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Abstract

In this thesis, we use asymptotic methods to solve problems of wave propagation through
infinite and finite (only consider those that are finite in one direction) arrays of scatterers.
Both two- and three-dimensional arrays are considered. We always assume the scatterer
size is much smaller than both the wavelength and array periodicity. Therefore a small
parameter is involved and then the method of matched asymptotic expansions is appli-

cable.

When the array is infinite, the elastic wave scattering in doubly-periodic arrays of cav-
ity cylinders and acoustic wave scattering in triply-periodic arrays of arbitrary shape
rigid scatterers are considered. In both cases, eigenvalue problems are obtained to give
perturbed dispersion approximations explicitly. With the help of the computer-algebra
package Mathematica, examples of explicit approximations to the dispersion relation for

perturbed waves are given.

In the case of finite arrays, we consider the multiple resonant wave scattering problems
for both acoustic and elastic waves. We use the methods of multiple scales and matched
asymptotic expansions to obtain envelope equations for infinite arrays and then apply
them to a strip of doubly or triply periodic arrays of scatterers. Numerical results are
given to compare the transmission wave intensity for different shape scatterers for acoustic
case. For elastic case, where the strip is an elastic medium with arrays of cavity cylinders
bounded by acoustic media on both sides, we first give numerical results when there is
one dilatational and one shear wave in the array and then compare the transmission

coefficients when one dilatational wave is resonated in the array for normal incidence.

Key words: matched asymptotic expansions, multiple scales, acoustic scattering, elas-

tic scattering, periodic structures, dispersion relation.
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Chapter 1

Introduction

The propagation of waves in periodic media has been a problem of increasing interest in
recent years. These waves include acoustic, elastic, electromagnetic or water waves. The
main interest is focused on the question of the existence or not of band gaps for these peri-
odic media. Band gaps are those regions of frequency where plane waves cannot propagate
through the array. A comprehensive bibliography about photonic and sonic band-gaps
(analysis of filtering properties of composite structures in the theory of electromagnetic
and acoustic scattering) can be found on a website compiled by Dowling [19]. The re-
search on phononic band gaps (filtering properties for acoustic and elastic composites)
has also attracted much interest. Various methods have been developed to investigate
the band structures of waves propagation in phononic crystals, for example, the plane-
wave method [84], the finite difference time domain method [23], the multiple scattering
theory method [54] [35] and multipole expansion method [77, [105] etc. In these methods,
the phononic band gaps are all obtained numerically. The method of homogenisation
can approximate dispersion relation (the relation between frequency and wavenumber)
explicitly [21], but only for low-frequencies. This method requires the wavelength to be
much bigger than both the scatterer size and the array periodicity, which makes it im-
possible to assess the phenomenon related with the array periodicity, such as band gaps.
In this thesis, we mainly use the perturbation method of matched asymptotic expansions
to consider the wave (acoustic and elastic) propagation through periodic arrays under
the assumption that the scatterer size is much smaller than both the wavelength and the

array periodicity. One advantage of this method over the method of homogenisation is



that the array periodicity can be as large as the wavelength, therefore the phenomena
associated with the periodicity of the array (such as band gaps) may be described. In
particular, explicit expressions for the perturbed dispersion relation are given to show
the appearance of the local band gaps for infinite arrays. This method can be used to
solve those singular perturbation problems involving several different length scales and
two subdomains on which no single asymptotic expansion in a series of gauge functions
(functions of the small parameter) can hold uniformly over the whole space. Thus sep-
arate expansions must be developed in those two subdomains, where they must have a
overlapping area in which the two expansions hold simultaneously. Then any indeter-
minacy in the expansions is solved by the matching. These two subdomains are usually
named the inner region (near the scatterer) and the outer region (far from the scatterer),
and the expansions in them are named the inner expansion and the outer expansion
respectively. This method was developed in the 1950s and was then applied to a variety
of problems in fluid mechanics in 1960s. Most of the earlier applications were to viscous
flows. But since the 1960, applications of the method have proliferated in some other
fields of fluid mechanics, as well as in other branches of applied mathematics, see [102]
page 77] for more details.

Recently, this method was used to consider the problem of acoustic wave propagation
through a doubly-periodic array of rigid cylinders by Mclver [60]. Following this, we first
apply the same method to the two-dimensional elastic wave scattering problem. The main
difference between the acoustic case and elastic case is that in the former only dilatational
waves are present, while in the latter, both dilatational and shear waves are involved. A
notable feature of the modified matching procedure for the elastic case is that certain
eigenfunctions must be included in the inner solution ahead of any obvious need for them.
The method of matched asymptotic expansions is also used by Datta and his colleagues
to solve the elastic wave scattering problem for both one scatterer [I7] and composite
materials containing multiple scatterers [16]. They also showed that feature about the
eigenfunctions but didn’t give the explicit form. Acoustic wave propagation through
three-dimensional infinite arrays of arbitrary shape rigid scatterers are also considered
in this thesis using the same method. For general shaped inclusions in acoustic problems

(i.e. the Neumann or Dirichlet boundary conditions), this method could also work by



using conformal mappings in the inner problem as the leading order solution is harmonic
and the boundary conditions will not change after the conformal mappings. For these
infinite arrays, their periodicity requires that the solutions satisfy the Bloch theorem:
the eigenfunctions of a system whose wavefunction of a particle is placed in a periodic
potential (Bloch wave) can be written into the form of a plane wave times a function
with the periodicity of the Bravais lattice. Bravais lattice is an infinite array of discrete
points generated by a set of discrete translation operations for some primitive vectors.
The method of matched asymptotic expansions we use here is based on the assumption
that the material is isotropic. When the material is anisotropic the outer solutions will
change their forms because they are on the assumption that every cell of the lattice is
exactly the same. Therefore more complicated outer solutions need to be developed for
the anisotropic materials.

With the help of the solutions in problems of infinite arrays, we then consider the
multiple resonant scattering problems using the method of multiple scales. Multiple reso-
nant scattering, or Bragg resonance, means intense peaks of scattered waves are produced
for specific wavelength and/or incident angles. The method of multiple scales is also used
to solve singular perturbation problems. The idea is to introduce a number of different
scales, each one (measured in terms of the small parameter) associated with some prop-
erty of the solution. This problem is motivated by the paper by Li and Mei [49], in which
they considered the Bragg resonance of surface water waves by a two-dimensional array
of vertical cylinders as a model for the support of an off-shore airport. Fast and slow
variables are defined to describe fast and slow variation of the envelope (the outline of
the variation in amplitude). The scattered wave from each scatterer is in higher order of
the small parameter compared to the incident wave. But the cumulative effects of the
scattered waves are no longer weak after scattering by a large number of cylinders, that
is why the slow variations must be counted in. As Li and Mei [49] assumed the water
depth is constant and the array is composed of vertical cylinders, this problem is actu-
ally equivalent to a two-dimensional acoustic problem with an array of rigid cylinders.
Therefore we first reproduce their results for the corresponding acoustic case and then
generalise it to arbitrary cross section cylinder arrays. A generalization to the elastic reso-

nant scattering is also obtained in this thesis by the consideration of providing theoretical



support for the design of efficient soundproof materials. Further, the acoustic resonant
scattering by a three-dimensional array of arbitrary shape scatterers is also considered.
In all these problems about resonant scattering, the envelope equations are first derived
in infinite arrays using Bloch theorem and they are then used to a strip of array with
finite width in one direction (the array in other directions are infinite). The width of the
strip is assumed to be large enough to make sure the resonance occurs.

The structure of this thesis is as follows. Chapter 2 is an introductory part to give the
governing equations and boundary equations of the wave propagation in elastic medium.
The corresponding equations in an acoustic medium can be obtained by setting the
shear modulus of the elastic medium to be zero (as no shear stress exists in an acoustic
medium).

The elastic wave propagation through doubly-periodic arrays of cavity cylinders is
considered in chapter 3. As the exact solution of this problem has already been obtained
by Poulton et al. [77] and Zalipaev et al. [105], we first give a brief introduction of their
method and results and also make a correction about the quasi-static limit (the dispersion
relation in low frequency as the wavenumber goes to zero) Zalipaev et al. [I05] obtained.
The problem is then solved by matched asymptotic expansions and an eigenvalue problem
is obtained to give the perturbed dispersion relations and the size of the local band gaps
explicitly. The results are then illustrated in diagrams to show the splits and interactions
of multipoles caused by the presence of the scatterers. Comparisons of the results by
these two methods are also given and it is shown our method is more accurate when the
cylinder size is smaller.

Chapter 4 is about the two-dimensional resonant scattering. Li and Mei’s result [49] is
first reproduced by considering the corresponding acoustic problem and then generalised
to arrays of arbitrary shape cross-section cylinders. The comparison among four different
types of cylinders are given for the transmission wave intensity. The envelope equations
are also used to solve the resonant scattering by a semi-infinite array. In this chapter,
another generalization to the elastic wave resonant scattering is also achieved .

In chapter 5, we consider the acoustic wave propagation through triply-periodic ar-
rays of arbitrary shape scatterers using matched asymptotic expansions. As in the two-

dimensional case, eigenvalue problems are obtained to give the perturbed dispersion



relation and illustrate the appearance of the local band gaps. Comparisons for the per-
turbation of multipoles are made between two types of scatterers (sphere and prolate
spheroid).

Chapter 6 is about the acoustic resonant scattering by a three-dimensional finite
width strip (only finite in one direction) array of arbitrary shape scatterers, which is also a
generalization of Li and Mei’s method [49]. We also make comparisons of the transmission
wave intensities among three different types scatterers (sphere, prolate spheroid and
oblate spheroid).

A summary of this thesis and some future work are given in the last chapter 7.



Chapter 2

The equations of wave motion

In this chapter, we introduce the governing equations and boundary conditions for wave
motions in elastic medium [9) chapter 5], where both of dilatational and shear waves exist
simultaneously. The elastic medium can be characterised through two parameters, named
Lamé constants, A and u, where u is called the shear modulus. For wave propagation in
acoustic media, as no shear stress exists the corresponding governing equations can be

deduced by setting p = 0.

2.1 Wave equations

Given Cartesian coordinates x, y, z with origin O, the governing equation for wave motion
in an elastic medium is
2u
P = A+ )V(V -u) + pV3u, (2.1)
where u = (u1,u2,us) is the displacement, p is the mass density, A\ and p are the Lamé
constants of the medium and V? is the Laplace operator. This equation (generally referred
to as Navier’s equation) can be written as
0%u
Pop = A+2u)V(V-u) — uV x (V x u), (2.2)
by using V2u = V(V-u) -V x (V x u).
The divergence of ([2.2)) gives
82

P (V) = (A+ 2 VA(V )



so the dilatation D = V - u satisfies

1 92D A+ 2
=2t (2.3)

vip= 22
c? ot? p

which shows that volume changes within the elastic body propagate as solutions of the
three-dimensional wave equation with speed ¢; = /(A + 2u)/p. These are known as

dilatational waves (also called primary waves or compressional waves).

The curl of (2.2)) gives

62
pﬁ(v xu)=—uV x {V x (Vxu)},
and we get
1 0%r W
2 2
r = — y = ) 24
C% 8t2 Ca P ( )
if we use the notation r = %V x u. The vector, r, of infinitesimal rotations of the

body therefore propagates as a solution of the three-dimensional vector wave equation
with speed \/r/p These are known as shear waves (also called secondary waves or
rotational waves).

By the Helmholtz representation, we can write u = V®+V x ¥, where ® is known as
the Lamé scalar potential and ¥ as the Lamé vector potential, along with the constraint

V - ® = (. Substituting for u in (2.2)) we get two equations

9*®
W = C%V2¢), (25)
2
v

General plane wave solutions of these two equations are
¢ = fk-x—ct), (2.7)

and

U =Ag(k-x— cat), (2.8)

where f and g are arbitrary scalar functions, k is the propagation vector and A is any
constant vector normal to k (in order to satisfy the constraint V - ¥ = 0). So the

dilatational wave displacement u. derived from the scalar potential of equation ([2.7) is

u.=Ved =kf'(k-x— cit). (2.9)



Because A is normal to the wave vector k, we can choose A to be A = p x k, where p

is the unit polarization vector. Then the shear wave particle displacement uy is
u;, = Vx¥=Vx(Ag)=VgxA
= (kg') x A= (kg') x (p x k) = (k - k)pg'(k - x — c2t).
Suppose ® and ¥ are time harmonic so that

®(r,t) = ¢(r)e (2.10)

W(r,t) = 4(r)e L (2.11)

Substituting these into the wave equations (2.5]) and ([2.6]) and then simplifying, we obtain

two Helmholtz equations

(V2 + k)¢ =0, (2.12)

(V2 + k3)yp =0, (2.13)

where k; = w/¢;,i = 1,2 are the wavenumbers of the dilatational and shear wave, respec-
tively. For time harmonic waves, we usually omit the time factor e ¢ in the following.
Since three functions are needed to describe the displacement vector field u, only
three of the four scalar solutions of the Helmholtz equations are independent. Specifically
two components of the vector potential are needed to define the vector potential )
uniquely. We decompose the shear displacement vector ug into two orthogonal vectors:
us = (ug1, Us2) where ug; lying in the plane parallel to the (z,y) plane, and the other ug
in the plane perpendicular to the (z,y) plane. Both of them should satisfy the Helmholtz

equations
V2113(1,2) + kgus(m) = V(V-uyu2) = VXV Xugg + kgus(m) =0. (2.14)
For a cylindrical coordinate system (r, 6, z) we can write [30]
us1 =V X (Ys1€2), us2 =V xV X (Vs2e;)/ka, (2.15)

such that the two scalar potentials 151 and 15 satisfy the scalar Helmholtz wave equa-

tions

(VZ + k3)vs1 = 0, (2.16)

(V2 + k3)ts2 = 0. (2.17)



Then we can prove that ug; and ug satisfy Helmholtz equations:
(V2 + EDug =0, (V2 +Ek3)ug = 0. (2.18)
First of all, we consider ug :
Viug = V(V-us) -V x(Vxuy)
= —Vx(Vxug)
= —Vx{V [V x(¢se:)]}

= -V x [V(V . ¢519z) - v2(¢slez)]

_ o [v (35”;1)] £V X [V2(¢ue,)]

= Vx (_kgwslez)
= —k’gv X (z/;slez)

So we have V?ug = —k2u,q, that is (V2 4 k3)ug = 0, i. e. ug defined by (2.15)) satisfies
the Helmholtz equation.

Similarly for the second shear vector field ugs :

— V?uy =V x Vug, (2.20)
1
Ugy = —V xV x (T/Jsgez)
ko
_ 1 awSQ o2
= [ (52) -]
1 FoLUR
= & {v( ;’;) +k§(¢52ez)] . (2.21)

Applying V x Vx to ([2.21]) and using (2.20) one has
— V2uz = k3V x V x (s2e;) = kjus, (2.22)

thus ugy satisfies the Helmholtz equation as well.



Therefore the complete displacement vector field u can be found from three scalar

potentials ¢, 151 and 12, each of which satisfies the scalar Helmholtz equations (2.12)),
(2.16]) and (2.17) respectively.

2.2 Stress tensor

Stress is an important element when we deal with the elastic waves. So it is necessary to
give some explanations about it.

Stress is the internal distribution of force per unit area in the body caused by the
permanent deformation or external loads etc. It is a vector and is related to the position
of the point and direction of the cross-section we considered. We can define the stress on

a point M as follows [I8] page 287]:

o (2.23)

- Agjn—lm AS;’
where the AF is the force acting on one of the cross sections, AS;, of the point M. Its
normal component which is perpendicular to AS; is called normal stress and paral-
lel components are called shear stresses. In the limit, when AS; approaches zero, the
stresses become those at the point M. All the stresses on a point are called the stress
state on that point which can be described by the stresses on three cross sections per-
pendicular to each other. That is to say, the stress on any cross section of that point
can be denoted by those three stresses (nine components altogether), which is called
the stress tensor. Usually, we take those three perpendicular cross sections parallel to
the coordinate planes and the nine components are o0;5,7,7 = 1,2, 3, so the stress ten-
sor 0 = (01,02,03)7, see Figure 1. The equilibrium requires that the summation of
moments with respect to an arbitrary point is zero, which leads to the conclusion that
the stress tensor is symmetric, i.e. 0;; = oj; for all i and j. So only six of them are
independent. The stress tensor can be written as
011 012 013
g = 021 022 023
031 032 033

By the generalised Hooke’s law for isotropic materials we have

Oij = )\ekkéij + 2pe;;, (2.24)

10



O
—>

A 4

Figure 2.1: Stress tensor

Juy

where A and p are the Lamé constants, eg, = V -u = e+ g—;‘; + g—;‘g = D is the

dilatation, V is the gradient operator, u is a displacement vector, ¢;; is Kronecker delta

function and e;; = %(uZJ + u; ;) is the strain tensor.

2.3 Wave equations and stress tensor in cylindrical coordi-

nates

The components of Navier’s equation in cylindrical polar coordinates (r, 0, z) are [9), page

149]

11



u, 2 dug 1 0D 10%,

2

Lo _cOuw, L oZ_ CU 2.2
Viu r2  r2 90 +1—2V or c3 ot? (2.25)
9 ug 2 Ou, 1 10D 1 0%u

M, =2 SN 2.2
Viug r2+r280+1—2y7‘80 c ot (2.26)

1 oD 1 9%u
2 z
V2, _ , 2.2
v 1—2v 0z c% ot? (2.27)

where v is Poisson’s ratio, the displacement u = u,e, +ugeg + u.e,, the Laplace operator

is

9 10 1 9% 92

2
=—4+-——4+ ==+ = 2.2
v or? + r Or + r2 062 + 022’ (2.28)
and the dilatation is
our u, 10uyg Ou,
D = — 4+ —— . 2.29
or + r + r 00 + 0z ( )

The components of the stress tensor that we shall use most frequently are [9, page 150]

o = AD + 2u%1;T, (2.30)
oo = C 8;9’" - % + %?) : (2.31)
0ps = p <%? + i%“;) , (2.32)
s = 1t (%ZT + %ﬁf) . (2.33)

By the Helmholtz representation, we can write u = V¢ + V x 1. If we take ¢ =

Ure, + Ypeg + Y, e, and suppress the time dependence then

10, 81[)9) e, + <8¢r a¢z> e + <1i9 + 8;[;‘9 _ i%ﬁﬁ e, (2.34)

r 00 Oz

0z or

V><¢:<

and

L0 106 09
ng) = Eer + ;%eg + aez, (235)

12



so we have

y = 00, 10V Oy
"9r  r 06 0z’
_10¢ n O O
YW= 9, o
y 900 e Oy 10¢r
=9z r or r 00
Substituting for u,, ug, u, in - we get
0%¢ 10y, 10%, 0%y
_ 2 - v _ — o - Z
o = AVIO+ 2 (87“2 r2 90  rorol 87‘32) ’
o (20% 204 0%, 10% 10y,
a0 = K\ or00 1200 " 9:0r rogd: r 02
1 0%, 0%, 10,
T2 " Ty ar)’

_ 2 *¢ %Yy _ }521% 1 0¢g O*g _32¢z
9= = P\ 900: T 9.2 - 002 o6 ' 0or oro-
_ 2 32(;5 + ia@br _ 1821/}7” 821/’0 181/}0
Ir= = M ordz r2 00  rorol Or? r Or

Yo 0%y 152?#2
r2 022 roz00)"

2.4 The boundary conditions in scattering problems

).

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

In the elastic scattering problems, if we consider the scattering by a cavity scatterer,

there is no stress acted on the boundary of the scatterer. Therefore they satisfy the stress

free boundary conditions

o =0, 0p9g=0, 0p,=0.

(2.43)

When the scatterers are made from another different elastic material from the host mate-

rial, the boundary conditions will become the continuity of the displacement and stresses.

When considering the acoustic scattering by rigid scatterers, as we assume the wave

cannot propagate in the scatterer, i.e. the velocity has no normal component on the

13



scatterer, so the wave potential ¢ satisfies the Neumann boundary condition

dp

5 =0 (2.44)

where n is a coordinate measured normal to the scatterer.

14



Chapter 3

Two-dimensional elastic wave

scattering by arrays

In this chapter, we consider the elastic wave scattering by circular cylindrical cavities in
an elastic medium using the method of matched asymptotic expansions. To introduce the
method and make preparations for the more complicated case of elastic wave propagation
through an infinite array, we first consider scattering by one circular cylindrical cavity
in an elastic medium. The theory for scattering of elastic waves by circular cylinders
is given by White [I0I]. He considered the scattering of dilatational and shear waves
incident obliquely on one infinitely long circular cylindrical obstacle in a solid medium.
The cylindrical obstacles could be fluid-filled, a cavity or another different solid medium.
He obtained boundary condition equations whose unknowns are coefficients in infinite
series expressions for the scattered waves, then the scattered wave displacements and
stresses are determined by these coefficients. Using White’s theory Lewis and Kraft [46]
considered normal incidence and gave explicit approximate expressions for the coefficients
and the scattering cross sections (the scattered power per unit length divided by the
incident intensity) valid for long waves. In another paper by Lewis et al. [47], numerical
computations of the scattering cross sections are made for a cavity cylinder.

In the first section of this chapter, we consider the one cylinder case. Both the exact
solutions and approximations by method of matched asymptotic expansions are given in
order to validate the latter. The exact solutions are obtained using White’s theory [101]

and after expanding the coefficients for the leading terms we find the approximations

15



exactly agree with them. The applicability of matched asymptotic expansions involves a
small parameter ¢ = kja, which requires that the radius a of the cylinder must be much
smaller than the incident wavelength i L

In the second section, we consider the wave propagation through a doubly-periodic
array of cavity cylinders in an isotropic elastic medium. Accurate solution methods for
this problem are provided by Poulton et al. [77] for square lattice, Zalipaev et al. [105]
for hexagonal and rhombic lattices using the multipole expansions and Mei et al. [57]
using the multiple scattering theory. Then the multipole expansions are used to consider
the oblique wave incidence searching for the phononic band gaps [24] or both phononic
and photonic band gaps [26] for cylindrical inclusion arrays. Guenneau & Movchan [25]
considered the elliptical inclusions to explore the elastic band gaps by the finite element
method. Low-frequency approximations to dispersion relation for circular inclusions are
obtained directly from their multipole formulation by Zalipaev et al. [105], while other
authors, for example Parnell & Abrahams [72, [73], Parnell & Grimal [74] and Andrianov
et al. [5], have used asymptotic homogenisation to obtain low-frequency approximations
to elastic wave propagation through periodic materials. Wide complete band gaps were
founded for both photonic and phononic materials. For example, Nicorovici and McPhe-
dran [67] used a generalized Rayleigh identity method to obtain the photonic band gaps
for a square array of perfectly conducting cylinders in air. Vasseur et al. [I03] used the
same method and obtained very wide phononic band gaps for a square lattice of carbon
cylinders in epoxy.

The method we use is the matched asymptotic expansions, which is based on the as-
sumptions that the scatterer size is much smaller than both the wavelength and the array
periodicity. This follows that of McIver [60] who investigates acoustic wave propagation
through a lattice of rigid scatterers. The main difference between the acoustic case and
elastic case is that in the former only dilatational waves are present, while in the later,
both the dilatational and shear waves are involved which arises from the boundary con-
ditions. A notable feature of the modified matching procedure for the elastic case is that
certain eigenfunctions must be included in the inner solution ahead of any obvious need
for them. The same method is used by Datta and his colleagues to solve the elastic wave

scattering problem for both one scatterer [I7] and composite materials containing finite

16



scatterers [16], but not for infinite arrays. Krynkin and Mclver [39] also used matched
asymptotic expansions to consider wave propagation through a lattice of arbitrary shape
Dirichlet scatterers to obtain approximations to the dispersion relation.

The main idea of our method is to obtain perturbations of the quasi-periodic plane
wave solutions that exist in the absence of the scatterers. Here there is no restriction
on the wavelength relative to the array periodicity, and hence the method yields explicit
approximations that can describe the phenomena associated with periodic media, such
as band gaps. The disadvantage of the method of matched asymptotic expansions is that
only small volume fractions can be considered. Explicit expressions to the perturbed dis-
persion relation (between the angular frequency and wavenumber) and explicit formulas
are obtained for the size of local band gaps that show how they depend on the geometry
of the lattice and the size of the cylinder. This is illustrated by reference to square and
hexagonal lattices. Craster et al. [I3] describe a multiple scales approach to obtain results
valid outside the low-frequency regime and near the edges of the Brillouin zone (although
they do not apply their method to elastic waves). In contrast to the present work, ap-
plication of the method of Craster et al. [13] would require the numerical solution of a
single-cell problem but, on the other hand, there would be no restriction on the size of

an inclusion.

3.1 Scattering by one circular cylindrical cavity

3.1.1 Exact solution

We assume the cylinder is infinitely long and of radius a. Cartesian coordinates are chosen
with origin O on the axis of the cylinder, and with the z axis directed along the axis of
the cylinder. Polar coordinates in the z-y plane are denoted by (r,#), then the cylinder
surface is denoted by r = a. A time harmonic incident dilatational wave (see in
chapter 2 for the origin of ¢) defined by

¢’ =M1 (3.1)

propagates in the positive z-direction with constant velocity ¢; and angular frequency
w = kyc1, so the boundary condition only involves plane strain, i.e. o,, = 0. Here we

assume the amplitude of the incident wave is one. For a stress free cavity the boundary
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conditions are

Opr = 0pg =0, r=a. (3.2)

As the incident wave impinge upon the cavity, a dilatational wave ¢° and a shear wave
1® is scattered from the boundary. In this case the vector potential ¥ = 1se, = (0,0, ).
Then the total wave potentials ¢ = ¢’ + ¢° and 1 = ¢® satisfy the Helmholtz equations

(V2 + kDo =0, (3.3)
(V2 +k3)¢ =0, (3.4)

and the stress free boundary conditions on the cylinder surface r = a obtained from

E59) and @)

B 10% 10y 10¢ 10% 5 B
“”—QMQ@wr‘ﬂae‘r&fwamn>‘h“+ﬂm¢—a

(3.5)
200 20% 20v  20%
e 2SE L Sl k=0,
oo r2 00 r608r+rar+r2802+ 29 =0
where the dilatational and shear wavenumbers are related by
A+2
ky = Pky, P = 7; iy (3.6)

To ensure the scattered waves are outgoing, they must satisfy the radiation conditions
so that

¢~ Leik”’fl(@), Ps o~ e*2" £2(0)  as kir — oo. (3.7)

1
vV k‘17“ vV k‘g?“

The scattered potentials are in forms of the outgoing cylindrical wave functions [55]

page 40]
¢° = Z (Aanll)(klr) cosnf + BnH,sl)(klr) sin n6> , (3.8)
n=0
0" =3 (Gt (har) cosnf + Dy HY (ko) i) (39)
n=0

where the Hankel function of the first kind Hq(zl)(z) = Jn(2) + 1Y, (2) (for simplicity we
use H, rather than HS" in the following), J,(z) and Y,,(z) are the first and second kind
Bessel functions and A, By, Cy,, D, are unknowns that need to be determined by the

boundary conditions.
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First of all, we expand the incident wave in terms of the regular cylindrical wave

functions as

¢ = Z €ni" Jy (k1) cosnb, (3.10)
n=0
where
1, n=0,
€n =
2, n>1

Then the total wave fields are

b= Z { [eni”Jn(k:lr) + Aan(k:lr)] cosn + By H,(kir)sin nH}, (3.11)
n=0

=Y (Cpcosnf + Dy, sinnd) Hy(kor). (3.12)

n=0

Substituting for ¢ and v from (3.11) and (3.12)) into (3.5) we get

2 o0
Orr|r=a = a—'l; Z {(anlAn + dp1 Dy, + en1) cosn + (b1 By, + ¢,1C) sin nH} =0,
n=0

Orf|r=a = (%2 i {(angAn + dpa Dy, + en2) sinnb + (bpo By, + ¢2C)) cos nG} =0,
" (3.13)
where
an1 = byl = <n2 - ;P2k%a2> H,(kia) — kiaH) (k1a),
cn1 = —dp1 = nH,(Pkia) — nPkiaH] (Pkia),
enl = (n2 — ;P2k%a2> eni"Jn(k1a) — kyae,i”J) (kra),
Uny = —bny = 2nH,(k1a) — 2nkiaH) (k1a),

Cno = dpo = (P?k2a® — 2n*)H,(Pkya) + 2PkiaH! (Pkia),

ena = 2nepi™(Jn(kia) — kiaJ),(kra)).
Because of the orthogonality of cosnf and sinnf in (0,27) for all n, the coefficients in
each term of the series (3.13) must vanish. It then follows that

an1Ap +dp1 Dy + ep1 = 0,
(3.14)

anQAn + anDn + en2 = 07
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and
bp1 By + ¢ Cy, = 0,
(3.15)

bnoBy + cpaCr = 0.
It is easy to see that only zero coefficients can satisfy (3.15)) (because the determinant of
the coefficient matrix is nonzero). The solutions of (3.14) are

—€nl dnl
A — —en2  dn2 _ —en1dn2 + enadn1 1
" _aldg—agdl, (3.6)
e it = 2t
an2  dp2
Gnl —€nl
D — an2  —€n2 _ —Qpl€n2 + ap2éni 1
= = (3.17)
an1 dnl nl1tn2 n2Wnl
an2 an

Using Mathematica, we expand the coefficients A4,, and D,, to the order of €2 and find

the leading terms are the first three coefficients for both of dilatational and shear waves,

specifically
P2
Ay = 1 mie? + O(e?),
A= 2E +0(),
__ ™ o 3
2= 5 opat +O(€’),
-DO = 07

D, = %Pg + O(€®),

_ o m 2,2 3
DQ—WPE +O(€)

The scattering of an anti-plane shear wave by a vertical cavity cylinder can be solved

in a same way but more simply because when the incident wave is horizontally polarised

(in z-y plane), only shear wave is scattered [71, page 113].
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3.1.2 Solutions by matched asymptotic expansions

In this section, we obtain approximate solutions of the plane wave scattering by a cavity
cylinder using the method of matched asymptotic expansions. This method is a very
useful way to solve singular perturbation problems which involve a small parameter e
that is a ratio of lengths. In this problem we take ¢ = kja, where a and the wave
length 27 /k; will become disparate as € — 0, so displaying the hallmark of a singular
perturbation problem. Because there will be no single perturbation series valid both in
the near field and in the far field, separate expansions must be developed to describe the
near and far fields, and these must have an overlap to effect the matching. Then, any
indeterminacy in the expansions will be resolved in the matching of the two expansions
in the overlap domain in which they hold simultaneously.

When solving the problems with Neumann boundary condition by the method of
matched asymptotic expansions [15, page 193], the leading order term in the inner solution
can be easily obtained from the boundary condition, which is the order of the term related
to the incident wave in the boundary condition when written in inner coordinates. But
in the current problem, the leading order term in the inner solutions cannot be obtained
in the same way. If doing so, the order €? terms in inner solutions would not satisfy the
boundary conditions if they are chosen to match with the outer solutions, and vice versa.
This will be shown later.

We separate the whole region into two, the inner region around the cylinder r < 1/k
and the outer region far away from the cylinder r >> a. In these two regions, dimensionless
variables are needed to assess the smallness of various terms as ¢ — 0. The potentials are
already dimensionless, and either a or £, ! can be used to normalize lengths. We define
p=r/a and R = kir as the inner and outer radial coordinates and rewrite the scattered
potentials ¢° and ® in inner and outer coordinates separately, which are denoted by
o(p,0,¢), ¥(p,0,¢) and ®(R,0,¢), V(R,0,¢). Our aim is to find the valid approximate
solutions for the scattered wave ¢° and 9® in the whole domain r > a.

The scattered fields ¢° and v* satisfy the Helmholtz equations
(V2 +k3)o® =0, (3.18)

(V2 + K3y =0, (3.19)
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and the boundary conditions

a¢s 5 82¢S a2¢s 2/.L <a2 82¢5 N 627;Z)S aws)

“or T Y T\ Yo T %00~ 00
= <1 + ﬁ(l + cos 26)) k2q2eikracos? (3.20)
- )\ 1 ) N
82¢8 8¢S 821!)8 282¢8 37/18 . 2 2 ikjacos@
2a8r89_289 + 202~ C o2 +a o = —sin20kja’e )

on r = a, where the right side parts are from the incident wave and we can see their
orders are €2. Because the scattered waves must be outgoing, they should also satisfy the

radiation conditions

%~ Leik“”fl(e), P~ eF2 f5(0)  as T — oo, (3.21)

1
Vhr Vhar

In terms of the outer coordinate R = kqr, we have

(VR+1e =0, (3.22)
(VL +PH)T =0, P=0(1), (3.23)
L ir L ipr
b~ ﬁe g1(0), ¥~ ﬁe g2(0) as r — oo, (3.24)

and the boundary conditions on the cavity are not relevant to the outer region. In terms

of the inner coordinate p = r/a, we define the Laplace operator

92 190 1 92

Vo= o2t 0o, T R or

and then have

(V24 e =0, (3.25)
(V2 + P2%)yp =0, (3.26)
and the boundary conditions

= ¢ [1 + %(1 + cos 2(9)} [1 +iecosf + O(e?)], (3.27)

82¢ a¢ 821/1 827,/) aw ) )
2 — 22+ —o — 5+ -~ = —c”sin26[1 +1i
9000 200 T a0 a2 T, € sinllticcost+ O]
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on p = 1; the radiation conditions are not relevant to the inner region.

