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Abstract

In this thesis, we use asymptotic methods to solve problems of wave propagation through

infinite and finite (only consider those that are finite in one direction) arrays of scatterers.

Both two- and three-dimensional arrays are considered. We always assume the scatterer

size is much smaller than both the wavelength and array periodicity. Therefore a small

parameter is involved and then the method of matched asymptotic expansions is appli-

cable.

When the array is infinite, the elastic wave scattering in doubly-periodic arrays of cav-

ity cylinders and acoustic wave scattering in triply-periodic arrays of arbitrary shape

rigid scatterers are considered. In both cases, eigenvalue problems are obtained to give

perturbed dispersion approximations explicitly. With the help of the computer-algebra

package Mathematica, examples of explicit approximations to the dispersion relation for

perturbed waves are given.

In the case of finite arrays, we consider the multiple resonant wave scattering problems

for both acoustic and elastic waves. We use the methods of multiple scales and matched

asymptotic expansions to obtain envelope equations for infinite arrays and then apply

them to a strip of doubly or triply periodic arrays of scatterers. Numerical results are

given to compare the transmission wave intensity for different shape scatterers for acoustic

case. For elastic case, where the strip is an elastic medium with arrays of cavity cylinders

bounded by acoustic media on both sides, we first give numerical results when there is

one dilatational and one shear wave in the array and then compare the transmission

coefficients when one dilatational wave is resonated in the array for normal incidence.

Key words: matched asymptotic expansions, multiple scales, acoustic scattering, elas-

tic scattering, periodic structures, dispersion relation.
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Chapter 1

Introduction

The propagation of waves in periodic media has been a problem of increasing interest in

recent years. These waves include acoustic, elastic, electromagnetic or water waves. The

main interest is focused on the question of the existence or not of band gaps for these peri-

odic media. Band gaps are those regions of frequency where plane waves cannot propagate

through the array. A comprehensive bibliography about photonic and sonic band-gaps

(analysis of filtering properties of composite structures in the theory of electromagnetic

and acoustic scattering) can be found on a website compiled by Dowling [19]. The re-

search on phononic band gaps (filtering properties for acoustic and elastic composites)

has also attracted much interest. Various methods have been developed to investigate

the band structures of waves propagation in phononic crystals, for example, the plane-

wave method [84], the finite difference time domain method [23], the multiple scattering

theory method [54, 35] and multipole expansion method [77, 105] etc. In these methods,

the phononic band gaps are all obtained numerically. The method of homogenisation

can approximate dispersion relation (the relation between frequency and wavenumber)

explicitly [21], but only for low-frequencies. This method requires the wavelength to be

much bigger than both the scatterer size and the array periodicity, which makes it im-

possible to assess the phenomenon related with the array periodicity, such as band gaps.

In this thesis, we mainly use the perturbation method of matched asymptotic expansions

to consider the wave (acoustic and elastic) propagation through periodic arrays under

the assumption that the scatterer size is much smaller than both the wavelength and the

array periodicity. One advantage of this method over the method of homogenisation is
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that the array periodicity can be as large as the wavelength, therefore the phenomena

associated with the periodicity of the array (such as band gaps) may be described. In

particular, explicit expressions for the perturbed dispersion relation are given to show

the appearance of the local band gaps for infinite arrays. This method can be used to

solve those singular perturbation problems involving several different length scales and

two subdomains on which no single asymptotic expansion in a series of gauge functions

(functions of the small parameter) can hold uniformly over the whole space. Thus sep-

arate expansions must be developed in those two subdomains, where they must have a

overlapping area in which the two expansions hold simultaneously. Then any indeter-

minacy in the expansions is solved by the matching. These two subdomains are usually

named the inner region (near the scatterer) and the outer region (far from the scatterer),

and the expansions in them are named the inner expansion and the outer expansion

respectively. This method was developed in the 1950s and was then applied to a variety

of problems in fluid mechanics in 1960s. Most of the earlier applications were to viscous

flows. But since the 1960, applications of the method have proliferated in some other

fields of fluid mechanics, as well as in other branches of applied mathematics, see [102,

page 77] for more details.

Recently, this method was used to consider the problem of acoustic wave propagation

through a doubly-periodic array of rigid cylinders by McIver [60]. Following this, we first

apply the same method to the two-dimensional elastic wave scattering problem. The main

difference between the acoustic case and elastic case is that in the former only dilatational

waves are present, while in the latter, both dilatational and shear waves are involved. A

notable feature of the modified matching procedure for the elastic case is that certain

eigenfunctions must be included in the inner solution ahead of any obvious need for them.

The method of matched asymptotic expansions is also used by Datta and his colleagues

to solve the elastic wave scattering problem for both one scatterer [17] and composite

materials containing multiple scatterers [16]. They also showed that feature about the

eigenfunctions but didn’t give the explicit form. Acoustic wave propagation through

three-dimensional infinite arrays of arbitrary shape rigid scatterers are also considered

in this thesis using the same method. For general shaped inclusions in acoustic problems

(i.e. the Neumann or Dirichlet boundary conditions), this method could also work by
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using conformal mappings in the inner problem as the leading order solution is harmonic

and the boundary conditions will not change after the conformal mappings. For these

infinite arrays, their periodicity requires that the solutions satisfy the Bloch theorem:

the eigenfunctions of a system whose wavefunction of a particle is placed in a periodic

potential (Bloch wave) can be written into the form of a plane wave times a function

with the periodicity of the Bravais lattice. Bravais lattice is an infinite array of discrete

points generated by a set of discrete translation operations for some primitive vectors.

The method of matched asymptotic expansions we use here is based on the assumption

that the material is isotropic. When the material is anisotropic the outer solutions will

change their forms because they are on the assumption that every cell of the lattice is

exactly the same. Therefore more complicated outer solutions need to be developed for

the anisotropic materials.

With the help of the solutions in problems of infinite arrays, we then consider the

multiple resonant scattering problems using the method of multiple scales. Multiple reso-

nant scattering, or Bragg resonance, means intense peaks of scattered waves are produced

for specific wavelength and/or incident angles. The method of multiple scales is also used

to solve singular perturbation problems. The idea is to introduce a number of different

scales, each one (measured in terms of the small parameter) associated with some prop-

erty of the solution. This problem is motivated by the paper by Li and Mei [49], in which

they considered the Bragg resonance of surface water waves by a two-dimensional array

of vertical cylinders as a model for the support of an off-shore airport. Fast and slow

variables are defined to describe fast and slow variation of the envelope (the outline of

the variation in amplitude). The scattered wave from each scatterer is in higher order of

the small parameter compared to the incident wave. But the cumulative effects of the

scattered waves are no longer weak after scattering by a large number of cylinders, that

is why the slow variations must be counted in. As Li and Mei [49] assumed the water

depth is constant and the array is composed of vertical cylinders, this problem is actu-

ally equivalent to a two-dimensional acoustic problem with an array of rigid cylinders.

Therefore we first reproduce their results for the corresponding acoustic case and then

generalise it to arbitrary cross section cylinder arrays. A generalization to the elastic reso-

nant scattering is also obtained in this thesis by the consideration of providing theoretical
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support for the design of efficient soundproof materials. Further, the acoustic resonant

scattering by a three-dimensional array of arbitrary shape scatterers is also considered.

In all these problems about resonant scattering, the envelope equations are first derived

in infinite arrays using Bloch theorem and they are then used to a strip of array with

finite width in one direction (the array in other directions are infinite). The width of the

strip is assumed to be large enough to make sure the resonance occurs.

The structure of this thesis is as follows. Chapter 2 is an introductory part to give the

governing equations and boundary equations of the wave propagation in elastic medium.

The corresponding equations in an acoustic medium can be obtained by setting the

shear modulus of the elastic medium to be zero (as no shear stress exists in an acoustic

medium).

The elastic wave propagation through doubly-periodic arrays of cavity cylinders is

considered in chapter 3. As the exact solution of this problem has already been obtained

by Poulton et al. [77] and Zalipaev et al. [105], we first give a brief introduction of their

method and results and also make a correction about the quasi-static limit (the dispersion

relation in low frequency as the wavenumber goes to zero) Zalipaev et al. [105] obtained.

The problem is then solved by matched asymptotic expansions and an eigenvalue problem

is obtained to give the perturbed dispersion relations and the size of the local band gaps

explicitly. The results are then illustrated in diagrams to show the splits and interactions

of multipoles caused by the presence of the scatterers. Comparisons of the results by

these two methods are also given and it is shown our method is more accurate when the

cylinder size is smaller.

Chapter 4 is about the two-dimensional resonant scattering. Li and Mei’s result [49] is

first reproduced by considering the corresponding acoustic problem and then generalised

to arrays of arbitrary shape cross-section cylinders. The comparison among four different

types of cylinders are given for the transmission wave intensity. The envelope equations

are also used to solve the resonant scattering by a semi-infinite array. In this chapter,

another generalization to the elastic wave resonant scattering is also achieved .

In chapter 5, we consider the acoustic wave propagation through triply-periodic ar-

rays of arbitrary shape scatterers using matched asymptotic expansions. As in the two-

dimensional case, eigenvalue problems are obtained to give the perturbed dispersion
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relation and illustrate the appearance of the local band gaps. Comparisons for the per-

turbation of multipoles are made between two types of scatterers (sphere and prolate

spheroid).

Chapter 6 is about the acoustic resonant scattering by a three-dimensional finite

width strip (only finite in one direction) array of arbitrary shape scatterers, which is also a

generalization of Li and Mei’s method [49]. We also make comparisons of the transmission

wave intensities among three different types scatterers (sphere, prolate spheroid and

oblate spheroid).

A summary of this thesis and some future work are given in the last chapter 7.
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Chapter 2

The equations of wave motion

In this chapter, we introduce the governing equations and boundary conditions for wave

motions in elastic medium [9, chapter 5], where both of dilatational and shear waves exist

simultaneously. The elastic medium can be characterised through two parameters, named

Lamé constants, λ and µ, where µ is called the shear modulus. For wave propagation in

acoustic media, as no shear stress exists the corresponding governing equations can be

deduced by setting µ = 0.

2.1 Wave equations

Given Cartesian coordinates x, y, z with origin O, the governing equation for wave motion

in an elastic medium is

ρ
∂2u

∂t2
= (λ+ µ)∇(∇ · u) + µ∇2u, (2.1)

where u = (u1, u2, u3) is the displacement, ρ is the mass density, λ and µ are the Lamé

constants of the medium and∇2 is the Laplace operator. This equation (generally referred

to as Navier’s equation) can be written as

ρ
∂2u

∂t2
= (λ+ 2µ)∇(∇ · u)− µ∇× (∇× u), (2.2)

by using ∇2u = ∇(∇ · u)−∇× (∇× u).

The divergence of (2.2) gives

ρ
∂2

∂t2
(∇ · u) = (λ+ 2µ)∇2(∇ · u),
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so the dilatation D = ∇ · u satisfies

∇2D =
1

c2
1

∂2D

∂t2
, c2

1 =
λ+ 2µ

ρ
, (2.3)

which shows that volume changes within the elastic body propagate as solutions of the

three-dimensional wave equation with speed c1 =
√

(λ+ 2µ)/ρ. These are known as

dilatational waves (also called primary waves or compressional waves).

The curl of (2.2) gives

ρ
∂2

∂t2
(∇× u) = −µ∇× {∇× (∇× u)},

and we get

∇2r =
1

c2
2

∂2r

∂t2
, c2

2 =
µ

ρ
, (2.4)

if we use the notation r = 1
2∇ × u. The vector, r, of infinitesimal rotations of the

body therefore propagates as a solution of the three-dimensional vector wave equation

with speed
√
µ/ρ. These are known as shear waves (also called secondary waves or

rotational waves).

By the Helmholtz representation, we can write u = ∇Φ+∇×Ψ, where Φ is known as

the Lamé scalar potential and Ψ as the Lamé vector potential, along with the constraint

∇ ·Ψ = 0. Substituting for u in (2.2) we get two equations

∂2Φ

∂t2
= c2

1∇2Φ, (2.5)

∂2Ψ

∂t2
= c2

2∇2Ψ. (2.6)

General plane wave solutions of these two equations are

Φ = f(k · x− c1t), (2.7)

and

Ψ = Ag(k · x− c2t), (2.8)

where f and g are arbitrary scalar functions, k is the propagation vector and A is any

constant vector normal to k (in order to satisfy the constraint ∇ · Ψ = 0). So the

dilatational wave displacement uc derived from the scalar potential of equation (2.7) is

uc = ∇Φ = kf ′(k · x− c1t). (2.9)
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Because A is normal to the wave vector k, we can choose A to be A = p× k, where p

is the unit polarization vector. Then the shear wave particle displacement us is

us = ∇×Ψ = ∇× (Ag) = ∇g ×A

= (kg′)×A = (kg′)× (p× k) = (k · k)pg′(k · x− c2t).

Suppose Φ and Ψ are time harmonic so that

Φ(r, t) = φ(r)e−iωt, (2.10)

Ψ(r, t) = ψ(r)e−iωt. (2.11)

Substituting these into the wave equations (2.5) and (2.6) and then simplifying, we obtain

two Helmholtz equations

(∇2 + k2
1)φ = 0, (2.12)

(∇2 + k2
2)ψ = 0, (2.13)

where ki = ω/ci, i = 1, 2 are the wavenumbers of the dilatational and shear wave, respec-

tively. For time harmonic waves, we usually omit the time factor e−iωt in the following.

Since three functions are needed to describe the displacement vector field u, only

three of the four scalar solutions of the Helmholtz equations are independent. Specifically

two components of the vector potential are needed to define the vector potential ψ

uniquely. We decompose the shear displacement vector us into two orthogonal vectors:

us = (us1,us2) where us1 lying in the plane parallel to the (x, y) plane, and the other us2

in the plane perpendicular to the (x, y) plane. Both of them should satisfy the Helmholtz

equations

∇2us(1,2) + k2
2us(1,2) = ∇(∇ · us(1,2))−∇×∇× us(1,2) + k2

2us(1,2) = 0. (2.14)

For a cylindrical coordinate system (r, θ, z) we can write [30]

us1 = ∇× (ψs1ez), us2 = ∇×∇× (ψs2ez)/k2, (2.15)

such that the two scalar potentials ψs1 and ψs2 satisfy the scalar Helmholtz wave equa-

tions

(∇2 + k2
2)ψs1 = 0, (2.16)

(∇2 + k2
2)ψs2 = 0. (2.17)
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Then we can prove that us1 and us2 satisfy Helmholtz equations:

(∇2 + k2
2)us1 = 0, (∇2 + k2

2)us2 = 0. (2.18)

First of all, we consider us1 :

∇2us1 = ∇(∇ · us1)−∇× (∇× us1)

= −∇× (∇× us1)

= −∇× {∇× [∇× (ψs1ez)]}

= −∇× [∇(∇ · ψs1ez)−∇2(ψs1ez)]

= −∇×
[
∇
(
∂ψs1
∂z

)]
+∇× [∇2(ψs1ez)]

= ∇× (−k2
2ψs1ez)

= −k2
2∇× (ψs1ez)

= −k2
2us1. (2.19)

So we have ∇2us1 = −k2
2us1, that is (∇2 +k2

2)us1 = 0, i. e. us1 defined by (2.15) satisfies

the Helmholtz equation.

Similarly for the second shear vector field us2 :

−∇2us2 = ∇×∇us2, (2.20)

us2 =
1

k2
∇×∇× (ψs2ez)

=
1

k2

[
∇
(
∂ψs2
∂z

)
−∇2(ψs2ez)

]

=
1

k2

[
∇
(
∂ψs2
∂z

)
+ k2

2(ψs2ez)

]
. (2.21)

Applying ∇×∇× to (2.21) and using (2.20) one has

−∇2us2 = k2
2∇×∇× (ψs2ez) = k2

2us2, (2.22)

thus us2 satisfies the Helmholtz equation as well.
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Therefore the complete displacement vector field u can be found from three scalar

potentials φ, ψs1 and ψs2, each of which satisfies the scalar Helmholtz equations (2.12),

(2.16) and (2.17) respectively.

2.2 Stress tensor

Stress is an important element when we deal with the elastic waves. So it is necessary to

give some explanations about it.

Stress is the internal distribution of force per unit area in the body caused by the

permanent deformation or external loads etc. It is a vector and is related to the position

of the point and direction of the cross-section we considered. We can define the stress on

a point M as follows [18, page 287]:

σj = lim
∆Sj→0

∆F

∆Sj
, (2.23)

where the ∆F is the force acting on one of the cross sections, ∆Sj , of the point M . Its

normal component which is perpendicular to ∆Sj is called normal stress and paral-

lel components are called shear stresses. In the limit, when ∆Sj approaches zero, the

stresses become those at the point M . All the stresses on a point are called the stress

state on that point which can be described by the stresses on three cross sections per-

pendicular to each other. That is to say, the stress on any cross section of that point

can be denoted by those three stresses (nine components altogether), which is called

the stress tensor. Usually, we take those three perpendicular cross sections parallel to

the coordinate planes and the nine components are σij , i, j = 1, 2, 3, so the stress ten-

sor σ = (σ1,σ2,σ3)T , see Figure 1. The equilibrium requires that the summation of

moments with respect to an arbitrary point is zero, which leads to the conclusion that

the stress tensor is symmetric, i.e. σij = σji for all i and j. So only six of them are

independent. The stress tensor can be written as

σ =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 .

By the generalised Hooke’s law for isotropic materials we have

σij = λekkδij + 2µeij , (2.24)
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x

x

1
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Figure 2.1: Stress tensor

where λ and µ are the Lamé constants, ekk = ∇ · u = ∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3

= D is the

dilatation, ∇ is the gradient operator, u is a displacement vector, δij is Kronecker delta

function and eij = 1
2(ui,j + uj,i) is the strain tensor.

2.3 Wave equations and stress tensor in cylindrical coordi-

nates

The components of Navier’s equation in cylindrical polar coordinates (r, θ, z) are [9, page

149]
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∇2ur −
ur
r2
− 2

r2

∂uθ
∂θ

+
1

1− 2ν

∂D

∂r
=

1

c2
2

∂2ur
∂t2

, (2.25)

∇2uθ −
uθ
r2

+
2

r2

∂ur
∂θ

+
1

1− 2ν

1

r

∂D

∂θ
=

1

c2
2

∂2uθ
∂t2

, (2.26)

∇2uz +
1

1− 2ν

∂D

∂z
=

1

c2
2

∂2uz
∂t2

, (2.27)

where ν is Poisson’s ratio, the displacement u = urer+uθeθ+uzez, the Laplace operator

is

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2
, (2.28)

and the dilatation is

D =
∂ur
∂r

+
ur
r

+
1

r

∂uθ
∂θ

+
∂uz
∂z

. (2.29)

The components of the stress tensor that we shall use most frequently are [9, page 150]

σrr = λD + 2µ
∂ur
∂r

, (2.30)

σrθ = µ

(
1

r

∂ur
∂θ
− uθ

r
+
∂uθ
∂r

)
, (2.31)

σθz = µ

(
∂uθ
∂z

+
1

r

∂uz
∂θ

)
, (2.32)

σrz = µ

(
∂ur
∂z

+
∂uz
∂r

)
. (2.33)

By the Helmholtz representation, we can write u = ∇φ + ∇ × ψ. If we take ψ =

ψrer + ψθeθ + ψzez and suppress the time dependence then

∇×ψ =

(
1

r

∂ψz
∂θ
− ∂ψθ

∂z

)
er +

(
∂ψr
∂z
− ∂ψz

∂r

)
eθ +

(
ψθ
r

+
∂ψθ
∂r
− 1

r

∂ψr
∂θ

)
ez, (2.34)

and

∇φ =
∂φ

∂r
er +

1

r

∂φ

∂θ
eθ +

∂φ

∂z
ez, (2.35)
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so we have

ur =
∂φ

∂r
+

1

r

∂ψz
∂θ
− ∂ψθ

∂z
, (2.36)

uθ =
1

r

∂φ

∂θ
+
∂ψr
∂z
− ∂ψz

∂r
, (2.37)

uz =
∂φ

∂z
+
ψθ
r

+
∂ψθ
∂r
− 1

r

∂ψr
∂θ

. (2.38)

Substituting for ur, uθ, uz in (2.30) – (2.33) we get

σrr = λ∇2φ+ 2µ

(
∂2φ

∂r2
− 1

r2

∂ψz
∂θ

+
1

r

∂2ψz
∂r∂θ

− ∂2ψθ
∂r∂z

)
, (2.39)

σrθ = µ

(
2

r

∂2φ

∂r∂θ
− 2

r2

∂φ

∂θ
+
∂2ψr
∂z∂r

− 1

r

∂2ψθ
∂θ∂z

− 1

r

∂ψr
∂z

+
1

r2

∂2ψz
∂θ2

− ∂2ψz
∂r2

+
1

r

∂ψz
∂r

)
, (2.40)

σθz = µ

(
2

r

∂2φ

∂θ∂z
+
∂2ψr
∂z2

− 1

r

∂2ψr
∂θ2

+
1

r

∂ψθ
∂θ

+
∂2ψθ
∂θ∂r

−∂
2ψz
∂r∂z

)
, (2.41)

σrz = µ

(
2
∂2φ

∂r∂z
+

1

r2

∂ψr
∂θ
− 1

r

∂2ψr
∂r∂θ

+
∂2ψθ
∂r2

+
1

r

∂ψθ
∂r

−ψθ
r2
− ∂2ψθ

∂z2
+

1

r

∂2ψz
∂z∂θ

)
. (2.42)

2.4 The boundary conditions in scattering problems

In the elastic scattering problems, if we consider the scattering by a cavity scatterer,

there is no stress acted on the boundary of the scatterer. Therefore they satisfy the stress

free boundary conditions

σrr = 0, σrθ = 0, σrz = 0. (2.43)

When the scatterers are made from another different elastic material from the host mate-

rial, the boundary conditions will become the continuity of the displacement and stresses.

When considering the acoustic scattering by rigid scatterers, as we assume the wave

cannot propagate in the scatterer, i.e. the velocity has no normal component on the
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scatterer, so the wave potential φ satisfies the Neumann boundary condition

∂φ

∂n
= 0, (2.44)

where n is a coordinate measured normal to the scatterer.
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Chapter 3

Two-dimensional elastic wave

scattering by arrays

In this chapter, we consider the elastic wave scattering by circular cylindrical cavities in

an elastic medium using the method of matched asymptotic expansions. To introduce the

method and make preparations for the more complicated case of elastic wave propagation

through an infinite array, we first consider scattering by one circular cylindrical cavity

in an elastic medium. The theory for scattering of elastic waves by circular cylinders

is given by White [101]. He considered the scattering of dilatational and shear waves

incident obliquely on one infinitely long circular cylindrical obstacle in a solid medium.

The cylindrical obstacles could be fluid-filled, a cavity or another different solid medium.

He obtained boundary condition equations whose unknowns are coefficients in infinite

series expressions for the scattered waves, then the scattered wave displacements and

stresses are determined by these coefficients. Using White’s theory Lewis and Kraft [46]

considered normal incidence and gave explicit approximate expressions for the coefficients

and the scattering cross sections (the scattered power per unit length divided by the

incident intensity) valid for long waves. In another paper by Lewis et al. [47], numerical

computations of the scattering cross sections are made for a cavity cylinder.

In the first section of this chapter, we consider the one cylinder case. Both the exact

solutions and approximations by method of matched asymptotic expansions are given in

order to validate the latter. The exact solutions are obtained using White’s theory [101]

and after expanding the coefficients for the leading terms we find the approximations
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exactly agree with them. The applicability of matched asymptotic expansions involves a

small parameter ε = k1a, which requires that the radius a of the cylinder must be much

smaller than the incident wavelength k−1
1 .

In the second section, we consider the wave propagation through a doubly-periodic

array of cavity cylinders in an isotropic elastic medium. Accurate solution methods for

this problem are provided by Poulton et al. [77] for square lattice, Zalipaev et al. [105]

for hexagonal and rhombic lattices using the multipole expansions and Mei et al. [57]

using the multiple scattering theory. Then the multipole expansions are used to consider

the oblique wave incidence searching for the phononic band gaps [24] or both phononic

and photonic band gaps [26] for cylindrical inclusion arrays. Guenneau & Movchan [25]

considered the elliptical inclusions to explore the elastic band gaps by the finite element

method. Low-frequency approximations to dispersion relation for circular inclusions are

obtained directly from their multipole formulation by Zalipaev et al. [105], while other

authors, for example Parnell & Abrahams [72, 73], Parnell & Grimal [74] and Andrianov

et al. [5], have used asymptotic homogenisation to obtain low-frequency approximations

to elastic wave propagation through periodic materials. Wide complete band gaps were

founded for both photonic and phononic materials. For example, Nicorovici and McPhe-

dran [67] used a generalized Rayleigh identity method to obtain the photonic band gaps

for a square array of perfectly conducting cylinders in air. Vasseur et al. [103] used the

same method and obtained very wide phononic band gaps for a square lattice of carbon

cylinders in epoxy.

The method we use is the matched asymptotic expansions, which is based on the as-

sumptions that the scatterer size is much smaller than both the wavelength and the array

periodicity. This follows that of McIver [60] who investigates acoustic wave propagation

through a lattice of rigid scatterers. The main difference between the acoustic case and

elastic case is that in the former only dilatational waves are present, while in the later,

both the dilatational and shear waves are involved which arises from the boundary con-

ditions. A notable feature of the modified matching procedure for the elastic case is that

certain eigenfunctions must be included in the inner solution ahead of any obvious need

for them. The same method is used by Datta and his colleagues to solve the elastic wave

scattering problem for both one scatterer [17] and composite materials containing finite
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scatterers [16], but not for infinite arrays. Krynkin and McIver [39] also used matched

asymptotic expansions to consider wave propagation through a lattice of arbitrary shape

Dirichlet scatterers to obtain approximations to the dispersion relation.

The main idea of our method is to obtain perturbations of the quasi-periodic plane

wave solutions that exist in the absence of the scatterers. Here there is no restriction

on the wavelength relative to the array periodicity, and hence the method yields explicit

approximations that can describe the phenomena associated with periodic media, such

as band gaps. The disadvantage of the method of matched asymptotic expansions is that

only small volume fractions can be considered. Explicit expressions to the perturbed dis-

persion relation (between the angular frequency and wavenumber) and explicit formulas

are obtained for the size of local band gaps that show how they depend on the geometry

of the lattice and the size of the cylinder. This is illustrated by reference to square and

hexagonal lattices. Craster et al. [13] describe a multiple scales approach to obtain results

valid outside the low-frequency regime and near the edges of the Brillouin zone (although

they do not apply their method to elastic waves). In contrast to the present work, ap-

plication of the method of Craster et al. [13] would require the numerical solution of a

single-cell problem but, on the other hand, there would be no restriction on the size of

an inclusion.

3.1 Scattering by one circular cylindrical cavity

3.1.1 Exact solution

We assume the cylinder is infinitely long and of radius a. Cartesian coordinates are chosen

with origin O on the axis of the cylinder, and with the z axis directed along the axis of

the cylinder. Polar coordinates in the x-y plane are denoted by (r, θ), then the cylinder

surface is denoted by r = a. A time harmonic incident dilatational wave (see (2.10) in

chapter 2 for the origin of φ) defined by

φi = eik1x (3.1)

propagates in the positive x-direction with constant velocity c1 and angular frequency

ω = k1c1, so the boundary condition only involves plane strain, i.e. σrz = 0. Here we

assume the amplitude of the incident wave is one. For a stress free cavity the boundary
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conditions are

σrr = σrθ = 0, r = a. (3.2)

As the incident wave impinge upon the cavity, a dilatational wave φs and a shear wave

ψs is scattered from the boundary. In this case the vector potential ψ = ψsez = (0, 0, ψs).

Then the total wave potentials φ = φi + φs and ψ = ψs satisfy the Helmholtz equations

(∇2 + k2
1)φ = 0, (3.3)

(∇2 + k2
2)ψ = 0, (3.4)

and the stress free boundary conditions on the cylinder surface r = a obtained from

(2.39) and (2.40)

σrr = 2µ

(
1

r

∂2ψ

∂θ∂r
− 1

r2

∂ψ

∂θ
− 1

r

∂φ

∂r
− 1

r2

∂2φ

∂θ2

)
− k2

1(λ+ 2µ)φ = 0,

σrθ = − 2

r2

∂φ

∂θ
+

2

r

∂2φ

∂θ∂r
+

2

r

∂ψ

∂r
+

2

r2

∂2ψ

∂θ2
+ k2

2ψ = 0,

 (3.5)

where the dilatational and shear wavenumbers are related by

k2 = Pk1, P =

√
λ+ 2µ

µ
. (3.6)

To ensure the scattered waves are outgoing, they must satisfy the radiation conditions

so that

φs ∼ 1√
k1r

eik1rf1(θ), ψs ∼ 1√
k2r

eik2rf2(θ) as kir →∞. (3.7)

The scattered potentials are in forms of the outgoing cylindrical wave functions [55,

page 40]

φs =
∞∑
n=0

(
AnH

(1)
n (k1r) cosnθ +BnH

(1)
n (k1r) sinnθ

)
, (3.8)

ψs =

∞∑
n=0

(
CnH

(1)
n (k2r) cosnθ +DnH

(1)
n (k2r) sinnθ

)
, (3.9)

where the Hankel function of the first kind H
(1)
n (z) = Jn(z) + iYn(z) (for simplicity we

use Hn rather than H
(1)
n in the following), Jn(z) and Yn(z) are the first and second kind

Bessel functions and An, Bn, Cn, Dn are unknowns that need to be determined by the

boundary conditions.
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First of all, we expand the incident wave in terms of the regular cylindrical wave

functions as

φi =
∞∑
n=0

εninJn(k1r) cosnθ, (3.10)

where

εn =


1, n = 0,

2, n > 1.

Then the total wave fields are

φ =
∞∑
n=0

{[
εninJn(k1r) +AnHn(k1r)

]
cosnθ +BnHn(k1r) sinnθ

}
, (3.11)

ψ =

∞∑
n=0

(Cn cosnθ +Dn sinnθ)Hn(k2r). (3.12)

Substituting for φ and ψ from (3.11) and (3.12) into (3.5) we get

σrr|r=a =
2µ

a2

∞∑
n=0

{
(an1An + dn1Dn + en1) cosnθ + (bn1Bn + cn1Cn) sinnθ

}
= 0,

σrθ|r=a =
1

a2

∞∑
n=0

{
(an2An + dn2Dn + en2) sinnθ + (bn2Bn + cn2Cn) cosnθ

}
= 0,


(3.13)

where

an1 = bn1 =

(
n2 − 1

2
P 2k2

1a
2

)
Hn(k1a)− k1aH

′
n(k1a),

cn1 = −dn1 = nHn(Pk1a)− nPk1aH
′
n(Pk1a),

en1 =

(
n2 − 1

2
P 2k2

1a
2

)
εninJn(k1a)− k1aεninJ ′n(k1a),

an2 = −bn2 = 2nHn(k1a)− 2nk1aH
′
n(k1a),

cn2 = dn2 = (P 2k2
1a

2 − 2n2)Hn(Pk1a) + 2Pk1aH
′
n(Pk1a),

en2 = 2nεnin(Jn(k1a)− k1aJ
′
n(k1a)).

Because of the orthogonality of cosnθ and sinnθ in (0, 2π) for all n, the coefficients in

each term of the series (3.13) must vanish. It then follows that

an1An + dn1Dn + en1 = 0,

an2An + dn2Dn + en2 = 0,

 (3.14)
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and

bn1Bn + cn1Cn = 0,

bn2Bn + cn2Cn = 0.

 (3.15)

It is easy to see that only zero coefficients can satisfy (3.15) (because the determinant of

the coefficient matrix is nonzero). The solutions of (3.14) are

An =

∣∣∣∣∣∣ −en1 dn1

−en2 dn2

∣∣∣∣∣∣∣∣∣∣∣∣ an1 dn1

an2 dn2

∣∣∣∣∣∣
=
−en1dn2 + en2dn1

an1dn2 − an2dn1
, (3.16)

Dn =

∣∣∣∣∣∣ an1 −en1

an2 −en2

∣∣∣∣∣∣∣∣∣∣∣∣ an1 dn1

an2 dn2

∣∣∣∣∣∣
=
−an1en2 + an2en1

an1dn2 − an2dn1
. (3.17)

Using Mathematica, we expand the coefficients An and Dn to the order of ε2 and find

the leading terms are the first three coefficients for both of dilatational and shear waves,

specifically

A0 =
P 2 − 1

4
πiε2 +O(ε4),

A1 =
π

4
ε2 +O(ε3),

A2 =
πi

2− 2P 2
ε2 +O(ε3),

D0 = 0,

D1 =
π

4
Pε2 +O(ε3),

D2 =
πi

2− 2P 2
P 2ε2 +O(ε3).

The scattering of an anti-plane shear wave by a vertical cavity cylinder can be solved

in a same way but more simply because when the incident wave is horizontally polarised

(in x-y plane), only shear wave is scattered [71, page 113].
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3.1.2 Solutions by matched asymptotic expansions

In this section, we obtain approximate solutions of the plane wave scattering by a cavity

cylinder using the method of matched asymptotic expansions. This method is a very

useful way to solve singular perturbation problems which involve a small parameter ε

that is a ratio of lengths. In this problem we take ε = k1a, where a and the wave

length 2π/k1 will become disparate as ε → 0, so displaying the hallmark of a singular

perturbation problem. Because there will be no single perturbation series valid both in

the near field and in the far field, separate expansions must be developed to describe the

near and far fields, and these must have an overlap to effect the matching. Then, any

indeterminacy in the expansions will be resolved in the matching of the two expansions

in the overlap domain in which they hold simultaneously.

When solving the problems with Neumann boundary condition by the method of

matched asymptotic expansions [15, page 193], the leading order term in the inner solution

can be easily obtained from the boundary condition, which is the order of the term related

to the incident wave in the boundary condition when written in inner coordinates. But

in the current problem, the leading order term in the inner solutions cannot be obtained

in the same way. If doing so, the order ε2 terms in inner solutions would not satisfy the

boundary conditions if they are chosen to match with the outer solutions, and vice versa.

This will be shown later.

We separate the whole region into two, the inner region around the cylinder r � 1/k1

and the outer region far away from the cylinder r � a. In these two regions, dimensionless

variables are needed to assess the smallness of various terms as ε→ 0. The potentials are

already dimensionless, and either a or k−1
1 can be used to normalize lengths. We define

ρ = r/a and R = k1r as the inner and outer radial coordinates and rewrite the scattered

potentials φs and ψs in inner and outer coordinates separately, which are denoted by

φ(ρ, θ, ε), ψ(ρ, θ, ε) and Φ(R, θ, ε), Ψ(R, θ, ε). Our aim is to find the valid approximate

solutions for the scattered wave φs and ψs in the whole domain r > a.

The scattered fields φs and ψs satisfy the Helmholtz equations

(∇2 + k2
1)φs = 0, (3.18)

(∇2 + k2
2)ψs = 0, (3.19)
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and the boundary conditions

a
∂φs

∂r
+ a2∂

2φs

∂r2
+
∂2φs

∂θ2
+

2µ

λ

(
a2∂

2φs

∂r2
+ a

∂2ψs

∂θ∂r
− ∂ψs

∂θ

)
=
(

1 +
µ

λ
(1 + cos 2θ)

)
k2

1a
2eik1a cos θ,

2a
∂2φs

∂r∂θ
− 2

∂φs

∂θ
+
∂2ψs

∂θ2
− a2∂

2ψs

∂r2
+ a

∂ψs

∂r
= − sin 2θk2

1a
2eik1a cos θ,


(3.20)

on r = a, where the right side parts are from the incident wave and we can see their

orders are ε2. Because the scattered waves must be outgoing, they should also satisfy the

radiation conditions

φs ∼ 1√
k1r

eik1rf1(θ), ψs ∼ 1√
k2r

eik2rf2(θ) as r →∞. (3.21)

In terms of the outer coordinate R = k1r, we have

(∇2
R + 1)Φ = 0, (3.22)

(∇2
R + P 2)Ψ = 0, P = O(1), (3.23)

Φ ∼ 1√
R

eiRg1(θ), Ψ ∼ 1√
PR

eiPRg2(θ) as r →∞, (3.24)

and the boundary conditions on the cavity are not relevant to the outer region. In terms

of the inner coordinate ρ = r/a, we define the Laplace operator

∇ρ =
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂θ2

and then have

(∇2
ρ + ε2)φ = 0, (3.25)

(∇2
ρ + P 2ε2)ψ = 0, (3.26)

and the boundary conditions

∂φ

∂ρ
+
∂2φ

∂ρ2
+
∂2φ

∂θ2
+

2µ

λ

(
∂2φ

∂ρ2
+

∂2ψ

∂ρ∂θ
− ∂ψ

∂θ

)
= ε2

[
1 +

µ

λ
(1 + cos 2θ)

]
[1 + iε cos θ +O(ε2)],

2
∂2φ

∂ρ∂θ
− 2

∂φ

∂θ
+
∂2ψ

∂θ2
− ∂2ψ

∂ρ2
+
∂ψ

∂ρ
= −ε2 sin 2θ[1 + iε cos θ +O(ε2)],


(3.27)
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on ρ = 1; the radiation conditions are not relevant to the inner region.

In the inner region, the term inner eigensolution is used for any solutions of

∇2
ρφ = 0, ∇2

ρψ = 0,

and the homogeneous boundary conditions

∂φ

∂ρ
+
∂2φ

∂ρ2
+
∂2φ

∂θ2
+

2µ

λ

(
∂2φ

∂ρ2
+

∂2ψ

∂ρ∂θ
− ∂ψ

∂θ

)
= 0,

2
∂2φ

∂ρ∂θ
− 2

∂φ

∂θ
+
∂2ψ

∂θ2
− ∂2ψ

∂ρ2
+
∂ψ

∂ρ
= 0,

 (3.28)

on ρ = 1. Therefore the inner eigensolutions are (the barred terms refer to the dilatational

wave and the hatted terms to the shear wave)


En(ρ, θ) = ρn cosnθ,

Ên(ρ, θ) = −ρn sinnθ,

n ∈ Z, n 6= 1,


E1(ρ, θ) = ρ cos θ,

Ê1(ρ, θ) = 0,


E1(ρ, θ) = 0,

Ê1(ρ, θ) = ρ sin θ,

where En(ρ, θ) is symmetric in θ, Ên(ρ, θ) is antisymmetric in θ and both of them are

continuous functions of θ.

In the outer region r � a, the cylinder appears as a singularity at the origin, so

that we seek solutions of the Helmholtz equation, satisfying the radiation condition, with

singular behavior at k1r = 0. Such solutions are in terms of a sum of Hankel functions

of the first kind and of integral orders:

Φs =

∞∑
n=0

anH
(1)
n (k1r) cosnθ, Ψs =

∞∑
n=0

bnH
(1)
n (k2r) sinnθ,

the typical terms of which vary with r like eik1r/
√
k1r or eik2r/

√
k2r for large r and so

satisfy the radiation conditions.

Following [14, page 177], we introduce the notations φ(m) and ψ(m) for the asymptotic

expansion of the inner solutions φ(ρ, ε) and ψ(ρ, ε) up to and including all terms of order

εm for fixed inner coordinate ρ; and we write φ(m,n) and ψ(m,n) for the result of rewriting
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φ(m) and ψ(m) in terms of the outer coordinate R and expanding up to and including

all terms of or order εn for fixed R. Similarly Φ(n) and Ψ(n) will denote the asymptotic

expansion of the outer solutions Φ(R, ε) and Ψ(R, ε) up to and including all terms of

order εn as ε → 0 for fixed outer coordinate R, and Φ(n,m) and Ψ(n,m) will denote the

result of expressing Φ(n) and Ψ(n) in inner coordinates ρ, which is then held fixed as

ε → 0 and expanding that expression through order εm. All logarithmic terms must be

grouped with their algebraic multipliers in these expansions. For example, terms that are

strictly order ε log ε and order ε are here both regarded as order ε.

With these notations, the matching rules are expressed as [14]

φ(m,n) ≡ Φ(n,m), ψ(m,n) ≡ Ψ(n,m), (3.29)

and these identifications will be performed after transformation of one or other of these

expressions back into the coordinates in which the other is written.

In the case of the Neumann boundary condition, the order of the inner solutions can

be obtained directly by the boundary condition. But in the current problem, we can not

get the order of the inner solution by the same way. Assume we can, then the boundary

conditions (3.27) suggest that the inner solutions have the form

φ = ε2φ2 + . . . , ψ = ε2ψ2 + . . . . (3.30)

Substituting for φ and ψ in the inner problem (3.25) – (3.27) with (3.30) then equating

like powers of ε we find φ2 and ψ2 satisfy Laplace equations and the boundary conditions

2

P 2 − 2

(
∂2φ2

∂ρ2
+
∂2ψ2

∂ρ∂θ
− ∂ψ2

∂θ

)
= 1 +

1

P 2 − 2
(1 + cos 2θ),

2
∂2φ2

∂ρ∂θ
− 2

∂φ2

∂θ
+
∂2ψ2

∂θ2
− ∂2ψ2

∂ρ2
+
∂ψ2

∂ρ
= − sin 2θ.

