
Loughborough University
Institutional Repository

Synthesis and reactivity of
cyclopropanes and

cyclopropenes

This item was submitted to Loughborough University's Institutional Repository
by the/an author.

Additional Information:

• A Doctoral Thesis. Submitted in partial ful�llment of the requirements
for the award of Doctor of Philosophy of Loughborough University.

Metadata Record: https://dspace.lboro.ac.uk/2134/9032

Publisher: c© Hayley Watson

Please cite the published version.

https://dspace.lboro.ac.uk/2134/9032


 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



 

 

Synthesis and reactivity of Cyclopropanes and 
Cyclopropenes 

 

by 

 

Hayley T. A. Watson 

 

 

A Doctoral Thesis 

Submitted in partial fulfilment of the requirements 

For the award of 

Doctor of Philosophy of Loughborough University 

(June 2011) 

 

 

 

 

© by Hayley Watson (2011)



i 
 

ABSTRACT 

Activated cyclopropanes have been extensively used in synthetic chemistry as precursors 

for cycloaddition reactions. The rationale behind this is their ability to undergo ring-

opening when activated by a Lewis acid, this can be enhanced further by the presence of a 

carbocation stabilising group like electron-rich aromatics. The stabilised dipole formed 

after ring opening can be trapped with suitable electrophiles such as imines and aldehydes 

via a [3+2] cycloaddition reaction. This results in the synthesis of pyrrolidines and 

tetrahydrofurans in excellent yields but moderate diastereoselectivity. Similarly, 6-

membered heterocycles can be formed via a [3+3] cycloaddition reaction of activated 

cyclopropanes with nitrones. Now to extend the scope of the methodology, a [3+3] dipolar 

cycloaddition has been developed using activated 2,3 disubstituted cyclopropane diesters 

to access a range of highly functionalised oxazines in moderate to good yields (50-75%) 

and with reasonable diastereoselectivity. The use of activated symmetrical disubstituted 

cyclopropanes afforded the desired oxazines in a regio- and diastereocontrolled manner, 

while the use of unsymmetrical cyclopropanes significantly reduced the 

diastereoselectivity of the reaction. The stereochemistry outcome of the reaction developed 

was determined by nOe analyses and X-ray diffraction structures could be recorded in 

some examples. A new methodology has also been developed to gain access to novel N-

heterocyclic- and phenol- substituted cyclopropanes in one step from the corresponding 

cyclopropene via a conjugated addition. 

Key Words: 
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dd = doublet of double 

d.e. = diastereoisomeric excess 

DMS = dimethylsulfide 

DMF = N,N-dimethylformamide 

DMSO = dimethylsulfoxide 

d.r. = diastereoisomeric ratio 

e- = electron  

e.e. = enantiomeric excess 

EI = electron impact ionisation 

eq = equivalent(s) 

ESI = electronspray ionisation 

Et = ethyl 

EtOH = ethanol 

Et2O = diethyl ether 

FAB = fast atom bombardment 

FeCl3 = iron(III) chloride 

g = gram 
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1. Introduction 

1.1. Background on three-membered rings 

1.1.1. Bonding Properties of Cyclopropanes 

Three-membered ring systems are very important building blocks in organic chemistry due 

to their versatility, along with their unique structural and electronic properties. The 

cyclopropyl sub-unit consists of three C-C bonds, which exhibit considerable ring strain as 

a result of the internal bond angles being 60°, which is significantly lower than the 

expected 109.5° for sp3 hybridised orbitals. In addition to ring strain, there is also torsional 

strain due to the co-planar arrangement of the carbon atoms, which forces the C-H bonds to 

be eclipsed.1

Figure 1

 It is the relief of ring strain associated with ring-opening which helps to 

explain the lower thermodynamic stability and high reactivity of the cyclopropane ring.2 

Bonding within cyclopropanes has been described by two well known models: the 

Coulson-Moffit and Walsh models. 3,4 These represent equivalent descriptions of how the 

cyclopropane ring has been constructed. The Coulson-Moffit model suggests the 

cyclopropane is made from 3 sp3 hybridised CH2 groups, where the sp3 hybridised orbitals 

deviate approximately 22° away from the imaginary line connecting the nuclei ( ).3 

 

Figure 1 

As a result the overlap of the C-C bonds is poor, which is why the bonds are described as 
‘’bent’’. The increased p-character in the C-C σ-bond reduces the inter-orbital angle and 

improves the overlap of the p-orbitals.5 However the Walsh model describes the 

cyclopropane ring as being formed from 3 sp2 hybridised methylene groups.4 The carbon-

carbon bonds in the plane of the ring are then considered to be derived from six- 
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unhybridised carbon 2p orbitals, which leads to a delocalised molecular orbital (MO) with 

a maximum overlap inside the ring.1(Figure 2) 

 

Figure 2 

The molecular orbital of the lowest energy (σ) is shown by a linear combination of three 

sp2 hybrid atomic orbitals, while the other two molecular orbitals (π) are shown by equal-

energy linear combinations of three p-atomic orbitals.2 In relation to the previous model, 

angular strain also occurs as a result of poor overlap. 

1.1.2. The chemistry of cyclopropenes 

Cyclopropenes have been described as important precursors in organic synthesis due to 

their ability to produce complex cyclopropanes. The rationale behind this is that the 

reduction of a cyclopropene into a cyclopropane is a highly exothermic process, which has 

proven to be useful in the more complex cases of cyclopropane synthesis in overcoming 

the difficulties that would arise with the use of unstrained precursors.6 The physical 

properties of cyclopropenes are similar to that of the cyclopropane ring, where both are 

highly strained molecules.  

The bonding within the cyclopropene ring has been explained by the Walsh model shown 

in Figure 3. The cyclopropene consists of two sp-hybridized vinylic carbon atoms where 
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one p-orbital on each is used in the formation of the double bond, while the other 

contributes to the ring.7 

 

Figure 3 

The remaining carbon atom is sp2 hybridised as seen in the cyclopropane model.1 The 

hybridisation of the alkene carbons are closer to that of an alkyne rather than an alkene, 

which helps explain the unusual reactivity of the cyclopropene ring. 

Throughout the thesis the numbering of the cyclopropenes will start from the most 

substituted alkene carbon as illustrated in Figure 4. 

 

Figure 4 

1.1.3. Synthesis of Cyclopropenes 

Initially cyclopropenes were synthesised from their corresponding cyclopropane precursors 

through elimination reactions, which has been extensively reviewed by Baird.8 However 

more recently Doyle, Davies and Fox have reported the synthesis of racemic (Scheme 1) 

and enantioselective cyclopropenes 1 and 2 (Scheme 2) through catalytic cyclopropenation 

of alkynes with diazo compounds in the presence of a rhodium catalyst. 9,10,11 
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R1
 R2 R3 Product Yield (%) 

H Et Me 1a 80 

Ph Me Ph 1b 72 

Ph Me butyl 1c 72 

CO2Me Me Ph 1d 69 

Scheme 1 

 

Scheme 2 

The cyclopropenation reaction takes place via a rhodium carbenoid intermediate, which is 

followed by an electrophilic attack of the alkyne to afford the cyclopropene. 

The conversion of cyclopropenes into cyclopropanes has been successfully achieved 

through a multitude of reactions, for example substitutions and hydrogenations.12-13 

However the work herein will focus on the metal-mediated and heteroatom nucleophilic 

additions of cyclopropenes. 

1.2. Reactions of cyclopropenes 

1.2.1. Carbometalation of cyclopropenes 

The first metal mediated addition reaction was reported in 1967 by Welch and Magid, who 

demonstrated the ability of an unsubstituted cyclopropene 3 to undergo a syn selective 

addition reaction with phenyllithium, which was subsequently trapped with carbon dioxide 
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to afford the cis-2-phenylcyclopropene carboxylic acid 4 with an extremely low yield of 

less than 2.5% (Scheme 3).14 

 

Scheme 3 

The discovery that cyclopropenes undergo carbometalation reactions was a revelation and 

has since led to the synthesis of many cyclopropanes possessing an all-carbon quaternary 

centre with excellent regioselectivity. To date there has been many examples reported in 

the literature, however only a few have been selected to explain and show the progression 

of the chemistry in this area. 

In the 1970s Nesmeyanova and Rudavshevskaya were the first to report the addition of 

Grignard reagents to cyclopropenes in a regiospecific manner, which was used in the 

synthesis of cis-Chrysanthemic acid 5. (Scheme 4)15 

 

Scheme 4 

Many advances have been made in the carbometalation reaction of cyclopropenes, 

especially the work reported by Nakamura et al, which showed that cyclopropenone 

acetals were able to undergo enantioselective addition reactions with Grignard reagents 

and dialkyl zinc reagents when catalysed by iron (III) chloride.16 

The initial work focused on the synthesis of cyclopropanones 7 by addition of a Grignard 

or dialkyl zinc reagent to a cyclopropenone precursor 6. Di-substituted cyclopropanones 

were obtained in a diastereoselective manner, where the cis-isomer was exclusively 

formed. (Scheme 5) 
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Scheme 5 

Nakamura et al researched the use of chiral ligands to extend the scope of their 

methodology using dialkyl zinc reagents, where they found (R)-p-Tol-BINAP to be the 

most effective chiral phosphine ligand affording the corresponding cyclopropanes in good 

yields with up to 92% ee. (Scheme 6)16 It was found the addition of TMEDA slowed the 

reaction, but without it a racemic mixture was obtained. The results also showed that when 

the reaction was performed in THF rather than THP the enantioselectivity diminished 

significantly. (Scheme 6) 

 

Entry R2Zn Co solvent R Yield (%) ee (%) 

1 Pr2Zn THP Pr 62 92 

2 Et2Zn THP Et 64 90 

3 Et2Zn THF Et 73 85 

Scheme 6 

Also within the Nakamura group they investigated the use of chiral Ligands in the 

synthesis of quaternary chiral centres via addition of an allylic zinc reagent attached to a 

chiral bisoxazoline ligand. (Scheme 7)17 A test reaction was performed first with allylic 

zinc bromide, which successfully afforded product 9 within a regioselective manner. 
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Entry R Allyl Zinc Conditions Time (h) Ratio (9:10) Yield (%) ee (%) 

1a C2H5 Allyl ligand 25°C, 1 atm 200 100:0 64 >99 

2b C6H5 Allyl ligand 25°C, 1 atm 70 100:0 51 >99.6 

3c C2H5 Allyl ligand 25°C, 1 GPa 12 100:0 95 >98 

4d C6H5 Allyl ligand 25°C, 1 GPa 12 100:0 98 >98 

5e (CH3)3Sn Allyl bromide 0°C, 1 atm 1 5:95 94 n/a 

6f (CH3)3Sn Allyl ligand 0°C, 1 atm 1 94:6 83 99.8 

Scheme 7 

The ligand possessing the allylic zinc reagent was prepared in situ starting from the 

bisoxazoline, which was treated with butyl lithium, followed by addition of the allyl zinc 

bromide. The reaction was first performed under ambient conditions, which afforded 

product 9 regioselectively but very slowly as indicated by entry 1 and 2. However when 

the reaction was performed under a pressure of 10 kbar the reaction took place cleanly to 

afford the allylation product in excellent yields and with > 99.6% ee. When the phenyl 

substituent in the bisoxazoline ligand was replaced with an alkyl chain the 

enantioselectivity and yield of the reaction was dramatically reduced. An interesting point 

to note is when the R1 substituent on the cyclopropene was a group 14 metal derivative, the 

addition reaction performed with allylic zinc bromide resulted in a reversed 

regioselectivity favouring product 10 over product 9 with a ratio of 5:95(Scheme 7, entry 

5). However the regioselectivity of the reaction could be reversed when in the presence of 

the ligand as shown by entry 6. 
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1.2.2. Facially selective and Hydroxyl directed carbometalation of 

Cyclopropenes 

In the 1980s Richey and Bension were one of the first to address the regioselectivity for the 

addition of carbon nucleophiles to cyclopropenes. They discovered that the use of a 

hydroxyl group as a directing group afforded the cis-adduct predominately upon addition 

with an allylic Grignard reagent (Scheme 8).18 

 

Scheme 8 

However the reaction was very limited and only preceded with allylic Grignard reagents. 

The reaction was attempted with PhMgBr, t-BuMgCl and MeMgI without any success, 

where only the starting material was recovered. An interesting observation was made when 

the 3-hydroxylmethyl cyclopropene 11 was reacted with crotyl and cinnamyl magnesium 

chloride 12 and 13. (Scheme 9) 

 

Scheme 9 

As shown in Scheme 9 the reaction with crotyl magnesium chloride 12 yielded two 

products, where the allylic transposition adduct 15 was favoured. In a similar way, the 

allylic transposition product 16 was only observed when the reaction was performed using 

cinnamyl magnesium chloride 13. Although the work conducted by Richey and Bension 

was a valuable method of introducing allyl derivatives to hindered cyclopropenes, it lacked 

substrate scope due to the limited use of specific Grignard reagents. 

The scope of introducing allyl derivatives to cyclopropenes was expanded by Araki and 

co-workers in 1998 through the use of allylindium reagents.19a-b They observed similar 

regioselective results as Richey and Bension 18 years before, confirming that the 
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mechanistic pathway must introduce the allyl group to the most substituted sp2 carbon 

while the metal is transferred to the least-hindered carbon of the alkene bond, favouring 

formation of the cis cyclopropanes 17a-b. (Scheme 8)19a 

 

R Temp (°C) Product Yield (%) cis:trans 

CH2OH 0-5 17a 85 95:5 

CO2H 66 17b 81 100:0 

Scheme 10 

The cis:trans ratio refers to the relationship between the R group at C3 and the introduction 

of the allyl group to C1 of the cyclopropane. 

The formation of the cis adducts could be explained by chelation of the hydroxyl group to 

the indium atom of the allylindium reagent. This was further confirmed as the 

regioselectivity was reversed when the hydroxyl group of the starting material was 

protected with an acetate group or similarly when the carboxylic acid was converted into 

an ethyl ester. This resulted in formation of the trans allyl cyclopropanes 18a-b as the 

preferential product in a regioselective manner. (Scheme 11) 
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R Solvent Temp (°C) Product Yield (%) cis:trans 

CH2OAc THF 25 18a 66 0:100 

CO2Et DMF 100 18b 50 3:97 

Scheme 11 

Work by Araki also demonstrated that the regioselectivity of the reaction could be reversed 

when the hexyl chain was replaced with a hydroxyl carbon chain as illustrated in (Scheme 

12).19b  

 

Scheme 12 
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Treatment of the cyclopropene 19 with the tri-allyl, sesqui iodine-indium reagent and 1M 

HCl resulted in the formation of the cyclopropylindium complex 20, where a small amount 

of the trans adduct 21 was also observed. The structure of complex was confirmed by X-

ray diffraction analysis, which indicated that both the hydroxyl and carbonyl groups were 

chelated to the indium atom. Although the reaction mixture was treated with a 1M HCl 

solution, the cyclopropane/indium complex remained stable due to chelation, however a 

subsequent treatment with a more acidic 10M HCL solution afforded the corresponding C2 

allylated cis-adduct 22. It was also noted that the length of the alkyl chain attached to the 

hydroxyl group directed the allylindation to the most substituted C-atom where only the 

cis-adduct 23 was observed.  

Araki also showed the stereoselectivity of the reaction could be controlled by the polarity 

of the solvent, which suppressed the influence of the hydroxyl alkyl chain present at the C1 

position as shown in Scheme 13. 

 

Entry Solvent Product Yield (%) cis:trans 

1 THF 25 72 72:28 

2 DMF 25 56 26:74 

3 H2O 25 75 6:94 

Scheme 13 

When the reaction was performed in THF, the cis-1,2-adduct was favoured due to 

chelation of both hydroxyl groups to the indium atom. However in the presence of water, 

the diastereoselectivity was reversed, affording the trans-adduct preferentially. This could 

be explained by water acting as a ligand, which prevented chelation of the hydroxyl groups 

to the indium complex. The work carried out to this point has shown the potential of using 

hydroxyl groups as directing groups to afford cis cyclopropanes selectively in a regio and 
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setereocontrolled manner. However the scope of this methodology was limited to the 

facially selective addition of allyl reagents to cyclopropenes. 

Work by Fox and Liao expanded the scope of this reaction by demonstrating the ability of 

3-hydroxymethyl cyclopropenes to undergo addition reactions with an array of Grignard 

reagents, which Bension was unable to achieve, to afford a range of facially selective 

cyclopropanes.18,20 This was achieved by converting the hydroxyl group into a MOMO 

ether, as this protecting group is known for facilitating the syn-addition of Grignard 

reagents (Scheme 14).20 

 

Entry R E+ Conditions syn:anti Product Yield (%) 

1  H 1h, -20°C 96:4 27a 81 

2  MeI 1h, -20°C 97:3 27b 83 

3 
 

H 1.5h, -40°C 96:4 27c 81 

4 
 

H 1h, r.t. 75:25 27d 67 

Scheme 14 

As can be seen in Scheme 15 the research group has shown that the cyclopropyl metal can 

also be trapped with an electrophile affording tetra-substituted cyclopropanes with a high 

degree of diastereoselective control. It was originally thought that the MOM group was 

required to direct the syn addition of the Grignard reagents, although this was not the case 

as the reaction proceeded with a similar diastereoselectivity when the reaction was 

performed with the corresponding hydroxyl deprotected cyclopropenes. A few examples 

are shown in Scheme 15. 
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Scheme 15 

In the examples shown in Scheme 15 the reaction mixtures were quenched with water, 

apart from compound 28d which was subjected to a CO2 atmosphere, prior to the acidic 

work-up. The work presented by Fox and Liao clearly shows advancement in the addition 

of other types of carbanions to afford a range of functionalised cyclopropanes with 

quaternary centres. 

The methodology was further improved by Fox and Liu in 2005, when they confirmed the 

ability of unsubstituted hydroxymethyl cyclopropenes to undergo enantio- and facially 

selective addition with MeMgCl as shown in Scheme 16.21 

 

Scheme 16 

In contrast to previous work with 3-hydroxylmethyl cyclopropenes, an additional 

substituent was placed at the C1 position, which had been briefly investigated by Fox in 

earlier work. A range of ligands were screened and N-methylprolinol was found to afford 

the cyclopropanes in good yields with ee ranging from 91 to 98%. To achieve a high 

enantioselectivity, the cyclopropene was added to a pre-reacted mixture of MeMgCl and 
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N-methylprolinoate in a 1:1 ratio. This step was found to be critical to allow the formation 

of a chiral ‘N-methylprolinoate- MgMe’ complex which was subsequently allowed to react 

with the cyclopropenes in an enantioselective manner. 

During this research it was observed that old bottles of MeMgCl afforded the cyclopropane 

29a with a 93% ee, however the same reaction performed with a newly ordered reagent 

bottle afforded the desired cyclopropane 29a with only 67% ee. It was later discovered that 

these surprising results were due to the presence of methoxide ions formed in the older 

reagent bottles. This restriction was overcome by the addition of MeOH to the reaction 

mixture.  

In contrast to previous reactions performed with 3-hydroxylmethyl cyclopropenes, Fox et 

al showed that a cyclopropene tethered with a SEM/MEM protected pendant hydroxyl 

group 30 favoured the formation of the methylenecyclopropane 32 rather than the expected 

syn directed cyclopropane 31 as illustrated in Scheme 17.22 

 

Scheme 17 

The group discovered that the methylenecyclopropane could be isolated exclusively in 

using magnesium bromide Grignard reagents instead of their chloride equivalents. The 

reaction proceeded successfully using alkyl, allyl and methyl magnesium bromides 

affording the corresponding methylene cyclopropanes 33a-d in a regio- and 

diastereoselective manner without any addition of copper iodide. A few examples are 

shown in Figure 5. 

 

Figure 5 
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It was postulated from previous studies that chelation of the metal with the protected 

pendant hydroxyl group influenced the regioselectivity of the reaction. Replacement of the 

MOM ether group with a bulky trityl ether group prevented chelation to the metal centre 

and reversed the regioselectivity to favour product 35 over 36 as shown in Scheme 18. 

 

Scheme 18 

1.2.3. Use of Ester functionalities as syn-directing groups in Carbometalation 

reactions 

The directed carbometalation reaction of cyclopropenes has been well documented using a 

hydroxyl group as the preferred syn-directing group as other functionalities such as the 

ester substituent have prevented the carbometalation reaction from taking place. However 

work by Rubin and Gevorgyan in the hydroboration of cyclopropenes have shown that the 

use of an ester group at the C1 position also directed syn-addition of the metal complex to 

afford the cyclopropane boronates in an enantioselective fashion.23 (Scheme 19) 
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Entry R1 R2 R3 Product Ligand cis/trans Yield 
(%) 

ee 
(%) 

1 Me CO2Me H 38a (R)-BINAP >99:1 94 94 

2 TMS CO2Et H 38b (R)-BINAP >99:1 99 97 

3 Ph CO2Me H 38c (R)-BINAP >99:1 99 92 

4 CO2Me CO2Me H 38d (S)-Tol-BINAP n/a 99 98 

5 Me CH2OMe H 38e (R,R)-Et-BPE >99:1 98 87 

6 CO2Me CO2Me nBu n/a (R)-BINAP n/a 0 n/a 

Scheme 19 

It can be seen from the results that the cyclopropanes were afforded in a high degree of 

diastereo- and enantioselective control achieving enantiomeric excesses of up to 98%. It 

was also shown that the methoxy substituent 37e served as an excellent directing group 

affording the cis-adduct 38e predominately. In all cases the cis-isomer was obtained 

exclusively apart from entry 6, where the corresponding furan derivative was observed. 

A more recent example by Tarwade et al demonstrated the selective addition of organozinc 

reagents to ester and oxazolidine directed cyclopropenes to exclusively afford the syn-

selective adduct as shown in Scheme 20. 24 
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Scheme 20 

It was found that the addition of organozinc reagents was successfully catalyzed by either 

CuI or CuCN affording the syn-selective cyclopropanes in a regio- and diastereoselective 

fashion. The solvent used was also found to be an important factor in the 

diastereoselectivity of the reaction, where the use of THF rather than toluene resulted in a 

decrease in diastereoselective control. Ester substituted cyclopropanes known to be 

unstable were converted into their corresponding acyloxazolidine from their carboxylic 

acid parent. These new amide-cyclopropenes were then subjected to the carbozincation 

conditions, successfully affording the syn-selective cyclopropanes in good yields and with 

excellent diastereoselectivity.24 

1.2.4. Organolithium Carbometalation 

In 1962 Breslow was one of the first to report the addition of a metal hydride to 2,3-

diphenylcyclopropene carboxylic acid 39 to afford 1,2-α,α-diphenyl-3-β-hydroxylmethyl 

cyclopropane 40 as a single diastereoisomer.25 (Scheme 21) 
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Scheme 21 

Many years later further work was completed by Vidal and Domnin, which proved the 

reaction proceeded with a high degree of regio and diastereoselective control by means of 

deuterium labelling.26 Since this, a vast improvement has been made in the 

hydroalumination reaction of the cyclopropenyl ring. Work by Marek and Zohar have 

shown the feasibility of cyclopropenylcarbinols 41a-e to be reduced trans-selectively which 

had been difficult to achieve in the past as illustrated in Scheme 22.27 

 

Entry SM R1 R2 R3 Product d.r. Yield (%) 

1 41a H CH3 Et 42a 80:20 50 

2 41b CH3 CH3 Et 42b >98:2 86 

3 41c CH3 H Et 42c >98:2 80 

4 41d CH3 CH3 CH2CH=CHEt 42d >98:2 80 

5 41e CH3 SiMe3 Et 42e >98:2 64 

Scheme 22 

The first reaction performed, entry 1 showed the trans-adduct 42a was predominately 

formed but with only a moderate trans-selectivity. The selectivity was significantly 

enhanced as shown in entries 2-5 with geminal dialkyl cyclopropenes, where only a single 

diastereoisomer was afforded. The reduction of the cyclopropylcarbinols was dependent on 

the solvent as the use of a more polar solvent such as THF instead of diethyl ether afforded 

the product with only a 6:1 diastereomeric excess. Further investigations on the use of 

cyclopropene carbinols showed that the reaction did not proceed when the hydroxyl group 

was protected with tertbutyldimethylsilyl ether. 
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1.2.5. Organocopper mediated carbometalation 

To extend the scope of the methodology, Simaan and Marek varied the type of 

organometallic reagent used in the reduction of the alkene. They found that the selectivity 

of the carbometalation could be controlled by the type of organometallic reagent used to 

favour the syn- or anti- cyclopropane selectively. 

 

Entry SM R Product anti:syn Yield (%) 

1 43a CH2CH2Ph 44a 75:25 76 

2 43b i-Pr 44b >95:5 82 

3 43c t-Bu 44c >95:5 73 

4 43d Ph 44d 85:15 70 

Scheme 23 

It has been shown that when the cyclopropenes 43a-d were treated with butyl magnesium 

chloride the anti-cyclopropanes 44a-d (Scheme 23) were afforded selectively, whereas the 

use of dibutyl cuprate afforded the syn-cycloproplycarbinols 45a-d predominately.28 

(Scheme 24) 

 

Entry SM R Product anti:syn Yield (%) 

1 43a CH2CH2Ph 45a 5:95 78 

2 43b i-Pr 45b 10:90 87 

3 43c t-Bu 45c 5:95 83 

4 43d Ph 45d 10:90 75 

Scheme 24 
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During their investigations, Simaan and Marek noted that the R group in α position to the 

hydroxyl group had an effect on the diastereoselectivity of the carbometalation. When the 

cyclopropene 43c, bearing a bulky tert-butyl group was reacted with BuMgCl the 

cyclopropane 44c (Scheme 23, entry 1) was afforded in 76% yield with a d.r. >95:5. 

However when the substituent was replaced with a phenyl group, the cyclopropane 44d 

(Scheme 23, entry 4) was isolated in a similar yield but with a diminished d.r. of 85:15. 

1.2.6. Tin mediated hydrometallation onto Cyclopropenes 

In 2002 Rubina, Rubin and Gevorgyan reported for the first time a stereo- and 

regioselective transition-metal catalyzed hydro, sila- and stannation reaction of 

cyclopropenes.29 A variety of disubstituted cyclopropenes were reacted with either a tri 

alkyl or aryl tin hydride in the presence of Pd(PPh3)4 to afford tri- and tetra-substituted 

cyclopropylstannanes with a high degree of selectivity as illustrated in Scheme 25. 

 

Entry SM R1 R2 R3 R4 R5 Product Yield (%) 

1 46a Me Ph H H Me 47a 91 

2 46b Me Ph H H Ph 47b 92 

3 46c Me CO2Me H H Bu 47c 85 

4 46d Me Me CH2OTBS H Bu 47e 68 

5 46e Me Me TMS CO2Me Bu 47f 82 

6 37e CH2OMe Me H H Bu 47d 67* 

*d.r. 4:1 

Scheme 25 

The tin hydride source was delivered to the least hindered face of the cyclopropenes no 

matter what substituents were attached to the metal. The hydrometallation afforded the 

adduct as a single regio- and diastereoisomer, however the cyclopropene 37e possessing an 

alkoxylmethyl substituent (entry 6) led to a mixture of diastereoisomers with a d.r. of 4:1. 
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This was thought to occur due to a possible coordination of the palladium species to the 

oxygen heteroatom, which promoted addition to the most hindered face. During the 

investigation it was also discovered that the substituted cyclopropenes could undergo 

silastannation and distannation reactions when catalysed with palladium acetate and 

Walborsky’s ligand to afford the corresponding tetra-substituted cyclopropanes as a single 

diastereoisomer (Scheme 26).29 

 

Entry SM R1 R2 Tin species Product Yield (%) 

1 46a Me Ph Me3SnSnMe3 48a 83 

2 46a Me Ph Bu3SnSiMe3 48b 94 

3 46g CO2Et TMS Bu3SnSiMe3 48c 85 

Scheme 26 

In 2004 Gevorgyan et al devised an enantioselective route for the hydrostannation of di-

substituted cyclopropenes in the presence of a diphenylphosphinobenzoic acid derived 

ligand as illustrated in Scheme 27.30  

 

Scheme 27 



22 
 

The reaction was mediated using a rhodium catalyst and the selective outcome of the 

reaction was controlled by the steric effect of groups at C3 of the cyclopropenes to afford 

the cyclopropanes as single diastereoisomers. It was observed during the investigation that 

tri- and tetra-substituted cyclopropenes were unable to undergo hydrostannation under the 

present conditions. The research group have also shown the ability of di-, tri- and tetra-

substituted cyclopropenes to undergo selective addition with other transition metal 

hydrides such as germanes and bimetallic species such as ditins and silyltins.31 

More recently Rubin et al have shown that cyclopropenes can also undergo 

hydrophosphorylation and hydrophosphinylation when catalyzed by palladium to afford 

the corresponding phosphorous substituted cyclopropanes 49a-d in a diastereoselective 

manner (Scheme 28).32 Again the results showed that the diastereoselectivity of the 

reaction was controlled by steric factors associated with the substituent at R1, where a 

methyl group favoured the trans-isomer. However when the methyl group was replaced 

with a phenyl group, the diastereoselectivity of the reaction was significantly reduced. 

Replacement with a more sterically demanding group such as TMS reversed the 

diasteroselectively of the reaction affording the cis-isomer 49d exclusively as shown in 

Scheme 28. 

 

Scheme 28 

1.2.7. Selective addition of Heteroatoms to Cyclopropenes 

To date in the literature nucleophilic additions onto cyclopropenes have been reported 

mainly utilising organometallic processes and less emphasis has been made on 
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conventional organic nucleophilic additions. Padwa and Wannamaker found during a study 

that a sulfonyl substituted cyclopropene 50 underwent an addition reaction in the presence 

of methanol as illustrated in Scheme 29. 33 

 

Scheme 29 

The reaction was thought to take place via attack of the alkoxide onto the silyl group. This 

resulted in the formation of the protonated cyclopropene intermediate 51. This was 

followed by the addition of the remaining alkoxide ion onto the activated cyclopropene to 

exclusively afford the trans-cyclopropane 52.  

The methodology was further expanded by Martínez-Grau and Vaquero who reported the 

diastereoselective addition of thioalkoxides and selenides to non activated cyclopropenes 

as shown in Scheme 30.34 

 

Entry X R Solvent Yield (%) Ratio 54:55 

1a S Me CH3CN 54 80:20 

2b S Et CH3CN 50 92:8 

3c S Ph CH3CN 37 5:95 

4d Se Me DMF 48 22:78 

5e Se Ph DMF 58 5:95 

Scheme 30 

When thioalkoxides were used as nucleophiles (Scheme 30, entries 1 and 2), the addition 

onto cyclopropene 53 afforded the corresponding trans- cyclopropanes 54a,b as the 

nucelophile was delivered to the least hindered side. However in the presence of a larger R 
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group such as phenyl, the diastereoselectivity was reversed to afford the cis-cyclopropane 

55c as the major isomer (entry 3). The use of selenides as nucleophiles also reversed the 

diastereoselectivity of the reaction, favouring formation if the cis-isomers 55d,e in the 

presence of either a small or large R group (entries 4, 5). 

1.2.8. Addition to conjugated alkynylcyclopropenes 

Alkynylcyclopropenes are of particular interest due to the presence of an extremely 

reactive triple bond combined with an unsaturated three-membered ring, which are prone 

to nucleophilic additions. 

Shavrin et al inadvertantly discovered that alkynyl aminocyclopropanes could be 

synthesised from their corresponding alkynyl halocyclopropanes (Scheme 32).35 Their 

initial work focused on the synthesis of 1-alkynylcyclopropenes by treatment of 1-(alk-1-

ynyl)-1-chlorocyclopropane 56a,b with an excess of lithium N,N-dialkylamide in THF to 

afford the desired alkynylcyclopropenes 57a,b (Scheme 31).35 

 

Entry SM R Product 

1 56a 
tBu 57a 

2 56b adamantyl 57b 

Scheme 31 

The cyclopropenes were found to be unstable and therefore were expected to undergo 

addition with either lithium diethyl- or diisopropylamide, however this was not observed 

under the present conditions. In contrast, the alkynylchlorocyclopropanes were converted 

directly into the corresponding alkynyl aminocyclopropanes 58a-f when treated with 

lithium derivatives of dimethylamine and cyclic amines in 40-78% yields as illustrated in 

Scheme 32. 
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Entry SM R1 R2 Product 

1 56a 
tBu pyrrolidine 58a 

2 56a 
tBu morpholine 58b 

3 56b adamantyl morpholine 58c 

4 56c Ph morpholine 58d 

5 56c Ph Me 58e 

6 56c Ph piperazine 58f 

Scheme 32 

In examples 56a-c, where the R1substituent was a bulky tert-butyl or adamantyl group and 

in the presence of either lithium morpholide or pyrrolidide, the corresponding trans 

cyclopropane was afforded exclusively. Although in examples 58d-f, where the R1 

substituent was a phenyl group a mixture of trans and cis isomers of the cyclopropanes 

were afforded in ratios of 2.2:1 to 3:1. The stereoselectivity of the reaction was shown to 

be dependent on the substituents in both the starting alkynylhalocyclopropanes and in the 

lithium dialkylamides. 

Further studies proved the reaction took place via the formation of an alkynylcyclopropene 

intermediate resulting from a dehydrochlorination of the starting halocyclopropane. A 

further nucleophilic addition of lithium dialkylamide onto the newly formed alkene 

afforded the alkynyl aminocyclopropane.35 

The methodology was further expanded by Shavrin et al in 2008, where they reported the 

addition of alcohols and phenols to 1-alkynylhalocyclopropanes via their respective 

alkynylcyclopropene intermediate35 The alkynylhalocyclopropanes were added to a 

mixture of the alcohol in alkaline DMSO to afford the corresponding alkoxy-substituted 

alkynylcyclopropanes in 37-80% yields with trans:cis ratios of 4:1 to 2:1 as shown in 

Scheme 33. 
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Scheme 33 

A point to note is the R1 substituent on the alkyne was shown to have a significant effect 

on the reaction. For example when the substituent was a phenyl, the reaction proceeded 

smoothly with all the alcohols listed, however when replaced with the tert-butyl group only 

methanol was able to undergo addition cleanly. This was thought to be associated with the 

stronger electron-withdrawing properties of the phenyl ring, which in turn would polarize 

the double bond in the cyclopropene to a greater extent and consequently facilitate the 

addition of the relative nucleophiles. However the presence of the tert-butyl group was 

shown to increase the stereoselectivity of the reaction, where only the trans-isomer was 

observed. 

More recently the research group have also shown that pyrazole and imidazole are also 

able to react with the alkynylhalocyclopropanes. Using the same reaction conditions, the 

alkynyl-diazolylcyclopropanes 59/60 were synthesised in 23-69% yields (Scheme 34).36 

 

Entry R SM Diazole (XH) Time (h) Yield (%) 
Ratio: 

59:60 

1a Ph 56c imidazole 1 52 3.2:1 

2b Ph 56c pyrazole 1 69 4.5:1 

3c 
t-Bu 56a pyrazole 6 38 100:0 

4d 
t-Bu 56a 2-methyl-imidazole 6 23 100:0 

Scheme 34 
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1.2.9. Nucleophilic substitutions of bromocyclopropanes 

In relation to the work described by Sharvin et al, Rubin and co-workers have recently 

reported the nucleophilic substitution of bromocyclopropanes with Oxygen – and Sulfur 

based nucleophiles.37 They discovered that treatment of the bromocyclopropylcarboxamide 

with 18-crown-6 ether , powdered KOH, and an oxygen based nucleophile afford the trans 

cyclopropanes predominately. (Scheme 35) 

 

Entry R1R2 RO Product Yield (%) d.r. 

1 t-Bu, H n-PrO 63a 71 39:1 

2 Et, Et MeOCH2CH2O 63b 87 16:1 

3 t-Bu, H H2C=CH(CH2)3O 63c 85 7:1 

4 Me, MeO PhCH2O 63d 44 >25:1 

5 t-Bu, H PhO 63e 79 >50:1 

6 t-Bu, H p-MeO-C6H4O 63f 75 7:1 

7 Et, Et o-F-C6H4O 63g 82 12:1 

8 t-Bu, H p-I-C6H4O 63h 80 10:1 

Scheme 35 

The reaction proceeded well with a wide range of alkoxides and phenoxides as outlined in 

Scheme 35 to afford cyclopropanes 63a-h in excellent yields and a high degree 

diastereoselectivity. The reaction took place via dehydrobromination to afford the 

cyclopropene intermediate 62 which rapidly underwent addition with the nucleophile to 

afford the corresepponding cyclopropane. The research group proved that the 

diastereoselectivity of the reaction was controlled by epimerization of the tertiary carbon 

atom adjacent to the amide functionality rather than the reversible addition of the 

nucleophilic species. The group also showed that the cyclopropenes were able to undergo 

addition with thiolates, but the diastereoselectivity of the reaction was significantly 

reduced with most examples achieving a 2:1 mixture of diastereoisomers. 
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1.2.10. Ring-opening of cyclopropropenes 

In the literature there are many examples of carbometalation reactions of cyclopropenes, 

where direct addition to the carbon-carbon double bond has resulted in preservation of the 

cyclopropane ring as explained previously.21-24, 29-32 However there are a few examples of 

metal catalyzed addition to cyclopropenes, which have undergone ring-opening to afford a 

range of allylated compounds. 

Work by Nakamura et al in 2003 successfully reported the palladium-catalyzed addition of 

carbon and nitrogen pronucleophiles to dihexylcyclopropenes 64 to afford the 

corresponding allylated products 65a-d in 40-85% yields as shown in Scheme 36.38 

 

Scheme 36 

Deuterium labelling experiments were performed, which gave evidence to support the 

proposed mechanism shown in Scheme 37, where the nucleophile and its hydrogen were 

transferred onto the same carbon. However, more investigations would be required to 

confirm the mechanistic pathway as two routes A or B are plausible.38 The route A 

describes the oxidative insertion of palladium (0) into the C-C bond of the cyclopropene to 

afford the palladacyclobutene intermediate 66a, which would subsequently react with the 

pronucleophile to afford a π-allylpalladium complex 68, followed by a reductive 

elimination to obtain the allylated product 69. Whereas route B described the oxidative 

insertion of palladium (0) into either H-C or H-N bond to afford the intermediate hydride 

species 66b, followed by hydropalladation of the alkene to afford the cyclopropylpalladium 
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intermediate 67b. Subsequent cleavage of the C-C double bond would lead to the 

formation of the π-allylpalladium complex 68. 

 

Scheme 37 

In addition to this work, Lam et al have developed the method further by illustrating the 

stereoselective synthesis of tri- and tetrasubstituted alkenes via iron-catalyzed 

carbometalation of cyclopropenes, followed by subsequent cleavage of the C-C sigma 

bond. (Scheme 38)39 

 

Entry SM R1 R2 R3 EWG Product Yield (%) 

1 70a Bn Ph Me CO2Bn 71a 66 

2 70b Me Benzyl Et CO2Me 71b 72 

3 70c Me p-Tolyl nPr CO2Me 71c 72 

4 70d Me Ph Me SO2Ph 71d 61 

Scheme 38 

To allow the ring-opening to take place, two electron withdrawing groups positioned at C3 

of the cyclopropene ring were required in addition to Fe(acac)3 catalyst to promote the 
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carbometalation reaction. The reaction proceeded in a smooth manner, affording a range of 

trisubstituted alkenes 71a-d with a stereoselectivity greater than 19:1. Functionalities of the 

substituents at R1, R2 and R3 of the corresponding ester group, cyclopropene and 

trialkylaluminium moieties were well tolerated as shown in Scheme 38. The 

regioselectivity obtained for this reaction was in line with the results observed for previous 

carbometalation of cyclopropenes, where the alkyl nucleophile was delivered to the most 

substituted carbon of the alkene. 

The group also synthesised a range of tetrasubstituted alkenes, with an additional TMS 

group attached to the cyclopropene ring 72, where a high degree of regioselectivity was 

also obtained. Although the regioselectivity observed was different to the trisubstituted 

alkenes as the alkyl group was delivered to the least hindered carbon as illustrated in 

Scheme 39. 

 

Scheme 39 

1.3. Cycloaddition reactions onto cyclopropanes 

1.3.1. Discovery and application 

In the early 1980s the first dipolar cycloaddition of cyclopropanes was discovered by 

Schuchardt, Trost and Tsuji.40a-c Initial studies showed ring-opening of the 

methylenecyclopropane 74 in the presence of a nickel catalyst was trapped with electron-

deficient olefins to afford the corresponding cyclopentane derivatives 75 and 76 as a 

mixture of regioisomers. However it was soon discovered that the same reaction performed 

with palladium (0) afforded the cyclopentane adduct 76 as a single regioisomer, where 

ring-opening of the cyclopropane took place between C2 and C3 as shown in Scheme 40 
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Scheme 40 

In order for the cycloaddition reaction to take place, ring opening is essential, revealing a 

dipolar species. There are two main requirements for the ring opening to occur: the 

strength of the electron-withdrawing group to stabilise an adjacent negative charge 

combined with the ability of an electron-rich group such as an aryl to stabilise the positive 

charge. In later years, work by Tsuji developed this idea further by demonstrating the first 

palladium-catalyzed [3+2] cycloaddition reaction of vinylcyclopropanes with α, β-

unsaturated esters and ketones (Scheme 41).41 

 

Scheme 41 

The success of the reaction depended on the formation of the zwitterionic π-allylpalladium 

complex 78, which was subsequently trapped with the electron-poor olefins to afford the 

desired vinylcyclopentane 80. This was achieved through a nucleophilic addition of the Pd0 

onto the vinyl group 77, which resulted in an opening of the cyclopropane ring, revealing 

the zwitterionic π-allylpalladium complex 78. The presence of the ester moieties stabilised 

the carbanion, while the carbocation was stabilised by the π-allylpalladium complex. This 

was followed by a Michael addition of the electron poor olefins onto the carbanion to form 

the second intermediate 79, which rapidly cyclised to afford the vinylcyclopentanes 80 in 

77-84% yields. 
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1.3.2. [3+2] dipolar cycloaddition reactions 

While investigating the Michael addition of indoles onto activated 1,1-

cyclopropanediesters, Kerr et al inadvertently discovered the [3+2] annulation of 

alkylindoles with cyclopropanes affording a new tricyclic indole derivative.42,43 As 

depicted in Scheme 43, 84 was formed along with the desired Michael product 83. It soon 

became apparent that the introduction of a substituent at C3 of the indole 82c,d favoured 

formation of the tricyclic product 84c,d. A few examples have been shown in Scheme 42. 

 

Entry R1 R2 R3 R4 Yield (%) 83 Yield (%) 84 

1a Me H H Et 75 n/a 

2b Me H Ph Me 97 n/a 

3c Me Me H Et 5 41 

4d Bn Me diphenyl Et n/a 45 

Scheme 42 

The formation of the product shown in Scheme 43 is thought to have occurred via an attack 

of the malonate anion onto the iminium ion 85 indicated by path b, which must be in 

competition with the deprotonation and rearomatisation of the benzopyrrole to afford the 

expected indole 83 as shown by path a in Scheme 43. 
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Scheme 43 

1.3.3. Use of [3+2] dipolar cycloadditions in the synthesis of oxazine 

derivatives 

The [3+2] cycloaddition reaction with indoles developed by Kerr led to the belief that 

cyclopropanes had a very similar reactivity to α,β-unsaturated carbonyl moieties in their 

ability to react with nucleophiles in a homo-Michael type addition. Hence the use of 

substituted cyclopropanes as precursors for cycloaddition reactions has become very 

popular due to their ability to undergo ring-opening while in the presence of a Lewis acid.  

Kerr postulated that the presence of a Lewis acid coordinating to the ester groups 

combined with the substitution of the cyclopropane with an electron donating group such 

as an electron rich aryl would considerably enhance the degree of charge separation 

between the cyclopropane carbons. This would result in a weakness of the cyclopropane, 

hence a higher reactivity. With this in mind Kerr was the first to demonstrate the homo 

[3+2] dipolar cycloaddition of cyclopropane diesters with a range of nitrones to afford the 

corresponding tetrahydro-1,2-oxazines 87a-f in excellent yields as illustrated in Scheme 

44.44 
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Entry SM Nitrone R1 R2 R3 R4 t (h) Product Yield (%) 

1 81a 86a Ph p-tolyl H Et 18 87a 77 

2 81a 86b Ph Me H Et 18 87b 76 

3 81b 86a Ph p-tolyl Ph Me 18 87c 94 

4 81e 86a Ph p-tolyl styryl Me 5 87d 95 

5 81f 86b Ph Me styryl Me 36 87e 74 

6 81g 86b Ph Me vinyl Et 18 87f 52 

Scheme 44 

The results appeared to be consistent with what was suggested previously, in the fact that 

the presence of either a phenyl or a styryl group vicinal to the diester substituent on the 

cyclopropane ring improved yields. These results, as well as the cis regioselectivity 

observed can be explained by the presence of a π system vicinal to the diester moiety, 

which further enhances the charge separation undergone by the cyclopropane when in the 

presence of ytterbium triflate as shown in Figure 6.44 

 

Figure 6 

In all cases the oxazines were obtained as single diastereoisomers, where substituents at C3 

and C6 favoured a cis-relationship. The mechanism for the reaction is believed to occur in a 

stepwise manner, involving an initial attack of the nitrone oxygen atom onto the 

cyclopropane followed by attack of the malonate anion onto the carbocation of the 

iminium ion 88(Scheme 45). 
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Scheme 45 

During their investigations, Kerr et al found that in some instances the nitrones were 

unstable under the present Lewis acid conditions, making the reaction substrate specific.44 

Kerr addressed this in developing a one-pot synthesis, where nitrones were prepared in 

situ, and subsequently reacted with the cyclopropane in the presence of the Lewis acid to 

afford the tetrahydro 1,2 oxazines as the cis diastereoisomer exclusively, in yields ranging 

from 66 to 93%. An example of this is shown in Scheme 46.45a-b 

 

Scheme 46 

The success of this methodology was then applied to the synthesis of FR900482 congeners 

as illustrated in Scheme 47.45a First part of the synthesis involved the formation of the 

oxazine core as previously described, whereby the following adduct was treated under 

Heck conditions to afford the corresponding tricyclic product. A variety of analogues were 

then synthesised and one of the examples has been shown in Scheme 47. 

 

Scheme 47 

Yb(OTf)3 was initially found to be the most efficient Lewis acid in promoting the ring-

opening of the cyclopropyl subunit to afford the oxazines in excellent yields and with a 
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high degree of diastereocontrol. However it soon became apparent to Kerr that the use of 

magnesium iodide (MgI2) significantly increased the overall yielding of the products, but a 

small proportion of the trans cycloadduct was obtained,46 which had not been observed in 

the presence of Yb(OTf)3. It was observed while utilising MgI2 as the Lewis acid that a 

nitrone derived from formaldehyde and a N-oxide could be used in the cycloaddition 

reaction while this was not permitted when Yb(OTf)3was used. This observation was of 

importance as it enabled the synthesis of an unsubstituted oxazine ring which played a 

crucial part towards the total synthesis of FR900482.47 

Sibi and co-workers took the method developed by Kerr et al and devised an 

enantioselective route to afford a range of oxazines with enantiomeric excesses of up to 

99%.48 This was achieved by the use of a chiral Lewis acid catalyst, where two types of 

ligands were tested; PyBox and bisoxazoline ligands as shown in Figure 7. The use of 

PyBox ligands resulted in very low enantioselectivities, but the bisoxaline ligand 91g 

combined with nickel perchlorate as the Lewis acid afforded the oxazines with a high 

degree of enantiocontrol. Although when the reaction was performed with a mono-

substituted cyclopropane diester, a mixture of cis/trans diastereoisomers was observed as 

illustrated in Scheme 48. On a positive note, the enantioselectivity for both isomers were 

good where the trans-isomers were particularly remarkable with ≥95%  ee. In all cases a 

complete degree of regioselectivity was observed, with the oxygen of the nitrone adding to 

the most substituted carbon of the cyclopropane ring. 

 

Figure 7 
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Entry R1 R2 product 
yield 

(%) 
trans:cis 

ee (%) 

trans (cis) 

1 Me p-Br-C6H4 92a 99 0.8:1 96 (90) 

2 Ph p-Br-C6H4 92b 99 1.4:1 95 (90) 

3 Ph Ph 92c 99 1.4:1 96 (90) 

Scheme 48 

In 2007 Tang et al improved the method conducted by Sibi and co-workers by maintaining 

the diastereoselectivity of the reaction of which Kerr had originally reported, as well as 

maintaining excellent enantioselectivity with mono-substituted cyclopropane diesters. 49 

This was achieved with the trisoxazoline ligand as shown in Scheme 49. 

 

Entry R1 R2 Time 
(days) Yield (%) 

d.r. 

(cis:trans) 
ee (%) 

1 Et Ph 4 99 99:1 57 

2 Et Me 4 88 11:1 95 

3 Me Me 3 82 13:1 90 

Scheme 49 
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The reaction proceeded well with a range of electron-rich and electron-deficient aryl 

nitrones. However when the substituent on the nitrogen atom of the nitrone was a phenyl 

group a dramatic increase in the diastereoselectivity of the reaction was observed with a 

cis:trans ratio of 99:1, but the enantioselectivity of the reaction was reduced with an ee of 

only 57% (entry 1 Scheme 49). Replacement of the phenyl group with a methyl group 

significantly increased the enantioselectivity of the reaction with an ee of up to 95% (entry 

2), but this in turn diminished the diastereoselectivity of the reaction, although ratios from 

4:1 to 13:1 were sufficiently afforded. 

In relation to this, Kerr et al also showed that the use of a chiral cyclopropane in both 

enantiomers was able to undergo the cycloaddition reaction catalyzed by the original 

Yb(OTf)3 Lewis acid. This resulted in the formation of both enantiomers of the oxazines 

with a high degree of diastereocontrol and excellent enantioselectivity with ee up to 95% 

was observed.50 It was also noted that, as the reaction progressed, a racemisation of the 

chiral cyclopropane took place and the ee of the oxazine diminished with time. 

Through the progression of the cycloaddition reaction of cyclopropane diesters with 

nitrones, Kerr et al thought it wise to investigate the mechanism of the homo [3+2] dipolar 

cycloaddition. 

 

Scheme 50 

They found that the reaction of nitrones with the 2,3-cis-disubstituted cyclopropane 93a 

resulted in 5,6-trans-oxazines 94a-c (Scheme 50) and the 2,3-trans-disubstituted 

cyclopropane 93b results in 5,6-cis-oxazines 94d,e (Scheme 51).51  
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Scheme 51 

These results showed that the yield of the cycloaddition diminished significantly when 

performed with the trans-disubstituted cyclopropane. It also proved their original theory 

that the reaction took place through a stepwise mechanism as shown in Scheme 52 with 

inversion of configuration which takes place in SN2 nucleophilic additions.51 

 

Scheme 52 

The methodology used by Kerr in the synthesis of oxazines has been applied towards the 

synthesis of two complex natural products: (+)-phyllantidine and Nakadomarin A.52,53 In 

the total synthesis of (+) phyllantidine, the oxazine core was afforded through a three-

component coupling of the cyclopropane diester, hydroxylamine and aldehyde in the 

presence of ytterbium triflate52 (Scheme 53). The oxazine 95 was afforded as a 12:1 

mixture of diastereoisomers, where the major isomer showed the required cis-relationship 
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between C3 and C6 of the oxazine. The natural product 96 was afforded in 11 steps starting 

from the oxazine core in an overall yield of 6%. 

