identifying the most important variables and to visualise input-output 

relationships.  

 When computer models are not available, response surfaces provide a means to 

computationally represent the relationships between input and outputs. 

 

Nevertheless, in some cases the generation of a satisfactory surrogate model can lead to 

the computation of a large number of observations, depending on the nature of the 

problem to be addressed. In general, it is also not clear which type of surrogate model 

would provide the most accurate description of any function not known a priori. 

Among all the existing approaches for obtaining surrogate models, a method that is 

gaining popularity in the research community is kriging, also known as DACE (Design 

and Analysis of Computer Experiments). Such method has been considered in this 

research because of its statistical interpretation that allows to estimate the potential error 

of the interpolator. It will be shown how this feature turns out to be essential to Bayesian 

global optimisation methods. Only the main features and principles required by the reader 

will be explained in this chapter, referring to literature for more details [95][56][70]. 

Kriging is a response surface model that interpolates the evaluations with a linear 

combination of “basis functions” having parameters that are tuned [55]. Supposing that m 

observations have been previously evaluated on the unknown deterministic function 

)(xy , the corresponding surrogate model )(ˆ xy  is expressed as the sum of a constant 

regression function   and a random function (stochastic process) )(x : 

 

)()(ˆ xx  y  (7) 

 

The random function )(x  is assumed to have mean zero and covariance: 

 

),()](),([Cov 2 jiji R xxxx    (8) 
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where 2  is the process variance, and the correlation function R  considered here is 

defined as: 
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where the exponent 20   (that can also vary with k) is an important parameter that 

determines the smoothness of the response prediction globally (if it is a scalar) or across 

dimensions (if it is a vector). Troughout the thesis it is assumed that 2 , under the 

hypothesis of smoothness of the deterministic function )(xy  at hand [55][56]. The 

parameter 
k

 , instead, determines the deterioration rate of the correlation in the k-th 

direction. The kriging model has therefore n+2 parameters: 
k

 ,...,,,
1

2 . Their 

estimation is obtained by fitting the model to the training data set to maximise the 

likelihood of the observed data. The following closed form of the predictor can thus be 

obtained: 
 

)ˆ('ˆ)(ˆ 1  1yRrx  y  (10) 

 

with: 
 

1R1

yR1
1

1

'

'ˆ




  (11) 

 

where r  is the vector whose i-th element is: 
 

)](),([Corr)( i

i
r xxx   (12) 

 

and 1 denotes an n-vector of ones. The key feature of kriging is that it allows to estimate 

the potential error in the approximation via the following equation of the mean squared 

error of the predictor:  
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where 2 can be estimated by: 
 

n
)ˆ()'ˆ(ˆ 2 


1yR1y 1 




 (14) 

 

A full derivation of the above equations can be found in Sacks et al. [95].  

Equation (13) turns out to be particularly useful since it provides a means to estimate the 

prediction uncertainty at any point. It is consequently zero in correspondence to any 

observation, whereas it tends to be 2  for points very distant from the data [56]. Within 

an optimisation context, this comes to be essential in order to avoid having an erroneous 

representation of the tackled problem, as shown in Figure 12.  
 

 
Figure 12. An example of response surface for a simple one-dimensional function 

f(x). The real objective function is visualised in green, and the black dots identify the 

points where it has been sampled. The red line represents a potential predictor that 

fits such observations, and its standard error is depicted in blue below. 

 

To assess the validity of the stochastic process models to be used in optimisation 

processes, Jones et al. [56] propose a cross-validation procedure to be conducted through 
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a series of diagnostic tests. A first check plot is given by comparing actual and predicted 

values of a given set of points. With the objective of avoiding the evaluation of additional 

points, the procedure is carried out by considering only the m function evaluations used to 

fit the model. Each evaluation is left out at a time to be then predicted by means of the 

surface that fits the remaining (m-1) points. The prediction accuracy of the model can 

thus be assessed by plotting the actual function values versus the cross-validated 

predictions. The more the points lie on a 45º line, the more accurate is the model at hand. 

One more useful diagnostic test is based on computing for each observation the 

corresponding standardized residual, defined as the number of standard errors that the 

predicted valued is away from the actual value: 
 

)(
)(ˆ)(

residualedstandardis sample 
i

ii

x
xx

i

i
i-th s

yy




  (15) 

 

where  )( ixy  and )(ˆ ixiy  denote the actual value and the cross-validated prediction of 

the i-th observation respectively, and )( ixis represents the cross-validated standard error 

of the prediction at ix . A straightforward validation graph results from plotting all the 

standardized residuals versus the respective predicted function values. The model is thus 

considered to be accurate if all the cross-validated function predictions )(ˆ ixiy  are 

located within a certain range of the standardized residual, depending on the confidence 

interval that is desired3. 

An example of the diagnostic plots described above is shown in Figure 13. 

 

                                                   
3 Generally, the interval [-3, 3] is taken into consideration for a 99.73 % confidence interval in the 

prediction [56]. 
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(a) 

 
(b) 

Figure 13. Diagnostic plots: (a) the actual function values versus cross-validated 

predictions, (b) the standardized cross-validated residuals versus cross-validated 

predictions. 

 

After the model has been validated, it can be used to guide the search of optimal solutions 

in the design space. This can be done in two different ways. On the one hand, the 

optimisation process can be conducted by establishing the successive system evaluations 

on the basis of the predicted function minimum. On the other hand, the attempt of 

assuring a certain accuracy of the response surface can lead to exploring points which are 

considerably distant from the optimal solutions. It is therefore necessary to introduce a 

suitable sampling criterion that balances global search (directed at searching in the design 

space regions with the highest standard error of the predictor) with the local search 

(focused on seeking promising areas of the design space identified through the predictor). 

A review of existing figures of merit to trade-off the two aspects mentioned above is 

provided in the next section. 

 

2.5.2. Infill Sampling Criteria 

The key concept is that of modelling the uncertainty about the prediction by assuming 

)(xy  as the realisation of a stochastic process )(xY , which is considered to be a normally 

distributed random variable with mean and standard deviation given by the predictor and 

the associated standard error. Denoting by ŷ and s the prediction and its standard error 

estimate, Y is therefore Normal( ŷ ,s) [56]. Such an approach allows us to estimate what is 

the probability of improving our current best function value fmin = (y(1),y(2),…,y(m)) that 
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can be associated with each point of the design space. This is illustrated in Figure 14 

through a simple one-dimensional function f(x), depicting the normal density function 

with mean and standard deviation given by the response surface at x = 17. Since the tail 

of the distribution lies beyond  fmin, there is a probability of obtaining a better value of the 

function at x = 17.  
 

 
Figure 14. An example of response surface for a simple one-dimensional function 

f(x). The response surface is visualised in green, and the black dots identify the 

points where f(x) has been sampled. The predictor standard error is depicted in blue 

and the red line represents the current best sampled function value. 

 

Such a concept can be formalised by defining the improvement at the generic point x as: 
 

 0),(max)( min xx YfI   (16) 

 

which is also a random variable. Taking the expected value of )(xI  yields the probability 

of improvement, often referred as expected improvement: 
 

    0),(maxE)(E min xx YfI   (17) 

 

that can be expressed in closed form as [56]: 
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where () and () are the standard normal density function and the standard normal 

distribution function, respectively.  

By analysing the terms on the right-hand side of Eq. (18), it can be noted how the 

probability to obtain at some point x a function value lower than fmin is influenced both by 

the predicted function value and its corresponding standard error. In fact, the first term is 

given by the difference between the current best minimum and the predicted value of f at 

x, penalised by the improvement probability. The second term instead depends on the 

prediction error s. Consequently, the expected improvement will tend to increase in those 

points where ŷ  is predicted to be smaller than fmin and/or where the prediction 

uncertainty is large [99], thus providing an efficient criterion to balance global and local 

search. In the attempt of controlling accurately such a balance, Sóbester et al. [102] 

propose a weighted expected improvement function WEIF, obtained from Eq. (18) by 

introducing a weighting factor w  [0,1]: 
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The advantage of this weighted infill sample criterion is that setting w close to zero will 

emphasise the search in areas of maximum uncertainty, whereas for values close to one 

the search will focus on the evaluation of promising regions.  

An alternative solution to control the local-global search is given by the generalized 

expected improvement [99][100]. Introducing a non-negative integer parameter g  in the 

definition of the improvement at the generic point x: 
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yields: 
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When dealing with constrained optimisation problems, it is necessary to adopt a sampling 

criterion that somehow acknowledges the satisfaction of the constraints to be met, as in 

Eq. (1). The approach suggested by Schonlau et al. [100] is based on the assumption that 

the predictions for all the response functions )](,...),([ 1 xx Igg  acting as constraints are 

statistically independent. The expected improvement subject to constraints Ec[I(x)] is thus 

obtained multiplying the expected improvement criterion by the satisfaction probabilities 

of each constraint: 
 

       0)(P...0)(P)(E)(E 1c  xxxx IggII  (23) 
 

Assuming that each )(xjg  has mean and standard deviation given by the associated 

predictor and its standard error, such probabilities can be estimated from the 

corresponding standard cumulative distribution functions. However, the optimal points of 

constrained optimisation problems in many instances lie along a constraint boundary or in 

its neighbourhood. Therefore, the disadvantage in using Eq. (23) is that the sampling of 

additional points is focused on the design space regions which are more likely feasible, 

thus preventing the evaluation of promising points located in the vicinity of constraints 

boundaries [98]. 

In the constrained case, Sóbester et al. [102] modify the WEIF as follows: 
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(24) 

 

Nevertheless, constraints satisfaction in Eq. (24) is assessed solely on the basis of the 

value of the constraint prediction, without acknowledging the uncertainty that is 

associated with it. 

Sasena et al. [98] provide a review of several infill sampling criteria, along with a 

comparison of their efficiency and accuracy on four analytical examples establishing a set 

of comparison metrics. The advised strategy for restricting the evaluation of further 

samples in the infeasible areas of the design space is to use a penalty-adjusted expected 

improvement criterion. However, no advantage over the constraint satisfaction 

probability method was shown from preliminary tests at identifying optimal points 

located along the constraint boundaries. 

 

A common approach in extending the above described principles to handle multiple 

objectives relies on the use of scalarizing methods to transform the original multi-

objective optimisation problem to a single-objective optimisation problem. In this 

context, a general overview is given by Hawe and Sykulski [45] with a brief review of the 

state-of-the-art in infill sample criteria along with a short description of existing 

scalarizing algorithms that can potentially be considered for such goal. A previously 

uninvestigated algorithm is also demonstrated together with a list of few examples 

available in literature where different sampling criteria and scalarizing methods are 

combined to give rise to multi-objective optimisation algorithms.  

 

2.5.3. Stop Criteria 

In Bayesian global optimisation, as an alternative or complementary criterion to the 

specification of a time-limit [101][102] or a maximum number of function evaluations 
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[97], the stopping rule is normally established on the maximum value of the expected 

improvement function (EI). In particular, the search is terminated when the maximum EI 

at any given step is smaller than a tolerance value, which can be expressed either as an 

absolute or relative value to the current minimal function value [99][56]: 
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(25) 

 

A different stopping rule is proposed by Schonlau [99] to overcome some of the 

undesirable properties of the above criterion, i.e. the potential premature and late 

termination of the algorithm. It is based on the key concept of estimating the probability 

bound that the real global minimum (which is unknown) and minf  are no farther apart 

than a tolerance value tol . The process is completed when this probability is below an 

established critical value ]1,0[critp . 

 

 

2.6. Summary and Conclusions 

The literature review conducted throughout this research was summarised in this chapter. 

It allowed to identify the state-of-the-art of suitable methods for addressing different 

aspects directly or indirectly related to design exploration. 

With respect to the first objective of this thesis, an investigation of current approaches 

aimed at supporting the formulation of optimisation problems was carried out. In 

particular, attention was focused on the existing strategies for defining and refining the 

functional and design-variable constraints. This allowed to highlight their corresponding 

advantages and limitations, especially in terms of assumptions and computational efforts.   

With respect to the second objective, different types of visualisation techniques were 

investigated. The most suitable multidimensional visualisation methods for the numerical 

analysis of optimisation results through discipline-independent techniques were firstly 

identified, i.e. parallel coordinates plot (PCP), scatter plot matrix (SPM), and self 

organising map (SOM). A brief description was provided for each one, whereas further 
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details can be found in Appendix A for the first two techniques. The importance of 

analysing results via discipline-dependent tools was also illustrated by means of carpet 

plots within the context of conceptual aircraft design. The integration of different 

techniques was investigated by considering the recent developments in establishing ad 

hoc methodologies for MOO visualisation. 

Finally, the main advantages of using surrogate models along with the principles and 

available infill sampling criteria of Bayesian global optimisation methods were reviewed. 

This allowed the identification of adequate optimisation tools to be combined with 

respect the third research objective. The surrogate model method taken into consideration 

was kriging. Its main features were described in order to highlight its capabilities to 

support optimisation procedures by means of available computational analysis data. The 

state-of-the-art investigation of infill sampling criteria was instead focused on their 

effectiveness in balancing global and local search, as well as in handling optimisation 

constraints.    

The present literature review establishes the fundamentals for the development of novel 

numerical strategies and the definition of schemas for effectively integrating available 

methods to address the needs identified in design optimisation. 
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Chapter 3 

3 Formulation of Optimisation 

Problems 

 
3.1. Introduction 

Most of the efforts in optimisation have so far been focused on the development of novel 

numerical methods aimed at the computation of optimal solutions. However, usually it is 

assumed that a correct statement of the problem is given a priori. In effect, the first step 

in an optimisation problem requires to mathematically describe the system/process to be 

optimised via an adequate problem formulation. The correctness of the optimisation 

statement, which is not addressed by established optimisation methods, turns out to be 

decisive to avoid obtaining meaningless results or the loss of important solutions. The set 

of optimal points is in fact contained in the feasible design set, which, in turn, is defined 

on the basis of the constraints and design-variable bounds formulation [108].  

The objective of this chapter is to present two different methods developed to assist the 

user in stating an optimisation problem via an adaptive formulation of functional and 

design-variable constraints. An appropriate correction of the constraints can thus enable 

the exploration of further promising solutions and a reduction of computational efforts. 
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To this aim, considered in this chapter are those optimisation problems that can 

generically be formulated as follows: 
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where )(xf  is the real-valued objective function to be minimised with respect to the 

design vector ],...,,[ 21 nxxxx  in the n-dimensional design space S, subject to the I 

functional inequality constraints )(xig  and 2n design-variable constraints (the lower and 

upper bounds lbx  and ubx , respectively). 

The first proposed method addresses the determination of the search region within the 

design space by means of adaptive design-variable bounds. Unsatisfactory results can, in 

fact, be obtained when the search region is inadequate. If the specified variables bounds 

are too tight, a set of feasible points could be excluded from the optimiser search and, as a 

consequence, optimal solutions may be overlooked. On the other hand, an excessively 

loose search region may lead to substantial or useless computational efforts and time. In 

this context, reference will be made to those cases where the search region definition is 

not straightforward because of some reason (e.g., problem complexity or lack of 

knowledge). The proposed Adaptive Search Optimisation Method (ASOM) conducts a 

recurrent search region refinement process in parallel with the optimisation procedure. 

This is achieved through an on-the-fly monitoring of design-variable distributions, which 

allows to update the design-variable bounds by increasingly gaining insight into the 

problem at hand via new function evaluations. Consequently, further optimal solutions 

that initially were infeasible with respect to any initial design-variable constraint now can 

be proposed to the designer; in addition, infeasible regions can be excluded from the 

optimal search with the intent of reducing computational cost. 

A second method, on the other hand, has been developed to handle the functional 

constraints that are flexible to some degree and can be changed if necessary, which 
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generally are referred to as “soft” or “non-rigid” constraints [109]. The presented method 

is intended to conduct an exploration of initially infeasible design solutions whenever a 

predefined minimum improvement of the objective can be gained through a maximum 

relaxation of constraints established a priori. Promising design points beyond the original 

border of soft constraints can hence be identified and suggested to the designer, who can 

thus gain a better understanding of the problem at hand.  

 

 

3.2. Proposed Method for an Adaptive and Efficient Setup of the Search Region 

The Adaptive Search Optimisation Method (ASOM) has been developed to tackle those 

optimisation problems whose design-variable constraints setup is not evident or 

immediate. At first, it may appear that this is related only to those optimisation problems 

that are characterized by a significant lack of knowledge, such as innovative or 

unconventional designs. However, for most of the optimisation procedures, more than 70-

85% of the total time required to solve the problem is spent on its formulation, which 

needs to be refined until it proves to be adequate [108]. Attention is focused here on the 

development of a suitable methodology to prevent promising optimal solutions from 

being overlooked for being slightly beyond one or more design-variable constraints that 

could have been adequately relaxed. Such optimal solutions will be from now onwards 

referred as semi-infeasible optimal points. On the one hand they are infeasible with 

respect to the variables bounds initially established; on the other hand they could, 

nonetheless, be accepted by the designer. A key aspect that needs to be considered in this 

context is the attempt to contain computational efforts and time in contrast with the 

simplest solution of the problem that would be to set the design-variable constraints as 

large as possible.  

The proposed method is intended to support the user in adequately and effectively 

determining the search region of an optimisation problem by exploiting the information 

progressively gathered during the search process. The aim is that of enhancing the 

evaluation of optimal solutions via the integration of a continuous updating process of the 

variables bounds, which has to be conducted in parallel with the optimisation procedure. 

The entire approach is based on a continuous monitoring of the evaluated design points 
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distributions and the key idea relies on updating in real time the design search region, 

redefining it as close as possible to the current perceived feasible space throughout the 

whole optimal search process. This can be achieved via a set of adaptive variables bounds 

introduced in Section 3.2.1, which are corrected along the optimisation. As new points 

are evaluated, the search region is updated on the strength of ad hoc statistical criteria. By 

relaxing, strengthening, or leaving the variables bounds as they are on the basis of the 

information currently gained about the problem at hand, the whole optimisation process 

can consequently be enhanced. If the probability of exploring semi-infeasible points 

exceeds a user-defined threshold, the variables bounds can be relaxed on the strength of 

an adequate criterion, while the entire process can be accelerated via a suitable restriction 

criterion by limiting the optimiser search to the sub-region of the design space that is 

perceived to be feasible, thus limiting the evaluation of infeasible points.  

 

3.2.1. Terminology 

The method for an adaptive setup of the search region is based on the specification of two 

different set of variables bounds: the adaptive bounds and the frozen (or ultimate) 

bounds. The first set represents the current design-variable constraints taken into 

consideration at a given time of the optimisation process. Their initial value setup has to 

be based mainly on the designer’s experience and intuition. In the case of lack of 

knowledge of the problem under study, it is advisable to consider adaptive bounds largely 

set in order to facilitate the feasible design space identification and subsequently fit the 

search region to it. The drawback of such strategy is the risk of a heavier computational 

cost for the early iterations of the optimisation process, although this is preferable rather 

than obtaining a reduced set of optimal solutions. 

The frozen bounds, on the contrary, enforce the limit value that some variables may have 

for any reason4. The lower (upper) frozen bound of a design variable, therefore, 

represents the ultimate lower (upper) value that the variable at issue can have. 

                                                   
4 The limit values of a variable can be dictated by physical/functional considerations, design requirements 

or regulations. For instance, a significant challenge in designing the A380 derived from considering the 

[80m x 80m x 80ft] box of maximum allowable aircraft size as an additional requirement to minimise 

airport infrastructure impact [8] and satisfying the requirements given by ICAO  
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The whole method has been developed by adopting the notation shown in Figure 15, 

where shown in red and black are the distributions of the entire set and the feasible set of 

points evaluated at a generic time of an optimisation process and projected on the i-th 

dimension ix . 

 

 
 

 Lower Frozen Bound   

 Lower Adaptive Bound 

 
Lower Bound of the Perceived Feasible Space Fp

i 

 Upper Adaptive Bound  Upper Bound of the Perceived Feasible Space Fp
i 

 Upper Frozen Bound 

 

  
 Figure 15.  Notation taken into consideration in relation with the i-th variable search region. 

 

where the superscript i denotes the i-th design variable under consideration and the 

subscripts lb and ub stand for lower bound and upper bound respectively.  

Provided one or more feasible points exist among the overall set of computed design 

evaluations, the following inequality must always be satisfied for any feasible design 

vector x: 

 

ububublblblb xxfxfxx   (27) 

                                                                                                                                                        

[7]. Analogously, airfoils having a thickness-to-chord ratio above a certain value can not be considered 

because of aerodynamics reasons related to the desired range of mach cruise. 
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It is important to note that whereas the perceived feasible space Fp
i = [fi

lb, fi
ub] of the i-th 

variable can be identified from the set of feasible sampled points, the real feasible space 

Fr
i is generally unknown. 

 

3.2.2. Under-Determined and Over-Determined Search Regions 

In general, optimisation efficiency and effectiveness can be improved by providing good 

starting guesses, which may limit the number of iterations to convergence and increase 

the likelihood of finding a global minimum rather than a local one. Nevertheless, such a 

strategy can not be applied to optimisation problems associated with a lack of knowledge 

or characterized by a significant complexity. In this context, the approach adopted here is 

to conduct a series of independent optimisation procedures from a number of different 

starting points spread all over the search region. Every single optimisation run is carried 

out after having assessed the effectiveness of the design search region by analysing the 

variables distributions of the evaluations previously computed. This allows to establish 

whether the search region is valid or invalid. In the first case no changes are required, 

whereas in the second it is necessary to relax the search region if this is under-

determined, or to restrict it when over-determined. An example for the three possible 

types of search region is shown in Figure 16: 

 

 

       (a) 

 

      (b) 
 

       (c) 
Figure 16. The analysis of each variable distribution reveals if its corresponding search 

region is (a) valid, (b) under-determined, or (c) over-determined. The lower and upper 

adaptive bounds of the variable are represented by green lines, while the black part of the 

histogram represents the fraction of feasible samples out of the entire set of sampled 

points (in red). 
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Formally, denoting the generic i-th variable with the superscript i, the search region is 

considered to be over-determined if: 

 

niii ,...,1for,)ff(fxor)ff(fx i
lb

i
ub

i
ub

i
ub

i
lb

i
ub

i
lb

i
lb    (28) 

 

where αi is the i-th restriction coefficient, which has to be defined as a percentage of the 

current perceived feasible space Fp
i. The over-determined bound(s) can be redefined on 

the strength of the restriction criterion proposed in Section 3.2.3. 