In the inner region, the term inner eigensolution is used for any solutions of
2 2
Voo =0, Vo =0,

and the homogeneous boundary conditions

96 9% % 2 (82¢+821/} a¢>

dp2 ' 0pdo 00

o Tor T Ty

¢ 00 0 0% oY
o000 2o0 ooz " a2 Tap

)

(3.28)

on p = 1. Therefore the inner eigensolutions are (the barred terms refer to the dilatational

wave and the hatted terms to the shear wave)

E,(p,0) = p" cosnb,
nez, n#l,

~

E.(p,0) = —p"sinnd,

EI(P>9) :,OCOSQ, El(pae) :07

~

El(pv 9) = 07 El(p7 9) = pSin97

where E,(p,0) is symmetric in 6, E,(p,6) is antisymmetric in § and both of them are
continuous functions of 6.

In the outer region r > a, the cylinder appears as a singularity at the origin, so
that we seek solutions of the Helmholtz equation, satisfying the radiation condition, with
singular behavior at k17 = 0. Such solutions are in terms of a sum of Hankel functions
of the first kind and of integral orders:

oo )
P° = Z anHW (kyr) cosn, W° = Z b H'V (kor) sin n,
n=0 n=0
the typical terms of which vary with r like e*1" /\/k1r or e*2" /\/kor for large r and so
satisfy the radiation conditions.

Following [14], page 177], we introduce the notations ¢(™ and (™ for the asymptotic

expansion of the inner solutions ¢(p, €) and ¥ (p, €) up to and including all terms of order

€™ for fixed inner coordinate p; and we write ¢(™™ and (™™ for the result of rewriting
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&™) and (™) in terms of the outer coordinate R and expanding up to and including
all terms of or order ¢” for fixed R. Similarly ®™ and ¥(") will denote the asymptotic
expansion of the outer solutions ®(R,e) and V(R,e) up to and including all terms of
order €" as ¢ — 0 for fixed outer coordinate R, and ®(™") and ¥(™™) will denote the
result of expressing ® and (™ in inner coordinates p, which is then held fixed as
e — 0 and expanding that expression through order €”. All logarithmic terms must be
grouped with their algebraic multipliers in these expansions. For example, terms that are
strictly order €loge and order € are here both regarded as order e.

With these notations, the matching rules are expressed as [14]
) = nm) - gp(mn) = gnm) (3.29)

and these identifications will be performed after transformation of one or other of these
expressions back into the coordinates in which the other is written.

In the case of the Neumann boundary condition, the order of the inner solutions can
be obtained directly by the boundary condition. But in the current problem, we can not
get the order of the inner solution by the same way. Assume we can, then the boundary

conditions (3.27)) suggest that the inner solutions have the form
b=+ ..., =P+ .... (3.30)

Substituting for ¢ and 1 in the inner problem (3.25)) — (3.27)) with (3.30) then equating
like powers of € we find ¢o and 15 satisfy Laplace equations and the boundary conditions

2 D*po n LR O
P22\ 0,2 T op00 ~ 00

1
=1 + m(l +COS29),

(3.31)

%o Oy  0*hy  O*hy Oy .
2 —2—= - = —sin 2.
9000 200 T er a2 oy S

To match with the leading terms in the inner expansion of outer solutions, these inner
solutions must decay as r — 00, and from the boundary conditions , whose first
terms on right sides are in 26, we should take ¢o and 9 as
o = aég) cos2297 e = bgg) sin229. (3.32)
p p
To satisfy the boundary conditions , substituting for ¢9 and 2 in , we get

120 =) =1

(3.33)



Obviously, this system has no solution. Therefore we cannot start the inner solutions
with order €. Similarly, if we started the inner solutions with order €, the same problem
would happen. The correct procedure is to start the inner solutions with strictly order
one term, which include eigenfunctions in 260. These terms then generate further terms
at order €2 in ¢ and 1 through particular solutions of the field equations —.

We take the inner expansions as
¢ = ¢o + v11(e)p11 + €dr + var(€)pan + .. ., (3.34)

Y = o + p11 ()11 + ey + por ()b + €. .., (3.35)

where the terms v11(€), va1(€), p111(€), po1(€) are possible intermediate terms that might

arise. Substituting for (3.34)) and (3.35)) in (3.25]) and (3.26]) and collect the like terms in e,

we find ¢g and g satisfy Laplace equations and the homogeneous boundary conditions.
¢ and 1o satisfy Poisson equations whose inhomogeneous parts are obtained from ¢y and
9. With the help of the particular solutions of the Poisson equations the inhomogeneous
boundary conditions can be satisfied. From the boundary conditions , whose

first terms on right sides having terms are in 26, we take

cos 260 sin 26
_ a(20) = W (0)

gb() 0 — a2 ,02 s (n = —2), (3.36)

which are eigenfunctions and must be singular by the need to match with the outer
solutions. Here the 26 terms in ¢y and v generate further terms at order €2 in ¢ and
through particular solutions of the field equations (3.25))-(3.26]) to satisfy the boundary

7+2 the inner

conditions. In general, in order to satisfy the boundary conditions at order €
solution at order €” must contain singular eigenfunctions up to and including those in

(n + 2)6. The outer expansions of the inner solutions are

R R cos 20
a () = b0 () = ay) ¢ =00,

€ R2
R R sin 260
w(o) <6> = o <6> _ ago) = 2 — ¢(0,2)’

which shows that the leading terms in the outer solutions must be in order €2, so that

P=Dy+..., U=eTy+....
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Because the leading inner term is strictly order one, e2®(ep) and €2¥(ep) cannot be larger
than that (if more singular terms are included in the outer solutions and appropriate
terms are added in inner solutions to effect matching, an unsolvable difficulty would arise

later) and so

by = A‘(J2)HO(R) + A§2)H1(R) cosf + Aé2)H2(R) cos 20,

U, = BY Hy(PR) + B H,(PR)sin 6 + B Hy(PR) sin 26,
and the inner expansions of the outer solutions are

(I)(g) = 62@2(6,0)

2i 2 0 4 cos 20
— a2 <log pt e —log2 ) A2 4@A0 (g gy
m 2 mip mip
T2 = 2y (ep)
 on@ ) (2)2sin6 (2)4sin 20
=€°B, <log Pep+ g —log2 — 2) +eB; <Py + B; TP (3.38)
So
4 cos 20 4 sin 26
20 = 4P g0 = i .
2 qip? 7 2 riP2p2 (3.39)
4 cos 26 2cos 6 4 sin 260 2cosf
@D — 42 e g - g2y p() . 3.40
mip2 ted mip 2 niP2p2 U qiPp (340)
Applying the matching rules
¢(0’2) = @(270)7 ¢(072) = \11(270)7
give
AQ T g T o) (3.41)

4 4
The inner expansions of the outer solutions (3.37)), (3.38)) suggest that there are not

any intermediate terms between the order one terms and order € terms, so the inner

solutions should be continued with order e terms

p=¢otep1+..., Yv=vot+epr+.... (3.42)

Then similar to ¢g and v, ¢1 and ;1 also satisfy Laplace equations and the homogeneous

boundary conditions and so they are inner eigensolutions as well. To effect the matching

cos . a:(sl) cos 360 by = agl) sin 6 4 az(,)l) sin 319.

1)
¢1 = (I( ’
! P p p?

(3.43)
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We put cos360 and sin360 here as the corresponding terms that will be needed when
we search for particular solutions of Poisson equations later to satisfy the boundary
conditions for order €® terms of the inner solutions because of the reason we state before.

In terms of the outer coordinates

cos 26 cos 8 cos 30
60 = o + by :ago) - 2 agl) = 2 aél) = e, (3.44)
sin 20 sin 0 sin 36
which give
20 6
¢u2):(£D“;2 8-+a§)“; 2, (3.46)
sin 20 sin ¢
WIE L RN L (3.47)
Applying the matching rule ¢(1?) = @21 (1.2 = ¥ we get
AP T g o (3.49

2 2

Again, from the inner expansions of the outer solutions (3.37)) and (3.38]), we find the

next inner terms should be at €2loge and €2, therefore we have
6@ = 6o + g1 + €2 log e po1 + €2, (3.49)

V@ = o + ey + €2 log e Ya1 + €21s, (3.50)

¢21 and 191 are inner eigensolutions and €2¢9; (R/€) and €219 (R/€) can be no larger
than O(e?), which is the order of the outer potential. There are many eigensolutions
having these properties but they will not all match with the outer solutions. The only

possibility is to take them be constants
21
$21 = a((] ), o1 = 0.

For ¢o and 19, after substituting (3.49) and (3.50) into the inner field equations (3.25))
and (3.26)) and collecting like terms in €? we find ¢o and vy satisfy the following Poisson

equations

cos 20
Viga = —o = —ay” . (3.51)

sin 20
p?

Vi = — PPy = —P%a) (3.52)
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and the boundary conditions

Opa ¢y ¢y 2 Py 0%y O\
P "o T T =3\ a2 Topee ap ) T T gl Teos2),
Py Opy | o Oy Oy
o000 200 T o T op - m
(3.53)

The solutions of (3.51)), (3.52)) and (3.53) needed to effect the matching are
(0)

20 40
= 92 020 + By cos + Csologp+ Dy + 34&, (3.54)
4 p2 ,04
a0 sin 20 sin 46
oy = —i sin20 + Fo—5— + Ex——, (3.55)
p p

where the first two terms of involving 1/4 are particular solutions of and ,
the second eigensolution terms involving 1/p? are introduced to satisfy the boundary
conditions and log p in ¢9 will be used when we do the matching later. The last
two terms in 46 are needed in the higher order matching. Substituting for ¢ and vy by
(3.54) and ([3.55)) in the boundary conditions , and because the boundary conditions

holds for arbitrary 6, the coefficients of the trigonometric functions and other constants

must be zero. Therefore we obtain

0 2 1 1 — p?

Then by the matching result we already obtained (3.41)),

. . . 2 .
2) T (0) i (2) T 9 (0) _ Peri
Ay = T2 =5 op By’ = —P%ay’ = : (3.57)

The matching rules ¢(22) = ®22) and 22 = ¥(22) gjve

2l - P log R = eZA((f)% log R, (3.58)
0= 62332)% log R, (3.59)

and thus
AR = P T L, B® =0, (3.60)
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In a similar way to ¢o and 19, ¢3 and 3 satisfy the Poisson equations

cos cos 36
V?,(ﬁg =—¢1=— <a§1) + a;(gl) 3 ) ; (3.61)
P p
in 6 in 360
V24 = P2y = —P” <a§1)sm +a{ 2 ) , (3.62)
P p
and boundary conditions
g3 ¢z  0%¢s 2 &3 n P3Oy
dp  0p? 002 P2 -2\ 0p2  0pdd 00
. 3 1
=i [(1 + 2(132—2)> cosf + )] cos 39} , (3.63)
Fps  0ps | 03 Py O3 i
2 —2—= — = ——(sin@ + sin 30).
0006 o0 T a2 a2 Ty — plsmlAsindd)
The solution forms needed to effect the matching are
L ) (1) cos 30 cos 36 cos 50
1 in 30 in 30 in 50
Py = ——PQa(ll)plogpsin 0+ P2agl) sin 3 +Cs sin 3 + FE5 sin5 ,  (3.65)
2 8p p? p°

where the first two terms involving 1/2 and 1/p are particular solutions of (3.61) and
(3.62), the terms involving p* are to make sure the boundary conditions be satisfied

and the terms involving p° will be need in the higher order matching. The boundary
conditions (3.63)) give

m_ i ow_ i _
al ——5, (l3 —@, 33—03——5, (366)

where the last two relations will not be needed in the matching. By the obtained relations

between the coefficients of the inner solutions and outer solutions (|3.48]),

2 o m 2 LG ™
AR = ?ag ) Z BY = piag ) — e (3.67)

So far we have got the first three coefficients of dilatational part and shear part

P21
AP = i, B =,
2 _7 2 _ 7
AP =7, By = P,
2 _ ™ &) T 52
4=y opr B =g op
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which agree with what we get from the expansions of the exact solutions. Similarly,
when we solve the shear wave scattering by cavity cylinder using matched asymptotic
expansions, the results agree with those from the expansions of the exact solutions as

well.

3.2 Wave propagation through doubly-periodic arrays

In this section, we consider the elastic wave propagation through doubly-periodic arrays
of cavity cylinders. We first present the multiple expansion solutions obtained by Zali-
paev et al. [I05] and then give the perturbed dispersion relation diagrams produced by
numerical calculations. The method of matched asymptotic expansions is then used to
obtain approximations for small scatterers that are perturbations of the quasi-periodic
plane wave solutions that exist in the absence of the scatterers. All solutions considered
satisfy a Bloch condition that, for a specified value 3, of the Bloch wave vector 3, relates
the solutions at corresponding points in different cells of the lattice. In the absence of the
scatterers, and for the given Bloch wave vector 3, plane wave solutions are possible for
discrete values wi,wo, ... of the frequency w. For each w;, there are M > 1 plane waves
corresponding to a particular pair (8, w;) — these solutions may be shear or dilatational
waves, or a mixture of the two. With the scatterers present, the asymptotic analysis
yields an algebraic system to determine w for the M perturbed modes that exist for each
B within a neighbourhood of (8,w;) in the (8,w)-space. Explicit expressions for the
frequencies are readily obtained that show how the mode frequencies depend on 3, the
geometry, and the Lamé constants for the medium. Results are given to illustrate the
appearance of local band gaps, the splitting and crossing of double modes, and switching

between dilatational and shear modes.

3.2.1 Solution by multipole expansions

The results in this section are obtained by Poulton et al. [77] and Zalipaev et al. [105]
for square and oblique periodic structures respectively. We present it here to make com-
parisons with our method and we also correct a mistake about the quasi-static limit (the
lowest dispersion in the limit of the wavenumber going to zero) in Zalipaev et al. [105].

The lattice A contains doubly-periodic cavity cylinders, each of which is infinitely long
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and of radius a. Cartesian coordinates are chosen with origin O on the axis of one the
cylinders, and with the z axis directed along the axis of that cylinder; polar coordinates
in the z-y plane with origin at O are denoted by (r,#). In the z-y plane, scatterer j is

associated with a local origin O; located at the lattice point
Rj =nia| + ngds, Ni,Ng € 7, (3.68)

for given independent vectors a; and as. For a specified lattice, the reciprocal lattice is
defined by
K,, = 2n(mib; + mgbs), my,mg € Z, (3.69)

where

albj =d;, i,j=12. (3.70)

The reciprocal lattice vectors have the property that, for any lattice vector R;

KIR; =2mp, peZ. (3.71)
1
| b,
1 A
1
b, !
. 1 . :
: . M K .
1
K 1
|
1
1 G
‘ G M > b, :
|
1 .
: b,
1
1

Figure 3.1: The reciprocal lattice for square lattice (left) and Hexagonal lattice (right).

The time-harmonic displacement of the medium outside the cavities is described by

Navier’s equation ([2.2)
A+ w)V(V ) + Vi + pw?u = 0, (3.72)
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where u is the displacement vector, w is the angular frequency, A and p are Lamé con-
stants, and p is the density of the medium. Solutions of equation (3.72)) are sought that

satisfy the quasi-periodic ‘Bloch condition’
u(r + R;) = P Riu(r), (3.73)

where (3 is a prescribed wave vector, and traction-free boundary conditions (2.30)), (2.31))
and (2.33) applied on the surface of each scatterer; thus, on r = a,

ou,
rz — =Y .74
o h, 0 (3.74)
Oou, ur 10uy Ou,
Oppr = A < 87’ + 7 + 7’89) + 2/,L 87’ = 0, (375)

B Oug ug  10u;\
UTQ_M<87" T‘+’I“89>_07 (376)

while equation (3.73]) guarantees the boundary conditions are applied throughout the

lattice.

By the Helmholtz representation,
u(r) =Vo +V x 1, (3.77)
where we take ¥ = e, = (0,0,1), so that
op 10y
=+ —— d =—— - —. 3.78
= or T rae M M T 150 ar (378)
It follows that ¢ and 1 satisfy the two-dimensional Helmholtz equations

(V24 k3¢ =0 and (V2+E2)w =0, (3.79)

while the traction-free boundary conditions (3.75)) and (3.76)) on r = a become

2¢ 10% 10y 1909 0% 1 0%

orr = 2 (aﬂ+aaear - me) A <aar+ar2+a2092> =0, (380)
L (20% 206  10% 1% P\

oro = i (aaear T 206 Taor T2oe a?) =0 (3:81)

By the method of multipole expansion, the dilatational wave ¢ and shear wave v are

expanded as
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“+o00

o(r) =3 [A§“>Jl(k1r)+B§a)Yl(k1r)} ollf (3.82)
l=—o0
400

Yy =Y [Al(b)Jz(sz)—I—Bl(b)Yz(k'QT)} ol (3.83)
l=—00

Here the dilatational and shear wavenumbers are denoted by k1 = w+/p(A+ 2u) and
ko = w+/p/u respectively. Application of the stress free boundary conditions (3.80) and

(3.81)) gives
b - ba bb b ’ :
A®) MO ) B
where
w) __EsPs+ EsFr
M = =5 Bt By (3.85)

EgE4 — EQ2F,
M(ab) — (64 — 208 3.86
! 1E1E6—|—E2E5’ ( )

(bb) E5E4 + E1E8

Z\/.Z = —_— .

l E1Eg + EyB5’ (3.87)
MO = (3.88)
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21
E1 CLM [kljl(kla) — Jl(kla)] s

Br=n{ |13 - QF]Jl(kQaHH(kQa)}

2
By — a“ [lﬁY, (kra) — Yl(k:la)] :

212 2%k
o= {1 = 22 vt + 22570

2 ?
Es = ;“ [—kljl’(kla) + an(lﬁa)] — k{ (A +2u)Ji(k1a),

2 1
Eg — 7“ [kQJl’(kQa) — aJl(kga)] ,

2 12
B = 2 [ a¥{(ao) + S¥ilha) | - O+ 2%k,

By — P [

kQY} (kQCL) — 1Yl(k2a)] .

Application of the generalised Rayleigh method [77] (apply the Green’s theorem to
the two-dimensional quasi-periodic Green’s function and any function satisfying the
Helmholtz equation then use Graf’s addition theorem [I, page 363] to get the Rayleigh
identities between the coefficients A and BJ*, o = a,b) leads to the infinite linear system

[e.9]

Ml(aa)Bl(a) + Ml(ab)Bl(b) _ Z (_1)l+m51§7/1—l(k1¢ IB)BSZ) =0,
m=—o0 (3.89)
Ml(ba)B( a) 4 M(bb)B(b) _ Z (_1)l+mS7):z—l(k27/6)B7(72) =0,

where the lattice sums

SJ(k,B)= > /eiﬁTRfJn(k:Rj)ei”aj, k =k, ko,
RjEA

SY(k,B) = 3 @B RV, (kRy)e .

R eA
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Define

aa a M(ab)
2 = \/|M] )|<B§)+ l(aa)Bl(b)>, (3.90)
Ml
(ba)
bb by M, a
=/ 1M (BM @ By >>, (3.91)
l

then after normalisation, the system (3.89)) is changed into

x + Z (Dl(gla)xm + D(ab)ym) =0,

Im
m=—oc (3.92)
it 3 (D D) =0,
where

(aq) (o) |1/2

aa Sen M Mm m

ol =~ J M ooy i)
m M,

Dlab) _ sgn(Ml(aa))sgnMy(,?a)Mf,?b)

_1\+mqY

pla) _ sgn(Ml(bb) )sgnngb) M,gfb)

Im {’MlaaMT(r‘Za)P/Q}Am

(—1)Hmsy (ke B),

(bb) (aa) |1/2
(bb) sgn(M; ) | | M l+m QY
Dm == (_1) Sm— (k2716)7
! A, Ml(bb) !
(ab) 4 r(ba)
A = [ MO NLO|L/2 (1 My~ My (3.93)
m m M#Lm)MT(rll,b)
The linear system ([3.92)) is of the form
(I + D)z = 0. (3.94)

It is shown in Zalipaev et al. [105] that all the off-diagonal elements decay exponentially
away from the main diagonal. Therefore the above system can be truncated and then the
determinant of the truncated matrix can be evaluated to give the dispersion diagrams,
which is the values for k1 and ko for a given Bloch vector 8. Example diagrams are given
as following. They are the dispersion relation diagrams for square lattice and hexagonal

lattice just as those in [77] and [105]; the same physical constants A/u = 2.3 are adopted,
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so that P? = (A + 2u)/pu = 4.3 and the Poisson ratio v = 0.35. Dispersion relation
diagrams are given when the Bloch vector 3 moves along the boundary of the irreducible
region of the first Brillouin zone of the reciprocal lattice (labelled GMK in each part of
figure for square and hexagonal lattices. In these diagrams, the horizontal axis is the
dimensionless modulus of the Bloch vector, while the vertical axis is the dimensionless
shear wavenumber. A double precision Fortran code is used to solve the system for
square and hexagonal lattices. For all calculations we include all multipoles up to fifth
order in the calculations so that the dimension for the truncated matrix is 22 by 22.
The perturbed dispersion diagrams are given for square lattice when the cylinder radius
is a/L = 0.1, 0.4 and for hexagonal lattice when the cylinder radius is a/L = 0.1, 0.333.
The diagrams are shown in figures —[3:5] where we can see a whole band gap appears
when the cylinder radius is a/L = 0.4 for square lattice, but for the hexagonal lattice,

there is no whole band gap for the radii size we choose.

10 T T T T _ T 10
B AU I ISl -
S . N e ~
e S~ T N7
8- h T~ I NN
- '\‘\,\\\,//// ‘\;\‘\,«\ N
N e - T
A ,// \:\\\ Prs -
N - R St
6L N -7 P S
- <\ - S e S

S - N P -~
E -7 . S~ ///;/// - N /
3 ;f: ———————————————— P AN

e e T 4

2 AN 7 12

\\ // //
\\\\ ///
0K| L s G L M L |K0
4 2 0 2 4 6
BL

Figure 3.2: Dispersion diagram for square array of cylindrical cavity of radius a/L = 0.1.
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Figure 3.3: Dispersion diagram for square array of cylindrical cavity of radius a/L = 0.4.

Figure 3.4: Dispersion diagram for hexagonal array of cylindrical cavity of radius a/L = 0.1.
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Figure 3.5: Dispersion diagram for hexagonal array of cylindrical cavity of radius a/L = 0.333.

From these diagrams, some modes cross each other, for example, the lowest two modes
along MK for square array as shown in figure [3:2] and some modes are nearly parallel
to each other, for example, the fifth and sixth mode (counted near point M) along MK
for hexagonal array when the cavity radius is a/L = 0.1 as shown in figure There
are some more complicated mode interactions, for example, there are three modes in the
neighbourhood of (2,5) along GK in figure Why are the dispersion diagrams like
this and how they are perturbed by the scatterers? How do the dilatational modes and
shear modes interact with each other? In the next part, we use the matched asymptotic
expansions to solve the same problem. By this method, the perturbed dispersion relations
can be expressed explicitly and we will see how they are perturbed by the presence of
the scatterers and how the modes interact with each other.

Zalipaev et al. also considered the quasi-static limit for the acoustic band (the lowest
mode on the dispersion diagram), and obtained simple approximate formulae for the

dispersion relation, which are

2 -1
MW] , (3.95)

2 _ 2
2 = 2 [1+ a
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for the dilatational mode and

2\ +2u]!
ra +“} , (3.96)

ki =pf |1+ —

2 /81 ./4 )\ + L
for the shear mode. Here A is the area of one cell of the lattice. From these expressions,
we can see the order of kiQ — B2 in the small parameter € = kja is €2, but in their

approximation procedure, they took k%g — /2 in the lattice sum be strictly order one,

which is obviously not consistent with their results (3.95) and (3.96]). To get the correct

dispersion relation for the lowest mode, we first make an assumption that the order of
k%,2 — 32 is €% and then use this order in the lattice sums to obtain dispersion relations
that are consistent with the initial assumption.

A quadrupole approximation (because the Rayleigh matrix has elements Dlo;g that
decay exponentially as I,m — oo, o, 8 = a,b, [77] and the other terms other than up
to quadrupole terms are all in higher order in €) is used by Zalipaev et al. [105] to get
the quasi-static limit (also for small fractions), that is to say, —2 < I;m < 2, and the

Rayleigh matrix

I+ D(aa) D(ab)
R (3.97)
DY) 14+ DO

is truncated into

A B
(3.98)
C D
For example the matrix A is
Ya ) |12 Y w) [V/2 Ly bb) |1/2 Ya w) [V/2 LY bb) |1/2
1+ So Mz( : _51 M1( : Sy Mé ) _53 M1( : Sy Mz( )
A2 M(aa) Al M(aa) AO M(aa) Al M(aa) A2 M(aa)
2 2 2 2 2
Y,a bb) |1/2 a bb) |1/2 a bb) |1/2 a bb) |1/2 a bb) |1/2
SN So [ M [T sy | ™ Sy [ ™ [T sy |
A2 Ml(aa) Al Ml(aa) AO Ml(aa) Al Ml(aa) A2 Ml(aa)
1/2 1/2 1/2 1/2 1/2
SZ’QG Mz(bb) / B S)_/,la Ml(bb) / Sé/,a Mébb) / B S%/,a Ml(bb) / SQY,a MQ(bb) /
AQ Méaa) Al Méaa) AO Méaa) Al Méaa) AQ Méaa)
1/2 1/2 1/2 1/2 1/2
B Syéa MQ(bb) / S&:; Ml(bb) / B 5Y1a Mébb) / S(})’,a Ml(bb) / B S}/,a MQ(bb) /
A2 Ml(aa) Al Ml(aa) AO Ml(aa) Al Ml(aa) AQ Ml(aa)
1/2 1/2 1/2 1/2 1/2
S [ | M S [ [ | [ s ||
AQ MQ(aa) Al M2(aa) AO MQ(aa) Al M2(aa) A2 MQ(aa)
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By the approximation of M,(,?ﬁ) and A,,, aff = {aa, ab, ba, bb}, in the limit as € =

kia — 0, the orders of the elements in A as indicated by Zalipaev et al. [L05] are

1+ & S A
€ 1+ € e e €
1 e 1+ e 1 . (3.99)
€ €2 e €2 €
€ e et e 1+€

Note that the lattice sums SlY “ are taken as strictly order one. By our assumption, the
lattice sums are actually order 1/€? (this can also be shown in the next part ([3.132)), so

that the orders of the terms in matrix A are actually

1/ 1/e 1 1/e 1/ |. (3.100)

When calculating the determinant of the truncated R, Zalipaev et al. consider the terms
of order € and €* in the third column of as zero. But these terms do contribute
to the determinant of R and cannot be omitted. Because they are actually of order e
and order €2 after taking the order of the lattice sums into account, and the products of
them and terms of order 1/¢ and order 1/e? are as large as the diagonal terms. Here is a

simple example to explain why such terms cannot be neglected in a matrix like ({3.100).

Given
1+0 o€ 0
x1
G=| 20/e 1+25 2§/ |,x=]| 22 |, (3.101)
x3

0 oe 1+0

€ # 0, for what values of 6 does Gx = 0 have non-trivial solutions for x? For ¢ — 0, an
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argument similar to that used by Zalipaev et al. gives

1+6 0 5
GrG =| 20/e 1+20 25/ |, (3.102)
5 0 149

and hence detG’ = 0 for § = —1/2. However, det G = 1+46 = 0 for 6 = —1/4, irrespective
of the value of e. With § = —1/2, there are no non-trivial solutions. The confusion arises
because of the particular form of G in which € does not play a fundamental role. To see

this, make the change of variable x = (y1, y2/€, y3)?, then

(14 0)y1 + dy2 + 0ys3 0
Gx=| 20y1/e+ (1+20)y2/e+20ys/e | =1 0 |- (3.103)
oy1 +oy2 + (1 4+ 6)ys 0

The factor of 1/e may be cancelled from the second equation and hence Gx = 0 is

equivalent to Uy = 0, where

1+8 6 5
U= 26 1425 26 (3.104)
) § 1496

is independent of e.

In order to illuminate the quasi-static limit more clearly, we use new scaled variables.
In these variables, in the limit ¢ — 0 all the diagonal terms except for the top 5 tend to 1
and all the non-diagonal terms except for the top left 5 x 10 matrix tend to 0, therefore
the determinant of the Rayleigh matrix will be reduced to the determinant of a top left

5 x 5 matrix. Substituting the new variables
X; = M B 4+ M ") (3.105)

Y = M B + M B®), (3.106)
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into the linear system ([3.89)), we can rewrite the Rayleigh system as

X, + Z FX,, + F\™y,, =0, (3.107)
Z Fx,, + F™y,, =0, (3.108)
where
(bb)
aa) My, +m QY
(ab)
(ab) _ M, I+m QY
F}m - M%QM%;_MT%[)MT% (_1) Smfl(klua)?
(ba)
(ba) _ M, I+m QY
‘Flm - MT%@MSIL)_M%[)MT[%I (_1) Sm—l(kQHB)?
(bb) M L o
rerg e
Then the Rayleigh matrix R = , Lm=0, -1,1, =2, 2....
R reEd
By the forms of Mr(,?ﬂ), we have
lim F°? =0, |m| > 2 (3.109)
e—0 ’ ’

and because the lattice sums for shear waves S};_l(kg, ) are not singular in the vicinity

of k1 = B, all the Fl(:;a) and Fl(:;b) tend to zero as € — 0. Define A’ = (I + Fl(zf)) <2

[m|<2

) <z then in the limit ¢ — 0 the structure of the whole Rayleigh
\m|_§2
matrix is (here we have rearranged the equations so that B’ is moved to the next right

and B’ = (F(“b)

Ilm

of A’ to make the matrix look neater)

/ /
5%x5 5x5 0
10X 00

Os5x5 Is5xs ’

000><10 Ioo

(3.110)
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where

/ —
5X5 T
" TL2(\ + p) wL2iel™ _WLZie_iT B nL2el _WLQe_mT,u
Adp 2A6 2A6 AS(A+ ) AS(N+ )
mL%e (A + p) L nL? nL?e 27 B w L2 _WLQie*?’iT,u
Adp 246 2A65 AS(A + ) AS(A + )
_WLQieiT()\ + ) nL2e?™ | nL? L% nL2ie
Adp 2A6 2A6 AS(N+ ) AS(N+ )
B nL2e 3T (N + p) B nL?ie™ ™  rwL%e 3" N nL?u wL?e 47y,
Adp 2A6 2A6 AS(A+ p) AS(N+ )
B TL2eAT (A + p) 3 wL2ie3™ nL2iel wL2eMT L+ nL?p
Adp 2465 2465 AN+ ) AS(N + p)
Therefore

ASp(A + p) + 7 L2(A\2 + A+ 2u2)

lim [R| = | A5,5| = A0+ 1) 7 (3.111)
and |Af, 5| = 0 gives
5 CmLP(N 4 A+ 2u2)’ (3.112)
Ap(A + p)
where 6 = (k? — 8%)L?/€%. Then at last
k2 = B2 [Hf(ijﬁiﬁtu)] 1. (3.113)

The perturbation of shear waves (when the lattice sums have poles at ko = (1) gives

2 -1
2 .2 ma® (A +3p
7 (23] o0

3.2.2 Solutions by matched asymptotic expansions

The main idea used here is to obtain perturbations of the plane wave solutions that
exist in the absence of the scatterers, and this is done using the method of matched
asymptotic expansions. The wavenumbers for plane dilatational and shear waves are
denoted respectively by k1 (= w+/p/(A+2p)) and ky (= w+/p/p) so that ks = Pk,
where P2 = (A + 2u)/u. The assumptions made here are that the characteristic size a of

a scatterer satisfies both kja < 1,7 =1,2, and a/L < 1, where L is the length scale for
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the array periodicity, so that the scatterers are small relative to both the wavelengths
and the array periodicity. The results given here are distinguished from those obtained
through homogenisation in that now each k;L is allowed to be an order one quantity.
This paper is concerned with waves that propagate in a direction normal to the axes of
the cylinders, that is in the z-y plane so that u does not depend on z (the same method
is used by Mclver, 2007, to obtain results that apply to the simpler case of anti-plane
shear waves).

By the Helmholtz representation , the displacement vector u of the medium
can be decomposed into two parts, the scalar part ¢ and the vector part ¥, here we take

1 = (0,0,%). Then in terms of ¢ and 1, the Bloch conditions are
o(r+Ry) =P Rig(r) and o(r+Ry) = PRigy(r). (3.115)
In particular, these conditions are satisfied by plane waves of the form
Pm(r) =BT and Y, (r) = ePrt, myn € Z, (3.116)

where 3,, = B+K,,, B = (q1,¢2)" is the prescribed Bloch vector and K, is the reciprocal

lattice defined in (3.69).

In the absence of the scatterers each of ¢,, and v, provides a solution to the Bloch
problem provided kq, k2 are chosen to ensure that the field equations (3.79) are satisfied;

in other words provided

k2 =pB%, k3=p32, m,ncZ, (3.117)

m? n’

where f,, = |3,,|. For example, for a square lattice of side L aligned with the coordinate

axes, plane-waves solutions satisfying the Bloch conditions are
ém = exp{i[(q1 + 2mmi/L)x + (q2 + 2mma/L)yl}, mi,me € Z, (3.118)
Yn, =exp{i[(q1 + 2mn1/L)x + (q2 + 27mn2/L)yl}, mni,ne € Z, (3.119)
and the field equations are satisfied as long as
k2 = (q1 4 2mm1 /L)* + (g2 + 2wmy/L)? (3.120)

ks = (q1 +2mn1 /L) + (g2 + 2mna /L) (3.121)
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The results given here for the case when scatterers are present arise from the consideration
of perturbations to combinations of such plane wave solutions.

The solutions obtained here are in terms of an outer solution, valid everywhere except
for a neighbourhood of each scatterer, that matches with inner solutions valid only in the
immediate vicinity of each scatterer. However, because of the Bloch conditions ,
the matching process used in the construction of solutions need only be carried out in a
primary lattice cell chosen to be that containing the origin O of the global coordinates
defined in the previous section. The particular scatterer associated with O is denoted by
C. In addition to the global coordinates, local polar coordinates (7;,6;) are used that
have origin at O;.