 

Scheme 53 

Within a similar time span Kerr et al reported the synthesis of the tetracyclic core of 

Nakadomarin A.53 The synthesis commenced with the same 3-component coupling as 

shown previously to afford the corresponding tetrahydro 1,2-oxazine 97 exclusively as the 

cis-isomer in 74% yield. A subsequent 9 steps led to the formation of the tetracyclic core 

98 within Nakadomarin A. (Scheme 54)  

 

Scheme 54 

For interest into the total synthesis of Nakadomarin A using the methodology described 

refer to the relevant review by Kerr.54 

1.3.4. Intramolecular [3+2] cycloaddition reactions 

Cycloadditions reported so far have not demonstrated an intramolecular cyclisation, until 

recently, where Kerr et al have reported the successful synthesis of bridged bicyclic 

tetrahydro-1,2-oxazines via an intramolecular cyclisation as illustrated in Scheme 55.55 
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Aldehyde-tethered 
cyclopropane R Time (h) Product Yield (%) 

 

PMB 15 101a 63 

 

Bn 16.5 101b 80 

Me 17 101c 83 

 

PMB 48 101d 91 

 

PMB 72 101e 89 

Scheme 55 

The bridged oxazines 101a-e were afforded via a nitrone-tethered cyclopropane 100, which 

was formed in situ from a condensation reaction between an aldehyde-tethered 

cyclopropane 99 and a hydroxylamine. This was followed by an intramolecular cyclisation 

upon addition of Yb(OTf)3. It was noted that the presence of an electron-withdrawing or 

donating group on the cyclopropane tethered aldehydes did not affect the efficiency of the 

reaction, producing adducts 101d and 101e in excellent yields. The mechanism of the 

reaction was thought to take place via an attack of the malonate ion onto the iminium 

species 102 to yield the cycloadduct 101 as shown in Scheme 56.55 
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Scheme 56 

Treatment of the bridged bicyclic oxazines with zinc dust in glacial acetic acid resulted in a 

reductive N-O bond cleavage to successfully yield the cis-selective 1,4-

aminocyclohexanols 103 in high yields (Scheme 57). These compounds are of significant 

importance as they resemble a motif in the natural product pancratistatin.56 

 

Scheme 57 

1.3.5. Synthesis of tetrahydrofuran derivatives via the [3+2] cycloaddition 

reaction 

In light of the successful methodology used by Kerr in the ability of activated 

cyclopropanes to undergo nucleophilic ring-opening/cycloaddition reactions with indoles 

and nitrones,44 Johnson et al reported the synthesis of tetrahydrofurans via an adaptation of 

this method.57a-c This was achieved via a cycloaddition reaction with donor-acceptor 

cyclopropane diesters and conjugated aldehydes catalysed by Sn(OTf)3 (Scheme 58). 
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Entry R1 R2 Time (h) Product Yield (%) cis/trans 

1 Ph Ph 2.5 104a 100 >100:1 

2 Ph p-MeO-C6H4 3.5 104b 98 >86:1 

3 Ph p-O2N-C6H4 15 104c 89 >19:1 

4 2-thienyl Ph 0.45 104d 97 20:1 

5 styrenyl Ph 1 104e 94 2.4:1 

Scheme 58 

The 2,5-disubstiututed tetrahydrofurans 104a-e were obtained in a high degree of 

diastereoselective control, where the cis-isomers were predominately formed. The reaction 

proceeded well with both electron-rich and electron poor aldehydes; however, 2-

pyridinecarboxaldehyde was unreactive due to the potential coordination of tin triflate with 

the nitrogen of pyridine. 

In 2009 Johnson and Parsons reported the synthesis of enantio enriched tetrahydrofurans 

via a dynamic kinetic asymmetric cycloaddition of racemic cyclopropanes with aldehydes 

under the influence of a chiral Lewis acid as illustrated in Scheme 59.58 
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Entry R1 R2 Yield (%) ee (%) 

1 p-MeO-Ph p-MeO-C6H4 88 90 

2 p-MeO-Ph p-F3C-C6H4 48 83 

3 p-MeO-Ph 2-thienyl 84 91 

4 2-thienyl styrenyl 91 94 

5 2-thienyl Ph 64 93 

6 styrenyl p-MeO-C6H4 75 90 

Scheme 59 

The tetrahydrofurans were obtained in a diastereoselective manner, where the cis-isomer 

was predominately formed and the R,R enantiomer was the most favoured with ee up to 

94%. 

1.3.6. Applications of [3+2] cycloaddition reaction to Natural Products 

The methodology developed by Johnson et al was applied to the asymmetric synthesis of 

(+) polyanthellin A.59a-b It was established from the retrosynthesis shown in Scheme 60 

that the hydroisobenzofuran 107 could be achieved through a [3+2] cycloaddition of the 

complex cyclopropane 105 with the β-silyloxy aldehyde 106. 
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Scheme 60 

The synthesis of the bicyclo heptanone synthon 105 was achieved in five steps from 

isovaleraldehyde. The silyloxy aldehyde synthon 106 was synthesised from the readily 

available isobutenol. The cycloaddition was first attempted using standard Lewis acid 

conditions, with either tin chloride or tin triflate, however this led to competitive 

elimination and the cyclic adduct was not obtained. It was later discovered that the use of 

the hindered catalyst MADNTf2 [(ArO)2AlNTf2] resulted in the cycloaddition, affording 

the hydroisobenzofuran 107 in a 76% yield with a high degree of diastereocontrol. It was 

proposed that the cycloaddition took place through a cationic aluminium complex, which 

activated the bicyclo heptanone via chelation.59a 

More recently Kerr et al have applied the successful cyclopropane/aldehyde cycloaddition 

reaction in the asymmetric synthesis of (+) isatisine A starting from the homochiral (S)-

vinylcyclopropane diester.60a-b A close examination of isatisine A (Figure 8) revealed the 

stereochemistry between C2 and C5 of the tetrahydrofuran could be achieved through a 

cycloaddition reaction starting from the S cyclopropane. 

 

Figure 8 - isatisine A 
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The synthesis of isatisine A 113 started with the formation of the tetrahydrofuran ring 

through a Lewis acid-catalyzed cycloaddition reaction of the chiral (S)-vinyl cyclopropane 

diester 110 and N-tosyl indole-2-carboxaldehyde 111.60a (Scheme 61) 

 

Scheme 61 

The tetrahydrofuran 112 was afforded in 89% yield as an 11:1 mixture of diastereoisomers, 

where formation of the 2,5-cis isomer was favoured. With the correct stereochemistry in 

place, an additional 13 steps afforded the natural product 113 in an overall yield of 5.6%.  

1.3.7. Synthesis of Pyrrolidines and Pyrazolines derivatives via the 

cycloaddition reaction 

The original methodology reported by Kerr and co-workers for the cycloaddition reaction 

of activated cyclopropanes with nitrones has also been reported with imines in the 

synthesis of pyrrolidines.61 Originally the imines were prepared and reacted by addition to 

the cyclopropane diesters, however it was noted that some imines were unstable and as a 

result a significant reduction in yields were obtained. This led to a one-pot procedure being 

applied, where the imine was formed in situ before addition of the cyclopropane diester as 

illustrated in Scheme 62.61 
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Entry R1 R2 R3 Product 
(cis) Yield (%) (cis:trans) 

1 Ph Bn Ph 114a 96% 93:7 

2 Furan Bn Ph 114b 93% 55:45 

3 p-MeO-C6H4 Bn Ph 114c 95% 99:1 

4 thiophene Ph H 114d 95% 100:0 

5 p-MeO-C6H4 Bn styryl 114e 76% 85:15 

Scheme 62 

The pyrrolidines were obtained with excellent diastereoselectivity, where the cis-isomer 

was predominately formed. This was further enhanced by the presence of an electron rich 

aryl group (entry 3). In an attempt to explain the cis outcome of the reaction, Kerr 

proposed two mechanistic pathways which are outlined in Scheme 63. 

 

Scheme 63 

As a result of the cis/trans geometry of the imines, either 114-cis or 114-trans could be 

afforded, with 114-cis being at a higher energy state. Intermediate 115a would afford the 

cis-isomer by a Mannich ring closure and similarly intermediate 115b would afford the 

trans-isomer. The positioning of the geminal diester should enable the retro-Mannich 
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process to take place, which would leave a reasonable pathway for the less stable trans 

isomer to be converted to the more stable cis isomer. 

Kerr reported that Yb(OTf)3 was the most efficient Lewis acid to catalyze the 

cycloaddition reaction. Although reports by Tang and co-workers showed that scandium 

triflate was able to catalyze the reaction with an increase in diastereoselectivity and a lower 

catalyst loading.62 A few examples are shown in Figure 9. 

 

Figure 9 

In these examples the imines were synthesised prior to the reaction via a condensation 

between amines and aldehydes. The results showed that both electron-rich and poor imines 

were successful in the cycloaddition reaction. The position of the substituent on the aryl 

groups affected the yield obtained, where the para-substituted imines were favoured over 

the ortho-substituted imines as a result of steric interactions. 

The discovery of imines to undergo a cycloaddition reaction with activated cyclopropane 

diesters to afford 2,5-disubstituted pyrrolidines was a significant development on previous 

methods. However the substrate scopes of the imines used were limited to aryl 

substituents, where no reaction was observed with aliphatic imines. Kerr and co-workers 

originally thought that the substrate scope could be improved by the use of oxime ethers, as 

they envisioned this would increase the nucleophilicity of the nitrogen towards ring-

opening as illustrated in Scheme 64.63 Although it was soon discovered that the reaction 
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was limited to a few substrates, with diminished yields and could only be performed in 

neat conditions. 

 

Scheme 64 

To overcome this problem the group created an intramolecular variant in the form of an 

oxime ether-tethered cyclopropane, which underwent ring-opening in the presence of 

Yb(OTf)3 to afford a wide range of 2,5-trans-pyrrolo-isoxazolidines via an oxy-iminium 

intermediate (Scheme 65). 

 

Entry Parent aldehyde/ketone Product Yield (%) (trans:cis) 

1 p-bromo-benzaldehyde 118a 99 100:0 

2 p-methoxy-benzaldehyde 118b 99 100:0 

3 trans-cinnamaldehyde 118c 81 10:1 

4 isobutyraldehyde 118d 82 8:1 

5 Pyridine-2,6-dicarboxaldehyde 118e 70 100:0 

6 Methyl benzoylformate 118f 98 100:0 

Scheme 65 

The examples shown in entries 1, 5 and 6 were afforded from the enantiopure (S)-

cyclopropylalkoxylamine as a single diastereoisomer with ee greater than 99%. The 

reaction proceeded well with a broad range of substrates; including electron rich and 

deficient aryl groups, aliphatic, dialdehydes and ketones with excellent diastereoselectivity. 

The research group discovered that the stereochemical outcome of the reaction was 

dependant on the geometry of the starting oxime ether. For example the minor Z-oxime 

117z afforded the cis-isomer exclusively, whereas the major E-oxime 117E afforded the 
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trans-isomer exclusively. It was envisioned by the group that in order to gain access to the 

2,5-cis-isomer, the Z-oxy-iminium species 119Z would need to be favoured over the E-oxy-

iminium species 119E as illustrated in Scheme 66. 

 

Scheme 66 

It was thought this could be achieved by treatment of the alkoxylamine 116 with Yb(OTf)3 

first to generate the isoxazolidine 120 before addition of the aldehyde. (Scheme 67) This 

would most likely result in the Z-oxy-iminium species as the most favoured conformation 

to afford the cis-adduct.63 The hypothesis was tested and resulted in the successful 

synthesis of 2,5-cis-pyrrolo-isoxazolidines with excellent yields and diastereoselectivity. 

An example is shown in Scheme 67. 

 

Scheme 67 
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The group has also demonstrated the ability of pyrrolo-isoxazolidines to be converted into 

highly substituted pyrrolidines via N-O bond cleavage. This was achieved through 

hydrogenation in methanolic HCl to suppress the isomerisation, which was observed under 

standard conditions to afford the pyrrolidine salt 121 in a high degree of diastereocontrol as 

represented by the example shown in Scheme 68. 

 

Scheme 68 

Kerr et al applied the same methodology in the synthesis of fused bicyclopyrazolidines 

124a-f, where the oxime ether tethered cyclopropane 116 was replaced with a 

hydrazinoethyl 1,1-cyclopropanediester 122 as illustrated in Scheme 69.64 

 

Entry R/aldehyde Product Yield (%) (trans:cis) 

1 p-methoxy-benzaldehyde 124a 83 100:0 

2 p-nitro-benzaldehyde 124b 90 100:0 

3 trans-cinnamaldehyde 124c 83 100:0 

4 2-napthaldehyde 124d 97 5:1 

5 1-tosyl-1H-indole-carboxyaldehyde 124e 82 2.7:1 

6 pivaldehyde 124f 70 100:0 

Scheme 69 

Treatment of the hydrazinoethyl 1,1-cyclopropanediesters 122 with a range of aldehydes in 

the presence of Yb(OTf)3 initiated the formation of the hydrazone intermediate 123, which 

subsequently cyclised to afford the 2,5-trans-pyrazolidines 124a-f as the dominant product. 

In some cases as shown by entries 4 and 5 some of the cis-isomer was observed. The 

reaction took place with a diverse range of aldehydes as shown in Scheme 69, where 
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electron rich and poor aryl aldehydes, heteroaromatic aldehydes and sterically demanding 

aldehydes such as pivaldehyde afforded the cycloadducts in excellent yields and 

diastereoselectivities. 

The diastereoselectivity of the reaction was in agreement with Kerr’s previous work 

regarding oxime ethers,63 which implied the reaction occurred through the same 

mechanistic pathway as described earlier in Scheme 66. 

This encouraged the group to apply the same conditions used in earlier work to afford the 

2,5-cis-isomer as the dominant product. In order to achieve this, the cyclopropane was first 

treated with Yb(OTf)3 in refluxing dichloromethane to generate the pyrazolidine 125, 

followed by addition of the aldehyde to afford the 2,5-cis cycloadducts preferentially 

(Scheme 70). 

 

Entry R/aldehyde Product Yield (%) (cis:trans) 

1 p-methoxy-benzaldehyde 124a 72 2:1 

2 p-nitro-benzaldehyde 124b 84 3.7:1 

3 trans-cinnamaldehyde 124c 83 2.1:1 

4 2-napthaldehyde 124d 75 3.4:1 

5 benzaldehyde 124g 81 3:1 

6 isobutyraldehyde 124h 65 1:3 

Scheme 70 

However the diastereoselectivity of the reaction for the formation of the 2,5-cis 

cycloadducts were poor compared to the diastereoselectivity observed with the oxime ether 

cyclopropane diesters.63 It was thought this happened due to a decrease in selectivity for 

formation of the Z-aza-iminium intermediate. To overcome this issue the Boc-protecting 

group was replaced with a less hindered methyl carbamate 126 to afford the 2,5-cis-

isomers preferentially, where a significant increase in diastereoselectivity was observed in 

most cases as reflected by the results shown in Scheme 71. The only exception was 
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isobutyraldehyde (entry 6), which under the new conditions still afforded the 2,5-trans-

isomer as the major product 127f. 

 
Entry R/aldehyde Product Yield (%) (cis:trans) 

1 benzaldehyde 127a 83 6.5:1 

2 p-methoxy-benzaldehyde 127b 92 9.2:1 

3 p-nitro-benzaldehyde 127c 89 3.7:1 

4 trans-cinnamaldehyde 127d 85 3.3:1 

5 2-napthaldehyde 127e 86 6.8:1 

6 isobutyraldehyde 127f 64 1:1.66 

Scheme 71 

It became apparent that formation of the cis-isomer was dependant on the reaction time, 

where experiments showed that over a period of 27 hours the cis-isomer isomerised to the 

corresponding 2,5 trans-isomer with a ratio of 3.4:1. 

1.3.8. Use of di-cobalt complexes in the [3+2] cycloaddition reaction with 

cyclopropanes 

Within the Christie group we envisioned that an alkynyl substituent on a cyclopropane 

could be complexed as a cobalt hexacarbonyl derivative,65 which would enable activation 

of the cyclopropane towards ring opening in order to undergo subsequent cycloadditions 

This is explained by the ring-opening of a cobalt complexed cyclopropanediester 128 

under the influence of a Lewis acid to form the Nicholas carbocation 129 as illustrated in 

Scheme 72. 

 

Scheme 72 
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The Scheme above shows that the cobalt alkyne unit stabilises the carbocation, while the 

ester moieties stabilises the carbanion.  

The cobalt complexed cyclopropane was synthesised first as shown in Scheme 73. 

 

Scheme 73 

This was prepared in four steps, starting with formation of the vinyl cyclopropane 77, upon 

reaction with dimethylmalonate and 1,4-dibromobut-2-ene 130. Ozonolysis of the vinyl 

cyclopropane afforded the aldehyde 131, which was reacted with the Bestmann reagent to 

afford the alkyne substituted cyclopropane 132. The cyclopropane was complexed with 

cobalt to afford the cobalt hexacarbonyl cyclopropane 128 in 85% yield. 

The cobalt complexed cyclopropane diesters 128 were then reacted with a variety of 

aldehydes in the presence of boron trifluoride etherate in dichloromethane to afford the 

desired tetrahydrofurans 133a-e in high yields with poor diastereoselective control (Scheme 

74). The cycloaddition reaction was limited to electron deficient aromatic, aliphatic and 

functionalised aldehydes, where no reaction was observed with electron rich aromatic 

aldehydes. The tetrahydrofurans were obtained as a 1:1 mixture of cis- and trans-isomers, 

where the best diastereomeric ratio obtained was 2:1 (entry 3) in favour of the trans-

isomer. 
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Entry R Product Temp (°C) Yield (%) cis:trans 

1 Ph 133a 40 83 1:1 

2 4-MeOC6H4 133b 0 0 n/a 

3 4-NO2C6H4 133c 40 71 1:2 

4 C5H11 133d 40 83 1:1 

5 CO2C2H5 133e 40 85 1:1.6 

Scheme 74 

The same conditions were applied using imines as the trapping reagent to afford the 

substituted pyrrolidines 134a-e in relatively high yields66 (Scheme 75). 

 

Entry R R1 Product T(°C) Yield (%) trans:cis 

1 4-MeOC6H4 CO2Et 134a 40 91 1:1 

2 2,4-(MeO)2C6H4 CO2Et 134b 40 80 2:1 

3 4-Me-C6H4 CO2Et 134c 40 85 1:1 

4 2-NC-C6H4 CO2Et 134d 25 72 1:3 

5 C6H5 2-O2N-C6H4 134e 40 30 2:1 

Scheme 75 

Generally electron-withdrawing groups present on the imine carbon and electron donating 

groups on the nitrogen resulted in high yielding products. The results showed that the 
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diastereoselectivity increased to a maximum ratio of 3:1 compared to 2:1 ratio, which was 

obtained in the synthesis of the tetrahydrofurans. This only took place in the presence of an 

ortho-substituted aryl group such as ortho-nitrile, which gave a 3:1 ratio, preferentially as 

the cis-isomer 132d. When this was replaced with a nitro group a 2:1 ratio was observed in 

favour of the trans-isomer 134e but a reduction in yield was obtained (entry 5 Scheme 75). 

Kerr et al have also successfully reported the use of cobalt hexacarbonyl cyclopropanes 

128 in [3+2] cycloadditions with nitrones via a Nicholas-type reaction in the presence of 

scandium triflate (Sc(OTf)3) to afford a variety of oxazines 135a-e in high yields (Scheme 

76).67 

 

Entry R1 R2 Time (h) Product Yield (%) 

1 Ph Ph 3 135a 90 

2 Ph 4-NO2C6H4 2 135a 67 

3 Ph Thiophene 1 135a 93 

4 benzyl 4-MeO-C6H4 48 135a 72 

5 hexyl Ph 21 135a 56 

Scheme 76 

As stated, the majority of reactions were performed using 10 mol% Sc(OTf)3, apart from 

entry 4 which required 20 mol% Sc(OTf)3 to drive the reaction to completion. All oxazines 

were obtained as a single diastereoisomer, where substituents at C3 and C6 expressed a cis-

relationship. 
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1.3.9. A radical approach towards the cycloaddition of activated cyclopropane 

diesters 

An alternative method to the commonly used [3+2] cycloaddition reaction was reported by 

Oshima et al, where they demonstrated the synthesis of cyclopentane derivatives via a 

radical mediated cyclisation.68 This was achieved through the generation of a benzenethiyl 

radical, which subsequently led to the formation of substituted cyclopentanes via ring-

opening of the vinyl substituted cyclopropanediester, followed by the addition of electron 

rich and poor olefins. (Scheme 77) 

 

Entry R1
 R2

 Time (h) Product Yield 
Isomeric Ratio 

(cis:trans) 

1 H O-Bu 0.7 136a 82 65:35 

2 Me O-Me 16 136a 71 100:00 

3 Me OCOCH3 3 136a 74 80:20 

4 H CO2Me 48 136a 38 76:24 

5 H CN 22 136a 21 64:36 

Scheme 77 

The electron rich olefins afforded the cyclopentanes 136a-e in high yields; however olefins 

possessing electron withdrawing groups resulted in poor yields (entry 4 and 5). Also for 

entries 4 and 5 the reaction was performed in benzene to prevent polymerisation of the 

olefin. The diastereoselectivity of the reaction was extremely low, apart from entry 2, 

where the cis-isomer was formed exclusively. 

The group also demonstrated that the cycloaddition could take place with a 

vinylcyclopropane possessing only one ester moiety with both electron rich and poor 

olefins in 54-77% yields. The reaction was thought to take place through a step-wise 

mechanism, where the benzenethiyl radical attacks the vinyl group of the VCP 77 to form 

radical 137 on ring opening of the cyclopropane. This was followed by coupling of the 

radical 137 to the corresponding olefin to afford the second radical intermediate 138, 
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which underwent cyclisation to afford the desired vinylcyclopentane 136 plus the 

regenerated thiyl radical. (Scheme 78) 

 

Scheme 78 

More recently Goff et al have shown the ability of 2-ethynylcyclopropane-1,1-

dicarboxylates to undergo cycloadditions with electron rich olefins via radical addition69 

(Scheme 79). 

 

Entry Alkene Product Yield (%) (cis:trans) 

1a 
Butyl vinyl ether 

(R= OBu) 
 

55 4.2:1 

2b 
Allyl phenyl ether 

(R= CH2OPh) 
 

29 2.1:1 

3c 
Allyl benzoate 

(R= CH2O2CPh) 
 

30 2.5:1 

Scheme 79 
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The initiator for the reaction was the phenylseleno radical, which was generated from 

PhSeSePh. The cyclopentane derivatives 139a-c was achieved in relatively low yields 

through photolysis of a benzene solution containing the alkyne, olefin and PhSeSePh in a 

1:10:0.2 molar ratio. In an attempt to increase the yield of the cycloadduct, 50 equivalents 

of the butyl vinyl ether were used but this only resulted in a 10% increase. 

The mechanistic pathway for the reaction is shown in Scheme 80, where the generated 

phenylseleno radical attacks the terminal alkyne 132, followed by ring-opening to afford 

the malonate radical substituted with a phenylselenoalkene 141. The malonate radical then 

adds to the alkene generating a radical that cyclises back onto the allene to afford 143, 

which is subsequently followed by the loss of the phenylseleno radical to afford the 

cyclopentane derivative 139. 

 

Scheme 80 
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2. Results and discussion 

Activated cyclopropanes have been extensively used in synthetic chemistry as precursors 

in cycloaddition reactions. The main reason for this is their ability to undergo ring-opening 

when activated by Lewis acids which is further enhanced by the presence of a substituting 

aryl carbocation stabilising group such as phenyl.44 This has led to the synthesis of many 

5/6 membered heterocycles such as pyrrolidines,61,62 oxazines and 

methylenecyclopropanes in excellent yields and diastereoselectivities.45a, 48,53,70 To extend 

the scope of this methodology, we took the opportunity to examine the synthesis of 

activated cyclopropanes, di-substituted with various stabilising groups such as aromatics 

and N-heterocycles, to act as potential precursors in cycloaddition reactions. It was 

believed these features would lead to an increase in the regio- and diastereocontrol of the 

reaction. 

The initial aim of the research project was to synthesise highly substituted heterocycles via 

2,3-disubstituted cyclopropanes 146. It was envisioned that this could be achieved through 

an array of Suzuki cross coupling reactions with the corresponding boron substituted 

cyclopropanes 145 to afford a diverse range of cycloadducts as illustrated in Scheme 81. 

 

Scheme 81 
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2.1. Attempted synthesis of cyclopropyl boronates 

2.1.1. First attempt-starting from vinyl boronic acid 

Carboni, Maas and Pietruszka have successfully reported the synthesis of 

cyclopropylboronic acid esters. This was achieved via a carbene transfer to 1-

alkenylboronic acid esters in good yields.71,72 (Scheme 82 ) 

 

Scheme 82 

The methodology reported by Carboni and Maas was used in an attempt to allow the 

cyclopropanation of vinyl boronic pinacol ester 149 onto diazo dimethylmalonate 150a via 

an acyl carbene transfer as depicted in Scheme 83. 

 

Scheme 83 

The starting material dimethyl diazomalonate 150a was afforded in two steps as shown in 

Scheme 84. The mesyl azide 153 was obtained from the addition of sodium azide 152 to 

methansulfonyl chloride 151, which was subsequently reacted with dimethylmalonate 154 

in the presence of triethylamine to afford the dimethyl diazomalonate 150a in 97% yield. 

(Scheme 84) 
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Scheme 84 

A variety of conditions was tried and tested (Table 1), but unfortunately none of the 

desired product was afforded. In most cases either the vinyl boronic ester 149 was retained 

or a complex mixture was observed. It is believed the presence of two electron 

withdrawing groups attached to the diazomalonate 150a attributed to this. As it was thought 

these would have lowered the reactivity of the acyl carbene transfer onto the vinylboronate. 

In an attempt to increase the reactivity of the carbene, ethyl diazoacetate 150b was reacted 

with vinyl boronic ester (entry 3) utilising the same conditions reported in the literature, 

however only the ethyl diazoacetate dimer was observed even after careful addition. 

 

Entry R1 R2 Eq 150a,b Product 

1 CO2Me Me 2.5 149+ complex mixture 

2 CO2Me Me 7.0 149+ complex mixture 

3 H Et 7.0 Dimer + complex mixture 

4 H Et 2.5 149+ complex mixture 

51 H Et 7.0 complex mixture 

1reaction performed in THF at 66°C 

Table 1 

1H NMR analyses of the crude reaction indicated trace amounts of the desired product 

(entry 3), however degradation of the starting materials may have formed during the 

reaction as the majority of the signals were hidden under the dimer peaks. The latter could 
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unfortunately not be separated from the rest of the crude material. The catalyst used was 

palladium acetate (5 mol%) and no other catalysts were employed as the literature stated 

that the use of rhodium and copper catalysts were unsuccessful as both led to the formation 

of the carbene dimer. To explore the reactivity of the vinyl boronic acid in the 

cyclopropanation reaction, it was added with styrene to the reaction flask containing the 

diazo dimethylmalonate in the presence of rhodium acetate. This was performed to see if 

the reaction conditions were adequate for the reaction to proceed as styrene is known to 

undergo a [2+1] cycloaddition with diazo dimethylmalonate (Scheme 85). 

 

Scheme 85 

The reaction was performed with 0.5 eq of styrene 155 and the vinyl boronic acid 149 with 

1 eq of the diazo dimethylmalonate 150a. The results showed that only the phenyl 

substituted cyclopropane diester was afforded, which implied that the diazo 

dimethylmalonate was less reactive towards the terminal bond of the boronic acid and 

further explains why the reaction may not have taken place. 

2.1.2. Second attempt – Hydroboration of cyclopropenes 

Hydroboration of olefins has been well documented and the reaction occurs with a syn 

addition of borane to the alkene. This borane is known to add preferentially to the least 

hindered carbon to form the anti-Markovnikov product. Hydroboration of cyclopropenes 

has been reported by Gevorgyan,23 however only with mono substituted cyclopropenes. 

(Scheme 19) It was believed there was scope to address this by applying the reaction 

conditions he utilised to the hydroboration of a phenyl-substituted cyclopropene outlined in 

Scheme 86. 

 

Scheme 86 
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The first part of synthesis involved the formation of the phenyl substituted cyclopropene 

1d. This was prepared using the method described by Fox et al.73 A solution of the diazo 

dimethylmalonate 150a in dichloromethane was added slowly to a stirred solution of 

phenylacetylene 158 and rhodium (II) acetate dimer to afford the desired cyclopropene in 

54% yield (Scheme 87). 

 

Scheme 87 

It was noted that the diazo compound must be added slowly to prevent formation of the 

carbene dimer. This was important as the nucleophilic attack of the diazomalonate with the 

catalyst to form the rhodium carbenoid intermediate has been proposed as the rate-limiting 

step of the catalytic cycle. 

Pinacol borane was chosen as an alternative to the commonly used catecholborane as the 

hydroborating agent in the following reactions, due to its increased reactivity.74 It is a 

stable hydroborating agent and adds to alkenes and alkynes at elevated temperatures; 

however it is known to decompose thermally resulting in a number of boron-containing 

products. The use of rhodium complexes enabled the pinacol borane to be used under 

milder conditions. Taking into consideration the above facts a variety of conditions were 

tried as illustrated in Table 2. 
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Entry Catalyst Reactant (eq) Solvent Temp 
(°C) Time (h) Product 

1 [Rh(COD)Cl]2 
(3 mol %) 1.1 THF 25 2 1d 

2 Rh(PPh3)3Cl 
(6 mol %) 1.1 THF 25 4 1d+ complex 

mixture 

3 Rh(PPh3)3Cl 
(6 mol %) 1.1 THF 25 24 1d + complex 

mixture 

4 [Rh(COD)Cl]2 
(3 mol %) 1.5 CH2Cl2 25 24 Furan derivative 

5 [Rh(COD)Cl]2 
(3 mol %) 1.5 Tol 110 24 

1d+ 
uncharacterised 

product 

Table 2 

It can be seen that in all examples the boron-complex did not add across the cyclopropene. 

In the majority of cases the cyclopropene was retained, apart from one example when 

[Rh(COD)Cl]2 was used in dichloromethane (entry 4) where the furan derivative was 

observed.75 This was believed to be associated with the presence of two electron-

withdrawing groups and a stabilising group adjacent to the alkene. It was assumed that the 

extra electron-withdrawing group destabilises the metallocarbene resulting in the formation 

of the furan derivative 158. The scheme below illustrates a plausible mechanism which 

could explain the outcome of the reaction (Scheme 88). 

 

Scheme 88 

As the reactive substrate is a highly substituted olefin it was thought that employing a less 

bulky borane complex such as H3B.THF, which in turn could be treated with ethylene 

glycol to afford the boronate ester 157b (Scheme 89). 
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Scheme 89 

The synthesis of 157b started from the phenyl cyclopropene 1d which was treated with 

H3B.THF in THF at 0°C prior to the addition of ethylene glycol. The resulting mixture was 

allowed stir at room temperature for a further 3 hours. Boron NMR analyses were 

performed on the mixture which unfortunately showed that none of the desired product 

was formed. This indicated that the BH3 complex was not inserting into the relative alkene. 

The reaction was attempted utilising catechol and pinacol as alternatives to ethylene 

glycol, however this returned no results. 

2.2. Third attempt-starting from 1-alkynyldiisopropoxyboranes 

An alternative route was employed to synthesise cyclopropane 162 which involved 

cyclopropenation of 1-alkynyldiisopropoxyboranes 160 onto dimethyl diazomalonate 150a. 

The resulting cyclopropene 161 would then be subjected to hydrogenation to afford the 

corresponding cyclopropyl diisopropoxyborane 162 as outlined in Scheme 90. 

 

Scheme 90 

The first part of the synthesis involved formation of the phenyl-alkynyldiisopropoxyborane 

160. This was prepared utilising the procedure described by Brown et al., where nbutyl 

lithium was added to a solution of phenylacetylene 158 in Et2O at -78oC to afford the 

lithium acetylide 163. The resulting mixture was subsequently added via a canula to a 

solution of triisopropylborane in Et2O. A final addition of aqueous hydrochloric acid 

afforded the desired alkyne borane 160 in a moderate 46% yield. (Scheme 91) This was 

confirmed by proton and boron NMR which was in agreement with the literature values 

stated.76 
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Scheme 91 

The prepared alkyne substituted borane 160 was subsequently reacted with the diazo 

dimethylmalonate 150a in the presence of rhodium(II) acetate dimer (Scheme 90). The 

mixture was analysed by 1H NMR which showed the methyl ester groups of the diazo 

dimethylmalonate were no longer seen as one chemical shift but as two with respective 

chemical shifts at 3.75 and 3.82 ppm. This implied that the two methyl groups were in 

different chemical environments. Additional analyses of the worked up mixture by 11B 

NMR showed a significant chemical shift in the boron peak from 21.5 to 25.4 ppm. Upon 

purification by flash chromatography, the isolated product was identified as the mono-

substituted phenyl cyclopropene derivative 1d (Scheme 92). 

 

Scheme 92 

It was suspected that the isopropyl groups were hydrolysed due to the acidity of the silica. 

In an attempt to isolate the desired product, the reaction was repeated and the resulting 

crude mixture was distilled under a vacuum distillation apparatus, however this resulted in 

a complex mixture. It was then decided to adopt another approach using palladium acetate 

as the catalyst. This catalyst was chosen as the chemistry of PdII has been used and 

described in the literature as an efficient catalyst in cyclopropenations with boron 

substituted compounds. Unfortunately in this case only a complex mixture was obtained. 

Although there was enough evidence in our primary analyses to suggest the di-substituted 

cyclopropene had been obtained, however we were unable to isolate the desired product 

from the crude and no further attempts were conducted using this route. Instead, another 
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synthesis was designed to overcome the use of the capricious boronate substituted 

intermediates. The reason behind synthesising the cyclopropyl boronates was to obtain a 

cyclopropane precursor where the substituents could be varied using an efficient and quick 

methodology such as Suzuki cross coupling reactions. 

2.3. Synthesis of 2,3 disubstituted cyclopropane diesters 

Due to the unsuccessful synthesis of the cyclopropyl boronates another route was explored 

to afford the di-substituted cyclopropanes. Previously our research group primarily 

investigated the reactivity of mono-substituted 1,1-diester cyclopropanes. These were 

synthesised from various precursors such as alkyne-dicobalt hexacarbonyl complexes or 

cinnamaldehyde. These were shown to undergo [3+2] cycloaddition reactions with 

aldehydes or imines to afford their respective tetrahydrofurans and pyrrolidines in 

reasonable yields but with limited diastereoselectivity.77 (Scheme 73 and Scheme 74) 

A further development was made recently within the group, where a 2,3 disubstituted 1,1 

cyclopropane diester was synthesised78 (Scheme 93). The synthesis of disubstituted 

cyclopropane was achieved using a three step methodology. Treatment of the α/β 

unsaturated trans-cinnamaldehyde 164 with dimethyl bromomalonate 165 in the presence 

of diethyl amine afforded the aldehyde 166. Subsequent addition of the Bestmann reagent 

to the aldehyde 166 afforded the alkyne 167 which underwent complexation with dicobalt 

octacarbonyl to afford the cyclopropane 168 in 36% yield over 3 steps.78 
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Scheme 93 

However the cyclopropane 168 did not undergo cycloaddition reactions with aldehydes or 

imines upon treatment with Lewis acid. A new route was then explored to synthesise 2,3 

disubstituted cyclopropane diesters possessing different stabilising groups such as 

substituted aromatics with the aim to overcome the issues associated with cyclopropane 

168. 

To become familiar with the chemistry and the conditions best suited to synthesise these 

substituted cyclopropanes, an attempt was made to synthesise the 2,3-diphenyl 

cyclopropane diester 170a outlined in Scheme 94. The reaction conditions used were 

reported by Doyle et al in the successful synthesis of the phenyl substituted 1,1 

cyclopropane diester as described previously79 (Scheme 85). 

 

Scheme 94 
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Diazo dimethylmalonate and rhodium (II) acetate dimer were added to a stirred solution of 

cis-stilbene 169 in toluene, however after 2 days no reaction was observed. It was believed 

the presence of an extra stabilising group decreased the reactivity of the alkene to undergo 

cyclopropanation with the diazomalonate. The use of diazo ethylacetate could have been 

more successful as it is more reactive towards cyclopropanation. However, the presence of 

only one ester group to stabilise the negative charge during ring opening may diminish the 

reactivity of the cyclopropane towards ring opening. The presence of an extra chiral centre 

at the C3 position would also increase the diastereomeric ratio of the reaction. A new route 

was explored, based on the work reported by Gevorgyan in the synthesis of di-substituted 

cyclopropenes.13 Gevorgyan had shown that cyclopropenes underwent a Heck-type 

arylation reaction upon treatment with aryl iodides in the presence of palladium acetate and 

potassium carbonate. These conditions were utilised in the synthesis of the cis 2,3-

disubstituted cyclopropanes 170a-g outlined in Scheme 95. 

 

Entry R1
 R2

 Product Yield (%) Product Yield (%) 

1 Ph Ph 171a 51 170a 80 

2 Ph 4-MeO-C6H4 171b 45 170b 92 

3 Ph 4-NO2-C6H4 171c 40 170c trace amount 

4 Ph 4-F-C6H4 171d 50 170d 100 

5 Ph 4-CF3-C6H4 171e 55 170e 100 

6 nBu Ph 171f 43 170f 51 

7 nBu 4-F-C6H4 171g 42 170g 50 

Scheme 95 

The phenyl and butyl substituted cyclopropene diesters were shown to undergo the Heck-

type arylation reaction with both electron rich and poor aryl iodides in moderate yields. It 

was discovered that under these conditions the reaction was limited to only p-substituted 
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aryl/heteroaryl iodides as when 2-iodoanisole, 2-bromobenzaldehyde and 1-iodo-2-

nitrobenzene was reacted with the phenyl cyclopropene none of the desired products were 

obtained. A range of palladium catalysts with different ligands were screened and the 

results are shown in Table 3. 

Entry catalyst Product 

1 5 mol % Pd(OAc)2 Traces of product identified 

2 10 mol% Pd(OAc)2 1d 

3 10 mol % Pd(PPh3)3 1d 

4 10 mol% Pd2(dba)3 1d 

5 10 mol% PdCl2 Complex mixture 

Table 3 

However it can be seen from the results that changing the ligand of the palladium catalyst 

had no effect on the outcome of the product obtained. This implied the Heck reaction was 

dependent on the positioning of the iodo group attached to the aromatic ring. Gevorgyan 

proposed that arylation of the cyclopropene proceeded via a cationic pathway, (Scheme 96) 

whereby an electrophilic addition of the ArPd+ species across the cyclopropene afforded 

the cyclopropyl cation 172. The benzylic cation was additionally stabilised through 

interaction with the d orbitals of the Pd. This may explain the slight increase in yields 

when electron-deficient iodo-aromatic reagents were used (Scheme 95, entry 4 and 5). 

Gevorgyan postulated that the mechanistic pathway finishes with either a 1,3 shift of the 

aryl group or more likely by a reductive elimination of the co-ordinated nucleophile. 

 

Scheme 96 

The di-substituted cyclopropene diesters were then subjected to the hydrogenation 

conditions outlined in Scheme 95, where entries 1-2, 4-5 and 7-8 successfully afforded the 
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cyclopropanes in moderate to excellent yields. The fluoro and trifluoromethyl substituted 

phenyls (entry 4 and 5) underwent the hydrogenation in quantitative yields and no 

purification was required. When the p-nitrophenyl substituted cyclopropene was subjected 

to the hydrogenation conditions, (entry 3) it was observed that the nitro group may have 

been reduced to the amine during this process. However only a tentative assignment of the 

crude product by NMR was obtained as attempts at purification of the product failed when 

subjected to column chromatography. 

2.4. Cycloadditions with di-substituted cyclopropanes 

Reports by Kerr et al. successfully demonstrated the feasibility of the [3+3] dipolar 

cycloaddition of nitrones with cyclopropanes; however this was reported using mono-

substituted cyclopropanes primarily.61,62,70 Therefore we decided to focus our research on 

the reactivity of disubstituted cyclopropanes in the [3+3] cycloaddition reaction. The 

rationale in using disubstituted cyclopropanes is that they are known to have strained 

bonds showing significant π character. Within the cyclopropane diester the bond can be 

polarised and weakened by co-ordination of a Lewis acid to one or both of the ester 

substituents as shown in Figure 10.61 The charge separation can be further enhanced by the 

presence of a carbocation-stabilising substituent (R1 and R2) such as phenyls, vinyls or 

organometallic complexes enabling them to be useful precursors in cycloaddition 

reactions. 

 

Figure 10 

Nitrones were preferentially chosen over imines or aldehydes to perform the [3+3] instead 

of the [3+2] dipolar cycloadditions as there had been extensive literature reported in this 

field resulting in high yielding products. 
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2.4.1. Synthesis of nitrones 

Several nitrones were prepared in relatively high yields via a condensation reaction 

between the hydroxylamine hydrochlorides and aldehydes, heated to reflux in anhydrous 

dichloromethane in the presence of a desiccant (Scheme 97). 

A variety of nitrones were prepared from N-benzyl hydroxylamine 173a or N-methyl 

hydroxylamine 173b and various aldehydes. Results of their respective synthesis are 

outlined in Scheme 97. In most cases, the use of electron rich aldehydes afforded the 

corresponding nitrones in higher yields compared to the use of electron deficient aldehydes 

(entries 4,8,9). However when p-nitrobenzaldehyde 174b was allowed to react with N-

benzyl hydroxylamine, the corresponding nitrone 175b was surprisingly afforded in a 

respectable 61% yield (entry 2). 

 

Entry R1 Amine R2 Aldehyde Product Yield (%) 

1 benzyl 173a MeO-C6H4 174a 175a 72 

2 benzyl 173a NO2-C6H4 174b 175b 61 

3 methyl 173b MeO-C6H4 174a 175c 63 

4 methyl 173b O2N-C6H4 174b 175d 52 

5 benzyl 173b C5H4OS 174c 175e 57 

6 methyl 173b C5H4OS 174c 175f 54 

7 methyl 173b Me-C6H4 174d 175g 54 

8 methyl 173b F3C-C6H4 174e 175h 32 

9 benzyl 173a F3C-C6H4 174e 175i 46 

Scheme 97 
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2.4.2.  [3+3] cycloadditions 

The cycloaddition reaction was performed with the diphenyl cyclopropane diester initially 

to investigate the feasibility of the reaction. Results are summarised in Scheme 98. We 

initially utilised the reaction conditions described in the literature by Kerr et al. to perform 

the [3+3] dipolar cycloaddition reaction of nitrones with the disubstituted cyclopropanes 

(entry 1). The majority of the reactions were performed at room temperature for a period of 

24 hours, however the reaction time was extended when magnesium iodide was utilised as 

the Lewis acid (entry 5). The reaction time was also extended to 72 hours when nitrone 

175e was allowed to react with the diphenyl cyclopropane 170a in dichloromethane at room 

temperature (entry 8). 
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Entry Nitrone 
Nitrone 

(eq) 
Lewis acid Solvent Product Yield (%) 

1 175a 1.2 Yb(OTf)3 5 mol % CH2Cl2 176a 23 

21 175a 1.2 Yb(OTf)3 10 mol % CH2Cl2 176a 25 

32 175a 1.2 Yb(OTf)3 5 mol % CH2Cl2 176a 30 

41 175a 2.5 Yb(OTf)3 5 mol % CH2Cl2 176a 32 

53 175a 2.5 MgI2 5 mol % CH2Cl2 170a >90 

6 175d 2.5 Yb(OTf)3 5 mol % CH2Cl2 176b 23 

7 175d 5.0 Yb(OTf)3 5 mol % CH2Cl2 170a >90 

83 175e 2.5 Yb(OTf)3 5 mol % CH2Cl2 176c 24 

9 175b 2.5 Yb(OTf)3 5 mol % CH2Cl2 176d 33 

101 175e 2.5 Yb(OTf)3 5 mol % DCE 176c 57 

111 175a 2.5 Yb(OTf)3 5 mol % DMF 170a >90 

121 175b 2.5 Yb(OTf)3 5 mol % Tol 176d 24 

1 reaction performed at reflux 
2 Microwave conditions performed at 110oC for 30 min 
3 reaction time extended to 72 hours 

Scheme 98 
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Cyclopropane 170a was allowed to stir for ten minutes in anhydrous dichloromethane with 

5 mol % Yb(OTf)3 prior to the addition of nitrone 175a. The desired 1,2 oxazine 176a was 

afforded in a very low 23% yield (entry 1) and 43% of the cyclopropane was recovered. 

This implied the reaction was not going to completion and therefore a variety of reaction 

conditions were implemented in an attempt to improve the yields of the cycloadduct. 

Hence the cycloaddition reaction was repeated under reflux, but this led to no improvement 

of the yield. (entry 2) To stress the reaction further, the reaction was performed under 

microwave conditions but only a slight increase in yield was observed. (entry 3) The 

cyclopropane 170a was able to be recovered when conventional heating was utilised, 

however this was not observed when microwave irradiation was used due to 

decomposition. The amount of nitrone used in the reaction was increased, however only a 

slight improvement was observed (entry 4). An alternative Lewis acid MgI2 was employed 

as Kerr had demonstrated this to be an efficient catalyst, but in our case only the 

cyclopropane was recovered after 24 hours (entry 5). To assess the effect of the nitrone on 

the cycloaddition reaction, a more electron rich nitrone 175d was used, but this only 

afforded the oxazine 176b in 23% yield (entry 6). In an attempt to drive the reaction 

further, 5 equivalents of nitrone were employed; however this only returned the 

cyclopropane 170a (entry 7). This could be explained by saturation of the reaction mixture 

with the nitrone which may have prevented the Lewis acid from co-ordinating to the ester 

moieties of the cyclopropane. This would have resulted in a reduced weakening of the 

bond within the cyclopropane to undergo ring-opening. An electron deficient nitrone was 

also used as previous investigations in our research group showed that mono-substituted 

cyclopropanes were more reactive with electron deficient aldehydes, but again no 

significant increases in the yield was observed (entry 9). A higher boiling solvent, 1,2 

dichloroethane was utilised increasing the temperature of the reaction to 88°C which was 

shown to significantly increase the yield from 33% to 57% (entry 10). With this in mind 

DMF was employed as it was thought a more polar solvent would favour ring-opening of 

the cyclopropane, however only the cyclopropane was retained (entry 11). Lastly a less 

polar solvent with a higher boiling point was used, but this had no effect on the yield of the 

oxazine obtained. In all cases the oxazines were obtained as single diastereoisomers, where 

C3 and C6 expressed a cis relationship while the two phenyls expressed a trans 

relationship. The relative stereochemistry was confirmed by nOe experiments and an X-ray 

diffraction structure of 176a as illustrated in Figure 11. 
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Figure 11 

The reactions were repeated with the optimised conditions detailed above and a significant 

increase in yields was obtained. (Scheme 99) In addition to this, the reaction was 

performed with the unsymmetrical 2,3-disubstituted cyclopropanes possessing two 

different stabilising groups, however a notable difference was observed in the results 

obtained. 
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Entry R1
 SM Nitrone Time (h) Yield 

(%) Oxazine 176 d.r. 
cis:trans 

176/178 
ratio 

1 Ph 170a 
175a 24 70 176a 100:0 n/a 

2 Ph 170a 175d 24 60 176b 100:0 n/a 

3 Ph 170a 175e 24 57 176c 100:0 n/a 

4 Ph 170a 175b 19 55 176d 100:0 n/a 

5 p-F-C6H4 170d 175e 24 50 176e 100:0 1:1 

6 p-F-C6H4 170d 175c 48 51 176f 0:100 1:1.5 

7 p-MeO-C6H4 170b 175f 36 45 176g 0:100 n/a 

8 p-CF3-C6H4 170e 175g 30 60 176h 2:1 n/a 

9 p-CF3-C6H4 170e 175f 24 45 176i 100:0 n/a 

10 p-MeO-C6H4 170b 175g 24 49 176j 100:0 n/a 

11 p-CF3-C6H4 170e 175b 24 45 176k 100:0 n/a 

12 nBu 170f 175a 18 SM n/a n/a n/a 

13 
alkyne 

Co2(CO)6 
complex 

177 175e 24 SM n/a n/a n/a 

Scheme 99 

It can be seen from the results that in the majority of cases the 1,2 oxazines were afforded 

as a single diastereoisomer where the cis-isomer was predominately formed. However the 

introduction of a substituent to one of the aromatic rings resulted in the trans isomer 176f 

and 176g also being observed. (entries 6-8) Although in all the oxazines isolated, the 
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substituents at positions C5 and C6 of the ring expressed a trans relationship which implied 

that ring-opening of the cyclopropane most probably occurred with inversion of 

stereochemistry. These results further support the mechanistic pathway postulated by 

Kerr.51 The cycloaddition performed with the di-phenyl cyclopropanes resulted in higher 

yielding products (176a-d) compared to that of the cyclopropanes possessing two different 

stabilising groups (176e-k). The introduction of a substituent to one of the aromatic rings 

significantly reduced the diastereo- and regioselectivity of the reaction and as a result a 

reduction in yields was observed. This was also reported by Kerr where he performed the 

cycloaddition reaction with a cis disubstituted cyclopropane which only possessed one 

carbocation stabilising group. It was envisioned that the presence of a different stabilising 

group would help to control the regioselectivity of the reaction. This was observed in some 

cases as shown by entries 7-11 where the trans oxazine and the cis-oxazine were obtained 

and in the case of entry 8 a separable mixture of cis and trans-isomers were afforded with a 

diastereomeric ratio of 2:1. These results reflect that the cycloaddition is able to take place 

with both electron rich and deficient nitrones. The formation of cis or trans isomers may be 

attributed to the reaction times where racemisation could have taken place under prolonged 

heating. This has been illustrated in entries 6-8 where the trans isomer was obtained when 

the reaction had been heated for longer than 24 hours. When trifluoromethyl phenyl 

substituted cyclopropane 170g was utilised, a 2:1 mixture of diastereoisomers were 

obtained as the reaction was heated for 30 hours leading to a small amount of racemisation. 

(entry 8) In all reactions performed, only the fluoro substituted phenyl cyclopropane 170d 

resulted in a mixture of regioisomers; with one as the cis isomer (entry 5) and the other as 

the trans isomer (entry 6). In this example the substituent was electron withdrawing and 

therefore would have expected to see only one regioisomer. The rationale behind this is the 

electron-withdrawing group is pulling electron density away from the ring making the 

carbon less nucleophilic. As a result the oxygen of the nitrone is more likely to attack the 

substituted phenyl over the unsubstituted phenyl resulting in one regioisomer, however this 

was not observed. This could be attributed to the fact that fluoro phenyl is not a strong 

enough electron deficient group to significantly alter the electron density between the two 

carbons within the cyclopropane ring. A recrystallisation of the product was performed in 

anticipation that one regioisomer would crystallise while the second one would remain 

soluble. An X-ray structure of 176e was obtained which unfortunately showed a mixture of 

the two regioisomers. (Figure 12) 
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Figure 12 

The regioisomers of the oxazines were unable to be separated by flash chromatography, 

and our attempts to separate the two cycloadducts by preparative HPLC remained 

unsuccessful. 

The cycloaddition was also attempted with the butyl substituted cyclopropane 170f (entry 

12) but unfortunately only a trace amount of the desired product was obtained with mainly 

starting material retained. The reaction may have been suppressed due to the presence of 

the slightly bulky butyl group as Kerr had reported that the cycloaddition took place with 

the methyl substituent. Finally, the hexacarbonyl cobalt complex disubstituted 

cyclopropane diester (entry 13) prepared previously within the research group was also 

used in an attempt to perform the cycloaddition reaction. However as observed with imines 

and aldehydes the cyclopropane 177 was not able to afford the cycloadduct where only 

starting material was obtained.78 The rationale behind the cyclopropane not opening could 

be associated with the presence of a strong stabilising group which may override the 

cationic charge once the ring is opened. This would lead to a reduction in the charge 

separation between the ester moieties and the stabilising groups resulting in the opened 

ring to revert back to the closed ring which is more favoured. 
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The results obtained further support Kerr’s theory that the cycloaddition reaction proceeds 

mainly through a stepwise mechanism. The reaction starts with an initial attack of the 

nitrone oxygen onto the cyclopropane which is subsequently followed by an attack of the 

anionic charged malonate onto the iminium species 179 to afford the cis isomer as the 

predominant product 176 (Scheme 100). 

 

Scheme 100 

It also implies that the reaction goes via a SN2 addition as inversion of stereochemistry is 

observed between C1 and C2 of the cyclopropane which is expressed as a trans relationship 

between substituents at C5 and C6 within the oxazine ring. This stereochemistry was 

observed in all the compounds obtained. An alternative mechanism is coordination of the 

Lewis acid to one or two of the ester moieties to afford the ring-opened adduct (Scheme 

101). 