On the other hand, the search region is considered to be under-determined for the i-th 

variable when one of the following cases occurs: 

 

a) Throughout the optimisation process, a set of feasible design points are evaluated 

beyond the adaptive bounds. Consequently: 

 

ni ,...,1for,xforxf i
ub

i
ub

i
lb

i
lb   (29) 

 

b) Whenever the probability that further feasible samples exist beyond the current 

adaptive bounds is above a threshold pi established by the designer, thus violating 

one or both the following inequalities: 

 

    nipp ii ,...,1for,Fx,xxP,Fx,xxP i
r

ii
ub

ii
r

ii
lb

i 
 

(30) 

 

Section 3.2.4 describes the proposed relaxation criterion along with a set of distribution-

free probability inequalities which can provide a probability bound for (30).  

 

3.2.3. Restriction Criterion 

The restriction criterion is presented below by taking into consideration the lower 

adaptive bound of the i-th variable and assuming the notation shown in Figure 17. 

Analogous considerations can be extended to the upper adaptive bound case. 
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 Infeasible Sampled Point 

 Feasible Sampled Point 

 The range ]dx,[x lblblb
iii   

 The adaptive range  ]x,x[ ublb
ii   

 

  

 Figure 17.  Notation adopted for the restriction criterion. 
 

The range i
lbS  is determined by i

lbd , which is the distance between the lower adaptive 

bound and its adjacent infeasible observation. The probability of a feasible point being in 
i
lbS  is inversely proportional to the ratio: 

 

   niii

i
iii ,...,1for,

)x(x
dFSxP

lbub

lb
rlb 


  (31) 

 

Introducing a constant of proportionality i : 
 

   niii

i
iiii ,...,1for,

)x(x
dFSxP

lbub

lb
rlb 


   (32) 

 

the restriction criterion is expressed as follows: 
 

  

end
,...,1for,dxx

FSxP if

lblblb

rlb

niiii

iiii



   (33) 

 

where i  is the probability threshold established by the designer for the i-th variable. The 

restriction criterion has to be applied progressively to the set of infeasible sampled points 

adjacent to i
lbx  while condition (33) continues to be satisfied. As mentioned above, the 

criterion can similarly be extended to the upper bounds.  
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3.2.4. Relaxation Criterion 

The proposed relaxation criterion has been developed for conducting an appropriate re-

definition of under-determined search regions and enforcing inequality (27) at the same 

time. It can be employed in conjunction with optimisation algorithms that allow to 

assume the n design-variables distributions as the distributions of n random variables Xk, 

for k=1,…,n. An example is provided in Section 3.2.5 by considering the simultaneous 

perturbation stochastic approximation algorithm (SPSA). The problem at hand, therefore, 

can be tackled as an estimation problem of univariate tail probabilities. In other words, 

the adaptive bounds of any under-determined design variable ix  can be redefined 

according to the user-predefined probability threshold ip  and on the basis of the current 

feasible sampled points distribution5. Such a criterion has to be applied individually to 

any (lower/upper) design-variable bound considered to be under-determined according to 

the above-mentioned criteria, so that the corresponding inequality from (30) is satisfied 

and holds with equality. 

For the generic random variable X, the following probability inequalities based on 

moment information have been taken here into consideration:  

 

Chebyshev-Cantelli inequality [27]: 
 

  0for,P 2
2

2
1 


 t

t
tMX


  (34) 

 

 

Cantelli’s inequality [12]: 
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1 for,
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





  (35) 

 

 
                                                   
5 Only the distributions of the feasible points set are here taken into account rather than those of the overall 

points set, so that the whole optimisation process is focused on the areas of the design space which are 

perceived to be feasible. 
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Bertsimas-Popescu inequality (for XR+) [13] [88]: 
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(36) 

 

Denoting by: 

 

 m
m XM E   ,      m

m XX )(EE    ,     m
m XX )(EE   

 

All inequalities are distribution-free so that no assumptions are required for the 

population probability distribution function of the design variables. For explanatory 

purposes, Figure 18 depicts the upper probability bounds for the tails of a normal and a 

gamma distribution. The choice of the appropriate inequality has to be determined by the 

designer conforming to his/her preferences. Cantelli’s inequality provides a tight 

probability bound, albeit this can be computed only for those points which satisfy its 

constraint on t. Chebyshev-Cantelli and Bertisimas-Popescu inequalities generally 

provide a similar estimation, although the latter is sensitive to the distribution asymmetry 

as shown for the gamma distribution. It is important to note that although Cantelli’s 

inequality is two-sided, generally it provides a tighter probability bound. 
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Normal PDF 

  
Gamma PDF (A=4, B=2) 

  
Figure 18. Probability bounds on normal and gamma distributions. 

 

Nevertheless, the abovementioned inequalities can provide only an estimation for 

updating the adaptive bounds on the basis of statistical parameters of the feasible 

variables distributions. As a matter of consequence, it may happen that the new 
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theoretical adaptive bounds i
lbx̂  and i

ubx̂  do not satisfy inequality (27). Additional 

constraints therefore have eventually to be enforced. Formally: 

 

Lower Adaptive Bound: Upper Adaptive Bound:   
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(37) 

                                                           n,..., i 1for     

 

Where i  is a threshold expressed as a percentage of the current perceived feasible space 

Fp
i. 

The new definition of the adaptive bounds, consequently, will derive both from the 

choice of the probability bound inequality and from the probability threshold established 

by the designer.  

 

3.2.5. Hybrid Optimisation 

Among all the optimisation methods, the simultaneous perturbation stochastic 

approximation (SPSA [104],[105]) algorithm can be advantageously coupled with 

ASOM. Such integration, first of all, allows to deal with those cases where no explicit 

closed-form expression of the objective function is available but only measurements of f 

at specified points of the design space are possible, also in the presence of noise. The 

main advantages in using SPSA, however, derive from the gradient approximation at the 

base of the algorithm, whose specific form for solving the constraint optimisation 

problem (26) is as follows [119]: 
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)(ˆ kk1k xgxx Praa kkkk   (38) 
 

where kĝ  is the estimate of the gradient of f at the iterate kx , }{ ka  is a positive scalar 

sequence satisfying ka  0 and 


1k
ka , }{ kr  is an increasing sequence of positive 

scalar with 
 kk

rlim , and )x( kP  is the gradient of the penalty function )x(P  used to 

convert (26) into an unconstrained optimisation problem6. The approximation kĝ  is 

obtained from only two measurements of the objective function f() based on the 

simultaneous and random perturbation of all the elements of the design vector around kx̂ . 

Formally: 
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where kiΔ  is the  i-th component of  the n-dimensional random perturbation vector kΔ , 

and  0kc  is a positive gain sequence. Wang and Spall [119] establish the convergence 

of the algorithm under appropriate conditions. 

Within the context of this work, the key to using the SPSA method lies in two main 

aspects. On the one hand, the function observations evaluated through its random search 

can be used to update the variables distributions at the base of ASOM, thus enabling the 

use of the probability inequalities described in Section 3.2.4. On the other hand, its 

gradient approximation technique is independent of the dimension of the problem under 

consideration, which makes the method particularly efficient in terms of computational 

resources. Nevertheless, the specific choice of the gain sequences can be not 

                                                   
6 The specific choice of the gain sequences might dramatically influence the performance of the method. 

General implementation guidelines are given in [105] and [106]. 



Formulation of Optimisation Problems 
 

 49 

straightforward and might dramatically influence the performance of the method. General 

implementation guidelines are given in [105] and [106]. 

Normally, a further reduction in the optimisation cost can be achieved by adopting an 

alternative optimisation method for the final stages of the optimisation search. After 

exploiting the SPSA capabilities in easily identifying the neighbourhood of a minimum 
*x , the overall optimisation procedure can be enhanced by limiting its associated 

asymptotic convergence. This suggests the employment of a hybrid optimisation, taking 

for example advantage of the second order convergence achievable by optimisation 

algorithms based on the sequential quadratic programming (SQP) method. Adequate 

switch criteria have to be established to exploit this local property of such algorithms, that 

requires the process to be initialised sufficiently close to *x  along with the satisfaction of 

the second order sufficient conditions at *x  [32]. In addition to imposing a maximum 

number of iterations, the SPSA procedure is terminated when the relative change in the 

variables is small enough for a number of consecutive iterations. Figure 19 compares the 

performance of the SPSA method and the SQP-based algorithm fmincon implemented in 

Matlab, considering the constrained optimisation problem tackled by Wang and Spall 

[119]. The fmincon error and the SPSA averaged error (over 100 simulations carried out 

independently and adopting the quadratic penalty function) are depicted in red and green 

respectively. It is possible to observe how the proposed hybrid algorithm tends to 

terminate the SPSA procedure when a first considerable error decrement has been 

obtained, thus switching to fmincon (visualised in blue) to finalise the optimisation. It is 

important to note that, in comparison to other methods, the inherent potential capabilities 

of SPSA in limiting computational cost depend on the problem dimensionality. Whereas 

the number of function evaluations required by fmincon grows with n, the SPSA algorithm 

needs only two measurements, independently of n. Consequently, the larger the number 

of variables considered, the more evident are the benefits of the proposed hybrid 

optimisation method.  
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Figure 19.  Comparison of the error trend for the Matlab function fmincon and the SPSA 

algorithm (averaged over 100 independent simulations). The proposed hybrid 

optimisation terminates the SPSA optimisation after obtaining a first considerable error 

decrement, switching to fmincon (in blue) to carry out the final phase of the optimisation 

search.  

 

3.2.6. Implementation of ASOM  

As mentioned in Section 3.2.2, within the framework of the problems considered here, it 

is assumed that independent optimisation runs are individually conducted from a number 

of starting points. It is also supposed that the entire collection of starting points offers the 

initial set of function evaluations required for the initialisation of ASOM. Provided such 

observations are uniformly distributed within the initial search region, the minimum 

number Q of starting points that is required depends on the larger of the n ratios between 

the constant of proportionality i  and the probability threshold i . In fact, defining the 

average distance between samples for the i-th variable as follows: 
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the restriction criterion (33) is applicable only if the following criterion derived from (32) 

and (40) is met: 

 

niQ i
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It is important to note that Equation (41) provides a means to estimate the minimum 

number of observations to allow restricting the search region via the restriction criterion 

and under the hypothesis of a uniform distribution of the samples. An equivalent 

consideration of applicability for the relaxation criterion is not required, although its 

effectiveness is directly proportional to the number of feasible points evaluated, as it also 

depends on the formulation of the problem, the nature of the functions involved and the 

number of variables. 

Once ASOM has been initialised with the evaluation of at least Q starting points, a first 

validity check of the current search region is carried out. In the case the search region 

results to be inappropriate on the strength of conditions (28), (29) and (30), then the 

relaxation and the restriction criteria are applied to update the bounds of the variables 

whose search regions are under-determined and over-determined respectively. This 

procedure is subsequently repeated after each optimisation execution started from a 

different starting point is complete. The flowchart of the method is depicted in Figure 20, 

which delineates the tasks that take place for each individual optimisation launched from 

each of the starting points obtained, for example, via a design of experiments (DoE). The 

search regions of all variables are analysed individually and eventually corrected in order 

to enforce a valid search region and the satisfaction of the inequality (27) for the 

subsequent individual optimisation run on the basis of the problem information gathered 

from all the previous evaluations.  
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Figure 20.  Flowchart of the tasks that take place for each individual optimisation run. The variables 

bounds to be considered for the optimisation procedure starting from the   j-th starting point are 

adequately determined by analysing the variables distributions of the overall feasible points 

previously evaluated. Note that the i-th design-variable can turn out to be over-determined with 

respect to its lower bound, and under-determined with respect to its upper-bound, and vice versa.  

 

3.2.7. Analytical Example 

The adaptive optimisation search method has been tested with the two-dimensional bump 

function considered by Keane and Nair [57]:  
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(42) 

 

where the variables xk are expressed in radians. The highly bumpy nature of the function, 

shown in Figure 21, provides an adequate test case for ASOM in identifying further local 

minima located beyond the design-variable constraints initially chosen.  
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Figure 21.  The bump function in two dimensions [57]. 

 

The considered setup of the optimisation problem under study is as follows: 
 

Frozen Bounds Adaptive Bounds 
Input Variable 

lbx  ubx  lbx  ubx  
x1 0 5 2 4.5 
x2 0 5 0.5 4.5 

 

Table 1. Setup of the frozen and adaptive bounds for the optimisation of the bump function 

in two variables. 
 

adopting for both variables the following ASOM parameters: 12,1  , 05.02,1  , 

05.02,1 p , 05.02,1   and 25.02,1  . 

The above definition of the frozen and adaptive bounds is representative of all those 

situations in which additional global minima are located slightly beyond the design-

variable constraints that have been set. In this case, apart from the feasible optimum 

located within the initial search region, there are five further semi-infeasible optimal 

points, as shown in Table 2.  
 

Optimal Points optimal1x  optimal2x  optimalf  

Point Nº1 3.0872 1.5174 -0.2629 
Point Nº2 1.5527 3.0695 -0.2145 
Point Nº3 3.1272 4.6685 -0.1363 
Point Nº4 4.6840 3.1040 -0.1551 
Point Nº5 4.6588 0 -0.2134 
Point Nº6 1.3932 0 -0.6737 

 

Table 2. Coordinates and value of the objective function for the feasible optimum located 

within the initial search region established in Table 1 (Point Nº1) and the corresponding set 

of semi-infeasible optimal points. 
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Cantelli’s probability inequality is adopted here, focusing attention on the case where the 

designer is interested in conducting a tight expansion of the design space. Whenever the 

requirement on the parameter t given in (35) is not satisfied, Chebyshev-Cantelli 

inequality is employed as an alternative.  

An example of the results obtained from an optimisation run based on twenty starting 

points (produced by a Latin Hypercube sampling and identified by the green and red 

crosses, depending if they are feasible or infeasible respectively) is portrayed in Figure 

22. With respect to the adaptive bounds, their initial and final values are represented by 

magenta and red lines, respectively, whereas their intermediate updates throughout the 

process are given by the set of lines with different colour shades from yellow to red. The 

frozen variables bounds are visualised via cyan lines, whereas the constraint under 

consideration is in black. The red and green points represent the feasible and infeasible 

points, respectively. The final design-variable distributions are displayed in the lower 

area of the figure, where the same meaning is associated to the different colours of the 

depicted lines.  

In this case, three further optimal points have been found. In Figure 22 they are 

highlighted by blue squares. Different factors might influence the search of semi-

infeasible optimal points:  
 

- The number of starting points. A number of starting points are required both to 

identify all the feasible local minima of the problem under study and for the 

initialisation of ASOM. Nevertheless, the minimum quantity of starting points can 

not be estimated without any knowledge of the problem at hand. A small number 

of starting points could prevent the algorithm from expanding sufficiently any 

under-determined search region, thus reducing the probability of identifying all 

the semi-infeasible optimal points outside the initial formulation of the variables 

bounds. An example of this is provided in Figure 22, where the set of points 

located in the vicinity of the minimum x = [1.3932, 0] shows how the related 

optimal search has been obstructed and constrained to move along the adaptive 

bounds valid for the corresponding optimisation procedure. In general, to limit 

such inconvenience it may be advisable to adopt a substantial number of starting 

points, bearing in mind the consequent computational cost increment. 
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- The distribution of the starting points. The location of the starting points across 

the initial search region is another crucial factor for the ASOM effectiveness. In 

the event they are not uniformly scattered, semi-infeasible optimal points located 

in non-sampled areas of the design space might not be identified. In Figure 22 this 

occurs for the overlooked minimum x = [4.6588, 0], without any starting point in 

its neighbourhood. 

 

  
Figure 22. An example of ASOM results from solving problem (42) considering twenty 

starting points. 
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A second optimisation problem was considered to assess the capabilities of the proposed 

methods to cut out from the optimal search those regions of the design space presumed to 

be infeasible according to the parameters i  and i  set by the designer. The constraint in 

the problem formulation (42) was consequently modified to reduce the real feasible sub-

region of the design space as follows: 
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(43) 

  

The same ASOM parameters specified in Problem (42) were taken into consideration. A 

visualisation of the above optimisation problem is shown in Figure 23 along with an 

example of the results obtained from its solution. The notation used is the same  of  

Figure 22. 
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Figure 23. An example of resulting adaptive variables bounds for problem (43).  

 

The contour plot of Figure 23 depicts the final location of the x2 lower bound, that cuts 

out most of the design space area made infeasible by the constraint here considered.  
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3.3. Local Relaxation Method for Non-rigid Constraints 

 

3.3.1. Problem Formulation and Assumptions 

In an optimisation problem the minimisation or maximisation of objective functions 

might be subject to a set of functional constraints whose satisfaction restricts the values 

that can be assumed by the variables, thus defining the feasible design space. The 

determination of such region comes to be essential since it contains the Pareto front. 

Consequently, a tight formulation of one or more functional constraints can result in a 

narrow feasible design space and therefore in a reduced or empty set of optimal solutions. 

Constraints can be classified as “rigid” and “soft” (“non-rigid” or “manageable”) [109]. 

The first must be accurately satisfied, and generally derive from physical/functional 

considerations, design requirements or regulations. Conversely, soft constraints (e.g. 

overall dimensions, design budget) are flexible to some degree and can be changed if 

necessary. It may happen, in fact, that in some cases a relaxation of a soft constraint can 

lead to a significant improvement of the design objectives. An example is provided in 

Appendix C for a conceptual aircraft design optimisation problem, demonstrating how 

the Pareto front can be considerably enhanced by slightly relaxing the limit value of a soft 

constraint. However, in other circumstances it could be not true. It is therefore necessary 

to identify those conditions where the relaxation of one or more soft constraints can 

potentially lead to a reasonable improvement of the objectives. 

 

3.3.2. Proposed Relaxation Method 

The objective of the present method is to conduct a discerning relaxation of the soft 

inequality constraints considered in optimisation problems formulated as in (26), with the 

aim of obtaining a minimum improvement on the objective defined a priori by the 

designer. In this context, it is crucial to estimate how sensitive the objective is to changes 

in the constraints. This information can be gained by means of the method of Lagrange 

multipliers. Formally, the multiplier λi is the derivative of the Lagrangian function with 

respect to the i-th constrain at the solution [110]. To show how λi measures sensitivity, let 
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us introduce a perturbation εi>0 on the active inequality constraint gi. The Lagrangian of 

the problem is: 
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Since at solution points L (x, λ) = f(x) it follows that [32]: 
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The rate of change in the objective function due to changes on a constraint is well known 

in economics and is expressed by means of the shadow price concept [96], formally 

defined as the amount by which the objective function value changes given a unit change 

on a constraint7. Since the shadow price for an inactive (or nonbinding) constraint is 

always zero (the corresponding multiplier is zero), only the potential effects on the 

objective that may derive from a relaxation of one active constraint at a time will be 

considered. It is also worthwhile to note that the change in the objective function is 

indicated to first order, and consequently it is only locally accurate.  

Based on the information provided by the Lagrange multipliers, the cases where a 

constraint relaxation might lead to promising design improvements can thus be identified. 

In general, this happens when the gradient of the objective and the constraint at hand turn 

out to be high and low, respectively. A simple example with a one-dimensional objective 

f(x) and constraint g(x) is given in Figure 24. 

 

                                                   
7 Whether an increment or a decrement of the objective value derives from a relaxation or a tightening of 

the constraint, depends on how the constraint is formulated (i.e., on the direction of the inequality).  
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a) 

 
b) 

 
c) 

 
d) 

Figure 24.  The four figures represent conceptually the four possible cases that may occur 

when relaxing a constraint of the same amount ε. Attention is here focused on the 

identification of the cases as in d), where a significant improvement of the objective can be 

achieved via a minor relaxation of one constraint. 

 

The proposed discerning relaxation of active constraints is conducted on the strength of 

the following parameters specified a priori by the user: 

 

-  α : minimum improvement of the objective as a percentage of the current 

objective minimum. 

- i  : maximum relaxation allowable for the constraint gi, for i=1,…,I. 

 

Such set of parameters allows the introduction of a criterion to differentiate the cases of 

interest and enables a local relaxation of the constraints. Denoting with xk a generic 

optimal point obtained from an optimisation procedure after k iterations and lying on the 
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border of the i-th constraint, a relaxation of gi can be considered only if the following 

inequality is satisfied: 

 




)( k
i

f
f
x

 (46) 

 

where f  is the predicted improvement ii
~  in the objective function due to a relaxation 

i
~  of the constraint gi. Figure 25 provides a graphical representation of the concept 

behind the above criterion, depicting the expected changes on the objective and the i-th 

constraint function at the point xk+1 corresponding to the maximum relaxation allowed  on 

gi. 

 
Figure 25. Conceptual representation of the proposed relaxation method.  

 

Once a constraint is relaxed on the strength of inequality (46) satisfaction, a further 

optimisation procedure can be carried out considering xk as starting point. However, 

when handling multiple constraints it may occur that the new design solution thus found 

activates other constraints which, in turn, can be relaxed. The relaxation of one constraint 

can consequently lead to the relaxation of others. Therefore, for any optimal solution it is 

important to scan all the active constraints and proceed with their relaxation if possible, 

as shown in Figure 26. 
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Figure 26. Proposed loop to handle the relaxation of multiple constraints. 

 

3.3.3. Analytical Example 

An example of the present relaxation method is given here  by taking into consideration 

the objective function of Problem (42) along with the following soft constrains: 
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(47) 

 

The solutions obtained via the Matlab algorithm fmincon are shown in Table 3 and 

portrayed in Figure 27, where the contours of the f, g1 and g2 are given by the red, black 

and blue lines respectively. The bold lines in blue and black depict the design space 

points for which the two constraints are active, whereas the dashed lines identify the 

contours of the active constraints after a relaxation [0.5,1.25]~  . The red squares are 

the solutions provided by fmincon after following the search paths identified by the cyan 

points and initiated from a number of different starting poins (represented by the green 

triangles). A minimum objective improvement 0.2   has been taken into account. 
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Point 1x  2x  f  1  2  11
~  22

~  
f
f1  

f
f2

 

x*
A 0.0036 1.7354 -0.3858 0 0.1546 0 0.1932 0 0.5008 

x*
B 1.5527 3.0695 -0.2145 0 0 0 0 0 0 

x*
C 2.2014 0.0594 -0.1911 0 0.1796 0 0.2245 0 1.1748 

x*
D 0.0067 -2.1354 -0.1686 0 0.1634 0 0.2042 0 1.2112 

x*
E 1.5527 -3.0695 -0.2145 0 0 0 0 0 0 

x*
F -1.5527 -3.0695 -0.2145 0 0 0 0 0 0 

 

Table 3. The first column on the left-side contains the design solutions obtained via fmincon 

for Problem (47), where each subscript identifies the relative starting point. The remaining 

columns show, from left to right, the solution coordinates (x1 and x2), the corresponding 

objective value (f) and Lagrange multipliers ( 1  and 2 ), the estimated gains ( 1 1  and 

2 2  ) in the objective due to a maximum relaxation of the constraints and the resulting 

values of left-side of inequality (46) ( 1
- f

f


 and 2
- f

f


).  