To facilitate the solution, each lattice cell is divided into two overlapping regions. For
the primary cell these are an outer region at distances r > a, and an inner region within
distances r < k;” L of the scatterer. A small parameter € = kja is introduced, and in the
inner region a scaled coordinate p = r/a is used. With these definitions, ki = ep and
kor = Pep.

In the outer region, far from each scatterer, the solutions are constructed from so-
lutions of the Helmholtz equations that satisfy the Bloch conditions and

that are singular at the lattice points; such solutions are

n(kar,0) = > P Ry FH(D (o )ein¥s (3.122)
R eA
and
Crlkar,0) = Y & R gD (kyr)en%s, (3.123)
RjGA

where G, (kir,0) is associated with dilatational waves, and @n(kgr, ) with shear waves.

By Graf’s addition theorem (Abramowitz & Stegun 1964, equation 9.1.79)

Gn(kir,0) = HM (kyr) muz )P T (kyr)eP?E, (3.124)

and

Glkor,0) = HWY (kyr) muz D" P, (kor)eP? 6,y (3.125)

where Zp indicates summations over all p € Z, and the lattice sums are

on= Y "¢i8” Ry () () R e (3.126)
R eA
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and
/. .
on=Y P RigD (kyR;)e (3.127)
R;cA
Here o is the angle between the x axis and R; measured in the anticlockwise direction,

and the dashes indicate that R; = 0 is omitted from the summations. The lattice sums

(3.126]) and (3.127)) have poles wherever, respectively, k1 and ks have a value 3,,, m € Z

— see Linton (2010, equation 3.18), for example — and these poles correspond to the plane
wave solutions discussed before. For a given 3 and k; (i = 1 or 2), the number of distinct

vectors 3,, that have the same magnitude 3, is denoted by M; > 1.

Figure 3.6: Ewald construction, M = 3.

The method of Ewald construction [6, page 101] can be used to find these 3,,, with the
same magnitude, for a given lattice and Bloch vector. Draw a circle centred at the initial
point P of B, with radius § in the reciprocal lattice. Then if another reciprocal lattice
point P, falls on this circle, the vector P_PQ> (denoted by (3,) has the same magnitude
as (3; and they correspond to same plane wave solutions. For specified lattice and Bloch
vector, there may be M vectors falling on that circle. Figure [3.6] gives an example when
M =3.

For square and hexagonal lattices, the locations of the poles of the lattice sums (or,
equivalently, the plane waves that exist in the absence of the scatterers and satisfy the
Bloch conditions) are shown in figures and for values of the modulus 8 of the
wave vector B along the boundaries of the corresponding first irreducible Brillouin zones,

as illustrated in figure 3.1} For all of the calculations in this chapter, the Lamé constants
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Figure 3.7: Dispersion diagram for square array without scatterers: one-pole shear waves ( ); one-pole
dilatational waves (----); two-pole shear waves ( ); two-pole dilatational waves (====).
are related by A\/p = 2.3, and a non-dimensional frequency parameter
wL/CQ = kQL (3128)

is used. In these figures it can be seen that, for some combinations of 8 and the frequency
w, there are multiple plane-wave solutions and these can arise in two ways. First of all,
as noted above, for one of the lattice sums there may be multiple distinct vectors 3,,
with the same magnitude (,,; this can occur along lines as indicated by the two-pole
curves in the figures, and also at isolated points. Secondly, multiple solutions can occur
when the two lattice sums have poles corresponding to the same frequency, so that there
are crossings of the curves for pure dilatational and pure shear waves. Results are given
later for perturbations of all of these types of plane-wave solution, but full details of the
derivation are given only for perturbations of purely dilatational waves (that is, in regions
of the parameter space not close to the curves in figures and that correspond to
shear waves).

Consider then the perturbation of dilatational plane waves with wavenumber ki, so
that the lattice sums &, have poles at ki = +0,,, m = 1..M;, while the lattice sums
oy, for the shear waves are analytic functions of the frequency within neighbourhoods of

these points. For each unique vector 3,,,
4,L'n+1ein7'm

Op ~

47



T 7
12+ .
>
/,,
/”’
10F >
/”
s
8_
o
Q
y
3
4F
2F 12
K , L , M, K
0 0
4 2 0 2 4

AL

);

Figure 3.8: Dispersion diagram for hexagonal array without scatterers: one-pole shear waves (

one-pole dilatational waves (----); two-pole shear waves ( ); two-pole dilatational waves (====).

where A is the area of one cell of the lattice, and the angles 7,,, are defined through

COS PT,
B = Bmeim with ey, = Pm (3.130)
sin pT,

— see Linton (2010, equation 3.18). The lattice sums are written

My 5_7(11721 @ ) 4Z-n+lein7—m
5 __Inm 4 52 where &) = = 3.131
Tn 2 CEEE + 0y where o, A/ ( )

and each 57(12) is assumed to be an analytic function of k1 within neighbourhoods of each

k1 = £0,. Solutions are sought for k1 in a neighbourhood of 3, and it is assumed here
that
(k? = B)L* = f(€)om, (3.132)

where, for k3 # B2,, 0, is strictly of order one in € as € — 0. This expression will be used
within a neighbourhood of the points in (3, k1) space that correspond to plane waves, so
that the £, and hence the J,, may be distinct. It may be shown that the need to link
the first appearance of singular terms in the outer solution of ¢ with the nonsingular
leading-order outer solution for ¢, requires f(e) = €? (the matching would fail if this
relation were incorrect) but, for simplicity, this will be adopted from the outset.

In view of (3.132)), the matching may be carried out more conveniently if the singular
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solutions of the Helmholtz equation defined in (3.122]) are modified to be
Gn(k1r,0) = G, (kyr, 0) = giV (k1. 0) + 252 (kyr, 0), (3.133)

where the plane-wave part

M,
1 —p= i
g(l)<k1r79) = 5 Z( D ibl—)pme(k T)epe
m=1 ™ P
My 6_1) '
_ (_1)n %elklrcos(G—Tm)v (3134)
m=1 "
and the singular part
3 (kyr,0) = HY (kyr)e muz e T (kyr)el?? (3.135)

We will use ® and ¢ to denote the outer and inner solutions for ¢, and ¥ and @ZAJ to
denote the outer and inner solutions for . As the coupled boundary-value problem is
homogeneous, the leading order outer solution may be taken as strictly order zero in ¢

so that
0 =3" 4,50 (kar,0), (3.136)

where ®(™) denotes the outer solution up to terms in €™. (Because we consider only the
perturbation of dilatational waves, shear waves do not appear in the leading-order outer
solution.) In the following, ®(m:D denotes the expansion up to € of ®(™) after it is written
in terms of the inner coordinate p. The inner solution up to terms in € is denoted by
&V, and ¢ denotes its expansion up to € after it is written in terms of the outer
coordinate k;r. Matching is enforced by requiring ®(™H = ¢(™) for every m and | when
both asymptotic forms are expressed in terms of the same coordinates (Crighton et al.
1973). The same principles also apply to the inner and outer expansions for the shear
part of the solution.

In terms of the inner variable p = r/a, the field equations for the inner solutions ¢

andsz) are
10 8¢> 82¢
and
10 ( 99 Ph o a
,08;)( 8p)+2892+P ¥ =0. (3.138)
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The inner solutions are constructed with the help of inner eigensolutions that each satisfy

the Laplace equation, together with the homogeneous boundary conditions

2 <a2<z‘>+ 0% ai})

and

0% 99 0% 0%  0U

22— 4 — - =+ ——=0, =1 3.140
0p06  “06 T a2 a7 T 9p P (3-140)
It is straightforward to show that the required inner eigensolutions are given by the
following pairs (the barred terms refer to the dilatational wave and the hatted terms to

the shear wave):

En(p,0) = p" cosnd, E1(p,0) = pcos?, E1(p,0) = psin,
n # 1;
E,(p,0) = —p" sinnb, Er(p,0) = 0; Eq(p,0) = 0;
E,.(p,0) = p"sinnb, Ei(p,0) =0, Ei(p,0) =0,
n #1;
E.(p,0) = p" cosnb, Ei(p,0) = psinb, Eq(p,0) = pcosb.
(3.141)

From equations (3.134) and (3.136]), the inner expansion of the leading order outer

solution is

My _(1) 0

_ n Onm 3 o8

02 =" A, (-1 )Y o Lt icpein sin 0
m=1

n

cos 260
—12p? |1+ €], . (3.142)
sin 20

which indicates an initial inner development

oV = go + vi1(€) 11 + e, (3.143)

where the term in 11 (€) is a possible intermediate term and, because ¢ and 1& are coupled
through the boundary conditions, there is a shear component to the inner problem so

that

b = o + vi1 ()1 + et (3.144)
(higher-order terms in the inner solution are dealt with later). Substituting and
into the field equations and and equating the coefficients of the
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gauge functions in e, we find that ¢g, ¢11, o1, 1])0, 1&11, 1&1 are all harmonic functions that
satisfy the homogeneous boundary conditions, and hence are constructed from the inner
eigenfunctions detailed in equations .

The inner expansion suggests that ¢y and z,@o might contain only constants.
However, the appearance of terms in 20 at order €2 in the inner expansion is
significant. These terms could be matched with the inner solution ¢ simply by including
appropriate eigenfunctions in ¢ at order €2, but it then proves impossible to satisfy
the boundary conditions. The situation is resolved by including eigenfunctions in 26
within ¢g and @Zo, in order to generate further terms at order €2 in ¢ and 1[1 through
particular solutions of the field equations —. In general, in order to satisfy

the boundary conditions at order ™12

, the inner solution at order €” must contain singular
eigenfunctions up to and including those in (n + 2)6.

With the above in mind, the leading-order inner solutions are written as

_ ug cos 20
$o = Bo+ — (3.145)
sin 20
and
. r sin 20 r 0 1 cos 26
Bo = 20 -] , (3.146)

P\ Zcos260 P~ \=1 0 sin 20

so that, in terms of the outer variables,

62u0T cos 20

#* = By + (3.147)

(k1r)? \ gin 20

and

1&(0,2) _ eQPng 0 1 cos 20 | (3.148)

(k2r)* \ 1 0) \sin20

where By and ug = (uo1, up2) are unknowns need to be determined by the matching. The
outer expansion ¢(®2 has terms no more singular than a quadrupole, and hence cannot
be matched to any higher singularities associated in the leading-order outer solution; thus
A, = 0 for |n| > 2. (It might be argued that more singular terms could be included in the
outer solution, and then matched to the inner solution by including inner eigenfunctions

at an appropriate order. However, this leads to unresolvable difficulties later.)
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With possible intermediate terms included, the dilatational outer solution is continued

as

3 _ Z A, { D (kyr, 0) + €25 (kyr, 9)}+u11 chgn (k1r,0)

n=—2

+ € Cogi(kir,0) + p121(e) > DpgM (kar, 0) + > DpglM (kar,0), (3.149)

so that, in particular,

2 My _(1 2i6 s —2i0
- —4ie 4ie
o0 = 3" A,(-1)n Y Ty A s (3.150)
2 2
n=-— m=1 5m T T
The matching rule ®29 = $(02) then gives
2 - M, 5_(1) o T 1 1
By= Y Au(-1)" Y =" and (Ag,A )= —uj : (3.151)
e m—1 (5m 81 i —i

Equation (3.148) shows that the leading term in the outer expansion of 1& is at €2,

and hence the leading-order outer shear solution is

2
Ve =& > A,Gp(kor,0). (3.152)

n=—2
(As we have assumed that the shear lattice sums are well behaved, there is no decompo-
sition similar to equation for the shear potentials. Also, because the leading inner
term is strictly order one, when expressed in terms of the inner coordinates ¥(?) cannot

be larger than order one as € — 0, and hence A, = 0 for |n| > 2. ) Thus, in particular,

. _4ie2i€ R —4167219
) = Ay— 4 A, — 3.153

and the matching rule 1/1 02) = g(0:2) gives
aP? L [1 —i

(Ag,A_y) = —ul : (3.154)
81 1 1
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The inner expansion of the outer solution of ¢ up to order €? is

2 - My _(1) cos 6
$22) — Z A~ S22 L fiepel
Om in 0
n=—2 m=1 sin
cos 20 - 2i
- %e2p2 1+el . + €2 {Ao [1+(10g6p—|—7—10g2)—|—562)]
sin 20 &

TEP

. —4i 1Y\ 99 | _(2) T S W VR )

A [<W€2p2 W) +a5 |+ A, i +5%

My _(1
_ AwA cos 0

+ Z (1111 (e)Cr + €C ] (1) 05 1+iep

n m=1 m Sin9

My P 1

+ Zn: [1121(€) Dy + 2Dy (—1)" > 5’:;”. (3.155)

Thus, to match with the inner solution, p11(€) = v11(€), and the inner solutions must be

continued as

_ ul [ cos260 cos
¢® =B+ % +v11(€) Bi1 + € | By +uf p
P~ \ sin26 sin 6
u? cos 6 ug cos 20 ug cos 30
P \siné P* \ sin260 P* \ sin36
cosf _
+ evii(e) u{lp + p21(€) Ba1 + €2 log € Byg + €29, (3.156)
sin 0
and
1;(2) _LOT 0 1 cos 20 N 1£ 0 1 cosf
P -1 0 sin 20 P -1 0 sin 0

u2T 0 1 cos 20 ug: 0 1 cos 30
+ -2 +-2
P -1 0 sin 260 p -1 0 sin 36

+ € log € BQQ + 62’&2 (3157)

(recall that at order n in the inner solution we must include singular eigenfunctions up

to those in (n+ 2)#). Here the vectors uy, uz, ug and uy are unknowns to be determined.
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The potentials ¢ and 1&2 satisfy the Poisson equations

10 8$2> 1 0%py - ul' [cos20
10 [ 0¢2) 1 = do=- |By+ 0 3.158
pOp (p dp ) p?* 062 ’ "% \sin2o (3155
and
P 2,7, R rfo 1 cos 20
1O 002) 1OV _ pag = p2|% . (3.159)
pOp ap p? 00 P -1 0 sin 26

as well as the boundary conditions (3.139) and (3.140f). The solution forms needed to

effect the matching are

_ cos 20 cos vl [cos@
¢z = jug — 1Bop* +¥ip + L
sin 20 sin 0 P \sind
cos 20 vI [ cos20 _
+ V3 p? +- + ... +7ologp+ By (3.160)
sin 26 p sin 26
and
. P2 U-OT 0 1 cos 20 . [cost \}TIF cos 6
2= +tVvip +—
—1 0/ \sin26 sin 0 P \sinf
cos 20 vI [ cos20 .
+ ¥ p? +% + ... +99logp+ Bo, (3.161)

sin 26 p sin 26

where the ellipses indicate singular eigenfunctions in 3¢ and 46 and the coefficients of
the eigenfunctions are unknowns to be determined. Further, the terms involving 1/4 are
particular solutions of and , B, and By are eigenfunctions, and the other
terms are solutions of the Laplace equation included to satisfy the boundary conditions

and to effect the matching. From the boundary conditions

8(Ua1 + 8(Tas — D
ugr = (?étZZQ), ugz = (1)]_?)22 _1121)7 (3.162)
1—P?)B
T = (2)0 oo =0, (3.163)

where uOT = (u01,u02), Vg = (2721,7722) and \7%1 = (@21,@22). It follows that the outer
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expansions of ¢ and 1%2) are respectively

_ ul [ cos26 cos 0 ul [ cos@
> = By + -2 + Bivii(e) + e Bi+ufp + L
P~ \ sin 20 sin @ P \siné
cos cos 20
+evii(e) 111T1P + p21(€) Bay + €2 log € Byg + €2 iug
sin 6 sin 260
cos cos 20
— %Bop2 +vlp + v p? + vglog p + Bo (3.164)
sin 6 sin 260
and
12}(272) _ uTi 0 1 cos 20 N euTl 0 1 cos 6
0 2 1 .
PP\—-1 0 sin 26 P\-1 0 sin
T2 0 1 cos 20 . cos ¢ . cos 20 .
+e2{ —ul +9Tp + V3 p? + B2
4 -1 0/ \sin26 sin 0 sin 20
(3.165)
The matching rules ¢(>2) = ®22) and 1[1(2’2) = U(22) yield the following:
1— P2 x
Ay = E.’Uo = L )307 Ap =0, (3.166)
21 47
_ T -1 1 o o P 1 1
(Al,A_l) = 4*11? y (Al,A_l) = 4711? 5 (3167)
1 11 1 1 -1
1 2 My & 1
Vo=—= Y An(-1)" " eom, Vi =(0,0), (3.168)
4 Om
n=—2 m=1
2 M, & 1
= Y Ay (-1)" LTV (3.169)
Om
n=—2 m=1
By (3.162)) and (3.168)), we get
= — A, (=)™ o ) 3.170
L

To obtain a relation between u; and uy, we need the order €3 inner terms ¢z and 1&3
which satisfy the Poisson equations

Lo ( ois\ 1
pop\"op ) T2 or ~
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and

1o (o0 | L0
pOp \" Op

(¢1 and 1&1 and given by the terms in square brackets in, respectively, equations (3.156))
and (3.157))). The required solutions of these Poisson equations are

- B 5 p® g (cosf p 7 (cosf 1 4 (cos26
—_ (2, Py — -
& [ 1’ * s " \sing * 9 OBPRI ging 12 \sin20
1 4 (cos30 _ 1 (cosf _ 71 (cosb _ 1 o[ cos26
8pu3 (Sin39>] +w1p<sin9> W p\sind twap sin 26

1 [cos?26 cos 360 1 [/cos36
_T _T 3 - T _
Wir— A Wirr— o | 3.171
* 2 <sin 2«9) WP (Sin30> * HT 53 (Sin39> * +ologp, )

and

O p [0 1) feosf®) 1 5[0 1)} fcos2¢
Y3 =—P 2logpu1 u;

10 sin 6 4 1 0 sin 260
I (0 1Y fcos30 . (cosf 1 [cosb
"Bty g (sin39> +W”’<sme> +Wfp(sme>
A A (D) () e
+ w?leg <ZT§§Z> ... 4 adologp, (3.173)

where the ellipses indicate singular eigenfunctions in 46 and 56. In these last equations,
the terms in square brackets are particular solutions of the Poisson equations, and all
other terms are eigenfunctions needed to satisfy the boundary conditions and effect the

higher order matching. From the boundary conditions we get, in particular,
u; = —uy. (3.174)
Using equations (3.166)-(3.167), we now replace A, and A, in By (equation [3.151)),
uy (equation [3.170)) and u; (equation [3.169) to get

wL? M 1
e —[(1 = P)By —iel u; +el ug), (3.175)

)
m=1""T

By =
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2 7TL2 M €9
m .
W=17"pz 4 mE_:l 5 [(1 - P?)By —iel u; +el ug (3.176)

and "
itL? <= eim 2 . T T
1 T[(l - P )BO —1lej,,u; + egmuo]. (3177)

m=1

u] =

A system more amenable to further analysis is obtained by introducing

_ 1 )

Un = I [(1— P?)By —ief,ui +ej,uo], m=1.M, (3.178)
so that u o
7L? o= o2rL? —

By = Amz::lu — PHU,,, ug= 1 mz::leQmUm, (3.179)

and u

. L2 1 o
u == (1= P%e1nUnm, (3.180)
A m=1

and hence by substitution back in to equation ([3.178|)

w2 M
A

m=1

2el e
22 T, p=1.M. (3.181)

oUp = T

(1-— P2) + eippelm +

For a given (3, equation (3.181) provides an eigenvalue problem for the corresponding
wavenumber ki (which appears in each d,). The geometry of the lattice A appears through
the reciprocal lattice vectors in the definitions of each J,, e1, and egp,.

For the perturbation of shear waves, a similar calculation yields

N~ L2 Mo 2P%el e, ~
o0wUp = 1 [elTpelm +——pz _2’1’32 = U, (3.182)
m=1
where
op = (k3 — B2)L*/k3a>. (3.183)

Equations (3.182)) define an eigenvalue problem for the shear wavenumber k. Comparing
equations (3.181)) and (3.182), we see that there is an extra term 1 — P? in (3.181]). This

arises from the form of the boundary condition for o, in equation (3.80) which contains
a non-derivative term in ¢; this generates a monopole, and hence the additional term, in

the perturbed dilatational wave, but not in the perturbed shear wave.
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It is also possible for the frequency of an unperturbed dilatational wave to coincide
with the frequency of an unperturbed shear wave. The simultaneous perturbation of di-
latational and shear waves will, in general, result in a pair of coupled eigenvalue problems

for the wavenumbers k1 and ko and these may be written as

S — L2 My 9 T 2 T —
Op Up, = a [(1 = P7) + ey, e + 1= p2&2mi®m Um,
mi1=1
M
nl? 2 0 -1 2P2 0 -1 ~
+ 7 PeleQ elp1 -+ ﬁeng egpl Umzu (3184)
ma—1 1 0 1
and
M
DN al? 0 1 2pP2 0 1 _
5132 Upz = 1 Pe? €lpy + 765 ©€2py Um1
IR L=P -1 o
Mo
wL? 2P? ~
+ 7P2 Z |:e,{m2€]_p2 + ﬁengEQPQ Umga (3185)
mo=1

where p1 = 1..M7, po = 1..M>. Here the barred terms refer to the perturbed dilatational
wave, and the hatted terms to the perturbed shear wave. It is noteworthy that in the
case M1 = M, = 1, that is the perturbation of one dilatational and one shear wave, the

off-diagonal terms in the system matrix are zero and the equations decouple. Equations

(3.184) and (3.185]) include the cases of the perturbed dilatational waves and shear wave

already considered separately; with (/,\fmz = 0, equation (3.184) reduces to (3.181)), and
with U, = 0 equation (3.185)) reduces to ([3.182)).

Results

In this part, we give some examples of explicit approximations to the dispersion relation
for perturbed dilatational and shear waves, obtained from the eigenvalue problems in
equations — with the aid of the computer-algebra package Mathematica.
Then, some of these approximations are compared with numerical results, therefore the
physics constants A/u = 2.3 is also adopted here. The areas of the primitive cells for

square and hexagonal lattices are respectively A = L? and A = v/3L?/2.
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A. Perturbations of a single plane wave

In the case M = 1, equation (3.181)) for the perturbation of a dilatational wave reduces

to .
Zn2 N
K2 = 2[1+m(+“>] , 3.186
while equation (3.182)) for the perturbation of a shear wave gives
2 /a+3u\1""
K2 =2 |1+ 2 . 3.187
bt e T (5 (3.18)

We can see these results agree with those corrected results obtained by the quasi-static
limit and . Actually, these expressions give perturbations of any of the
one-pole solutions illustrated in the dispersion diagrams in figures and regardless
of their frequency (i.e. not just for the quasi-static limit), because the only restriction
of our method is that the cylinder size is much smaller than the wavelengh. We can
see the information about the lattice is not included in equations and ,
so they actually provide perturbed dispersion relations for an uniform elastic material.
As noted at the end of the previous section, this includes any points in the diagrams
where one-pole dilatational- and shear-wave modes cross. For the lowest dilatational
mode and two-lowest shear modes, and along the line GM of the irreducible Brillouin
zone, the present approximations are compared in figure [3.9] with numerical calculations
made using the multipole method described by Zalipaev et al. (2002), and generally good
agreement is observed. The divergence of the curves near the ends of GM is because of

the presence of higher-order poles — see figures [3.7] and

B. Perturbations of two plane waves

Approximations at appropriate isolated points in the dispersion diagram lead to estimates
of local band gaps, and this is illustrated here by consideration of a two-pole solution
corresponding to the perturbation of shear waves at the point M in the reciprocal lattice.
For the square lattice, the unperturbed values considered are (q1 L, g2 L, ko L) = (7,0, 37),

and within some neighbourhood of this point the appropriate forms for the 3,, are

BiL = (L +27m,q2L)", ByL = (1 L — 4,2 L)" (3.188)
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Figure 3.9: Comparison of the present approximations ( ) with numerical calculations (- --) for circles

of radius a = 0.1L along GM in a square lattice (left), and a hexagonal lattice (right). With the curves
ordered according to their behaviour near ¢1L,q2L = 7, the lowest two curves are perturbations of a

shear wave, and the remaining curve is a perturbed dilatational wave.

(this is because when (¢1 L, g2 L) = (7,0), f1L = B2 L = 3w = koL). For g2 = 0 and in the
limit ¢1 L. — , the positive roots of equation (3.182)) are

_ 37 3
V1-2ra?/L?  \/1+4nP%?/(P?2 -1)L2

Similarly, for the hexagonal lattice, with (q1L, g2 L, ko L) = (0,27/+/3,67/+/3) there are

koL (3.189)

again two poles and the appropriate forms for the 3,, are
BiL = (L, 2L +47/V3)", B1L = (L, q2L —8m/V/3)". (3.190)

For ¢1 L = 0 and in the limit goL — 27r/\/§, the positive roots of equation (3.182]) are

I 237 2371
2L = 5 .
\/1 — 4ma2/\/3L2 \/1 + 87 P2a2/\/3(P2 — 1) L2

Equations (3.189) and (3.191]) illustrate explicitly the appearance of local band gaps as

k (3.191)

the radius of the cylinder is increased from zero. In each case, the upper point of the
local band gap is independent of the Lamé constants and is determined by the geometry
alone. The solution surfaces are shown in figure [3.10, in which we can clearly see the
appearance of the local band gaps.

Two-pole lines in the unperturbed dispersion diagrams in figures and will,
in general, split into two modes when the scatterers are present. This is shown firstly
for the lowest dilatational two-pole mode on MK with the hexagonal lattice, for which

¢2L = 2n/+/3 and ¢ L € (0,27/3), and the appropriate forms for 3,, are
BiL = (nL,q2L)", Byl = (qnL,q2L — 4m/V/3)". (3.192)
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Figure 3.10: Left: solution surfaces in the vicinity of (¢1 L, g2L, kL) = (m,0,37) for square lattice. Right:
solution surfaces in the vicinity of (q1L, g2 L, kL) = (0,27 /+/3,6m/+/3) for hexagonal lattice. Circle radius

a = L/20.

wL/cy
a)L/ )

Figure 3.11: Splitting of the lowest two pole dilatational mode along MK for a hexagonal lattice; com-
parison of the present approximations (——) with numerical calculations (---). Left: radius a = 0.03L.

Right: radius a = 0.05L.

The corresponding positive roots of (3.181]) are

P(4 2 3 L 2\3/2
koL = (r” + 3@ L)) . (3.193)
\/27(q1L)4 + 2472(q1 L)? (3 — 2\/5%2%) +1674(3 — 44/37%)
and
P(472 1,)2)3/2
koL = (r” +3(@ L)) (3.194)

V9ca(q1 L)* + 2472co(qi L)? + 167%cy
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where
Ta P4 2P2+3 Ta 2P4—5P2—1
= 4 - = - 2 S 1
=3+ 43y ——0r— =3+ 2V3 01— (3.195)
2 p 3P2 4
Cq4 —3+4fﬂa P2——]_—|— (3196)

These solutions are graphed in figure which shows how the gap increases with the
radius of the cylinder. In figure it may be seen that a two-pole shear mode crosses

near K but, for simplicity, this is not taken into account here

4.5

wL/cy

¢l

L

Figure 3.12: Perturbation of the lowest two-pole mode along MK for a square lattice; comparison of the
) for a circle of radius @ = 0.1L. Left:

present approximations ( ) with numerical calculations (- - -
two-pole approximation. Right: four-pole approximation

Split modes may also cross and this is illustrated using the lowest (shear) two-pole

line on MK in figure for the square lattice, for which ¢; L = 7 and ¢ L € (0,7), and

the appropriate forms for 3,,, are

BiL = (q1L,q2L)", BoL = (L — 27, qoL)". (3.197)
For these values, the positive roots of equation (3.182)) are
973/2
L)?
koL = (k2L)1 = e all , (3.198)
\/(q2L)4 +21%(g2L)? [ + 225 ] + [1 - 2%32}
and "
(@oL)” + ] (3.199)

koL = (kyL)y = ,
2 (hoL)2 \/C4(q2L)4 + 2712¢9(q2 L)% + ey

where
4dra? P2 ma? 5P% — 1 2ma? P2 + 1
co=14+—7" 55— a=1—-—F—F—, ca=14+ — ———.
2 P2—1 I2 P2—1 2 P2—1
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The gap between the two curves depends on the radius of the scatterer and is

(kgL)l — (kgL)Q =T

(@2L)*(P? +1) — 1272 P?(quL)? + 4 (3P? — 1) fa\2
(P2 = 1)(m? + (q2L)%)%/? (Z)

+0 <ﬁ> (3.200)

so that, to a first approximation, the two lines cross at

201
P241 ’ (3.201)

ol — 7T\/6132 —/1—2P? +33P%
to the left of this point (koL); is the upper mode, and (k2L)s is the lower mode. The
above approximations are compared with numerical solutions in the left-hand graph of
figure The approximations are worst near the right-hand end of the range of goL
due to the proximity of the four-pole point at K. One feature of the present method
is that solutions valid in the neighbourhood of higher-order poles blend smoothly in to
lower-order solutions, and hence the former may be used outside their apparent range of
validity. This may be shown explicitly in simple cases, and is illustrated graphically in

the right-hand graph of figure which uses the four-pole approximation (not given
explicitly here) from the point K across the whole of MK.

.....
.
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<
=
2f 2
ol : : : ol : : :
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qL L
Figure 3.13: The comparison between the present approximation (——) with numerical calculations (- - -)

of the lowest cross point of one dilatational wave and two shear waves on KG for a circle of radius a=0.1L.

Left: square lattice. Right: hexagonal lattice.

As well as mode splitting, there can be mode switching where, in the unperturbed
dispersion diagram, shear and dilatational modes cross. This is illustrated in figure [3.13
for the intersection of the lowest two-pole shear modes in KG with a dilatational mode.
The local solution at the three-pole intersection point correctly shows the switching
between the dilatational mode and one of the shear modes. The approximation degrades

towards the ends of the range because of the proximity of higher-order poles.
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C. Perturbations of three plane waves

26m0

Figure 3.14: Left: solution surfaces in the vicinity of (q1L,g2L,kL) = (w/2,0,57/2) for square lattice.
Right: solution surfaces in the vicinity of (q1L,qeL, kL) = (2r/3,27/+/3,47/3) for hexagonal lattice.

Circle radius a = L/20.
For square lattice, at (q1L, g2 L, ko L) = (7/2,0,57/2), there are three poles of the lattice
sums that correspond to three unperturbed plane waves, and within some neighbourhood

of this point the appropriate forms for the 3,, are
IBIL = (qlL + 2, Q2L)T7 /GQL = ((hL —2m,qoL + 27T)T7 B3L = (QIL —2m,q2L — 27T)T‘
(3.202)

For hexagonal lattice, at (¢1L, g2 L, ko L) = (27/3,2m/+/3,47/3) there are three poles

and for calculations within a neighbourhood of this point the forms
4r\ T o2\ ©
— ] , BsL = L—2m, gL — —
) o= (it emat = )
(3.203)

BiL = (gL, L)", BoL = (Q1L, L —

The solutions are shown in figure
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D. Perturbations of four plane waves

Figure 3.15: Left: solution surfaces in the vicinity of (q1L, 2L, kL) = (0,0, 27) for square lattice. Right:
solution surfaces in the vicinity of (¢1L,g2L,kL) = (0,2w/+/3,2v/217/3) for hexagonal lattice. Circle
radius a = L/20.