 (3.31)

To match with the leading terms in the inner expansion of outer solutions, these inner

solutions must decay as r → ∞, and from the boundary conditions (3.27), whose first

terms on right sides are in 2θ, we should take φ2 and ψ2 as

φ2 = a
(2)
2

cos 2θ

ρ2
, ψ2 = b

(2)
2

sin 2θ

ρ2
. (3.32)

To satisfy the boundary conditions (3.27), substituting for φ2 and ψ2 in (3.31), we get

12(a
(2)
2 − b

(2)
2 ) = 1

12(a
(2)
2 − b

(2)
2 ) = −1

 . (3.33)
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Obviously, this system has no solution. Therefore we cannot start the inner solutions

with order ε2. Similarly, if we started the inner solutions with order ε, the same problem

would happen. The correct procedure is to start the inner solutions with strictly order

one term, which include eigenfunctions in 2θ. These terms then generate further terms

at order ε2 in φ and ψ through particular solutions of the field equations (3.25)-(3.26).

We take the inner expansions as

φ = φ0 + ν11(ε)φ11 + εφ1 + ν21(ε)φ21 + ε2φ2 . . . , (3.34)

ψ = ψ0 + µ11(ε)ψ11 + εψ1 + µ21(ε)ψ21 + ε2ψ2 . . . , (3.35)

where the terms ν11(ε), ν21(ε), µ11(ε), µ21(ε) are possible intermediate terms that might

arise. Substituting for (3.34) and (3.35) in (3.25) and (3.26) and collect the like terms in ε,

we find φ0 and ψ0 satisfy Laplace equations and the homogeneous boundary conditions.

φ2 and ψ2 satisfy Poisson equations whose inhomogeneous parts are obtained from φ0 and

ψ0. With the help of the particular solutions of the Poisson equations the inhomogeneous

boundary conditions (3.31) can be satisfied. From the boundary conditions (3.27), whose

first terms on right sides having terms are in 2θ, we take

φ0 = a
(0)
2

cos 2θ

ρ2
, ψ0 = a

(0)
2

sin 2θ

ρ2
, (n = −2), (3.36)

which are eigenfunctions and must be singular by the need to match with the outer

solutions. Here the 2θ terms in φ0 and ψ0 generate further terms at order ε2 in φ and ψ

through particular solutions of the field equations (3.25)-(3.26) to satisfy the boundary

conditions. In general, in order to satisfy the boundary conditions at order εn+2, the inner

solution at order εn must contain singular eigenfunctions up to and including those in

(n+ 2)θ. The outer expansions of the inner solutions are

φ(0)

(
R

ε

)
= φ0

(
R

ε

)
= a

(0)
2

cos 2θ

R2
ε2 = φ(0,2),

ψ(0)

(
R

ε

)
= ψ0

(
R

ε

)
= a

(0)
2

sin 2θ

R2
ε2 = ψ(0,2),

which shows that the leading terms in the outer solutions must be in order ε2, so that

Φ = ε2Φ2 + . . . , Ψ = ε2Ψ2 + . . . .
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Because the leading inner term is strictly order one, ε2Φ(ερ) and ε2Ψ(ερ) cannot be larger

than that (if more singular terms are included in the outer solutions and appropriate

terms are added in inner solutions to effect matching, an unsolvable difficulty would arise

later) and so

Φ2 = A
(2)
0 H0(R) +A

(2)
1 H1(R) cos θ +A

(2)
2 H2(R) cos 2θ,

Ψ2 = B
(2)
0 H0(PR) +B

(2)
1 H1(PR) sin θ +B

(2)
2 H2(PR) sin 2θ,

and the inner expansions of the outer solutions are

Φ(2) = ε2Φ2(ερ)

= ε2A
(2)
0

2i

π

(
log ερ+ γE − log 2− πi

2

)
+ εA

(2)
1

2 cos θ

πiρ
+A

(2)
2

4 cos 2θ

πiρ2
, (3.37)

Ψ(2) = ε2Ψ2(ερ)

= ε2B
(2)
0

2i

π

(
logPερ+ γE − log 2− πi

2

)
+ εB

(2)
1

2 sin θ

πiPρ
+B

(2)
2

4 sin 2θ

πiP 2ρ2
. (3.38)

So

Φ(2,0) = A
(2)
2

4 cos 2θ

πiρ2
, Ψ(2,0) = B

(2)
2

4 sin 2θ

πiP 2ρ2
, (3.39)

Φ(2,1) = A
(2)
2

4 cos 2θ

πiρ2
+ εA

(2)
1

2 cos θ

πiρ
, Ψ(2,1) = B

(2)
2

4 sin 2θ

πiP 2ρ2
+ εB

(2)
1

2 cos θ

πiPρ
. (3.40)

Applying the matching rules

φ(0,2) ≡ Φ(2,0), ψ(0,2) ≡ Ψ(2,0),

give

A
(2)
2 =

πi

4
a

(0)
2 , B

(2)
2 =

πi

4
P 2a

(0)
2 . (3.41)

The inner expansions of the outer solutions (3.37), (3.38) suggest that there are not

any intermediate terms between the order one terms and order ε terms, so the inner

solutions should be continued with order ε terms

φ = φ0 + εφ1 + . . . , ψ = ψ0 + εψ1 + . . . . (3.42)

Then similar to φ0 and ψ0, φ1 and ψ1 also satisfy Laplace equations and the homogeneous

boundary conditions and so they are inner eigensolutions as well. To effect the matching

φ1 = a
(1)
1

cos θ

ρ
+ a

(1)
3

cos 3θ

ρ3
, ψ1 = a

(1)
1

sin θ

ρ
+ a

(1)
3

sin 3θ

ρ3
. (3.43)
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We put cos 3θ and sin 3θ here as the corresponding terms that will be needed when

we search for particular solutions of Poisson equations later to satisfy the boundary

conditions for order ε3 terms of the inner solutions because of the reason we state before.

In terms of the outer coordinates

φ(1) = φ0 + εφ1 = a
(0)
2

cos 2θ

R2
ε2 + a

(1)
1

cos θ

R
ε2 + a

(1)
3

cos 3θ

R3
ε4, (3.44)

ψ(1) = ψ0 + εψ1 = a
(0)
2

sin 2θ

R2
ε2 + a

(1)
1

sin θ

R
ε2 + a

(1)
3

sin 3θ

R3
ε4, (3.45)

which give

φ(1,2) = a
(0)
2

cos 2θ

R2
ε2 + a

(1)
1

cos θ

R
ε2, (3.46)

ψ(1,2) = a
(0)
2

sin 2θ

R2
ε2 + a

(1)
1

sin θ

R
ε2. (3.47)

Applying the matching rule φ(1,2) ≡ Φ(2,1), ψ(1,2) ≡ Ψ(2,1) we get

A
(2)
1 =

πi

2
a

(1)
1 , B

(2)
1 =

πi

2
Pa

(1)
1 . (3.48)

Again, from the inner expansions of the outer solutions (3.37) and (3.38), we find the

next inner terms should be at ε2 log ε and ε2, therefore we have

φ(2) = φ0 + εφ1 + ε2 log ε φ21 + ε2φ2, (3.49)

ψ(2) = ψ0 + εψ1 + ε2 log ε ψ21 + ε2ψ2, (3.50)

φ21 and ψ21 are inner eigensolutions and ε2φ21 (R/ε) and ε2ψ21 (R/ε) can be no larger

than O(ε2), which is the order of the outer potential. There are many eigensolutions

having these properties but they will not all match with the outer solutions. The only

possibility is to take them be constants

φ21 = a
(21)
0 , ψ21 = 0.

For φ2 and ψ2, after substituting (3.49) and (3.50) into the inner field equations (3.25)

and (3.26) and collecting like terms in ε2 we find φ2 and ψ2 satisfy the following Poisson

equations

∇2
ρφ2 = −φ0 = −a(0)

2

cos 2θ

ρ2
, (3.51)

∇2
ρψ2 = −P 2ψ0 = −P 2a0

2

sin 2θ

ρ2
, (3.52)
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and the boundary conditions

∂φ2

∂ρ
+
∂2φ2

∂ρ2
+
∂2φ2

∂θ2
+

2

P 2 − 2

(
∂2φ2

∂ρ2
+
∂2ψ2

∂ρ∂θ
− ∂ψ2

∂θ

)
= 1 +

1

P 2 − 2
(1 + cos 2θ),

2
∂2φ2

∂ρ∂θ
− 2

∂φ2

∂θ
+
∂2ψ2

∂θ2
− ∂2ψ2

∂ρ2
+
∂ψ2

∂ρ
= − sin 2θ.


(3.53)

The solutions of (3.51), (3.52) and (3.53) needed to effect the matching are

φ2 =
a

(0)
2

4
cos 2θ +B2

cos 2θ

ρ2
+ C2 log ρ+D2 +B4

cos 4θ

ρ4
, (3.54)

ψ2 =
a

(0)
2

4
sin 2θ + E2

sin 2θ

ρ2
+ E4

sin 4θ

ρ4
, (3.55)

where the first two terms of involving 1/4 are particular solutions of (3.51) and (3.52),

the second eigensolution terms involving 1/ρ2 are introduced to satisfy the boundary

conditions (3.53) and log ρ in φ2 will be used when we do the matching later. The last

two terms in 4θ are needed in the higher order matching. Substituting for φ2 and ψ2 by

(3.54) and (3.55) in the boundary conditions (3.53), and because the boundary conditions

holds for arbitrary θ, the coefficients of the trigonometric functions and other constants

must be zero. Therefore we obtain

a
(0)
2 =

2

1− P 2
, B2 − E2 = −1

4
, C2 =

1− P 2

2
. (3.56)

Then by the matching result we already obtained (3.41),

A
(2)
2 =

πi

4
a

(0)
2 =

πi

2− 2P 2
, B

(2)
2 =

πi

4
P 2a

(0)
2 =

P 2πi

2− 2P 2
. (3.57)

The matching rules φ(2,2) ≡ Φ(2,2) and ψ(2,2) ≡ Ψ(2,2) give

ε2
1− P 2

2
logR = ε2A

(2)
0

2i

π
logR, (3.58)

0 = ε2B
(2)
0

2i

π
logR, (3.59)

and thus

A
(2)
0 =

P 2 − 1

4
πi, B

(2)
0 = 0. (3.60)
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In a similar way to φ2 and ψ2, φ3 and ψ3 satisfy the Poisson equations

∇2
ρφ3 = −φ1 = −

(
a

(1)
1

cos θ

ρ
+ a

(1)
3

cos 3θ

ρ3

)
, (3.61)

∇2
ρψ3 = −P 2ψ1 = −P 2

(
a

(1)
1

sin θ

ρ
+ a

(1)
3

sin 3θ

ρ3

)
, (3.62)

and boundary conditions

∂φ3

∂ρ
+
∂2φ3

∂ρ2
+
∂2φ3

∂θ2
+

2

P 2 − 2

(
∂2φ3

∂ρ2
+
∂2ψ3

∂ρ∂θ
− ∂ψ3

∂θ

)
= i

[(
1 +

3

2(P 2 − 2)

)
cos θ +

1

2(P 2 − 2)
cos 3θ

]
,

2
∂2φ3

∂ρ∂θ
− 2

∂φ3

∂θ
+
∂2ψ3

∂θ2
− ∂2ψ3

∂ρ2
+
∂ψ3

∂ρ
= − i

2
(sin θ + sin 3θ).


(3.63)

The solution forms needed to effect the matching are

φ3 = −1

2
a

(1)
1 ρ log ρ cos θ + a

(1)
3

cos 3θ

8ρ
+B3

cos 3θ

ρ3
+B5

cos 5θ

ρ5
, (3.64)

ψ3 = −1

2
P 2a

(1)
1 ρ log ρ sin θ + P 2a

(1)
3

sin 3θ

8ρ
+ C3

sin 3θ

ρ3
+ E5

sin 5θ

ρ5
, (3.65)

where the first two terms involving 1/2 and 1/ρ are particular solutions of (3.61) and

(3.62), the terms involving ρ3 are to make sure the boundary conditions be satisfied

and the terms involving ρ5 will be need in the higher order matching. The boundary

conditions (3.63) give

a
(1)
1 = − i

2
, a

(1)
3 =

i

1− P 2
, B3 − C3 = − i

12
, (3.66)

where the last two relations will not be needed in the matching. By the obtained relations

between the coefficients of the inner solutions and outer solutions (3.48),

A
(2)
1 =

πi

2
a

(1)
1 =

π

4
, B

(2)
1 = P

πi

2
a

(1)
1 =

π

4
p. (3.67)

So far we have got the first three coefficients of dilatational part and shear part

A
(2)
0 =

P 2 − 1

4
πi, B

(2)
0 = 0,

A
(2)
1 =

π

4
, B

(2)
1 =

π

4
P,

A
(2)
2 =

πi

2− 2P 2
, B

(2)
2 =

πi

2− 2P 2
P 2,
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which agree with what we get from the expansions of the exact solutions. Similarly,

when we solve the shear wave scattering by cavity cylinder using matched asymptotic

expansions, the results agree with those from the expansions of the exact solutions as

well.

3.2 Wave propagation through doubly-periodic arrays

In this section, we consider the elastic wave propagation through doubly-periodic arrays

of cavity cylinders. We first present the multiple expansion solutions obtained by Zali-

paev et al. [105] and then give the perturbed dispersion relation diagrams produced by

numerical calculations. The method of matched asymptotic expansions is then used to

obtain approximations for small scatterers that are perturbations of the quasi-periodic

plane wave solutions that exist in the absence of the scatterers. All solutions considered

satisfy a Bloch condition that, for a specified value β0 of the Bloch wave vector β, relates

the solutions at corresponding points in different cells of the lattice. In the absence of the

scatterers, and for the given Bloch wave vector β0, plane wave solutions are possible for

discrete values ω1, ω2, . . . of the frequency ω. For each ωi, there are M ≥ 1 plane waves

corresponding to a particular pair (β0, ωi) – these solutions may be shear or dilatational

waves, or a mixture of the two. With the scatterers present, the asymptotic analysis

yields an algebraic system to determine ω for the M perturbed modes that exist for each

β within a neighbourhood of (β0, ωi) in the (β, ω)-space. Explicit expressions for the

frequencies are readily obtained that show how the mode frequencies depend on β, the

geometry, and the Lamé constants for the medium. Results are given to illustrate the

appearance of local band gaps, the splitting and crossing of double modes, and switching

between dilatational and shear modes.

3.2.1 Solution by multipole expansions

The results in this section are obtained by Poulton et al. [77] and Zalipaev et al. [105]

for square and oblique periodic structures respectively. We present it here to make com-

parisons with our method and we also correct a mistake about the quasi-static limit (the

lowest dispersion in the limit of the wavenumber going to zero) in Zalipaev et al. [105].

The lattice Λ contains doubly-periodic cavity cylinders, each of which is infinitely long
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and of radius a. Cartesian coordinates are chosen with origin O on the axis of one the

cylinders, and with the z axis directed along the axis of that cylinder; polar coordinates

in the x-y plane with origin at O are denoted by (r, θ). In the x-y plane, scatterer j is

associated with a local origin Oj located at the lattice point

Rj = n1a1 + n2a2, n1, n2 ∈ Z, (3.68)

for given independent vectors a1 and a2. For a specified lattice, the reciprocal lattice is

defined by

Km = 2π(m1b1 +m2b2), m1,m2 ∈ Z, (3.69)

where

aTi bj = δij , i, j = 1, 2. (3.70)

The reciprocal lattice vectors have the property that, for any lattice vector Rj ,

KT
mRj = 2πp, p ∈ Z. (3.71)

1
b

b2

G M

K

G

M K

1b

b2

Figure 3.1: The reciprocal lattice for square lattice (left) and Hexagonal lattice (right).

The time-harmonic displacement of the medium outside the cavities is described by

Navier’s equation (2.2)

(λ+ µ)∇(∇ · u) + µ∇2u + ρω2u = 0, (3.72)
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where u is the displacement vector, ω is the angular frequency, λ and µ are Lamé con-

stants, and ρ is the density of the medium. Solutions of equation (3.72) are sought that

satisfy the quasi-periodic ‘Bloch condition’

u(r + Rj) = eiβ·Rju(r), (3.73)

where β is a prescribed wave vector, and traction-free boundary conditions (2.30), (2.31)

and (2.33) applied on the surface of each scatterer; thus, on r = a,

σrz = µ
∂uz
∂r

= 0, (3.74)

σrr = λ

(
∂ur
∂r

+
ur
r

+
1

r

∂uθ
∂θ

)
+ 2µ

∂ur
∂r

= 0, (3.75)

σrθ = µ

(
∂uθ
∂r
− uθ

r
+

1

r

∂ur
∂θ

)
= 0, (3.76)

while equation (3.73) guarantees the boundary conditions are applied throughout the

lattice.

By the Helmholtz representation,

u(r) = ∇φ+∇×ψ, (3.77)

where we take ψ = ψez = (0, 0, ψ), so that

ur =
∂φ

∂r
+

1

r

∂ψ

∂θ
and uθ =

1

r

∂φ

∂θ
− ∂ψ

∂r
. (3.78)

It follows that φ and ψ satisfy the two-dimensional Helmholtz equations

(∇2 + k2
1)φ = 0 and (∇2 + k2

2)ψ = 0, (3.79)

while the traction-free boundary conditions (3.75) and (3.76) on r = a become

σrr = 2µ

(
∂2φ

∂r2
+

1

a

∂2ψ

∂θ∂r
− 1

a2

∂ψ

∂θ

)
+ λ

(
1

a

∂φ

∂r
+
∂2φ

∂r2
+

1

a2

∂2φ

∂θ2

)
= 0, (3.80)

σrθ = µ

(
2

a

∂2φ

∂θ∂r
− 2

a2

∂φ

∂θ
+

1

a

∂ψ

∂r
+

1

a2

∂2ψ

∂θ2
− ∂2ψ

∂r2

)
= 0. (3.81)

By the method of multipole expansion, the dilatational wave φ and shear wave ψ are

expanded as
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φ(r) =
+∞∑
l=−∞

[
A

(a)
l Jl(k1r) +B

(a)
l Yl(k1r)

]
eilθ, (3.82)

ψ(r) =

+∞∑
l=−∞

[
A

(b)
l Jl(k2r) +B

(b)
l Yl(k2r)

]
eilθ. (3.83)

Here the dilatational and shear wavenumbers are denoted by k1 = ω
√
ρ(λ+ 2µ) and

k2 = ω
√
ρ/µ respectively. Application of the stress free boundary conditions (3.80) and

(3.81) gives

 A
(a)
l

A
(b)
l

 =

 M
(aa)
l M

(ab)
l

M
(ba)
l M

(bb)
l

 B
(a)
l

B
(b)
l

 , (3.84)

where

M
(aa)
l = −E6E3 + E2E7

E1E6 + E2E5
, (3.85)

M
(ab)
l = i

E6E4 − E2E8

E1E6 + E2E5
, (3.86)

M
(bb)
l = −E5E4 + E1E8

E1E6 + E2E5
, (3.87)

M
(ba)
l = −M (ba)

l , (3.88)
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E1 =
2lµ

a

[
k1J

′
l (k1a)− 1

a
Jl(k1a)

]
,

E2 = µ

{[
k2

2 −
2l2

a2

]
Jl(k2a) +

2k2

a
J ′l (k2a)

}
,

E3 =
2lµ

a

[
k1Y

′
l (k1a)− 1

a
Yl(k1a)

]
,

E4 = µ

{[
k2

2 −
2l2

a2

]
Yl(k2a) +

2k2

a
Y ′l (k2a)

}
,

E5 =
2µ

a

[
−k1J

′
l (k1a) +

l2

a
Jl(k1a)

]
− k2

1(λ+ 2µ)Jl(k1a),

E6 =
2lµ

a

[
k2J

′
l (k2a)− 1

a
Jl(k2a)

]
,

E7 =
2µ

a

[
−k1Y

′
l (k1a) +

l2

a
Yl(k1a)

]
− k2

1(λ+ 2µ)Yl(k1a),

E8 =
2lµ

a

[
k2Y

′
l (k2a)− 1

a
Yl(k2a)

]
.

Application of the generalised Rayleigh method [77] (apply the Green’s theorem to

the two-dimensional quasi-periodic Green’s function and any function satisfying the

Helmholtz equation then use Graf’s addition theorem [1, page 363] to get the Rayleigh

identities between the coefficients Aαl and Bα
l , α = a, b) leads to the infinite linear system

M
(aa)
l B

(a)
l +M

(ab)
l B

(b)
l −

∞∑
m=−∞

(−1)l+mSYm−l(k1,β)B(a)
m = 0,

M
(ba)
l B

(a)
l +M

(bb)
l B

(b)
l −

∞∑
m=−∞

(−1)l+mSYm−l(k2,β)B(b)
m = 0,

 (3.89)

where the lattice sums

SJn (k,β) =
∑
Rj∈Λ

′
eiβT ·RjJn(kRj)e

inαj , k = k1, k2,

SYn (k,β) =
∑
Rj∈Λ

′
eiβT ·RjYn(kRj)e

inαj .
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Define

xl =

√
|M (aa)

l |

(
B

(a)
l +

M
(ab)
l

M
(aa)
l

B
(b)
l

)
, (3.90)

yl =

√
|M (bb)

l |

(
B

(b)
l +

M
(ba)
l

M
(bb)
l

B
(a)
l

)
, (3.91)

then after normalisation, the system (3.89) is changed into

xl +
∞∑

m=−∞
(D

(aa)
lm xm +D

(ab)
lm ym) = 0,

yl +
∞∑

m=−∞
(D

(ba)
lm xm +D

(bb)
lm ym) = 0,

 (3.92)

where

D
(aa)
lm = −

sgn(M
(aa)
l )

∆m


∣∣∣∣∣M (bb)

m

M
(aa)
l

∣∣∣∣∣
1/2
 (−1)l+mSYm−l(k1,β),

D
(ab)
lm =

sgn(M
(aa)
l )sgnM

(aa)
m M

(ab)
m

{|Maa
l M

(aa)
m |1/2}∆m

(−1)l+mSYm−l(k1,β),

D
(ba)
lm =

sgn(M
(bb)
l )sgnM

(bb)
m M

(ab)
m

{|Maa
l M

(aa)
m |1/2}∆m

(−1)l+mSYm−l(k2,β),

D
(bb)
lm = −

sgn(M
(bb)
l )

∆m


∣∣∣∣∣M (aa)

m

M
(bb)
l

∣∣∣∣∣
1/2
 (−1)l+mSYm−l(k2,β),

∆m = |M (aa)
m M (bb)

m |1/2
(

1− M
(ab)
m M

(ba)
m

M
(aa)
m M

(bb)
m

)
. (3.93)

The linear system (3.92) is of the form

(I +D)x = 0. (3.94)

It is shown in Zalipaev et al. [105] that all the off-diagonal elements decay exponentially

away from the main diagonal. Therefore the above system can be truncated and then the

determinant of the truncated matrix can be evaluated to give the dispersion diagrams,

which is the values for k1 and k2 for a given Bloch vector β. Example diagrams are given

as following. They are the dispersion relation diagrams for square lattice and hexagonal

lattice just as those in [77] and [105]; the same physical constants λ/µ = 2.3 are adopted,
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so that P 2 = (λ + 2µ)/µ = 4.3 and the Poisson ratio ν = 0.35. Dispersion relation

diagrams are given when the Bloch vector β moves along the boundary of the irreducible

region of the first Brillouin zone of the reciprocal lattice (labelled GMK in each part of

figure 3.1) for square and hexagonal lattices. In these diagrams, the horizontal axis is the

dimensionless modulus of the Bloch vector, while the vertical axis is the dimensionless

shear wavenumber. A double precision Fortran code is used to solve the system (3.92) for

square and hexagonal lattices. For all calculations we include all multipoles up to fifth

order in the calculations so that the dimension for the truncated matrix (3.92) is 22 by 22.

The perturbed dispersion diagrams are given for square lattice when the cylinder radius

is a/L = 0.1, 0.4 and for hexagonal lattice when the cylinder radius is a/L = 0.1, 0.333.

The diagrams are shown in figures 3.2 – 3.5, where we can see a whole band gap appears

when the cylinder radius is a/L = 0.4 for square lattice, but for the hexagonal lattice,

there is no whole band gap for the radii size we choose.
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Figure 3.2: Dispersion diagram for square array of cylindrical cavity of radius a/L = 0.1.
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Figure 3.3: Dispersion diagram for square array of cylindrical cavity of radius a/L = 0.4.
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Figure 3.4: Dispersion diagram for hexagonal array of cylindrical cavity of radius a/L = 0.1.
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Figure 3.5: Dispersion diagram for hexagonal array of cylindrical cavity of radius a/L = 0.333.

From these diagrams, some modes cross each other, for example, the lowest two modes

along MK for square array as shown in figure 3.2, and some modes are nearly parallel

to each other, for example, the fifth and sixth mode (counted near point M) along MK

for hexagonal array when the cavity radius is a/L = 0.1 as shown in figure 3.4. There

are some more complicated mode interactions, for example, there are three modes in the

neighbourhood of (2, 5) along GK in figure 3.2. Why are the dispersion diagrams like

this and how they are perturbed by the scatterers? How do the dilatational modes and

shear modes interact with each other? In the next part, we use the matched asymptotic

expansions to solve the same problem. By this method, the perturbed dispersion relations

can be expressed explicitly and we will see how they are perturbed by the presence of

the scatterers and how the modes interact with each other.

Zalipaev et al. also considered the quasi-static limit for the acoustic band (the lowest

mode on the dispersion diagram), and obtained simple approximate formulae for the

dispersion relation, which are

k2
1 = β2

1

[
1 +

πa2

A
λ+ µ

µ

]−1

, (3.95)
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for the dilatational mode and

k2
2 = β2

1

[
1 +

πa2

A
λ+ 2µ

λ+ µ

]−1

, (3.96)

for the shear mode. Here A is the area of one cell of the lattice. From these expressions,

we can see the order of k2
1,2 − β2 in the small parameter ε = k1a is ε2, but in their

approximation procedure, they took k2
1,2 − β2 in the lattice sum be strictly order one,

which is obviously not consistent with their results (3.95) and (3.96). To get the correct

dispersion relation for the lowest mode, we first make an assumption that the order of

k2
1,2 − β2 is ε2 and then use this order in the lattice sums to obtain dispersion relations

that are consistent with the initial assumption.

A quadrupole approximation (because the Rayleigh matrix has elements Dαβ
lm that

decay exponentially as l,m → ∞, α, β = a, b, [77] and the other terms other than up

to quadrupole terms are all in higher order in ε) is used by Zalipaev et al. [105] to get

the quasi-static limit (also for small fractions), that is to say, −2 ≤ l,m ≤ 2, and the

Rayleigh matrix

R =

 I +D(aa) D(ab)

D(ba) I +D(bb)

 (3.97)

is truncated into  A B

C D

 . (3.98)

For example the matrix A is

1 +
SY,a0

∆2

∣∣∣∣∣M (bb)
2

M
(aa)
2

∣∣∣∣∣
1/2

−S
Y,a
1

∆1

∣∣∣∣∣M (bb)
1

M
(aa)
2

∣∣∣∣∣
1/2

SY,a2

∆0

∣∣∣∣∣M (bb)
0

M
(aa)
2

∣∣∣∣∣
1/2

−S
Y,a
3

∆1

∣∣∣∣∣M (bb)
1

M
(aa)
2

∣∣∣∣∣
1/2

SY,a4

∆2

∣∣∣∣∣M (bb)
2

M
(aa)
2

∣∣∣∣∣
1/2

−
SY,a−1

∆2

∣∣∣∣∣M (bb)
2

M
(aa)
1

∣∣∣∣∣
1/2

1 +
SY,a0

∆1

∣∣∣∣∣M (bb)
1

M
(aa)
1

∣∣∣∣∣
1/2

−S
Y,a
1

∆0

∣∣∣∣∣M (bb)
0

M
(aa)
1

∣∣∣∣∣
1/2

SY,a2

∆1

∣∣∣∣∣M (bb)
1

M
(aa)
1

∣∣∣∣∣
1/2

−S
Y,a
3

∆2

∣∣∣∣∣M (bb)
2

M
(aa)
1

∣∣∣∣∣
1/2

SY,a−2

∆2

∣∣∣∣∣M (bb)
2

M
(aa)
0

∣∣∣∣∣
1/2

−
SY,a−1

∆1

∣∣∣∣∣M (bb)
1

M
(aa)
0

∣∣∣∣∣
1/2

1 +
SY,a0

∆0

∣∣∣∣∣M (bb)
0

M
(aa)
0

∣∣∣∣∣
1/2

−S
Y,a
1

∆1

∣∣∣∣∣M (bb)
1

M
(aa)
0

∣∣∣∣∣
1/2

SY,a2

∆2

∣∣∣∣∣M (bb)
2

M
(aa)
0

∣∣∣∣∣
1/2

−
SY,a−3

∆2

∣∣∣∣∣M (bb)
2

M
(aa)
1

∣∣∣∣∣
1/2

SY,a−2

∆1

∣∣∣∣∣M (bb)
1

M
(aa)
1

∣∣∣∣∣
1/2

−
SY,a−1

∆0

∣∣∣∣∣M (bb)
0

M
(aa)
1

∣∣∣∣∣
1/2

1 +
SY,a0

∆1

∣∣∣∣∣M (bb)
1

M
(aa)
1

∣∣∣∣∣
1/2

−S
Y,a
1

∆2

∣∣∣∣∣M (bb)
2

M
(aa)
1

∣∣∣∣∣
1/2

SY,a−4

∆2

∣∣∣∣∣M (bb)
2

M
(aa)
2

∣∣∣∣∣
1/2

−
SY,a−3

∆1

∣∣∣∣∣M (bb)
1

M
(aa)
2

∣∣∣∣∣
1/2

SY,a−2

∆0

∣∣∣∣∣M (bb)
0

M
(aa)
2

∣∣∣∣∣
1/2

−
SY,a−1

∆1

∣∣∣∣∣M (bb)
1

M
(aa)
2

∣∣∣∣∣
1/2

1 +
SY,a0

∆2

∣∣∣∣∣M (bb)
2

M
(aa)
2

∣∣∣∣∣
1/2



.
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By the approximation of M
(αβ)
m and ∆m, αβ = {aa, ab, ba, bb}, in the limit as ε =

k1a→ 0, the orders of the elements in A as indicated by Zalipaev et al. [105] are

1 + ε2 ε3 ε4 ε3 ε2

ε 1 + ε2 ε3 ε2 ε

1 ε 1 + ε2 ε 1

ε ε2 ε3 ε2 ε

ε2 ε3 ε4 ε3 1 + ε2


. (3.99)

Note that the lattice sums SY,al are taken as strictly order one. By our assumption, the

lattice sums are actually order 1/ε2 (this can also be shown in the next part (3.132)), so

that the orders of the terms in matrix A are actually

1 ε ε2 ε 1

1/ε 1 ε 1 1/ε

1/ε2 1/ε 1 1/ε 1/ε2

1/ε 1 ε 1 1/ε

1 ε ε2 ε 1


. (3.100)

When calculating the determinant of the truncated R, Zalipaev et al. consider the terms

of order ε3 and ε4 in the third column of (3.99) as zero. But these terms do contribute

to the determinant of R and cannot be omitted. Because they are actually of order ε

and order ε2 after taking the order of the lattice sums into account, and the products of

them and terms of order 1/ε and order 1/ε2 are as large as the diagonal terms. Here is a

simple example to explain why such terms cannot be neglected in a matrix like (3.100).

Given

G =


1 + δ δε δ

2δ/ε 1 + 2δ 2δ/ε

δ δε 1 + δ

 , x =


x1

x2

x3

 , (3.101)

ε 6= 0, for what values of δ does Gx = 0 have non-trivial solutions for x? For ε → 0, an
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argument similar to that used by Zalipaev et al. gives

G ≈ G′ =


1 + δ 0 δ

2δ/ε 1 + 2δ 2δ/ε

δ 0 1 + δ

 , (3.102)

and hence detG′ = 0 for δ = −1/2. However, det G = 1+4δ = 0 for δ = −1/4, irrespective

of the value of ε. With δ = −1/2, there are no non-trivial solutions. The confusion arises

because of the particular form of G in which ε does not play a fundamental role. To see

this, make the change of variable x = (y1, y2/ε, y3)T , then

Gx =


(1 + δ)y1 + δy2 + δy3

2δy1/ε+ (1 + 2δ)y2/ε+ 2δy3/ε

δy1 + δy2 + (1 + δ)y3

 =


0

0

0

 . (3.103)

The factor of 1/ε may be cancelled from the second equation and hence Gx = 0 is

equivalent to Uy = 0, where

U =


1 + δ δ δ

2δ 1 + 2δ 2δ

δ δ 1 + δ

 (3.104)

is independent of ε.

In order to illuminate the quasi-static limit more clearly, we use new scaled variables.

In these variables, in the limit ε→ 0 all the diagonal terms except for the top 5 tend to 1

and all the non-diagonal terms except for the top left 5× 10 matrix tend to 0, therefore

the determinant of the Rayleigh matrix will be reduced to the determinant of a top left

5× 5 matrix. Substituting the new variables

Xl = M
(aa)
l B

(a)
l +M

(ab)
l B

(b)
l , (3.105)

Yl = M
(ba)
l B

(a)
l +M

(bb)
l B

(b)
l , (3.106)
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into the linear system (3.89), we can rewrite the Rayleigh system as

Xl +

+∞∑
m=−∞

F
(aa)
lm Xm + F

(ab)
lm Ym = 0, (3.107)

Yl +
+∞∑

m=−∞
F

(ba)
lm Xm + F

(bb)
lm Ym = 0, (3.108)

where

F
(aa)
lm =

M
(bb)
m

Mab
mM

ba
m −Maa

m M bb
m

(−1)l+mSYm−l(k1,β),

F
(ab)
lm =

M
(ab)
m

Maa
m M bb

m −Mab
mM

ba
m

(−1)l+mSYm−l(k1,β),

F
(ba)
lm =

M
(ba)
m

Maa
m M bb

m −Mab
mM

ba
m

(−1)l+mSYm−l(k2,β),

F
(bb)
lm =

M
(aa)
m

Mab
mM

ba
m −Maa

m M bb
m

(−1)l+mSYm−l(k2,β).

Then the Rayleigh matrix R =

 I + F
(aa)
lm F

(ab)
lm

F
(ba)
lm I + F

(bb)
lm

, l, m = 0, −1, 1, −2, 2 . . . .

By the forms of M
(αβ)
m , we have

lim
ε→0

F
(αβ)
lm = 0, |m| > 2, (3.109)

and because the lattice sums for shear waves SYm−l(k2,β) are not singular in the vicinity

of k1 = βm, all the F
(ba)
lm and F

(bb)
lm tend to zero as ε→ 0. Define A′ =

(
I + F

(aa)
lm

)
|l|≤2
|m|≤2

and B ′ =
(
F

(ab)
lm

)
|l|≤2
|m|≤2

, then in the limit ε → 0 the structure of the whole Rayleigh

matrix is (here we have rearranged the equations so that B ′ is moved to the next right

of A′ to make the matrix look neater)
A′5×5 B ′5×5

0 5×5 I 5×5

0 10×∞

0 ∞×10 I ∞

 , (3.110)
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where

A′5×5 =

1 +
πL2(λ+ µ)

Aδµ

πL2ieiτ

2Aδ
−πL

2ie−iτ

2Aδ
− πL2e2iτµ

Aδ(λ+ µ)
−πL

2e−2iτµ

Aδ(λ+ µ)

πL2ie−iτ (λ+ µ)

Aδµ
1− πL2

2Aδ

πL2e−2iτ

2Aδ
− πL2ieiτµ

Aδ(λ+ µ)
−πL

2ie−3iτµ

Aδ(λ+ µ)

−πL
2ieiτ (λ+ µ)

Aδµ

πL2e2iτ

2Aδ
1− πL2

2Aδ

πL2ie3iτµ

Aδ(λ+ µ)

πL2ie−iτµ

Aδ(λ+ µ)

−πL
2e−2iτ (λ+ µ)

Aδµ
−πL

2ie−iτ

2Aδ

πL2ie−3iτ

2Aδ
1 +

πL2µ

Aδ(λ+ µ)

πL2e−4iτµ

Aδ(λ+ µ)

−πL
2e2iτ (λ+ µ)

Aδµ
−πL

2ie3iτ

2Aδ

πL2ieiτ

2Aδ

πL2e4iτµ

Aδ(λ+ µ)
1 +

πL2µ

Aδ(λ+ µ)



.

Therefore

lim
ε→0
|R| = |A′5×5| =

Aδµ(λ+ µ) + πL2(λ2 + λµ+ 2µ2)

Aδµ(λ+ µ)
, (3.111)

and |A′5×5| = 0 gives

δ = −πL
2(λ2 + λµ+ 2µ2)

Aµ(λ+ µ)
, (3.112)

where δ = (k2
1 − β2)L2/ε2. Then at last

k2
1 = β2

1

[
1 +

πa2

A

(
λ

µ
+

2µ

λ+ µ

)]−1

. (3.113)

The perturbation of shear waves (when the lattice sums have poles at k2 = β1) gives

k2
2 = β2

1

[
1 +

πa2

A

(
λ+ 3µ

λ+ µ

)]−1

. (3.114)

3.2.2 Solutions by matched asymptotic expansions

The main idea used here is to obtain perturbations of the plane wave solutions that

exist in the absence of the scatterers, and this is done using the method of matched

asymptotic expansions. The wavenumbers for plane dilatational and shear waves are

denoted respectively by k1 (≡ ω
√
ρ/(λ+ 2µ)) and k2 (≡ ω

√
ρ/µ) so that k2 = Pk1,

where P 2 = (λ+ 2µ)/µ. The assumptions made here are that the characteristic size a of

a scatterer satisfies both kia� 1, i = 1, 2, and a/L� 1, where L is the length scale for
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the array periodicity, so that the scatterers are small relative to both the wavelengths

and the array periodicity. The results given here are distinguished from those obtained

through homogenisation in that now each kiL is allowed to be an order one quantity.

This paper is concerned with waves that propagate in a direction normal to the axes of

the cylinders, that is in the x-y plane so that u does not depend on z (the same method

is used by McIver, 2007, to obtain results that apply to the simpler case of anti-plane

shear waves).

By the Helmholtz representation (3.77), the displacement vector u of the medium

can be decomposed into two parts, the scalar part φ and the vector part ψ, here we take

ψ = (0, 0, ψ). Then in terms of φ and ψ, the Bloch conditions are

φ(r + Rj) = eiβ·Rjφ(r) and ψ(r + Rj) = eiβ·Rjψ(r). (3.115)

In particular, these conditions are satisfied by plane waves of the form

φm(r) = eiβTmr and ψn(r) = eiβTn r, m, n ∈ Z, (3.116)

where βm = β+Km, β = (q1, q2)T is the prescribed Bloch vector and Km is the reciprocal

lattice defined in (3.69).

In the absence of the scatterers each of φm and ψn provides a solution to the Bloch

problem provided k1, k2 are chosen to ensure that the field equations (3.79) are satisfied;

in other words provided

k2
1 = β2

m, k2
2 = β2

n, m, n ∈ Z, (3.117)

where βm = |βm|. For example, for a square lattice of side L aligned with the coordinate

axes, plane-waves solutions satisfying the Bloch conditions are

φm = exp {i [(q1 + 2πm1/L)x+ (q2 + 2πm2/L)y]} , m1,m2 ∈ Z, (3.118)

ψn = exp {i [(q1 + 2πn1/L)x+ (q2 + 2πn2/L)y]} , n1, n2 ∈ Z, (3.119)

and the field equations are satisfied as long as

k2
1 = (q1 + 2πm1/L)2 + (q2 + 2πm2/L)2 , (3.120)

k2
2 = (q1 + 2πn1/L)2 + (q2 + 2πn2/L)2 . (3.121)
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The results given here for the case when scatterers are present arise from the consideration

of perturbations to combinations of such plane wave solutions.

The solutions obtained here are in terms of an outer solution, valid everywhere except

for a neighbourhood of each scatterer, that matches with inner solutions valid only in the

immediate vicinity of each scatterer. However, because of the Bloch conditions (3.115),

the matching process used in the construction of solutions need only be carried out in a

primary lattice cell chosen to be that containing the origin O of the global coordinates

defined in the previous section. The particular scatterer associated with O is denoted by

C. In addition to the global coordinates, local polar coordinates (rj , θj) are used that

have origin at Oj .