 

 
Figure 27. Results obtained for Problem (47) by using the Matlab algorithm fmincon on six 

different starting points, which are represented by the green triangles. The proposed 
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method for constrain relaxation was subsequently used for the solutions characterized by 

constraint activation. The contours of the objective f and constraints g1 and g2 are given by 

the red, black and blue lines, respectively.  

 

It can be seen that only the solutions obtained from the starting points A, C and D result 

in the activation of a constraint (g2, in all cases), and allow the application of the 

relaxation method above described. The design points obtained via further optimisation 

procedures (whose evaluations are illustrated via black points), conducted after the 

relaxation of a constraint, are represented by the magenta squares. The light green points, 

instead, show the estimated point for which gi = i
~ , with i the constraint being relaxed.  

For clarification purposes, a magnified view of the three cases involving constraint 

relaxation is presented in Figure 28. The case related to the starting point C is 

representative of the situations where the relaxation of only one constraint is possible. 

After relaxing the constraint g2, the design solution in effect lies on the contour g2 = 2
~ . 

The other two cases, on the contrary, provide an example involving the relaxation of 

multiple constraints, where the change on one constraint can lead to the activation of 

another that in turn can be relaxed. With respect to the starting point A, the relaxation of 

the constraint g2 does not impact on the solution provided by fmincon8. This is because the 

two constraints of the problem are tangent to each other at such point. It is only after the 

relaxation of g1 that the objective function can be improved by obtaining the point P2, 

which lies on the contour g1 = 1
~ , this being more stringent with respect to g2 = 2

~ . In the 

case of the starting point D, point P4 is obtained after relaxing g2 and, subsequently, P3 

via a partial relaxation of g1, which is however hindered by the maximum relaxation 2
~  

allowed on g2. 

                                                   
8 The magenta square representative of the design point obtained after a relaxation 2  of g2 (point P1) 

coincides with the solution given by the Matlab algorithm, therefore covering it graphically. 
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Figure 28. Magnified view of the optimisation procedures started from the points A, C 

and D along with the respective constraint(s) relaxation execution. 
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The coordinates of the new solutions and its improved objective values resulting from 

conducting a relaxation of one or both constraints are provided in Table 4. 

 

Point x1
R2 x2

R2 f R2 x1
R1 x2

R1 f R1 
x*

A 0 1.7321 -0.3874 0 1.5811 -0.4471 
x*

C 1.7912 0.0478 -0.5034 --- --- --- 
x*

D 0 -1.7321 -0.3874 0.0039 -1.6776 -0.4119 
 

Table 4. Coordinates and objective values of the new design points obtained via a 

constraint relaxation of Problem (47). The first column on the left hand side identifies the 

three cases analysed in Figure 28 through the letter-subscript, standing for the 

corresponding starting point. The superscripts R1 and R2, instead, denote the solution 

coordinates and objective value resulting after a relaxation of g1 and g2 respectively.  

 

 

3.4. Summary and Conclusions 

Proposed in this chapter are two novel methods to support the mathematical statement of 

optimisation problems. The overall aim is to propose a numerical strategy to conduct an 

adaptive formulation of functional and design-variable constraints that can be considered 

to be flexible to some extent, so that the feasible design set can be adequately identified 

and computational efforts partially reduced. The key concept to achieve this is to allow 

the exploration of further solutions that are located beyond the initial constraint limits and 

can potentially lead to a significant improvement of the optimal solutions set.  

The Adaptive Search Optimisation Method (ASOM) is firstly presented for an effective 

determination of the search region by adaptively refining the design-variable bounds 

throughout the optimisation procedure. The correction of bounds is based on the strength 

of a continuous analysis of the distributions of the feasible evaluations via ad hoc 

statistical criteria that do not require specific distributional assumptions for the design 

variables. The search region can thus be relaxed, strengthened, or left unchanged on the 

basis of the information gained about the problem at hand through the points evaluated 

along the optimisation process. This enables the exploration of promising points not 

contained in the initial feasible design set, but located within specific design-variable 

ranges established by the designer. The number of infeasible evaluations is also reduced 
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by partially excluding from the optimiser search the areas of the design space with a low 

probability of containing feasible points. Both aspects contribute to reducing the 

formulation-cyclic iterations required for a correct problem statement 

A second method is presented for handling “soft” or “non-rigid” constraints of single–

objective optimisation problems. It allows to conduct an exploration of additional 

solutions that could potentially lead to a minimum improvement of the objective through 

a relaxation of constraints within specific limits established a priori by the designer. The 

fundamentals of the method are established by incorporating concepts well known in 

economics for expressing the rate of change in the objective function due to changes on a 

constraint. Promising design improvements can thus be achieved by estimating the effects 

on the objective deriving from a relaxation of one active constraint at a time on the basis 

of the information provided by the Lagrange multipliers. 

The application of the proposed methods is demonstrated in this chapter with an 

analytical example. The capabilities of ASOM in addressing problems of industrial 

relevance are shown in Chapter 6 with a conceptual aircraft multi-objective optimisation 

test case.   
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Chapter 4 

4 Visual Exploration and 

Analysis of Design Solutions 
 

4.1. Introduction 

Optimisation algorithms have proven to be an effective tool for design of complex 

engineering systems and processes. They can in fact support and enhance the 

identification of alternative solutions that represent the optimum trade-offs between 

multiple design criteria, which are often conflicting in nature. 

In the context of conceptual design optimisation, a large number of design concepts have 

to be evaluated. An iterative process is required in order to achieve a consistent design 

[108], including continuous analysis, changes and improvements of the design layouts. 

However, the large multidimensional datasets resulting from such an approach are often 

too complex to be analysed and completely understood by the designers, who are 

accustomed to traditional visualisation tools. There is an apparent need for a suitable 

visualisation methodology to make the results of complex design optimisation procedures 

fully readable and meaningful to the designer. Appropriate visualisation strategies are 

also required for building, debugging and understanding algorithms and models 

integrated within the optimisation architecture [54].  
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Presented in this chapter is a novel methodology for visual exploration of design 

solutions with the aim of supporting the designer in analysing and comparing large 

number of design concepts. The expected practical effect is enabling the designer to gain 

an improved insight into the problem at hand through a synergistic integration of suitable 

visualisation techniques for addressing common data analysis scenarios occurring in 

deterministic and robust optimisation. The full meaning of multivariate design data is 

thus conveyed from different analysis perspectives via an integrated set of interactive 

visualisation interfaces whose overall effectiveness is expected to be greater than the sum 

of the individual contributions for evaluating alternative design solutions. 

The foundations of the presented methodology are firstly established in Section 4.2 by 

outlining the standard visualisation needs and fundamental graphical aspects to be 

considered in engineering design optimisation at conceptual stage. The proposed 

methodology for visual exploration is presented in Section 4.3 for a generic MOO 

problem formulated as in (1), describing the techniques adopted together with the key 

criteria for their selection, their synergistic integration via an adequate set of visualisation 

interfaces, and their operation. The extension of the methodology when dealing with 

robust design optimisation (RDO) data is finally described. 
 

 

4.2. Visual Exploration of Alternative Design Solutions 

This section is intended to define the standard visualisation needs in engineering design 

optimisation at conceptual stage. The foundations of an adequate visualisation 

methodology can thus be established.  

The primary objective to be achieved is the identification of the best design concepts 

according to the design criteria taken in consideration. In fact, as the design solutions 

advance step by step towards more detailed design, it becomes more difficult and 

expensive to introduce changes [33], as outlined in Section 2.4. Therefore, it is essential 

to conduct an exhaustive exploration of alternative solutions in order to obtain a good 

conceptual design that, in the following design phases, may require further changes but 

not major revisions [91]. 

A crucial requirement for an effective visualisation technique is to be able to translate 

intricate numerical datasets into simple and meaningful graphical representations with the 
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intent of facilitating data analysis and its understanding. A gradual and selective trade-off 

process on large sets of design points can thus be conducted by handling a considerable 

number of design parameters. Nonetheless, when dealing with multivariate data, it is 

important to bear in mind what is the maximum number of variables that the human being 

can handle simultaneously. On the strength of experimental results on the human capacity 

for processing information, it has been noted that by increasing the amount of input 

information the transmitted information increases asymptotically towards a maximum 

value, called the channel capacity of the observer. “The point seems to be that, as we add 

more variables to the display, we increase the total capacity, but we decrease the accuracy 

for any particular variable. In other words, we can make relatively crude judgments of 

several things simultaneously” [77]. Such cognitive ability is known as the seven plus or 

minus two rule: in our mind we can efficiently manipulate from five to nine things at the 

same time.  

Additionally, to enable design to be conducted effectively and efficiently, in the Total 

Design Activity model, Pugh [89] recognises that various design techniques need to be 

used, functionally dividing them into two categories. The first, referred to as discipline-

independent techniques, are applicable to any product or technology, such as techniques 

for conducting analysis, synthesis, decision making, modelling, etc. The latter, indicated 

as discipline-dependent techniques, provide additional inputs to the design process from 

domain-specific sources, such as stress analysis, thermodynamic analysis, information on 

materials, electronics, and so forth.  

In engineering optimisation, moreover, it is indispensable to allow the designer to analyse 

not only the Pareto solutions, but also the set of feasible and infeasible designs. In the 

first case, the evaluation of the histograms of feasible variables distributions provides a 

means to assess the search region validity, as shown in Chapter 2. This offers an 

alternative way to manually correct the variables bounds on the strength of designer’s 

experience and intuition, as suggested by Statnikov and Matusov [108]. The visualisation 

of infeasible solutions, conversely, provides a method for an a posteriori identification of 

promising design points that lie slightly beyond the contours of soft constraints. 

In general, the standard visualisation needs required in engineering design optimisation at 

conceptual stage and taken into account in the present methodology are: 
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- Comparison of different designs [5][111][4] [38]; 
 

- Identification of similar designs 9 [126][111];  
 

- Constraint satisfaction information [26][44][90]; 
 

- Identification of potential relationships between the parameters under 

consideration [111][47][46]; 
 

- Identification of ill-formulated problems [52][108]. 
 

 

4.3. Proposed Visualisation Methodology  

A novel integrated visualisation methodology for visual exploration of design solutions is 

proposed with the aim of enhancing the evaluation and trade-off analysis of deterministic 

and robust design solutions in a MOO framework. The guidelines for using multiple 

views proposed by Baldonado et al. [10] have been employed for meeting the 

visualisation aspects and needs outlined in Section 4.2. 

The present methodology is intended to advance the state-of-the-art visualisation methods 

for the analysis of MOO data, which are available in different commercially available 

software. Generally, basic analysis functions are provided, such as allowing the selection 

of axes and a minimum set of visualisation techniques (e.g., Global Optimisation Toolbox 

in Maplesoft). An interactive graphical analysis of the design space can be performed in 

Isight by considering (individually) different views, as well as through the identification 

of optimal, feasible and infeasible solutions on a table interface. An exploration of the 

design space from different perspectives is also provided by the VisualizationPak in PHX 

ModelCenter, which offers a considerable number of methods for the interpretation and 

navigation of multi-dimensional spaces. Nevertheless, specific visualisation needs still 

remain to be addressed for conducting a comprehensive analysis of optimisation results. 

In particular, the deployment of discipline-dependent techniques is required in order to 

effectively support the comparison of alternative solutions in complex design problems. 

Furthermore, a more systematic integration of multiple interactive data perspectives is 
                                                   
9 Similar designs are those designs sharing specific criteria established by the designer, such as common 

variable ranges, on-target performance or the satisfaction of a particular set of constraints. 
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essential to evaluate high-dimensional datasets by considering different design criteria at 

the same time. 

The basic methodology for deterministic datasets is presented in the following sub-

sections. Firstly, key criteria for the selection of adequate visualisation techniques are 

outlined in sub-section 4.3.1 depending on the analysis scenarios and tasks at hand. Sub-

section 4.3.2 describes the set of visualisation interfaces that, through a synergistic 

integration, provide the designer with relevant design perspectives of the data under 

study. Guidelines for an interactive operation of such interfaces are finally drawn in sub-

section 4.3.3. 

The extension of the methodology when dealing with robust design optimisation (RDO) 

data is ultimately described in sub-section 4.3.4. 
 

4.3.1. Visualisation Techniques 

The aim, considering the visualisation aspects and needs outlined in Section 4.2, is that 

the full meaning of design optimisation data is conveyed to the designer via an 

integration of visualisation techniques, without requiring him/her to be an expert in 

numerical optimisation methods. The present visualisation methodology is based on the 

development of a matrix that identifies the suitable visualisation techniques to be used in 

the context of common data analysis scenarios occurring during conceptual design 

optimisation. Depending on the analysis to be carried out, suitable methods have to be 

selected with respect to key features of the datasets to be investigated in the attempt to 

guarantee their full readability. All the discipline-independent visualisation techniques 

considered in the present methodology for a generic optimisation dataset are shown in 

Table 5. Their selection has been based on the identification of the most effective 

visualisation methods available in the literature for evaluating optimisation results 

[46][126][111][125]. In addition, the analysis tasks that can be conducted in aircraft 

design via carpet plots are described in the last column as an example of discipline-

dependent tools that might be considered for specific design domains. A demonstration of 

the application of the present methodology to an analysis of optimal aircraft conceptual 

designs can be found in Nunez et al. [82], where the first three discipline-independent 

visualisation techniques (Objective Space Visualisation, PCP and SPM) are integrated 

along with carpet plots. 
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Technique 
 
Scenario 

Objective Space 
Visualisation PCP SPM Filtering Distribution Histograms Carpet Plots 

Visualisation of a 
single design point 

Objective(s) 
values analysis 

Visualisation of variables, 
objectives and constraints 
values 

   Performance analysis 

Visualisation of a 
reduced number of 
design points (<10) 

Objective(s) 
values comparison 
and analysis of 
design families 

Comparison of design points 
sharing common features 

Trend and 
correlation 
analysis 

Analysis of design points within 
a specific design sub-space or 
objective/constraint ranges 

Analysis of the 
corresponding 
distribution for any 
specific design parameter 

Performance 
comparison between 
design points 

Visualisation of a 
large number of 
design points (>10) 

Objective(s) 
values comparison 
and visualisation 
of design families 

Identification of design 
points sharing common 
features 

Trend and 
correlation 
analysis 

Identification of design points 
within a specific design sub-
space or objective/constraint 
ranges 

Analysis of the 
corresponding 
distribution for any 
specific design parameter 

Analysis/Visualisation 
of the entire solutions-
set distribution 

Local trade-off  
study via Pareto 
approximations 

Objective(s) 
values comparison 
and visualisation 
of design families 

Identification of common 
features shared between the 
approximated solutions 

Gradient 
information for 
local sensitivity 
analysis 

Identification of the active 
constraints set of a Pareto 
frontier approximation 

Analysis of the 
corresponding 
distribution for any 
specific design parameter 

Performance 
visualisation of 
approximated  Pareto 
frontiers 

Constraint 
satisfaction study 

Objective(s) 
values comparison 

Study of how well 
constraints are satisfied  Analysis of feasible/infeasible 

design solutions 

Distribution analysis of 
feasible/infeasible design 
solutions 

Performance 
requirements check 

Active constraints 
study 

Visualisation of 
design families 

Analysis of designs 
characterized by constraint 
activation. Relaxation study 

 
Identification of potential design 
candidates for constraint 
relaxation 

Distribution analysis of 
points located close to 
constraint contours 

Analysis of designs 
characterized by 
constraint activation 

Table 5. D
eterm

inistic visualisation m
ethodology m

atrix. 

Search region 
definition  

Numerical analysis of 
optimal, feasible and 
infeasible sets of solutions 

 Analysis of the solutions located 
close to the variables bounds 

Distribution analysis of 
solutions located close to 
the variables bounds 

Performance analysis 
of potential design 
candidates for 
constraint relaxation 
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4.3.2. Visualisation Interfaces 

It is author’s belief that, in order to convey the full meaning of design optimisation data 

to the designer, an integration of visualisation techniques from Table 5 has to be carried 

out via a set of interactive visualisation interfaces. By coupling them synergistically, the 

designer can thus gain a comprehensive insight into the data under study. The 

effectiveness in evaluating alternative design solutions via the simultaneous analysis of 

specific design perspectives is consequently expected to be greater than the sum of the 

individual contributions of the integrated visualisation techniques.  

The visual exploration of design optimisation data is conducted by means of three 

graphical interfaces. Each interface is focused on the representation of one of the 

visualisation perspectives relevant in optimisation problems: Euclidean space 

representation, multidimensional data visualisation and specific design tools. An intuitive 

and user-friendly implementation of such interfaces in a joint graphical user interface 

(GUI) is sought to further improve the visualisation of the complex information produced 

by design optimisation tools. The interactive selection of points on any interface triggers 

in real time an automatic update of the visualisation on the remaining interfaces. This 

provides a means to conduct in a more effective manner both the analysis of a single 

solution or the comparison of a number of design alternatives.  

The three graphical interfaces are described below. Key concepts of the methodology are 

clarified and illustrated via specific screenshots of a visual exploration interface prototype 

developed by the author, the Integrated Exploration and Visualisation Interface (IEVI), 

displayed in Figure 29. Unless stated differently, all the figures of this chapter depict the 

results obtained from the optimisation of Problem (42) after tightening its constraint as 

follows: 

 





2

1

4)(
k

kxg x  (48) 
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Figure 29. Default visualisation of the IEVI. The three most relevant data 

perspectives in optimisation problems are shown via the below-described interfaces: 

ESI (top-right window), SDTI (top-left window) and MDVI (bottom window). 

 

 

Euclidean Space Interface (ESI) 

The primary objective of the ESI is the representation of the objective space in a simple 

and conventional way for up to three objectives, providing the value of the objective 

functions for each alternative design point computed throughout the optimisation 

procedure. The visualisation of higher-dimensional objective spaces can be achieved by 

means of the techniques described in the Multidimensional Data Visualisation Interface 

paragraph below.  

Via the integration of Filtering, the sets of non-dominated, feasible and infeasible 

solutions can be graphically highlighted in the ESI. Further filtering criteria can be 

specified in the PCP, as shown later on.  

In the ESI, it is also possible to plot any pair of design parameters of interest, as shown in 

Figure 30. This offers a double advantage. On the one hand, it is possible to investigate 

the effects of any Filtering operation also on the design and constraint spaces. On the 
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other hand, the selection of points to be analysed/compared on the two other interfaces 

can be conducted by means of a Filtering process performed in the ESI by specifying 

desirable ranges of values or interactively selecting the points of interest. 

 

 
a) 

 
b) 

Figure 30. Two magnified examples of the visualisation flexibility allowed in ESI. 

The feasible, non-feasible and non-dominated sets of points have been identified by 

means of Filtering and are represented through green points, grey points and yellow 

squares, respectively. 

 

Valuable information can be rapidly obtained from the ESI, such as: 

 

- The identification of the objectives minimum and maximum values for the sets of 

optimum or feasible points; 

 

- The location of similar designs in the objective, design, and constraint spaces; 

 

- The position of local Pareto regions, which correspond to different optimal 

families of solutions; 

 

- The density of optimal/feasible/infeasible design solutions in a specific area of the 

objective, design, and constraint spaces; 
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- The location in the objective, design, and constraint spaces of the solutions 

characterized by one or more specific active constraints; 

 

- Optimisation formulation errors. 

 

 

Multidimensional Data Visualisation Interface (MDVI) 

In the MDVI, the PCP is the default multidimensional visualisation technique available to 

the designer due to its effectiveness in visualising high-dimensional data on a simple two-

dimensional plot. Moreover, this method is particularly useful for identifying 

relationships among the design parameters and for checking constraint satisfaction and 

activation.  

In the PCP all the variables of interest are represented on the graph together. However, 

since the axes are plotted side by side, the i-th dimension is linked at most to two other 

dimensions. In an n-dimensional problem, no information is visualised about the 

relationships among the i-th axis and the other (n-3) axes which are not by its sides. 

Therefore, it is evident there is a need for implementing the PCP in the MDVI so that it is 

possible to permute the axes. This allows finding out different views of the problem and 

other possible relationships among the design parameters. Such an approach, based on a 

manual permutation of the axes, can be extended by firstly identifying the minimal set of 

permutations required to avoid duplicate adjacencies among all the n! possible 

permutations [120]. 

Furthermore, the user is provided with the Filtering function, which enables him/her to 

analyse only those solutions within an established range of values for any design 

parameter of interest (Figure 31). Additionally, it is possible to select the sets of solutions 

to be displayed (separately or conjointly), including: feasible points, infeasible points and 

non-dominated points. 
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Figure 31. Visualisation of the points obtained through the manual Selective PCP 

Ranges function for Filtering. In this case, the solutions within the ranges x1=[0,0.5] 

and f=[-0.67334,- 0.4] are highlighted in the ESI through cyan x-markers. 

 

As an alternative multidimensional visualisation technique, the SPM is well suited for 

discovering or checking correlations among the data, or comparing local relationships 

between couples of variables, constraints and objectives (Figure 32). In this case, the 

Filtering function remains applicable, both by portraying particular sets of solutions 

(feasible, infeasible or optimal) and by specifying desirable ranges of values for the 

parameters displayed in the bivariate graphs matrix. Additionally, a numerical analysis of 

data can be carried out on the SPM in a more straightforward way on the strength of the 

Cartesian coordinates system. For high-dimensional datasets, however, it is necessary to 

analyse separately different sets of dimensions, because of the dimensional limitation of 

the SPM. 
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Figure 32. Scatter plot matrix (SPM). 

 

 

Specific Design Tools Interface (SDTI) 

This interface is expressly designated to conduct specific data analysis tasks in particular 

design domains. Therefore, the definition of the interface architecture has to be 

adequately defined depending on the discipline-dependent technique(s) to be used, along 

with its interaction with the other interfaces. Furthermore, a trade-off between the 

benefits of its integration and the corresponding complexity added to the system needs to 

be made, considering, for instance, the satisfaction of the rules of diversity, 

complementarity, decomposition and parsimony given by Baldonado et al. [10]. 

It has been previously outlined, as an example, the integration of carpet plots within an 

aircraft design optimisation framework, pointing out what are the advantages in assessing 

the satisfaction of performance requirements through such traditional aircraft sizing tool 

(Figure 33). An alternative data representation on the SDTI can be found in Guenov et al. 

[44], where multiple data views are shown conjointly for the visualisation of the Pareto 

set, in particular, geometry and constraint activation. 
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In general, the SDTI layout is dictated by the design context under study and the adopted 

visualisation strategies. For example, mention can be made of the employment of 

surrogate-model based visualization for design steering, as proposed by Yang et al. [123] 

for crashworthiness optimisation. The use of metamodel-driven visualisation for 

graphical design and optimisation is gaining considerable attention for overcoming many 

technological limitations associated with complex graphical design environments. 