 

Scheme 101 

This would be followed by an attack of the nitrone oxygen onto the carbocation of the 

cyclopropane and subsequent attack of the malonate anion onto the iminium species would 

afford the cycloadduct. However in this example no inversion of stereochemistry would be 

observed and therefore confirms this mechanism is less likely. 
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2.5. Synthesis of N-heterocycle substituted cyclopropane diesters 

To extend the substrate scope of the 2,3 diaryl substituted cyclopropane diesters and in turn 

the products afforded via the [3+3] cycloaddition reaction, the replacement of aryl halides 

with heteroaromatic halides were investigated. 

The phenyl cyclopropene diester 1d was treated with iodo-pyrazole 180 in presence of 

palladium acetate and potassium carbonate expecting to afford the Heck product 181. 

(Scheme 102) 

 

Scheme 102 

However it soon became apparent from the NMR spectrum that the expected Heck product 

181 had not been obtained. A split in the chemical shifts for the methyl ester peaks at 3.5 

and 3.6 ppm combined with an additional two doublets at 4.2 and 5.0 ppm suggested the 

presence of a saturated cyclopropane ring. This was further confirmed by mass 

spectrometry and a crystal structure of product 182a was obtained by X-ray diffraction as 

illustrated in Figure 13. 
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Figure 13 

This implied that a hydroamination type reaction might have taken place as this reaction 

often occurs when catalysed by palladium (II) complexes. However this type of palladium 

mediated hydroamination is typically facilitated using a co-oxidant. In our case, the 

hydroamination of the cyclopropene was observed while no oxidant was used, and 

additionally the reaction was performed under anaerobic conditions. To identify whether 

the palladium source was responsible for the formation of product 182a, the reaction was 

performed with a palladium (0) source, Pd2(dba)3. This returned the same trans 2,3 

disubstituted cyclopropane 182a which was afforded with a similar yield despite the 

palladium source used. 

The reaction was attempted with a further three heteroaromatic halides; bromo-pyrazole, 

imidazole and 3,6 dibromocarbazole. (Scheme 103) The corresponding 

trans 2,3 disubstituted cyclopropanes 182b-d were isolated again in respectable yields and 

none of the Heck products were observed. 
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Entry substrate Product Yield (%) 

1 
 

182b 80 

2 
 

182c 60 

3 

 

182d 50 

Scheme 103 

In light of these results, the presence of the palladium catalyst was not thought to be 

essential as the palladium source had no detrimental effect on the yields. Further 

investigations were carried out using iodopyrazole as the initial reagent in an attempt to 

optimise the reaction conditions. (Scheme 104) 

 

Entry Solvent Base Temp (°C) Time (h) Product Yield (%) 

1 DMF K2CO3 90 20 182a 90 

2 DMF K2CO3 r.t. 24 182a 67 

3 DMF n/a 90 72 182a SM 

4 toluene K2CO3 110 20 182a 18 

5 DMF NMM 90 48 182a SM 

6 CH3CN K2CO3 80 48 182a 86 

7 CH3CN K2CO3 r.t. 21 182a SM 

Scheme 104 
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The first reaction was performed utilising potassium carbonate as the base in DMF at 90°C 

without the presence of palladium which successfully afforded the desired product 182a in 

90% yield. (entry 1) This proved the presence of palladium was not required within the 

reaction and as a result a significant increase in the yield was observed from 61 to 90%. To 

investigate further, a range of solvents, temperatures and bases was explored to see 

whether these had an adverse effect on the reaction. When the reaction was performed at 

room temperature (entry 2) a decrease in the yield was observed. It was thought this could 

be attributed to solubility issues with the potassium carbonate in DMF. A background 

reaction was performed without the base (entry 3), but no reaction was observed which 

proved the presence of base was required for the reaction to proceed. Replacement of DMF 

with a less polar solvent toluene (entry 4) resulted in a diminished yield of only 18% with 

50% of the SM retained. This suggested a polar aprotic solvent was complementary to the 

reaction. To improve the solubility and reactivity of the base in the reaction, N-

methylmorpholine was chosen as an alternative to potassium carbonate. However it can be 

seen from the results that no reaction was observed (entry 5), suggesting the base may have 

been too strong. This could have resulted in a stabilised anion unable to undergo addition 

with the cyclopropene. Finally, the reaction was attempted using acetonitrile as the solvent. 

The results observed were quite interesting as the cyclopropane was afforded in an 

excellent yield of 86% while heated to reflux (entry 6), although no reaction was observed 

when the reaction was performed at room temperature (entry 7). This is thought to be 

associated with the solubility of potassium carbonate in acetonitrile at room temperature 

and also implied the thermodynamic product was favoured over the kinetic product (entries 

1 and 6). 

The optimised conditions were applied to a range of nitrogen heterocycles and amines to 

test the substrate specificity of the reaction. (Scheme 105) With great success, a variety of 

halogenated and non-halogenated N-heterocycle substituted cyclopropanes were 

synthesised in a selective manner in respectable yields as depicted in Scheme 105. 
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Entry Heterocycle Product Yield (%) 

1 4-iodopyazole 182a 901 

2 4-bromoimidazole 182b 85 

3 4-bromopyrazole 182c 62 

4 3,6 dibromocarbazole 182d 68 

5 pyrazole 182e 53 

6 1,2,4 triazole 182f 50 

7 imidazole 182g 62 

8 benzotriazole 182h 60 

9 4-nitropyrazole 182i 50 

10 3-trifluoromethylpyrazole 182j 821 

11 tetrazole 182k trace amount 

12 phthalimide n/a decomposition 

13 N-boc amine 1d >99 

14 di N-boc amine 1d >99 

15 N-boc ethyl oxamate 1d >99 

1 No purification was required 

Scheme 105 

In the majority of cases the cyclopropanes were afforded within a high degree of 

diastereoselective control where the amine was added to the least hindered side to 

exclusively afford the trans isomer. (entries 1 to 10) However it can be seen from the 

results that the reaction was limited to mainly azoles where little or no reaction was 
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observed with primary and secondary amines. (entries 13-15) N-boc amine was used in an 

attempt to form the amino cyclopropane to enable further functionalisation of the ring, but 

unfortunately no reaction took place. To increase the acidity of the amine the di boc 

protected amine and N- boc ethyl oxamate were tested, however in both cases the starting 

cyclopropene was retained. The reason for di boc amine to not undergo addition could be 

associated with steric hindrance as a result of the bulky t-butyl group. 

As mentioned previously it is believed that the pKa of the amine combined with the 

stability of the ammonium intermediate formed in situ had a significant influence on the 

yield of the cyclopropane obtained. This was evident in the results shown in Scheme 105 

where amines with a lower pKa value (entries 1-3, 10) afforded the cyclopropane in a 

higher yield compared to amines with a higher pKa value. (entries 5 and 7) A list of pKa 

values of the azoles used is shown in Table 4. 

Substrate pKa H2O (DMSO) 

imidazole 14.4 (18.9)80 

pyrazole 14.2 (20.4)80 

4-bromopyrazole 12.780 

4-iodopyrazole 12.981 

4-nitropyrazole 9.680 

3-trifluoromethylpyrazole 10.681 

4-bromoimidazole 12.281 

1,2,4 triazole 10.0 (13.9)80 

benzotriazole 8.2 (11.9)81 

carbazole (19.9)81 

phthalimide 8.381 

primary amine (24.8)81 

Table 4 
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However there was some anomalies with this explanation as 1,2,4 triazole, benzotriazole 

and 4-nitropyrazole (entry 6, 8, 9) afforded the cyclopropane in 50%, 60% and 50% yield 

respectively. It is believed in these examples that the diazole anion is stabilised by its 

mesomer form and in turn has limited its reactivity to undergo a conjugate addition with 

the cyclopropene. (Scheme 106) 

 

Scheme 106 

As with these amines the potassium carbonate is strong enough to abstract the proton to 

afford the stabilised anion which is therefore less likely to add to the cyclopropene. 

However the amines with a pKa value higher than 10 are too basic to have their protons 

abstracted by potassium carbonate and therefore the amine acts as a nucleophile to undergo 

addition with the cyclopropene. This was further confirmed by the result obtained for 

tetrazole (entry 11) where only trace amounts of the desired product were observed. This 

was associated with the stability of the tetrazolate anion which has pronounced aromatic 

character. The diastereoselectivity observed for the cyclopropanes were confirmed by nOe 

experiments where no direct couplings were observed between the CH protons of the 

cyclopropane. 

The results obtained for this reaction led us to believe that the addition reaction would take 

place with a conjugated alkene (e.g. styrene) as well as with the strained cyclopropene. 

Thus the addition reaction was attempted using styrene 155 which was allowed to react 

with iodopyrazole 180 in the presence of potassium carbonate in DMF at 90°C (Scheme 

107).  

 

Scheme 107 
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Unfortunately no reaction was observed and the alkene was retained which suggested that 

the combination of a strained cyclopropene with an activating group like phenyl was 

essential for the addition reaction to take place. 

2.6. Synthesis of N-heterocycle substituted cyclopropane monoesters 

Within the synthesis of the cyclopropane diesters, potassium carbonate was replaced with 

the slightly more reactive caesium carbonate in the knowledge that the latter base is more 

soluble in DMF. A test reaction was performed where the addition of Cs2CO3 to a stirred 

solution of 4-nitropyrazole and phenyl cyclopropene afforded the unexpected 

decarboxylated cyclopropane as a mixture of isomers in 60% yield (Scheme 108). 

 

Scheme 108 

The isomers were separated by column chromatography to afford a 1:2 (184a:185a) mixture 

of diastereoisomers. In both products, a trans relationship was observed between H1 and 

H2 which was also observed in the previous results. The stereochemistry of the products 

was confirmed by nOe analysis and the observed 3JHH couplings between the CH protons 

as illustrated in Figure 14. 

 

Figure 14 

To determine whether the reaction was reproducible, a further three substrates were reacted 

under the same conditions to afford the monoester cyclopropanes as a 2:1 mixture of 

diastereoisomers in moderate yields (Scheme 109). 
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Entry XH Yield (%) 184:185 

1b 
 

60 1:2.5 

2c 
 

60 1:2 

3d 
 

55 1:2 

Scheme 109 

It was observed during the reaction that addition of the azole to the cyclopropene took 

place first, hence leading to the formation of the trans isomer followed by decarboxylation. 

This observation was made during addition of 3-trifluoromethylpyrazole where after 24 hrs 

a mixture of the diester and the two isomers of the monoester were obtained. After a 

further 20 h, only a mixture of the decarboxylated cyclopropanes was observed. It is 

known for activated esters to undergo decarboxylation when in the presence of caesium 

carbonate which has been observed in this reaction. 

2.7. Use of electron rich and deficient cyclopropenes in the addition reaction 

To extend the scope of the methodology and to explore the reaction further the addition 

reaction with azoles was performed with an electron deficient cyclopropene 186a (Scheme 

110). 

 

Scheme 110 

It was postulated that the electron withdrawing nature of the nitro group would provide 

greater stabilisation of the anion formed during addition of the azole to the cyclopropene. 

This in turn would increase the reactivity of the reaction resulting in higher yielding 
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products. It can be seen from Scheme 110 that under the revised conditions the desired 

cyclopropane was not obtained and instead the ring-opened product 187a was afforded as a 

single diastereoisomer in 60% yield. The stereochemistry and characterisation of the 

product was further confirmed by X-ray crystallography as shown in Figure 15. 

 

Figure 15 

It is believed the presence of the nitro substituent has increased the strained energy within 

the cyclopropane ring which has resulted in ring-opening to afford the alkene as the most 

stable product. This has been observed by Lam in some carbometalation reactions of 

cyclopropenes where tri and tetra substituted alkenes have been afforded in the presence of 

an iron catalyst, followed by subsequent cleavage of the C-C sigma bond.39 (Scheme 111) 

 

Scheme 111 

However in our case no metal was required and the nucleophiles were delivered to the least 

substituted carbon, whereas in this example the alkyl group has been delivered to the most 

substituted carbon. 
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In an attempt to obtain the cyclopropane rather than the alkene the reaction was performed 

at room temperature to see whether the ring-opened product was favoured as result of its 

thermodynamic stability. The results showed that 60% of the alkene was still obtained but 

30% of the desired cyclopropane was also afforded. This result indicated that the formation 

of the cyclopropane was dependant on temperature which further illustrated that the alkene 

was the most thermodynamically stable product. To investigate further, a variety of 

reactions were performed as demonstrated in Scheme 112. This was to demonstrate that the 

reaction was reproducible with other substrates and whether the addition was able to take 

place with electron rich cyclopropenes. 

 

Entry R XH Temp 
(°C) Time (h) Product Yield (%) 

188:187 

1 NO2 4-bromoimidazole r.t. 18 188a 54:0 

2 NO2 4-bromoimidazole 90 24 187b 0:54 

4 MeO 4-iodopyrazole 90 48 n/a 0 

5 MeO 4-bromopyrazole 90 48 n/a 0 

Scheme 112 

It can be seen from the results that the reaction took place with other azoles in a similar 

fashion to what was observed initially. (entries 1-3) The addition with 4-bromoimidiazole 

at room temperature (entry 1) afforded the trans cyclopropane 188a exclusively where 

none of the alkene was observed. However when the reaction was performed at 90°C 

(entry 2) the contrary was observed and the alkene 187b was afforded as the sole product. 

This further confirmed that the temperature had a significant influence on the product 

afforded. The introduction of an electron rich cyclopropene was not successful and no 

addition was observed. It was believed the electron-donating effect of the methoxy group 

destabilised the in situ anion which would reduce the reactivity of the cyclopropene to 

undergo addition. 
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Optimisation studies were performed in an attempt to improve the yield of the reaction and 

to suppress the formation of the ring-opened product. (Scheme 113) The two main 

variables investigated were solvent and temperature. 

 

Entry solvent Temp (°C) Time (h) 186a (%) 188b (%) 187a (%) 

1 CH2Cl2 r.t 30 >99 0 0 

2 MeOH r.t 24 70 0 0 

3 THF r.t. 20 45 55 0 

4 DMF 0 20 0 45 23 

5 MeCN r.t 5.2 0 98 0 

Scheme 113 

It can be seen from the results that a range of solvents of varying degrees of polarity were 

employed where dichloromethane and methanol (entry 1 and 2) retained the starting 

cyclopropene. A small improvement was made with THF (entry 3) where only the trans 

cyclopropane was afforded in 55% yield, the remainder was recovered cyclopropene. The 

temperature of the reaction was lowered to 0°C (entry 4) in an attempt to avoid the 

formation of the alkene; however 23% of the alkene was still observed. We were pleased to 

observe that when the reaction was performed in acetonitrile (entry 5) the cyclopropane 

was afforded in 98% yield and no further purification was required. This was an 
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unexpected result as it was previously shown that the addition reaction performed with 

phenyl cyclopropene in acetonitrile at room temperature retained the cyclopropene. 

(Scheme 104) This illustrated that the electron deficient cyclopropene was more strained 

and more likely to undergo conjugate additions with selective nucleophiles. 

To further understand the mechanism of the reaction, the cyclopropane 188b was subjected 

again to the reaction conditions as shown in Scheme 114 as this would help to determine 

which of the two products were formed first during the reaction. 

 

Scheme 114 

Within two hours a full conversion of the cyclopropane 188b into the alkene 187a was 

observed in a quantitative yield. This illustrated that the addition of the azole to the 

cyclopropene took place first to afford the cyclopropane which was followed by ring-

opening under thermodynamic conditions to afford the corresponding alkene. The alkene 

187a was subjected to the same reaction conditions however this returned no results and 

recovery of the alkene 187a confirmed the reaction was irreversible. In an attempt to avoid 

the formation of the ring opened product, the reaction described in Scheme 113 was 

performed without the addition of potassium carbonate however this only returned the 

cyclopropene. 

The optimised conditions to afford the cyclopropane diester were applied to a variety of 

substrates; mainly azoles and the results of these have been outlined in Scheme 115. 
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Entry R XH Time (h) Product Yield (%) 

1 NO2 

 

4 188a 90* 

2 NO2 
 

6 188b 98* 

3 NO2 

 

4 188c 56 

4 NO2 
 

22 188d 75 

5 NO2 
 

23 188e 87* 

6 NO2 
 

1 188f 99* 

7 CF3 
 

24 188g 50 

8 CF3 

 

30 188h 60 

*No purification required 

Scheme 115 

The cyclopropanes were afforded in moderate to excellent yields where the nitro 

substituent was shown to enhance the reactivity of the reaction. In all cases the 

cyclopropane was afforded as a single diastereoisomer and in some cases no purification 

was required (entries 1 2, 5 and 6). The unsubstituted azoles required a longer reaction 

time compared to the substituted azoles as a result of their basic nature (entries 4 and 5). It 

can be seen that the trifluoromethyl substituted phenyl cyclopropene 186c was not as 

successful (entries 7 and 8) and required the reaction to be performed at 50°C to ensure 

consumption of the starting material. 
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It has been shown that the electron deficient cyclopropene was considerably more reactive 

to undergo addition than its electron rich analogue. With this in mind the addition of N-boc 

ethyl oxamate to the electron deficient cyclopropene 186a was attempted. (Scheme 116) 

 

Scheme 116 

The desired product 189 was observed in the crude NMR and purification by column 

chromatography was attempted, however a significant amount of the amine was shown to 

co-elute with the product. In an attempt to consume the amine the reaction was performed 

with a stoichiometric amount of the protected amine, although residues were still present 

after purification. The crude product was then treated with TFA in an effort to deprotect 

the Boc group which would enable separation from the reaction product. Cleavage of the 

Boc group was observed, however impurities were still present in substantial amounts. 

Thus our investigations were abandoned. 

It is proposed that the reaction occurs in a stepwise manner where the amine acts as a 

nucleophile and adds to the least substituted side of the cyclopropene to form an 

ammonium intermediate 190. This is followed by abstraction of the amine proton with base 

which is abstracted by the anion to afford the corresponding cyclopropane diester 188d 

(Scheme 117). 
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Scheme 117 

The ring-opened product is afforded via a similar pathway where formation of the 

ammonium intermediate 190 results in activation of the cyclopropane ring and the formed 

anion kicks back in to afford a new C-C double bond between C1 and C2. This is followed 

by subsequent cleavage of the C-C sigma bond to afford the corresponding alkene 187. 

(Scheme 118) 

 

Scheme 118 
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The mechanism proposed is based on the evidence that electron deficient cyclopropenes 

which would provide greater stabilisation of an anion have resulted in higher yields 

(e.g. with the nitro group) and have driven the reaction to completion. Further evidence of 

this is the electron rich cyclopropenes (e.g. with the methoxy group) were unable to 

undergo nucleophilic addition. This also explains why selective amines within a narrow 

pKa range are able to undergo nucleophilic addition with the cyclopropene. For example 

the pKa of a quaternalised imidazole amine is around 6.95 and therefore the potassium 

carbonate is able to abstract the proton from the amine to afford the cyclopropane. 

Whereas a quaternalised ammonium complex with a pKa greater than 10 would remain as 

the stable ammonium intermediate as potassium carbonate would not be strong enough to 

abstract the amine proton. In regards to the amines with pKa values less than 10 the base is 

able to abstract the amine proton to afford the stable anion which is less prone to undergo 

addition with the cyclopropene as confirmed by the results in Scheme 105. 

2.8. Addition of Phenols to activated cyclopropenes 

Following our initial investigations, it was believed that the outcome of the reaction was 

influenced by the acidity of the heteroatom proton of the azoles used to develop the 

methodology. To widen the scope of the reaction, our interest focused on utilising phenols 

as an alternative to the N-heterocycles for its proton lability. The initial reaction involved 

treatment of the electron deficient cyclopropene with phenol under the standard conditions 

developed previously which successfully afforded the corresponding trans cyclopropane 

191a with excellent diastereocontrol. (Scheme 119) 

 

Scheme 119 

Subsequently, the electron deficient cyclopropene 186a underwent addition with a range of 

electron rich and deficient p-substituted phenols to exclusively afford the trans selective 

cyclopropanes 191a-g in moderate to excellent yields. (Scheme 120) 
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Entry R Equivalents Time (h) Product Yield (%) 

1 H 1.1 3 191a 74 

2 OMe 1.0 21 191b 57 

3 NO2 1.0 5 191c 50 

4 NO2 2.0 7 191d 67 

5 NH2 2.0 7 191e 45 

6 CF3 2.0 3 191f 83 

7 F 2.0 4 191g 90 

Scheme 120 

It can be seen from the results that the use of the phenols substituted with electron 

withdrawing groups and neutral (entries 3-4, 6 and 7) afforded the corresponding 

cyclopropanes in significantly higher yields compared to those substituted with electron 

donating groups (entry 2 and 5). The proposed reaction mechanism for the addition of 

phenols to the cyclopropene has been outlined in Scheme 121. 

 

Scheme 121 

The main difference in the addition of phenols compared to the nitrogen azoles is that the 

base is strong enough to abstract the hydroxyl proton to afford the phenoxide anion which 

subsequently attacks the cyclopropene to afford the trans selective cyclopropane. This also 
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suggests that the addition of phenols was governed by the acidity of the heteroatom rather 

than its nucleophilicity (entry 5). Electron withdrawing groups such as CF3 and NO2 tend 

to increase the polarisation of the O-H bond of phenol by lowering its ground state energy. 

This in turn makes the phenol more acidic by delocalising the negative charge and hence 

stabilisation of the phenoxide anion. Whereas electron donating groups such as OMe and 

NH2 tend to enrich the O-H bond of the phenol. This then leads to a decrease in the lability 

of the proton which in turn destabilises the phenoxide anion. 

It was also discovered that by increasing the equivalents of the phenol, an increase in yield 

was also observed. An interesting result was the addition of 4-aminophenol (entry 5) as by 

NMR analysis it was not clear whether the reaction onto the cyclopropene proceeded via 

the O or N-alkylation. Fortunately an X-ray crystal structure was obtained as shown in 

Figure 16, which confirmed the presence of the O-alkylation product. 

 

Figure 16 

It was also shown from X-ray studies that H-bonding was observed between the NH2 of the 

phenyl, carbonyl and the methoxy of the ester group. (Figure 17) 
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Figure 17 

The addition of phenol to the CF3 substituted phenyl cyclopropene was also performed 

which afforded the cyclopropane in a moderate 60% yield but the temperature of the 

reaction was raised to 80°C (Scheme 122). 

 

Scheme 122 

It is worthwhile to note that no ring-opening of the cyclopropane was observed in the 

addition of phenols to the electron-deficient cyclopropene even at elevated temperatures. 

This implied that the addition must take place via the mechanism outlined in Scheme 121. 

As the addition of the oxygen onto the cyclopropene would result in no charge and 

therefore there would be no resulting anion to allow the three-membered ring to open. 

However in the mechanism for the addition of the azoles (Scheme 118) an anion is formed 

after addition which has the opportunity to kick back in and ring-open the cyclopropane. 
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The same reaction was performed with the phenyl cyclopropene surrogate 1d in DMF at 

90°C which afforded the corresponding cyclopropanes 193a-e in moderate yields with a 

high degree of diastereocontrol (Scheme 123). 

 

Entry R Time (h) Product Yield (%) 

1 H 20 193a 45 

2 OMe 24 193a 50 

3 NO2 5 193a 30 

4* F 24 193a 40 

5 NH2 24 193a 40 

Scheme 123 

These results reflect that the addition of electron rich and deficient phenols to phenyl 

cyclopropene was less successful compared to its electron deficient analogue. The yields 

obtained were significantly lower ranging from 30-50% compared to the 45-90% observed 

in early investigations using the electron deficient cyclopropene 186a. (Scheme 120) It was 

noted that the addition was favoured by electron rich phenols over electron deficient 

phenols but by only a small margin, however in terms of the electron rich cyclopropene the 

electron deficient phenols were favoured as expected. The addition of 4-fluorophenol 

(entry 4) was improved by the replacement of potassium carbonate with caesium 

carbonate, however this was not observed with the other phenols. Interestingly no 

decarboxylation was observed when caesium carbonate was employed in the reaction of 

which had been observed in the addition of N-heterocycles (Scheme 109). 

An attempt was made to gain a greater understanding of the factors that influenced the 

reaction and hence improve the yields through the use of a factorial experimental design 

(FED) analysis. This is a tool used in the pharmaceutical industry which enables the 

chemist to discover which factors have an influence on the reaction and helps to improve 
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yields. Due to time constraints and limited material, not all the factor levels were explored 

(e.g. base, phenol and solvent used) and therefore there was a risk that some good reaction 

conditions may be missed. In our investigations, two types of solvent, two bases, and two 

types of phenol, base charge and temperature were explored as outlined in (Table 5). The 

results for electron rich phenol (e.g. p-methoxy substituted) have only been shown as the 

results obtained for the electron deficient phenol (e.g. p-nitro substituted) was not 

conclusive. 

 

Solvent Base Temperature 
(oC) 

Base charge 
(eq.) In-solution yield (%) 

DMF K2CO3 80 2.5 48.0 

DMF K2CO3 80 1 35.4 

MeCN K2CO3 80 2.5 20.7 

DMF Et3N 80 2.5 3.9 

DMF K2CO3 40 2.5 3.0 

DMF K2CO3 80 2.5 2.2 

MeCN K2CO3 40 1 0.0 

MeCN Et3N 40 2.5 0.0 

DMF Et3N 40 1 0.0 

MeCN Et3N 80 1 0.0 

Table 5 

The solvents DMF and MeCN were chosen as previous studies suggested these were the 

most desirable. The temperature was lowered to 40°C as the cyclopropene was shown to 

decompose at temperatures greater than 50°C. As the initial reaction was performed at 

90°C this meant that only a small proportion of the starting cyclopropene was available to 
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undergo addition. This partially explains why a significant reduction in yields was 

obtained. The base charge was varied to assess the actual requirements of the reaction. 

The reaction was performed in 5 mL of solvent and samples were taken at four time points; 

1h, 6h, 12h and 24h. The reaction was stopped after 24h as consumption of starting 

material was observed at this time point. The “in solution yield” was measured by HPLC 

(FAZ ACN) based on an external standard of the authentic product. It can be seen from the 

results that the original conditions were the most desirable for the factors explored. 

However it is important to note that these results are not conclusive as not all the factor 

levels have been investigated. The results showed that the right combination of 

temperature, solvent and base were essential for the reaction to take place. This was 

confirmed by the fact that no reaction was observed for DMF/MeCN in the presence of 

Et3N at 40°C and in MeCN, K2CO3 at 40°C. The latter condition was also unsuccessful 

when employed in the addition of iodopyrazole to phenyl cyclopropene (Scheme 

104, entry 7). 

2.9. Attempted cycloadditions with N-heterocycle substituted cyclopropanes 

It has been established in earlier work that di-aryl substituted cyclopropane diesters could 

undergo a [3+3] dipolar cycloaddition reaction with both electron rich and deficient 

nitrones. The oxazines were afforded in moderate yields with a high degree of diastereo- 

and regiocontrol, favouring formation of the cis isomer. The same reaction conditions were 

then applied in attempt to perform the cycloaddition with N-heterocyclic substituted 

cyclopropane diesters outlined in Scheme 124. 
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Entry R Conditions1 N-heterocycle Catalyst Product Yield 
(%) 

1 Me-C6H4 DCE, reflux benzotriazole Yb(OTf)3 182h >99 

2 Me-C6H4 DCE, reflux 3,6-dibromo 
carbazole Yb(OTf)3 194 50 

3 Me-C6H4 DCE, reflux 4-iodo 
pyrazole Yb(OTf)3 

182a + 
aldehyde n/a 

4 Me-C6H4 CH2Cl2, r.t. 
4-iodo 

pyrazole Sc(OTf)3 182a >99 

5 Me-C6H4 DCE, reflux2 4-iodo 
pyrazole AlCl3 

182a + 
aldehyde n/a 

6 MeO-C6H4 DCE, reflux2 4-iodo 
pyrazole BF3.OEt2 aldehyde n/a 

7 Me-C6H4 DCE, reflux 4-bromo 
pyrazole Yb(OTf)3 

182c+ 
aldehyde n/a 

8 O2N-C6H4 DCE, reflux3 4-bromo 
pyrazole Yb(OTf)3 182c >99 

9 O2N-C6H4 DCE, reflux3 imidazole Yb(OTf)3 
182g+ 

aldehyde n/a 

1 reaction time: 24 hours except for 1 and 2 
2 reaction time: 72 hours 
3 reaction time: 48 hours 

Scheme 124 

The first reaction was performed with a benzotriazole substituted cyclopropane where only 

the starting cyclopropane was retained (entry 1). The reaction with 3,6-dibromocarbazole 

substituent (entry 2) was attempted which successfully afforded the oxazine 194 in a 

moderate 50% yield as a single diastereoisomer, where C3 and C6 expressed a cis-

relationship, while C5 and C6 expressed a trans relationship. The NMR spectrum initially 

showed the presence of rotamers indicating rotation around the C6-N bond. The 

stereochemistry of the product was confirmed by nOe analysis and X-ray crystallography 

(Figure 18). 
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Figure 18 

This illustrated that ring-opening of the cyclopropane did not occur with inversion of 

configuration as the stereochemistry between the groups on C5 and C6 was retained in the 

final product. This is in contrast to the results obtained in the cycloaddition reaction 

utilising the cis diaryl substituted cyclopropane diesters where inversion of stereochemistry 

was observed. This implied that in the example shown the reaction did not take place via 

the stepwise mechanism postulated by Kerr for both cis and trans disubstituted 

cyclopropanes. The reasons for this could be attributed to the steric hindrance of the 

carbazole reactant which may have prevented the initial attack of the nitrone oxygen, thus 

favouring the ring opening to afford a concerted rather than stepwise product. 

It can be seen from the results that other substrates were tested under varying conditions 

however none of these afforded the cycloadduct. In most cases the cyclopropane was 

retained and decomposition of the nitrone into its corresponding aldehyde was also 

isolated. This may have occurred as a result of no reaction between the nitrone and the 

cyclopropane in the same way as aldehydes were unable to undergo cycloaddition 

reactions with the diaryl substituted cyclopropanes in our initial investigations. The 
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reaction was also attempted with electron deficient nitrones but again none of the desired 

product was afforded. 

2.10. Replacement of the diester with a mono trifluoromethyl group 

Similar work by Martínez-Grau and Vaquero had shown that non-activated cyclopropenes 

with a mono ester at C3 of the cyclopropene 53 were able to undergo addition with a range 

of thioalkoxides and selenides.34 An example has been outlined in Scheme 125 where 

formation of the cis isomer was favoured in the presence of a large group. 

 

Scheme 125 

This illustrated that a geminal diester at C3 of the cyclopropene was not essential for the 

addition reaction to take place, however this was shown to reduce the diastereoselectivity 

of the reaction. In an attempt to adapt this methodology to aryl substituted cyclopropene 

mono-esters, our investigations started with the synthesis of the monoester phenyl 

cyclopropene 194 by using the same method described in the synthesis of the 

phenylcyclopropene diester.73 (Scheme 126) 

 

Scheme 126 

However when this reaction was performed none of the desired product was obtained 

which could be associated with the reactivity of the ethyl diazoacetate towards carbene 

addition. It is also worthy to note that this exact example has not been reported in the 

literature, but many other alkyne substrates have.39 This suggests that the reaction cannot 

be performed under these conditions and no further analysis was carried out. 
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An alternative to the geminal diester cyclopropene led us to replace one of the esters with a 

CF3 group using the known diazo compound of methyl trifluoroacetate.82 A solution of the 

diazo methyl trifluoroacetate 196 in CH2Cl2 was added slowly to a stirred solution of 

phenylacetylene 158 in CH2Cl2 with 5 mol % of rhodium acetate dimer to afford the 

cyclopropene 197 in 45% yield. (Scheme 127) 

 

Scheme 127 

The literature stated that 10 eq of the starting alkyne was required due to the high reactivity 

of the diazo compound to undergo dimerisation. The cyclopropene 197 was shown to 

undergo addition with a few azoles, mainly pyrazole derivatives as outlined in Scheme 

128. 

 

Entry XH Time Temp 
(°C) Solvent Product 

Yield 
(%) 

d.r. 

A B 

1 
 

7 90 DMF 198A/B 20 1 1 

2 
 

24 90 DMF 198A/B 65 1 1.1 

3 
 

24 50 DMF 199A/B 67 1 3 

4 
 

48 r.t DMF 197 >99 n/a n/a 

5 
 

48 80 CH3CN 197 >99 n/a n/a 

6 
 

24 50 DMF 200A/B 50 1 2 

Scheme 128 
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Removal of the geminal diester has however led to the introduction of a new stereo centre 

within the starting substrate which has resulted in a separable mixture of diastereoisomers 

as shown in Scheme 128. The initial reaction was performed with 1 eq of the 4-

bromopyrazole in DMF at 90°C, however only a 1:1 mixture of diastereoisomers were 

obtained in a combined 20% yield with a significant amount of the cyclopropene being 

recovered at the end of the reaction. Subsequently, the reaction was performed with a slight 

excess of the azole and an increase in reaction time to afford a 1:1.1 mixture of 

diastereoisomers in a combined 65% yield. The stereochemistry of the isomers has been 

tentatively assigned from NMR analysis and also X-ray crystallography as illustrated in 

Figure 19. 

 

Figure 19 

The X-ray structure shown in Figure 19 is of 198A (entry 2) where it confirms that there is 

a trans relationship between the phenyl and azole as well as the CF3 group and the proton 

attached to C3. Unfortunately a crystal structure was not obtained for isomer B as the 

product afforded was an oil. The cyclopropene also underwent addition with 3-

trifluromethylpyrazole (entry 3) where a decrease in temperature improved the 

diastereoselectivity of the reaction from 1:1 to 1:3 in favour of 199B. In an attempt to 

control the diastereoselectivity further, the reaction was performed at room temperature 

however this only retained the cyclopropene. For comparison with the other addition 

reactions, the reaction was performed in acetonitrile at reflux however mainly starting 

material was obtained with only trace amounts of product observed. Lastly the reaction 

was performed with an unsubstituted pyrazole at the lower temperature of 50°C which 

afforded the cyclopropane as 1:2 mixture of diastereoisomers in a 50% yield. This has 

expanded the scope of our methodology and showed that the reaction is not dependant on 
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the diester substituent. In addition to this, the functionality of the cyclopropane had been 

increased by the introduction of a CF3 group of which are known to have biological 

significance. 

2.11. Attempted cycloadditions reactions with nitro substituted cyclopropanes 

An attempt was made to extend the scope of the cycloaddition reaction by deviating away 

from the typical cyclopropane diester and replacing it with a nitro substituent. There is 

limited literature reported on the synthesis and use of nitrocyclopropanes in organic 

chemistry. We believed that the synthesis of nitro substituted cyclopropanes would be of 

great interest as the introduction of a nitro group would enable further functionalisation of 

the ring which may prove to be useful as precursors for natural product synthesis. 

It was envisioned that the introduction of a nitro group would act in the same way as the 

ester moieties in stabilising the anion formed during the cyclopropane ring-opening. In the 

case of the cyclopropane diesters the Lewis acid coordinates to the ester moiety which 

induces a polarisation of the cyclopropane C-C bonds resulting in ring-opening. It is 

known from the literature that Lewis acids are also able to coordinate to the nitro group.83 

With this in mind, we predicted the nitrocyclopropane 201 would have a similar reactivity 

to that of the diester cyclopropanes used previously. During the ring-opening, the nitro 

groups would stabilise the negative charge formed from the C-C bond cleavage while a π 

electron donor such as an aryl group would stabilise the carbocation 202. This in turn 

would be trapped with either an aldehyde or a nitrone to afford the 5/6 membered ring 

systems 203 and 204. (Scheme 129) 

 

Scheme 129 
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2.12. Synthesis of nitrocyclopropanes 

For the synthesis of the nitrocyclopropane, a limited number of publications were reported 

in the literature. Asunskis and Shechterin were the first to report the synthesis of 

nitrocyclopropanes in 1967.84 However more recently Ciaccio and Aman have reported the 

preparation of the cyclopropanes using a different approach known as the “Instant 

Methylide modified Corey-Chaykovsky Cyclopropanation Reaction”.85 The methylide is 

synthesised in situ from trimethylsulfoxonium iodide (Me3S(O)I) and a base which is 

subsequently reacted with the nitro olefin to afford the cyclopropane. The method 

developed by Ciaccio and Aman was explored first to synthesis the trans-2-phenyl-1-

nitrocyclopropane 201 (Scheme 130). 

 

Scheme 130 

A solution of trans-β-nitrostyrene 205 in dimethyl sulfoxide (DMSO) was added to a dry 

equimolar mixture of Me3S(O)I/KOtBu to afford the nitrocyclopropane 201 in a non-

purified 60% yield. This was confirmed by 1H NMR spectroscopy and was in agreement 

with what was previously reported in the literature. An attempt was made to purify the 

product by distillation, though only a small amount of the purified product was obtained as 

light yellow oil. The reaction was repeated and purified by flash chromatography, however 

only a 5% yield of the pure product was obtained. The low yield of product could be 

attributed to the amount of ylide formed from the dry mixture of Me3S(O)I/KOtBu prior to 

the addition of the nitroalkene solution. In an attempt to increase yields, the original 

method reported by Asunskis and Shechter was utilised where a solution of 

trimethylsulfoxonium iodide in DMSO was added dropwise to a stirred suspension of 

KOtBu in DMSO at room temperature. This ensured that the ylide had been formed prior 

to the addition of the trans-nitrosytrene which was added dropwise to prevent 

polymerisation. The mixture was heated to 50°C for four hours and subsequently allowed 

to stir at room temperature for an additional 12 hours to afford the pure product in an 

improved 18% yield. It can be seen that there was only a slight increase in the yield of the 
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cyclopropane obtained, however the maximum yield reported in the literature was only 

44%. 

We considered attempting the cycloaddition reaction using the crude mixture as yields 

obtained for the nitrocyclopropane were much higher, but giving the novelty of the 

chemistry and the presence of impurities it was decided to use pure samples of the 

nitrocyclopropane as it would best suit interpretation of the results. The synthetic method 

was also applied to a substituted phenyl nitro alkene; trans-β-nitro-4-fluro-phenylalkene 

206 which afforded its corresponding trans-2-fluro-phenyl-1-nitrocyclopropane 207 in an 

acceptable 42% yield. (Scheme 131) 

 

Scheme 131 

2.13. Attempted intramolecular cycloadditions with nitrocyclopropanes 

The next step of the synthesis was to perform the cycloaddition reaction where the 

nitrocyclopropane 201 would be activated upon coordination with a Lewis acid. This in 

turn would be trapped with either a nitrone to afford the oxazine 203 or an aldehyde to 

afford the tetrahydrofuran derivative 204. (Scheme 129) 

The nitrocyclopropane 201 prepared previously was reacted with a range of nitrones and 

aldehydes under various reaction conditions, however unfortunately none of the desired 

products were obtained. The results have been detailed in Table 6. 
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Entry Reactant Conditions Results 

1 
 

Yb(OTf)3, DCE, Reflux, 2 
h 

cyclopropane +p-
nitrobenzaldehyde 

2 
 

DCE, reflux, 4.5 h No reaction 

3 
 

DCE, reflux, 
organocatalyst No reaction 

4 
 

TiCl4, DCE, reflux, 3 h cyclopropane + p-methyl 
benzaldehyde 

5 
 

BF3.OEt2, DCE, 24 h No reaction 

6 
 

BCl3, DCE, reflux, 24 h cyclopropane + p-nitro 
benzaldehyde 

7 
 

Zr(IV)Cl, DCE, reflux, 24 
h No reaction 

8 

 

AlCl3, DCM 0°C-r.t., 20 h No reaction 

9 
 

AlCl3, DCM 0°C-r.t., 24 h complex mixture 

10 

 

AlMe3 (2 eq), DCM, 0°C-
r.t., 24 h complex mixture 

11 

 

SnCl4 (2 eq), DCM, 0°C-
r.t., 24 h No reaction 

12* 

 

AlCl3, DCM 0°C-r.t., 24 h No reaction 

13* 

 

AlMe3 (2 eq), DCM, 0°C-
r.t., 24 h 

80% p-methoxy 
benzaldehyde 
+cyclopropane 

14 

 

AlCl3, DCM 0°C-r.t., 24 h 
Analyses of the crude 
mixture showed mainly 

aldehyde 

15 
 

LDA, THF, -78°C-r.t., 20 
h. Complex mixture 

16 Me-I LDA, THF, -78°C-r.t., 48 
h. Complex mixture 

Table 6 



114 
 

All the reactions were performed with trans-2-phenyl-1-nitrocyclopropane 201 where 1 eq 

of reactant was used in entries 1-7, 3 eq of reactant was used in entries 8-10, 12-16 and 2 

eq of reactant was used in entry 11. The first set of conditions tried were the same as 

previously used for the diaryl substituted cyclopropane cycloadditions. The 

nitrocyclopropane 201 in a solution of DCE was treated with Yb(OTf)3 (5 mol%) and 1eq 

of nitrone 175d (entry 1) which was heated under reflux for 2 hours affording 30% of the 

cyclopropane starting material along with 9% of p-nitrobenzaldehyde indicating 

decomposition of the nitrone. Entry 2 is of reasonable interest as no Lewis acid was used 

but none of the starting cyclopropane was recovered and 100% of the nitrone was also 

recovered. The result of this indicated that the nitrocyclopropane may have undergone 

thermal decomposition. To weaken the bond further in an attempt to open the 

nitrocyclopropane, the Lewis acid was replaced with an organocatalyst which are known to 

form complexes with the nitro group and hence weaken the bond. However no reaction 

took place and both the cyclopropane and organocatalyst was recovered (entry 3). As no 

reaction was obtained with the organocatalyst, a range of Lewis acids were screened with 

various degrees of reactivity. The Lewis acids chosen were based on a report by Horng et 

al which reported that,83 when trans-2-phenyl-1-nitrocyclopropane was treated with 

aluminium chloride (AlCl3) at 0°C, a mixture of products were obtained in the form of a 

cyclohydroxamic ester 208 and a chlorohydroxamic acid 209 in 48% and 23% yield 

respectively. In the presence of a weaker Lewis acid like tin (IV) chloride (SnCl4), a 

respectable 78% yield of the cyclohydroxamic ester 208 was obtained where no traces of 

the chlorohydroxamic acid was isolated (Scheme 132). 

 

Scheme 132 
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The hydroxamic derivatives obtained proved that the Lewis acids have the ability to open 

the nitrocyclopropane ring, where the involvement of the nitro group in an intramolecular 

cyclisation afforded the cyclohydroxamic ester 208. The hydroxamic acid 209 was 

afforded from an intermolecular chloride ion transfer from AlCl3 to the ring-opened 

intermediate. It was believed that this posed well for the cycloaddition reaction to take 

place, as this proved that the Lewis acids are capable of inducing ring opening of the 

nitrocyclopropane. This in turn could be subsequently trapped with either an aldehyde or a 

nitrone to afford the cycloadduct. If the ring opens first, as shown by the previous results, 

to form the carbocation 202 then the aldehyde would be more favoured as the trapping 

reagent than the nitrone as the carbonyl carbon is more electrophilic than the nitrone 

carbon (Scheme 133). 

 

Scheme 133 

However it can be seen from the results that this was not the case even though a variety of 

Lewis acids were tested with varying degrees of reactivity in different conditions. The only 

Lewis acid which showed some signs of reactivity was trimethylaluminium (AlMe3) 

(entries 10 and 13), where an uncharacterised by-product was observed. Although the 

result obtained suggested that the aldehyde was not reacting with the nitrocyclopropane but 

with itself. 

As the use of Lewis acids were not able to afford the cycloadduct, a new approach was 

investigated into ring opening of the nitrocyclopropane via an aza-Henry type reaction. It 

was believed that treatment of the nitrocyclopropane 201 with a strong base would remove 

the proton in α position to the nitro group leaving a carbanion 210. This would 

subsequently attack the carbonyl of the aldehyde and induce an intramolecular cyclisation 

to afford the desired tetrahydrofuran derivative 204 illustrated in Scheme 134. 
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Scheme 134 

The methodology described by Wade et al. was employed in the reaction as they had 

shown the ability of a dinitrospiropentane to undergo a nitroaldol reaction with 

benzaldehyde.86 However it can be seen from the results in Table 6 (entry 15) that only a 

complex mixture was obtained and neither of the starting materials was recovered. In order 

to show the proton in α position to the nitro group was abstracted under treatment with a 

base, the reaction was performed again utilising methyl iodide (entry 16). However no 

methyl peak was observed which demonstrated that the base was not strong enough to 

abstract the proton. 

In conclusion, the nitro cyclopropane was unable to perform the cycloaddition reaction 

with either aldehydes or nitrones. It is believed the nitro substituent is not strong enough to 

stabilise the anion formed during ring opening due to a weak interaction with the Lewis 

acid. This would suppress weakening of the bond within the cyclopropane and 

consequently diminish the reactivity of the cyclopropane towards cycloaddition. Although, 

there is evidence in the literature that reports the introduction of an ester moiety to the nitro 

carbon 211 leads to ring opening of the cyclopropane when attacked by an amine 

nucleophile as outlined in Scheme 135 to afford 212.87 

 

Scheme 135 

This suggested that two electron-withdrawing groups were essential to enable weakening 

of the bond within the cyclopropane ring. The literature stated that the reactivity of the 

Lewis acid had an influence on the amount of ring-opened product obtained where a 

reactive Lewis acid like AlCl3 resulted in smaller amounts of the rearranged product shown 

in Figure 20. 
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Figure 20 

With this in mind, a gem-diester nitro cyclopropane was synthesised in an attempt to assess 

the reactivity of the cyclopropane to undergo cycloaddition with either nitrones or 

aldehydes. The treatment of dimethyl bromomalonate 165 and trans nitro-styrene 205 in 

DMF with triethylamine afforded the cyclopropane 213 in 92% yield (Scheme 136). 

 

Scheme 136 

The nitro substituted cyclopropane diester 213 was then subjected to a range of reaction 

conditions as outlined in Scheme 137, but unfortunately none of the desired products were 

afforded. 
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Entry R1 R2 Lewis acid Solvent Time (h) Product 

1 n/a p-OMe Yb(OTf)3 DCE 24 213 

2 CO2Et n/a Yb(OTf)3 DCE 24 213 

3 n/a p-NO2 Yb(OTf)3 DCE 72 213 

4 n/a p-NO2 TiCl4 DCE 24 213 

5 p-OMe-C6H4 n/a BF3.(OEt)2 CH2Cl2 72 213 

6 Ph n/a Sc(OTf)3 CH2Cl2 72 213 

7 Ph n/a Zn(OTf)3 CH2Cl2 72 213 

Scheme 137 

The initial conditions utilised earlier for the cycloaddition reactions with the diaryl 

substituted cyclopropanes were employed in a first attempt, however this led back to the 

starting material. To increase the reactivity of the trapping reagent, ethyl glyoxlate was 

used as it is known to have a high reactivity towards cycloaddition reactions due to its 

great electrophilic nature but this returned no results. (entry 2) An electron deficient 

nitrone was employed but again only the cyclopropane was retained. A range of Lewis 

acids were also employed (entries 4-7), but again no reaction was observed. Due to time 

constraints and little reactivity observed our investigations towards the use of nitro 

substituted cyclopropanes were not resumed. 
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3. Conclusion 

The initial aim of the research project was to develop an efficient and robust method to 

access a wide range of activated 2,3 disubstituted cyclopropane diesters to serve as 

precursors in [3+2] and [3+3] cycloaddition reactions. 

The disubstituted cyclopropylboronate esters could not be prepared via the palladium and 

rhodium catalysed cyclopropanation or cyclopropenation and the hydroboration of a mono-

substituted cyclopropene diester also failed to produce the desire boron substituted 

cyclopropanes (Scheme 138). 

 

Scheme 138 

In most examples the starting material was retained or a complex mixture was observed. 

The use of the diester in all three routes has been suggested as the limiting factor in these 

reactions not taking place as there have been no examples reported in the literature 

possessing an ester moiety. 

A variety of 2,3-disubstituted cyclopropane diesters bearing two stabilising groups have 

been prepared in moderate yields via a Heck-type arylation and subsequent hydrogenation 

of the cyclopropene. These cyclopropanes were then used towards [3+3] dipolar 

cycloaddition reactions with nitrones to afford the highly functionalised oxazines in 

moderate yields with good to excellent diastereoselectivity (Scheme 139). 
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Scheme 139 

In most examples, the oxazines were afforded as a single diastereoisomer where C3 and C6 

expressed a cis relationship, however the trans isomer was also observed. The inversion of 

stereochemistry between C5 and C6 illustrates that the cycloaddition may go through a 

stepwise process instead of a concerted process. The trans relationship between C5 and C6 

was expressed in all the oxazines formed. The next step would be to synthesise a 

enantiomerically pure cyclopropane to gain a better understanding of the reaction 

mechanism proposed. 

An extension of the methodology in the synthesis of the 2,3 disubstituted cyclopropane 

diesters led us to investigate the influence of N-heterocycles as substituents of the 

cyclopropane on the [3+3] cycloaddition reaction. Following the same protocol shown in 

Scheme 139, it was inadvertently discovered that the Heck-coupling reaction conditions 

afforded the corresponding cyclopropane in one step, with the nitrogen directly bonded to 

the cyclopropane. Further work indicated that the presence of palladium was not required 

within the reaction, where a range of halogenated and non-halogenated N-heterocycles 

were successfully coupled to electron rich and deficient cyclopropenes in good to excellent 

yields (182/188). The reaction was also shown to take place with electron rich and 

deficient phenols, where the electron deficient cyclopropenes afforded the cyclopropanes 

in significantly higher yields (Scheme 140). 
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Scheme 140 

The cyclopropanes were afforded in a diastereoselective manner, where the amine was 

delivered to the least hindered to afford the trans-isomer selectively. The yield of the 

cyclopropane obtained was dependant on the cyclopropene employed and the pKa of the 

heteroaromatic proton. It is believed the electron deficient cyclopropene provides a greater 

stabilisation of the anion formed once the amine has attacked the cyclopropene, hence an 

increase in reactivity. To extend the scope of this methodology addition with thiols, 

carbamates and sulphonamides could be explored to test the substrate specificity of the 

conjugate addition and the influence of pKa. 

Unfortunately there was limited success in the use of trans-N-heterocyclic cyclopropane 

diesters as precursors in the cycloaddition reaction with nitrones, where only one of the 

cyclopropanes afforded the oxazine in a moderate yield. (Scheme 141) 
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Scheme 141 

An interesting point to note is that when the trans-N-heterocyclic cyclopropane 182d was 

employed we would have expected to see a cis relationship between C5 and C6. However 

the stereochemistry was maintained within the oxazine ring expressing a trans relationship 

between C5 and C6. This implies that no inversion of stereochemistry took place when 

ring-opening of the cyclopropane took place suggesting the cyclopropane ring opened first 

and reaction took place via a concerted mechanism. However as only one example has 

been obtained there is insufficient evidence to confirm this hypothesis. 
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4. Experimental 

General information 

All reactions herein were carried out in one of the following solvents, which were dried 

and purified, or purchased by the following procedures. 

Acetone Stirred over anhydrous potassium carbonate, followed by distillation 

over anhydrous calcium sulfate. 

Acetonitrile  Purchased from Aldrich (99.8%), Sure/sealTM anhydrous quality. 

Chloroform Purchased from Aldrich (99+%) and used without further 

purification. 

Dichloromethane For general use, CH2Cl2 was distilled over boiling chips or CaH2 for 

anhydrous reactions. 

Diethyl ether Purchased from Fischer Scientific (99+%) used without purification 

for general use or distilled over sodium and benzophenone for anhydrous reactions. 

Ethyl acetate Distilled over CaCl2 for general use. 

Light petroleum Distilled over boiling chips for general use, collecting the fraction 

distilling below 60°C. 

Tetrahydrofuran Distilled over sodium and benzophenone. 

Palladium(II) acetate (reagent grade 98%) was purchased from Sigma-Aldrich and 

rhodium(II) acetate dimer (98+%) was purchased from Alfa Aesar and used without further 

purification. 

Anhydrous reactions were carried out in oven-dried glassware and under an atmosphere of 

nitrogen.  

