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Abstract

From molecules to living organisms and from atoms to planets a variety of physical phe-

nomena operate at different temporal and spatial scales. Understanding the nature of those

phenomena is crucial for advancing new technologies in many disciplines. In micro and

nanofluidics as the operational dimensions are downsized to smaller scales the surface-to-

volume ratio increases and the surface phenomena become dominant. Numerical modelling

is the key for obtaining a better insight into the processes involved. The Achilles heel of

fine grain microscopic numerical simulations is their computational cost. Simulating a

multiscale phenomenon with an accurate microscopic description is extremely demand-

ing computationally. On the contrary, simulations of multiscale phenomena based only on

macroscopic descriptions cannot fully capture the physics of the multiscale systems. In

order to confront this dilemma multiscale frameworks, called hybrid codes, have been de-

veloped to couple the microscopic and macroscopic description of a system and to facilitate

the exchange of information.

The aim of this research project is to establish and implement a robust hybrid molecular-

continuum method for micro- and nano-scale fluid flows. Towards that direction a hybrid

multiscale method named as Point Wise Coupling (PWC) has been developed. PWC aims

to circumvent the limitations of the existing hybrid continuum/atomistic approaches and

deliver a modular and applicable methodology. In the PWC, the whole domain is covered

with the macroscopic solver and the microscale model enters as a local refinement. Ad-

ditionally, numerical techniques based on neural networks are employed to minimise the

cost of the molecular solver and reduce the outcomes’ variability induced by the fluctuating

nature of the atomistic data.

Molecular studies have been performed (i) to obtain a better insight of the interfacial

phenomena in the solid/liquid interfaces, and (ii) to study the parametrisation of the molec-

ular models and mapping of atomistic information to hybrid frameworks. Specifically, the

impact of parameters, such as surface roughness and stiffness, to slip process is studied.

PWC framework has been employed to study a number of fundamental test cases in-

cluding Poiseuille flow of polymeric fluids, isothermal slip Couette flow and slip Couette

flow with heat transfer. Attention is drawn to the boundary condition transfer from the

continuum solver to the atomistic description. In the performed hybrid studies the effects

of the numerical optimisation techniques (linear interpolation, neural networks) to simu-

lations’ accuracy, stability and efficiency are studied. The outcomes of the simulations

suggest that the neural networks scheme enhance the simulation’s efficiency by minimising

the number of atomistic simulations and at the same time act as a smoothing operator for

reducing the oscillations’ strength of the atomistic outputs.
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C H A P T E R 1

Introduction

1.1 Micro and Nano flows

The study of fluids in channels with dimensions in the micro- and nano-scale range, known

as micro and nanofluidics, have emerged as an effective and promising new field over the

last decade [1]. Devices developed at these scales have been utilised for various appli-

cations including bioengineering and chemistry [2–5]. The study of flows in micro and

nanoscales is anticipated in the near future to have great impact in the design of high

through-put devices [2, 3].

Due to the small scales involved and the high surface-to-volume ratio, the phenom-

ena observed inside micro and nanoscale devices present unique characteristics and major

differences compared to large scale ones. Thence, the understanding of the phenomena

in micro and nanoscale flows, as well as efficient and realistic modelling of those, is of

paramount importance for optimal designs of devices operating at these scales [6]. Nu-

merical experiments can be directly utilised to guide functionality-oriented designs and

therefore optimise the overall design process [1, 7, 8]. The flow in a variety of microme-

chanical (MEMS) systems, like combustors, valves, nozzles, turbomachines, etc, cannot

be fully predicted by continuum flow models, like the Navier-Stokes equations with no-

slip boundary conditions at the solid-liquid interface [6]. As the dimensions of one system

shrink to smaller scales, the assumptions of the continuum approximations break down and

highly sophisticated numerical approaches have to be adopted.

1.2 Modelling Approaches

From molecules to living organisms and from atoms to planets a variety of physical phe-

nomena operate at different temporal and spatial scales. Understanding the nature of these

1



1.2 Modelling Approaches 2

Figure 1.1: Modelling approaches at various spatial and temporal scales

phenomena is crucial for advancing new technologies in many disciplines. Even from the

ancient years several theories, to explain the initiative processes of the multiscale phenom-

ena, existed. In ancient Greek philosophy there were two opposite views about the nature of

these phenomena, the discrete, and the continuum. Aristotle was the representative of the

continuous theory and Democritus of the atomistic one. In modern physics both views have

been reconciled by considering the continuum approach as average of discrete quantities as

atoms or molecules.

It is possible to identify two main modelling strategies for transport processes inside

micro and nanofluidic devices. The first one is the continuum level modelling based on

equations of continuum mechanics and the second one is the molecular level modelling

based on the equations of motion for individual particles (see Figure 1.1). The two ap-

proaches are separated in length and time scales and the choice of the most suitable one

depends on the flow characteristics and the level of detail required [8, 9].

While both the continuum and molecular level modelling is understood quite well, a

significant modelling challenge is associated with physical phenomena, such as dynamic

melting or strong shear localisation [10], which cannot be entirely addressed within the

scope of either continuum or molecular approach. In the biomedical area, additional chal-

lenges are associated with applications involving complex macromolecules. The similarity

in dimensions between micro and nanofluidic devices and biomolecules, such as DNA or

RNA, opens new perspectives in disciplines such as genomics or proteomics [3]. However

the transport of complex macromolecules with low number densities [11, 12] occur in a

transitional regime which cannot be addressed with either the continuum or the molecular

description. In this case the continuum description fails due to the small scales involved



1.3 Hybrid atomistic/continuum methods 3

while purely molecular description cannot be applied due to the excessive computational

requirements associated with the complexity of the molecules in question.

To circumvent these issues a number of hybrid multiscale modelling approaches has

been developed [13–15]. These approaches allow selective or blended application of both

molecular and continuum descriptions simultaneously [9, 13]. These methods include, in

general, continuous two-way exchange of information between continuum level and molec-

ular level models.

1.3 Hybrid atomistic/continuum methods

Modelling micro and nanofluidic devices presents significant difficulties due to the inaccu-

racy of the continuum models and inefficiency of the molecular ones. In order to address

this challenge multiscale hybrid frameworks have been developed to couple the micro-

scopic and macroscopic descriptions of a system and facilitate the exchange of informa-

tion. Hybrid methods aim to bridge the gap between the macroscopic and microscopic

length scales and provide a unifying description of fluid flows from nanoscale to larger

scales.

Multiscale modelling techniques can be broadly classified into the following groups:

• Geometrical Coupling [13, 14, 16–24]

• Embedded Coupling [10, 25–31]

Geometrical coupling is a spatial multiscale approach. It exploits the fact that the con-

tinuum equations are valid in large regions of the system, but fail to fully describe the

phenomena in a particular area. The domain can then be decomposed into two distinct re-

gions, with one region described by a continuum model and another, by a molecular model.

The main challenge is associated with the development of algorithms aiming to facilitate

the information exchange between the molecular and continuum regions [9, 13, 16]. The

solution in each domain is computed independently by the corresponding method and each

method will provide an appropriate boundary condition for the other through a hybrid so-

lution interface (HSI). The role of the HSI is to establish and maintain the communication

between the two regions and to unify the domains into one single physical space. The ad-

vantage of geometrical coupling is that the computationally expensive molecular model is

applied within a small region of the overall computational domain, whereas the majority of

the domain is treated by a continuum solver, which is several orders of magnitude faster.

The embedded methods present an alternative approach to spatial and temporal decou-

pling [32]. In the embedded schemes the whole domain is resolved with the macroscopic

solver and the microscopic model enters as a refinement to obtain macroscopic properties.
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The continuum solver advances the solution in the entire domain and the molecular sim-

ulations are used to provide data required by the continuum solver. The development of

embedded schemes has been motivated by the time scale barriers that are introduced in the

geometrical coupling.

1.4 Aim and Objectives

The aim of this research project is to establish and implement a robust hybrid molecular-

continuum method for micro- and nano-scale fluid flows. The main objectives are:

• Provide an overview of the existing hybrid frameworks and acknowledge their limi-

tations

• Develop a hybrid molecular/continuum framework to overcome the deficiencies of

the existing schemes

– Develop a framework to circumvent the time scale constraints

– Develop a numerical optimisation procedure to further reduce the cost of the

molecular solver

– Verify the new framework in standard flow problems and assess its performance

in terms of stability, accuracy, physical consistency and efficiency

• Enhance our physical understanding regarding solid-fluid interactions

– Study transfer phenomena in solid-liquid interfaces through molecular and hy-

brid numerical modelling

1.5 Publications

During the period of the PhD project a book chapter and several journal and conference

papers have been written.At this point it has to be mentioned that this work has been sup-

ported in part by the European Commission under the 6th Framework Program (Project:

DINAMICS, NMP4-CT-2007-026804), which is greatly acknowledge.

• Book chapters

– D. Drikakis, N. Asproulis, E. Shapiro and M. Benke, Computational Strategies

for Micro and Nanofluid Dynamics, Book on "Microfluidic Devices in Nan-

otechnology: Current Status and a Future Perspective" (Ed. C. Kumar), John

Wiley, 2009.
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• Journal papers

– N. Asproulis and D. Drikakis, Materials Modelling using Neural Networks,

Journal of Computational and Theoretical Nanoscience 6(3), 514-518, 2009.

– N. Asproulis, M. Kalweit, E. Shapiro and D. Drikakis, Mesoscale flow and

heat transfer modelling and its application to liquid and gas flows, Journal of

Nanophotonics 1(3),031960-031975, 2009.

– N. Asproulis and D. Drikakis, Surface roughness effects in micro and nanoflu-

idic devices, Journal of Computational and Theoretical Nanoscience, 2009 (in

print).

– D. Drikakis and N. Asproulis, Multiscale Computational Modelling of Flow

and Heat Transfer, International Journal for Numerical Methods for Heat and

Fluid Flow, 2009 (in print).

• Conference papers

– N. Asproulis, E. Shapiro , M. Kalweit and D. Drikakis, Multiscale modelling

for flows and materials, in Cranfield Multi-Strand Conference, Cranfield, 2008.

– N. Asproulis, M. Kalweit and D. Drikakis, A hybrid molecular continuum method

using point wise coupling, in Sixth International Conference on Engineering

Computational Technology, (Eds. B. Topping and M. Papadrakakis), Civil-

Comp Press, Athens, September 2008.

– M. Kalweit, N. Asproulis, and D. Drikakis, Nanofluidic applications of hy-

brid molecular-continuum methods, in 1st International Nanotechnology Con-

ference, Albany, New York, September 2008.

– N. Asproulis, M. Benke, M. Lai, E. Shapiro, D. Drikakis, et al. Modelling

approaches for micro- and nanoscale diffusion phenomena, in 1st International

Nanotechnology Conference, Albany, New York, September 2008.

– N. Asproulis, M. Kalweit, E. Shapiro and D. Drikakis, Mesoscale flow and heat

transfer modelling and application to liquid and gas flows, in Nanoscience and

Nanotechnology Conference, Rome, October 2008.

– N. Asproulis, M. Kalweit and D. Drikakis, Hybrid molecular-continuum meth-

ods for micro- and nanoscale liquid flows, submitted to 2nd Micro and Nano

Flows Conference, Uxbridge, UK, September 2009.

– N. Asproulis and D. Drikakis, Thermal interaction effects in micro and nanofluid

flows, in 1st International Conference on Computational Methods for Thermal

Problems, Naples, September 2009.

– D. Drikakis and N. Asproulis, Multiscale Computational Modelling of Flow

and Heat Transfer, in 1st International Conference on Computational Methods

for Thermal Problems, Naples, September 2009.
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1.6 Thesis Overview

Chapter 2 provides a description of the continuum level modelling along with the underly-

ing equations and family of methods. It is followed by a description of molecular dynamics

and its main interaction potentials and boundary conditions. Furthermore, this chapter in-

cludes a review of the current status of the hybrid molecular-continuum frameworks and it

concludes with a description of neural networks and genetic algorithms.

Chapter 3 describes the developed multiscale framework named as Point Wise Cou-

pling (PWC). The basic idea of the PWC is to perform MD simulations on the fly to esti-

mate parameters needed for the continuum solver. PWC can be employed to study prob-

lems were the boundary conditions and/or constitutive relations are not explicitly known. A

numerical optimisation procedure that has been developed to minimise the cost of the atom-

istic solver is also presented. Two different implementations of the optimisation procedure

are discussed (i) the Linear optimisation and (ii) the Neural Netowrk optimisation.

Chapter 4 includes the molecular studies performed to obtained a better insight of (i)

the interfacial phenomena in the solid/liquid interfaces, (ii) the applicability of techniques

like Neural Networks in the context of molecular dynamics and (iii) the parametrisation of

molecular models and mapping of atomistic information in the hybrid frameworks.

Chapter 5 includes the performed hybrid studies. The first test case studies the applica-

tion of the various techniques for the transfer of boundary conditions from the continuum

description to the atomistic model. The next cases include coupled simulations aiming to

study the applicability and efficiency of PWC along the developed numerical procedures.

Chapter 6 presents the conclusions drawn from this research project and possible future

research directions
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Modelling at multiple scales

2.1 Introduction

The first section of this chapter introduces the continuum level modelling which is based in

the numerical solution of the Navier-Stoke equations. The underlying equation of motion

and the basic family of methods applied are described. In the next section a description of

the molecular models and particularly of molecular dynamics (MD) is provided. The main

interaction potential, boundary conditions and integration algorithms are presented. After

the description of the atomistic models a detailed review of the current status-of-the-art

regarding the hybrid molecular-continuum frameworks is given. The two main approaches

(i) geometrical coupling and (ii) embedded coupling are discussed. The chapter concludes

with a description of the numerical tools, neural networks and genetic algorithms, that have

been employed in the context of the current study.

2.2 Continuum modelling

Continuum level modelling has been historically the dominant approach in fluid flow stud-

ies. Continuum level modelling has been successfully applied to an overwhelming number

of engineering problems including problems related to micro flows (e.g. [33, 34]). The

main component of continuum level fluid flow modelling is the numerical solution of the

Navier-Stokes equations, however additional sets of equations may be required in order to

address various phenomena in microfluidics. For example Navier-Stokes can be coupled

with heat transfer or Poisson-Boltzmann equations to study thermal transport and electroki-

netic flows respectively [8, 11]. However, as the dimensions of a system become smaller,

the continuity assumption breaks down and the continuum models fail to fully capture the

physics of the fluid flow [35, 36].

7
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The scope of the current section is to provide an introduction to the continuum level

modelling. The main aim is to assist the following description of the multiscale models,

rather than to present a detailed review of the continuum level numerical tools and methods.

Further information about continuum level modelling can be found in a number of reviews

and books published over the last decade, for example [37–41].

Governing Equations

The Navier-Stokes equations governing the fluid flow from the continuum perspective com-

prise conservation laws for mass, momentum and energy. The conservation of mass for

each component/specie of the flow is expressed through the continuity equation, which can

be written for a control volume V with the surface S characterised by the normal vector n

as
∂

∂t

∫ ∫ ∫

V

ρdV = −
∫ ∫

S

ρ (u · n) dS + Rm, (2.2.1)

u where ρ and u denote the density and the velocity of the fluid respectively. The first

term on the right hand side represents the flux of mass through the surface of the control

volume and Rm is the source term corresponding to production/destruction of mass. While

in a single component flow the source term is zero, it can be used to describe the mass

production due to chemical reactions and phase transfer in multispecies and multiphase

flows (see, for example, [42, 43]). The conservation law for the momentum relates the

change of the momentum to the total force acting on the control volume

∂

∂t

∫ ∫ ∫

V

ρudV = −
∫ ∫

S

ρu (u · n) dS +

∫ ∫ ∫

V

FVdV +

∫ ∫

ΠdS, (2.2.2)

where the first term on the right hand side represents the flux of momentum through the

control surface S , FV is the vector of volume forces and Π is the tensor of surface forces.

In the absence of external surface forces, Π can be decomposed into the normal force -

pressure p, which can be either thermodynamic or mechanical, depending on the approx-

imation, and the viscous stresses represented by a symmetric tensor τ =
{

τi j

}

, τi j = τ ji.

This decomposition leads to the total stress tensor of the form Π = −pI + τ, where I is the

identity tensor. Finally the last equation describes the conservation of total energy

∂

∂t

∫ ∫ ∫

V

ρEdV = −
∫ ∫

S

ρE (u · n) dS −
∫ ∫

S

(q · n) dS + (2.2.3)

∫ ∫ ∫

V

(u · FV) dV +

∫ ∫

S

ΠudS,

relating the change of energy in the control volume to the convective flux through the

surface, heat flux q through the surface, the work of volume forces and the work of surface

forces.

The system of Equations (2.2.1)-(2.2.3) represents fundamental conservation laws which
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should be obeyed by any continuum fluid system. Note that the notion of the system being

at the continuum level has been implicitly introduced through the definition of macroscopic

flow variables, such as density. However the system is not closed with respect to the number

of variables. The closure is obtained through additional assumptions regarding the nature

of the fluid.

The closure for the heat flux can be obtained by using Fourier’s law linking the heat

flux to temperature T

q = −k∇T (2.2.4)

where k is the thermal conductivity. The stresses for an isotropic Newtonian fluid can be

expressed through the velocity and dynamic viscosity as follows:

τxx = −
2

3
µ∇ · u + 2µ

∂u

∂x
(2.2.5)

τyy = −
2

3
µ∇ · u + 2µ

∂u

∂y
(2.2.6)

τzz = −
2

3
µ∇ · u + 2µ

∂u

∂z
(2.2.7)

τxy = τyx = µ

(

∂v

∂x
+
∂u

∂y

)

(2.2.8)

τxz = τzx = µ

(

∂u

∂z
+
∂w

∂x

)

(2.2.9)

τyz = τzy = µ

(

∂w

∂y
+
∂v

∂z

)

(2.2.10)

Other forms of stress tensor can be more appropriate for liquids such as blood, paints,

emulsions, etc, which do not follow Newton’s hypothesis of stress being proportional to the

rate of strain (e.g. [44]).

Finally pressure, density, temperature and internal energy are linked by caloric and

thermal equations of state which depend on the physical properties of the fluid. The total

energy is then split into internal and kinetic components:

E = e +
u · u

2
, (2.2.11)

with the internal energy expressed for gases through the variables of state as follows:

e =
p

ρ (γ − 1)
= cv · T, (2.2.12)

where γ is the adiabatic index equal to ratio of specific heat capacity at constant pressure

cp to specific heat capacity at constant volume cv. The system is closed by the thermal
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equation of state, for example, the ideal gas equation of state

p = ρRT, (2.2.13)

where R is the gas constant.

The closed system of continuum level equations can be applied to micro and nanoscale

fluid systems, up to a certain dimension. In general, under normal conditions, liquid flows

can be addressed up to ∼ 10nm scale and gas flows - up to ∼ 100nm scale (e.g. [39,

45]). Continuum level modelling has been applied successfully at microscale in numerous

problems, such as multiphase heat exchangers [46], microbubble generation for biomedical

applications [47] and electrokinetic micromixers [48, 49].

At the Boundaries of Continuum

The degree of importance of non-continuum effects, or rarefaction, can be expressed through

the Knudsen number

Kn =
λ

L
(2.2.14)

relating the mean free path λ to the characteristic size of the system of interest L.

Non-continuum effects become more important with the increase of Knudsen number.

Note that for air at atmospheric conditions λ ∼ 65nm, which will lead to Kn ∼ 1 for

nanoscale devices. The system of Navier-Stokes equations as formulated above is of the

1st order in Knudsen number. Several corrections extending applicability of the continuum

level modelling to higher Knudsen numbers have been developed in the past including

quasi hydro-dynamics, quasi gas dynamics, Burnett and super-Burnett systems (e.g. [45,

50, 51]).

Apart from the form of the governing equations, boundary conditions in micro and

nanofluidic systems exhibit dependence on the Knudsen number. For example the no-slip

condition for velocity at a solid stationary wall becomes inappropriate when Kn>0.001

(see, for example, [39] for more details). In general, continuum models applicability can

be summarised as follows:

• For Kn ≤ 10−3 the flow is considered to be in continuum regime and Navier-Stokes

equations with no slip boundary conditions can be employed.

• For 10−3 < Kn ≤ 0.1 - slip flow and the fluid models employed are either Navier-

Stokes equations or Burnett equations with first order slip boundary conditions.

• For 10−1 < Kn ≤ 1 - it is possible to extend the applicability of Navier-Stokes and

Burnett equations using higher order slip conditions, quasi hydrodynamic and quasi

gas dynamic description.



2.2 Continuum modelling 11

• For Kn > 1 - continuum approach becomes invalid.

Significant number of applications in micro and nanofluidics deal with liquids or gases at

speeds which are much smaller than the speed of sound a in the media. When the Mach

number M = U
a

, where U is the characteristic flow velocity, is sufficiently small - the gov-

erning system of equations can be simplified using the incompressibility assumption. For

a single specie flow, this leads to density becoming constant. Then the mass conservation

Equation (2.2.1) reduces to:

∇ · u = 0. (2.2.15)

The momentum equation becomes

∂u

∂t
+ u∇u = −1

ρ
∇p + ν∇2u, (2.2.16)

where ν is the kinematic viscosity. The energy equation for incompressible flows usually

reduces to an advection-diffusion equation for the temperature field. If we neglect viscous

dissipation this leads to
∂T

∂t
+ u∇T = ∇ (χ∇T ) , (2.2.17)

where χ denotes thermal diffusivity. The temperature field is then decoupled from the

velocity field.

The relative importance of viscous effects is determined by the Reynolds number - Re =
ρUL

µ
, where L denotes the characteristic length of the device (for example hydraulic diameter

of the microchannel). Typical applications in micro and nanofluidics, for example lab-on-a-

chip and bioanalysis systems, deal with relatively low speed liquid flows which correspond

to relatively low Reynolds numbers
(

10−5 − 100
)

. For Reynolds numbers smaller than 10−1,

convection effects become negligible and the governing model can be further simplified.

The resulting Stokes flow is described by the following momentum equation:

∂u

∂t
= −1

ρ
∇p + ν∇2u (2.2.18)

The above equation is linear which significantly simplifies the numerical solution.

It should be mentioned that Knudsen number is linked to Mach and Reynolds numbers

by

Kn = C
Ma

Re
, (2.2.19)

where the constant C depends on the properties of gas and is typically of order 1 (see, for

example, [45] for more details).



2.2 Continuum modelling 12

Numerical Approaches

Most micro and nanofluidic applications feature either liquids as main media or low Mach

numbers in gas flows, which prompts the selection of the incompressible model. The sim-

plification introduced by flow incompressibility leads to the main numerical challenge in

modelling fluid flows at low speeds and small scales. Pressure becomes mechanical and

is no longer linked to the rest of the flow properties by an equation of state. Instead the

correct pressure field is determined by the incompressibility constraint (2.2.15). Given the

pressure field we can solve the momentum equation (2.2.18), however the resulting velocity

field does not necessarily obey the incompressibility constraint. When the correct pressure

is found, the incompressibility constraint is satisfied by the resulting velocity field.

This link between the pressure field and the velocity field prompted the development

of the pressure-correction family of methods based on iterative procedure where guessed

value of pressure is used to calculate the velocity field, and then the Poisson equation for

pressure is constructed to obtain a correction for pressure. The procedure is repeated un-

til the compressibility constraint is satisfied (see, for example, [52]). Pressure correction

methods enjoy wide popularity within both academic community and commercial mod-

elling package developers.

Pressure-projection family of methods is frequently used to couple the pressure and

momentum fields in both constant and variable density problems (e.g. [37]). The key idea

of the projection method is to advance the velocity field in time somehow, disregarding

the solenoidal nature of the velocity field and then recover the desired solenoidal velocity

vector. The procedure leads to a Poisson equation for pressure which is the most compu-

tationally demanding part of the algorithm. Bell and Marcus [53], and later Almgren et

al. [54, 55], have developed second-order projection algorithms for variable-density in-

compressible flows. An extensive discussion of robust fractional-step projection methods

for variable density flows can be found in [56]. A recent review of approximate and exact

projection methods can also be found in [37]. Pressure-projection based methods have also

been used in conjunction with finite-element schemes, see e.g. [57] and [58]; in the latter

an unconditionally stable method was developed based on two projections per time step and

its performance was investigated both in finite volume and finite-element implementations.

Another family of methods applicable to low-speed flows in micro and nanofluidics

stems from the work of Chorin [59] who developed an approach based on artificial com-

pressibility formulation. In this approach pseudo-time derivatives are added to the conti-

nuity equation and, for unsteady flows, momentum equations to link numerically pressure

and velocity fields. The new system of equations can then be iterated in pseudo-time until

the steady state corresponding to the divergence-free flow is found. During this transient

process, the system behaves essentially as a compressible system with an artificial speed

of sound chosen to speed up the convergence process [60]. The method can be used in

conjunction with a number of implicit and explicit numerical schemes. A review of numer-

ical schemes for artificial compressibility formulation can be found in [37]. The artificial
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compressibility method leads to hyperbolic and hyperbolic-parabolic equations for invis-

cid and viscous incompressible flows, respectively. The numerical schemes developed for

the artificial compressibility formulation are largely similar to methods developed for com-

pressible flows. Therefore, numerical developments for compressible flows can be directly

transferred to incompressible flows [37] which allows the application of higher-order high

resolution schemes in the context of constant and variable density flows [37, 61, 62]. Ex-

amples of application of the artificial compressibility schemes to microfluidic problems

include DNA transport simulations [63]. The high-resolution methods applied in the con-

text of the artificial compressibility approach have been shown to provide better capturing

of discontinuities in multi-component microfluidic flows (e.g. [64]).

The continuum level solution for flow in micro and nanofluidic devices can be obtained

using in-house or open-source codes (e.g. OpenFOAM) based on methods listed above.

Whenever feasible, this approach provides great advantages, out of which extensibility

is probably the most important one. With the access to the code, models for additional

complex phenomena can be easily incorporated and coupling of continuum flow solution

with molecular or meta-models can be implemented. Alternatively a number of commercial

packages can be used for continuum level modelling. These can be broadly classified into:

• General-purpose modelling and CFD packages, such as Ansys FLUENT or CFX,

STAR-CD, CFD-ACE+ (see, for example, [41]), etc. These can provide some of the

capabilities specific to micro and nano-flow applications. For example, slip boundary

conditions available in FLUENT and additional MEMS (Micro-Electro-Mechanical

Systems) package in CFD-ACE+.

• Multi-physics packages, for example COMSOL Multiphysics (FEMLAB) with ded-

icated modules for microfluidics and MEMS

• MEMS-specific modelling software, such as, for example Coventor and IntelliSuite.

Despite the wealth of methods and packages capable of dealing with the continuum level

modelling at low and, to a degree, medium Knudsen numbers, there are no readily available

packages for problems involving transitional Knudsen numbers and coupled molecular-

continuum scales.