Nevertheless, it is important to note that such a strategy represents a compromise between 

having a fast graphical design environment and the loss of accuracy due to the use of 

metamodels [68]. 

 

Figure 33. Visualisation of solutions for a conceptual aircraft design optimisation. 

The sets of feasible, non-feasible and non-dominated points are depicted in the ESI 

considering the same graphical notation of Figure 30. In the same interface, it is 

shown how any solution of interest can be interactively selected, updating in real 

time the two other interfaces. The designer is thus allowed to assess the satisfaction 

of performance and to conduct a numerical analysis of the selected point on the 

SDTI and MDVI respectively.  
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In the case of generic optimisation problems that do not require the use of any discipline-

dependent technique, the SDTI can be used both to visualise the distribution histogram of 

any design parameter, or as an extension of the ESI. An example of the first option is 

portrayed in Figure 29 and Figure 31 with the distribution of the objective f and x1; 

whereas the latter option is considered in Figure 34. 

 

 
Figure 34. An example of an alternative use of the SDTI for a generic optimisation 

problem, offering a three-dimensional plot of the filtered data depicted in Figure 31. 

It is also shown how the interactive selection of points can be facilitated by 

zooming-in on the filtered solutions, as displayed in the ESI.  

 

 

4.3.3. Operation of the Visualisation Interfaces 

The exploration and analysis of design solutions has to be carried out by employing 

simultaneously the visualisation interfaces described above. Depending on the particular 

optimisation problem under study and the data analysis tasks to be conducted, Table 5 

supports the selection of the most appropriate visualisation methods to employ. 
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The following generic analysis guidelines are provided: 

 

Optimal Solutions Study 

The evaluation of the design solutions from an objective space perspective is conducted 

in an intuitive manner: 

 

- The user can choose the graphical interface to interact with amongst ESI, MDVI 

and SDTI, selecting interactively the points to be analysed. Diverse perspectives 

on the design(s) under consideration are provided via a simultaneous update of the 

visualisation on the remaining interfaces. For example, Figure 35 shows the 

comparison of designs that belong to three different clusters obtained by means of 

Filtering. 

 

 
Figure 35. Comparison of three solutions interactively selected on the ESI from the 

clusters  of  points  for  which  the  objective   function    f    is   within   the   range 

[-0.67367,- 0.2]. 
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- A trade-off analysis of optimal solutions can be carried out on the basis of further 

information in addition to the optimisation criteria, such as desirable ranges of the 

variables, potential figures of merit adopted in the SDTI, or a tighter satisfaction 

of constraints as shown in Figure 36. 

 

Figure 36. Visualisation of the solutions that meet a tighter constraint 3)( xg by using the Selective 

PCP Ranges Filtering function. 

 

- From the analysis of the infeasible points sub-sets, the designer is enabled to 

express precise violation thresholds for each constraint with the purpose of 

identifying semi-infeasible optimal points that may considerably improve one or 

more objectives (Figure 37). Such a procedure provides a manual alternative to 

the local relaxation methodology presented in Section 3.3. 
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Figure 37. Study of the non-feasible set of points. For this problem, from the 

analysis of the PCP, it is evident that no-improvement on the objective function f 

can be achieved via a relaxation of the constraint g. 

 

Constraint Study 

A constraint behaviour analysis is required to enhance the designer’s insight into the 

optimisation outcome. This can be achieved in two different ways: 

 

- The user can check in the MDVI the satisfaction of one or more constraints for 

any design point x  by interactively selecting it in the ESI (Figure 33). Besides, 

the effect of each variable on each constraint can be conveyed both from 

interactively plotting multiple points in the neighbourhood of x  in the ESI (Figure 

35), or from the analysis of data in the SPM (Figure 32). 

 

- The decision-maker can select a constraint in the PCP in order to visualise all the 

solutions for which it is active in the ESI (and SDTI if applicable), as shown in 

Figure 38. Additional analysis criteria can be taken into account by means of 
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Filtering. All active and inactive constraints, for instance, can be graphically 

differentiated in the ESI by different colours and markers. 

 

Figure 38. Identification of the design points for which the constraint g is active. 

 

Both approaches allow the designer to gain a better understanding of the design, objective 

and constraint spaces. According to the information the user is interested in, it may be 

essential to discern: 

 

- What solutions are characterized by the activation of one or more particular 

constraints. 

 

- What are the active constraints that characterize each optimal family of solutions. 

 

- What are the over-restrictive constraints that determine a reduced or empty set of 

feasible points. 
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- What constraints have an influence on a specific area of the design space or of the 

Pareto frontier.  

 

- What variables and what range of values are determinant for the activation of each 

constraint.  

 

4.3.4. Robust Optimisation Data Visualisation 

This section outlines the proposed extension of the above described visualisation 

methodology for conducting an exploration and analysis of multi-objective robust design 

optimisation (RDO) solutions. 

The constrained robust optimisation strategy taken into consideration in this work is 

based on a probabilistic uncertainty propagation approach, formally stating the 

uncertainty associated with the design process and parameters in terms of expectation and 

variance [39][85]. Problem complexity and dimensionality is therefore considerably 

increased by introducing additional design information, with a significant impact on the 

evaluation and understanding of results. In RDO, besides the search of optimal points in 

terms of performance, the identification of design solutions that are minimally sensitive 

to random fluctuations of the design variables comes to be a further fundamental design 

criterion. As a consequence, a suitable extension of the proposed visualisation 

methodology is required to allow handling higher dimensional datasets and trading-off 

additional design metrics. 

The proposed robust visualisation enables the designer to steer the exploration of design 

alternatives by expressing specific analysis criteria both from a performance and from a 

robustness perspective. Relevant data can be first extracted by means of Filtering by 

defining desirable design attributes on the PCP. This allows to extend the strategy 

proposed by Rangavajhala et al. [90] by enabling the decision-maker to reveal the design 

sub-spaces that correspond to different design preferences in terms both of mean and 

variance of objectives and constraints. Additionally, such a scheme proves to be efficient 

also when single response functions are employed to handle the potentially conflicting 
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interaction between performance and robustness of objectives and constraints, instead of 

optimising their expectation and minimising, at the same time, their variance [80]. 

Once the design solutions of interest have been filtered on the PCP, the two other 

graphical interfaces are simultaneously updated. In a robust context, the ESI is intended 

to provide a single design perspective of two objectives/constraints among mean, 

variability and conjoint response (the last is applicable in case of single response 

functions only). A comprehensive robust viewpoint of data is instead given in the SDTI 

through the robust visualisation scheme suggested by Padulo [84], where, for each design 

point in the mean space of any pair of objectives/constraints, robustness is represented via 

ellipses, whose horizontal and vertical semi-axis are given by the corresponding standard 

deviations (Figure 39).  

 

Figure 39. Shown in the SDTI is the adopted robustness visualisation in the mean 

space of objectives/constraints for a RDO problem [43]. 
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4.4. Summary and Conclusions 

Presented in this chapter is the second of the design exploration methodologies proposed 

in the thesis, with the aim of supporting the designer in effectively analysing and 

comparing large number of design concepts. The selection of the best solutions is enabled 

through a thorough exploration of all the computed alternatives and a trade-off analysis 

between multiple design criteria.  

The foundations of the proposed novel methodology are established in Section 4.2, after 

outlining the standard visualisation requirements to be fulfilled in order to effectively 

convey the results of optimisation studies to the designer. Sub-section 4.3.1 describes the 

identified suitable visualisation techniques to achieve the sought aim, along with the 

criteria for their selection depending on the analysis tasks to be carried out. The 

integration of such techniques and their operation are presented in sub-sections 4.3.2 and 

4.3.3. The extension of the methodology for robust design optimisation (RDO) is 

described in sub-section 4.3.4. 

A visual exploration interface prototype (the Integrated Exploration and Visualisation 

Interface, IEVI) has been developed by the author to demonstrate the capabilities of the 

present methodology. The proposed approach allows to combine discipline-independent 

and discipline-dependent techniques required in different design contexts. The resulting 

synergistic integration of different data perspectives enables the designer to address 

common analysis scenarios occurring in design optimisation, without the need to be an 

expert in numerical optimisation methods. An improved insight into the problem at hand 

can thus be gained both through an exhaustive exploration of design solutions and by 

assisting the development, debugging and understanding of the employed algorithms and 

models.  

The application of the present methodology to a conceptual aircraft optimisation test case 

has been demonstrated to industrial partners and within the EU CRESCENDO project, 

receiving particular interest and a positive feedback. A practical demonstration of the 

proposed methodology capabilities within the same design framework is provided in 

Chapter 6.  
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Chapter 5 

5 Exploration of Design 

Alternatives to Address 

Conceptual Design Changes 

 
5.1. Introduction 

The inherent iterative nature of design is widely acknowledged in the engineering 

community [30][18][42]. The repetition of tasks may be dictated by the availability of 

new information (e.g. changes in input), updates of shared assumptions or the 

identification of errors [17]. In this framework, iterations are generally triggered by the 

lack or uncertainty of specific design information [124][42] (which often is expressed 

with the concept of bounded-rationality) and can be subdivided into two categories: 

planned and unplanned iterations. The first are predictable, can be planned in advance 

and are required for verifying an initial estimate or guess, or for improving the 

satisfaction of design specifications [18]. In aircraft sizing, an example of planned 

iteration is the estimation of the design take-off gross weight as a function of the fuel and 
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empty weights, which are initially unknown and both dependent on the total aircraft 

weight [91].   

Unplanned iterations, conversely, occur when unexpected design revisions need to be 

undertaken as a result of the incomplete satisfaction of the design specifications due to 

process inefficiencies and/or cognitive limitations. Common causes of unforeseen 

iterations can be attributed to unsuccessful execution of testing and integration activities, 

sudden change of customer needs and requirements [18], or the appearance of alternative 

highly attractive design solutions [89].  

In general, design iterations can be categorised as occurring either between design stages 

or within a design stage [18]. Attention here is focused on the first case, when, as stated 

by Yassine and Braha [124], “design iterations result in changes that must propagate 

through the design stages, requiring upstream rework”. In particular, those cases where 

the introduction of design changes deriving from unplanned iterations involves the 

conceptual design stage can be taken into consideration. In this context, there is a need to 

balance two conflicting design aspects. On the one hand the required change(s) has 

(have) to be accommodated. On the other hand, this has to be achieved without radically 

changing the whole design, so that what has already been developed is still functional 

and, consequently, costs and time scales can be contained. 

Work so far has been concentrated on modelling the extent and impact of a design change 

via connectivity models of the product [41][20], as well as through the identification and 

visualisation of change propagation paths [29].  

Presented in this chapter is a novel methodology to support the introduction, within a 

conceptual design framework, of changes deriving from unplanned design iterations. The 

proposed approach is complementary to previous research in that it combines methods 

from design optimisation to conduct an exploration of design points that represent the 

best trade-offs for change accommodation with minimum disruption to the product 

configuration. Available prior computational analysis information is retrieved to drive an 

exploration process across the design space by means of surrogate models and the 

incorporation of key concepts from goal attainment method[36][72][19] and Bayesian 

global optimisation methods [56][55][98][100][102]. 
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The background and problem definition along with the assumptions on which the 

methodology is based are given in Section 5.2. An overview of the proposed strategy is 

given in Section 5.3 for a generic MOO problem, followed by an individual description 

of the three phases in which it is articulated. The application of the methodology to the 

analytical function considered in sub-section 3.2.7 is demonstrated in Section 5.4. 

Finally, a novel method for the computation of objective and constraint isocontours is 

proposed in Section 5.5 to address design change problems through the evaluation of 

design points that keep invariant desirable design performance. 

 

 

5.2. Problem Definition and Assumptions 

This section is aimed at defining in detail the context for which the proposed 

methodology has been developed.  

With respect to the background, a number of potential scenarios from real industrial cases 

can be taken into consideration. As far as the design has not evolved into much detail and 

the need to implement a change comes to light in the early design stages, the simplest 

solution is to run a further optimisation process taking into consideration a new problem 

formulation representative of the arisen issue. However, such a procedure can turn out to 

be excessively demanding and costly, especially if the whole process has been disrupted 

until the change cycle is accomplished. Alternatively, the approach proposed here for 

addressing conceptual design change problems relies on the exploitation of all the 

information available from prior collected datasets. It is desirable to somehow reuse all 

the function evaluations previously performed in order to gain insight into the new 

problem at hand, avoiding starting everything again from scratch. The designer’s priority, 

de facto, is to identify the best design alternatives that on the one hand still satisfy the 

original design criteria considered, but on the other hand take also into account the 

additional requirements imposed by the arisen change. 

A need for introducing a conceptual design change might come to light at different 

phases of the product development. Nonetheless, a common goal is that of introducing 
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the required change by simultaneously minimising change propagation on the remaining 

design parameters.  

The following generic change-scenarios can be outlined: 

 

- A detailed analysis subsequently carried out on a design system or component 

may reveal the need of modifying a design aspect. Example: a flight dynamics 

study conducted during the preliminary stage of an aircraft design might indicate 

the necessity of increasing ailerons area for stability reasons10. 

 

- The need for a manufacturing-driven change is recognised during a preliminary 

determination of manufacturing issues, such as material-of-choice, process-of-

choice and production-tooling. In the light of the cost of changes associated with 

an engineering change order (ECO) with time (Figure 11), Folkestad and Johnson 

[33] emphasize the benefits from identifying and undertaking manufacturing 

design changes during the early design stages in order to achieve sustainable 

reductions in both time and cost. 

 

- A variant of an existing product or an additional member of a design family is 

sought. This may involve the introduction of not a single but multiple 

modifications on a base design-layout, depending on the new design 

specifications11. 

                                                   
10 In their description of how aircraft are designed in a large organization, Bond and Ricci (1992) [16] 

observe that the main design decisions are refinement operations on the design, which are negotiated by the 

specialists among themselves. They give also an illustration of a typical scenario of model refinement, 

describing and providing some examples of the interactions among specialists to improve a design at 

preliminary stage by incorporating a series of changes.  
11 For example, in the attempt of improving the Spitfire wing aerodynamics for one of its numerous 

variants, the wing Specification No.470 was issued on 30 November 1942 [79]: 

..”A new wing has been designed for the Spitfire with the following objects (1) To raise as much as possible 

the critical speed at which drag increases, due to compressibility, become serious. (2) To obtain a rate of 

roll faster than any existing fighter. (3) To reduce wing profile drag and thereby improve performance.  
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Further details about the potential causes that can trigger a conceptual design change 

problem can be found in Appendix D, where a number of real-life examples are provided, 

describing both the change(s) involved and the design requirements to consider. 

It is important to emphasize that our efforts are focused on tackling the design change 

problems which affect the conceptual design stage, and represent a complementary 

strategy to the methods described in Section 2.4. 

 

The assumptions on which the present methodology is based are: 

 

- There is a need to accommodate a change on a specific design solution, obtained 

via an optimisation procedure carried out in the conceptual design framework, and 

thereafter further developed. 

 

- The function observations computed in the above-mentioned optimisation have 

been stored in an allocated database.  

 

- The new set of design solutions to be explored is assumed to be contained in the 

design space region where prior function evaluations were computed. 

 

- The variables, objectives and constraints of interest regarding the problem at hand 

are considered to be included in the set of parameters taken into account in the 

stored prior evaluations. General criteria for their setup are: 

 

                                                                                                                                                        
The wing area has been reduced to 210 sq ft (Spiteful) and a thickness chord ratio of 13% has been used 

over the inner portion of the wing where the equipment is stored. Outboard the wing tapers to 8% 

thickness/chord at the tip…” 

Considering the multiple examples of commercial passenger aircraft families, mention can be made of the 

A350-800 and A350-1000 designs, which, among several changes, have a fuselage shortened by 10 frames 

and a wing around 4% bigger with respect to the baseline A350-900, respectively [60]. 
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 A correction of the variables bounds or a reduction of the original design 

space dimensionality can be carried out by identifying and removing 

non-significant inputs via a global sensitivity analysis [71]. 

 

 Specific constraints or objectives can not be further considered, 

depending on their design priority or on their local satisfaction-

degree/value. 

 

 

5.3. Proposed Method 

The present methodology is intended to exploit the design knowledge gained via prior 

function evaluations with the aim of introducing a design change defined as in Section 

5.2. There are two objectives: 

 

- To explore and analyse different design alternatives which, on the one hand, are 

feasible according to the conceptual design problem formulation updated on the 

basis of the required change, and, on the other hand, minimise change 

propagation. 

 

- To minimise time and computational efforts in order to optimise the whole design 

change process. 

 

The achievement of the above objectives is based on a strategy that integrates a goal 

attainment reformulation of the problem [36] with an extension of the available criteria 

for dealing with nonlinear inequality constraints in Bayesian global optimisation methods 

[55]. The whole approach is articulated into three phases, which are described in detail in 

the following sub-sections. Presented below and depicted in Figure 40  is a brief 

summary. 
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Figure 40. Summary flowchart of the proposed exploration methodology to address 

conceptual design changes. 

 

In the Surrogate Model phase, described in Section 5.3.1, the stochastic process model 

outlined in Section 2.5.1 is employed to fit the set of function evaluations that is assumed 

to be available from previous computations. Predictions along with their associated error 

estimate can thus be obtained at any point, both for the objective and constraint functions, 

providing the designer with a global representation of the problem under study. It is 

important to notice at this stage, that the objective is not to build a model that is 

absolutely accurate, but instead summarises how the real function typically behaves. This 

provides one of the fundamentals of global optimisation algorithms to balance the global 

and local exploration of the design space, which are driven by the prediction uncertainty 
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(measured by the prediction standard error) and the predicted optimum (the point where 

the surrogate model is minimised/maximised), respectively. Regarding the set of initial 

evaluations required, it seems that in the literature there is not a general agreement about 

its size, especially when no information is available about the problem at hand. A “rule-

of-thumb” is to consider a number of initial points that is roughly ten times the problem 

dimensionality [56]. Additional considerations and recommendations can be found in 

Sobester  et al. [102]. 

The Problem Reformulation phase is explained in Section 5.3.2, and involves an 

interaction with the designer. The general behaviour of the objective and constraint 

functions gathered through the predictor models facilitates the identification of the most 

promising design sub-spaces where different trade-offs between introducing the requested 

change and containing change propagation can be found. On the strength of such 

information, the designer can therefore formally reformulate the problem as a single-

objective optimisation in order to allow a local exploration of design solutions in specific 

areas of the design space. This is achieved by adopting the goal attainment method [36], 

which enables the designer to conduct an a priori articulation of preferences with respect 

to the achievement of each design parameter value. Such an approach allows to trade-off 

two central needs in design change problems: incorporation of the requested change and 

minimisation of change propagation. From a computational point of view, an additional 

advantage associated to the goal attainment method is that the deployment of a 

scalarizing optimisation approach makes applicable a wide range of sampling criteria for 

single-objective optimisation available in the literature [55].  

Finally, Section 5.3.3 describes the basic sampling criterion that steers the evaluation 

process of additional design points throughout the Design Exploration phase with the 

intent of identifying the optimal solutions for the reformulated problem. In practice, the 

proposed strategy provides a means to conduct a double trade-off process. Firstly, the use 

of surrogate models and key concepts from Bayesian global optimisation allow to balance 

the global and local explorations above-mentioned. Secondly, the achievement of 

contrasting design goals can be balanced according to the preferences articulated by the 

designer during the problem reformulation via the goal attainment method. Particular 

attention here is given to assessing constraint satisfaction across the design sub-space to 
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be explored, so that the further evaluations can take place in feasible areas or in the 

vicinity of the constraint contours.  

The fundamental concept of the present methodology is portrayed in Figure 41 

considering a simple case where the conceptual change to be introduced can be 

formulated as a correction on the lower bound of the problem variable x [0,7] .  

 

Figure 41. In this elementary example, the hypothetical original formulation of a one-

dimensional problem consists of a single objective )(xf  and a single constraint 

0)( xg . The design change to accommodate is assumed to be formulated as a 

correction on the lower bound of x, which renders unfeasible the optimal point 

previously found (red square). The surrogate model )(ˆ xf  to be used will fit all the 

evaluations earlier computed (black points), allowing to approximate the system 

elsewhere along with a prediction error estimation. Once the predictor accuracy is 

ensured, if necessary, via additional observations (blue triangles), the new feasible 

region(s) where to focus design exploration can hence be identified (in orange). 
 

5.3.1. Surrogate Model Phase 

For the proposed methodology, in the first place the stochastic process model described 

in Section 2.5.1 is fit to a set of observations previously collected for each objective and 

constraint function. Within this framework, approximated function observations also can 

be taken into account. Jones et al. [56] describe some approaches to properly combine 
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low- and high-fidelity models. Such a strategy, generally referred to as multi-fidelity 

optimisation, turns out to be particularly effective in reducing the burden of heavy 

optimisation procedures without incurring a relevant model accuracy loss. Forrester et al. 

[34] demonstrate an optimisation strategy where a Bayesian model update criterion is 

coupled with an extension of the geostatistical method of co-kriging. Balabanov and 

Venter [9] describe how, under appropriate assumptions, gradient-based optimisation 

costs can be reduced by performing finite difference calculations using low-fidelity 

analysis, whereas the search points are evaluated via high-fidelity models. 

The accuracy of the statistical model is ensured afterwards within the design sub-space to 

be explored. The definition of such region depends on the problem at hand. Generally, a 

sub-space in the vicinity of the design point to modify can be examined in a first instance, 

with the objective of minimising change propagation. The specific range to consider for 

each variable has to be formulated on the basis of the first rough information provided by 

the models, design criteria and new requirements, as well as designer’s experience and 

intuition. In the event results turn out to be not satisfactory, the initial design sub-space 

can be subsequently modified.  

Under the assumption that the model is sufficiently flexible to be improved, its validation 

is articulated into two steps and further function evaluations may be required. The first 

validation phase is intended to ensure that the maximum value of the mean square error 

(MSE) of each model is below a pre-defined threshold ξ. If not, additional function 

evaluations are computed by adopting, in a first instance, an infill sampling criterion 

based on the MSE minimisation. The point where the prediction error is maximum is 

successively evaluated until the prediction standard error is inferior to ξ within the 

established search region. 

Subsequently, the validation of the model is assessed on the basis of the diagnostic test 

plot actual function values versus cross-validated predictions considered in the cross-

validation procedure proposed by Jones et al. [56]. If the above test is not satisfactory, a 

further random point is evaluated in the neighbourhood of any point that represents an 

outlier. Alternatively, a satisfactory model accuracy can sometimes be obtained by 

applying a suitable transformation ψ(y) to the generic dependent variable y (e.g., log or 

inverse) [56], although generally ψ(y) is not known a priori. 
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Once the surrogate models of interest have been validated, they provide a global 

summary of how the objective and constraint functions behave across the specified 

design sub-space. A global exploration of design alternatives can thus be driven by a 

suitable sampling criterion, taking into account the design requirements and preferences 

expressed via an adequate reformulation of the problem as described in the next sub-

section. 