Analysis of the compounds created herein was made using a number of the following 

instruments and procedures. 
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High-resolution mass spectroscopy was carried out on three different instruments: (1) a 

Jeol SX 102 machine, used for both electron ionisation (EI) and fast atom bombardment 

(FAB) ionisation techniques. For FAB spectroscopy a matrix of 1,3-nitrobenzylalcohol 

was used to dissolve the compounds under investigation prior to ionisation. (2) A Thermo 

Exactive (Orbi) machine, where the spectra was recorded in positive ion mode using 

electrospray ionisation (ES) from methanol or methanol/acetic (1% v/v) solution. The 

samples were delivered to the instrument using an Advion Triversa NanoMate. (3) A 

Bruker MicrOTOFQ, AC113, where the spectra was recorded in positive ion mode using 

electrospray ionisation. The MS method used was GEN MA-M34-01 HPLC Method “Fast 

Zorbax ACN” and formic acid (4% of 250Mm in gradient) was used for the mobile phase 

additive. 

Nuclear magnetic resonance spectroscopy was carried out using a Bruker DPX 400 

instrument. The spectra were calibrated where possible to the signals of tetramethylsilane 

or the small quantity of CHCl3 present in CDCl3. Where possible, coupling constants (J) 

are shown denoting the multiplicity as a singlet (s), doublet (d), triplet (t), quartet (q), 

multiplet (m), or broad signal (br). The size of the coupling constant is given in hertz (Hz). 

Fourier transform Infra Red spectroscopy was recorded using a Paragon 1000 Perkin Elmer 

FT-IR spectrophotometer in the range of 600-3800 cm–1 following a standard background 

correction. 

Flash silica column chromatography was used as a standard purification procedure using 

Fluka Kiesel gel 60, 0.04-0.063 mm particle size. Thin layer chromatography was used 

where possible as a standard procedure for monitoring the course and rate of a given 

reaction. TLC plates used were Merck aluminium backed sheets with Kiesel gel 60 F254 

silica coating. 
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Methanesulfonyl azide (153)88 

Me S
O

O
N N N

 

Sodium azide (10.14g, 156 mmol, 1.2 eq) was added slowly to a solution of 

methanesulfonyl chloride (10.14 mL, 15g, 130 mmol) in acetone (100 mL) and the 

resulting mixture was stirred at r.t. under a nitrogen atmosphere for 4 hours. On completion 

the reaction mixture was quenched with water (100 mL) and the aqueous layer was 

extracted with diethyl ether (2 x 50 mL). The ethereal extracts were combined and dried 

over anhydrous MgSO4. The excess solvents were removed under reduced pressure to 

afford the title compound as a colourless liquid in >99% yield (15.57 g, 120 mmol), IR νmax 

(neat)/cm-1 2359.7 (N=N=N), 668.0, δH(400 MHz; CDCl3) 3.27 (3H, s, CH3), δC(100 MHz; 

CDCl3) 42.9 (CH3). The above data is in agreement with the literature values stated. 

Diazo Dimethylmalonate (150a)13 

 

Triethylamine (11.5 mL, 8.36 g, 82.6 mmol, 2 eq) was added dropwise to a stirred solution 

of dimethylmalonate (4.3 mL, 4.96 g, 37.6 mmol) and methanesulfonyl azide 153 (5 g, 

41.4 mmol, 1.1 eq) in anhydrous acetonitrile (60 mL) at 0°C. Once addition was complete 

the reaction mixture was stirred at ambient temperature for 24 hours under a nitrogen 

atmosphere. The solution was concentrated in vacuo and the residue was dissolved in a 1:1 

solution of petrol/chloroform (40 mL). The solids were removed by filtration on a Büchner 

funnel and the filtrate was concentrated in vacuo to afford the title compound as a yellow 

oil in 97% yield (5.74 g, 36.3 mmol), IR νmax (film)/cm-1 2137 (C=N) and 1761(C=O); 

δH(400 MHz; CDCl3) 3.85 (6H, s, 2 CO2CH3); δC(100 MHz; CDCl3) 52.4 (2 CO2CH3), 

65.5 (CN), 161.3 (2 C=O). The above data is in agreement with the literature values stated. 
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Dimethyl 2-phenylcyclopropane-1,1-dicarboxylate (81b)57a,b 

 
In a 50 ml round-bottom flask, styrene (2.2 ml, 2 g, 19 mmol) was dissolved in anhydrous 

toluene (25ml). Diazomalonate 150a (5.04 g, 32mmol, 1.66 eq) and a catalytic amount of 

rhodium acetate dimer (50 mg) was added. The reaction mixture was heated to reflux 

under a nitrogen atmosphere for 19 hours. Once complete the reaction mixture was cooled 

to room temperature and filtered through a pad of celite and silica and concentrated in 

vacuo. The crude product was purified by flash chromatography on silica gel 

(EtOAc/Petrol 1:9) to afford the title compound as straw yellow oil in 55% yield (2.45 g, 

10.47 mmol). Rf (EtOAc/petrol 1:9) 0.44; IR νmax (neat)/cm-1 3028 (sp CH), 2951(sp2 CH), 

1732 (C=O) 1279 (C-O); δH(400 MHz; CDCl3) 1.73 (1H, dd, J 9.4, 5.2 Hz, CHCH2C), 

2.20 (1H, dd, J 8.0, 5.2 Hz, CHCH2C), 3.22 (1H, t, J 8.5 Hz, CH2CHC), 3.32 (3H, s, 

CO2CH3), 3.74 (3H, s, CO2CH3), 7.16-7.22 (2H, m, ArCH), 7.23-7.26 (3H, m, ArCH), 

δC(100 MHz; CDCl3) 19.0 (CHCH2C), 32.5 (CHCH2C), 37.2 (C(CO2CH3)2), 52.3 

(CO2CH3), 52.7 (CO2CH3), 127.4 (ArCH), 128.2 (2 ArCH), 128.4 (2 ArCH), 134.6 (ArC), 

166.9 (C=O), 170.2 (C=O). The above data is in agreement with the literature values 

stated. 

 

Phenyl cyclopropene-1,1-dicarboxylic acid dimethyl ester (1d)73 

 
A solution of diazo dimethylmalonate 150a (5 g, 32 mmol) in anhydrous dichloromethane 

(60 mL) was added via a syringe (1.0 mL/ph) to a stirred solution of phenylacetylene (10.4 

mL, 9.7 g, 95 mmol, 3 eq) and rhodium acetate dimer (140 mg, 0.32 mmol) under a 

nitrogen atmosphere. Once addition was complete the reaction mixture was stirred for an 

additional six hours at room temperature. The mixture was filtered through a pad of celite 

and silica and the excess solvents were removed under reduced pressure. The crude 

mixture was purified by flash chromatography on silica gel (EtOAc/petrol 1:5) to afford 

the title compound as a pale yellow solid in 54 % yield (4.01g, 17.28 mmol). Rf 

(EtOAc/Petrol 1:5) 0.33; mp 69.1-72.4°C; Lit mp 73-74°C ;IR νmax (film)/cm-1 2951 (sp2 
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C-H), 1726 (C=O), 1487, 1288 (C-O), 1064; δH(400 MHz; CDCl3) 3.73 (6H, s, 2 

CO2CH3), 6.89 (1H, s, CH), 7.46-7.44 (3H, m, ArCH), 7.62 (2H, dd, J 4.0, 2.0 Hz, ArCH); 

δC(100 MHz; CDCl3) 52.5 (2 CO2CH3), 62.5 (C(CO2CH3)2), 76. 7 (C=C), 95. 2 (CH), 

123.9 (ArC), 128.9 (2 ArCH), 130.4 (3 ArCH), 171.2 (2 C=O). The above data is in 

agreement with the literature values stated. 

 

2-Phenyl-1-ethynyldiisopropoxyborane (160)76 

Ph B
O

O
Me

Me

Me
Me

 
nButyllithium (2.5M solution in hexane) (3.9 mL, 9.79 mmol) was slowly added to a stirred 

solution of phenylacetylene (1.07 mL, 1 g, 9.79 mmol) in diethyl ether (10mL) at -78°C 

under a nitrogen atmosphere. The formed lithium acetylide was added to a separate 

solution of triisopropylborane (1.34 mL, 1.84 g, 9.79 mmol) in diethyl ether (10 mL) at -

78°C via a canula. The reaction was maintained at -78oC for two hours, prior to the 

addition of anhydrous HCl in dioxane (2.4 mL, 0.35 g, 9.79 mmol). The cooling bath was 

removed and the reaction mixture was allowed to warm to ambient temperature. The 

precipitated lithium chloride was removed by filtration and excess solvents were removed 

under reduced pressure to afford the title compound as an orange oil in 46% yield (1.03 g, 

4.48 mmol), IR νmax (film)/cm-1 2245 (C≡C), 1445 (B-O), 1194 (B-C); δH(400 MHz; 

CDCl3) 1.23 (12H, d, J 6.3 Hz, 4 CH3), 4.66 (2H, q, J 6.4 Hz, 2 CH(CH3)2), 7.30-7.35 (3H, 

m, ArCH), 7.48-7.52 (2H, m, ArCH); δC(100 MHz; CDCl3) 24.4 (4 CH3), 65.3 (2 CH), 

83.66 (C-B), 101.84 (C≡C), 122.3 (ArC), 129.1 (3 ArCH), 132.3 (2 ArCH); δB (100 MHz; 

CDCl3) 21.5 (B). The above data is in agreement with the literature values stated. 

 

2,3-Diphenylcyclopropene-1,1-dicarboxylic acid dimethyl ester (171a)13 

 

An oven-dried round bottom flask was charged with palladium (II) acetate (18 mg, 0.08 

mmol, 5 mol %), iodobenzene (0.09 mL, 0.16 g, 0.81 mmol), substituted cyclopropene 1d 
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(0.19 g, 0.81 mmol) and anhydrous potassium carbonate (0.28 g, 2.0 mmol, 2.5 eq) under a 

nitrogen atmosphere. N,N-dimethylformamide (0.70 mL) was added and the reaction 

mixture was stirred at 30°C for 48 hours. Once the reaction was complete the reaction 

mixture was filtered through a short column of celite and silica gel (eluent: diethyl ether). 

The ethereal solution was washed with saturated aqueous ammonium chloride (10 mL), 

water (10 mL), brine (2 x20 mL) and dried over anhydrous sodium sulphate and the excess 

solvents were removed under reduced pressure. The crude residue was purified by flash 

chromatography on silica gel (EtOAc/ petrol 1:10) to afford the title compound as a light 

yellow solid 51% yield (0.13 g, 0.41 mmol). Rf (EtOAc/ petrol 1:10) 0.50; mp 121-122°C; 

IR νmax (film)/cm-1 1643 (C=O), 1280 (C-O); δH(400 MHz; CDCl3) 3.72 (6H, d, J 7.2 Hz, 2 

CO2CH3), 7.43-7.51 (6H, m, ArCH), 7.74-7.76 (4H, m, ArCH); δC(100 MHz; CDCl3) 51.2 

(2 CO2CH3), 62.4 (C(CO2Me)2), 126.2 (4 ArCH), 126.8 (C=C), 127.7 (2 ArCH), 128.4 (4 

ArCH), 134.9 (2 ArC), 171.0 (C=O). 

2,3-Diphenyl cyclopropane diester (170a) 

 

5% Palladium/calcium carbonate (68 mg, 0.0097 mmol) was added to a solution of the 

substituted cyclopropene 171a (0.3 g, 0.97 mmol) in ethyl acetate (4 mL). The reaction was 

stirred vigorously under a H2 atmosphere with the aid of a hydrogen balloon for 6 hours 

(monitored by TLC). The crude product was filtered through a pad of celite and silica and 

the filtrate was concentrated in vacuo. The residue was purified by flash chromatography 

on silica gel (EtOAc/ petrol 1:10) to afford the title compound as an off-white solid in 80% 

yield (240 mg, 0.78 mmol). Rf (EtOAc/ petrol 1:10) 0.41; mp 134.4-136.4°C, IR νmax 

(film)/cm-1 2955 (CH), 1732 (C=O), 1643 (C=O), 1253 (C-O); δH(400 MHz; CDCl3) 3.33 

(2H, s, 2 CH), 3.45 (3H, s, CO2CH3), 3.85 (3H, s, CO2CH3), 7.03-7.05 (4H, m, ArCH), 

7.17-7.20 (6H, m, ArCH); δC(100 MHz; CDCl3) 35.7 (2 CH), 40.9 (C(CO2Me)2), 52.1 

(CO2CH3), 53.3 (CO2CH3), 127.2 (6 ArCH), 130.6 (4 ArCH), 132.7 (2 ArC), 166.3 (C=O), 

171.0 (C=O), FTMS (ES) (M+Na+), calculated for C19H18O4Na 333.109, found 333.109 

(+0.235 ppm). 
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 2-(4’-Fluorophenyl)-3-phenyl cyclopropene diester (171d) 

 

N,N-dimethylformamide (3 mL) was added to an oven-dried round bottom flask charged 

with palladium (II) acetate (48 mg, 0.2 mmol, 5 mol %), 1-iodo-4-fluorobenzene (0.50 mL, 

0.95 g, 4.30 mmol), substituted cyclopropene 1d (0.8 g, 4.30 mmol) and anhydrous 

potassium carbonate (1.48 g, 11.0 mmol, 2.5 eq) under a nitrogen atmosphere. The 

resulting mixture was stirred at 90°C for 48 hours (monitored by TLC). Once complete the 

reaction mixture was cooled to room temperature and filtered through a short column of 

celite and silica gel (eluent diethyl ether). The ethereal solution was washed with saturated 

aqueous ammonium chloride (10 mL), water (10 mL), brine (2 x20 mL) and dried over 

anhydrous sodium sulphate. The excess solvents were removed under reduced pressure and 

the residue was purified by flash chromatography on silica gel (EtOAc/ Petrol 1:10) to 

obtain the title compound as a rusty orange solid in a 50% yield (0.70 g, 2.14 mmol). Rf 

(EtOAc/ Petrol 1:10) 0.35; mp 116.2-118.2°C; IR νmax (film)/cm-1 2951 (sp3 C-H), 1730 

(C=O), 1601(ArC=C), 1506(ArC=C), 1284(C-O), 1154 (Ar-F); δH(400 MHz; CDCl3) 3.73 

(6H, s, 2 CO2CH3), 7.17-7.21 (2H, m, ArF-CH), 7.45-7.51 (3H, m, ArCH), 7.71-7.75 (4 H, 

m, 2 ArCH, 2 ArF-CH); δC(100 MHz; CDCl3) 35.0 (C(CO2CH3)2), 52.4 (2 CO2CH3), 

116.3 (ArF-CH), 116.5 (ArF-CH), 122.3 (C=C), 125.1 (C=C), 129.0 (2 ArCH), 130.0 

(ArF-CH), 130.1 (ArF-CH), 132.0 (2 ArCH), 132.1 (ArCH), 163.4 (1C, d, J 250 Hz, CF), 

170.7 (2 C=O); HRMS (FAB) (M+H+), calculated for C19H16FO4 327.1031, found 

327.1032; m/z 327 (49%), 326 (38%) and 267 (100%). 

(±) 2-(4’-Fluorophenyl)-3-phenyl cyclopropane diester (170d) 

 
5% Palladium/calcium carbonate (34 mg, 0.0046 mmol) was added to a solution of the 

substituted cyclopropene 171d (0.15 g, 0.46 mmol) in ethyl acetate (4 mL). The reaction 

mixture was stirred vigorously under a H2 atmosphere with the aid of a hydrogen balloon 
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for 3 hours (monitored by TLC). The crude product was filtered through a pad of celite and 

silica and the filtrate was concentrated in vacuo to afford the title compound without 

further purification as a light yellow viscous oil in 99% yield (0.15g, 0.45 mmol); IR νmax 

(film)/cm-1 2952 (sp3C-H), 1728 (C=O), 1635, 1604 (ArC=C), 1511 (ArC=C), 1255 (C-O), 

1156 (Ar-F); δH(400 MHz; CDCl3) 3.29 (1H, d, J 10.1 Hz, CHCAr), 3.31 (1H, d, J 10.1 

Hz, CHCAr), 3.46 (3H, s, CO2CH3), 3.85 (3H, s, CO2CH3), 6.86-6.90 (2H, m, ArF-CH), 

6.97-6.99 (2H, m, ArF-CH), 7.02-7.06 (2H, m, ArCH), 7.16-7.20 (3H, m, ArCH); δC(100 

MHz; CDCl3) 34.4 (2 CHCAr), 42.4 (C(CO2CH3)2), 52.1 (2 CO2CH3), 114.9 (2 ArF-CH), 

124.9 (ArCH), 125.2 (2 ArCH), 126.8 (2 ArF-CH), 127.9 (2 ArCH), 138.6 (CHCArF), 

144.2 (ArC), 163.4 (1C, d, J 250 Hz, CF), 171.3 (2 C=O); HRMS (FAB) (M+H+) 

calculated for C19H18FO4 329.1110, found 329.1192; m/z 329 (37%), 296 (48%), 265 

(100%), 209 (88%), 196 (30%) and 91 (38%).  

2-(4’-Methoxyphenyl)-3-phenyl cyclopropene diester (171b) 

 
N,N-dimethylformamide (1.5 mL) was added to an oven-dried round bottom flask charged 

with palladium (II) acetate (25 mg, 0.11 mmol, 5 mol %), 4-iodo-anisole (0.50 g, 2.2 

mmol), substituted cyclopropene 1d (0.5 g, 2.2 mmol) and anhydrous potassium carbonate 

(0.74 g, 5.0 mmol, 2.5 eq) under a nitrogen atmosphere. The resulting mixture was stirred 

at 90oC for 48 hours and once complete was cooled to room temperature and filtered 

through a short column of celite and silica gel (eluent diethyl ether). The obtained ethereal 

solution was washed with saturated aqueous ammonium chloride (10 mL), water (10 mL), 

brine (2 x20 mL) and dried over anhydrous sodium sulphate. The excess solvents were 

removed under reduced pressure and the residue was purified by flash chromatography on 

silica gel (EtOAc/ Petrol 1:10) to obtain the title compound as an orange/brown solid in 

45% yield (0.33 g, 0.99 mmol). Rf (EtOAc/ Petrol 1:10) 0.71; mp 116.1-118.6°C; IR νmax 

(film)/cm-1 2950 (sp3CH), 1730 (C=O), 1604 (ArC=C), 1509 (ArC=C), 1434 (ArC=C), 

1283 (C-O), 1128(C-O); δH(400 MHz; CDCl3) 3.72 (6H, s, 2 CO2CH3), 3.86 (3H, s, 

OCH3), 7.01 (2H, d, J 8.8 Hz, ArOMe-CH), 7.39 (1 H, t, J 7.2, Hz, ArCH), 7.47 (2H, t, J 

7.2 Hz, ArCH), 7.68 (2H, d, J 8.8 Hz, ArOMe-CH), 7.71 (2H, d, J 1.2 Hz, ArCH); δC(100 

MHz; CDCl3) 35.4 (C(CO2CH3)2), 52.3 (CO2CH3), 55.5 (OCH3), 103.9 (C=C), 106.2 
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(C=C), 114.7 (ArOMe-CH), 117.8 (ArC), 125.6 (ArC), 128.9 (2 ArCH), 129.4 (ArCH), 

129.8 (ArOMe-CH), 131.9 (2 ArCH), 161.1 (ArC-OCH3), 171.0 (C=O); HRMS (FAB) 

(M+H+) calculated for C20H19O5 339.1154, found 339.1233; m/z 339 (39%), 329 (28%), 

279 (35%), 162 (56%) and 148 (100%). 

(±) 2-(4’-Methoxyphenyl)-3-phenyl cyclopropane diester (170b) 

 

5% Palladium/calcium carbonate (54 mg, 0.0080 mmol) was added to a stirred solution of 

the substituted cyclopropene 171b (0.28 g, 0.80 mmol) in ethyl acetate (10 mL). The 

resulting mixture was stirred vigorously under a H2 atmosphere with the aid of a hydrogen 

balloon for 19 hours (monitored by TLC). The crude product was filtered through a pad of 

celite and silica, prior to purification by flash chromatography on silica gel (EtOAc/ Petrol 

1:10) to afford the title compound as an orange oil in 92% yield (0.26g, 0.76 mmol). Rf 

(EtOAc/ Petrol 1:10) 0.54; IR νmax (film)/cm-1 2948 (sp3CH), 1728 (C=O), 1608 (ArC=C), 

1249 (C-O), 1179; δH(400 MHz; CDCl3) 3.20 (2H, d, J 7.2 Hz, ArCHCHAr), 3.39 (3H, s, 

CO2CH3), 3.69 (3H, s, CO2CH3), 3.77 (3H, s, OCH3), 6.65 (2H, dd, J 6.8, 2.0 Hz, ArOMe-

CH), 6.91 (2H, dd, J 3.6 , 6.4 Hz, ArOMe-CH), 6.94-6.96 (2H, m, ArCH), 7.10-7.13 (3H, 

m, ArCH); δC(100 MHz; CDCl3) 35.2 (CH), 35.6 (CH), 42.3 (C(CO2CH3)2), 52.1 

(CO2CH3), 53.2 (OCH3), 55.1 (CO2CH3), 113.0 (ArOMe-CH), 126.8 (ArOMe-CH), 127.5 

(ArCH), 130.6 (2 ArCH), 131.8 (2 ArCH), 158.5 (ArC-OMe), 171.0 (C=O); HRMS (FAB) 

(M+) calculated for C20H20O5 340.1310, found 340.1316; m/z 340 (55%), 309 (48%), 280 

(52%), 277 (100%), 249 (37%), 221 (84%), 178 (30%), 135 (37%) and 121 (44%). Due to 

a weak sample not all the quaternary carbons have been accounted for. 

2-Phenyl-3-(4’-trifluoromethylphenyl) cyclopropene diester (171e) 
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N,N-dimethylformamide (4 mL) was added to an oven-dried round bottom flask charged 

with palladium (II) acetate (48 mg, 0.21 mmol, 5 mol %), 1-Iodo-4-

(trifluoromethyl)benzene (0.63 mL, 1.17 g, 4.3 mmol), substituted cyclopropene 1d (1.0 g, 

4.3 mmol) and anhydrous potassium carbonate (1.48 g, 10.0 mmol, 2.5 eq) under a 

nitrogen atmosphere. The resulting mixture was stirred at 90°C for 48 hours and once 

complete was cooled to room temperature and was filtered through a short column of celite 

and silica gel (eluent diethyl ether). The obtained ethereal solution was washed with 

saturated aqueous ammonium chloride (10 mL), water (10 mL), brine (2 x20 mL) and 

dried over anhydrous sodium sulphate. The excess solvents were removed under reduced 

pressure and the residue was purified by flash chromatography on silica gel (EtOAc/ petrol 

1:10) to afford the title compound as a pale yellow solid in 55% yield (0.89 g, 2.37 mmol). 

Rf (EtOAc/ petrol 1:10) 0.30; mp 160.8-161.7°C, IR νmax (film)/cm-1 1748 (C=O), 1720 

(C=O), 1188 (C-F), 1158 (C-F); δH(400 MHz; CDCl3) 3.74 (6H, s, 2 CO2CH3), 7.50-7.56 

(3H, m, ArCH), 7.67-7.73 (4H, m, 2 ArCH-CF3, 2 ArCH), 7.87 (2H, d, J 8.8 Hz, ArCH-

CF3); δC(100 MHz; CDCl3) 35.0 (C(CO2CH3)2), 52.5 (CO2CH3), 105.2 (C=C), 109.2 

(C=C), 124.7 (1C, q, J 271 Hz, CF3), 125.2 (ArCH-CF3), 126.0 (ArCH-CF3), 129.2 (3 

ArCH), 130.2 (ArC-CF3), 130.5 (ArCH), 130.7 (ArCH), 139.2 (ArC), 142.7 (ArC) 170.4 

(C=O); δF(376 MHz; CDCl3) 99.4 (3F, s, CF3); HRMS (FAB) (M+H+) calculated for 

C20H15F3O4 377.1007, found 377.1007; m/z 377 (65%), 376 (51%), 317 (100%), 289 

(32%), 154 (50%) and 136 (43%). 

 (±) 2-Phenyl-3-(4’-trifluoromethyl) phenyl cyclopropane diester (170e) 

 
5% Palladium/calcium carbonate (68 mg, 0.0082 mmol) was added to a solution of the 

substituted cyclopropene 171e (310 mg, 0.82 mmol) in ethyl acetate (10 mL). The resulting 

mixture was stirred vigorously under a H2 atmosphere with the aid of a hydrogen balloon 

for 3 hours (monitored by TLC). The crude product was filtered through a pad of celite and 

silica and the filtrate was concentrated in vacuo to afford the title compound without 

further purification as a yellow oil in 99% yield (310 mg, 0.82 mmol); IR νmax (film)/cm-1 

2953 (sp3CH), 1736 (C=O), 1617 (ArC=C), 1495 (ArC=C), 1325 (C-O), 1256 (C-O), 1163 

(C-F), 1122 (C-F); δH(400 MHz; CDCl3) 2.82 (1H, dd, J 4.0, 13.2 Hz, CH), 3.11 (1H, dd, J 
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4.0, 13.2 Hz, CH), 3.47 (3H, s, CO2CH3), 3.79 (3H, s, CO2CH3), 6.91 (2H, d, J 8.0 Hz, 

ArCH-CF3), 7.11-7.18 (5H, m, ArCH), 7.45 (2H, d, J 8.0 Hz, ArCH-CF3); δC(100 MHz; 

CDCl3) 35.1 (CH), 35.6 (CH), 41.1 (C(CO2CH3)2), 52.3 (CO2CH3), 53.5 (CO2CH3), 124.4 

(1C, q, J 271 Hz, CF3), 125.1 (ArCH-CF3), 127.8 (ArCH), 128.2 (ArCH), 128.6 (ArC-

CF3), 130.2 (ArCH-CF3), 131.1 (ArCH), 132.2 (ArC), 136.9 (ArC), 166.1 (C=O), 170.6 

(C=O); FTMS (ES) (M+H+), calculated for C20H18F3O4 379.110, found 379.123. 

 

2-Phenyl,3-(4’-nitrophenyl) cyclopropane diester (171c)13 

 
N,N-dimethylformamide (3 mL) was added to an oven-dried round bottom flask charged 

with palladium (II) acetate (25 mg, 0.11 mmol, 5 mol %),4- iodo-nitrobenzene (0.54 g, 2.2 

mmol), substituted cyclopropene 1d (0.5 g, 2.2 mmol) and anhydrous potassium carbonate 

(0.74 g, 5.5 mmol, 2.5 eq) under a nitrogen atmosphere. The resulting mixture was stirred 

at 90°C for 48 hours and once complete was cooled to room temperature and was filtered 

through a short column of celite and silica gel (eluent diethyl ether). The obtained ethereal 

solution was washed with saturated aqueous ammonium chloride (10 mL), water (10 mL), 

brine (2 x20 mL) and dried over anhydrous sodium sulphate. The excess solvents were 

removed under reduced pressure and the residue was purified by flash chromatography on 

silica gel (EtOAc/ petrol 1:10) to afford the title compound as a yellow oil in 40% yield. 

(0.31 g, 0.88 mmol); IR νmax (film)/cm-1 2952 (sp3CH), 1729 (C=O), 1591 (ArC=C), 1517 

(NO2), 1341 (NO2), 838 (p-disubstituted benzene ring); δH(400 MHz; CDCl3) 3.87 (6H, s, 

2 CO2CH3), 7.51-7.55 (3H, m, 3 ArCH), 7.78-7.80 (2H, m, 3 ArCH), 7.90 (2H, dd, J 2.0, 

6.8 Hz, 2 ArCH-NO2), 8.34 (2H, dd, J 2.0, 6.2 Hz, 2 ArCH-NO2 ); δC(100 MHz; CDCl3) 

35.2 (C(CO2CH3)2), 52.7 (2 CO2CH3), 104.6 (C=C), 111.6 (C=C), 124.4 (2 ArCH-NO2), 

127.4 (ArC), 129.3 (3 ArCH), 130.6 (ArCH-NO2), 130.8 (ArCH-NO2), 131.2 (ArCH), 

131.5 (ArC), 147.9 (C-NO2), 170.1 (2 C=O); HRMS (FAB) (M+H+) calculated for 

C19H16NO6 354.0894, found 354.0975. The above data is in agreement with the literature 

values stated. 
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2-Butylcyclopropene-1,1-dicarboxylic acid dimethyl ester (37f)73 

 

A solution of diazo dimethylmalonate 150a (1.58 g, 10 mmol) in anhydrous 

dichloromethane (5ml) was added via a syringe pump over a period of 18 hours to a stirred 

solution of 1-hexyne (3.58 ml, 2.56 g, 31 mmol, 3.1 eq) and rhodium acetate dimer (22 mg, 

0.05 mmol, 1 mol%) in anhydrous dichloromethane (10 ml) under a nitrogen atmosphere. 

Once addition was complete the reaction mixture was stirred for additional 6 hours at room 

temperature. The mixture was filtered through a pad of silica and celite and excess solvents 

were removed under reduced pressure. The crude product was purified by flash 

chromatography on silica gel (EtOAc/ petrol 1:8) to afford the title compound as colourless 

oil in 46% yield. (0.95 g, 4.5 mmol); IR νmax (film)/cm-1 2955 (sp3CH), 1732 (C=O), 1280 

(C-O); δH(400 MHz; CDCl3) 0.85 (3H, t, J 7.3 Hz, CH2CH2CH2CH3), 1.28-1.35 (2H, m, 

CH2), 1.48-1.56 (2H, m, CH2), 2.48 (2H, t, J 7.6 Hz, CH2), 3.65 (6H, s, 2 CO2CH3), 6.28 

(1H, t, J 1.4 Hz, CHC=CCH2); δC(100 MHz; CDCl3) 13.4 (CH3), 21.9 (CH2), 24.1 (CH2), 

29.1 (CH2), 52.1 (2 CO2CH3), 60.4 (C(CO2CH3)2), 95.6 (CH), 108.7 (C=C), 171.3 (2 

C=O). The above data is in agreement with the literature values stated. 

2-Butyl-3-phenyl-cyclopropene-1,1-dicarboxylic acid dimethyl ester (171f)13 

 

N,N-dimethylformamide (3 mL) was added to an oven dried flask loaded with palladium 

(II) acetate (53 mg, 0.24 mmol, 5 mol %), iodobenzene (0.53 ml, 0.96 g, 4.7 mmol), 

substituted cyclopropene 37f (1.0g, 4.7 mmol) and anhydrous potassium carbonate (1.62 g, 

12.0 mmol, 2.5 eq) under a nitrogen atmosphere. The resulting mixture was stirred at 60oC 

for 48 hours and once complete was cooled to room temperature and filtered through a pad 

of silica and celite and washed with diethyl ether (10 mL). The obtained ethereal solution 

was washed with saturated aqueous ammonium chloride (10 mL), water (10 mL), brine (2 

x20 mL) and dried over anhydrous sodium sulphate. The excess solvents were removed 

under reduced pressure and the residue was purified by flash chromatography on silica gel 
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(EtOAc/ petrol 1:10) to afford the title compound as a clear oil in 43% yield. (0.58g, 2.0 

mmol); IR νmax (film)/cm-1 2954 (CH2), 1731 (C=O), δH(400 MHz; CDCl3) 0.84 (3H, t, J 

7.2 Hz, CH3), 1.44-1.36 (2H, m, CH2), 1.69-1.64 (2H, m, CH2), 2.65 (2H, t, J 7.6 Hz, 

CH2), 3.64 (6H, s, 2 CO2CH3), 7.36-7.29 (3H, m, ArCH), 7.51-7.53 (2H, m, ArCH), 

δC(100 MHz; CDCl3) 13.7 (CH3), 22.4 (CH2), 24.2 (CH2), 29.2 (CH2), 52.1 (CO2CH3), 

104.4 (C(CO2CH3), 109.2 (2 ArC=CCH2), 125.1 (ArC), 128.8 (3 ArCH), 129.3 (ArCH), 

129.6 (ArCH), 171.5 (C=O). The above data is in agreement with the literature values 

stated.  

(±) 2-Butyl-3-phenyl-cyclopropane-1,1-dicarboxylic acid dimethyl ester (170f) 

 

5% Palladium/calcium carbonate (44 mg, 1 mol%) was added to a solution of the 

substituted cyclopropene 171f (0.24 g, 0.83 mmol) in ethyl acetate (4 ml). The resulting 

mixture was stirred vigorously under a H2 atmosphere with the aid of a balloon for 19 

hours (monitored by TLC). The crude product was filtered through a pad of celite and 

silica prior to purification by flash chromatography on silica gel (EtOAc/ petrol 1:10) to 

afford the title compound as a colourless oil in 67% yield. (0.16g, 0.55 mmol); IR νmax 

(neat)/cm-1 2952 (sp3 CH), 2858 (CH), 1730 (C=O), 1602 (ArC=C), 1498 (ArC=C); 

δH(400 MHz; CDCl3) 0.80 (3H, t, J 7.2 Hz, CH3), 1.22-1.30 (2H, m, CH2), 1.32-1.41 (2H, 

m, CH2), 1.65-1.71 (2H, m, CH2), 1.89 (1H, d, J 10 Hz, CHCH2), 3.04 (1H, d, J 10 Hz, 

CHAr), 3.54 (3H, s, CO2CH3), 3.71 (3H, s, CO2CH3), 7.13-7.17 (2H, m, ArCH), 7.19-7.22 

(3H, m, ArCH); δC(100 MHz; CDCl3) 14.0 (CH3), 22.7 (CH2), 24.7 (CH2), 31.7 (CH2), 

33.5 (CH), 34.9 (CH), 37.6(C(CO2CH3)), 52.0 (CO2CH3), 52.9 (CO2CH3), 126.9 (ArCH), 

128.0 (ArCH), 128.6 (ArCH), 129.1 (ArCH), 129.6 (ArCH), 134.1 (ArC), 167.3 (C=O), 

171.4 (C=O); FTMS (ES) (M+H+), calculated for C17H23O4 291.150, found 291.670. 

2-Butyl-3-(4’-fluorophenyl) cyclopropene diester (171g) 
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N,N-dimethylformamide (3.1 mL) was added to an oven-dried round bottom flask charged 

with palladium (II) acetate (53 mg, 0.23 mmol, 5 mol %), 1-Fluoro-4-iodobenzene (0.55 

mL, 1.05 g, 4.7 mmol), substituted cyclopropene 37f (1.0 g, 4.7 mmol) and anhydrous 

potassium carbonate (1.62 g, 12.0 mmol, 2.5 eq) under a nitrogen atmosphere. The 

resulting mixture was stirred at 90oC for 48 hours and once complete was cooled to room 

temperature and filtered through a short column of celite and silica gel (eluent diethyl 

ether). The obtained ethereal solution was washed with saturated aqueous ammonium 

chloride (10 mL), water (10 mL), brine (2 x20 mL) and dried over anhydrous sodium 

sulphate. The excess solvents were removed under reduced pressure and the residue was 

purified by flash chromatography on silica gel (EtOAc/ petrol 1:10) to afford the title 

compound as a light yellow oil in 42% yield (0.60 g, 1.97 mmol). Rf ; (EtOAc/ petrol 1:10) 

0.29; IR νmax (film)/cm-1 2963 (sp3C-H), 1730 (C=O), 1128 (Ar-F); δH(400 MHz; CDCl3) 

0.96 (3H, t, J 7.6 Hz, CH3), 1.45 (2H, dd, J 7.6, 7.2 Hz, CH2), 1.70-1.75 (2H, m, CH2), 

2.70 (2H, t, J 7.2 Hz, CH2), 3.71 (6H, s, 2 CO2CH3), 7.09-7.13 (2H, m, ArF-CH), 7.52-

7.49 (2H, m, ArF-CH); δC(100 MHz; CDCl3) 13.7 (CH3), 22.4 (CH2), 24.1 (CH2), 29.2 

(CH2), 42.4 (C(CO2CH3)2), 52.2 (2 CO2CH3), 106.3 (C=C), 108.4 (C=C), 116.0 (ArCH), 

116.2 (ArCH), 131.4 (ArCH), 131.5 (ArCH), 171.4 (2 C=O); δF(376 MHz; CDCl3) 51.9 

(1F, sept, J 4.7 Hz); HRMS (FAB) (M+H+) calculated for C17H19O4F 307.1267, found 

307.1345; m/z 307 (84%), 306 (26%) and 247 (100%). Due to a weak sample not all the 

quaternary carbons have been accounted for. 

(±) 2-Butyl-3-(4’-fluorophenyl) cyclopropane diester (170g) 

 

5% Palladium/calcium carbonate (69 mg, 0.0065 mmol) was added to a solution of the 

substituted cyclopropene 171g (0.20 g, 0.65 mmol) in ethyl acetate (10 mL). The reaction 

mixture was stirred vigorously under a H2 atmosphere with the aid of a hydrogen balloon 

for 20 hours (monitored by TLC). The crude product was filtered through a pad of celite 

and silica prior to purification by flash chromatography on silica gel (EtOAc/ petrol 1:10) 

to afford the title compound as a yellow viscous oil in 50% yield (100 mg, 0.32 mmol); IR 

νmax (film)/cm-1 2953(sp3CH), 1728 (C=O), 1605 (ArC=C), 1101(Ar-F); δH(400 MHz; 
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CDCl3) 0.88 (3H, t, J 7.2 Hz, CH3CH2CH2CH2), 1.30-1.35 (2H, m, CH2), 1.40-1.48 (2H, 

m, CH2), 1.71 (2H, t, J 7.2 Hz, CH2), 1.96 (1H, d, J 10.0 Hz, CHCH2), 3.06 (1H, d, J 10.0 

Hz, CHAr), 3.62 (3H, s, CO2CH3), 3.79 (3H, s, CO2CH3), 6.95-6.99 (2H, m, ArF-CH), 

7.18-7.21 (2H, m, ArF-CH); δC(100 MHz; CDCl3) 14.0 (CH3CH2CH2CH2), 22.6 (CH2), 

24.7 (CH2), 31.7 (CH2), 33.3 (CH), 34.0 (CH), 37.5 (C(CO2CH3)2), 52.0 (CO2CH3), 53.0 

(CO2CH3), 114.9 (ArCH), 115.0 (ArCH), 131.3 (2 ArCH), 161.8 (1C, d, J 244 Hz, CF), 

167.2 (ArC), 171.2 (2 C=O).;FTMS (ES) (M+H+), calculated for C17H22O4 309.14, found 

309.457. 

N-Benzyl-(4’-methoxy-benzylidene)-amine-N-oxide (175a) 

 

N-Benzylhydroxylamine hydrochloride (0.8 g, 5.0 mmol) and p-anisaldehyde (0.61 mL, 

0.68 g, 5.0 mmol, 1.0 eq) was added to a stirred suspension of MgSO4 (0.97 g, 8.0 mmol, 

1.6 eq) and NaHCO3 (0.55 g, 6.5 mmol, 1.3 eq) in anhydrous dichloromethane (40 mL) 

under a nitrogen atmosphere. The resulting mixture was stirred and refluxed under nitrogen 

for 72 hrs. Once complete the solution was cooled to room temperature and the solids 

removed. The filtrate was concentrated in vacuo to afford a white powder. The crude 

product was triturated from diethyl ether to afford the title compound as a white crystalline 

solid in 72% yield. (0.86g, 3.5 mmol); mp 106.6-108.4°C; IR νmax (film)/cm-1 2973 

(sp3CH), 1602 (ArC=C), 1565 (ArC=C), 1506.(ArC=C), 1253 (N-O); δH(400 MHz; 

CDCl3) 3.84 (3H, s, OCH3), 5.03 (2H, s, CH2Ar), 6.91 (2H, dd, J 2.8, 2.8 Hz, ArOMe-CH), 

7.31 (1H, s, CH), 7.38-7.43 (3H, m, ArCH), 7.47 (2H, dd, J 2.0, 2.4 Hz, ArCH), 8.21 (2H, 

dd, J 2.0, 2.8 Hz, ArOMe-CH); δC(100 MHz; CDCl3) 55.4 (OCH3) 72.3 (CH2Ar), 113.8 

(ArOMe-CH ), 114.0 (ArOMe-CH ), 129.3 (2 ArCH) 129.6 (2 ArCH), 130.2 (CH), 132.8 

(ArC), 135.6 (ArC), 146.8 (ArC-OMe); HRMS (FAB) (M+) calculated for C15H16NO2 

241.110, found 241.112; m/z 241 (70%), 154 (25%) and 91 (70%). 
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N-Benzyl-(4’-nitro-benzylidene)-amine-N-oxide (175b) 

 

N-Benzylhydroxylamine hydrochloride (0.8 g, 5.0 mmol) and p-nitrobenzaldehyde (0.76 g, 

5.0 mmol) were added to a stirred suspension of MgSO4 (0.96 g, 8.0 mmol, 1.6 eq) and 

NaHCO3 (0.55 g, 6.5 mmol, 1.3 eq) in anhydrous dichloromethane (40mL) under a 

nitrogen atmosphere. The resulting mixture was stirred and refluxed under nitrogen for 72 

hrs. On completion the reaction mixture was left to cool and the solids removed. The 

filtrate was concentrated in vacuo to afford a yellow powder. The crude product was 

triturated from diethyl ether to afford the title compound as a yellow crystalline solid in 

61% yield (0.78 g, 3.0 mmol); mp 116.6-118.4°C; IR νmax (film)/cm-1 2989 (sp3 CH), 1595 

(ArC=C), 1562 (NO2), 1347 (NO2); δH(400 MHz; CDCl3) 5.0 (2H, s, ArCH2), 7.36-7.42 

(5H, m, ArCH), 7.45 (1H, s, CH), 8.16 (2H, dd, J 7.2, 7.2 Hz, ArNO2-CH), 8.28 (2H, dd, J 

7.2, 7.2 Hz, ArNO2-CH); δC(100 MHz; CDCl3) 72.1 (ArCH2), 123.8 (2 ArNO2-CH), 128.8 

(2 ArNO2-CH), 129.2 (2 ArCH) 129.4 (3 ArCH), 132.1 (CH), 132.5 (ArC), 135.9 (ArC), 

147.8 (ArC-NO2); HRMS (FAB) (M+) calculated for C14H13N2O3 256.082, found 256.084; 

m/z 256 (100%), 176 (24%) 154 (79%) 136 (56%) and 91 (66%). 

N-Benzyl-N-thiophen-2-yl-methyleneamine-N-oxide (175d) 

 
N-Benzylhydroxylamine hydrochloride (0.5 g, 3.1 mmol) and thiophene-2-carboxaldehyde 

(0.35 g, 0.29 mL, 3.1 mmol) were added to a stirred suspension of MgSO4 (0.6 g, 5.0 

mmol, 1.6 eq) and NaHCO3 (0.34 g, 4.1 mmol, 1.3 eq) in anhydrous dichloromethane 

(25mL) under a nitrogen atmosphere. The resulting mixture was stirred and refluxed under 

nitrogen for 72 hrs. On completion the reaction mixture was left to cool and the solids were 

removed. The filtrate was concentrated in vacuo to afford a dark yellow powder. The crude 

product was triturated from diethyl ether to afford the title compound as a white solid in 

57% yield (0.38 g, 1.8 mmol); mp 112.4-114.8°C; IR νmax (film)/cm-1 3060 (ArC-H), 1560 

(C=N), 1135 (C-S); δH(400 MHz; CDCl3) 5.0 (2H, s, ArCH2), 7.12 (2H, dd, J 4.0, 3.6 Hz, 
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CCHCHC), 7.39-7.45 (5H, m, ArCH), 7.46 (1H, s, CH), 7.8 (1H, d, J 0.4 Hz, CHS); 

δC(100 MHz; CDCl3) 68.6 (ArCH2), 126.4 (2 CCHCHC), 129.1 (2 ArCH), 129.5 (3 

ArCH), 129.8 (CHS), 132.4 (CH), 132.7 (ArC), 137.2 (ArC); FTMS (ES) (M+H+), 

calculated for C12H12NOS 218.29, found 218.06 (+0.215 ppm). 

 

N-Methyl-(4’-Methoxy-benzylidene)-amine-N-oxide (175c) 

 

N-Methylhydroxylamine hydrochloride (1.0 g, 12 mmol) and p-anisaldehyde (1.46 mL, 

1.63 g, 12 mmol, 1.0 eq) were added to a stirred suspension of MgSO4 (2.29 g, 19 mmol, 

1.6 eq) and NaHCO3 (1.34 g, 16 mmol, 1.3 eq) in anhydrous dichloromethane (40 mL) 

under a nitrogen atmosphere. The resulting mixture was stirred and refluxed under nitrogen 

for 72 hrs. On completion the reaction mixture was left to cool and the solids were 

removed. The filtrate was concentrated in vacuo to afford an off-white solid. The crude 

product was triturated from diethyl ether to afford the title compound as a cream crystalline 

solid in 63% yield (1.16g, 7.5 mmol); mp 99.8-102.4°C; IR νmax (film)/cm-1 2839 (sp3 CH), 

1603 (ArC=C), 1508 (C=N); δH(400 MHz; CDCl3) 3.84 (3H, s, OCH3), 3.85 (3H, s, 

CH3N), 6.94 (2H, dd J 2.0, 6.8 Hz, ArMeO-CH), 7.28 (1H, s, CH), 8.21 (2H, dd, J 2.0, 6.8 

Hz, ArMeO-CH); δC(100 MHz; CDCl3) 53.9 (CH3N), 55.3 (OCH3), 113.84 (2 ArMeO-

CH), 123.5 (ArC), 130.4 (2 ArMeO-CH), 134.8 (CH), 161.1 (ArC); HRMS (FAB) (M+H+) 

calculated for C9H12NO2 166.08, found 166.084; m/z 166 (100%), 165 (55%). 

N-Methyl-N-thiophen-2-yl-methyleneamine-N-oxide (175e) 

 

N-Methylhydroxylamine hydrochloride (1.0 g, 12 mmol) and thiophene-2-carboxaldeyhe 

(1.1 mL, 1.34 g, 12 mmol, 1.0 eq) were added to a stirred suspension of MgSO4 (2.29 g, 19 

mmol, 1.6 eq) and NaHCO3 (1.34 g, 16 mmol, 1.3 eq) in anhydrous dichloromethane (40 

mL) under nitrogen atmosphere. The resulting mixture was stirred and refluxed under 
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nitrogen for 72 hrs. On completion the reaction mixture was left to cool and the solids were 

removed. The filtrate was concentrated in vacuo to afford a light orange solid. The crude 

product was triturated from diethyl ether to afford the title compound as a light orange 

crystalline solid in 54% yield (0.91g, 6.5 mmol); mp 122.6-124.7°C; IR νmax (film)/cm-1 

2109 (sp3 CH), 1643 (C=N), 1161 (C-S), 1092; δH(400 MHz; CDCl3) 3.87 (3H, s, CH3), 

7.14 (1H, dd, J 3.6, 4.0 Hz, CHCHCH), 7.43 (1H, d, J 4.0 Hz, CH), 7.48 (1H, d, J 4.8 Hz, 

CH), 7.86 (1H, s, HC=N); δC(100 MHz; CDCl3) 51.7 (CH3), 126.5 (CH), 129.1(CH), 129.3 

(CH), 130.9 (HC=N), 132.4 (ArC); FTMS (ES) (M+Na+) calculated for C6H7NNaO 

164.014, found 164.014 (+0.266 ppm). 

N-Methyl-(4’-methylbenzylidene)-amine-N-oxide (175f) 

 

N-Methylhydroxylamine hydrochloride (1.0 g, 11.9 mmol) and p-tolualdehyde (1.41 mL, 

1.44 g, 11.9 mmol, 1.0 eq) were added to a stirred suspension of MgSO4 (2.29 g, 19.0 

mmol, 1.6 eq) and NaHCO3 (1.30 g, 15.5 mmol, 1.3 eq) in anhydrous dichloromethane (50 

mL) under a nitrogen atmosphere. The resulting mixture was stirred and refluxed under 

nitrogen for 72 hrs. On completion the reaction mixture was left to cool and the solids were 

removed. The filtrate was concentrated in vacuo to afford a white powder. The crude 

product was triturated from diethyl ether to afford the title compound as a white crystalline 

solid in 54% yield (0.95g, 6.4 mmol); mp 127.6-129.4°C; IR νmax (film)/cm-1 2941 (sp3 

CH), 1585 (ArC=C), 1504 (C=N), 838 (p-substituted aromatic, CH); δH(400 MHz; CDCl3) 

2.39 (3H, s, ArCH3), 3.87 (3H, s, NCH3), 7.23 (2H, d, J 8.4 Hz, ArCH3-CH), 7.34 (1H, s, 

CH), 8.11 (2H, d, J 8.4 Hz, ArCH3-CH); δC(100 MHz; CDCl3) 21.7 (ArCH3), 54.2 

(NCH3), 127.8 (ArC), 128.5 (2 ArCH), 129.2 (2 ArCH), 135.3 (CH), 140.9 (ArC), HRMS 

(FAB) (M+H+) calculated for C9H12NO 150.084, found 150.092; m/z 150 (100%) and 132 

(16%). 
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N-Methyl-(4’-trifluoromethyl benzylidene)-amine-N-oxide (175g) 

 

N-Methylhydroxylamine hydrochloride (1.0 g, 11.9 mmol) and 4-

trifluromethylbenzaldehyde (1.63 mL, 2.08 g, 11.9 mmol, 1.0 eq) were added to a stirred 

suspension of MgSO4 (2.29 g, 19.1 mmol, 1.6 eq) and NaHCO3 (1.30 g, 15.6 mmol, 1.3 

eq) in anhydrous dichloromethane (50 mL) under a nitrogen atmosphere. The resulting 

mixture was stirred and refluxed under nitrogen for 72 hrs. On completion the reaction 

mixture was left to cool and the solids were removed. The filtrate was concentrated in 

vacuo to afford a white powder. The crude product was triturated from diethyl ether to 

afford the title compound as a white crystalline solid in 32% yield. (0.77g, 3.8 mmol); mp 

133.4-134.6°C; IR νmax (film)/cm-1 2943 (sp3 CH), 1604 (ArC=C), 1184 (C-F); δH(400 

MHz; CDCl3) 3.92 (3H, s, CH3), 7.46 (1H, s, CH), 7.66 (2H, d, J 8.4 Hz, 2 ArCH), 8.32 

(2H, d, J 8.4 Hz, 2 ArCH), δC(100 MHz; CDCl3) 54.8 (CH3), 124.2 (1C q, J 270 Hz, CF3), 

125.5 (2 ArCH), 128.3 (2 ArCH), 131.4 (1C, q, 32.5 Hz, ArC-CF3), 132.5 (ArC), 133.8 

(CH); FTMS (ES) (M+H+) calculated for C9H9F3NO 204.055, found 204.063 (-0.59 ppm). 

N-Methyl-(4’-nitrobenzylidene)-amine-N-oxide (175h) 

 

N-Methylhydroxylamine hydrochloride (1.0 g, 11.9 mmol) and p-nitrobenzaldehyde (1.70 

g, 11.9 mmol, 1.0 eq) were added to a stirred suspension of MgSO4 (2.29 g, 19.0 mmol, 1.6 

eq) and NaHCO3 (1.31 g, 8.1 mmol, 1.3 eq) in anhydrous dichloromethane (50 mL) under 

a nitrogen atmosphere. The resulting mixture was stirred and refluxed under nitrogen for 

72 hrs. On completion the reaction mixture was left to cool and the solids were removed. 

The filtrate was concentrated in vacuo to afford a dark yellow powder. The crude product 

was triturated from diethyl ether to afford the title compound as a bright yellow crystalline 

solid in 52% yield. (1.09g, 6.1 mmol); mp 134.6-135.4°C; IR νmax (film)/cm-1 1597 

(ArC=C), 1576 (NO2), 1342 (NO2); δH(400 MHz; CDCl3) 3.96 (3H, s, CH3), 7.54 (1H, s, 
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CH), 8.27 (2H, dd, J 7.2, 7.2 Hz, ArCH), 8.38 (2H, dd, J 7.2, 7.2 Hz, ArCH), δC(100 MHz; 

CDCl3) 55.2 (CH3), 123.8 (2 ArCH), 128.7 (2 ArCH), 133.2 (CH), 136.0 (ArC), 147.8 

(ArCNO2), HRMS (FAB) (M+H+) calculated for C8H9N2O3 181.0534, found 181.0613; 

m/z 181 (100%), 154 (100%), 136 (80%), 107 (25%), 89 (25%). 