For square lattice, at (q1L, g2 L, ko L) = (0,0, 27), there are three poles of the lattice sums
that correspond to three unperturbed plane waves, and within some neighbourhood of

this point the appropriate forms for the 3, are
BioL = (L £2m,q2L)", B34L = (q1L, 2L £ 2m)". (3.204)

For hexagonal lattice, at (q1L, goL, ko L) = (27,0,2+/217/3) there are three poles and

for calculations within a neighbourhood of this point the forms

ar\ T ar\ T
/61,2L = <q1L7 Q2L + \/g) ) ﬁ3,4L = <Q1L - 47T7 C]2L + \/§> . (3205)

The solutions are shown in figure [3.15

Comparison

The accuracy of the approximations by matched asymptotic expansions is indicated in
figure and through three comparisons with numerical calculations for circular
cylinders made with Poulton et al. [77] and Zalipaev et al. [105]. It is shown that the
current approximations are more accurate for smaller cylinder radius as we expected. As
seen from the diagrams, our method provides very good approximations for cylinders of

radius up to a/L = 0.05 for both square and hexagonal lattices. For the two-pole mode
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in square lattice and three-pole mode in hexagonal lattice we choose, the approximations

are still good for cylinders of radius up to a/L = 0.1.

a 2.774(b,
(a) (b) 291 (c)
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. 25T ‘\ o
) ) . )
I " Ny 3 19
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2.3n \\\ 1.7n
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0 0.05 0.1 0 0.05 0.1 0 0.05 0.1
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Figure 3.16: Square array: comparison of the present approximations ( ) with numerical calculations

(-+) for a circle of diameter 2a. (a) (q1 L, q2L) = (357, 157), (b) (@1 L, q2L) = (37, 357), (¢) (1 L, q2L) =

(%57 167)

(2) (b) ©
151 32m ﬂ-—oﬁ—/
L4 3n M
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2 2 L,
= ~ = 2on
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1.
151 ‘N ’ N\v\ 2o
27n
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1.4n 2.6m
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Figure 3.17: Hexagonal array: comparison of the present approximations (——) with numerical calcu-

lations (---) for a circle of diameter 2a. (a) (q1L,q2L) = (35, 157), (b) (1L, q2L) = (3w, 557), (c)
(0L, q2L) = (5, 157)
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Chapter 4

Multiple resonant scattering by

two-dimensional arrays

The multiple resonant scattering by two-dimensional arrays for both acoustic and elastic
waves are considered in this chapter. Envelope equations (equations about the wave
amplitudes with space and time variations) are obtained with the help of results from
matched asymptotic expansions in chapter [3| and the method of multiple scales. These
equations are then applied to a finite width (only finite in one direction) strip of two-
dimensional arrays of cylinders to investigate how waves propagate in the array. The
multiple scattering theory for infinite gratings can be traced back to the work by Twersky
[91], which followed his earlier work on finite gratings [88, [89, 00]. Integral equation
method is used to obtain a formalism for scattering of waves by infinite gratings. The
same method is then used on more complicated scatterer geometries, for example Ivanov
[31] considered the plane wave diffraction by N-layer gratings and some other cross-
section scatterers are considered as well in [33), [34] [37]. Miles [62] combined results of
Rayleigh [80] for a single scatter with those of Burke and Twersky [I1] to compute explicit
expressions for the reflection and transmission coefficients when a plane wave is normally
incident on a grating of inclined flat screens. Then Porter and Evans [76] considered
the oblique incidence with an infinite array of in-line periodic screens or breakwaters in
finite water depth using linear water-wave theory. Using Wiener-Hopf technique, Erbag
and Abrahams [20] considered the scattering of sound waves by infinite grating of rigid

plates.
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In the multiple scattering theory, the research on the wave interaction with arrays of
offshore structure can have variable applications, such as to design floating bridges, con-
struct offshore wave-power station or airport etc. A review paper about the water wave
interaction with arrays of structures is available given by Mclver [59] in 2002. Because the
array contains multiple scatterers, the cumulative effects of the wave motion may be sig-
nificant. This is first demonstrated by Heathershaw [27], who investigated the water wave
resonant interactions between surface water waves and finite numbers of bars installed
on the bottom of a long wave tank. Mei [56] then gave a theory of resonant reflection
by periodic sandbars using the WKB method (for example, see [I5] section 7.3]). Li and
Mei [49] considered the multiple resonant scattering of surface water waves by a periodic
two-dimensional array of vertical cylinders standing across the depth of an open sea. This
can provide theoretical support for offshore airports consisting of a platform supported
above water by vertical piles. For material economy, it is assumed that the scatterer size
a is smaller than both the array periodicity and the wavelength 1/, therefore a small
parameter €; = Pa is involved. Although the scattered wave from one small cylinder is of
the order €2 [79] compared to the incident wave, it is shown that the accumulated effects
of many cylinders over a large region of length scale 1/¢? become significant when Bragg
condition is nearly met. Therefore the asymptotic method of multiple scales is applicable
to use combined with the Bloch theorem because of the periodicity of the cylinder ar-
ray. This paper followed their earlier work [48] which considered the Bragg scattering by
one-dimensional cylinder array in a waveguide. In another paper by Tabaei and Mei [86],
they assessed the effects of viscous effects in the boundary layers around the cylinders
on the Bragg resonance of surface water waves by a two-dimensional array. The theories
for offshore structures have also been studied by others [36, 38| [58].

As Li and Mei [49] assumed the water depth is constant and the array is composed
of vertical cylinders, this problem is actually equivalent to a two dimensional acoustic
problem with an array of rigid cylinders. Therefore in the first section of this chapter, we
first reproduce their results for the corresponding acoustic case by the method of matched
asymptotic expansions and multiple scales and then generalise this theory to arbitrary
cross section cylinder arrays. The comparison among four different types of cylinders are

given for the transmission wave intensity.
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In the second part, we consider a semi-infinite array of cylinders, where the number
of the boundary conditions are not enough to obtain a unique solution to the envelope
equations and an additional condition that waves can not propagate from infinity must be
imposed. The wave interactions with semi-infinite structures can be applied to help study
the scattering by a large finite array. The wave scattering by semi-infinite arrays were
firstly studied by Millar [61] in 1964 using the analysis of a nonlinear integral equation.
Some other results were obtained for widely spaced small circular cylinders [29] and for
strip gratings [68, 69]. Hills and Karp [28] and Linton and Martin [51] considered the
interaction of plane acoustic waves with a linear, semi-infinite array of isotropic point
scatterers. Linton et al. [52] also considered the acoustic scattering by a semi-infinite
array and the excitation of surface waves by using the solutions of the corresponding
infinite array. In [96], Tymis and Thompson considered the low-frequency scattering by a
two-dimensional semi-infinite lattice of cylinders using the Wiener-Hopf technique (see,
for example, [53, page 130]).

In the last section of this chapter, we apply this theory to the elastic resonant scat-
tering, where the cavity cylinder array is embedded in an elastic medium bounded by
the same acoustic media on both sides. In this case, the boundary conditions involve the
continuity of the stress besides the continuity of the velocity. Numerical results are given
for a copper layer with cavity cylinders bounded by air on both sides. Many practical
situations involve composite layers of a finite width, for example, the heat exchanger in
industry which usually contains a finite array of tube bundles. Another application is the
design of sound filter or noise control system. Some methods have been used to consider
how the wave propagates in these structures. For example, Lakhtakia and Varadan con-
sidered the scattering by an elastic slab containing a one-dimensional periodic array of
elastic cylinders for incident SH wave (horizontally polarised shear wave) [44], P wave
(or seismic wave, is a kind of dilatational wave) and SV wave (vertically polarised shear
wave) [45] to assess the reflection characteristics using the methods of Fourier-Bessel ex-
pansions and T-matrix. The T-matrix method [100] is also used to describe the reflection
and transmission characteristics. For the finite width two-dimensional arrays, Scarpetta
and Sumbatyan [82] investigated the plane wave propagation through a finite doubly

periodic array of cracks to give explicit representations for the reflection and transmis-
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sion coefficients. Platts et al. [T5] evaluated the reflection and transmission matrices for
a stack of layers which contains a finite array of circular cylindrical cavities using the
multipole expansions. The layer multiple scattering method is also used for the similar
problems of both one-dimensional gratings [12] and two-dimensional finite width gratings

I81].

4.1 Acoustic resonant scattering by a finite array

In this section, we consider the acoustic resonant scattering by a finite width strip of
array of rigid cylinders, see figure The cylinders are surrounded by an infinite acoustic
medium in and out of the array. Given the Cartesian coordinates (z,y, z), the strip is
assumed to be finite in z- direction and infinite in y- and z- direction. An incident wave
propagates in the positive direction of the z- axis and resonance can happen in the strip
for some particular wavenumbers. As we know, the scattered wave from one cylinder is
in higher order of the small parameter compared with the incident wave [79] and the
scattered wave would not be weak any more over the scattering by a large number of
cylinders. Therefore the strip width must be large enough to make the resonance occur.
This makes it possible to consider this problem in an infinite array first and then apply the
results to approximate those in finite arrays. The size of the cylinder is still assumed to
be smaller than both the wavelength and the array periodicity. Both matched asymptotic
expansions and multiple scales are used to obtained the envelope equations. So here we
first obtain the envelope equations for an infinite array and then they are applied to a

strip of cylinder array to give numerical calculations.
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Figure 4.1: Strip

4.1.1 Circular cylinder scatterers

We consider the diffraction of plane acoustic waves by a two-dimensional array of vertical
cylinders. The coordinates we use in this chapter are exactly the same as those in chapter
3. Origin O of the Cartesian coordinates (z,y, z) is on the axis of one of the cylinders. The
cylinders are infinitely long with axes in the direction of z direction. Polar coordinates
with origin O in the x-y plane are denoted by (r,0). Scatterer j is associated with a local

origin O; located at the lattice point
Rj =ma; + ngas, ni,no € 74, (4.1)

for given independent vectors a; and ap. Local polar coordinates (7, 6;) are used with

origin at O;, then the position of any point in space is
r= Rj +r;. (4.2)

If the periodic array is infinite in extent, Bloch’s theorem requires that a linear wave

solution obeys the condition
o(r+R;j) = eiﬁlTRjQ(r), (4.3)

where r = (z,y)?, B, is the Bloch wave vector.
Another wave in the direction of 3,, is said to be resonantly scattered if 3,,, and 3,

are related to a reciprocal lattice vector K,, (defined in (3.69)) by the Bragg condition

B = B1 + K, (4.4)
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where S, = |3,,| is the same for any m and thus we define 8 = |3,,|. If more than one

wave is resonantly scattered, any two resonated wave vectors are related by

/Bn = Bm + K, — K. (4.5)

The method of Ewald construction described in chapter [3] see figure [3.6, can be used to
find the resonantly scattered waves. Draw a circle centred at the initial point P of 3,
with radius . Then if another reciprocal lattice points P» falls on this circle, the vector
P—PQ> is the resonantly scattered wave vector 3,, i.e. they satisfy the Bragg resonance
condition . For specified lattice and Bloch vector, there may be M vectors falling on
that circle. Figure |3.6] gives an example when M = 3.

Now we are going to derive the envelope equations for the incident wave and M — 1
resonantly scattered waves. The velocity potential ® must satisfy the wave equation

’d 4,
everywhere in the medium, where ¢ is the acoustic wave speed and V is the gradient
operator in the z-y plane. On the boundary of the cylinders, the normal flux must vanish

ar; =0, rj =|r—Rj| =a, for all j. (4.7)
We have assumed that the cylinder radius a is much smaller than the typical wavelength

27/ so that
€1 = fa < 1, (4.8)

is a small parameter (we use €; rather than e because here the small parameter is the
product of the Bloch wavenumber and radius of the cylinder. This is different from the one
used in chapter [3| where it is the product of the dilatational wavenumber and the radius
of the cylinder). When the spacing L between successive scatterers and the wavelength

and the incident angle 0 satisfy the relation,

8L — npmw

sinf’
where np is a positive integer, constructive interference gives rise to strong reflection.

Since the reflection coefficient from a single cylinder is of order €2 compared to the

incident wave, then the accumulated effects over N cylinders becomes of strictly order
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one when N is order 1/€7. It follows that strong reflection evolves over the dimensionless
length scale B(x,y) = O(1/€2). This suggests the asymptotic method of multiple scales

is applicable. Therefore we now introduce fast and slow variables
. _ 2 _ 2 _ 2
z, Y, t; X = €17, Y = €1Y, T= 61t7 (49>

so that =, y, t describe the fast motion while X, Y, T describe the slow variation of the

envelope. With these fast and slow variables, the differential operators become

9
ar”

D0 a0 00 a0 0D,
ox Oz X’ 9y oy oy’ ot ot !

The method of matched asymptotic expansions is also used here. Each cell is divided
into two regions: the inner region around the scatterer r; < 7! and the outer region far
from the scatterer r; > a, on which inner solutions and outer solutions will be developed
respectively.

As the boundary-value problem is homogeneous, the leading order outer solution may

be taken as strictly order one in €1, then we expand the outer solution as follows
® = Re{[®g + 2Py + O(e])]e 1, (4.10)

where &g and @y are functions of (z, y, X, Y, T) and w is the frequency associated
with 8 (i.e. w = Be). Substituting (4.10]) into the governing equations (4.6)), we obtain
the perturbation equations for the outer potentials ®¢ and ®s.

The first order outer velocity potential ®( satisfies the wave equation

Vid, = —w—2<1> (4.11)
0 — 62 0 .

and also the Bloch’s theorem (4.3)). The solution form for ®( is the sum of plane waves

combined with the envelopes A,,

M
o= Apn(X, Y, T)pm(z,y), (4.12)
m=1
where
U (z,y) = P, (4.13)

with all 3,, = Bei1,, determined by the Bragg condition (4.4]). Here

Cpm = (COSme>. (4.14)

sin pT,
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Now substituting the outer expansion (4.10) into the governing equation (4.6) and
the Bloch condition (4.3) and collecting terms of €2, we obtain the problem for the second

order outer potential ®o:

w? _ 2iw 0P
V2Py + =Py = -2V -VPj— — —— 4.15
2Tz 072 ar (4.15)
Dy(r + Rj) = ePnBidy(r), m=1, 2, ..., M, (4.16)

where V denotes the gradient operator with respect to the slow variables X and Y.

In the far field defined by r; > a, the outer potentials ®; and ®, satisfy
and separately and the Bloch conditions as well. In the near field r; < B,
the low order terms of the inner solution ¢ satisfy the Laplace equation. Therefore,
the inner solution is constructed from the inner eigenfunctions (solutions of the Laplace
equation that satisfy the homogeneous boundary conditions) and satisfy the no normal
flux boundary condition.

From (4.12)) and (4.13)), the inner expansion of the leading-order outer solution is

M
(1)80,1) _ Z An(X,Y, T)eiBh R [1+ie1pcos(d — 1) + O(e])]

h=1
M .6TR. ) ] cosf 9

= ZA;L(X,Y,T)elﬁh i |1+ ie1p (cos Ty, sinTy) +0(e7) |7 (4.17)
h=1 sin ¢

where the information about the lattice is reflected by the phase change factor eBrR) | In
contrast to the outer solution in infinite array [60], eq. 34], the information of the lattice
is included in the lattice sums. Therefore, to match with the outer solution ®g, the inner

solution ¢ up to order €; takes the form

6V = Byt ey | By + <p+ 1) o [ 0] (4.18)
p sin 6
where p = r;/a is the inner coordinate and any constants, terms involving p and 6 are
all inner eigenfunctions and u; is an unknown vector that needs to be determined.
To obtain the envelope equations, we now apply Green’s identity to ), and the
composite solution in a cell C' (the cylinder in this cell is marked as S), where ¥,

denotes the complex conjugate of 1,,,. As we know, the inner solution is only valid in the

inner region and the outer solution is only valid in the outer region. To find a solution
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that is valid everywhere in the whole region, we need to do some work to the inner
and outer solutions. One of the methods may be called additive composition. Since the
inner expansion and the outer expansion have a common region of validity, the composite
expansion can be constructed by subtracting the part they have in common, so that it is

not counted twice [102], page 94]. We denote the composite expansion by £ and take

€ =0@ 4 M) _ (12 (4.19)

Then the Green’s identity is

2 )% * 2 _ &ﬁn * 6{
//C (EV24y, — v, V) ds = /803 <g T man> dl, (4.20)

where Cs is the cell C' excluding the cylinder S, ds means the integration is taken over

the cross-section of the cylinder S and dl means the integration is along the boundary
of the cross-section of S. Then noting that we have ¢(!) — ¢(1:2) = 0 by ([@.18), the left

hand side of the Green’s identity becomes

LHS(E20) = / / (2@ V245, — v, v20@) ds.
Cs

Using equation (4.11)) and (4.15) and dropping terms of order higher than €?

LHS@E20) = / /C (@oV205, — 5, V2o) ds + ef / /C (D205, — 5, V2Dy) ds

2, % * w2
[ [ [ovesen-on(-m) o
w? 2iw 0P

2 2, 1% * ~
s [ [, [potvn —vn o8 vm S - 2T

_ ef// <2¢:;Lv. Voo + 21“%%?) ds

M 2iw 0Ay,
= e%Z( T o +2iV A4, - ﬂh)// i(Br—Bm)"r s (4.21)

h=1

)| ds

Since the cylinder radius is much smaller than the periodicity of the lattice, the cross-

sectional area of a cylinder A is much smaller than that of the cell A., therefore the area
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of the cell excluding the cylinder is: Aqs = A. — ma® = A:[1+ O(e3)] =~ A.. Therefore the
integral in (4.21]) can be approximated by

/ / lBr=Bm) x4 / / BB T g — 5 A (4.22)
Cs c

Substituting (4.22) into (4.21)) and dropping terms of higher order, we get

LHS[E) = = 29 4 (a;T S, ﬂm> . (4.23)
On the cylinder r; = a, we have
Viilria = e—iﬂﬁ(rj+Rj)|rj:a
e BnR; [1 —iBacos(f — ) + O(€1)], (4.24)
and
M = iBcos(f — Tm)e I8, (rj+R;)
i |, —a ri—a

— oBnRy i[if8 cos(8 — T)][1 + iBacos(d — 7m) + O(€])). (4.25)

Therefore, noting that the normal flux on the cylinder vanishes and the contribution from
the outer boundaries of the primary cell vanishes by the Bloch condition, the right hand
side of Green’s identity (4.20) becomes

* 1)
rus@z) - | (as(”‘i?"—zw:;ag >dz
a8 n n

= _/ ¢(1)a¢mdl

a8 or;

2m 1 cos @
= —/ By + € B1+<P+>uip

0 P sin 6

o IBLR, [—iB cos(f — 7m)][1 — iBacos(8 — T) + O(€3)]adh

27
. 1 cos
= o BnRy / Bo+e | By + (p + > u?

0 P sin 6

i€; cos(0 — 7)1 — ie1 cos(f — 1) + O(e3)]dO

CoS T,
= 7éle —IBLR; By + 2iuf . "+ o).
sin 7,
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To eliminate the unknowns By and u;, we need to do the matching between the inner
solution ¢(!) and the outer solution ®(). Therefore by ([#.17) and ([#.18) and the matching

rule @O = $(10) we have

M
By =Y ApePiR, (4.26)
h=1
M
ul = iz ApePhRs (cos Ty, sin 7p,). (4.27)
h=1

Therefore, dropping the higher order terms

Wﬁ%e_iﬂgRj [BO + Qiu{ <C?S Tm>}

sin T,

RHS [@E20)

M
ey GTR. - CoS T,
= mele PmBy g ApePuRi |1 —9(cosmy,siny,) | . "
Pt sin 7oy,

M
= ar Y Al —2cos(r — 7)), m=1,..., M. (4.28)
h=1

Then, by (4.23)) and (4.28)), we obtain the envelope equations

04 | m) .o - A
87T+C9 -V m:_2190; nll —2cos(Tm — )], m=1,..., M, (4.29)
where
2 2
(m):c,ﬁm:cﬂm: COS Ty O — met _ me 4
C w 6] “\sin Tm 0T WA, BA. (4.30)

These envelope equations agree with those in Li and Mei [49]. Outside the strip, the

envelope equations reduce to

A _
%—T+C(gm)-VAm:O,m:1,...,M. (4.31)

4.1.2 Arbitrary shape scatterers
Formulation

When the scatterers are of arbitrary shape, it is more difficult to perform the integration
over the scatterer when using Green’s identity to obtain the envelope equations. To
overcome this, we need to use Green’s identity again in the inner region. In contrast to the

circular cylinder case, here we need the inner solution up to order €2, because it includes
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the information about the shape of the scatterer and contributes to the integration on

the scatterer. In this case the Neumann boundary condition is

0P

where n is a coordinate measured normal to each scatterer. The form of the inner solution

up to order €2 is [60] eq 40]
56 1
¢ = By+ e {Bl +uf [pc?;@) + X1(p,9)} } +e {Bo [—4/)2 + F(ﬂﬂ)] +
T cos 0 7| o[ cos20
By +uy [P(Sin9> + x1(p 9)} + vy [p <sm29> + XZ(P,G)} + } (4.33)

where I' is a harmonic function introduced to compensate for the flux across the scatterer

S that is induced by the term in p? and from the Neumann condition (4.32))

P __ 0 [(C?S 9)] on S, (4.34)

on On | \sinf
M (cosf 1
_ = = 4.
- (Sme) o(p™") as p— o0 (4.35)
and

mi m

M= & 7 (4.36)
ma1  M22

is the matrix of dipole coefficients determined by the shape of the scatterer [8, page 127]
and x2(p,0) = o(1) as p — co. The ellipsis in denote those eigenfunctions in slow
variations that will be needed to match with the extra terms in outer solution ®, arise
from the right hand side of . These eigenfunctions satisfy the Laplace equation and
the homogeneous boundary condition. Now we are going to find the form of I'. By the

Neumann boundary condition , we have

o 01 _1oF
on on <_ >_48n' (4:37)

The flux across the scatterer S induced by the term in p? must be compensated by the
flux induced by I' across the outer ‘boundary’ of the inner region C, as p — oo, where

we denote the outer boundary by a circle 95* centred within the scatterer S. Therefore

dp®
—dl —/ —dl, 4.38
ag+ On as O (4.38)
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Because I must be a solution of the Laplace equation that correspond to a non-zero flux

and of the inner region, we know that
['(p,0) ~ Alogp, as p — oc. (4.39)

The left hand side of (4.38]) is

r CA |
8—dl = — A=pdf = —27 A,
a5+ On o P

where the minus sign is because the surface normal on the scatterer is directed into the

scatterer. Applying the divergence theorem to the right hand side of (4.38)) gives

L[oop® 1 2 2y, As
‘4/85071611—‘4//,;“’)”8—‘@2’

where Ay is the area contained within S and a? is to make the area dimensionless. Thus,

we get
As
A= 4.40
2mwa?’ (4.40)
and then
L(p,0) — As logp — 0, as p — 0. (4.41)
’ 2ma? ’

Similar to the circular cylinders, Green’s identity is going to be used in the cell C
excluding the scatterer S, Cs, to obtain the envelope equations. The composite solution

containing the inner and outer expansions up to order €? is
£ =@ 4 9@ _ (22, (4.42)

Then the conjugate of the plane waves ¢, and the composite solution £ valid in the

entire cell are used in Green’s identity to give

2% * 72 _ alb?fn * 85
//CS(W o —pr VE)ds = /BCS (g i man> dl, (4.43)

where the integration on the right hand side includes the integration over the scatterer

and the integration over the outer boundaries of the cell C' which vanish by the Bloch

condition; thus Green’s identity becomes

oy, 9¢®
ko gk — 2Z¥m
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We know ¢(2) — ¢(22) = o(e2), then the left hand side of the Green’s identity becomes
LHS{.44) = // [(@ _ ¢(2,2)) V24—t V2 (q)(z) + 6@ — 4)(2,2))} ds
— // <‘I’(2)V2¢m w;v%(z)) s
// [ 22)) V2t V2 (¢(2 ¢(2’2))} ds

/ / <I>(2)V2 —YE VD >) ds + o(€2). (4.45)

Using equations (4.11)) and (4.15)) that the first and second order outer solutions satisfy

and dropping terms of order higher than €?

LHS({EA)

/ / (@21, — %, V2 ®0) ds + €] / / (@2 V202, — b V2 ®s) ds

2 w?
= [ [ [m=prvi - i (< 00) | a
+e%//c [—%,@2% — (—w- Vo, — ‘*C’jcﬁg — 2@5@())] ds

¢z oT
_ P o
_ ef// <2¢:nv.vq>o+ lwzﬁm%T‘))d

_ <212VAh B+ 2 aAh) / / 18, ~Bm)x g

2iw 0Ay, r
- Z(@ a7 +2iV 4y, - gh>// i(Br=Bm) T g

% A
= & “"A <‘98T L C5a, B >+o(6%). (4.46)

We have denoted the outer ‘boundary’ of the inner region by a circle 05* as p — cc.
To get the integration over the scatterer, next we are going to apply Green’s identity in
the inner region C), bounded by the surface of the scatterer, 95, and the circle, 95™, to

¥y, and the inner solution @) . Before doing this, we first expand v

. . 1
vE = e~Bmr — o~iBnRy {1 —iegpcos(f — 1) — Ze%pQ[l + cos2(0 — )] + O(e?)}

= Pk +O(ed). (4.47)
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That’s because the expansion of ¢}, is only valid when p = O(1), i.e. near the scatterer,

this expansion makes the omitted terms be in higher order. Then we have

VQQ;;L = V2 {e—iﬁﬁRj [1 _ ielpcos(e _ Tm) _ %6%p2[1 + cos 2(9 _ Tm)]] }

= —2e BnRy (4.48)

Now we apply Green’s identity to LZAJ’;,L and the inner solution up to order €2, #?), over

the inner region C,

. . b . (2)
[ @ovi, - dnvreas— | (¢<2> W g5 20 ) a, o (aa9)

where 0C, = 05 + 0S5*.

In the inner coordinates,

Vi + €io =0, (4.50)
¢ = do + €101 + €1 + O(e}), (4.51)

then substituting for (4.51)) in (4.50) and collecting the like power terms we obtain
Vigo=0, Vig1=0, Vipy=—go. (4.52)
Therefore

rrs@®) = [ [ {ioo+ o+ o+ oel=ein) - b (~cdon }ds

= O(e), (4.53)
which gives
h* . (2) Tx ;i)
@ ¥m _ s 00 _ @ Vm s 00 3
/a R e ) B e e R CIC e
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By the inner solution (4.33)) and the expansion of 7, (4.47))

27 h
RHS{@E54) = — /0 (W? z/}mag ) pdf + O(€3)

2w
=— / e_iBTTﬂ'Rﬂ'{ [Bo + e <B1 +uf [P(C?S 9) + M (C?S 0)] >}
0 sin 6 p \sinf

L)1+ cos2(0 Tm)]] -

[—iel cos(0 — ) — 5

[1 —ieypcos(f — 7)) — ie%pQ [1+ cos2(8 — Tm)]:|
r(cosf\ M (cosd 9 1Al
<61 [ul <sin9) p? <sin9)] i) Bo < 2 * 2ma? p *
7| (cost) M (cos0 T cos20\ M (cos20
H2 [(sinG) p? <sin9>] e [p<sin29 p? \sin 260 pdo

+0(e})

e B R 2 [B As M(Cf)szﬂ +O(é). (4.55)
Sin

Therefore, by (4.44]), (4.54)) and (4.55)

/ (EV207 — o V2E)ds — o Bh R 2 { M(COS 6)] +O(E). (456)
Cs Il@

By the results of the left hand side of Green’s identity (4.46]), we have

2i A .
€ M.A <8 4+ VA ﬂm> i Rie? [BOA + 2iu 1M<cosﬁ>] + o(€d),

oT no
(4.57)
which is
0A A_ 2 . aT A, cos 0
Zzmo, Z . — —if;, R; T 2
5T + wVAm B, in.Ace iTes [Bo + 2iu M< 1n9>} +o(ef). (4.58)

To eliminate the unknowns By and u;, doing the matching between the outer solutions

(4.17) and the inner solutions (4.33)) we obtain

M
By =" Ape Pn Ry, (4.59)
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M
ul =i Z Ape PRy (COS Ty, SIN Ty ). (4.60)
h=1

Now substituting for the last two equations in (4.58) we obtain the envelope equations

M
1. A, . COS T,
87T + Cy" -VA,, = —5190 h§:1 Ay [W — 2(cos T, sin Th)M< . )] , (4.61)

Sin T,

for all m =1,2,..., M, where Cgm) =cB,,/B and Qy = wc/(BA.). When the scatterers
are circular, the cross-sectional area of the cylinder A, = ma?, and the matrix of dipole
coefficients M is a two-dimensional identity matrix, therefore the envelope equations

reduce to

0Am ) = 1. U
o+ O VAL = i > AR L= 2c08(tim — )], (4.62)
h=1

which is in agreement with the results of circular cylinder array (4.29).
If we multiply both sides of equation (4.61) by AY, (the conjugate of A,,) and add
the resulting equation with its complex conjugate, after summation over m, we obtain

Z (aT +C™ V|4, |>

m=1

M M
= _fo Z Z { — 2(cos smTh)M<COS Tmﬂ (AR A}, —i1AT Ap)
2 Y 3 m h4im

Ta? sin 7,
m=1h=1
—0. (4.63)

Thus the total energy is conserved in the array, for example, when the primary wave (the
continuation of the incident wave in the array) is weak for some particular detuning or
strip width, the resonant scattered waves are strong. Therefore it is possible to use this
theory to design structures to transfer the incident energy into scattered energy.

If the array is infinite, the amplitude doesn’t depend on the space variation, thus only
the time variation is involved. If we search for solutions in the form of A,,(T") = ame*iQT,

the envelope equations (4.61)) become

9 M
e Z As : COS Ty
Qam = m = ap [W — 2(COS Th, Sin Th)M(Sin Tm>:| 5 (464)

where 2 = Kc¢. K is the detuning of the wavenumber and the detuned wavenumber

k = B+ 2K, and the detuned frequency w’ = kc = w + ¢2Q. Mclver [60] considered the
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same case for infinite two-dimensional array of arbitrary shape scatterers and obtained

[60], eq 47, 48]

Unbm =

wa? sin 7,

12 LT A, m
T {A —2(COSTh,SiDTh)M<COST >] Up, (4.65)

h=1
where &, = (k* — B2)L*/€?, B = |B,,] = B and € = ka. Equations (4.64)) and (4.65)

define same eigenvalue problems, therefore

2wL? 26(k — B)L?
b = - = B 26) , (4.66)
which is consistent with the definition of §,, [60, eq 21]
k? — %) L2 k kE—pB)L?> 28(k—pB)L?
g PO (4 )k =D)L 2300~ D)1 o

2
€ € €7

on a first approximation in the limit k& — S3.

Numerical results

We now apply the envelope equations to a long strip of cylinder occupying 0 < z < d,
see figure A train of plane incident acoustic waves arrives from the south-west at an
angle 71 with respect to the z-axis. Without loss of generality we limit the direction of
the incident wave to be 0 < 71 < 7/2. Let the width d of the strip be of order 1/€2 in
the z direction (this is to make sure the array width is big enough for the resonance to
occur) and the length be infinite in +y directions. As the Bloch’s theorem is only used
in the integration on one cell and the strip width must be of order 1/e?, then as e; — 0
the finite array goes to an infinite one from the view point of that cell. Thus we can use
the envelope equations obtained for infinite arrays to approximate those in finite arrays.

Write the leading order outer wave potentials in the three zones (left side, right side

and in the strip) in the form

Dy = f: Am(X,Y, T)elPmr| (4.68)
m=1
where
A, X <0,
Apn=1% A, 0<X<D, (4.69)
Ar. X > D,
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Figure 4.2: Strip

. 9 . COS Ty
with D = e7d. Note that, with 3,, = ,
sin 7,
eiﬁ%r _ eiﬁ(a: cos*rm—l—ysinfrm)' (4‘70)

We choose 3 as the incident wavenumber and allow a small perturbation (the detuning)

of the wavenumber and frequency, thus the incident wave is
A; (X, Y, T)eiﬁfr — Aoei(lC cos 71 X +K sin TlY—QT)ei,B?r’ (471)

where €2k is the detuning of the wavenumber and €2€2 is the detuning of the frequency,
related by K = €2/c. We include the detuning in the incident wave means that we change
the frequency of the incident wave slightly to assess what will happen in and on the right
side of the array. By the continuity conditions at X = 0, D, the y dependence must be

the same in every component of the solution. Thus, look for solutions in the form

AL (XY, T) B, (X)
An(X,Y,T) | = Ao | Bp(X) | X50mY =00y =12 M. (4.72)
AL (XY, T) B (X)
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Along the edges of the strip X = 0, D, the acoustic pressure and the normal velocity

must be continuous

M
ZA (0,Y,T) lﬁmr—ZA (0,Y,T)ePmr,
=1 m=1

M M
> An(D,Y,T)ePrt = N AL(D,Y, T)ePrr,

o X o X
75 A (XY, T)elPm® 7§ A (X, Y, T)ePmr
w ( ) ) )e 8:1; ( ) b )e b
=1 X=0 m=1 X=0
o X o X
_ iB,,r _ + iB,,r
5 E A (XY, T)e Ep E A (XY, T)e ,
m=1 X=D m=1 X=D

which lead to

m=1

- 182 cosm .

Z (B (D) — Bp(D))e elBysinTm _
m=1

and

(B,,(0) — B, (0))iS cos TePysinTm — O(e%),

NE

m=1
M . 8D 3
— : 1z COSTm 5By sinTy, _ 2
g (B,,(D) — Bn(D))iff cos Tpe 1 e = O(€7).

1

3
I

Then using the orthogonality of the trigonometric functions, we obtain

Bu(D) = B,(D),

form=1,2,..., M. Arrange the components so that
cosTy >0 for me{l1,2,... MT} =27,

and

cosTy <0 for me{MT+1, Mt +2,... .M} = 2.
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In the field without cylinders X < 0, the only forward propagating wave is the incident
wave so that

(X)=0, meZ\{1}. (4.82)
On the right side of the strip X > D, there are no backward propagating waves so that
BH(X)=0, mE€E Z,. (4.83)

The governing equations in the strip and outside the strip are given by (4.61) and
(4.31]) respectively. Outside the cylinder strip, from (4.72]) and (4.31]), we have

ngi .1 —sinTsint,
= =1,2,..., M. 4.84
dX IIC COS Ty 9 m ) “y 9 ( 8 )
Thus
B (X) = bEelmX (4.85)
where
K, — (1-— sinTlsinTm)lC’ m=1.2. . M.

COS T,

Inside the cylinder array, from (4.72)) and (4.61]), the envelope equations become

. M
dBn, i Q ) . 1 T As
~ = - Q—O(l — sin 7y 8in 7, ) By + 3 I; B, [Qelpl\/[elm — 3| (> (4.86)
which is
By By
d By i By
@ —2op , (4.87)
dX : Cy :
B By
where C; = |C§m)| = c and the elements of the matrix F are
1 Q . . T s
o= o5t Q—O(l —sin7sinm;) + e;Meyj — a2 | (4.88)
1 T As . . . -
Fij = KT@ [eleeu — 27Ta2:| , Uy )= 1, 2, cee ,M, 2 7& ] (489)

Here we only consider the case that none of the eigenvalues are equal to each other. In

this case, the general solution of the linear system (4.87)) is of the form

B = (By,Bs,...,Bu)"

= O, VWM X/Cs | 0y @) ehhaX/Co oy 0 VM) eihSX/Cy (4.90)
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where VU) is the eigenvector corresponding to the eigenvalue Aj,j=1,2,...,M. The un-
known coefficients C7,Co, ..., Chs will be determined by the boundary conditions
and . The properties of this solution form depend on whether the eigenvalues of
the matrix F are real or complex, and the form of the eigenvalues depends on the sign

of the discriminant of the characteristic equation, which is, for example,

N2 — (Fi1 + Foo)\ + (F11 Fyo — F19F) = 0, for M =2, (4.91)
and

N4+ X+ aid+ag =0, for M =3, (4.92)

where
ag = —(F11 + Fa + F33), (4.93)
ap = det B Fe + det Fi B + det B Fos , (4.94)

Faor Fy F31 Fy3 F3o  F33

ap = —det(F). (4.95)

The discriminants are
Ay = (Fiy + F)? — 4(F11 Foy — FioFyy), for M =2, (4.96)
Az = 403 — o203 + dagal — 18agaras + 2703, for M = 3. (4.97)

The discriminant A is a function of the detuning of the frequency /g, which is con-
tained in Fj;. For example, when Az < 0, one of the eigenvalues is real and the other two
are complex. Therefore one of the eigensolutions is oscillatory in X with constant
amplitude. The remaining two are oscillatory with exponentially decaying or growing
amplitude. When Ag > 0, all the eigenvalues are real and all the waves in the array will
oscillate in X with constant amplitudes.