 

5.3.2. Problem Reformulation Phase 

The exploration of alternative design solutions to accommodate the design change of 

interest requires a proper reformulation of the problem by balancing two central needs. 

On the one hand, a new design point that is feasible with respect to the requested change 

has to be identified. On the other hand, however, a minimisation of change propagation is 

sought. In practice, what is required is a trade-off between the initial design requirements 

and all the re-design implications that may derive from modifying the design layout 

selected in the conceptual phase and further developed in the subsequent design phases. 

Moreover, a reduction of the time and computational efforts throughout the exploration 

process is also of interest.  

To achieve this, the suggested approach is based on a reformulation of the problem by 

adopting the goal attainment method proposed by Gembicki [36]. The design change 

problem is therefore addressed via a method with an a priori articulation of preferences, 

namely the goals },...,,,...,,,...,,{ **
1

**
1

**
2

*
1 nIJ xxggfff*F  associated with the new set of 

objective functions },...,),(),...,(),(),...,(),({)( 1121 nIJ xxggfff xxxxxxF   that, in the 

generic case, is given by the J original objective functions, I inequality constraints and n 

design variables in Equation (1).  In doing so, the design change at hand has to be 

formulated either as one or more goals in *F , or through a correction of the variables 

bounds. Formally, Problem (1) is reformulated as follows12: 

                                                   
12 This is a comprehensive formulation of the problem that, nevertheless, can be simplified. For example, 

the possibility of not considering a number of variables might be evident if, from an analysis of the 

surrogate models, their influence results to be locally negligible. Similarly, the reformulation of the 
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In the goal attainment method it is assumed that the values assigned to each goal can be 

established upon a basic understanding of the problem or the design specifications to 

consider [37]. In our case, the definition of the goals *
pF  has to reflect either the design 

change to accommodate or the design point to modify, which is intended to be retained as 

much as possible in the attempt to limit change propagation. The design goals not related 

to the change at hand are therefore dictated by the value of the objectives, constraints and 

variables of the original problem formulation (1) for the design point to modify. 

Alternatively, new goals *
pF  can be set on the basis of the information that can be gained 

from an analysis of the surrogate model so far obtained.  

The decision-maker is enabled to control the relative degree of under- or over-

achievement of the goals by means of the vector of weighting coefficients w={w1,…,wp}. 

                                                                                                                                                        
problem can be simplified by discarding the objectives with lower priority or the constraints that locally 

appear to be largely satisfied. In this context, the visualisation methodology described in Chapter 4 comes 

to be particularly useful for the reformulation of multivariate and complex optimisation problems. The user 

is, in fact, allowed to conduct an exhaustive analysis of the surrogate models by plotting both the collected 

observations and the prediction points of interest. Moreover, the identification of the feasible design space 

regions can be facilitated by means of Filtering. 
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In general, the relative magnitude of wi compared to the other weights will determine the 

attainment grade of the i-th goal *
iF . The smaller the weight is, the smaller the degree of 

under- or over-attainment of the corresponding goal will be.  

The advantage of reformulating the problem by adopting the goal attainment method is 

that it provides the means to fulfil the two needs mentioned at the beginning of this sub-

section. Additionally, the goal attainment method is not subject to convexity limitations 

[72] and can be solved via standard optimisation procedures. Furthermore, it provides a 

scalarizing optimisation approach (also referred to as methods with a priori articulation 

of preferences) that makes applicable a wide range of sampling criteria for single-

objective optimisation available in the literature [78][56][55][99][100][102]. A review of 

three alternative scalarizing methods that can be coupled with Bayesian global 

optimisation methods is given by Hawe and Sykulski [45]. 

By using different sets of weighting coefficients, alternative noninferior solutions can be 

obtained also for nonconvex problems [19]. This is illustrated geometrically for a two-

objective minimisation problem in Figure 42, where *F  and w represent the vectors of 

the desired goals and the preference direction respectively. 

 

 
Figure 42. The goal attainment method with two generic objectives F1 and F2 

[114][67]. 
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The problem is equivalent to finding the closest point to the origin along the vector 

w *FF , which indicates the search direction from the goal point P to the feasible 

objective space Λ(γ). Consequently, the optimal solution will be the first point sF  at 

which F intersects Λ(γ). If the corresponding value of γ at the solution is null the desired 

goals have been achieved. In contrast, a negative value of γ indicates that the specified 

goals are attainable and an improved solution has been obtained (over-attainment in the 

goals); or a positive value of γ implies that the goals are unattainable (under-attainment in 

the goals) [67].  

 

5.3.3. Design Exploration Phase 

It is important to note that the variables bounds in Equation (49) do not necessarily need 

to be defined as in Problem (1) or to reflect merely a correction sought for one or more 

variables. They identify, in fact, the design space region that the decision-maker intends 

to explore in addressing a specific design change problem. In the proposed method, the 

evaluation process of further design points is driven across such region by an adequate 

sampling criterion that seeks to identify the optimal solutions for the reformulated 

Problem (49) by exploiting the statistical models obtained in the Surrogate Model phase. 

The integration of the models capability to make predictions with an estimate of the 

associated prediction error along with a suitable searching criterion provides a method to 

drive the exploration of optimal design alternatives. The evaluation of further samples is 

carried out on the strength of an extension of the criterion described in Section 2.5.2, 

introduced by Mockus et al. [78] and subsequently utilised by Jones and other researchers 

[98][100][102] as one of the fundamentals in developing Bayesian global optimisation 

methods.  

It has been previously pointed out what are the main difficulties in constrained 

optimisation problems for performing further function evaluations via a sampling 

criterion that somehow acknowledges the satisfaction of constraints. The approach 

proposed here is an extension of the expected improvement criterion for a generic 

constrained single-objective optimisation problem with gi(x)0, and can be formally 

stated as follows: 



Exploration of Design Alternatives to Address Conceptual Design Changes 
  

 103 

 



























 







 





Iisgs

Iisgs
s

yfs
s

yfyf

ii

ii

,...,1anyfor,0ˆifor  0if
0

,...,1allfor,0ˆand0if

ˆˆ
)ˆ(

)](E[I

minmin
min

c



x  (51) 

 

where s and si  are the standard error associated with the objective prediction ŷ  and the i-

th constraint prediction ˆ ig . 

The suggested strategy, in practice, is equivalent to performing a local relaxation of each 

constraint ig  that is proportional to si . Consequently, the suggested expected 

improvement will be zero at the sampled points and where any of the locally relaxed 

constraints is not satisfied, otherwise it will be positive. This enables to assess the 

satisfaction of each constraint at any point of the design space not only on the strength of 

its predicted value (as for the WEIF proposed by Sóbester et al. [102]), but also by 

acknowledging the uncertainty associated with it. Moreover, the figure of merit in 

Equation (51) does not require the estimation of the constraints satisfaction probabilities 

as in the criterion presented in Schonlau [99] and Schonlau et al. [100]. Unlike the latter 

criterion, which may focus the sampling of additional points on the design space areas 

which are more likely feasible [98], the proposed sampling criterion allows the evaluation 

of promising points located in the vicinity of constraints boundaries as a result of their 

local relaxation. This constraints-handling concept is depicted in Figure 43 by 

considering a simple one-dimensional example, where the extension of the design space 

to be explored, resulting from the described constraint relaxation, is highlighted. Enabling 

the evaluation of all the points located close to the constraint contours offers a double 

advantage. Firstly, points that are predicted as infeasible, but in reality are feasible, are 

less likely to be overlooked because of an inaccurate approximation. This is, for instance, 

the case of the feasible points located in x = [4.25, 5.64]. Secondly, promising points that 

slightly violate one or more constraints can thus be evaluated and presented to the 
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designer, who may judge them as a valid alternative if a proper constraint relaxation is 

possible.  

 

Figure 43. Relaxation concept for the proposed constraint-handling approach, 

comparing for a generic constraint ( ) 0ig x   the search regions corresponding to: 

(a) constraint satisfaction based only on the function prediction ˆ ( )ig x ;  (b) 

constraint satisfaction based on the function prediction ˆ ( )ig x  and its associated 

error ( )is x . 

 

Ultimately, a reliable stopping rule for the proposed optimisation procedure has to be 

chosen. A maximum number of function evaluations is expected to be specified on the 

basis of the second objective of the present methodology. Alternative or complementary 

criteria can be found in Section 2.5.3, depending on the problem at hand. 

 

 

5.4. Analytical Example 

The proposed method has been tested taking again into consideration the two-

dimensional bump function [57] described in Section 3.2.7. It is assumed that a minor 

change is sought for the global minimum ]0,3932.1[* x  for 1,2 [0,5]x  , which has been 

identified via a previous optimisation procedure, with f(x*)=-0.6737 and g(x*)=-6.6063. 
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The latter was conducted adopting the Matlab algorithm fmincon and considering eight 

different starting points, obtained via a Latin Hypercube sampling. In total, 54 distinct 

function evaluations were computed and stored in an allocated database. A filtering 

procedure was used to eliminate all the duplicated solutions, which are not allowed by the 

DACE toolbox [70] used in this work for the computation of surrogate models. 

Firstly, in the Surrogate Model phase the adopted stochastic process model was fit to the 

stored set of function evaluations. The design sub-space to explore was set as [0,0]LBx , 

]4,4[UBx . The validation procedure of the model led to the evaluation of 13 additional 

points. A lower number of function evaluations is generally required as the examined 

sub-space is narrowed. Figure 44 shows the predictor model of the objective and 

constraint functions after being validated.  
 

  
Figure 44. Surrogate models of f(x) and g(x). 

 

The corresponding diagnostic tests actual function values versus cross-validated 

predictions based on the cross-validation procedure proposed by Jones et al. [56] are 

illustrated in Figure 45. 
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Figure 45.  Diagnostic plots for the surrogate models of f(x) and g(x). 

 

For explanatory purposes, regarding the Problem Reformulation phase let us consider the 

case in which the design change to introduce can be formally stated as a correction on the 

lower bound of the variable x2, which is to be changed from 0 to 0.5. Other cases where 

the change is with respect to an objective or a constraint are shown in Chapter 6 by taking 

into account an industrial aircraft sizing test case. Problem (42) can be comprehensively 

reformulated as follows: 
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where the goals }5.0,3932.1,6068.6,6737.0{},,,{ *
4

*
3

*
2

*
1  FFFF*F are the values 

of the objective, constraint and the variable x1 at x* along with the sought-for value of x2, 

respectively. 

Once the prediction models have been validated and the problem properly reformulated, 

alternative change solutions can be computed according to the design preferences 
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expressed by the designer via the weighting coefficients w={w1,…,w4}. Assuming, in a 

first instance, that the decision-maker’s interest is to minimise change propagation across 

all the design parameters, an equal weight has to be associated to each one of the goals, 

hence: 

 

w={0.25,0.25,0.25,0.25} (53) 

 

The extended expected improvement function (51) at the beginning of the Design 

Exploration phase is portrayed in Figure 46 for the first six evaluations along with the 

corresponding observations collected. In addition to a maximum number of 50 iterations, 

an EI threshold of 1e-6 was also considered as a stopping criterion.  
 

 
a) 

 
b) 

 
c) 

 
d) 
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e) 

 
f) 

Figure 46.  Trend of the extended expected improvement function that yielded the 

first six evaluations conducted by considering the weighting coefficient vector (53). 

 

Fourteen alternative change solutions were evaluated on the basis of preferences (53) and 

before meeting the second stopping criterion. The whole set of results is shown in Table 

6, displaying the distance of each point from x*.  

 

Solution 1x  
2x  f  g  *

1 1x x  *
2 2x x  *f f  *g g  

Point Nº1 0.5937 0.5000 -0.0074 -6.9062 -0.7999 0.5000 0.6662 -0.2994 
Point Nº2 0.8960 1.3527 -0.0558 -5.7512 -0.4976 1.3527 0.6178 0.8556 
Point Nº3 1.2408 0.7780 -0.0976 -5.9811 -0.1529 0.7780 0.5760 0.6257 
Point Nº4 0.5104 0.7945 -0.0592 -6.6950 -0.8833 0.7945 0.6144 -0.0882 
Point Nº5 0.8168 0.5611 -0.0540 -6.6221 -0.5769 0.5611 0.6196 -0.0153 
Point Nº6 0.5126 1.9087 -0.1535 -5.5786 -0.8810 1.9087 0.5201 1.0282 
Point Nº7 1.4134 0.6056 -0.2567 -5.9810 0.0197 0.6056 0.4169 0.6258 
Point Nº8 1.3737 0.6414 -0.2213 -5.9849 -0.0200 0.6414 0.4523 0.6219 
Point Nº9 2.6677 0.5000 -0.0001 -4.8323 1.2740 0.5000 0.6735 1.7745 
Point Nº10 0.8488 0.6050 -0.0476 -6.5461 -0.5448 0.6050 0.6260 0.0607 
Point Nº11 1.5158 0.5000 -0.3518 -5.9842 0.1221 0.5000 0.3218 0.6226 
Point Nº12 0.4444 2.5859 -0.0023 -4.9697 -0.9492 2.5859 0.6713 1.6371 
Point Nº13 0.5656 1.2778 -0.2091 -6.1566 -0.8280 1.2778 0.4645 0.4502 
Point Nº14 0.5656 3.2576 -0.0161 -4.1768 -0.8280 3.2576 0.6575 2.4300 

 

Table 6. Comparison of x* with the solutions found by considering the weighting 

coefficient vector (53). The values that represent the best attainment of each of the four 

goals are highlighted in grey. 

 

It is important to emphasise that, after having validated the prediction models to be used, 

the designer can explore different design solutions corresponding to different design 
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preferences without involving significant additional computational costs13. As described 

in Section 5.3.2, employing diverse weighting coefficients allows to obtain different 

results. For instance, from Table 6 it is clear that the major changes among all the 

solutions is with respect to the objective function value. Therefore, the designer might be 

interested in exploring further points that specifically minimise the change on f(x). The 

vector w has then to be set accordingly, for example as follows: 

  

w={0.04,0.32,0.32,0.32} (54) 

 

In this case, for the same stopping criteria, the Design Exploration phase is terminated 

after the evaluation of a single point, represented in Figure 47. The numerical values of 

the solution found are provided in Table 7. 

 

 
Figure 47.  Solution found by considering the weighting coefficient vector (54). 

 

Solution 1x  
2x  f  g  *

1 1x x  *
2 2x x  *f f  *g g  

Point Nº1 0.0241 1.3989 -0.4757 -6.5769 -1.3696 1.3989 0.198 0.0299 
 

Table 7. Comparison of x* with the solution found by considering the weighting coefficient 

vector (54). 

 

                                                   
13 In the case the design sub-space is changed and further regions are to be explored, additional 

observations may be required for model validation purposes. 
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Attention should be given to the point [0,1.3932]x , which would be the global 

optimum for Problem (42) after correcting the lower bound of the variable x2 as 

considered in this section, with ( ) 0.4764f  x  and ( ) 6.6068g  x . It is in fact evident 

that, in the attempt to minimise change on the objective function, the design exploration 

is now focused on the identification of x , which turns out to be to the detriment of the 

value on x1 and x2 in particular. 

In the event the designer would be interested in exploring alternative solutions by 

preserving as much as possible the value on x1, a possible definition of the weighting 

vector could instead be: 

 

w={0.32,0.32,0.04,0.32} (55) 

 

The extended expected improvement function for the three alternative solutions obtained 

in this case is depicted in Figure 48. The results are given in Table 8 along with, again, 

the distance of each point from x*. 
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Figure 48.  Trend of the extended expected improvement function that yielded the 

first three evaluations conducted by considering the weighting coefficient vector (55). 

 

 

Solution 1x  
2x  f  g  *

1 1x x  *
2 2x x  *f f  *g g  

Point Nº1 1.4895 0.5010 -0.3526 -6.0094 0.0958 0.5010 0.3211 0.5974 
Point Nº2 1.4893 0.6110 -0.2562 -5.8996 0.0956 0.6110 0.4175 0.7072 
Point Nº3 1.4520 0.7102 -0.1781 -5.8378 0.0583 0.7102 0.4956 0.7690 

 

Table 8. Comparison of x* with the solutions found by considering the weighting 

coefficient vector (55). 

 

The solution sets corresponding to the three different weighting coefficient vectors taken 

into account are summarised in Figure 49, showing the contours of  f(x) and the variables 

bounds under consideration. 
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Figure 49.  Summary of the alternative solutions obtained with three different a priori 

articulations of preferences. The green crosses, the orange triangle and the red squares 

represent the design solutions identified by considering the weighting coefficient 

vectors (53),(54) and (55) respectively. The green x-markers, blue points and black 

points represent the sets of starting optimisation points, initial function observations 

and additional evaluations required for model validation, respectively.  

 

 

5.5. Isocontours of Objectives and Constraints 

When a change of a specific design variable of a design concept is required, it might be 

convenient to explore all the alternative solutions that accommodate it to the detriment of 

another variable. Moreover, with the intent of addressing change propagation, it would be 

desirable to freeze, at the same time, the value of the other variables, as well specific 

performance achieved in terms of objectives and constraints. In the light of the three 

preference classes into which system requirements typically fall [75] (i.e., smaller-is-
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better (SIB), larger-is-better (LIB) and nominal-is-better (NIB)), de Weck and Jones [22] 

illustrate the benefits that in particular cases may derive from formulating as NIB the key 

performance objectives that must be achieved first. This allows to extract, in the first 

place, the subset of solutions that satisfy the NIB requirements, to subsequently trade-off 

the other objectives with respect to each other.  

Let us assume nx  represents a generic design point of Problem (1) for which 

},...,,{)( 21 Jfff
 xF  and },...,,{)( 21 Iggg  xG . Setting the remaining (n-2) variables as 

constants, the objective is to identify the set of points 2isox  that meet the performance 

)(xh  for the generic function )(xh  among )(xF   and )(xG   within the pre-defined 

numerical tolerance hτ , so that: 
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for given variables bounds 1
ub

11
lb xxx   and 2

ub
22

lb xxx  , denoting generically by 1x  

and 2x  the two independent variables at hand. A trade-off analysis of the performances 

formulated as NIB can thus be facilitated by plotting the corresponding isocontours in the 
1x 2x  plane, allowing the designer to assess the feasibility and the implications associated 

with promising design change solutions. 

The key concept behind the approach proposed here is to exploit the principles and 

advantages of pattern search methods, which do not require any information about the 

gradient or higher derivatives and can be employed for non-differentiable functions 

[114].  

The method is articulated into two iterative steps for identifying the isocontour of the 

generic function )(xh , namely the Mesh Evaluation phase and the Search Refinement 

phase. 

The algorithm is initialised at the starting point x . At each iteration t, in the Mesh 

Evaluation phase the algorithm searches a set of points, called a mesh, which are located 

along the following fixed-direction vectors (or pattern vectors): 
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]1,0[]0,1[ 21   vv  (57) 

 

The local search space around tx  is thus partitioned into four quadrants by such a 

collection of vectors, as shown in Figure 50. The mesh is given by the points in the set: 

 

 }2,1{,2   is i
ii

t
t

t vxxxL  (58) 

 

where 0 i
t  is a scalar called the mesh size factor, and is  is a fixed parameter that 

takes the different scaling of the design variables into consideration [122].  

A poll is hence carried out by evaluating the function h at the mesh points. The poll is 

called successful when one of the following inequalities is satisfied: 

 

)()()'( ''hhh xxx    

or 

)()()'( ''hhh xxx    

(59) 

 

for two points of the mesh 'x  and ''x  whose pattern vectors do not belong together to the 

bounds of the quadrant where the previous isopoint 1tx  is located. In other words, taking 

Figure 50 into account, 'x and ''x  can lie only along the bounds of quadrants I, II and IV, 

since the previous iteration has been computed in quadrant III. In this manner the next 

isopoint 1tx  is assumed to be computed in the advancing search direction. 

After a successful poll, the Search Refinement phase subsequently takes place. If 

condition (56) is not satisfied either by 'x  or ''x , the search of a satisfactory point '''x  is 

conducted along the search direction '''xx , assuming local continuity and unimodality of 

)(xh . The search then continues with 1tx = '''x  and tt   1 , where 1  is a 

predefined expansion factor of the mesh. 

It is important to note that in the Search Refinement phase the aim is to identify the 

intersection point between the segment '''xx   and the isocontour of )(xh  not exactly but 

with a tolerance h . This can be achieved via a variety of ways. For instance, a simple but 
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effective approach is given by the bisection method, which requires only one function 

evaluation to repeatedly bisect '''xx and select the subinterval where the isocontour must 

lie. Alternatively, other algorithms for single-variable unconstrained optimisation may be 

deployed14. 

 

 
Figure 50.  Basic concept behind the proposed isocontour method. 

 

If the poll is unsuccessful, the search continues with 1tx = tx  and a reduced mesh size 

factor, e.g. tt   2
1

1 . 

With respect to algorithms based on the evaluation of grid points obtained via a 

discretization of the design space, the application of the suggested approach generally 

shows a more efficient estimation of the function isocontour in terms of computational 

                                                   
14 The region-elimination methods generally offer an attractive strategy for the proposed isocontour 

computation method since no differentiability assumptions on )(xh  are required. Besides the bisection 

method, the golden search method calculates one new function evaluation per iteration, assuring a 

proportion of the eliminated region that is always the same and equal to 38.2%. This quantity turns out to 

be higher or equal to that of other methods, such as the interval halving method and the Fibonacci search 

[24]. 
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cost. For comparison purposes and with the intent of providing a reference in terms of 

performance, the isocontour obtained for the single degree-of-freedom problem 

considered in de Weck [21] is shown in Figure 51. Moreover, by adopting the principles 

of pattern search methods, no assumptions of differentiability on )(xh  are required, 

which makes the method well suited for applications where derivatives are not available 

and finite-difference derivatives are unreliable (e.g., when the function at hand is noisy) 

[66]. 

 

 
Figure 51.  Isocontour for the single degree-of-freedom problem (ωd,m) taken into 

consideration in de  Weck [21], where 35 isopoints were computed with a tolerance of 

1% and a discretization of the design space based on 441 points via the non-gradient 

algorithm Exhaustive Search. The application of the method proposed here by the 

author within the same variable ranges required 310 total evaluations for the 

identification of the depicted 36 isopoints, with a tolerance of 0.1%. 

 

Another example of the application of the present approach is shown in Figure 52, 

portraying the isocountours associated with 5 points randomly selected across the design 

space of Problem (42), considering an accuracy of 0.001%.  