2.3 Molecular modelling

Classical molecular models have been applied to study an overwhelming number of prob-

lems related to flows at the micro and especially nano scales. For example, MD simulations

have been carried out to obtain both qualitative and quantitative characterisation of surface

roughness phenomena inside nanofluidic devices [65–69]. A number of parameters that
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affect the fluid behaviour, and consequently the performance of nanofluidics, can be de-

termined using MD such as, the wall-fluid interactions and the wetting properties of the

surface [70, 71]. Classical molecular modelling is also widely applied in bio-flows [72–

76]. In a recent study [73] molecular simulations were employed to exploit the effects of

shock waves on biological tissues and the numerical studies revealed that the shock wave

leads to an increased diffusion coefficient and therefore makes the membrane transiently

more permeable, which can assist drug delivery. Other application areas include nanosen-

sors [33, 77], nanofilters and nanovalves [78, 79], nanoparticle collisions and flows [80]

and lubrication [81–86].

Although MD is a very poweful tool it experiences limitations primarily related with the

computational time and computing power required, especially for fine grain simulations.

Specifically, the major shortcoming of MD are:

• Quantum effects: MD experiences limitations when quantum effects become impor-

tant to the system. A criterion for evaluating the validity of the Newtonian approxi-

mation is the thermal DeBroglie wavelength of the particles involved which is defined

as [87]

Λ =

√

2π~2

mkBT
, (2.3.1)

where ~ denotes the Planck constant, kB is the Boltzmann constant, T is the temper-

ature and m is the pass of the particle. The Newtonian approximation is considered

legitimate when Λ ≪ a, where a is the mean nearest neighbour distance of the sys-

tem. Quantum effects become important in any system when T is sufficiently low.

The drop of specific heat of crystals below the Debye temperature or the anomalous

behaviour of the thermal expansion coefficient, are well known examples of measur-

able quantum effects in solid systems.

• Forces realism: In MD dynamics empirical interaction potentials are employed to

mimic the behaviour of the real system. As the particles move, the relative positions

change and the consequently inter-atomic forces change as well. The realism of

the molecular simulations is related to the interaction potentials employed and their

ability to mimic the behaviour of the real system under similar to the simulations

conditions.

• Computational time and computing power: To illustrate the computational limita-

tions consider an MD simulation of pure water with fixed O − H bonds and fixed

O − H − O angles. The time step in the MD is dictated by the highest frequency one

needs to resolve and therefore for the aforementioned example a typical time step

is δt = 2 f s. In order to simulate a period of 1µs a total number of 5 · 108 time

steps is required. Assuming that each single time step requires at least 0.1 s in a

personal computer with 3 GHz CPU power, a total number of 19 months is required

[30, 88]. This shortcoming prompts the development of multiscale models, aiming to

combine the molecular and continuum level modelling in order to make simulation

of multiscale physical problems computationally feasible.
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2.3.1 Equation of motion

In the classical molecular models, like molecular dynamics or Monte Carlo, the atoms are

considered to be the smallest elements and are used to form bigger structures such as crys-

tals or molecules. These modelling approaches are based on the following approximations:

• The atoms are modelled as point masses at positions ri with mass mi. 99.9 percent

of their mass is concentrated in the position ri, since the motion of the electrons is

averaged out.

• The interaction between the atoms i and j is given by a potential V(ri j) that is de-

signed to model all forces acting between these two atoms. The interaction potential

is approximated by a sum of analytic functions that represent the characteristics of

the real world forces.

• In the classical molecular modelling a molecule is represented by a collection of

atoms kept together by rigid or semi-rigid bonds. The intra-molecular forces due to

bond forming are at least one order of magnitude greater than the inter-molecular

forces. Different approximations can be applied for bond modelling based on the

physical properties of the simulated molecule. For example, very small compact

molecules are usually modelled as rigid structures where on the other hand for large

molecules like proteins parametrised potential functions have to be employed.

• In classical molecular modelling the Heisenberg’s uncertainty principle is disregarded.

The position and the momentum of every particle are precisely known at every point

in time and therefore their motion can be described by the classical equations of

motion - Newton’s laws.

Molecular dynamics, is a deterministic method, where the evolution of the molecular sys-

tem is calculated by computing the particles’ trajectories based on the classical molecular

model. The governing system of equations for MD is a system of Newton’s equation of

motion in the form

mir̈i = −
∂Vi

∂ri

(2.3.2)

written for each atom i modelled as a point mass. In MD the equations of motion are

solved numerically via algebraic approximations. A numerical integration method is used

to advance the system from time t to t + ∆t.

2.3.2 Interatomic potentials

The potential energy Vi for the atom i is the sum of semi-empirical analytical functions that

model the real inter-atomic forces. For example, in the majority of examples discussed in
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the current study, a simple Lennard- Jones pair potential is used to model van der Waals

attraction and Paulis repulsion forces. The potential is given by

Vi j = 4 · ǫ ·














(

σ

ri j

)12

−
(

σ

ri j

)6














, (2.3.3)

where ri j is the distance between the ith and the jth particle, ǫ is the characteristic energy

level and σ is the molecular length scale defining the position of zero potential energy. The

total potential energy of the system can be calculated through summation of all individual

pairs:

V =

N
∑

i

N
∑

j>i

V(ri j), (2.3.4)

where N is the total number of atoms. The potential of a single atom i is the sum of all

potential interactions in which this atom is involved:

Vi =

N
∑

i, j

V(ri j). (2.3.5)

The force acting on each particle is the gradient of the potential with respect to the spatial

position of the particle and is computed as follows

fi = ∇ri
Vi. (2.3.6)

The atomic trajectories are calculated by integration of Equation (2.3.2) in time for all

atoms. The time integration is performed by a finite difference method such as the predictor-

corrector method or the Verlet algorithm [89, 90]. Despite the apparent simplicity, the

simulations are extremely demanding computationally due to the huge number of atoms

involved, even in the smallest systems. Modern parallel computers allow MD simulations

of up to several millions of atoms [91].

2.3.3 Integration algorithms

The time integrator is responsible for moving the particles as the simulation evolves. For

integrating the equation of motion forward in time various numerical approaches exist that

mainly utilise the finite difference scheme. The time integrator calculates the velocities and

the positions of the particles for the next time step based on the velocities and positions on

previous ones. A numerical model employed for MD simulations should fulfil the following

criteria:

• Efficiency: The efficiency is crucial in molecular dynamics simulations. The molec-

ular dynamics simulations are computational demanding and the computing time is

extremely important.
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• Stability: The integration algorithm should be stable in the sense that conserves the

energy. In many cases stability is a function of various parameters such as the time

step size.

• Accuracy: The integrating algorithms should create trajectories that resemble the

realistic ones; this can be validated in case where analytical solution is available.

Verlet Algorithm

The Verlet algorithm calculates the atomic trajectories of the next time step based on the

positions at both current and previous time steps, without using the velocity. It is a second

order approximation of the Newton’s equation of motion and is derived through Taylor

expansions of the position vector ri [90]:

r(t + δt) = r(t) + u(t) · δt + a(t)
δt2

2
+ b(t)

δt3

6
+ O(δt4), (2.3.7)

r(t − δt) = r(t) − u(t) · δt + a(t)
δt2

2
− b(t)

δt3

6
+ O(δt4), (2.3.8)

where δt is the time step of the simulation, ai(t) is the acceleration and, b(t) is the third

order derivative of the position vector with respect to the time. By adding Equations

(2.3.7),(2.3.8) the following expression is obtained

r(t + δt) = 2r(t) − r(t − δt) + a(t) · δt2 + O(δt)4. (2.3.9)

From Equation (2.3.9) it is clear that the calculation of the particles’ position at the next

time level t + δt does not require the calculation of the current velocity u(t), which is

obtained by a central difference method

u(t) =
r(t + δt) − r(t − δt)

2δt
. (2.3.10)

Equation (2.3.9) is fourth order accurate whereas the velocities obtained from Equation

(2.3.10) are of second order.

Leap Frog Algorithm

The Leap-Frog algorithm is a modified version of the basic Verlet algorithm. It is a half-

step scheme and is based on the calculation of velocities at time t + δt
2

. The calculation

sequence for the Leap-Frog algorithm is
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1. The acceleration a(t) is calculated by the derivative of the potential function

ai(t) =
1

mi

∇Vi (2.3.11)

2. Based on the acceleration a(t) the velocities u
(

t + δt
2

)

is calculated as

u

(

t +
δt

2

)

= u

(

t − δt
2

)

+ a(t) · δt (2.3.12)

3. The positions r(t + δt) are calculated as

r (t + δt) = r(t) + u

(

t +
δt

2

)

· δt (2.3.13)

Velocity Verlet Algorithm

A common disadvantage for the Verlet and the Leap Frog algorithms is that the atomistic

positions and velocities are not available at the same time. To overcome this a variant

of the Verlet algorithm has been developed that uses positions ri(t), velocities ui(t) and

accelerations ai(t) defined at the same time [90]. The calculation sequence is

1. The velocity is advanced by a half step δt
2

u

(

t +
δt

2

)

= u(t) + a(t) · δt
2

2
(2.3.14)

2. The positions are advance to r(t + δt)

r(t + δt) = r(t) + δt · u(t) +
δt2

2
· a(t) (2.3.15)

3. The acceleration a(t + δt) is calculated from the interaction potentials (Equation

2.3.11)

4. Another half step is performed to complete the velocity calculation

u(t + δt) = u(t +
1

2
δt) +

1

2
δt · a(t + δt) (2.3.16)

The velocity Verlet algorithm therefore propagates velocities in two stages and split the

calculations process into the applied acceleration term.
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2.3.4 Boundary conditions

The imposition of boundary conditions is a very important topic of all the numerical simu-

lations. In MD the most commonly used boundary conditions are the periodic ones (PBC).

Other boundary conditions that are usually employed are those that lead to non-equilibrium

conditions like for example the Lees-Edwards boundary conditions (LEBC).

Periodic boundary conditions

Traditionally, the most often applied boundary conditions in molecular dynamics simula-

tions are periodic boundary condition because they allow the simulation of a homogenous

infinite system with a limited number of atoms, which were the only systems that could be

simulated with early computers. Periodic boundary conditions copy identical images of the

computational box aligned to a space-filling array throughout the space (see Figure 2.1).

This approach mimics an infinite computational domain with a finite number of molecules.

To implement this condition the following has to be applied:

1. Every atom leaving the box in one direction, enters at the same time from the oppo-

site side. Therefore, one needs to check regularly whether an atom has crossed the

boundary and to correct its position accordingly.

2. Every atom whose position is within interaction distance of the boundary interacts

with the images of the atoms from the opposite side of the simulation box. This wrap-

around effect must be taken into account when calculating the interatomic potentials

or forces. While the periodic boundary condition circumvent elegantly the problem

of surface atoms, they create another. For calculating the potentials or forces, it would

strictly be required to evaluate the interaction between all pairs of the computational

box and their images, which is an infinite number of interactions. For short-range

forces this problem is overcome through the minimum image convention which is

based on the usage of a cut-off distance. Therefore, only the closest periodic image

of an interaction between two atoms must be regarded.

Lees-Edwards boundary conditions

LEBC have been developed to deal with accuracy and efficiency issues that arise when the

normal periodic boundary conditions are applied for shear flows problems. In this type

of boundary conditions the neighbouring cells are shifted, as shown in Figure 2.2, with a

constant velocity U calculated from the desired shear rate.

In the LEBC method, every particle that moves out of a cell is replaced by its periodic

image. Suppose that a particle moves through the lower face then its periodic image has
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Figure 2.1: Periodic boundary conditions

Figure 2.2: Schematic representation of LEBC

to be inserted at the upper boundary, however the presence of the shear implies that the

inserted particle is transferred from a faster moving fluid layer. Therefore, the inserted

particle will neither have the same velocity nor the same coordinates as the original particle.

Coordinates and velocities of the inserted atoms have to be corrected and through these

amendments a stable linear velocity profile is generated in the computational domain.

A particle P that leaves the lower boundary and is re-inserted through the upper one has

an additional velocity component U along the x direction and therefore its new velocity u′

is

u′ =



















ux + U

uy

uz

(2.3.17)

At the same time, the upper image is transported, so that the entry point cannot be the

P′ shown in Figure 2.3, instead an additional correction should be taken into account and
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Figure 2.3: Position correction for a moving particle in the LEBC

the new insertion point is the P′′. The displacement ∆x = xP′′ − xP′ is calculated using

∆x = Lγ̇t, (2.3.18)

where t is the time, L is the cell length in y direction and γ̇ is the flow’s shear rate

γ̇ =
∂ux

∂y
=

U

L
(2.3.19)

The same procedure is applied for particles leaving the upper boundary and re-entering

through the lower one, with the corresponding changes due to the opposite velocity values

of the neighbouring cells. The LEBC approach requires a minimum simulation time, ap-

proximately equal to the traversal time of the primitive cell, in order to resolve the shear

introduced due to the boundary movement.

2.3.5 Calculation of Macroscopic Properties

In the hybrid molecular-continuum frameworks molecular calculations of any hydrody-

namic quantity, such as velocity or density, are subject to spatial and temporal fluctuations

due to the small number of atoms included in the atomistic region. In this context it is

important to quantify these fluctuations,which are originated from the thermal motion of

atoms, and obtain a quantitative and qualitative understanding regarding their propagation

from the microscopic to the macroscopic description and vice versa. Generally, the strength

of the fluctuations can be reduced either by increasing the number of the simulated atoms

or performing additional time averaging. However, both additional particles and averag-

ing add a further computational burden to the overall simulation procedure and therefore

the selection regarding the number of particles and the time averaging should be made

cautiously.
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Averaging Time

Time averaging has been acknowledged as one potential approach to reduce the fluctua-

tions’ strength. In the time averaging the instantaneous values of a physical quantity A

are averaged over a period of time δtav. The value of δtave is specified depending on the

nature of the problem, steady or unsteady, and the computational resources availiable. The

averaging of a macroscopic quantity A from time tm for a period δtav is given by [92]

〈A〉 = 1

δtav

∫ tm+δtav

tm

A(t)dt =
1

Nm

i=Nm
∑

i=1

A(τm) (2.3.20)

where Nm is the number of times that the quantity A is calculated, and the measurements

are taken every δtm = 1
Nm
δtav

The number of samples utilised for estimation of a thermodynamic parameter have

a big impact to the strength of the associated fluctuations. The number of samples can

be maximised by performing averaging every integration time step however in this case

there is a large number of samples that are statistically correlated and does not contribute

to the reduction of the expected error. In MD the correlation time has to be taken into

account in order to avoid any additional computational cost that reduces the efficiency of

the simulation[90]. The correlation time can be read off the autocorrelation function over

time lags. The autocorrelation function of a variableA is calculated by

φ(A, τc) =
1

M − τc

M−τc
∑

τm=1

A(τm)A(τm + τc) , (2.3.21)

where τc is the time lag and the sum runs over the products of the variable of interest at the

times τm and τm + τc.

Statistical Errors

Standard deviation of physical substance 〈A〉τ is usually employed to quantify its fluctua-

tions strength. Basically, it gives the average deviation of any computed value 〈A〉τ from

the true value of A. Assuming that the individual quantities A(τ) are independent from

each other, it is defined by

σ(〈A〉t) =
√

σ2(〈A〉t) , (2.3.22)

with σ2(〈A〉t) begin the variance in 〈A〉t that is simple given by

σ2(〈A〉t) =
σ2(A)

M
, (2.3.23)
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where σ2(A) is the sample variance:

σ2(A) =
1

M − 1

M
∑

τm=1

(A(τm) − 〈A〉t)2 . (2.3.24)

The average deviation from the mean is called the standard deviation is simplyσ(A) =
√

σ2(A)

and σ(〈A〉t) =
√

σ2(〈A〉t) for the instantaneous variable and its time average respectively.

In the hybrid continuum-molecular frameworks the state variables density ρ, velocity u

and energy density e are measured at the molecular domain and afterwards this information

is transfered to the continuum solver. Therefore, it is important to have a quantitative un-

derstanding of their fluctuations magnitude. For a time averaged quantity 〈A〉t the average

fluctuation strength can be defined as the fractional error, which is the standard deviation

of 〈A〉t over its true value:

F〈A〉t =
σ(〈A〉t)
|A| =

√

σ2(〈A〉t)
|A| . (2.3.25)

An important parameter that one may need to calculate is the number of time steps M,

that the averaging has to be performed in order to reduce the fluctuations level below an

acceptable value. In that sense, Equation (2.3.25) can be rearranged to give the minimum

value for M:

M =
σ2(A)

F2A0
2
, (2.3.26)

whereA0 is the true value or the the limit of the average: A0 = limt→∞〈A〉t.

The predictions can be given for: density, ρ; velocity in one dimension, uα; temperature,

T ; and pressure, P. Since the fluctuation strength is based on the standard deviations σ(A)

of the variables (q.v. Equation (2.3.25)) one has to start with those definitions:

σ(ρ) =
m
√

N

VAc
, (2.3.27)

σ(uα) =

√

kBT

mN
, (2.3.28)

(2.3.29)

σ(T ) =

√

kBT 2

cvN
, (2.3.30)

σ(P) =
kBT Ac

√
γN

V
. (2.3.31)

It is assumed that the variables of interest are calculated from N atoms. The acoustic

number Ac is the ratio of the speed of sound of the fluid c to the speed of sound of an ideal

gas ai: Ac = a/ai. kB is Boltzmann’s constant, m the molecular mass, cv the specific heat
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capacity (constant volume) and γ the ratio of the heat capacities γ = cp/cv.

From the instantaneous standard deviations of Equation (2.3.27) - 2.3.31 one easily

obtains the time averaged standard deviation. These can be related to the absolute variable

values: ρ0 for the density; u0α for velocity in dimension α; eint0 for the internal energy

density; T0 for temperature; and P0 for pressure, to give a prediction for the fluctuation

strength (q.v. Equation (2.3.25)):

F〈ρ〉t =
σ(〈ρ〉t)
ρ0

=
1
√

MN

1

Ac
(2.3.32)

F〈u〉t =
σ(〈uα〉t)
|u0α|

=
1
√

MN

1

AcMa
√
γ

(2.3.33)

F〈T 〉t =
σ(〈T 〉t)

T0

=
1
√

MN

√

kB

cv

(2.3.34)

F〈P〉t =
σ(〈P〉t)

P0

=
1
√

MN

kBT AcN
√
γ

P0V
, (2.3.35)

where Ma is the local mach-number: Ma = u0α/c. For most cases considered here, i e.

mono atomic substances, CV = (3/2)kB.

Now, the most interesting question is: Over how many time steps M does someone

average to reduce the fraction fluctuation below an acceptable level, for instance F = 5 %.

To this end, Equations (2.3.32) - 2.3.35 can be rearranged to give the minimum value for

M:

Mρ =
1

F2

1

NAc2
(2.3.36)

Mu =
1

F2

1

NAc2Ma2γ
(2.3.37)

Meint
=

1

F2

kBT 2cvN

(ei0)2V2
(2.3.38)

MT =
1

F2

kB

Ncv

(2.3.39)

MP =
1

F2

kB
2T 2Ac2N2γ

P0V
. (2.3.40)

An automatic calculation simulation mode was used in all the performed atomistic sim-

ulations. During the simulation procedure, a minimum number of time step was calculated

(based on the above equations) until the mean values of the state variable satisfy a minimum
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confidence level of 95%.

2.4 Geometrical Coupling

Geometrical coupling is based on the decomposition of the computational domain into

two distinct regions where the continuum and molecular solvers are applied, as shown

in Figure 2.4. The cornerstone for the physical consistency and successful application

of this coupling scheme is the robust design of the hybrid solution interface (HSI). Two

fundamental approaches to the coupling process have been introduced in the past leading

to a number of coupling methodologies:

• Coupling through fluxes: The interface should satisfy a basic physical principle, the

conservation of mass, momentum and energy flux. Therefore, momentum, mass or

energy should be able to flow seamlessly from one description to the other and vice

versa.

• Coupling through state: The profiles of the primitive variables such as density, tem-

perature and velocity must be consistent between the two descriptions. To further

illustrate that, someone must not be able to identify where the interface is placed

based on the primitive variables profiles across the entire domain.

The selection of the most suitable coupling method is not a trivial task and is primarily

problem dependent. Compressible and incompressible formulations are associated with

different physical and mathematical hydrodynamics limits [35, 93]. Compressibility effects

can be a criterion for determining the most suitable coupling approach with time-explicit

coupling through fluxes usually used for compressible formulations and the state coupling

for incompressible ones [93].

The molecular model has more degrees of freedom and incorporates more informa-

tion than the continuum model. When the information, in the form of a state or flux, is

transferred from the molecular to the continuum model, the amount of information avail-

able is reduced through averaging or integration. For example, while there are technical

challenges associated with this process, it is straightforward conceptually. In the hybrid

multiscale methods the most challenging operation is the transfer of information from the

continuum to the molecular description. In this process additional information describing

degrees of freedom present in the molecular model but absent from the continuum model

must be generated. In the following sections the application of the continuum information

to the molecular domain is discussed.
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Figure 2.4: Hybrid Solution Interface

2.4.1 Coupling Through Fluxes

The flux coupling scheme is conceptually related to finite volume continuum solvers, where

the fluxes between neighbouring cells are calculated and the net flux used to update the av-

erage value of conserved variables. Typically, in the multiscale frameworks the fluxes of the

conserved variables, that is mass, momentum and energy, are separated into fluxes due to

convection, stress and diffusion [13]. The convective flux is the transport of a quantity due

to the movement of the fluid elements while stress and diffusive fluxes represent transport

of a quantity due to interatomic forces and diffusion phenomena respectively. The fluxes

calculated from a volume VS in continuum and molecular formulations are given by:

• Mass Flux

– Convective

ρu =
1

VS

〈

∑

i∈VS

miui

〉

(2.4.1)

• Momentum Flux

– Convective

ρu ⊗ u =
1

VS

〈

∑

i∈VS

miui ⊗ ui

〉

(2.4.2)

– Stress

Π =
1

VS

〈

∑

i, j∈VS

ri j ⊗ fi j

〉

(2.4.3)

• Energy Flux
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– Convective

Eu =
1

VS

〈

∑

i∈VS

Eiui

〉

(2.4.4)

– dissipative and conductive

Π · u + q =
1

VS

〈

∑

i, j∈VS

(

ri j ⊗ fi j

)

· ui

〉

(2.4.5)

Where the continuum parameters include the fluid density ρ, fluid velocity u, total energy

E and shear stress tensorΠ. Molecular parameters include mi and ui denoting the mass and

velocity of the ith particle respectively and fi j denoting the force acting between particles

i and j.

Momentum Flux

The exchange of momentum across the overlapping region is expressed through Equations

(2.4.2) and (2.4.3) and can be summarised in a unified expression as follows

ρu ⊗ u + Π =
1

VS

















〈

∑

i∈VS

miui ⊗ ui

〉

+

〈

∑

i, j∈VS

ri j ⊗ fi j

〉

















. (2.4.6)

The momentum transfer due to convection is balanced by manipulating the average

velocity of the particles inside the overlapping domain in order to make it equal to the

continuum velocity. The average velocity is adjusted as follows

unew
i = uold

i +























u −

∑

i∈∂R

miu
old
i

∑

i∈∂R

mi























, (2.4.7)

where ui is the velocity of the ith particle, u is the continuum velocity, mi the mass of

the ith particle and ∂R is the overlapping region. The momentum flux due to stresses is

represented at micro scale as an external force applied throughout the overlapping region.

The main challenge associated with the determination of the external force is that only the

average acting force is known and its distribution is not unique. The following general

representation for the external force applied to each particle has been proposed [94]

F ext
i = − f (ri)

∑

i∈∂R

f (ri)
· AΠ · n, (2.4.8)

where f (ri) is a distribution function for the force based on the particle’s position. The

selection of the distribution function is crucial for the successful application of the scheme.
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Incorrect choice of the distribution function can lead to artifacts in the solution, for example

it can cause particles to drift away from the molecular region. Several types of the distribu-

tion function have been used in the early development of the hybrid algorithms, for example

a function f (ri) = 1 has been utilised in a number of studies [19, 95]. However, recent stud-

ies [13, 16] indicated that imposing momentum flux through a force causes instabilities in

the simulation procedure and can adversely affect the energy flux transfer. Specifically, the

force mechanism for the momentum transfer results in relaxation zone that starts from the

outer boundary of the HSI and extends for distance δl where the density drops from its bulk

value to zero. The density decrease in the relaxation zone, particularly if it is slow, leads to

different physical behaviour due to the differences in the transport properties such as vis-

cosity and thermal conductivity. There are also cases [16] where the density profile, at the

outer boundary of the hybrid interface, tends asymptotically to a value different from zero,

meaning that atoms are drifting away from the molecular region. A number of approaches

have been proposed in order to circumvent these issues. For example, it is possible to

remove atoms that cross the outer molecular boundary and re-insert them inside the over-

lapping region at a location which has the same potential energy [96]. Another approach

is to stop integrating the positions and the velocities of those atoms and due to the external

forces that are still applied they will be transported further into the particle area. However,

it has been noticed that these procedures cause an undesirable decrease in the total energy.

The external force that is applied to the atoms in the overlapping region can be understood

as an external energy field and every atom experiences a force according to the external

potential energy given by

Eext(ri) =
1

NB

F ext · (ri − r0), (2.4.9)

where NB is the number of atoms in the overlapping region, ri is the position of the atom

and r0 is the position of the inner boundary of the overlapping region. Hence, if one atom

is shifted towards the overlapping region its potential energy is reduced due the external

field. This decrease of the potential energy has to be balanced in order for the total energy

to remain constant. This can be achieved by rescaling the velocities of the atoms and

therefore by altering the internal energy of the system without introducing or removing any

additional momentum [16].

The behaviour of the momentum flux transfer through external forces, despite the en-

ergy correction scheme, continue to experience stability issues[13]. If the velocity in the

overlapping region presents small deviations compared to the macroscopic one then the en-

ergy transferred is not the appropriate one and as a consequence, apparent oscillations of the

state variables are generated. A technique that has been recently proposed is the momentum

flux transfer through velocity reversing of the outermost particles that are about to escape

from the molecular region [16]. Reversing the component in the direction a of the velocity

vector ui of a particle i that is about to escape the molecular domain, unew
i,a

= −uold
i,a

, will

introduce a momentum of 2miui,a in the corresponding direction without transferring any

energy. In this technique the momentum can be transferred in discrete quantities of 2miui,a

and therefore the velocities of the outermost atoms that are pointing out of the molecu-

lar region will be reversed until the desirable amount of momentum is transferred to the

molecular system. The performance of the velocity reversing algorithm presents superior
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characteristics compared to the momentum transfer by force due to the fact that the mo-

mentum and energy flux can be controlled independently. In addition the density profiles

in the overlapping region are sharper and therefore more physically consistent [13, 16].