N-Benzyl-(4’-trifluromethylbenzylidene)-amine-N-oxide (175i) 

 

N-Benzylhydroxylamine hydrochloride (1.0 g, 6.2 mmol) and p-

trifluromethylbenzaldehyde (1.0 g, 6.2 mmol, 1.0 eq) were added to a stirred suspension of 

MgSO4 (1.19 g, 9.9 mmol, 1.6 eq) and NaHCO3 (0.68 g, 8.1 mmol, 1.3 eq) in anhydrous 

dichloromethane (50 mL) under a nitrogen atmosphere. The resulting mixture was stirred 

and refluxed under nitrogen for 72 hrs. On completion the reaction mixture was left to cool 

and the solids were removed. The filtrate was concentrated in vacuo to afford a white 

powder. The crude product was triturated from diethyl ether to afford the title compound as 

a white crystalline solid in 46% yield. (0.75g, 2.7 mmol); mp 134.6-136.4°C, IR νmax 

(film)/cm-1 3068 (ArCH), 1580 (ArC=C), 1459 (sp2 CH); δH(400 MHz; CDCl3) 5.09 (2H, 

s, ArCH2), 7.40-7.44 (3H, m, ArCH), 7.46 (1H, s, CH), 7.47-7.50 (2H, m, ArCH), 7.64 

(2H, d, J 8.4 Hz, ArCH-CF3), 8.31 (2H, d, J 8.4 Hz, ArCH-CF3); δC(100 MHz; CDCl3) 

71.7 (ArCH2), 124.1 (1C, q, J 270 Hz, CF3) 125.4 (ArCH-CF3), 128.5 (ArCH-CF3), 129.2-

129.3 (3 ArCH), 131.3 (ArC), 131.5 (1C, q, J 32.4 Hz, ArC-CF3), 132.8 (CH), 133.5 

(ArC), HRMS (FAB) (M+H+) calculated for C15H13F3NO 280.0875, found 280.0952; m/z 

280 (100%) and 91 (85%). 

(±) 2-Benzyl-3-(4-methoxyphenyl)-5,6-diphenyl-oxazine-4,4-dimethyl ester 
(176a) 
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Yb(OTf)3 (9 mg, 0.016 mmol, 10 mol %) was added to a stirred solution of nitrone 175a 

(97 mg, 0.40 mmol, 2.5 eq) and di-substituted cyclopropane 170a (50 mg, 0.16 mmol) in 

1,2-dichloroethane (3 mL) under a nitrogen atmosphere. The resulting mixture was heated 

under reflux overnight and once complete the reaction mixture was cooled to room 

temperature, diluted with dichloromethane (10 mL) and filtered through a pad of celite and 

silica. The excess solvents were removed under reduced pressure and the crude residue was 

purified by flash chromatography on silica gel (EtOAc/ Petrol 1:8) to afford the title 

compound as a white crystalline solid in 70% yield (60 mg, 0.10 mmol) as a single 

diastereoisomer; mp 190.9-192.2°C, IR νmax (film)/cm-1 3029 (ArCH), 2922 (sp3 CH), 

2851 (sp3 CH), 1732 (C=O), 1606 (ArC=C), 1509 (ArC=C), 1253 (C-O), 1175 (C-O); 

δH(400 MHz; CDCl3) 3.11 (3H, s, OCH3), 3.36 (3H, s, CO2CH3), 3.50 (1H, d, J 13.6 Hz, 

ArCH2), 3.77 (3H, s, CO2CH3), 3.87 (1H, d, J 13.6 Hz, ArCH2), 4.41 (1H, d, J 11.6 Hz, 

CH), 4.51 (1H, s, CHN), 5.52 (1H, d, J 12 Hz, CHON), 6.85 (2H, d, J 8.4 Hz, ArCH-

OMe), 7.02-7.09 (6H, m, ArCH), 7.17-7.21 (9H, m, ArCH), 7.22 (2H, d, J 8.4 Hz, ArCH-

OMe); δC(100 MHz; CDCl3) 46.1 (CH), 51.7 (CO2CH3), 51.8 (CO2CH3), 55.2 (OCH3), 

59.3 (ArCH2), 62.6 (C(CO2CH3)2), 63.0 (CHN), 82.0 (CHON), 113.2 (ArCH-OMe), 127.0 

(2 ArCH), 127.5 (2 ArCH), 128.1 (ArCH), 128.2 (ArCH), 129.0 (2 ArCH), 130.1 (2 

ArCH), 132.6 (ArCH-OMe), 136.9 (ArC), 137.3 (ArC), 138.3 (ArC), 159.4 (ArC-OMe), 

169.3 (C=O), 170.3 (C=O); HRMS (FAB) (M+) calculated for C34H33NO6 551.20, found 

551.23; m/z 551 (25%), 307 (23%), 176 (30%), 154 (100%), 136 (75%) and 91 (37%). 

(±) 2-Benzyl-5,6-diphenyl-3-thiophen-2-yl-oxazine-4,4 dimethyl ester (176b) 

 

Yb(OTf)3 (4 mg, 0.008 mmol, 5 mol %) was added to a stirred solution of nitrone 175d (33 

mg, 0.15 mmol, 1.2 eq) and di-substituted cyclopropane 170a (40 mg, 0.13 mmol) in 1,2-

dichloroethane (3 mL) under a nitrogen atmosphere. The resulting mixture was refluxed 

overnight and once complete the reaction mixture was cooled to room temperature, diluted 

with dichloromethane (10 mL) and filtered through a pad of celite and silica. The excess 

solvents were removed under reduced pressure and the crude residue was purified by flash 

chromatography on silica gel (EtOAc/ Petrol 1:8) to afford the title compound as a white 
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crystalline solid in 60% yield (44 mg, 0.078 mmol); mp 178.4-180.2°C; IR νmax (film)/cm-1 

3032 (ArCH), 3009 (sp2 CH), 2947 (sp3 CH), 2924 (sp3 CH), 1735 (C=O), 1257 (C-O); 

δH(400 MHz; CDCl3) 3.32 (3H, s, CO2CH3), 3.47 (3H, s, CO2CH3), 3.60 (1H, d, J 13.2 Hz, 

ArCH2), 4.10 (1H, d, J 13.2 Hz, ArCH2), 4.40 (1H, d, J 11.6 Hz, CHCCO2CH3), 5.06 (1H, 

s, CHN), 5.59 (1H, d, J 11.6 Hz, CHON), 6.87 (2H, dd, J 0.8, 1.2 Hz, CH, thiophene), 

7.03-7.08 (4H, m, ArCH), 7.11-7.23 (5H, m, ArCH), 7.27-7.39 (6H, m, ArCH), 7.45 (1H, 

d, J 5.2 Hz, CHS); δC(100 MHz; CDCl3) 46.8 (CHCCO2CH3), 51.1 (CO2CH3), 51.8 

(CO2CH3), 59.2 (ArCH2), 62.2 (C(CO2CH3)2), 63.9 (CHN), 82.2 (CHON), 125.6 (2 CH, 

thiophene), 125.7 (ArCH), 126.5 (ArCH), 126.7 (CHS), 127.1 (ArCH), 127.4 (ArCH) 

127.9 (ArCH), 128.1 (ArCH), 128.2 (ArCH), 128.4 (ArCH), 129.2 (ArCH), 130.4 (ArCH), 

137.5 (HC=CS), 140.2 (2 ArC), 142.4 (ArC), 174.5 (C=O), HRMS (FAB) (M+H+) 

calculated for C31H30NO5S 528.63, found 528.45; m/z 528 (50%), 91 (65%).  

(±) 2-Benzyl,3(4-nitrophenyl)5,6-diphenyl-oxazine-4,4 dimethyl ester (176d) 

 

 

Yb(OTf)3 (5 mg, 0.008 mmol, 5 mol %) was added to a stirred solution of nitrone 175b (97 

mg, 0.40 mmol, 2.5 eq) and di-substituted cyclopropane 170a (50 mg, 0.16 mmol) in 1,2-

dichloroethane (4 mL) under a nitrogen atmosphere. The resulting mixture was refluxed 

for 19 hours and once complete the reaction mixture was cooled to room temperature, 

diluted with dichloromethane (10 mL) and filtered through a pad of celite and silica. The 

excess solvents were removed under reduced pressure and the crude residue was purified 

by flash chromatography on silica gel (EtOAc/ Petrol 1:8) to afford the title compound as a 

white powder in 55% yield (50 mg, 0.08 mmol). Rf (EtOAc/ petrol 1:8) 0.40; mp 214.2-

215.5°C; IR νmax (film)/cm-1 1734 (C=O), 1603 (ArC=C), 1549 (NO2), 1347 (NO2), 1260 

(C-O); δH(400 MHz; CDCl3) 3.11 (3H, s, CO2CH3), 3.39 (3H, s, CO2CH3), 3.44 (1H, d, J 

13.2 Hz, ArCH2), 3.92 (1H, d, J 13.2 Hz, ArCH2), 4.36 (1H, d, J 11.6 Hz, CHCCO2CH3), 

4.70 (1H, s, CHN), 5.58 (1H, d, J 11.6 Hz, CHON), 6.99-7.11 (6H, m, ArCH), 7.12-7.18 

(5H, m, ArCH), 7.18-7.27 (4H, m, ArCH), 7.56 (2H, d, J 9.0 Hz, ArNO2-CH), 8.20 (2H, d, 

J 8.8 Hz, ArNO2-CH); δC(100 MHz; CDCl3) 45.1 (CHCCO2CH3), 50.9 (2 CO2CH3), 58.4 
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(ArCH2), 61.6 (C(CO2CH3)2), 65.3 (CHN), 81.1 (CHON), 121.9 (ArNO2-CH), 126.2 

(ArNO2-CH), 126.5 (ArCH), 126.7 (ArCH), 127.0 (ArCH), 127.3 (ArCH), 127.8 (ArCH), 

129.1 (ArCH), 131.2 (ArCH), 134.9 (ArC), 135.6 (ArC), 136.6 (ArC), 142.0 (ArC), 146.7 

(ArC), 167.7 (C=O), 168.6 (C=O); HRMS (FAB) (M+H+) calculated for C33H31N2O7 

567.2053, found 567.2131; m/z 567 (22%), 278 (41%), 246 (26%), 176 (30%), 154 (97%), 

136 (78%), 107 (26%), 91 (100%) and 77 (26%). 

(±) 2-Methyl-5,6-diphenyl-3-(thiophen-2-yl)oxazine-4,4-dimethyl ester (176c) 

 

Yb(OTf)3 (5 mg, 0.008 mmol, 5 mol %) was added to a stirred solution of nitrone 175e (52 

mg, 0.4 mmol, 2.5 eq) and di-substituted cyclopropane 170a (50 mg, 0.16 mmol) in 1,2-

dichloroethane (3 mL) under a nitrogen atmosphere. The resulting mixture was refluxed 

for 24 hours and once complete the reaction mixture was cooled to room temperature, 

diluted with dichloromethane (10 mL) and filtered through a pad of celite and silica. The 

excess solvents were removed under reduced pressure and the crude residue was purified 

by flash chromatography on silica gel (EtOAc/ Petrol 1:8) to afford the title compound as a 

white powder in 57% yield. (40mg, 0.08 mmol). Rf (EtOAc/ petrol 1:8) 0.31 mp 175.4-

177.2°C; IR νmax (film)/cm-1 3029 (ArCH), 2948 (sp3 CH), 1732 (C=O), 1602 (ArC=C), 

1495 (ArC=C), 1257 (C-O), 1202 (C-O); δH(400 MHz; CDCl3) 2.53 (3H, s, CH3N), 3.31 

(3H, s, CO2CH3), 3.40 (3H, s, CO2CH3), 4.30 (1H, d, J 11.6 Hz, CHCCO2CH3), 5.00 (1H, 

s, CHN), 5.39 (1H, d, J 11.6 Hz, CHON), 7.01-7.11 (5H, m, ArCH), 7.14-7.19 (5H, m, 

ArCH), 7.38 (2H, d, J 6.8 Hz, C=CHCH=CH), 7.41 (1H, d, J 4.8 Hz, HC=CHS); δC(100 

MHz; CDCl3) 43.2 (CH3N), 46.3 (CHCCO2CH3), 51.8 (CO2CH3), 52.1 (CO2CH3), 62.7 

(C(CO2CH3)2), 66.1 (CHN), 82.6 (CHON), 125.3 (2 ArCH), 126.9 (ArCH), 127.4 (ArCH), 

127.8 (C=CHCH=C), 128.2 (ArCH), 128.3 (C=CHCH=CHS), 130.3 (ArCH), 130.4 

(ArCH), 134.0 (HC=CS), 136.7 (ArC), 137.9 (ArC), 168.7 (C=O), 170.1 (C=O); HRMS 

(FAB) (M+H+) calculated for C25H26NO5S 452.144, found 452.153 (-1.4 ppm); m/z 452 

(100%), 451 (45%), 309 (22%), 257 (22%), 176 (39%), 142 (61%), 136 (38%), 125 (31%) 

and 69 (30%). 
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(±) 2-Methyl-3(4-trifluoromethylphenyl),5-phenyl,6(4-trifluoromethylphenyl)-
oxazine-4,4 dimethyl ester (176h) 

 

Yb(OTf)3 (15 mg, 0.002 mmol, 5 mol %) was added to a stirred solution of nitrone 175g 

(220mg, 1.2 mmol, 2.5 eq) and di-substituted cyclopropane 170e (180 mg, 0.47 mmol) in 

1,2 dichloroethane (5 mL) under a nitrogen atmosphere. The resulting mixture was 

refluxed for 30 hours and once complete the reaction mixture was cooled to room 

temperature, diluted with dichloromethane (10 mL) and filtered through a pad of celite and 

silica. The excess solvents were removed under reduced pressure and the crude residue was 

purified by flash chromatography on silica gel (EtOAc/ Petrol 1:9) to afford the title 

compound as a white crystalline solid in a combined 60% yield (163 mg, 0.28 mmol) in a 

1: 2.26 d.r. (trans:cis), (i) first eluted trans isomer; mp 194.7-196.1°C; IR νmax (film)/cm-1 

1719 (C=O), 1618 (ArC=C), 1324 (C-O), 1249 (C-O), 1166 (C-F); δH(400 MHz; CDCl3) 

2.53 (3H, s, CH3N), 3.42 (3H, s, CO2CH3), 3.48 (3H, s, CO2CH3), 3.63 (1H, d, J 10.4 Hz, 

CHCCO2CH3), 4.63 (1H, s, CHN), 6.24 (1H, d, J 10.8 Hz, CHON), 7.07-7.13 (3H, m, 

ArCH), 7.17-7.21 (4H, m, 2 ArCF3-CH), 7.26 (2H, d, J 8.4 Hz, ArCF3-CH), 7.34-7.45 (2H, 

m, ArCH), 7.50 (2H, d, J 8.8 Hz, ArCF3-CH); δC(100 MHz; CDCl3) 45.7 (CH3N), 51.6 

(CO2CH3), 51.9 (CO2CH3), 55.6 (CH), 64.7 (C(CO2CH3)2), 75.0 (CHN), 80.2 (CHON), 

124.5-124.6 (ArCH), 125.3 (2C, q, 1JCF 271 Hz, CF3), 127.9 (ArCH), 128.4 (ArCH), 128.5 

(ArCH), 129.1 (ArCH), 129.4 (ArC), 130.3 (ArC), 130.6 (ArCH), 137.5 (ArC), 140.9 

(ArC), 167.9 (C=O), 169.5 (C=O), (ii) second eluted cis isomer; mp 157.5-159.1°C; 

δH(400 MHz; CDCl3) 2.55 (3H, s, CH3N), 3.23 (3H, s, CO2CH3), 3.48 (3H, s, CO2CH3), 

4.53 ( 1H, d, J 12 Hz, CHCO2CH3), 4.74 (1H, s, CHN), 5.54 (1H, d, J 11.6 Hz, CHON), 

7.21-7.28 (3H, m, ArCH), 7.30-7.32 (2H, m, ArCH), 7.41 (4H, s, 2 ArCF3-CH), 7.70 (2H, 

d, J 8.4 Hz, ArCF3-CH), 7.78 (2H, bs, ArCF3-CH); δC(100 MHz; CDCl3) 43.4 (CH3N), 

45.9 (CHCCO2CH3), 52.0 (CO2CH3), 52.1 (CO2CH3), 60.4 (C(CO2CH3)2), 69.3 (CHN), 
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81.9 (CHON), 124.4-124.5 (ArCF3-CH), 124.9-125.0 (ArCF3-CH), 125.3 (2C, q, 1JCF 271 

Hz, CF3), 127.9 (ArCH), 128.5-128.6 (2 ArCH), 129.2 (1C, q, 4JCF 32 Hz, C6H4), 130.5 

(1C, q, 4JCF 32 Hz, C6H4), 130.6 (ArCH), 137.5 (ArC), 139.1 (ArC), 141.2 (ArC), 168.6 

(C=O), 169.9 (C=O); δF(376 MHz; CDCl3) 99.4 (3F, s, CF3), 99.5 (3F, s, CF3); HRMS 

(FAB) (M+H+), calculated for C29H26F6NO5 582.1715, found 582.1637 (-1.6 ppm); m/z 

582 (33%), 346 (25%), 127 (100%) and 105 (43%). Due to a weak sample not all the 

quaternary carbons have been accounted for. 

(±) 2-Methyl, 3(4-methylphenyl),5-phenyl,6(4-trifluoromethylphenyl)-oxazine-
4,4 dimethyl ester (176i) 

 

Yb(OTf)3 (17 mg, 0.003 mmol, 5 mol %) was added to a stirred solution of nitrone 175f 

(210mg, 1.4 mmol, 2.5 eq) and di-substituted cyclopropane 170e (210 mg, 0.55 mmol) in 

1,2 dichloroethane (5 mL) under a nitrogen atmosphere. The resulting mixture was 

refluxed for 24 hours and once complete the reaction mixture was cooled to room 

temperature, diluted with dichloromethane (10 mL) and filtered through a pad of celite and 

silica. The excess solvents were removed under reduced pressure and the crude residue was 

purified by flash chromatography on silica gel (EtOAc/ Petrol 1:6) to afford the cis isomer 

as a white crystalline solid in 60 % yield. (174 mg, 0.33 mmol). Rf (EtOAc/ petrol 1:8) 

0.19; mp 110.4-112.2°C, IR νmax (film)/cm-1 2950 (sp3 CH), 1732 (C=O), 1617 (ArC=C), 

1325 (C-O), 1259 (C-O), 1165 (C-F); δH(400 MHz; CDCl3) 2.37 (3H, s, CH3Ar), 2.53 (3H, 

s, CH3N), 3.22 (3H, s, CO2CH3), 3.44 (3H, s, CO2CH3), 4.53 (1H, d, J 12 Hz, 

CHCCO2CH3), 4.59 (1H, s, CHN), 5.49 (1H, d, J 12 Hz, CHON), 7.16-7.19 (5H, m, 

ArCH), 7.31 (2 H, dd, J 0.8, 1.6 Hz, ArCH), 7.35-7.41 (4H, m, ArCH), 7.45-7.52 (2H, m, 

ArCH); δC(100 MHz; CDCl3) 21.1 (CH3Ar), 43.4 (CH3N), 45.8 (CHCCO2CH3), 51.9 

(CO2CH3), 52.0 (CO2CH3), 62.7 (C(CO2CH3)2), 69.4 (CHN), 81.9 (CHON), 124.3 

(ArCH), 125.4 (1C, q, 1JCF 271 Hz, CF3), 128.0 (ArCH), 128.5 (ArCH), 128.8 (ArCH), 
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130.6 (ArCH), 131.1 (ArCH), 131.7 (ArC), 137.7 (ArC), 138.1 (ArC), 141.6 (ArC), 168.9 

(C=O), 170.2 (C=O); δF(376 MHz; CDCl3) 99.6 (3F, s, CF3), HRMS (FAB) (M+H+), 

calculated for C29H29F3NO5 528.1919, found 528.2002 (+0.8 ppm); m/z 528 (86%), 315 

(28%), 150 (100%) and 133 (80%). Due to a weak sample not all of the quaternary carbons 

have been accounted for. 

(±) 2-Methyl,3(4-trifluoromethylphenyl),5-phenyl,6(4-methoxyphenyl)-
oxazine-4,4 dimethyl ester (176j) 

 

Yb(OTf)3 (9 mg, 0.0016 mmol, 5 mol %) was added to a stirred solution of nitrone 175g 

(150mg, 0.81 mmol, 2.5 eq) and di-substituted cyclopropane 170b (110 mg, 0.32 mmol) in 

1,2-dichloroethane (5 mL) under a nitrogen atmosphere. The resulting mixture was 

refluxed for 24 hours and once complete the reaction mixture was cooled to room 

temperature, diluted with dichloromethane (10 mL) and filtered through a pad of celite and 

silica. The excess solvents were removed under reduced pressure and the crude residue was 

purified by flash chromatography on silica gel (EtOAc/ Petrol 1:8) to afford the cis isomer 

as a pale yellow solid in 49 % yield (80 mg, 0.16 mmol). Rf (EtOAc/ petrol 1:8) 0.17; mp 

157.7-160.3°C, νmax IR (film)/cm-1 2949 (sp3 CH), 1734 (C=O), 1612 (ArC=C), 1514 

(ArC=C), 1325 (C-O), 1249 (C-O), 1175 (C-F); δH(400 MHz; CDCl3) 2.50 (3H, s, CH3N), 

3.20 (3H, s, CO2CH3), 3.42 (3H, s, CO2CH3), 3.72 (3H, s, OCH3), 4.42 (1H, d, J 12 Hz, 

CHCCO2CH3), 4.67 (1H, s, CHN), 5.48 (1H, d, J 12 Hz, CHON), 6.74 (2H, d, J 8.4 Hz, 

ArOMe-CH), 7.06-7.09 (1H, m, ArCH), 7.13 (2H, d, J 8.4 Hz, ArOMe-CH), 7.25 (4H, dd, 

J 3.6, 6.8 Hz, ArCH), 7.66 (2H, d, J 8.0 Hz, ArCF3-CH), 7.78 (2H, bs, ArCF3-CH); δC(100 

MHz; CDCl3) 43.4 (CH3N), 45.8 (CHCCO2CH3), 52.0 (2 CO2CH3), 55.1 (OCH3), 62.5 

(C(CO2CH3)2), 69.3 (CHN), 81.6 (CHON), 113.7 (ArOMe-CH), 124.8 (ArCF3-CH), 127.0 

(ArCF3-CH), 127.6 (ArCH), 129.2 (ArOMe-CH), 130-130.2 (ArCH), 131.0 (ArCH), 137.0 

(ArC), 159.3 (ArC-OMe), 168.9 (C=O), 170.3 (C=O); δF(376 MHz; CDCl3) 99.5 (3F, s, 
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CF3) FTMS (ES) (M+Na+), calculated for C29H28F3NO6Na 566.183, found 566.176 (+0.60 

ppm). Due to a weak sample not all of the quaternary carbons have been accounted for. 

(±)2-Methyl,3(4-methylphenyl),5-phenyl,6(4-methoxyphenyl)-oxazine-4,4 
dimethyl ester (176g) 

 

Yb(OTf)3 (9 mg, 0.0016 mmol, 5 mol %) was added to a stirred solution of nitrone 175f 

(110mg, 0.73 mmol, 2.5 eq) and di-substituted cyclopropane 170b (100 mg, 0.29 mmol) in 

1,2-dichloroethane (5 mL) under a nitrogen atmosphere. The resulting mixture was 

refluxed for 36 hours and once complete the reaction mixture was cooled to room 

temperature, diluted with dichloromethane (10 mL) and filtered through a pad of celite and 

silica. The excess solvents were removed under reduced pressure and the crude residue was 

purified by flash chromatography on silica gel (EtOAc/ Petrol 1:10) to afford the trans 

isomer as a white solid in 45 % yield (64 mg, 0.13 mmol). Rf (EtOAc/ petrol 1:8) 0.36; mp 

154.3-156.7°C, νmax (film)/cm-1 2922 (sp3 CH), 1717 (C=O), 1611 (ArC=C), 1514 

(ArC=C), 1250 (C-O), 1093, δH(400 MHz; CDCl3) 2.32 (3H, s, CH3Ar), 2.50 (3H, s, 

CH3N), 3.42 (3H, s, CO2CH3), 3.47 (3H, s, CO2CH3), 3.58 (1H, d, J 10.8 Hz, CH), 3.68 

(3H, s, OCH3), 4.47 (1H, s, CHN), 6.18 (1H, d, J 10.8 Hz, CHON), 6.68 (2H, d, J 8.2 Hz, 

ArOMe-CH), 7.02-7-05 (2H, m, ArCH3- CH), 7.06-7.12 (6H, m, 4 ArCH, 2 ArCH3-CH), 

7.19-7.22 (1H, m, ArCH), 7.24 (2H, d, J 8.4 Hz, ArOMe-CH); δC(100 MHz; CDCl3) 21.1 

(ArCH3), 45.7 (CH3N), 51.4 (CO2CH3), 51.7 (CO2CH3), 55.1 (OCH3), 55.5 (CH), 65.3 

(C(CO2CH3)2), 75.6 (CHN), 79.7 (CHON), 113.5 (2 ArOMe-CH), 126.9 (2 ArCH3- CH), 

127.7 (2 ArOMe-CH), 128.1 (ArCH), 128.5 ( 2 ArCH3- CH), 129.3 (2 ArCH), 130.1 (2 

ArCH), 130.5 (ArC), 133.9 (ArC), 137.1 (ArC), 137.9 (ArC), 159.2 (ArC-OMe), 168.4 

(C=O), 170.0 (C=O), LCMS-IT-TOF (M+H+), calculated for C29H32NO6, 490.21, found 

490.22 (+1.84 ppm). 
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2-Methyl,3(2-thienyl),5(6)-phenyl,6(5)(4-fluorophenyl)-oxazine-4,4-dimethyl 
ester. (176e) 

 
Yb(OTf)3 (14 mg, 0.022 mmol, 5 mol %) was added to a stirred solution of nitrone 175e 

(148mg, 1.15 mmol, 2.5 eq) and di-substituted cyclopropane 170d (150 mg, 0.46 mmol) in 

1,2 dichloroethane (5 mL) under a nitrogen atmosphere. The resulting mixture was 

refluxed for 24 hours and once complete the reaction mixture was cooled to room 

temperature, diluted with dichloromethane (10 mL) and filtered through a pad of celite and 

silica. The excess solvents were removed under reduced pressure and the crude residue was 

purified by flash chromatography on silica gel (EtOAc/ Petrol 1:9) to afford the cis isomer 

as an inseparable mixture of regioisomers (1.1:1) as a white solid in 50 % yield (100 mg, 

0.21 mmol); mp 165.2-167.7°C, Major isomer; IR νmax (film)/cm-1 2948 (sp3 CH), 1733 

(C=O), 1604 (ArC=C), 1510 (ArC=C), 1259 (C-O), 1107 (C-F); δH(400 MHz; CDCl3) 

2.61 (3H, s, CH3N), 3.40 (3H, s, CO2CH3), 3.48 (3H, s, CO2CH3), 4.34 (1H, d, J 11.6 Hz, 

CHCCO2CH3), 5.08 (1H, s, CHN), 5.47 (1H, d, J 11.6 Hz, CHON), 6.88 (2H, d, J 8.8 Hz, 

ArF-CH), 7.03-7.05 (2H, m, C=CHCH=CHS), 7.10 (3H, t, J 6.4 Hz, ArCH), 7.19 (2H, d, J 

7.2 Hz, ArCH), 7.38 (2H, dd, J 8.8, 14.0 Hz, ArF-CH), 7.42 (1H s, CHS); δC(100 MHz; 

CDCl3) 43.2 (CH3N), 46.5 (CHCCO2CH3), 52.1 (CO2CH3), 52.2 (CO2CH3), 62.7 

(C(CO2CH3)2), 66.2 (CHN), 81.8 (CHON), 115.0 (ArF-CH), 115.2 (ArF-CH), 125.4 

(C=CHCH=CHS), 127.5 (3 ArCH), 127.8 (2 CH, C=CHCH=CHS ), 128.3 (2 ArCH), 

129.9 (ArF-CH), 130.0 (ArF-CH), 134.0 (HC=CS), 136 5 (ArC), 138.9 (ArC) 161.1 (ArC-

F), 168.6 (C=O), 170.0 (C=O), δF(376 MHz; CDCl3) 46.7 (1F, sept, J 5.4 Hz) Minor 

isomer; δH(400 MHz; CDCl3) 2.60 (3H, s, CH3N), 3.39 (3H, s, CO2CH3), 3.52 (3H, s, 

CO2CH3), 4.39 (1H, d, J 11.6 Hz, CH), 5.09 (1H, s, CHN), 5.43 (1H, d, J 11.6 Hz, 

CHON), 6.80 (2H, d, J 8.8 Hz, ArF-CH),7.06 (2H, dd, J 5.2, 6.0 Hz, C=CHCH=CHS), 

7.19 (2H, dd, J 8.8, 14.0 Hz, ArF-CH), 7.21 (3H, t, J 5.6 Hz, ArCH), 7.41 (2H, d, J 6.0 Hz, 

ArCH), 7.43 (1H, s, CHS); δC(100 MHz; CDCl3) 43.2 (CH3N), 45.7 (CHCCO2CH3), 51.8 

(CO2CH3), 51.9 (CO2CH3), 62.7 (C(CO2CH3)2), 66.2 (CHN), 82.6 (CHON), 114.2 (ArF-

CH), 114.4 (ArF-CH), 125.4 (C=CHCH=CHS), 127.0 (2 C=CHCH=CHS), 130.3 (2 CH, 

ArCH), 130.5 (3 ArCH), 131.8 (ArF-CH), 131.9 (ArF-CH), 132.5 (HC=CS), 137.7 (ArC), 
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138.6 (ArC), 162.8 (ArC-F), 168.5 (C=O), 169.9 (C=O), δF(376 MHz; CDCl3) 48.5 (1F, 

sept, J 5.3 Hz); HRMS (FAB) (M+H+) calculated for C25H25FNO5S 470.13, found 470.14; 

m/z 470 (14%), 198 (15%) and 176 (23%). 

 

 (±) 2-Benzyl,3(4-nitrophenyl),5-phenyl,6(4-trifluoromethylphenyl)-oxazine-4,4 
dimethyl ester (176h) 

 

Yb(OTf)3 (9 mg, 0.015 mmol, 5 mol %) was added to a stirred solution of nitrone (176mg, 

0.73 mmol, 2.5 eq) and di-substituted cyclopropane (110 mg, 0.29 mmol) in 1,2 

dichloroethane (4 mL) under a nitrogen atmosphere. The resulting mixture was refluxed 

for 30 hours and once complete the reaction mixture was cooled to room temperature, 

diluted with dichloromethane (10 mL) and filtered through a pad of celite and silica. The 

excess solvents were removed under reduced pressure and the crude residue was purified 

by flash chromatography on silica gel (EtOAc/ Petrol 1:9) to afford an inseparable mixture 

of diastereoisomers in a d.r. of 2:1 (cis:trans) as a yellow solid in 50 % yield (100 mg, 0.21 

mmol); mp 176.4-178.4°C, IR νmax (film)/cm-1 3031 (ArCH), 1733 (C=O), 1604 (ArC=C), 

1453 (ArC=C), 1522 (NO2), 1346 (N-O), 1166 (CF3), 1120 (C-O), 853 (p-substituted 

aromatic), Major cis-isomer; δH(400 MHz; CDCl3) 3.21 (3H, s, CO2CH3), 3.48 (3H, s, 

CO2CH3), 3.52 (1H, d, J 13.6 Hz, CH2Ar), 4.01(1H, d, J 13.2 Hz, CH2Ar), 4.49 (1H, d, J 

11.6 Hz, CHCCO2CH3), 4.79 (1H, s, CHN), 5.66 (1H, d, J 11.6 Hz, CHON), 7.17-7.19 

(2H, m, ArCH), 7.25-7.21 (3H, m, ArCH), 7.31 (5H, ddd, J 1.6, 7.2, 12.0 Hz, ArCH), 7.59 

(4H, d, J 8.8 Hz, 2 ArCF3-CH, 2 ArNO2-CH), 7.80 (2H, bs, ArCF3-CH), 8.29 (2H, d, J 8.8 

Hz, ArNO2-CH); δC(100 MHz; CDCl3) 46.1 (CH), 52.1 (CO2CH3), 52.2 (CO2CH3), 59.4 

(CH2Ar), 62.7 (C(CO2CH3)2), 66.2 (CHN), 81.9 (CHON), 123.1 (2 ArNO2-CH), 124.5 (2 

ArNO2-CH), 125.6 (q, 1J 246 Hz, CF3), 127.6 (ArCF3-CH), 127.9 (ArCF3-CH), 128.0 

(ArCH), 128.2 (ArCH), 128.3 (2 ArCH), 128.6 (2 ArCH), 128.7 (ArCH), 128.8 (2 ArCH), 
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128.9 (ArCH), 130.0 (2 ArCH), 135.6 (ArC), 137.0 (ArC), 140.9 (ArC), 142.8 (ArC), 

147.8 (ArC-NO2), 168.5 (C=O), 169.5 (C=O), δF(376 MHz; CDCl3) 99.6 (3F, s, CF3), 

Minor trans-isomer; δH(400 MHz; CDCl3) 3.38 (3H, s, CO2CH3), 3.43 (3H, s, CO2CH3), 

3.56 (1H, d, J 10.8 Hz. CHN), 3.67 (1H, d, J 3.6 CH2Ar), 3.72 (1H, d, J 3.6 CH2Ar), 4.91 

(1H, s, CH), 6.22 (1H, d, J 10.4 Hz, CHON), 7.20-7.26 (5H, m, ArCH), 7.27-7.30 (5H, m, 

ArCH), 7.47 (2H, d, J 6.8 Hz, ArCF3-CH), 7.56 (2H, d, J 7.2 Hz, ArNO2-CH), 7.94 (2H, d, 

J 6.8 Hz, ArCF3-CH), 8.17 (2H, d, J 7.2 Hz, ArNO2-CH); δC(100 MHz; CDCl3), 51.6 

(CO2CH3), 51.9 (CO2CH3), 55.7 (CH), 59.7 (CH2Ar), 62.7 (C(CO2CH3)2), 71.4 (CHN), 

80.0 (CHON), 123.1 (2 ArNO2-CH), 124.5 (2 ArNO2-CH), 125.6 (CF3), 127.6 (ArCF3-

CH), 127.9 (ArCF3-CH), 128.0 (ArCH), 128.2 (ArCH), 128.3 (2 ArCH), 128.6 (2 ArCH), 

128.7 (ArCH), 128.8 (2 ArCH), 128.9 (ArCH), 130.0 (2 ArCH), 135.6 (ArC), 137.0 (ArC), 

140.9 (ArC), 142.8 (ArC), 147.8 (ArC-NO2), 168.5 (C=O), 169.3 (C=O), δF(376 MHz; 

CDCl3) 99.0 (3F, s, CF3); FTMS (ES) (M+H+) calculated for C34H30F3N2O7 635.19, found 

635.20 (+0.23 ppm). Due to a weak sample not all the quaternary carbons have been 

accounted for. 

(±)2-Methyl,3(4-fluorophenyl),5(6)phenyl,6(5)(4-methoxyphenyl)-oxazine-4,4 
dimethyl ester (176f) 

 

Yb(OTf)3 (12 mg, 0.020 mmol, 5 mol %) was added to a stirred solution of nitrone 175c 

(240mg, 0.99 mmol, 2.5 eq) and di-substituted cyclopropane 170d (130 mg, 0.40 mmol) in 

1,2 dichloroethane (5 mL) under a nitrogen atmosphere. The resulting mixture was 

refluxed for 48 hours and once complete the reaction mixture was cooled to room 

temperature, diluted with dichloromethane (10 mL) and filtered through a pad of celite and 

silica. The excess solvents were removed under reduced pressure and the crude residue was 

purified by flash chromatography on silica gel (EtOAc/ Petrol 1:6) to afford the trans-

isomer as an inseparable mixture of regioisomers (1:1.5) as a white solid in 51% yield. (99 
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mg, 0.20 mmol); mp 180.4-181.7°C; IR νmax (film)/cm-1 2950 (sp3 CH), 1739 (C=O), 1717 

(C=O), 1608 (ArC=C), 1581 (ArC=C), 1511 (ArC=C), 1249 (C-O), 1178 (C-F), 1160 (C-

F), (i) Major isomer; δH(400 MHz; CDCl3) 2.5 (3H, s, CH3N), 3.41 (3H, s, CO2CH3), 3.48 

(3H, s, CO2CH3), 3.51 (1H, d, J 10.8 Hz, CH), 3.79 (3H, s, OCH3), 4.47 (1H, s, CHN), 

6.18 (1H, d, J 10.8 Hz, CHON), 6.76 (2 H, d, J 8.8 Hz, ArCH), 6.82 (3H, d, J 15.6 Hz, 

ArCH), 7.05-7.09 (2H, m, ArCH), 7.11-7.19 (2H, m, ArCH), 7.24-7.29 (4H, m, ArCH); 

δC(100 MHz; CDCl3) 45.7 (CH3N), 51.5 (CO2CH3), 51.8 (CO2CH3), 55.2 (OCH3), 55.9 

(CH), 65.1 (C(CO2CH3)2), 75.2 (CHN), 79.6 (CHON), 115.0 (ArCH, d, 2JCF 21.3 Hz), 

127.1 (ArCH), 127.8 (ArCH), 128.0 (ArCH), 128.2 (ArCH), 128.8 (ArC), 129.7 (ArCH, d, 
3JCF 8.3 Hz), 130.1 (ArCH), 134.2 (ArC), 136.8 (ArC), 138.1 (ArC), 162.3 (1C, d, 1JCF 245 

Hz), 168.3 (C=O), 169.9 (C=O); Minor isomer, δH(400 MHz; CDCl3) 2.50 (3 H, s, CH3N), 

3.43 (3H, s, CO2CH3), 3.50 (3H, s, CO2CH3), 3.56 (1H, d, J 10.4 Hz, CH), 3.80 (3H, s, 

OCH3), 4.48 (1H, s, CHN), 6.18 (1H, d, J 10.8 Hz, CHON), 6.76 (2H, d, J 8.8 Hz, ArCH), 

6.82 (3H, d, J 15.6 Hz, ArCH), 7.05-7.09 (2H, m, ArCH), 7.11-7.19 (2H, m, ArCH), 7.24-

7.29 (4H, m, ArCH); δC(100 MHz; CDCl3) 45.7 (CH3N), 51.5 (CO2CH3), 51.8 (CO2CH3), 

55.0 (CH), 55.2 (OCH3), 65.2 (C(CO2CH3)2), 75.1 (CHN), 80.4 (CHON), 113.2 (ArCH), 

114.6 (ArCH, d, 2JCF 21.3 Hz), 127.1 (ArCH), 128.0 (ArCH), 128.2 (ArCH), 128.8 (ArC), 

130.1 (ArCH), 131.6 (ArCH, d, 3JCF 8.3 Hz), 134.2 (ArC), 136.8 (ArC), 138.1 (ArC), 161.0 

(1C, d, 1JCF 245 Hz), 168.4 (C=O), 170.0 (C=O), HRMS (FAB) (M+), calculated for 

C28H29FNO6 494.19, found 494.1969 (-1.8 ppm); m/z 494 (25%), 95 (33%), 81 (30%), 69 

(35%) and 55 (53%). 

(±) 2(4-Iodo-1H-pyrazol-1-yl)-1-phenylcyclopropane dimethyl ester (182a) 

 

Anhydrous potassium carbonate (759 mg, 5.5 mmol, 2.5 eq) was added to a stirred solution 

of 4-iodopyrazole (418 mg, 2.2 mmol) and the substituted cyclopropene 1d (500 mg, 2.2 

mmol) in N,N-dimethylformamide (5 mL) under a nitrogen atmosphere. The resulting 

mixture was stirred at 90°C for 20 hours (monitored by TLC). On completion the reaction 

mixture was cooled to room temperature, diluted with diethyl ether (20 mL) and 

partitioned with saturated aqueous ammonium chloride (20 mL). The ethereal solution was 
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washed with water (15 mL), brine (15 mL) and the organic layer was dried over anhydrous 

sodium sulphate and concentrated in vacuo to afford a yellow viscous oil. The residue was 

purified by flash chromatography on silica gel (EtOAc/ Petrol 1:9) to afford the title 

compound as a pale yellow solid in 90% yield (840 mg, 1.97 mmol). Rf (EtOAc/ petrol 1:9) 

0.39; mp 81.7-83.9°C, IR νmax (film)/cm-1 2950 (sp3 CH), 1731 (C=O), 1500 (ArC=C); 

δH(400 MHz; CDCl3) 3.50 (3H, s, CO2CH3), 3.63 (3H, s, CO2CH3), 4.21 (1H, d, J 6.4 Hz, 

CHAr), 5.04 (1H, d, J 6.4 Hz, CHN), 7.28-7.35 (5H, m, ArCH), 7.35 (1H, s, N=CHCI), 

7.61 (1H, s, IC=CHN); δC(100 MHz; CDCl3) 35.6 (CHAr), 44.3 (C(CO2CH3)2), 47.1 

(CHN), 52.8 (CO2CH3), 53.3 (CO2CH3), 57.1 (C-I), 128.1 (ArCH), 128.4 (2 ArCH), 128.7 

(2 ArCH), 131.8 (ArC), 134.7 (IC=CHN), 145.4 (N=CHCI), 165.1 (C=O), 165.3 (C=O), 

HRMS (FAB) (M+H+) calculated for C16H16IN2O4 427.00, found 427.02. 

(±) 2-(4 (5)-Bromo-1H-imidazol-1-yl)-1-phenylcyclopropane dimethyl ester 
(182b) 

 

Anhydrous potassium carbonate (0.75 g, 5.4 mmol, 2.5 eq) was added to a solution of 4-

bromo-imidazole (0.32 g, 2.2 mmol) and the substituted cyclopropene 1d (0.5 g, 2.2 mmol) 

in N,N-dimethylformamide (3 mL) under a nitrogen atmosphere. The resulting mixture was 

stirred at 90°C for 24 hours. On completion the reaction mixture was cooled to room 

temperature, diluted with diethyl ether (20 mL) and partitioned with saturated aqueous 

ammonium chloride (20 mL). The ethereal solution was washed with water (15 mL), brine 

(15 mL) and the organic layer was dried over anhydrous sodium sulphate and concentrated 

in vacuo to afford the title compound without further purification as an orange/brown 

viscous oil in 85%. (0.58 g, 1.5 mmol), IR νmax (film)/cm-1 3140 (ArCH), 2952 (sp3 CH), 

1732 (C=O), 1254 (C-O); δH(400 MHz; CDCl3) 3.48 (3H, s, CO2CH3), 3.63 (3H, s, 

CO2CH3), 4.04 (1H, d, J 6.4 Hz, CH), 4.79 (1H, d, J 6.4 Hz, CH), 6.99 (1H, d, J 1.6 Hz, 

C2H2N2Br), 7.25-7.37 (5H, m, ArCH), 7.45 (1H, d, J 1.6 Hz, C2H2N2Br); δC(100 MHz; 

CDCl3) 35.2 (CHAr), 42.6 (CHN), 44.2 (C(CO2CH3)2), 53.0 (CO2CH3), 53.6 (CO2CH3), 

115.8 (C-Br), 118.8 (C2H2N2Br), 128.0 (ArCH), 128.3 (ArCH), 128.5 (ArCH), 131.1 

(ArC), 137.2 (C2H2N2Br), 164.9 (C=O), 168.0 (C=O); HRMS (FAB) (M+H+) calculated 
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for C16H16
79/81BrN2O4 379.02 and 381.02, found 379.02 and 381.02; m/z 379 (99%), 233 

(24%), 145 (22%), 136 (21%), 115 (25%). 

(±) 2-(1H-Pyrazol-1-yl)-1-phenylcyclopropane dimethyl ester (182e) 

 

Anhydrous potassium carbonate (297 mg, 2.2 mmol, 2.5 eq) was added to a solution of 

pyrazole (60 mg, 0.86 mmol) and the substituted cyclopropene 1d (200 mg, 0.86 mmol) in 

N, N-dimethylformamide (2.5 mL) under a nitrogen atmosphere. The resulting mixture was 

stirred at 90°C for 20 hours. On completion the reaction mixture was cooled to room 

temperature, diluted with diethyl ether (20 mL) and partitioned with saturated aqueous 

ammonium chloride (20 mL). The ethereal solution was washed with water (15 mL), brine 

(15 mL) and the organic layer was dried over anhydrous sodium sulphate and concentrated 

in vacuo to afford a yellow viscous oil. The residue was purified by flash chromatography 

on silica gel (EtOAc/ Petrol 1:9) to afford the title compound as a pale yellow solid in 53% 

yield (136 mg, 0.46 mmol). Rf (EtOAc/ petrol 1:9) 0.40; mp 72.4-74.6°C, IR νmax 

(film)/cm-1 3123 (ArCH), 2953 (sp3 CH), 1789 (C=O), 1736 (C=O), 1519 (C=N), 1500 

(ArC=C), 1397 (C-O), 1277 (C-O); δH(400 MHz; CDCl3) 3.48 (3H, s, CO2CH3), 3.60 (3H, 

s, CO2CH3), 4.26 (1H, d, J 6.8 Hz, CH), 5.07 (1H, d, J 6.4 Hz, CH), 6.27 (1H, t, J 2.0 Hz, 

C3H3N2), 7.27-7.32 (5H, m, ArCH), 7.52 (1H, d, J 1.6 Hz, C3H3N2), 7.55 (1H, d, J 2.0 Hz, 

C3H3N2); δC(100 MHz; CDCl3) 35.6 (CHAr), 44.2 (C(CO2CH3)2), 47.1 (CHN), 52.6 

(CO2CH3), 53.1 (CO2CH3), 106.3 (C3H3N2), 127.5-127.9 (ArCH), 128.0-128.2 (ArCH), 

128.5 (ArCH), 130.2 (C3H3N2), 132.2 (ArC), 140.4 (C3H3N2), 165.4 (C=O), 165.5 (C=O); 

HRMS (FAB) (M+H+) calculated for C16H17N2O4 301.11, found 301.11; m/z 301 (23%), 

255 (58%), 233 (100%), 173 (99%), 154 (54%), 136 (45%) and 115 (20%). 

(±) 2-(1H-Benzo[1,2,3]triazol-1-yl)-1-phenylcyclopropane dimethyl ester (182h) 
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Anhydrous potassium carbonate (0.75 g, 5.4 mmol, 2.5 eq) was added to a solution of 

benzotriazole (0.26 g, 2.2 mmol) and the substituted cyclopropene 1d (0.5 g, 2.2 mmol) in 

N,N-dimethylformamide (3 mL) under a nitrogen atmosphere. The resulting mixture was 

stirred at 90°C for 24 hours. On completion the reaction mixture was cooled to room 

temperature, diluted with diethyl ether (20 mL) and partitioned with saturated aqueous 

ammonium chloride (20 mL). The ethereal solution was washed with water (15 mL), brine 

(15 mL) and the organic layer was dried over anhydrous sodium sulphate and concentrated 

in vacuo to afford dark oil. The residue was purified by flash chromatography on silica gel 

(EtOAc/ Petrol 1:1) to afford the title compound as yellow viscous oil in 60% yield. (463 

mg, 1.37 mmol); IR νmax (film)/cm-1 3029 (ArCH), 2951 (sp3 CH), 1734 (C=O), 1613 

(ArC=C), 1499 (C=N), 1302 (C-O), 1281 (C-O); δH(400 MHz; CDCl3) 3.40 (3H, s, 

CO2CH3), 3.56 (3H, s, CO2CH3), 4.53 (1H, d, J 6.4 Hz, CH), 5.23 (1H, d, J 6.4 Hz, CH), 

7.31-7.42 (6H, m, 5 ArCH, 1 ArCH), 7.49 (1H, t, J 7.9 Hz, ArCH), 7.62 (1H, d, J 8.2 Hz, 

ArCH), 8.04 (1H, d, J 8.4 Hz, ArCH); δC(100 MHz; CDCl3) 34.2 (CHAr), 43.1 (CHN), 

43.9 (C(CO2CH3)2), 52.9 (CO2CH3), 53.1 (CO2CH3), 109.2-109.3 (ArCH), 120.1 (ArCH), 

124.1 (ArCH), 127.0 (ArCH), 128.0 (ArCH), 128.4 (ArCH), 128.6 (ArCH), 131.7 (ArC), 

133.7 (ArC), 145.9 (ArC), 165.1 (C=O), 168.0 (C=O); HRMS (FAB) (M+H+) calculated 

for C19H18N3O4 352.12, found 352.12; m/z 352 (100%), 173 (34%), 154 (21%) and 115 

(18%). 

(±) 2-(3,6-dibromocarbazole),1-phenylcyclopropane dimethyl ester (182d) 

 

Anhydrous potassium carbonate (442 mg, 3.2 mmol, 2.5 eq) was added to a solution of 

3,6-dibromo-carbazole (423 mg, 1.3 mmol) and the substituted cyclopropene 1d (300 mg, 

1.3 mmol) in N,N-dimethylformamide (3 mL) under a nitrogen atmosphere. The resulting 

mixture was stirred at 90°C for 24 hours. On completion the reaction mixture was cooled to 

room temperature, diluted with diethyl ether (20 mL) and partitioned with saturated 

aqueous ammonium chloride (20 mL). The ethereal solution was washed with water (15 

mL), brine (15 mL) and the organic layer was dried over anhydrous sodium sulphate and 
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concentrated in vacuo to afford brown solid. The residue was purified by flash 

chromatography on silica gel (EtOAc/ Petrol 1:9) to afford the title compound as a yellow 

solid in 68% yield. (490 mg, 0.88 mmol); mp 192.4-194.7°C; IR νmax (film)/cm-1 3417 

(ArCH), 1729 (C=O), 1300 (C-O), 1283(C-O), 1059 (C-Br); δH(400 MHz; CDCl3) 3.27 

(3H, s, CO2CH3), 3.58 (3H, s, CO2CH3), 4.24 (1H, d, J 6.8 Hz, CH), 4.86 (1H, d, J 6.4 Hz, 

CH), 7.31-7.55 (9H, m, 5 ArCH, 4 ArCH, carbazole), 8.10 (2H, s, ArCH, carbazole); 

δC(100 MHz; CDCl3) 37.3 (CH), 41.3 (CHN), 44.9 (C(CO2CH3)2), 52.9 (CO2CH3), 53.0 

(CO2CH3), 111.4 (2 ArCH, carbazole), 124.0 (2 ArCH, carbazole), 124.2 (2 C-Br), 128.4 

(3 ArCH), 128.5 (2 ArCH), 130.0 (2 ArCH, carbazole), 132.1 (ArC), 165.5 (C=O), 165.9 

(C=O); HRMS (FAB) (M+H+) calculated for C25H20
79/81Br2N2O4 555.97 and 557.97, found 

555.98 and 557.98; m/z 555 (100%), 307 (33%), 233 (88%), 154 (100%), 136 (65%). Due 

to a weak sample not all the quaternary carbons have been accounted for. 

(±) Phenyl, 2(1H-imidazol-1-yl) cyclopropane dimethyl ester (182g) 

 

Anhydrous potassium carbonate (297 mg, 2.2 mmol, 2.5 eq) was added to a solution of 

imidazole (59 mg, 0.86 mmol), substituted cyclopropene 1d (200 mg, 0.86 mmol) in N, N-

dimethylformamide (2.5 mL), under a nitrogen atmosphere. The resulting mixture was 

stirred at 90°C for 19 hours. On completion the reaction mixture was cooled to room 

temperature, diluted with diethyl ether (20 mL) and partitioned with saturated aqueous 

ammonium chloride (20 mL). The ethereal solution was washed with water (15 mL), brine 

(15 mL) and the organic layer was dried over anhydrous sodium sulphate and concentrated 

in vacuo to afford a dark orange semi solid. The residue was purified by flash 

chromatography on silica gel (EtOAc/ Petrol 1:3) to afford the title compound as a rusty 

orange solid in 62% yield. (160 mg, 0.53 mmol); mp 103.1-104.9°C; IR νmax (film)/cm-1 

3116 (Ar-CH), 3029 (Ar-CH), 2953 (sp3CH), 1731 (C=O), 1503 (ArC=C), 1359 (C-O); 

δH(400 MHz; CDCl3) 3.41 (3H, s, CO2CH3), 3.52 (3H, s, CO2CH3), 4.01 (1H, d, J 6.4 Hz, 

CH), 4.75 (1H, d, J 6.4 Hz, CHN), 6.93 (2H, d, J 13.2 Hz, NCHCHNCH), 7.19-7.25 (5H, 

m, ArCH), 7.51 (1H, s, NCHCHN=CH); δC(100 MHz; CDCl3) 32.5 (CH), 40.9 

(C(CO2CH3)2), 42.5 (CHN), 52.9 (CO2CH3), 53.4 (CO2CH3), 119.4 (NCHCHNCH), 128.3 

(ArCH), 128.5 (ArCH), 129.0 (ArCH), 129.8 (NCHCHNCH), 131.6 (ArC), 136.0 
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(NCHCHN=CH), 165.1 (C=O), 165.3 (C=O); HRMS (FAB) (M+H+) calculated for 

C16H17N2O4 301.112, found 301.114 (+1.6 ppm). 