Next, we consider and compare the transmission wave intensity |B;(X)|? for four
types of scatterers. We always take the length of the axis of the scatterer in y direction

as b and the length of the axis in = direction as a. Given a length H, we take the typical

size of the four types of scatterers are as follows

88



1. Circular cylinder: b =a = H.
2. Elliptical cylinder (i): b=a/2 = H.
3. Line grating: a =0, b= 2H.
4. Elliptical cylinder (ii): b = 2a = 2H.

For every type of scatterer, the matrix of the dipole coefficients is

bla+0b)
8H? 0
(4.98)
0 a(a+b)
8H?

[65, page 145] and S = wab. To compare the diagrams for these four types of scatterers,

here we use 2H as the dimensionless parameter, and the small parameter ¢; = 2kH.

k

/o)
b \/ b

2

b, § b,

Figure 4.3: M = 2, forward (left) and backward (right) scattering by a square lattice.

Next, we will do the numerical calculations for M = 2 and M = 3. We have limited
the incident angle to be in interval (0,7/2). If we define the positive z-axis direction as
the forward and the negative z-axis direction as the backward, then the incident wave
always propagates forward. There are two different cases for the scattered wave, forward
scattering (angle of the scattered wave is in the range of [—m/2,7/2]) and backward
scattering (angle of the scattered wave is in the range of [7/2,37/2]). In figure we

give the example angles employed to do the calculations
Forward scattering: 7 = /3, 79 = —7/3,
Backward scattering: 71 = 7/6, 72 = 57/6,

where 71 is the incident angle and 75 is the resonant angle.
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Figure 4.4: M=2. Comparison of the transmission wave intensity |Bi(D)|? over the detuning /0. Left:
forward scattering, Q0D/Cy = 1. Right: backward scattering, QoD /Cy = 4. Dot-dashed line: b = a, solid
line: b = a/2, dashed line: a = 0, thick dashed line: b = 2a.

|B1(X)?

X/L X/L

Figure 4.5: M=2, backward scattering. Comparison of the primary wave intensity |B1(X)|* across the
strip. Left: QoD/Cy = 2, right: QoD/Cy = 4. Dot-dashed line: b = a, solid line: b = a/2, dashed line:
a = 0, thick dashed line: b = 2a.

In figure we plot the transmission wave intensity |B;(D)|? against the detuning
Q/Qy for strip width QoD /Cy =1 for forward scattering and QyD/Cy = 4 for backward
scattering. For forward scattering, from the left hand diagram of figure [4.4] the elliptical
cylinder (i) is most efficient in blocking the primary wave (the continuation of the incident
wave in the array) while the line grating is the least efficient one. For backward scattering,
as is seen from the right hand diagram of figure the elliptical cylinder (ii) is the most
efficient in blocking the primary wave while the circular cylinder is the least efficient
one. The existence of the difference between forward scattering and backward scattering
is because of the different incident angles. For forward scattering, the incident angle
is /3, which is bigger than 7/4. Therefore the incident wave is easier to be blocked by
scatterers whose axis length in direction of z-axis is longer, which is the elliptical cylinder

(i). Similarly, for backward scattering, the primary angle is 7 /6, which is smaller than
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7 /4. Therefore the primary wave is easier to be blocked by scatterer whose axis length
in direction of y-axis is longer, which is the elliptical cylinder (ii). The line grating has
the same axis length in y-axis direction with elliptical cylinder (ii) but its area is zero,
which makes it less efficient than elliptical cylinder (ii) in blocking the incident wave.
In the case of backward scattering, there is a region of detuning that gives eigenvalues
that are complex conjugates. In this region, the solutions B;(X) and Bg(X) are oscilla-
tory with exponential decaying or growing amplitude. We define this region as the stop
band. In figure we compare the primary wave intensity |B1(X)|? across the strip for
scattering configuration in figure [£.3] when the detuning lies in the centre of their stop
band. From figure when the strip width QyD/Cy = 2, the primary wave intensity de-
cays most slowly for circular cylinder and decays fastest for elliptical cylinder (ii). When
the strip width increases to 4, the transmission wave intensity decays to nearly zero for
elliptical cylinder (ii) at the right edge of the strip and it decays more slowly for all the

other scatterers. When the strip width is large enough, the transmission wave intensities

of all four types of scatterers will decay to nearly zero at the exit edge of the strip.

Figure 4.6: M = 3, forward-forward scattering (left), forward-backward scattering (middle), backward-
backward scattering (right)

Next we consider the case of M = 3, i.e. one incident wave and two resonantly
scattered waves. Three types of scattering are possible.

1. Type I (forward-forward): both resonated waves propagate forward as shown in
the left hand diagram of figure We consider a rectangular lattice of x spacing L and
y spacing 2L. 71 = tan"!(1/13) ~ 4.4°, 75 = tan"!13 ~ 85.6°, 73 = —tan"!(11/7) =~
—57.53°.

2. Type II (forward-backward): one resonated wave is reflected and the other one

propagates forward as shown in the middle diagram of figure A square lattice of
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spacing L will be considered. 771 = tan~!(1/7) ~ 8.13°, 7» = —37/4 = —135°, 73 =
tan~! 7 ~ 81.87°.

3. Type IIT (backward-backward): Both resonated waves are reflected, therefore prop-
agate backward as shown in the right hand diagram of figure A square lattice of
spacing L will be considered. 71 = 7/4 = 45°, 7 = —7 + tan"!(1/7) ~ —171.87°,
T3 = —m/2 —tan~1(1/7) =~ —98.13°.

/0 0/Q

Figure 4.7: Three coefficients of the primary wave Bi1(X) in type I scattering. Left: circular cylinder
(b = a), right: elliptical cylinder (b = a/2). Dashed line: C’1V1(1>, solid line: C’2V1(2)7 dot-dashed line:
sV,

|B,(D)|?

Q/Q

Figure 4.8: Dependence of wave intensities for type I scattering on the detuning frequency Q/Qo. Left:
b=a, QD/Cy = 15; right: b = a/2, QyD/Cy = 6. Thick solid curve: |Bi(D)|?, dashed curve: |B2(D)|?,
thin solid curve: |B3(D)|?.
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Figure 4.9: Three coefficients of the primary wave B;(X) in type I scattering. Left: line grating (a = 0),
right: elliptical cylinder (b = 2a). Dashed line: Cy Vl(l)7 solid line: C’2V1(2), dot-dashed line: C’3V1(3)4

Figure 4.10: Dependence of wave intensities for type I scattering on the detuning frequency Q/Qq. Left:
a =0, QD/Cy = 3; right: b = 2a, QoD/C, = 4. Thick solid curve: |B1(D)|?, dashed curve: |Ba2(D)|?,
thin solid curve: |B3(D)|?.

In figure and we give the three coefficients of the transmitted wave By (X) in
type I scattering shown in the left hand diagram of figure [4.6] In figure [4.§ and we
give the dependence of wave intensities |B;(X)|* on the right edge of the strip X = D
for type I scattering over the detuning frequency /€. If we compare figure with
[4.8 and figure [4.9 with [£.10] respectively, we find there are valleys where two of the three
transmitted wave coefficients are nearly equal. For example, in the right hand diagram of
ﬁgure at /Q ~ 0.69, the coefficients CQVl(Q) and Cng(g) cross each other and nearly
equal to 0.5. On the other hand, the other coefficient ClVl(l) is nearly zero. Therefore,

the transmitted wave Bj(X) is dominated by the last two eigenvectors; its intensity can
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be approximated by

. . 2
’B1(X)|2 ~ ’02‘/:’1(2)e1)\2QOX/Cg _’_Cgvl(B)el)\SQOX/Cg

Q

}‘1 4 ol2=20)00X/C, |
4

9 (A2 — A3)Qp X

_ 4.99
cos c, (4.99)
Therefore the minimum transmission wave intensity occurs around
Q()X (2n + 1)7‘(’
= , n=1,2,... 4.100
Cy A2 — As] ( )

~ 5.26,15.68,26.13,....

In the right hand diagram of the strip width we use is Q9D /Cy = 6, which is near
the minimum transmission wave intensity occurring at QoD /C,; = 5.26. We can see the
minimum transmission wave intensity for this strip width is quite close to zero. For the
line grating a = 0, as we can see from the left hand diagram of figure there is only
one region (outside this region, one of the three coefficients CjVj(l), j=1,2,3, is nearly
1 and the other two are nearly zero, therefore |B1(X)|? is nearly one) in which none
of the coefficients CjVj(l) is absolutely dominant, therefore only one valley appears in
the transmitted wave intensity as shown in the left hand diagram of For elliptical
cylinders (both of b = a/2 and b = 2a), from diagrams and we can see two
regions of the detuning where two of the three transmitted coefficients are nearly equal
(the eigenvalues are close correspondingly) and the other one nearly zero. But only one
valley appears in the diagrams of the transmitted wave intensity. That is because in one
of those two regions of the detuning, the two eigenvalues are quite close which makes the
strip width be very big to let the second valley appears by . In figure we give

the second valley for the elliptical scatterers when the strip width is quite big (we only

give the local diagrams, the whole diagram looks quite untidy when the strip width is so

big).
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Figure 4.11: The local diagrams of the second valley for type I scattering. Left: b = a/2, QoD /Cy = 38;
right: b = 2a, QoD /Cy = 145.
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Figure 4.12: M=3. Comparison of the transmitted wave intensity for type I on the exit edge of the strip
|B1(D)|* over the detuning. Left: Q9D/C, = 2. Right: QoD/Cy = 3. Dot-dashed line: b = a, solid line:
b = a/2, dashed line: a = 0, thick dashed line: b = 2a.

|B1(D)?

Q/Q Q/Qy

Figure 4.13: M=3. Comparison of the transmitted wave intensity for type II on the exit edge of the strip
|B1(D)|? over the detuning. Left: QoD/C, = 2. Right: QoD/Cy = 3. Dot-dashed line: b = a, solid line:
b = a/2, dashed line: a = 0, thick dashed line: b = 2a.
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mop

Figure 4.14: M=3. Comparison of the transmitted wave intensity for type III on the exit edge of the strip
|B1(D)|? over the detuning. Left: QoD/C, = 2. Right: QoD/Cy = 3. Dot-dashed line: b = a, solid line:
b = a/2, dashed line: a = 0, thick dashed line: b = 2a.

In figure [4.12] we compare the transmitted wave intensity for type I scattering on the
exit edge of the strip against the detuning. We can see that the valley for line grating is
the widest and one of the two valleys for elliptical cylinders is wider than circular cylinder.
Therefore the line grating is most efficient to block the incident wave (Because the total
energy is conserved in the array by , part of the incident energy is transferred into
scattered energy by the array).

For type II forward-backward scattering and type III backward-backward scattering,
two of the three eigenvalues will be complex conjugates for some region of detuning (the
stop band). The stop band is always widest for elliptical cylinder (ii) and narrowest for
circular cylinder. In figure and we compare the transmission wave intensity
on the right edge of the strip |By(D)|? against the detuning /g and we can see the
valleys are always widest for elliptical cylinder (ii). Thus the elliptical cylinder (ii) is the
most efficient scatterer in blocking the incident wave and most energy is transferred into

scattered energy when the detuning lies in the stop band.

4.2 Resonant scattering of acoustic waves by semi-infinite

array

Here we consider the Bragg scattering of acoustic waves by a semi-infinite array of periodic
arbitrary shape scatterers occupied 0 < X < oo using the envelope equations (4.61))
obtained in last section. Note that there will not enough boundary conditions to determine

the unknowns because one edge of the strip goes to infinity. The additional condition
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that no waves propagate from infinity must be applied to determine the unknowns in the
envelopes uniquely.

We take the wave potentials in the left and right side of the y axis be

M
Bo= Y Apn(X,Y,T)ePrr, (4.101)
m=1
where
A, X <0,
Ay = (4.102)
A, X >0.

As in (4.71)), we allow a small detuning in the incident wave
Al_ (X, Y, T)eiﬁlr — Aoei(lC cos 71 X+ sin TlYfQT)eiﬁlr’ (4103)

and look for solutions in the form

A (XY, T B=(x)\ ..
m( ) — A ( ) el(ICsmTlY—QT)’ m=1,2,..., M, (4104)
An(X,Y,T) B (X)

Where the y variations are required to be same in every component of the solution by the
continuity conditions on the left edge of the array X = 0. The boundary conditions are
different from the finite strip width case because, for the semi-infinite array, there is only
one boundary X = 0. On this boundary, the pressure and normal velocity are continu-
ous and the continuity conditions are given by and . These two continuity

conditions give
B (0) = B1(0),
B, (0) = B,,(0), if cos7y, <0,
B (0) =0, if cosTy, >0, (4.105)

where 7, are angles of the waves, and we always assume the incident wave is directed to
north-east, i.e. 0 < 7 < 7/2.

If all scattered waves propagate forward (wave vectors lie in first quadrant), the
solutions are exactly same as the scattering by a finite width lattice. But when some of

the scattered waves propagate backward, because the array only has one boundary, there
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are not enough boundary conditions to get the solutions and some other conditions are
needed. The conditions that need to be applied are that the group velocities for every
term in the lattice must be directed into the lattice. The direction of the group velocity
determines the direction of energy transport, and it must be ensured that there is no
energy coming from infinity within the lattice. Now, we consider the case of only one
wave in the lattice and propagating backward to illustrate how to get enough conditions
to solve the problem.

From (4.88]) and (4.89), when M = 2, the elements of matrix F are

Q 1 A
= — — (ef,Me;; — 22
11 QO COS T1 + cos T <e11 €11 27TCL2> 9

1 A
F12 = — <e{2Meu — 27‘(22> ,

1 A
Fyy = —— (el iMe, — =2
T cos < R 27m2>’

Q1—sin7sinm 1 T As
F22 = — + 612M912 — 5 |
Qo COS To COS T 2ra

where a is a typical dimension of the scatterers. The matrix F hence has the following

characteristic equation
A2 — (Fi1 + Fyo)\ + Fi1Fag — FiaFyy =0, (4.106)
whose eigenvalues are

Fi1+ Py + A1/2
A2 = 5 ,

(4.107)

where A is the discriminant
A = (Fi1+ Fy)? — 4(F11 Fag — FiaMoy)

= (Fi — Fy)* +4F 2 Fy

Q cos(mp — 1) — 1 1 T As 1 T Ao \1?
= |= e;1Mej — — e, Mejs —
|:Q() COS T + costy \ M U ora? cosTy \ 12 127 ora?

4 As \?
(e{zMeu — 2m}> : (4.108)

COS T{ COS T2
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When the scattered wave propagates backward, i.e. cos o < 0, which makes the sign of
the discriminant A depend on the detuning Q/Qy when 79 is specified. It can be seen

that A < 0 within the stop band defined by

Q  Q Qf
<t e 4.109
Q Q2  Q ( )
where
QF COS T
Qo cos(ri—m)—1
2‘6?21\/1611 - 2?22’ 1 T As 1 T A,
- e;1Mej; — esMepp — —= || .
\/— €OS T] €Os Ty cos Ty ( AT 27Ta2> + COS Ty ( 1271 27ra2>

(4.110)

As an example, we choose the square lattice of spacing L and a reciprocal vector
K_i0 = —by = —27i/L, as shown in the right hand diagram of figure We choose
71 = 7/6 so 72 = 57/6 and the incident wavenumber is 3 = 27/v/3L. If we consider the
circular cylinder with radius of a, As = ma? and M is a two-dimensional identity matrix.
Then it follows from equation that the band gap boundaries are

Q- QF 2
QCO = -2 Q—z =3 (4.111)
Outside and inside the lattice, B,,(X) and By, (X) satisfy and respec-

tively. When M = 2, outside the lattice we get

By (X) = ekeosnX ' Br(X) = Relh2X, (4.112)

where R is the reflection coefficient needs to be determined, Cy = K(1—sin 7 sin 72)/ cos 7o.
In the case of finite strip width, R is determined by the continuity condition on the right

edge of the strip. Inside the lattice we have

dBdl)((X) - 1290 [FHBl(X) + FwBa(X)} (4.113)
dB;)((X) - 13; [FﬂBl(X) + Fzsz(X)]- (4.114)

If we denote the eigenvalues of the matrix F by A\; and Ay then

A0 - X990

Bi(X) =bie %~ +bpe o (4.115)
A1 (229

BQ(X) = boje Co + boge C9 T, (4.116)
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where b;;, ¢, = 1,2 are unknowns that need to be determined. By the boundary condi-

tions (4.105)),

B1(0) = b11 + b1z = B; (0) =1, (4.117)

Bs(0) = b + boe = B;(O) = R. (4.118)

Thus by (4.113]), (4.114)), (4.117) and (4.118]), we have

Fii =X+ RFyp i2%ex Fii— A+ RFyp 3220 x
= e Cg — e Y 7,

Bi(X) A — o A — o

(4.119)

_ (Frn = M)(F11 — A2+ RFya) 20y
By(X) = Fia(A1 — A2) ¢

+

(F11 — X2)(F11 — M1 + RF1g) i22%0x
e % . (4.120
Fia(A1 — A2) ( )

Within the stop band —2 < Q/Qy < 2/3, A < 0, the eigenvalues \; 2 are complex
conjugates which makes one of the coefficients of B;(X) and B2(X) zero under the
constraint that By (X) and By(X) cannot be infinity when X — oo. If we set Im(\;) > 0,

then b1o and byy must be zero and hence

A1 — iy
R=—77r———, 4.121
oy (4.121)
so that the solutions are
YLy
Bi(X)=c € (4.122)
Fip — A\ it
By(X) = “LL AT X (4.123)
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Q/Q

Figure 4.15: The reflection coefficient R over the detuning £2/Qo.

Outside the stop band, if 2/Qy > 2/3, and we assume \; = VA >0, =—VA <0,

the group velocity associated with A; is

ol Aw Q

=" - _ " S0 4.124
9T AR NQ0/Cy (4.124)

then the energy propagates to the right. The group velocity associated with Ao is

o2 Aw Q

_Aw 412
9= Ak T e, < (4.125)

then the energy propagates to the left. But because the lattice is semi-infinite, there
should not be energy coming from the infinity, therefore the coefficient of terms associated
Ao should be zero, which means that

_ A — Iy

R
Fi9

(4.126)

and the solutions are the same as (4.122)) and (4.123)). Finally when Q/Qy < —2, because
Q) < 0 and Ay > 0, the group velocity associated with A\; will be negative which leads to

A2 — F1p
r=22_"1 4.127
i ( )

and the solutions are

i22% x

Bi(X)=e % 7, (4.128)
Fi1 — Ay j22%

By(X) =1L 72 X (4.129)



In figure we give the diagram of the reflection coefficient |R| against the detuning
Q. In the stop band (—2,2/3), |R| = 1, and out of the band gap, |R| decays to zero when

the detuning is big enough, which means most energy propagates into the array.

4.3 Elastic resonant scattering by doubly-periodic arrays

In this section we generalise Li and Mei’s method in [49] to the multiple resonant scat-
tering of elastic waves by a doubly-periodic array of identical cavity cylinders. We first
derive the envelope equations in an infinite array of cavity cylinders in an elastic medium
and then apply them to a finite width (finite in one direction and infinite in the other
directions) elastic strip of cavity cylinder array bounded by the same acoustic media on

both sides.

4.3.1 Formulation

As in the previous two sections, we assume that the cylinders are infinitely long and
then the problem is inherently two dimensional. The coordinate systems, lattice vectors,
reciprocal vectors and Bloch vector are exactly the same as those used in section
In the acoustic case, only dilatational waves are present, but in an elastic medium
there will be dilatational and shear waves coupled together through the boundary condi-
tions. The dilatational potentials ¢ and shear v satisfy the two-dimensional wave equa-

tions

0%¢

2
aa;’f — 3V = 0. (4.131)

The periodicity of the problem implies that the potentials ¢ and 1 also satisfy the Bloch
conditions (4.3]). The boundary conditions in the array for the problem come from the

stress free condition on the surface of each cavity and are

20 2 92 20 2 92
M<_¢+ ¢ a—w—i— 1/}):0, r; = a,

2 J— —
20 T aaear TRV L5 T e

(4.132)

1% 100 106 10% 2 _ _
2“<a868r_a?ae_aar_a?ae?>_ﬂl(’\+2“)¢_o’ ri=a
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where 31 and P2 are wavenumbers of dilatational and shear wave without the detuning.
We denote the detuning of the wavenumbers by Ky and s for dilatational and shear
wave respectively (the detuning of the frequency is written to be Q = Kec = Kjc¢; = Kaca),
then the detuned wavenumbers k1 = (1 + e%lCl and ko = B2 + e%ng, where €1 = f1a < 1
is the small parameter we are going to use. The detuned frequencies w’ = w + €32, where
w = B1c1 = PBace. The method of matched asymptotic expansions and multiple scales will
be used. Each cell is separated into two regions, the inner region around the cylinder and
the outer region far away from the cylinder. The fast and slow variables are introduced
in (@9).

Here, we consider the perturbation of the dilatational wave. From section [3.2] we know
that if the leading order outer potential of the dilatational wave is O(1), then the leading
order outer potential for the shear wave is O(e?). Then, if we denote the outer potentials

by ® and V¥ for dilatational and shear wave respectively, they can be expanded as follows
® = Re{[®g + 2Py + O(e])]e Y, (4.133)
U = Re{[e2Uy + O(e])]e '}, (4.134)

where ®j, ®9 and ¥y are all functions of fast and slow variables (z, y, X, Y, T'), where

the slow variables X = €2z, Y = €3y and T = €3t. Substituting (4.133)) and (4.134) into

the governing equations (4.130) and (4.131]), we obtain the governing equations for the

outer potentials &y, P9 and Us.
At the first order, the outer dilatational potential @ is governed by

2 w?
Vi + —5 & = 0. (4.135)
1

At the second order, the dilatational potential ®5 is governed by

w? — 2iw OB
V20y + — By = -2V - VPy — ——, 4.136
2t c? 2 0 c? oT ( )
and the shear potential ¥y is governed by
w2
VAW + =5 Uy = 0. (4.137)
c

2
In addition, ®g, 2 and ¥y satisfy Bloch theorem (4.3)). The leading order solution is the

dilatational wave, which is formally the sum of all mutually resonant progressive waves

M
Dy = Z Am(Xa Y, T)l/}m(‘% y)? (4'138)

m=1
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where
bi(z,y) = P, (4.139)

with all 8,, = B8(cos 7,1 + sin 7;,,j) determined by the Bragg condition (4.4)). Then
M . M o
Do =D Ap(X, Y, T)ePn" = 3" Ay (X, Y, T)elmB el cos(f=rm) (4.140)
m=1 =1

From (4.140)), the inner expansion of the leading order outer solution up to order e%
for the dilatational wave is

M
- 1
o002 — Z ApelPrRi [1 +ierpcos(0 — ) + §i2e%p2 cos? (0 — Tm):|

m=1

sin 6

1 20
— 6’ [1 + (cos 27, sinsz)c?sMﬂ } (4.141)

From equation ([3.156]) in section 3.2, the inner solution for the dilatational wave ¢ is

_ 1 [cos260 cos 1 /cosf
=B = B B T r=
¢ =By +uy 2 (sin20> + Buivii(e) + e [ 1+u1p(sin0> +ulp<sin9) + }

M
- . ) . 0
= Z AmelﬂgRﬂ {1 + ie1p (COS Ty, SINT,) <COS )

m=1

cos
+ 611/11(61)111T1P<Sin0> + pi21(€1)Bo1 + €3 log €1 Boo

_ 1 1 cos 260 cos cos 20
2 = 2 T =T ~T 2
B 1 — -B -
T [ 2+ tlogp = Bt <Sin20> +V1p<sin0> tvae <sin29> * }

+0(e}), (4.142)

where the ellipses indicate eigenfunctions that are not needed in the current part.
As in the acoustic case, to obtain the envelope equations, we apply Green’s identity
to 1%, and the composite solution in a cell C' (the cylinder in this cell is marked as 5),
where 17, denotes the complex conjugate of v,,. We use £ as the composite expansion
and take
=03 4 ¢ _ 22 (4.143)

Here we include the inner solution up to order €3 which is different with the acoustic case.
This is because the order €2 term in the inner solution will contribute to the integration

in Green’s identity. The Green’s identity is

* * _ Oy, S
//C (EV2r, — 93 V) ds = /BCS (g S~ wm%) dl, (4.144)
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where Cj is the cell C' excluding the cylinder S. Then noting that ¢(2 — ¢(22) contains
only singular terms of order €2 and hence when written in terms of outer coordinates

pD — (22 = o(€2) by section ([3.2)). Then the left hand side of Green’s identity becomes

LHS@EI4Y = / / (@@ 16 — 92D)V2yr — it V2D 4 ) — 62D)] ds
Cs

:// q><2>v2¢;;—w;v2q><2>) ds

[ [ [0 -6, 920 - 622)]

_ / / (2®v205, — 4, 728@ ) ds + o(). (4.145)
Cs

Using equation (4.135) and (4.136]) and dropping terms of order higher than €2

LHS{E14d) = / / (@0 V2, — ¥k, V2®g) ds + €] / / (@2V2, — v, V2®y) ds
Cs s

wQ
[ [ oo - v (<500) | as
W g, 2w 020

+e%// [—@252% — P (—2V -V — 07¢2 -
Cs

— 2w ., 0P
= 62// (2 £V VO + ik, °>
L) e v 0T 2 Tmar

M
= 4 <2iZVAhﬁh+ = Mh) / / OO s
h=1 s

M /21w 0A
h Ty
= &) <02 a7 + 2iV Ay, - Bh)// 1(Brh=Bm)"r s, (4.146)
h=1

Since the cylinder radius is much smaller than the periodicity of the lattice, the cross-

sectional area of a cylinder A is much smaller than that of the cell A., therefore the area

of the cell excluding the cylinder is: Az = A. — ma? = A:[1+O(€2)] = A.. Therefore the
integral in (4.146)) can be approximated by

// R Y // (BB % 45 4 O(2) A,

= [pm + O(D)] A.. (4.147)

Substituting (4.147)) into (4.146|) and dropping terms of higher order, we get

9 21w (8/1

LHSETH) = &~ oF + £ VA ﬂm>. (4.148)
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The right hand side of Green’s identity is
RHS(IT)
7 et () et () () ]

cos

T
+ 61V11(61)U11 <sin0

_ 1 1 cos 20 cos 6 cos 260
2 T T _T
B, — -B - o
+a [ 2P0t <sin20> Vi <sin9> V2 <sin26) * ]} .

{ — ieg cos(0 — 7pp) [1 — i€eg cos(0 — 7y —ie%[l + cos2(0 — 7,)] + O(e‘i’)] } o 1BLR; 4

> + pi21(€1)Bo1 + €3 log €1 Boo

2w
+ /0 {1 — i€y cos(0 — 1) — ie%[l + cos2(0 — )] + O(e?{)} X

. (cos26 r(cos®\  p[cosf
{ 240 (sin29> ta [ul <sin 9) H <Sin9
1 _p(cosf _p[cosf _4TR.
+6% [vo — §Bo + VlT <sin9> + 2v2T <S, > + .. ] } e~ BmR;j 19

inf

9 _ 7 ( cos 26 . [ cos26 _iBTR, 3
=€ [21}0 + up (sin 20) + 2iug <sin 09 ) | © I+ O(ey). (4.149)

Next we need to eliminate the unknowns 7y, ug and ujy. To achieve this, we need to do
the matching between the outer solutions and the inner solutions. The inner expansion
of the outer solution for dilatational wave is given by . The inner solution for
dilatational wave is given by , in which the order €? term is
b= Byt mtos 10+ 1 (S 20) T (20) et (2) 4
(4.150)

The order €3 term for shear wave is given by (3.161)

A . Pl [0 1 cos 20 cosf cos 20
=B Ug 1 0 oI o1 2
V2= Batdologp+ — 10 (sin29> +V1p<sin6’> V2 Ginog ) T

(4.151)
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Substituting for ¢o and ¥ by ([#.150) and (£.151)) in the stress free boundary conditions

in inner coordinates (3.139)) and (3.140|), the orthogonality of the trigonometric functions

requires their coefficients must be zero, which gives

1
vo = (1~ P?)By, (4.152)

_ 4.153
p2—1 "@T T proq o (4.153)

up1 =

where ug = (u01,u02), Vo = (1721,1722) and vy = (@21,@22). By the matching rule $0.2) =

#20) we obtain

M
By= Y ApePnts, (4.154)
m=1
M
ul =i Z AmeiﬁzRﬁ'(cos T, SIN Ty, ), (4.155)
m=1
M
o7 =1 S AmePn R (cos 27, 5in 275 (4.156)
4 m=1 ’

Because the leading order is from the dilatational wave, the outer solution for shear wave

U starts from order €7, so W(0:2) = (. Therefore the matching rule (02 = $(20) gives
ve =0, (4.157)

then, by (4.153)), (4.156) and (4.157)), we have

M

9 .
ul = 1 p? g ApePmR (COS 2Ty, SIN 277, ). (4.158)
m=1

By (4.152)) and (4.154)) we have

M
1 2T 1 .
vo = 5(1- P?) Y " ApelPmRi, (4.159)

m=1
In (4.149)), there are three unknowns, vp, ug and u;. We have obtained the expressions
for vgp and ug in the last two equations. uy is related to u; and the relation can be found

by substituting for the order € inner solutions ¢3 and zﬁg in the stress free boundary

conditions (3.139) and (3.140)) and making the coefficients of the trigonometric functions
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be zero. This procedure has already been done in section The relation between uy
and u; is given by equation (|3.174)
1
uy = —5111. (4.160)
Now by (4.155)) and the relation between u; and u; we have

M
1 .
us = —51 g A PR (COS Ty, SIN Ty ) (4.161)

m=1

Therefore, by (4.149)), (4.158)), (4.159) and (4.161)) the right hand side of Green’s identity

becomes

M
2 .
RHS@144) = é3n Z [1 - P2+ T p3 o8 2(1n, — Tim) + cos(1p, — Tm):| el (Br—=Bm) Ry
h=1
(4.162)
Then by the integration result of the both sides of Green’s identity (4.148) and (4.162]),

we obtain the envelope equations

04n | ctm . T4, = —Lio MA 1— P? 2 2
87T+ g VA, = —3i 0}; n|l— —{—1_P2cos (Th — Tm) + cos(Th, — Tm) | »
(4.163)
2
where C;m) = %Bm, m=1,2,...,M and Qg = ﬂij . Outside the cylinder strip, there
C

are no cylinders, therefore the envelope equations become

0A =
Yim (m) A = =1,2..... M. 4.164
8T +Cg m Oam ) <y 9 ( 6)

Same as the acoustic case, if we multiply both sides of equation (4.163) by A¥, (the
conjugate of A,,) and add the resulting equation with its complex conjugate, after sum-

mation over m, we obtain the energy conservation equations

M
8‘Am‘2 m) o 2
> < T Cci™ . V|A,*) = o. (4.165)

m=1
Thus the total energy is conserved in the array.

If the array is infinite, the amplitude does not depend on the space variation, thus only

the time variation is involved. If we search for solutions in the form of A,,(T") = ame 9T
the envelope equations become
e < , 2
Qay, = YA ;ah [1 — P+ T pz 08 2(1h — Tm) +cos(th, — i) | (4.166)
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where = Kyc1. Ky is the detuning of the wavenumber 8; and the detuned wavenumber
k1= 01+ e%lCl, and the detuned frequency ' = kic; = w + G%Q. In chapter |3 we con-

sidered the same case for infinite two-dimensional array of cavity cylinders and obtained

(3.181)

M
w2

Unm =
Ac h=1

cos 2(1p, — Tm) + cos(Th, — Tim) | U, (4.167)

2
1— P?
{ t 1 pe

where 6, = (k3 — 82,)L?/€%, Bm = |B,,] = B and € = kia. Equations (4.166)) and (4.167)

define same eigenvalue problems, therefore

2wL? 28(k1 — B)L?
b = 21 2 — LT (4.168)
“a €1
which is consistent with the definition of d,, (3.132))
k3 — L% (k ki —B)L*  2B(k; — B)L?

€ € €5
on a first approximation in the limit k; — 8.

Similarly, when we consider the perturbation of shear waves the envelope equations

are
~ M
0A ~ —~ 1.~ ~ pt
J+C§m).VAm = ——iYp Z Ap, [2 cos 2(7, — Ty ) + P2 cos(ty, — ) |, (4.170)
oT 2 Pt 1-P

2
where m = 1,2,..., M, C = 28, and Oy = —2. Outside the cylinder strip, the
w 52-'40
envelope equations become
OAm At =~
a—jf”Jngm)-VAm:o, m=1,2,..., M. (4.171)

The corresponding equations for energy conservation are

M o~
6|Am|2 m) S| A |2
2 <8T +CIM . V|4,[2] =o0. (4.172)

m=1
Same as the perturbation of dilatational waves, when the array is infinite and we search
for solutions in the form of Xm(T) = ame T then the envelope equations (4.170)

become

Qay, =

1— P2

M
e Z ap 2P o8 2(Th — Tim) + P2 cos(Th, — Tm) | - (4.173)
2wA, —
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In chapter |3] the corresponding eigenvalue problem for perturbation of shear waves when

the array is infinite is

S w2 SN[ 2Pt .
T [ o8 2(1h — Tm) + P2 cos(1y — ) | U, (4.174)

Unbm =
Ac

Equations (4.173]) and (4.174)) define same eigenvalue problems, therefore

. 2wL? 26(ky — B)L?
b= 2L 280 —HLT (4.175)
€3 €
which is consistent with the definition of 9, (3.132))
. k3 —BYHL?  (k ko — B)L?  2B(ke — B)L?