Energy Flux

The energy flux, as aforementioned, is separated into three components, energy flux due to

convection Fec = −Eu·An, due to stresses Fes = −Π·u·An and due to conduction Feq = q ·
An. Generally, the energy must be conserved throughout the entire computational domain

and therefore each of the kinetic, potential and internal component of the particles’ energy

has to be examined separately. The kinetic and internal energy are maintained through the

balance between the macroscopic and the average microscopic velocity and temperature

respectively in the HSI. The most challenging task in the energy transfer procedure is the

conservation of the potential energy when, due to the mass flux, new particles are inserted

into the molecular region. In order to satisfy the potential energy conservation, the new

particles, have to be placed in very specific positions which depend on the local distribution

of the rest of the atoms. These issues can be addressed through the USHER algorithm,

proposed in [96]. This algorithm is described in the mass flux subsection.

The balance of the energy flux due to conduction requires the implementation of a

scheme capable to handle heat transfer between the two descriptions. Such schemes have

not been extensively explored since the majority of the studies are focused on isothermal

flows and therefore rigorous conclusions cannot be drawn yet. Several suggestions can be

provided in order to establish the heat transfer between the two domains including, (i) the

application of a force to the “hotter” atoms along the heat flux direction, (ii) the rescaling

of the internal energy based on the heat flux [16, 92], (iii) the utilisation of the Chapman-

Enskog velocity distribution [21] in order to apply the preferred heat flux and (iv) the appli-

cation of temperature gradient in discrete regions through Nose-Hoover thermostats [95].

The energy exchange scheme due to stress is directly related to the procedure employed

for the momentum flux transfer. Therefore, two procedures can be suggested, one for the

energy transfer by force and one for the energy transfer by velocity reversing. In the first

case external forces are utilised not only for applying the desirable momentum flux but also

for transferring information regarding the stress energy flux. Generally, the energy balance

is expressed as
〈

∑

i∈∂R

F ext
i · vi

〉

= −AΠ · u · n. (2.4.10)

Suppose that F ext
i

= F ext = const then the above can be simplified to

F ext ·
〈

∑

i∈∂R

vi

〉

= −AΠ · u · n. (2.4.11)
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From Equation (2.4.11) the energy conservation due to stress can be guaranteed if both

of the following two statements are satisfied: (i) the average molecular velocity in the

overlapping region is equal to the continuum one and (ii) the external force applied to the

particle region is equal to

F ext = − 1

NB

AΠ · n. (2.4.12)

In the case where the momentum flux is applied through the velocity reversing scheme

the energy flux has to be transferred independently. This is achieved through the scaling of

the velocity vectors of all the atoms inside the HSI. The scalar quantity Fes of the energy

flux due to stress can be expressed as a vector Fes =
[

(−Π · n) ux, (−Π · n) uy, (−Π · n) uz

]

where the scalar energy is given as Fes = Fes · F T
es. The velocities of the atoms are scaled

in each respective dimension a as follows [16]

unew
i,a = uold

i,a · f + c. (2.4.13)

The parameter f is the scaling factor calculated as

f =
√

1 + Fes,a/Ek,int,a, (2.4.14)

where Ek,int,a is the internal kinetic energy of the particles in the overlapping region along

the direction a

Ek,int,a =

NB
∑

1

1

2
mi(ui,a − ub,a)2, (2.4.15)

and ub,a is the average velocity of the atoms in the overlapping region. The parameter c is

chosen to ensure that the net momentum will remain the same after the scaling:

c =
1 − f

M

NB
∑

1

miui,a, (2.4.16)

where M is the total mass of the particles inside the overlapping region.

Mass Flux

If there is mass transfer across the hybrid interface then the continuity of mass in the molec-

ular region can be ensured only by inserting or removing particles, depending on whether

mass is transferred to or from the atomistic domain. If the rate of the particles insertion or

extraction is given by s, then the mass continuity is expressed as follows:

ms = −Au · n, (2.4.17)

where m is the average mass of the particles inside the overlapping domain. Positive val-

ues of s indicate that particles are inserted from the continuum to the molecular area and
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Algorithm 1 USHER Algorithm

STEP 1: Place the new particle at an initial position inside the overlapping area r(0)

STEP 2: Evaluate the fN+1 =
∑N

j=1 fN+1, j and the δtσ =

√

2δr
| fN+1 | . Typically δr ≃ σ can be

used. Note: σ is the characteristic length scale

STEP 3: Move the new particle: r(n+1) = r(n) + 1
2

f
(n)

N+1
δt2 where δt = min(∆t, δtσ) and

∆t = 0.05 in reduced units

STEP 4: Calculate the relative distance between the specific internal energy of the new

particle,ψnew
N+1

, and the one prescribed by the continuum φ, Rerr =
∣

∣

∣ψnew
N+1
− φ

∣

∣

∣ / |φ|
STEP 5: The process stops when the Rerr reaches the desired level of accuracy.

negative values indicate that particles are removed from the particle domain. The particle

insertion into the molecular domain is one of the most difficult processes in the flux cou-

pling due to the balance of potential energy which arises from the continuity of the energy

flux. The USHER algorithm [96, 97] has been developed in order to address this issue. The

main idea is to place the new particles in positions with almost the same potential energy.

When a new particle is inserted the rest of the particles are frozen [96].

2.4.2 Coupling Through State

The state coupling is primarily suitable for incompressible problems where the physics

of the flow dictates the selection of the appropriate numerical formulations [93]. In this

type of hybrid schemes the molecular and continuum density, velocity, temperature and

pressure are matched in the overlapping region. Several approaches have been proposed in

the literature for the state coupling. These can be broadly classified into approaches based

on the constrained Lagrangian dynamics (CLD) [17, 23, 98, 99] and approaches based on

the Schwarz method [14, 24, 100].

Constrained Lagrangian Dynamics Schemes

The application of the CLD should ensure the continuity of the physical quantities across

the interface and therefore the particles’ velocities and positions in the overlapping region

are integrated to follow the continuum state through a relaxation mechanism. Specifically,

the velocity continuity in the HSI implies that the local average of particles velocities, ui,

is equal to the continuum velocity u

〈ui〉 = u(t). (2.4.18)
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The Lagrangian derivative of the above equation is

1

NB

∑

i∈∂R

r̈i =
Du(t)

Dt
(2.4.19)

and the general solution of Equation (2.4.19) is given by

r̈i =
Du(t)

Dt
+ ζi, (2.4.20)

where ζi is a variable with the value of the sum over all the cells inside the HSI being equal

to zero [101]. Taking into account that the variable ζi can be written in following general

form

ζi = ξi















Fi

mi

− 1

NB

∑

i∈∂R

Fi

mi















, (2.4.21)

where ξi is a real number, and using Equation (2.4.21), the constrained equation of motion

for each particle can be obtained in the following form

r̈i =
1

∆tMD















u(t + ∆tMD) − 1

NB

∑

i∈∂R

ṙ(t)















+ ξi















Fi(t)

mi

− 1

NB

∑

i∈∂R

Fi(t)

mi















. (2.4.22)

The co-efficient ξi essentially controls the strength of the constraint relation and the

relation rate. The following three methods have been proposed in order to select the optimal

value of the co-efficient ξi :

• It is possible to choose ξi ≪ 1 aiming to suppress any fluctuations generated. For

example, a value of ξi = const = 0.01 has been used in [102].

• Alternatively one can select ξi = const = 1 [101] in order to force the local mean

velocity of the particles to be equal to the continuum one.

• Finally it is possible to determine the values of ξi dynamically:

ξi(t + ∆tMD) =

1
NB

∑

i∈∂R

(

r̈i(t) − Fi(t)

mi

)

u(t) − 1
NB

∑

i∈∂R

ui(t)
. (2.4.23)

In this approach different values of the coupling parameter can be employed for every

cell inside the HSI in every time step [18].

The selection of the coupling parameter ξi has a significant effect on the behaviour of

the coupling scheme. Small values of the parameter may cause physical inconsistencies

between the continuum and molecular description. On the other hand large values may

contribute to an excessive damping of particles fluctuations and consequently to divergence

between the two macroscopic and microscopic solutions.
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In the CLD methods the continuum pressure is applied to the molecular region through

an external force in a similar fashion to the application of momentum flux due to stress.

Specifically, the external force is applied in a direction perpendicular to the HSI boundary.

The following formula for the pressure force has been proposed in [99]:

F (ri) = −aPconσ
ri · n − r2 · n
1 − ri·n−r2·n

r1·n−r2·n
n, (2.4.24)

where Pcon is the continuum pressure applied to the molecular description, ri is the position

of the ith particle, r1 represents the outer boundary of the overlapping region and r2 the

inner one.

The macroscopic temperature, Tcon , is applied to the molecular domain by rescaling

the thermal fluctuations of the particles inside the overlapping region. The rescaling is

performed as follows

ui = u +

√

Tcon

TMD

(ui − u) , (2.4.25)

where TMD is the current temperature inside the atomistic domain. In this method the

thermal fluctuations of the particles around their mean velocity are rescaled and not the

particles’ velocities [99]. When the particles velocities are rescaled the mean velocity of

the molecular description inside the HSI will be significantly altered leading to undesirable

artifacts. A weakness of the current method is the elimination of the intrinsic fluctuations

between the potential and kinetic energy [99].

Schwarz Method Schemes

The main drawback of the state coupling through CLD and the flux coupling techniques is

that the time scales between the atomistic and continuum solvers are not decoupled. The

explicit integration of the molecular domain negatively affects the efficiency of the hybrid

schemes.

An approach that has been proposed to handle the time scales limitations within the

state coupling framework, is the Schwarz algorithm [24, 93]. The Schwarz algorithm is an

iterative procedure that leads to a steady solution and its implicit nature enables the time

scales decoupling. The technique employs a relaxation scheme, like for example (2.4.26),

in order to update the solution of one description inside the overlapping region

un+1
MD = θun

MD + (1 − θ)un
C, (2.4.26)

where un+1
MD

and un
MD

are the averaged molecular velocities at the n and n + 1 iteration

respectively, un
C

is the continuum velocity at the nth iteration and θ is the relaxation param-

eter.

The selection of the parameter θ = 0 leads to the alternating Schwarz algorithm. In this
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algorithm the continuum solution provides boundary conditions for the molecular dynamic

simulation which returns the boundary condition for the next continuum iteration. The

convergence of this iterative process is determined by the matching of the continuum and

molecular solution in the overlapping region.

The alternating Schwarz method is a serial technique which has been used to couple

the continuum description not only with molecular dynamics but also with direct simu-

lation Monte Carlo simulations. Generally, its efficiency and accuracy vary significantly

with the domain size and there is a strong possibility that a large disparity in the domain

sizes can cause divergence in the solution. The dependency on the domain can be min-

imised when appropriately selected values for the parameter θ , 0 are used. Furthermore,

the convergence of the overall procedure can be affected by the compatibility between the

macroscopic and microscopic transport coefficients. Hence, the techniques used to apply

the continuum state to the molecular region have a great impact on the quality of the solu-

tion.

In the majority of the studies when the Schwarz method is employed, a particle reser-

voir is utilised to ensure the mass continuity across the HSI. In addition periodic boundary

conditions are imposed aiming to prevent particles from drifting away from the particle

region. If the nature of the problem prohibits the use of periodic boundary conditions

then it is essential to impose a mechanism that handles the particles insertions or the ex-

tractions like the USHER algorithm described previously. The continuum velocity and

temperature are usually applied through velocity distribution functions, for example, the

Maxwell-Boltzmann.

The Maxwell-Boltzmann velocity distribution is the natural velocity distribution of an

atomic or molecular system in an equilibrium state. It defines the probability of the one-

dimensional velocity components of an atom being in a specific range, based on the tem-

perature T and the atom mass mi. For the Maxwell-Boltzmann distribution the probability

density f (C) of the thermal velocity C = u/ (2kBT/m)1/2 is given by

f (C) =
1

π3/2
exp (−C) , (2.4.27)

where kB denotes Boltzmann’s constant.

2.4.3 Time Coupling

The time evolution procedure is an important problem in the geometrical coupling and

primarily in flux imposing methods. The timescales are decoupled and it is necessary to

determine points in time at which the two domains should exchange their flux information.

Generally, there are three different time steps involved in the hybrid procedures:
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• ∆tMD is the time step for the molecular domain.

• ∆tC is the time step used for the continuum solver. It is several order of magnitudes

greater than the molecular time step ∆tC ≫ ∆tMD.

• ∆tAV is the time interval between two information exchange points.

The merging between the molecular and continuum time evolution can be achieved either

sequentially or concurrently. The majority of studies of the flux based techniques deal with

one way coupling simulations, from continuum to molecular, and therefore the strengths

and weaknesses of different time coupling approaches for a fully coupled system are not

yet fully explored.

(a) Sequential time Coupling

(b) Concurrent time coupling

Figure 2.5: Time matching in geometrical coupling

In the sequential implementation, shown in Figure 2.5(a), of the time coupling both

descriptions are integrated from the current time t to t + ∆tC where the continuum infor-

mation is provided to molecular domain. The continuum solver is frozen at this point and

the molecular one continues its time evolution to t + 2∆tC, with continuum data applied as

boundary conditions. The microscopic information is averaged over ∆tAV = 2 · ∆tC and fed

back to the continuum solver. The molecular description is now frozen and the continuum

is advanced to t + 2∆tC where the continuum information is transferred to the molecular

domain and the procedure is repeated. The sequential nature of this time integration type
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makes it more suitable for serial code implementation since the two descriptions are not

running simultaneously.

In the concurrent implementation, shown in Figure 2.5(b), both solvers are running

simultaneously and exchange information at specific points in time. This time coupling

approach introduces a delay at the order of O(∆tAV/2) in the continuum description. This

is due to the averaged nature of molecular information transferred to the continuum solver

which refers to the mean of the time averaging interval rather than the current time. The

concurrent nature of this time integration type makes it more suitable for parallel code

implementation.

2.5 Numerical tools

2.5.1 Neural Networks

The development of neural networks (NN), originated 50 years ago, was motivated by a

desire to understand and mimic the human brain and intelligence. Specifically, neural net-

works were firstly introduced in 1943 by McCulloch and Pitts [103]. McCulloch and Pitts

presented simplified neurons as models of biological neurons and as conceptual compo-

nents for circuits capable of performing computational tasks [104].

The interest in neural networks has emerged due to a combination of reasons. Initially,

a number of theoretical results led to techniques of training more sophisticated network

architectures and along with the hardware and computational power developments neural

networks simulations were made more feasible.

Neural networks have experienced applications in a number of disciplines across the

board of science and engineering such as electrical engineering, signal and speech process-

ing, medicine, pattern recognition, business and applied mathematics. Their main advan-

tage is their ability of modelling problems where the relationships among certain variables

are not explicitly known [105]. In the framework of this project neural networks are utilised

in the framework of multiscale modelling and hybrid codes. To further illustrate the appli-

cability of neural nets a number of examples in various disciplines are listed below:

• Signal Processing: The neural networks have been used for many applications in sig-

nal processing. The most common commercial application is the noise suppression

in the telephone line.

• Control Systems: Neural networks have been used quite extensively in the control

theory. The key properties of the neural networks in this particular area is the “mem-

ory” and “experience” that can provide to a control system according to existing data.
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• Pattern Recognition: There are several problems that belong to the area of pattern

recognition. One of the applications of neural networks in that area is the automatic

recognition of handwritten characters. The diversity in the sizes and style is making

the automatic recognition difficult problem for the classical approaches.

• Medicine: One of the most common applications of neural networks in medicine is

the “Instant Physician” [105]. The main idea behind this application is to train neural

networks with a large number of medical records and more particular symptoms,

diagnosis and treatment. Consequently, this neural network can take as input the

symptoms of one illness and according to the training data to give the most common

diagnosis and treatment.

• Speech Processing: In the speech processing neural networks have been used both in

speech production and in speech recognition. Especially in the difficult area of speech

recognition one neural network of particular interest was developed by Kohonen and

respectively is having the same name[105].

• Business: The properties and the characteristics of neural networks have been utilised

in a number of business applications. Known applications of neural networks are in

the mortgage assessment, in forecasting and in the stock market [105].

The neural networks are information processing systems that have certain performance

characteristics in common with the biological neurons. The artificial neural networks have

been developed as mathematical models based on the following assumptions:

• The processing of the information occurs in many elements called neurons.

• There are connection links for passing the signals between the neurons.

• All the connection links have a corresponding weight.

• The output is determined by an activation function which is applied at each neuron.

The activation function is adding non linearity to the network.

The elements that characterise a neural network is the pattern of connection between the

neurons, the method of specifying the values of the weights of the connections and the type

of the activation function. The artificial neural networks were inspired from neural biology

and therefore the information processing in artificial and biological neurons is having some

apparent similarities.

Biological Neurons

The structure of the biological neurons presents a close analogy with the structure of the

artificial neural networks. Although the structure of a biological neuron may vary upon
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different species, tree types of components can be identified[106]. These components are

the:

• Dendrites

• Soma

• Axon

Figure 2.6: Biological Neuron

Figure 2.7: Artificial Neuron

The dendrites are the input elements of one biological neuron. They receive the signal,

which is an electrical pulse, from the other neurons. These electrical pulses are transmitted

by means of a chemical process across a synaptic gap. Consequently, the soma gathers and

sums all the incoming signals. When the input is sufficient then the soma is transmitting

the signal over the axon to the other neurons(see Figure 2.5).
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There are certain analogies between the biological and the artificial neurons. Specif-

ically,the fundamental features of the artificial neurons based on the the properties of the

biological neurons are [105](see Figure 2.6):

• The dendrites transfer many input signals and consequently the artificial neuron has

many inputs.

• The signals are modified by a weight at the receiving synapse. In the same vein the

inputs in the artificial neuron are multiplied with a corresponding weight.

• The soma gathers and sums all the inputs. Respectively, all the weighted inputs of an

artificial neuron are gathered.

• The input may exceed a threshold and be transmitted or may not. This is represented

by the role of the activation function.

• The output of one neuron either biological or artificial can be used as an input to

other neurons.

Neural Networks Architecture

The neurons are combined each other and this combination of neurons is called neural

network. More specifically, the arrangement of neurons into layers and the connection

patterns between these layers is called network architecture. There are three common layers

that can be identified in almost all neural networks:

• The input layer where the input signal is transmitted to the network

• The hidden layers where the signal is being processed

• The output layer which is giving the output for the respective input

The neural networks can be classified upon the number of layers they consist of. In the

number of layers that one neural network has the input layer is not counted because does

not perform any computations. Consequently, the number of layers can be determined by

the number of interconnect links between the neurons (see Figure2.7).

Apart from their layers number, neural networks can be classified either as feedforward

or recurrent(see Table 2.1). Feedforward are the neural networks which the signal flows in a

forward direction from the input towards the output unit. As recurrent can be characterised

the neural networks that contain closed loop units. In the scope of the current study the

multilayer feedforward networks are studied.
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Network Architecture
Main Application

Multilayer feed-forward

non-linear modeling, predictions of

molecules activity, pattern

recognition, classification, signal

filtering

Recurrent Networks
sequence and time series analysis

Encoder Networks data compression, factor analysis,

feature extraction

Kohonen Self-Organizing Maps clustering, data compression,

visualization

Hopfield Networks
auto-associative recall, optimization

Adaptive Resonance theory Models

(ART) clustering, pattern recognition

Counterpropagation Networks function approximation, prediction,

pattern recognition

Radial Basis Networks function approximation, prediction,

clustering

Adaptive Fuzzy Systems similar to ART and feed-forward

Networks

Table 2.1: Neural networks classification in life sciences.
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(a) Neural network with 1

input layer and 4 neurons

(b) Neural network with 4

inputs and more than 1 out-

puts

(c) Neural Network with 1 input, 1 hidden and 1 out-

put layer

Figure 2.8: Types of neural network’s architecture

Activation Functions

The structure of a typical neuron consists of two parts: the net function and the activation

function. The net function determines how the inputs are combined inside the neuron while

the activation function determines the output of the neuron.

u =

N
∑

j=1

w j · x j + θ and y = f (u) (2.5.1)

The activation functions are essential parts of the neural network because they introduce

non linearity to the network. Without the activation functions the neural networks are not

capable of representing non linear relationships between inputs and outputs. Several types

of activation functions can be identified in the literature(see Figure 2.8). The most common

ones are:

• Step function:

f (x) =

{

1 i f x ≥ θ
0 i f x < θ

(2.5.2)

The step function can be considered as one of the first representatives of the sig-

moid functions which are extremely useful in the neural network theory. This type

of functions can be trained with the back propagation algorithm however presents

limitations due to the discontinuity at zero of its first derivative. In the same wider
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category can be added all the functions of the type:

f (x) =

{

σ i f x ≥ θ
−σ i f x < θ

(2.5.3)

• Identity function:

f (x) = x f or all x (2.5.4)

This type of functions are primarily used in the last neuron in order to sum up the

contributions from all the neurons and provide their linear combination. The general

form of these functions is:

f (x) =



















σ i f x ≥ θ1

a · x + b i f θ2 < x < θ1

−σ i f x ≥ θ2

(2.5.5)

• Logistic Sigmoid:

f (x) =
1

1 + e−σ·x
(2.5.6)

and

f ′(x) = σ · f (x) · (1 − f (x)) (2.5.7)

The logistic sigmoid function can be scaled in order to adapt to any range of values

that a given problem demands. It is most commonly used in the range of -1 to 1.

• Bipolar Sigmoid (General Hyperbolic Tangent):

f (x) =
1 − e−σ·x

1 + e−σ·x
(2.5.8)

f ′(x) =
σ

2
· (1 + f (x)) · (1 − f (x)) (2.5.9)

The hyperbolic tangent function is taken from the above equations for value of σ = 2.

Figure 2.9: Typical activation functions: sgn, semi-linear, sigmoid
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Training Procedure

The term training characterises the entire procedure that determines the values of a neural

network’s weights. This procedure is not unique and is crucial for the behaviour of the

network. Generally two types of training can be identified, the supervised and the unsuper-

vised.

The supervised training is the most commonly used process for determined a neural

network’s weights. In the supervised process the training is accomplished by providing

training vectors as inputs and the corresponding outputs.

The unsupervised process is using for training the networks only the input vectors with-

out providing any target data. The neural network in that case is trying to modify its weights

in order to assign similar input vectors to the same output.

The training algorithm that is widely used for supervised training is called Back prop-

agation. This algorithm is one of the main reasons that re-activated the interest of the

scientific community for the neural networks.

Back-Propagation

The main idea behind the back propagation learning rule is that the errors for the units

of the hidden layers are determined by back propagating the errors of the units of the output

layer [104]. The whole concept of the back propagation is generally very clear.

Suppose a feedforward neural network with a known learning pattern. The weights

of the neural networks are initialised arbitrarily. When one of those learning patterns is

clamped the input values are propagated to the output and a value for the respective output

is obtained. The output value is different from the desired one and an error eo is specified

for the output unit o. The goal the value for the error eo to be equal with zero.

The most convenient way to achieve this is the greedy method. The weights of the

connections of the neural network are changed in order to equalise the error eo in this

particular pattern with zero. Although this is the first step for identifying values for the

weights of the neural network by itself is not enough because is not changing the weights

in the input or the hidden units. The response to this problem is coming through the chain

rule. The error an output unit is distributed across the hidden layers that is connected to,

weighted by this connection.

Efficiency of Multi-layer Feed-forward Neural Networks

The efficiency that a neural network represents a data set is highly influenced by a number

of parameters. The efficiency is counted by the error of the neural network’s approximation.
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The parameters with the bigger impact on the approximation error are [104]:

1. The training algorithm and the number of iteration that the algorithm performed:

These parameters determine how the error is minimised to the given training set.

2. The learning samples: This is a crucial parameter for the efficient training of a neural

network. It determines how representative of the actual function the training samples

are. A learning sample is one set of input and output data that is used to train the

neural network.

3. The number of hidden units: The number of hidden units is determined by the

smoothness of the actual function. Smooth functions need only a few hidden units

while widely fluctuating functions need more hidden units.

The error of approximation of the neural network can be measured in two different data

sets. Initially all the training algorithms try to minimise the error between the learning set

and the output of the neural network. Learning set is the set of data (learning samples) that

is used for the training of the network. The average error per learning sample, named as

Elearning, is defined as the learning error rate:

Elearning =
1

Plearning

Plearning
∑

p=1

Ep (2.5.10)

where Plearning is the number of learning sets and Ep is the error between networks data and

the training data for one learning set.

Apart from the average error per learning sample the difference between the desired

output and actual output of the neural network should be tested over additional data. The

test set includes data that have not been used in the training procedure and are utilised to

test the network’s performance. Taking into account these test data it can be defined the

test error rate, Etest:

Etest =
1

Ptest

Ptest
∑

p=1

Ep (2.5.11)

The Etest represents the average error between the provided and the networks predictions.

The effects of the number of learning samples and the number of hidden units can

easily understood by a simple example and represented by two graphs. Assume that there

is a function y = f (x) which has to be approximated with a feed-forward neural network.

Figure 2.10 shows the error rate of a typical feed-forward network as a factor of the number

of learning samples. As the number of learning samples increases the error rate for the test

data increases asymptotically to a minimum value.

Figure 2.11 shows the effect of the hidden units to a typical feed-forward network. As

the number of hidden layers increases the error rate at the learning set decreases towards
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Figure 2.10: Effect of number of samples to the error rate

a minimum value. On the contrary, the error rate at the learning set although it decreases

initially from one point and onwards it starts to increase. As the number of hidden layers

increases fluctuations are introduced to the network’s output and although the error for the

learning set is reduced the lack of smoothing affects the error in the testing samples.

2.5.2 Genetic Algorithms

The genetic algorithms (GA) are search algorithms inspired from natural genetics and the

mechanics of natural selection and natural genetics [107]. They are designed to simulate

evolution processes of a system by utilising Darwin’s principles of “survival of the fittest”.

In nature, individual competition for resources results in the domination of the fittest over

the weaker ones. The GA were initially introduced in 1975 by John Holland at the Univer-

sity of Michigan [108]. Since then GA have experienced an explosion of work and their

applications can be found in a variety of scientific areas such as Computer Science, Econ-

omy, Engineering, Bioinformatics, Manufacturing and many other fields. The main advan-

tage of the GA over the conventional artificial intelligence is their robustness. Furthermore

genetic algorithms offer significant benefits over traditional optimisation techniques, like

linear programming, due to the fact that rarely can be led astray by local minima or max-

ima especially when searching in large multidimensional data.

In order to define a typical GA two things are essential: the first one is a genetic rep-

resentation of the solution domain and the second one is a objective function in order to

evaluate the solution. The solution domain is described as a finite length vector of vari-

ables, according to some alphabet, something that presents analogies with the DNA chro-

mosomes. Each individual represent a point in the search domain and consequently a pos-

sible solution. A standard representation or alphabet is an array of bits 0 and 1. Hence,
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Figure 2.11: Effects of the number of hidden layers to the error rate

the individuals are linked to chromosomes and the variables to genes. Thus several genes

(variables) compose a chromosome (solution). The objective function aims to measure the

quality of each chromosome. The objective function is problem dependent and a fitness

score is assigned to each chromosome representing its ability to “compete”.