To facilitate the solution, each lattice cell is divided into two overlapping regions. For

the primary cell these are an outer region at distances r � a, and an inner region within

distances r � k−1
i of the scatterer. A small parameter ε = k1a is introduced, and in the

inner region a scaled coordinate ρ = r/a is used. With these definitions, k1r = ερ and

k2r = Pερ.

In the outer region, far from each scatterer, the solutions are constructed from so-

lutions of the Helmholtz equations (3.79) that satisfy the Bloch conditions (3.115) and

that are singular at the lattice points; such solutions are

Gn(k1r, θ) =
∑
Rj∈Λ

eiβT ·RjH(1)
n (k1rj)e

inθj , (3.122)

and

Ĝn(k2r, θ) =
∑
Rj∈Λ

eiβT ·RjH(1)
n (k2rj)e

inθj , (3.123)

where Gn(k1r, θ) is associated with dilatational waves, and Ĝn(k2r, θ) with shear waves.

By Graf’s addition theorem (Abramowitz & Stegun 1964, equation 9.1.79)

Gn(k1r, θ) = H(1)
n (k1r)e

inθ +
∑
p

(−1)n−pJp(k1r)e
ipθσ̄n−p (3.124)

and

Ĝn(k2r, θ) = H(1)
n (k2r)e

inθ +
∑
p

(−1)n−pJp(k2r)e
ipθσ̂n−p, (3.125)

where
∑

p indicates summations over all p ∈ Z, and the lattice sums are

σ̄n =
∑
Rj∈Λ

′
eiβT ·RjH(1)

n (k1Rj)e
inαj (3.126)
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and

σ̂n =
∑
Rj∈Λ

′
eiβT ·RjH(1)

n (k2Rj)e
inαj . (3.127)

Here αj is the angle between the x axis and Rj measured in the anticlockwise direction,

and the dashes indicate that Rj = 0 is omitted from the summations. The lattice sums

(3.126) and (3.127) have poles wherever, respectively, k1 and k2 have a value βm, m ∈ Z

– see Linton (2010, equation 3.18), for example – and these poles correspond to the plane

wave solutions discussed before. For a given β and ki (i = 1 or 2), the number of distinct

vectors βm that have the same magnitude βm is denoted by Mi ≥ 1.

β
β
2 Κ1−Κ2

β
3

Κ1−Κ3

P1

P2

P3

P
1

Figure 3.6: Ewald construction, M = 3.

The method of Ewald construction [6, page 101] can be used to find these βm with the

same magnitude, for a given lattice and Bloch vector. Draw a circle centred at the initial

point P of β1 with radius β in the reciprocal lattice. Then if another reciprocal lattice

point P2 falls on this circle, the vector
−−→
PP2 (denoted by β2) has the same magnitude

as β1 and they correspond to same plane wave solutions. For specified lattice and Bloch

vector, there may be M vectors falling on that circle. Figure 3.6 gives an example when

M = 3.

For square and hexagonal lattices, the locations of the poles of the lattice sums (or,

equivalently, the plane waves that exist in the absence of the scatterers and satisfy the

Bloch conditions) are shown in figures 3.7 and 3.8 for values of the modulus β of the

wave vector β along the boundaries of the corresponding first irreducible Brillouin zones,

as illustrated in figure 3.1. For all of the calculations in this chapter, the Lamé constants
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Figure 3.7: Dispersion diagram for square array without scatterers: one-pole shear waves ( ); one-pole

dilatational waves ( ); two-pole shear waves ( ); two-pole dilatational waves ( ).

are related by λ/µ = 2.3, and a non-dimensional frequency parameter

ωL/c2 ≡ k2L (3.128)

is used. In these figures it can be seen that, for some combinations of β and the frequency

ω, there are multiple plane-wave solutions and these can arise in two ways. First of all,

as noted above, for one of the lattice sums there may be multiple distinct vectors βm

with the same magnitude βm; this can occur along lines as indicated by the two-pole

curves in the figures, and also at isolated points. Secondly, multiple solutions can occur

when the two lattice sums have poles corresponding to the same frequency, so that there

are crossings of the curves for pure dilatational and pure shear waves. Results are given

later for perturbations of all of these types of plane-wave solution, but full details of the

derivation are given only for perturbations of purely dilatational waves (that is, in regions

of the parameter space not close to the curves in figures 3.7 and 3.8 that correspond to

shear waves).

Consider then the perturbation of dilatational plane waves with wavenumber k1, so

that the lattice sums σ̄n have poles at k1 = ±βm, m = 1..M1, while the lattice sums

σ̂n for the shear waves are analytic functions of the frequency within neighbourhoods of

these points. For each unique vector βm,

σ̄n ∼
4in+1einτm

A(k2
1 − β2

m)
as k2

1 → β2
m, (3.129)
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Figure 3.8: Dispersion diagram for hexagonal array without scatterers: one-pole shear waves ( );

one-pole dilatational waves ( ); two-pole shear waves ( ); two-pole dilatational waves ( ).

where A is the area of one cell of the lattice, and the angles τm are defined through

βm = βme1m with epm =

cos pτm

sin pτm

 (3.130)

– see Linton (2010, equation 3.18). The lattice sums are written

σ̄n =

M1∑
m=1

σ̄
(1)
nm

(k2
1 − β2

m)L2
+ σ̄(2)

n , where σ̄(1)
nm =

4in+1einτm

A/L2
, (3.131)

and each σ̄
(2)
n is assumed to be an analytic function of k1 within neighbourhoods of each

k1 = ±βm. Solutions are sought for k1 in a neighbourhood of βm and it is assumed here

that

(k2
1 − β2

m)L2 = f(ε)δm, (3.132)

where, for k2
1 6= β2

m, δm is strictly of order one in ε as ε→ 0. This expression will be used

within a neighbourhood of the points in (β, k1) space that correspond to plane waves, so

that the βm and hence the δm may be distinct. It may be shown that the need to link

the first appearance of singular terms in the outer solution of φ with the nonsingular

leading-order outer solution for φ, requires f(ε) = ε2 (the matching would fail if this

relation were incorrect) but, for simplicity, this will be adopted from the outset.

In view of (3.132), the matching may be carried out more conveniently if the singular
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solutions of the Helmholtz equation defined in (3.122) are modified to be

ḡn(k1r, θ) = ε2Gn(k1r, θ) = ḡ(1)
n (k1r, θ) + ε2ḡ(2)

n (k1r, θ), (3.133)

where the plane-wave part

ḡ(1)
n (k1r, θ) =

M1∑
m=1

1

δm

∑
p

(−1)n−pσ̄
(1)
n−p,mJp(k1r)e

ipθ

= (−1)n
M1∑
m=1

σ̄
(1)
nm

δm
eik1r cos(θ−τm), (3.134)

and the singular part

ḡ(2)
n (k1r, θ) = H(1)

n (k1r)e
inθ +

∑
p

(−1)n−pσ̄
(2)
n−pJp(k1r)e

ipθ. (3.135)

We will use Φ and φ̄ to denote the outer and inner solutions for φ, and Ψ and ψ̂ to

denote the outer and inner solutions for ψ. As the coupled boundary-value problem is

homogeneous, the leading order outer solution may be taken as strictly order zero in ε

so that

Φ(0) =
∑
n

Ānḡ
(1)
n (k1r, θ), (3.136)

where Φ(m) denotes the outer solution up to terms in εm. (Because we consider only the

perturbation of dilatational waves, shear waves do not appear in the leading-order outer

solution.) In the following, Φ(m,l) denotes the expansion up to εl of Φ(m) after it is written

in terms of the inner coordinate ρ. The inner solution up to terms in εl is denoted by

φ̄(l), and φ̄(l,m) denotes its expansion up to εm after it is written in terms of the outer

coordinate k1r. Matching is enforced by requiring Φ(m,l) = φ̄(l,m) for every m and l when

both asymptotic forms are expressed in terms of the same coordinates (Crighton et al.

1973). The same principles also apply to the inner and outer expansions for the shear

part of the solution.

In terms of the inner variable ρ = r/a, the field equations for the inner solutions φ̄

and ψ̂ are
1

ρ

∂

∂ρ

(
ρ
∂φ̄

∂ρ

)
+

1

ρ2

∂2φ̄

∂θ2
+ ε2φ̄ = 0 (3.137)

and
1

ρ

∂

∂ρ

(
ρ
∂ψ̂

∂ρ

)
+

1

ρ2

∂2ψ̂

∂θ2
+ P 2ε2ψ̂ = 0. (3.138)
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The inner solutions are constructed with the help of inner eigensolutions that each satisfy

the Laplace equation, together with the homogeneous boundary conditions

2µ

λ

(
∂2φ̄

∂ρ2
+

∂2ψ̂

∂ρ∂θ
− ∂ψ̂

∂θ

)
= 0, ρ = 1, (3.139)

and

2
∂2φ̄

∂ρ∂θ
− 2

∂φ̄

∂θ
+
∂2ψ̂

∂θ2
− ∂2ψ̂

∂ρ2
+
∂ψ̂

∂ρ
= 0, ρ = 1. (3.140)

It is straightforward to show that the required inner eigensolutions are given by the

following pairs (the barred terms refer to the dilatational wave and the hatted terms to

the shear wave):
En(ρ, θ) = ρn cosnθ,

Ên(ρ, θ) = −ρn sinnθ,

n 6= 1;


E1(ρ, θ) = ρ cos θ,

Ê1(ρ, θ) = 0;


E1(ρ, θ) = ρ sin θ,

Ê1(ρ, θ) = 0;
En(ρ, θ) = ρn sinnθ,

Ên(ρ, θ) = ρn cosnθ,

n 6= 1;


E1(ρ, θ) = 0,

Ê1(ρ, θ) = ρ sin θ;


E1(ρ, θ) = 0,

Ê1(ρ, θ) = ρ cos θ.

(3.141)

From equations (3.134) and (3.136), the inner expansion of the leading order outer

solution is

Φ(0,2) =
∑
n

Ān(−1)n
M1∑
m=1

σ̄
(1)
nm

δm

1 + iερeT1m

cos θ

sin θ


−1

4ε
2ρ2

1 + eT2m

cos 2θ

sin 2θ

 , (3.142)

which indicates an initial inner development

φ̄(1) = φ̄0 + ν11(ε)φ̄11 + εφ̄1, (3.143)

where the term in ν11(ε) is a possible intermediate term and, because φ and ψ̂ are coupled

through the boundary conditions, there is a shear component to the inner problem so

that

ψ̂(1) = ψ̂0 + ν11(ε)ψ̂11 + εψ̂1 (3.144)

(higher-order terms in the inner solution are dealt with later). Substituting (3.143) and

(3.144) into the field equations (3.137) and (3.138) and equating the coefficients of the
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gauge functions in ε, we find that φ̄0, φ̄11, φ̄1, ψ̂0, ψ̂11, ψ̂1 are all harmonic functions that

satisfy the homogeneous boundary conditions, and hence are constructed from the inner

eigenfunctions detailed in equations (3.141).

The inner expansion (3.142) suggests that φ̄0 and ψ̂0 might contain only constants.

However, the appearance of terms in 2θ at order ε2 in the inner expansion (3.142) is

significant. These terms could be matched with the inner solution φ̄ simply by including

appropriate eigenfunctions in φ̄ at order ε2, but it then proves impossible to satisfy

the boundary conditions. The situation is resolved by including eigenfunctions in 2θ

within φ̄0 and ψ̂0, in order to generate further terms at order ε2 in φ̄ and ψ̂ through

particular solutions of the field equations (3.137)-(3.138). In general, in order to satisfy

the boundary conditions at order εn+2, the inner solution at order εn must contain singular

eigenfunctions up to and including those in (n+ 2)θ.

With the above in mind, the leading-order inner solutions are written as

φ̄0 = B0 +
uT0
ρ2

cos 2θ

sin 2θ

 (3.145)

and

ψ̂0 =
uT0
ρ2

 sin 2θ

− cos 2θ

 =
uT0
ρ2

 0 1

−1 0

cos 2θ

sin 2θ

 , (3.146)

so that, in terms of the outer variables,

φ̄(0,2) = B0 +
ε2uT0

(k1r)2

cos 2θ

sin 2θ

 (3.147)

and

ψ̂(0,2) =
ε2P 2uT0
(k2r)2

 0 1

−1 0

cos 2θ

sin 2θ

 , (3.148)

where B0 and u0 = (u01, u02) are unknowns need to be determined by the matching. The

outer expansion φ̄(0,2) has terms no more singular than a quadrupole, and hence cannot

be matched to any higher singularities associated in the leading-order outer solution; thus

Ān = 0 for |n| > 2. (It might be argued that more singular terms could be included in the

outer solution, and then matched to the inner solution by including inner eigenfunctions

at an appropriate order. However, this leads to unresolvable difficulties later.)
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With possible intermediate terms included, the dilatational outer solution is continued

as

Φ(2) =
2∑

n=−2

Ān

{
ḡ(1)
n (k1r, θ) + ε2ḡ(2)

n (k1r, θ)
}

+ µ11(ε)
∑
n

C̄nḡ
(1)
n (k1r, θ)

+ ε
∑
n

Cnḡ
(1)
n (k1r, θ) + µ21(ε)

∑
n

D̄nḡ
(1)
n (k1r, θ) + ε2

∑
n

Dnḡ
(1)
n (k1r, θ), (3.149)

so that, in particular,

Φ(2,0) =
2∑

n=−2

Ān(−1)n
M1∑
m=1

σ̄
(1)
nm

δm
+ Ā2

−4ie2iθ

πρ2
+ Ā−2

−4ie−2iθ

πρ2
. (3.150)

The matching rule Φ(2,0) ≡ φ̄(0,2) then gives

B0 =
2∑

n=−2

Ān(−1)n
M1∑
m=1

σ̄
(1)
nm

δm
and (Ā2, Ā−2) =

π

8i
uT0

−1 −1

i −i

 . (3.151)

Equation (3.148) shows that the leading term in the outer expansion of ψ̂ is at ε2,

and hence the leading-order outer shear solution is

Ψ(2) = ε2
2∑

n=−2

ÂnĜn(k2r, θ). (3.152)

(As we have assumed that the shear lattice sums are well behaved, there is no decompo-

sition similar to equation (3.133) for the shear potentials. Also, because the leading inner

term is strictly order one, when expressed in terms of the inner coordinates Ψ(2) cannot

be larger than order one as ε→ 0, and hence Ân = 0 for |n| > 2. ) Thus, in particular,

Ψ(2,0) = Â2
−4ie2iθ

πP 2ρ2
+ Â−2

−4ie−2iθ

πP 2ρ2
, (3.153)

and the matching rule ψ̂(0,2) ≡ Ψ(0,2) gives

(Â2, Â−2) =
πP 2

8i
uT0

 i −i

1 1

 . (3.154)
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The inner expansion of the outer solution of φ up to order ε2 is

Φ(2,2) =
2∑

n=−2

Ān(−1)n
M1∑
m=1

σ̄
(1)
nm

δm

1 + iερeT1m

cos θ

sin θ


− 1

4ε
2ρ2

1 + eT2m

cos 2θ

sin 2θ

+ ε2
{
Ā0

[
1 +

2i

π
(log ερ+ γ − log 2) + σ̄

(2)
0

]

+ Ā1

[
−2i

περ
eiθ − σ̄(2)

1

]
+ Ā−1

[
2i

περ
e−iθ − σ̄(2)

−1

]

+ Ā2

[(
−4i

πε2ρ2
− i

π

)
e2iθ + σ̄

(2)
2

]
+ Ā−2

[(
−4i

πε2ρ2
− i

π

)
e−2iθ + σ̄

(2)
−2

]}

+
∑
n

[
µ11(ε)C̄n + εCn

]
(−1)n

M1∑
m=1

σ̄
(1)
nm

δm

1 + iερ

cos θ

sin θ


+
∑
n

[
µ21(ε)D̄n + ε2Dn

]
(−1)n

M1∑
m=1

σ̄
(1)
nm

δm
. (3.155)

Thus, to match with the inner solution, µ11(ε) = ν11(ε), and the inner solutions must be

continued as

φ̄(2) = B0 +
uT0
ρ2

cos 2θ

sin 2θ

+ ν11(ε)B11 + ε

B1 + uT1 ρ

cos θ

sin θ



+
uTI
ρ

cos θ

sin θ

 +
uT2
ρ2

cos 2θ

sin 2θ

+
uT3
ρ3

cos 3θ

sin 3θ



+ ε ν11(ε) uT11ρ

cos θ

sin θ

+ µ21(ε)B21 + ε2 log εB22 + ε2φ̄2, (3.156)

and

ψ̂(2) =
uT0
ρ2

 0 1

−1 0

cos 2θ

sin 2θ

+ ε

uTI
ρ

 0 1

−1 0

cos θ

sin θ



+
uT2
ρ2

 0 1

−1 0

cos 2θ

sin 2θ

+
uT3
ρ3

 0 1

−1 0

cos 3θ

sin 3θ


+ ε2 log ε B̂22 + ε2ψ̂2 (3.157)

(recall that at order n in the inner solution we must include singular eigenfunctions up

to those in (n+ 2)θ). Here the vectors u1,u2,u3 and uI are unknowns to be determined.
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The potentials φ̄2 and ψ̂2 satisfy the Poisson equations

1

ρ

∂

∂ρ

(
ρ
∂φ̄2

∂ρ

)
+

1

ρ2

∂2φ̄2

∂θ2
= −φ̄0 ≡ −

B0 +
uT0
ρ2

cos 2θ

sin 2θ

 (3.158)

and

1

ρ

∂

∂ρ

(
ρ
∂ψ̂2

∂ρ

)
+

1

ρ2

∂2ψ̂2

∂θ2
= −P 2ψ̂0 ≡ −P 2

uT0
ρ2

 0 1

−1 0

cos 2θ

sin 2θ

 , (3.159)

as well as the boundary conditions (3.139) and (3.140). The solution forms needed to

effect the matching are

φ̄2 = 1
4uT0

cos 2θ

sin 2θ

− 1
4B0ρ

2 + v̄T1 ρ

cos θ

sin θ

+
v̄TI
ρ

cos θ

sin θ



+ v̄T2 ρ
2

cos 2θ

sin 2θ

+
v̄TII
ρ2

cos 2θ

sin 2θ

+ . . . + v̄0 log ρ+ B̄2 (3.160)

and

ψ̂2 =
P 2uT0

4

 0 1

−1 0

cos 2θ

sin 2θ

+ v̂T1 ρ

cos θ

sin θ

+
v̂TI
ρ

cos θ

sin θ



+ v̂T2 ρ
2

cos 2θ

sin 2θ

+
v̂TII
ρ2

cos 2θ

sin 2θ

+ . . . + v̂0 log ρ+ B̂2, (3.161)

where the ellipses indicate singular eigenfunctions in 3θ and 4θ and the coefficients of

the eigenfunctions are unknowns to be determined. Further, the terms involving 1/4 are

particular solutions of (3.158) and (3.159), B̄2 and B̂2 are eigenfunctions, and the other

terms are solutions of the Laplace equation included to satisfy the boundary conditions

and to effect the matching. From the boundary conditions

u01 =
8(v̄21 + v̂22)

P 2 − 1
, u02 =

8(v̄22 − v̂21)

P 2 − 1
, (3.162)

v̄0 =
(1− P 2)B0

2
, v̂0 = 0, (3.163)

where uT0 = (u01, u02), v̄T2 = (v̄21, v̄22) and v̂T2 = (v̂21, v̂22). It follows that the outer
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expansions of φ̄(2) and ψ̂(2) are respectively

φ̄(2,2) = B0 +
uT0
ρ2

cos 2θ

sin 2θ

+B11ν11(ε) + ε

B1 + uT1 ρ

cos θ

sin θ

+
uTI
ρ

cos θ

sin θ


+ ε ν11(ε) uT11ρ

cos θ

sin θ

+ µ21(ε)B21 + ε2 log εB22 + ε2

1
4uT0

cos 2θ

sin 2θ



− 1
4B0ρ

2 + v̄T1 ρ

cos θ

sin θ

+ v̄T2 ρ
2

cos 2θ

sin 2θ

+ v0 log ρ+B2

 (3.164)

and

ψ̂(2,2) = uT0
1

ρ2

 0 1

−1 0

cos 2θ

sin 2θ

+ εuTI
1

ρ

 0 1

−1 0

cos θ

sin θ



+ ε2

T 2

4
uT0

 0 1

−1 0

cos 2θ

sin 2θ

+ v̂T1 ρ

cos θ

sin θ

+ v̂T2 ρ
2

cos 2θ

sin 2θ

+ B̂2

 .

(3.165)

The matching rules φ̄(2,2) ≡ Φ(2,2) and ψ̂(2,2) ≡ Ψ(2,2) yield the following:

Ā0 =
π

2i
v0 =

π(1− P 2)

4π
B0, Â0 = 0, (3.166)

(Ā1, Ā−1) =
π

4i
uTI

−1 1

i i

 , (Â1, Â−1) =
πP

4i
uTI

 i i

1 −1

 , (3.167)

v̄2 = −1

4

2∑
n=−2

Ān(−1)n
M1∑
m=1

σ̄
(1)
nm

δm
e2m, v̂T2 = (0, 0), (3.168)

u1 =
2∑

n=−2

Ān(−1)n
M1∑
m=1

σ̄
(1)
nm

δm
ie1m. (3.169)

By (3.162) and (3.168), we get

u0 =
2

1− P 2

2∑
n=−2

Ān(−1)n
M1∑
m=1

σ̄
(1)
nm

δm
e2m. (3.170)

To obtain a relation between u1 and uI , we need the order ε3 inner terms φ̄3 and ψ̂3

which satisfy the Poisson equations

1

ρ

∂

∂ρ

(
ρ
∂φ̄3

∂ρ

)
+

1

ρ2

∂2φ̄3

∂θ2
= −φ̄1
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and

1

ρ

∂

∂ρ

(
ρ
∂ψ̂3

∂ρ

)
+

1

ρ2

∂2ψ̂3

∂θ2
= −P 2ψ̂1

(φ̄1 and ψ̂1 and given by the terms in square brackets in, respectively, equations (3.156)

and (3.157)). The required solutions of these Poisson equations are

φ̄3 =−
[
B1

4
ρ2 +

ρ3

8
uT1

(
cos θ

sin θ

)
+
ρ

2
log ρuTI

(
cos θ

sin θ

)
− 1

4
uT2

(
cos 2θ

sin 2θ

)

− 1

8ρ
uT3

(
cos 3θ

sin 3θ

)]
+ w̄T

1 ρ

(
cos θ

sin θ

)
+ w̄T

I

1

ρ

(
cos θ

sin θ

)
+ w̄T

2 ρ
2

(
cos 2θ

sin 2θ

)

+ w̄T
II

1

ρ2

(
cos 2θ

sin 2θ

)
+ w̄T

3 ρ
3

(
cos 3θ

sin 3θ

)
+ w̄T

III

1

ρ3

(
cos 3θ

sin 3θ

)
+ . . . + w̄0 log ρ, (3.171)

and

ψ̄3 =− P 2

ρ
2

log ρuTI

 0 1

−1 0

(cos θ

sin θ

)
− 1

4
uT2

 0 1

−1 0

(cos 2θ

sin 2θ

)

− 1

8ρ
uT3

 0 1

−1 0

(cos 3θ

sin 3θ

)+ ŵT
1 ρ

(
cos θ

sin θ

)
+ ŵT

I

1

ρ

(
cos θ

sin θ

)

+ ŵT
2 ρ

2

(
cos 2θ

sin 2θ

)
+ ŵT

II

1

ρ2

(
cos 2θ

sin 2θ

)
+ ŵT

3 ρ
3

(
cos 3θ

sin 3θ

)
(3.172)

+ ŵT
III

1

ρ3

(
cos 3θ

sin 3θ

)
+ . . . + ŵ0 log ρ, (3.173)

where the ellipses indicate singular eigenfunctions in 4θ and 5θ. In these last equations,

the terms in square brackets are particular solutions of the Poisson equations, and all

other terms are eigenfunctions needed to satisfy the boundary conditions and effect the

higher order matching. From the boundary conditions we get, in particular,

uI = −1
2u1. (3.174)

Using equations (3.166)-(3.167), we now replace Ān and Ân in B0 (equation 3.151),

u0 (equation 3.170) and u1 (equation 3.169) to get

B0 =
πL2

A

M1∑
m=1

1

δm
[(1− P 2)B0 − ieT1mu1 + eT2mu0], (3.175)
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u0 =
2

1− P 2

πL2

A

M1∑
m=1

e2m

δm
[(1− P 2)B0 − ieT1mu1 + eT2mu0] (3.176)

and

u1 =
iπL2

A

M1∑
m=1

e1m

δm
[(1− P 2)B0 − ieT1mu1 + eT2mu0]. (3.177)

A system more amenable to further analysis is obtained by introducing

Um =
1

(1− P 2)δm

[
(1− P 2)B0 − ieT1mu1 + eT2mu0

]
, m = 1..M1, (3.178)

so that

B0 =
πL2

A

M1∑
m=1

(1− P 2)Um, u0 =
2πL2

A

M1∑
m=1

e2mUm, (3.179)

and

u1 =
iπL2

A

M1∑
m=1

(1− P 2)e1mUm, (3.180)

and hence by substitution back in to equation (3.178)

δpUp =
πL2

A

M1∑
m=1

[
(1− P 2) + eT1pe1m +

2eT2pe2m

1− P 2

]
Um, p = 1..M1. (3.181)

For a given β, equation (3.181) provides an eigenvalue problem for the corresponding

wavenumber k1 (which appears in each δp). The geometry of the lattice Λ appears through

the reciprocal lattice vectors in the definitions of each δp, e1p and e2p.

For the perturbation of shear waves, a similar calculation yields

δ̂pÛp =
πL2

A

M2∑
m=1

[
eT1pe1m +

2P 2eT2pe2m

1− P 2

]
Ûm, (3.182)

where

δ̂p = (k2
2 − β2

m)L2/k2
2a

2. (3.183)

Equations (3.182) define an eigenvalue problem for the shear wavenumber k2. Comparing

equations (3.181) and (3.182), we see that there is an extra term 1− P 2 in (3.181). This

arises from the form of the boundary condition for σrr in equation (3.80) which contains

a non-derivative term in φ; this generates a monopole, and hence the additional term, in

the perturbed dilatational wave, but not in the perturbed shear wave.
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It is also possible for the frequency of an unperturbed dilatational wave to coincide

with the frequency of an unperturbed shear wave. The simultaneous perturbation of di-

latational and shear waves will, in general, result in a pair of coupled eigenvalue problems

for the wavenumbers k1 and k2 and these may be written as

δ̄p1Up1 =
πL2

A

M1∑
m1=1

[
(1− P 2) + eT1m1

e1p1 +
2

1− P 2
eT2m1

e2p1

]
Um1

+
πL2

A

M2∑
m2=1

PeT1m2

0 −1

1 0

 e1p1 +
2P 2

1− P 2
eT2m2

0 −1

1 0

 e2p1

 Ûm2 , (3.184)

and

δ̂p2Ûp2 =
πL2

A

M1∑
m1=1

PeT1m1

 0 1

−1 0

 e1p2 +
2P 2

1− P 2
eT2m1

 0 1

−1 0

 e2p2

Um1

+
πL2

A
P 2

M2∑
m2=1

[
eT1m2

e1p2 +
2P 2

1− P 2
eT2m2

e2p2

]
Ûm2 , (3.185)

where p1 = 1..M1, p2 = 1..M2. Here the barred terms refer to the perturbed dilatational

wave, and the hatted terms to the perturbed shear wave. It is noteworthy that in the

case M1 = M2 = 1, that is the perturbation of one dilatational and one shear wave, the

off-diagonal terms in the system matrix are zero and the equations decouple. Equations

(3.184) and (3.185) include the cases of the perturbed dilatational waves and shear wave

already considered separately; with Ûm2 = 0, equation (3.184) reduces to (3.181), and

with Um1 = 0 equation (3.185) reduces to (3.182).

Results

In this part, we give some examples of explicit approximations to the dispersion relation

for perturbed dilatational and shear waves, obtained from the eigenvalue problems in

equations (3.181)–(3.185) with the aid of the computer-algebra package Mathematica.

Then, some of these approximations are compared with numerical results, therefore the

physics constants λ/µ = 2.3 is also adopted here. The areas of the primitive cells for

square and hexagonal lattices are respectively A = L2 and A =
√

3L2/2.
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A. Perturbations of a single plane wave

In the case M = 1, equation (3.181) for the perturbation of a dilatational wave reduces

to

k2
1 = β2

1

[
1 +

πa2

A

(
λ

µ
+

2µ

λ+ µ

)]−1

, (3.186)

while equation (3.182) for the perturbation of a shear wave gives

k2
2 = β2

1

[
1 +

πa2

A

(
λ+ 3µ

λ+ µ

)]−1

. (3.187)

We can see these results agree with those corrected results obtained by the quasi-static

limit (3.113) and (3.114). Actually, these expressions give perturbations of any of the

one-pole solutions illustrated in the dispersion diagrams in figures 3.7 and 3.8, regardless

of their frequency (i.e. not just for the quasi-static limit), because the only restriction

of our method is that the cylinder size is much smaller than the wavelengh. We can

see the information about the lattice is not included in equations (3.186) and (3.187),

so they actually provide perturbed dispersion relations for an uniform elastic material.

As noted at the end of the previous section, this includes any points in the diagrams

where one-pole dilatational- and shear-wave modes cross. For the lowest dilatational

mode and two-lowest shear modes, and along the line GM of the irreducible Brillouin

zone, the present approximations are compared in figure 3.9 with numerical calculations

made using the multipole method described by Zalipaev et al. (2002), and generally good

agreement is observed. The divergence of the curves near the ends of GM is because of

the presence of higher-order poles – see figures 3.7 and 3.8.

B. Perturbations of two plane waves

Approximations at appropriate isolated points in the dispersion diagram lead to estimates

of local band gaps, and this is illustrated here by consideration of a two-pole solution

corresponding to the perturbation of shear waves at the point M in the reciprocal lattice.

For the square lattice, the unperturbed values considered are (q1L, q2L, k2L) = (π, 0, 3π),

and within some neighbourhood of this point the appropriate forms for the βm are

β1L = (q1L+ 2π, q2L)T , β2L = (q1L− 4π, q2L)T (3.188)
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Figure 3.9: Comparison of the present approximations (——) with numerical calculations (· · · ) for circles

of radius a = 0.1L along GM in a square lattice (left), and a hexagonal lattice (right). With the curves

ordered according to their behaviour near q1L, q2L = π, the lowest two curves are perturbations of a

shear wave, and the remaining curve is a perturbed dilatational wave.

(this is because when (q1L, q2L) = (π, 0), β1L = β2L = 3π ≡ k2L). For q2 = 0 and in the

limit q1L→ π, the positive roots of equation (3.182) are

k2L =
3π√

1− 2πa2/L2
,

3π√
1 + 4πP 2a2/(P 2 − 1)L2

. (3.189)

Similarly, for the hexagonal lattice, with (q1L, q2L, k2L) = (0, 2π/
√

3, 6π/
√

3) there are

again two poles and the appropriate forms for the βm are

β1L = (q1L, q2L+ 4π/
√

3)T , β1L = (q1L, q2L− 8π/
√

3)T . (3.190)

For q1L = 0 and in the limit q2L→ 2π/
√

3, the positive roots of equation (3.182) are

k2L =
2
√

3π√
1− 4πa2/

√
3L2

,
2
√

3π√
1 + 8πP 2a2/

√
3(P 2 − 1)L2

. (3.191)

Equations (3.189) and (3.191) illustrate explicitly the appearance of local band gaps as

the radius of the cylinder is increased from zero. In each case, the upper point of the

local band gap is independent of the Lamé constants and is determined by the geometry

alone. The solution surfaces are shown in figure 3.10, in which we can clearly see the

appearance of the local band gaps.

Two-pole lines in the unperturbed dispersion diagrams in figures 3.7 and 3.8 will,

in general, split into two modes when the scatterers are present. This is shown firstly

for the lowest dilatational two-pole mode on MK with the hexagonal lattice, for which

q2L = 2π/
√

3 and q1L ∈ (0, 2π/3), and the appropriate forms for βm are

β1L = (q1L, q2L)T , β2L = (q1L, q2L− 4π/
√

3)T . (3.192)
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Figure 3.10: Left: solution surfaces in the vicinity of (q1L, q2L, kL) = (π, 0, 3π) for square lattice. Right:

solution surfaces in the vicinity of (q1L, q2L, kL) = (0, 2π/
√

3, 6π/
√

3) for hexagonal lattice. Circle radius

a = L/20.
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Figure 3.11: Splitting of the lowest two pole dilatational mode along MK for a hexagonal lattice; com-

parison of the present approximations (——) with numerical calculations (· · · ). Left: radius a = 0.03L.

Right: radius a = 0.05L.

The corresponding positive roots of (3.181) are

k2L =
P (4π2 + 3(q1L)2)3/2√

27(q1L)4 + 24π2(q1L)2
(

3− 2
√

3πa
2

L2
P 2−9
P 2−1

)
+ 16π4(3− 4

√
3πa

2

L2 )

, (3.193)

and

k2L =
P (4π2 + 3(q1L)2)3/2√

9c4(q1L)4 + 24π2c2(q1L)2 + 16π4c0

, (3.194)
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where

c0 = 3 + 4
√

3
πa2

L2

P 4 − 2P 2 + 3

P 2 − 1
, c2 = 3 + 2

√
3
πa2

L2

2P 4 − 5P 2 − 1

P 2 − 1
, (3.195)

c4 = 3 + 4
√

3
πa2

L2

P 4 − 3P 2 + 4

P 2 − 1
. (3.196)

These solutions are graphed in figure 3.11 which shows how the gap increases with the

radius of the cylinder. In figure 3.8, it may be seen that a two-pole shear mode crosses

near K but, for simplicity, this is not taken into account here.
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Figure 3.12: Perturbation of the lowest two-pole mode along MK for a square lattice; comparison of the

present approximations (——) with numerical calculations (· · · ) for a circle of radius a = 0.1L. Left:

two-pole approximation. Right: four-pole approximation.

Split modes may also cross and this is illustrated using the lowest (shear) two-pole

line on MK in figure 3.7 for the square lattice, for which q1L = π and q2L ∈ (0, π), and

the appropriate forms for βm are

β1L = (q1L, q2L)T , β2L = (q1L− 2π, q2L)T . (3.197)

For these values, the positive roots of equation (3.182) are

k2L = (k2L)1 ≡
[
(q2L)2 + π2

]3/2√
(q2L)4 + 2π2(q2L)2

[
1 + πa2

L2
7P 2+1
P 2−1

]
+ π4

[
1− 2πa2

L2

] , (3.198)

and

k2L = (k2L)2 ≡
[
(q2L)2 + π2

]3/2√
c4(q2L)4 + 2π2c2(q2L)2 + π4c0

, (3.199)

where

c0 = 1 +
4πa2

L2

P 2

P 2 − 1
, c2 = 1− πa2

L2

5P 2 − 1

P 2 − 1
, c4 = 1 +

2πa2

L2

P 2 + 1

P 2 − 1
.

62



The gap between the two curves depends on the radius of the scatterer and is

(k2L)1 − (k2L)2 = π
(q2L)4(P 2 + 1)− 12π2P 2(q2L)2 + π4(3P 2 − 1)

(P 2 − 1)(π2 + (q2L)2)3/2

( a
L

)2

+O

(
a4

L4

)
(3.200)

so that, to a first approximation, the two lines cross at

q1L = π

√
6P 2 −

√
1− 2P 2 + 33P 4

P 2 + 1
; (3.201)

to the left of this point (k2L)1 is the upper mode, and (k2L)2 is the lower mode. The

above approximations are compared with numerical solutions in the left-hand graph of

figure 3.12. The approximations are worst near the right-hand end of the range of q2L

due to the proximity of the four-pole point at K. One feature of the present method

is that solutions valid in the neighbourhood of higher-order poles blend smoothly in to

lower-order solutions, and hence the former may be used outside their apparent range of

validity. This may be shown explicitly in simple cases, and is illustrated graphically in

the right-hand graph of figure 3.12 which uses the four-pole approximation (not given

explicitly here) from the point K across the whole of MK.
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Figure 3.13: The comparison between the present approximation (——) with numerical calculations (· · · )
of the lowest cross point of one dilatational wave and two shear waves on KG for a circle of radius a=0.1L.

Left: square lattice. Right: hexagonal lattice.

As well as mode splitting, there can be mode switching where, in the unperturbed

dispersion diagram, shear and dilatational modes cross. This is illustrated in figure 3.13

for the intersection of the lowest two-pole shear modes in KG with a dilatational mode.

The local solution at the three-pole intersection point correctly shows the switching

between the dilatational mode and one of the shear modes. The approximation degrades

towards the ends of the range because of the proximity of higher-order poles.
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C. Perturbations of three plane waves

Figure 3.14: Left: solution surfaces in the vicinity of (q1L, q2L, kL) = (π/2, 0, 5π/2) for square lattice.

Right: solution surfaces in the vicinity of (q1L, q2L, kL) = (2π/3, 2π/
√

3, 4π/3) for hexagonal lattice.

Circle radius a = L/20.

For square lattice, at (q1L, q2L, k2L) = (π/2, 0, 5π/2), there are three poles of the lattice

sums that correspond to three unperturbed plane waves, and within some neighbourhood

of this point the appropriate forms for the βm are

β1L = (q1L+ 2π, q2L)T , β2L = (q1L− 2π, q2L+ 2π)T , β3L = (q1L− 2π, q2L− 2π)T .

(3.202)

For hexagonal lattice, at (q1L, q2L, k2L) = (2π/3, 2π/
√

3, 4π/3) there are three poles

and for calculations within a neighbourhood of this point the forms

β1L = (q1L, q2L)T , β2L =

(
q1L, q2L−

4π√
3

)T
, β3L =

(
q1L− 2π, q2L−

2π√
3

)T
.

(3.203)

The solutions are shown in figure 3.14.
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D. Perturbations of four plane waves

Figure 3.15: Left: solution surfaces in the vicinity of (q1L, q2L, kL) = (0, 0, 2π) for square lattice. Right:

solution surfaces in the vicinity of (q1L, q2L, kL) = (0, 2π/
√

3, 2
√

21π/3) for hexagonal lattice. Circle

radius a = L/20.

For square lattice, at (q1L, q2L, k2L) = (0, 0, 2π), there are three poles of the lattice sums

that correspond to three unperturbed plane waves, and within some neighbourhood of

this point the appropriate forms for the βm are

β1,2L = (q1L± 2π, q2L)T , β3,4L = (q1L, q2L± 2π)T . (3.204)

For hexagonal lattice, at (q1L, q2L, k2L) = (2π, 0, 2
√

21π/3) there are three poles and

for calculations within a neighbourhood of this point the forms

β1,2L =

(
q1L, q2L±

4π√
3

)T
, β3,4L =

(
q1L− 4π, q2L±

4π√
3

)T
. (3.205)

The solutions are shown in figure 3.15.

Comparison

The accuracy of the approximations by matched asymptotic expansions is indicated in

figure 3.16 and 3.17 through three comparisons with numerical calculations for circular

cylinders made with Poulton et al. [77] and Zalipaev et al. [105]. It is shown that the

current approximations are more accurate for smaller cylinder radius as we expected. As

seen from the diagrams, our method provides very good approximations for cylinders of

radius up to a/L = 0.05 for both square and hexagonal lattices. For the two-pole mode
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in square lattice and three-pole mode in hexagonal lattice we choose, the approximations

are still good for cylinders of radius up to a/L = 0.1.