2.2 - 2,2 ~ 2 ’
ksa ksa €7

on a first approximation in the limit ko — 3.

4.3.2 Elastic strip with cylinder scatterers bounded by acoustic medium

In this part, we consider how the wave propagates in an elastic medium containing
infinitely long cavity cylinders whose axes are along z axis and are arranged doubly
periodically along x and y axes, see figure [£.16] The strip width in the direction of the
x axis is finite, but the strip is unbounded in the direction of y axis. The elastic strip is
bounded by the same acoustic medium on both sides. We denote by A the Lamé constant
for the acoustic medium, and A and p; are the Lamé constants for the elastic medium. A
train of plane acoustic waves is incident on the elastic strip from its left boundary. When
the incident waves impinge on the elastic medium, both dilatational and shear waves
will be generated and they all propagate through the elastic lattice until they arrive at
the right boundary of the strip. Because the acoustic medium does not support shear
waves only dilatational waves propagate into the acoustic medium on the right side of
the strip. In the cylinder strip, the governing equations for the Bragg resonated envelopes

are equations (4.163)) and (4.170]) for dilatational and shear wave respectively. Here we

consider the case that only dilatational waves are resonated in the array.

Same as the acoustic layer problem in section the elastic strip width d is required
to be order 1/€? to make sure the cylinder array is big enough to make the resonance
happen. Plane acoustic waves arrive from the left side of the strip at an angle a; with

respect to the x-axis. We write the waves in the three zones (left side acoustic medium,

110



y
Acoustic Elastic E Acoustic

o o o o o o a
o o o o O 6? """""
o o o o o
o o o o o
o o o o/o o o
o o o b oh
o o o o
o o o o o
oxoxo o o o
® 8 o o o o |

0 Y1) 94

% S id X

Figure 4.16: Elastic strip bounded by acoustic media. M = 1.
elastic strip, right side acoustic medium) in the form
(Zsf — Z |:Am(X, Y, T)eiﬁ(a: COS A +Y Sin m ) + Al_T(X, }/’ T>eiﬁ(fxcos o¢1+ysina1)? X < 0’
(4.177)
M
(ZS — Z |:Am(X, }/7 T)eiﬁl (z cos Om~+y sin O, + A;@ (X, Y, T)eiﬂl(fx €08 O +y sin Gm):| 7

0< X <D, (4.178)

M
b= [ﬁm(X, Y, T)el2(@cosymtysinym) L Ar (X 'y, T)elf2(~wcosymty sinm] ,
m=1
0< X <D, (4179)
M . .
¢t =Y AL(X, Y, T)elfllemdeosamtysinan] x5 (4.180)
m=1

where D = e%d, ¢~ is the dilatational wave potential (with unperturbed wavenumber

B) in the left side acoustic medium, ¢ and 1) are the dilatational (with unperturbed
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wavenumber 1) and shear (with unperturbed wavenumber [5) wave potentials respec-
tively in the elastic medium and ¢T is the dilatational wave potential in the right side
acoustic medium. In the wave potentials, A]" is the envelope of the reflected wave of the
incident wave in the left side acoustic medium, A], and gfn are envelopes of the reflected
dilatational and shear waves in elastic medium respectively, a,,, are angles for dilatational
waves in the acoustic medium and 6,,, and -, are angels for dilatational and shear waves

respectively in elastic medium. By Snell’s law, we have
Bsinq,y, = f1sinb, = Bosinvy,, m=1,2,..., M. (4.181)

Now it is the time to impose the boundary conditions, which include the continuity
of the velocity and stress. At first, it is the continuity of the normal component of the

displacement u,,

Uy, = Uy, on z =0, (4.182)
uf = u,, on x =d, (4.183)
where
0 0
e,

In acoustic medium, there is no shear wave existing so ¢ = 0. Secondly, we consider

the continuity of the stress on the boundaries. The components of the stress tensor have

expressions
0% 0% 0%¢
Ozy = 41 <8y2 ~ 92 + 28m8y> , (4.184)
0%¢ 0%
_ 2
Ogz = MV7O + 211 <6$2 + 8.%(9:1/) ) (4185)

for the elastic medium. For the acoustic medium, the stress can be obtained by replacing
A1 by X and setting u; = 0. The normal components of the stress o,, must be continuous.
The tangential components o, of the stress must also be continuous, but since the
tangential stresses in the acoustic medium vanish, this condition reduces simply to the

requirement that the tangential components of the elastic stress be zero at the boundary
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of the elastic strip. Therefore we obtain the following four continuity conditions

Ozy =0, onz =0, (4.186)
Ozy =0, on x =d, (4.187)
Oy = Ogz, ON T =0, (4.188)
o = 0y, on T =d, (4.189)

where o, and o, are the normal components of the stress in the left side and right

side acoustic medium of the strip. Substituting for ¢, ¢, ¥ and ¢+ in the boundary

conditions (4.182), (4.183), (4.186)-(4.189)), we obtain

o9~ _9¢ oW _
o 9 + By on X =0, (4.190)
9¢* _ 0¢ 3@0 _
9% 821/1 o
<8y2 = o2 8x8y> 0, on X =0, (4.192)
9% 321/1 o
1 <8y2 s 33;83/) 0, on X =D, (4.193)
_ 0 ¢ 0%
2 2 _
AV~ = MVop+2u 1<8 3 8m8y>’ n X =0, (4.194)
AV2ot = A\ V20 + 2 82¢ O on X =D (4.195)
! M\ 922 " ozay ) ‘ '
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If we combine the solutions forms in —, these boundary conditions become
B1 08 0 [A (0,Y,T) — A7, (0,Y,T)] + B sinvy, [ﬁm(o, Y,T) + A (0,Y, )]
= Beosam[A,(0,Y,T) — 6,1 A77(0,Y, T)], (4.196)
1 c08 0y [Arn (D, Y, T)e 000 — 47 (D, Y, Ty Prdoostn]
(1 sin v, [/Tm(D, Y, T)eilbdcosvm + A\Tm(Da Y, T)efiﬁzdcos'ym]

= Beosam AL (D,Y, T)ePdcosam 4.197
m

B2 €08 29, [ A (0, Y, T) + AT (0, Y, T)] — B2 5in 20,1, [ A, (0, Y, T) — A%, (0,Y,T)] =0,
(4.198)

,3% COS 27Ym, [A\m (l)7 Y, T)eiﬁzdcos Ymo g A\:n(Dv Y, T)efi,é’gdcos ’ym]

= B} 8in 20, [Ap (D, Y, T)eP1desfm — AT (DY, T')e Frecostm] (4.199)
A1 32 (A4 (0,Y,T) + A},,(0,Y,T)] + 2111 {5% cos® 0,, [Am(0,Y,T) + A,(0,Y,T)]

+ B2 ¢08 Y SN Yy [ A (0, Y, T) — A7 (0, Y, T)] } = A2 [4,,(0,Y,T) + 6, A;7(0,Y, T)],

(4.200)
)\15% [Am(D, Y, T)eiﬂldcosem + A:n(D, Yv, T>e—iﬁ1dcos Gm]
+ 211 {5% cos® 0, [Am(D, Y, T)eiﬁldCOS Om 4 Ay (DY, T)e*iﬁld“’sem}
+ 32 cOS Y SN Y1y [A\m(D, Y, T)eiﬂ?dcomm — A\;@(D, Y, T)e‘iﬁ?dcoﬂm] }
= \32AS (D, Y, T)elPdcosam (4.201)
where m = 1,2,..., M. In the above 6M equations, there are 6}/ unknowns A, (m =

2,..., M), AT", Ap, A A, A\fn and A so the system is solvable.
Next we are going to do some numerical calculations using the above systems. At

first, we consider the case of M = 1, i.e. there is one dilatational and one shear wave
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in the cylinder array and only one dilatational wave outside the array (reflected waves

should also be included). We allow a small detuning in the incident wave
AI ()(7 Y, T)eiﬁlr — Aoei(lCcos alX—HCsinalY—QT)eiﬁlr’ X <0, (4202)

where I is the detuning of the wavenumber 5 and 2 is the detuning of the frequency,
related by £ = Q/¢, and ¢ = \/W is the wave speed in acoustic medium. By the
continuity conditions at X = 0, D, the y dependence must be same in every component
of the solution. Thus, the envelopes in the strip and the acoustic medium on the right

side of the strip have the form

A(X,Y,T) = By(X)elkrsinoy=aD), (4.203)
AL(X,Y,T) = By(X)elKesinny=aT) (4.204)
Ai&— (X, Y, T) _ A2ei[lC cos a1 (X—D)+Ksin alY—QT]’ (4205)

where by the Snell’s law Ksina; = Ky sinf; = Kasiny; (i.e. Ke = Kiep = Kacea).

Within the strip, the slow variations of the dilatational and shear wave satisfy the

envelope equations (4.163) and (4.170)), that is

8141 . aAl 8Al . 1.

87T + (COS 01, Sin 91) . <8)(, 8}/> = §IQOP1A1, (4206)
A, _ OA; A 1. -~

87T + CQ(COS Y1, Sln’yl) . (8){’ W) = §IQOP2A17 (4207)

where Py = P2 —2+2/(P? - 1), P, = P?(P?+1)/(P? — 1). From (4.203)), (4.204) and
(4.206]), (4.207)), we obtain

Bi(X) = Aje X, (4.208)
Bi(X) = Cye?X, (4.209)
where
vy = Kqcosfy + 20?2(]:;91, vy = Kqcosy + 26?2(];2%, (4.210)
Q = ;171, Qo = 57;1. (4.211)
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Therefore, we have

Al_(X,Y,T) :Aoei(lCcosalXJrleinalYfQT)’ X <0’

AI_T(X, Y, T) _ Boei(—ICcosa1X+ICsina1Y—QT)’ X <0,

Al(X,KT) — AleilxlXei(lCl sin@lYfQT)y 0< X < D,
A?{(X, }/‘7 T) — Ble—illlXei(lcl Sin91Y—QT), 0< X < D,

A\l(X,KT) _ Cleingei(ng sin')qY—QT)7 0< X < D,

EE(X, }/‘7 T) — Dle—iVQXei(ICQ Sin’le—QT)’ 0< X < D7

AT(X, Y, T) _ A2ei[lCcosa1(X—D)+ICsina1Y—QT]’ X > D.

(4.212)
(4.213)
(4.214)
(4.215)
(4.216)
(4.217)

(4.218)

Substituting for the forms of these envelopes in the continuity conditions (4.196)) -(4.201))

we obtain the following system

where M =

k cos oy
0
0
0

—k?2

M.a=b,
fi -hi ky ky
Freldn _ fre-idn e i oo
—2k, f1 2ky f1 3k 13—k
ok, e 2k e (- R) (13— ke
M+ KD +2m f} M2+ kD) + 2 f} 2u1ky f2 —2p1ky f2

MUE+E2) + 2 7] M (FE+E2) + 2 fPle™ N 2k, fod¥2 2k foeT W2

ky = ksinay,
a = (B(), Al, Bla Ch D17 A2)7

b = (fcosaido, 0, 0, 0, AG>4p, 0),
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—k cos aq

0

0

0

—\k?

(4.219)




and

fi=(B1+€P1Q1)cosbh, fo=(B2+ €1 P2Q2)cosi,

Q1 = Qo/(2c1 cos? 01), Qa = Qy/(2¢5 cos® 1),

0, — sin~! <ﬁsina1> oy = sin—L <ﬁsina1>
b ’ Ba

From the system (4.219)), we can express the unknowns By, A1, By, Cy, D1, A in terms

of the incident wave coefficient Ay and then assess how the waves propagate through the
strip. For example, we consider the transmitted wave (bf.
For an acoustic layer without cylinder array bounded by another acoustic medium on

both sides, the modulus of the transmission coefficient is [10, page 67]

|Tr| =2ccqppy sec al/\/{Zlch%prf cos®(kyd cos 0y) sec® o + [cfpi sec? 6,

2

+ 2020%,02/)% sec? aq + ¢*psect a cos? 01] sin2(k1d cos 91)}. (4.220)

From ([4.220)) we can see the transmission coefficient is periodic in ky1dcos 6y (see figure

4.17)), and the minimum and maximum of the transmission coefficient are

|T7|maz = 1, at kidcos by = n, (4.221)

2ccy pp1 sec oy

’Tr|min -

Vet pTsec? 0y + 223 p2p? sec? ay + cAprsect ag cos? B
at kidcosf; = (n —1/2)m, (4.222)

where n € Z. When the layer is elastic and with no scatterers, the transmission coefficient
is a function of both of k1d cos 01 and kaod cos 1, see [10, page 67]. When the scatterers are
present in the strip, the transmission coefficient is a function of not only the wavenumbers
k1 2, strip width d and angles 61,71, but also the size of the scatterer.

In figures we plot the transmission coefficients (the ratio of the acoustic
pressures in the transmitted and the incident waves) over the parameter containing the
strip width and incident angle, kid cos 61/ or B1d cos 6y /m, for three kinds of strip when
the incident wave is a plane sound wave. The first strip is a water layer without scatterers
bounded by air on both sides (note that this is only an illustration as there is no such

structure in reality), in which there are no shear waves. The second one is a copper layer
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without scatterers bounded by air on both sides (with shear waves), and the last one
is also a copper layer bounded by air but with doubly-periodic array of cavity circular

cylinders in the layer (also with shear waves).
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Figure 4.17: Transmission coefficients for water layer bounded by air.
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Figure 4.18: Transmission coefficients for steel layer without scatterers bounded by air.
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Figure 4.19: Transmission coefficients for steel layer with scatterers bounded by air. The scatterer size is
a/L=0.2.

The parameters we use to plot figures [4.1714.19] are

Material/Parameter | Density (kg/m?) Lamé constants (Pa)
Air 1.25 A = 144500
Water 9938 A =21 x 10°
Steel 8000 Al =9.94 x 1010, 11y = 7.81 x 1010

Table 4.1: Parameters.

When the layer is an acoustic medium, only dilatational wave exists in the layer for
both of normal and oblique incidence. But when the layer is elastic, the elastic medium
in the vicinity of the boundary thus suffer both dilatational and shear stresses when the
incidence is oblique. In the majority of practical cases, the velocity of sound in acoustic
medium is less than the velocity of dilatational waves in elastic medium. It may also be
less than the velocity of shear waves in elastic medium. The velocities and directions of

the different waves are given, in accordance with Snell’s law, by the expression:

c - a _ 2 (4.223)

sinoy  sinf;  sinvyg

Because the shear wave velocity is less than the dilatational wave velocity, 67 is always
greater than ~;. Let the incidence be increased to its first critical value for which the
refracted dilatational wave is directed along the boundary, i.e. §; = m/2. For angles

of incidence greater than this, the dilatational wave is totally reflected and only shear
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wave is transmitted through the layer. When the incident angle is increased to its second
critical value, the refracted shear wave is then directed along the boundary and becomes
a surface wave.

Now we consider the case that one dilatational wave is resonated in the strip array
(steel layer bounded by air), i.e. M = 2. For simplicity, here we consider the normal
incidence, i.e. the incident angle a; = 0, and then the angle of the primary wave in
the strip is 61 = 0. We assume the resonated dilatational wave is in the angel 6 = T,

therefore no shear waves exist in the strip. We look for solutions in the form

AL (XY, T) B, (X)
An(X,Y,T) | = Ao | By(X) | X5 =01 1y = 1,2, (4.224)
An (XY, T) B (X)

Then, inside the the cylinder strip, from (4.163) the envelope equations become

d [ Bi(X) iQ—OF B1(X)

— = , (4.225)
X \Byx)) Y \ByX)
where the matrix F has elements
1 Q 1
Fi = — cos? 6, + =P, 4.22
H 00891 <Qo cos ! + 2 1) ’ ( 6)
Fip = L P2—1+Lcos(29 —261) — cos(fy — 61) (4.227)
12_200561 P21 2 1 2 1) .
Py = — P2—1+Lcos(29 — 261) — cos(fz — 61) (4.228)
21_200592 P21 2 1 2 1) .
1 Q 1
Fho = —(1 —si i —P. 4.22
29 c0s 05 |:Q()( sin 64 sin 92) + 5 1] ( 9)

Here Py = P2 —2+2/(P%?—1) and Qo = me1/(B1.Ae). The eigenvalues of this matrix are

Fi1 + Foo £ VA
A2 =

4.230
) 2 ? ( )

where A is the discriminant
A = (Fi1 + Fy)? — 4(Fi1Fp — FiaFn)
= (F11 — Fa2)? + 4F12Fy
_ [QCOS(92—91)—1 +1P1( 11 )r

Qo cos 05 2 cosfy cosby

1 2 2
| P> — 14—~ cos(205 — 20;) — cos(6s — 61| . 1.231
cos 0 cos O [ + P2 _1 cos(263 1) — cos(6: 1)} ( )
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When the scattered wave propagates backward, i.e. cosf2 < 0, which makes the sign of
the discriminant A depend on the detuning /. It can be seen that A < 0 within the

stop band defined by
Q- Q  Qf

=<5 <o 4.232
Q0 S0 " Qo (4.232)
where
OF cos fy ‘PQ — 14 5 cos(20; — 20) — cos(f — 61)
C — :|:
Qo cos(fp—0) —1 /— cos 01 cos O3
1 1 1
5P - : 4.2
2"t <cos 0, cos 02>:| (4.233)

In the case we consider, §; = 0 and 6y = 7, thus the boundary of the stop band is

Q7 Qf
< =-3.05, —==1. 4.234

In figure and we compare the transmission coefficient for a steel layer bounded
by air on both sides when there are no cylinder array in the steel layer and there are cavity
cylinder array in the steel layer. We can see the transmission coefficient is nearly zero
when the detuning of the frequency €2/ lies in the stop band. The size and the location
of the stop band depend on the incident and resonated angles and the Lamé constants of
the material. Therefore by using this theory, we can design soundproof materials to block

sound waves with particular frequencies by choosing different materials of the strip.
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Figure 4.20: Transmission coefficients for steel layer without scatterers bounded by air.
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Figure 4.21: Transmission coefficients for steel layer with scatterers bounded by air. The cylinder size is
a/L = 0.05.
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Chapter 5

Three-dimensional acoustic wave

scattering by arrays

We have considered the elastic wave propagation through two-dimensional periodic ar-
rays of cavity cylinders in chapter 3| Now we move to the case of three-dimensional arrays
using the same method as chapter |3| In this chapter, we consider the acoustic wave prop-
agation through triply-periodic arrays of arbitrary shape scatterers using the method of
matched asymptotic expansions. In the first section, we consider the scattering of a plane
incident wave by one fixed rigid sphere of radius using the method of matched asymptotic
expansions. This problem has already been done using the same method in [15, page 184],
we present it here as an introduction to the three-dimensional scattering and to motivate
the leading order term in the outer expansion in scattering by a triply-periodic array.
The acoustic scattering of a plane wave by a rigid sphere was first considered by Rayleigh
[80], where the sphere is assumed to be small compared the incident wavelength. Then
Anderson [4] considered the case when the sphere size is comparable to the wavelength,
where the scatterer is a fluid sphere. The elastic scattering by solid spheres was consid-
ered by Faran [22] taking account of the shear waves presented in the solid medium. The
dilatational wave scattering by a spherical obstacle embedded in solid medium is also
considered by Ying and Truell [I04]. Later, Pao and Mow [70] reconsider Ying and Tru-
ell’s work [104] and show the scattering by a rigid sphere, a cavity or even a fluid sphere
can all be derived from the general solution of scattering due to an elastic inclusion; in

Ying and Truell’s work, these cases are treated separately.
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The wave propagation through three-dimensional infinite periodic arrays of spherical
obstacles are considered widely for acoustic [83], [40] [42], 4T, [35], elastic [78] 43l 97, O8] and
electromagnetic waves [66, [7]. For the acoustic case, Kushwaha et al. |40, 4T}, [42] obtain
eigenvalue equations for various spherical inclusions and give band gap diagrams by
numerical calculations. The plane wave expansion method is used to search for the band
gaps for acoustic [83], elastic [43] and electromagnetic [97) 98] cases. But this method is
proved not able to describe liquid-solid composites, therefore Kafesaki and Economou [35]
develop a variational multiple scattering approach based on the Korringa-Kohn-Rostoker
(KKR) theory [6, page 202] (KKR method is a classical technique for the solution of the
Schrédinger equation in periodic media, which is to find the Green’s function of those
media). Based on the KKR theory, Nicorovici and McPhedran [66] make a generalization
to this method while considering the electromagnetic waves in periodic lattices of spheres.
They discuss the long-wavelength limit and obtain the effective dielectric constant for
lattices of perfectly conducting spheres. The multiple scattering method is also used by
Psarobas and Siglas [78] to obtain the elastic band gaps in a face-centred cubic lattice of
mercury spheres in aluminium. In all these works, the band gaps are searched numerically
and the scatterer is a sphere. In the second section of this chapter, we are going to
consider the acoustic wave propagation through three-dimensional periodic arrays using
the method of matched asymptotic expansions. The scatterers must be identical and can
be of arbitrary shape as long as the characteristic size a of the scatterer is small compared
than both the wavelength k~! and the length scale of the array periodicity L. Bao et
al. [7] discuss the propagation of electromagnetic waves in a triply periodic lattice of
dielectric spheres and evaluate the effective dielectric constant of a homogenised crystal
in the long wavelength limit. Compared to the homogenisation method, which is not able
to describe phenomena associated with the periodicity of the array such as band gaps,
the method we use can give explicit approximations for the perturbed dispersion relation
and explicit expressions for the size of the local band gap everywhere in the dispersion

diagram.
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5.1 Scattering by a sphere

A rigid sphere is placed in an infinite isotropic acoustic medium. Cartesian coordinates

(x,y, z) are chosen with origin O at the centre of the sphere. Spherical coordinates are

given by (see figure

x =rsinfcosy, y=rsinfsinp, z=rcosb, (5.1)

with origin at O and 0 < ¢ <27, 0 <0 <.

__________________

................

8
<Y

Incident plane wave
Figure 5.1: Spherical coordinates and incident wave.

An incident wave with potential ¢! = e#? = k750 propagates in the positive

direction of z-axis, and so the potential has no dependence on ¢. The scattered wave

potential ¢® satisfies the three-dimensional Helmholtz equation

(V2 + k%" =0, (5.2)
and Neumann boundary condition
8;5” = _85?“ — —ik cos Bl 050, (5.3)

We separate the whole region into two: the inner region near the sphere r < k~! and

outer region far away from the sphere r > a. The outer problem is in terms of the outer
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coordinate R = kr and satisfies

(VR +1)¥ =0, (5.4)

U~ \}Rein(G), as R — oo, (5.5)

where (/5.5]) is the radiation condition to make sure the scattered wave is outgoing. In the

outer region, the outer solution is constructed from the outgoing spherical wavefunctions
oo

U =" a,hl) (kr)Py(cos6), (5.6)
0

(1)

where hy,” is a spherical Hankel function of the first kind and P, is a Legendre polynomial.

The spherical Hankel function is defined through the Hankel function

s
hD(z) = /%Hﬁ:%(z), nez, (5.7)

where the leading order of hﬁﬂ) is always singular at the origin.

The inner problem is in terms of the inner coordinate p = r/a and satisfies

(Vo +€e)p =0, (5.8)

ie cos @

87111 = —jecosfe , on p=1, (5.9)

dp
where the small parameter ¢ = ka. The low order inner solutions are constructed from

the inner eigensolutions, which satisfy the Laplace equation
V2En(p.0) =0, (5.10)

and the homogeneous boundary condition

ap =0, on p=1 (5.11)

Here the Laplace operator in terms of the spherical coordinates is

2 0 0?2 cot 6 1 92 1 0?2

2
=t =4+ —+ ===+ 12
v ror = Or? * r2 + r2 002 + r2 sin 6 2 (5.12)
Therefore the inner eigensolutions are
Eo(p,0) =1, (5.13)
1 1
En(p,0) = <”: P an) Pa(cosf), 1> 0. (5.14)
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The inner problem (5.8]) and the boundary condition (5.9) suggests the inner expan-

sion starts from order € term so that

Y=€P+.... (5.15)

Substituting for v in (5.8)) with (5.15) and equating like powers of €, we obtain

Vb =0, 5.16
p
8;;1 =icosf, on p=1. (5.17)

These two equations suggest that 1, has the form
i oo
U = ﬂCOSQ%—ZA,g)En(p), (5.18)
n=0

where the first term is a solution of Laplace equation to satisfy the boundary condition
(5.17) and the second term is a combination of the inner eigensolutions. Because the

leading terms in the inner expansion of (5.6 are all inverse power of r, we have
AW =0, forall n, (5.19)

otherwise the p" terms in the inner eigensolutions could not be matched by the outer

solution. Therefore the first term in outer expansion of the inner solution is

i
3 = 632—R2 cos 0, (5.20)
which suggests that the leading order term in the outer expansion must be O(€®). In the
next part, we are going to consider the wave scattering by a triply-periodic lattice, where
the outer solution is started from O(e3) as well. The leading order term in the outer
solution in the wave scattering by arrays can be seen as a consequence of the leading

order term in the outer solution here. We start the outer expansion with
U =603 +..., (5.21)

where W3 is in terms of the outer eigensolutions . The inner expansion of the outer
solution €3W3(ep) is required to be not larger than the leading inner term, which is order
€, so we have

i

1 1 i
Uy = aohé )(k:r) + alhg )(k:r)Pn(cos ) = —aog - alﬁ cosf. (5.22)
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The inner expansion of the outer solution is

p(3:2) — _a0€2i — ale% cos 0, (5.23)
p p

where the second term on the right hand side is ¥(). By the matching rule ¢(13) =

wBD (5.20) and (5.23) give

1

Suggested by the inner expansion of the outer solution ([5.23)), the inner expansion should
be continued as

=€+ Pyt .. (5.25)

Substituting for this inner expansion (5.25) in the inner problem (5.8)) and (5.9) and

collecting the like powers of € we obtain

iy =0, (5.26)
8;;2 = cos’f, on p=1. (5.27)
Thus 12 has the form
W :—i—i(3cos29+1)+iA(2>E (p) (5.28)
T 3 183 oo S '

where the first two terms constitute the particular solution satisfying ([5.26)) and ([5.27)).

To match with the outer solution we must set
A2 =0, forall n. (5.29)
The outer expansion of the inner solution is then

(23) — ¢ 1 iosh_ 2L
W €2p2 cosf —e 3 (5.30)

Using the matching rule 43 = w(32) (5.23) and (5.30) give

1
a = —3. (5.31)

So far, we have obtained the coefficients of the leading order outer solutions
i 1
=—— a=--. 5.32
ao 3 o 5 (5.32)
This is consistent with the approximation expansions of the exact solutions [64, page 354]

which can be easily obtained and therefore not presented here.
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5.2 Acoustic wave propagation through a triply-periodic

lattice of arbitrary shape scatterers

5.2.1 Fomulation

Consider the acoustic wave propagation through a three-dimensional lattice A of arbitrar-
ily shaped rigid scatterers. We choose the origin O of the Cartesian coordinates (x,y, z)
to be at the centre of one of the scatterers in the lattice. The wave potential ¢(x,y, z)

satisfies the three dimensional Helmholtz equation

R2¢ 24 0%
@+8—y2+@+k2¢:0 (5.33)

and the Neumann boundary condition

o0

3y =0 (5.34)

on each of the identical scatterers C; uniformly distributed in the infinite lattice A, where
k is the acoustic wavenumber and n is a coordinate measured normal to C;. Scatterer j

is associated with a local origin O; located at the lattice point
R; = nia; + noas + nzags, ni,ng,ng € 7, (5.35)

for given independent vectors aj, as and as. In particular, solutions are sought that, for

all lattice vectors R, satisfy the Bloch condition
o(r + R;) = ¢(r)eP R, (5.36)
for a given Bloch vector B. This may be satisfied by plane waves of the form
dm(r) = eBrr m ez, (5.37)

where r = (2,9,2)7, B,, = B+ Km, B = (q1,¢,q3)" is the prescribed Bloch vector and
each

K, = 27T(m1b1 + mobg + m3b3), mi, Mo, ms € 7, (5.38)

is a reciprocal lattice vector with

alb; = 4, i,j=1,2,3. (5.39)
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The reciprocal lattice vectors have the property that, for any lattice vector R;,
KI'R; =2mp, pcZ. (5.40)

In the absence of the scatterers each ¢, provides a solution to the Bloch problems
provided k is chosen to ensure that the field equation is satisfied, in other words
provided

k=64, mez, (5.41)

where 3, = |8,,|- For example, for a simple cubic lattice of side L aligned with the

coordinate axes, plane-wave solutions satisfying the Bloch condition are

i 2mmq 2mmo 2tmg
¢m:e[<q1+—L Yo+ g2+ 22 )y+ (a3 + 2] >z]7 g, € 7, (5.42)

and the field equations are satisfied as long as

2 27rm1 2 27‘(’7712 2 27Tm3 2
F=lat+— tler—F") st : (5.43)

The results given here for the case when scatterers are present arise from consideration

of perturbations to combinations of the plane wave solutions .

In addition to the global coordinates, local spherical coordinates (r;,6;, ;) are used
with origin at O;. The Bloch condition allows the solutions to be obtained through
consideration of a primary lattice cell chosen to be that containing the origin O of the
global coordinates. The spherical coordinates with origin at O are denoted by (r, 6, ¢)
and illustrated in figure and the scatterer associated with O is denoted by S.

To facilitate the solution, each lattice cell is divided into two overlapping regions. For
the primary cell these are an outer region at distances r > a, and an inner region within
distances r < k™! of the scatterer. A small parameter € = ka is introduced, and in the
inner region a scaled coordinate p = r/a is used. With these definitions, kr = ep.

In the outer region, far from each scatterer r > a, the solutions are constructed
from solution of the three-dimensional Helmholtz equation that satisfy the Bloch
condition and that are singular at the lattice points. Such solutions are

GIkr,0,0) = > P RiH (ke 0, 0)), (5.44)
R]'EA
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where H," is the outgoing spherical wavefunctions defined by
M (kry, 05, 05) = B (kry) Y (7). (5.45)
Here t; is the unit vector in the direction of r; and [55, page 64]
Y™ (£5) = b P (cos 0;)e™¢7 (5.46)
are normalised spherical harmonics. Here the normalisation factor

b — (—1)m\/ (2”4:(;)$m)!7”)!. (5.47)

P is the associated Legendre function and hg)(krj) is the spherical Hankel function of
the first kind.

By the three dimensional addition theorem [55], page 90]

G (kr,0,) =hp(kr)Y, " (v)+

SN amir (=) e (B)G (n, s v, — s )35 (k) Y (E),

v=0 p=—v q=0

(5.48)
where jl(,l)(kr) is the spherical Bessel function of the first kind, G is a Gaunt coefficient

defined by [55] page 83]
Gln,mi v q) = (=1 [ V@YY, ), (5.49)
Q
and Q = {(0,¢) : 0 <0 <7,0< ¢ <2} is the surface of a unit ball. The lattice sum

/ i TR .
o (B) = > P RH(Ry), (5.50)
RjEA
where the dash indicates that R; = 0 is omitted from the summation. The lattice sums

have poles at k = 03, — see [50], for example — and these poles correspond to the plane

wave solutions defined in ([5.37)).
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Figure 5.2: The first irreducible Brillouin zone for simple cubic lattice (left) and body-centred cubic lattice
(right).

For simple cubic and body-centred cubic lattices, figure [5.2] gives their first Brillouin
zones and the irreducible regions. To produce the dispersion diagrams, for convenience,
we only consider when the Bloch vector is along the edges of the irreducible region of
the first Brillouin zone . The locations of the poles of the lattice sums (or, equivalently,
the plane waves that exist in the absence of the scatterers) are shown in figures and
[b.4] for values of the modulus 8 of the wave vector 3. In these figures it can be seen
that, for some combinations of B and the frequency w, there are multiple plane-wave
solutions. There may be multiple distinct vectors 3; with the same magnitude f;; this
can occur along lines as indicated by the two or more-pole curves in the figures, and also
at isolated points where two or more curves intersect. Comparisons between simple cubic
and body-centred lattices are given later for perturbations of two, three and four-pole
curves.

The lattice sums have poles at k = +3;, j = 1,..M. For each unique vector 3; [50]

_Amiye(B,)
AT

Q

as k% — Jz, (5.51)

where V, is the volume of one cell of the lattice and Bj = (sin 7; cos v;, sin 7; sin y;, cos 7;)
is the unit vector in the direction of 3;. The poles of the lattice sums correspond to the

plane wave solutions (5.37)). For these plane waves there may be M > 1 distinct vectors
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Figure 5.3: The unperturbed dispersion relation for simple cubic lattice. Solid line: one-pole, dashed line:

two-pole, thick solid line: four-pole, thick dashed line: eight-pole.
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Figure 5.4: The unperturbed dispersion relation for body-centred cubic lattice. Solid line: one-pole, dot-

dashed line: two-pole, dashed line: three-pole, thick solid line: four-pole, thick dashed line: six-pole.
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B; with the same magnitude §; and, with this in mind, the lattice sum is written

o (1)

Z 52 zton (@) (5.52)

J=1

where .
my1) _ Ami"TY(B;)

A = .53
o0 Al (5.53)

+(2)

and each 0,,”"” is an analytic function of k within neighbourhoods of k = +4;. Solutions

are sought for k£ in a neighbourhood of 3; and here we take

(k> = B3)L* = €5, (5.54)

where §; is strictly of order one in € for k% # BJZ as € — 0. This expression will be used
within a neighbourhood of the points in (3, k) space that correspond to plane waves, so
that the 3; and hence the J; may be distinct. The choice of €3 is because of the need to
couple the first appearance of singular terms in the outer solution with the nonsingular
leading-order outer solution, and the matching would fail if this relation were
incorrect. Actually, this order is also suggested by equation in section where

3

the order of the scattered wave is € compared to the incident wave.