(±) 2-(4-Bromopyrazole)-1-phenyl cyclopropane dimethyl ester (182c) 

 

Anhydrous potassium carbonate (0.75 g, 5.4 mmol, 2.5 eq) was added to a solution of 4-

bromopyrazole (0.83 g, 4.3 mmol), substituted cyclopropene 1d (0.5 g, 2.2 mmol) in N, N-

dimethylformamide (3 mL) under a nitrogen atmosphere. The resulting mixture was stirred 

at 90°C for 24 hours. On completion the reaction mixture was cooled to room temperature, 

diluted with diethyl ether (20 mL) and partitioned with saturated aqueous ammonium 

chloride (20 mL). The ethereal solution was washed with water (15 mL), brine (15 mL) 

and the organic layer was dried over anhydrous sodium sulphate and concentrated in vacuo 

to afford yellow oil. The residue was purified by flash chromatography on silica gel 

(EtOAc/ Petrol 1:8) to afford the title compound as a clear viscous oil in 62% yield (520 g, 

1.37 mmol); IR νmax (film)/cm-1 3131 (ArCH), 2951 (sp3CH), 1732 (C=O), 1500 (ArC=C), 

1301 (C-O); δH(400 MHz; CDCl3) 3.50 (3H, s, CO2CH3), 3.65 (3H, s, CO2CH3), 4.22 (1H, 

d, J 6.4 Hz, CH), 5.02 (1H, d, 6.4 Hz, CHN), 7.28-7.36 (5H, m, ArCH), 7.48 (1H, s, 

NCHCBr), 7.58 (1H, s, N=CHCBr); δC(100 MHz; CDCl3) 35.6 (CH), 44.3 (C(CO2CH3)2), 

47.3 (CHN), 52.8 (CO2CH3), 53.3 (CO2CH3), 94.0 (C-Br), 128.2 (ArCH), 128.4 (ArCH), 

128.7 (ArCH), 130.4 (NCHCBr), 131.8 (ArC), 141.0 (N=CHCBr), 165.1 (C=O), 165.3 

(C=O); HRMS (FAB) (M+H+) calculated for C16H16
79/81BrN2O4 379.028 and 381.028, 

found 379.028 and 381.028 (-0.22 ppm). 

(±) 2-(4-Nitropyrazole) phenylcyclopropane dimethyl ester (182i) 
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Anhydrous potassium carbonate (297 mg, 2.16 mmol, 2.5 eq) was added to a solution of 4-

nitropyrazole (97 mg, 0.86 mmol) and the substituted cyclopropene 1d (200 mg, 

0.86 mmol) in N, N-dimethylformamide (3 mL), under a nitrogen atmosphere. The reaction 

mixture was stirred at 90°C for 24 hours. On completion the reaction mixture was cooled to 

room temperature, diluted with diethyl ether (20 mL) and partitioned with saturated 

aqueous ammonium chloride (20 mL). The ethereal solution was washed with water (15 

mL), brine (15 mL) and the organic layer was dried over anhydrous sodium sulphate and 

concentrated in vacuo to afford brown oil. The crude product was purified by flash 

chromatography on silica gel (EtOAc/Petrol 1:3) to afford the title compound as a yellow 

oil in 50% yield (149 mg, 0.43 mmol); IR, νmax (film)/cm-1 3130 (sp2 ArC-H), 2955 (sp3 C-

H), 1733 (C=O), 1537 (C-NO2), 1514 (C=N), 1316 (C-NO2); δH(400 MHz; CDCl3) 3.52 

(3H, s, CO2CH3), 3.69 (3H, s, CO2CH3), 4.21 (1H, d, J 6.4 Hz, CH), 5.10 (1H, d, J 6.4 Hz, 

CHN), 7.25-7.34 (5H, m, ArCH), 8.08 (1H, s, N=CHCNO2), 8.34 (1H, s, NCHCNO2); 

δC(100 MHz; CDCl3) 35.8 (CCHC), 44.2 (C(CO2CH3)2), 47.6 (CHN), 53.0 (CO2CH3), 

53.6 (CO2CH3), 128.3-129.1 (3 ArCH), 129.8 (NCH=C), 131.4 (ArC), 136.4 (N=CHC), 

164.6 (2 C=O); FTMS (ES) (M+H+) calculated for C16H16N3O6 346.0955, found 346.1023 

(-3.02 ppm). Due to a weak sample not all the quaternary carbons have been accounted for. 

(±) 2-(3(4)-Trifluoromethylpyrazole) phenylcyclopropane 3,3-dimethyl ester 
(182j) 

 

Anhydrous potassium carbonate (297 mg, 2.16 mmol, 2.5 eq) was added to a solution of 3-

trifluoromethylpyrazole (117 mg, 0.86 mmol) and the substituted cyclopropene 1d 

(200 mg, 0.86 mmol) in N, N-dimethylformamide (3 mL) under a nitrogen atmosphere. 

The reaction mixture stirred at 90oC for 24 hours. On completion the reaction mixture was 

cooled to room temperature, diluted with diethyl ether (20 mL) and partitioned with 

saturated aqueous ammonium chloride (20 mL). The ethereal solution was washed with 

water (15 mL), brine (15 mL) and the organic layer was dried over anhydrous sodium 

sulphate and concentrated in vacuo to afford title compound without further purification as 

a yellow oil in 82% yield (260 mg, 0.70 mmol); IR, νmax (film)/cm-1 3130 (sp2 ArC-H), 

2957 (sp3 C-H), 1733 (C=O), 1488 (C=N), 1134 (C-F); δH(400 MHz; CDCl3) 3.48 (3H, s, 
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CO2CH3), 3.62 (3H, s, CO2CH3), 4.24 (1H, d, J 6.4 Hz, CH), 5.10 (1H, d, J 6.4 Hz, CHN), 

6.54 (1H, d, J 2.8 Hz, CHCCF3), 7.27-7.36 (5H, m, ArCH), 7.62 (1H, d, J 2.8 Hz, 

NCHCH); δC(100 MHz; CDCl3) 35.8 (CH), 44.1 (C(CO2CH3)2), 47.2 (CHN), 52.8 

(CO2CH3), 53.3 (CO2CH3), 105.0 (NCHCHC), 128.3 (ArCH), 128.4 (ArCH), 128.5 

(ArCH), 128.7 (ArCH), 128.8 (ArCH), 131.5 (ArC), 131.1 (NCHCHCCF3), 143.4 (ArC-

CF3), 165.0 (C=O), 165.2 (C=O), FTMS (ES) (M+H+) calculated for C17H16F3N2O4 

369.1057, found 369.1057 (+0.014 ppm). 

(±) 2-(1H-1,2,4-Triazol-1-yl) phenylcyclopropane 3,3-dimethyl ester (182f) 

 

Anhydrous potassium carbonate (149 mg, 1.08 mmol, 2.5 eq) was added to a solution of 

1,2,4 triazole (30 mg, 0.43 mmol) and the substituted cyclopropene 1d (100 mg, 0.43 

mmol) in N,N-dimethylformamide (3 mL) under a nitrogen atmosphere. The reaction 

mixture was stirred at 90°C for 24 hours. On completion the reaction mixture was cooled to 

room temperature, diluted with diethyl ether (20 mL) and partitioned with saturated 

aqueous ammonium chloride (20 mL). The ethereal solution was washed with water (15 

mL), brine (15 mL) and the organic layer was dried over anhydrous sodium sulphate and 

concentrated in vacuo to afford a brown viscous oil. The crude product was purified by 

flash chromatography on silica gel (EtOAc/Petrol 1:3) to afford the title compound as a 

yellow oil in 50% yield (65 mg, 0.22 mmol); IR νmax (film)/cm-1 3123 (sp2 ArC-H), 

2951(sp3 C-H), 1730 (C=O), 1507 (ArC=C), 1437(C=N), 1277(C-O), 1056 (C-O); δH(400 

MHz; CDCl3) 3.52 (3H, s, CO2CH3), 3.65 (3H, s, CO2CH3), 4.23 (1H, d, J 6.0 Hz, CCHC), 

5.07 (1H, d, J 6.4 Hz, CHCN), 7.24-7.36 (5H, m, ArCH), 7.95 (1H, s, N3C2H2), 8.24 (1H, 

s, N3C2H2); δC(100 MHz; CDCl3) 35.4 (CH), 43.8 (CCHC), 44.4 (C(CO2CH3)2), 52.9 

(CO2CH3), 53.4 (CO2CH3), 126.8 (ArCH), 126.9 (ArCH), 127.7 (ArCH), 128.0 (ArCH), 

128.4 (ArCH), 131.4 (ArC), 143.6 (N3C2H2), 152.3 (N3C2H2), 164.9 (C=O), 165.0 (C=O); 

FTMS (ES) (M+H+) calculated for C15H16N3O4 302.106, actually found 302.114 (-0.116 

ppm). 
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(±) Phenyl 2-(4-nitro-1H-pyrazol-1-yl)-3-methyl cyclopropane diester 
(184/185a) 

 

Cesium carbonate (351 mg, 1.0 mmol) was added to a stirred solution of 4-nitropyrazole 

(73 mg, 0.65 mmol, 1.5 eq) and substituted cyclopropene 1d (100 mg, 0.43 mmol) in N, N-

dimethylformamide (5 mL) under a nitrogen atmosphere. The reaction mixture was stirred 

at 90°C for 24 hours. On completion the reaction mixture was cooled to room temperature, 

diluted with diethyl ether (20 mL) and partitioned with saturated aqueous ammonium 

chloride (20 mL). The ethereal solution was washed with water (15 mL), brine (15 mL) 

and the organic layer was dried over anhydrous sodium sulphate and concentrated in vacuo 

to afford dark yellow oil. The residue was purified by flash chromatography on silica gel 

(EtOAc/Petrol 1:5) to afford the title compound as a separable mixture of diastereoisomers 

in a combined 60% yield as a yellow oil in a d.r. 1:2 (184:185); IR, νmax (film)/cm-1 3131 

(sp2 Ar-CH), 2954 (sp3 C-H), 1732 (C=O), 1606 (ArC=C), 1534 (C-NO2), 1318 (C-NO2); 

(i) first eluted isomer 184a, Rf (EtOAc/petrol 1:3) 0.65 δH(400 MHz; CDCl3) 2.95 (1H, dd, 

J 3.9, 10.8 Hz, CH3), 3.50 (1H, dd, J 5.5, 10.8 Hz, CH2), 3.57 (3H, s, CO2CH3), 4.70 (1H, 

dd, J 3.9, 5.4 Hz, CH1), 7.31-7.33 (5H, m, ArCH), 8.08 (1H, s, N=CHCNO2), 8.35 (1H, s, 

NCHCNO2); δC (100 MHz; CDCl3) 29.6 (CH3), 32.3 (CH2), 44.5 (CH1), 52.3 (CO2CH3), 

127.9 (2 ArCH), 128.6 (3 ArCH), 129.0 (NCHCNO2), 132.5 (ArC), 135.9 (N=CHCNO2), 

167.9 (C=O), (i) second eluted isomer 185a, Rf (EtOAc/petrol 1:3) 0.47 δH(400 MHz; 

CDCl3) 2.62 (1H, dd, J 6.2, 7.9 Hz, CH3), 3.55 (1H, dd, J 6.2, 7.6 Hz, CH2), 3.66 (3H, s, 

CO2CH3), 4.28 (1H, dd, J 5.3, 7.9 Hz, CH1), 7.22-7.25 (2H, m, ArCH), 7.32-7.38 (3H, m, 

ArCH), 8.08 (1H, s, N=CHCNO2), 8.32 (1H, s, NCHCNO2); δC (100 MHz; CDCl3) 29.7 

(CH3), 30.7 (CH2), 46.2 (CH1), 52.7 (CO2CH3), 126.8 (ArCH), 128.1 (ArCH), 128.6 

(ArCH), 130.0 (NCHCNO2), 135.0 (ArC), 136.4 (N=CHCNO2), 168.2 (C=O); FTMS (ES) 

(M+Na+) calculated for C14H13N3O4Na, 310.080, actually found 310.080 (-1.179 ppm). 
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(±) Phenyl-2-(3-trifluoromethyl-1H-pyrazol-1-yl) 3-methyl cyclopropane ester 
(184/185b) 

 

Cesium carbonate (351 mg, 1.0 mmol) was added to a stirred solution of 4-trifluoromethyl-

pyrazole (59 mg, 0.43 mmol) and the substituted cyclopropene 1d (100 mg, 0.43 mmol) in 

N, N-dimethylformamide (5 mL) under a nitrogen atmosphere. The reaction mixture was 

stirred at 90°C for 48 hours. On completion the reaction mixture was cooled to room 

temperature, diluted with diethyl ether (20 mL) and partitioned with saturated aqueous 

ammonium chloride (20 mL). The ethereal solution was washed with water (15 mL), brine 

(15 mL) and the organic layer was dried over anhydrous sodium sulphate and concentrated 

in vacuo to afford yellow oil. The crude product was purified by flash chromatography on 

silica gel (EtOAc/Petrol 1:5) to afford the title compound as an inseparable mixture of 

diastereoisomers as a clear oil in 60% yield (80 mg, 0.26 mmol) in a d.r. 1:2.5 (184:185); 

IR, νmax (film)/cm-1 2955 (sp3 C-H), 1735 (C=O), 1606 (ArC=C), 1489 (C=N), 1260 (C-F), 

1135 (C-F); Assigned from a combined spectrum (i) Isomer 184b; δH(400 MHz; CDCl3) 

2.90 (1H, dd, J 4.0, 10.8 Hz, CH3), 3.48 (1H, dd, J 5.6, 10.8 Hz, CH2), 3.54 (3H, s, 

CO2CH3), 4.70 (1H, dd, J 4.0, 5.2 Hz, CH1), 6.56 (1H, d, J 2.4 Hz, NCH=CH), 7.25-7.31 

(2H, m, ArCH), 7.33-7.40 (3H, m, ArCH), 7.67 (1H, d, J 1.6 Hz, NCH=CHCCF3); δC (100 

MHz; CDCl3) 29.9 (CH3), 32.5 (CH2), 44.1 (CH1), 52.1 (CO2CH3), 105.0 (NCH=CH), 

122.3 (q, 1JCF 266 Hz, CF3), 126.8 (ArCH), 127.7 (ArCH), 128.5 (ArCH), 128.7 (ArCH), 

131.2 (NCH=CHCCF3), 133.1 (ArC), 143.4 (ArC-CF3), 168.3 (C=O); δF (376 MHz; 

CDCl3) 100.2 (3F); (ii) Isomer 185b, δH(400 MHz; CDCl3) 2.58 (1H, dd, J 6.0, 7.6 Hz, 

CH3), 3.56 (1H, dd, J 5.5, 5.5 Hz, CH2), 3.61 (3H, s, CO2CH3), 4.30 (1H, dd, J 5.2, 7.6 Hz, 

CH1), 6.52 (1H, d, J 2.4 Hz, NCH=CH), 7.25-7.31 (2H, m, ArCH), 7.33-7.40 (3H, m, 

ArCH), 7.65 (1H, d, J 1.6 Hz, NCH=CHCCF3); δC (100 MHz; CDCl3) 30.0 (CH3), 30.4 

(CH2), 45.8 (CH1), 52.5 (CO2CH3), 104.3 (NCH=CH), 122.3 (q, 1JCF 266 Hz, CF3), 126.8 

(ArCH), 127.7 (ArCH), 128.5 (ArCH), 128.7 (ArCH), 131.9 (NCH=CHCCF3), 135.7 

(ArC), 143.5 (ArC-CF3) 168.4 (C=O), δF (376 MHz; CDCl3) 100.1 (3F); FTMS, (ES), 

(M+Na+) calculated for C15H13F3N2O2Na 333.090, found 333.082 (-0.672 ppm). 
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(±) Phenyl 2-(1H-imidazol-1-yl)-3-methyl cyclopropane diester (184/185c) 

 

Cesium carbonate (351 mg, 1.0 mmol) was added to a stirred solution of imidazole (59 mg, 

0.86 mmol, 2.0 eq) and substituted cyclopropene 1d (100 mg, 0.43 mmol) in N,N-

dimethylformamide (5 mL) under a nitrogen atmosphere. The reaction mixture was stirred 

at 90°C for 26 hours. On completion the reaction mixture was cooled to room temperature, 

diluted with diethyl ether (20 mL) and partitioned with saturated aqueous ammonium 

chloride (20 mL). The ethereal solution was washed with water (15 mL), brine (15 mL) 

and the organic layer was dried over anhydrous sodium sulphate and concentrated in vacuo 

to afford an orange/brown oil. The crude product was purified by flash chromatography on 

silica gel (EtOAc/Petrol 1:3) to afford the title compound as an inseparable mixture of 

diastereoisomers as a yellow oil in 60% yield (62 mg, 0.26 mmol) in a d.r. 1:2 (184:185); 

IR, νmax (film)/cm-1 2952 (sp3 C-H), 1732 (C=O), 1605 (ArC=C), 1500 (C=N), 1199 (C-O), 

1176 (C-O). Assigned from combined spectrum, Isomer 184c; δH(400 MHz; CDCl3) 2.65 

(1H, dd, J 4.0, 10.8 Hz, CH3), 3.20 (1H, dd, J 5.6, 10.4 Hz, CH2), 3.56 (3H, s, CO2CH3), 

4.46 (1H, dd, J 4.0, 5.6 Hz, CH1), 7.04 (1H, s, NCH=CH), 7.08 (1H, s, NCH=CH), 7.28-

7.33 (5H, m, ArCH), 7.64 (1H, s, NCHNCH); δC (100 MHz; CDCl3) 29.8 (CH3), 32.5 

(CH2), 38.7 (CH1), 52.2 (CO2CH3), 127.7 (ArCH), 127.8 (ArCH), 128.4-128.6 (ArCH), 

129.4 (NCHCH), 129.9 (NCHCH), 133.0 (ArC), 137.1 (NCHNCH), 168.4 (C=O), Isomer 

185c; δH(400 MHz; CDCl3) 2.50 (1H, dd, J 6.0, 8.0 Hz, CH3), 3.46 (1H, dd, J 6.0, 7.6 Hz, 

CH2), 3.61 (3H, s, CO2CH3), 3.99 (1H, dd, J 5.2, 7.6 Hz, CH1), 7.00 (1H, s, NCH=CH), 

7.04 (NCHCH), 7.22 (2H, d, J 8.8 Hz, ArCH), 7.34-7.39 (3H, m, ArCH), 7.60 (1H, s, 

NCHNCH); δC (100 MHz; CDCl3) 29.5 (CH2), 29.9 (CH3), 40.9 (CH1), 53.4 (3H, s, 

CO2CH3), 119.2 (NCHCH), 119.7 (NCHCH), 126.8 (ArCH), 128.8-130.0 (2 ArCH), 136.0 

(ArC), 137.7 (NCHNCH), 168.2 (C=O); FTMS (ES) (M+H+) calculated for C14H15N2O2 

243.094, found 243.113 (-0.643 ppm). 
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(±) Phenyl-2-(1H-1,2,4-triazol-1-yl ) 3-methyl cyclopropane ester (184/185d) 

 

Cesium carbonate (351 mg, 1.1 mmol) was added to a stirred solution of 1,2,4-triazole (59 

mg, 2.0 eq) and substituted cyclopropane in N,N-dimethylformamide (5 mL) under a 

nitrogen atmosphere. The reaction mixture was stirred at 90°C for 21 hours. On completion 

the reaction mixture was cooled to room temperature, diluted with diethyl ether (20 mL) 

and partitioned with saturated aqueous ammonium chloride (20 mL). The ethereal solution 

was washed with water (15 mL), brine (15 mL) and the organic layer was dried over 

anhydrous sodium sulphate and concentrated in vacuo to afford a brown oil. The crude 

product was purified by flash chromatography on silica gel (EtOAc/Petrol 1:3) to afford 

the title compound as an inseparable mixture of diastereoisomers as a yellow oil in 55% 

yield (57 mg, 0.24 mmol) in a d.r. 1:2 (184:185); IR, νmax (film)/cm-1 2924 (sp3 C-H), 1732 

(C=O), 1506 (C=N), 1441 (C-O). Assigned from a combined spectrum, isomer 184d; 

δH(400 MHz; CDCl3) 2.90 (1H, dd, J 4.0, 10.8 Hz, CH3), 3.45 (1H, dd, J 5.2, 10.8 Hz, 

CH2), 3.60 (3H, s, CO2CH3), 4.71 (1H, dd, J 4.0, 5.6 Hz, CH1), 7.23-7.27 (2H, m, ArCH), 

7.36-7.40 (3H, m, ArCH), 7.95 (1H, s, NCHNCHN), 8.30 (1H, s, NCHNCHN); δC (100 

MHz; CDCl3) 29.5 (CH3), 32.2 (CH2), 41.3 (CH1), 52.2 (CO2CH3), 127.8 (2 ArCH), 127.9 

(ArCH), 128.5 (2 ArCH), 132.8 (ArC), 143.5 (NCHNCHN), 151.9 (NCHNCHN), 168.2 

(C=O); isomer 185d, δH(400 MHz; CDCl3) 2.60 (1H, dd, J 6.4, 8.0 Hz, CH3), 3.56 (1H, dd, 

J 5.6, 7.6 Hz, CH2), 3.62 (3H, s, CO2CH3), 4.22 (1H, dd, J 5.2, 8.0 Hz, CH1), 7.28-7.36 

(5H, m, ArCH), 7.94 (1H, s, NCHNCHN), 8.25 (1H, s, NCHNCHN); δC (100 MHz; 

CDCl3) 29.4 (CH3), 30.1 (CH2), 42.9 (CH3), 52.5 (CO2CH3), 126.9 (2 ArCH), 128.7-129.0 

(3 ArCH), 135.5 (ArC), 144.3 (NCHNCHN), 152.2 (NCHNCHN), 168.1 (C=O); FTMS 

(ES) (M+H+) calculated for C13H14N3O2 244.108, found 244.108 (0.115 ppm). 

4-Nitrophenyl cyclopropene dimethyl ester (186a) 
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A solution of diazo dimethylmalonate 150a (2 g, 12.6 mmol) in anhydrous 

dichloromethane (5 mL) was added via a syringe (1.0 mL/ph) to a stirred solution of 1-

ethynyl-4-nitrobenzene (4.63 g, 31.5 mmol, 2.5 eq) and rhodium acetate dimer (0.12 

mmol) in dichloromethane (17 mL) under a nitrogen atmosphere. Once addition was 

complete the reaction mixture was stirred for an additional six hours. The reaction mixture 

was filtered through a pad of celite and silica and excess solvents were removed under 

reduced pressure. The crude product was purified by flash chromatography on silica gel 

(EtOAc/ Petrol 1:5) to afford the title compound as a light orange solid in 50 % yield (1.75 

g, 6.3 mmol); mp 108.2-109.5°C; IR, νmax (film)/cm-1 1727 (C=O), 1522 (C-NO2), 1345 

(C-NO2); δH(400 MHz; CDCl3) 3.77 (6H, s, 2 CO2CH3), 7.22 (1H, s, H=C-Ar), 7.81 (2H, 

d, J 8.4 Hz, ArNO2-CH), 8.31 (2H, d, J 8.4 Hz, ArNO2-CH); δC(100 MHz; CDCl3) 33.2 

(C(CO2CH3)2), 52.7 (2 CO2CH3), 100.6 (HCC-Ar), 111.1 (HCC-Ar), 124.2 (ArNO2-CH), 

130.1 (ArC), 131.1 (ArNO2-CH), 148.7 (C-NO2), 170.4 (2 C=O); HRMS (FAB) (M+H+) 

calculated for C13H12NO6 278.0659, found 278.0658 (-0.41 ppm). 

4-Methoxyphenyl cyclopropene dimethyl ester (186b) 

 

A solution of diazo dimethylmalonate 150a (2 g, 12.6 mmol) in anhydrous 

dichloromethane (5 mL) was added via syringe (1.0 mL/ph) to a stirred solution of 1-

ethynyl-4-methoxybenzene (4.18 g, 4.1 mL, 31.6 mmol, 2.5 eq) and rhodium acetate dimer 

(0.12 mmol) in dichloromethane (17 mL) under a nitrogen atmosphere. Once addition was 

complete the reaction mixture was stirred for an additional six hours. The reaction mixture 

was filtered through a pad of celite and silica and excess solvents were removed under 

reduced pressure. The crude product was purified by flash chromatography on silica gel 

(EtOAc/ Petrol 1:5) to afford the title compound as a light yellow solid in 45% yield 

(1.49g, 5.67 mmol); mp 97.2-98.4°C, IR, νmax (film)/cm-1 1713 (C=O), 1604 (ArC=C), 

1250, 1095 (C-O); δH(400 MHz; CDCl3) 3.83 (6H, s, 2 CO2CH3), 4.20 (3H, s, OCH3), 6.71 

(1H, s, HCC-Ar), 6.91 (2H, d, J 8.8 Hz, ArOMe-CH), 7.46 (2H, d, J 8.8 Hz, ArOMe-CH), 

δC(100 MHz; CDCl3) 33.9 (C(CO2CH3)2), 54.3 (2 CO2CH3), 58.2 (OCH3), 107.4 (CH=C-

Ar), 116.8 (ArCH), 127.3 (ArCH), 130.2 (ArC), 136.8 (HCC-Ar), 146.6 (ArC-OCH3), 
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166.5 (2 C=O); HRMS (FAB) (M+H+) calculated for C14H15O5 263.0912, found 263.0912 

(-0.65 ppm). 

4-Trifluoromethylphenyl cyclopropene dimethyl ester (186c) 

 

A solution of diazo dimethylmalonate 150a (2 g, 12.6 mmol) in anhydrous 

dichloromethane (5 mL) was added via syringe (1.0 mL/ph) to a stirred solution of 1-

ethynyl-4-trifluoromethylbenzene (4.18 g, 4.1 mL, 31.6 mmol, 2.5 eq) and a rhodium 

acetate dimer (0.12 mmol) in dichloromethane (17 mL) under a nitrogen atmosphere. Once 

addition was complete the reaction mixture was stirred for an additional six hours. The 

reaction mixture was filtered through a pad of celite and silica and excess solvents were 

removed under reduced pressure. The crude product was purified by flash chromatography 

on silica gel (EtOAc/ Petrol 1:5) to afford the title compound as a light yellow oil in 45% 

yield (1.71g, 5.67 mmol); IR, νmax (film)/cm-1 2954 (sp3 CH), 1732 (C=O), 1604 (ArC=C), 

1168 (C-F), 1124 (C-F); δH(400 MHz; CDCl3), 3.75 (6H, s, CO2CH3), 7.06 (1H, s, HC=C-

Ar), 7.74 (4H, dd, J 4.4, 8.4 Hz, ArCF3-CH); δC(100 MHz; CDCl3) 32.5 (C(CO2CH3)2), 

52.6 (2 CO2CH3), 102.3 (HC=C-Ar), 125.9 (ArCH), 127.4 (ArCH), 130.6 (ArC), 170.7 (2 

C=O); FTMS (ES) (M+Na+) calculated for C14H11 F3O4Na 323.050, found 323.049 (-1.857 

ppm). Due to a weak sample not all the quaternary carbons have been accounted for. 

(±) Dimethyl 2-(2-(4-iodo-1H-pyrazol-1-yl)-1-(4-nitrophenyl vinyl) malonate 
(187a) 

 

Potassium carbonate (124 mg, 0.90 mmol, 2.5 eq) was added to a solution of 4-

iodopyrazole (70 mg, 0.36 mmol) and the substituted cyclopropene 186a (100 mg, 3.6 

mmol) in N,N-dimethylformamide (3 mL) under a nitrogen atmosphere. The reaction 

mixture was stirred at 90°C for 19 hours. On completion the reaction mixture was cooled to 

room temperature, diluted with diethyl ether (20 mL) and washed with saturated aqueous 
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ammonium chloride (20 mL). The layers were separated and the ethereal solution was 

subsequently washed with water (15 mL), brine (15 mL) and dried over anhydrous sodium 

sulphate. The excess solvents were removed under reduced pressure and the residue was 

purified by flash chromatography on silica gel (EtOAc/Petrol 1:5) to afford the unexpected 

ring-opened product as a yellow solid in 60% yield (102 mg, 0.21 mmol); mp 153.7-

154.2°C; IR, νmax (film)/cm-1 2951(sp3C-H), 1737 (C=O), 1518 (C-NO2), 1346 (C-NO2); 

δH(400 MHz; CDCl3) 3.66 (6H, s, 2 CO2CH3), 6.11 (1H, s, CHCO2CH3), 7.08 (1H, s, 

HC=C-Ar), 7.64 (2H, d, J 8.8 Hz, 2 ArNO2-CH), 7.65 (1H, s, N=CHCI), 7.67 (1H, s, 

IC=CHN), 8.20 (2H, d, J 8.8 Hz, 2 ArNO2-CH); δC(100 MHz; CDCl3) 53.0 (2 CO2CH3), 

54.0 (CHCO2CH3), 60.4 (C-I), 122.1 (HC=C-Ar), 123.6 (ArNO2-CH), 128.0 (HC=C), 

128.9 (ArNO2-CH), 136.0 (IC=CHN), 145.1 (ArC), 146.0 (N=CHCI), 147.3 (ArC-NO2), 

168 (2 C=O); HRMS (FAB) (M+H+) calculated for C16H15IN3O6 471.9998, found 

471.9998 (-0.47 ppm). 

Dimethyl 2-(2-(4(5)-bromo-1H-imidazol-1-yl)-1-(4-nitrophenyl vinyl) malonate 
(187b) 

 

Potassium carbonate (124 mg, 0.90 mmol, 2.5 eq) was added to a solution of 4-bromo-1H-

imidazole (53 mg, 0.36 mmol) and the substituted cyclopropene 186a (100 mg, 0.36 mmol) 

in N,N-dimethylformamide (3 mL) under a nitrogen atmosphere. The reaction mixture was 

stirred at 90°C for 24 hours. On completion the reaction mixture was cooled to room 

temperature, diluted with diethyl ether (20 mL) and washed with saturated aqueous 

ammonium chloride (20 mL). The layers were separated and the ethereal solution was 

subsequently washed with water (15 mL), brine (15 mL) and dried over anhydrous sodium 

sulphate. The excess solvents were removed under reduced pressure and the residue was 

purified by flash chromatography on silica gel (EtOAc/Petrol 1:4) to afford the unexpected 

ring-opened product as a yellow/orange viscous oil in 54% yield (80 mg, 0.19 mmol); IR, 

νmax (film)/cm-1 1737(C=O), 1520 (C-NO2), 1348 (C-NO2), 855(C-Br); δH(400 MHz; 

CDCl3) 3.71 (6H, s, 2 CO2CH3), 4.73 (1H, s, CHCO2CH3), 7.04 (1H, s, HCC-Ar), 7.08 

(1H, s, C3H2N2Br), 7.57 (1H, s, C3H2N2Br), 7.63 (2H, d, J 8.8 Hz, ArNO2-CH), 8.25 (2H, 
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d, J 8.8 Hz, ArNO2-CH); δC(100 MHz; CDCl3) 53.2 (CHCO2CH3), 53.5 (2 CO2CH3), 

118.5 (HCC-Ar), 123.9 (ArNO2-CH), 127.4 (C3H2N2Br), 129.1 (Ar-NO2-CH), 132.6 

(HCC-Ar), 137.1 (C3H2N2Br), 142.9 (ArC), 148.1 (ArC-NO2), 166.7 (2 C=O), HRMS 

(FAB) (M+H+) calculated for C16H15
79/81BrN3O6 424.0137 and 426.0317, found 424.0127 

and 426.0126 (-2.878 ppm). 

(±) Dimethyl 2-(4-bromo-1H-imidazol-1-yl)-3-4-nitrophenylcyclopropane-1,1-
dicarboxylate (188a) 

 

Potassium carbonate (124 mg, 0.90 mmol, 2.5 eq) was added to a solution of 4-bromo-1H-

imidazole (53 mg, 0.36 mmol) and the substituted cyclopropene 186a (100 mg, 0.36 mmol) 

in acetonitrile (3 mL) under a nitrogen atmosphere. The reaction mixture was stirred at 

room temperature for 4 hours. Once complete the resulting mixture was diluted with 

diethyl ether (10 mL) and subsequently washed with saturated aqueous ammonium 

chloride (15 mL), water (20 mL) and brine (20 mL) and dried over anhydrous sodium 

sulphate. The excess solvents were removed under reduced pressure to afford the title 

compound without further purification as brown solid in 90% yield (137 mg, 0.32 mmol); 

mp 101.4-102.9°C; IR, νmax (film)/cm-1 2954 (sp3 CH), 1730 (C=O), 1603 (ArC=C), 1520 

(NO2), 1348 (NO2); δH(400 MHz; CDCl3) 3.57 (3H, s, CO2CH3), 3.71 (3H, s, CO2CH3), 

4.12 (1H, d, J 6.8 Hz, CH-Ar), 4.87 (1H, d, J 6.8 Hz, CHN), 7.02 (1H, s, NCHN), 7.48 

(2H, d, J 8.8 Hz, ArNO2-CH), 7.50 (1H, s, NCHCBr), 8.22 (2H, d, J 8.8 Hz, ArNO2-CH); 

δC(100 MHz; CDCl3) 34.5 (CH), 42.6 (CHN), 44.5 (C(CO2CH3)2), 116.3 (C-Br), 118.7 

(NCHN), 124.0 (2 ArNO2-CH), 129.5 (2 ArNO2-CH), 137.0 (NCHCBr), 138.6 (ArC-

NO2), 147.9 (ArC), 164.3 (C=O), 164.6 (C=O); FTMS (ES) (M+H+) calculated for 

C16H15
79/81BrN3O6 424.0137 and 426.0137, found 424.0137 and 426.0115 (-0.455ppm). 
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(±) Dimethyl 2-(4-iodo-1H-pyrazol-1-yl)-3-4-nitrophenylcyclopropane-1,1-
dicarboxylate (188b) 

 

Potassium carbonate (63 mg, 0.45 mmol, 2.5 eq) was added to a solution of 4-iodopyrazole 

(35 mg, 0.18 mmol) and the substituted cyclopropene 186a (50 mg, 0.18 mmol) in 

acetonitrile (3 mL). The reaction mixture was stirred at room temperature for 6 hours. 

Once complete the resulting mixture was diluted with diethyl ether (10 mL) and 

subsequently washed with saturated aqueous ammonium chloride (15 mL), water (20 mL) 

and brine (20 mL) and dried over anhydrous sodium sulphate. The excess solvents were 

removed under reduced pressure to afford the title compound without further purification 

as a yellow solid in 98% yield (83 mg, 0.17 mmol); mp 141.1-142.4°C; IR, νmax (film)/cm1 

2953(sp3C-H), 1732 (C=O), 1603(ArC=C), 1521 (C-NO2), 1347 (C-NO2), 1437(C=N); 

δH(400 MHz; CDCl3) 3.56 (3H, s, CH3, CO2CH3), 3.67 (3H, s, CH3, CO2CH3), 4.34 (1H, d, 

J 6.4 Hz, CH), 5.07 (1H, d, J 6.4 Hz, CHN), 7.51 (2H, d, J 8.4 Hz, ArNO2-CH), 7.53 (1H, 

s, NCHCICH), 7.64 (1H, s, NCHCICH), 8.21 (2H, d, J 8.4 Hz, ArNO2-CH); δC(100 MHz; 

CDCl3) 34.7 (CH), 44.6 (C(CO2CH3)2), 47.1 (CHN), 53.2 (CO2CH3), 53.6 (CO2CH3), 57.7 

(C-I), 123.9 (ArNO2-CH), 129.6 (ArNO2-CH), 134.8 (NCHCICH), 139.4 (ArC-NO2), 

145.4 (NCHCICH), 147.7 (ArC), 164.7 (C=O), 164.8 (C=O); FTMS (ES) (M+H+) 

calculated for C16H15IN3O6 471.9922, found 471.9987 (-2.838ppm). 

(±) Dimethyl 2-(3,6-dibromocarbazole)- 3-4-nitrophenylcyclopropane-1,1- 
dicarboxylate (188c) 

 

Potassium carbonate (63 mg, 0.45 mmol, 2.5 eq) was added to a solution of di-

bromocarbazole (59 mg, 0.18 mmol) and the substituted cyclopropene 186a (50 mg, 0.18 
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mmol) in acetonitrile (3 mL) at room temperature. The reaction mixture was stirred for 4 

hours and upon completion diluted with diethyl ether (10 mL). The ethereal solution was 

washed with water (20 mL), brine (20 mL) and dried over sodium sulphate. The excess 

solvents were removed under reduced pressure and the crude product was purified by flash 

chromatography on silica gel (EtOAc/Petrol 1:5) to afford the title compound as a white 

solid in 56% yield (60 mg, 0.10 mmol); mp 218.4-219.6°C; IR, νmax (film)/cm-1 2956 ( sp3 

C-H), 1737 (C=O), 1606 (ArC=C) 1524 (C-NO2), 1436 (C-N), 1347 (C-NO2), 1260 C-O), 

740 (C-Br); δH(400 MHz; CDCl3) 3.24 (3H, s, CO2CH3), 3.56 (3H, s, CO2CH3), 4.24 (1H, 

d, J 6.7 Hz, CCH-Ar), 4.82 (1H, d, J 6.7 Hz, CCHN), 7.19 (2H, s, 2 CCHCBr), 7.45 (2H, 

d, J 8.6 Hz, 2 NCCH), 7.54 (2H, d, J 8.8 Hz, 2 ArNO2-CH), 8.04 (2H, d, J 2.0 Hz, 2 

CHCBr), 8.23 (2H, d, J 8.8 Hz, 2 ArNO2-CH); δC (100 MHz; CDCl3) 35.5 (CH), 40.5 

(CCHN), 44.3 (C(CO2CH3)2), 52.3 (2 CO2CH3), 78.4 (2 CH, carbazole) 110.2 (2 ArC), 

111.2 (2 ArC), 116.8 (2 ArC), 121.7 (2 CH, carbazole), 122.4 (ArNO2-CH), 128.4 

(ArNO2-CH), 129.7 (2 CH, carbazole), 138.4 (ArC-NO2), 147.0 (ArC), 163.9 (C=O), 164.4 

(C=O); FTMS (EI) (M-H+) calculated for C25H17
79Br2N2O6 598.946, actually found 

598.946 (+0.675 ppm). 

(±) Dimethyl 2-(4-nitrophenyl)-3-1H-pyrazol-1-yl-cyclopropane-1,1-
dicarboxylate (188d) 

 

Potassium carbonate (63 mg, 0.45 mmol, 2.5 eq) was added to a solution of prazole (25 

mg, 0.36 mmol, 2.0 eq) and the substituted cyclopropene 186a (50 mg, 0.18 mmol) in 

acetonitrile (3 mL) at room temperature. The reaction mixture was stirred for 22 hours and 

upon completion diluted with diethyl ether (10 mL). The ethereal solution was washed 

with water (20 mL), brine (20 mL) and dried over sodium sulphate. The excess solvents 

were removed under reduced pressure and the crude product was purified by flash 

chromatography on silica gel (EtOAc/Petrol 1:5) to afford the title compound as yellow 

solid in 65% yield (40 mg, 0.12 mmol); mp 67.2°C; IR, νmax (film)/cm-1 2955 (sp3 C-H) , 

1733 (C=O), 1604 (ArC=C), 1522 (NO2), 1349 (NO2), 1300 (C-O), 1125 (C-O); δH(400 

MHz; CDCl3) 3.56 (3H, s, CO2CH3), 3.63 (3H, s, CO2CH3), 4.40 (1H, d, J 6.4 Hz, CCHC), 
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5.09 (1H, d, J 6.4 Hz, CCHN), 6.32 (1H, t, J 2.0 Hz, NCHCHCHN), 7.52 (2H, d, J 8.8 Hz, 

ArNO2-CH), 7.53 (1H, d, J 2.0 Hz, NCHCHCHN), 7.56 (1H, d, J 2.0 Hz, NCHCHCHN), 

8.21 (2H, d, J 8.8 Hz, ArNO2-CH); δC (100 MHz; CDCl3) 34.9 (CCHC), 44.6 

(C(CO2CH3)2), 47.1 (CCHN), 53.1 (CO2CH3), 53.4 (CO2CH3), 107.0 (NCHCHCHN), 

123.8 (ArNO2-CH), 129.7 (ArNO2-CH), 130.3 (NCHCHCHN), 139.8 (ArC-NO2), 140.7 

(NCHCHCHN), 147.7 (ArC), 164.9 (C=O), 165.1 (C=O); FTMS (ES) (M+Na+) calculated 

for C16H15N3O6Na 368.085, found 368.085 (-1.521 ppm). 

(±) Dimethyl 2-(1H-imidazol-1-yl)-3-(4-nitrophenyl) cyclopropane-1,1-
dicarboxylate (188e) 

 

Potassium carbonate (63 mg, 0.45 mmol, 2.5 eq) was added to a stirred solution of 

imidazole (25 mg, 0.36 mmol, 2.0 eq) and the substituted cyclopropene 188a (50 mg, 0.18 

mmol) in acetonitrile (3 mL) at room temperature. The reaction mixture was stirred for 23 

hours and upon completion diluted with diethyl ether (10 mL). The ethereal solution was 

washed with water (20 mL), brine (20 mL) and dried over sodium sulphate. The excess 

solvents were removed under reduced pressure to afford the title compound without further 

purification as a brown oil in 87% yield (54 mg, 0.16 mmol); IR, νmax (film)/cm-1 2955 (sp3 

C-H), 1732 (C=O), 1603 (ArC=C), 1520 (C-NO2), 1349 (C-NO2); δH(400 MHz; CDCl3) 

3.58 (3H, s, CO2CH3), 3.66 (3H, s, CO2CH3), 4.15 (1H, d, J 6.8 Hz, CCHC), 4.89 (1H, d, J 

6.8 Hz, CCHN), 7.01 (1H, s, NCHCHN), 7.08 (1H, s, NCHCHN), 7.50 (2H, d, J 8.8 Hz, 

ArNO2-CH ), 7.61 (1H, s, NCHNCH), 8.23 (2H, d, J 8.8 Hz, ArNO2-CH); δC (100 MHz; 

CDCl3) 34.6 (CCHC), 42.6 (CCHN), 44.6 (C(CO2CH3)2), 53.3 (CO2CH3), 53.7 (CO2CH3), 

119.3 (NCHCHN), 123.9 (2 ArNO2-CH), 129.5 (2 ArNO2-CH), 130.2 (NCHCHN), 137.3 

(NCHNCH), 139.1 (ArC), 147.8 (ArC), 164.5 (C=O), 164.8 (C=O); FTMS (ES) (M+H+) 

calculated for C16H16N3O6 346.096, found 346.102 (-3.719 ppm). 
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(±) Dimethyl 2-(4-nitrophenyl)-3-(3(4)-(trifluoromethyl)-1H-pyrazol-1-yl) 
cyclopropane-1,1-dicarboxylate (188f) 

 

Potassium carbonate (63 mg, 0.45 mmol, 2.5 eq) was added to a stirred solution of 

pyrazole-trifluoromethyl (25 mg, 0.18 mmol) and the substituted cyclopropene 186a (50 

mg, 0.18 mmol) in acetonitrile (3 mL) at room temperature. The reaction mixture was 

stirred for 1 hour and upon completion diluted with diethyl ether (10 mL). The ethereal 

solution was washed with water (20 mL), brine (20 mL) and dried over sodium sulphate. 

The excess solvents were removed under reduced pressure to afford the title compound 

without further purification as a yellow solid in 99% yield (60 mg, 0.18 mmol); mp: 121.2-

121.6°C; IR, νmax (film)/cm-1 2957 (sp3 C-H), 1734 (C=O), 1605 (ArC=C), 1524 (C-NO2), 

1438 (C=N), 1350 (C-NO2), 1132 (C-F); δH(400 MHz; CDCl3) 3.57 (3H, s, CO2CH3), 3.65 

(3H, s, CO2CH3), 4.38 (1H, d, J 6.4 Hz, CCHC), 5.13 (1H, d, J 6.4 Hz, CCHN), 6.59 (1H, 

d, J 2.4 Hz, NCHCHCCF3), 7.52 (2H, d, J 8.8 Hz, 2 ArNO2-CH), 7.66 (1H, d, J 2.0 Hz, 

NCHCHCCF3), 8.21 (2H, d, J 8.8 Hz, 2 ArNO2-CH); δC (100 MHz; CDCl3) 34.9 (CCHC), 

44.5 (C(CO2CH3)2), 47.2 (CCHN), 53.3 (CO2CH3), 53.5 (CO2CH3), 105.52 (NCHCHC), 

123.9 (2 Ar-CH), 124.8 (CF3), 130.0 (2 Ar-CH), 132.1 (NCHCHCCF3), 139.2 (ArC), 

143.2 (NC-CF3), 147.7 (ArC), 164.6 (C=O), 164.7 (C=O); δF(376 MHz; CDCl3) 100.0 

(C6F6); FTMS (ES) (M+Na+) calculated for C17H14F3N3O6Na 436.072, found 436.072 (-

1.484 ppm). 

Dimethyl 2-(4-iodo-1H-pyrazol-1-yl)-3-4-trifluoromethylphenyl cyclopropane-
1,1-dicarboxylate (188g) 

 

Potassium carbonate (114 mg, 0.83 mmol, 2.5 eq) was added to a stirred solution of 4-

iodopyrazole (64 mg, 0.33 mmol) and the substituted cyclopropene 188g (100 mg, 0.33 
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mmol) in acetonitrile (5 mL) at room temperature. The reaction mixture was stirred 

initially for 19 hours but no reaction had taken place. The reaction was heated to 50°C for 

additional 5 hours and upon completion the reaction mixture was cooled to room 

temperature and diluted with diethyl ether (10 mL). The ethereal solution was washed with 

water (20 mL), brine (20 mL) and dried over sodium sulphate. The excess solvents were 

removed under reduced pressure and the crude product was purified by flash 

chromatography on silica gel (EtOAc/Petrol 1:5) to afford the title compound as a yellow 

viscous oil in 50% yield (81 mg, 0.17 mmol); IR, νmax (film)/cm-1 3129 (sp2ArC-H), 2955 

(sp3 C-H), 1622 (ArC=C), 1325 (C-O), 1167 (C-F), 1125 (C-F), 1068 (C-O); δH(400 MHz; 

CDCl3) 3.54 (3H, s, CO2CH3), 3.65 (3H, s, CO2CH3), 4.28 (1H, d, J 6.4 Hz, CCHC), 5.05 

(1H, d, J 6.8 Hz, CCHN), 7.43 (2H, d, J 8.4 Hz, 2 ArCF3-CH), 7.52 (NCHCI), 7.60 (2H, d, 

J 8.4 Hz, 2 ArCF3-CH), 7.62 (1H, s, NCHCI); δC (100 MHz; CDCl3) 34.9 (CCHC), 44.4 

(C(CO2CH3)2), 47.0 (CCHN), 53.0 (CO2CH3), 53.4 (CO2CH3), 57.1 (C-I), 125.6 (q, 1JCF 

251 Hz, CF3), 125.7 (ArCF3-CH), 129.0 (ArCF3-CH), 130.6 (ArC), 134.8 (NCHCI), 136.0 

(ArC), 145.4 (NCHCI), 164.9 (2 C=O); δF(376 MHz; CDCl3) 99.5 (C6F6), FTMS (ES) 

(M+H+) calculated for C16H15F3IN3O4 482.999, found 483.001 (-2.194 ppm). 

(±) Dimethyl 2-4-(5)-bromo-1H-imidazol-1-yl-3-4-trifluoromethyl phenyl 
cyclopropane-1,1-dicarboxylate (188h) 

 

Potassium carbonate (104 mg, 0.75 mmol, 2.5 eq) was added to a stirred solution of 4-

bromoimidazole (90 mg, 0.60 mmol, 2.0 eq) and substituted cyclopropene 186a (100 mg, 

0.30 mmol) in acetonitrile (5 mL) under a nitrogen atmosphere. The reaction mixture was 

stirred at room temperature for 30 hours. Once complete the crude mixture was diluted 

with diethyl ether (15 mL) and the ethereal solution was washed with water (20 mL), brine 

(20 mL) and dried over sodium sulphate. The excess solvents were removed under reduced 

pressure and the crude product was purified by flash chromatography on silica gel 

(EtOAc/iso-hexane 1:3) to afford the title compound as a yellow solid in 60% yield (80 

mg, 0.18 mmol); mp 74.4°C; IR, νmax (film)/cm-1 2954 (sp3 C-H), 1605 (ArC=C), 1734 

(C=O), 1501 (C=N), 1265 (C-F); δH(400 MHz; CDCl3) 3.55 (3H, s, CO2CH3), 3.70 (3H, s, 
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CO2CH3), 4.08 (1H, d, J 6.4 Hz, CCHC), 4.81 (1H, d, J 6.5 Hz, CCHN), 6.99 (1H, s, 

NCHCBr), 7.40 (2H, d, J 8.2 Hz, 2 ArCF3-CH), 7.50 (1H, s, NCHN),7.62 (2H, d, J 8.2 Hz, 

2 ArCF3-CH); δC (100 MHz; CDCl3) 34.6 (CCHC), 42.5 (CCHN), 44.3 (C(CO2CH3)2), 

53.2 (CO2CH3), 53.7 (CO2CH3), 118.7 (NCHCBr), 125.8 (ArCF3-CH), 128.8 (ArCF3-CH), 

135.3 (ArC), 137.1 (NCHN), 164.5 (C=O), 164.7 (C=O); δF(376 MHz; CDCl3) -62.8 

(CFCl3), FTMS (ES) (M+H+) calculated for C17H15
79BrF3N2O4 447.016, found 447.016 (-

1.175 ppm). Not all the quaternary carbons have been accounted for due to a weak sample. 

(±) Dimethyl 2-(4-nitrophenyl)-3-phenoxycyclopropane-1,1-dicarboxylate 
(191a) 

 

Potassium carbonate (149 mg, 1.08 mmol, 2.5 eq) was added to a solution of phenol (34 

mg, 0.36 mmol) and substituted cyclopropene 186a (50 mg, 0.18 mmol) in acetonitrile (3 

mL) under a nitrogen atmosphere. The reaction mixture was stirred at room temperature 

for 3 hours. Once complete the crude mixture was diluted with diethyl ether (10 mL) and 

subsequently washed with aqueous potassium carbonate (2 x 20 mL), water (20 mL) and 

brine (20 mL) and dried over anhydrous sodium sulphate. The solvent was removed in 

vacuo and the residue was purified by flash chromatography on silica gel (EtOAc/Petrol 

1:5) to afford the title compound as a yellow solid in 74% yield (48 mg, 0.13 mmol); mp 

98.7-100.2°C; IR, νmax (film)/cm-1 2954 (sp3C-H), 1732 (C=O), 1600 (ArC=C), 1522 (C-

NO2), 1347 (C-NO2), 1296 (C-O), 1099 (C-O); δH(400 MHz; CDCl3) 3.55 (3H, s, 

CO2CH3), 3.61 (3H, s, CO2CH3), 3.91 (1H, d, J 5.6 Hz, CH), 5.04 (1H, d, J 5.6 Hz, CHO-

Ar), 7.04 (3H, d, J 8.0 Hz, C6H5-O), 7.31 (2H, t, 8.4 Hz, C6H5-O), 7.46 (2H, d, J 8.4 Hz, 2 

ArNO2-CH), 8.19 (2H, d, J 8.8 Hz, ArNO2-CH); δC(100 MHz; CDCl3) 36.0 (CH), 45.0 

(C(CO2CH3)2), 52.9 (CO2CH3), 53.2 (CO2CH3), 63.1 (CHO-Ar), 115.1 (ArCH), 122.5 

(ArCH), 123.8 (ArNO2-CH), 129.4 (ArNO2-CH), 129.6 (ArCH), 140.2 (ArC), 147.5 

(ArC), 157.0 (ArC-O), 165.0 (C=O), 165.6 (C=0); FTMS (ES) (M+Na+) calculated for 

C19H17NO7Na 394.089, found 394.089 (-1.018ppm). 
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(±) Dimethyl 2-(4-methoxyphenoxy)-3-(4-nitrophenyl)cyclopropane-1,1-
dicarboxylate (191b) 

 

Potassium carbonate (62 mg, 0.45 mmol, 2.5 eq) was added to a solution of 4-

methoxyphenol (22 mg, 0.18 mmol) and the substituted cyclopropene 186a (50 mg, 0.18 

mmol) in acetonitrile (3 mL) under a nitrogen atmosphere. The resulting mixture was 

stirred at room temperature for 21 hours. Once complete the crude mixture was diluted 

with diethyl ether (10 mL) and subsequently washed with aqueous potassium carbonate (2 

x 20 mL), water (20 mL) and brine (20 mL) and dried over anhydrous sodium sulphate. 