Three are the main operations of a genetic algorithm are shown in Algorithm 2.

In the scope of this study the GA are utilised to optimise the structure of the ANN in-

volved in the PWC. This section aims to provide a quick overview of fundamental processes

related to genetic algorithms.

Initialisation

In the initialisation process an initial population with possible solution is created. The gen-

eration of the initial population is random and is achieved through a generation of randomly

selected popsize · m bits, where popsize is the size of the population and m is the number of

bits for each individual member of the population. The size of the population remains

constant throughout the operation of the genetic algorithm.

Selection

For the new population selection process a slotted roulette wheel is employed. The selection

is based on the performance of each individual of the population. Higher values of the

objective function or better fitness of a chromosome are translated to higher probability to

be selected for the new generation.
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Algorithm 2 Genetic Algorithm Pseudo code

Random initialisation population: P

Evaluation: for each i in P, compute Objective(i)

while !(termination_criterion)

1. Selection: Probabilistic selection of members of P for the new population P_new

2. Crossover: Probabilistic selection of pairs combined for crossover and probabilistic

selection of the crossover point

3. Mutation: Selection of m percent of the member P_new with a uniform probability

and for each one invert one randomly bit

4. Update: P←P_new

5. Evaluate: for each i ∈ P compute Objective(i)

Return i from P with the highest objective function

The development of a slotted roulette wheel is as follows:

1. The performance of each individual in the population is calculated according to the

objective function:Ob jective(i), i = 1, ..., popsize

2. The total performance of the population is calculated: F =
popsize
∑

i=1

Ob jective(i)

3. The selection probability pi for each member of the population is calculated: pi =

Ob jective(i)/F, i = 1, ..., popsize

4. The cumulative probability qi for each member of the population is calculated: qi =
i
∑

j=1

p j

For the selection of the new generation the wheel is spun as many times as the size of the

population and the selection is done as follows:

1. A number r is chosen randomly between 0 and 1

2. If r < q1 then the first chromosome is selected. In any other case that qi−1 < r < qi

the ith chromosome is selected.
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Crossover

After the selection of the new population the next operation that takes place is the crossover.

A crossover probability for each chromosome in the population is considered pc and for

each chromosome in the population the process is as follows:

1. A number r is chosen randomly between 0 and 1

2. If r < pc the current chromosome is selected for crossover

The population members that have been selected for the crossover process are divided to

pairs. The expected number of the chromosomes that have been selected is pc · popsize,

if the number of the selected chromosomes is odd then one more chromosome from the

population is randomly selected. For each pair a random number pos between 1and m − 1

is selected. The number pos indicates the crossover point for each particular pair. To

further illustrate the process, the crossover of the following two chromosomes:

b1b2Kbposbpos+1K1bm

c1c2K2cposcpos+1K3cm

will lead to the following pair of descendants

b1b2Kbposcpos+1K3cm

c1c2K2cposbpos+1K1bm

The descendants will substitute their parents in the population.

Mutation

In the mutation process one gene from one chromosome of the population is randomly

selected to change value. Due to the fact that the genetic algorithms that are going to

be examined in the scope of this study are using bit values 0, 1 for the chromosome the

mutation will lead one chromosome to change its value from 0 to 1 and vice versa. Every

gene in the population has the same probability for mutation and this is equal to pm. The
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expected number of mutations in each population is expected to be pm · m · popsize and the

process is as follows:

For each chromosome in the population and for each gene of this chromosome:

1. A random number r is chosen between 0 and 1

2. If r < pm then the value of this gene is changed

2.5.3 GA for Optimising ANN architecture

Over the last years increased attention from the scientific community has been noticed for

finding the optimum architecture of a neural network [109]. The reason for that is twofold.

Firstly, the architecture of one neural network is directly related with its performance and

consequently necessity for optimum design is apparent. Secondly, there is no theoretical

background or systematic methodology of how this architecture will be found. The tradi-

tional methods follow a trial and error process which is time consuming, is based on human

expert’s experience and involve high degree of uncertainty [109].

In order to confront the aforementioned problem several approaches have been pro-

posed in the literature without concluding to a definite answer or a widely adopted method-

ology. These approaches can be broadly classified upon the following groups:

1. Statistical or empirical methods that are utilised to study the effects of the internal

network’s parameters based on performance criteria [110, 111]. The most system-

atic methodology in this group utilises the basic principles of the Taguchi’s design in

order to determine the internal parameters and meet the speed and accuracy require-

ments.

2. In the second group of methods the neural networks are interpreted as adaptive fuzzy

systems. These methods can be characterised as fuzzy methods and their novelty is

the introduction of a moving fuzzy consequent in if-then rules [112].

3. In the third group constructive or pruning algorithms are included where neurons

are added or deleted from a certain architecture according some performance based

criteria [113, 114]. The basic methodology for this type of algorithms is that neurons

are added to the system when the training is slow or when the mean square error is

above a pre-specified value. Neurons are deleted from the network when the values of

the weights remain constant from a pre-specified number of training epochs or when

the neurons are not having impact to the network’s response. The main drawback

of these methods is that they are primarily gradient based methods [109]. Their

gradient nature implies that they can be trapped to local minima and consequently

their convergence to global minimum is not guaranteed.
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4. In the last fourth group evolutionary strategies and algorithms that search over the

topology by varying the number of hidden units and layers are included [109, 115–

117].

In this section a method for optimising the architecture of ANN is described. The method

falls into the fourth group and is an extension of a method proposed by Bernardos and

Vosniakos in [109].

Architecture Optimisation Methodology

The elements that consist the architecture of an ANN and have paramount importance for

the performance of the network are:

• The training algorithm

• The number of hidden layers

• The number of neurons in each layer

• The activation function of each layer

Taking that into account, the procedure for optimising the neural network’s architecture is

as follows:

1. An initial population is created using a coding scheme where the number of hidden

layers, number of neurons, activation function and training procedure are encoded

in the chromosome. The novelty of the current approach compared to Benardos and

Vosniakos [109] is the coding scheme where not only the number of hidden layers and

hidden units are included but also the training algorithm and each layer’s activation

function.

2. By decoding the initial population’s chromosomes a number of ANN is created.

3. For every ANN that is created the weights are initialised randomly and the corre-

sponding algorithm is utilised for the training procedure.

4. The performance of every ANN is quantified according to specified criteria related

with the mean square error and its complexity.

5. Based on the above objective function the evolutionary process is initiated until the

GA converges or the maximum number of generations is reached.
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0 1 1 1 1 0 1 0 0 0 0 0 1 1

Training Algorithm Activation

Function

Activation

Function

1st Hidden Layer 2nd Hidden Layer

Table 2.2: Chromosomes Coding Example

Chromosome Coding

For the coding problem an indirect coding scheme is employed. Specifically, one ANN

can be decomposed to a number of hidden layers and each hidden layer can be coded for

example by using 6 bits. The number 6 is indicative since it can be increased of decreased

depending on the nature of the problem. The first of the 6 bits that represents a hidden layer,

indicates the activation function used. For example 0 corresponds to a linear activation

function and 1 to sigmoid one. The number of bits used for the activation function can be

increased if more functions have to be included. The rest of the bits represent the number

of neurons of the hidden layer. For this particular example 5 bits correspond to 20 + 21 +

22+23+24 = 31 neurons. Consequently, each hidden layer in this example may have either

a linear or sigmoid activation function and a maximum number of 31 neurons.

The second step is to define the maximum number of hidden layers that the network will

accommodate. Once the number of the hidden layers is defined then the next step towards

the construction of the chromosome is to multiply the number of hidden layers with the

number of bits used to code each one. For example if the maximum number of hidden

layers is 2 and the bits used for each one 6 then 12 bits are needed. In order to finalise the

chromosome coding 2 bits for example are engaged to represent the training algorithm that

is going to be used. This results to 4 different training algorithms. However, the number of

bits used can be adjusted to the nature of the problem.

Summarising for the particular example 14 bits are required in order to represent the

ANN. The first two code the training algorithm and the remaining 12 are divided to 2

groups resulting 6 bits for every hidden layer. From those 6 bits the first one represents the

activation function and the rest 5 number of neurons of the layer (see Table 2.2).

Objective Function - Error Criteria

The determination of the objective function for the genetic algorithm that optimises the

architecture of a neural network includes the following four criteria [109]:

1. The first criterion is the training error and is used to quantify the neural network’s

performance in the training data set. The formula for calculating the training error is
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the following:

Etraining =

n
∑

i=1

|(Yoi − Yi) /Yoi|

n
(2.5.12)

where Yoi are the target values, Yi are the network’s response and Etraining is the train-

ing error.

2. The second criterion is the general error for data sets that the neural network has

not been trained. Usually from the amount of data available the 75% is used for

the network’s training and the rest 25% is used for producing the general error. The

aim of this criterion is to test the performance of the network for predicting outputs

for inputs that have not been used in the training. The calculation of the general

error presents similarities with the calculation of the training error and it is expressed

mathematically as follows:

Egeneral =

n
∑

i=1

|(Yoi − Yi) /Yoi|

n
(2.5.13)

where Yoi are the target values, Yi are the network’s predictions and Egeneral is the

general error.

3. The third criterion is related with the architecture of the neural network. The general

idea is that larger architectures are penalised over the smaller ones. This is due to

the fact that smaller architectures present significant benefits related with the training

procedure and the generalisation ability of the network. Particularly, smaller archi-

tectures accelerate the training process which is the most cost intensive part and at the

same time augment the generalisation ability of the network which remains as com-

plex as it has to be and not more. This criterion has been named from Bernardos and

Vosniakos [109] as feedforward architecture criterion (FFAC) and its mathematical

expression is the following:

FFAC = a · e f (x) (2.5.14)

where f (x) is a function of the total number of biases and weights and a is a constant.

4. The fourth criterion aims to penalise architecture that their predictions are not consis-

tent throughout the solution space. Despite the fact that one architecture may exhibit

low general error may have significant discrepancies is particular parts of the solution

space. Consequently, it is essential to penalise the architectures that their predictions

are not consistent and this is materialised through the consistency criterion (CCR) as

follows:

CCR = 1 + 0.35 · x + y (2.5.15)

where x is the number of test cases that prediction of the network differed from 15%

to 25% from the desired one and y is the number of test cases that the network’s

prediction differed more than 25%.
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The total objective function that is formulated from the combination of the above criteria is

expressed as follows:

Ob jective = FFAC ·CCR · (Etraining + Egeneral) (2.5.16)

The criteria in the objective function can be easily adjusted in order to meet the needs of

each particular application that is going to be applied. Lower values for the objective func-

tions correspond to simpler neural networks with smaller and consistent error. Minimum

values for the objective function are achieved when FFAC = 1 and CCR = 1.
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Point Wise Coupling

3.1 Introduction

The majority of the geometrical coupling methods are limited in terms of applicability to

larger spatial and temporal scales. Particularly, these methods are constrained by (i) the

size of the overlapping region that can influence the convergence of the continuum solver

[23], and (ii) the integration of the molecular domain that has to be done explicitly for the

whole simulated time. The scope of the current chapter is to provide a detailed description

of the hybrid framework, developed in the context of the current project, named as Point

Wise Coupling (PWC).

The impact of the microscopic structures and the particle interactions is modelled macro-

scopically through (i) transport coefficients such as viscosity or thermal conductivity; (ii)

appropriate boundary conditions, such as slip velocity or tangential stress; and (iii) the

constitutive relations, for example, the thermal equation of state. However, when either

the microscopic structures or the particle interactions become more complicated, the con-

tinuum models break down and new models have to be derived. Typical examples are

the polymeric fluids where the stress-strain rate relation is not linear and consequently the

viscosity is not constant, and the gas-solid interactions where at high Knudsen numbers

apparent slip is present and the no-slip boundary conditions break down.

The basic idea of the PWC is to perform MD simulations during the simulation pro-

cedure to estimate parameters needed for the continuum solver. Accurate estimation of

parameters that include microscopic information will greatly enhance the accuracy of the

continuum simulations. The molecular simulations are constrained by the continuum solver

in order to be consistent with the local macroscopic state under the local equilibrium as-

sumption. In the PWC coupling the entire domain is covered with the macroscopic solver

and the atomistic model enters as a local refinement. Thus, the results from the microscale

are embedded in the continuum simulation and in that sense PWC inherits characteristics

of an embedded framework. This scheme naturally decouples the time scale between the

54
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Figure 3.1: Schematic representation of a grid with the MD simulations

atomistic and continuum description.

The type of the problems that PWC is applied can be classified as follows:

Boundary condition problem: In the majority of the macroscopic simulations the no-slip

hypothesis is assumed or in the cases of rarefied gases in high Knudsen numbers

continuum slip models are employed. However, there are cases like the liquid flow

over hydrophobic surfaces where further molecular level information is required. In

this problem molecular simulations are performed around specific grid points (see,

Figure 3.1), to examine the fluid behaviour in the context of fluid-solid interaction and

consequently to calculate the appropriate boundary conditions. The MD simulations

are constrained through the local continuum state, the slip velocities are calculated by

the microscopic simulations and fed back to the continuum solver. The constrained

factors for the molecular simulations and the data fed back to the continuum solver

may vary depending on the nature of the problem.

Transport coefficient problem: Accurate knowledge of transport coefficients such as vis-

cosity, thermal conductivity or accommodation coefficients can significantly improve

the quality of the continuum model. When these coefficients are not explicitly known

particle based methods can be directly applied in order to provide the missing data.

For example in the gas slip simulations the values of the accommodation coefficients

can affect significantly the amount of slip generated. However these values can be

affected by local conditions and therefore there are problems where they have to be

evaluated on the fly.

Constitutive relations problem: In the macroscopic simulations the constitutive relations,

for example the relation between the stresses and the strain rate, can be not known

explicitly. For these cases molecular simulations can be utilised to calculate the con-

stitutive relations that are needed for the continuum solver (see Figure 3.2). The MD
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Figure 3.2: Schematic representation of a grid with the MD simulations

simulations are then performed around specific grid points, constrained through the

velocity gradients, and the calculated stresses are fed back to the continuum solver.

3.2 Continuum to Molecular

The accuracy and efficiency of multiscale approaches depend to a great extent on the bound-

ary condition transfer (BCT) method that constrains the atomistic region to the continuum

conditions. The problem of imposing macroscopic conditions on a molecular system is

a very challenging task and has not yet been addressed for a general case [13, 93]. The

main difficulty is the disparity between degrees of freedom modelled by the atomistic and

continuum models.



3.2 Continuum to Molecular 57

(a) (b)

Figure 3.3: (a) Continuum state imposed on the molecular domain for the boundary conditions

problem and (b) Atomistic simulations in the embedded coupling for obtaining boundary conditions

3.2.1 Boundary Condition Problem

For this type of problems MD simulations are employed in specific grid points near the

walls to model molecular interactions and produce more accurate boundary conditions. The

local continuum state, for example velocity, density, pressure and temperature, is applied

to the microscopic simulations through the appropriate boundary conditions and then the

data calculated from the molecular simulations are fed back to the continuum solver.

In Figure 3.3(a) the region where the continuum boundary conditions are transferred

to the molecular model is shown in grey. In general continuum boundary conditions can

be applied not only at the upper boundary but also at the other faces except the lower one

that faces the solid wall. This region plays a twofold role, it ensures that the molecular

simulations are consistent with the continuum state and it serves as a particle reservoir for

the rest of the molecular domain (see Figure 3.3).

Enforcing the continuum constraints requires to alter the properties of the atoms inside

the constrained region to match the continuum velocity, ucon, and temperature, Tcon. Ad-

ditionally, the local continuum pressure, Pcon, must be applied normal on the outer surface

of the constrained region in order to keep the atoms within the molecular domain and to

subject the molecular system to the correct pressure.

The velocity and temperature conditions can be imposed by two alternative methods.

The first one is based on periodic rescaling of the atomic velocities [15, 17, 96, 99, 101, 118,

119], and the second one on a periodic re-sampling from a velocity distribution functions,

such as the Maxwell-Boltzmann [25, 120, 121] or the Chapman-Enskog [21, 24, 122–125]

distribution.
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Rescaling techniques

The average velocity of particles in the constrained region Rctr must correspond to the

continuum velocity ucon:

1

Mctr

∑

i∈Rctr

miui = ucon , (3.2.1)

where Mctr =
∑

mi, i ∈ Rctr is the total mass of particles inside the constrained region. In

order to satisfy Equation (3.2.1) velocities, ui of the atoms inside the constrained region

are periodically replaced by u
′

i, which is calculated by

u
′

i = ui −
1

Mctr

∑

i∈Rctr

miui + ucon . (3.2.2)

Hybrid methods usually apply the normal pressure through external forces [14, 101].

The disadvantage of using an external force is that inserts/removes energy depending on

the velocity of the atoms onto which the force is applied to. This results in oscillations

in the molecular system [13, 16]. The oscillations can be significantly reduced by using

the velocity reversing scheme [16]. According to this, the pressure, Pcon, is applied by

reversing the velocity vector of atoms that move in the opposite direction of the pressure

force. If the outer surface of the constrained region is normal to a dimension α, then an

atom i is reversed by changing the sign of the respective velocity component (in all the

cases examined in the framework of the current thesis only the normal to the molecular

boundary component of the velocity is reversed): v
′

i,α = −v
′

i,α. For each reversed atom, i, a

momentum pi = 2miv
′

i,α is applied. To apply a pressure of Pcon at each MD time step, the

algorithm continues to reverse atoms until the transferred momentum equals the required

momentum transfer due to the pressure:

∑

i

2miv
′

i = Pcon∆tActr , (3.2.3)

where the sum is over the reversed atoms, ∆t is the size of the time step and Actr is the sur-

face area of the constrained region. The main advantages of the velocity reversing scheme

are its simplicity, robustness, and the absence of any artifacts due to transfer of energy [16].

The continuum temperature is applied to the microscopic system through an energy

transfer scheme [16]. The main idea is to add or remove energy from the microscopic

system in order to match the macroscopic temperature without modifying the particles’

mean velocity. The energy transfer is performed independently for each dimension and is

achieved through scaling the velocity vectors of the atoms as follows:

u
′

i = ui f + c. (3.2.4)



3.2 Continuum to Molecular 59

The scaling factor, f , is calculated by

f =

(

1 +
3NctrkBTcon

2Ek,int

)

, (3.2.5)

where Nctr is the number of atoms in the constrained regions, Ek,inta is the internal kinetic

energy of these atoms, kB denotes the Boltzmann’s constant and Tcon is the target energy.

The internal kinetic energy is given by

Ek,int =
∑

i∈Rctr

1

2
mi (ui − ū)2 , (3.2.6)

with ū being the mean velocity component of the constrained atoms that is calculated by

ū = (1/Mctr)
∑

i∈Rctr
miui. The factor c is given by

c = ū(1 − f ) (3.2.7)

and ensures that no momentum is transferred along with the energy.

Resampling techniques

The second BCT method utilises velocity distribution functions. For the scope of this study

the atomistic velocities are periodically sampled either using the Maxwell-Boltzmann or the

Chapman-Enskog distribution. Resampling has been previously applied by other authors

in relation to the moving contact line problem [120, 121].

The Maxwell-Boltzmann velocity distribution is the natural velocity distribution of an

atomic or molecular system in an equilibrium state [126]. It defines the probability of the

one-dimensional velocity components of an atom assuming a specific value, based on a

temperature T and the atom mass m.

For the Maxwell-Boltzmann distribution the probability density f (C) of the thermal

velocity C = u/ (2kBT/m)1/2 is given by

f (C) =
1

π3/2
exp (−C) . (3.2.8)

Each particle in the upper region is assigned a velocity u = ucon + umaxwell, where

umaxwell is the velocity of the Maxwellian distribution and ucon is the macroscopic velocity.

The assigned atomistic velocities in the constrained region are then defined as

uia = ucon
a +

√

kBT con

mi

· ψ, (3.2.9)
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where ψ denotes a Gaussian distributed number N (0, 1) and ucon
a is the ath component of

the continuum velocity.

In order to ensure that every particle remains inside the molecular domain a reflective

plane is placed at the upper boundary of the constrained region. This is simpler than the

velocity reversing scheme, but can only be applied to incompressible flows because the

normal pressure is a result of the reflected atoms.

For non-equilibrium situations the Chapman-Enskog distribution is a better model and,

therefore, its application for sampling the atomic velocities has also been investigated. It

has been used primarily in hybrid simulations of dilute gases that employ geometrical de-

composition and state coupling [21, 24, 123–125].

The Chapman-Enskog distribution is a perturbed Maxwell-Boltzmann distribution [122]

with probability density given by

f (C) = Γ (C) π−3/2exp
(

−C2
)

, (3.2.10)

where Γ (C) is the perturbation term given by

Γ (C) = 1 +
(

qxux + qyuy + qzuz

)

(

2

5
C2 − 1

)

−

2
(

τx,yCxCy + τx,zCxCz + τy,zCyCz

)

− τx,x

(

C2
x −C2

z

)

−
τy,y

(

C2
y −C2

z

)

, (3.2.11)

where qa and τa,b, (a, b = x, y, z) denote the dimensionless heat flux and stress tensor,

respectively. The atomistic velocities for the current distribution are sampled from Equation

(3.2.10) through the implementation of an acceptance-rejection random velocity generator

described in [122].

The novelty of PWC, apart from its boundary conditions imposing techniques, is that

MD simulations, constrained from the macroscopic solver, are performed around specific

grid points, using the assumption of a local equilibrium, and the data that are fed back

to the continuum solver are not only stresses but also velocity or temperature boundary

conditions. This approach makes PWC more flexible and concurrently minimises the in-

stabilities that may be introduced in the continuum solver through the molecular calculation

of the stresses [28].
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Figure 3.4: Deformation Box Procedure

3.2.2 Constitutive relations and transport coefficients

Parrinello-Rahman

Figure 3.4 shows deformation of an orthogonal box using the Parrinello-Rahman technique,

when a constant shear is applied in one direction.

Consider a molecular system of N particles in a parallelepiped domain with periodic

boundary conditions. The parallelepiped is defined by three vectors a, b and c that span

the edges of the domain. These vectors can be arranged to create a 3 × 3 matrix H where

the columns are the components of a, b and c. The volume of the domain is given by

Ω = a · (b × c) (3.2.12)

The position ri of ith particle in the (a, b, c) coordinate system is given by

ri = Hsi = ξia + ηib + ζic (3.2.13)

where 0 ≤ ξi, ηi, ζi ≤ 1.

Consider an initial reference state for the system H0 with a corresponding volume Ω0 =

‖H0‖ and a general stress applied to the molecular domain. In the reference state, any point

with a coordinate vector s is transformed into the coordinate system associated with the

parallelepiped:

r0 = H0s (3.2.14)

With a homogeneous distortion of the system from H0 to H, the position of the coordinate

vector s changes from r0 to r as follows

r = Hs = HH−1
0 r0 . (3.2.15)

The system evolves according to the SLLOD equations of motion [127]:

ṙi =
pi

mi

+ (∇u)τ · ṙi (3.2.16)

ṗi = fi − (∇u)τ · ṗi (3.2.17)
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Figure 3.5: Schematic of a simulation box in RNEMD

where pi is the momentum and fi is the force associated with the ith particle.

For this type of problems the microscopic solver is constrained with the continuum

strain rate and the shear stresses calculated from MD are fed back to the continuum solver.

The NEMD Parrinello-Rahman method is used to perform the microscopic simulations at

constant shear rate. The main advantage of this NEMD method is that it allows the applica-

tion of periodic boundary conditions and therefore larger domains can be accommodated.

At the same time it allows to avoid the calculation of stresses under conditions where the

validity of other formulations like the Irving-Kirkwood is not justified. With the aid of the

embedded methods continuum simulations can progress without considering any constitu-

tive relations models, using averaged stresses calculated from the molecular simulations.

Reverse Non Equilibrium Molecular Dynamics

Transport coefficients can be treated as proportionality constants between a field and a

corresponding flux, for example the shear viscosity correlates the shear field with the mo-

mentum flux

Fp,x = −µ
∂ux

∂y
, (3.2.18)

where Fp,x is the x component of the momentum flux transferred in the y direction and µ

is the shear viscosity. The momentum flux Fp,x is defined as the momentum transferred

through a surface, perpendicular to the y direction, with area S over a time t.

In the RNEMD method the momentum is imposed on the molecular system artifi-

cially through a procedure that has similarities in its basic concept to the velocity reversing

scheme. Specifically, in this method the simulation box is divided into N bins along the y

direction, as shown in Figure 3.5, and momentum is non-physically exchanged between the
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lower and the middle bin. If the atoms in lower bin are transferred along the +x direction

and the particles in the middle bin - along the opposite −x direction, then in both areas

the particles with the largest momentum in the −x or +x direction, for the first and middle

bins respectively, are found. The momentum is exchanged between the two particles and

hence a known amount of momentum ∆p is transferred. This procedure is repeated for a

time ∆t and the total amount of momentum transferred PRNEMD is calculated as the sum

of the individual ∆p. In the opposite direction, above the middle of the channel, there is

a physical transfer of momentum arising as a response of the system to the imposed non

equilibrium state [128, 129]. In a steady state, the transfer of momentum due to the physical

and artificial mechanisms is the same. This can be expressed as follows

PRNEMD

2S∆t
= −µ∂ux

∂y
. (3.2.19)

From the obtained velocity profile the corresponding gradients are calculated. Then the

viscosity µ is calculated from Equation (3.2.19). Apart from the velocity profile generated

through the momentum exchange algorithm a temperature profile is also generated with a

half period compared to the velocity one. Therefore the application of the method is not

restricted only to viscosity but can also be applied to calculations of thermal conductivity

and thermal diffusion [130].

Example: RNEMD Viscosity Calculation

In this example the viscosity of Lennard-Jones fluids is calculated through the RNEMD

method. This procedure can be directly applied during a continuum simulation for obtain-

ing the fluid’s viscosity when it is not explicitly known. In the current example the simula-

tion box size is 10.0585σ in the x direction, 30.1756σ in the y direction and 10.0585σ in

the z direction. The fluid density is selected to be equal to ρ = 0.81 mσ−3, resulting in 2592

particles, and numerical experiments are carried out for the following three temperatures

T1 = 0.9ǫk−1
B , T2 = 1.1ǫk−1

B and T3 = 1.3ǫk−1
B . A molecular dynamics time step of 0.003τ

is used and the simulations are performed for a total number of 6 · 105 time steps. The

x momentum component is exchanged along the y direction, and the simulation domain

is divided to 20 bins. An important parameter for the RNEMD scheme is the momentum

exchange frequency due to its impact on the velocity distribution, large frequency can lead

to non-linear velocity profiles.
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Figure 3.6: Velocity profiles obtained from RNEMD for (a) different temperatures and (b) different

momentum exchange periods

Figure 3.6(a) shows the velocity profiles obtained from the simulations, with the mo-

mentum being exchanged every 20 molecular time steps. The velocity profile from y = 0

up to the centre of the channel y = 0.5H is due to the artificial transfer of momentum be-

tween the lower and the middle bin whereas the velocity profile in the rest of the channel is

a result of the momentum transfer due to the physical mechanism of friction. Hence, know-

ing the total momentum PRNEMD that has been exchanged, the area S , the total simulation

time ∆t and the velocity gradient from the corresponding profiles in Figure 3.6(a) the shear

viscosity is directly calculated from Equation (3.2.19).