In view of (5.54]), the matching may be carried out more conveniently if the singular

solutions of the Helmholtz equation defined in are modified to be
g (kr,0,) = €G! (kr,0,0) = gV (kr,0,0) + E i@ (kr, 0, ), (5.55)
where
gD (kr,0,0)

—,(1)

-y ¥ Z4m‘”+q—”(—1)“—“—"a‘17(B)Q(n,m; v, =5 q)jSV (k)Y (%)

2\72
v=0 p=—v q=0 ( 5])[’

- 3 v+1—n v—pu—n 1 ~ m —
=D 3 Ant T ) T D ()Y ®Y (<B))Y, ()

v=0 p=—v
M am’( — =
=(-1)"> ”g 47rZz o (kr) Z YIE)YE(B;)
Jj=1 J p=—v
Mo (1)
— (_1)nz ng e1kr-,8]-7 (556)
=1 7
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and

9@ (kr,0, ) = hn(kr)Y;™ () +

ST (1) (B)G (s v, — s ) (k) Y (B).

v=0 u=-—v q=0

(5.57)
In (5.56)), the linearisation formula for Y, [55], page 83]
s ~ A A
> G miv, )Y (By) = Y (B)Y(By) (5.58)
q=0

has been used.
As the boundary-value problem is homogeneous, the leading-order outer solution may

be taken as strictly order one in € and written

o0

w0 — Z z": AT g (kr, 9, )

n=0m=—n
M m, (1)

= D> AL

n=0m=-—n j=1

{Jo BV @)Y(B,) +

ij1 (kr) Z Y ()Y ( BJ — ja(kr) Z Y4 (¢ Y“(ﬂj) }, (5.59)

p=—1 pn=—2
where * denote the conjugate complex. Then the inner expansion of the leading-order

outer solution is

0 n m (1 1
g1 — Z Z AT(—1 Z {1 + %iep Z Yl“(f)Yl“(Bj)*}. (5.60)

n=0m=-n j=1 p=—1

In terms of the inner variables the field equation for the inner solution ) is

L0 (00 L O 1oy,
p28p<p aﬂ>+psm680< 939>+p5m98¢ € = 0. (5.61)

The inner solutions are constructed with the help of inner eigensolutions that each satisfies

the Laplace equation, together with the homogeneous Neumann conditions

oY
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The solutions of the three-dimensional Laplace equation take the form
r" P (cos H)eiim”, r_”_lP;;”(cos G)eii”w. (5.63)

For spherical scatterers, the normalised eigensolutions (to make it easier to match with

the outer solutions) are

n—+1 1 .
1, < - r”+rn+1>Y,:"(r), n=12,..., m=0,1,...,n. (5.64)

The form of ¥(®1) indicates an inner development

M =g + vi1 ()11 + e (5.65)

where the term in v11(€) is a possible intermediate term. Substituting into the field
equations ([5.61]) and and equating the coefficients of the gauge functions in €, we
find that g, ¥11, ¥ are all harmonic functions that satisfy the homogeneous boundary
conditions, and hence are constructed from the inner eigenfunctions. Therefore, to effect

the matching it is necessary to take

Y i(e)
1/)(1) = By+v11B11 +€{ B + (ul_l,u(l),u%) p| Y2 | +xa(®) . (5.66)
Y (#)
where from the Neumann boundary condition (5.34]),
5 5 Y (E)
X1 .
% —% }/10(1‘) on C, (567)
Yi(#)
Yy ()
M N -2
X1= 5 VO(#) | =o(p") as p— oo, (5.68)
Y (8)
and
mip Mz M3
M= 1 ma ma mas (5.69)

m31 M3z M33
is the matrix of dipole coefficients determined by the shape of the scatterer [8, page 121].

At order € the outer expansion of the inner solution ¢(!), when written in terms of the
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outer variable kr, has terms no more singular than a dipole and hence cannot be matched

to any higher singularities associated with the leading-order outer solution; thus

AV=0,n>2,m=—n, ...,n, (5.70)
and so
1 n M mi(1) A 1 R
=3 % Aty "gj L+ iep SOVFEYB) p. (511
n=0m=-n j=1 pn=—

From the inner solution ([5.66))

v (#)
W0 = Bo +ep(urt,uf, ul) | ¥(E) | (5.72)
Vi ()
and the matching of ¥ with (19 yields
1 n M O'm.’(l)
By=>" Y Ar-1"y° "g : (5.73)
n=0m=—n j=1
A 1 n M O'm (1) R
no__ m n —
i =ig o D AR-D)" —5 1B p=-101 (5.74)
n=0m=-n j=1
With possible intermediate terms included, the outer solution is continued as
v = Z Z A gn D (kr, 0, 0) + g (kr, 0, )]
n=0m=-—n
+:u’11 Z Z Cm m k?’ 9790) +€Z Z Crrzng;m(l)(kraevgp)
n=0m=-n n=0m=-n
+ poi (e Z Z D g™ M (kr,0, ) +E2Z Z D™ W (kr, 0, )
n=0m=-n n=0m=-n
+ i (e Z Z EpgmU (kr, 0, ) +E3Z Z Ergm M (kr,0,0),  (5.75)
n=0m=-n n=0m=-—n
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which has an inner expansion

M Umj(l) 62p2 An 1 A
P2 = Z Z A" Y e g1 = gien Y Y EY(B))”
J —

n=0m=-n 7=1

1 n
AT S vrave,) }MZ S AT (k)Y )

15
pn=—2 n=0m=—n
oo n M m‘,(l) 1 .
+)° ) [+ eC)(-1)" "g L+ —iep > YV E)Y(B))
n=0m=-n j=1 J p=—1
00 n R M O'mf(l)
+3° " [pa(e) D + D7 (=) > 2 (5.76)
n=0m=-n j=1 J

Thus to match with the inner solution, p11(€) = v11(€) and the inner solution must be

continued as

Y@ = By +vii(e)Bu+ e Bi+ (uhud,ui) [p| YRE) | +xa(d)
)

v (®)

+ € V11(€)(Uﬁla ufy,upp) | p Y2 (¢ + x1(t) + p121(€) Bo1 + €%1ha,

(5.77)

where, from (5.61]), 12 satisfies the poisson equation

10 [ 00 1 00 1 o
v 9% _ B .
2 0p <p 8p>+p sm€80<1 60>+p281n9&p 0 (5.78)

and also the homogeneous boundary condition

2

o =0 on C. (5.79)
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The form required to effect the matching with W(2) ig

Y (E)
Y2 = By —épz—i-f‘(p,@,ap) + By + (uyhud,uh) [p | YOR) | +xa(®)
Y(8)
(v '
Y, H(B)
vy 2 vy 8 v3,03) |0 | YOE) | +xe®)] (5.80)
Yy (F)
i Y3 (8) |

where the term involving —1/6 is a particular solution of (5.78|) and I' is a harmonic
function introduced to compensate for the flux across the scatterer S that is induced by

the term in —1/6. By the Neumann boundary condition (5.79)), we have

or 9 ([ 1,\ 10p°
%—em<w>—MM' (5:81)

The flux across the scatterer S induced by the term in p? must be compensated by the

flux induced by I' across the outer ‘boundary’ of the inner region as p — oo, the sphere

//as*ds_//asapd (5.82)

Because I is a solution of the Laplace equation, we take its form as

S*. Therefore, we obtain

T(p,0) ~ f, (5.83)

where B is a unknown constant and this form is chosen to effect the matching. The left

hand side of ((5.82) is

27r
/ —ds = / / —p % sin Odpdd = 4B,
0S* on

where the minus sign is because the surface normal on the scatterer is directed into the

scatterer. Applying the divergence theorem to the right hand side of (5.82)) gives

1 dp? 2 Vs
_ g = —= Ndv = ——2
FIR T I A
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where V is the volume contained within the scatterer S and a? is to make the area

dimensionless. Thus, we get

Vs
B=- - .84
e (5.84)
and then
Vs 1
T(p,0,¢) + Indd — 0, as p — oo. (5.85)
It follows immediately that
Y () cYy H(F)
M
23 = By +v11(€) B + e Br+ (up,ul,ul) |p | ¥O() 5| v
Y (#) Yi(#)
(v
+edv(e)(u s ufuny) {p | YOE) | +xa0(®)| p + p2i(e)Ba
A\ (®)
redp |-l Vs 1_+Bg+pz +p22 () »  (5.86)
6 4mwad p ‘
- p=-—1 pn=—2
and matching with ®®32) gives, in particular,
Nor1a )
A0 = —LZMZ?X)/BO, (A1, A9 AL = i(u !, u, ul M. (5.87)
With the values of A given by ([5.87)), equation (5.73)) becomes
Y (B))
47TL2
= Z 5 47r (“1 ,ul,ul)l\/l Yy (ﬂ ) (5.88)
Yll(lgj)
and equation (5.74) becomes
4 4 L2 M YM(B )* V Yl_l(léj)
_ dmidw 1 (B f A > —
WS, JZ; 5. T Dot il u) M YOB)) | s =101
YH(B;)
(5.89)

Equations (5.88)) and (5.89)) define an eigenvalue problem for the wavenumber k. If we

140



introduce

. Y7 (B))
S 1 N
U; = 5, 477(1330 +i(uy ', ul, u)M YY(B;) , (5.90)
Y (B;)
and substitute (5.88)) and ([5.89) back into (5.90)) this yields
drI2on | Ve 4w i)
_ S —1/72 \* O/a \* 1/ \* -~
5pUp - k;‘/c jz; Arad - 3<Y1 (B]) aYI (ﬂ]) ’Yl (IB]) )M Ylo(IBJ) Uj’
Yll(/B])
(5.91)

where p = 1,2,..., M. For a given 83, equation (5.91) provides an eigenvalue problem
for the corresponding wavenumber k (which appears in every d,). The geometry of the

lattice A appears through the reciprocal lattice vectors in the definitions of each §, and

Bj-

5.2.2 Results

In this section we give some examples of explicit approximations to the dispersion relation,
obtained from the eigenvalue problems in equation with the aid of the computer-
algebra package Mathematica. Results are given on the edges of the irreducible region
of the first Brillouin zone (labelled I'XMR for simple cubic lattice and THPN for body-
centred cubic lattice) for simple cubic and body-centred cubic lattices, shown in figure
The areas of the corresponding primitive cells are V, = L3.

We consider two different shapes of scatterers, sphere and prolate spheroid. The sphere
has radius a and the prolate spheroid has semi-axes of length a1, b; and ¢; (b1 = ¢1)
parallel to the z, y and z axes respectively. For each prolate spheroid the matrix of dipole
coefficients we use is defined in , where the dipole is written in normalised spherical
harmonics. This is different from the classic definition [65, page 142] where the dipole

takes the form

sin @ cos x
D D
— = | si i = —— 5.92
3 | sin fsin ¢ 3| v ( )
cosf z

Here D is the dipole coefficient matrix. Now we are going to find what’s the relation

between our definition M and the classic definition D. The eigensolution including the
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dipole we use is in the form

Y @) L) v N
RMR~™
P YPE |+ | WE | =Ry |t v || 69
Yi(¢) Yi(E) z 2
Compare (5.92) and (5.93]), we find
M = -R'DR, (5.94)
where
Y (®) sin f cos ¢
R| Y°#) | = | sinfsine |- (5.95)
Yii(#) cos 6
Then it is easy to get
1 1
-3 0 3
8T .
R = 5| 3 0 -4 (5.96)
2
0 %2 0

When the scatterer is symmetric about the axes, all the non-diagonal elements are equal

to zero, i.e. D;; = 0, i # j, therefore

—2(D11+ D) 0 (D11 — D)
M = 0 Dss 0 : (5.97)

3(Di1 —D2) 0 —1(Dy1+ D)
The dipole matrix coefficients D;; are related to the added mass coefficients a;; [65, page
143]
1
Dii = = —5 (au/p+Vs). (5.98)
For a sphere, the added mass coefficients are [65), page 144]

a1 = ax = asz = pVs/2, (5.99)

For a prolate spheroid, the added mass coefficients are [32, page 153]

(7)) 4
an =5 o gwpalb%, (5.100)
0 4 2
a2 = a33 = 2_7/80571',0(11()1, (5101)
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where

2(1—¢e?) (1, 1+e
o) = T (2 log 1—e — €> s (5102)
3 1 1—e21 1+e (5.103)
= — o .
07 &2 23 P1_¢’
b2
e =1— 1. (5.104)
ay

In the diagrams below we compare the perturbations between a sphere with radius a =

0.15 and a prolate spheroid with semi-axes a; = 0.3 and by = ¢; = 0.15.

A. Perturbation of one plane wave

In the case M = 1, equation ([5.91)) reduces to
-1

Y (B
2 2 Ama® Vs 4m 1/ v vO/Aa \x vl \* 1(AJ)
k2 = B3 1—?0 4m3—3(Y1 (B,)" Y7 (B;)", Yy (5j)>M YP(B;)
Yll(lé_y)

This expression gives perturbations of any of the one-pole solutions illustrated in the
dispersion diagrams in figure and [5.4] regardless their frequency. For a given (3,
this expression shows how the wavenumber k depends on the geometry of the scatterer
through the volume V; contained with the scatterer S and the dipole matrix M defined

through (5.68)).

By the relation between our dipole matrix and the classic dipole matrix (5.97)), the
dispersion relation ({5.105)) becomes

2 2 Ara® [V, .2 2 ) .2 2
k*=p{<1— v erDnsm 71 €08~ 7y1 + Dag sin® 71 sin” 7y + D33z cos” 71| ¢ .
C
(5.106)

In terms of the added mass equation (5.106]) becomes

v -1
K = j? {1 + VS [Z‘l/l sin? 71 cos® 1 + 5‘2/2 sin’ 7y sin®y; + Z?’;’ cos? 7‘1] } . (b.107)
[+ S S S

In the case of S is a sphere of radius a

23]
m] , (5.108)

K =pi |1
51[‘*‘3‘/0
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where the second term in the square bracket is half of the sphere volume divided by
the volume of one lattice cell. This is different from two dimensional case, where the
corresponding dispersion relation is [60} eq. 60]

2

-1
2_ 32 ma”
k2 = B2 [1+ A} : (5.109)

where A is the area of one cell of the two-dimensional lattice. Here the second term in
the square bracket is the area (not half) of the cross section of the cylinder divided by the
volume of one lattice cell. This difference is caused by the different forms of the dipole
coefficients for two and three dimensions.

These results may be compared with results obtained by method of homogenisation

for the the lowest mode, that is when

sin 71 cosy1
B1 =751 | sinmsiny |- (5.110)

COoSs 71

Using the same method as [21], which is a two-dimensional problem, we get the three-

dimensional field equation

Vian] ™ 9% Vi an] ™" 8% Viaz] ™ 9% |,
1+ —— — 14+ —=—— — 14+ —— — + k=0 5.111
[ V. pV} Ox? L V. pV Oy? R V. pV 022 =0, { )
and seeking solutions in the form

¢ _ eiﬁl (z sin 11 cosy1+ysin 1 siny1+2z cos 71) (5112)

yields

v _1
K> = % { [1 + SZH] sin? 71 cos® Y1+

Ve pV
Viag] ™" Viags] ™
{1 + Vzpiﬂ sin? 71 sin® y; + [1 + VZ,O?] cos’ 7'1} (5.113)

However, by assumption the scatterer size is much smaller than the periodicity of the

lattice, so V/V. < 1 and expansion of (5.113]) in powers of V/V, yields

|7
k? = 7 {1 - ?s [Z‘l/} sin? 71 cos? 1 + 3‘2/2 sin? 71 sin? 4 + Z?;’ cos? 7-1] } (5.114)
Cc S S S
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Figure 5.5: The perturbation of the first one-pole line along I'X for simple cubic lattice. Dot-dashed curve:

sphere, dashed curve: spheroid, solid curve: no scatterers.

Expansion of (5.107) in powers of V/V. yields (5.114) as well, so the results from two

different methods are consistent.

The comparisons of the lowest one-pole solution of simple cubic lattice and body-
centred cubic lattice along the edges of the irreducible region of the first irreducible
Brillouin zone are shown in figure [5.5] and As we can see, the perturbed modes are
quite close to the unperturbed curves for both of two lattices. In these two diagrams,
we give the local magnification of the right top corner of the whole diagrams and we see
both perturbed curves are below the unperturbed ones and as the volume of the prolate
spheroid is bigger than that of the sphere, the modes perturbed by spheroids are further

away from the unperturbed modes than by the spheres.

B. Perturbations of two plane waves

When M = 2, there are two plane wave solutions along one curve in the dispersion dia-
grams without scatterers. The two-pole curves are generally perturbed into two separate
curves with the scatterers present. First, we consider the lowest two-pole mode along XM
for the simple cubic lattice, where ¢1 L = 7, gsL = 0 and ¢2L € (0, 7). The appropriate

forms for 3, are

/L= (q1L,q2L,q3L)", BoL = (1L — 27, q2L, g3 L) (5.115)
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Figure 5.6: The perturbation of the first one-pole line along I'H for body-centred cubic lattice. Dot-dashed

curve: sphere, dashed curve: spheroid, solid curve: no scatterers.

Then the corresponding positive roots of (5.91)) are
q@L? + 72 g L? + 7

N @L? + (1 + 47ad)’ 4 8
v qo L2 <1 + 37ra3> + 2 (1 - 37ra3)

for an array of sphere. If we consider the left end of this two-pole curve, which is

(¢1L,q2L,q3L, kL) = (m,0,0,7), the dispersion relation ([5.116]) reduces to

kL

. (5.116)

m 7r
kL = , . 5.117
V1 + 4ma? 1 —8ma3/3 ( )

For the spheroid array, from ([5.97) we can take the dipole coefficients matrix to be

mi1 0 0
0 mo O . (5.118)
0 0 mi1

Then the positive roots of (5.91]) are

q@L? + 72

kL = ,
\/q2L2 + 72(1 + 8mmq1b3)

qoL? + 72
2 8 o 2 8 9
gLl |1— gﬂbl(al — 3m11b1) —+ T 1— §7Ta151
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Figure 5.7: The comparison of the lowest two-pole mode along XM. Solid curve: no scatterers, dot-dashed

curves: sphere, thick dashed curves: prolate spheroid.

When a1 = b; = a, by the relations between the dipole matrix and added mass ([5.97)),

(5.98) and (5.99)), we obtain mi; = mg = 1/2, then (5.119)) reduces to (5.116)). As with
(5.117), at the left end of this two-pole curve (5.119]) reduces to

™ s

kL = (5.120)

V1 F8mynbd /T —8rab?/3

Both of (5.117)) and ([5.120f) show that a local band gap will appear as the scatterer size

is increased from zero.

The comparison of the perturbation of the lowest two-pole mode along XM by sphere
and prolate spheroid is shown in figure The curves perturbed by the spheroid array
are further apart than those perturbed by the sphere array, because the volume of the
spheroid is larger than the sphere. The same phenomenon happens for some other two-
pole mode perturbations, for example, the lowest two-pole mode on I'M in simple cubic
lattice and the lowest two-pole mode on PN in body-centred cubic lattice are considered
next. For the lowest two-pole mode along I'M in simple cubic lattice, where g3 = 0 and

¢1L = g2L € (0, 7). The appropriate forms for S, are

/L = (L —2m,q2L,qsL)",  BoL = (1L, qoL — 27, q3L)". (5.121)
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A0E.

Figure 5.8: The comparison of the lowest two-pole mode along I'M. Solid curve: no scatterers, dot-dashed

curves: sphere, thick dashed curves: prolate spheroid.

The corresponding positive roots of (5.91)) are

KL — V2(qL? — 271 L + 272)
Vo L? = 2nqi L+ 2n2(1 4 2ma3)’

V2(q L? — 27q L + 27?)

4 2
\/<1 + 37m3> (1 L? —27qu L) + 272 <1 - 37Ta3>

for sphere array. For the prolate spheroid array, with the dipole coefficients matrix (5.118))
we obtain the two positive roots of ((5.91])

B \/§(q1L2 —2rq1 L + 27%)
Vo L? = 2nqi L+ 272(1 4 4myy7b3)’

, (5.122)

kL

V2(q L? — 2mq L + 27?)

8 . 4
\/(1 — gﬂalb% + 8m117rb‘f> (q1L2 — 27rq1L) + 2’/’1’2 1— gﬂb%(Qal — 3m11b1)

(5.123)
When a; = b1 = a, (5.123]) reduces to (5.122)). The comparison between the sphere array

and the prolate spheroid array is shown in figure [5.8
Lastly, for the body-centred cubic lattice, we consider the lowest two-pole mode on

PN, where ¢1L = qoL = 7 and ¢3L is from 0 to 7. The appropriate forms of 3, are

L = (L, qaL,q3L)T, BoL = (1L — 27, qaL — 27, q3L)". (5.124)
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Figure 5.9: The comparison of the first two-pole mode along PN of the body-centred cubic lattice. Solid

curve: no scatterers, dot-dashed curves: sphere, thick dashed curves: prolate spheroid.

The corresponding positive roots of (5.91]) are
Q3L2 + 272 Q3L2 + 272

wh= VL2 +272(1 + 4ma®)’ 4 8 (5:125)
\/Q3L2 <1 + 37Ta3> + 22 (1 - 37ra3)
for the sphere array and
B — q3L? + 27?
Va3 L2 + 272 (1 + 8nmy b3)
a1 + 2 , (5.126)

\/q3L2 [1 — gwb%(al — 3m22b1)} + 272 (1 — iﬂalb%)

for the spheroid array. The comparison between the sphere array and the prolate spheroid
array is shown in figure From figure and the perturbed curves by spheroid
array are further apart than those perturbed by the sphere array as the spheroid has
bigger volume. In addition, in the perturbed mode expressions by spheroid ,
and , the first perturbed modes are all independent of the spheroid equatorial axis

ai.

C. Perturbation of three plane waves

The three-pole modes curves only appear in the body-centred cubic lattice (in simple

cubic lattice, there are isolated three-pole points crossed by a one-pole curve and a two-
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Figure 5.10: The perturbation of the first three-pole mode along I'P of the body-centred cubic lattice.
Dashed curve in left hand diagram: two equal perturbed modes. Solid curves: unperturbed mode. Left:

sphere, right: prolate spheroid.

pole curve). It seems a three-pole mode should be perturbed into three different curves
with the presence of the scatterer, but it is not always the case. For example, we consider
the lowest three-pole mode on I'P, where ¢1L = ¢2L = g3L € (0, 7). The appropriate

forms for 3, are

BiL = (L — 27, qoL — 27, q3L) 7,
Pl = (1L — 27, g2 L, 3L — 2m)",

BsL = (q1L,qL — 27, q3L — 27T)T.

Because of the complexity of the structure of the body-centred cubic lattice, the explicit
expressions for the perturbed modes are quite complicated, therefore we do not give them
here. The results are shown in figure[5.10] For the sphere array, two of the three perturbed
curves below the unperturbed curve are completely coincident and the third one is above
the unperturbed curve. For the spheroid array, two of the three perturbed curves are
quite close below the unperturbed curve which can be seen from the local diagram on

the left corner, and the third perturbed mode is above the unperturbed curve.

D. Perturbations of four plane waves

Perturbations of a four-pole mode leads to similar results to three-pole modes described
above; that is to say, some of the perturbed modes are exactly the same. But the difference
is that coincident modes happen for both the sphere array and the spheroid array. For

example, we consider the first four-pole mode on MR in the simple cubic lattice, where
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q1L = ¢oL = 7 and g3 is from 0 to w. The appropriate forms for (3, are
BiL = (qL,q2L,qsL)",  BoL = (L — 27, q2L,q3L)",
BsL = (q1L,qoL — 2m,q3L)",  B4L = (L — 27, gL — 2, q3L)""
Then the corresponding positive roots of are

2
kL =+/g5L% + 272, gsl & 27

Va3 L? + 272(1 + 47a3)

3L + 272 3L + 27
Va3 L? +2m%(1 + 4mad) \/q3L2 (14 3ma?) + 272 (1 — Pra?)

. (5.127)

for sphere array. For spheroid array, the positive roots are

Bl — FLQ o q3L + 27 g3 + 27?
’ \/(]3[/2 -+ 27r2(1 + 8m117rb:1)’)’ \/Q3L2 + 27(2(1 + 8m117rb‘%)

Q3L + 271'2
16 16
\/qu2 [1 — gﬂb%(al — 3m22b1)] + 272 (1 — 37ra1b%)

When a1 = b1 = a, (5.128)) reduces to (5.127). We can see in these four modes, two of

them are exactly the same and one is equal to the unperturbed mode. Therefore there

(5.128)

are only three disparate curves as shown in figure

6.0~

60}

Figure 5.11: The perturbation of the first four-pole mode along MR for the simple cubic lattice. Dashed
curves: two equal perturbed modes, solid curves: unperturbed mode and one perturbed mode, dot-dashed

curves: the fourth perturbed mode. Left: sphere, right: prolate spheroid.
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Chapter 6

Three-dimensional multiple

resonant scattering

In this chapter, we consider the acoustic wave scattering by a strip of arrays of spheres
or arbitrary shape scatterers using the methods of matched asymptotic expansions and
multiple scales. We first consider the case of arrays of spheres, then generalise it to
arbitrary shape scatterers, where the Green’s identity must be used twice in order to
obtain the integral on the scatterer. Finally, numerical results for the transmission wave
intensity are given to make comparisons for different shapes of scatterers.

The three-dimensional problem of multiple scattering by doubly periodic planar arrays
of bounded obstacles was first considered by Twersky [93] 94] 05], which followed his
earlier work about the acoustic scattering by an infinite linear array of identical obstacles
[92]. Twersky obtained approximate solutions for small scatterers or low frequencies but
didn’t give any numerical results. Achenbach and Kitahara [2] used the boundary integral
equation method to consider the elastic wave scattering by a layer of doubly periodic
array of spherical cavities in an infinite elastic solid. The same method is then used to
obtain the dispersion relation for the propagation of harmonic waves in an elastic solid
containing a three-dimensional array of regularly spaced spherical cavities [3], which
adopted the results in their earlier work [2]. The elastic wave scattering by periodic
structures of spherical objects was also considered using the multiple scattering theory
(or KKR approach) by taking into account the full vector character [54]. Before this,

the multiple scattering theory has been developed for three-dimensional electromagnetic
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wave scattering to calculate the band structure of photonic crystals [99]. A layer multiple
scattering theory of electromagnetic waves was also successfully implemented [63], [85] to
calculate the transmission and reflection coefficients for a slab of periodically arranged
spheres. Thompson and Linton [87] considered the guided acoustic wave propagating
along one- and two-dimensional arrays of rigid spheres to study the existence of the
surface modes numerically.

As in the two-dimensional case, we first derive the envelope equations in infinite three-
dimensional arrays and then apply them to a strip of arrays of scatterers. The strip is
assumed to be finite in one direction and infinite in other directions. As the scattered
wave from one scatterer is of higher order of the small parameter compared with the
incident wave and the scattered wave would not be weak any more over a large number of
cylinders, the strip width must be large enough to make the resonance occur. This makes
it possible to consider this problem in an infinite array first and then apply the results to
approximate those in finite arrays. The size of the scatterer is still assumed to be smaller
than both the wavelength and the array periodicity. Both matched asymptotic expansions
and multiple scales are used to obtained the envelope equations. Numerical results are

given to compare the transmission wave intensity for different shapes of scatterers.

6.1 Sphere

We consider the diffraction of plane acoustic waves by an infinite three-dimensional array
of spheres. The global Cartesian coordinates (x,y, z) is used with origin O at the centre
of one of the spheres. Similarly with the two-dimensional case, we assume the Bloch wave
vector be 3; (the incident wavenumber), another wave in the direction of 3,, is said to
be resonantly scattered if 3,, and 3, are related to a reciprocal lattice vector K, by the

Bragg condition

B = B1 + K, (6.1)

where 3, = |8,,| is all the same for any m and we define 5 = |3,,|. If more than one

wave is resonantly scattered, any two resonated wave vectors are related by
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If the array is infinite, the solution is require to satisfy the Bloch theorem
O(r+ R;) = PnRid(r), (6.3)

where r = (z,y,2)T and R; is the jth lattice point given by . Let (rj,0;,¢;) be
defined as the local spherical coordinate centred at lattice node j. The global spherical
coordinates with the global origin at O are denoted by (r, 6, ¢) Then the position of any
point in space is

r=R;+r;. (6.4)

For a given lattice and scattering configuration found by Ewald construction described
in chapter 4l we shall derive the equations coupling the envelopes of the incident and
M — 1 resonantly scattered waves.

First of all, the velocity potential ® must satisfy the wave equation

2
®
%? — AV2P =0, (6.5)

everywhere in the medium, where V is the gradient operator. On the boundary of the

spheres, the normal flux must vanish

0P
— =0, rj =|r —Rj| =a, for all j. (6.6)
87’]'

We now add the assumption that the sphere radius a is much smaller than the typical
wave length 27/ so that

€1 = fa < 1. (6.7)

From section the field scattered from a single sphere is order € compared to the
incident wave, then the accumulated effects over N spheres becomes of order one when
N is order 1/€}, i.e. over the distance of order 1/3€3. It then follows that strong reflection
evolves over the dimensionless length scale 8(z,y,z) of order 1/€}. This suggests the
asymptotic method of multiple scales is applicable. For the outer field we introduce fast

and slow variables
z, Yy, z bt X = E?I’, Y = eil))ya Z = E?Za T= E%t, (68)

so that x, y, z, t describe the fast motion characterised by the length and time scales

of 1/8, 1/w, while X, Y, Z, T describe the slow variation of the envelope. To use the
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method of matched asymptotic expansions, each lattice cell is divided into two overlap-
ping regions, an outer region at distances r; > a and an inner region within distances
r; <L B ~1. In the inner region a scaled coordinate p = rj/a is used. As the boundary-value
problem is homogeneous, the leading order outer solution may be taken as strictly order

one in €1, then we expand the outer solution as follows
® = Re{[®g + €63 + O(e8)]e 7w, (6.9)

where @y and ®3 are functions of (z,y,2,X,Y,Z,T) and w is the frequency associated
with 5 (i.e. w = fc). Substituting into the wave equation and collecting like
terms of order one and order €}, we obtain the perturbation equations for the outer
potentials &y and ®3. At the first order, the outer velocity potential ®( is governed by
2
V2P, = —%cpo, (6.10)
and also satisfy the Bloch theorem on the short scale. The first order solution is

formally the sum of all mutually resonant progressive waves

M
o= An(X,Y, Z,T)pm(2,y, 2), (6.11)
m=1
Do(r + R;) = PnRidy(r), m=1,2,..., M, (6.12)
where
. oo 14
Ym(,y,2) = Pt =4r Y "15,(Br) > VFIE)YA(B,)" (6.13)
v=0 p=—v
For the second order outer solution ®g
2 .
9 w — 2iw 0P
Py 4+ Py = —2V-VPy— — — 14
ViPs + 505 VoV - — o (6.14)
Dy(r + R,) = ePnBidg(r), m=1, 2, ..., M. (6.15)

In (6.14), V denotes the gradient operator with respect to the slow variables X, Y and
Z.
From the solution form of the leading order problem (6.11)) and (6.13]), the inner
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expansion of the leading-order outer solution is

1

M
0" =3 Adm ¢ o(kr)YP(RYS (By)" + 11 (Br) D7 Y @YY (By)”
h=1 =t

M

Z 1+ —mp Z YH#E)YH(B)* (6.16)
h=1 p=-1

Therefore, to match with the outer solution ®¢, the inner solution ¢ has the form (sug-

gested by results in chapter [5))
1
gb(l) =DBy+e |B1+ <2,0 + 102> (ufl,u%u%) Ylo(f'

where p = r;j/a is the inner coordinate.