HaL

0 0.05 0.1

0.8π

0.9π

π

1.1π

1.2π

a�L

Ω
L
�c

2

HbL

0 0.05 0.1

2.3π

2.4π

2.5π

2.6π

2.7π

a�L

Ω
L
�c

2

HcL

0 0.05 0.1

1.6π

1.7π

1.8π

1.9π

2π

2.1π

2.2π

a�L

Ω
L
�c

2

Figure 3.16: Square array: comparison of the present approximations (——) with numerical calculations

(· · · ) for a circle of diameter 2a. (a) (q1L, q2L) = ( 9
10
π, 1

10
π), (b) (q1L, q2L) = ( 3

5
π, 1

10
π), (c) (q1L, q2L) =

( 1
10
π, 1

10
π)

HaL

0 0.05 0.1

1.4π

1.5π

1.6π

1.7π

a�L

Ω
L
�c

2

HbL

0 0.05 0.1

1.2π

1.3π

1.4π

1.5π

a�L

Ω
L
�c

2

HcL

0 0.05 0.1

2.6π

2.7π

2.8π

2.9π

3π

3.1π

3.2π

a�L

Ω
L
�c

2

Figure 3.17: Hexagonal array: comparison of the present approximations (——) with numerical calcu-

lations (· · · ) for a circle of diameter 2a. (a) (q1L, q2L) = ( 9
10
π, 1

10
π), (b) (q1L, q2L) = ( 37

10
π, 1

10
π), (c)

(q1L, q2L) = ( 21
10
π, 1

10
π)
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Chapter 4

Multiple resonant scattering by

two-dimensional arrays

The multiple resonant scattering by two-dimensional arrays for both acoustic and elastic

waves are considered in this chapter. Envelope equations (equations about the wave

amplitudes with space and time variations) are obtained with the help of results from

matched asymptotic expansions in chapter 3 and the method of multiple scales. These

equations are then applied to a finite width (only finite in one direction) strip of two-

dimensional arrays of cylinders to investigate how waves propagate in the array. The

multiple scattering theory for infinite gratings can be traced back to the work by Twersky

[91], which followed his earlier work on finite gratings [88, 89, 90]. Integral equation

method is used to obtain a formalism for scattering of waves by infinite gratings. The

same method is then used on more complicated scatterer geometries, for example Ivanov

[31] considered the plane wave diffraction by N -layer gratings and some other cross-

section scatterers are considered as well in [33, 34, 37]. Miles [62] combined results of

Rayleigh [80] for a single scatter with those of Burke and Twersky [11] to compute explicit

expressions for the reflection and transmission coefficients when a plane wave is normally

incident on a grating of inclined flat screens. Then Porter and Evans [76] considered

the oblique incidence with an infinite array of in-line periodic screens or breakwaters in

finite water depth using linear water-wave theory. Using Wiener-Hopf technique, Erbaş

and Abrahams [20] considered the scattering of sound waves by infinite grating of rigid

plates.
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In the multiple scattering theory, the research on the wave interaction with arrays of

offshore structure can have variable applications, such as to design floating bridges, con-

struct offshore wave-power station or airport etc. A review paper about the water wave

interaction with arrays of structures is available given by McIver [59] in 2002. Because the

array contains multiple scatterers, the cumulative effects of the wave motion may be sig-

nificant. This is first demonstrated by Heathershaw [27], who investigated the water wave

resonant interactions between surface water waves and finite numbers of bars installed

on the bottom of a long wave tank. Mei [56] then gave a theory of resonant reflection

by periodic sandbars using the WKB method (for example, see [15, section 7.3]). Li and

Mei [49] considered the multiple resonant scattering of surface water waves by a periodic

two-dimensional array of vertical cylinders standing across the depth of an open sea. This

can provide theoretical support for offshore airports consisting of a platform supported

above water by vertical piles. For material economy, it is assumed that the scatterer size

a is smaller than both the array periodicity and the wavelength 1/β, therefore a small

parameter ε1 = βa is involved. Although the scattered wave from one small cylinder is of

the order ε21 [79] compared to the incident wave, it is shown that the accumulated effects

of many cylinders over a large region of length scale 1/ε21 become significant when Bragg

condition is nearly met. Therefore the asymptotic method of multiple scales is applicable

to use combined with the Bloch theorem because of the periodicity of the cylinder ar-

ray. This paper followed their earlier work [48] which considered the Bragg scattering by

one-dimensional cylinder array in a waveguide. In another paper by Tabaei and Mei [86],

they assessed the effects of viscous effects in the boundary layers around the cylinders

on the Bragg resonance of surface water waves by a two-dimensional array. The theories

for offshore structures have also been studied by others [36, 38, 58].

As Li and Mei [49] assumed the water depth is constant and the array is composed

of vertical cylinders, this problem is actually equivalent to a two dimensional acoustic

problem with an array of rigid cylinders. Therefore in the first section of this chapter, we

first reproduce their results for the corresponding acoustic case by the method of matched

asymptotic expansions and multiple scales and then generalise this theory to arbitrary

cross section cylinder arrays. The comparison among four different types of cylinders are

given for the transmission wave intensity.
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In the second part, we consider a semi-infinite array of cylinders, where the number

of the boundary conditions are not enough to obtain a unique solution to the envelope

equations and an additional condition that waves can not propagate from infinity must be

imposed. The wave interactions with semi-infinite structures can be applied to help study

the scattering by a large finite array. The wave scattering by semi-infinite arrays were

firstly studied by Millar [61] in 1964 using the analysis of a nonlinear integral equation.

Some other results were obtained for widely spaced small circular cylinders [29] and for

strip gratings [68, 69]. Hills and Karp [28] and Linton and Martin [51] considered the

interaction of plane acoustic waves with a linear, semi-infinite array of isotropic point

scatterers. Linton et al. [52] also considered the acoustic scattering by a semi-infinite

array and the excitation of surface waves by using the solutions of the corresponding

infinite array. In [96], Tymis and Thompson considered the low-frequency scattering by a

two-dimensional semi-infinite lattice of cylinders using the Wiener-Hopf technique (see,

for example, [53, page 130]).

In the last section of this chapter, we apply this theory to the elastic resonant scat-

tering, where the cavity cylinder array is embedded in an elastic medium bounded by

the same acoustic media on both sides. In this case, the boundary conditions involve the

continuity of the stress besides the continuity of the velocity. Numerical results are given

for a copper layer with cavity cylinders bounded by air on both sides. Many practical

situations involve composite layers of a finite width, for example, the heat exchanger in

industry which usually contains a finite array of tube bundles. Another application is the

design of sound filter or noise control system. Some methods have been used to consider

how the wave propagates in these structures. For example, Lakhtakia and Varadan con-

sidered the scattering by an elastic slab containing a one-dimensional periodic array of

elastic cylinders for incident SH wave (horizontally polarised shear wave) [44], P wave

(or seismic wave, is a kind of dilatational wave) and SV wave (vertically polarised shear

wave) [45] to assess the reflection characteristics using the methods of Fourier-Bessel ex-

pansions and T -matrix. The T -matrix method [100] is also used to describe the reflection

and transmission characteristics. For the finite width two-dimensional arrays, Scarpetta

and Sumbatyan [82] investigated the plane wave propagation through a finite doubly

periodic array of cracks to give explicit representations for the reflection and transmis-
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sion coefficients. Platts et al. [75] evaluated the reflection and transmission matrices for

a stack of layers which contains a finite array of circular cylindrical cavities using the

multipole expansions. The layer multiple scattering method is also used for the similar

problems of both one-dimensional gratings [12] and two-dimensional finite width gratings

[81].

4.1 Acoustic resonant scattering by a finite array

In this section, we consider the acoustic resonant scattering by a finite width strip of

array of rigid cylinders, see figure 4.1. The cylinders are surrounded by an infinite acoustic

medium in and out of the array. Given the Cartesian coordinates (x, y, z), the strip is

assumed to be finite in x- direction and infinite in y- and z- direction. An incident wave

propagates in the positive direction of the x- axis and resonance can happen in the strip

for some particular wavenumbers. As we know, the scattered wave from one cylinder is

in higher order of the small parameter compared with the incident wave [79] and the

scattered wave would not be weak any more over the scattering by a large number of

cylinders. Therefore the strip width must be large enough to make the resonance occur.

This makes it possible to consider this problem in an infinite array first and then apply the

results to approximate those in finite arrays. The size of the cylinder is still assumed to

be smaller than both the wavelength and the array periodicity. Both matched asymptotic

expansions and multiple scales are used to obtained the envelope equations. So here we

first obtain the envelope equations for an infinite array and then they are applied to a

strip of cylinder array to give numerical calculations.
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Figure 4.1: Strip

4.1.1 Circular cylinder scatterers

We consider the diffraction of plane acoustic waves by a two-dimensional array of vertical

cylinders. The coordinates we use in this chapter are exactly the same as those in chapter

3. Origin O of the Cartesian coordinates (x, y, z) is on the axis of one of the cylinders. The

cylinders are infinitely long with axes in the direction of z direction. Polar coordinates

with origin O in the x-y plane are denoted by (r, θ). Scatterer j is associated with a local

origin Oj located at the lattice point

Rj = n1a1 + n2a2, n1, n2 ∈ Z, (4.1)

for given independent vectors a1 and a2. Local polar coordinates (rj , θj) are used with

origin at Oj , then the position of any point in space is

r = Rj + rj . (4.2)

If the periodic array is infinite in extent, Bloch’s theorem requires that a linear wave

solution obeys the condition

Φ(r + Rj) = eiβT1 RjΦ(r), (4.3)

where r = (x, y)T , β1 is the Bloch wave vector.

Another wave in the direction of βm is said to be resonantly scattered if βm and β1

are related to a reciprocal lattice vector Km (defined in (3.69)) by the Bragg condition

βm = β1 + Km, (4.4)
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where βm = |βm| is the same for any m and thus we define β = |βm|. If more than one

wave is resonantly scattered, any two resonated wave vectors are related by

βn = βm + Kn −Km. (4.5)

The method of Ewald construction described in chapter 3, see figure 3.6, can be used to

find the resonantly scattered waves. Draw a circle centred at the initial point P of β1

with radius β. Then if another reciprocal lattice points P2 falls on this circle, the vector
−−→
PP2 is the resonantly scattered wave vector β2, i.e. they satisfy the Bragg resonance

condition (4.4). For specified lattice and Bloch vector, there may be M vectors falling on

that circle. Figure 3.6 gives an example when M = 3.

Now we are going to derive the envelope equations for the incident wave and M − 1

resonantly scattered waves. The velocity potential Φ must satisfy the wave equation

∂2Φ

∂t2
− c2∇2Φ = 0, (4.6)

everywhere in the medium, where c is the acoustic wave speed and ∇ is the gradient

operator in the x-y plane. On the boundary of the cylinders, the normal flux must vanish

∂Φ

∂rj
= 0, rj = |r−Rj | = a, for all j. (4.7)

We have assumed that the cylinder radius a is much smaller than the typical wavelength

2π/β so that

ε1 = βa� 1, (4.8)

is a small parameter (we use ε1 rather than ε because here the small parameter is the

product of the Bloch wavenumber and radius of the cylinder. This is different from the one

used in chapter 3, where it is the product of the dilatational wavenumber and the radius

of the cylinder). When the spacing L between successive scatterers and the wavelength

and the incident angle θ satisfy the relation,

βL =
nBπ

sin θ
,

where nB is a positive integer, constructive interference gives rise to strong reflection.

Since the reflection coefficient from a single cylinder is of order ε21 compared to the

incident wave, then the accumulated effects over N cylinders becomes of strictly order
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one when N is order 1/ε21. It follows that strong reflection evolves over the dimensionless

length scale β(x, y) = O(1/ε21). This suggests the asymptotic method of multiple scales

is applicable. Therefore we now introduce fast and slow variables

x, y, t; X = ε21x, Y = ε21y, T = ε21t, (4.9)

so that x, y, t describe the fast motion while X, Y, T describe the slow variation of the

envelope. With these fast and slow variables, the differential operators become

∂

∂x
=

∂

∂x
+ ε21

∂

∂X
,

∂

∂y
=

∂

∂y
+ ε21

∂

∂Y
,

∂

∂t
=

∂

∂t
+ ε21

∂

∂T
.

The method of matched asymptotic expansions is also used here. Each cell is divided

into two regions: the inner region around the scatterer rj � β−1 and the outer region far

from the scatterer rj � a, on which inner solutions and outer solutions will be developed

respectively.

As the boundary-value problem is homogeneous, the leading order outer solution may

be taken as strictly order one in ε1, then we expand the outer solution as follows

Φ = Re{[Φ0 + ε21Φ2 +O(ε41)]e−iωt}, (4.10)

where Φ0 and Φ2 are functions of (x, y, X, Y, T ) and ω is the frequency associated

with β (i.e. ω = βc). Substituting (4.10) into the governing equations (4.6), we obtain

the perturbation equations for the outer potentials Φ0 and Φ2.

The first order outer velocity potential Φ0 satisfies the wave equation

∇2Φ0 = −ω
2

c2
Φ0, (4.11)

and also the Bloch’s theorem (4.3). The solution form for Φ0 is the sum of plane waves

combined with the envelopes Am

Φ0 =

M∑
m=1

Am(X,Y, T )ψm(x, y), (4.12)

where

ψm(x, y) = eiβTmr, (4.13)

with all βm = βe1m determined by the Bragg condition (4.4). Here

epm =

(
cos pτm
sin pτm

)
. (4.14)
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Now substituting the outer expansion (4.10) into the governing equation (4.6) and

the Bloch condition (4.3) and collecting terms of ε21, we obtain the problem for the second

order outer potential Φ2:

∇2Φ2 +
ω2

c2
Φ2 = −2∇ · ∇Φ0 −

2iω

c2

∂Φ0

∂T
, (4.15)

Φ2(r + Rj) = eiβTmRjΦ2(r), m = 1, 2, . . . ,M, (4.16)

where ∇ denotes the gradient operator with respect to the slow variables X and Y .

In the far field defined by rj � a, the outer potentials Φ0 and Φ2 satisfy (4.11)

and (4.15) separately and the Bloch conditions as well. In the near field rj � β−1,

the low order terms of the inner solution φ satisfy the Laplace equation. Therefore,

the inner solution is constructed from the inner eigenfunctions (solutions of the Laplace

equation that satisfy the homogeneous boundary conditions) and satisfy the no normal

flux boundary condition.

From (4.12) and (4.13), the inner expansion of the leading-order outer solution is

Φ
(0,1)
0 =

M∑
h=1

Ah(X,Y, T )eiβThRj
[
1 + iε1ρ cos(θ − τh) +O(ε21)

]
=

M∑
h=1

Ah(X,Y, T )eiβThRj

1 + iε1ρ (cos τh, sin τh)

 cos θ

sin θ

+O(ε21)

? (4.17)

where the information about the lattice is reflected by the phase change factor eiβThRj . In

contrast to the outer solution in infinite array [60, eq. 34], the information of the lattice

is included in the lattice sums. Therefore, to match with the outer solution Φ0, the inner

solution φ up to order ε1 takes the form

φ(1) = B0 + ε1

B1 +

(
ρ+

1

ρ

)
uT1

 cos θ

sin θ

 , (4.18)

where ρ = rj/a is the inner coordinate and any constants, terms involving ρ and θ are

all inner eigenfunctions and u1 is an unknown vector that needs to be determined.

To obtain the envelope equations, we now apply Green’s identity to ψ∗m and the

composite solution in a cell C (the cylinder in this cell is marked as S), where ψ∗m

denotes the complex conjugate of ψm. As we know, the inner solution is only valid in the

inner region and the outer solution is only valid in the outer region. To find a solution
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that is valid everywhere in the whole region, we need to do some work to the inner

and outer solutions. One of the methods may be called additive composition. Since the

inner expansion and the outer expansion have a common region of validity, the composite

expansion can be constructed by subtracting the part they have in common, so that it is

not counted twice [102, page 94]. We denote the composite expansion by ξ and take

ξ = Φ(2) + φ(1) − φ(1,2). (4.19)

Then the Green’s identity is∫ ∫
Cs

(
ξ∇2ψ∗m − ψ∗m∇2ξ

)
ds =

∫
∂Cs

(
ξ
∂ψ∗m
∂n
− ψ∗m

∂ξ

∂n

)
dl, (4.20)

where Cs is the cell C excluding the cylinder S, ds means the integration is taken over

the cross-section of the cylinder S and dl means the integration is along the boundary

of the cross-section of S. Then noting that we have φ(1) − φ(1,2) = 0 by (4.18), the left

hand side of the Green’s identity becomes

LHS(4.20) =

∫ ∫
Cs

(
Φ(2)∇2ψ∗m − ψ∗m∇2Φ(2)

)
ds.

Using equation (4.11) and (4.15) and dropping terms of order higher than ε21

LHS(4.20) =

∫ ∫
Cs

(
Φ0∇2ψ∗m − ψ∗m∇2Φ0

)
ds+ ε21

∫ ∫
Cs

(
Φ2∇2ψ∗m − ψ∗m∇2Φ2

)
ds

=

∫ ∫
Cs

[
Φ0(−β2ψ∗m)− ψ∗m

(
−ω

2

c2
Φ0

)]
ds

+ε21

∫ ∫
Cs

[
−Φ2β

2ψ∗m − ψ∗m(−2∇ · ∇Φ0 −
ω2

c2
Φ2 −

2iω

c2

∂Φ0

∂T
)

]
ds

= ε21

∫ ∫
Cs

(
2ψ∗m∇ · ∇Φ0 +

2iω

c2
ψ∗m

∂Φ0

∂T

)
ds

= ε21

(
2i

M∑
h=1

∇Ah · βh +
2iω

c2

M∑
h=1

∂Ah
∂T

)∫ ∫
Cs

ei(βh−βm)T rds

= ε21

M∑
h=1

(
2iω

c2

∂Ah
∂T

+ 2i∇Ah · βh
)∫ ∫

Cs

ei(βh−βm)T rds. (4.21)

Since the cylinder radius is much smaller than the periodicity of the lattice, the cross-

sectional area of a cylinder As is much smaller than that of the cell Ac, therefore the area
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of the cell excluding the cylinder is: Acs = Ac−πa2 = Ac[1 +O(ε21)] ≈ Ac. Therefore the

integral in (4.21) can be approximated by∫ ∫
Cs

ei(βh−βm)T rds ≈
∫ ∫

C
ei(βh−βm)T rds = δhmAc (4.22)

Substituting (4.22) into (4.21) and dropping terms of higher order, we get

LHS(4.20) = ε21
2iω

c2
Ac
(
∂Am
∂T

+
c2

ω
∇Am · βm

)
. (4.23)

On the cylinder rj = a, we have

ψ∗m|rj=a = e−iβTm(rj+Rj)|rj=a

= e−iβTmRj [1− iβa cos(θ − τm) +O(ε21)], (4.24)

and

∂ψ∗m
∂rj

∣∣∣∣
rj=a

= iβ cos(θ − τm)eiβTm(rj+Rj)
∣∣∣
rj=a

= eiβTmRj [iβ cos(θ − τm)][1 + iβa cos(θ − τm) +O(ε21)]. (4.25)

Therefore, noting that the normal flux on the cylinder vanishes and the contribution from

the outer boundaries of the primary cell vanishes by the Bloch condition, the right hand

side of Green’s identity (4.20) becomes

RHS(4.20) =

∫
∂S

(
φ(1)∂ψ

∗
m

∂n
− ψ∗m

∂φ(1)

∂n

)
dl

= −
∫
∂S
φ(1)∂ψ

∗
m

∂rj
dl

= −
∫ 2π

0

B0 + ε1

B1 +

(
ρ+

1

ρ

)
uT1

cos θ

sin θ


e−iβTmRj [−iβ cos(θ − τm)][1− iβa cos(θ − τm) +O(ε21)]adθ

= e−iβTmRj

∫ 2π

0

B0 + ε1

B1 +

(
ρ+

1

ρ

)
uT1

cos θ

sin θ


iε1 cos(θ − τm)[1− iε1 cos(θ − τm) +O(ε21)]dθ

= πε21e−iβTmRj

B0 + 2iuT1

cos τm

sin τm

+O(ε31).
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To eliminate the unknowns B0 and u1, we need to do the matching between the inner

solution φ(1) and the outer solution Φ(0). Therefore by (4.17) and (4.18) and the matching

rule Φ(0,1) ≡ φ(1,0), we have

B0 =
M∑
h=1

AheiβThRj , (4.26)

uT1 = i

M∑
h=1

AheiβThRj (cos τh, sin τh). (4.27)

Therefore, dropping the higher order terms

RHS(4.20) = πε21e−iβTmRj

[
B0 + 2iuT1

(
cos τm
sin τm

)]

= πε21e−iβTmRj

M∑
h=1

AheiβThRj

[
1− 2(cos τh, sin τh)

(
cos τm
sin τm

)]

= ε21π

M∑
h=1

Ah[1− 2 cos(τm − τh)], m = 1, . . . ,M. (4.28)

Then, by (4.23) and (4.28), we obtain the envelope equations

∂Am
∂T

+ C(m)
g · ∇Am = −1

2
iΩ0

M∑
h=1

Ah[1− 2 cos(τm − τh)], m = 1, . . . ,M, (4.29)

where

C(m)
g =

c2βm
ω

=
cβm
β

= c

(
cos τm
sin τm

)
, Ω0 =

πc2

ωAc
=

πc

βAc
. (4.30)

These envelope equations agree with those in Li and Mei [49]. Outside the strip, the

envelope equations reduce to

∂Am
∂T

+ C(m)
g · ∇Am = 0, m = 1, . . . ,M. (4.31)

4.1.2 Arbitrary shape scatterers

Formulation

When the scatterers are of arbitrary shape, it is more difficult to perform the integration

over the scatterer when using Green’s identity to obtain the envelope equations. To

overcome this, we need to use Green’s identity again in the inner region. In contrast to the

circular cylinder case, here we need the inner solution up to order ε21, because it includes

77



the information about the shape of the scatterer and contributes to the integration on

the scatterer. In this case the Neumann boundary condition is

∂Φ

∂n
= 0, (4.32)

where n is a coordinate measured normal to each scatterer. The form of the inner solution

up to order ε21 is [60, eq 40]

φ(2) = B0 + ε1

{
B1 + uT1

[
ρ

(
cos θ

sin θ

)
+ χ1(ρ, θ)

]}
+ ε21

{
B0

[
−1

4
ρ2 + Γ(ρ, θ)

]
+

B2 + uT2

[
ρ

(
cos θ

sin θ

)
+ χ1(ρ, θ)

]
+ vT2

[
ρ2

(
cos 2θ

sin 2θ

)
+ χ2(ρ, θ)

]
+ · · ·

}
, (4.33)

where Γ is a harmonic function introduced to compensate for the flux across the scatterer

S that is induced by the term in ρ2 and from the Neumann condition (4.32)

∂χ1

∂n
= − ∂

∂n

[(
cos θ

sin θ

)]
on S, (4.34)

χ1 −
M

ρ

(
cos θ

sin θ

)
= o(ρ−1) as ρ→∞ (4.35)

and

M =

m11 m12

m21 m22

 (4.36)

is the matrix of dipole coefficients determined by the shape of the scatterer [8, page 127]

and χ2(ρ, θ) = o(1) as ρ→∞. The ellipsis in (4.33) denote those eigenfunctions in slow

variations that will be needed to match with the extra terms in outer solution Φ2 arise

from the right hand side of (4.15). These eigenfunctions satisfy the Laplace equation and

the homogeneous boundary condition. Now we are going to find the form of Γ. By the

Neumann boundary condition (4.7), we have

∂Γ

∂n
= − ∂

∂n

(
−1

4
ρ2

)
=

1

4

∂ρ2

∂n
. (4.37)

The flux across the scatterer S induced by the term in ρ2 must be compensated by the

flux induced by Γ across the outer ‘boundary’ of the inner region Cρ as ρ → ∞, where

we denote the outer boundary by a circle ∂S∗ centred within the scatterer S. Therefore∫
∂S∗

∂Γ

∂n
dl = −1

4

∫
∂S

∂ρ2

∂n
dl, (4.38)
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Because Γ must be a solution of the Laplace equation that correspond to a non-zero flux

and of the inner region, we know that

Γ(ρ, θ) ∼ A log ρ, as ρ→∞. (4.39)

The left hand side of (4.38) is∫
∂S∗

∂Γ

∂n
dl = −

∫ 2π

0
A

1

ρ
ρdθ = −2πA,

where the minus sign is because the surface normal on the scatterer is directed into the

scatterer. Applying the divergence theorem to the right hand side of (4.38) gives

−1

4

∫
∂S

∂ρ2

∂n
dl = −1

4

∫ ∫
S
∇2(ρ2)ds = −As

a2
,

where As is the area contained within S and a2 is to make the area dimensionless. Thus,

we get

A =
As

2πa2
, (4.40)

and then

Γ(ρ, θ)− As
2πa2

log ρ→ 0, as ρ→∞. (4.41)

Similar to the circular cylinders, Green’s identity is going to be used in the cell C

excluding the scatterer S, Cs, to obtain the envelope equations. The composite solution

containing the inner and outer expansions up to order ε2 is

ξ = Φ(2) + φ(2) − φ(2,2). (4.42)

Then the conjugate of the plane waves ψ∗m and the composite solution ξ valid in the

entire cell are used in Green’s identity to give∫ ∫
Cs

(ξ∇2ψ∗m − ψ∗m∇2ξ)ds =

∫
∂Cs

(
ξ
∂ψ∗m
∂n
− ψ∗m

∂ξ

∂n

)
dl, (4.43)

where the integration on the right hand side includes the integration over the scatterer

and the integration over the outer boundaries of the cell C which vanish by the Bloch

condition; thus Green’s identity becomes∫ ∫
Cs

(ξ∇2ψ∗m − ψ∗m∇2ξ)ds =

∫
∂S

(
φ(2)∂ψ

∗
m

∂n
− ψ∗m

∂φ(2)

∂n

)
dl. (4.44)
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We know φ(2) − φ(2,2) = o(ε21), then the left hand side of the Green’s identity becomes

LHS(4.44) =

∫ ∫
Cs

[(
Φ(2) + φ(2) − φ(2,2)

)
∇2ψ∗m − ψ∗m∇2

(
Φ(2) + φ(2) − φ(2,2)

)]
ds

=

∫ ∫
Cs

(
Φ(2)∇2ψ∗m − ψ∗m∇2Φ(2)

)
ds

+

∫ ∫
Cs

[(
φ(2) − φ(2,2)

)
∇2ψ∗m − ψ∗m∇2

(
φ(2) − φ(2,2)

)]
ds

=

∫ ∫
Cs

(
Φ(2)∇2ψ∗m − ψ∗m∇2Φ(2)

)
ds+ o(ε21). (4.45)

Using equations (4.11) and (4.15) that the first and second order outer solutions satisfy

and dropping terms of order higher than ε21

LHS(4.44) =

∫ ∫
Cs

(
Φ0∇2ψ∗m − ψ∗m∇2Φ0

)
ds+ ε21

∫ ∫
Cs

(
Φ2∇2ψ∗m − ψ∗m∇2Φ2

)
ds

=

∫ ∫
Cs

[
Φ0(−β2ψ∗m)− ψ∗m

(
−ω

2

c2
Φ0

)]
ds

+ε21

∫ ∫
Cs

[
−Φ2β

2ψ∗m − ψ∗m
(
−2∇ · ∇Φ0 −

ω2

c2
Φ2 −

2iω

c2

∂Φ0

∂T

)]
ds

= ε21

∫ ∫
Cs

(
2ψ∗m∇ · ∇Φ0 +

2iω

c2
ψ∗m

∂Φ0

∂T

)
ds

= ε21

(
2i

M∑
h=1

∇Ah · βh +
2iω

c2

M∑
h=1

∂Ah
∂T

)∫ ∫
Cs

ei(βh−βm)T rds

= ε21

M∑
h=1

(
2iω

c2

∂Ah
∂T

+ 2i∇Ah · βh
)∫ ∫

Cs

ei(βh−βm)T rds

= ε21
2iω

c2
Ac
(
∂Am
∂T

+
c2

ω
∇Am · βm

)
+ o(ε21). (4.46)

We have denoted the outer ‘boundary’ of the inner region by a circle ∂S∗ as ρ→∞.

To get the integration over the scatterer, next we are going to apply Green’s identity in

the inner region Cρ bounded by the surface of the scatterer, ∂S, and the circle, ∂S∗, to

ψ∗m and the inner solution φ(2). Before doing this, we first expand ψ∗m,

ψ∗m = e−iβTmr = e−iβTmRj

{
1− iε1ρ cos(θ − τm)− 1

4
ε21ρ

2[1 + cos 2(θ − τm)] +O(ε31)

}
:= ψ̂∗m +O(ε31). (4.47)
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That’s because the expansion of ψ∗m is only valid when ρ = O(1), i.e. near the scatterer,

this expansion makes the omitted terms be in higher order. Then we have

∇2ψ̂∗m = ∇2

{
e−iβTmRj

[
1− iε1ρ cos(θ − τm)− 1

4
ε21ρ

2[1 + cos 2(θ − τm)]

]}

= −ε21e−iβTmRj . (4.48)

Now we apply Green’s identity to ψ̂∗m and the inner solution up to order ε21, φ(2), over

the inner region Cρ∫ ∫
Cρ

(φ(2)∇2ψ̂∗m − ψ̂∗m∇2φ(2))ds =

∫
∂Cρ

(
φ(2)∂ψ̂

∗
m

∂n
− ψ̂∗m

∂φ(2)

∂n

)
dl, (4.49)

where ∂Cρ = ∂S + ∂S∗.

In the inner coordinates,

∇2
ρφ+ ε21φ = 0, (4.50)

φ = φ0 + ε1φ1 + ε21φ2 +O(ε31), (4.51)

then substituting for (4.51) in (4.50) and collecting the like power terms we obtain

∇2
ρφ0 = 0, ∇2

ρφ1 = 0, ∇2
ρφ2 = −φ0. (4.52)

Therefore

LHS(4.49) =

∫ ∫
Cρ

{
[φ0 + ε1φ1 + ε21φ2 +O(ε31)](−ε21ψ̂∗m)− ψ̂∗m(−ε21φ0)

}
ds

= O(ε31), (4.53)

which gives ∫
∂S
φ(2) ψ̂

∗
m

∂n
− ψ̂∗m

∂φ(2)

∂n
dl = −

∫
∂S∗

φ(2) ψ̂
∗
m

∂n
− ψ̂∗m

∂φ(2)

∂n
dl +O(ε31) (4.54)
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By the inner solution (4.33) and the expansion of ψ∗m (4.47)

RHS(4.54) =−
∫ 2π

0

(
φ(2) ψ̂

∗
m

∂ρ
− ψ̂∗m

∂φ(2)

∂ρ

)
ρdθ +O(ε31)

=−
∫ 2π

0
e−iβTm·Rj

{[
B0 + ε1

(
B1 + uT1

[
ρ

(
cos θ

sin θ

)
+

M

ρ

(
cos θ

sin θ

)])]
[
−iε1 cos(θ − τm)− 1

2
ε21ρ [1 + cos 2(θ − τm)]

]
−

[
1− iε1ρ cos(θ − τm)− 1

4
ε21ρ

2 [1 + cos 2(θ − τm)]

]
(
ε1

[
uT1

(
cos θ

sin θ

)
− M

ρ2

(
cos θ

sin θ

)]
+ ε21

[
B0

(
−1

2
+
As

2πa2

1

ρ

)
+

uT2

[(
cos θ

sin θ

)
− M

ρ2

(
cos θ

sin θ

)]
+ vT2

[
ρ

(
cos 2θ

sin 2θ

)
− M

ρ2

(
cos 2θ

sin 2θ

)]])}
ρdθ

+O(ε31)

=e−iβTm·Rjπε21

[
B0
As
πa2

+ 2iuT1 M

(
cos θ

sin θ

)]
+O(ε31). (4.55)

Therefore, by (4.44), (4.54) and (4.55)∫ ∫
Cs

(ξ∇2ψ∗m − ψ∗m∇2ξ)ds = e−iβTm·Rjπε21

[
B0
As
πa2

+ 2iuT1 M

(
cos θ

sin θ

)]
+O(ε31). (4.56)

By the results of the left hand side of Green’s identity (4.46), we have

ε21
2iω

c2
Ac
(
∂Am
∂T

+
c2

ω
∇Am · βm

)
= e−iβTm·Rjπε21

[
B0
As
πa2

+ 2iuT1 M

(
cos θ

sin θ

)]
+ o(ε21),

(4.57)

which is

∂Am
∂T

+
c2

ω
∇Am · βm =

πc2

2iωAc
e−iβTm·Rjπε21

[
B0
As
πa2

+ 2iuT1 M

(
cos θ

sin θ

)]
+ o(ε21). (4.58)

To eliminate the unknowns B0 and u1, doing the matching between the outer solutions

(4.17) and the inner solutions (4.33) we obtain

B0 =

M∑
h=1

Ahe−iβTm·Rj , (4.59)
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uT1 = i
M∑
h=1

Ahe−iβTm·Rj (cos τm, sin τm). (4.60)

Now substituting for the last two equations in (4.58) we obtain the envelope equations

∂Am
∂T

+ C(m)
g · ∇Am = −1

2
iΩ0

M∑
h=1

Ah

[
As
πa2
− 2(cos τh, sin τh)M

(
cos τm
sin τm

)]
, (4.61)

for all m = 1, 2, . . . ,M , where C
(m)
g = cβm/β and Ω0 = πc/(βAc). When the scatterers

are circular, the cross-sectional area of the cylinder As = πa2, and the matrix of dipole

coefficients M is a two-dimensional identity matrix, therefore the envelope equations

reduce to
∂Am
∂T

+ C(m)
g · ∇Am = −1

2
iΩ0

M∑
h=1

Ah [1− 2 cos(τm − τh)] , (4.62)

which is in agreement with the results of circular cylinder array (4.29).

If we multiply both sides of equation (4.61) by A∗m (the conjugate of Am) and add

the resulting equation with its complex conjugate, after summation over m, we obtain

M∑
m=1

(
∂|Am|2

∂T
+ C(m)

g · ∇|Am|2
)

= −Ω0

2

M∑
m=1

M∑
h=1

[
As
πa2
− 2(cos τh, sin τh)M

(
cos τm
sin τm

)]
(iAhA

∗
m − iA∗hAm)

= 0. (4.63)

Thus the total energy is conserved in the array, for example, when the primary wave (the

continuation of the incident wave in the array) is weak for some particular detuning or

strip width, the resonant scattered waves are strong. Therefore it is possible to use this

theory to design structures to transfer the incident energy into scattered energy.

If the array is infinite, the amplitude doesn’t depend on the space variation, thus only

the time variation is involved. If we search for solutions in the form of Am(T ) = ame−iΩT ,

the envelope equations (4.61) become

Ωam =
πc2

2ωAc

M∑
h=1

ah

[
As
πa2
− 2(cos τh, sin τh)M

(
cos τm
sin τm

)]
, (4.64)

where Ω = Kc. K is the detuning of the wavenumber and the detuned wavenumber

k = β + ε21K, and the detuned frequency ω′ = kc = ω + ε21Ω. McIver [60] considered the
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same case for infinite two-dimensional array of arbitrary shape scatterers and obtained

[60, eq 47, 48]

Umδm =
πL2

Ac

M∑
h=1

[
As
πa2
− 2(cos τh, sin τh)M

(
cos τm
sin τm

)]
Uh, (4.65)

where δm = (k2 − β2
m)L2/ε2, βm = |βm| = β and ε = ka. Equations (4.64) and (4.65)

define same eigenvalue problems, therefore

δm =
2ωL2

c2
Ω =

2β(k − β)L2

ε21
, (4.66)

which is consistent with the definition of δm [60, eq 21]

δm =
(k2 − β2)L2

ε2
=

(k + β)(k − β)L2

ε2
≈ 2β(k − β)L2

ε21
, (4.67)

on a first approximation in the limit k → β.

Numerical results

We now apply the envelope equations to a long strip of cylinder occupying 0 ≤ x ≤ d,

see figure 4.2. A train of plane incident acoustic waves arrives from the south-west at an

angle τ1 with respect to the x-axis. Without loss of generality we limit the direction of

the incident wave to be 0 < τ1 < π/2. Let the width d of the strip be of order 1/ε21 in

the x direction (this is to make sure the array width is big enough for the resonance to

occur) and the length be infinite in ±y directions. As the Bloch’s theorem is only used

in the integration on one cell and the strip width must be of order 1/ε21, then as ε1 → 0

the finite array goes to an infinite one from the view point of that cell. Thus we can use

the envelope equations obtained for infinite arrays to approximate those in finite arrays.

Write the leading order outer wave potentials in the three zones (left side, right side

and in the strip) in the form

Φ0 =

M∑
m=1

Am(X,Y, T )eiβTmr, (4.68)

where

Am =



A−m, X < 0,

Am, 0 6 X 6 D,

A+
m, X > D,

(4.69)
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Figure 4.2: Strip

with D = ε21d. Note that, with βm = β

cos τm

sin τm

 ,

eiβTmr = eiβ(x cos τm+y sin τm). (4.70)

We choose β1 as the incident wavenumber and allow a small perturbation (the detuning)

of the wavenumber and frequency, thus the incident wave is

A−1 (X,Y, T )eiβT1 r = A0ei(K cos τ1X+K sin τ1Y−ΩT )eiβT1 r, (4.71)

where ε21K is the detuning of the wavenumber and ε21Ω is the detuning of the frequency,

related by K = Ω/c. We include the detuning in the incident wave means that we change

the frequency of the incident wave slightly to assess what will happen in and on the right

side of the array. By the continuity conditions at X = 0, D, the y dependence must be

the same in every component of the solution. Thus, look for solutions in the form


A−m(X,Y, T )

Am(X,Y, T )

A+
m(X,Y, T )

 = A0


B−m(X)

Bm(X)

B+
m(X)

 ei(K sin τ1Y−ΩT ), m = 1, 2, . . . ,M. (4.72)
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Along the edges of the strip X = 0, D, the acoustic pressure and the normal velocity

must be continuous

M∑
m=1

A−m(0, Y, T )eiβTmr =
M∑
m=1

Am(0, Y, T )eiβTmr, (4.73)

M∑
m=1

Am(D,Y, T )eiβTmr =
M∑
m=1

A+
m(D,Y, T )eiβTmr, (4.74)

∂

∂x

M∑
m=1

A−m(X,Y, T )eiβTmr

∣∣∣∣∣
X=0

=
∂

∂x

M∑
m=1

Am(X,Y, T )eiβTmr

∣∣∣∣∣
X=0

, (4.75)

∂

∂x

M∑
m=1

Am(X,Y, T )eiβTmr

∣∣∣∣∣
X=D

=
∂

∂x

M∑
m=1

A+
m(X,Y, T )eiβTmr

∣∣∣∣∣
X=D

, (4.76)

which lead to

M∑
m=1

(B−m(0)−Bm(0))eiβy sin τm = 0, (4.77)

M∑
m=1

(B−m(D)−Bm(D))e
iβD
ε21

cos τm
eiβy sin τm = 0, (4.78)

and

M∑
m=1

(B−m(0)−Bm(0))iβ cos τmeiβy sin τm = O(ε21), (4.79)

M∑
m=1

(B−m(D)−Bm(D))iβ cos τme
iβD
ε21

cos τm
eiβy sin τm = O(ε21). (4.80)

Then using the orthogonality of the trigonometric functions, we obtain

B−m(0) = Bm(0),

Bm(D) = B+
m(D),

(4.81)

for m = 1, 2, . . . ,M . Arrange the components so that

cos τm > 0 for m ∈ {1, 2, . . . ,M+} ≡ Z1,

and

cos τm < 0 for m ∈ {M+ + 1,M+ + 2, . . . ,M} ≡ Z2.
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In the field without cylinders X < 0, the only forward propagating wave is the incident

wave so that

B−m(X) = 0, m ∈ Z1 \ {1}. (4.82)

On the right side of the strip X > D, there are no backward propagating waves so that

B+
m(X) = 0, m ∈ Z2. (4.83)

The governing equations in the strip and outside the strip are given by (4.61) and

(4.31) respectively. Outside the cylinder strip, from (4.72) and (4.31), we have

dB±m
dX

= iK1− sin τ1 sin τm
cos τm

, m = 1, 2, . . . ,M. (4.84)

Thus

B±m(X) = b±meiKmX , (4.85)

where

Km =
(1− sin τ1 sin τm)K

cos τm
, m = 1, 2, . . . ,M.

Inside the cylinder array, from (4.72) and (4.61), the envelope equations become

dBm
dX

=
iΩ0

Cg cos τm

 Ω

Ω0
(1− sin τ1 sin τm)Bm +

1

2

M∑
p=1

Bp

[
2eT1pMe1m −

As
πa2

] , (4.86)

which is

d

dX


B1

B2

...

BM

 =
iΩ0

Cg
F


B1

B2

...