As has been mentioned previously, an important parameter for the accuracy of the vis-

cosity calculations through the RNEMD is the period of the momentum transfer. As shown

in Figure 3.6(b) the impact of the number of time steps on the velocity profiles is apparent.

A very frequent exchange of momentum generates sharper velocity profiles, however it also

introduces nonlinearities that compromise the accuracy of the calculations. On the other

hand, if momentum is exchanged over a large number of time steps, smaller gradients are

generated and the calculation is subject to larger statistical errors.

To summarise, during the simulation procedure the amount of momentum that is arti-

ficially exchange between the lower and the middle bin is recorded. Different momentum

exchange periods will result to different amount of momentum transferred and therefore to

different velocity profiles and specifically different velocity gradients, as shown in Figure

3.6. Based on (i) the velocity gradient calculated from Figure 3.6 for a specific exchange

period, like for example 100 time steps, and (ii) the amount of momentum transferred dur-

ing the simulation PRNEMD the viscosity is calculated by utilising Equation (3.2.19).
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3.3 Molecular to Continuum

The transfer of information from the molecular to the continuum description, although less

complicated compared to the reverse procedure, is crucial for the efficiency and accuracy of

the hybrid scheme. In atomistic simulations the calculation of macroscopic variables is per-

formed through averaging the corresponding microscopic properties. Thus, the information

transferred to the continuum description is subject to fluctuations in space and time. The

fluctuations introduced can affect the stability and convergence of the continuum solver;

however this is a problem that primarily arises in the geometrical decomposition approach.

For PWC the fluctuations can be reduced simply by increasing the number of atoms and/or

the number of time steps from which the respective quantity is calculated. This is achieved

by increasing the volume of the cell and the overall simulation time for which the calcula-

tions are performed. This is possible through the decoupled time and length scales in the

PWC.

3.3.1 Linear Optimisation

In the first implementation of PWC molecular simulations were performed at every time

step of the continuum solver. The macroscopic quantities of interest were measured from

the MD simulations and fed back to the CFD solver, where they were used to advance

the solution forward in time. This basic procedure leads to repetitive MD simulations

of nearly identical states and, thus, a more sophisticated algorithm that utilises already

performed MD simulations is employed. For simplicity consider an example, where the

MD simulation of the flow at the boundary have to be performed for specified density,

ρcon, and velocity, ucon. The slip velocity as function of ρcon and ucon, i.e. uslip(), is fed

back to the continuum solver. Instead of performing atomistic simulations for every data

set required by the continuum solver, the macroscopic variables are discretised based on

an initial value, uin, ρin, and an interval, δu, δρ. Therefore, when a set of (ucon, ρcon)

is given as an input, the discrete sets (uin + mδu, ρin + nδρ), (uin + (m + 1) δu, ρin + nδρ),

(uin + mδu, ρin + (n + 1) δρ), and (uin + (m + 1) δu, ρin + (n + 1) δρ) are identified, where

uin + mδu < ucon < uin + (m + 1) δu and ρin + nδρ < ρcon < ρin + (n + 1) δρ and m, n ∈ Z.

Molecular simulations are performed for the four data sets and through a bilinear interpo-

lation the outcomes for the input (ucon, ρcon) are calculated. The calculated molecular data

are stored and are being utilised if another input is in the same or an adjacent interval.

Therefore, as the simulation evolves the number of the performed MD simulations is min-

imised. Furthermore, depending on the simulation set up, the accuracy requirements and

the resources available by modifying the δu, δρ parameters the number of total atomistic

simulations will varies, larger values implies less MD simulations.
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Algorithm 3 PWC: Molecular operations under Linear optimisation

STEP 1: For every continuum input xcon find m ∈ Z where xin + mδx < xcon < xin +

(m + 1) δx

STEP 2: Search in the stored data if simulations with inputs xin + mδx or xin + (m + 1) δx

have been performed

STEP 3: If one or more simulations have been previously performed, then run MD for the

missing data

STEP 4: Store the atomistic data produced ym and/or ym+1 in the simulation’s data library

STEP 5: Based on the library data calculate the data needed from the continuum solver

3.3.2 Neural Network Optimisation

In the NN optimisation instead of predefining the input sets for the atomistic simulations

through for example the parameters xin and δx, are utilised to define a confidence interval

around the input data. If any library data are inside this confidence interval then the output

is based on the library data otherwise atomistic simulations are performed for the exact

continuum input set (see Algorithm 4). For example assume a continuum input xin and

a parameter δx. Based on these values a library search is performed for data xlib with

xin − δx < xlib < xin + δx. If data that fulfill the aforementioned requirements are found

then the atomistic outputs are estimated based on neural networks trained with the library’s

information. In the event that the information transferred from the continuum is not in the

library’s confidence limits then MD simulations are performed, the outputs are stored in the

library, the neural networks are trained to accommodate the new information and are used

to provide the atomistic output.

Depending on the efficiency and accuracy requirements the δxi parameters that deter-

mine the confidence intervals can be adapted. Smaller values implies higher number of

atomistic simulations and therefore larger data availability for obtaining statistical averages

and for training and testing the neural networks. On the other hand, larger values of δx sug-

gest that fewer MD will be performed and more atomistic simulations will be substituted

by neural networks contributing to the reduction of the computational workload. Another

parameter that can be defined based on the problem’s requirements is the acceptable min-

imum number of library data that should be included in inputs confidence intervals. As

this number increases more atomistic simulations will be carried aiming to enhance the

problem’s computational accuracy.

The main advantage of the neural network optimisation procedure is its flexibility to en-

compass additional number of continuum input parameters, its implementation simplicity

and robustness. Every data provided from the atomistic description to the continuum solver

are transferred through the neural networks that act as filters that suppress the inherent

fluctuations of the molecular data. The aim of the neural network optimisation is twofold

(i) initially to utilise already performed data for similar states and minimise the overall

computational procedure and (ii) to minimise any instabilities induced to the macroscopic

description due to propagation of atomistic fluctuations towards the continuum solver
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Algorithm 4 PWC: Molecular operations under Neural Network optimisation

foreach Input parameter xi, i = 1, ... , n do
i← Search if xi,lib ∈ [xi − δxi, xi + δxi]

if xi,lib < [xi − δxi, xi + δxi] then
1. Perform atomistic simulations for continuum inputs

2. Store atomistic outputs to library

3. Re-train neural networks
end

Calculate data needed by the continuum solver based on neural networks

end

Figure 3.7: Time decoupling in the embedded based methods

3.4 Time Decoupling

The time decoupling is an important issue for all hybrid multiscale approaches. A major

advantage of the PWC is that the time scales of the micro and macro solvers are naturally

decoupled. Microscopic solution is obtained once per given number of time steps using

macroscale solution as a constraint and used to derive missing data or unknown parameters

for the macroscale simulation. Microscopic simulations are thus used as a local high reso-

lution refinement rather than as a subset of the entire flow domain like in the geometrical

coupling [25, 30, 32]. Hence, in PWC the overall time that the micro solver has to sim-

ulate can potentially be much smaller compared to that required in geometrical coupling

methods and therefore these methods are more computationally attractive especially when

applied to large scale problems. The time scale decoupling at PWC is shown at Figure 3.7.
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Molecular Studies

All the MD simulations in the framework of this PhD project have been performed us-

ing LAMMPS software developed by Sandia Laboratories [131]. Along the duration of

this study several versions of LAMMPS have been used, however every new version was

validated towards a number of fundamental test cases that are provided together with the

LAMMPS code by Sandia Laboratories. However, it has to be stated that all test cases

presented in this thesis have been simulated through the same version of LAMMPS that

was released 21st of March 2008.

4.1 Nanoscale material modelling using Neural Networks

Nanoscience and nanotechnology have been emerging fields of research and development,

and their advances are impacting on many diverse sectors, including engineering, physics,

biology and medicine. Despite the impact of nanoscience and nanotechnology on a va-

riety of products, such as medical devices, security sensors, computer hardware devices,

diagnostics, and manufacturing techniques[132], nano scale developments remain time-

consuming and cost-intensive processes. Numerical methods can be used to test new con-

cepts and speed up the design process.

Molecular dynamics is a widely adopted technique for modelling and simulating mate-

rials on nano and micro scales[9, 90, 133]. The Achilles heel of MD is the computational

time and computing power required, especially for fine grain simulations. For example,

simulation of 1µs of pure water with fixed O−H bonds and fixed H−O−H angles, using a

time step of δt = 2 f s, requires 500 million time steps, corresponding approximately to 19

months simulation time[14] in a personal computer with 3 GHz CPU power. Establishing

MD simulations as a practical tool in a design environment requires the development of

numerical techniques that will significantly speed up the computational process.

Neural networks are versatile numerical techniques that can make MD simulations

68
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Figure 4.1: Schematic representation of neural networks used to provide an initial guess for simu-

lations.

less computationally intensive. In the past, neural networks have been developed for di-

verse research problems in engineering, biology, chemistry, and medicine[134–139]. In

nanosciences neural networks have been employed in nanoelectronics, drug design, gene

predictions, and MEMS[133, 140–143]. Here, neural networks properties relating to non-

linear modelling, prediction accuracy, feature extraction and classification, are explored in

the context of molecular simulations, aiming at advancing the applicability of MD models

in micro and nano scale applications.

4.1.1 Combining neural networks and MD modelling

Neural networks are an ideal tool for comprehensive parametric analysis of multidimen-

sional data and physical properties. They can be used either to model the co-ordinates

of the simulation particle at different time steps and/or for different initial conditions, or

to correlate the relationship between physical variables, e.g., temperature, with the initial

conditions of the simulation. Although neural networks are not an exact approximation,

they offer the best compromise between accuracy and computational cost. Moreover, neu-

ral networks can be used to provide an initial guess for MD simulations, as well as for

multiscale modelling involving molecular and continuum models. A neural network can be

trained using a given data set of initial microscopic conditions and averaged macroscopic

data. This neural network will provide an estimate of macroscopic variables for any other

data set of initial conditions. The estimated macroscopic variables are finally used to ini-

tialize and perform a microscopic simulation[144]. A schematic representation is shown in

Figure 4.1.
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4.1.2 Model Validation

In order to validate the applicability of neural networks in conjunction with MD simula-

tions, a molecular system consisting of 560 molecules surrounding a cylindrical void, with

a side shear applied has been employed. After performing MD simulations for this system,

neural networks have been trained to predict the trajectories of the molecules for all the

time steps under different shear stresses.

The crucial decisions are related to the architecture of the neural network, particularly

to:

• The number of inputs;

• the number of outputs;

• the number of hidden layers;

• the number of neurons;

• the activation function;

• the training algorithm.

The neural networks that have been trained had as input the values of the shear stress, the

time step and as output the co-ordinates of the particles. Consequently, in the test cases

that have been implemented, the outputs of the neural networks are equal to the number of

molecules of the simulation. An alternative implementation was to use the unique particle

identification number as an additional input to the neural network and have as outputs only

the co-ordinates x, y, z of the respective particle. This approach would complicate the

neural network’s architecture and it was therefore left to be investigated in future work.

After obtaining the data from the MD simulations the neural networks were trained

using the back-propagation algorithm; 75% of the MD data were used for training and 25%

for validation. The neural networks employed here have 1 hidden layer with 5 neurons and

the tanh as an activation function. The neural network’s structure that has been validated

in this study has 2 inputs and 560 outputs.

The neural network has 560 outputs, one output for each particle of the simulation. The

errors presented in this section are calculated as follows: (i) for particle the relative error

regarding its x, y, and z coordinates is calculated as the Errori,x = |xsim − xANN |/xsim and (ii)

the average error of all the particles is presented 1
N

∑

Errori,x, where N is the number of

particles 560 in our case.

The neural network predictions were found in very good agreement with the training

data obtained by MD, with the error being of the order of 10−20. Figure 4.3 shows the
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Figure 4.2: Initial simulation box.

(a) Simulations Results (b) Neural networks predictions

Figure 4.3: Neural networks predictions (for trained data) against MD results (validation data)

structure of the material as predicted by MD and the neural network, respectively. The

results of the neural network for the intermediate validating data with respect to the particles

co-ordinates exhibited an error of the order of 10−4. This error could possibly be further

reduced by applying different network’s architectures. Figure 4.4 shows the differences

between neural network and MD results. In this case, the neural network has been trained

with only two different values of shear stress and validated for the intermediate one. In the

results of Figure 4.5 the training sets have been increased to five and the accuracy of the

neural network for the same case has been improved.

(a) Simulations Results (b) Neural networks predictions

Figure 4.4: Neural networks predictions against MD results (validation data)
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(a) Simulations Results (b) Neural Networks Predictions

Figure 4.5: Neural networks (trained with five data sets) predictions against MD results (validation

data)

4.1.3 Concluding overview

This study presented an efficient utilisation of neural networks in conjunction with MD

simulations. A neural networks model was implemented for a solid material with a void,

subjected to shear. The neural networks predictions were found in very good agreement

with the actual simulation results.

The present study shows that neural networks can be used as an efficient tool to circum-

vent computer resource issues associated with molecular simulations, as well as to obtain

information for different sets of initial and boundary conditions. Research is under way to

apply the proposed model to various applications, including design of nanofluidic sensors

and dynamic friction at material interfaces.

4.2 Surface roughness effects

The phenomena observed in micro and nanofluidic systems are dominated by interfacial

interactions due to their high surface-to-volume ratio[145]. The static and dynamic prop-

erties of the interface can greatly influence the flow characteristics, particularly the slip

across the solid fluid interface. To quantify the slip, the slip length (Ls) is utilised, which is

defined as the extrapolated distance from the wall to the point where the tangential velocity

component is equal to zero (Ls =
uslip

∂u/∂n
, see Fig. 4.6). Recent experimental observations

[146, 147] and computational modelling indicated a number of factors such as surface en-

ergy [66], wettability [148, 149] and rate dependency[65, 66] that influence the slip length.

Despite the scientific interest to the slip phenomena, the implications of the aforementioned

factors to the slip’s existence and magnitude are not yet fully understood [66].

Computational techniques such molecular dynamics [90, 150, 151] are employed to

study the slip mechanisms and enhance our understanding in the momentum transfer across

the liquid-solid interface. The majority of the computational studies [30, 88, 152–154] in
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Figure 4.6: Schematic representation of the thermal wall employed along with a definition of the

slip length.

the literature concentrates on the influence that the interaction potential and entropy con-

straints near the solid surface have on the slip generation. An equally important component

for the slip process is the nanoscale surface roughness. Previous works [152] show that

the presence of roughness leads to higher drag forces and, hence, to a tendency for slip

elimination. The uncertainty regarding the slip’s decreased rate as a factor of roughness is

a research subject of crucial importance and the primary objective of the current study.

It is commonly recognised [155] that surface corrugation can greatly influence the in-

terfacial flow characteristics. However, it is still unclear whether it contributes towards slip

or stick conditions, since experimental evidence [71, 156, 157] suggests that both possi-

bilities exist. Numerically, although a number of studies [67, 152] have been performed,

the slip’s decreased or increased rate as a factor of roughness, has not been fully quanti-

fied. An important component for the slip process, that may elucidate the variability of

the experimental and numerical outcomes, is surface stiffness. In the current study MD

simulations are employed to study the slip length’s dependency on the wall stiffness for a

Lennard-Jones (LJ) fluid.

In this study, the effects of nanoscale surface roughness in a channel undergoing Poiseuille

flow are simulated through MD aiming at advancing our understanding of nanoscale corru-

gation contribution to slip generation.

4.2.1 Simulation Method

The computational domain for the present molecular simulations consists of monoatomic

fluid particles confined by two rough walls separated by a distance H along the y direc-

tion. Specifically, rectangular corrugations with variable heights are simulated as shown

in Figure 4.7. Periodic boundary conditions are applied in the x, z directions and the total

size of the considered computational domain is 16.97σ, 34.64σ and 6.54 in the x, y and z

direction, respectively.

The interatomic interactions of the wall and fluid particles are modelled by the shifted
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(a) Corrugation height A = 0.86σ (b) Corrugation height A = 2.16σ

Figure 4.7: Schematic representation of a channel under the presence of nanoscale surface rough-

ness

Lennard-Jones (LJ) potential. For a pair of atoms i and j with distance ri j the potential is:
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, (4.2.1)

where ǫ is the characteristic energy level, σ is the molecular length scale and rc is the cut-

off distance. For the scope of this study liquid Argon particles are considered with mass m,

ǫ = 120K/kB and σ = 0.34nm with density ρ f = 0.8 mσ−3, cut off distance rc = 2.2 σ and

fluid temperature T = 1.1 ǫk−1B .

The walls are modelled as (111) face centred cubic (fcc) planes with variable roughness

height spanning from 0.43σ to 2.16σ and density ρw = 4.0 mσ−3. The mass of the wall and

fluid particles is equal and the attachment of the wall particles to their equilibrium lattice

sites is described by a non linear spring potential:

Vw =
1

2
kr2 , (4.2.2)
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where k is the spring stiffness. The value specified for k should not allow the mean square

displacement of the wall atoms to be larger than the Lidemann criterion of melting [66, 158]

and for the current simulations a constant value k = 600ǫσ−2 is assigned for the spring

stiffness. The temperature at the solid walls is Tw = 1.1 ǫk−1B and is maintained through a

velocity rescaling thermostat [90]. Each wall, depending on its roughness height, consists

of 768 to 1800 particles for the minimum and maximum corrugation, respectively, while

regarding the fluid a total number of 2640 liquid Argon particles are generated for all the

simulations considered here.

The steady Poiseuille flow is imposed through an external force fx acting on each fluid

particle along the x direction. The values for the driving force is constant throughout

this study and equal to fx = 0.02ǫσ−1. The heat exchange is controlled by a Langevin

thermostat[90] with a random uncorrelated force and a friction term Γ = 1.0 τ−1, where

τ is the characteristic time τ =
(

mσ2/ǫ
)0.5

[154]. The thermostat is applied only in the z

direction to avoid any possible influences in the flow direction. The equations of motion

for the fluid molecules are

mẍi = −
∑

i, j

∂Vi j

∂xi

+ fx , (4.2.3)

mÿi = −
∑

i, j

∂Vi j

∂yi

, (4.2.4)

mz̈i + mΓżi = −
∑

i, j

∂Vi j

∂zi

+ ηi , (4.2.5)

where ηi is the Gaussian distributed random force with zero mean < ηi(t) >= 0 and variance

< ηi(0)η j(t) >= 2mkBTΓδ(t)δi j. The equations are integrated through a velocity-Verlet

algorithm [9, 90] with a time step δt = 0.001τ and for a total number of 1, 2 ·106 time steps.

The interactions between the wall and the fluid are fundamental for the magnitude of

slip generated at the interface. Previous MD studies have shown that the amount of mo-

mentum transfer across the interface decreases as the wall’s surface energy corrugation is

decreased [154]. In this study three sets of parameters for the wall-fluid interactions corre-

sponding to different slip conditions are employed:

(1) ǫw f = 0.6 ǫ σw f = 0.75σ

(2) ǫw f = 0.4 ǫ σw f = 0.75σ

(3) ǫw f = 0.2 ǫ σw f = 0.75σ

As the strength of the wall fluid interactions ǫw f increases the slip production at the

interface decreases [154]. For the present study, simulations are performed for roughness
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with height 0.43σ to 2.16σ for every set of wall-fluid interactions.

From a continuum hydrodynamics perspective the wall slip boundary conditions are:

ux|y=−h = ux|y=h = uslip , (4.2.6)

where h = H/2 and the solution of the Navier-Stokes for the Poiseuille flow is:

ux(y) =
ρ fx

2µ

(

h2 − y2
)

+ uslip , (4.2.7)

where µ is the fluid viscosity with values of µ = (2.2 ± 0.2)ǫτσ−3 for the cases considered

here.

4.2.2 Results and Discussion

Density Profiles

Figures 4.8-4.11 show the average density profiles under various combinations of surface

roughness and wall-fluid interaction parameters. A common characteristic in all the figures

is the density layering with profound oscillations near the solid walls. The fluid particles

are constrained in the direction normal to the flow due to the presence of the walls and

as a consequence oscillations are noticed in the density profiles. The high density layers,

induced near the walls, produce other layers with smaller amplitude and these new layers

further propagate the layering effect following the same mechanism. Typically, the density

oscillations become weaker as the distance from the wall increases [66, 159]. For the

present simulations the density rests to its bulk value after (4 − 6) σ. Changes in the

surface attraction energy affect the layering phenomena and in particular the maximum

values of the amplitude of the density oscillations. Larger values of ǫw f enhance the layering

and are also correlated with larger density peak values without affecting their location.

This phenomenon is noticed not only for flat walls, as shown in Figure 4.8, but also for

corrugated surfaces, as shown in Figures 4.9 and 4.10.
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Figure 4.8: Density distributions for zero roughness height A = 0.0σ
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Figure 4.9: Density distributions for zero roughness height A = 1.3σ
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Figure 4.11: Average density profiles for various roughness heights for ǫw f = 0.2ǫ and ǫw f = 0.6ǫ
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Figure 4.10: Density distributions for zero roughness height A = 2.16σ

Figures 4.9 and 4.10 show that the layering phenomena are enhanced through the pres-

ence of roughness. Secondary oscillations are observed at a distance equal to the height

of the corrugation and are moving towards the center of the channel as the roughness am-

plitude increases (Figure 4.11). Therefore, an increase in the surface attraction energy ǫw f ,

or in the surface corrugation, will result to layering augmentation of the fluid structure and

to lower slip velocities, as shown in Figure 4.12. However, the increased layering by it-

self is not necessarily an indicator of reduced slip and there are cases [66] where increased

layering is associated with infinite slip.
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Figure 4.12: Velocity profiles for various surface corrugations and surface attraction energies

Slip Velocity and slip length

Figure 4.12 shows the fluid velocity profiles under various surface roughness heights and

various surface attraction energies. The velocity profile for a flat wall for three different val-

ues of ǫw f = 0.2ǫ, 0.4ǫ and 0.6ǫ (Figure 4.12(a)) shows that larger ǫw f values are correlated

with smaller amount of slip. As the wall’s surface energy decreases, the amount of momen-

tum transferred at the interface also decreases, thereby leading to larger slip values[154]. In

Figure 4.12(b) the velocity profiles for five corrugation amplitudes A = (0.43−2.16) σ and

for ǫw f = 0.6ǫ are shown. The impact of the surface roughness is apparent not only at the

slip velocities but also at the overall flow characteristics; for example, the maximum veloc-

ity value for corrugation A = 0.43σ is 65% is greater than that with corrugation A = 2.16σ

and these effects are more evident for lower ǫw f values.

Figure 4.13 shows the effects of the surface attraction energy on the velocity profile

under the presence of roughness with amplitudes A = 0.43σ and A = 2.16σ. As the surface

roughness increases the fluid’s slip velocity tends to zero and the effects of the attraction

energy on the flow characteristics is less noticeable. For flat surfaces (Figure 4.12(a)),

the changes in the ǫw f values used in this study have a linear effect on the slip velocity.

However, as the surface roughness is introduced in the simulations the flow characteristics

and the slip velocities are affected from the surface energy ǫw f in a non-linear manner.

To provide a unified analysis regarding the effects of the roughness amplitude on the

flow characteristics, the slip length is calculated for various surface properties and is plotted

versus the corrugation amplitude as shown in Figure 4.14. The behaviour of the slip length

suggests an exponential reduction as the roughness height increases. Regardless of the

interaction parameters between the wall and the fluid particles, Figure 4.14 reveals that the
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Figure 4.13: Velocity profiles for various surface attraction energies and for corrugation amplitude

A = 0.43σ and A = 2.16σ

continuum no-slip boundary condition is valid when the corrugation height is greater than

2σ. Although the slip can be affected by a number of factors such as wettability or surface

attraction energy, the impact of the surface roughness on the flow becomes dominant as its

amplitude increases.

4.2.3 Conclusions

In this study the effects of rectangular surface roughness with variable height and sur-

face attraction energy on the slip generated, are investigated using molecular dynamics

simulations. The numerical experiments were carried out for corrugation amplitudes and

attraction energy varying from A = 0.43σ to A = 2.16σ and ǫw f = 0.2ǫ to ǫw f = 0.6ǫ, re-

spectively. As ǫw f or A increase, the density layering in the near the wall region is enhanced

by higher values or secondary layering phenomena. In addition, the rectangular corrugation

provides a mechanism for propagation of the fluid particles layering towards the center of

the channel. The higher the corrugation amplitude is the closer to the center of the chan-

nel the density fluctuations are transferred. The velocity profiles are greatly affected by

the roughness of the surface. The simulation results indicate a non-linear variation of slip

as a factor of roughness amplitude. Specifically, the simulation outcomes revealed an ex-

ponential relationship between the slip length and, consequently, the slip velocity and the

roughness height. However, there are still open questions regarding the mechanism that

generates the slip and the factors affecting the amount of the interfacial slip produced. Fu-

ture work should be carried out to further investigate the contribution of parameters, such as

generalised nanoscale roughness, wettability, rate dependency and interaction parameters

to the slip behaviour.
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Figure 4.14: Slip length Ls against corrugation amplitude A for different surface attraction energies

4.3 Boundary slip dependency on surface stiffness

In the majority of the macroscale flows the fluid is considered to be immobile near the solid

boundary; however as the scales shrink a number of experimental studies [146, 157, 160]

revealed the presence of slippage. Surface structure, wettability and, nanoscale roughness

are some of the factors that have been recognised to affect slippage phenomena [148, 161].

Generally, the parameters that contribute to slip generation along with their implications to

the slip’s magnitude are not explicitly known and fully understood [155]. Therefore, iden-

tifying and quantifying their impact poses a great challenge that will assist the development

of micro and nanofluidic devices.

High fidelity computational modelling has been embraced to compliment experiments

related to slippage effects, primarily due to accuracy and precision difficulties involved in

measuring physical quantities at nano scales. Specifically, molecular dynamics [66, 154,

162, 163] simulations, have been employed to study the slip’s mechanism and enlighten the

impact of parameters such as nanoroughness or surface wettability to the slip’s magnitude.