Exploration of Design Alternatives to Address Conceptual Design Changes 
  

 117 

 
Figure 52.  Displayed in red are the isocontours associated with 5 points (depicted in cyan) randomly 

selected across the design space of Problem (42).  

 

 

Table 9 provides the details of the isopoints set obtained for the starting point 

x =[4.5594425,3.0524488], for which  f( x )=-0.1495024. 

 

Isopoint 1x  2x  )( isoxf  )()( xxiso
ff   )(

)()(

x

xx iso




f

ff 
 

1 4.5563175 3.1493238 -0.1494372 0.0000653 0.0004365 
2 4.5656925 3.1649488 -0.1496251 -0.0001227 0.0008206 
3 4.5844425 3.1961988 -0.1494010 0.0001015 0.0006786 
4 4.6125675 3.2180738 -0.1494970 0.0000054 0.0000364 
5 4.6334008 3.2305738 -0.1493695 0.0001330 0.0008894 
6 4.6740258 3.2399488 -0.1494041 0.0000983 0.0006576 
7 4.7052758 3.2378655 -0.1494920 0.0000104 0.0000697 
8 4.7302758 3.2295321 -0.1496494 -0.0001470 0.0009833 
9 4.7896508 3.1889071 -0.1495252 -0.0000228 0.0001522 
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10 4.7990258 3.1732821 -0.1496242 -0.0001218 0.0008144 
11 4.8146508 3.1389071 -0.1495323 -0.0000299 0.0001999 
12 4.8188175 3.1097405 -0.1495342 -0.0000318 0.0002125 
13 4.8125675 3.0659905 -0.1495629 -0.0000604 0.0004043 
14 4.7969425 3.0316155 -0.1495276 -0.0000252 0.0001686 
15 4.7823592 3.0128655 -0.1495243 -0.0000218 0.0001460 
16 4.7656925 2.9961988 -0.1494288 0.0000736 0.0004922 
17 4.6906925 2.9711988 -0.1496471 -0.0001447 0.0009680 
18 4.6094425 2.9899488 -0.1493740 0.0001284 0.0008587 
19 4.5927758 3.0066155 -0.1496046 -0.0001022 0.0006834 

 

Table 9. Isopoints computed from x =[4.5594425,3.0524488]. 

 

 

5.6. Summary and Conclusions 

A novel methodology for addressing conceptual design change problems has been 

introduced in this chapter. The proposed approach is based on an integration of methods 

from design optimisation and is proposed as a complementary strategy to the methods 

described in Section 2.4. The aim is to enable the designer to work out a set of new 

design alternatives by effectively identifying the design space areas which would allow 

both change incorporation and, at the same time, would limit the extent of the change.  

After presenting the sought objectives, Section 5.3 provides an overview of the whole 

approach, introducing the three phases in which it is articulated. Firstly, in the Surrogate 

Model phase, the stochastic process model delineated in sub-section 2.5.1 is employed to 

fit prior collected observations, along with an adequate validation procedure. The 

designer is thus provided with a global understanding of the problem at hand. This 

enables, in the Problem Reformulation phase, the identification of the most promising 

design sub-spaces where different trade-offs between accommodating the requested 

change and containing change propagation can be found. An exploration of alternative 

design solutions can hence be conducted throughout the Design Exploration phase via a 

suitable reformulation of the problem based on the general behaviour of the objective and 

constraint functions. The evaluation of additional design points is driven by a sampling 

criterion based on a proposed extension of the figure of merit introduced by Mockus et al. 

[78]. In particular, the present strategy allows a local relaxation of constraints in 
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proportion to the standard error associated with their prediction, so that further points can 

be evaluated also in the vicinity of the constraint contours. This offers a double advantage 

within the context at hand. Firstly, points that are predicted as infeasible, but in reality are 

feasible, are less likely to be overlooked because of an inaccurate constraint 

approximation. Secondly, promising points that slightly violate one or more constraints 

can thus be evaluated and presented to the designer, who may judge them as a valid 

alternative if a proper constraint relaxation is possible.  

 

A novel method for an efficient computation of objective and constraint isocontours is 

proposed in Section 5.5. It is intended to support a design exploration to accommodate, 

for a given design point, a change on a specific design variable to the detriment of 

another variable, preventing change propagation by freezing at the same time the value of 

the other variables. The designer is thus allowed to conduct a trade-off analysis between 

potential additional solutions through an evaluation of the design points that keep 

invariant desirable performance in terms of objectives and constraints. 

 

An example of the application of the proposed methodology is given in this chapter by 

considering an analytical function. The results obtained from a test case of industrial 

relevance are outlined in Chapter 6, demonstrating the capabilities of the present methods 

in addressing more complex problems.  
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Chapter 6 

6 Application Example  -  

Aircraft Conceptual Design 

Optimisation 

 
6.1. Introduction 

The application of the proposed exploration methodologies to an industrial aircraft sizing 

test case is presented in this chapter.  

A description of the test case taken into consideration is provided in Section 6.2. The 

application of the Adaptive Search Optimisation Method (ASOM) is then described in 

Section 6.3, demonstrating its capabilities to effectively improve the Pareto set by 

adequately re-defining the search region throughout the optimisation process. The results 

thus obtained are compared with the solutions obtained via standard optimisation 

procedures. 

The visual exploration and analysis of the ASOM results through the proposed visual 

exploration methodology is presented in Section 6.4. It demonstrates how a thorough 
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investigation of complex data structures can be performed by the designer via the analysis 

of multiple and complementary perspectives of the problem under study. This is done by 

deploying the graphical user interface prototype IEVI presented in Chapter 4. 

In Section 6.5, an exploration of alternative design points is conducted on a number of 

hypothetic scenarios for design change problems at conceptual stage. The application of 

the methodology presented in Chapter 5 is demonstrated here with the aim of computing 

a new set of solutions by balancing the design implications of change introduction and 

change propagation. It is also shown how the evaluation of additional points is conducted 

on the basis of the change requirements articulated by the designer, formally stated via 

the goals vector F*. In a second instance, the proposed isocontours method is deployed to 

accommodate, for a given design point, a change on a specific design variable to the 

detriment of another variable, while freezing the others. 

The advantages, limitations and potential recommendations for each strategy are outlined 

in the summary and conclusions section. 
 
 

6.2. Test Case Description 

The adopted test case (USMAC - Ultra Simplified Model of Aircraft) has been supplied 

by a major airframe manufacturer as part of an EU FP6 Integrated Project [59]. It is a 

code developed for the evaluation and sizing of short-to-medium range commercial 

passenger aircraft, computing the overall performance and weights by means of 97 

models and 125 design parameters. The adopted nomenclature is shown in Table 10. 
 

Npax Number of passengers Mach_crz  Cruise mach 
NpaxFront Number of passengers per row alt_crz Cruise altitude [ft] 
Naisle Number of aisles alt_to Take-off altitude [ft] 
FNslst Sea-level static engine thrust [decaN] alt_app Approach altitude [ft] 
BPR Engine bypass ratio MTOW Maximum Take-off weight [kg] 
ne Number of engines RA Range [NM] 
Awing Wing area [m2] tofl Take-off field length [m] 
span Wing span [m] vapp Approach speed [kts] 
phi Wing sweep angle [deg] vz_clb Climb rate [ft/min] 
tuc Wing thickness-to-chord ratio Kfn_cth Cruise thrust coefficient 
Fuel Fuel weight [kg] Kff Wing-fuselage fuel ratio 

 

Table 10. Test case nomenclature. 
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Table 11 provides the original optimisation problem, which has been set as in Guenov et 

al. [44]. 

 

Constants Variables Constraints Objectives 
Npax = 150 FNslst = [12500,13000] decaN tofl ≤ 2000 m 
NpaxFront = 6 Awing = [152,158] m2 vapp ≤ 120 kts 

RA [NM] 
to be maximised 

Naisle = 1 span = [30,38] m vz_clb ≥ 500 ft/min  
ne = 2 phi = [28,32] deg Kfn_cth ≤ 1 
alt_crz = 35000 ft tuc = [0.07,0.1] Kff ≥ 0.75 

MTOW [kg] 
to be minimised 

Mach_crz = 0.82 Fuel = [17000,18000] kg   
alt_to = 0 ft BPR = [6,7]   
alt_app = 0 ft    

 

Table 11. Conceptual aircraft design optimisation formulation. 

 

6.3. Adaptive Search Optimisation 

The considered setup of the optimisation problem under study is as follows: 

 

Frozen Bounds Initial Adaptive Bounds 
Input Variable 

lbx  ubx  lbx  ubx  
FNslst 11875 13650 12500 13000 
Awing 144.4 165.9 152 158 
span 28.5 39.9 30 38 
phi 26.6 33.6 28 32 
tuc 0.0665 0.1050 0.07 0.1 
Fuel 16150 18900 17000 18000 
BPR 5.7 7.35 6 7 

 

Table 12. Setup of the frozen and adaptive bounds. 

 

where the frozen bounds correspond to a relaxation of 5% of the value of the lower and 

upper adaptive bounds. For all the variables the following ASOM parameters have been 

adopted: 1 , 05.0 , 05.0p , 05.0  and 25.0 . 

Cantelli’s probability inequality has been deployed for the relaxation criterion, switching 

to the Chebyshev-Cantelli inequality when the former is not applicable.  

The optimisation procedure has been carried out by integrating ASOM into the DHCBI 

software developed by Fantini [31], considering 40 starting points produced by a Latin 

Hypercube sampling. The final setup of the adaptive bounds at the last optimisation 
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iteration is given in Table 13, where the active amongst the frozen bounds are highlighted 

in grey. 

Final Adaptive Bounds 
Input Variable 

lbx  ubx  
FNslst 11875 13650 
Awing 144.4 165.9 
span 33.8248 39.9 
phi 26.6 33.6 
tuc 0.0762 0.1027 
Fuel 16150 18900 
BPR 5.7 7.35 

 

Table 13. Final adaptive bounds. 

 

The distributions of the overall and feasible evaluations conducted via the SPSA 

algorithm are given in Figure 53. 

 

FNslst Awing 

 

span phi  
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BPR RA 

 
MTOW tofl 

 

vapp 
vz_clb 
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Kfn_cth Kff 

 
 

Figure 53. Distributions of the overall and feasible point sets, which are portrayed in red 

and black, respectively. The black and red vertical lines in the variable histograms 

represent the borders of the feasible and infeasible distributions. 

 

The Pareto front that has been obtained is displayed in green in Figure 54. For 

comparison purposes, two additional optimisation procedures have been computed. They 

will be referred to as Optimisation A and Optimisation B, which have been conducted 

without the integration of ASOM and considering as variables bounds the adaptive and 

the frozen bounds given in Table 12, respectively. The corresponding Pareto fronts are 

visualised in Figure 54 in red (Optimisation A) and blue (Optimisation B).  

The results demonstrate the capabilities of the proposed adaptive search method ASOM 

in enhancing the set of optimal points via a continuous redefinition of the variables 

bounds throughout the optimisation procedure. It is important to highlight, however, that 

the improvement of the Pareto front is local. This is in accordance with the aim of the 

method, namely the computation of further optimal solutions that may be located slightly 

beyond the variables bounds initially set. Consequently, the optimal set obtained by 

means of ASOM (in green) can be seen as an improvement of the red Pareto obtained in 

Optimisation A. Optimal points that are distantly located from the initial search region 

can not be computed because of the absence of starting points in such areas of the design 

space. In Figure 54 this is evident from the analysis of the blue Pareto obtained in 

Optimisation B, which is extended on a larger range of the criterion space.  
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Figure 54.  Comparison of the Pareto front obtained by means of ASOM (in green) 

with respect to the optimal points computed without ASOM by considering as 

bounds the adaptive and frozen bounds (in red and blue) given in Table 12. 

 

The distributions of the three Pareto fronts under study are shown in Figure 55. It is 

possible to confirm that a wider distribution characterises all the design variables in the 

case of Optimisation B. Moreover, with the exception of Awing, the variables 

distributions obtained via ASOM show a relaxation of one or both adaptive bounds 

towards the bounds set for Optimisation B. 

 

FNslst 
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Figure 55. Distributions of the Pareto points displayed in Figure 54 by adopting the same 

colour notation. 

 

A detailed analysis of the results obtained by means of the proposed adaptive search 

method is given in the following section. 

 

 

6.4. Visual Exploration of Optimisation Results 

Presented in this section is an example of the application of the visualisation 

methodology described in Chapter 4 for conducting a visual exploration of large 

multidimensional datasets deriving from MOO procedures. The whole set of function 

evaluations obtained from the problem addressed in the previous section (6085 samples) 

is analysed by means of the exploration interface prototype developed by the author, the 

Integrated Exploration and Visualisation Interface (IEVI). The default visualisation of 

the data under study is shown in Figure 56 through the representation of the objective 

space, MTOW distribution, and design space in the Euclidean Space Interface (ESI), 
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Specific Design Tools Interface (SDTI) and Multidimensional Data Visualisation 

Interface (MDVI). 

 
Figure 56.  Default optimisation data visualisation. 

 

The deployment of Filtering provides a first criterion to steer the selection of promising 

design solutions to be analysed. The feasible, infeasible, and non-dominated sets of points 

are thus graphically identified through green points, grey points and yellow squares, 

respectively. The same colour notation is applicable also on the Parallel Coordinates Plot 

(PCP) and is formally given in the Filtering settings panel, as shown in Figure 57. 
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Figure 57. Optimisation data visualisation by means of Filtering. The colour 

notation shown in the Filtering settings panel is used to identify the sets of feasible, 

infeasible, and non-dominated design points. 

 

When analysing large datasets, it is recommended to focus design exploration on one of 

the abovementioned sets of solutions, depending on the analysis tasks to be performed. 

For example, only non-dominated points may be displayed, as shown in Figure 60, or 

infeasible solutions might be removed from the display as in Figure 58. This provides a 

means to narrow down the number of design alternatives of interest, thus facilitating the 

interactive selection of specific design points to be individually analysed in detail. 

Illustrated in Figure 58 is the selection of optimal points in the ESI. For each selected 

point, the two remaining interfaces are updated simultaneously. For instance, the designer 

is enabled to find out what is the selection impact on any 2D/3D sub-space of the 

problem in the SDTI, comparing the chosen solution (represented by an orange cross-

symbol) with respect to the other alternatives displayed. A detailed assessment of the 

selected point properties can instead be conducted in the MDVI through the analysis of 

the exact numerical values for the axes selected in the PCP. 
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Figure 58.  Interactive selection of points on the ESI with a real-time visualisation 

update in the remaining interfaces. In this case, the selected point is identified in the 

BPR-Awing sub-space of the problem through an orange cross-symbol in the SDTI, 

whereas its exact numerical value for each dimension of the design and objective 

spaces are given in the PCP displayed in the MDVI. 

 

A further refinement of the results analysis process can be performed by expressing 

additional exploration requirements via the Selective PCP Ranges Filtering function. This 

allows the identification of all the design solutions that meet a specific range of values for 

any design parameter. Such function turns out to be particularly useful, for example, for 

the study of active constraints, as shown in Figure 59. Another practical application could 

be the exploration of solutions that meet one or more tighter constraints, or the influence 

that specific areas of the design space have on the objective space and vice versa.  
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Figure 59.  One example of the visual exploration tasks that can be conducted by 

using the Selective PCP Ranges Filtering function in the PCP. The design points for 

which the constraint Kff is active are identified in the ESI and SDTI through cyan x-

markers.  
 

One criterion that can potentially influence the trade-off analysis study on a set of design 

alternatives is the satisfaction grade of constraints. In this respect, a penalty weight would 

be attributed to those points for which constraints are active or slightly satisfied. Such 

information can be also used to assess the formulation of constraints and their possible 

relaxation. In the SDTI displayed in Figure 60, for example, it is evident that most of the 

computed optimal points are located very close to the limit value formulated for the 

velocity of approach (vapp≤120kts). On the other hand, the constraint on the climb rate 

(vz_clb≥500 ft/min) appears to be largely met by all the Pareto points. Additionally, it can 

be noted that a large number of optimal designs have been computed beyond the initial 

adaptive bounds of various variables. This is shown in Figure 60, both qualitatively in the 

PCP (for span and BPR) and quantitatively in the ESI (for Fuel and phi). 

Last, but not least, Figure 61 provides an example of the integration of discipline-

dependent techniques by illustrating the carpet plot (in the SDTI) corresponding to any 

point selected in the ESI. 
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Figure 60. Analysis of Pareto solutions.  

 

 
Figure 61. Example of the data visualisation via discipline-dependent techniques in 

the SDTI by representing the carpet plot corresponding to the design selected in a 

magnified inset of the objective space displayed in the ESI. Displayed in red are 

possible performance constraints that are not satisfied. 
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6.5. Introduction of Minor Design Changes Affecting Conceptual Design 

In this section, the capabilities of the methodology proposed in Chapter 5 are 

demonstrated with the USMAC test case. Addressed are three hypothetic scenarios where 

design changes are required for the point selected in Figure 61, denoted by *x and given 

in Table 14.  

 

Variables Constraints Objectives 
FNslst = 12459.8829 decaN tofl = 1999.9888 m 
Awing = 153.9723 m2 vapp = 119.5601 kts 

RA = 3258.163 [NM] 

span = 39.3967 m vz_clb = 611.2451 ft/min  
phi = 26.6022 deg Kfn_cth = 0.8692 
tuc = 0.0811 Kff = 0.7496 

MTOW = 81311.8282 [kg] 
 

Fuel = 16150.0362 kg   
BPR = 7.35   

 

Table 14. Design to be changed *x . 

 

It is arbitrarily assumed in a first instance that the wing area needs to be increased, say to 

156 m2. Changes on all other parameters are to be minimised. 

One of the criteria to support the definition of the design sub-space to be explored can be 

to allow the computation of further points in the objective-space neighbourhood of the 

design to be changed. For this, the proposed visualisation methodology turns out to be 

particularly useful by mapping a given set of points in the objective space to the design 

space. Defined in Table 15 is the exploration region considered on the basis of the 

variable ranges displayed in the right-hand side of Figure 62, which contain a desirable 

set of the Pareto points identified by means of Filtering.  

 

FNslst = [12360  -  12677] decaN 
Awing = [153.7  -  157.0] m2 
span = [38.7  -  39.9] m 
phi = [26.6  -  27.8] deg 
tuc = [0.079  -  0.083] 
Fuel = [16149  -  16463] kg 
BPR = [7.05  -  7.35] 

 

Table 15. Definition of the design sub-space to explore. 
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Within such design sub-space, 79 distinct function evaluations were performed and stored 

throughout the optimisation procedure described in Section 6.3. The validation of the 

surrogate models was conducted by considering the proposed procedure, and 24 

additional evaluations were required.  

 

 
Figure 62. Setup of the design sub-region to be explored in addressing the design 

change problem taken into account. 

 

The Problem Reformulation phase was conducted as indicated in sub-section 5.3.2 by 

considering the sought design values and the variables ranges given in Table 15. The 

goals and weighting coefficients vectors were therefore set as follows: 

 

Parameter Goals Weighting Coefficients 

RA *
RAF = 3258.163 [NM] RAw = 0.075949    (1/13.167) 

MTOW *
MTOWF = 81311.8282 [kg] MTOWw = 0.075949    (1/13.167) 

tofl *
toflF = 1999.9888 [m] toflw = 0.075949    (1/13.167) 

vapp *
vappF = 119.5601 [kts] vappw = 0.075949    (1/13.167) 

vz_clb *
vz_clbF = 611.2451 [ft/min] vz_clbw = 0.075949    (1/13.167) 

Kfn_cth *
Kfn_cthF = 0.8692 Kfn_cthw = 0.075949    (1/13.167) 

Kff *
KffF = 0.7496 Kffw = 0.075949    (1/13.167) 
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FNslst *
FNslstF = 12459.8829 [decaN] FNslstw = 0.075949    (1/13.167) 

Awing *
AwingF = 156 [m2] Awingw = 0.012658    (1/79) 

span *
spanF = 39.3967 [m] spanw = 0.075949    (1/13.167) 

phi *
phiF = 26.6022 [deg] phiw = 0.075949    (1/13.167) 

tuc *
tucF = 0.0811 tucw = 0.075949    (1/13.167) 

Fuel *
FuelF = 16150.0362 [kg] Fuelw = 0.075949    (1/13.167) 

BPR *
BPRF = 7.35 BPRw = 0.075949    (1/13.167) 

 

Table 16. Goals and weighting coefficients vectors considered for the first hypothetic 

design change scenario. 

 

For the Design Exploration phase, a maximum number of 10 iterations (for 

demonstration purposes) and an EI threshold of 1e-6 were considered as stopping criteria. 

Shown in Table 17 and Table 18 are the values in the design space and in the 

objective/constraint spaces of the obtained solutions. 

 

Solution FNslst 
[decaN] 

Awing 
[m2] 

span 
[m] 

phi 
[deg] 

tuc 
 

Fuel 
[kg] 

BPR 
 

Point Nº1 12413.7723 155.2909 39.1304 26.7299 0.0823 16188.5493 7.0576 
Point Nº2 12514.2720 154.4322 39.5099 27.0070 0.0809 16158.3488 7.2671 
Point Nº3 12360.4763 155.5095 39.1912 26.7494 0.0806 16231.2857 7.0500 
Point Nº4 12381.9779 155.2452 38.7000 26.6000 0.0809 16282.0092 7.1553 
Point Nº5 12427.9335 153.9732 38.7000 26.6000 0.0811 16150.0389 7.0500 
Point Nº6 12390.2049 155.6729 38.7000 26.6000 0.0802 16150.0000 7.0500 
Point Nº7 12360.0000 154.7547 38.7000 26.6000 0.0807 16150.0000 7.3497 
Point Nº8 12373.4535 155.2175 38.7000 26.6000 0.0804 16150.0000 7.0500 
Point Nº9 12401.6466 154.3775 38.7127 26.7087 0.0809 16150.0000 7.3500 
Point Nº10 12392.6792 155.9816 39.0397 27.2856 0.0802 16186.8461 7.3242 

 

Table 17. Variable values of the solutions obtained for the goals and weights vectors in Table 16. 