BM

 , (4.87)

where Cg = |C(m)
g | = c and the elements of the matrix F are

Fii =
1

cos τi

[
Ω

Ω0
(1− sin τ1 sin τi) + eT1iMe1j −

As
2πa2

]
, (4.88)

Fij =
1

cos τi

[
eT1jMe1i −

As
2πa2

]
, i, j = 1, 2, . . . ,M, i 6= j. (4.89)

Here we only consider the case that none of the eigenvalues are equal to each other. In

this case, the general solution of the linear system (4.87) is of the form

B = (B1, B2, . . . , BM )T

= C1V
(1)eiλ1Ω0X/Cg + C2V

(2)eiλ2Ω0X/Cg + . . .+ CMV(M)eiλMΩ0X/Cg , (4.90)
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where V(j) is the eigenvector corresponding to the eigenvalue λj , j = 1, 2, . . . ,M . The un-

known coefficients C1, C2, . . . , CM will be determined by the boundary conditions (4.82)

and (4.83). The properties of this solution form depend on whether the eigenvalues of

the matrix F are real or complex, and the form of the eigenvalues depends on the sign

of the discriminant of the characteristic equation, which is, for example,

λ2 − (F11 + F22)λ+ (F11F22 − F12F21) = 0, for M = 2, (4.91)

and

λ3 + α2λ
2 + α1λ+ α0 = 0, for M = 3, (4.92)

where

α2 = −(F11 + F22 + F33), (4.93)

α1 = det

 F11 F12

F21 F22

+ det

 F11 F13

F31 F33

+ det

 F22 F23

F32 F33

 , (4.94)

α0 = −det(F). (4.95)

The discriminants are

∆2 = (F11 + F22)2 − 4(F11F22 − F12F21), for M = 2, (4.96)

∆3 = 4α3
1 − α2

1α
2
2 + 4α0α

3
2 − 18α0α1α2 + 27α2

0, for M = 3. (4.97)

The discriminant ∆ is a function of the detuning of the frequency Ω/Ω0, which is con-

tained in Fij . For example, when ∆3 < 0, one of the eigenvalues is real and the other two

are complex. Therefore one of the eigensolutions (4.90) is oscillatory in X with constant

amplitude. The remaining two are oscillatory with exponentially decaying or growing

amplitude. When ∆3 > 0, all the eigenvalues are real and all the waves in the array will

oscillate in X with constant amplitudes.

Next, we consider and compare the transmission wave intensity |B1(X)|2 for four

types of scatterers. We always take the length of the axis of the scatterer in y direction

as b and the length of the axis in x direction as a. Given a length H, we take the typical

size of the four types of scatterers are as follows
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1. Circular cylinder: b = a = H.

2. Elliptical cylinder (i): b = a/2 = H.

3. Line grating: a = 0, b = 2H.

4. Elliptical cylinder (ii): b = 2a = 2H.

For every type of scatterer, the matrix of the dipole coefficients is
b(a+ b)

8H2
0

0
a(a+ b)

8H2

 (4.98)

[65, page 145] and S = πab. To compare the diagrams for these four types of scatterers,

here we use 2H as the dimensionless parameter, and the small parameter ε1 = 2kH.

b

k

k

1

2

1

b2

τ1

τ 2

b

kk 12

1

b2

τ1
τ 2

Figure 4.3: M = 2, forward (left) and backward (right) scattering by a square lattice.

Next, we will do the numerical calculations for M = 2 and M = 3. We have limited

the incident angle to be in interval (0, π/2). If we define the positive x-axis direction as

the forward and the negative x-axis direction as the backward, then the incident wave

always propagates forward. There are two different cases for the scattered wave, forward

scattering (angle of the scattered wave is in the range of [−π/2, π/2]) and backward

scattering (angle of the scattered wave is in the range of [π/2, 3π/2]). In figure 4.3 we

give the example angles employed to do the calculations

Forward scattering: τ1 = π/3, τ2 = −π/3,

Backward scattering: τ1 = π/6, τ2 = 5π/6,

where τ1 is the incident angle and τ2 is the resonant angle.
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Figure 4.4: M=2. Comparison of the transmission wave intensity |B1(D)|2 over the detuning Ω/Ω0. Left:

forward scattering, Ω0D/Cg = 1. Right: backward scattering, Ω0D/Cg = 4. Dot-dashed line: b = a, solid

line: b = a/2, dashed line: a = 0, thick dashed line: b = 2a.
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Figure 4.5: M=2, backward scattering. Comparison of the primary wave intensity |B1(X)|2 across the

strip. Left: Ω0D/Cg = 2, right: Ω0D/Cg = 4. Dot-dashed line: b = a, solid line: b = a/2, dashed line:

a = 0, thick dashed line: b = 2a.

In figure 4.4 we plot the transmission wave intensity |B1(D)|2 against the detuning

Ω/Ω0 for strip width Ω0D/Cg = 1 for forward scattering and Ω0D/Cg = 4 for backward

scattering. For forward scattering, from the left hand diagram of figure 4.4, the elliptical

cylinder (i) is most efficient in blocking the primary wave (the continuation of the incident

wave in the array) while the line grating is the least efficient one. For backward scattering,

as is seen from the right hand diagram of figure 4.4, the elliptical cylinder (ii) is the most

efficient in blocking the primary wave while the circular cylinder is the least efficient

one. The existence of the difference between forward scattering and backward scattering

is because of the different incident angles. For forward scattering, the incident angle

is π/3, which is bigger than π/4. Therefore the incident wave is easier to be blocked by

scatterers whose axis length in direction of x-axis is longer, which is the elliptical cylinder

(i). Similarly, for backward scattering, the primary angle is π/6, which is smaller than
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π/4. Therefore the primary wave is easier to be blocked by scatterer whose axis length

in direction of y-axis is longer, which is the elliptical cylinder (ii). The line grating has

the same axis length in y-axis direction with elliptical cylinder (ii) but its area is zero,

which makes it less efficient than elliptical cylinder (ii) in blocking the incident wave.

In the case of backward scattering, there is a region of detuning that gives eigenvalues

that are complex conjugates. In this region, the solutions B1(X) and B2(X) are oscilla-

tory with exponential decaying or growing amplitude. We define this region as the stop

band. In figure 4.5 we compare the primary wave intensity |B1(X)|2 across the strip for

scattering configuration in figure 4.3 when the detuning lies in the centre of their stop

band. From figure 4.5, when the strip width Ω0D/Cg = 2, the primary wave intensity de-

cays most slowly for circular cylinder and decays fastest for elliptical cylinder (ii). When

the strip width increases to 4, the transmission wave intensity decays to nearly zero for

elliptical cylinder (ii) at the right edge of the strip and it decays more slowly for all the

other scatterers. When the strip width is large enough, the transmission wave intensities

of all four types of scatterers will decay to nearly zero at the exit edge of the strip.
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Figure 4.6: M = 3, forward-forward scattering (left), forward-backward scattering (middle), backward-

backward scattering (right)

Next we consider the case of M = 3, i.e. one incident wave and two resonantly

scattered waves. Three types of scattering are possible.

1. Type I (forward-forward): both resonated waves propagate forward as shown in

the left hand diagram of figure 4.6. We consider a rectangular lattice of x spacing L and

y spacing 2L. τ1 = tan−1(1/13) ≈ 4.4◦, τ2 = tan−1 13 ≈ 85.6◦, τ3 = − tan−1(11/7) ≈

−57.53◦.

2. Type II (forward-backward): one resonated wave is reflected and the other one

propagates forward as shown in the middle diagram of figure 4.6. A square lattice of
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spacing L will be considered. τ1 = tan−1(1/7) ≈ 8.13◦, τ2 = −3π/4 = −135◦, τ3 =

tan−1 7 ≈ 81.87◦.

3. Type III (backward-backward): Both resonated waves are reflected, therefore prop-

agate backward as shown in the right hand diagram of figure 4.6. A square lattice of

spacing L will be considered. τ1 = π/4 = 45◦, τ2 = −π + tan−1(1/7) ≈ −171.87◦,

τ3 = −π/2− tan−1(1/7) ≈ −98.13◦.
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Figure 4.7: Three coefficients of the primary wave B1(X) in type I scattering. Left: circular cylinder

(b = a), right: elliptical cylinder (b = a/2). Dashed line: C1V
(1)
1 , solid line: C2V

(2)
1 , dot-dashed line:

C3V
(3)
1 .
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Figure 4.8: Dependence of wave intensities for type I scattering on the detuning frequency Ω/Ω0. Left:

b = a, Ω0D/Cg = 15; right: b = a/2, Ω0D/Cg = 6. Thick solid curve: |B1(D)|2, dashed curve: |B2(D)|2,

thin solid curve: |B3(D)|2.
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Figure 4.9: Three coefficients of the primary wave B1(X) in type I scattering. Left: line grating (a = 0),

right: elliptical cylinder (b = 2a). Dashed line: C1V
(1)
1 , solid line: C2V

(2)
1 , dot-dashed line: C3V

(3)
1 .
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Figure 4.10: Dependence of wave intensities for type I scattering on the detuning frequency Ω/Ω0. Left:

a = 0, Ω0D/Cg = 3; right: b = 2a, Ω0D/Cg = 4. Thick solid curve: |B1(D)|2, dashed curve: |B2(D)|2,

thin solid curve: |B3(D)|2.

In figure 4.7 and 4.9 we give the three coefficients of the transmitted wave B1(X) in

type I scattering shown in the left hand diagram of figure 4.6. In figure 4.8 and 4.10 we

give the dependence of wave intensities |Bj(X)|2 on the right edge of the strip X = D

for type I scattering over the detuning frequency Ω/Ω0. If we compare figure 4.7 with

4.8 and figure 4.9 with 4.10 respectively, we find there are valleys where two of the three

transmitted wave coefficients are nearly equal. For example, in the right hand diagram of

figure 4.7, at Ω/Ω0 ≈ 0.69, the coefficients C2V
(2)

1 and C3V
(3)

1 cross each other and nearly

equal to 0.5. On the other hand, the other coefficient C1V
(1)

1 is nearly zero. Therefore,

the transmitted wave B1(X) is dominated by the last two eigenvectors; its intensity can

93



be approximated by

|B1(X)|2 ≈
∣∣∣C2V

(2)
1 eiλ2Ω0X/Cg + C3V

(3)
1 eiλ3Ω0X/Cg

∣∣∣2
≈ 1

4

∣∣∣1 + ei(λ2−λ3)Ω0X/Cg
∣∣∣2

= cos2 (λ2 − λ3)Ω0X

Cg
. (4.99)

Therefore the minimum transmission wave intensity occurs around

Ω0X

Cg
=

(2n+ 1)π

|λ2 − λ3|
, n = 1, 2, . . . (4.100)

≈ 5.26, 15.68, 26.13, . . . .

In the right hand diagram of 4.8, the strip width we use is Ω0D/Cg = 6, which is near

the minimum transmission wave intensity occurring at Ω0D/Cg = 5.26. We can see the

minimum transmission wave intensity for this strip width is quite close to zero. For the

line grating a = 0, as we can see from the left hand diagram of figure 4.9, there is only

one region (outside this region, one of the three coefficients CjV
(1)
j , j = 1, 2, 3, is nearly

1 and the other two are nearly zero, therefore |B1(X)|2 is nearly one) in which none

of the coefficients CjV
(1)
j is absolutely dominant, therefore only one valley appears in

the transmitted wave intensity as shown in the left hand diagram of 4.10. For elliptical

cylinders (both of b = a/2 and b = 2a), from diagrams 4.7 and 4.9 we can see two

regions of the detuning where two of the three transmitted coefficients are nearly equal

(the eigenvalues are close correspondingly) and the other one nearly zero. But only one

valley appears in the diagrams of the transmitted wave intensity. That is because in one

of those two regions of the detuning, the two eigenvalues are quite close which makes the

strip width be very big to let the second valley appears by (4.100). In figure 4.11 we give

the second valley for the elliptical scatterers when the strip width is quite big (we only

give the local diagrams, the whole diagram looks quite untidy when the strip width is so

big).
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Figure 4.11: The local diagrams of the second valley for type I scattering. Left: b = a/2, Ω0D/Cg = 38;

right: b = 2a, Ω0D/Cg = 145.
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Figure 4.12: M=3. Comparison of the transmitted wave intensity for type I on the exit edge of the strip

|B1(D)|2 over the detuning. Left: Ω0D/Cg = 2. Right: Ω0D/Cg = 3. Dot-dashed line: b = a, solid line:

b = a/2, dashed line: a = 0, thick dashed line: b = 2a.
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Figure 4.13: M=3. Comparison of the transmitted wave intensity for type II on the exit edge of the strip

|B1(D)|2 over the detuning. Left: Ω0D/Cg = 2. Right: Ω0D/Cg = 3. Dot-dashed line: b = a, solid line:

b = a/2, dashed line: a = 0, thick dashed line: b = 2a.
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Figure 4.14: M=3. Comparison of the transmitted wave intensity for type III on the exit edge of the strip

|B1(D)|2 over the detuning. Left: Ω0D/Cg = 2. Right: Ω0D/Cg = 3. Dot-dashed line: b = a, solid line:

b = a/2, dashed line: a = 0, thick dashed line: b = 2a.

In figure 4.12, we compare the transmitted wave intensity for type I scattering on the

exit edge of the strip against the detuning. We can see that the valley for line grating is

the widest and one of the two valleys for elliptical cylinders is wider than circular cylinder.

Therefore the line grating is most efficient to block the incident wave (Because the total

energy is conserved in the array by (4.63), part of the incident energy is transferred into

scattered energy by the array).

For type II forward-backward scattering and type III backward-backward scattering,

two of the three eigenvalues will be complex conjugates for some region of detuning (the

stop band). The stop band is always widest for elliptical cylinder (ii) and narrowest for

circular cylinder. In figure 4.13 and 4.14, we compare the transmission wave intensity

on the right edge of the strip |B1(D)|2 against the detuning Ω/Ω0 and we can see the

valleys are always widest for elliptical cylinder (ii). Thus the elliptical cylinder (ii) is the

most efficient scatterer in blocking the incident wave and most energy is transferred into

scattered energy when the detuning lies in the stop band.

4.2 Resonant scattering of acoustic waves by semi-infinite

array

Here we consider the Bragg scattering of acoustic waves by a semi-infinite array of periodic

arbitrary shape scatterers occupied 0 < X < ∞ using the envelope equations (4.61)

obtained in last section. Note that there will not enough boundary conditions to determine

the unknowns because one edge of the strip goes to infinity. The additional condition
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that no waves propagate from infinity must be applied to determine the unknowns in the

envelopes uniquely.

We take the wave potentials in the left and right side of the y axis be

Φ0 =

M∑
m=1

Am(X,Y, T )eiβTmr, (4.101)

where

Am =


A−m, X < 0,

Am, X > 0.

(4.102)

As in (4.71), we allow a small detuning in the incident wave

A−1 (X,Y, T )eiβ1r = A0ei(K cos τ1X+K sin τ1Y−ΩT )eiβ1r, (4.103)

and look for solutions in the formA−m(X,Y, T )

Am(X,Y, T )

 = A0

B−m(X)

Bm(X)

 ei(K sin τ1Y−ΩT ), m = 1, 2, . . . ,M, (4.104)

Where the y variations are required to be same in every component of the solution by the

continuity conditions on the left edge of the array X = 0. The boundary conditions are

different from the finite strip width case because, for the semi-infinite array, there is only

one boundary X = 0. On this boundary, the pressure and normal velocity are continu-

ous and the continuity conditions are given by (4.73) and (4.75). These two continuity

conditions give

B−1 (0) = B1(0),

B−m(0) = Bm(0), if cos τm < 0,

Bm(0) = 0, if cos τm > 0, (4.105)

where τm are angles of the waves, and we always assume the incident wave is directed to

north-east, i.e. 0 < τ1 < π/2.

If all scattered waves propagate forward (wave vectors lie in first quadrant), the

solutions are exactly same as the scattering by a finite width lattice. But when some of

the scattered waves propagate backward, because the array only has one boundary, there
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are not enough boundary conditions to get the solutions and some other conditions are

needed. The conditions that need to be applied are that the group velocities for every

term in the lattice must be directed into the lattice. The direction of the group velocity

determines the direction of energy transport, and it must be ensured that there is no

energy coming from infinity within the lattice. Now, we consider the case of only one

wave in the lattice and propagating backward to illustrate how to get enough conditions

to solve the problem.

From (4.88) and (4.89), when M = 2, the elements of matrix F are

F11 =
Ω

Ω0
cos τ1 +

1

cos τ1

(
eT11Me11 −

As
2πa2

)
,

F12 =
1

cos τ1

(
eT12Me11 −

As
2πa2

)
,

F21 =
1

cos τ2

(
eT11Me12 −

As
2πa2

)
,

F22 =
Ω

Ω0

1− sin τ1 sin τ2

cos τ2
+

1

cos τ2

(
eT12Me12 −

As
2πa2

)
,

where a is a typical dimension of the scatterers. The matrix F hence has the following

characteristic equation

λ2 − (F11 + F22)λ+ F11F22 − F12F21 = 0, (4.106)

whose eigenvalues are

λ1,2 =
F11 + F22 ±∆1/2

2
, (4.107)

where ∆ is the discriminant

∆ = (F11 + F22)2 − 4(F11F22 − F12M21)

= (F11 − F22)2 + 4F12F21

=

[
Ω

Ω0

cos(τ1 − τ2)− 1

cos τ2
+

1

cos τ1

(
eT11Me11 −

As
2πa2

)
− 1

cos τ2

(
eT12Me12 −

As
2πa2

)]2

+
4

cos τ1 cos τ2

(
eT12Me11 −

As
2πa2

)2

. (4.108)
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When the scattered wave propagates backward, i.e. cos τ2 < 0, which makes the sign of

the discriminant ∆ depend on the detuning Ω/Ω0 when τ2 is specified. It can be seen

that ∆ < 0 within the stop band defined by

Ω−c
Ω0

<
Ω

Ω0
<

Ω+
c

Ω0
, (4.109)

where

Ω∓c
Ω0

=
cos τ2

cos(τ1 − τ2)− 1
×

[
∓

2|eT12Me11 − As
2πa2 |√

− cos τ1 cos τ2
− 1

cos τ1

(
eT11Me11 −

As
2πa2

)
+

1

cos τ2

(
eT12Me12 −

As
2πa2

)]
.

(4.110)

As an example, we choose the square lattice of spacing L and a reciprocal vector

K−1,0 = −b1 = −2πi/L, as shown in the right hand diagram of figure 4.3. We choose

τ1 = π/6 so τ2 = 5π/6 and the incident wavenumber is β = 2π/
√

3L. If we consider the

circular cylinder with radius of a, As = πa2 and M is a two-dimensional identity matrix.

Then it follows from equation (4.110) that the band gap boundaries are

Ω−c
Ω0

= −2,
Ω+
c

Ω0
=

2

3
. (4.111)

Outside and inside the lattice, B−m(X) and Bm(X) satisfy (4.84) and (4.87) respec-

tively. When M = 2, outside the lattice we get

B−1 (X) = eiK cos τ1X , B−2 (X) = ReiK2X , (4.112)

whereR is the reflection coefficient needs to be determined,K2 = K(1−sin τ1 sin τ2)/ cos τ2.

In the case of finite strip width, R is determined by the continuity condition on the right

edge of the strip. Inside the lattice we have

dB1(X)

dX
=

iΩ0

Cg

[
F11B1(X) + F12B2(X)

]
, (4.113)

dB2(X)

dX
=

iΩ0

Cg

[
F21B1(X) + F22B2(X)

]
. (4.114)

If we denote the eigenvalues of the matrix F by λ1 and λ2 then

B1(X) = b11e
i
λ1Ω0
Cg

X
+ b12e

i
λ2Ω0
Cg

X
, (4.115)

B2(X) = b21e
i
λ1Ω0
Cg

X
+ b22e

i
λ2Ω0
Cg

X
, (4.116)
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where bij , i, j = 1, 2 are unknowns that need to be determined. By the boundary condi-

tions (4.105),

B1(0) = b11 + b12 = B−1 (0) = 1, (4.117)

B2(0) = b21 + b22 = B−2 (0) = R. (4.118)

Thus by (4.113), (4.114), (4.117) and (4.118), we have

B1(X) =
F11 − λ2 +RF12

λ1 − λ2
e

i
λ1Ω0
Cg

X − F11 − λ1 +RF12

λ1 − λ2
e

i
λ2Ω0
Cg

X
, (4.119)

B2(X) = −(F11 − λ1)(F11 − λ2 +RF12)

F12(λ1 − λ2)
e

i
λ1Ω0
Cg

X
+

(F11 − λ2)(F11 − λ1 +RF12)

F12(λ1 − λ2)
e

i
λ2Ω0
Cg

X
. (4.120)

Within the stop band −2 < Ω/Ω0 < 2/3, ∆ < 0, the eigenvalues λ1,2 are complex

conjugates which makes one of the coefficients of B1(X) and B2(X) zero under the

constraint that B1(X) and B2(X) cannot be infinity when X →∞. If we set Im(λ1) > 0,

then b12 and b22 must be zero and hence

R =
λ1 − F11

F12
, (4.121)

so that the solutions are

B1(X) = e
i
λ1Ω0
Cg

X
, (4.122)

B2(X) =
F11 − λ1

F12
e

i
λ1Ω0
Cg

X
. (4.123)
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Figure 4.15: The reflection coefficient R over the detuning Ω/Ω0.

Outside the stop band, if Ω/Ω0 > 2/3, and we assume λ1 =
√

∆ > 0, λ2 = −
√

∆ < 0,

the group velocity associated with λ1 is

C1
g =

∆ω

∆k
=

Ω

λ1Ω0/Cg
> 0, (4.124)

then the energy propagates to the right. The group velocity associated with λ2 is

C2
g =

∆ω

∆k
=

Ω

λ2Ω0/Cg
< 0, (4.125)

then the energy propagates to the left. But because the lattice is semi-infinite, there

should not be energy coming from the infinity, therefore the coefficient of terms associated

λ2 should be zero, which means that

R =
λ1 − F11

F12
, (4.126)

and the solutions are the same as (4.122) and (4.123). Finally when Ω/Ω0 < −2, because

Ω < 0 and λ1 > 0, the group velocity associated with λ1 will be negative which leads to

R =
λ2 − F11

F12
, (4.127)

and the solutions are

B1(X) = e
i
λ2Ω0
Cg

X
, (4.128)

B2(X) =
F11 − λ2

F12
e

i
λ2Ω0
Cg

X
. (4.129)
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In figure 4.15 we give the diagram of the reflection coefficient |R| against the detuning

Ω. In the stop band (−2, 2/3), |R| = 1, and out of the band gap, |R| decays to zero when

the detuning is big enough, which means most energy propagates into the array.

4.3 Elastic resonant scattering by doubly-periodic arrays

In this section we generalise Li and Mei’s method in [49] to the multiple resonant scat-

tering of elastic waves by a doubly-periodic array of identical cavity cylinders. We first

derive the envelope equations in an infinite array of cavity cylinders in an elastic medium

and then apply them to a finite width (finite in one direction and infinite in the other

directions) elastic strip of cavity cylinder array bounded by the same acoustic media on

both sides.

4.3.1 Formulation

As in the previous two sections, we assume that the cylinders are infinitely long and

then the problem is inherently two dimensional. The coordinate systems, lattice vectors,

reciprocal vectors and Bloch vector are exactly the same as those used in section 4.1.

In the acoustic case, only dilatational waves are present, but in an elastic medium

there will be dilatational and shear waves coupled together through the boundary condi-

tions. The dilatational potentials φ and shear ψ satisfy the two-dimensional wave equa-

tions

∂2φ

∂t2
− c2

1∇2φ = 0, (4.130)

∂2ψ

∂t2
− c2

2∇2ψ = 0. (4.131)

The periodicity of the problem implies that the potentials φ and ψ also satisfy the Bloch

conditions (4.3). The boundary conditions in the array for the problem come from the

stress free condition on the surface of each cavity and are
µ

(
− 2

a2

∂φ

∂θ
+

2

a

∂2φ

∂θ∂r
+ β2

2ψ +
2

a

∂ψ

∂r
+

2

a2

∂2ψ

∂θ2

)
= 0, rj = a,

2µ

(
1

a

∂2ψ

∂θ∂r
− 1

a2

∂ψ

∂θ
− 1

a

∂φ

∂r
− 1

a2

∂2φ

∂θ2

)
− β2

1(λ+ 2µ)φ = 0, rj = a,

(4.132)
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where β1 and β2 are wavenumbers of dilatational and shear wave without the detuning.

We denote the detuning of the wavenumbers by K1 and K2 for dilatational and shear

wave respectively (the detuning of the frequency is written to be Ω = Kc = K1c1 = K2c2),

then the detuned wavenumbers k1 = β1 + ε21K1 and k2 = β2 + ε21K2, where ε1 = β1a� 1

is the small parameter we are going to use. The detuned frequencies ω′ = ω+ ε21Ω, where

ω = β1c1 = β2c2. The method of matched asymptotic expansions and multiple scales will

be used. Each cell is separated into two regions, the inner region around the cylinder and

the outer region far away from the cylinder. The fast and slow variables are introduced

in (4.9).

Here, we consider the perturbation of the dilatational wave. From section 3.2 we know

that if the leading order outer potential of the dilatational wave is O(1), then the leading

order outer potential for the shear wave is O(ε21). Then, if we denote the outer potentials

by Φ and Ψ for dilatational and shear wave respectively, they can be expanded as follows

Φ = Re{[Φ0 + ε21Φ2 +O(ε41)]e−iωt}, (4.133)

Ψ = Re{[ε21Ψ2 +O(ε41)]e−iωt}, (4.134)

where Φ0, Φ2 and Ψ2 are all functions of fast and slow variables (x, y, X, Y, T ), where

the slow variables X = ε21x, Y = ε21y and T = ε21t. Substituting (4.133) and (4.134) into

the governing equations (4.130) and (4.131), we obtain the governing equations for the

outer potentials Φ0, Φ2 and Ψ2.

At the first order, the outer dilatational potential Φ0 is governed by

∇2Φ0 +
ω2

c2
1

Φ0 = 0. (4.135)

At the second order, the dilatational potential Φ2 is governed by

∇2Φ2 +
ω2

c2
1

Φ2 = −2∇ · ∇Φ0 −
2iω

c2
1

∂Φ0

∂T
, (4.136)

and the shear potential Ψ2 is governed by

∇2Ψ2 +
ω2

c2
2

Ψ2 = 0. (4.137)

In addition, Φ0, Φ2 and Ψ2 satisfy Bloch theorem (4.3). The leading order solution is the

dilatational wave, which is formally the sum of all mutually resonant progressive waves

Φ0 =

M∑
m=1

Am(X,Y, T )ψm(x, y), (4.138)
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where

ψm(x, y) = eiβTmr, (4.139)

with all βm = β(cos τmi + sin τmj) determined by the Bragg condition (4.4). Then

Φ0 =
M∑
m=1

Am(X,Y, T )eiβTmr =
M∑
m=1

Am(X,Y, T )eiβTmRjeiβrj cos(θ−τm) (4.140)

From (4.140), the inner expansion of the leading order outer solution up to order ε21

for the dilatational wave is

Φ(0,2) =
M∑
m=1

AmeiβTmRj

[
1 + iε1ρ cos(θ − τm) +

1

2
i2ε21ρ

2 cos2(θ − τm)

]

=
M∑
m=1

AmeiβTmRj

{
1 + iε1ρ (cos τm, sin τm)

(
cos θ

sin θ

)
−1

4
ε21ρ

2

[
1 + (cos 2τm, sin 2τm)

(
cos 2θ

sin 2θ

)]}
. (4.141)

From equation (3.156) in section 3.2, the inner solution for the dilatational wave φ̄ is

φ̄ =B0 + uT0
1

ρ2

(
cos 2θ

sin 2θ

)
+B11ν11(ε1) + ε1

[
B1 + uT1 ρ

(
cos θ

sin θ

)
+ uTI

1

ρ

(
cos θ

sin θ

)
+ . . .

]

+ ε1ν11(ε1)uT11ρ

(
cos θ

sin θ

)
+ µ21(ε1)B21 + ε21 log ε1B22

+ ε21

[
B̄2 + v̄0 log ρ− 1

4
B0ρ

2 +
1

4
uT0

(
cos 2θ

sin 2θ

)
+ v̄T1 ρ

(
cos θ

sin θ

)
+ v̄T2 ρ

2

(
cos 2θ

sin 2θ

)
+ . . .

]

+O(ε31), (4.142)

where the ellipses indicate eigenfunctions that are not needed in the current part.

As in the acoustic case, to obtain the envelope equations, we apply Green’s identity

to ψ∗m and the composite solution in a cell C (the cylinder in this cell is marked as S),

where ψ∗m denotes the complex conjugate of ψm. We use ξ as the composite expansion

and take

ξ = Φ(2) + φ(2) − φ(2,2). (4.143)

Here we include the inner solution up to order ε21 which is different with the acoustic case.

This is because the order ε21 term in the inner solution will contribute to the integration

in Green’s identity. The Green’s identity is∫ ∫
Cs

(
ξ∇2ψ∗m − ψ∗m∇2ξ

)
ds =

∫
∂Cs

(
ξ
∂ψ∗m
∂n
− ψ∗m

∂ξ

∂n

)
dl, (4.144)
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where Cs is the cell C excluding the cylinder S. Then noting that φ(2) − φ(2,2) contains

only singular terms of order ε21 and hence when written in terms of outer coordinates

φ(2)−φ(2,2) = o(ε21) by section (3.2). Then the left hand side of Green’s identity becomes

LHS(4.144) =

∫ ∫
Cs

[
(Φ(2) + φ(2) − φ(2,2))∇2ψ∗m − ψ∗m∇2(Φ(2) + φ(2) − φ(2,2))

]
ds

=

∫ ∫
Cs

(
Φ(2)∇2ψ∗m − ψ∗m∇2Φ(2)

)
ds

+

∫ ∫
Cs

[
(φ(2) − φ(2,2))∇2ψ∗m − ψ∗m∇2(φ(2) − φ(2,2))

]
ds

=

∫ ∫
Cs

(
Φ(2)∇2ψ∗m − ψ∗m∇2Φ(2)

)
ds+ o(ε21). (4.145)

Using equation (4.135) and (4.136) and dropping terms of order higher than ε21

LHS(4.144) =

∫ ∫
Cs

(
Φ0∇2ψ∗m − ψ∗m∇2Φ0

)
ds+ ε21

∫ ∫
Cs

(
Φ2∇2ψ∗m − ψ∗m∇2Φ2

)
ds

=

∫ ∫
Cs

[
Φ0(−β2ψ∗m)− ψ∗m

(
−ω

2

c2
Φ0

)]
ds

+ε21

∫ ∫
Cs

[
−Φ2β

2ψ∗m − ψ∗m(−2∇ · ∇Φ0 −
ω2

c2
Φ2 −

2iω

c2

∂Φ0

∂T
)

]
ds

= ε21

∫ ∫
Cs

(
2ψ∗m∇ · ∇Φ0 +

2iω

c2
ψ∗m

∂Φ0

∂T

)
ds

= ε21

(
2i

M∑
h=1

∇Ah · βh +
2iω

c2

M∑
h=1

∂Ah
∂T

)∫ ∫
Cs

ei(βh−βm)T rds

= ε21

M∑
h=1

(
2iω

c2

∂Ah
∂T

+ 2i∇Ah · βh
)∫ ∫

Cs

ei(βh−βm)T rds. (4.146)

Since the cylinder radius is much smaller than the periodicity of the lattice, the cross-

sectional area of a cylinder As is much smaller than that of the cell Ac, therefore the area

of the cell excluding the cylinder is: Acs = Ac−πa2 = Ac[1 +O(ε21)] ≈ Ac. Therefore the

integral in (4.146) can be approximated by∫ ∫
Cs

ei(βh−βm)T rds =

∫ ∫
C

ei(βh−βm)T rds+O(ε21)Ac

= [δhm +O(ε21)]Ac. (4.147)

Substituting (4.147) into (4.146) and dropping terms of higher order, we get

LHS(4.144) = ε21
2iω

c2
Ac
(
∂Am
∂T

+
c2

ω
∇Am · βm

)
. (4.148)
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The right hand side of Green’s identity is

RHS(4.144)

= −
∫ 2π

0

(
φ̄
∂ψ∗m
∂ρ
− ψ∗m

∂φ̄

∂ρ

)
adθ

= −
∫ 2π

0

{
B0 + uT0

(
cos 2θ

sin 2θ

)
+ ε1

[
B1 + uT1

(
cos θ

sin θ

)
+ uTI

(
cos θ

sin θ

)
+ . . .

]

+ ε1ν11(ε1)uT11

(
cos θ

sin θ

)
+ µ21(ε1)B21 + ε21 log ε1B22

+ε21

[
B̄2 −

1

4
B0 +

1

4
uT0

(
cos 2θ

sin 2θ

)
+ v̄T1

(
cos θ

sin θ

)
+ v̄T2

(
cos 2θ

sin 2θ

)
+ . . .

]}
×

{
− iε1 cos(θ − τm)

[
1− iε1 cos(θ − τm) −1

4
ε21[1 + cos 2(θ − τm)] +O(ε31)

]}
e−iβTmRjdθ

+

∫ 2π

0

{
1− iε1 cos(θ − τm)− 1

4
ε21[1 + cos 2(θ − τm)] +O(ε31)

}
×

{
−2uT0

(
cos 2θ

sin 2θ

)
+ ε1

[
uT1

(
cos θ

sin θ

)
− uTI

(
cos θ

sin θ

)]

+ε21

[
v̄0 −

1

2
B0 + v̄T1

(
cos θ

sin θ

)
+ 2v̄T2

(
cos θ

sin θ

)
+ . . .

]}
e−iβTmRjdθ

= ε21π

[
2v̄0 + uT0

(
cos 2θ

sin 2θ

)
+ 2iuTI

(
cos 2θ

sin 2θ

)]
e−iβTmRj +O(ε31). (4.149)

Next we need to eliminate the unknowns v̄0, u0 and uI . To achieve this, we need to do

the matching between the outer solutions and the inner solutions. The inner expansion

of the outer solution for dilatational wave is given by (4.141). The inner solution for

dilatational wave is given by (4.142), in which the order ε21 term is

φ̄2 = B̄2 + v̄0 log ρ− 1
4B0ρ

2 + 1
4uT0

(
cos 2θ

sin 2θ

)
+ v̄T1 ρ

(
cos θ

sin θ

)
+ v̄T2 ρ

2

(
cos 2θ

sin 2θ

)
+ . . . ,

(4.150)

The order ε21 term for shear wave is given by (3.161)

ψ̂2 = B̂2 + v̂0 log ρ+
P 2uT0

4

 0 1

−1 0

(cos 2θ

sin 2θ

)
+ v̂T1 ρ

(
cos θ

sin θ

)
+ v̂T2 ρ

2

(
cos 2θ

sin 2θ

)
+ . . . .

(4.151)
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Substituting for φ̄2 and ψ̂2 by (4.150) and (4.151) in the stress free boundary conditions

in inner coordinates (3.139) and (3.140), the orthogonality of the trigonometric functions

requires their coefficients must be zero, which gives

v̄0 =
1

2
(1− P 2)B0, (4.152)

u01 =
8(v̄21 + v̂22)

P 2 − 1
, u02 =

8(v̄22 − v̂21)

P 2 − 1
, (4.153)

where uT0 = (u01, u02), v̄2 = (v̄21, v̄22) and v̂2 = (v̂21, v̂22). By the matching rule Φ(0,2) ≡

φ̄(2,0) we obtain

B0 =

M∑
m=1

AmeiβTmRj , (4.154)

uT1 = i

M∑
m=1

AmeiβTmRj (cos τm, sin τm), (4.155)

v̄T0 = −1

4

M∑
m=1

AmeiβTmRj (cos 2τm, sin 2τm). (4.156)

Because the leading order is from the dilatational wave, the outer solution for shear wave

Ψ starts from order ε21, so Ψ(0,2) = 0. Therefore the matching rule Ψ(0,2) ≡ ψ̂(2,0) gives

v̂2 = 0, (4.157)

then, by (4.153), (4.156) and (4.157), we have

uT0 =
2

1− P 2

M∑
m=1

AmeiβTmRj (cos 2τm, sin 2τm). (4.158)

By (4.152) and (4.154) we have

v̄0 =
1

2
(1− P 2)

M∑
m=1

AmeiβTmRj . (4.159)

In (4.149), there are three unknowns, v̄0, u0 and uI . We have obtained the expressions

for v̄0 and u0 in the last two equations. uI is related to u1 and the relation can be found

by substituting for the order ε31 inner solutions φ̄3 and ψ̂3 in the stress free boundary

conditions (3.139) and (3.140) and making the coefficients of the trigonometric functions
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be zero. This procedure has already been done in section 3.2. The relation between uI

and u1 is given by equation (3.174)

uI = −1

2
u1. (4.160)

Now by (4.155) and the relation between u1 and uI we have

uI = −1

2
i
M∑
m=1

AmeiβTmRj (cos τm, sin τm), (4.161)

Therefore, by (4.149), (4.158), (4.159) and (4.161) the right hand side of Green’s identity

becomes

RHS(4.144) = ε21π
M∑
h=1

[
1− P 2 +

2

1− P 2
cos 2(τh − τm) + cos(τh − τm)

]
ei(βh−βm)TRj .

(4.162)

Then by the integration result of the both sides of Green’s identity (4.148) and (4.162),

we obtain the envelope equations

∂Am
∂T

+ C(m)
g · ∇Am = −1

2
iΩ0

M∑
h=1

Ah

[
1− P 2 +

2

1− P 2
cos 2(τh − τm) + cos(τh − τm)

]
,

(4.163)

where C(m)
g =

c2
1

ω
βm, m = 1, 2, . . . ,M and Ω0 =

πc1

β1Ac
. Outside the cylinder strip, there

are no cylinders, therefore the envelope equations become

∂Am
∂T

+ C(m)
g · ∇Am = 0, m = 1, 2, . . . ,M. (4.164)

Same as the acoustic case, if we multiply both sides of equation (4.163) by A∗m (the

conjugate of Am) and add the resulting equation with its complex conjugate, after sum-

mation over m, we obtain the energy conservation equations

M∑
m=1

(
∂|Am|2

∂T
+ C(m)

g · ∇|Am|2
)

= 0. (4.165)

Thus the total energy is conserved in the array.

If the array is infinite, the amplitude does not depend on the space variation, thus only

the time variation is involved. If we search for solutions in the form of Am(T ) = ame−iΩT ,

the envelope equations (4.163) become

Ωam =
πc2

1

2ωAc

M∑
h=1

ah

[
1− P 2 +

2

1− P 2
cos 2(τh − τm) + cos(τh − τm)

]
, (4.166)

108



where Ω = K1c1. K1 is the detuning of the wavenumber β1 and the detuned wavenumber

k1 = β1 + ε21K1, and the detuned frequency ω′ = k1c1 = ω + ε21Ω. In chapter 3, we con-

sidered the same case for infinite two-dimensional array of cavity cylinders and obtained

(3.181)

Umδm =
πL2

Ac

M∑
h=1

[
1− P 2 +

2

1− P 2
cos 2(τh − τm) + cos(τh − τm)

]
Uh, (4.167)

where δm = (k2
1 − β2

m)L2/ε2, βm = |βm| = β and ε = k1a. Equations (4.166) and (4.167)

define same eigenvalue problems, therefore

δm =
2ωL2

c2
1

Ω =
2β(k1 − β)L2

ε21
, (4.168)

which is consistent with the definition of δm (3.132)

δm =
(k2

1 − β2)L2

ε2
=

(k1 + β)(k1 − β)L2

ε2
≈ 2β(k1 − β)L2

ε21
, (4.169)

on a first approximation in the limit k1 → β.

Similarly, when we consider the perturbation of shear waves the envelope equations

are

∂Âm
∂T

+Ĉ(m)
g ·∇Âm = −1

2
iΩ̂0

M∑
h=1

Âh

[
2P 4

1− P 2
cos 2(τh − τm) + P 2 cos(τh − τm)

]
, (4.170)

where m = 1, 2, . . . ,M , Ĉ
(m)
g =

c2
2

ω
βm and Ω̂0 =

πc2

β2Ac
. Outside the cylinder strip, the

envelope equations become

∂Âm
∂T

+ Ĉ(m)
g · ∇Âm = 0, m = 1, 2, . . . ,M. (4.171)

The corresponding equations for energy conservation are

M∑
m=1

(
∂|Âm|2

∂T
+ C(m)

g · ∇|Âm|2
)

= 0. (4.172)

Same as the perturbation of dilatational waves, when the array is infinite and we search

for solutions in the form of Âm(T ) = âme−iΩT , then the envelope equations (4.170)

become

Ωâm =
πc2

2

2ωAc

M∑
h=1

ah

[
2P 4

1− P 2
cos 2(τh − τm) + P 2 cos(τh − τm)

]
. (4.173)
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In chapter 3, the corresponding eigenvalue problem for perturbation of shear waves when

the array is infinite is

Ûmδ̂m =
πL2

Ac

M∑
h=1

[
2P 4

1− P 2
cos 2(τh − τm) + P 2 cos(τh − τm)

]
Ûh, (4.174)

Equations (4.173) and (4.174) define same eigenvalue problems, therefore

δ̂m =
2ωL2

c2
2

Ω =
2β(k2 − β)L2

ε21
, (4.175)

which is consistent with the definition of δm (3.132)

δ̂m =
(k2

2 − β2)L2

k2
2a

2
=

(k2 + β)(k2 − β)L2

k2
2a

2
≈ 2β(k2 − β)L2

ε21
, (4.176)

on a first approximation in the limit k2 → β.