The computational domain considered for the current numerical experiments consists of

monoatomic fluid particles confined by two stationary thermal walls separated by distance

Ly along the y direction. The size of the computational domain is Lx = 16.97σ, Ly = 34.64σ

and Lz = 6.53σ, where σ is the molecular length scale; and periodic boundary conditions

are applied in the parallel to the walls directions x and z. The interatomic interactions

among the fluid molecules are modelled through a LJ potential and all the interatomic in-

teractions are truncated at a cut-off distance rc = 2.2σ. The fluid’s density is selected to

be ρ f luid = 0.81 mσ−3, where m is the mass of a fluid’s molecule, and corresponds to the

generation of 2880 particles. A constant external force fx, along the x direction, is applied

to each fluid molecule to drive the flow. The simulations have been performed for a range



4.3 Boundary slip dependency on surface stiffness 82

of force’s values spanning from fx = 0.005 ǫσ−1 to fx = 0.015 ǫσ−1 with step 0.0025 ǫσ−1.

The parabolic velocity profile, described by Equation (??), implies that the shear rate is

proportional to the applied force and consequently force’s variations corresponds to sub-

sequent adjustments of the shear rate. Previous computational studies [66, 154, 164] have

indicated a non linear relationship between the shear rate and the slip length. Therefore,

aiming to minimise the shear rate’s influences to the outcome’s variability, the impact of

the wall stiffness to the slip phenomena is studied for a broad range of shear rates. The

magnitude of the applied force should be cautiously selected, since high force values can

drive the system out of the linear response regime [165]. The excessive viscous heating of

the system is dissipated through a Langevin thermostat[154], applied only in the z direction

to circumvent any possible influences to the flow direction, with fluid’s temperature being

T = 1.1 ǫk−1B .

The friction coefficient has been selected to be Γ = 1.0 τ−1 throughout the simulations,

aiming to minimise any undesirable effects to the self diffusion coefficient [66, 166]. The

equations of motion are integrated through a velocity-Verlet algorithm [90] with time step

δt = 0.001τ. A total number of 6 ·105 time steps have been performed for equilibration and

afterwards another 6 · 105 for averaging.

Each of the solid walls is modelled as two (111) fcc lattice planes with density ρwall =

4.0 mσ−3 corresponding to 528 particles. The wall particles interact with the fluid through

a LJ potential with energy and length scales ǫw f and σw f respectively. Generally, slippage

phenomena are sensitive to the wall-fluid interactions and, particularly, as the wall’s surface

energy decreases, the amount of momentum transferred across the interface decreases lead-

ing to larger slip values [154]. Therefore, the effects of surface stiffness are studied for two

sets of interfacial parameters (i) ǫw f = 0.2ǫ, σw f = 0.75σ and (ii) ǫw f = 0.4ǫ, σw f = 0.75σ.

Every wall particle i is attached to its equilibrium lattice site r0 with an elastic spring force

F = −κ (ri − r0) (4.3.1)

where κ is the wall’s stiffness. Stiffness is a pivotal parameter that provides a link between

the wall model and real materials and determines the wall’s physical properties. Its values

reveal the strength of particles’ bonds and larger rates are related to higher melting points

and Young’s modulus. Their selection should not allow (i) the mean square displacement

of the wall atoms to be larger than the Lidemann criterion of melting [66, 158] and (ii) the

movement of the wall’s atoms to be in a regime that cannot be entirely addressed in the

molecular simulation’s time step [66]. For the current study κ ranges from κ = 100 ǫσ−2 to

κ = 1200 ǫσ−2; this interval is consistent with typical κ magnitudes employed in previous

MD studies [66, 167, 168]. Although it is not straight forward to establish exact relations

between simplified models, such as the one employed here for the wall, and real physi-

cal substances, the selected values of solid’s stiffness corresponds to a broad range of real

materials including silicon based structures, that are primarily used for microfluidic fabri-

cations and typically their Young modulus is lower compared to the metals one [169]. The

wall temperature is kept constant equal to Twall = 1.1 ǫk−1B during the simulations through a

velocity rescaling thermostat [170].
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Figure 4.15: Density profiles near the lower wall for various values of the spring stiffness κ with

fx = 0.0075 ǫσ−1, ǫw f = 0.2ǫ.

Figure 4.15 shows examples of averaged fluid density profiles under different values of

surface stiffness. These simulations have been carried out with interaction parameters ǫw f =

0.2ǫ, σw f = 0.75σ and an external driving force fx = 0.0075 ǫσ−1. A common element

observed in the density distributions is their large oscillations near the solid wall. Despite

the changes in the surface stiffness, the density follows the same pattern, since the locations

of its local maxima and minima remain almost constant, and rests to its bulk value after

(5 − 7) σ. The variation of the spring stiffness primarily influences the density’s absolute

maximum value and for the simulations considered in Fig. 4.15 this value increases, with

a non linear manner, as κ increases from κ = 100 ǫσ−2 to κ = 600 ǫσ−2. Furthermore,

deviations between the outcomes are reduced as higher surface stiffness rates are employed

in the numerical simulations (see Fig. 4.15). Smaller κ implies that the wall particles

oscillate around their equilibrium positions with higher amplitude and lower frequency

and therefore the fluid molecules can potentially travel closer to the solid wall [66]. As

a consequence, a broader density profile is observed near the first peak. However, as the

spring stiffness κ increases its influence on the wall particles oscillations is primarily related

to oscillation frequency rather than oscillation amplitude, which is mainly determined by

the wall temperature [170]. Thus, its impact on the in-plane fluid’s layering and hence on

the density’s profile is less apparent.

Figure 4.16 shows an example of the slip length as a function of surface stiffness. In the

performed molecular simulations the interaction parameters are ǫw f = 0.4ǫ, σw f = 0.75σ

and the external driving force is fx = 0.01 ǫσ−1. In Fig. 4.16 the slip length has been

scaled over the parameter L0, which represents the slip length when a fixed lattice wall is

employed. In this wall model the solid particles are immobilised in their lattice sites and,

therefore, are not allowed to vibrate [154, 170]. Figure 4.16 shows that the slip varies along

with the surface stiffness indicating its importance to the slip process. It is visible that for
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Figure 4.16: Variation of the slip length as a function of surface stiffness for a flow with fx =

0.01ǫσ−1, ǫw f = 0.4ǫ.

the less stiff surfaces, such as κ = 100 ǫσ−2 for the example of Fig. 4.16, the degree of slip

is smaller compared to the one calculated when a fixed lattice wall is employed. Smaller

values of κ imply larger displacements of the wall particles resulting to an increased surface

roughness. In this case the interactions between the wall’s and fluid’s particles are enhanced

leading to improved momentum transfer and consequently to less slippage. As κ increases

the wall’s surface becomes effectively smoother and higher slip is produced. However, it

can be observed in Fig. 4.16 that the slip length, instead of increasing monotonically with

the wall’s stiffness, it obtains a maximum value Ls,max and then starts to decline. Although

stiffer walls are employed the impact of bonding stiffness to the oscillation amplitude of

the walls’ particles is continuously decreasing. The amplitude, as already mentioned, is

primarily dictated from walls’ temperature and therefore κ is no longer a dominant factor

for the surface smoothness or roughness. In these cases, increasing the values of κ alters

the oscillation frequency towards higher values that contribute to a more efficient interfacial

momentum transfer and consequently to a reduction in the slip length.

Similar behaviour has been observed in all the performed simulations regardless the

various wall-fluid interactions or shear rates employed. The results of the numerical exper-

iments are summarised in Fig. 4.17. Here, the slip length has been scaled over the Ls,max,

which represents its maximum value in a series of simulations with the same interaction

parameters, driving force and variable κ. The stiffness has been scaled over the κmax, which

represents the value of κ that maximises the slip. It is apparent that the parameters Ls,max

and κmax depend upon the various simulations conditions such as shear rate or surface at-

traction energy. Figure 4.17 shows that the effect of the wall’s stiffness to the slip process
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can be well quantified by a master curve, which in our case is a fifth order polynomial

LS

LS ,max

= a + b · κ

κmax

+ · · · + f ·
(

κ

κmax

)5

(4.3.2)

where a = 0.01,b = 2.59, c = −1.68, d = −0.77, e = 1.16 and f = −0.32. In addition,

Fig. 4.17 suggests that the selection of the wall’s stiffness during the molecular simulations

should be made cautiously since it can lead to various slip scenarios. Potentially the master

curve can be extended to accommodate the variation of Ls,max and κmax as functions of other

parameters that are important to the slip process, like for example the shear rate.

In summary, this study has investigated the relationship between the wall stiffness and

the slip produced. For the first time we show that the slip length variations as a function of

surface stiffness can be approximated and well described through a master curve. Quantify-

ing the dependence of Ls on κ provides a mechanism for obtaining a better insight in the slip

phenomena and reducing the variability regarding the values of surface stiffness employed

in molecular simulations. Generally, the stiffness factor influences not only the slip process

but also the thermal equilibrium at the solid liquid interface [170]. Further studies towards

a better understanding of the stiffness effects on the slip and thermal transfer phenomena

are also currently being pursued.
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4.4 Thermal interaction effects at nano-scales

The majority of the numerical studies are mainly focused on the effects of the wall-fluid

interactions to the existence of slip velocity near the solid boundary. On the other hand,

phenomena regarding the thermal transport across the solid-liquid interface have not been

equally exploited. Previous works[170] revealed that the main difficulty associated with

the thermal boundary conditions is related to thermal wall models employed by the molec-

ular simulations. Realistic modelling of the solid wall is crucial for the accuracy of the

numerical experiments and the primary objective of the current study.

Two are the main thermal wall models applied to MD simulations. In the first one [154,

171] the wall consists of a fixed lattice structure and interacts with the fluid through the

particles’ intermolecular forces. Since the wall molecules are fixed in their lattice positions

a thermostat has to be applied in the fluid, to dissipate the excessive viscous heating of the

system. This wall model cannot accommodate heat transfer from and to the solid boundary

and therefore the thermal interactions cannot be realistically simulated. In the second wall

model [66, 170] the solid particles are attached to their equilibrium lattice sites with a non

linear spring potential. They are allowed to vibrate from their lattice position imitating the

thermal motion, and these thermal oscillations impact the momentum transfer across the

interface. The walls are operating as heat baths aiming to maintain the liquid’s thermal

equilibrium without the need of an additional thermostat.

In this case, different thermal wall models are utilised to simulate heat transfer problems

aiming to broaden our understanding of thermal transport across solid-liquid interfaces.

4.4.1 Simulation method

The computational domain for the current molecular simulations consists of monoatomic

fluid particles confined by two thermal walls separated by distance H along the y direction.

Periodic boundary conditions are applied in the x, z directions and the total size of the

considered computational domain is 16.97σ, 34.64σ and 6.54 in the x, y and z direction

respectively.

The interatomic interactions of the wall and fluid particles are modeled by the shifted

Lennard-Jones (LJ) with cut-off distance rc = 2.2 σ. For the scope of this study liquid

Argon particles are simulated particles with mass m, ǫ = 120K/kB and σ = 0.34nm with

density ρ f = 0.8 mσ−3. The parameters for the wall fluid interaction are ǫw f = 0.2 ǫ and

σw f = 0.72 σ.

Each wall, consists of 528 particles and regarding the fluid a total number of 2640 liquid

Argon particles are generated. The time step used in all the simulations is δt = 5 · 10−4τ,
where τ is the characteristic time τ =

(

mσ2/ǫ
)0.5

, and the simulations have been performed
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for 2, 5 · 106 time steps to reach steady state and another 2.5 · 106 time steps for averaging.

For the scope of the current study two wall models are examined. In both of the models

the walls are modeled as (111) fcc planes and density ρw = 4.0 mσ−3. The mass of the wall

and fluid particles is equal and the wall’s particles are attached to their equilibrium lattice

sites with a non linear spring potential. The value specified for the spring stiffness κ should

not allow the mean square displacement of the wall atoms to be larger than the Lidemann

criterion of melting [66, 158] and for the current simulations two values κ = 100ǫσ−2 and

κ = 600ǫσ−2 are assigned for the spring stiffness. The main difference between the two

models is based on the wall’s thermalised procedure. In the first model a velocity rescaling

thermostat [90] is applied to the solid wall whereas in the second model the thermostat is

applied to every layer of the wall separately.

4.4.2 Results

The first test case is an isothermal flow where the temperature on both walls of the channel

is kept constant Tw = 1.1 ǫk−1B . Two simulations for each wall model have been carried out

for the two aforementioned values of the spring stiffness κ = 100, 600 ǫσ−2. Figure 4.18

shows the temperature profiles. It can be identified the profiles obtained from simulations

based on the 1st wall model, are not physically realistic and consistent. In the current test

case the temperature of the fluid along the channel is expected to remain constant and equal

to the walls’ temperature. In the case where the 1st wall model is applied, although the

fluid’s temperature remains constant, its value presents significant deviations from the one

of the walls. In additions major differences are also observed for the different values of the

spring stiffness. For the 2nd wall model, as shown in Figure 4.18, the temperature profiles,

from both values of the bond stiffness, remain constant and very close to the temperature

value of the walls. The motion of the fluid’s particles is primarily experienced by the

solid molecules that belong to the first wall layer. As a consequence, the first solid layer

has higher thermal velocity and higher temperature compared the averaged wall’s values.

Therefore, each of the layers has to be thermalised independently, to avoid any artifacts

induced in the thermal transport.

In the second test case a temperature difference is applied between the walls and specif-

ically the temperature for the lower and upper one is Tw,lower = 1.1 ǫk−1B and Tw,upper =

1.3 ǫk−1B respectively. Figure 4.19(a) shows the temperature distributions obtained when

the 1st wall model has been engaged. The outcomes are not physically correct since the

temperature remains constant, despite the temperature difference that is applied between

the walls, and in the case of spring stiffness κ = 600 ǫσ−2 is outside the applied tempera-

ture regime. Figure 4.19(b) shows the results obtained when the 2nd wall model has been

employed. The expected linear profile [170] is obtained. In addition a temperature jump

is observed in the liquid solid interface. This jump can be quantified through the thermal

(Kapitza) resistance and it varies with the spring stiffness. As shown in Figure 4.19(b) the

temperature jump is higher for stiffness κ = 600 ǫσ−2.
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Figure 4.18: Temperature profiles for the examined wall models with various spring stiffness, when

the same temperature is applied to both walls
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Figure 4.19: Temperature profiles for the examined wall models with various spring stiffness, when

a temperature gradient is applied to the channel’s walls
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4.4.3 Conclusions

An investigation of the different thermal wall models employed to molecular simulations

has been presented. Two wall types have been examined for two fundamental heat transfer

test cases. In both models the solid particles are attached to their equilibrium positions

with a spring potential, and they are allowed to vibrate aiming to mimic the thermal oscil-

lations. The main difference in the two approaches remains in the thermalisation process.

The numerical experiments revealed that a thermostat has to be applied in every solid layer

separately in order to represent realistically the thermal transport. Furthermore, the simu-

lations showed a temperature jump in the solid liquid interface which is related also to the

value of the bond stiffness of the wall.

4.5 Gas slip flow in a microchannel

A gas flow problem inside a microchannel is a typical example where the atomistic simu-

lations can greatly enhance the accuracy of the continuum models. Specifically, the aim of

the current example is to underline the potential benefits of embedded hybrid methods even

in cases where macroscopic models exist.

4.5.1 Tangential Accommodation Coefficient

In this example an essential parameter of the continuum slip models, the momentum ac-

commodation coefficient, is determined from first principles. The tangential momentum

accommodation coefficient (TMAC) is defined as

σu =
τi − ττ
τi − τwall

, (4.5.1)

where τi represents the tangential momentum of incoming molecules, ττ is the tangen-

tial momentum of reflected molecules and τwall is the tangential momentum of remitted

molecules. The limiting cases σu = 0 and σu = 1 correspond to specular and diffusive

reflection respectively.

The momentum accommodation coefficient depends on the interaction between the wall

and the gas, the temperature of the wall, local pressure and the mean direction of the flow.

The accommodation co-efficient is a very important factor which has to be defined correctly

since small variations of that co-efficient have a great impact on the total amount of slip due

to the factor 2−σu

σu
that arises in slip models.

The TMAC is sensitive to a number of parameters for example surface materials, sur-

face roughness and gas species. In order to investigate the effect of the aforementioned
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Figure 4.20: (a) Couette flow velocity profiles at various Kn numbers and T = 1.0ǫ/kB (b) Variation

of the dimensional slip length with the Knudsen number

parameters on the TMAC and gain a better understanding of the physical processes in-

volved, MD simulations have been employed in a number of studies [68, 172–177]. In this

example MD simulations are utilised in order to specify the TMAC for a specific solid-

gas combination at constant temperature. The problem considered is a Couette flow of

Argon between two solid Platinum surfaces. The microchannel has a characteristic length

H = 7·10−2µm and the wall is modelled as two (111) fcc planes with fixed relative positions

in space. Several alternative wall schemes have been proposed in the literature [68, 170]

however the choice of the wall model presented is more appropriate because of the large

density difference between the gas, while at the same time it leads to significant reduction

in the computational cost in comparison with more complicated models.

The particle interactions are modelled through a Lennard-Jones 6-12 potential with the

following parameters ǫAr−Ar = 1.67 ·10−21J, σAr−Ar = 3.405 ·10−10m , ǫPt−Ar = 0.894 ·10−21J

and σPt−Ar = 0.894 · 10−10m [172]. The equations of motion were integrated using the ve-

locity Verlet algorithm with time step of 0.005τwhere τ = 2.15ps is the characteristic time.

The temperature is controlled through a Langevin thermostat applied in the y direction.

The simulations are performed in a constant 200σ × 200σ domain at four different

Knudsen numbers Kn = 0.01, 0.04, 0.07, 0.1 under constant temperature T = 1.0ǫ/kB.

The Knudsen number is controlled by varying the gas density according to the relation

ρ =
(√

2πKn σ2L
)−1

. (4.5.2)

The two walls are moving with opposite velocities Uwall = ±0.5σAr/τ and the simulations

run for ∼ 4 · 106 time steps. The steady state velocity profiles, shown in Figure 4.20, are

obtained by dividing the simulation domain in bins in the y direction.
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The obtained velocity profiles are linear in the middle of the channel and in the region

near the wall the velocity slip is apparent. The velocity gradient increases in the region

close to the wall due to rarefaction effects which is consistent with the predictions of the

kinetic theory [172] and Monte Carlo simulations [178]. From the velocity profiles the

slip is quantified through the dimensionless slip length ls/H = uslip/ (∂ux/∂y) which is

determined by fitting a straight line to the corresponding velocity profile [179]. The slip

velocity uslip is calculated as the difference between the wall speed and the extrapolated

velocity at the wall. The relation between the slip length and the Knudsen number for the

linear Couette flow profiles can be modelled as

ls =
2 − σu

σu

Kn, (4.5.3)

where σu is the tangential momentum accommodation coefficient. From Equation (4.5.3)

the TMAC is determined through the slope of the Knudsen number and dimensional slip

length relation, as shown in Figure 4.20(a).

The TMAC is calculated to be 0.27 which is in good agreement with previous MD

studies [172] where for the same temperature the TMAC has been calculated 0.275. The

small difference in the two values is primarily due to the different integration algorithms

and time step used, for integrating and averaging the atomistic variables.

4.5.2 Slip model vs MD

In the current example the Knudsen number is in the interval 0.01 < Kn < 0.1 and con-

sequently the flows are in the slip regime. Navier-Stokes equations with slip boundary

conditions can be then applied in order to obtain an analytic solution for a plane channel.

The 1st order slip boundary condition is given by (e.g. [39]):

us − uwall =
2 − σu

σu

1

ρ (2RTw/π)
1/2
τs +

3

4

Pr (γ − 1)

γρRTw

(−qs) , (4.5.4)

where qs is the tangential component of the wall heat flux, γ is the ratio of specific heats,

τs is the viscous stress component, uwall is the reference wall velocity, σu is the tangential

momentum accommodation coefficient and Pr is the Prandtl number defined as

Pr =
cpµ

k
. (4.5.5)

A number of second order slip models have been proposed in the literature. In general

these can take the following asymptotic series form:

us − uwall =
2 − σu

σu

[

Kn

(

∂u

∂n

)

s

+
Kn2

2

(

∂2u

∂n2

)

s

]

. (4.5.6)
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However an alternative formulation can be used which does not include the second order

derivative (e.g. [39]):

us − uwall =
2 − σu

σu

[

Kn

1 − b · Kn

(

∂u

∂n

)

s

]

, (4.5.7)

where b is the slip coefficient which is determined either experimentally or through molec-

ular simulations.

In the current example molecular dynamics simulations of Poiseuille flow have been

performed to study the relation between the slip velocity and the Knudsen number and

essentially to validate the first and second order slip models. In these simulations the size

of the channel is fixed to H = 7 · 10−2µm, the wall is modelled by Platinum molecules with

fixed lattice positions and the flow of gaseous Argon is computed. The Poiseuille flow is

forced by an external gravitational field gx = 3.7 1011m/s2 applied to the gas molecules.

The interaction between the gas and solid molecules is modelled by the shifted Lennard-

Jones (LJ) 6-12 potential with ǫAr−Ar = 1.67 · 10−21J, σAr−Ar = 3.405 · 10−10m and ǫPt−Ar =

0.894 · 10−21J and σPt−Ar = 0.894 · 10−10m [172]. The equations of motion were integrated

using velocity Verlet algorithm with time step of 0.005τ where τ is the characteristic time

τ = 2.15ps. The temperature is controlled through a Langevin thermostat applied in the y

direction.

The velocity profiles, normalised over the corresponding maximum velocity, for various

Knudsen numbers are shown in Figure 4.21(a). The correlation of the velocity profiles can

be obtained using a quadratic function:

u(y) = a0 + a1y + a2y
2, (4.5.8)

where coefficients a0, a1 and a2 are based on curve fitting of the velocity profiles data. The

coefficient a0 is the non-dimensional slip velocity at the wall surface, the coefficient a1 is

the non-dimensional velocity derivative at the wall surface or the non dimensional shear

rate and the coefficient a2 is half of the non-dimensional second order velocity derivative

which is linked to the forcing term.

From the data fitting the values for first and second order velocity derivatives,
(

∂u
∂y

)

wall

and
(

∂2u

∂y2

)

wall
, are calculated for the various Knudsen numbers. Figure 4.21(b) shows the

relations uslip ∼ Kn
(

∂u
∂y

)

and uslip ∼ Kn
(

∂u
∂y

)

+ Kn2

2

(

∂2u

∂y2

)

which correspond to first and sec-

ond order slip models. In both cases the data are fitted by a least squares method and the

accuracy of the fit is measured from both models through the R2 values. For the first order

model the R2
1storder

= 0.9978 and for the second order R2
2ndorder

= 0.9994. Note, that the ideal

regression is given by R2 = 1. Furthermore, as expected, the least square approximation of

the simulation data is more effective in the second order slip model. Even in cases where

continuum models exist the above outcomes revealed that the order of the continuum mod-

els accuracy is compromised compared to the full atomistic simulations and therefore the

need for embedded atomistic calculations is apparent. Furthermore the atomistic simula-
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Figure 4.21: (a) Normalised velocity profiles for Poiseuille flow at various Knudsen numbers and

(b) Slip velocity over Kn
(
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)

and Kn
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)

+Kn2

2

(

∂2u
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)

for the first and second slip models respectively

tions become necessary in cases where the continuum models do not exist or fail to provide

accurate boundary conditions like for example gas flows over chemically patterned surfaces

or over corrugated surfaces.
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Hybrid Studies

LAMMPS code is utilised to perform the molecular simulations in the hybrid test cases.

The code itself is written in C++, using an object-orientated structure. This allows a rela-

tively uncomplicated extension of additional modules into the existing code.

Several additional parts have been implemented into LAMMPS to be able to perform

the hybrid simulations for this work (details regarding the methods are provided to Chapter

3):

• Maxwell Distribution: This module draws the particle velocities that belong to spe-

cific region according to a given velocity and temperature based on the Maxwell-

Boltzmann distribution

• Champan Distribution: This module draws the particle velocities that belong to spe-

cific region according to a given velocity and temperature according to the Chapman-

Enskog distribution

• Continuum Vel/Temp : This module rescales the particle velocities that belong to

specific region to match a given velocity and temperature

• Continuum Pres : In this module the velocity reversing scheme has been implemented

to apply a give pressure to molecular region

For the numerical simulations of neural networks the open source library Artificial Neu-

ral Network Library ANNIE (version 0.51) has been used. The optimisation procedure of

the networks’ architecture, that includes the genetic algorithms, has been implemented by

the author. This code is written in C++ and has been validated for several optimisation

problems of functions with known minima and maxima.

94
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5.1 Boundary condition transfer

5.1.1 Liquid flow for the boundary problem

In this section the results of BCT schemes for liquid and gas flow and heat transfer prob-

lems are presented. The size of the molecular domain was 20σ, 50σ and 20σ in x, y and

z directions, respectively. Periodic boundary conditions were applied in the x and z direc-

tions. Three regions were assigned: the wall at the bottom, the BCT region at top of the

domain and the flow region in between.

The wall was modelled by two planes of a face-centred cubic lattice, where the wall

molecules were allowed to vibrate around their lattice sites by a harmonic spring with

stiffness k = 50ǫ/σ2. Their velocities were rescaled to the wall temperature Twall = 1.0ǫ/kB.

The density of the wall atoms was ρwall = 1.0 mσ−3 and their mass was equal to that of the

fluid atoms. Here, the wall properties do not correspond to any specific solid material, but

represent a solid wall with no slip boundary condition. Similar models for solid walls have

been used in previous studies [70, 71, 120]. The BCT region was located at y > 45σ and

the flow region at 1.5σ < y < 45σ. The total number of atoms was 18, 820, of which 676

formed the wall and the remaining 18, 144 the fluid within the flow and BCT regions. The

fluid density was ρ f luid = 0.8 mσ−3 and the simulation time step was ∆tMD = 0.001τ. Each

simulation was run for 2 × 106 time steps and the calculated quantities were averaged over

the last 2 · 105 time steps.

Initially, the rescaling technique and the one based on the Maxwell-Boltzmann dis-

tribution have been tested for a stationary heat transfer problem with continuum condi-

tions Tcon = 1.5 ǫ/kB and ucon,x = 0 σ/τ on the upper constrained region (see Figure

5.1). The Chapman-Enskog distribution was utilised when the results obtained from the

Maxwell-Boltzmann were not physically correct. A typical example is the application of

the Maxwell-Boltzmann distribution in the dilute gases.

In the second test case the boundary conditions were Tcon = 1.0 ǫ/kB and ucon,x =

1.0 σ/τ. The temperature of the constrained region was equal to the wall temperature and,

thus, the temperature was expected to remain nearly constant throughout the molecular

domain. The results from both BCT methods are in good agreement with the theory as

shown in Figure 5.2. A linear velocity profile was obtained and the temperature remained

constant and equal to 1.0 ǫ/kB.

It was found that for the rescaling technique the size of the BCT region can influence

the consistency of velocity values with the macroscopic conditions. In Equation 2.3.2 the

atomistic velocities are rescaled to a new mean velocity equal to the continuum constraint.