 

Solution MTOW 
[kg] 

RA 
[NM] 

tofl 
[m] 

vapp 
[kts] 

vz_clb 
[ft/min] 

Kfn_cth 
 

Kff 
 

Point Nº1 81387.0478 3227.2630 1993.3017 119.1041 585.0289 0.8771 0.7739 
Point Nº2 81410.2602 3265.2606 1992.0532 119.5252 633.6000 0.8622 0.7499 
Point Nº3 81411.6266 3247.3621 2000.1842 119.0066 580.4757 0.8778 0.7504 
Point Nº4 81421.3703 3241.7373 2000.1183 119.0482 565.3548 0.8833 0.7501 
Point Nº5 81215.2647 3220.5145 2000.1169 119.4708 589.8470 0.8762 0.7499 
Point Nº6 81280.7084 3212.7474 1985.5658 118.8766 573.7437 0.8809 0.7499 
Point Nº7 81220.7526 3232.7661 2000.2666 119.1739 564.4743 0.8837 0.7500 
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Point Nº8 81246.0959 3215.3671 1992.8665 119.0192 571.7611 0.8814 0.7500 
Point Nº9 81234.0024 3236.8531 2000.1679 119.3478 578.1897 0.8797 0.7500 
Point Nº10 81419.4492 3257.9607 1991.7120 118.9542 587.4952 0.8759 0.7500 

 

Table 18. Objective and constraint values of the solutions obtained for the goals and weights 

vectors in Table 16. 

 

The comparison between the sought point and the explored designs in terms of value 

differences is given in Table 19 and Table 20. 

 

Solution FNslst diff 
[decaN] 

Awing diff 
[m2] 

span diff 
[m] 

phi diff 
[deg] 

tuc diff 

 

Fuel diff 
[kg] 

BPR diff 
 

Point Nº1 -46.1106 -0.7091 -0.2663 +0.1277 +0.0012 +38.5131 -0.2924 
Point Nº2 +54.3891 -1.5678 +0.1132 +0.4048 -0.0002 +8.3126 -0.0829 
Point Nº3 -99.4066 -0.4905 -0.2055 +0.1472 -0.0005 +81.2495 -0.3000 
Point Nº4 -77.9050 -0.7548 -0.6967 -0.0022 -0.0002 +131.9730 -0.1947 
Point Nº5 -31.9494 -2.0268 -0.6967 -0.0022 +0.0000 +0.0027 -0.3000 
Point Nº6 -69.6780 -0.3271 -0.6967 -0.0022 -0.0009 -0.0362 -0.3000 
Point Nº7 -99.8829 -1.2453 -0.6967 -0.0022 -0.0004 -0.0362 -0.0003 
Point Nº8 -86.4294 -0.7825 -0.6967 -0.0022 -0.0006 -0.0362 -0.3000 
Point Nº9 -58.2363 -1.6225 -0.6840 +0.1065 -0.0002 -0.0362 +0.0000 
Point Nº10 -67.2037 -0.0184 -0.3570 +0.6834 -0.0009 +36.8099 -0.0258 

 

Table 19. Differences between the variable values of the explored designs and the sought point. 

 

Solution MTOW diff 
[kg] 

RA diff 
[NM] 

tofl diff 
[m] 

vapp diff 
[kts] 

vz_clb diff 
[ft/min] 

Kfn_cth diff 

 

Kff diff 
 

Point Nº1 +75.2196 -30.9000 -6.6871 -0.4560 -26.2162 +0.0079 +0.0243 
Point Nº2 +98.4320 +7.0976 -7.9356 -0.0349 +22.3549 -0.0070 +0.0003 
Point Nº3 +99.7984 -10.8009 +0.1954 -0.5535 -30.7694 +0.0086 +0.0008 
Point Nº4 +109.5421 -16.4257 +0.1295 -0.5119 -45.8903 +0.0141 +0.0005 
Point Nº5 -96.5635 -37.6485 +0.1281 -0.0893 -21.3981 +0.0070 +0.0003 
Point Nº6 -31.1198 -45.4156 -14.423 -0.6835 -37.5014 +0.0117 +0.0003 
Point Nº7 -91.0756 -25.3969 +0.2778 -0.3862 -46.7708 +0.0145 +0.0004 
Point Nº8 -65.7323 -42.7959 -7.1223 -0.5409 -39.4840 +0.0122 +0.0004 
Point Nº9 -77.8258 -21.3099 +0.1791 -0.2123 -33.0554 +0.0105 +0.0004 
Point Nº10 +107.6210 -0.2023 -8.2768 -0.6059 -23.7499 +0.0067 +0.0004 

 

Table 20. Differences between the objective and constraint values of the explored designs 

and the sought point. 

 

The designer is provided with a set of different alternatives to address the design change 

problem at hand. The solution that best accommodates the sought change in Awing 
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(+1.31%) turns out to be Point Nº10. Minor changes involve most of the remaining 

design parameters, although an increment of 0.28% and 0.13% are required on Fuel and 

MTOW, respectively. However, an improvement of 0.41% is achieved on tofl, whereas 

vz_clb remains to be largely satisfied notwithstanding its reduction of 3.88%. 

Alternatively, the proposed isocontour approach can be deployed for the exploration of 

design solutions that may introduce the required change in Awing to the detriment of any 

other variable, ensuring at the same time desirable performance in terms of objectives and 

constraints. Depicted in Figure 63 are the isocontours of all the objectives and constraints 

passing through *x  (Table 14) in the plane FNslst-Awing. The details of their 

computation are provided in Table 21. 

 

Parameter Initial Mesh 
[ 11st , 22 st ] 

Tolerance Total Evaluations Nº Isopoints 

MTOW [10 decaN, 0.5 m2] 1 kg 254 32 
RA [10 decaN, 0.5 m2] 0.1 NM 826 98 
tofl [10 decaN, 0.5 m2] 0.1 m 345 40 

vapp [10 decaN, 0.5 m2] 0.01 kts 753 102 
vz_clb [10 decaN, 0.5 m2] 0.1 ft/min 290 28 

Kfn_cth [10 decaN, 0.5 m2] 0.001 94 15 
Kff [10 decaN, 0.5 m2] 0.001 606 100 

 

Table 21. Summary of the isocontours computation. 

 

There are two further aspects that need to be mentioned. Firstly, the isocontours of 

Kfn_cth and vz_clb can be considered in this particular case to be coincident, as well as in 

the case of MTOW and tofl. Moving along these lines gives us the advantage of 

preserving two performances (within their corresponding tolerances) instead of one. 

Secondly, within the considered FNslst range of [12000 – 13000] decaN, the requested 

value of Awing can be achieved only by freezing the values of one of the pairs of 

abovementioned parameters (either Kfn_cth and vz_clb, or MTOW and tofl). Other 

performance may be assured only for lower (RA) or larger (vapp) values of FNslst. 
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Figure 63. Isocontours of objectives and constraints. 

 

A second hypothetic design change scenario was taken into consideration by assuming 

that, apart form the increment requested for Awing, a reduction of tofl to 1900 m is also 

required. To address it, the goals and weighting coefficients vectors were redefined as 

follows: 

 

Parameter Goals Weighting Coefficients 

RA *
RAF = 3258.163 [NM] RAw = 0.081967    (1/12.2) 

MTOW *
MTOWF = 81311.8282 [kg] MTOWw = 0.081967    (1/12.2) 

tofl *
toflF = 1900 [m] toflw = 0.0081967    (1/122) 

vapp *
vappF = 119.5601 [kts] vappw = 0.081967    (1/12.2) 

vz_clb *
vz_clbF = 611.2451 [ft/min] vz_clbw = 0.081967    (1/12.2) 

Kfn_cth *
Kfn_cthF = 0.8692 Kfn_cthw = 0.081967    (1/12.2) 

Kff *
KffF = 0.7496 Kffw = 0.081967    (1/12.2) 

FNslst *
FNslstF = 12459.8829 [decaN] FNslstw = 0.081967    (1/12.2) 

Awing *
AwingF = 156 [m2] Awingw = 0.0081967    (1/122) 

span *
spanF = 39.3967 [m] spanw = 0.081967    (1/12.2) 
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phi *
phiF = 26.6022 [deg] phiw = 0.081967    (1/12.2) 

tuc *
tucF = 0.0811 tucw = 0.081967    (1/12.2) 

Fuel *
FuelF = 16150.0362 [kg] Fuelw = 0.081967    (1/12.2) 

BPR *
BPRF = 7.35 BPRw = 0.081967    (1/12.2) 

 

Table 22. Goals and weighting coefficients vectors considered for the second hypothetic 

design change scenario. 

 

The rest of the setup parameters were not modified.  

One solution has thus been obtained. Its variable and objective/constraint values are given 

in Table 23 and Table 24.  

 

Solution FNslst 
[decaN] 

Awing 
[m2] 

span 
[m] 

phi 
[deg] 

tuc 
 

Fuel 
[kg] 

BPR 
 

Point Nº1 12677.0000 157.0000 38.7000 26.6000 0.0795 16150.0000 7.0500 
 

Table 23. Variable values of the solutions obtained for the goals and weights vectors in Table 22. 

 

Solution MTOW 
[kg] 

RA 
[NM] 

tofl 
[m] 

vapp 
[kts] 

vz_clb 
[ft/min] 

Kfn_cth 
 

Kff 
 

Point Nº1 81532.8646 3200.4884 1935.2027 118.602 635.1924 0.8642 0.7494 
 

Table 24. Objective and constraint values of the solutions obtained for the goals and 

weights vectors in Table 22. 

 

The solution is compared with the sought point in Table 25  and Table 26. 

 

Solution FNslst diff 
[decaN] 

Awing diff 
[m2] 

span diff 
[m] 

phi diff 
[deg] 

tuc diff 

 

Fuel diff 
[kg] 

BPR diff 
 

Point Nº1 +217.1170 +1.0000 -0.6967 -0.0022 -0.0016 -0.0362 -0.3000 
 

Table 25. Differences between the variable values of the explored designs and the sought point. 

 

Solution MTOW diff 
[kg] 

RA diff 
[NM] 

tofl diff 
[m] 

vapp diff 
[kts] 

vz_clb diff 
[ft/min] 

Kfn_cth diff 

 

Kff diff 
 

Point Nº1 +221.0364 -57.6746 +35.2027 -0.9581 +23.9473 -0.0050 -0.0002 
 

Table 26. Differences between the objective and constraint values of the explored designs 

and the sought point. 
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In this case, the additional pursuit of the second change objective (tofl) resulted in an 

over-attainment of the requested valued for Awing (+0.63%). Moreover, a considerable 

increment was necessary with respect to the sought values of FNslst (+1.74%) and 

MTOW (+0.27%), together with a significant reduction of 1.77% for RA. 

A third scenario was finally analysed in the light of those cases where the exploration of 

further solutions in the objective space areas with a low density of Pareto points is  

formulated as a design change problem. Let us thus assume that, containing as much as 

possible the design features of *x , the designer is interested in the computation of 

solutions in the neighbourhood of the point [81500 kg, 3300 NM] in the objective space 

(see Figure 63). The goals and weighting coefficients vectors can therefore be defined as 

follows: 

 

Parameter Goals Weighting Coefficients 

RA *
RAF = 3300 [NM] RAw = 0.005494    (1/182) 

MTOW *
MTOWF = 81500 [kg] MTOWw = 0. 005494    (1/182) 

tofl *
toflF = 1999.9888 [m] toflw = 0.082418    (1/12.133) 

vapp *
vappF = 119.5601 [kts] vappw = 0.082418    (1/12.133) 

vz_clb *
vz_clbF = 611.2451 [ft/min] vz_clbw = 0.082418    (1/12.133) 

Kfn_cth *
Kfn_cthF = 0.8692 Kfn_cthw = 0.082418   (1/12.133) 

Kff *
KffF = 0.7496 Kffw = 0.082418    (1/12.133) 

FNslst *
FNslstF = 12459.8829 [decaN] FNslstw = 0.082418    (1/12.133) 

Awing *
AwingF = 153.9723 [m2] Awingw = 0.082418    (1/12.133) 

span *
spanF = 39.3967 [m] spanw = 0.082418    (1/12.133) 

phi *
phiF = 26.6022 [deg] phiw = 0.082418    (1/12.133) 

tuc *
tucF = 0.0811 tucw = 0.082418   (1/12.133) 

Fuel *
FuelF = 16150.0362 [kg] Fuelw = 0.082418    (1/12.133) 

BPR *
BPRF = 7.35 BPRw = 0.082418    (1/12.133) 

 

Table 27. Goals and weighting coefficients vectors considered for the third hypothetic 

design change scenario. 
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The solutions obtained are shown in Table 28 and Table 29, and visualised in the 

objective space in Figure 64. 

 

Solution FNslst 
[decaN] 

Awing 
[m2] 

span 
[m] 

phi 
[deg] 

tuc 
 

Fuel 
[kg] 

BPR 
 

Point Nº1 12419.9317 155.2771 39.7979 26.6000 0.0806 16212.9448 7.3500 
Point Nº2 12399.0854 157.0000 38.7000 26.6000 0.0796 16177.7627 7.3500 
Point Nº3 12439.0820 156.4153 38.7225 26.6000 0.0798 16150.0000 7.0776 
Point Nº4 12430.8816 154.7818 38.7000 26.6000 0.0811 16292.5960 7.3265 
Point Nº5 12423.4814 155.3113 39.3226 26.9951 0.0804 16150.0000 7.3500 
Point Nº6 12425.4972 155.0310 39.8922 26.8793 0.0807 16197.8212 7.3066 
Point Nº7 12360.0000 157.0000 39.9000 26.6000 0.0795 16150.0000 7.3500 
Point Nº8 12421.0789 155.3455 39.9000 26.6000 0.0809 16284.3367 7.0500 
Point Nº9 12504.6958 156.8268 38.7000 27.6943 0.0830 16150.0000 7.3500 
Point Nº10 12428.1448 156.1230 39.2564 26.9765 0.0800 16150.0000 7.0500 

 

Table 28. Variable values of the solutions obtained for the goals and weights vectors in Table 30. 

 

Solution MTOW 
[kg] 

RA 
[NM] 

tofl 
[m] 

vapp 
[kts] 

vz_clb 
[ft/min] 

Kfn_cth 
 

Kff 
 

Point Nº1 81473.0253 3275.5760 1996.2084 119.1462 604.2699 0.8705 0.7500 
Point Nº2 81398.6873 3225.2458 1971.7620 118.4551 562.7572 0.8845 0.7499 
Point Nº3 81353.8309 3210.1270 1971.1925 118.6607 582.0925 0.8786 0.7499 
Point Nº4 81445.5907 3253.3927 2000.0336 119.2387 574.8333 0.8808 0.7499 
Point Nº5 81371.4209 3258.8218 1992.1079 119.1568 601.8176 0.8716 0.7500 
Point Nº6 81466.4735 3281.7970 1999.9834 119.2903 615.7182 0.8667 0.7500 
Point Nº7 81455.6452 3260.8663 1980.8984 118.5320 588.5861 0.8749 0.7496 
Point Nº8 81569.8768 3275.0031 2000.0353 119.1432 609.5826 0.8684 0.7506 
Point Nº9 81502.4854 3224.8870 1968.6395 118.8035 593.1720 0.8756 0.7959 
Point Nº10 81402.0466 3237.0355 1981.4789 118.8718 603.3069 0.8711 0.7500 

 

Table 29. Objective and constraint values of the solutions obtained for the goals and 

weights vectors in Table 30. 
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Figure 64. Identification of the obtained solutions in the objective space. 

 

Considering the three scenarios, it can be verified that the proposed relaxation approach 

for constraint handling allows the computation of points located in the vicinity of 

constraint limits. This is particularly evident for Kff. In some cases it led to the evaluation 

of points slightly infeasible (e.g. points Nº 2, 3, 4, and 7 in Table 29). In the current 

context, however, such constraint violation can be considered as a minor change 

propagation among constraints to allow the accommodation of required changes. Hence, 

the designer may permit a minor relaxation of particular constraints if one of the explored 

alternatives represents a promising solution.   

Ultimately, mention should be made of some design-variable values of the solutions in 

Table 28. Numerous points are located along or in the vicinity of the considered design 

sub-space bounds. Therefore, in the event none of the explored alternatives is considered 

to be satisfactory, it may be convenient, if possible, to relax the exploration design sub-

space before considering a reformulation of the goals vector.  
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6.6. Summary and Conclusions 

In this chapter, the integrated application of the three exploration methodologies 

proposed is shown. Their capabilities are demonstrated by taking into consideration a 

multi-objective optimisation problem with a test case provided by industrial partners and 

described in Section 6.2.  

The Adaptive Search Optimisation Method (ASOM) presented in Chapter 3 was firstly 

deployed in Section 6.3 to conduct an adaptive definition of the search region throughout 

the optimisation procedure. This allowed a controlled relaxation of the search region into 

feasible areas of the design space, as well as a partial exclusion of infeasible regions from 

the optimisation search. It has been shown that the resulting improvement of the Pareto 

front is local, due to the capture of optimal points located slightly beyond the initial 

variables bounds, as intended. Future work can be focused on the improvement of the 

Pareto front on a larger range of the criterion space, either through an optimal setup of the 

SPSA parameters, or via the development of further hybrid algorithms.  

In a second instance, the analysis of the ASOM results was conducted in Section 6.4 by 

means of the visual exploration methodology presented in Chapter 4. The graphical user 

interface prototype IEVI was deployed to demonstrate the interactive use of multiple 

integrated data views in addressing a number of common analysis tasks required for the 

assessment of optimisation results. The practical advantages in using the Filtering 

function were highlighted for the study of subsets of points corresponding to specific 

analysis criteria (e.g. satisfaction/activation/tightening of constraints, identification of 

optimal families of solutions). It was also shown that the trade-off study of optimisation 

results can be enhanced through the interactive selection of design points of interest, thus 

allowing both an individual detailed analysis of solutions, as well as the comparison of 

different alternatives. An example of the integration of discipline-dependent techniques 

was given with the visualisation of carpet plots in the SDTI. 

Finally, in Section 6.5, the capabilities of the third exploration methodology proposed in 

Chapter 5 were demonstrated with the same test case for three hypothetic design change 

scenarios. The use of the proposed visual exploration methodology to facilitate the 

definition of the design sub-space to explore was firstly illustrated. This can be 

potentially enhanced by directing future work efforts on the visualisation of the surrogate 
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models at hand, which would help the identification of promising design basins where to 

focus the whole exploration process. The search of additional design solutions was then 

concentrated on tackling each one of the scenarios, demonstrating the method capabilities 

in addressing the change of variables, objectives and constraints. An arbitrary example of 

the setup of the goals and weight coefficients vectors was provided in each case. The 

resulting explored sets of points indicate the different design alternatives to accommodate 

a desirable change. Their computation proved also the capabilities of the proposed 

relaxation approach for constraint handling in evaluating points located in the vicinity of 

constraint limits. 
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Chapter 7 

7 Summary and Conclusions 

 
7.1. Introduction 

This chapter concludes the main body of the thesis. A summary of the work is first 

provided in Section 7.2. The main contributions of research are then summarised in 

Section 7.3. The recommendations for future work are finally discussed in Section 7.4.  

 

 

7.2. Summary of Research 

The research presented in this thesis has been conducted to develop an effective design 

exploration methodology in the context of conceptual engineering design optimisation. 

Three specific needs have been identified, which led to the definition of the research 

objectives. 

Work was first concentrated on developing an effective visualisation methodology for the 

analysis and exploration of optimisation results. An approach based on the use of 

multiple data views was taken into consideration to enable the designer to address 

common data analysis scenarios occurring in deterministic and robust optimisation. To 
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this aim, a state-of-the-art investigation was firstly conducted to identify the most suitable 

visualisation techniques. A specific set of interactive visualisation interfaces was thus 

established to synergistically integrate both discipline-independent and discipline-

dependent techniques. Particular attention was focused on allowing the designer to gain 

insight into the problem at hand without the need to be an expert in numerical 

optimisation methods. The methodology was also intended to support the definition of 

optimisation architectures by building, debugging, and understanding the algorithms and 

models to be used. 

In a second stage, the research efforts were aimed at addressing other aspects of design 

exploration in engineering optimisation, which are mainly related to what-if scenarios. 

To support the formulation of optimisation problems, attention was focused on enhancing 

the statement of functional and design-variable constraints that may be considered as 

flexible to some degree or not straightforward for some reason, e.g. problem complexity 

or lack of knowledge. With respect to the variables bounds, it was demonstrated that even 

a minor relaxation of one design-variable constraint can potentially lead to a significant 

improvement of the Pareto front (Appendix B). In other cases, instead, computational 

efforts could be reduced by partially excluding infeasible regions of the design space via 

an adequate tightening of specific variables bounds. Similar considerations were also 

made with respect to the limits of functional constraints (Appendix C). To tackle such 

issues, the development of a numerical method for an adaptive formulation of functional 

and design-variable constraints was undertaken. 

Finally, an effective methodology to assist the introduction of changes affecting 

conceptual design was sought. It would provide a means to explore different design 

alternatives for accommodating changes deriving from unplanned iterations, which may 

arise because of the inherent iterative nature of design processes. Additionally, available 

prior computational analysis information should be reused to minimise computational 

efforts and time, especially when the whole design process has been disrupted until the 

change cycle is accomplished. To achieve this, research was centred on the development 

and integration of adequate methods from design optimisation to address three major 

issues: reuse and exploitation of prior evaluations, problem reformulation by considering 

the new design requirements causing the change, and efficient exploration of design 
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solutions representing the best trade-offs for change accommodation with minimum 

disruption to the product configuration.  

The development of the three methodologies was carried out by considering an analytical 

example. Their evaluation was conducted with an aircraft sizing test case supplied by a 

major airframe manufacturer, with the intent of demonstrating the applicability in 

addressing problems of industrial relevance.  

 

 

7.3. Contributions to Knowledge 

The main contributions of the present thesis to the research in engineering design can be 

summarised as follows: 

  

 A novel method for an adaptive formulation of design-variable constraints 

throughout the optimisation process. It enables a recurrent re-definition of any 

variables bounds on the strength of the analysis of the distributions of the feasible 

evaluations via ad hoc statistical criteria that do not require specific distributional 

assumptions for the design variables. This allows to both enhance the Pareto front 

computation through the exploration of further points initially not contained in the 

feasible design set, as well as to reduce the re-formulation iterations required for a 

correct statement of optimisation problems.  

 

 The introduction of a synergistic integration of suitable visualisation techniques to 

address common data analysis scenarios occurring in design optimisation. It 

allows an interactive analysis of large multidimensional datasets to effectively 

support the evaluation and comparison of results, the identification of points that 

best satisfy specific design criteria, and the development, debugging and 

understanding of algorithms and models. Different data perspectives are provided 

by combining discipline-independent and discipline-dependent techniques, 

without the need for the user to be an expert in numerical optimisation methods. 
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 A novel strategy to address design change problems in the context of conceptual 

design. The exploration of solutions that best balance the accommodation of the 

required change while limiting its propagation is achieved through the integration 

of key concepts from global attainment and Bayesian global optimisation 

methods. Furthermore, the use of surrogate models allows to retrieve and re-use 

any available prior computational analysis information.  