4.3.2 Elastic strip with cylinder scatterers bounded by acoustic medium

In this part, we consider how the wave propagates in an elastic medium containing

infinitely long cavity cylinders whose axes are along z axis and are arranged doubly

periodically along x and y axes, see figure 4.16. The strip width in the direction of the

x axis is finite, but the strip is unbounded in the direction of y axis. The elastic strip is

bounded by the same acoustic medium on both sides. We denote by λ the Lamé constant

for the acoustic medium, and λ1 and µ1 are the Lamé constants for the elastic medium. A

train of plane acoustic waves is incident on the elastic strip from its left boundary. When

the incident waves impinge on the elastic medium, both dilatational and shear waves

will be generated and they all propagate through the elastic lattice until they arrive at

the right boundary of the strip. Because the acoustic medium does not support shear

waves only dilatational waves propagate into the acoustic medium on the right side of

the strip. In the cylinder strip, the governing equations for the Bragg resonated envelopes

are equations (4.163) and (4.170) for dilatational and shear wave respectively. Here we

consider the case that only dilatational waves are resonated in the array.

Same as the acoustic layer problem in section 4.1, the elastic strip width d is required

to be order 1/ε21 to make sure the cylinder array is big enough to make the resonance

happen. Plane acoustic waves arrive from the left side of the strip at an angle α1 with

respect to the x-axis. We write the waves in the three zones (left side acoustic medium,
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Figure 4.16: Elastic strip bounded by acoustic media. M = 1.

elastic strip, right side acoustic medium) in the form

φ− =

M∑
m=1

[
A−m(X,Y, T )eiβ(x cosαm+y sinαm)

]
+A−r1 (X,Y, T )eiβ(−x cosα1+y sinα1), X < 0,

(4.177)

φ =

M∑
m=1

[
Am(X,Y, T )eiβ1(x cos θm+y sin θm) +Arm(X,Y, T )eiβ1(−x cos θm+y sin θm)

]
,

0 ≤ X ≤ D, (4.178)

ψ =

M∑
m=1

[
Âm(X,Y, T )eiβ2(x cos γm+y sin γm) + Ârm(X,Y, T )eiβ2(−x cos γm+y sin γm)

]
,

0 ≤ X ≤ D, (4.179)

φ+ =
M∑
m=1

A+
m(X,Y, T )eiβ[(x−d) cosαm+y sinαm], X > D, (4.180)

where D = ε21d, φ− is the dilatational wave potential (with unperturbed wavenumber

β) in the left side acoustic medium, φ and ψ are the dilatational (with unperturbed
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wavenumber β1) and shear (with unperturbed wavenumber β2) wave potentials respec-

tively in the elastic medium and φ+ is the dilatational wave potential in the right side

acoustic medium. In the wave potentials, A−r1 is the envelope of the reflected wave of the

incident wave in the left side acoustic medium, Arm and Ârm are envelopes of the reflected

dilatational and shear waves in elastic medium respectively, αm are angles for dilatational

waves in the acoustic medium and θm and γm are angels for dilatational and shear waves

respectively in elastic medium. By Snell’s law, we have

β sinαm = β1 sin θm = β2 sin γm, m = 1, 2, . . . ,M. (4.181)

Now it is the time to impose the boundary conditions, which include the continuity

of the velocity and stress. At first, it is the continuity of the normal component of the

displacement ux,

u−x = ux, on x = 0, (4.182)

u+
x = ux, on x = d, (4.183)

where

ux =
∂φ

∂x
+
∂ψ

∂y
.

In acoustic medium, there is no shear wave existing so ψ = 0. Secondly, we consider

the continuity of the stress on the boundaries. The components of the stress tensor have

expressions

σxy = µ1

(
∂2ψ

∂y2
− ∂2ψ

∂x2
+ 2

∂2φ

∂x∂y

)
, (4.184)

σxx = λ1∇2φ+ 2µ1

(
∂2φ

∂x2
+

∂2ψ

∂x∂y

)
, (4.185)

for the elastic medium. For the acoustic medium, the stress can be obtained by replacing

λ1 by λ and setting µ1 = 0. The normal components of the stress σxx must be continuous.

The tangential components σxy of the stress must also be continuous, but since the

tangential stresses in the acoustic medium vanish, this condition reduces simply to the

requirement that the tangential components of the elastic stress be zero at the boundary
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of the elastic strip. Therefore we obtain the following four continuity conditions

σxy = 0, on x = 0, (4.186)

σxy = 0, on x = d, (4.187)

σ−xx = σxx, on x = 0, (4.188)

σ+
xx = σxx, on x = d, (4.189)

where σ−xx and σ+
xx are the normal components of the stress in the left side and right

side acoustic medium of the strip. Substituting for φ−, φ, ψ and φ+ in the boundary

conditions (4.182), (4.183), (4.186)-(4.189), we obtain

∂φ−

∂x
=
∂φ

∂x
+
∂ψ

∂y
, on X = 0, (4.190)

∂φ+

∂x
=
∂φ

∂x
+
∂ψ

∂y
, on X = D, (4.191)

µ1

(
∂2ψ

∂y2
− ∂2ψ

∂x2
+ 2

∂2φ

∂x∂y

)
= 0, on X = 0, (4.192)

µ1

(
∂2ψ

∂y2
− ∂2ψ

∂x2
+ 2

∂2φ

∂x∂y

)
= 0, on X = D, (4.193)

λ∇2φ− = λ1∇2φ+ 2µ1

(
∂2φ

∂x2
+

∂2ψ

∂x∂y

)
, on X = 0, (4.194)

λ∇2φ+ = λ1∇2φ+ 2µ1

(
∂2φ

∂x2
+

∂2ψ

∂x∂y

)
, on X = D. (4.195)
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If we combine the solutions forms in (4.177)-(4.180), these boundary conditions become

β1 cos θm
[
Am(0, Y, T )−Arm(0, Y, T )

]
+ β1 sin γm

[
Âm(0, Y, T ) + Ârm(0, Y, T )

]
= β cosαm

[
A−m(0, Y, T )− δm1A

−r
1 (0, Y, T )

]
, (4.196)

β1 cos θm
[
Am(D,Y, T )eiβ1d cos θm −Arm(D,Y, T )e−iβ1d cos θm

]
+

β1 sin γm
[
Âm(D,Y, T )eiβ2d cos γm + Ârm(D,Y, T )e−iβ2d cos γm

]
= β cosαmA

+
m(D,Y, T )eiβd cosαm , (4.197)

β2
2 cos 2γm

[
Âm(0, Y, T ) + Ârm(0, Y, T )

]
− β2

1 sin 2θm
[
Am(0, Y, T )−Arm(0, Y, T )

]
= 0,

(4.198)

β2
2 cos 2γm

[
Âm(D,Y, T )eiβ2d cos γm + Ârm(D,Y, T )e−iβ2d cos γm

]
= β2

1 sin 2θm
[
Am(D,Y, T )eiβ1d cos θm −Arm(D,Y, T )e−iβ1d cos θm

]
, (4.199)

λ1β
2
1

[
Am(0, Y, T ) +Arm(0, Y, T )

]
+ 2µ1

{
β2

1 cos2 θm
[
Am(0, Y, T ) +Arm(0, Y, T )

]
+ β2

2 cos γm sin γm
[
Âm(0, Y, T )− Ârm(0, Y, T )

]}
= λβ2

[
A−m(0, Y, T ) + δm1A

−r
1 (0, Y, T )

]
,

(4.200)

λ1β
2
1

[
Am(D,Y, T )eiβ1d cos θm +Arm(D,Y, T )e−iβ1d cos θm

]
+ 2µ1

{
β2

1 cos2 θm
[
Am(D,Y, T )eiβ1d cos θm +Arm(D,Y, T )e−iβ1d cos θm

]
+ β2

2 cos γm sin γm
[
Âm(D,Y, T )eiβ2d cos γm − Ârm(D,Y, T )e−iβ2d cos γm

]}
= λβ2A+

m(D,Y, T )eiβd cosαm , (4.201)

where m = 1, 2, . . . ,M . In the above 6M equations, there are 6M unknowns A−m (m =

2, . . . ,M), A−r1 , Am, Arm, Âm, Ârm and A+
m, so the system is solvable.

Next we are going to do some numerical calculations using the above systems. At

first, we consider the case of M = 1, i.e. there is one dilatational and one shear wave
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in the cylinder array and only one dilatational wave outside the array (reflected waves

should also be included). We allow a small detuning in the incident wave

A−1 (X,Y, T )eiβ1r = A0ei(K cosα1X+K sinα1Y−ΩT )eiβ1r, X < 0, (4.202)

where K is the detuning of the wavenumber β and Ω is the detuning of the frequency,

related by K = Ω/c, and c =
√
λ/ρ is the wave speed in acoustic medium. By the

continuity conditions at X = 0, D, the y dependence must be same in every component

of the solution. Thus, the envelopes in the strip and the acoustic medium on the right

side of the strip have the form

A1(X,Y, T ) = B1(X)ei(K1 sin θ1Y−ΩT ), (4.203)

Â1(X,Y, T ) = B̂1(X)ei(K2 sin γ1Y−ΩT ), (4.204)

A+
1 (X,Y, T ) = A2ei[K cosα1(X−D)+K sinα1Y−ΩT ], (4.205)

where by the Snell’s law K sinα1 = K1 sin θ1 = K2 sin γ1 (i.e. Kc = K1c1 = K2c2).

Within the strip, the slow variations of the dilatational and shear wave satisfy the

envelope equations (4.163) and (4.170), that is

∂A1

∂T
+ c1(cos θ1, sin θ1) ·

(
∂A1

∂X
,
∂A1

∂Y

)
=

1

2
iΩ0P1A1, (4.206)

∂Â1

∂T
+ c2(cos γ1, sin γ1) ·

(
∂Â1

∂X
,
∂Â1

∂Y

)
=

1

2
iΩ̂0P2Â1, (4.207)

where P1 = P 2 − 2 + 2/(P 2 − 1), P2 = P 2(P 2 + 1)/(P 2 − 1). From (4.203), (4.204) and

(4.206), (4.207), we obtain

B1(X) = A1eiν1X , (4.208)

B̂1(X) = C1eiν2X , (4.209)

where

ν1 = K1 cos θ1 +
Ω0P1

2c1 cos θ1
, ν2 = K2 cos γ1 +

Ω̂0P2

2c2 cos γ1
, (4.210)

Ω0 =
πc1

β1Ac
, Ω̂0 =

πc2

β2Ac
. (4.211)
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Therefore, we have

A−1 (X,Y, T ) = A0ei(K cosα1X+K sinα1Y−ΩT ), X < 0, (4.212)

A−r1 (X,Y, T ) = B0ei(−K cosα1X+K sinα1Y−ΩT ), X < 0, (4.213)

A1(X,Y, T ) = A1eiν1Xei(K1 sin θ1Y−ΩT ), 0 ≤ X ≤ D, (4.214)

Ar1(X,Y, T ) = B1e−iν1Xei(K1 sin θ1Y−ΩT ), 0 ≤ X ≤ D, (4.215)

Â1(X,Y, T ) = C1eiν2Xei(K2 sin γ1Y−ΩT ), 0 ≤ X ≤ D, (4.216)

Âr1(X,Y, T ) = D1e−iν2Xei(K2 sin γ1Y−ΩT ), 0 ≤ X ≤ D, (4.217)

A+
1 (X,Y, T ) = A2ei[K cosα1(X−D)+K sinα1Y−ΩT ], X > D. (4.218)

Substituting for the forms of these envelopes in the continuity conditions (4.196) -(4.201)

we obtain the following system

M · a = b, (4.219)

where M =

k cosα1 f1 −f1 ky ky 0

0 f1eidf1 −f1e−idf1 kye
idf2 kye

−idf2 −k cosα1

0 −2kyf1 2kyf1 f2
2 − k2

y f2
2 − k2

y 0

0 −2kyf1eidf1 2kyf1e−idf1 (f2
2 − k2

y)e
idf2 (f2

2 − k2
y)e
−idf2 0

−λk2 λ1(f2
1 + k2

y) + 2µ1f
2
1 λ1(f2

1 + k2
y) + 2µ1f

2
1 2µ1kyf2 −2µ1kyf2 0

0
[
λ1(f2

1 + k2
y) + 2µ1f

2
1

]
eidf1

[
λ1(f2

1 + k2
y) + 2µ1f

2
1

]
e−idf1 2µ1kyf2eidf2 −2µ1kyf2e−idf2 −λk2



,

ky = k sinα1,

a =
(
B0, A1, B1, C1, D1, A2

)
,

b =
(
β cosα1A0, 0, 0, 0, λβ2A0, 0

)
,
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and

f1 = (β1 + ε21P1Q1) cos θ1, f2 = (β2 + ε21P2Q2) cos γ1,

Q1 = Ω0/(2c1 cos2 θ1), Q2 = Ω̂0/(2c2 cos2 γ1),

θ1 = sin−1

(
β sinα1

β1

)
, γ1 = sin−1

(
β sinα1

β2

)
.

From the system (4.219), we can express the unknowns B0, A1, B1, C1, D1, A2 in terms

of the incident wave coefficient A0 and then assess how the waves propagate through the

strip. For example, we consider the transmitted wave φ+
1 .

For an acoustic layer without cylinder array bounded by another acoustic medium on

both sides, the modulus of the transmission coefficient is [10, page 67]

|Tr| =2cc1ρρ1 secα1

/√{
4c2c2

1ρ
2ρ2

1 cos2(k1d cos θ1) sec2 α1 + [c4
1ρ

4
1 sec2 θ1

+ 2c2c2
1ρ

2ρ2
1 sec2 α1 + c4ρ4 sec4 α1 cos2 θ1] sin2(k1d cos θ1)

}
. (4.220)

From (4.220) we can see the transmission coefficient is periodic in k1d cos θ1 (see figure

4.17), and the minimum and maximum of the transmission coefficient are

|Tr|max = 1, at k1d cos θ1 = nπ, (4.221)

|Tr|min =
2cc1ρρ1 secα1√

c4
1ρ

4
1 sec2 θ1 + 2c2c2

1ρ
2ρ2

1 sec2 α1 + c4ρ4 sec4 α1 cos2 θ1

,

at k1d cos θ1 = (n− 1/2)π, (4.222)

where n ∈ Z. When the layer is elastic and with no scatterers, the transmission coefficient

is a function of both of k1d cos θ1 and k2d cos γ1, see [10, page 67]. When the scatterers are

present in the strip, the transmission coefficient is a function of not only the wavenumbers

k1,2, strip width d and angles θ1, γ1, but also the size of the scatterer.

In figures 4.17-4.19 we plot the transmission coefficients (the ratio of the acoustic

pressures in the transmitted and the incident waves) over the parameter containing the

strip width and incident angle, k1d cos θ1/π or β1d cos θ1/π, for three kinds of strip when

the incident wave is a plane sound wave. The first strip is a water layer without scatterers

bounded by air on both sides (note that this is only an illustration as there is no such

structure in reality), in which there are no shear waves. The second one is a copper layer
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without scatterers bounded by air on both sides (with shear waves), and the last one

is also a copper layer bounded by air but with doubly-periodic array of cavity circular

cylinders in the layer (also with shear waves).
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Figure 4.17: Transmission coefficients for water layer bounded by air.
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Figure 4.18: Transmission coefficients for steel layer without scatterers bounded by air.
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Figure 4.19: Transmission coefficients for steel layer with scatterers bounded by air. The scatterer size is

a/L = 0.2.

The parameters we use to plot figures 4.17-4.19 are

Material/Parameter Density (kg/m3) Lamé constants (Pa)

Air 1.25 λ = 144500

Water 998 λ1 = 2.1× 109

Steel 8000 λ1 = 9.94× 1010, µ1 = 7.81× 1010

Table 4.1: Parameters.

When the layer is an acoustic medium, only dilatational wave exists in the layer for

both of normal and oblique incidence. But when the layer is elastic, the elastic medium

in the vicinity of the boundary thus suffer both dilatational and shear stresses when the

incidence is oblique. In the majority of practical cases, the velocity of sound in acoustic

medium is less than the velocity of dilatational waves in elastic medium. It may also be

less than the velocity of shear waves in elastic medium. The velocities and directions of

the different waves are given, in accordance with Snell’s law, by the expression:

c

sinα1
=

c1

sin θ1
=

c2

sin γ1
. (4.223)

Because the shear wave velocity is less than the dilatational wave velocity, θ1 is always

greater than γ1. Let the incidence be increased to its first critical value for which the

refracted dilatational wave is directed along the boundary, i.e. θ1 = π/2. For angles

of incidence greater than this, the dilatational wave is totally reflected and only shear
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wave is transmitted through the layer. When the incident angle is increased to its second

critical value, the refracted shear wave is then directed along the boundary and becomes

a surface wave.

Now we consider the case that one dilatational wave is resonated in the strip array

(steel layer bounded by air), i.e. M = 2. For simplicity, here we consider the normal

incidence, i.e. the incident angle α1 = 0, and then the angle of the primary wave in

the strip is θ1 = 0. We assume the resonated dilatational wave is in the angel θ2 = π,

therefore no shear waves exist in the strip. We look for solutions in the form
A−m(X,Y, T )

Am(X,Y, T )

A+
m(X,Y, T )

 = A0


B−m(X)

Bm(X)

B+
m(X)

 ei(K sinα1Y−ΩT ), m = 1, 2. (4.224)

Then, inside the the cylinder strip, from (4.163) the envelope equations become

d

dX

B1(X)

B2(X)

 =
iΩ0

Cg
F

B1(X)

B2(X)

 , (4.225)

where the matrix F has elements

F11 =
1

cos θ1

(
Ω

Ω0
cos2 θ1 +

1

2
P1

)
, (4.226)

F12 =
1

2 cos θ1

[
P 2 − 1 +

2

P 2 − 1
cos(2θ2 − 2θ1)− cos(θ2 − θ1)

]
, (4.227)

F21 =
1

2 cos θ2

[
P 2 − 1 +

2

P 2 − 1
cos(2θ2 − 2θ1)− cos(θ2 − θ1)

]
, (4.228)

F22 =
1

cos θ2

[
Ω

Ω0
(1− sin θ1 sin θ2) +

1

2
P1

]
. (4.229)

Here P1 = P 2− 2 + 2/(P 2− 1) and Ω0 = πc1/(β1Ac). The eigenvalues of this matrix are

λ1,2 =
F11 + F22 ±

√
∆

2
, (4.230)

where ∆ is the discriminant

∆ = (F11 + F22)2 − 4(F11F22 − F12F21)

= (F11 − F22)2 + 4F12F21

=

[
Ω

Ω0

cos(θ2 − θ1)− 1

cos θ2
+

1

2
P1

(
1

cos θ1
− 1

cos θ2

)]2

+
1

cos θ1 cos θ2

[
P 2 − 1 +

2

P 2 − 1
cos(2θ2 − 2θ1)− cos(θ2 − θ1)

]2

. (4.231)
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When the scattered wave propagates backward, i.e. cos θ2 < 0, which makes the sign of

the discriminant ∆ depend on the detuning Ω/Ω0. It can be seen that ∆ < 0 within the

stop band defined by
Ω−c
Ω0

<
Ω

Ω0
<

Ω+
c

Ω0
, (4.232)

where

Ω±c
Ω0

=
cos θ2

cos(θ1 − θ2)− 1

±
∣∣∣P 2 − 1 + 2

P 2−1
cos(2θ2 − 2θ1)− cos(θ2 − θ1)

∣∣∣
√
− cos θ1 cos θ2

−1

2
P1

(
1

cos θ1
− 1

cos θ2

)]
. (4.233)

In the case we consider, θ1 = 0 and θ2 = π, thus the boundary of the stop band is

Ω−c
Ω0

= −3.05,
Ω+
c

Ω0
= 1. (4.234)

In figure 4.20 and 4.21, we compare the transmission coefficient for a steel layer bounded

by air on both sides when there are no cylinder array in the steel layer and there are cavity

cylinder array in the steel layer. We can see the transmission coefficient is nearly zero

when the detuning of the frequency Ω/Ω0 lies in the stop band. The size and the location

of the stop band depend on the incident and resonated angles and the Lamé constants of

the material. Therefore by using this theory, we can design soundproof materials to block

sound waves with particular frequencies by choosing different materials of the strip.
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Figure 4.20: Transmission coefficients for steel layer without scatterers bounded by air.
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Figure 4.21: Transmission coefficients for steel layer with scatterers bounded by air. The cylinder size is

a/L = 0.05.
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Chapter 5

Three-dimensional acoustic wave

scattering by arrays

We have considered the elastic wave propagation through two-dimensional periodic ar-

rays of cavity cylinders in chapter 3. Now we move to the case of three-dimensional arrays

using the same method as chapter 3. In this chapter, we consider the acoustic wave prop-

agation through triply-periodic arrays of arbitrary shape scatterers using the method of

matched asymptotic expansions. In the first section, we consider the scattering of a plane

incident wave by one fixed rigid sphere of radius using the method of matched asymptotic

expansions. This problem has already been done using the same method in [15, page 184],

we present it here as an introduction to the three-dimensional scattering and to motivate

the leading order term in the outer expansion in scattering by a triply-periodic array.

The acoustic scattering of a plane wave by a rigid sphere was first considered by Rayleigh

[80], where the sphere is assumed to be small compared the incident wavelength. Then

Anderson [4] considered the case when the sphere size is comparable to the wavelength,

where the scatterer is a fluid sphere. The elastic scattering by solid spheres was consid-

ered by Faran [22] taking account of the shear waves presented in the solid medium. The

dilatational wave scattering by a spherical obstacle embedded in solid medium is also

considered by Ying and Truell [104]. Later, Pao and Mow [70] reconsider Ying and Tru-

ell’s work [104] and show the scattering by a rigid sphere, a cavity or even a fluid sphere

can all be derived from the general solution of scattering due to an elastic inclusion; in

Ying and Truell’s work, these cases are treated separately.
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The wave propagation through three-dimensional infinite periodic arrays of spherical

obstacles are considered widely for acoustic [83, 40, 42, 41, 35], elastic [78, 43, 97, 98] and

electromagnetic waves [66, 7]. For the acoustic case, Kushwaha et al. [40, 41, 42] obtain

eigenvalue equations for various spherical inclusions and give band gap diagrams by

numerical calculations. The plane wave expansion method is used to search for the band

gaps for acoustic [83], elastic [43] and electromagnetic [97, 98] cases. But this method is

proved not able to describe liquid-solid composites, therefore Kafesaki and Economou [35]

develop a variational multiple scattering approach based on the Korringa-Kohn-Rostoker

(KKR) theory [6, page 202] (KKR method is a classical technique for the solution of the

Schrödinger equation in periodic media, which is to find the Green’s function of those

media). Based on the KKR theory, Nicorovici and McPhedran [66] make a generalization

to this method while considering the electromagnetic waves in periodic lattices of spheres.

They discuss the long-wavelength limit and obtain the effective dielectric constant for

lattices of perfectly conducting spheres. The multiple scattering method is also used by

Psarobas and Siglas [78] to obtain the elastic band gaps in a face-centred cubic lattice of

mercury spheres in aluminium. In all these works, the band gaps are searched numerically

and the scatterer is a sphere. In the second section of this chapter, we are going to

consider the acoustic wave propagation through three-dimensional periodic arrays using

the method of matched asymptotic expansions. The scatterers must be identical and can

be of arbitrary shape as long as the characteristic size a of the scatterer is small compared

than both the wavelength k−1 and the length scale of the array periodicity L. Bao et

al. [7] discuss the propagation of electromagnetic waves in a triply periodic lattice of

dielectric spheres and evaluate the effective dielectric constant of a homogenised crystal

in the long wavelength limit. Compared to the homogenisation method, which is not able

to describe phenomena associated with the periodicity of the array such as band gaps,

the method we use can give explicit approximations for the perturbed dispersion relation

and explicit expressions for the size of the local band gap everywhere in the dispersion

diagram.

124



5.1 Scattering by a sphere

A rigid sphere is placed in an infinite isotropic acoustic medium. Cartesian coordinates

(x, y, z) are chosen with origin O at the centre of the sphere. Spherical coordinates are

given by (see figure 5.1)

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ, (5.1)

with origin at O and 0 ≤ ϕ < 2π, 0 ≤ θ ≤ π.

x

y

z

θ

ϕ

Incident plane wave

Figure 5.1: Spherical coordinates and incident wave.

An incident wave with potential φi = eikz = eikr cos θ propagates in the positive

direction of z-axis, and so the potential has no dependence on ϕ. The scattered wave

potential φs satisfies the three-dimensional Helmholtz equation

(∇2 + k2)φs = 0, (5.2)

and Neumann boundary condition

∂φs

∂r
= −∂φ

i

∂r
= −ik cos θeikr cos θ. (5.3)

We separate the whole region into two: the inner region near the sphere r � k−1 and

outer region far away from the sphere r � a. The outer problem is in terms of the outer
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coordinate R = kr and satisfies

(∇2
R + 1)Ψ = 0, (5.4)

Ψ ∼ 1√
R

eiRf(θ), as R→∞, (5.5)

where (5.5) is the radiation condition to make sure the scattered wave is outgoing. In the

outer region, the outer solution is constructed from the outgoing spherical wavefunctions

Ψs =

∞∑
0

anh
(1)
n (kr)Pn(cos θ), (5.6)

where h
(1)
n is a spherical Hankel function of the first kind and Pn is a Legendre polynomial.

The spherical Hankel function is defined through the Hankel function

h(1)
n (z) =

√
π

2z
H

(1)

n+ 1
2

(z), n ∈ Z, (5.7)

where the leading order of h
(1)
n is always singular at the origin.

The inner problem is in terms of the inner coordinate ρ = r/a and satisfies

(∇2
ρ + ε2)ψ = 0, (5.8)

∂ψ

∂ρ
= −iε cos θeiε cos θ, on ρ = 1, (5.9)

where the small parameter ε = ka. The low order inner solutions are constructed from

the inner eigensolutions, which satisfy the Laplace equation

∇2
ρEn(ρ, θ) = 0, (5.10)

and the homogeneous boundary condition

∂En(ρ, θ)

∂ρ
= 0, on ρ = 1. (5.11)

Here the Laplace operator in terms of the spherical coordinates is

∇2 =
2

r

∂

∂r
+

∂2

∂r2
+

cot θ

r2
+

1

r2

∂2

∂θ2
+

1

r2 sin θ

∂2

∂ϕ2
. (5.12)

Therefore the inner eigensolutions are

E0(ρ, θ) = 1, (5.13)

En(ρ, θ) =

(
n+ 1

n
ρn +

1

ρn+1

)
Pn(cos θ), n > 0. (5.14)

126



The inner problem (5.8) and the boundary condition (5.9) suggests the inner expan-

sion starts from order ε term so that

ψ = εψ1 + . . . . (5.15)

Substituting for ψ in (5.8) with (5.15) and equating like powers of ε, we obtain

∇2
ρψ1 = 0, (5.16)

∂ψ1

∂ρ
= i cos θ, on ρ = 1. (5.17)

These two equations suggest that ψ1 has the form

ψ1 =
i

2ρ2
cos θ +

∞∑
n=0

A(1)
n En(ρ), (5.18)

where the first term is a solution of Laplace equation to satisfy the boundary condition

(5.17) and the second term is a combination of the inner eigensolutions. Because the

leading terms in the inner expansion of (5.6) are all inverse power of r, we have

A(1)
n = 0, for all n, (5.19)

otherwise the ρn terms in the inner eigensolutions could not be matched by the outer

solution. Therefore the first term in outer expansion of the inner solution is

ψ(1,3) = ε3
i

2R2
cos θ, (5.20)

which suggests that the leading order term in the outer expansion must be O(ε3). In the

next part, we are going to consider the wave scattering by a triply-periodic lattice, where

the outer solution is started from O(ε3) as well. The leading order term in the outer

solution in the wave scattering by arrays can be seen as a consequence of the leading

order term in the outer solution here. We start the outer expansion with

Ψ = ε3Ψ3 + . . . , (5.21)

where Ψ3 is in terms of the outer eigensolutions (5.6). The inner expansion of the outer

solution ε3Ψ3(ερ) is required to be not larger than the leading inner term, which is order

ε, so we have

Ψ3 = a0h
(1)
0 (kr) + a1h

(1)
1 (kr)Pn(cos θ) = −a0

i

ερ
− a1

i

ε2ρ2
cos θ. (5.22)
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The inner expansion of the outer solution is

Ψ(3,2) = −a0ε
2 i

ρ
− a1ε

i

ρ2
cos θ, (5.23)

where the second term on the right hand side is Ψ(3,1). By the matching rule ψ(1,3) ≡

Ψ(3,1), (5.20) and (5.23) give

a1 = −1

2
. (5.24)

Suggested by the inner expansion of the outer solution (5.23), the inner expansion should

be continued as

ψ = εψ1 + ε2ψ2 + . . . . (5.25)

Substituting for this inner expansion (5.25) in the inner problem (5.8) and (5.9) and

collecting the like powers of ε we obtain

∇2
ρψ2 = 0, (5.26)

∂ψ2

∂ρ
= cos2 θ, on ρ = 1. (5.27)

Thus ψ2 has the form

ψ2 = − 1

3ρ
− 1

18ρ3
(3 cos 2θ + 1) +

∞∑
n=0

A(2)
n En(ρ), (5.28)

where the first two terms constitute the particular solution satisfying (5.26) and (5.27).

To match with the outer solution we must set

A(2)
n = 0, for all n. (5.29)

The outer expansion of the inner solution is then

ψ(2,3) = ε
i

2ρ2
cos θ − ε2 1

3ρ
. (5.30)

Using the matching rule ψ(2,3) ≡ Ψ(3,2), (5.23) and (5.30) give

a0 = − i

3
. (5.31)

So far, we have obtained the coefficients of the leading order outer solutions

a0 = − i

3
, a1 = −1

2
. (5.32)

This is consistent with the approximation expansions of the exact solutions [64, page 354]

which can be easily obtained and therefore not presented here.
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5.2 Acoustic wave propagation through a triply-periodic

lattice of arbitrary shape scatterers

5.2.1 Fomulation

Consider the acoustic wave propagation through a three-dimensional lattice Λ of arbitrar-

ily shaped rigid scatterers. We choose the origin O of the Cartesian coordinates (x, y, z)

to be at the centre of one of the scatterers in the lattice. The wave potential φ(x, y, z)

satisfies the three dimensional Helmholtz equation

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
+ k2φ = 0 (5.33)

and the Neumann boundary condition

∂φ

∂n
= 0 (5.34)

on each of the identical scatterers Cj uniformly distributed in the infinite lattice Λ, where

k is the acoustic wavenumber and n is a coordinate measured normal to Cj . Scatterer j

is associated with a local origin Oj located at the lattice point

Rj = n1a1 + n2a2 + n3a3, n1, n2, n3 ∈ Z, (5.35)

for given independent vectors a1, a2 and a3. In particular, solutions are sought that, for

all lattice vectors Rj , satisfy the Bloch condition

φ(r + Rj) = φ(r)eiβ·Rj , (5.36)

for a given Bloch vector β. This may be satisfied by plane waves of the form

φm(r) = eiβTmr, m ∈ Z, (5.37)

where r = (x, y, z)T , βm = β + Km, β = (q1, q2, q3)T is the prescribed Bloch vector and

each

Km = 2π(m1b1 +m2b2 +m3b3), m1,m2,m3 ∈ Z, (5.38)

is a reciprocal lattice vector with

aTi bj = δij , i, j = 1, 2, 3. (5.39)
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The reciprocal lattice vectors have the property that, for any lattice vector Rj ,

KT
mRj = 2πp, p ∈ Z. (5.40)

In the absence of the scatterers each φm provides a solution to the Bloch problems

provided k is chosen to ensure that the field equation (5.33) is satisfied, in other words

provided

k2 = β2
m, m ∈ Z, (5.41)

where βm = |βm|. For example, for a simple cubic lattice of side L aligned with the

coordinate axes, plane-wave solutions satisfying the Bloch condition are

φm = e
i
[
(q1+

2πm1
L

)x+(q2+
2πm2
L

)y+(q3+
2πm3
L

)z
]
, m1,m2,m3 ∈ Z, (5.42)

and the field equations are satisfied as long as

k2 =

(
q1 +

2πm1

L

)2

+

(
q2 +

2πm2

L

)2

+

(
q3 +

2πm3

L

)2

. (5.43)

The results given here for the case when scatterers are present arise from consideration

of perturbations to combinations of the plane wave solutions (5.37).

In addition to the global coordinates, local spherical coordinates (rj , θj , ϕj) are used

with origin at Oj . The Bloch condition (5.36) allows the solutions to be obtained through

consideration of a primary lattice cell chosen to be that containing the origin O of the

global coordinates. The spherical coordinates with origin at O are denoted by (r, θ, ϕ)

and illustrated in figure 5.1, and the scatterer associated with O is denoted by S.

To facilitate the solution, each lattice cell is divided into two overlapping regions. For

the primary cell these are an outer region at distances r � a, and an inner region within

distances r � k−1 of the scatterer. A small parameter ε = ka is introduced, and in the

inner region a scaled coordinate ρ = r/a is used. With these definitions, kr = ερ.

In the outer region, far from each scatterer r � a, the solutions are constructed

from solution of the three-dimensional Helmholtz equation (5.33) that satisfy the Bloch

condition (5.36) and that are singular at the lattice points. Such solutions are

Gmn (kr, θ, ϕ) =
∑
Rj∈Λ

eiβTRjHmn (krj , θj , ϕj), (5.44)
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where Hmn is the outgoing spherical wavefunctions defined by

Hmn (krj , θj , ϕj) = h(1)
n (krj)Y

m
n (r̂j). (5.45)

Here r̂j is the unit vector in the direction of rj and [55, page 64]

Y m
n (r̂j) = bmn P

m
n (cos θj)e

imϕj . (5.46)

are normalised spherical harmonics. Here the normalisation factor

bmn = (−1)m

√
(2n+ 1)(n−m)!

4π(n+m)!
. (5.47)

Pmn is the associated Legendre function and h
(1)
n (krj) is the spherical Hankel function of

the first kind.

By the three dimensional addition theorem [55, page 90]

Gmn (kr, θ, ϕ) =hn(kr)Y m
n (r̂)+

∞∑
ν=0

ν∑
µ=−ν

∞∑
q=0

4πiν+q−n(−1)ν−µ−nσm−µq (β)G(n,m; ν,−µ; q)j(1)
ν (kr)Y µ

ν (r̂),

(5.48)

where j
(1)
ν (kr) is the spherical Bessel function of the first kind, G is a Gaunt coefficient

defined by [55, page 83]

G(n,m; ν, µ; q) = (−1)m+µ

∫
Ω
Y m
n (r̂)Y µ

ν (r̂)Y −m−µq (r̂)dΩ, (5.49)

and Ω = {(θ, ϕ) : 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π} is the surface of a unit ball. The lattice sum

σmn (β) =
∑
Rj∈Λ

′
eiβTRjHmn (Rj), (5.50)

where the dash indicates that Rj = 0 is omitted from the summation. The lattice sums

have poles at k = ±βm – see [50], for example – and these poles correspond to the plane

wave solutions defined in (5.37).
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Figure 5.2: The first irreducible Brillouin zone for simple cubic lattice (left) and body-centred cubic lattice

(right).

For simple cubic and body-centred cubic lattices, figure 5.2 gives their first Brillouin

zones and the irreducible regions. To produce the dispersion diagrams, for convenience,

we only consider when the Bloch vector is along the edges of the irreducible region of

the first Brillouin zone . The locations of the poles of the lattice sums (or, equivalently,

the plane waves that exist in the absence of the scatterers) are shown in figures 5.3 and

5.4 for values of the modulus β of the wave vector β. In these figures it can be seen

that, for some combinations of β and the frequency ω, there are multiple plane-wave

solutions. There may be multiple distinct vectors βj with the same magnitude βj ; this

can occur along lines as indicated by the two or more-pole curves in the figures, and also

at isolated points where two or more curves intersect. Comparisons between simple cubic

and body-centred lattices are given later for perturbations of two, three and four-pole

curves.

The lattice sums have poles at k = ±βj , j = 1, ..M . For each unique vector βj [50]

σmn ∼
4πin+1Y m

n (β̂j)

kVc(k2 − β2
j )

, as k2 → β2
j , (5.51)

where Vc is the volume of one cell of the lattice and β̂j = (sin τj cos γj , sin τj sin γj , cos τj)

is the unit vector in the direction of βj . The poles of the lattice sums correspond to the

plane wave solutions (5.37). For these plane waves there may be M ≥ 1 distinct vectors
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Figure 5.3: The unperturbed dispersion relation for simple cubic lattice. Solid line: one-pole, dashed line:

two-pole, thick solid line: four-pole, thick dashed line: eight-pole.
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Figure 5.4: The unperturbed dispersion relation for body-centred cubic lattice. Solid line: one-pole, dot-

dashed line: two-pole, dashed line: three-pole, thick solid line: four-pole, thick dashed line: six-pole.
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βj with the same magnitude βj and, with this in mind, the lattice sum is written

σmn =

M∑
j=1

σ
m,(1)
nj

(k2 − β2
j )L2

+ σm,(2)
n (5.52)

where

σ
m,(1)
nj =

4πin+1Y m
n (β̂j)

kVc/L2
(5.53)

and each σ
m,(2)
n is an analytic function of k within neighbourhoods of k = ±βj . Solutions

are sought for k in a neighbourhood of βj and here we take

(k2 − β2
j )L2 = ε3δj (5.54)

where δj is strictly of order one in ε for k2 6= β2
j as ε → 0. This expression will be used

within a neighbourhood of the points in (β, k) space that correspond to plane waves, so

that the βj and hence the δj may be distinct. The choice of ε3 is because of the need to

couple the first appearance of singular terms in the outer solution with the nonsingular

leading-order outer solution, and the matching would fail if this relation (5.54) were

incorrect. Actually, this order is also suggested by equation (5.21) in section 5.1, where

the order of the scattered wave is ε3 compared to the incident wave.

In view of (5.54), the matching may be carried out more conveniently if the singular

solutions of the Helmholtz equation defined in (5.44) are modified to be

gmn (kr, θ, ϕ) = ε3Gmn (kr, θ, ϕ) = gm,(1)
n (kr, θ, ϕ) + ε3gm,(2)

n (kr, θ, ϕ), (5.55)

where

gm,(1)
n (kr, θ, ϕ)

=

∞∑
ν=0

ν∑
µ=−ν

∞∑
q=0

4πiν+q−n(−1)ν−µ−n
σ
m−µ,(1)
q

(k2 − β2
j )L2

(β)G(n,m; ν,−µ; q)j(1)
ν (kr)Y µ

ν (r̂)

=

∞∑
ν=0

ν∑
µ=−ν

4πiν+1−n(−1)ν−µ−n
1

kδjV/L2
j(1)
ν (kr)Y µ

ν (r̂)Y m
n (−β̂j)Y −µν (−β̂j)

= (−1)n
M∑
j=1

σ
m,(1)
nj

δj
4π

∞∑
ν=0

iνjν(kr)

ν∑
µ=−ν

Y µ
ν (r̂)Y µ

ν (β̂j)

= (−1)n
M∑
j=1

σ
m,(1)
nj

δj
eikr·β̂j , (5.56)
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and

gm,(2)
n (kr,θ, ϕ) = hn(kr)Y m

n (r̂)+

∞∑
ν=0

ν∑
µ=−ν

∞∑
q=0

4πiν+q−n(−1)ν−µ−nσm−µ,(2)
q (β)G(n,m; ν,−µ; q)j(1)

ν (kr)Y µ
ν (r̂).

(5.57)

In (5.56), the linearisation formula for Y m
n [55, page 83]

∞∑
q=0

G(n,m; ν, µ; q)Y m+µ
q (β̂j) = Y m

n (β̂j)Y
µ
ν (β̂j) (5.58)

has been used.

As the boundary-value problem is homogeneous, the leading-order outer solution may

be taken as strictly order one in ε and written

Ψ(0) =
∞∑
n=0

n∑
m=−n

Amn g
m,(1)
n (kr, θ, ϕ)

=

∞∑
n=0

n∑
m=−n

Amn (−1)n
M∑
j=1

σ
m,(1)
nj

δj
4π

{
j0(kr)Y 0

0 (r̂)Y 0
0 (β̂j)

∗+

ij1(kr)
1∑

µ=−1

Y µ
1 (r̂)Y µ

1 (β̂j)
∗ − j2(kr)

2∑
µ=−2

Y µ
2 (r̂)Y µ

2 (β̂j)
∗ + . . .