In the current test case this results in an underestimated velocity in the lower boundary of

the rescaled region (Figure 5.3). The inconsistency between the macroscopic and micro-

scopic states introduces inaccuracies in the simulation procedure. To address this issue, in
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Figure 5.1: Temperature profile for the Couette flow with ux−con = 0 σ/τ and Tcon = 1.5 ǫ/kB.

the current test cases the BCT region has been further divided to four bins, with height 2.5σ

each.
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Figure 5.2: Velocity and temperature profiles for the Couette flow with ux−con = 1.0 σ/τ and

Tcon = 1.0 ǫ/kB.

For the third test case, the continuum conditions in the constrained region were Tcon =

1.2 ǫ/kB and ucon,x = 1.0 σ/τ. Both BCT methods provide similar results. Figure 5.4 shows

the linear and parabolic profiles obtained for the velocity and temperature, respectively.

5.1.2 Liquid flow for the general problem

This is essentially a Couette flow problem with the molecular domain being constrained to

continuum values on two opposite sides. The size of the molecular domain was 10σ, 30σ
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Figure 5.3: Velocity profiles obtained with velocity constraints applied to the whole constrained

region as well as the constrained region divided into subdomains.
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Figure 5.4: Velocity and temperature profiles for the Couette flow with ux−con = 1.0 σ/τ and

Tcon = 1.2 ǫ/kB.

and 10σ in the x, y and z dimensions, respectively. The molecular domain was subdivided

into three regions: the upper and lower BCT regions and the flow region in between. Pe-

riodic boundary conditions were applied in the x and z dimensions. The lower constrained

region was located at y < 5σ, the flow region at 5 < y < 25 with height H = 20σ and

the upper constrained region at y > 25σ. The simulations were performed with a fluid

density ρ f luid = 0.8 mσ−3, which resulted in a total number of 2, 592 particles. Using a time

step ∆tMD = 0.001τ, the simulations were run for 2 × 106 time steps. The temperature and

velocity measurements were averaged over the last 2 × 105 time steps.

Three simulations were performed with different type of continuum conditions. In the

first one, the temperature and velocity applied to the upper and lower boundaries were

u
uppper
con,x = 0 σ/τ, T

upper
con = 1.5ǫ/kB and ulower

con,x = 0 σ/τ, T lower
con = 1.0ǫ/kB respectively. This

set-up corresponds to a pure heat transfer problem. Figure 5.5 shows the temperature and
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Figure 5.5: Velocity and temperature profiles for the Couette flow with upper boundary conditions

u
upper
x−con = 0 σ/τ, T

upper
con = 1.5 ǫ/kB and lower boundary conditions ulower

x−con = 0 σ/τ, T lower
con = 1.0 ǫ/kB.

velocity profiles. As expected, the temperature profile obtained using both BCT methods

is linear and the profile of the x component of the velocity across the y direction of the

domain remains equal to zero. Furthermore, similar temperature profiles are obtained from

both techniques. Small deviations are within the margin of statistical error due to the size

of the MD domain and constrained region, as well as the time averaging procedure.

In the second simulation, the boundary conditions at the upper and lower boundaries

were u
uppper
con,x = 1.5 σ/τ, T

upper
con = 1.0ǫ/kB and ulower

con,x = 0.8 σ/τ, T lower
con = 1.0ǫ/kB, respec-

tively. The velocity and temperature profiles obtained from both BCT methods are similar

Figure 5.6.

For the third simulation, the applied boundary conditions were u
uppper
con,x = 1.5 σ/τ,

T
upper
con = 1.2ǫ/kB and ulower

con,x = 0.8 σ/τ, T lower
con = 1.0ǫ/kB at the lower and upper bound-

aries respectively. Results are shown in Figure 5.7. The temperature profile is parabolic

due to the heat generated by viscous dissipation and its conduction towards the boundaries

[99]. Small deviations in the temperature profile are associated with statistical errors and

the frequency with which the atomistic velocities are sampled from the velocity distribution

function. The frequency with which the continuum constraints are applied is an important

factor for the resampling method. A high frequency - in the extreme case, where resampling

is performed at every time step - leads to a situation where the atoms are basically trapped

inside the BCT region, because their velocities are continuously resampled and, therefore,

change direction so that these atoms are almost stationary. This effect becomes more ap-

parent in the case of large BCT regions. On the other hand, one should be careful not to

choose a too large resampling frequency that will not match the prescribed continuum state.
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Figure 5.6: Velocity and temperature profiles for the Couette flow with upper boundary conditions

u
upper
x−con = 1.5 σ/τ, T

upper
con = 1.0 ǫ/kB and lower boundary conditions ulower

x−con = 0.8 σ/τ, T lower
con =

1.0 ǫ/kB.
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Figure 5.7: Velocity and temperature profiles for the Couette flow with upper boundary conditions

u
upper
x−con = 1.5 σ/τ, T

upper
con = 1.2 ǫ/kB and lower boundary conditions ulower

x−con = 0.8 σ/τ, T lower
con =

1.0 ǫ/kB.
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5.1.3 Gas flows

The second set of test cases aims to test the applicability of BCT methods to gas flows. The

performed simulations were restricted to boundary node problems only. The size of the

molecular domain was 200σ, 120σ and 200σ in the x, y and z dimensions, respectively,

and similar to the liquid flows the domain was divided into two subregions; the flow region

was located at y < 100σ and the BCT region at 100σ < y < 120σ. At the bottom of

the molecular domain a stochastic thermal wall was imposed. A stochastic thermal wall is

similar to a reflective wall but corrects or resamples the velocity vector of the reflected atom

depending on the transferred thermal energy to or from the wall. Such walls have been

extensively used for gas flow simulations [180–183]. In the current study the following

rules have been implemented by re-setting the velocities of each atom striking the wall:

vx =

√

kBTwall

m
· ψ

vy = ±
√

− 2kBTwall

m
· lnψ1 (5.1.1)

vz =

√

kBTwall

m
· ψ′

where Twall is the wall temperature; m is the atom’s mass; ψ and ψ
′
are Gaussian dis-

tributed random numbers, N (0, 1); and ψ1 is a uniformly distributed random number in

U(0, 1). Hence, in the adopted model the components of velocity which are parallel to the

wall are sampled from a Maxwellian distribution

f (vα) =

√

m

2πkBTwall

exp

(

−mv2α

2kBTwall

)

, (5.1.2)

where α is the corresponding direction and the normal to the wall velocity component, vβ,

is sampled from a Rayleigh distribution given by

f (vβ) =
m

kBTwall

∣

∣

∣vβ
∣

∣

∣ exp















−mv2β

2kBTwall















(5.1.3)

The ± in Equation (5.1.1) corresponds the upper and lower walls, respectively. The + sign

is used at the lower wall in order to force the particle to re-enter the simulation box. If the

wall is placed at the upper boundary, the − sign is used.

The first test case concerns simulations where the BCT is enforced through a Maxwell-

Boltzmann distribution. The simulations have been performed for different values of gas

density with continuum constraints ucon,x = 1.0 σ/τ and Tcon = 1.0 ǫ/kB and wall tem-

perature Twall = 1.0 ǫ/kB. Three values of density were simulated ρ = 0.02 mσ−3, ρ =

0.04 mσ−3 and ρ = 0.08 mσ−3 resulting in the generation of 10, 240, 20, 000 and 40, 316

atoms, respectively. The time step used in the MD simulations was ∆tMD = 0.001τ and

each simulation was run for 8 × 106 time steps. The macroscopic quantities were averaged
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(b) Chapman-Enskog based BCT method

Figure 5.8: Velocity profiles obtained with Maxwell-Boltzmann and Chapman-Enskog distribu-

tions, respectively, for different gas densities

over the last 2 × 106 time steps.

For low-density gas flows, slip at the boundary is expected, whose magnitude is related

to the Knudsen number. High Knudsen numbers result in increased slip [70, 181]. The

Knudsen number is calculated by [182]

Kn =
λ

L
=

1
√
2πρσ2L

, (5.1.4)

where λ is the mean free path of the gas, ρ is the number density and L is the character-

istic length. Equation (5.1.4) means that low density results in higher Knudsen numbers

and, consequently, higher magnitudes of the slip velocity. Figure 5.8(a) shows the velocity

profiles obtained from the gas flow using the Maxwell-Boltzmann distribution based BCT

scheme for the three densities. As expected, higher slip velocities near the wall are obtained

for lower density values. However, large deviations are observed between the applied ve-

locity constraints and the actual velocity in the upper boundary of the flow region. This is

because of an additional slip velocity generated between the flow and BCT regions due to

the application of the Maxwell-Boltzmann distribution. Note that lower gas density results

in higher deviation between the actual and applied velocity [24, 121]. To circumvent the

unphysical slip at the constrained region, the same simulations have been performed with

Maxwell-Boltzmann distribution replaced by the Chapman-Enskog distribution. Figure

5.8(b) shows velocity profiles obtained with the Chapman-Enskog distribution. Applica-

tion of this distribution eliminates artificial slip phenomena between the flow and BCT

regions.

For the last test case, the rescaling based technique and the method based on resampling

the Chapman-Enkog’s distribution are utilised for gas flow simulations in the same domain

with the previous gas simulations, with density ρ = 0.05 mσ−3, and continuum constraints
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Figure 5.9: Velocity profiles for gas with ρ = 0.05 m ·σ−3 obtained from the rescaling BCT method,

the BCT method based on the Chapman-Enskog distribution and the full MD simulation.

ucon,x = 1.0 σ/τ and Tcon = 1.0 ǫ/kB and wall temperature Twall = 1.0 ǫ/kB. In the simu-

lations, 25, 168 particles have been generated, the MD time step was ∆tMD = 0.001τ, each

simulation was run for 8 × 106 time steps and the calculated macroscopic quantities were

averaged over the last 2 × 106 time steps.

MD simulations of a larger system have been performed to verify the validity of the

results. An MD domain of 200σ in each direction was selected, comprising a total number

of 42, 592 particles. The density was ρ = 0.05 mσ−3 and the time step was 0.001τ. The

simulations were performed for 8 × 106 time steps and the calculated quantities were aver-

aged over the last 2×106 time steps. Two stochastic thermal walls were placed at the upper

and lower boundaries of the simulation domain with conditions chosen as u
upper

wall,x
= 2.0 σ/τ,

T
upper

wall
= 0.8 ǫ/kB for the upper wall and ulower

wall,x
= 0 σ/τ, T lower

wall
= 1.0 ǫ/kB for the lower

wall, respectively.

Figure 5.9(a) shows that results obtained from both BCTmethods are in excellent agree-

ment with the large MD simulation. Figure 5.9(b) shows the velocity distributions for con-

tinuum velocity ucon,x = 0.2 σ/τ = 25 m/s.

5.1.4 Conclusions

An investigation of different mesoscale approaches for coupling macroscopic and micro-

scopic simulations was presented. Two BCTmethods of constraining the molecular domain

to the continuum state have been examined, one based on rescaling the atoms’ velocities

and the other one is based on velocity sampling through a distribution function.
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The rescaling BCT method was implemented in conjunction with a velocity reversing

scheme with regards to the macroscopic pressure. Applying the correct value of pres-

sure and minimising any associated artifacts is crucial for the performance of any hybrid

scheme. Inconsistencies in the pressure can shrink the simulation domain or even make

particles drift away. This can generate errors and instabilities in the hybrid procedure. Sim-

ulations performed with the rescaling BCT method show that it can be successfully applied

to both liquid and gas flows. The size of the regions where the velocity constraints are ap-

plied has to be selected carefully in order to obtain consistent velocities with the continuum

state.

For the second BCT method, Maxwell-Boltzmann and Chapman-Enskog distribution

functions were examined. The former has been used in liquid simulations and the results

were found in good agreement with the rescaling BCT method. The size of the constrained

domain, the way that the domain is terminated and the sampling frequency may have sig-

nificant impact on the results when the Maxwell-Boltzmann distribution is used. Inade-

quate sampling frequency can lead to unrealistic effects, such as trapping of particles in

the constrained region, or deviations between the macroscopic and microscopic velocities.

Selection criteria of these parameters depends on the problem in question and cannot be de-

fined explicitly. The application of the Maxwell-Boltzmann distribution to gas flows leads

to discrepancies between the desired and the actual applied velocity. This discrepancy can

be corrected by applying the Chapman-Enskog distribution. For the correct application of

the Chapman-Enskog distribution the equilibrium pressure has to be applied, due to the

absence of continuum solver for the current case the equilibrium gas pressure is applied

that has been pre-calculated by previous MD simulations.

The Maxwell-Boltzmann distribution function is sufficient for equilibrium cases how-

ever for non equilibrium flows the Chapman-Enskog distribution which is a perturbation

expansion of the Maxwell-Boltzmann has to be employed. The Chapman-Enskog ve-

locity distribution function is a second order expansion in Kn and includes terms up to

Kn2. Therefore, as higher Kn are employed and non-equilibrium cases are simulated the

Maxwell-Boltzmann fails to fully describe the physical phenomena.

The results obtained are then consistent with the rescaling-based BCT method and

larger MD simulations.

The selection of BCT method is not a trivial issue. It depends on the specific simu-

lated problem and a number of other parameters such as the accuracy requirements and

the available computational resource. The main advantage of the rescaling method is its

generic nature and broad range of applicability. However, it is less computationally effi-

cient compared to the velocity distribution function method.
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5.2 Polymeric fluid under Poiseuille flow

Accurate modelling of confined polymers is of paramount importance for the polymer pro-

cessing industry [184]. One of the major problems in polymer fluid dynamics is the devel-

opment of a constitutive equation for modelling the stress tensor τ [185]. In the current

example hybrid PWC simulations are employed to study a polymeric fluid, with chain

length N = 30, under Poiseuille flow. In the current problem molecular simulations are

employed to calculate the constitutive equations of the polymeric fluid.

Specifically, NEMD simulations are performed for a constant bead density ρ = 0.8 mσ−3

and constant temperature T = 1 ǫk−1B in cubic boxes with the Parrinello-Rahman deforma-

tion box. The polymer chains are modelled as bead-spring chains; any two beads in the box

interact through the 6-12 LJ potential with a cut-off distance rc = 2.2σ. In order to model

the spring an attractive nonlinear FENE potential is used

VFENE = −H · Q2

2
ln













1 −
(

r
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)2

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





, (5.2.1)

where H is the spring constant and Q is the maximum extension of the spring. For the

simulations presented here, the values of the spring co-efficients H and Q are 30 ǫ/σ2 and

1.5σ respectively. The chosen values for the spring co-efficients ensure that unphysical

bond crossing is energetically unfeasible [186].

For the PWC hybrid simulations of the accelerated Poiseuille flow, a channel with

height H = 220σ and no-slip boundary condition is chosen. The time step for the contin-

uum solver is 5τ and the flow is driven through an external force f0 = 0.0022 ǫ/σ applied

in x direction. Two polymeric fluids have been simulated with chain lengths N = 10 and

N = 30 respectively. The shear stresses needed for the continuum solver are estimated at

every continuum time step through microscopic simulations around every grid point. The

MD simulations are constrained by the shear rate obtained from the continuum solver. MD

simulations are performed for 3 · 104 number of time steps with the time step of 0.005τ.

The flow is homogenous in the x − direction and therefore the momentum equation

reduces to:

ρut = (τ12)y + f0 (5.2.2)

with no-slip boundary conditions. The equation is solved in continuum uniform grid with

22 points using finite difference discretisation.

In Figure 5.10, the non-newtonian viscosity η =
σxy

γ̇
, as calculated by the molecular

model during the PWC simulations, versus the shear rate for a chain with length N = 30 is

presented. The shear viscosity is decreasing for increased shear rate due to the intermolec-

ular bond stretching [187]. The viscosity, of a FENE polymeric chain in shear thinning,

over shear rate approaches a power law curve: η ∝ γ̇−a [187]. Using curve fitting, the

values of a in the performed simulations has been determined as a = 0.291 for the 10mer
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and a = 0.3685 for the 30mer. This is in agreement with previous studies of Kroger and

Hess [186], who found that a varies from 0.3 to 0.7 for polymers with different number of

beads.

The shear rate in the pressure driven Poiseuille flow varies linearly across the height of

the channel with the maximum at the wall dropping to zero in the centre of the channel. The

variation of the shear rate have a significant impact on the shear viscosity of the polymeric

fluid. The shear viscosity increases as the shear rate decreases reaching the value at the

centre of the channel, which for 10mer case is equal to 12
√
ǫm/σ2. In Figure 5.11(a), the

velocity profiles (in LJ units) for the pressure driven Poiseuille flow of the 10mer polymer

chain are presented at different times, as the flow develops.

The velocity profile from a continuum hydrodynamics perspective, is:

ux(y) = 0.5µ(γ)−1ρ fx

[(

Ly − y
)

y
]

(5.2.3)

Figure 5.11(b) compares the velocity profiles of a 10mer polymeric fluid with a simple fluid

with shear viscosity equal to the maximum zero shear viscosity of the 10mer polymeric

fluid. The maximum velocity of the polymeric fluid is higher than that of the simple fluid

at the same time due to a lower mean viscosity, as shown in Equation (5.2.3).

5.3 Slip Poisseuile flow

In micro and nanofluidic devices, where large surface to volume ratio is present, the fluid

flow can be significantly affected by the existence of slip in the liquid-solid interface. The

most commonly used model for the slip prediction is the Navier boundary condition [154]

where the slip velocity is proportional to the local shear rate

uslip = Ls · γ, (5.3.1)

where uslip is the slip velocity, Ls is a constant slip length and γ the local shear rate. The

application of this model delivers realistic results for a specific flow regime however fails

to provide an overall description regarding the transfer of momentum at the solid liquid

interface [154].

Generally, the slip length is not constant and there is a non linear relationship between

the slip velocity and the local shear rate. A number of parameters such as the surface

roughness, hydrophobicity and hydrophilicity and the shear rate have great impact on the

slip generated. To circumvent the aforementioned issues and increase the modelling ac-

curacy, hybrid PWC simulations were performed, where the slip was calculated from first

principles. The chosen test case was a planar Poiseuille flow driven in by an external force

fx in the x direction.



5.3 Slip Poisseuile flow 107

Algorithm 5 PWC -Numerical and Molecular Operations

1. For every input velocity ucon find m ∈ Z where uin + mδu < ucon < uin + (m + 1)δu

2. Search in the stored data if simulations with inputs either uin +mδu or uin + (m+ 1)δu

have been performed

3. If one or more simulations have been previously performed, then run MD with the

coresponding inputs

4. Store the slip velocities produced, um
slip

and/or um+1
slip

, in the simulation’s data library

5. Based on the library data calculate the slip velocity needed from the continuum

solver:

uslip = um
slip +

um+1
slip

− um
slip

δu
(ucon − (uin + mδu))

A Lennard-Jones fluid was used with density ρ = 0.81mσ−3 and temperature T =

1.1 ǫ k−1B which corresponds to viscosity µ = (2.0 ± 0.2) τσ−3[188]. The channel height

was H = 2h = 220σ and the investigated range of force fx was from 0.002 to 0.003ǫ/σ.

The analytical solution of the Navier-Stokes equation for the slip Poiseuille flow is

u(y) =
ρ fx

2µ

(

h2 − y2
)

+ uslip. (5.3.2)

Since the density and temperature were constant throughout the simulation domain, the

only input parameter for the molecular simulations was the continuum velocity near the

boundary solid wall. The MD simulations were performed with uin = 0.0 σ/ǫ and δu =

0.5 σ/ǫ, which means that molecular simulations were performed only for velocities mul-

tiple of 0.5 and the slip for all other input velocities was calculated through interpolation

as it is shown in Algorithm 5. For the PWC scheme MD simulations were performed for

the lower and upper walls and provided to the continuum solver the corresponding slip ve-

locity. The size of the atomistic domain was 20σ, 28σ, 10σ in the x, y and z direction

respectively, resulting in a total number of 5197 atoms. The continuum velocity was en-

forced onto the atoms in the region 26σ < y < 28σ, whose velocity vectors were drawn

every 100 time steps from aMaxwell-Boltzmann distribution according to the ucon and Tcon.

The molecular time step was 0.005τ and a total number of time steps were performed for

each simulation. In the molecular simulation, the wall was modelled by two planes of a

fcc lattice with an orientation that forms a (111) surface. The angle between the flow and

the orientation of the surface was zero, which in combination with the (111) fcc plane min-

imises the roughness of the surface and consequently maximises the slip at the boundary.

The interatomic interactions of the wall and fluid material were like the fluid modelled by

the shifted LJ-potential. The wall density was ρ = 4.0 mσ−3 and temperature T = 1.1 ǫk−1B .

Wall-fluid interactions were also modelled by the LJ potential with energy ǫw f and length

scale σw f and the parameters used were ǫw f = 0.4ǫ, σw f = 0.75σ [154]. The heat exchange

was controlled by a Langevin thermostat with a random uncorrelated force and a friction
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Figure 5.12: Variation of slip length with the shear rate

term Γ = 1.0τ−1, where τ is the characteristic time τ =
(

mσ2/ǫ
)0.5

[23, 154]. The thermostat

was only applied in the z-direction to avoid any undesirable influences in the flow direction.

Figure 5.12 shows the variation of the slip length Ls, as it is calculated from the MD

simulations performed, as a function of the local shear rate. An interesting feature is that

from lower shear rates the slip length presents small variations and it’s equal to its minimum

value . This is consistent with the Navier boundary conditions however when the shear rate

is increasing the Navier condition breaks down and the slip length varies non linear with

the shear rate. A form that has been suggested [154] to describe this non linear relationship

is

Ls = Ls0

(

1 − γ

γc

)−0.5

, (5.3.3)

where γc is a critical value where the Ls appears to diverge. Figure 5.12 shows good agree-

ment between the data produced from the MD simulations performed in the hybrid frame-

work and Equation 5.3.3 which is based in previous molecular studies. Figure 5.13(a)

shows the velocity profile for a Poiseuille flow with driving force fx = 0.002 − 0.003 ǫ/σ

as it is calculated from PWC simulations. From Figure 5.13(b) one can be identified that

the slip velocities are increasing non-linearly as a function of the driving force and conse-

quently the shear rate.

Equations (5.3.1), (5.3.2) and (5.3.3) can be utilised for calculating the slip velocities

analytically. Using Equation 5.3.2, the shear rate can be determined and can be substituted
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in Equation 5.3.3 to obtain the slip length and consequently the slip velocities. Figure

5.13(b) shows the hybrid PWC values of the slip velocities as a function of the driving force

towards the analytical values from Equations (5.3.1), (5.3.2) and (5.3.3). Both outcomes are

in good agreement and small deviations that are observed for the minimum and maximum

values of the driving force are due to the microscopic simulations of the hybrid scheme

which are subject to statistical errors and due to empirical nature of Equation (5.3.3), which

is derived from MD simulations.

5.3.1 Conclusions

In this study the PointWise Coupling multiscale method is applied to nanoscale and mesoscale

fluid flows with slip at the liquid solid interface. The PWC method effectively decouples

the length and timescales. The proposed interpolation scheme utilises the data produced

by previous MD simulations through a numerical optimisation procedure. Hence, PWC

effectively avoids performing MD simulations for nearly identical continuum states real-

ising an extreme reduction of the method’s computational burden. By tuning the interval

parameter of the interpolation scheme, for example δu or uin , the number of the performed

MD simulations can be regulated to balance between accuracy, stability and efficiency.

Despite the fact that the interpolation scheme minimises the number of molecular sim-

ulations, the microscopic solver is still the most computationally demanding task of the

entire method. The applicability and commercialisation of these methods in the industrial

environment requires the development of new versatile strategies to further advance the

existing hybrid frameworks.
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Case ǫw f /ǫ σw f /σ ρw/ρ

(1) 0.6 1 1

(2) 0.6 0.75 4

(3) 0.2 0.75 4

Table 5.1: Couette slip flow simulation parameters

5.4 Slip Couette flow

The flow of a fluid inside a micro or nanochannel can be significantly influenced by liquid

slip conditions at the solid boundary. As opposed to gas flows, liquid flows can be described

by incompressible Navier-Stokes equations even at nanoscale [6]. However, whereas for

gases, the breakdown of the continuum model can be predicted based on the kinetic theory,

for liquids the situation is less clear [189]. There are fundamental open questions regarding

the applicability of no-slip boundary conditions. The conditions under which the no-slip

boundary assumption becomes inaccurate and the relationship of stress and strain rate non-

linear are not known from first principles [189].

In the current example, the number of particles generated in the microscopic domain is

defined from the continuum density and their velocities are initialised through a Maxwell-

Boltzmann distribution based on the continuum temperature. The macroscopic velocity is

imposed through the upper boundary of the molecular domain, in a reservoir region with

height h = 4σ and by utilising the velocity rescaling formula given in Equation (3.2.2).

The simulations are assumed to be isothermal and therefore, since there is no need to ex-

change temperature information, the temperature in the entire molecular region is con-

trolled through a thermostat. The molecular simulations are employed at the beginning of

every continuum time step to calculate the slip velocity in the solid-liquid interface which

is transferred to the continuum solver through the velocity boundary conditions.

The solid wall is modelled as two immobile planes of a (111) fcc lattice. The solid

surface orientation along with the orientation of the flow have major influence on the total

amount of slip [69] that is generated due to the nanoscale roughness arising from the ar-

rangement of the wall atoms. For the current test case the (111) fcc plane is employed in

order to minimise the atomic surface roughness and consequently maximise the slip at the

boundary.

The shifted Lennard-Jones (LJ) 6-12 potential, with cut off distance rc = 2.2σ, is

employed to model the inter-atomic interactions of the wall and fluid particles. The fluid’s

density and temperature are ρ = 0.81mσ−3 and T = 1.1 ǫ k−1B respectively. The wall-fluid

interactions are also modelled by the LJ potential with energy ǫw f and length scale σw f .

Parameters used in the simulations are summarised in Table 5.1.

The first set of parameters is used for creating no-slip boundary conditions and the
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other two correspond to slip boundary conditions [154]. The heat exchange is controlled

by a Langevin thermostat with a random uncorrelated force and a friction term Γ = 1.0 τ−1,

where τ is the characteristic time τ = (mσ2/ǫ)1/2 [23, 154]. The thermostat is only applied

in the z direction to avoid any undesirable influences in the flow direction.

5.4.1 PWC Couette flow

An important parameter for the realistic behaviour of the PWC hybrid method is the size

of the molecular domain which has to be sufficiently large to capture the physics of the

problem. In order to explore the influence of the molecular domain size, a number of MD

simulations have been performed with different domain sizes, with the slip length Ls =
us

( ∂u
∂n)w

used as validation criterion. MD simulations were performed in four domains with different

heights H = 5, 10, 15 and 20σ and dimensions in the x− z plane 10×10 σ2. The height H

refers to the size of the molecular domain in the direction y normal to the wall. The height

refers to the size of the molecular domain in the direction normal to the wall. The variation

of the slip length, for various shear rates, with the height of the molecular domain is shown

in Figure 5.14.

For heights less than 10σ, the slip length is under estimated and for heights larger than

10σ the mean value of the slip length for different shear rates presents minor differences.