The solvent was removed in vacuo and the residue was purified by flash chromatography 

on silica gel (EtOAc/iso-hexane 1:3) to afford the title compound as a yellow oil in 57% 

yield (41 mg, 1.0 mmol); IR, νmax (film)/cm-1 1734 (C=O), 1525 (NO2), 1348 (NO2), 1200 

(C-O); δH(400 MHz; CDCl3) 3.54 (3H, s, CO2CH3), 3.64 (3H, s, CO2CH3), 3.78 (3H, s, 

OCH3), 3.89 (1H, d, J 5.5 Hz, CH), 4.98 (1H, d, J 5.6 Hz, CHO-Ar), 6.84 (2H, d, J 9.0 Hz, 

2 ArOMe-CH), 6.97 (2H, d, J 9.1 Hz, 2 ArOMe-CH), 7.44 (2H, d, J 8.4 Hz, 2 ArNO2-CH), 

8.18 (2H, d, J 8.7 Hz, 2 ArNO2-CH); δC (100 MHz; CDCl3) 36.0 (CH), 45.0 

(C(CO2CH3)2), 52.9 (CO2CH3), 53.1 (CO2CH3), 55.7 (OCH3), 63.7 (CHO-Ar), 114.7 

(ArOMe-CH), 116.0 (ArOMe-CH), 123.7 (ArNO2-CH), 129.4 (ArNO2-CH), 140.3 (ArC), 

147.5 (ArC), 151.0 (ArC), 155.0 (ArC), 165.0 (C=O), 165.6 (C=O); FTMS (ES) (M+Na+) 

calculated for C20H19NO8Na 424.099, found 424.099 (-1.887 ppm). 

(±) Dimethyl 2-(4-nitrophenoxy)-3-(4-nitrophenyl) cyclopropane-1,1-
dicarboxylate (191c) 

 

Potassium carbonate (124 mg, 0.90 mmol, 2.5 eq) was added to a solution of 4-nitrophenol 

(100 mg, 0.72 mmol, 2.0 eq) and substituted cyclopropene 186a (100 mg, 0.36 mmol) in 

acetonitrile (5 mL) under a nitrogen atmosphere. The resulting mixture was stirred at room 
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temperature for 7 hours. Once complete the crude mixture was diluted with diethyl ether 

(10 mL) and subsequently washed with aqueous potassium carbonate (2 x 20 mL), water 

(20 mL) and brine (20 mL) and dried over anhydrous sodium sulphate. The solvent was 

removed in vacuo to afford the title compound without further purification as yellow solid 

in 67% yield (100 mg, 0.24 mmol); mp 157.1°C; IR, νmax (film)/cm-1 1732 (C=O), 1520 

(NO), 1346 (NO), 1270 (C-O); δH(400 MHz; CDCl3) 3.58 (3H, s, CO2CH3), 3.61 (3H, s, 

CO2CH3), 3.95 (1H, d, J 5.5 Hz, CH), 5.07 (1H, d, J 5.5 Hz, CHO-Ar), 7.17 (2H, d, J 9.2 

Hz, OArNO2-CH), 7.46 (2H, d, J 8.5 Hz, ArNO2-CH), 8.23 (4H, t, J 9.4 Hz, 4 ArNO2-

CH); δC (100 MHz; CDCl3) 35.8 (CH), 44.9 (C(CO2CH3)2), 53.2 (CO2CH3), 53.4 

(CO2CH3), 63.2 (CHO-Ar), 115.4 (ArCH), 123.9 (ArCH), 125.9 (ArCH), 129.4 (ArCH), 

139.3 (ArC), 143.0 (ArC), 147.7 (ArC), 161.8 (ArC), 164.5 (C=O), 165.2 (C=O); FTMS 

(ES); (M+Na+) calculated for C19H16N2O9Na 439.074, found 439.074 (+2.30 ppm). 

(±) Dimethyl 2-(4-aminophenoxy)-3-(4-nitrophenyl) cyclopropane-1,1-
dicarboxylate (191d) 

 

Potassium carbonate (100 mg, 0.73 mmol, 2.5 eq) was added to a solution of 4-

aminophenol (63 mg, 0.58 mmol, 2.0 eq) and substituted cyclopropene 186a (80 mg, 0.29 

mmol) in acetonitrile (4 mL) under a nitrogen atmosphere. The resulting mixture was 

stirred at room temperature for 7 hours. Once complete the crude solution was diluted with 

diethyl ether (10 mL) and subsequently washed with aqueous potassium carbonate (2 x 20 

mL), water (20 mL) and brine (20 mL) and dried over anhydrous sodium sulphate. The 

solvent was removed in vacuo and the residue was purified by flash chromatography on 

silica gel (EtOAc/Petrol 1:5) to afford the title compound as a yellow/brown oil in 45% 

yield (45 mg, 0.12 mmol); IR, νmax (film)/cm-1 3380 (NH), 2925 (sp3 C-H), 1730 (C=O), 

1604 (ArC=C), 1511 (C-NO2), 1347 (C-NO2), 1297 (C-O), 1228 (C-O); δH(400 MHz; 

CDCl3) 3.53 (3H, s, CO2CH3), 3.65 (3H, s, CO2CH3), 3.87 (1H, d, J 5.6 Hz, CCHC), 4.95 

(1H, d, J 5.6 Hz, CCHO-Ar), 6.63 (2H, d, J 8.8 Hz, 2 ArNH2-CH), 6.86 (2H, d, J 8.8 Hz, 

ArNH2-CH), 7.43 (2H, d, J 8.4 Hz, 2 ArNO2-CH), 8.17 (2H, d, J 8.4 Hz, 2 ArNO2-CH); 

δC(100 MHz; CDCl3) 36.0 (CCHC), 45.1 (C(CO2CH3)2), 52.9 (CO2CH3), 53.2 (CO2CH3), 
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63.8 (CCHO), 116.2 (2 ArCH), 123.9 (ArCH), 129.5 (ArCH), 132.7 (ArC), 141.2 (ArC), 

147.5 (ArC), 150.1 (ArC), 165.1 (C=O), 165.5 (C=O); FTMS (ES) (M+Na+) calculated for 

C19H18N2O7Na 409.056, found 409.100 (-1.194 ppm). 

(±) Dimethyl 2-(4-nitrophenyl)-3-(4-(trifluoromethyl phenoxy) cyclopropane-
1,1-dicarboxylate (191e) 

 

Potassium carbonate (124 mg, 0.90 mmol, 2.5 eq) was added to a solution of 4-

trifluoromethyl-phenol (83 mg, 0.51 mmol, 2.0 eq) and substituted cyclopropene 186a (70 

mg, 0.26 mmol) in acetonitrile (4 mL) under a nitrogen atmosphere. The resulting mixture 

was stirred at room temperature for 3 hours. Once complete the crude mixture was diluted 

with diethyl ether (10 mL) and subsequently washed with aqueous potassium carbonate (2 

x 20 mL), water (20 mL) and brine (20 mL) and dried over anhydrous sodium sulphate. 

The solvent was removed in vacuo and the residue was purified by flash chromatography 

on silica gel (EtOAc/iso-hexane 1:5) to afford the title compound as a colourless oil in 83% 

yield (94 mg, 0.22 mmol); IR, νmax (film)/cm-1 2957(sp3 C-H), 1732 (C=O), 1617 (C=C), 

1523 (NO), 1349 (NO), 1329 (C-F), 1270 (C-O), 1112 (C-F); δH(400 MHz; CDCl3) 3.57 

(3H, s, CO2CH3), 3.61 (3H, s, CO2CH3), 3.92 (1H, d, J 5.5 Hz, CH), 5.06 (1H, d, J 5.6 Hz, 

CHO-Ar), 7.14 (2H, d, J 8.5 Hz, OArCF3-CH), 7.46 (2H, d, J 8.8 Hz, ArNO2-CH), 7.58 

(2H, d, J 8.5 Hz, OArCF3-CH), 8.20 (2H, d, J 8.8 Hz, ArNO2-CH); δC (100 MHz; CDCl3) 

35.8 (CH), 44.9 (C(CO2CH3)2), 53.1 (CO2CH3), 53.3 (CO2CH3), 115.2 (ArCH), 123.8 

(ArCH), 127.1-127.2 (ArCH), 129.4 (ArCH), 139.7 (ArC), 147.6 (ArC), 159.4 (ArC), 

164.7 (C=O), 165.4 (C=O); δF(376 MHz; CDCl3) -61.8 (CFCl3), FTMS (ES) (M+Na+) 

calculated for C20H16F3NO7Na 462.076, found 462.076 (-1.827 ppm). Not all quaternary 

carbons have been accounted for due to a weak sample. 
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(±) Dimethyl 2-(4-fluorophenoxy)-3-(4-nitrophenyl) cyclopropane-1,1-
dicarboxylate (191e) 

 

Potassium carbonate (100 mg, 0.73 mmol, 2.5 eq) was added to a solution of 4-

fluorophenol (65 mg, 0.58 mmol, 2.0 eq) and substituted cyclopropene 186a (80 mg, 0.29 

mmol) in acetonitrile (4 mL) under a nitrogen atmosphere. The resulting mixture was 

stirred at room temperature for 4 hours. Once complete the crude mixture was diluted with 

diethyl ether (10 mL) and subsequently washed with aqueous potassium carbonate (2 x 20 

mL), water (20 mL) and brine (20 mL) and dried over anhydrous sodium sulphate. The 

solvent was removed in vacuo to afford the title compound without further purification as a 

yellow solid in 90% yield (94 mg, 0.23 mmol); mp 88.6°C IR, νmax (film)/cm-1 2956 (sp3C-

H), 1732 (C=O), 1605 (ArC=C), 1525 (C-NO2), 1349 (C-NO2), 1298 (C-O), 1125 (C-F); 

δH(400 MHz; CDCl3) 3.55 (3H, s, CO2CH3), 3.62 (3H, s, CO2CH3), 3.90 (1H, d, J 5.6 Hz, 

CCHC), 4.98 (1H, d, J 5.6 Hz, CCHO), 6.99 (4H, d, J 6.8 Hz, ArF-CH), 7.45 (2H, d, J 8.4 

Hz, 2 ArNO2-CH), 8.18 (2H, d, J 8.4 Hz, 2 ArNO2-CH); δC(100 MHz; CDCl3) 35.9 

(CCHC), 45.0 (C(CO2CH3)2), 53.1 (CO2CH3), 53.3 (CO2CH3), 63.5 (CCHO), 115.9-116.3 

(4 ArCH), 123.8 (2 ArCH), 129.4 (2 ArCH), 140.1 (ArC), 147.5 (ArC), 153.0 (ArC), 159.4 

(ArC), 164.8 (C=O), 165.5 (C=O); δF(376 MHz; CDCl3) 40.5 (1F, sept, J 4.7 Hz); FTMS 

(ES) (M+Na+) calculated for C19H16FNO7Na 412.080, found 412.080 (-0.720 ppm). 

(±) Dimethyl 2-phenoxy-3-(4-trifluoromethylphenyl) cyclopropane-1,1-
dicarboxylate (192) 

 

Potassium carbonate (138 mg, 0.83 mmol, 2.5 eq) was added to a stirred solution of phenol 

(56 mg, 0.66 mmol, 2.0 eq) and the substituted cyclopropene 186a (100 mg, 0.33 mmol) in 

acetonitrile (5 mL) under a nitrogen atmosphere. The resulting mixture was stirred at 80°C 

for 19 hours and once complete was cooled to room temperature. The crude mixture was 
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diluted with diethyl ether (10 mL) and subsequently washed with aqueous potassium 

carbonate (2 x 20 mL), water (20 mL) and brine (20 mL) and dried over anhydrous sodium 

sulphate. The solvent was removed in vacuo and the residue was purified by flash 

chromatography on silica gel (EtOAc/Petrol 1:5) to afford the title compound as a clear oil 

in 60% yield (76 mg, 0.19 mmol); IR, νmax (film)/cm-1 2956 (sp3C-H), 1732 (C=O), 1602 

(ArC=C), 1326 (C-O), 1125 (C-F); δH(400 MHz; CDCl3) 3.52 (3H, s, CO2CH3), 3.60 (3H, 

s, CO2CH3), 3.87 (1H, d, J 5.6 Hz, CCHAr), 5.01 (1H, d, J 5.6 Hz, CCHO), 7.00-7.08 (3H, 

m, ArCH), 7.28-7.32 (2H, m, ArCH), 7.40 (2H, d, J 8.4 Hz, ArCF3-CH), 7.58 (2H, d, J 8.4 

Hz, ArCF3-CH); δC (100 MHz; CDCl3) 36.1 (CCHC), 44.7 (C(CO2CH3)2), 52.8 (CO2CH3), 

53.0 (CO2CH3), 63.0 (CCHO), 115.1 (ArCH), 122.3 (ArCH), 125.1 (ArCH), 128.9 (2 

ArCH), 129.6 (2 ArCH), 130.2 (ArC), 136.8 (ArC), 157.1 (ArC), 165.2 (C=O), 165.8 

(C=O); δF(376 MHz; CDCl3) 99.6 (C6F6), FTMS (ES) (M+Na+) calculated for 

C20H17F3O5Na 417.092, found 417.092 (-1.025 ppm). Due to a weak sample not all the 

quaternary carbons have been accounted for. 

(±) Dimethyl phenoxy-3-phenylcyclopropane-1,1-dicarboxylate (193a) 

 

Potassium carbonate (149 mg, 1.08 mmol, 2.5 eq) was added to a solution of phenol (41 

mg, 0.43 mmol) and substituted cyclopropene 1d (100 mg, 0.43 mmol) in N,N-

dimethylformamide (5 mL), under a nitrogen atmosphere. The reaction mixture was stirred 

at 90°C for 20 hours and once complete was cooled to room temperature. The crude 

mixture was diluted with diethyl ether (10 mL) and subsequently washed with aqueous 

potassium carbonate (2 x 20 mL), water (20 mL) and brine (20 mL) and dried over 

anhydrous sodium sulphate. The excess solvents were removed under reduced pressure and 

the crude product was purified by flash chromatography on silica gel (EtOAc/Petrol 1:5) to 

afford the title compound as a yellow oil in 45% yield (63 mg, 0.19 mmol); IR, νmax 

(film)/cm-1 3033(sp2 ArC-H), 2953 (sp3 C-H), 1732 (C=O), 1595 (ArC=C), 1435; δH(400 

MHz; CDCl3) 3.49 (3H, s, CO2CH3), 3.59 (3H, s, CO2CH3), 3.86 (1H, d, J 5.6 Hz, 

CCHAr), 5.01 (1H, d, J 5.6 Hz, CCHO), 7.01 (1H, t, J 7.2 Hz, ArCH), 7.07 (2H, d, J 7.6 

Hz, ArCH), 7.31-7.25 (7H, m, 7 ArCH); δC(100 MHz; CDCl3) 36.7 (CCHC), 44.5 

(C(CO2CH3)2), 52.6 (CO2CH3), 52.9 (CO2CH3), 63.2 (CCHO), 115.2 (2 ArCH), 122.1 
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(ArCH), 127.7 (ArCH), 127.8 (ArCH), 128.4 (ArCH), 128.5 (ArCH), 128.9 (ArCH), 129.5 

(ArCH), 132.6 (ArC), 157.3 (ArC), 165.6 (C=O), 166.1 (C=O); FTMS (ES) (M+H+) 

calculated for C19H19O5 327.1149, found 327.1217 (-2.953 ppm). 

(±) Dimethyl 2-(4-methoxyphenoxy)-3-phenylcyclopropane-1,1-dicarboxylate 
(193b) 

 

Potassium carbonate (149 mg, 1.1 mmol, 2.5 eq) was added to a solution of 4-

methoxyphenol (53 mg, 0.43 mmol) and substituted cyclopropene 1d (100 mg, 0.43 mmol) 

in N,N-dimethylformamide (5 mL), under a nitrogen atmosphere. The resulting mixture 

was stirred at 90°C for 24 hours and once complete was cooled to room temperature. The 

crude mixture was diluted with diethyl ether (10 mL) and subsequently washed with 

aqueous potassium carbonate (2 x 20 mL), water (20 mL) and brine (20 mL) and dried 

over anhydrous sodium sulphate. The solvent was removed in vacuo and the residue was 

purified by flash chromatography on silica gel (EtOAc/iso-hexane 1:6) to afford the title 

compound as a white solid in 50% yield (77 mg, 0.21 mmol); mp 97.0°C; IR, νmax 

(film)/cm-1 1730 (C=O), 1642 (C-O); δH(400 MHz; CDCl3) 3.48 (3H, s, CO2CH3), 3.62 

(3H, s, CO2CH3), 3.77 (3H, s, OCH3), 3.84 (1H, d, J 5.5 Hz, CCHAr), 4.95 (1H, d, J 5.6 

Hz, CCHO), 6.83 (2H, d, J 9.2 Hz, ArOMe-CH), 6.99 (2H, d, J 9.2 Hz, ArOMe-CH), 7.28-

7.25 (5H, m, ArCH); δC (100 MHz; CDCl3) 35.8 (CCHAr), 43.5 (C(CO2CH3)2), 51.5 

(CO2CH3), 51.9 (CO2CH3), 54.6 (OCH3), 62.8 (CCHO), 113.6 (ArCH), 115.0 (ArCH), 

126.7 (ArCH), 127.50-127.39 (2 ArCH), 131.7 (ArC), 150.3 (ArC), 153.7 (ArC), 164.6 

(C=O), 165.1 (C=O); FTMS (ES) (M+Na+) calculated for C20H20O6Na 379.115, found 

379.115 (-0.31 ppm). 

(±) Dimethyl 2-(4-nitrophenoxy)-3-phenylcyclopropane-1,1-dicarboxylate 
(193c) 
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Potassium carbonate (138 mg, 0.83 mmol, 2.5 eq) was added to a stirred solution of 4-

nitrophenol (120 mg, 0.86 mmol, 2.0 eq) and the substituted cyclopropene 1d (100 mg, 

0.43 mmol) in N, N-dimethylformamide (5 mL) under a nitrogen atmosphere. The resulting 

mixture was stirred at 90°C for 5 hours and once complete was cooled to room 

temperature. The crude mixture was diluted with diethyl ether (10 mL) and subsequently 

washed with aqueous potassium carbonate (2 x 20 mL), water (20 mL) and brine (20 mL) 

and dried over anhydrous sodium sulphate. The solvent was removed in vacuo and the 

residue was purified by flash chromatography on silica gel (EtOAc/iso-hexane 1:6) to 

afford the title compound as yellow oil in 30% yield. (46 mg, 0.13 mmol); IR, νmax 

(film)/cm-1 2954 (sp3C-H), 1735 (C=O), 1605 (ArC=C), 1524 (C-NO2), 1345 (C-NO2); 

δH(400 MHz; CDCl3) 3.54 (3H, s, CO2CH3), 3.85 (3H, s, CO2CH3), 4.98 (1H, d, J 8.7 Hz, 

CCHAr), 5.01 (1H, d, J 8.7 Hz, CCHO), 7.35 (2H, d, J 9.2 Hz, ArNO2-CH), 7.36-7.38 

(3H, m, ArCH), 7.48-7.50 (2H, m, ArCH), 8.28 (2H, d, J 9.2 Hz, ArNO2-CH); δC (100 

MHz; CDCl3) 36.6 (CCHAr), 44.5 (C(CO2CH3)2), 52.5 (CO2CH3), 52.8 (CO2CH3), 63.4 

(CCHO), 115.4 (ArCH), 125.7 (ArCH), 127.2 (ArCH), 127.4 (ArCH), 127.8 (ArCH), 

132.6 (ArC), 139.3 (ArC), 161.7 (ArC), 165.3 (C=O), 166.0 (C=O); FTMS (ES) (M+Na+) 

calculated for C19H17NO7 371.10, found 371.10 (-1.254 ppm). 

(±) Dimethyl 2-(4-fluorophenoxy)-3-phenylcyclopropane-1,1-dicarboxylate 
(193d) 

 

Cesium carbonate (350 mg, 1.1 mmol, 2.5 eq) was added to a solution of 4-fluorophenol 

(73 mg, 0.65 mmol, 2.0 eq) and the substituted cyclopropene 1d (100 mg, 0.43 mmol) in 

N,N-dimethylformamide (5 mL), under a nitrogen atmosphere. The resulting mixture was 

stirred at 90°C for 24 hours and once complete was cooled to room temperature. The crude 

mixture was diluted with diethyl ether (10 mL) and subsequently washed with aqueous 

potassium carbonate (2 x 20 mL), water (20 mL) and brine (20 mL) and dried over 

anhydrous sodium sulphate. The solvent was removed in vacuo and the residue was 

purified by flash chromatography on silica gel (EtOAc/iso-hexane 1:3) to afford the title 

compound as a clear oil in 50% yield (74 mg, 0.22 mmol); IR, νmax (film)/cm-1 3031(sp2Ar-

CH), 2954(sp3C-H), 1729 (C=O), 1602 (ArC=C), 1505 (ArC=C), 1100 (C-F); δH(400 
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MHz; CDCl3) 3.49 (3H, s, CO2CH3), 3.60 (3H, s, CO2CH3), 3.84 (1H, d, J 5.5 Hz, 

CCHAr), 4.95 (1H, d, J 5.5 Hz, CCHO), 7.00 (4H, dd, J 2.8, 7.4 Hz, 4 ArF-CH), 7.25-7.30 

(5H, m, ArCH); δC (100 MHz; CDCl3) 36.7 (CCHAr), 44.5 (C(CO2CH3)2), 52.6 

(CO2CH3), 52.9 (CO2CH3), 63.6 (CCHO), 115.9 (ArCH), 116.1 (ArCH,), 116.2 (ArCH), 

116.3 (ArCH), 127.9-128.6 (5 ArCH), 132.5 (ArC), 156.9 (ArC), 159.3 (ArC), 165.5 

(C=O), 166.0 (C=O); δF(376 MHz; CDCl3) -122.24 (1F, sept, J 4.7 Hz); FTMS (ES) 

(M+Na+) calculated for C19H17FO5Na 367.095, found 367.096 (-2.017 ppm). 

(±) Dimethyl 2-(4-aminophenoxy)-3-phenylcyclopropane-1,1-dicarboxylate 
(193e) 

 

Potassium carbonate (149 mg, 1.08 mmol, 2.5 eq) was added to a solution of 4-

aminophenol (94 mg, 0.86 mmol, 2.0 eq) and substituted cyclopropene 1d (100 mg, 0.43 

mmol) in N,N-dimethylformamide (5 mL), under a nitrogen atmosphere. The reaction 

mixture was stirred at 90°C for 24 hours and once complete was cooled to room 

temperature. The crude mixture was diluted with diethyl ether (10 mL) and subsequently 

washed with aqueous potassium carbonate (2 x 20 mL), water (20 mL) and brine (20 mL) 

and dried over anhydrous sodium sulphate. The solvent was removed in vacuo and the 

residue was purified by flash chromatography on silica gel (EtOAc/Petrol 1:5) to afford the 

title compound as an orange/yellow viscous oil in 40% yield (57 mg, 0.17 mmol); IR, νmax 

(film)/cm-1 3371 (NH2), 2953 (sp3 C-H), 1729 (C=O), 1297 (C-O); δH(400 MHz; CDCl3) 

3.47 (3H, s, CO2CH3), 3.68 (3H, s, CO2CH3), 3.83 (1H, d, J 5.6 Hz, CCHC), 4.93 (1H, d, J 

5.6 Hz, CCHO), 6.63 (2H, d, J 8.8 Hz, ArNH2-CH), 6.89 (2H, d, J 8.8 Hz, ArNH2-CH), 

7.28-7.32 (5H, m, ArCH); δC(100 MHz; CDCl3) 36.8 (CCHC), 44.6 (C(CO2CH3)2), 52.5 

(CO2CH3), 52.7 (CO2CH3), 63.9 (CCHO), 116.0-116.3 (2 ArCH), 127.0 (ArCH), 127.7 

(ArCH), 128.5 (ArCH), 132.8 (ArC), 141.1 (ArC), 150.3 (C-O), 165.7 (C=O), 166.2 

(C=O); FTMS (ES), (M+H+) calculated for C19H20NO5 342.126, found 342.133 (-2.656 

ppm). 
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(±) 2-Methyl-5-phenyl-6-(3,6-dibromo-9H-carbazol-9-yl)-3-(4-tolyl)-oxazine-4,4-
dimethyl ester (194) 

 

Yb(OTf)3 (6 mg, 0.009 mmol, 5 mol %) was added to a stirred solution of nitrone 175f 

(53mg, 0.36 mmol, 2.0 eq) and di-substituted cyclopropane 182d (100 mg, 0.18 mmol) in 

1,2 dichloroethane (4 mL) under a nitrogen atmosphere. The resulting mixture was 

refluxed for 24 hours and once complete was cooled to room temperature, diluted with 

dichloromethane (10 mL) and filtered through a pad of celite and silica. The excess 

solvents were removed under reduced pressure and the crude residue was purified by flash 

chromatography on silica gel (EtOAc/Petrol 1:9) to afford the title compound as a white 

crystalline solid in 50% yield (64 mg, 0.90 mmol), mp: 216.4-217.8°C; IR, νmax (film)/cm1 

2954 (sp3 CH), 1734 (C=O), 1603 (ArC=C), 1586 (ArC=C), 1302 (C-O), 1282 (C-O), 

1057 (C-Br); δH(400 MHz; CDCl3) 2.38 (3H, s, CH3N), 2.60 (3H, s, ArCH3), 3.11 (3H, s, 

CO2CH3), 3.69 (3H, s, CO2CH3), 4.18 (1H, s, NCHAr), 5.35 (1H, d, J 11.2 Hz, CCHAr), 

6.79 (1H, d, J 11.2 Hz, CHO), 6.92 (3H, t, J 3.6 Hz, ArCH), 7.13-7.15 (2H, m, ArCH), 

7.27 (2H, d, J 4.0 Hz, ArCH), 7.52 (2H, d, J 7.6 Hz, ArCH), 7.56 (2H, d, J 8.4 Hz, ArCH), 

7.84-7.91 (2H, m, ArCH), 7.98 (2H, s, ArCH); δC(100 MHz; CDCl3) 21.1 (CH3N), 43.2 

(CH3Ar), 44.3 (NCHAr), 51.7 (CO2CH3), 52.1 (CO2CH3), 65.1 (C(CO2CH3)2), 75.4 

(CCHAr), 85.1 (CHO), 113.1 (ArC), 122.9 (ArCH), 127.4 (ArCH), 127.5 (ArCH), 129.0 (4 

ArCH), 129.1 (2 ArCH), 129.7 (3 ArCH), 129.9 (ArCH), 134.3 (ArC), 138.5 (ArC), 168.3 

(C=O), 170.5 (C=O); FTMS (ES), (M+H+) calculated for C34H30
79Br2N2O5 704.05, found 

704.15 (+2.345 ppm). Not all the quaternary carbons have been accounted for due to a 

weak sample. 
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Methyl 2-phenyl-1-trifluoromethyl cyclopropene methyl ester (197)82 

 

A solution of methyl 2-diazo-3,3,3-trifluoropropanoate (1.0 g, 5.95 mmol) in anhydrous 

dichloromethane (45 mL) was added via a syringe (1.5 mL/hr) to a stirred solution of 

phenylacetylene (6.53 mL, 59.5 mmol) and a catalytic amount of rhodium acetate dimer in 

anhydrous dichloromethane (60 mL) under a nitrogen atmosphere. Once addition was 

complete the reaction mixture was stirred for an additional six hours. The mixture was 

filtered through a pad of celite and silica and the filtrate was concentrated in vacuo. The 

crude product was purified by flash chromatography on silica gel (EtOAc/ iso-hexane 1:8) 

to afford the title compound as a yellow/brown oil in 45% yield (648 mg, 2.68 mmol). Rf 

(EtOAc/ iso-hexane 1:8) 0.27; IR, νmax (film)/cm-1 3154 (sp2 ArC-H), 3029 (sp2 ArC-H), 

2956 (sp3 C-H), 1736 (C=O), 1598 (ArC=C), 1489 (ArC=C), 1279 (C-F), 1147 (C-F); 

δH(400 MHz; CDCl3) 3.75 (3H, s, CO2CH3), 6.82 (1H, s, C=CH), 7.47 (3H, bs, ArCH), 

7.58-7.61 (2H, m, ArCH); δC (100 MHz; CDCl3) 52.6 (CO2CH3), 61.4 (F3CCCO2CH3) 

93.0 (C=CH), 129.1 (ArCH), 130.3 (ArCH), 131.1 (ArCH), 169.7 (C=O); δF(376 MHz; 

CDCl3) -64.7 (CFCl3); TOFMS (ES) (M+H+) calculated for C12H10F3O2 243.063, found 

243.063 (-1.60 ppm). The data is in agreement with the literature values stated. 

(±) Methyl 2-(4-bromo-1H-pyrazol-1-yl)-3-phenyl trifluoromethyl cyclopropane 
methyl ester (198a/b) 

 

Potassium carbonate (138 mg, 1.0 mmol, 2.5 eq) was added to a stirred solution of 4-

bromopyrazole (90 mg, 0.62 mmol, 1.5 eq) and the substituted cyclopropene 182c (100 mg, 

0.41 mmol) in N, N-dimethylformamide (5 mL) under a nitrogen atmosphere. The reaction 

mixture was stirred at 90°C for 24 hours and once complete was cooled to room 

temperature and diluted with diethyl ether (20 mL). The ethereal solution was washed with 
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water (20 mL), brine (20 mL) and dried over sodium sulphate. The excess solvents were 

removed under reduced pressure and the crude product was purified by flash 

chromatography on silica gel (EtOAc/Petrol 1:5) to afford the title compound as a 

separable mixture of isomers in a combined 65% yield (103 mg, 0.27 mmol ) with a 1:1.1 

d.r., (i) first eluted isomer A as an orange solid; mp 107.5°C; IR, νmax (film)/cm-1 3032 (sp2 

ArC-H), 2954 (sp3 C-H), 1740 (C=O), 1501 (ArC=C), 1438 (C=N), 1361 (C-F), 1317 (C-

F), 1278 (C-O), 1154 (C-F), 1099 (C-O), 697 (C-Br); δH(400 MHz; CDCl3) 3.71 (3H, s, 

CO2CH3 ), 4.32 (1H, d, J 7.0 Hz, CCHC), 4.76 (1H, d, J 7.0 Hz, CCHN), 7.36-7.38 (5H, 

m, ArCH), 7.52 (1H, s, NCHCBrN), 7.59 (1H, s, NCHNCBr); δC (100 MHz; CDCl3) 35.9 

(CCHC), 45.8 (CCHN), 53.6 (CO2CH3), 94.1 (C-Br), 128.4-128.9 (3 ArCH), 130.4 

(NCHCBrCHN), 130.9 (ArC), 141.4 (NCHCBrCHN), 163.9 (C=O); δF(376 MHz; CDCl3) 

-61.04 (CFCl3); TOFMS (EI) (M+H+) calculated for C15H13
79,81BrF3N2O2 389.010 and 

391.009, found 389.010 and 391.009 (-1.50 ppm), (ii) second eluted isomer B as a yellow 

oil; IR, νmax (film)/cm-1 3133 (sp2 ArC-H), 3032 (sp2 C-H), 2956 (sp3 C-H), 1741 (C=O), 

1502 (ArC=C), 1364 (C-F), 1307 (C-F), 1152 (C-F), 1096 (C-O), 697 (C-Br); δH(400 

MHz; CDCl3) 3.57 (3H, s, CO2CH3), 4.05 (1H, d, J 6.90 Hz, CCHC), 5.08 (1H, dd, J 1.8, 

6.90 Hz, CCHN), 7.30-7.38 (5H, m, ArCH), 7.53 (1H, s, NCHCBrN ), 7.60 (1H, s, 

NCHNCBr); δC (100 MHz; CDCl3) 34.3 (CCHC), 47.2 (CCHN), 53.0 (CO2CH3), 94.7 (C-

Br), 128.4-128.7 (3 ArCH), 130.4 (NCHCBrCHN), 131.0 (ArC), 141.1 (NCHCBrCHN), 

163.7 (C=O); δF(376 MHz; CDCl3) -62.87 (CFCl3).  

(±) Methyl 2-phenyl-1-(trifluoromethyl)-3-(3-(trifluoromethyl)-1H-pyrazol-1-yl 
cyclopropane carboxylate (199a/b) 

 

Potassium carbonate (138 mg, 1.0 mmol, 2.5 eq) was added to a stirred solution of 4-

trifluoromethyl-pyrazole (84 mg, 0.62 mmol, 1.5 eq) and the substituted cyclopropene 182j 

(100 mg, 0.41 mmol) in N, N-dimethylformamide (5 mL) under a nitrogen atmosphere. 

The reaction mixture was stirred at 50°C for 24 hours and once complete was cooled to 

room temperature and diluted with diethyl ether (20 mL). The ethereal solution was 

washed with water (20 mL), brine (20 mL) and dried over sodium sulphate. The excess 



186 
 

solvents were removed under reduced pressure and the crude product was purified by flash 

chromatography on silica gel (EtOAc/iso-hexane 1:6) to afford the title compound as a 

separable mixture of isomers in a combined 67% yield (103 mg, 0.27 mmol ) in a 1:3 d.r., 

(i) first eluted isomer A as a yellow solid; mp 108.3-110.6°C; IR, νmax (film)/cm-1 1742 

(C=O), 1488 (C=N), 1363 (C-F), 1310 (C-F); δH(400 MHz; CDCl3) 3.68 (3H, s, CO2CH3), 

4.36 (1H, d, J 6.9 Hz, CCHC), 4.84 (1H, d, J 7.0 Hz, CCHN), 6.56 (1H, d, J 2.4 Hz, 

NCF3CHCHN), 7.39-7.37 (5H, m, ArCH), 7.62 (1H, d, J 1.5 Hz, NCF3CHCHN); δC (100 

MHz; CDCl3) 35.8 (CCHC), 45.7 (CCHN), 53.5 (CO2CH3), 105.1 (NCF3CHCHN), 119.5 

(CF3), 121.5 (q, 1JCF 274 Hz, CF3), 128.5-128.9 (3 ArCH), 130.6 (ArC), 131.8 

(NCF3CHCHN), 143.6 (NCCF3), 163.9 (C=O): δF(376 MHz; CDCl3) -61.1 (CF3), -62.25 

(NCCF3,) (CFCl3), ii) second eluted isomer B as a yellow oil; δH(400 MHz; CDCl3) 3.58 

(3H, s, CO2CH3), 4.11 (1H, d, J 6.9 Hz, CCHC), 5.16 (1H, d, J 6.9 Hz, CCHN), 6.61 (1H, 

d, J 2.5 Hz, NCF3CHCHN), 7.34-7.36 (5H, m, ArCH), 7.63 (1H, d, J 1.4 Hz, 

NCF3CHCHN); δC (100 MHz; CDCl3) 34.3 (CCHC), 47.1 (CCHN), 53.1 (CO2CH3), 105.7 

(NCF3CHCHN), 128.2-129.0 (3 ArCH), 130.8 (ArC), 131.8 (NCF3CHCHN), δF(376 MHz; 

CDCl3) -63.0 (CF3), -62.25 (NCCF3) (CFCl3); TOFMS (EI) (M+Na+) calculated for 

C16H12F6N2O2Na 401.069, found 401.069 (-1.443 ppm). Not all quaternary carbons have 

been accounted for due to a high signal to noise ratio. 

(±) Methyl 2-phenyl-3-(1H-pyrazol-1-yl)-1-trifluoromethyl cyclopropane 
carboxylate (200a/b) 

 

Potassium carbonate (141 mg, 1.0 mmol, 2.5 eq) was added to a stirred solution of 

pyrazole (42 mg, 0.62 mmol, 1.5 eq) and the substituted cyclopropene 182e (100 mg, 0.41 

mmol) in N, N-dimethylformamide (5 mL) under a nitrogen atmosphere. The reaction 

mixture was stirred at 50°C for 24 hours and once complete was cooled to room 

temperature and diluted with diethyl ether (20 mL). The ethereal solution was washed with 

water (20 mL), brine (20 mL) and dried over sodium sulphate. The excess solvents were 

removed under reduced pressure and the crude product was purified by flash 

chromatography on silica gel (EtOAc/Petrol 1:8) to afford the title compound as an 
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inseparable mixture of isomers as a yellow oil in a combined 50% yield (64mg, 0.21 

mmol) in a d.r. of 1:2 (A:B); IR, νmax (film)/cm-1 3031 (sp2 ArC-H), 2957 (sp3C-H), 1741 

(C=O), 1607 (ArC=C), 1520 (C=N), 1365 (C-F), 1151 (C-F), 1099 (C-O), isomer A 

δH(400 MHz; CDCl3) 3.67 (CO2CH3), 4.38 (1H, d, J 7.2 Hz, CCHC), 4.81 (1H, d, J 7.2 

Hz, CCHN), 6.31 (1H, t, J 2.4 Hz, NCHCHCHN), 7.34-7.40 (5H, m, ArCH), 7.56 (2H, d, J 

2.0 Hz, NCHCHCHN); δC (100 MHz; CDCl3) 35.9 (CCHC), 39.7 (F3CCCO2CH3), 45.6 

(CCHN), 53.4 (CO2CH3), 106.4 (NCHCHCHN), 128.2-128.7 (3 ArCH), 130.2 

(NCHCHCHN), 131.4 (ArC), 140.9 (NCHCHCHN), 164.2 (C=O) , isomer B, δH(400 

MHz; CDCl3) 3.56 (CO2CH3), 4.08 (1H, d, J 7.2 Hz, CCHC), 5.13 (1H, d, J 7.2 Hz, 

CCHN), 6.35 (1H, t, J 2.4 Hz, NCHCHCHN), 7.32-7.34 (5H, m, ArCH), 7.58 (2H, d, J 2.0 

Hz, (NCHCHCHN); δC (100 MHz; CDCl3) 34.6 (CCHC) 39.4 (F3CCCO2CH3), 47.1 

(CCHN), 52.9 (CO2CH3), 107.1 (NCHCHCHN),128.2-128.7 (3 ArCH), 130.2 

(NCHCHCHN), 131.3 (ArC), 140.5 (NCHCHCHN), 164.0 (C=O); FTMS (ES) (M+H+) 

calculated for C15H14F3N2O2 311.090, found 311.098 (-1.605 ppm). 

2-Nitrocyclopropylbenzene (201)85 

 

A solution of trimethylsulfoxonium iodide (8.8g, 40 mmol, 1.2 eq) in DMSO (156 mL) 

was added dropwise via a canula to a stirred suspension of potassium t-butoxide (4.49 g, 

40 mmol, 1.2 eq) in DMSO (31 mL) under a nitrogen atmosphere. Once the reaction had 

been stirred for additional two hours, the solution was cooled to 10°C and a solution of the 

trans nitro-styrene (5g, 34.0 mmol) in DMSO (15 mL) was added dropwise. The reaction 

mixture was heated to 50°C for four hours and stirred for a further twelve hours at room 

temperature. Once the reaction was complete, the solution was poured onto ice, extracted 

with diethyl ether (3 x 100 mL), washed with water (3 x 50 mL) and dried over MgSO4. 

The excess solvents were removed under reduced pressure and the crude product was 

purified by flash chromatography on silica gel (EtOAc/Petrol 1:15) to afford the title 

compound as a light yellow oil in 18% yield (1.0 g, 6.1 mmol); IR νmax (film)/cm-1 1603 

(ArC=C), 1541, (N-O), 1498 (ArC=C), 1362 (N-O); δH(400 MHz; CDCl3) 1.67 (1H, q, J 

7.6 Hz, CH2), 2.24 (1H, ddd, J 4.0, 6.4, 10.4 Hz, CH2), 3.14 (1H, ddd, J 2.8, 8.0, 10.8 Hz, 

CHNO2), 4.42 (1H, ddd, J 2.8, 3.6, 6.8 Hz, CH), 7.12 (2H, d, J 8.4 Hz, ArCH), 7.27-7.34 
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(3H, m, ArCH); δC(100 MHz; CDCl3) 17.2-17.8 (CH2), 28.4 (CH), 60.6 (CH), 125.6 

(ArCH), 127.5 (ArCH), 129.1 (ArCH), 135.3 (ArC). The above data is in agreement with 

the literature values stated. 

1-Fluorophenyl,2-nitrocyclopropane (207)85 

 
A solution of trimethylsulfoxonium iodide (3.16g, 14 mmol, 1.2 eq) in DMSO (35 mL) 

was added dropwise via a canula to a stirred suspension of potassium t-butoxide (1.57g, 14 

mmol, 1.2 eq) in DMSO (11 mL) under a nitrogen atmosphere. Once the reaction had been 

stirred for additional two hours, the solution was cooled to 10°C and a solution of the trans 

4-fluorophenyl-nitro-styrene (2g, 12 mmol), in DMSO (5 mL) was added dropwise. The 

reaction mixture was heated at 50°C for four hours and stirred for a further twelve hours at 

room temperature. The resulting mixture was poured onto ice, extracted with diethyl ether 

(3 x 100 mL), washed with water (3 x 50 mL) and dried over MgSO4. The excess solvents 

were removed under reduced pressure and the crude product was purified by flash 

chromatography on silica gel (EtOAc/Petrol 1:15) to afford the title compound as a light 

yellow oil in 42% yield (0.91 g, 5.0 mmol); IR νmax (film)/cm-1 1605 (ArC=C), 1543 (N-

O), 1496 (ArC=C), 1363 (N-O), 1156 (C-F); δH(400 MHz; CDCl3) 1.65 (1H, q, J 6.4 Hz, 

CH2), 2.24 (1H, ddd, J 4.0, 6.4, 10.4 Hz, CH2), 3.13 (1H, ddd, J 3.2, 8.0, 10.8 Hz, CH), 

4.37 (1H, ddd, J 3.2, 4.0, 7.2 Hz, CH), 6.99-7.05 (2H, m, CH, ArF), 7.08-7.16 (2H, m, CH, 

ArF); δC(100 MHz; CDCl3) 18.7 (CH2), 28.6 (CH), 61.4 (CH), 115.7 (ArCH), 115.9 

(ArCH), 128.4 (ArCH), 128.5 (ArCH), 131.9 (ArC), 161.0 (ArC-F). The above data is in 

agreement with the literature values stated. 

(±) Dimethyl 2-nitro-3-phenylcyclopropane-1,1-dimethyl ester (213)89 

 

Dimethyl bromomalonate (1.71 mL, 2.70g, 13 mmol) was added to a stirred solution of 

trans nitro styrene (2.0g, 13 mmol) in N,N-dimethylformamide (52 mL) at room 

temperature. The resulting mixture was stirred for 5 minutes prior to the addition of 
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triethylamine (1.09 mL 1.52g, 15 mmol). The resulting mixture was left to stir at room 

temperature overnight. On completion the reaction mixture was diluted with EtOAc (50 

mL) and subsequently washed with 1M HCl and water, dried over anhydrous magnesium 

sulphate. The excess solvents were concentrated in vacuo and the residue was purified by 

flash chromatography on silica gel (EtOAc/Petrol 1:12) to afford the title compound as a 

yellow oil in 92% yield. (2.30g, 11.3 mmol), IR νmax (film)/cm-1 2954 (sp3CH), 1731 

(C=O), 1603 (ArC=C), 1542 (NO2), 1347 (NO2); δH(400 MHz; CDCl3) 3.57 (3H, s, 

CO2CH3), 3.87 (3H, s, CO2CH3), 4.22 (1H, d, J 6.0 Hz, CH-Ar), 5.42 (1H, d, J 6.0 Hz, 

CHNO2), 7.27-7.30 (2H, m, ArCH), 7.33-7.36 (3H, m, ArCH); δC(100 MHz; CDCl3) 37.7 

(CH-Ar), 46.1 (C(CO2CH3)2), 53.4 (CO2CH3), 53.9 (CO2CH3), 66.2 (CHNO2), 128.2 (2 

ArCH), 128.6 (ArCH), 128.8 (2 ArCH), 130.1 (ArC), 163.6 (C=O), 163.8 (C=O). The 

above data is in agreement with the literature values stated. 
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6. Appendices 

6.1. Appendix I: X-Ray crystallographic data for 176a 

 

Table 1. Crystal data and structure refinement for sdrc22. 

Identification code  sdrc22 

Chemical formula  C34H33NO6 

Formula weight  551.61 

Temperature  150(2) K 

Radiation, wavelength  MoK, 0.71073 Å 

Crystal system, space group  monoclinic, P21/c 

Unit cell parameters a = 15.4723(6) Å  = 90° 

 b = 10.2737(4) Å  = 109.7472(6)° 

 c = 18.7483(8) Å  = 90° 

Cell volume 2804.9(2) Å3 
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Z 4 

Calculated density  1.306 g/cm3 

Absorption coefficient  0.089 mm−1 

F(000) 1168 

Crystal colour and size colourless, 0.69 × 0.56 × 0.18 mm3 

Reflections for cell refinement 7656 ( range 2.29 to 30.76°) 

Data collection method Bruker APEX 2 CCD diffractometer 

  rotation with narrow frames 

 range for data collection 2.26 to 30.92° 

Index ranges h −22 to 22, k −14 to 14, l −26 to 26 

Completeness to  = 29.00° 99.9 %  

Intensity decay 0% 

Reflections collected 32518 

Independent reflections 8731 (Rint = 0.0324) 

Reflections with F2>2 6475 

Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.941 and 0.984 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0655, 0.6338 

Data / restraints / parameters 8731 / 0 / 372 

Final R indices [F2>2] R1 = 0.0479, wR2 = 0.1251 

R indices (all data) R1 = 0.0665, wR2 = 0.1365 

Goodness-of-fit on F2 1.064 
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Largest and mean shift/su 0.000 and 0.000 

Largest diff. peak and hole 0.395 and −0.317 e Å−3 

 

Table 2. Atomic coordinates and equivalent isotropic displacement parameters (Å2) 

for sdrc22. Ueq is defined as one third of the trace of the orthogonalized Uij tensor. 

      x      y      z      Ueq 

N(1) 0.11953(6) 0.16271(10) 0.09190(6) 0.0218(2) 

O(1) 0.19921(5) 0.22122(8) 0.14850(5) 0.02154(17) 

C(1) 0.24979(8) 0.28235(11) 0.10661(6) 0.0203(2) 

C(2) 0.28898(7) 0.17888(11) 0.06541(6) 0.0205(2) 

C(3) 0.21753(7) 0.07063(11) 0.02534(6) 0.0203(2) 

C(4) 0.14982(7) 0.03853(11) 0.06946(6) 0.0208(2) 

C(5) 0.32642(8) 0.36006(12) 0.16173(7) 0.0240(2) 

C(6) 0.34769(12) 0.48223(16) 0.14139(9) 0.0431(4) 

C(7) 0.42068(14) 0.55310(19) 0.18919(11) 0.0546(5) 

C(8) 0.47311(11) 0.50230(19) 0.25775(11) 0.0509(5) 

C(9) 0.45152(12) 0.38265(18) 0.27987(11) 0.0540(5) 

C(10) 0.37814(11) 0.31132(15) 0.23236(9) 0.0410(4) 

C(11) 0.33356(8) 0.24547(13) 0.01398(7) 0.0244(2) 

C(12) 0.28994(9) 0.34629(13)  −0.03480(7) 0.0295(3) 

C(13) 0.33233(11) 0.40920(16)  −0.07951(9) 0.0393(3) 

C(14) 0.42001(12) 0.3725(2)  −0.07567(10) 0.0508(4) 

C(15) 0.46360(11) 0.2715(2)  −0.02898(10) 0.0505(4) 
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C(16) 0.42112(9) 0.20795(16) 0.01597(8) 0.0356(3) 

C(17) 0.16278(8) 0.11052(12)  −0.05658(7) 0.0227(2) 

O(2) 0.08955(6) 0.16441(10)  −0.07681(5) 0.0351(2) 

O(3) 0.20973(6) 0.07910(9)  −0.10221(5) 0.0279(2) 

C(18) 0.16995(11) 0.11804(15)  −0.18106(7) 0.0371(3) 

C(19) 0.26718(8)  −0.05733(12) 0.02176(6) 0.0225(2) 

O(4) 0.34804(6)  −0.07770(9) 0.04980(5) 0.0302(2) 

O(5) 0.20452(6)  −0.14579(8)  −0.01564(5) 0.02563(19) 

C(20) 0.23537(10)  −0.27861(13)  −0.01299(10) 0.0381(3) 

C(21) 0.18603(8)  −0.06364(11) 0.13139(7) 0.0221(2) 

C(22) 0.26659(8)  −0.04916(12) 0.19343(7) 0.0251(2) 

C(23) 0.29860(9)  −0.14608(12) 0.24780(7) 0.0265(2) 

C(24) 0.24954(9)  −0.26111(13) 0.24079(7) 0.0280(3) 

C(25) 0.16936(9)  −0.27850(13) 0.17888(8) 0.0312(3) 

C(26) 0.13821(9)  −0.18140(12) 0.12555(7) 0.0269(2) 

O(6) 0.27328(7)  −0.36164(10) 0.29126(6) 0.0404(3) 

C(27) 0.35289(12)  −0.34522(16) 0.35646(8) 0.0424(4) 

C(28) 0.05160(8) 0.14764(12) 0.12960(7) 0.0245(2) 

C(29) 0.00803(8) 0.27565(12) 0.13811(7) 0.0220(2) 

C(30)  −0.04056(9) 0.28427(13) 0.18837(7) 0.0269(2) 

C(31)  −0.08134(9) 0.40054(14) 0.19773(8) 0.0313(3) 

C(32)  −0.07396(9) 0.50987(13) 0.15683(8) 0.0310(3) 
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C(33)  −0.02713(9) 0.50203(13) 0.10566(8) 0.0303(3) 

C(34) 0.01365(8) 0.38574(13) 0.09637(7) 0.0268(2) 

 

Table 3. Bond lengths [Å] and angles [°] for sdrc22. 