 

 The extension of the expected improvement criterion of Bayesian global 

optimisation methods for constraints handling. The evaluation of points located in 

the vicinity of constraint boundaries is possible by means of a local relaxation of 

constraints in proportion to the standard error associated with their prediction. 

 

 A computationally efficient method for the computation of objectives and 

constraints isocontours. By exploiting the principles and advantages of pattern 

search methods, no assumptions of differentiability are required, which makes the 

method well suited for applications where derivatives are not available and finite-

difference derivatives are unreliable. Furthermore, the application of the 

suggested approach generally shows a more efficient and accurate isocontours 

computation with respect to algorithms based on the evaluation of grid points 

obtained via a discretization of the design space. 

 

 

7.4. Future Work 

Future work can be directed on enhancing the capabilities of ASOM to allow an 

improvement of the Pareto front on a larger range of the criterion space. To achieve this, 

an adequate setup of the SPSA parameters, or the development of further hybrid 

algorithms may be considered.  

The proposed method for a local relaxation of soft constraints has been developed for 

single-objective optimisation problems. Suitable numerical strategies could be identified 

for its extension to the multi-objective case. Particular attention should be focused on 
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addressing those situations where the relaxation of a soft-constraint may lead to the 

improvement of one objective, but to the detriment of others.  

With respect to the present visualisation methodology for the analysis of optimisation 

results, it might be convenient to contemplate the possibility of partially allowing to 

change on-the-fly the formulation of robust objectives and constraints. This would be 

particularly advantageous for the visualisation of any RDO objective/constraint )(xh  

formulated by using loss or utility functions within a given distributional assumption, as 

suggested by Padulo [86]. The effects of considering a different satisfaction probability 

and alternative assumptions on the output distributions can thus be explored for any 

design solution through the re-estimation of the coefficient hk . 

Lastly, the proposed isocontours method could be extended to enable the computation of 

robust objectives and constraints isocontours. A potential strategy is via the integration of 

adequate uncertainty propagation algorithms which would allow to exploit the 

evaluations conducted during the Mesh Evaluation phase to estimate the propagation of 

input uncertainty to model outputs.  
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Appendix A         
 

Parallel Coordinates Plot and Scatter Plot Matrix 

 
This appendix is intended to provide a more exhaustive description and few examples of 

the two multidimensional visualisation methods integrated in the methodology proposed 

in Chapter 4 and implemented in the Integrated Exploration and Visualisation Interface 

(IEVI).  Further details can be found in the literature [46][50][120][125].  

To highlight their key features and capabilities, a dataset of 75 aircraft belonging to 11 

different categories and including 8 variables is considered. 

 

 

Parallel Coordinates Plot 

Unlike the traditional Cartesian-coordinate system in which the axes are represented 

mutually perpendicular, parallel coordinates plots are based on the idea of representing 

the dimensions by a set of vertical parallel axes, as many as the dimensions of the input 

vectors and usually equally spaced [46][125]. Such technique is particularly useful for the 

visualisation of high-dimensional data on a simple two-dimensional plot, representing all 

the parameters simultaneously on the same graph: a point  P є Rn is visualised as a 

polyline characterized by n vertices located on the vertical axes, with the position of the i-

th vertex established by the i-th coordinate of the point. Consequently, plotting an entire 

dataset of multidimensional points will produce a graph consisting of as many polylines 

as the number of samples, each one made up of (n - 1) segments.  

This technique provides a means for clustering, enabling the users to identify subsets of 

samples which are characterized by common features (e.g., all those samples whose 

values for one or more dimensions are within specific ranges) or the relationships existing 

among the design parameters.  
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As for most visualisation techniques, data normalization is a simple but very important 

aspect that must be considered to ensure that all the dimensions have the same weight in 

the plot. In those cases where the considered parameters have values within ranges that 

are very different from one another, normalisation of input data allows to prevent that the 

axis having the highest values turn out to be predominant on the plot, making the 

visualisation of other parameters not visible or clear. 

For large datasets, the corresponding parallel coordinate plot may be not clear, and it 

could be extremely difficult to identify any data structure or pattern because of the 

polylines overlapping. In order to tackle this problem, Young et al. [125] suggest to 

repeatedly apply the following actions: 

 

 Brushing the plot, searching data subsets characterized by a common trace-line 

profile; 

 Changing the colour of the polylines belonging to the same subset, in order to 

distinguish them from the other subsets; 

 Hiding the identified subsets during the analysis of the remaining polylines, so 

that the search of other more hidden subsets can be carried out more easily by 

reducing the amount of trace lines to analyse. 

 

This three-step process should be performed several times until all the clusters can be 

identified within the whole input data.  

Figure 65 illustrates the parallel coordinates visualisation of the multidimensional dataset 

mentioned earlier, giving a practical example of the analysis actions described above. The 

parameters names are encoded by the table of Figure 67, and data have been normalised 

(scaling the values of each parameter within the range [0 1]) before being plotted.  
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Figure 65.  Parallel coordinates plot of a dataset of 75 aircraft belonging to 11 

different categories and considering 8 parameters, which are encoded by the table of 

Figure 67 along with their corresponding value ranges. 

 

 

The analysis of Figure 65 is clearly complex and only a limited amount of information 

can be conveyed to the user (e.g., the range of values and few relationships among the 

parameters displayed in the plot). However, the entire data analysis can be simplified by 

performing the three analysis techniques earlier mentioned, as shown in Figure 66: 
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Figure 66. Graphics enhancement obtained by performing the above-described 

analysis techniques for the analysis of parallel coordinate plots. The identification 

of the aircraft categories is depicted through the colour of the polylines. 

 

The individual visualisation of the different categories within the input data allows to 

highlight the features that are inherent to each subset, as illustrated in Figure 67. 
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Parallel Coordinates Plot and Scatter Plot matrix 
 

 173 

  

Axis Parameter Range 
X1 Wing Span [5.7 - 79.8] [m] 
X2 Length [4.6 - 79] [m] 
X3 MTOW [181 - 583000] [kg] 
X4 Empty Weight [88.5 - 286000] [kg] 
X5 Max Speed [0.06 – 2.83] [mach] 
X6 Max Climb Rate [300 - 65000] [ft/min] 
X7 Ceiling [6000 - 68900] [ft] 
X8 Max Range [129 - 14177] [km] 

Figure 67. Individual visualisation of the different aircraft categories and code of the 

parameters names displayed in Figure 65 and Figure 66. 
 

 

Scatter Plot Matrix  

A scatter plot is a graph in which the observations for a pair of parameters are shown in a 

bidimensional space via axes drawn perpendicularly to each other (Cartesian 

coordinates). The resulting scattering of points allows the user to reveal any relationship 

between the parameters under study, distributions shape, possible data patterns, clusters 

and outliers.  

A scatter plot matrix is a square and symmetric matrix made up of bidimensional scatter 

plots showing the relationship between every pair of parameters of a multidimensional 

database [125][50]. For a k-parameters dataset the plot contains k rows and columns, each 

one representing a different dimension. The cell identified by the intersection of row i and 

column j contains the bivariate plot having the i-th parameter on the vertical axis and the 

j-th parameter on the horizontal axis. The scatter plot matrix is therefore symmetric about 
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its diagonal: the panel j-i has the same parameters of the panel i-j, but with their relative 

axes reversed.  

This method is a very simple technique to visualise and analyse datasets containing a 

large amount of samples and several parameters. The systematic visualisation format of 

the k(k-1) distinct two-dimensional views through the off-diagonal cells makes the 

identification of bivariate relationships within multivariate data easier: all the 

relationships of the i-th parameter with all of the other dimensions are represented in the 

panels contained within the i-th row (or column) of the scatter plot matrix.  

Since each pair of parameters is represented twice within two different cells, one above 

and one below the main diagonal, it can seem that the scatter plot matrix provides 

redundant information. An alternative is the so-called half-matrix version, or draftsman’s 

display, which visualises only the off-diagonal bivariate plots above or below the main 

diagonal. In contrast to the main advantage of gaining a more concise data visualisation, 

there are two main drawbacks with respect to this variant. First, all the relationships of a 

particular parameter are not any more displayed only on the corresponding row or 

column, with the exception of the first and last parameters (represented by the plots on 

the last column and the first row in the case of the upper triangular matrix). Second, 

visual processing of information can be influenced by the disposition of the parameters in 

the plot axes. For example, in some occasions it can be easier to identify a relationship 

between two parameters Xi and Xj when they are represented on the vertical and 

horizontal axis respectively rather than when their positions are reversed.   

 

According to the user’s analysis objectives and personal customisation, the basic scatter 

plot matrix can be modified and enriched by displaying further information [125]. 

Common approaches are based on the use of the diagonal cells to display one-

dimensional data features (e.g., univariate distributions).  

However, too much information or graphical enhancements can overshadow features of 

the data, overloading the information-processing skills of the user. It is recommended to 

represent data without excessive information, looking for a data visualisation as simple as 

possible.  



Parallel Coordinates Plot and Scatter Plot matrix 
 

 175 

Theoretically, there is not any limitation as regards the dimension k of an input dataset 

visualised by a scatter plot matrix. Simply, the larger is k the larger is the matrix. 

However, even if all the data is visualised simultaneously in a unique plot, it can be very 

difficult to manage all the information displayed. For this reason, it is recommended to 

consider at most 8-10 parameters. A possible solution to increase such number could be 

represented by an interactive graph which, for example, magnifies and furnishes a greater 

amount of information about any cell selected by the user. Figure 68 illustrates an 

example of a potential user interface implemented on the basis of such idea. 

Figure 68. A possible interactive interface in which any bivariate plot selected by 

the user is magnified below the main diagonal. This example is also representative 

of those situations in which the user may be interested in identifying the equation 

which best describes the overall pattern of the relationship between two parameters 

(e.g., linear, quadratic, cubic, exponential, sinusoidal, etc.) [125]. 
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Appendix B         
 

An Example of the Effects of Correcting the 

Search Region on the Optimal Solutions Set 

 
The choice of the aircraft layout during the conceptual phase is crucial for the initial 

weight prediction, whose minimisation is a paramount issue because of its impact on 

numerous disciplines (e.g. aerodynamics, propulsion, structures) and on total operating 

costs. A rough weight breakdown of a conventional design of a medium subsonic 

transport aircraft [113] is shown in Table 30 as a function of MTOW: 

OEW 61% MTOW 
Payload 22% MTOW 
Fuel 17% MTOW (5% reserve, 12% trip fuel) 

 

Table 30. Typical breakdown of a conventional design of a medium subsonic transport 

aircraft. 

In general, aircraft costs are associated with the operational empty weight (OEW)15. It is 

evident that the effort in minimising MTOW and maximising the range (fuel) for a 

constant payload is an emblematic example of a multi-objective optimisation with 

conflicting design objectives. Its solution relies on the search of aircraft configurations 

for which a reduction in MTOW can be obtained by reducing mainly the OEW in order to 

limit significant detriments on fuel, guaranteeing at the same time the specified payload. 

The following example, representative of the abovementioned problem, highlights the 

importance of choosing adequately the search region for an optimisation procedure. For 

the test case described in Chapter 6 two optimisations where conducted by considering 

                                                   
15 For example, the estimated cost for a jet-propelled transport aircraft for the 1973-1975 period was 

approximately 220-265 dollars per kg of OEW [113]. 
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the sets of design-variable constraints described in Table 31. To show how sensible 

optimal results can be, depending on the choice of the design-variable constraints, the 

search regions taken into consideration for the two optimisations are exactly the same 

except for the lower bound of the variable Awing, which has been relaxed of 1.31%. The 

corresponding Pareto fronts obtained are depicted in Figure 69.  

 

 
Figure 69. Pareto fronts of Optimisation Nº1 and Optimisation Nº2. The two optimisation 

procedures were carried out within similar search regions, whose settings are specified in 

Table 31. 

 

Optimisation Nº1 Optimisation Nº2 Input Variable xlb xub xlb xub 
FNslst [decaN] 12500 13000 12500 13000 
Awing [m2] 152 158 150 158 
span [m] 30 38 30 38 
phi [deg] 28 32 28 32 
tuc 0.07 0.1 0.07 0.1 
Fuel [kg] 17000 18000 17000 18000 
BPR 5 8.5 5 8.5 
Mach_crz 0.7 0.9 0.7 0.9 
 

Table 31. Variables bounds setup for Optimisation Nº1 and Optimisation Nº2. 
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If the designer is particularly interested in minimising the MTOW rather than maximising 

the range in order to cut costs, s/he would consider the points placed in the lower left-

hand corner of the graph. In this perspective, at a first sight it may not appear evident 

there is any significant improvement by considering the optimal solutions of Optimisation 

Nº2 in terms of MTOW reduction. For example, by considering the extreme points of the 

two optimal sets, the MTOW difference is approximately 125 kg, which is a cut of only 

0.15% of the value obtained via Optimisation Nº1. However, for the same points, the 

increase in range for an equal MTOW is 180-190 NM, which is a considerable increase 

of 6.78-7.15% on the values of Optimisation Nº1. 

Another fundamental issue in defining the search region is the coupling amongst all the 

design variables taken into consideration. Generally, the correction of the bounds on a 

variable affects the distribution of the feasible solutions set on the remaining variables. 

This is shown in Figure 70, where the distributions of all the design parameters 

considered in the two optimisations described above are compared. Considering the 

distributions of the points evaluated during the Optimisation Nº1, it is evident that in the 

case of the variable Awing the great majority of feasible points are concentrated near the 

lower bound, whereas occasional points have been evaluated elsewhere. It is therefore 

natural to consider the possibility that further feasible (potentially optimal) points can be 

obtained by relaxing the constraint on the lower bound of this variable. This is precisely 

the motivation behind the setup of Optimisation Nº2, moving only the lower bound of 

Awing from 152 to 150 [m2]. The resulting effects on the new distributions for the other 

variables are shown in the same figure. Relevant consequences, for example, are evident 

on Fuel and FNslst, whose distributions now present new peaks in the central area of the 

respective search regions. A relevant effect is also evident in the neighbourhood of the 

Awing upper bound.  
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Figure 70. Comparison of the design parameters distributions of Optimisation Nº1 and 

Optimisation Nº2, where the entire set of evaluated points and the set of feasible points are 

represented in red and black respectively.  The green lines represent the variables bounds 

considered throughout the optimisation procedures; whereas the dashed blue lines identify 

the lower and higher feasible sampled values of each variable distribution, which in some 

cases are not visible. It is important to notice how, normally, such lines coincide. 

Nonetheless, it may happen that either the sampled set of feasible points turns out to be 

narrower than the imposed corresponding search region (variable tuc and Mach_crz), or 

the optimiser occasionally samples design solutions located beyond the variables bounds 

(variable Awing). 
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Appendix C         
 

An Example of the Effects of Relaxing a Soft 

Constraint on the Optimal Solutions Set  

 
Take-off field length (tofl) is one of the critical performance constraints of aircraft design. 

Due to its direct influence on the aircraft configuration this is generally part of the initial 

design specifications. The enforcement of a certain take-off field length may dictate the 

aircraft wing area, the size of the engine required, or the performance of the high-lift 

system.  

In terms of airworthiness regulations, one of the most important design criteria is given 

by the Balanced Field Length (BFL) that expresses the safety requirements to account for 

the event of one-engine-out take-off. Such a performance parameter is a function of 

brake-release gross weight and ambient conditions (temperature and airport altitude). 

Therefore, the same aircraft can be operated in airports with different runway lengths and 

ambient conditions by adequately setting its take-off weight (payload and fuel). 
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Figure 71. F.A.R. take-off runway length requirements (standard day) –model 777-200 

(baseline airplane) [1]. 
 

A more stringent constraint on take-off field length may be considered when a gain in the 

number of airports from which the airplane is able to operate is sought, thus increasing its 

operational flexibility and consequently its market potential. From an economical 

perspective, the runway length requirement comes to be a trade-off. An excessive take-

off field length can result on a considerable reduction of the available airports, whereas 

its minimisation can significantly raise design costs. Considering runways information for 

UK, French and German major airports, the 50 cumulative percentage corresponds to a 

field length of around 2100 m, as shown in Figure 72. 
 

 
Figure 72. Distribution of field lengths at major European airports [51]. 
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During the early stages of design, key criteria for the requirements specification might be 

given by non-technical considerations such as the commercial transport market outlook, 

in particular by examining long-term forecasts for airplanes demand and market growth 

rates. For example, according to the market predictions by Boeing shown in Figure 73, 

the sectors of narrow-body seem to gain more and more importance in the commercial 

transport of next generation. This may happen both to sustain the expected increment of 

number of passengers (~5% per year) and because of the fleet reshaping already stared by 

many airliners, which are investing on new aircraft that match more closely the routes 

they fly in order to reduce the costs of old and low-efficient airplanes associated with 

today’s high fuel prices.  
 

 
Figure 73. Future distribution of flights [15]. 

 

This example is aimed at highlighting the consequences that may potentially arise when 

dealing with non-rigid constraints. The scenario under analysis is the field performance 

specification for a conceptual design of a narrow-body commercial aircraft. For 

comparison purposes, the average field lengths required by some current narrow-body 

aircraft are provided in Table 32.  
 

Aircraft Avro 
 RJ-85 

Embraer 
RJ 135ER 

Airbus 
A 318 

Airbus 
A 321 

Boeing 
737-800 

MD 
82 

Take-Off Field 
Length (tofl) [m] 1564 1700 1670 2220 2100 2315 

 

Table 32. Narrow-body aircraft field performance [49][64].  
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Considering again the test case described in Chapter 6 two optimisations where 

conducted. They will be here referred as Optimisation Nº3 and Optimisation Nº4. The 

two problem formulations are the same except for the limit values established for the 

take-off field length constraint, which has been relaxed of 100 meters on Optimisation 

Nº4. The Pareto fronts obtained in both cases are shown in Figure 74. From the analysis 

of the results it turns out that for all the optimal points of Optimisation N º3 the tofl 

constraint can be assumed to be active, while this happens for less than 40% of the 

optimal solutions found in Optimisation Nº4. Supposing again that the designer is more 

interested in minimising MTOW rather than maximising range, s/he will be more attracted 

by the points placed in the lower left-hand corner of the graph. The main benefits 

resulting from a relaxation of the tofl constraint regard the points of Optimisation Nº3 

characterized by a MTOW within the range [82300-82600] kg. The MTOW reduction for 

an equal Range obtained for those points via the Optimisation Nº4 is about 300 kg (-

0.36%), and the gain in Range for an equal MTOW is 80-90 NM (+2.45-2.8%).  
 

 
Figure 74. Pareto fronts of Optimisation Nº3 and Optimisation Nº4. Displayed besides 

each one of the considered points of Optimisation Nº4 is the corresponding tofl value. 
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Mention should be made of the fact that for the optimal solutions obtained from 

Optimisation Nº4 and featured by a lower MTOW, tofl is not an active constraint. 

Although in the problem formulation it has been relaxed from 2000 to 2100 meters, the 

Pareto points in the lower left-hand corner of the plot present an increment of 50-60 

(+2.5-3%) meters with respect to the results of Optimisation Nº3.  
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Appendix D         
 

Engineering Change Problems that can 

Potentially Affect Aircraft Conceptual Design  

 
 

Provided in this section are a number of engineering change scenarios triggered by 

unplanned design iterations with a potential impact on the conceptual stage of aircraft 

design. Some examples of real-life problems faced by the aeronautical industry are also 

provided. 

 

- Customers’ correction of products requirements. Engineering changes may be 

required to adapt the design to new needs and requirements specified by the 

customer. This scenario can turn out to be particularly problematic when there are 

multiple customers, each with a different set of requirements [28]. An example is 

the Airbus A350-800 concept, which was revised in 2009 to be developed as a 

shorter version of the initial A350-900 variant because of the airlines pressure for 

enhancing commonality capabilities and range [60]. 

 

- Manufacturing specifications. A considerable number of design changes 

generally arise during a preliminary determination of manufacturing issues [33]. 

Modifications are triggered by different design revisions aimed at finding an 

agreement between designers and production staff. All this can turn out to be even 

more complicated when multiple assembly lines and factories are involved. For 
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the production of the Concorde, for example, various issues arose from the fact of 

having two assembly lines, one in Britain and one in France, each with different 

production practices [83]. 

 

- Mismatches between expected and real performances. The need of introducing 

modifications in the design can derive from testing procedures, which may reveal 

the non-satisfaction of expected performances. An example is given by the 

development of the Su-27, which required several redesign actions after its 

expected air-superiority was not confirmed by comprehensive analyses of 

performance [112].  

 

- New legislations and regulations. The introduction of new legislations and 

regulations can be one of the reasons of design change. Stricter emission 

regulations have, for instance, been considered by aircraft manufacturing and 

airlines industries, the scientific community, and governmental bodies because of 

the steady increment of fuel use and total emissions in air transport [65]. Stricter 

regulations have also been introduced in the last thirty years on aircraft noise, in 

and around airports, and it is expected to continue over the next twenty years [14]. 

With respect to the latter, for example, one of the most difficult redesign 

challenges encountered by the engineers in the development of the Concorde was 

the noise reduction of the Olympus 593 engines, which was dictated by more 

stringent regulations for subsonic aircraft introduced since the beginning of the 

project [83].  

 

- Competitors’ products. Design changes may be required after additional 

information or considerations about competitors’ products come to light.  

Representative of this case is the strategy of Airbus for gaining a part of Boeing 

Co.’s home market [94]. The decision of fitting the so-called sharklets to the 

wings of the largest of Airbus’ four narrowbody models (A321) was taken to 

increase its range, which was shorter than its competitor Boeing 757, thus 

expecting an increment of 100 nautical miles (or 1,100 payload pounds). Another 
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example is given by the A380-800 variant, whose weight and performance gain 

came from customers’ requirements against its Boeing competitor [62].  

 

- Marketing strategy reasons. Marketing strategy refinements can also result in 

design changes. One of the marketing strategies nowadays adopted by many 

engineering companies is based on commonality among its aircraft to reduce 

design and maintenance costs. In some cases this approach is undertaken by 

incorporating minor changes to an existing product, rather than developing an 

optimised variant. With respect to the second member of the A350 family, for 

instance, a number of customers endorsed the decision of developing a shorter 

variant of the A350-900 with enhanced commonality capabilities instead of 

optimising its design around reduced weights [61].  

 

- Inadequacy of available design methods. In some cases it may happen that 

adequate methods and tools for the analysis and development of specific design 

aspects are not available, especially when addressing unconventional designs. A 

clear example was the design of the Concorde wing, which required thousands of 

hours of model testing in wind tunnels and flight testing to reinforce the 

inadequate theoretical methods that were available. This, coupled with the 

complicated and conflicting requirements to satisfy, determined the incorporation 

of continuous aerodynamic improvements up to a late stage of the design through 

a series of changes in leading-edge camber, plan-form, and overall camber and 

twist [83]. 