The former are in good agreement with [23] where for channel heights larger than 10σ the

results from MD were consistent with continuum assumptions. Therefore a height of 10σ
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Figure 5.15: Velocity profiles for H = 50σ under slip and no-slip boundary conditions

has been selected for the height of the atomistic region. The size of the molecular domain

should be minimal aiming to reduce the impact of the of the computationally intensive

molecular solver to the overall computational procedure.

For the continuum model, the flow is homogenous in the x−direction and therefore the

momentum equation reduces to:

ρut = (τ12)y (5.4.1)

with u = Uw at the upper boundary and slip velocities calculated by MD at the lower wall.

The equation is solved in continuum uniform grids with grid spacing δy = 10σ using finite

difference discretisation.

Previous MD studies [154] have identified that the degree of slip at the boundary de-

pends on a number of parameters including the strength of the solid-liquid interaction, the

thermal roughness of the interface and the ratio of wall and liquid density. To investi-

gate the effects of the solid-fluid interaction strength, PWC hybrid simulations of Couette

flows have been performed. In Figure 5.15 the velocity profiles for a channel with height

H = 50σ are presented for three different sets of parameters of the solid-liquid interaction.

The time step for the continuum solver was equal to 10τ and the time step of 0.005τ was

used in the microscopic solver.

The results obtained from the PWC are in good agreement with those obtained from

other hybrid methods based on the domain decomposition [18] and those obtained from

fully MD simulations [154] where the maximum deviation for the slip velocity ranges from

0% to 24% of the upper wall velocity uwall for the no-slip and the slip boundary conditions
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respectively.

5.4.2 Channel’s height effects

PWC hybrid simulations have also been performed to study the correlation between the

channel height and the slip boundary velocity. In particular, Couette flow simulations under

a constant shear rate Uwτ/H = 0.06 for four channels with heights 50σ, 100σ, 200σ and

500σ have been performed. The wall-fluid parameters for all the different channel heights

have been ǫw f = 0.6 ǫ, σw f = 0.75σ and ρw = 4 ρ. The MD simulations are performed

around the lower grid point for 5 · 103 number of time steps every continuum time step.

In Figure 5.16, the slip velocity, normalised over the upper wall velocity, is presented

as a factor of the channel’s height. The ratio of the slip velocity over the velocity of the

moving wall is decreasing as the channel height becomes larger. Since the interactions

between the wall and the fluid are identical for all channel heights, the slip length and slip

velocity should essentially be the same in all cases. The flow in all channels has the same

constant shear rate and a higher channel height results in higher velocities of the upper wall.

Therefore, the ratio of the slip velocity over the upper wall velocity is decreasing, following

a power law (see Figure 5.16) as the height of the channel increases. Comparing the results

with continuum analytical solution for the no-slip flows ux/Uw = y/H it becomes clear that

for the narrower channels, with a height of 50σ and 100σ, the deviation in the velocity

profile due to the slip is significant, whereas for the channels with height larger than 500σ
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height H = 50σ

it can be assumed that the no-slip condition still holds.

5.4.3 PWC Linear Optimisation

In the Couette flow test case, presented previously, MD simulations were performed at the

beginning of every continuum time step. As a consequence, molecular simulations have

been carried out for almost identical continuum inputs resulting to an increased computa-

tional cost without any subsequent accuracy advantages. Apart from the additional compu-

tational burden, simulating nearly identical continuum states will contribute to the transfer

of the intrinsic molecular fluctuations to the continuum solver and therefore will impact

its stability and convergence. Figure 5.17 shows the history of the RMS velocity residual.

The fluctuations of the velocity values reveal the presence of the molecular solver. These

fluctuations occur due to the hybrid boundary condition applied at the lower wall, however

the overall convergence trend in these cases is not greatly affected.

Aiming to minimise the computational cost of the PWC and reduce the residual os-

cillations a numerical optimisation procedure has been employed. The input data for the

molecular solver, in the current test case, are essentially the continuum velocity of the first

cell above the lower wall and the calculated data are the slip velocity at the solid-liquid

interface. In the numerical optimisation procedure MD simulations were performed with

ucon
in

= 0.0 σ/ǫ and δucon = 0.1 σ/ǫ. The simulations have been carried out for channel

height H = 50σ.
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Figure 5.18 shows the velocity profiles as calculated by PWCwith and without the pres-

ence of the optimisation procedure. The outcomes from both cases are in good agreement.

Near the lower wall small deviations are observed mainly due to the inherent fluctuations of

molecular’s solver outcomes. One of the advantages that the numerical optimisation offers

is the oscillations’ reduction of the information transferred to the continuum description.

This can be identified in Figure 5.19 where the fluctuations’ magnitude and frequency have

been suppressed. The linear optimisation offers a significant enhancement regarding the

stability and convergence of the continuum solver however is still dependent of the values

of δu. Specifically, in cases where δu is very small or δu → 0 the advantages of the linear

optimisation are eliminated. For instance, if δu = 10−4 for the current example this will be

translated to molecular simulations at every continuum time step. The Linear optimisation

although it prohibits the propagation of any instabilities towards the continuum side does

not take into account the oscillating nature of the atomistic outputs and provide statistically

averaged data.

To circumvent these problems the selection of the discretisation parameters should be

made cautiously and in case where small values of δu for example have to employed more

sophisticated interpolation techniques with smoothing capabilities can be adopted.

5.4.4 PWC Neural Network optimisation

The neural network optimisation has been also employed to study the slip Couette flow

case. In the current example one neural network has been used with one input, the contin-

uum velocity, one output, the slip velocity and two hidden layers with 3 neurons each. The

hybrid simulations have been performed for two confidence intervals δu = 10−3, 5 · 10−3.
The confidence intervals to one extend determine the number of atomistic simulations that

are performed. In the current case 75 and 50 MD simulations have been performed for

δu = 10−3 and δu = 5 · 10−3 respectively. The differences in the PWC outputs for the two

confidence intervals are less than 1% showing the consistency of the method along with the

predictive abilities of the neural networks that can produce consistent outputs even when

trained with different amount of data. Table 5.2 shows the root mean square differences

(RMSD) between velocity outputs, for various values of δu, as produced by PWC with

neural network optimisation with δu = 10−3 and outcomes produced with linear optimisa-

tion. The results are generally in good agreement however the outcomes produced from

the linear optimisation tend to underestimate the slip velocity. The main reason for that

behaviour is the lack of statistical smoothing and averaging of the atomistic outputs in the

linear optimisation. Linear optimisation takes into account only the outputs for specific

inputs and not the averaged output values for adjacent input data.

The main advantage of the neural network optimisation is that for obtaining the final

output all the previously performed simulations contribute and only those that are in the

proximity area of the input values. Therefore, the networks are trained to capture the phys-

ical phenomenon and only to perform a numerical interpolation. Additionally, after the
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δu RMSD

5 · 10−3 5.7%

10−2 7.2%

5 · 10−2 7.1%

Table 5.2: Root mean square difference between PWC outcomes with NN optimisation with δu =

10−3 and linear optimisation for various δu
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Figure 5.20: History of the RMS residual for velocity for PWC without any optimisation and for

PWC with Linera and NN optimisation

completion of the hybrid simulations the neural networks generated can be further utilised,

for example as slip models in the current case, for continuum simulations purposes.

5.5 Heat transfer in Couette flow

In the current case the heat transfer in Couette flow with slip boundary conditions is stud-

ied. PWC simulations are employed near the bottom wall to provide adequate information

regarding the slip’s magnitude. The existence of slip is not only dependent to the local

shear rate and the interfacial interaction parameters between the solid and the fluid but also

to the local temperature. Therefore, in the hybrid set-up the information transferred from

the continuum to the molecular description includes the local velocity, density and temper-

ature. Additionally, the PWC simulations will be able to model and capture the temperature

jumps noticed near the thermal walls, as shown in Sec. 4.4.
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In the continuum description the heat transfer is described through the following equa-

tion [99]
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(5.5.1)

where cu is the specific heat, λ the thermal conductivity and µ the dynamic viscosity. The

CFL number employed in the continuum solver is 0.25.

5.5.1 Hybrid simulations

For the current case the size of the molecular domain is 12σ in the x and y direction and

4σ in the z direction. The upper region with height 2σ and 10σ < y < 12σ is used as a

reservoir for the application of the continuum conditions to the atomistic description. In

this region the particles’ velocities are rescaled every 100 molecular time steps to match

the continuum temperature and velocity figures. A reflective plane is placed parallel to

the solid in the upper position along the x − axis to prevent any particles from moving

away from the simulation box. The solid wall is modelled as two planes of (111) fcc

lattice and its particles are allowed to oscillate around their lattice site with a harmonic

potential with stiffness κ = 400 ǫσ−2. The particle velocities at each wall plane are rescaled

independently through a velocity rescaling thermostat to temperature T = 1.1 ǫk−1B . In

the remaining molecular area we don’t apply any other thermostat and the heat generated

during the simulations is dissipated through the thermal wall and the buffer region.

The fluid’s density is ρ = 0.81 mσ−3 resulting to a 1760 number of fluid particles

including the ones in the buffer region. The density employed for the wall is ρ = 4.0 mσ−3

corresponding to 470 solid particles. The interaction parameters for the wall/fluid interface

are ǫw f = 0.6 ǫ, σw f = 0.75σ that correspond (as described in Sec. 5.4) to apparent slip.

The fluid’s viscosity is µ = 2.08 ǫτσ−3, the thermal conductivity is λ = 7.7 kB(στ)
−1 and

the specific heat is cu = 2.43 kB/m [99].

PWC hybrid simulations are carried out with molecular modelling being employed near

the lower wall aiming to provide accurate boundary condition regarding the slip velocities

and the temperature jumps. In particular, the size of the continuum domain is H = 100 σ

with the upper wall moving with velocity Uwall = 2.0 σ/τ at temperature Twall = 1.3 ǫk−1B .

MD simulations are performed every continuum time step around the lower grid point for

106 number of time steps and the temperature jumps and slip velocities are mapped back to

the continuum solver.

Figure 5.21 shows the velocity and temperature profiles across the channel. A linear

velocity profile is noticed with apparent slip near the lower wall. The slip’s magnitude,

for the current shear rate, surface orientation, wall-fluid interactions and surface stiffness,

is in perfect agreement with previous molecular studies [66]. A parabolic profile for the
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Figure 5.21: Velocity and temperature profiles are calculated by PWC without any numerical opti-

misation for the Couette heat transfer case

temperature is noticed due to the flow of heat generated due to viscous dissipation [99].

In the Figure 5.22 the velocity and temperature residuals of the continuum solver are

shown. It is observed that as the simulation evolves the residuals fluctuate, between 10−2

and 10−3 for the velocity and around 10−3 for the temperature, due to the inherent fluctua-

tions of the molecular information transferred. Small changes in the continuum inputs near

certain values produce atomistic outputs that oscillate around a mean value. The fluctuating

nature of the molecular results prohibits the continuum solver of achieving acceptable con-

vergence. Therefore, a numerical optimisation procedure will be engaged to minimise the

fluctuations of the data transferred from the atomistic solver to the continuum. The goal

of this optimisation procedure is twofold, (i) to reduce the fluctuation’s amplitude of the

atomistic information transferred and (ii) to optimise the efficiency of the entire simulation

procedure by minimising the number of molecular simulations performed.

In the current case the linear optimisation procedure, as described in Sec. 3.3.1 and ap-

plied in the previous test cases, cannot be applied directly since both the number of inputs

and outputs has been increased. The aforementioned procedure can be extended for one ad-

ditional input however is not straight forward to be generalised for accommodating multi-

dimensional inputs and outputs. Furthermore, even if the number of input parameters is

two, like the current case, the implementation’s complexity, for the Linear optimisation pro-

cedure, increases significantly and the computational benefits are not apparent. For exam-

ple, in the case studied here after the discretisation of the input variables ucon, Tcon the fol-

lowing four input sets are generated (uin + mδu, Tin + nδT ), (uin + (m + 1) δu, Tin + nδT ),

(uin + mδu, Tin + (n + 1) δT ), and (uin + (m + 1) δu, Tin + (n + 1) δT ), where uin + mδu <

ucon < uin + (m + 1) δu and Tin + nδT < Tcon < ρin + (n + 1) δρ and m, n ∈ Z. Through

this procedure if none of the input sets has been previously calculated then 4 MD simu-

lations have to be performed. Additionally, the four input sets lead to combination of 16
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Figure 5.22: History of the RMS residual for velocity and temperature for PWC without any nu-

merical optimisation for the Couette heat transfer case

input states where either 0, 1, 2, 3 or 4 atomistic simulations are required. This increases

the computational cost and the complexity of the algorithm that searches the library data.

Therefore, aiming to overcome these difficulties the Neural Network optimisation proce-

dure is engaged.

5.5.2 Neural Network optimisation

In the neural network optimisation instead of predefining the input sets for the atomistic

simulations through the parameters xin and δx (where x is any continuum input), we define a

confidence interval around every new input and if any library data are inside this confidence

interval then the output is based on the library data otherwise atomistic simulations are

performed for the exact continuum input set. For example, in this case a continuum input uin

and a parameter δu are defined. A search is performed in the library for data ulib that belong

to the interval uin − δu < ulib < uin + δu. If any data fulfill the aforementioned requirements

then the atomistic outputs are estimated based on neural networks trained with the library’s

information. In the event that none of the library data belong in the confidence interval

of the continuum input then the following steps are performed: (i) for the exact continuum

inputs an atomistic simulation is executed, (ii) the atomistic outputs are stored to the library,

(iii) the neural nets are being re-trained and updated to accommodate the new data, and (iv)

the neural nets are utilised to provide the microscopic outputs. The molecular outputs

are always estimated through neural networks aiming to utilise the networks’ smoothing

abilities and provide data devoid of large fluctuations that may introduce instabilities in

the continuum solver. Figure 5.23 shows the RMS values of the velocity and temperature

residuals as have been calculated from PWC simulations (i) with the atomistic data fed

back directly to the continuum solver and (ii) the atomistic data fed back through a neural
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Figure 5.23: History of the RMS residual for velocity, temperature for PWC without any optimisa-

tion and for PWC with MD performed at every continuum time step and NN employed to smooth

the atomistic outcomes

The velocity residual for the direct coupling case constantly fluctuates and its mini-

mum value is of the order of 10−3. These fluctuations are originated from the molecular

solver represent the fluctuating values of the slip velocity as it is calculated from similar

continuum inputs and can be easier realised if a logarithmic scale is employed in the y axis

(see inset in Figure 5.23). The application of neural networks compresses the strength of

the fluctuations and permit the continuum solver to achieve residuals of the order of 10−5.

Specifically, the residual initially decreases smoothly and afterwards oscillations are no-

ticed, primarily due to the continuous changes in the network’s parameters every time that

a molecular output is generated. The same behaviour is also noticed for the temperature

residual.

Figure 5.24 shows slip velocity data transferred to the continuum solver as has been cal-

culated by MD with and without the application of neural networks. This figure shows the

smoothing of data achieved with the presence of neural nets, and provides a better insight

why neural network optimisation contributes to elimination of any numerical instabilities

and artifacts induced to the continuum solver. As the confidence limit increases the neural

nets’ outputs are based on fewer data and therefore small deviations are observed. Min-

imising the number of the molecular simulations, although it contributes to the reduction of

the computational cost, implies that fewer data will be utilised for estimating the fluctuating

average of the atomistic simulations.

Figure 5.25 shows the velocity and temperature residuals compared to those obtained

from the neural network optimasation with δu = 5 ·10−3. In this case the convergence of the
simulation is noticeable faster compared to the extreme case where δu → 0 and the neural

networks have been updated every time step.
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Figure 5.24: Slip velocity data transferred to the continuum solver as calculated by MD with and

without the applications of neural networks

Hybrid PWC simulations have been performed for a number of different confidence

intervals (δu, δT ) spanning from δu = δT = 10−4 to δu = δT = 0.1. Smaller values

of the confidence intervals implies that a larger number of MD simulations will be per-

formed generating larger number of data for the training procedure. Therefore, the neural

nets would be able to reduce any uncertainties associated with the oscillating nature of the

atomistic outputs. The overall computational cost is dictated by the atomistic simulations

and increasing their number unavoidably will add an additional computational burden.

Figure 5.26 shows the number of MD simulations as a factor of δu = δT . As the

confidence limit increases the number of atomistic simulations decreases with a non-linear

manner. For the example studied here, for δu = δT = 10−4 a total number of 114 MD

simulations are performed and for δu = δT = 10−1 the number of molecular simulations is

reduced to 8.

Figure 5.27 shows the root mean square deviation of the atomistic outputs compared to

the one obtained with δu = 10−4. The atomistic outcomes produced for different confidence

limits are generally in good agreement and primarily for δu ≤ 10−2 the differences are less

than 5%.
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Figure 5.25: History of the RMS residual for velocity, temperature for PWC with NN optimisation

procedure
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5.5.3 Neural Network’s architectures

In the current example for every case two neural networks have been used with two inputs,

one output and two hidden layers. Both neural networks take as inputs the continuum

velocity and temperature, the first one calculates the slip velocity and the second one the

temperature jump. Potentially, instead of two separate networks we could have engaged one

with two inputs and two outputs. However, here the choice of the two separate networks

perform better in terms of accuracy and at the same time offers flexibility and minimises the

risk of generating numerical artifacts due to inappropriate training of the network. For the

optimisation of the networks’ architectures the procedure described in Sec. 2.5.3 has been

applied. For the training of the networks the 75% of the data produced from the atomistic

solver have been used and the remaining 25% have been used for validation purposes.

To illustrate the efficiency benefits (at this point it has to be reminded that computa-

tional efficiency was one of the main objectives of the current project) the PWC method,

as applied without any optimisation procedure, is compared to the domain decomposition

method as implemented by Yen [23] in the slip Couette flow study. Considering the min-

imum size of the MD domain in both cases to be of order (10 − 12)σ and taking into

account the overlapping region of at least (10 − 12)σ necessary for the convergence of the

domain decomposition [23], it is possible to state that the costs associated with the PWC

MD simulations are halved in comparison with the domain decomposition. Furthermore,

due to the time decoupling of the PWC, the number of MD timesteps performed between

one continuum time step is 5 times smaller leading to an overall 10x speedup factor. If the
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δu 1st Layer 2nd Layer

10−4 1 5

2 · 10−4 4 11

5 · 10−4 4 3

10−3 5 5

2 · 10−3 5 3

5 · 10−3 3 6

10−2 12 6

2 · 10−2 1 3

5 · 10−2 12 9

10−1 3 11

Table 5.3: Optimal network architectures (in the table the number of neuron at each hidden layer

are shown) for slip velocity estimation

δu 1st Layer 2nd Layer

10−4 2 2

2 · 10−4 1 12

5 · 10−4 2 1

10−3 1 10

2 · 10−3 6 2

5 · 10−3 4 5

10−2 2 9

2 · 10−2 4 1

5 · 10−2 2 4

10−1 5 10

Table 5.4: Optimal network architectures (in the table the number of neuron at each hidden layer

are shown) for temperature jump estimation

NN optimisation procedure is taken into account then the computational cost can be even

reduced an extra order of magnitude.

Tables 5.3 and 5.4 show the neural architectures that have been created in hybrid sim-

ulations under different values for the confidence intervals δu. Specifically, Table 5.3 sum-

marises the neural networks used for estimating slip velocities and Table 5.4 those used

for estimating temperature jumps. In the first column of both tables the various confidence

intervals are shown, in the second one the number of neurons at the first hidden layer and

in the third one the number of neurons at the second hidden layer. Although the poten-

tial maximum number of neurons at each hidden layer is 31, it is noticed that there none

of the hidden layers of the neural networks has more than 12 neurons. This fact shows

the ability of ANN with fairly simple architectures to model the relationships between the

continuum and molecular outputs. The advantages of the ANN will be more apparent in

multi-parametric cases, where the molecular outputs depend upon a larger of continuum
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inputs.

5.5.4 Conclusions

The neural networks compared to linear optimisation have added an extra flexibility to the

development of the framework that facilitates the exchange of information between the

continuum and molecular region. Their main advantages are:

• Generic properties: The NN optimisation can be extended to accommodate any num-

ber of input and output parameters

• Consistency: As illustrated in the current example there is a small variability in the

neural networks outcomes even in cases were very different confidence limits were

employed

• Efficiency control: Through the NN optimisation the number of MD simulations can

be controlled based on the values of the confidence intervals and can be optimised

based on the problem’s accuracy and efficiency requirements

• Smoothing properties: The neural networks act as a smoothing operator for reducing

the fluctuations in the atomistic outputs.
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Conclusions and Future work

Over the last years increased interest has been observed in the scientific community to-

wards multiscale modelling techniques due to their unique potential to simulate accurately

and efficiently problems in micro and nanofluid dynamics. Several frameworks have been

proposed for modelling flows in multiple scales. These frameworks specify the informa-

tion that has to be exchanged, and facilitate the communication between the molecular and

continuum description. However, their applicability to complex fluid flow scenarios ex-

periences limitations due to the computational complexity of the proposed algorithms and

primarily due to the computational cost of the microscale solver, which is still dominant.

The work of this thesis has made contributions towards closing the knowledge gaps

in the development of efficient hybrid atomistic/continuum frameworks. Specifically, a

new multiscale methodology, named as Point Wise Coupling, that aims to accommodate

larger temporal and length scales and minimise the impact of the atomistic solver has been

developed. Molecular studies have also been performed, as part of the current research,

to provide a better insight regarding nanofluidic phenomena, such as the impact of surface

roughness in the slip process. The main conclusions can be summarised as follows:

• An efficient utilisation of neural networks in conjunction with MD simulations has

been presented. A neural networks model was implemented for a solid material with

a void, subjected to shear. The neural networks predictions were found in very good

agreement with the actual simulation results.

This study (Sec. 4.1) shows that neural networks can be used as an efficient tool

to circumvent computer resource issues associated with molecular simulations, as

well as to obtain information for different sets of initial and boundary conditions.

Research is under way to apply the proposed model to various applications, including

design of nanofluidic sensors and dynamic friction at material interfaces

• The effects of rectangular surface roughness with variable height and surface attrac-

tion energy on the slip generated, have been investigated using molecular dynamics

simulations. The numerical experiments were carried out for various corrugation am-
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plitudes and attraction energies. As ǫw f or A increase, the density layering in the near

the wall region is enhanced by higher values or secondary layering phenomena. In

addition, the rectangular corrugation provides a mechanism for propagation of the

fluid particles layering towards the center of the channel. The higher the corruga-

tion amplitude is the closer to the center of the channel the density fluctuations are

transferred. The simulation results indicate a non-linear variation of slip as a factor

of roughness amplitude.

• The relationship between the wall stiffness and the slip produced has been inves-

tigated. For the first time we show that the slip length variations as a function of

surface stiffness can be approximated and well described through a master curve.

Quantifying the dependence of Ls on κ provides a mechanism for obtaining a better

insight in the slip phenomena and reducing the variability regarding the values of

surface stiffness employed in molecular simulations.

• An investigation of different mesoscale approaches for coupling macroscopic and mi-

croscopic simulations was presented. Two BCT methods of constraining the molec-

ular domain to the continuum state have been examined, one based on rescaling the

atoms’ velocities and the other one is based on velocity sampling through a distri-

bution function. Simulations performed with the rescaling BCT method show that

it can be successfully applied to both liquid and gas flows. The size of the regions

where the velocity constraints are applied has to be selected carefully in order to

obtain consistent velocities with the continuum state.

For the second BCT method, Maxwell-Boltzmann and Chapman-Enskog distribu-

tion functions were examined. The former has been used in liquid simulations and

the results were found in good agreement with the rescaling BCT method. The size

of the constrained domain, the way that the domain is terminated and the sampling

frequency may have significant impact on the results when the Maxwell-Boltzmann

distribution is used. Inadequate sampling frequency can lead to unrealistic effects,

such as trapping of particles in the constrained region, or deviations between the

macroscopic and microscopic velocities. The application of the Maxwell-Boltzmann

distribution to gas flows leads to discrepancies between the desired and the actual ap-

plied velocity. This discrepancy can be corrected by applying the Chapman-Enskog

distribution. The results obtained are then consistent with the rescaling-based BCT

method and larger MD simulations. The selection of BCT method is not a trivial is-

sue. It depends on the specific simulated problem and a number of other parameters

such as the accuracy requirements and the available computational resource.

• The PWC method effectively decouples the timescales and employs smaller domains

for the MD simulations, which lead to increased efficiency in comparison with the

classic domain decomposition approach. A novelty that PWC possesses is the numer-

ical optimisation procedures employed to handle the vast computational cost intro-

duced by the microscopic simulations. The main idea of the numerical optimisation

procedure is to utilise data produced by previous MD simulations and avoid atomistic

simulations of nearly identical states.
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• PWC under Linear optimisation effectively avoids performing MD simulations for

nearly identical continuum states realising an extreme reduction of the method’s

computational burden. By tuning the interval parameter of the interpolation scheme,

for example δu, the number of the performed MD simulations can be regulated to

balance between accuracy, stability and efficiency.

The Linear optimisation although it prohibits the propagation of any instabilities to-

wards the continuum side does not take into account the oscillating nature of the

atomistic outputs and provide statistically averaged data. Concurrently, it cannot be

directly extended to accommodate multiple inputs and outputs.

• The neural networks compared to linear optimisation have added an extra flexibility

to the development of the framework that facilitates the exchange of information

between the continuum and molecular region. Their main advantages are:

– Generic properties: The NN optimisation can be extended to accommodate any

number of input and output parameters

– Consistency: As illustrated in the example at Section 5.5 there is a small vari-

ability in the neural networks outcomes even in cases were very different confi-

dence limits were employed

– Efficiency control: Through the NN optimisation the number of MD simula-

tions can be controlled based on the values of the confidence intervals and can

be optimised based on the problem’s accuracy and efficiency requirements

– Smoothing properties: The neural networks act as a smoothing operator for

reducing the fluctuations in the atomistic outputs.

The final objective of the hybrid methods is to provide an elegant framework, in terms of

efficiency, that enhance the simulation capabilities of the traditional continuum approaches.

In the current work a major step forward has be done towards that direction. However, there

are still open questions that need to be addressed:

• The mechanism that generates the slip and the factors affecting the amount of the

interfacial slip produced are not fully understood. Future work should be carried out

to further investigate the contribution of parameters, such as generalised nanoscale

roughness, wettability, rate dependency and interaction parameters to the slip be-

haviour.

• The PWC method has to be applied to more realistic problems, under interaction

potentials that can model physical phenomena of interest. The impact of the neural

networks in the convergence of the continuum solver has to be further examined.

• Further developments of the optimisation procedures to other coupling frameworks

should be considered.
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• Further development of the existing boundary condition imposing methods are re-

quired. A major challenge is to develop BCT able to accommodate macromolecules

that can travel from the macroscopic description to the microscopic and vice versa.

• Other challenges that have to be addressed in the future involve parallelisation of

hybrid codes [13].
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