}
, (5.59)

where ∗ denote the conjugate complex. Then the inner expansion of the leading-order

outer solution is

Ψ(0,1) =
∞∑
n=0

n∑
m=−n

Amn (−1)n
M∑
j=1

σ
m,(1)
nj

δj

{
1 +

4π

3
iερ

1∑
µ=−1

Y µ
1 (r̂)Y µ

1 (β̂j)
∗
}
. (5.60)

In terms of the inner variables the field equation for the inner solution ψ is

1

ρ2

∂

∂ρ

(
ρ2∂ψ

∂ρ

)
+

1

ρ2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

ρ2 sin θ

∂ψ

∂ϕ
+ ε2ψ = 0. (5.61)

The inner solutions are constructed with the help of inner eigensolutions that each satisfies

the Laplace equation, together with the homogeneous Neumann conditions

∂ψ

∂n
= 0. (5.62)
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The solutions of the three-dimensional Laplace equation take the form

rnPmn (cos θ)e±imϕ, r−n−1Pmn (cos θ)e±imϕ. (5.63)

For spherical scatterers, the normalised eigensolutions (to make it easier to match with

the outer solutions) are

1,

(
n+ 1

n
rn +

1

rn+1

)
Y m
n (r̂), n = 1, 2, . . . , m = 0, 1, . . . , n. (5.64)

The form of Ψ(0,1) indicates an inner development

ψ(1) = ψ0 + ν11(ε)ψ11 + εψ1. (5.65)

where the term in ν11(ε) is a possible intermediate term. Substituting (5.65) into the field

equations (5.61) and (5.62) and equating the coefficients of the gauge functions in ε, we

find that ψ0, ψ11, ψ1 are all harmonic functions that satisfy the homogeneous boundary

conditions, and hence are constructed from the inner eigenfunctions. Therefore, to effect

the matching it is necessary to take

ψ(1) = B0 + ν11B11 + ε

B1 + (u−1
1 , u0

1, u
1
1)

ρ

Y −1

1 (r̂)

Y 0
1 (r̂)

Y 1
1 (r̂)

+ χ1(r̂)


 , (5.66)

where from the Neumann boundary condition (5.34),

∂χ1

∂n
= − ∂

∂n

ρ

Y −1

1 (r̂)

Y 0
1 (r̂)

Y 1
1 (r̂)


 on C, (5.67)

χ1 −
M

ρ2


Y −1

1 (r̂)

Y 0
1 (r̂)

Y 1
1 (r̂)

 = o(ρ−2) as ρ→∞, (5.68)

and

M =


m11 m12 m13

m21 m22 m23

m31 m32 m33

 (5.69)

is the matrix of dipole coefficients determined by the shape of the scatterer [8, page 121].

At order ε3 the outer expansion of the inner solution ψ(1), when written in terms of the
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outer variable kr, has terms no more singular than a dipole and hence cannot be matched

to any higher singularities associated with the leading-order outer solution; thus

Amn = 0, n ≥ 2,m = −n, . . . , n, (5.70)

and so

Ψ(0,1) =

1∑
n=0

n∑
m=−n

Amn (−1)n
M∑
j=1

σ
m,(1)
nj

δj

1 +
4π

3
iερ

1∑
µ=−1

Y µ
1 (r̂)Y µ

1 (β̂j)
∗

 . (5.71)

From the inner solution (5.66)

ψ(1,0) = B0 + ερ(u−1
1 , u0

1, u
1
1)


Y −1

1 (r̂)

Y 0
1 (r̂)

Y 1
1 (r̂)

 , (5.72)

and the matching of Ψ(0,1) with ψ(1,0) yields

B0 =

1∑
n=0

n∑
m=−n

Amn (−1)n
M∑
j=1

σ
m,(1)
nj

δj
, (5.73)

uµ1 = i
4π

3

1∑
n=0

n∑
m=−n

Amn (−1)n
M∑
j=1

σ
m,(1)
nj

δj
Y µ

1 (β̂j)
∗, µ = −1, 0, 1. (5.74)

With possible intermediate terms included, the outer solution is continued as

Ψ(3) =

1∑
n=0

n∑
m=−n

Amn [gm,(1)
n (kr, θ, ϕ) + ε3gm,(2)

n (kr, θ, ϕ)]

+ µ11(ε)
∞∑
n=0

n∑
m=−n

Ĉmn g
m,(1)
n (kr, θ, ϕ) + ε

∞∑
n=0

n∑
m=−n

Cmn g
m,(1)
n (kr, θ, ϕ)

+ µ21(ε)
∞∑
n=0

n∑
m=−n

D̂m
n g

m,(1)
n (kr, θ, ϕ) + ε2

∞∑
n=0

n∑
m=−n

Dm
n g

m,(1)
n (kr, θ, ϕ)

+ µ31(ε)

∞∑
n=0

n∑
m=−n

Êmn g
m,(1)
n (kr, θ, ϕ) + ε3

∞∑
n=0

n∑
m=−n

Emn g
m,(1)
n (kr, θ, ϕ), (5.75)
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which has an inner expansion

Ψ(3,2) =

1∑
n=0

n∑
m=−n

Amn (−1)n
M∑
j=1

σ
m,(1)
nj

δj

1− ε2ρ2

6
+

4π

3
iερ

1∑
µ=−1

Y µ
1 (r̂)Y µ

1 (β̂j)
∗

−4π

15
ε2ρ2

2∑
µ=−2

Y µ
2 (r̂)Y µ

2 (β̂j)
∗

+ ε3
1∑

n=0

n∑
m=−n

Amn hn(kr)Y m
n (r̂)

+
∞∑
n=0

n∑
m=−n

[
µ11(ε)Ĉmn + εCmn

]
(−1)n

M∑
j=1

σ
m,(1)
nj

δj

1 +
4π

3
iερ

1∑
µ=−1

Y µ
1 (r̂)Y µ

1 (β̂j)
∗


+
∞∑
n=0

n∑
m=−n

[
µ21(ε)D̂m

n + ε2Dm
n

]
(−1)n

M∑
j=1

σ
m,(1)
nj

δj
. (5.76)

Thus to match with the inner solution, µ11(ε) = ν11(ε) and the inner solution must be

continued as

ψ(2) = B0 + ν11(ε)B11 + ε

B1 + (u−1
1 , u0

1, u
1
1)

ρ

Y −1

1 (r̂)

Y 0
1 (r̂)

Y 1
1 (r̂)

+ χ1(r̂)




+ ε

ν11(ε)(u−1
11 , u

0
11, u

1
11)

ρ

Y −1

1 (r̂)

Y 0
1 (r̂)

Y 1
1 (r̂)

+ χ1(r̂)


+ µ21(ε)B21 + ε2ψ2,

(5.77)

where, from (5.61), ψ2 satisfies the poisson equation

1

ρ2

∂

∂ρ

(
ρ2∂ψ

∂ρ

)
+

1

ρ2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

ρ2 sin θ

∂ψ

∂ϕ
= −B0 (5.78)

and also the homogeneous boundary condition

∂ψ2

∂n
= 0 on C. (5.79)
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The form required to effect the matching with Ψ(3,2) is

ψ2 = B0

[
−1

6
ρ2 + Γ(ρ, θ, ϕ)

]
+B2 + (u−1

2 , u0
2, u

1
2)

ρ

Y −1

1 (r̂)

Y 0
1 (r̂)

Y 1
1 (r̂)

+ χ1(r̂)



+(v−2
2 , v−1

2 , v0
2, v

1
2, v

2
2)


ρ2



Y −2
2 (r̂)

Y −1
2 (r̂)

Y 0
2 (r̂)

Y 1
2 (r̂)

Y 2
2 (r̂)


+ χ2(r̂)


, (5.80)

where the term involving −1/6 is a particular solution of (5.78) and Γ is a harmonic

function introduced to compensate for the flux across the scatterer S that is induced by

the term in −1/6. By the Neumann boundary condition (5.79), we have

∂Γ

∂n
= − ∂

∂n

(
−1

6
ρ2

)
=

1

6

∂ρ2

∂n
. (5.81)

The flux across the scatterer S induced by the term in ρ2 must be compensated by the

flux induced by Γ across the outer ‘boundary’ of the inner region as ρ→∞, the sphere

S∗. Therefore, we obtain ∫ ∫
∂S∗

∂Γ

∂n
ds = −1

6

∫ ∫
∂S

∂ρ2

∂n
ds, (5.82)

Because Γ is a solution of the Laplace equation, we take its form as

Γ(ρ, θ) ∼ B

ρ
, (5.83)

where B is a unknown constant and this form is chosen to effect the matching. The left

hand side of (5.82) is∫ ∫
∂S∗

∂Γ

∂n
ds = −

∫ π

0

∫ 2π

0

∂Γ

∂ρ
ρ2 sin θdϕdθ = 4πB,

where the minus sign is because the surface normal on the scatterer is directed into the

scatterer. Applying the divergence theorem to the right hand side of (5.82) gives

−1

6

∫ ∫
∂S

∂ρ2

∂n
ds = −1

6

∫ ∫ ∫
S
∇2(ρ2)dv = −Vs

a3
,
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where Vs is the volume contained within the scatterer S and a3 is to make the area

dimensionless. Thus, we get

B = − Vs
4πa3

, (5.84)

and then

Γ(ρ, θ, ϕ) +
Vs

4πa3

1

ρ
→ 0, as ρ→∞. (5.85)

It follows immediately that

ψ(2,3) = B0 + ν11(ε)B11 + ε

B1 +
(
u−1

1 , u0
1, u

1
1

)
ρ

Y −1

1 (r̂)

Y 0
1 (r̂)

Y 1
1 (r̂)

+
M

ρ2


cY −1

1 (r̂)

Y 0
1 (r̂)

Y 1
1 (r̂)





+ ε

ν11(ε)
(
u−1

11 , u
0
11, u

1
11

)
ρ

Y −1

1 (r̂)

Y 0
1 (r̂)

Y 1
1 (r̂)

+ χ1(r̂)


+ µ21(ε)B21

+ ε2

B0

[
−1

6
ρ2 − Vs

4πa3

1

ρ

]
+B2 + ρ

1∑
µ=−1

uµ2Y
µ

1 (r̂) + ρ2
1∑

µ=−2

vµ2Y
µ

1 (r̂)

 (5.86)

and matching with Φ(3,2) gives, in particular,

A0
0 = − i

√
4πVs

4πa3
B0, (A−1

1 , A0
1, A

1
1) = i(u−1

1 , u0
1, u

1
1)M. (5.87)

With the values of Amn given by (5.87), equation (5.73) becomes

B0 =
4πL2

kVc

M∑
j=1

1

δj


Vs

4πa3
B0 + i

(
u−1

1 , u0
1, u

1
1

)
M


Y −1

1 (β̂j)

Y 0
1 (β̂j)

Y 1
1 (β̂j)


 (5.88)

and equation (5.74) becomes

uµ1 =
4πi

3

4πL2

kVc

M∑
j=1

Y µ
1 (β̂j)

∗

δj


Vs

4πa3
B0 + i

(
u−1

1 , u0
1, u

1
1

)
M


Y −1

1 (β̂j)

Y 0
1 (β̂j)

Y 1
1 (β̂j)


 , µ = −1, 0, 1.

(5.89)

Equations (5.88) and (5.89) define an eigenvalue problem for the wavenumber k. If we
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introduce

Uj =
1

δj


Vs

4πa3
B0 + i

(
u−1

1 , u0
1, u

1
1

)
M


Y −1

1 (β̂j)

Y 0
1 (β̂j)

Y 1
1 (β̂j)


 , (5.90)

and substitute (5.88) and (5.89) back into (5.90) this yields

δpUp =
4πL2

kVc

M∑
j=1


Vs

4πa3
− 4π

3

(
Y −1

1 (β̂j)
∗, Y 0

1 (β̂j)
∗, Y 1

1 (β̂j)
∗
)

M


Y −1

1 (β̂j)

Y 0
1 (β̂j)

Y 1
1 (β̂j)


Uj ,

(5.91)

where p = 1, 2, . . . ,M . For a given β, equation (5.91) provides an eigenvalue problem

for the corresponding wavenumber k (which appears in every δp). The geometry of the

lattice Λ appears through the reciprocal lattice vectors in the definitions of each δp and

βj .

5.2.2 Results

In this section we give some examples of explicit approximations to the dispersion relation,

obtained from the eigenvalue problems in equation (5.91) with the aid of the computer-

algebra package Mathematica. Results are given on the edges of the irreducible region

of the first Brillouin zone (labelled ΓXMR for simple cubic lattice and ΓHPN for body-

centred cubic lattice) for simple cubic and body-centred cubic lattices, shown in figure

5.2. The areas of the corresponding primitive cells are Vc = L3.

We consider two different shapes of scatterers, sphere and prolate spheroid. The sphere

has radius a and the prolate spheroid has semi-axes of length a1, b1 and c1 (b1 = c1)

parallel to the x, y and z axes respectively. For each prolate spheroid the matrix of dipole

coefficients we use is defined in (5.68), where the dipole is written in normalised spherical

harmonics. This is different from the classic definition [65, page 142] where the dipole

takes the form

− D

r2


sin θ cosϕ

sin θ sinϕ

cos θ

 = −D

r3


x

y

z

 (5.92)

Here D is the dipole coefficient matrix. Now we are going to find what’s the relation

between our definition M and the classic definition D. The eigensolution including the
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dipole we use is in the form

r


Y −1

1 (r̂)

Y 0
1 (r̂)

Y 1
1 (r̂)

+
M

r2


Y −1

1 (r̂)

Y 0
1 (r̂)

Y 1
1 (r̂)

 = R−1




x

y

z

+
RMR−1

r3


x

y

z


 . (5.93)

Compare (5.92) and (5.93), we find

M = −R−1DR, (5.94)

where

R


Y −1

1 (r̂)

Y 0
1 (r̂)

Y 1
1 (r̂)

 =


sin θ cosϕ

sin θ sinϕ

cos θ

 . (5.95)

Then it is easy to get

R =

√
8π

3


−1

2 0 1
2

− i
2 0 − i

2

0
√

2
2 0

 . (5.96)

When the scatterer is symmetric about the axes, all the non-diagonal elements are equal

to zero, i.e. Dij = 0, i 6= j, therefore

M =


−1

2(D11 +D22) 0 1
2(D11 −D22)

0 D33 0

1
2(D11 −D22) 0 −1

2(D11 +D22)

 . (5.97)

The dipole matrix coefficients Dii are related to the added mass coefficients aii [65, page

143]

Dii = − 1

4πa3
(aii/ρ+ Vs) . (5.98)

For a sphere, the added mass coefficients are [65, page 144]

a11 = a22 = a33 = ρVs/2, (5.99)

For a prolate spheroid, the added mass coefficients are [32, page 153]

a11 =
α0

2− α0

4

3
πρa1b

2
1, (5.100)

a22 = a33 =
β0

2− β0

4

3
πρa1b

2
1, (5.101)
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where

α0 =
2(1− e2)

e3

(
1

2
log

1 + e

1− e
− e
)
, (5.102)

β0 =
1

e2
− 1− e2

2e3
log

1 + e

1− e
, (5.103)

e2 = 1− b21
a2

1

. (5.104)

In the diagrams below we compare the perturbations between a sphere with radius a =

0.15 and a prolate spheroid with semi-axes a1 = 0.3 and b1 = c1 = 0.15.

A. Perturbation of one plane wave

In the case M = 1, equation (5.91) reduces to

k2 = β2
1

1− 4πa3

Vc

 Vs
4πa3

− 4π

3

(
Y −1

1 (β̂j)
∗, Y 0

1 (β̂j)
∗, Y 1

1 (β̂j)
∗
)

M


Y −1

1 (β̂j)

Y 0
1 (β̂j)

Y 1
1 (β̂j)




−1

.

(5.105)

This expression gives perturbations of any of the one-pole solutions illustrated in the

dispersion diagrams in figure 5.3 and 5.4, regardless their frequency. For a given β,

this expression shows how the wavenumber k depends on the geometry of the scatterer

through the volume Vs contained with the scatterer S and the dipole matrix M defined

through (5.68).

By the relation between our dipole matrix and the classic dipole matrix (5.97), the

dispersion relation (5.105) becomes

k2 = β2
1

{
1− 4πa3

Vc

[
Vs

4πa3
+D11 sin2 τ1 cos2 γ1 +D22 sin2 τ1 sin2 γ1 +D33 cos2 τ1

]}
.

(5.106)

In terms of the added mass equation (5.106) becomes

k2 = β2
1

{
1 +

Vs
Vc

[
a11

ρVs
sin2 τ1 cos2 γ1 +

a22

ρVs
sin2 τ1 sin2 γ1 +

a33

ρVs
cos2 τ1

]}−1

. (5.107)

In the case of S is a sphere of radius a

k2 = β2
1

[
1 +

2πa3

3Vc

]−1

, (5.108)
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where the second term in the square bracket is half of the sphere volume divided by

the volume of one lattice cell. This is different from two dimensional case, where the

corresponding dispersion relation is [60, eq. 60]

k2 = β2
1

[
1 +

πa2

A

]−1

, (5.109)

where A is the area of one cell of the two-dimensional lattice. Here the second term in

the square bracket is the area (not half) of the cross section of the cylinder divided by the

volume of one lattice cell. This difference is caused by the different forms of the dipole

coefficients for two and three dimensions.

These results may be compared with results obtained by method of homogenisation

for the the lowest mode, that is when

β1 = β1


sin τ1 cos γ1

sin τ1 sin γ1

cos τ1

 . (5.110)

Using the same method as [21], which is a two-dimensional problem, we get the three-

dimensional field equation[
1 +

Vs
Vc

a11

ρV

]−1 ∂2φ

∂x2
+

[
1 +

Vs
Vc

a22

ρV

]−1 ∂2φ

∂y2
+

[
1 +

Vs
Vc

a33

ρV

]−1 ∂2φ

∂z2
+ k2φ = 0, (5.111)

and seeking solutions in the form

φ = eiβ1(x sin τ1 cos γ1+y sin τ1 sin γ1+z cos τ1) (5.112)

yields

k2 = β2
1

{[
1 +

Vs
Vc

a11

ρV

]−1

sin2 τ1 cos2 γ1+

[
1 +

Vs
Vc

a22

ρV

]−1

sin2 τ1 sin2 γ1 +

[
1 +

Vs
Vc

a33

ρV

]−1

cos2 τ1

}
(5.113)

However, by assumption the scatterer size is much smaller than the periodicity of the

lattice, so V/Vc � 1 and expansion of (5.113) in powers of V/Vc yields

k2 = β2
1

{
1− Vs

Vc

[
a11

ρVs
sin2 τ1 cos2 γ1 +

a22

ρVs
sin2 τ1 sin2 γ1 +

a33

ρVs
cos2 τ1

]}
(5.114)
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Figure 5.5: The perturbation of the first one-pole line along ΓX for simple cubic lattice. Dot-dashed curve:

sphere, dashed curve: spheroid, solid curve: no scatterers.

Expansion of (5.107) in powers of V/Vc yields (5.114) as well, so the results from two

different methods are consistent.

The comparisons of the lowest one-pole solution of simple cubic lattice and body-

centred cubic lattice along the edges of the irreducible region of the first irreducible

Brillouin zone are shown in figure 5.5 and 5.6. As we can see, the perturbed modes are

quite close to the unperturbed curves for both of two lattices. In these two diagrams,

we give the local magnification of the right top corner of the whole diagrams and we see

both perturbed curves are below the unperturbed ones and as the volume of the prolate

spheroid is bigger than that of the sphere, the modes perturbed by spheroids are further

away from the unperturbed modes than by the spheres.

B. Perturbations of two plane waves

When M = 2, there are two plane wave solutions along one curve in the dispersion dia-

grams without scatterers. The two-pole curves are generally perturbed into two separate

curves with the scatterers present. First, we consider the lowest two-pole mode along XM

for the simple cubic lattice, where q1L = π, q3L = 0 and q2L ∈ (0, π). The appropriate

forms for βm are

β1L = (q1L, q2L, q3L)T , β2L = (q1L− 2π, q2L, q3L)T . (5.115)
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Figure 5.6: The perturbation of the first one-pole line along ΓH for body-centred cubic lattice. Dot-dashed

curve: sphere, dashed curve: spheroid, solid curve: no scatterers.

Then the corresponding positive roots of (5.91) are

kL =
q2L

2 + π2√
q2L2 + π2(1 + 4πa3)

,
q2L

2 + π2√
q2L2

(
1 +

4

3
πa3

)
+ π2

(
1− 8

3
πa3

) , (5.116)

for an array of sphere. If we consider the left end of this two-pole curve, which is

(q1L, q2L, q3L, kL) = (π, 0, 0, π), the dispersion relation (5.116) reduces to

kL =
π√

1 + 4πa3
,

π√
1− 8πa3/3

. (5.117)

For the spheroid array, from (5.97) we can take the dipole coefficients matrix to be
m11 0 0

0 m22 0

0 0 m11

 . (5.118)

Then the positive roots of (5.91) are

kL =
q2L

2 + π2√
q2L2 + π2(1 + 8πm11b31)

,

q2L
2 + π2√

q2L2

[
1− 8

3
πb21(a1 − 3m11b1)

]
+ π2

(
1− 8

3
πa1b

2
1

) . (5.119)
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Figure 5.7: The comparison of the lowest two-pole mode along XM. Solid curve: no scatterers, dot-dashed

curves: sphere, thick dashed curves: prolate spheroid.

When a1 = b1 = a, by the relations between the dipole matrix and added mass (5.97),

(5.98) and (5.99), we obtain m11 = m22 = 1/2, then (5.119) reduces to (5.116). As with

(5.117), at the left end of this two-pole curve (5.119) reduces to

kL =
π√

1 + 8m11πb31
,

π√
1− 8πa1b21/3

. (5.120)

Both of (5.117) and (5.120) show that a local band gap will appear as the scatterer size

is increased from zero.

The comparison of the perturbation of the lowest two-pole mode along XM by sphere

and prolate spheroid is shown in figure 5.7. The curves perturbed by the spheroid array

are further apart than those perturbed by the sphere array, because the volume of the

spheroid is larger than the sphere. The same phenomenon happens for some other two-

pole mode perturbations, for example, the lowest two-pole mode on ΓM in simple cubic

lattice and the lowest two-pole mode on PN in body-centred cubic lattice are considered

next. For the lowest two-pole mode along ΓM in simple cubic lattice, where q3L = 0 and

q1L = q2L ∈ (0, π). The appropriate forms for βm are

β1L = (q1L− 2π, q2L, q3L)T , β2L = (q1L, q2L− 2π, q3L)T . (5.121)
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Figure 5.8: The comparison of the lowest two-pole mode along ΓM. Solid curve: no scatterers, dot-dashed

curves: sphere, thick dashed curves: prolate spheroid.

The corresponding positive roots of (5.91) are

kL =

√
2(q1L

2 − 2πq1L+ 2π2)√
q1L2 − 2πq1L+ 2π2(1 + 2πa3)

,

√
2(q1L

2 − 2πq1L+ 2π2)√(
1 +

4

3
πa3

)
(q1L2 − 2πq1L) + 2π2

(
1− 2

3
πa3

) , (5.122)

for sphere array. For the prolate spheroid array, with the dipole coefficients matrix (5.118)

we obtain the two positive roots of (5.91)

kL =

√
2(q1L

2 − 2πq1L+ 2π2)√
q1L2 − 2πq1L+ 2π2(1 + 4m11πb31)

,

√
2(q1L

2 − 2πq1L+ 2π2)√(
1− 8

3
πa1b21 + 8m11πb31

)
(q1L2 − 2πq1L) + 2π2

[
1− 4

3
πb21(2a1 − 3m11b1)

] .
(5.123)

When a1 = b1 = a, (5.123) reduces to (5.122). The comparison between the sphere array

and the prolate spheroid array is shown in figure 5.8.

Lastly, for the body-centred cubic lattice, we consider the lowest two-pole mode on

PN, where q1L = q2L = π and q3L is from 0 to π. The appropriate forms of βm are

β1L = (q1L, q2L, q3L)T , β2L = (q1L− 2π, q2L− 2π, q3L)T . (5.124)
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Figure 5.9: The comparison of the first two-pole mode along PN of the body-centred cubic lattice. Solid

curve: no scatterers, dot-dashed curves: sphere, thick dashed curves: prolate spheroid.

The corresponding positive roots of (5.91) are

kL =
q3L

2 + 2π2√
q3L2 + 2π2(1 + 4πa3)

,
q3L

2 + 2π2√
q3L2

(
1 +

4

3
πa3

)
+ 2π2

(
1− 8

3
πa3

) (5.125)

for the sphere array and

kL =
q3L

2 + 2π2√
q3L2 + 2π2(1 + 8πm11b31)

,

q3L
2 + 2π2√

q3L2

[
1− 8

3
πb21(a1 − 3m22b1)

]
+ 2π2

(
1− 8

3
πa1b

2
1

) , (5.126)

for the spheroid array. The comparison between the sphere array and the prolate spheroid

array is shown in figure 5.9. From figure 5.8 and 5.9, the perturbed curves by spheroid

array are further apart than those perturbed by the sphere array as the spheroid has

bigger volume. In addition, in the perturbed mode expressions by spheroid (5.119), (5.123)

and (5.126), the first perturbed modes are all independent of the spheroid equatorial axis

a1.

C. Perturbation of three plane waves

The three-pole modes curves only appear in the body-centred cubic lattice (in simple

cubic lattice, there are isolated three-pole points crossed by a one-pole curve and a two-
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Figure 5.10: The perturbation of the first three-pole mode along ΓP of the body-centred cubic lattice.

Dashed curve in left hand diagram: two equal perturbed modes. Solid curves: unperturbed mode. Left:

sphere, right: prolate spheroid.

pole curve). It seems a three-pole mode should be perturbed into three different curves

with the presence of the scatterer, but it is not always the case. For example, we consider

the lowest three-pole mode on ΓP, where q1L = q2L = q3L ∈ (0, π). The appropriate

forms for βm are

β1L = (q1L− 2π, q2L− 2π, q3L)T ,

β2L = (q1L− 2π, q2L, q3L− 2π)T ,

β3L = (q1L, q2L− 2π, q3L− 2π)T .

Because of the complexity of the structure of the body-centred cubic lattice, the explicit

expressions for the perturbed modes are quite complicated, therefore we do not give them

here. The results are shown in figure 5.10. For the sphere array, two of the three perturbed

curves below the unperturbed curve are completely coincident and the third one is above

the unperturbed curve. For the spheroid array, two of the three perturbed curves are

quite close below the unperturbed curve which can be seen from the local diagram on

the left corner, and the third perturbed mode is above the unperturbed curve.

D. Perturbations of four plane waves

Perturbations of a four-pole mode leads to similar results to three-pole modes described

above; that is to say, some of the perturbed modes are exactly the same. But the difference

is that coincident modes happen for both the sphere array and the spheroid array. For

example, we consider the first four-pole mode on MR in the simple cubic lattice, where
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q1L = q2L = π and q3L is from 0 to π. The appropriate forms for βm are

β1L = (q1L, q2L, q3L)T , β2L = (q1L− 2π, q2L, q3L)T ,

β3L = (q1L, q2L− 2π, q3L)T , β4L = (q1L− 2π, q2L− 2π, q3L)T .

Then the corresponding positive roots of (5.91) are

kL =
√
q3L2 + 2π2,

q3L+ 2π2√
q3L2 + 2π2(1 + 4πa3)

q3L+ 2π2√
q3L2 + 2π2(1 + 4πa3)

,
q3L+ 2π2√

q3L2
(
1 + 8

3πa
3
)

+ 2π2
(
1− 16

3 πa
3
) , (5.127)

for sphere array. For spheroid array, the positive roots are

kL =
√
q3L2 + 2π2,

q3L+ 2π2√
q3L2 + 2π2(1 + 8m11πb31)

,
q3L+ 2π2√

q3L2 + 2π2(1 + 8m11πb31)

q3L+ 2π2√
q3L2

[
1− 16

3
πb21(a1 − 3m22b1)

]
+ 2π2

(
1− 16

3
πa1b21

) . (5.128)

When a1 = b1 = a, (5.128) reduces to (5.127). We can see in these four modes, two of

them are exactly the same and one is equal to the unperturbed mode. Therefore there

are only three disparate curves as shown in figure 5.11.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

4.5
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q3L

kL
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Figure 5.11: The perturbation of the first four-pole mode along MR for the simple cubic lattice. Dashed

curves: two equal perturbed modes, solid curves: unperturbed mode and one perturbed mode, dot-dashed

curves: the fourth perturbed mode. Left: sphere, right: prolate spheroid.
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Chapter 6

Three-dimensional multiple

resonant scattering

In this chapter, we consider the acoustic wave scattering by a strip of arrays of spheres

or arbitrary shape scatterers using the methods of matched asymptotic expansions and

multiple scales. We first consider the case of arrays of spheres, then generalise it to

arbitrary shape scatterers, where the Green’s identity must be used twice in order to

obtain the integral on the scatterer. Finally, numerical results for the transmission wave

intensity are given to make comparisons for different shapes of scatterers.

The three-dimensional problem of multiple scattering by doubly periodic planar arrays

of bounded obstacles was first considered by Twersky [93, 94, 95], which followed his

earlier work about the acoustic scattering by an infinite linear array of identical obstacles

[92]. Twersky obtained approximate solutions for small scatterers or low frequencies but

didn’t give any numerical results. Achenbach and Kitahara [2] used the boundary integral

equation method to consider the elastic wave scattering by a layer of doubly periodic

array of spherical cavities in an infinite elastic solid. The same method is then used to

obtain the dispersion relation for the propagation of harmonic waves in an elastic solid

containing a three-dimensional array of regularly spaced spherical cavities [3], which

adopted the results in their earlier work [2]. The elastic wave scattering by periodic

structures of spherical objects was also considered using the multiple scattering theory

(or KKR approach) by taking into account the full vector character [54]. Before this,

the multiple scattering theory has been developed for three-dimensional electromagnetic
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wave scattering to calculate the band structure of photonic crystals [99]. A layer multiple

scattering theory of electromagnetic waves was also successfully implemented [63, 85] to

calculate the transmission and reflection coefficients for a slab of periodically arranged

spheres. Thompson and Linton [87] considered the guided acoustic wave propagating

along one- and two-dimensional arrays of rigid spheres to study the existence of the

surface modes numerically.

As in the two-dimensional case, we first derive the envelope equations in infinite three-

dimensional arrays and then apply them to a strip of arrays of scatterers. The strip is

assumed to be finite in one direction and infinite in other directions. As the scattered

wave from one scatterer is of higher order of the small parameter compared with the

incident wave and the scattered wave would not be weak any more over a large number of

cylinders, the strip width must be large enough to make the resonance occur. This makes

it possible to consider this problem in an infinite array first and then apply the results to

approximate those in finite arrays. The size of the scatterer is still assumed to be smaller

than both the wavelength and the array periodicity. Both matched asymptotic expansions

and multiple scales are used to obtained the envelope equations. Numerical results are

given to compare the transmission wave intensity for different shapes of scatterers.

6.1 Sphere

We consider the diffraction of plane acoustic waves by an infinite three-dimensional array

of spheres. The global Cartesian coordinates (x, y, z) is used with origin O at the centre

of one of the spheres. Similarly with the two-dimensional case, we assume the Bloch wave

vector be β1 (the incident wavenumber), another wave in the direction of βm is said to

be resonantly scattered if βm and β1 are related to a reciprocal lattice vector Km by the

Bragg condition

βm = β1 + Km, (6.1)

where βm = |βm| is all the same for any m and we define β = |βm|. If more than one

wave is resonantly scattered, any two resonated wave vectors are related by

βn = βm + Kn −Km. (6.2)
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If the array is infinite, the solution is require to satisfy the Bloch theorem

Φ(r + Rj) = eiβTmRjΦ(r), (6.3)

where r = (x, y, z)T and Rj is the jth lattice point given by (5.35). Let (rj , θj , ϕj) be

defined as the local spherical coordinate centred at lattice node j. The global spherical

coordinates with the global origin at O are denoted by (r, θ, ϕ) Then the position of any

point in space is

r = Rj + rj . (6.4)

For a given lattice and scattering configuration found by Ewald construction described

in chapter 4, we shall derive the equations coupling the envelopes of the incident and

M − 1 resonantly scattered waves.

First of all, the velocity potential Φ must satisfy the wave equation

∂2Φ

∂t2
− c2∇2Φ = 0, (6.5)

everywhere in the medium, where ∇ is the gradient operator. On the boundary of the

spheres, the normal flux must vanish

∂Φ

∂rj
= 0, rj = |r−Rj | = a, for all j. (6.6)

We now add the assumption that the sphere radius a is much smaller than the typical

wave length 2π/β so that

ε1 = βa� 1. (6.7)

From section 5.1, the field scattered from a single sphere is order ε31 compared to the

incident wave, then the accumulated effects over N spheres becomes of order one when

N is order 1/ε31, i.e. over the distance of order 1/βε31. It then follows that strong reflection

evolves over the dimensionless length scale β(x, y, z) of order 1/ε31. This suggests the

asymptotic method of multiple scales is applicable. For the outer field we introduce fast

and slow variables

x, y, z, t; X = ε31x, Y = ε31y, Z = ε31z, T = ε31t, (6.8)

so that x, y, z, t describe the fast motion characterised by the length and time scales

of 1/β, 1/ω, while X, Y, Z, T describe the slow variation of the envelope. To use the
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method of matched asymptotic expansions, each lattice cell is divided into two overlap-

ping regions, an outer region at distances rj � a and an inner region within distances

rj � β−1. In the inner region a scaled coordinate ρ = rj/a is used. As the boundary-value

problem is homogeneous, the leading order outer solution may be taken as strictly order

one in ε1, then we expand the outer solution as follows

Φ = Re{[Φ0 + ε31Φ3 +O(ε61)]e−iωt}, (6.9)

where Φ0 and Φ3 are functions of (x, y, z,X, Y, Z, T ) and ω is the frequency associated

with β (i.e. ω = βc). Substituting (6.9) into the wave equation (6.5) and collecting like

terms of order one and order ε31, we obtain the perturbation equations for the outer

potentials Φ0 and Φ3. At the first order, the outer velocity potential Φ0 is governed by

∇2Φ0 = −ω
2

c2
Φ0, (6.10)

and also satisfy the Bloch theorem (6.3) on the short scale. The first order solution is

formally the sum of all mutually resonant progressive waves

Φ0 =

M∑
m=1

Am(X,Y, Z, T )ψm(x, y, z), (6.11)

Φ0(r + Rj) = eiβTmRjΦ0(r), m = 1, 2, . . . ,M, (6.12)

where

ψm(x, y, z) = eiβTmr = 4π

∞∑
ν=0

iνjν(βr)
ν∑

µ=−ν
Y µ
ν (r̂)Y µ

ν (β̂m)∗. (6.13)

For the second order outer solution Φ3

∇2Φ3 +
ω2

c2
Φ3 = −2∇ · ∇Φ0 −

2iω

c2

∂Φ0

∂T
, (6.14)

Φ3(r + Rj) = eiβTmRjΦ3(r), m = 1, 2, . . . ,M. (6.15)

In (6.14), ∇ denotes the gradient operator with respect to the slow variables X, Y and

Z.

From the solution form of the leading order problem (6.11) and (6.13), the inner
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expansion of the leading-order outer solution is

Φ
(0,1)
0 =

M∑
h=1

Ah4π

j0(kr)Y 0
0 (r̂)Y 0

0 (β̂h)∗ + ij1(βr)
1∑

µ=−1

Y µ
1 (r̂)Y µ

1 (β̂h)∗


=

M∑
h=1

Ah

1 +
4π

3
iερ

1∑
µ=−1

Y µ
1 (r̂)Y µ

1 (β̂h)∗

 (6.16)

Therefore, to match with the outer solution Φ0, the inner solution φ has the form (sug-

gested by results in chapter 5)

φ(1) = B0 + ε1

B1 +

(
2ρ+

1

ρ2

)
(u−1

1 , u0
1, u

1
1)


Y −1

1 (r̂)

Y 0
1 (r̂)

Y 1
1 (r̂)


 , (6.17)

where ρ = rj/a is the inner coordinate.

For each m = 1, . . . ,M , we are going to apply Green’s identity to ψ∗m and the solution

in one cell C excluding the sphere S: Cs, where ψ∗m denotes the complex conjugate of the

plane waves ψm defined in (6.13). The solution in this cell is expressed as a composite

expansion that is valid everywhere in the cell. As we know, the inner solution is only

valid in the immediate vicinity of the scatterer and the outer solution is only valid in

the outer region far from each scatterer. To find a solution that is valid everywhere in

the whole region, we need to do some work to the inner and outer solutions. One of the

methods may be called additive composition. Since the inner expansion and the outer

expansion have a common region of validity, the composite expansion can be constructed

by subtracting the part they are in common, so that it is not counted twice [102, page

94]. We denote the composite expansion by ξ and take

ξ = Φ(3) + φ(1) − φ(1,3). (6.18)

Then the Green’s identity is now used for ξ and ψ∗m on Cs∫ ∫ ∫
Cs

(
ξ∇2ψ∗m − ψ∗m∇2ξ

)
dv =

∫ ∫
∂Cs

(
ξ
∂ψ∗m
∂n
− ψ∗m

∂ξ

∂n

)
ds, (6.19)

Then omitting the higher order term and noting that every ψ∗m, m = 1, . . . ,M satisfies

the Helmholtz equation and φ(1) − φ(1,3) = 0 by the inner solution (6.17), the left hand

side of Green’s identity becomes

LHS(6.19) =

∫ ∫ ∫
Cs

(
Φ(3)∇2ψ∗m − ψ∗m∇2Φ(3)

)
dv.
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Using the governing equations for the first and second order outer solutions (6.10) and

(6.14) and dropping terms of order higher than ε31

LHS(6.19) =

∫ ∫ ∫
Cs

(
Φ0∇2ψ∗m − ψ∗m∇2Φ0

)
dv + ε31

∫ ∫ ∫
Cs

(
Φ3∇2ψ∗m − ψ∗m∇2Φ3

)
dv

=

∫ ∫ ∫
Cs

[
Φ0(−β2ψ∗m)− ψ∗m

(
−ω

2

c2
Φ0

)]
dv

+ ε31

∫ ∫ ∫
Cs

[
−Φ3β

2ψ∗m − ψ∗m(−2∇ · ∇Φ0 −
ω2

c2
Φ3 −

2iω

c2

∂Φ0

∂T
)

]
dv

= ε31

∫ ∫ ∫
Cs

(
2ψ∗m∇ · ∇Φ0 +

2iω

c2
ψ∗m

∂Φ0

∂T

)
dv

= ε31

(
2i

M∑
h=1

∇Ah · βh +
2iω

c2

M∑
h=1

∂Ah
∂T

)∫ ∫ ∫
Cs

ei(βh−βm)T rdv

= ε31

M∑
h=1

(
2iω

c2

∂Ah
∂T

+ 2i∇Ah · βh
)∫ ∫ ∫

Cs

ei(βh−βm)T rdv. (6.20)

The volume of a sphere Vs is much smaller than that of one cell Vc, therefore the volume

of the cell C excluding the sphere S is: Vcs = Vc−4πa3/3 = Vc[1+O(ε31)] ≈ Vc. Therefore

the integral in (6.20) can be approximated by∫ ∫ ∫
Cs

ei(βh−βm)T rdv =

∫ ∫ ∫
Vc

ei(βh−βm)T rdv +O(ε31)Vc

= δhmVc +O(ε31)Vc. (6.21)

Substituting (6.21) into (6.20) and dropping terms of order higher than ε31, we get

LHS(6.19) = ε31
2iω

c2
Vc

(
∂Am
∂T

+
c2

ω
∇Am · βm

)
. (6.22)

On the sphere rj = a, we have

ψ∗m|rj=a = eiβTmr|r=a = e−iβTmRje−iβa cosα, (6.23)

∂ψ∗m
∂r

∣∣∣∣
rj=a

= −iβ cosα e−iβTmRje−iβa cosα, (6.24)

where cosα = sin τm sin θ cos(γm − ϕ) + cos τm cos θ. Therefore, noting that the normal

flux on the sphere vanishes and the contribution from the outer boundaries of the primary
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cell vanishes by the Bloch theorem

RHS(6.19)

=

∫ ∫
∂S

(
φ(1)∂ψ

∗
m

∂n
− ψ∗m

∂φ(1)

∂n

)
ds

= −
∫ ∫

∂S
φ(1)∂ψ

∗
m

∂r
ds

= −
∫ 2π

0

∫ π

0
φ(1)∂ψ

∗
m

∂r
a2 sin θdθdϕ

= −
∫ 2π

0

∫ π

0

B0 + ε1

B1 +

(
2ρ+

1

ρ2

)
(u−1

1 , u0
1, u

1
1)


Y −1

1 (r̂)

Y 0
1 (r̂)

Y 1
1 (r̂)





e−iβTmRj

[
− iβ cosα

][
1− iε1 cosα+ 1 +

1

2
i2ε21 cos2 α+O(ε31)

]
a2 sin θdθdϕ

= −ε31e−iβTmRj

−4π

3β
B0 −

4πi

β
(u−1

1 , u0
1, u

1
1)


Y −1

1 (β̂m)

Y 0
1 (β̂m)

Y 1
1 (β̂m)


+O(ε41). (6.25)

To get B0 and u1 = (u−1
1 , u0

1, u
1
1), we need to do the matching between the inner solution

(6.17) and the outer solution (6.16). By the matching rule Φ(0,1) ≡ φ(1,0), we have

B0 =

M∑
h=1

AheiβThRj , (6.26)

(u−1
1 , u0

1, u
1
1) = i

M∑
h=1

AheiβThRj
2π

3
i

(
Y −1

1 (β̂h)∗, Y 0
1 (β̂h)∗, Y 1

1 (β̂h)∗

)
. (6.27)

158



Therefore

RHS(6.19) = −ε31e−iβTmRj

M∑
h=1

AheiβThRj

×

−4π

3β
+

8π2

3β

(
Y −1

1 (β̂h)∗, Y 0
1 (β̂h)∗, Y 1

1 (β̂h)∗

)
Y −1

1 (β̂m)

Y 0
1 (β̂m)

Y 1
1 (β̂m)




= −ε31
M∑
h=1

Ah
4π

β

−1

3
+

2π

3

(
Y −1

1 (β̂h)∗, Y 0
1 (β̂h)∗, Y 1

1 (β̂h)∗

)
Y −1

1 (β̂m)

Y 0
1 (β̂m)

Y 1
1 (β̂m)


 (6.28)

Then, by the results of left hand side (6.22) and right hand side (6.28), we obtain

∂Am
∂T

+ C(m)
g · ∇Am

=
1

2
iΩ0

M∑
h=1

Ah

−1

3
+

2π

3

(
Y −1

1 (β̂h)∗, Y 0
1 (β̂h)∗, Y 1

1 (β̂h)∗

)
Y −1

1 (β̂m)

Y 0
1 (β̂m)

Y 1
1 (β̂m)


 , (6.29)

where m = 1, . . . ,M and

C(m)
g =

c2βm
ω

=
cβm
β

, Ω0 =
4πc

β2Vc
. (6.30)

Outside the strip, the envelope equations reduce to

∂Am
∂T

+ C(m)
g · ∇Am = 0, m = 1, . . . ,M. (6.31)

Let us multiply both sides of equation (6.29) by A∗m and adding the resulting equation

with its complex conjugate. After summation over m, we obtain

M∑
m=1

(
∂|Am|2

∂T
+ C(m)

g · ∇|Am|2
)

=
Ω0

2

M∑
m=1

M∑
h=1

−1

3
+

2π

3

(
Y −1

1 (β̂h)∗, Y 0
1 (β̂h)∗, Y 1

1 (β̂h)∗

)
Y −1

1 (β̂m)

Y 0
1 (β̂m)

Y 1
1 (β̂m)


 (iAhA

∗
m − iA∗hAm).