Foreachm =1,..., M, we are going to apply Green’s identity to ¢}, and the solution
in one cell C' excluding the sphere S: Cy, where v, denotes the complex conjugate of the
plane waves 1, defined in . The solution in this cell is expressed as a composite
expansion that is valid everywhere in the cell. As we know, the inner solution is only
valid in the immediate vicinity of the scatterer and the outer solution is only valid in
the outer region far from each scatterer. To find a solution that is valid everywhere in
the whole region, we need to do some work to the inner and outer solutions. One of the
methods may be called additive composition. Since the inner expansion and the outer
expansion have a common region of validity, the composite expansion can be constructed
by subtracting the part they are in common, so that it is not counted twice [102), page

94]. We denote the composite expansion by ¢ and take
€ =0® 4 (M) _ p13) (6.18)
Then the Green’s identity is now used for £ and 1, on Cs

[ v~ a= [ [ (5 v ) ds 619

Then omitting the higher order term and noting that every ,, m = 1,..., M satisfies
the Helmholtz equation and ¢ — ¢(1:3) = 0 by the inner solution (6.17), the left hand

side of Green’s identity becomes

LHS(6.19) = / / / (2@v245, — v, 720 ) du
Cs
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Using the governing equations for the first and second order outer solutions (6.10) and
(6.14) and dropping terms of order higher than €}

s - [ [ wivai i [ @i i
=[], [t (=) o
~aff] | [—%5%:; (<27 Ty — S, - iﬁ”?)} v
] (o o )
~ (5 Ta s Y5 [ s

2iw 0A i r
:6;’2(02 O | 294 gh> / / / BB gy (6.20)

The volume of a sphere Vy is much smaller than that of one cell V., therefore the volume

of the cell C excluding the sphere S is: Vs = V. —47wa3/3 = V.[1+O(e})] ~ V... Therefore
the integral in (6.20]) can be approximated by

/// Bn=Br)Tr gy = /// B1=Bn)"x 4y 1 O(EV,

= SpmVe + O()V.. (6.21)

Substituting (6.21]) into (6.20) and dropping terms of order higher than €3, we get

21w 0An,
LH 5 g VA, : :

SET0) - 20 (S + SV, -5, ) (622

On the sphere r; = a, we have
w;mrj:a _ eiﬁznr“:a _ efiﬁz;LRjefi,Bacosa’ (623)
aawm = —iBcosa e PmRyifacosa (6.24)

T ri=a
J

where cos a = sin 7, sin 6 cos(V, — @) + €os Ty, cos 0. Therefore, noting that the normal

flux on the sphere vanishes and the contribution from the outer boundaries of the primary
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cell vanishes by the Bloch theorem

RHS(6.19)

y /65< S gs))ds
S
/ ” / 60 %m 2 6 0dpd,

2w
1
/ / By + €1 Bl+<2,0+ )(ul udup) | Y@

. 1
e PR, [ —ip cos a} [1 —iejcosa+ 1+ §i2e% cos? o + O(€3) | a? sin Odfdp

—1/,7
. (Bin)
= —cfe PnR —;fg 0—421(“11716(1),1&) Y2(B,) || +OCED. (6.25)
V(B

To get By and u; = (ul_l, u(l), u%), we need to do the matching between the inner solution

(6.17) and the outer solution (6.16). By the matching rule ®©1) = $(1:0) we have

M
Bo=Y ApeiPiRi (6.26)
h=1
i 2 a0\ * 2 \*
() =1y el 2T ( B VB Y () ) (6.27)
h=1
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Therefore

M
RHS[E19) = —je PnRi 3~ 4,600 Ry
h=1

. H(B)
T T .
Y2(By)%, Y,
EREEY: < (Br)" Y1 (BR)", Y1 (By) ) (A m)
Y (B)
M
47 1 27 P -
= —G?ZAhﬁ —3t3 ( Y8y YL (B, V(B ) (6.28)
h=1
Then, by the results of left hand side and right hand 51de 1 , we obtain
0A =
m (m)
a7 + Gy - VA,
2 Y (B,,)
T A P .
ﬂﬂoZAh -2 ( H(Bn)* YL (Bh)" . Y1 (Bn) ) V2B, || (629
Y (B,)
where m=1,..., M and
2
(m):cﬁm:cﬁm O — 4re
Cy - N 0 V. (6.30)
Outside the strip, the envelope equations reduce to
0A,,
(m) — =
a7 + C, VA, =0 m=1,..., M. (6.31)

Let us multiply both sides of equation (6.29) by A, and adding the resulting equation

with its complex conjugate. After summation over m, we obtain

<6|Am| + O Tl )

— oT
0. M M L o Y (Bom)
= ZMZ —3+;<Yf1(f3h)*,YP(BM*A@(BM*) YOB,) || (Ands, —i4;A,).
m=1 h=1 ~
Yll(IBm)

(6.32)
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By changing the second term in the last parentheses on the right from A; A,, to A}, Ap,

the double series is unaltered, hence must be zero, yielding

9 M M o
it > AR+ > (CM - V[An%) =0. (6.33)
m=1 m=1

Thus the total energy is conserved in the array.

6.2 Arbitrary shape scatterers

6.2.1 Formulation

When the scatterers are of arbitrary shape, it is difficult to perform the integration over
the scatterer when using Green’s identity to obtain the envelope equations. To overcome

this, we will use Green’s identity again in the inner region. By the results of infinite array

(5.77) and (5.80)), the form of the inner solution is

Y (E)
¢® =By + v11(e1)Bir + €1 { By + (uptul, ud) [p Yo | +xi(®)
YiH(1)
Yl s)
+erQ vinen)(uy, udy,uny) [p| YO®) | +xa@®)| p + p2i(e)Ba
Yi(t)
' v ()
+ € { By |—=p* +T(p,0,0)| + B+ (uz ", udyud) | p | YO3) | +xa(8)
YiH(F)
() '
Yy H(B)
vy 2 vt 03, 03,03) |02 | vP@E) | +xe@)] + (6.34)
Yy (1)
L\ YZ(®) |

where I' is a harmonic function introduced to compensate for the flux across the scatterer

S that is induced by the term involving 1/6, and x2(f) = o(1) as p — oco. As with the
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two-dimensional case, the ellipsis denotes those eigenfunctions that will be needed to

match with the extra terms in the outer solution ®3 that arise from the right hand side

of G11). By (59,

1
L(p, 0 i 6.35
(p.0,0) + 13 p (6.35)
and by the definition of the dipole matrix (|5.68|)
Y ()
X1 — e Y& | = o(p™2) as p— oo, (6.36)
Y (F)

where M is the dipole matrix determined by the shape of the scatter [§, page 121].
Similar to the case of spheres, Green’s identity is going to be used in the cell C exclud-
ing the scatterer S, Cs, to obtain the envelope equations. We first define the composite

solution £ (here the inner solution up to order e% is needed) in a cell

€= 0B 4 @ _ 523 (6.37)

Then by the inner solution up to order €7 in the previous chapter (5.77), (5.80) and
(5.86)), we have

Y () 2
1, 1 .
¢ — ¢ = 2 E(u;,ug,u;) HONES RGN (6.38)
v (@) T

Now apply Green’s identity to the conjugate of the plane waves ¢, and the composite

solution ¢ in the entire cell excluding the scatterer C

J[[ ev-usron= [[ (G -ug)e )

where the integration on the right hand side includes the integration over the scatterer

and the integration over the outer boundaries of the primary cell which vanishes by the

Bloch condition; thus Green’s identity becomes

/ / (EV2r, — Wk V2E)dv = / / < 3% — gn )ds (6.40)

Because the scatterer is now arbitrary shape, it is difficult to obtain the integration on

the scatterer directly. What we can do is to use Green’s identity to ), and the inner
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solution ¢ in the inner region C), to get an approximation by the integration on the outer
‘boundary’ of the inner region. We denote the outer ‘boundary’ of the inner region by
a sphere surface 9S* centred within the scatterer in the cell C' as p — co. Before using

Green’s identity, we expand ¢},

w* — efiﬂﬁ T

m

1 1 1
=1—iepcosa — ie%pQ cos® a + gie‘;’pg cos® a + Etflllp4 cos a4+ O(ef)

= b+ O(&). (6.41)

That’s because the expansion of ¢, is only valid when p is strictly order one, i.e. near the
scatterer, so we cannot use this expansion in Green’s identity which involves the whole
inner region including p — oo. This expansion makes the omitted terms higher order.
Then we have

. 1 1 1
V2¢fn =V?|1—iepcosa — §e%p2 cos? o + Eiei{’p?’ cos® o + Eeéllp4 cos? o

=~ +idpcosa + €'p? cos? a. (6.42)

Now we apply Green’s identity to the truncated function 12);‘” and the inner solution up

to order €7 over the inner region C,

/ / /C (¢PV24r, — 0, V26 do = / /8 } <¢(2) agij —1!3:16;:)) ds,  (6.43)

where the boundary of the inner region including the surface of the scatterer and the

outer boundary 95*
0C, =05+ 0S5™.

In the inner coordinates, the Helmholtz equation becomes
V2o +elp =0. (6.44)
The inner solution takes the form
b= ¢o+ €11 + €12 + O(e?) (6.45)
then substituting for in and collecting the like power terms we obtain
Vigo=0, Vig1=0, Viedy=—¢o, (6.46)
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Therefore

LHS(6.43)
:/// {(¢0+61¢1—|—e%¢2)(—ef—i—ie‘i’pcosa—i—e‘lpocosQ )
Cp
. Loy o L.33 3 2
— (1—161pcosa—§elp cos a+6161p Cos a)(_fl)

(60 + €101 + €1¢2) }dv = 0(e}),
which gives

//as B wm //85* U, ma¢2d + O(e)).

Substituting for ¢ and 1/)* with (6.34)) and (6.41]) respectively in (6.48])

RHS(6.48) = / / [¢<2 — ‘% ] prsin 8dfde + O(e})

. Vi (B
:77%1 By—= — —i—41(u1 ,ud ul)M Y2(3,,) + O(e}).
Y (Bm)
Therefore, by (6.40]), (6.48]) and (6.49)
JHIRGE A
3 (8,
=M By it M| Y08, ||+ O

Yll (6771)
By result from the sphere (6.22)), we have

// eV, wmv2§)du_321—” (aA 46 VA ,@m>.

oT
Thus, by (6.50) and ( -

% 9A,,
e lc"v ( p + < VA @m>
\ Y, (B,)
— o BLR L

g

Y (Bn)
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(u1 aulaul)M Yl (B ) +O(5411)7

(6.47)

(6.48)

(6.49)

(6.50)

(6.51)

(6.52)



which is

0A,,
—_— Am
oT + w V B
Y (B,
B 7TC2 ,iﬁz;l-Rj B VS 4 -1 0 1 M 0,2 O 4 6.53
LA 7 |Bo—5 +4i(uul,u)M | YP(B,,) || +O0(). (653)
Yll(ﬁm)
By the matching between outer solution (6.16]) and inner solution (6.34])
M T
By =) Ape PR, (6.54)
h=1

(ul >u1>u1 ZA eBTR ( 11(Bh)*7Y10(/éh)*7Yll(Bh)*>' (6'55)

Now we have the envelope equatlons

G;T C(m) VA,
1 & V, 4r > : YI_I(AB "
— —§iQoZAh 4#23 3 ( N(Br)* aﬂo(ﬁh)*ﬂﬂl(ﬁh)*)M YP(Bm) ||
h=1 Y11(Bm)
(6.56)

for all m =1,2,..., M, where C;m) and Qg are given by ([6.30)).
If we multiply both sides of equation (6.56) by A*, (the conjugate of A,,) and add

the resulting equation with its complex conjugate. After summation over m, we obtain

0A,, —
§ : (m) |
<8T +C VAm>

m=1

| Y (B
_ _70 S 47T23 (Y1_1(Bh)*7Y10(Bh)*: Y} (Bh)*> M| Y{(3,,)
meh le1 (Bm)

X (ARA% —iALA). (6.57)

By changing the second term in the last parentheses on the right from A} A, to A} Ay,

the double series is unaltered, hence must be zero, yielding
Z | Am|? + Z ) V|An) = (6.58)
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Thus the total energy is conserved in the array.
When the scatterers are sphere, the volume V; = 47a®/3, and the matrix of dipole

coefficients M is obtained in the infinite array ({5.97)

$ 00
M=|[o0 1 0|, (6.59)
00 3
therefore the envelope equations become
8(%+C( ™ VA
Y (Bm)
ﬂQOZAh —1+(Yl1<Bh>*,n0<3h>*,Yf(i3h)*> Y(B,) || (6:60)
Yi(B,)

which is in agreement with the results of scattering by an array of sphere ([6.29)).

If the array is infinite, the amplitude doesn’t depend on the space variation, thus

there is only time variation. If we search the solution in the form of A,,(T) = a,,e 7,
the envelope equations become
T ™ —1/73 \* 2 \* a2 \* >
Q= o > | g = (Y B YRGBy M| via,) ||
B2V, — dma 3
Y (Bn)
(6.61)

where 2 = Kc. K is the detuning of the wavenumber and the detuned wavenumber
k = B+ €K, and the detuned frequency w’' = ke = w + €. The envelope equations
(6.61) should be consistent with results obtained in infinite array (5.91)

4rL* & V., 4 Y
™ s 7T 2\ % oo\ ~
5mUm: k‘/c ] h 471'0,3 3 < (IBh) 7Y10<Bh) 7}/11(16/1) >M Ylo(/?h) ’
Y8
(6.62)
where

5 (BB (k)= H)L?

k3a3 N k3a3
Equations (6.61]) and (6.62)) define the same eigenvalue problem, therefore we have

2217 _ 28°(k—B)L? _ 20k —B)L* _ (k+P)(k—B)L
ke ~ ke3 T kBad T k3a3 ’

. with Bm = 8.

S = (6.63)
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on a first approximation in the limit k& — /3.

6.2.2 Numerical results

We now apply the system to a three-dimensional strip of scatterers occupying 0 < z < d.
A train of plane incident acoustic waves arrives from the left hand side of the array. Let
the width d of the strip be of order 1/€} in the x direction (that is to make sure the
array width is big enough for the resonance to occur) and the length be infinite in both
of £y and +z directions, see figure [6.1], where we only draw the scatterers on the visible

surfaces of the cuboid.
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Figure 6.1: Strip

Write the wave potentials in the three zones (left side, right side and in the strip) in
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the form of

M
®o= Y An(X,Y,Z,T)ePrr, (6.64)
m=1
where
A, X <0,
Am =4 A, 0<X <D, (6.65)
Al X > D,

sin 7, COS Ym

with D = €2d. Note that, with 3,, = 8 | sin 7y, sinyum | »
COS T

. AT . . . .
elﬁmr _ elﬁ(m Sin Tym, COS Ym +Y SIN Ty, SIN Yy +2 COS Ty, ) ’ (666)

where 7, is the angle between 3,,, and z-axis, v;, is the angle between the projection of
B,, on x—y plane and x-axis. With the presence of the scatterers in the strip, the incident
plane waves BT will be perturbed. We choose a small perturbation (the detuning) of

frequency of the incident wave and write
AI (X, Y, Z, T) _ Aoei(lC sin 71 cos y1 X+ sin 71 siny1 Y +K cos 1 Z—QT), (6.67)
where K is the detuning of the wavenumber and ) is the detuning of the frequency,

related by K = Q/c. By the continuity conditions at X = 0, D, the y and z dependence

must be the same in every component of the solution. Thus, look for solutions in the

form
A5(X.Y,2.T) Bin(X)
Am(X Y. 7 T) = Ay Bm(X) ei(KSil’lTl sin'le—HCcoan—QT)’ m=1,2,..., M.
A%(X,Y, 2,T) B (X)

(6.68)
Along the edges of the strip, the dynamic pressure —iw®( and the normal velocity 0P /0x

must be continuous,

M M
3 AL(0,Y, Z,T)ePr" = 3 An(0,Y, Z,T)ePrr, (6.69)
m=1 m=1
M :aT M :aT
> An(D,Y,Z,T)ePm™ = " AL(D,Y, Z,T)ePnr, (6.70)
m=1 m=1
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aiA(XYZT)W%’r —8§:A(XYZT)“BTT”‘"

a.’E m ) 9 ) € - 856 m 9 9 9 € 9
0 < - 8 & -

o > An(X,Y, Z,T)ePmr =Y ANX,Y,Z,T)ePnr ,
¥ m=1 X=D T m=1 X=D

which lead to

(B_(O) - Bm<0))eiﬁ(ysin'rm Sin Ym+2 cos Tm ) _ 0’

m

ii—? sin T, COs Ym,
1

Mz ilM=

(B;L(D) o Bm(D))e eiﬂ(ysinTm sin ym+2 cos Tm) — 0’

m=1

and

(B (0) — By (0))if sin 7y, cos e WS mmsinymtzcosmm) — 0 (3,

M=

3
1§

.BD .
155> sin 7o, €OS Y,

(B,,(D) — B,,(D))if sin 7y, cos yme 1

WE

3
Il

Then using the orthogonality of the trigonometric functions, we obtain

Bm(D) = B}(D), m=1,2,..., M.

ei,@(y Sin Ty, SIN Yy +2 COS T ) _

(6.71)

(6.72)

(6.73)

(6.74)

(6.77)

Note the incident wave vector is 3; = 3(sin 7 cos 1, sin 7 sin 1, cos 71)7, so the direction

of the incident wave is determined by two angles 71 and ;. Without loss of generality we

limit ; to be 0 < 71 < /2. From the definition of the spherical coordinates, 0 < 71 < 7.

Arrange the components so that
cosym >0 for me{1,2,...,. Mt} =7y,

and

cosYm <0 for me{Mt+1,MT4+2,... M} = 2.

In the field without scatterers X < 0, the only forward propagating wave is the incident

wave so that

(X)=0, me 2z \{1}.
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In the field X > D, there are no backward propagating waves so that
BH(X)=0, mE€E Z,. (6.79)

Now we are going to derive the envelope equations in and out of the strip in forms of

B,.(X), B (X), B/t (X). The governing equations in the strip and the outside the strip

m

are given by and (|6.31)) respectively. Outside the strip, from (6.68) and the the
envelope equations (6.31)), we have

dB%:iKl—SinTlsin’ylSinTmSin’}/m—COST1COS7'mB;E’ m=1,2,..., M. (6.80)

dX Sin Ty, COS Ym
Thus
B (X) = b, (6.81)
where

1 — sin 7 sin 71 Sin 7y, Sin v, — COS T1 COS Ty,
K = K, m=12,...,M.

Sin Ty, COS Y

Inside the strip, from (6.68]), the envelope equations (6.56]) become
dB,, i { Q

— (1 — sin 7y sin 7y; sin 7y, Sin Y, — €OS T4 COS Ty ) By,

dX :Cg Sin 7, cos Y | o
Y (6
m - * 2 * * - S
+§ZB}L 3(1/1 1(/8h) 7}/10(ﬁh) 7Y11(18h) >M Ylo(ﬂm) - 47_”13}
h=1 )
Yll(lam
(6.82)
which is
Bl Bl
d B i0 B
-~ S =0 “ (6.83)
dX Cy :
BM BM
where the elements of the matrix F are
1 Q . . . .
Fji =——— | — (1 — sin 7y siny; sin 7; siny; — cos 11 cos 7;)
sin 7; cosy; | 20
Y, (B)
2 —1/3\* 0/ \* 1773 \* 0/ 7 ‘/;
3 Y (B)5 Y (B)% Y (B)" M| YP(By) | - 8mdd |’ (6.84)
Y(8,)
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Here we only consider the case that none of the eigenvalues are equal to each other.

In this case, the general solution of the linear system (4.87)) is of the form

B = (B1,Bs,...,Buy)T

— Clv(l)ei)\lﬂoX/Cg + C2v(2)ei/\2Q0X/Cg + L + CMV(M)ei)\MQ()X/Cg, (686)

where VU ig eigenvectors corresponding to eigenvalue A;, j = 1,2,..., M. The unknown
coefficients C1,Cs,...,Cy will be determined by the boundary conditions and
. The properties of this solution form depend on whether the eigenvalues of ma-
trix F are real or complex, and the forms of the eigenvalues depend on the sign of the

discriminant of the characteristic equation, which is, for example,

AN — (Fiq + Foo)\ + (F11Fag — FiaFs1) = 0, for M = 2, (6.87)
and

N4+ X+ aid+ag =0, for M =3, (6.88)

where
g = —(F11 + Fag + F33), (6.89)
ap = det P Fa + det i + det P Fos , (6.90)

Fao1 Fa F31 Fi3 F3p  F33

ap = —det(F). (6.91)

The discriminants are
Ag = (Fi1 + Fa)? — 4(F11 Fag — FiaFn), for M =2, (6.92)

Az = 408 — afa3 + dagals — 18aparag + 2703, for M = 3. (6.93)
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The discriminant A is a function of the detuning of the frequency /€, which is con-
tained in Fj;. For example, when A3 < 0, one of the eigenvalues is real and the other two
are complex. Therefore one of the eigensolutions is oscillatory in X with constant
amplitude. The remaining two are oscillatory with exponentially decaying or growing
amplitude. When Ag > 0, all the eigenvalues are real and all the waves in the array will
oscillate in X with constant amplitudes.

\2 for three

Next, we will consider and compare the primary wave intensity |B;(X)
types of scatterers, where the primary wave is the continuation of the incident wave in
the array. We always assume the length of the axis of the scatterer in « direction is a,

the length of the axis in y direction is b, and the length of the axis in z direction is c.

Given a length [, we take the typical size of the three types of scatterers as follows
1. Sphere: a =b=c=1.
2. Prolate spheroid: a = 2l, b=c=1.

3. Oblate spheroid: a =1, b =c = 2I.

1 1
1 1
L L
1 |
1 1
1 1
L4 A= T T S
e 7/ e
L0 , L0
z I 7 7’ I
, \ , D - \
1 1
1 ___L.k_l_-__ 1
1 1 H 1
e (e e R L e
7 /1 : 7
A q 7
’ | \ Ik2.’ |
[ s T
b2 1 1 1
1 1 1
e El e i Sl il
e e e
7 7 e
e e 4
e ‘/ 7
>
b

bs

Figure 6.2: M = 2, forward scattering by a simple cubic lattice.

The matrix of the dipole coefficient is given by ([5.97)), which is related to the added
mass coefficients by (5.98). For a sphere, the added mass coefficients are [65, page 144]

aj] — a2 = asz — p‘/;/2, aij = 0, ) 7é j (6.94)
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bs

Figure 6.3: M = 2, backward scattering by a simple cubic lattice.

For a spheroid, the added mass coefficients are [32], page 153]

(&7} 4
a1l = 5 _ 0 gﬂpalb%, (6.95)
ao = agg = —P0_ 2 pa8? (6.96)
22 33 2— 5y 3 paioy, .

where for a prolate spheroid

2h2 { a? — b? — a arccosh (%)}

Qg = (@2 , (6.97)

a [a\/ a? — b2 — b2 arccosh (%)}
Bo=7 = e , (6.98)

and for an oblate spheroid
2b2 [\/m — @ arccos (%)}

ap = CEYDRE , (6.99)

a [a\/b2 — a2 + b? arccos (%)}
Bo =" = — ) (6.100)

(b2 — a2)3/2
In the following results for these three types of scatterers, we use [ as the dimensionless
parameter, and the small parameter ¢; = kl.

Without loss of generality, we limit the angle of the incident wave with z-axis to
be in (0,7/2). If we define the positive direction of z-axis as forward and the negative

direction of z-axis as backward, then when M = 2, there are two types of scattering,
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forward scattering and backward scattering. For examples, we take the following data for

numerical calculations

Forward scattering : 7 = 70 = 7/2,71 = 7/3,72 = —7/3. See figure

Backward scattering : 71 = 7o = /3,71 = 7/6,v2 = 57/6. See figure [6.3

BoR

0/ Q/Q

Figure 6.4: M=2, forward scattering. Comparison of the transmission wave intensity |B1(D)|* over the
detuning Q/Qq. Left: QoD/C,; = 0.5. Right: QoD/Cy = 0.8. Dashed line: sphere, solid line: prolate
spheroid, thick solid line: oblate spheroid.

0/ Q/Q

Figure 6.5: M=2, backward scattering. Comparison of the transmission wave intensity |B1(D)|? over the
detuning /Qo. Left: QoD /C, = 2. Right: QoD /Cy = 4. Dashed line: sphere, solid line: prolate spheroid,
thick solid line: oblate spheroid.

In figure we plot the primary wave (the continuity of the incident wave in the
array) intensity on the right edge of the strip |By(L)|? against the detuning €2/Qq for
forward scattering and strip widths QoD /Cy; = 0.5 and QoD /C, = 0.8. As we can see,
the oblate spheroid array is most efficient in blocking the primary wave while the sphere
is the least efficient one, which is because the oblate spheroid has the biggest volume
and the sphere has the smallest volume by the scatterer size we use. The same situation

happens for the backward scattering, which is shown in figure [6.5
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Figure 6.6: M=2, backward scattering. Comparison of the primary wave intensity |B1(X)|° across the

strip when ©/Qo = 0, which lies in the stop band. Left: QoD/Cy = 1, right: QoD/Cy = 2. Dashed line:
sphere, solid line: prolate spheroid, thick solid line: oblate spheroid.

In the case of the backward scattering, there is a region of detuning which makes
eigenvalues be complex conjugate. In this region, the solutions for the primary wave
B1(X) and scattered wave By(X) are oscillatory with exponential decaying or growing
amplitude. We define this region as the stop band. In figure we compare the primary
wave intensity |Bj(X)|? across the strip for scattering configuration in figure when
the detuning 2/Qp = 0. From we can see the primary wave intensity for sphere array
decays most slowly and it decays fastest for oblate spheroid array. When the strip width
is increased to 2, the primary wave intensity decays to nearly zero for oblate spheroid
array at the right edge and it decays more slowly for the other two scatterers. When the

strip width is large enough, the primary wave intensities of all three types of scatterers

will decay to nearly zero at the exit edge of the strip.

Figure 6.7: M = 3, the projections of the wave vectors in z — y plane. Left: forward-forward scattering,

middle: forward-backward scattering, right: backward-backward scattering.
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Next we consider the case of M = 3, i.e. two resonantly scattered waves in the array.
Three types of scattering are possible. In figure we give the projections of the wave
vectors in x —y plane, which are denoted by dashed symbols. The strip array we consider
is a simple cubic array.

1. Type I (forward-forward): both resonated waves propagate forward as shown in the
left hand diagram of ﬁgure ki =1(2,2,0), ki, = (0,3,0), ki = (1,—2,0), the scatterer
centre in primary cell is (—1/18,7/18,—1/4). 71 = 75 = 73 = cos~}(9/1/8921) ~ 84.53°,
1 = tan"1(29/37) ~ 38.09°, v, = tan"1(47) ~ 88.78°, 3 = tan~!(—43/19) ~ 66.16°.

2. Type II (forward-backward): one resonated wave is reflected and another one prop-
agates forward as shown in the middle diagram of figure[6.7} kj = (2,1,0), k5 = (—1,2,0),
ki = (1,—1,0), the scatterer centre in primary cell is (3/14,9/14,5/4). 11 = 7o = 73 =
cos™H(=7/3V/17) ~ 124.47°, 1 = tan"(1/5) &~ 11.31°, 4o = 7+tan"19/17(47) ~ 131.82°,
v3 = tan~1(—23/11) ~ —64.44°.

3. Type IIT (backward-backward): Both resonated waves are reflected, therefore prop-
agate backward as shown in the right hand diagram of figure . ki = (1,1,0), k, =
(—1,0,0), ks = (0, —1,0), the scatterer centre in primary cell is (1/6,1/6,0). 71 = 72 =
3 =7/2,71 =tan"}(1) = /4, v = —mw+tan" (1/7) = —171.87°, y3 = —m+tan~1(7) =
—98.13°.
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Q‘ 04}

Figure 6.8: Three coefficients of the primary wave in type I scattering. Left: sphere, middle: prolate
spheroid, right: oblate spheroid. Dashed line: C;lVl(l), solid line: C’2V1(2), dot-dashed line: C’3V1(3).
: : - — : 4 : :

4r

| o ] n Ty

Figure 6.9: Dependence of wave intensities for type I scattering on the detuning frequency €/Qq. Left:
sphere, QoD /Cy = 4; middle: prolate spheroid, QoD/Cy = 2; right: oblate spheroid, Q0D/Cy = 1. Thick
solid line: |B1(D)|?, dashed line: |B2(D)|?, thin solid line: |Bs(D)|>.

When M = 3, the general solutions of equation ([6.82)) inside the strip have the form
(16.86))

B(X) = (Bi(X), B2(X), B3(X))"
= O, VDM0X/Cy | 0y (D) P20X/Co . 0y (3) a0 X/Cy. (6.101)

where \; and VU, j =1,2,3 are the eigenvalues and the corresponding eigenvectors of
matrix F, respectively. The coefficients C}, j = 1,2,3 will be determined by boundary
conditions at the edge of the cylinder strip. Here we only consider the case that none
of the eigenvalues is equal to each other. In figure we give the three coefficients of
the primary wave in type I scattering shown in the left hand diagram of figure In
figure we give the dependence of wave intensities in the array for type I scattering
on the detuning frequency /. If we compare figure with we find the primary
wave intensity |B1(X)|? has valleys where two of the three primary wave coefficients
are nearly equal. For example, in the left hand diagram of at 2/Qy ~ 0.46, the
coefficients C’lvl(l) and Cng(Q) cross each other and nearly equal to 0.5. On the other

hand, the other coefficient C’3V1(3) is nearly zero. Therefore, the primary wave B;(X) is
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dominant by the first two eigenvectors; its intensity can be approximated by
|Bl (X)‘Q ~ |C1V1(1)eiA1S20X/Cg + 02‘/1(2)61)\2510)(/09’2

o~ L] 4 eimen0x/c,|?

4
AL — A2)QpX
= o WA X (6.102)
Cy
Therefore the minimum transmission intensity occurs around
Qo X 2n+ 1w
= ,m=12 ... 6.103
Cy A1 — A ( )

Q

3.45,10.34,17.28, . ...

In the left hand diagram of figure the strip width we use is QyD/C,; = 4, which is
near the minimum primary wave intensity occurring point QyD/Cy = 3.45. We can see
the minimum primary wave intensity of this strip width is quite close to zero.

1.0r =

08}
= 06¢ N:
a 2
Q 04f f§ .
02}
0oL " 3 o 2 4
Q/Q 0/Q

Figure 6.10: M=3. Comparison of the transmitted wave intensity for type I on the exit edge of the strip
|B1(D)|? over the detuning. Left: QoD/Cy = 1. Right: QoD/C, = 2. Dashed line: sphere, solid line:
prolate spheroid, thick solid line: oblate spheroid.

In figure we compare the transmitted wave intensity |B;(D)|? for type I scat-
tering on the exit edge of the strip against the detuning. We can see that for same strip

width, the oblate spheroid array blocks most energy and the sphere array blocks least

energy.
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Figure 6.11: M=3. Comparison of the transmitted wave intensity for type II on the exit edge of the strip
|B1(D)|? over the detuning. Left: QoD/Cy = 2. Right: QoD/Cy = 3. Dashed line: sphere, solid line:

prolate spheroid, thick solid line: oblate spheroid.

o

|Bi(D)?

Q/Qy

Q/Qy

Figure 6.12: M=3. Comparison of the transmitted wave intensity for type III on the exit edge of the
strip |B1(D)|? over the detuning. Left: Qo D/C, = 2. Right: Qo D/Cy = 4. Dashed line: sphere, solid line:

prolate spheroid, thick solid line: oblate spheroid.

For type II forward-backward scattering and type III backward-backward scattering,
two of the three eigenvalues are conjugate complex for some region of detuning (the stop
band). In ﬁgure and we compare the transmitted wave intensity |B1(D)|? on the
right edge of the strip against the detuning €2/ and we can see the stop bands are always
widest for oblate spheroid array. Thus the oblate spheroid array is the most efficient

scatterer in blocking the incident wave and most energy is transferred into scattered

energy when the detuning lies in the stop band.
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Chapter 7

Conclusions

7.1 Summary

Methods of matched asymptotic expansions and multiple scales were used to consider
acoustic or elastic wave propagations through both infinite and finite (only finite in one
direction) periodic arrays.

For the infinite arrays, elastic wave propagation through doubly-periodic arrays of
cavity cylinders and acoustic wave propagation through triply-periodic arrays of arbitrary
shape scatterers were considered. Wave potentials satisfy the Helmholtz equations given
that the waves are time-harmonic. The scatterer size was assumed to be small compared
to both the wavelength and the length scale of the array periodicity, but there was
no restriction on the sizes between the latter two. This allows us to investigate the
phenomena associated with the periodicity, such as band gaps. The main idea we used
is to obtain perturbations of the quasi-periodic plane wave solutions that exist in the
absence of the scatterers. In the elastic case, we need to take account of the coupling
between shear and dilatational waves that arises from the boundary conditions. A notable
feature of the matched asymptotic expansions was that certain eigenfunctions must be
included in the inner solution ahead of any obvious need for them. Explicit expressions
for the frequencies were obtained that showed how the mode frequencies depended on
the Bloch vector, the geometry, and the Lamé constants for the medium. Perturbed
dispersion relations were then given to show the appearance of the local band gaps when

the scatterer size was increased from zero. In the elastic case, results were also given to
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illustrate the appearance of local band gaps, the splitting and crossing of double modes,
and switching between dilatational and shear modes for square and hexagonal lattices.
In the acoustic case, the scatterers can be arbitrary shape. Results were given for simple
cubic lattice and body-centred cubic lattice to compare the perturbed dispersion relations
for spherical and prolate spheroidal scatterers. It was shown that the size of the local
band gaps were always bigger for prolate spheroid array than for sphere array, which is
because the prolate spheroid had bigger volume than the sphere for the sizes we chose.
For the finite arrays, we considered the multiple resonant scattering by a large width
strip of arrays of scatterers. The strip had finite width in only one direction and infinite
in other directions. As in the case of infinite arrays, the scatterers are cavity cylinders
for the two-dimensional elastic case and can be arbitrary shape for three-dimensional
acoustic case. As the strip width must be large enough to make the resonance occur, we
first derived the envelope equations for an infinite array with the help of the results of
the infinite arrays and the method of multiple scales. The envelope equations were then
applied to a finite array to investigate how waves propagate in the array. We compared
the transmission wave intensities for different shape scatterers for the acoustic case. It
was shown that the transmission wave intensities not only depended on the shape of the
scatterer, the strip width and detuning of the frequency but also the incident angle. For
the elastic case, we applied the envelope equations to an elastic strip with an array of

cavity cylinders bounded by acoustic media on both sides.

7.2 Future work

The immediate future work is to consider the elastic wave propagation through infinite
and finite three-dimensional arrays of spheres using the matched asymptotic expansions
(multiple scales should also be used when the array is finite in one direction). Another
possible work is the wave propagation through arrays of Dirichlet scatterers. Moreover,
elastic wave scattering by other shape scatterers, such as elliptical cylinders in two-
dimensional and spheroids in three-dimensional are quite possible to be solved by these
methods using the elliptical cylindrical coordinates or spheroidal coordinates system.
Another possibility would be the electromagnetic waves propagate through various arrays:

two-dimensional and three-dimensional, infinite and finite etc.
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