(6.32)
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By changing the second term in the last parentheses on the right from A∗hAm to A∗mAh,

the double series is unaltered, hence must be zero, yielding

∂

∂T

M∑
m=1

|Am|2 +

M∑
m=1

(C(m)
g · ∇|Am|2) = 0. (6.33)

Thus the total energy is conserved in the array.

6.2 Arbitrary shape scatterers

6.2.1 Formulation

When the scatterers are of arbitrary shape, it is difficult to perform the integration over

the scatterer when using Green’s identity to obtain the envelope equations. To overcome

this, we will use Green’s identity again in the inner region. By the results of infinite array

(5.77) and (5.80), the form of the inner solution is

φ(2) =B0 + ν11(ε1)B11 + ε1

B1 + (u−1
1 , u0

1, u
1
1)

ρ

Y −1

1 (r̂)

Y 0
1 (r̂)

Y 1
1 (r̂)

+ χ1(r̂)




+ ε1

ν11(ε1)(u−1
11 , u

0
11, u

1
11)

ρ

Y −1

1 (r̂)

Y 0
1 (r̂)

Y 1
1 (r̂)

+ χ1(r̂)


+ µ21(ε1)B21

+ ε21

B0

[
−1

6
ρ2 + Γ(ρ, θ, ϕ)

]
+B2 + (u−1

2 , u0
2, u

1
2)

ρ

Y −1

1 (r̂)

Y 0
1 (r̂)

Y 1
1 (r̂)

+ χ1(r̂)



+(v−2
2 , v−1

2 , v0
2, v

1
2, v

2
2)


ρ2



Y −2
2 (r̂)

Y −1
2 (r̂)

Y 0
2 (r̂)

Y 1
2 (r̂)

Y 2
2 (r̂)


+ χ2(r̂)


+ · · ·


(6.34)

where Γ is a harmonic function introduced to compensate for the flux across the scatterer

S that is induced by the term involving 1/6, and χ2(r̂) = o(1) as ρ → ∞. As with the
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two-dimensional case, the ellipsis denotes those eigenfunctions that will be needed to

match with the extra terms in the outer solution Φ3 that arise from the right hand side

of (6.14). By (5.85),

Γ(ρ, θ, ϕ) +
Vs

4πa3

1

ρ
→ 0, as ρ→∞, (6.35)

and by the definition of the dipole matrix (5.68)

χ1 −
M

ρ2


Y −1

1 (r̂)

Y 0
1 (r̂)

Y 1
1 (r̂)

 = o(ρ−2) as ρ→∞, (6.36)

where M is the dipole matrix determined by the shape of the scatter [8, page 121].

Similar to the case of spheres, Green’s identity is going to be used in the cell C exclud-

ing the scatterer S, Cs, to obtain the envelope equations. We first define the composite

solution ξ (here the inner solution up to order ε21 is needed) in a cell

ξ = Φ(3) + φ(2) − φ(2,3). (6.37)

Then by the inner solution up to order ε21 in the previous chapter (5.77), (5.80) and

(5.86), we have

φ(2) − φ(2,3) = ε21

 1

ρ2
(u−1

2 , u0
2, u

1
2)


Y −1

1 (r̂)

Y 0
1 (r̂)

Y 1
1 (r̂)

+
1

ρ3

2∑
µ=−2

vµ2Y
µ

2 (r̂)

 . (6.38)

Now apply Green’s identity to the conjugate of the plane waves ψ∗m and the composite

solution ξ in the entire cell excluding the scatterer Cs∫ ∫ ∫
Cs

(ξ∇2ψ∗m − ψ∗m∇2ξ)dv =

∫ ∫
∂Cs

(
ξ
∂ψ∗m
∂n
− ψ∗m

∂ξ

∂n

)
ds, (6.39)

where the integration on the right hand side includes the integration over the scatterer

and the integration over the outer boundaries of the primary cell which vanishes by the

Bloch condition; thus Green’s identity becomes∫ ∫ ∫
Cs

(ξ∇2ψ∗m − ψ∗m∇2ξ)dv =

∫ ∫
∂S

(
φ(2)∂ψ

∗
m

∂n
− ψ∗m

∂φ(2)

∂n

)
ds. (6.40)

Because the scatterer is now arbitrary shape, it is difficult to obtain the integration on

the scatterer directly. What we can do is to use Green’s identity to ψ∗m and the inner
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solution φ in the inner region Cρ to get an approximation by the integration on the outer

‘boundary’ of the inner region. We denote the outer ‘boundary’ of the inner region by

a sphere surface ∂S∗ centred within the scatterer in the cell C as ρ → ∞. Before using

Green’s identity, we expand ψ∗m,

ψ∗m = e−iβTm·r

= 1− iε1ρ cosα− 1

2
ε21ρ

2 cos2 α+
1

6
iε31ρ

3 cos3 α+
1

12
ε41ρ

4 cos4 α+O(ε51)

:= ψ̂∗m +O(ε51). (6.41)

That’s because the expansion of ψ∗m is only valid when ρ is strictly order one, i.e. near the

scatterer, so we cannot use this expansion in Green’s identity which involves the whole

inner region including ρ → ∞. This expansion makes the omitted terms higher order.

Then we have

∇2ψ̂∗m = ∇2

[
1− iε1ρ cosα− 1

2
ε21ρ

2 cos2 α+
1

6
iε31ρ

3 cos3 α+
1

12
ε41ρ

4 cos4 α

]

= −ε21 + iε31ρ cosα+ ε4ρ2 cos2 α. (6.42)

Now we apply Green’s identity to the truncated function ψ̂∗m and the inner solution up

to order ε21 over the inner region Cρ∫ ∫ ∫
Cρ

(φ(2)∇2ψ̂∗m − ψ̂∗m∇2φ(2))dv =

∫ ∫
∂Cρ

(
φ(2)∂ψ̂

∗
m

∂n
− ψ̂∗m

∂φ(2)

∂n

)
ds, (6.43)

where the boundary of the inner region including the surface of the scatterer and the

outer boundary ∂S∗

∂Cρ = ∂S + ∂S∗.

In the inner coordinates, the Helmholtz equation becomes

∇2
ρφ+ ε21φ = 0. (6.44)

The inner solution takes the form

φ = φ0 + ε1φ1 + ε21φ2 +O(ε3) (6.45)

then substituting for (6.45) in (6.44) and collecting the like power terms we obtain

∇2
ρφ0 = 0, ∇2

ρφ1 = 0, ∇2
ρφ2 = −φ0, (6.46)
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Therefore

LHS(6.43)

=

∫ ∫ ∫
Cρ

{(
φ0 + ε1φ1 + ε21φ2

)(
− ε21 + iε31ρ cosα+ ε41ρ

2 cos2 α
)

−
(
1− iε1ρ cosα− 1

2
ε21ρ

2 cos2 α+
1

6
iε31ρ

3 cos3 α
)
(−ε21)

(
φ0 + ε1φ1 + ε21φ2

)}
dv = O(ε41), (6.47)

which gives∫ ∫
∂S
φ(2) ψ̂

∗
m

∂n
− ψ̂∗m

∂φ(2)

∂n
ds = −

∫ ∫
∂S∗

φ(2) ψ̂
∗
m

∂n
− ψ̂∗m

∂φ(2)

∂n
ds+O(ε41). (6.48)

Substituting for φ and ψ̂∗m with (6.34) and (6.41) respectively in (6.48)

RHS(6.48) =−
∫ 2π

0

∫ π

0

[
φ(2) ψ̂

∗
m

∂ρ
− ψ̂∗m

∂φ(2)

∂ρ

]
ρr sin θdθdϕ+O(ε41)

=π
ε31
β

B0
Vs
πa3

+ 4i(u−1
1 , u0

1, u
1
1)M


Y −1

1 (β̂m)

Y 0
1 (β̂m)

Y 1
1 (β̂m)


+O(ε41). (6.49)

Therefore, by (6.40), (6.48) and (6.49)∫ ∫ ∫
Cs

(ξ∇2ψ∗m − ψ∗m∇2ξ)dv

= e−iβTm·Rjπ
ε31
β

B0
Vs
πa3

+ 4i(u−1
1 , u0

1, u
1
1)M


Y −1

1 (β̂m)

Y 0
1 (β̂m)

Y 1
1 (β̂m)


+O(ε31). (6.50)

By result from the sphere (6.22), we have∫ ∫ ∫
Cs

(ξ∇2ψ∗m − ψ∗m∇2ξ)dv = ε31
2iω

c2
Vc

(
∂Am
∂T

+
c2

ω
∇.Am · βm

)
. (6.51)

Thus, by (6.50) and (6.51)

ε31
2iω

c2
Vc

(
∂Am
∂T

+
c2

ω
∇Am · βm

)

= e−iβTm·Rjπ
ε31
β

B0
Vs
πa3

+ 4i(u−1
1 , u0

1, u
1
1)M


Y −1

1 (β̂m)

Y 0
1 (β̂m)

Y 1
1 (β̂m)


+O(ε41), (6.52)
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which is

∂Am
∂T

+
c2

ω
∇Am · βm

=
πc2

2βiωVc
e−iβTm·Rjπ

B0
Vs
πa3

+ 4i(u−1
1 , u0

1, u
1
1)M


Y −1

1 (β̂m)

Y 0
1 (β̂m)

Y 1
1 (β̂m)


+O(ε41). (6.53)

By the matching between outer solution (6.16) and inner solution (6.34)

B0 =
M∑
h=1

Ahe−iβTm·Rj , (6.54)

(u−1
1 , u0

1, u
1
1) =

M∑
h=1

AheiβThRj
4π

3
i

(
Y −1

1 (β̂h)∗, Y 0
1 (β̂h)∗, Y 1

1 (β̂h)∗

)
. (6.55)

Now we have the envelope equations

∂Am
∂T

+ C(m)
g · ∇Am

= −1

2
iΩ0

M∑
h=1

Ah

 Vs
4πa3

− 4π

3

(
Y −1

1 (β̂h)∗, Y 0
1 (β̂h)∗, Y 1

1 (β̂h)∗

)
M


Y −1

1 (β̂m)

Y 0
1 (β̂m)

Y 1
1 (β̂m)


 ,

(6.56)

for all m = 1, 2, . . . ,M , where C
(m)
g and Ω0 are given by (6.30).

If we multiply both sides of equation (6.56) by A∗m (the conjugate of Am) and add

the resulting equation with its complex conjugate. After summation over m, we obtain

M∑
m=1

(
∂Am
∂T

+ C(m)
g · ∇Am

)

= −Ω0

2

M∑
m=1

M∑
h=1

 Vs
4πa3

− 4π

3

(
Y −1

1 (β̂h)∗, Y 0
1 (β̂h)∗, Y 1

1 (β̂h)∗

)
M


Y −1

1 (β̂m)

Y 0
1 (β̂m)

Y 1
1 (β̂m)




× (iAhA
∗
m − iA∗hAm). (6.57)

By changing the second term in the last parentheses on the right from A∗hAm to A∗mAh,

the double series is unaltered, hence must be zero, yielding

∂

∂T

M∑
m=1

|Am|2 +

M∑
m=1

(C(m)
g · ∇|Am|2) = 0. (6.58)
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Thus the total energy is conserved in the array.

When the scatterers are sphere, the volume Vs = 4πa3/3, and the matrix of dipole

coefficients M is obtained in the infinite array (5.97)

M =


1
2 0 0

0 1
2 0

0 0 1
2

 , (6.59)

therefore the envelope equations become

∂Am
∂T

+ C(m)
g · ∇Am

=
1

2
iΩ0

M∑
h=1

Ah

−1

3
+

2π

3

(
Y −1

1 (β̂h)∗, Y 0
1 (β̂h)∗, Y 1

1 (β̂h)∗

)
Y −1

1 (β̂m)

Y 0
1 (β̂m)

Y 1
1 (β̂m)


 , (6.60)

which is in agreement with the results of scattering by an array of sphere (6.29).

If the array is infinite, the amplitude doesn’t depend on the space variation, thus

there is only time variation. If we search the solution in the form of Am(T ) = ame−iΩT ,

the envelope equations become

Ωam =
2πc

β2Vc

M∑
h=1

ah

 Vs
4πa3

− 4π

3

(
Y −1

1 (β̂h)∗, Y 0
1 (β̂h)∗, Y 1

1 (β̂h)∗

)
M


Y −1

1 (β̂m)

Y 0
1 (β̂m)

Y 1
1 (β̂m)


 ,

(6.61)

where Ω = Kc. K is the detuning of the wavenumber and the detuned wavenumber

k = β + ε31K, and the detuned frequency ω′ = kc = ω + ε31Ω. The envelope equations

(6.61) should be consistent with results obtained in infinite array (5.91)

δmUm =
4πL2

kVc

M∑
h=1

Uh

 Vs
4πa3

− 4π

3

(
Y −1

1 (β̂h)∗, Y 0
1 (β̂h)∗, Y 1

1 (β̂h)∗
)

M


Y −1

1 (β̂h)

Y 0
1 (β̂h)

Y 1
1 (β̂h)


 ,

(6.62)

where

δm =
(k2 − β2

m)L2

k3a3
=

(k + β)(k − β)L2

k3a3
, with βm = β.

Equations (6.61) and (6.62) define the same eigenvalue problem, therefore we have

δm =
2β2L2

kc
Ω =

2β2(k − β)L2

kε31
=

2(k − β)L2

kβa3
≈ (k + β)(k − β)L2

k3a3
, (6.63)
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on a first approximation in the limit k → β.

6.2.2 Numerical results

We now apply the system to a three-dimensional strip of scatterers occupying 0 ≤ x ≤ d.

A train of plane incident acoustic waves arrives from the left hand side of the array. Let

the width d of the strip be of order 1/ε31 in the x direction (that is to make sure the

array width is big enough for the resonance to occur) and the length be infinite in both

of ±y and ±z directions, see figure 6.1, where we only draw the scatterers on the visible

surfaces of the cuboid.

x

y

z

d

O

Figure 6.1: Strip

Write the wave potentials in the three zones (left side, right side and in the strip) in
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the form of

Φ0 =
M∑
m=1

Am(X,Y, Z, T )eiβTmr, (6.64)

where

Am =



A−m, X < 0,

Am, 0 6 X 6 D,

A+
m, X > D,

(6.65)

with D = ε21d. Note that, with βm = β


sin τm cos γm

sin τm sin γm

cos τm

 ,

eiβTmr = eiβ(x sin τm cos γm+y sin τm sin γm+z cos τm), (6.66)

where τm is the angle between βm and z-axis, γm is the angle between the projection of

βm on x−y plane and x-axis. With the presence of the scatterers in the strip, the incident

plane waves eiβTmr will be perturbed. We choose a small perturbation (the detuning) of

frequency of the incident wave and write

A−1 (X,Y, Z, T ) = A0ei(K sin τ1 cos γ1X+K sin τ1 sin γ1Y+K cos τ1Z−ΩT ), (6.67)

where K is the detuning of the wavenumber and Ω is the detuning of the frequency,

related by K = Ω/c. By the continuity conditions at X = 0, D, the y and z dependence

must be the same in every component of the solution. Thus, look for solutions in the

form
A−m(X,Y, Z, T )

Am(X,Y, Z, T )

A+
m(X,Y, Z, T )

 = A0


B−m(X)

Bm(X)

B+
m(X)

 ei(K sin τ1 sin γ1Y+K cos τ1Z−ΩT ), m = 1, 2, . . . ,M.

(6.68)

Along the edges of the strip, the dynamic pressure −iωΦ0 and the normal velocity ∂Φ0/∂x

must be continuous,

M∑
m=1

A−m(0, Y, Z, T )eiβTmr =
M∑
m=1

Am(0, Y, Z, T )eiβTmr, (6.69)

M∑
m=1

Am(D,Y, Z, T )eiβTmr =
M∑
m=1

A+
m(D,Y, Z, T )eiβTmr, (6.70)
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∂

∂x

M∑
m=1

A−m(X,Y, Z, T )eiβTmr

∣∣∣∣∣
X=0

=
∂

∂x

M∑
m=1

Am(X,Y, Z, T )eiβTmr

∣∣∣∣∣
X=0

, (6.71)

∂

∂x

M∑
m=1

Am(X,Y, Z, T )eiβTmr

∣∣∣∣∣
X=D

=
∂

∂x

M∑
m=1

A+
m(X,Y, Z, T )eiβTmr

∣∣∣∣∣
X=D

, (6.72)

which lead to

M∑
m=1

(B−m(0)−Bm(0))eiβ(y sin τm sin γm+z cos τm) = 0, (6.73)

M∑
m=1

(B−m(D)−Bm(D))e
iβD
ε31

sin τm cos γm
eiβ(y sin τm sin γm+z cos τm) = 0, (6.74)

and

M∑
m=1

(B−m(0)−Bm(0))iβ sin τm cos γmeiβ(y sin τm sin γm+z cos τm) = O(ε31), (6.75)

M∑
m=1

(B−m(D)−Bm(D))iβ sin τm cos γme
iβD
ε31

sin τm cos γm
eiβ(y sin τm sin γm+z cos τm) = O(ε31).

(6.76)

Then using the orthogonality of the trigonometric functions, we obtain

B−m(0) = Bm(0), m = 1, 2, . . . ,M.

Bm(D) = B+
m(D), m = 1, 2, . . . ,M.

(6.77)

Note the incident wave vector is β1 = β(sin τ1 cos γ1, sin τ1 sin γ1, cos τ1)T , so the direction

of the incident wave is determined by two angles τ1 and γ1. Without loss of generality we

limit γ1 to be 0 < γ1 < π/2. From the definition of the spherical coordinates, 0 ≤ τ1 ≤ π.

Arrange the components so that

cos γm > 0 for m ∈ {1, 2, . . . ,M+} ≡ Z1,

and

cos γm < 0 for m ∈ {M+ + 1,M+ + 2, . . . ,M} ≡ Z2.

In the field without scatterers X < 0, the only forward propagating wave is the incident

wave so that

B−m(X) = 0, m ∈ Z1 \ {1}. (6.78)
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In the field X > D, there are no backward propagating waves so that

B+
m(X) = 0, m ∈ Z2. (6.79)

Now we are going to derive the envelope equations in and out of the strip in forms of

B−m(X), Bm(X), B+
m(X). The governing equations in the strip and the outside the strip

are given by (6.60) and (6.31) respectively. Outside the strip, from (6.68) and the the

envelope equations (6.31), we have

dB±m
dX

= iK1− sin τ1 sin γ1 sin τm sin γm − cos τ1 cos τm
sin τm cos γm

B±m, m = 1, 2, . . . ,M. (6.80)

Thus

B±m(X) = b±meiKmX , (6.81)

where

Km =
1− sin τ1 sin γ1 sin τm sin γm − cos τ1 cos τm

sin τm cos γm
K, m = 1, 2, . . . ,M.

Inside the strip, from (6.68), the envelope equations (6.56) become

dBm
dX

=
iΩ0

Cg sin τm cos γm

{
Ω

Ω0
(1− sin τ1 sin γ1 sin τm sin γm − cos τ1 cos τm)Bm

+
1

2

M∑
h=1

Bh

4π

3

(
Y −1

1 (β̂h)∗, Y 0
1 (β̂h)∗, Y 1

1 (β̂h)∗

)
M


Y −1

1 (β̂m)

Y 0
1 (β̂m)

Y 1
1 (β̂m)


− Vs

4πa3

}
,

(6.82)

which is

d

dX


B1

B2

...

BM

 =
iΩ0

Cg
F


B1

B2

...

BM

 , (6.83)

where the elements of the matrix F are

Fii =
1

sin τi cos γi

[
Ω

Ω0
(1− sin τ1 sin γ1 sin τi sin γi − cos τ1 cos τi)

+
2π

3

(
Y −1

1 (β̂i)
∗, Y 0

1 (β̂i)
∗, Y 1

1 (β̂i)
∗

)
M


Y −1

1 (β̂i)

Y 0
1 (β̂i)

Y 1
1 (β̂i)

− Vs
8πa3

]
, (6.84)
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Fij =
1

sin τi cos γi

2π

3

(
Y −1

1 (β̂j)
∗, Y 0

1 (β̂j)
∗, Y 1

1 (β̂j)
∗

)
M


Y −1

1 (β̂i)

Y 0
1 (β̂i)

Y 1
1 (β̂i)

− Vs
8πa3

 ,
i, j = 1, 2, . . . ,M. (6.85)

Here we only consider the case that none of the eigenvalues are equal to each other.

In this case, the general solution of the linear system (4.87) is of the form

B = (B1, B2, . . . , BM )T

= C1V
(1)eiλ1Ω0X/Cg + C2V

(2)eiλ2Ω0X/Cg + . . .+ CMV(M)eiλMΩ0X/Cg , (6.86)

where V(j) is eigenvectors corresponding to eigenvalue λj , j = 1, 2, . . . ,M . The unknown

coefficients C1, C2, . . . , CM will be determined by the boundary conditions (6.78) and

(6.79). The properties of this solution form depend on whether the eigenvalues of ma-

trix F are real or complex, and the forms of the eigenvalues depend on the sign of the

discriminant of the characteristic equation, which is, for example,

λ2 − (F11 + F22)λ+ (F11F22 − F12F21) = 0, for M = 2, (6.87)

and

λ3 + α2λ
2 + α1λ+ α0 = 0, for M = 3, (6.88)

where

α2 = −(F11 + F22 + F33), (6.89)

α1 = det

 F11 F12

F21 F22

+ det

 F11 F13

F31 F33

+ det

 F22 F23

F32 F33

 , (6.90)

α0 = −det(F). (6.91)

The discriminants are

∆2 = (F11 + F22)2 − 4(F11F22 − F12F21), for M = 2, (6.92)

∆3 = 4α3
1 − α2

1α
2
2 + 4α0α

3
2 − 18α0α1α2 + 27α2

0, for M = 3. (6.93)
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The discriminant ∆ is a function of the detuning of the frequency Ω/Ω0, which is con-

tained in Fij . For example, when ∆3 < 0, one of the eigenvalues is real and the other two

are complex. Therefore one of the eigensolutions (6.86) is oscillatory in X with constant

amplitude. The remaining two are oscillatory with exponentially decaying or growing

amplitude. When ∆3 > 0, all the eigenvalues are real and all the waves in the array will

oscillate in X with constant amplitudes.

Next, we will consider and compare the primary wave intensity |B1(X)|2 for three

types of scatterers, where the primary wave is the continuation of the incident wave in

the array. We always assume the length of the axis of the scatterer in x direction is a,

the length of the axis in y direction is b, and the length of the axis in z direction is c.

Given a length l, we take the typical size of the three types of scatterers as follows

1. Sphere: a = b = c = l.

2. Prolate spheroid: a = 2l, b = c = l.

3. Oblate spheroid: a = l, b = c = 2l.

x

y

z

γ1
γ21

2

k

k

b1

b2

b3

Figure 6.2: M = 2, forward scattering by a simple cubic lattice.

The matrix of the dipole coefficient is given by (5.97), which is related to the added

mass coefficients by (5.98). For a sphere, the added mass coefficients are [65, page 144]

a11 = a22 = a33 = ρVs/2, aij = 0, i 6= j. (6.94)
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Figure 6.3: M = 2, backward scattering by a simple cubic lattice.

For a spheroid, the added mass coefficients are [32, page 153]

a11 =
α0

2− α0

4

3
πρa1b

2
1, (6.95)

a22 = a33 =
β0

2− β0

4

3
πρa1b

2
1, (6.96)

where for a prolate spheroid

α0 = −
2b2
[√

a2 − b2 − a arccosh
(
a
b

)]
(a2 − b2)3/2

, (6.97)

β0 = γ0 =
a
[
a
√
a2 − b2 − b2 arccosh

(
a
b

)]
(a2 − b2)3/2

, (6.98)

and for an oblate spheroid

α0 =
2b2
[√

b2 − a2 − a arccos
(
a
b

)]
(b2 − a2)3/2

, (6.99)

β0 = γ0 = −
a
[
a
√
b2 − a2 + b2 arccos

(
a
b

)]
(b2 − a2)3/2

. (6.100)

In the following results for these three types of scatterers, we use l as the dimensionless

parameter, and the small parameter ε1 = kl.

Without loss of generality, we limit the angle of the incident wave with x-axis to

be in (0, π/2). If we define the positive direction of x-axis as forward and the negative

direction of x-axis as backward, then when M = 2, there are two types of scattering,
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forward scattering and backward scattering. For examples, we take the following data for

numerical calculations

Forward scattering : τ1 = τ2 = π/2, γ1 = π/3, γ2 = −π/3. See figure 6.2.

Backward scattering : τ1 = τ2 = π/3, γ1 = π/6, γ2 = 5π/6. See figure 6.3.
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Figure 6.4: M=2, forward scattering. Comparison of the transmission wave intensity |B1(D)|2 over the

detuning Ω/Ω0. Left: Ω0D/Cg = 0.5. Right: Ω0D/Cg = 0.8. Dashed line: sphere, solid line: prolate

spheroid, thick solid line: oblate spheroid.
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Figure 6.5: M=2, backward scattering. Comparison of the transmission wave intensity |B1(D)|2 over the

detuning Ω/Ω0. Left: Ω0D/Cg = 2. Right: Ω0D/Cg = 4. Dashed line: sphere, solid line: prolate spheroid,

thick solid line: oblate spheroid.

In figure 6.4 we plot the primary wave (the continuity of the incident wave in the

array) intensity on the right edge of the strip |B1(L)|2 against the detuning Ω/Ω0 for

forward scattering and strip widths Ω0D/Cg = 0.5 and Ω0D/Cg = 0.8. As we can see,

the oblate spheroid array is most efficient in blocking the primary wave while the sphere

is the least efficient one, which is because the oblate spheroid has the biggest volume

and the sphere has the smallest volume by the scatterer size we use. The same situation

happens for the backward scattering, which is shown in figure 6.5.
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Figure 6.6: M=2, backward scattering. Comparison of the primary wave intensity |B1(X)|2 across the

strip when Ω/Ω0 = 0, which lies in the stop band. Left: Ω0D/Cg = 1, right: Ω0D/Cg = 2. Dashed line:

sphere, solid line: prolate spheroid, thick solid line: oblate spheroid.

In the case of the backward scattering, there is a region of detuning which makes

eigenvalues be complex conjugate. In this region, the solutions for the primary wave

B1(X) and scattered wave B2(X) are oscillatory with exponential decaying or growing

amplitude. We define this region as the stop band. In figure 6.6 we compare the primary

wave intensity |B1(X)|2 across the strip for scattering configuration in figure 6.3 when

the detuning Ω/Ω0 = 0. From 6.6, we can see the primary wave intensity for sphere array

decays most slowly and it decays fastest for oblate spheroid array. When the strip width

is increased to 2, the primary wave intensity decays to nearly zero for oblate spheroid

array at the right edge and it decays more slowly for the other two scatterers. When the

strip width is large enough, the primary wave intensities of all three types of scatterers

will decay to nearly zero at the exit edge of the strip.

o

k

k

k

1

2

3

o

o

b

b

1

2

k1
k1

k2

k2

k3

k3

’

’

’

’

’

’

’

’

’

Figure 6.7: M = 3, the projections of the wave vectors in x − y plane. Left: forward-forward scattering,

middle: forward-backward scattering, right: backward-backward scattering.
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Next we consider the case of M = 3, i.e. two resonantly scattered waves in the array.

Three types of scattering are possible. In figure 6.7 we give the projections of the wave

vectors in x−y plane, which are denoted by dashed symbols. The strip array we consider

is a simple cubic array.

1. Type I (forward-forward): both resonated waves propagate forward as shown in the

left hand diagram of figure 6.7. k′1 = (2, 2, 0), k′2 = (0, 3, 0), k′3 = (1,−2, 0), the scatterer

centre in primary cell is (−1/18, 7/18,−1/4). τ1 = τ2 = τ3 = cos−1(9/
√

8921) ≈ 84.53◦,

γ1 = tan−1(29/37) ≈ 38.09◦, γ2 = tan−1(47) ≈ 88.78◦, γ3 = tan−1(−43/19) ≈ 66.16◦.

2. Type II (forward-backward): one resonated wave is reflected and another one prop-

agates forward as shown in the middle diagram of figure 6.7. k′1 = (2, 1, 0), k′2 = (−1, 2, 0),

k′3 = (1,−1, 0), the scatterer centre in primary cell is (3/14, 9/14, 5/4). τ1 = τ2 = τ3 =

cos−1(−7/3
√

17) ≈ 124.47◦, γ1 = tan−1(1/5) ≈ 11.31◦, γ2 = π+tan−19/17(47) ≈ 131.82◦,

γ3 = tan−1(−23/11) ≈ −64.44◦.

3. Type III (backward-backward): Both resonated waves are reflected, therefore prop-

agate backward as shown in the right hand diagram of figure 6.7. k′1 = (1, 1, 0), k′2 =

(−1, 0, 0), k′3 = (0,−1, 0), the scatterer centre in primary cell is (1/6, 1/6, 0). τ1 = τ2 =

τ3 = π/2, γ1 = tan−1(1) = π/4, γ2 = −π+tan−1(1/7) ≈ −171.87◦, γ3 = −π+tan−1(7) ≈

−98.13◦.
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Figure 6.8: Three coefficients of the primary wave in type I scattering. Left: sphere, middle: prolate

spheroid, right: oblate spheroid. Dashed line: C1V
(1)
1 , solid line: C2V

(2)
1 , dot-dashed line: C3V

(3)
1 .
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Figure 6.9: Dependence of wave intensities for type I scattering on the detuning frequency Ω/Ω0. Left:

sphere, Ω0D/Cg = 4; middle: prolate spheroid, Ω0D/Cg = 2; right: oblate spheroid, Ω0D/Cg = 1. Thick

solid line: |B1(D)|2, dashed line: |B2(D)|2, thin solid line: |B3(D)|2.

When M = 3, the general solutions of equation (6.82) inside the strip have the form

(6.86)

B(X) = (B1(X), B2(X), B3(X))T

= C1V
(1)eiλ1Ω0X/Cg + C2V

(2)eiλ2Ω0X/Cg + C3V
(3)eiλ3Ω0X/Cg , (6.101)

where λj and V(j), j = 1, 2, 3 are the eigenvalues and the corresponding eigenvectors of

matrix F, respectively. The coefficients Cj , j = 1, 2, 3 will be determined by boundary

conditions at the edge of the cylinder strip. Here we only consider the case that none

of the eigenvalues is equal to each other. In figure 6.8 we give the three coefficients of

the primary wave in type I scattering shown in the left hand diagram of figure 6.7. In

figure 6.9 we give the dependence of wave intensities in the array for type I scattering

on the detuning frequency Ω/Ω0. If we compare figure 6.8 with 6.9, we find the primary

wave intensity |B1(X)|2 has valleys where two of the three primary wave coefficients

are nearly equal. For example, in the left hand diagram of 6.8, at Ω/Ω0 ≈ 0.46, the

coefficients C1V
(1)

1 and C2V
(2)

1 cross each other and nearly equal to 0.5. On the other

hand, the other coefficient C3V
(3)

1 is nearly zero. Therefore, the primary wave B1(X) is
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dominant by the first two eigenvectors; its intensity can be approximated by

|B1(X)|2 ∼ |C1V
(1)

1 eiλ1Ω0X/Cg + C2V
(2)

1 eiλ2Ω0X/Cg |2

∼ 1

4

∣∣∣1 + ei(λ1−λ2)Ω0X/Cg
∣∣∣2

= cos2 (λ1 − λ2)Ω0X

Cg
. (6.102)

Therefore the minimum transmission intensity occurs around

Ω0X

Cg
=

(2n+ 1)π

|λ1 − λ2|
, n = 1, 2, . . . (6.103)

≈ 3.45, 10.34, 17.28, . . . .

In the left hand diagram of figure 6.8, the strip width we use is Ω0D/Cg = 4, which is

near the minimum primary wave intensity occurring point Ω0D/Cg = 3.45. We can see

the minimum primary wave intensity of this strip width is quite close to zero.
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Figure 6.10: M=3. Comparison of the transmitted wave intensity for type I on the exit edge of the strip

|B1(D)|2 over the detuning. Left: Ω0D/Cg = 1. Right: Ω0D/Cg = 2. Dashed line: sphere, solid line:

prolate spheroid, thick solid line: oblate spheroid.

In figure 6.10, we compare the transmitted wave intensity |B1(D)|2 for type I scat-

tering on the exit edge of the strip against the detuning. We can see that for same strip

width, the oblate spheroid array blocks most energy and the sphere array blocks least

energy.
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Figure 6.11: M=3. Comparison of the transmitted wave intensity for type II on the exit edge of the strip

|B1(D)|2 over the detuning. Left: Ω0D/Cg = 2. Right: Ω0D/Cg = 3. Dashed line: sphere, solid line:

prolate spheroid, thick solid line: oblate spheroid.
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Figure 6.12: M=3. Comparison of the transmitted wave intensity for type III on the exit edge of the

strip |B1(D)|2 over the detuning. Left: Ω0D/Cg = 2. Right: Ω0D/Cg = 4. Dashed line: sphere, solid line:

prolate spheroid, thick solid line: oblate spheroid.

For type II forward-backward scattering and type III backward-backward scattering,

two of the three eigenvalues are conjugate complex for some region of detuning (the stop

band). In figure 6.11 and 6.12, we compare the transmitted wave intensity |B1(D)|2 on the

right edge of the strip against the detuning Ω/Ω0 and we can see the stop bands are always

widest for oblate spheroid array. Thus the oblate spheroid array is the most efficient

scatterer in blocking the incident wave and most energy is transferred into scattered

energy when the detuning lies in the stop band.
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Chapter 7

Conclusions

7.1 Summary

Methods of matched asymptotic expansions and multiple scales were used to consider

acoustic or elastic wave propagations through both infinite and finite (only finite in one

direction) periodic arrays.

For the infinite arrays, elastic wave propagation through doubly-periodic arrays of

cavity cylinders and acoustic wave propagation through triply-periodic arrays of arbitrary

shape scatterers were considered. Wave potentials satisfy the Helmholtz equations given

that the waves are time-harmonic. The scatterer size was assumed to be small compared

to both the wavelength and the length scale of the array periodicity, but there was

no restriction on the sizes between the latter two. This allows us to investigate the

phenomena associated with the periodicity, such as band gaps. The main idea we used

is to obtain perturbations of the quasi-periodic plane wave solutions that exist in the

absence of the scatterers. In the elastic case, we need to take account of the coupling

between shear and dilatational waves that arises from the boundary conditions. A notable

feature of the matched asymptotic expansions was that certain eigenfunctions must be

included in the inner solution ahead of any obvious need for them. Explicit expressions

for the frequencies were obtained that showed how the mode frequencies depended on

the Bloch vector, the geometry, and the Lamé constants for the medium. Perturbed

dispersion relations were then given to show the appearance of the local band gaps when

the scatterer size was increased from zero. In the elastic case, results were also given to
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illustrate the appearance of local band gaps, the splitting and crossing of double modes,

and switching between dilatational and shear modes for square and hexagonal lattices.

In the acoustic case, the scatterers can be arbitrary shape. Results were given for simple

cubic lattice and body-centred cubic lattice to compare the perturbed dispersion relations

for spherical and prolate spheroidal scatterers. It was shown that the size of the local

band gaps were always bigger for prolate spheroid array than for sphere array, which is

because the prolate spheroid had bigger volume than the sphere for the sizes we chose.

For the finite arrays, we considered the multiple resonant scattering by a large width

strip of arrays of scatterers. The strip had finite width in only one direction and infinite

in other directions. As in the case of infinite arrays, the scatterers are cavity cylinders

for the two-dimensional elastic case and can be arbitrary shape for three-dimensional

acoustic case. As the strip width must be large enough to make the resonance occur, we

first derived the envelope equations for an infinite array with the help of the results of

the infinite arrays and the method of multiple scales. The envelope equations were then

applied to a finite array to investigate how waves propagate in the array. We compared

the transmission wave intensities for different shape scatterers for the acoustic case. It

was shown that the transmission wave intensities not only depended on the shape of the

scatterer, the strip width and detuning of the frequency but also the incident angle. For

the elastic case, we applied the envelope equations to an elastic strip with an array of

cavity cylinders bounded by acoustic media on both sides.

7.2 Future work

The immediate future work is to consider the elastic wave propagation through infinite

and finite three-dimensional arrays of spheres using the matched asymptotic expansions

(multiple scales should also be used when the array is finite in one direction). Another

possible work is the wave propagation through arrays of Dirichlet scatterers. Moreover,

elastic wave scattering by other shape scatterers, such as elliptical cylinders in two-

dimensional and spheroids in three-dimensional are quite possible to be solved by these

methods using the elliptical cylindrical coordinates or spheroidal coordinates system.

Another possibility would be the electromagnetic waves propagate through various arrays:

two-dimensional and three-dimensional, infinite and finite etc.
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[20] Erbaş, B. and Abrahams, I. D., Scattering of sound waves by an infinite grating composed

of rigid plates, Wave Motion, 44, 282-303, 2007. 67

[21] Evans, D. V. and Shipway, B. B., A continuum model for multi-column structures in waves,

Proceedings of the 15th International Workshop on Water Waves and Floating Bodies, held

in Caesarea, Israel, 27 February-1 March 2000, 47-50. 1, 144

[22] Faran, J. J. JR., Sound scattering by solid cylinders and spheres, J. Acoust. Soc. Am., 23(4),

405-418, 1951. 123
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