 

N(1)–O(1)  1.4571(12) N(1)–C(28)  1.4595(15) 

N(1)–C(4)  1.4688(15) O(1)–C(1)  1.4279(13) 

C(1)–C(5)  1.5110(16) C(1)–C(2)  1.5528(16) 

C(2)–C(11)  1.5241(16) C(2)–C(3)  1.5691(16) 

C(3)–C(19)  1.5355(16) C(3)–C(17)  1.5379(16) 

C(3)–C(4)  1.5734(16) C(4)–C(21)  1.5246(16) 

C(5)–C(6)  1.3834(19) C(5)–C(10)  1.389(2) 

C(6)–C(7)  1.387(2) C(7)–C(8)  1.370(3) 

C(8)–C(9)  1.374(3) C(9)–C(10)  1.392(2) 

C(11)–C(12)  1.3957(18) C(11)–C(16)  1.3969(18) 

C(12)–C(13)  1.3864(19) C(13)–C(14)  1.386(2) 

C(14)–C(15)  1.378(3) C(15)–C(16)  1.394(2) 

C(17)–O(2)  1.2016(14) C(17)–O(3)  1.3355(14) 

O(3)–C(18)  1.4525(15) C(19)–O(4)  1.2004(14) 

C(19)–O(5)  1.3410(14) O(5)–C(20)  1.4409(15) 

C(21)–C(22)  1.3961(16) C(21)–C(26)  1.4029(17) 

C(22)–C(23)  1.3910(17) C(23)–C(24)  1.3866(18) 

C(24)–O(6)  1.3646(16) C(24)–C(25)  1.3946(19) 
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C(25)–C(26)  1.3789(19) O(6)–C(27)  1.4220(19) 

C(28)–C(29)  1.5106(16) C(29)–C(30)  1.3927(16) 

C(29)–C(34)  1.3947(17) C(30)–C(31)  1.3895(18) 

C(31)–C(32)  1.386(2) C(32)–C(33)  1.3862(19) 

C(33)–C(34)  1.3893(18)  

 

O(1)–N(1)–C(28) 105.16(9) O(1)–N(1)–C(4) 107.08(8) 

C(28)–N(1)–C(4) 113.47(9) C(1)–O(1)–N(1) 105.48(8) 

O(1)–C(1)–C(5) 107.79(9) O(1)–C(1)–C(2) 110.57(9) 

C(5)–C(1)–C(2) 110.72(9) C(11)–C(2)–C(1) 110.10(10) 

C(11)–C(2)–C(3) 114.31(9) C(1)–C(2)–C(3) 113.13(9) 

C(19)–C(3)–C(17) 107.42(9) C(19)–C(3)–C(2) 110.22(9) 

C(17)–C(3)–C(2) 110.51(9) C(19)–C(3)–C(4) 105.98(9) 

C(17)–C(3)–C(4) 109.94(9) C(2)–C(3)–C(4) 112.55(9) 

N(1)–C(4)–C(21) 116.78(9) N(1)–C(4)–C(3) 107.58(9) 

C(21)–C(4)–C(3) 113.96(9) C(6)–C(5)–C(10) 118.41(13) 

C(6)–C(5)–C(1) 119.72(12) C(10)–C(5)–C(1) 121.86(12) 

C(5)–C(6)–C(7) 121.05(16) C(8)–C(7)–C(6) 120.04(16) 

C(7)–C(8)–C(9) 119.78(14) C(8)–C(9)–C(10) 120.45(17) 

C(5)–C(10)–C(9) 120.21(16) C(12)–C(11)–C(16) 118.18(12) 

C(12)–C(11)–C(2) 121.72(11) C(16)–C(11)–C(2) 120.09(12) 

C(13)–C(12)–C(11) 121.29(13) C(14)–C(13)–C(12) 119.76(15) 

C(15)–C(14)–C(13) 119.88(14) C(14)–C(15)–C(16) 120.49(15) 
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C(15)–C(16)–C(11) 120.38(15) O(2)–C(17)–O(3) 124.62(11) 

O(2)–C(17)–C(3) 125.48(11) O(3)–C(17)–C(3) 109.88(9) 

C(17)–O(3)–C(18) 116.76(10) O(4)–C(19)–O(5) 124.97(11) 

O(4)–C(19)–C(3) 126.37(11) O(5)–C(19)–C(3) 108.61(9) 

C(19)–O(5)–C(20) 116.83(10) C(22)–C(21)–C(26) 117.12(11) 

C(22)–C(21)–C(4) 123.78(10) C(26)–C(21)–C(4) 119.07(10) 

C(23)–C(22)–C(21) 122.06(11) C(24)–C(23)–C(22) 119.51(12) 

O(6)–C(24)–C(23) 124.67(12) O(6)–C(24)–C(25) 115.82(12) 

C(23)–C(24)–C(25) 119.51(12) C(26)–C(25)–C(24) 120.36(12) 

C(25)–C(26)–C(21) 121.42(12) C(24)–O(6)–C(27) 117.28(11) 

N(1)–C(28)–C(29) 112.26(10) C(30)–C(29)–C(34) 118.57(11) 

C(30)–C(29)–C(28) 119.28(11) C(34)–C(29)–C(28) 122.15(11) 

C(31)–C(30)–C(29) 120.81(12) C(32)–C(31)–C(30) 120.05(12) 

C(33)–C(32)–C(31) 119.72(12) C(32)–C(33)–C(34) 120.16(12) 

C(33)–C(34)–C(29) 120.67(11)  

 

Table 4. Hydrogen coordinates and isotropic displacement parameters (Å2) for sdrc22. 

      x       y       z       U 

H(1) 0.2083 0.3426 0.0683 0.024 

H(2) 0.3397 0.1338 0.1057 0.025 

H(4) 0.0941  −0.0007 0.0313 0.025 

H(6) 0.3118 0.5182 0.0939 0.052 

H(7) 0.4343 0.6369 0.1744 0.066 
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H(8) 0.5242 0.5496 0.2899 0.061 

H(9) 0.4869 0.3484 0.3279 0.065 

H(10) 0.3634 0.2290 0.2483 0.049 

H(12) 0.2300 0.3723  −0.0374 0.035 

H(13) 0.3014 0.4772  −0.1127 0.047 

H(14) 0.4500 0.4169  −0.1052 0.061 

H(15) 0.5230 0.2450  −0.0274 0.061 

H(16) 0.4519 0.1387 0.0481 0.043 

H(18A) 0.1084 0.0803  −0.2029 0.056 

H(18B) 0.2089 0.0869  −0.2093 0.056 

H(18C) 0.1657 0.2132  −0.1842 0.056 

H(20A) 0.3026  −0.2806 0.0041 0.057 

H(20B) 0.2106  −0.3172  −0.0637 0.057 

H(20C) 0.2139  −0.3284 0.0224 0.057 

H(22) 0.3006 0.0294 0.1987 0.030 

H(23) 0.3537  −0.1336 0.2894 0.032 

H(25) 0.1360  −0.3577 0.1734 0.037 

H(26) 0.0832  −0.1945 0.0840 0.032 

H(27A) 0.4067  −0.3332 0.3407 0.064 

H(27B) 0.3617  −0.4226 0.3887 0.064 

H(27C) 0.3452  −0.2686 0.3848 0.064 

H(28A) 0.0816 0.1090 0.1804 0.029 
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H(28B) 0.0031 0.0868 0.0999 0.029 

H(30)  −0.0459 0.2098 0.2166 0.032 

H(31)  −0.1143 0.4051 0.2322 0.038 

H(32)  −0.1009 0.5898 0.1638 0.037 

H(33)  −0.0229 0.5764 0.0769 0.036 

H(34) 0.0457 0.3812 0.0612 0.032 

 

Table 5. Torsion angles [°] for sdrc22. 

C(28)–N(1)–O(1)–C(1)  −157.82(9) C(4)–N(1)–O(1)–C(1) 81.19(10) 

N(1)–O(1)–C(1)–C(5) 172.50(8) N(1)–O(1)–C(1)–C(2)  −66.35(10) 

O(1)–C(1)–C(2)–C(11) 173.70(9) C(5)–C(1)–C(2)–C(11)  −66.91(12) 

O(1)–C(1)–C(2)–C(3) 44.42(12) C(5)–C(1)–C(2)–C(3) 163.82(10) 

C(11)–C(2)–C(3)–C(19) 81.55(12) C(1)–C(2)–C(3)–C(19)  −151.36(9) 

C(11)–C(2)–C(3)–C(17)  −37.03(13) C(1)–C(2)–C(3)–C(17) 90.06(11) 

C(11)–C(2)–C(3)–C(4)  −160.37(9) C(1)–C(2)–C(3)–C(4)  −33.28(13) 

O(1)–N(1)–C(4)–C(21) 61.61(11) C(28)–N(1)–C(4)–C(21)  −53.96(13) 

O(1)–N(1)–C(4)–C(3)  −67.95(10) C(28)–N(1)–C(4)–C(3) 176.47(9) 

C(19)–C(3)–C(4)–N(1) 165.13(9) C(17)–C(3)–C(4)–N(1)  −79.08(11) 

C(2)–C(3)–C(4)–N(1) 44.57(12) C(19)–C(3)–C(4)–C(21) 33.98(12) 

C(17)–C(3)–C(4)–C(21) 149.77(10) C(2)–C(3)–C(4)–C(21)  −86.57(11) 

O(1)–C(1)–C(5)–C(6)  −139.07(12) C(2)–C(1)–C(5)–C(6) 99.87(14) 

O(1)–C(1)–C(5)–C(10) 42.33(15) C(2)–C(1)–C(5)–C(10)  −78.72(15) 
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C(10)–C(5)–C(6)–C(7) 2.0(2) C(1)–C(5)–C(6)–C(7)  −176.67(14) 

C(5)–C(6)–C(7)–C(8) 0.1(3) C(6)–C(7)–C(8)–C(9)  −1.9(3) 

C(7)–C(8)–C(9)–C(10) 1.6(3) C(6)–C(5)–C(10)–C(9)  −2.3(2) 

C(1)–C(5)–C(10)–C(9) 176.34(14) C(8)–C(9)–C(10)–C(5) 0.5(3) 

C(1)–C(2)–C(11)–C(12)  −46.84(15) C(3)–C(2)–C(11)–C(12) 81.79(14) 

C(1)–C(2)–C(11)–C(16) 131.81(12) C(3)–C(2)–C(11)–C(16)  −99.56(13) 

C(16)–C(11)–C(12)–C(13)  −0.9(2) C(2)–C(11)–C(12)–C(13) 177.81(12) 

C(11)–C(12)–C(13)–C(14)  −0.4(2) C(12)–C(13)–C(14)–C(15) 1.7(3) 

C(13)–C(14)–C(15)–C(16)  −1.6(3) C(14)–C(15)–C(16)–C(11) 0.3(3) 

C(12)–C(11)–C(16)–C(15) 0.9(2) C(2)–C(11)–C(16)–C(15)  −177.75(14) 

C(19)–C(3)–C(17)–O(2) 145.36(12) C(2)–C(3)–C(17)–O(2)  −94.36(14) 

C(4)–C(3)–C(17)–O(2) 30.48(16) C(19)–C(3)–C(17)–O(3)  −36.08(13) 

C(2)–C(3)–C(17)–O(3) 84.20(11) C(4)–C(3)–C(17)–O(3)  −150.96(10) 

O(2)–C(17)–O(3)–C(18) 2.44(19) C(3)–C(17)–O(3)–C(18)  −176.14(11) 

C(17)–C(3)–C(19)–O(4) 125.59(13) C(2)–C(3)–C(19)–O(4) 5.13(17) 

C(4)–C(3)–C(19)–O(4)  −116.92(13) C(17)–C(3)–C(19)–O(5)  −56.89(12) 

C(2)–C(3)–C(19)–O(5)  −177.35(9) C(4)–C(3)–C(19)–O(5) 60.60(11) 

O(4)–C(19)–O(5)–C(20) 8.61(18) C(3)–C(19)–O(5)–C(20)  −168.95(11) 

N(1)–C(4)–C(21)–C(22)  −66.14(14) C(3)–C(4)–C(21)–C(22) 60.34(15) 

N(1)–C(4)–C(21)–C(26) 115.97(12) C(3)–C(4)–C(21)–C(26)  −117.56(12) 

C(26)–C(21)–C(22)–C(23)  −0.41(18) C(4)–C(21)–C(22)–C(23)  −178.35(11) 

C(21)–C(22)–C(23)–C(24)  −0.01(19) C(22)–C(23)–C(24)–O(6)  −178.67(12) 
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C(22)–C(23)–C(24)–C(25) 0.70(19) O(6)–C(24)–C(25)–C(26) 178.46(12) 

C(23)–C(24)–C(25)–C(26)  −1.0(2) C(24)–C(25)–C(26)–C(21) 0.5(2) 

C(22)–C(21)–C(26)–C(25) 0.14(18) C(4)–C(21)–C(26)–C(25) 178.18(11) 

C(23)–C(24)–O(6)–C(27) 1.6(2) C(25)–C(24)–O(6)–C(27)  −177.82(13) 

O(1)–N(1)–C(28)–C(29) 74.60(11) C(4)–N(1)–C(28)–C(29)  −168.70(9) 

N(1)–C(28)–C(29)–C(30)  −164.34(11) N(1)–C(28)–C(29)–C(34) 16.59(16) 

C(34)–C(29)–C(30)–C(31)  −1.04(19) C(28)–C(29)–C(30)–C(31) 179.86(12) 

C(29)–C(30)–C(31)–C(32) 0.0(2) C(30)–C(31)–C(32)–C(33) 1.1(2) 

C(31)–C(32)–C(33)–C(34)  −1.1(2) C(32)–C(33)–C(34)–C(29) 0.07(19) 

C(30)–C(29)–C(34)–C(33) 1.01(18) C(28)–C(29)–C(34)–C(33)  −179.92(11) 



207 
 

 

6.2. Appendix II: X-Ray crystallographic data for 176e 
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Table 1. Crystal data and structure refinement for sdrc25. 

 

Identification code  sdrc25 

Chemical formula  C25H24FNO5S 

Formula weight  469.51 

Temperature  150(2) K 

Radiation, wavelength  MoK, 0.71073 Å 

Crystal system, space group  triclinic, P1 

Unit cell parameters a = 9.5110(8) Å  = 77.6318(12)° 

 b = 14.9284(12) Å  = 84.1856(13)° 

 c = 17.3054(14) Å  = 78.8426(13)° 

Cell volume 2350.1(3) Å3 

Z 4 

Calculated density  1.327 g/cm3 

Absorption coefficient  0.182 mm−1 

F(000) 984 

Crystal colour and size colourless, 0.51 × 0.16 × 0.16 mm3 

Reflections for cell refinement 7034 ( range 2.39 to 29.99°) 

Data collection method Bruker APEX 2 CCD diffractometer 

  rotation with narrow frames 

 range for data collection 1.67 to 31.70° 

Index ranges h −13 to 13, k −21 to 21, l −24 to 24 

Completeness to  = 29.00° 99.1 %  

Intensity decay 0% 

Reflections collected 28290 

Independent reflections 14416 (Rint = 0.0274) 

Reflections with F2>2 10392 
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Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.913 and 0.972 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0636, 0.2917 

Data / restraints / parameters 14416 / 0 / 621 

Final R indices [F2>2] R1 = 0.0492, wR2 = 0.1228 

R indices (all data) R1 = 0.0720, wR2 = 0.1353 

Goodness-of-fit on F2 1.064 

Largest and mean shift/su 0.001 and 0.000 

Largest diff. peak and hole 0.412 and −0.468 e Å−3 

 

Table 2. Atomic coordinates and equivalent isotropic displacement parameters (Å2) 

for sdrc25. Ueq is defined as one third of the trace of the orthogonalized Uij tensor. 

 

      x      y      z      Ueq 

 

O(1) 0.23202(10) 0.46643(7) 0.34258(6) 0.0230(2) 

N(2) 0.29843(13) 0.50009(8) 0.40048(7) 0.0229(2) 

C(3) 0.38143(15) 0.41780(10) 0.44941(8) 0.0222(3) 

C(4) 0.50791(14) 0.37460(9) 0.39490(8) 0.0209(3) 

C(5) 0.45134(14) 0.36159(9) 0.31700(8) 0.0205(3) 

C(6) 0.34387(14) 0.44867(10) 0.28242(8) 0.0212(3) 

C(7) 0.17960(17) 0.54788(11) 0.44500(9) 0.0292(3) 

C(8) 0.29529(16) 0.34671(10) 0.49688(8) 0.0253(3) 

C(9) 0.30163(19) 0.31081(11) 0.57644(9) 0.0330(3) 

C(10) 0.2083(2) 0.24575(12) 0.60496(10) 0.0396(4) 

C(11) 0.13280(19) 0.23281(12) 0.54760(10) 0.0387(4) 
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S(1) 0.17192(4) 0.30047(3) 0.45775(2) 0.03307(10) 

C(12) 0.57484(15) 0.27991(10) 0.44357(8) 0.0253(3) 

O(2) 0.57404(13) 0.20509(8) 0.42897(7) 0.0352(3) 

O(3) 0.63091(12) 0.29378(8) 0.50712(6) 0.0328(2) 

C(13) 0.6933(3) 0.21081(15) 0.56105(12) 0.0558(6) 

C(14) 0.62210(15) 0.43719(10) 0.37497(8) 0.0243(3) 

O(4) 0.59830(13) 0.52032(8) 0.36606(8) 0.0404(3) 

O(5) 0.75255(11) 0.38699(8) 0.36572(6) 0.0315(2) 

C(15) 0.86659(18) 0.44047(15) 0.33741(11) 0.0417(4) 

C(16) 0.56704(15) 0.33480(10) 0.25428(8) 0.0231(3) 

C(17) 0.59489(17) 0.24399(11) 0.24127(9) 0.0298(3) 

C(18) 0.69864(18) 0.21829(12) 0.18340(10) 0.0367(4) 

C(19) 0.77452(18) 0.28321(14) 0.13857(10) 0.0377(4) 

C(20) 0.74778(17) 0.37405(13) 0.14978(9) 0.0334(3) 

C(21) 0.64264(16) 0.39955(11) 0.20696(8) 0.0267(3) 

F(1X) 0.8823(4) 0.2626(3) 0.0850(2) 0.0491(12) 

C(22) 0.27308(15) 0.43620(10) 0.21228(8) 0.0235(3) 

C(23) 0.27746(18) 0.50003(12) 0.14113(9) 0.0328(3) 

C(24) 0.2120(2) 0.49013(14) 0.07596(10) 0.0426(4) 

C(25) 0.14175(19) 0.41635(14) 0.08380(11) 0.0420(4) 

C(26) 0.13483(18) 0.35229(13) 0.15323(11) 0.0395(4) 

C(27) 0.20104(17) 0.36260(11) 0.21781(10) 0.0319(3) 

F(1) 0.07512(19) 0.40513(13) 0.02275(10) 0.0583(6) 

O(1') 0.34396(11) 0.96897(7) 0.10612(6) 0.0258(2) 

N(2') 0.23795(13) 1.05487(8) 0.09696(7) 0.0262(3) 

C(3') 0.15648(16) 1.05448(10) 0.17372(8) 0.0251(3) 

C(4') 0.06625(15) 0.97392(10) 0.18858(8) 0.0224(3) 

C(5') 0.16273(14) 0.88051(9) 0.17492(8) 0.0210(3) 
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C(6') 0.26633(15) 0.89697(10) 0.10085(8) 0.0234(3) 

C(7') 0.32154(18) 1.12990(11) 0.07441(10) 0.0334(3) 

C(8') 0.24227(17) 1.05295(10) 0.24349(9) 0.0287(3) 

C(9') 0.20423(19) 1.11159(11) 0.29906(10) 0.0341(3) 

C(10') 0.3054(2) 1.09176(14) 0.35724(12) 0.0494(5) 

C(11') 0.4156(2) 1.02274(14) 0.34704(11) 0.0452(4) 

S(1') 0.40138(5) 0.97889(3) 0.26590(3) 0.03813(11) 

C(12') 0.00709(15) 0.96277(10) 0.27546(8) 0.0238(3) 

O(2') 0.04450(11) 0.89829(7) 0.32796(6) 0.0289(2) 

O(3')  −0.08908(12) 1.03856(8) 0.28513(6) 0.0320(2) 

C(13')  −0.1487(2) 1.04028(14) 0.36534(10) 0.0431(4) 

C(14')  −0.06177(15) 1.00294(10) 0.13583(8) 0.0244(3) 

O(4')  −0.07095(12) 1.06253(8) 0.07667(7) 0.0363(3) 

O(5')  −0.16410(11) 0.95285(7) 0.16478(6) 0.0287(2) 

C(15')  −0.28255(17) 0.96469(13) 0.11469(10) 0.0356(4) 

C(16') 0.08481(14) 0.80165(9) 0.17144(8) 0.0218(3) 

C(17') 0.08513(16) 0.72698(10) 0.23512(9) 0.0263(3) 

C(18') 0.02195(17) 0.65157(11) 0.23205(10) 0.0312(3) 

C(19')  −0.04194(16) 0.65161(10) 0.16417(10) 0.0295(3) 

C(20')  −0.04449(16) 0.72417(11) 0.09956(9) 0.0291(3) 

C(21') 0.01940(16) 0.79911(10) 0.10340(9) 0.0262(3) 

F(1')  −0.10229(16) 0.57657(10) 0.16015(9) 0.0376(5) 

C(22') 0.37653(15) 0.81071(10) 0.09448(9) 0.0258(3) 

C(23') 0.38538(17) 0.77101(11) 0.02803(9) 0.0310(3) 

C(24') 0.4861(2) 0.69152(12) 0.02112(11) 0.0384(4) 

C(25') 0.57787(19) 0.65263(12) 0.08105(12) 0.0416(4) 

C(26') 0.56993(18) 0.69003(12) 0.14761(12) 0.0403(4) 
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C(27') 0.46981(17) 0.76962(12) 0.15421(10) 0.0333(3) 

F(1X') 0.6690(4) 0.5776(2) 0.0793(2) 0.0656(13) 

 

Table 3. Bond lengths [Å] and angles [°] for sdrc25. 

 

O(1)–C(6)  1.4389(16) O(1)–N(2)  1.4568(15) 

N(2)–C(7)  1.4584(18) N(2)–C(3)  1.4709(18) 

C(3)–C(8)  1.5161(19) C(3)–C(4)  1.5758(19) 

C(4)–C(14)  1.5330(19) C(4)–C(12)  1.5372(19) 

C(4)–C(5)  1.5634(18) C(5)–C(16)  1.5240(18) 

C(5)–C(6)  1.5392(19) C(6)–C(22)  1.5073(19) 

C(8)–C(9)  1.369(2) C(8)–S(1)  1.7282(15) 

C(9)–C(10)  1.419(2) C(10)–C(11)  1.349(3) 

C(11)–S(1)  1.7123(17) C(12)–O(2)  1.1983(18) 

C(12)–O(3)  1.3402(18) O(3)–C(13)  1.446(2) 

C(14)–O(4)  1.1965(19) C(14)–O(5)  1.3334(18) 

O(5)–C(15)  1.4538(19) C(16)–C(21)  1.390(2) 

C(16)–C(17)  1.392(2) C(17)–C(18)  1.393(2) 

C(18)–C(19)  1.377(3) C(19)–F(1X)  1.346(3) 

C(19)–C(20)  1.382(3) C(20)–C(21)  1.392(2) 

C(22)–C(27)  1.385(2) C(22)–C(23)  1.389(2) 

C(23)–C(24)  1.389(2) C(24)–C(25)  1.371(3) 

C(25)–F(1)  1.341(2) C(25)–C(26)  1.371(3) 

C(26)–C(27)  1.387(2) O(1')–C(6')  1.4392(16) 

O(1')–N(2')  1.4598(16) N(2')–C(7')  1.4607(19) 

N(2')–C(3')  1.4679(18) C(3')–C(8')  1.518(2) 

C(3')–C(4')  1.5720(19) C(4')–C(14')  1.535(2) 

C(4')–C(12')  1.5370(19) C(4')–C(5')  1.5635(19) 



213 
 

C(5')–C(16')  1.5217(19) C(5')–C(6')  1.5418(19) 

C(6')–C(22')  1.511(2) C(8')–C(9')  1.411(2) 

C(8')–S(1')  1.7177(17) C(9')–C(10')  1.409(3) 

C(10')–C(11')  1.347(3) C(11')–S(1')  1.6986(19) 

C(12')–O(2')  1.1988(17) C(12')–O(3')  1.3396(17) 

O(3')–C(13')  1.4488(19) C(14')–O(4')  1.2021(17) 

C(14')–O(5')  1.3341(17) O(5')–C(15')  1.4515(18) 

C(16')–C(17')  1.3893(19) C(16')–C(21')  1.397(2) 

C(17')–C(18')  1.388(2) C(18')–C(19')  1.376(2) 

C(19')–F(1')  1.3710(19) C(19')–C(20')  1.379(2) 

C(20')–C(21')  1.389(2) C(22')–C(23')  1.391(2) 

C(22')–C(27')  1.391(2) C(23')–C(24')  1.392(2) 

C(24')–C(25')  1.380(3) C(25')–F(1X')  1.280(3) 

C(25')–C(26')  1.373(3) C(26')–C(27')  1.389(2) 

 

C(6)–O(1)–N(2) 105.53(9) O(1)–N(2)–C(7) 105.41(10) 

O(1)–N(2)–C(3) 106.77(10) C(7)–N(2)–C(3) 113.27(11) 

N(2)–C(3)–C(8) 115.84(12) N(2)–C(3)–C(4) 108.04(11) 

C(8)–C(3)–C(4) 113.21(11) C(14)–C(4)–C(12) 108.78(11) 

C(14)–C(4)–C(5) 110.11(11) C(12)–C(4)–C(5) 110.45(11) 

C(14)–C(4)–C(3) 109.96(11) C(12)–C(4)–C(3) 106.44(11) 

C(5)–C(4)–C(3) 111.03(11) C(16)–C(5)–C(6) 111.10(11) 

C(16)–C(5)–C(4) 115.31(11) C(6)–C(5)–C(4) 110.16(11) 

O(1)–C(6)–C(22) 107.26(10) O(1)–C(6)–C(5) 108.46(10) 

C(22)–C(6)–C(5) 112.63(11) C(9)–C(8)–C(3) 125.53(14) 

C(9)–C(8)–S(1) 110.09(11) C(3)–C(8)–S(1) 124.37(11) 

C(8)–C(9)–C(10) 113.14(15) C(11)–C(10)–C(9) 112.84(15) 

C(10)–C(11)–S(1) 111.65(13) C(11)–S(1)–C(8) 92.27(8) 
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O(2)–C(12)–O(3) 124.84(14) O(2)–C(12)–C(4) 126.05(13) 

O(3)–C(12)–C(4) 109.07(12) C(12)–O(3)–C(13) 115.98(14) 

O(4)–C(14)–O(5) 123.86(14) O(4)–C(14)–C(4) 125.12(13) 

O(5)–C(14)–C(4) 110.98(12) C(14)–O(5)–C(15) 115.43(13) 

C(21)–C(16)–C(17) 118.44(13) C(21)–C(16)–C(5) 121.88(13) 

C(17)–C(16)–C(5) 119.64(13) C(16)–C(17)–C(18) 120.63(15) 

C(19)–C(18)–C(17) 119.80(16) F(1X)–C(19)–C(18) 123.4(2) 

F(1X)–C(19)–C(20) 115.9(2) C(18)–C(19)–C(20) 120.66(15) 

C(19)–C(20)–C(21) 119.23(16) C(16)–C(21)–C(20) 121.20(15) 

C(27)–C(22)–C(23) 119.03(14) C(27)–C(22)–C(6) 121.05(13) 

C(23)–C(22)–C(6) 119.91(13) C(22)–C(23)–C(24) 120.79(16 

C(25)–C(24)–C(23) 118.42(17) F(1)–C(25)–C(26) 117.37(19) 

F(1)–C(25)–C(24) 120.32(19) C(26)–C(25)–C(24) 122.31(15) 

C(25)–C(26)–C(27) 118.80(17) C(22)–C(27)–C(26) 120.65(16) 

C(6')–O(1')–N(2') 105.47(10) O(1')–N(2')–C(7') 105.15(11) 

O(1')–N(2')–C(3') 106.65(10) C(7')–N(2')–C(3') 113.44(12) 

N(2')–C(3')–C(8') 116.12(12) N(2')–C(3')–C(4') 108.10(11) 

C(8')–C(3')–C(4') 113.31(11) C(14')–C(4')–C(12') 107.99(11) 

C(14')–C(4')–C(5') 112.17(11) C(12')–C(4')–C(5') 109.57(11) 

C(14')–C(4')–C(3') 109.54(11) C(12')–C(4')–C(3') 106.51(11) 

C(5')–C(4')–C(3') 110.87(11) C(16')–C(5')–C(6') 109.72(11) 

C(16')–C(5')–C(4') 116.36(11) C(6')–C(5')–C(4') 111.15(11) 

O(1')–C(6')–C(22') 106.98(11) O(1')–C(6')–C(5') 109.42(11) 

C(22')–C(6')–C(5') 111.72(11) C(9')–C(8')–C(3') 125.47(15) 

C(9')–C(8')–S(1') 110.04(12) C(3')–C(8')–S(1') 124.48(11) 

C(10')–C(9')–C(8') 111.53(16) C(11')–C(10')–C(9') 113.69(17) 

C(10')–C(11')–S(1') 112.15(15) C(11')–S(1')–C(8') 92.57(9) 

O(2')–C(12')–O(3') 124.37(13) O(2')–C(12')–C(4') 125.86(13) 
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O(3')–C(12')–C(4') 109.70(11) C(12')–O(3')–C(13') 116.00(12) 

O(4')–C(14')–O(5') 123.79(14) O(4')–C(14')–C(4') 125.64(13) 

O(5')–C(14')–C(4') 110.57(11) C(14')–O(5')–C(15') 115.90(12) 

C(17')–C(16')–C(21') 118.32(13) C(17')–C(16')–C(5') 119.99(13) 

C(21')–C(16')–C(5') 121.58(12) C(18')–C(17')–C(16') 121.37(14) 

C(19')–C(18')–C(17') 118.71(14) F(1')–C(19')–C(18') 119.04(15) 

F(1')–C(19')–C(20') 119.11(15) C(18')–C(19')–C(20') 121.84(14) 

C(19')–C(20')–C(21') 118.84(14) C(20')–C(21')–C(16') 120.93(13) 

C(23')–C(22')–C(27') 118.96(14) C(23')–C(22')–C(6') 119.82(14) 

C(27')–C(22')–C(6') 121.22(14) C(22')–C(23')–C(24') 120.65(16) 

C(25')–C(24')–C(23') 119.11(17) F(1X')–C(25')–C(26') 116.8(3) 

F(1X')–C(25')–C(24') 121.9(3) C(26')–C(25')–C(24') 121.22(16) 

C(25')–C(26')–C(27') 119.58(17) C(26')–C(27')–C(22') 120.47(16) 

 

Table 4. Hydrogen coordinates and isotropic displacement parameters (Å2) for sdrc25. 

 

      x       y       z       U 

 

H(3) 0.4271 0.4414 0.4888 0.027 

H(5) 0.3962 0.3092 0.3325 0.025 

H(6) 0.3943 0.5033 0.2664 0.025 

H(7A) 0.1266 0.6006 0.4090 0.044 

H(7B) 0.2172 0.5707 0.4864 0.044 

H(7C) 0.1151 0.5044 0.4695 0.044 

H(9) 0.3623 0.3277 0.6092 0.040 

H(10) 0.2000 0.2146 0.6587 0.047 

H(11) 0.0661 0.1913 0.5560 0.046 

H(13A) 0.6210 0.1710 0.5794 0.084 



216 
 

H(13B) 0.7264 0.2284 0.6066 0.084 

H(13C) 0.7749 0.1768 0.5337 0.084 

H(15A) 0.8505 0.4746 0.2831 0.063 

H(15B) 0.9593 0.3981 0.3383 0.063 

H(15C) 0.8668 0.4848 0.3718 0.063 

H(17) 0.5427 0.1991 0.2721 0.036 

H(18) 0.7170 0.1562 0.1749 0.044 

H(19) 0.8460 0.2654 0.0995 0.045 

H(20) 0.8005 0.4186 0.1188 0.040 

H(21) 0.6222 0.4623 0.2138 0.032 

H(23) 0.3258 0.5511 0.1370 0.039 

H(24) 0.2158 0.5335 0.0271 0.051 

H(25) 0.0963 0.4094 0.0396 0.050 

H(26) 0.0856 0.3017 0.1570 0.047 

H(27) 0.1969 0.3188 0.2663 0.038 

H(3') 0.0854 1.1140 0.1673 0.030 

H(5') 0.2241 0.8578 0.2212 0.025 

H(6') 0.2104 0.9164 0.0523 0.028 

H(7D) 0.3872 1.1254 0.1158 0.050 

H(7E) 0.2565 1.1902 0.0681 0.050 

H(7F) 0.3770 1.1245 0.0242 0.050 

H(9') 0.1208 1.1586 0.2975 0.041 

H(10') 0.2968 1.1241 0.3997 0.059 

H(11') 0.4924 1.0011 0.3813 0.054 

H(13D)  −0.1988 0.9874 0.3844 0.065 

H(13E)  −0.2166 1.0986 0.3660 0.065 

H(13F)  −0.0712 1.0360 0.3999 0.065 

H(15D)  −0.3356 1.0287 0.1089 0.053 



217 
 

H(15E)  −0.3469 0.9211 0.1390 0.053 

H(15F)  −0.2450 0.9523 0.0624 0.053 

H(17') 0.1295 0.7276 0.2817 0.032 

H(18') 0.0228 0.6009 0.2760 0.037 

H(19')  −0.0855 0.6002 0.1618 0.035 

H(20')  −0.0892 0.7229 0.0532 0.035 

H(21') 0.0186 0.8494 0.0591 0.031 

H(23') 0.3221 0.7984  −0.0131 0.037 

H(24') 0.4916 0.6644  −0.0243 0.046 

H(25') 0.6478 0.5990 0.0762 0.050 

H(26') 0.6325 0.6617 0.1889 0.048 

H(27') 0.4650 0.7962 0.1998 0.040 

 

Table 6. Torsion angles [°] for sdrc25. 

 

C(6)–O(1)–N(2)–C(7) 160.73(11) C(6)–O(1)–N(2)–C(3)  −78.54(12) 

O(1)–N(2)–C(3)–C(8)  −62.31(14) C(7)–N(2)–C(3)–C(8) 53.26(16) 

O(1)–N(2)–C(3)–C(4) 65.87(12) C(7)–N(2)–C(3)–C(4)  −178.56(11) 

N(2)–C(3)–C(4)–C(14) 72.37(13) C(8)–C(3)–C(4)–C(14)  −157.96(12) 

N(2)–C(3)–C(4)–C(12)  −169.98(11) C(8)–C(3)–C(4)–C(12)  −40.31(15) 

N(2)–C(3)–C(4)–C(5)  −49.73(14) C(8)–C(3)–C(4)–C(5) 79.94(14) 

C(14)–C(4)–C(5)–C(16) 48.72(15) C(12)–C(4)–C(5)–C(16)  −71.43(14) 

C(3)–C(4)–C(5)–C(16) 170.73(11) C(14)–C(4)–C(5)–C(6)  −77.99(13) 

C(12)–C(4)–C(5)–C(6) 161.86(11) C(3)–C(4)–C(5)–C(6) 44.02(14) 

N(2)–O(1)–C(6)–C(22)  −166.60(10) N(2)–O(1)–C(6)–C(5) 71.49(12) 

C(16)–C(5)–C(6)–O(1) 175.90(11) C(4)–C(5)–C(6)–O(1)  −55.06(13) 

C(16)–C(5)–C(6)–C(22) 57.34(15) C(4)–C(5)–C(6)–C(22)  −173.62(11) 

N(2)–C(3)–C(8)–C(9)  −128.65(16) C(4)–C(3)–C(8)–C(9) 105.77(17) 
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N(2)–C(3)–C(8)–S(1) 50.35(17) C(4)–C(3)–C(8)–S(1)  −75.24(15) 

C(3)–C(8)–C(9)–C(10) 179.74(14) S(1)–C(8)–C(9)–C(10) 0.63(18) 

C(8)–C(9)–C(10)–C(11) 0.0(2) C(9)–C(10)–C(11)–S(1)  −0.7(2) 

C(10)–C(11)–S(1)–C(8) 0.89(15) C(9)–C(8)–S(1)–C(11)  −0.85(13) 

C(3)–C(8)–S(1)–C(11)  −179.98(13) C(14)–C(4)–C(12)–O(2)  −127.11(16) 

C(5)–C(4)–C(12)–O(2)  −6.2(2) C(3)–C(4)–C(12)–O(2) 114.45(16) 

C(14)–C(4)–C(12)–O(3) 54.92(15) C(5)–C(4)–C(12)–O(3) 175.87(11) 

C(3)–C(4)–C(12)–O(3)  −63.51(14) O(2)–C(12)–O(3)–C(13)  −0.4(2) 

C(4)–C(12)–O(3)–C(13) 177.59(14) C(12)–C(4)–C(14)–O(4)  −149.85(15) 

C(5)–C(4)–C(14)–O(4) 88.99(17) C(3)–C(4)–C(14)–O(4)  −33.65(19) 

C(12)–C(4)–C(14)–O(5) 32.54(15) C(5)–C(4)–C(14)–O(5)  −88.62(13) 

C(3)–C(4)–C(14)–O(5) 148.74(11) O(4)–C(14)–O(5)–C(15)  −4.7(2) 

C(4)–C(14)–O(5)–C(15) 172.96(12) C(6)–C(5)–C(16)–C(21) 49.67(17) 

C(4)–C(5)–C(16)–C(21)  −76.57(16) C(6)–C(5)–C(16)–C(17)  −127.73(13) 

C(4)–C(5)–C(16)–C(17) 106.03(15) C(21)–C(16)–C(17)–C(18) 1.5(2) 

C(5)–C(16)–C(17)–C(18) 179.01(13) C(16)–C(17)–C(18)–C(19) 0.0(2) 

C(17)–C(18)–C(19)–F(1X) 175.8(2) C(17)–C(18)–C(19)–C(20)  −0.7(2) 

F(1X)–C(19)–C(20)–C(21)  −176.9(2) C(18)–C(19)–C(20)–C(21)  −0.2(2) 

C(17)–C(16)–C(21)–C(20)  −2.4(2) C(5)–C(16)–C(21)–C(20)  −179.84(13) 

C(19)–C(20)–C(21)–C(16) 1.8(2) O(1)–C(6)–C(22)–C(27)  −64.15(16) 

C(5)–C(6)–C(22)–C(27) 55.12(17) O(1)–C(6)–C(22)–C(23) 114.74(14) 

C(5)–C(6)–C(22)–C(23)  −125.99(14) C(27)–C(22)–C(23)–C(24)  −0.6(2) 

C(6)–C(22)–C(23)–C(24)  −179.55(14) C(22)–C(23)–C(24)–C(25) 0.6(3) 

C(23)–C(24)–C(25)–F(1) 178.89(17) C(23)–C(24)–C(25)–C(26)  −0.4(3) 

F(1)–C(25)–C(26)–C(27)  −179.17(16) C(24)–C(25)–C(26)–C(27) 0.1(3) 

C(23)–C(22)–C(27)–C(26) 0.4(2) C(6)–C(22)–C(27)–C(26) 179.26(14) 

C(25)–C(26)–C(27)–C(22)  −0.1(2) C(6')–O(1')–N(2')–C(7')  −160.58(11) 

C(6')–O(1')–N(2')–C(3') 78.68(12) O(1')–N(2')–C(3')–C(8') 61.15(15) 
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C(7')–N(2')–C(3')–C(8')  −54.13(17) O(1')–N(2')–C(3')–C(4')  −67.45(13) 

C(7')–N(2')–C(3')–C(4') 177.27(12) N(2')–C(3')–C(4')–C(14')  −74.57(14) 

C(8')–C(3')–C(4')–C(14') 155.25(12) N(2')–C(3')–C(4')–C(12') 168.88(11) 

C(8')–C(3')–C(4')–C(12') 38.70(16) N(2')–C(3')–C(4')–C(5') 49.75(15) 

C(8')–C(3')–C(4')–C(5')  −80.43(15) C(14')–C(4')–C(5')–C(16')  −45.67(15) 

C(12')–C(4')–C(5')–C(16') 74.25(15) C(3')–C(4')–C(5')–C(16')  −168.48(11) 

C(14')–C(4')–C(5')–C(6') 80.89(14) C(12')–C(4')–C(5')–C(6')  −159.19(11) 

C(3')–C(4')–C(5')–C(6')  −41.92(15) N(2')–O(1')–C(6')–C(22') 169.51(11) 

N(2')–O(1')–C(6')–C(5')  −69.29(13) C(16')–C(5')–C(6')–O(1')  −177.63(11) 

C(4')–C(5')–C(6')–O(1') 52.24(15) C(16')–C(5')–C(6')–C(22')  −59.35(15) 

C(4')–C(5')–C(6')–C(22') 170.52(11) N(2')–C(3')–C(8')–C(9') 132.17(15) 

C(4')–C(3')–C(8')–C(9')  −101.82(17) N(2')–C(3')–C(8')–S(1')  −47.64(17) 

C(4')–C(3')–C(8')–S(1') 78.37(15) C(3')–C(8')–C(9')–C(10') 179.19(14) 

S(1')–C(8')–C(9')–C(10')  −0.97(17) C(8')–C(9')–C(10')–C(11') 0.5(2) 

C(9')–C(10')–C(11')–S(1') 0.2(2) C(10')–C(11')–S(1')–C(8')  −0.62(15) 

C(9')–C(8')–S(1')–C(11') 0.91(12) C(3')–C(8')–S(1')–C(11')  −179.25(13) 

C(14')–C(4')–C(12')–O(2') 132.76(15) C(5')–C(4')–C(12')–O(2') 10.3(2) 

C(3')–C(4')–C(12')–O(2')  −109.65(16) C(14')–C(4')–C(12')–O(3')  −50.13(15) 

C(5')–C(4')–C(12')–O(3')  −172.57(11) C(3')–C(4')–C(12')–O(3') 67.46(14) 

O(2')–C(12')–O(3')–C(13') 0.3(2) C(4')–C(12')–O(3')–C(13')  −176.82(13) 

C(12')–C(4')–C(14')–O(4') 136.25(15) C(5')–C(4')–C(14')–O(4')  −102.91(17) 

C(3')–C(4')–C(14')–O(4') 20.6(2) C(12')–C(4')–C(14')–O(5')  −43.47(15) 

C(5')–C(4')–C(14')–O(5') 77.36(14) C(3')–C(4')–C(14')–O(5')  −159.08(12) 

O(4')–C(14')–O(5')–C(15') 8.3(2) C(4')–C(14')–O(5')–C(15')  −171.97(12) 

C(6')–C(5')–C(16')–C(17') 127.41(14) C(4')–C(5')–C(16')–C(17')  −105.33(15) 

C(6')–C(5')–C(16')–C(21')  −48.59(17) C(4')–C(5')–C(16')–C(21') 78.67(17) 

C(21')–C(16')–C(17')–C(18')  −0.2(2) C(5')–C(16')–C(17')–C(18')  −176.37(13) 

C(16')–C(17')–C(18')–C(19') 0.0(2) C(17')–C(18')–C(19')–F(1') 178.83(15) 
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C(17')–C(18')–C(19')–C(20') 0.1(2) F(1')–C(19')–C(20')–C(21')  −178.70(14) 

C(18')–C(19')–C(20')–C(21') 0.0(2) C(19')–C(20')–C(21')–C(16')  −0.3(2) 

C(17')–C(16')–C(21')–C(20') 0.4(2) C(5')–C(16')–C(21')–C(20') 176.43(13) 

O(1')–C(6')–C(22')–C(23')  −119.50(14) C(5')–C(6')–C(22')–C(23') 120.77(14) 

O(1')–C(6')–C(22')–C(27') 60.70(17) C(5')–C(6')–C(22')–C(27')  −59.03(18) 

C(27')–C(22')–C(23')–C(24')  −0.2(2) C(6')–C(22')–C(23')–C(24')  −179.96(14) 

C(22')–C(23')–C(24')–C(25')  −0.3(2) C(23')–C(24')–C(25')–F(1X') 177.4(2) 

C(23')–C(24')–C(25')–C(26') 1.0(3) F(1X')–C(25')–C(26')–C(27')  −177.9(2) 

C(24')–C(25')–C(26')–C(27')  −1.3(3) C(25')–C(26')–C(27')–C(22') 0.9(3) 

C(23')–C(22')–C(27')–C(26')  −0.2(2) C(6')–C(22')–C(27')–C(26') 179.64(14) 
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6.3. Appendix III: X-Ray crystallographic data for 182a 
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Table 1. Crystal data and structure refinement for sdrc27. 

  

Identification code  sdrc27 

Chemical formula  C16H15IN2O4 

Formula weight  426.20 

Temperature  150(2) K 

Radiation, wavelength  MoK, 0.71073 Å 

Crystal system, space group  monoclinic, P21/c 

Unit cell parameters a = 14.6567(19) Å  = 90° 

 b = 24.633(3) Å  = 94.084(2)° 

 c = 19.004(3) Å  = 90° 

Cell volume 6843.7(15) Å3 

Z 16 
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Calculated density  1.655 g/cm3 

Absorption coefficient  1.892 mm−1 

F(000) 3360 

Crystal colour and size colourless, 0.36 × 0.28 × 0.02 mm3 

Reflections for cell refinement 9554 ( range 2.30 to 26.43°) 

Data collection method Bruker APEX 2 CCD diffractometer 

  rotation with narrow frames 

 range for data collection 1.65 to 25.00° 

Index ranges h −17 to 17, k −29 to 29, l −22 to 22 

Completeness to  = 25.00° 99.9 %  

Intensity decay 0% 

Reflections collected 53066 

Independent reflections 12060 (Rint = 0.0750) 

Reflections with F2>2 8303 

Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.549 and 0.963 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.1158, 41.5664 

Data / restraints / parameters 12060 / 34 / 847 

Final R indices [F2>2] R1 = 0.0707, wR2 = 0.1764 

R indices (all data) R1 = 0.1003, wR2 = 0.2056 

Goodness-of-fit on F2 1.031 

Largest and mean shift/su 0.000 and 0.000 

Largest diff. peak and hole 7.306 and −1.100 e Å−3 

 

Table 2. Atomic coordinates and equivalent isotropic displacement parameters (Å2) 

for sdrc27. Ueq is defined as one third of the trace of the orthogonalized Uij tensor. 
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      x      y      z      Ueq 

 

C(1) 0.1766(5) 0.2097(3) 0.5028(4) 0.0249(18) 

C(2) 0.1459(5) 0.1861(3) 0.5696(4) 0.0184(16) 

C(3) 0.2442(5) 0.1768(3) 0.5496(4) 0.0179(16) 

N(1) 0.1909(4) 0.2669(3) 0.4989(4) 0.0251(15) 

N(2) 0.2648(5) 0.2865(3) 0.4675(4) 0.0301(17) 

C(4) 0.2555(6) 0.3392(4) 0.4677(5) 0.033(2) 

C(5) 0.1764(6) 0.3545(3) 0.5001(4) 0.0261(18) 

C(6) 0.1362(6) 0.3073(3) 0.5191(4) 0.0264(18) 

I(1) 0.12486(5) 0.43220(3) 0.51285(4) 0.0425(2) 

C(7) 0.0773(5) 0.1414(3) 0.5709(4) 0.0169(16) 

C(8) 0.0502(6) 0.1101(3) 0.5124(4) 0.0254(18) 

C(9)  −0.0131(6) 0.0682(3) 0.5192(5) 0.0287(19) 

C(10)  −0.0468(6) 0.0562(3) 0.5823(5) 0.032(2) 

C(11)  −0.0206(5) 0.0876(3) 0.6415(5) 0.0272(19) 

C(12) 0.0413(5) 0.1298(3) 0.6357(4) 0.0242(18) 

C(13) 0.2703(6) 0.1220(3) 0.5231(4) 0.0265(18) 

O(1) 0.2660(5) 0.1081(3) 0.4628(3) 0.0423(17) 

O(2) 0.3000(5) 0.0907(2) 0.5776(3) 0.0357(15) 

C(14) 0.3255(9) 0.0361(4) 0.5599(7) 0.059(3) 

C(15) 0.3175(5) 0.2084(3) 0.5913(4) 0.0189(16) 

O(3) 0.3037(4) 0.2400(2) 0.6370(3) 0.0272(13) 

O(4) 0.3982(4) 0.1980(2) 0.5675(3) 0.0273(13) 

C(16) 0.4712(6) 0.2328(4) 0.5964(5) 0.036(2) 

O(15) 0.6950(4) 0.0817(3) 0.5083(3) 0.0395(16) 

O(16) 0.5500(4) 0.1084(3) 0.5172(3) 0.0365(15) 
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C(17) 0.1718(5) 0.2033(3) 0.2994(4) 0.0221(17) 

C(18) 0.2022(5) 0.1788(3) 0.2327(4) 0.0201(17) 

C(19) 0.1045(5) 0.1696(3) 0.2534(4) 0.0197(16) 

N(3) 0.1564(4) 0.2601(3) 0.3034(3) 0.0214(14) 

N(4) 0.0838(5) 0.2787(3) 0.3361(3) 0.0264(16) 

C(20) 0.0906(6) 0.3316(4) 0.3347(4) 0.0295(19) 

C(21) 0.1685(6) 0.3482(3) 0.3008(4) 0.0245(18) 

C(22) 0.2094(5) 0.3011(3) 0.2818(4) 0.0225(17) 

I(2) 0.21238(4) 0.42749(2) 0.28763(4) 0.03989(19) 

C(23) 0.2723(5) 0.1356(3) 0.2316(4) 0.0154(15) 

C(24) 0.3091(5) 0.1241(3) 0.1675(4) 0.0228(17) 

C(25) 0.3744(6) 0.0836(4) 0.1627(5) 0.029(2) 

C(26) 0.4039(6) 0.0539(4) 0.2223(5) 0.033(2) 

C(27) 0.3691(6) 0.0651(4) 0.2863(5) 0.030(2) 

C(28) 0.3030(5) 0.1055(3) 0.2912(4) 0.0230(17) 

C(29) 0.0777(5) 0.1156(3) 0.2803(4) 0.0227(17) 

O(5) 0.0898(5) 0.1002(3) 0.3399(3) 0.0434(18) 

O(6) 0.0370(4) 0.0871(2) 0.2285(3) 0.0321(14) 

C(30) 0.0027(7) 0.0339(4) 0.2480(6) 0.043(2) 

C(31) 0.0311(5) 0.2022(3) 0.2125(4) 0.0204(17) 

O(7) 0.0437(4) 0.2321(2) 0.1646(3) 0.0294(13) 

O(8)  −0.0487(4) 0.1947(2) 0.2402(3) 0.0258(13) 

C(32)  −0.1208(6) 0.2318(4) 0.2133(5) 0.031(2) 

C(33) 0.6442(5) 0.1643(3) 0.1721(4) 0.0195(16) 

C(34) 0.6072(5) 0.1089(4) 0.1527(4) 0.0252(18) 

C(35) 0.7025(5) 0.1143(3) 0.1900(4) 0.0223(17) 

N(5) 0.6067(4) 0.1939(3) 0.2285(3) 0.0196(14) 

N(6) 0.6578(5) 0.2355(3) 0.2581(4) 0.0311(17) 
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C(36) 0.6070(6) 0.2549(4) 0.3078(5) 0.032(2) 

C(37) 0.5260(5) 0.2261(3) 0.3119(4) 0.0210(17) 

C(38) 0.5270(5) 0.1873(3) 0.2595(4) 0.0221(17) 

I(3) 0.42330(3) 0.24185(2) 0.37896(3) 0.02477(16) 

C(39) 0.5983(6) 0.0916(3) 0.0765(4) 0.0261(18) 

C(40) 0.5678(6) 0.1268(4) 0.0232(5) 0.034(2) 

C(41) 0.5596(8) 0.1094(5)  −0.0471(5) 0.048(3) 

C(42) 0.5848(9) 0.0576(5)  −0.0633(6) 0.064(4) 

C(43) 0.6166(10) 0.0223(5)  −0.0101(7) 0.070(4) 

C(44) 0.6219(8) 0.0385(4) 0.0596(6) 0.055(3) 

C(45) 0.7845(5) 0.0999(4) 0.1492(4) 0.0249(18) 

O(9) 0.8232(4) 0.0579(3) 0.1568(4) 0.0394(16) 

O(10) 0.8035(4) 0.1379(3) 0.1035(3) 0.0315(14) 

C(46) 0.8804(7) 0.1240(5) 0.0626(5) 0.049(3) 

C(47) 0.7118(6) 0.0973(3) 0.2661(4) 0.0255(18) 

O(11) 0.6528(4) 0.0761(3) 0.2973(3) 0.0450(18) 

O(12) 0.7946(4) 0.1098(3) 0.2944(3) 0.0362(15) 

C(48) 0.8143(8) 0.0963(5) 0.3684(5) 0.054(3) 

C(49) 0.7063(5) 0.1670(3) 0.6333(4) 0.0222(17) 

C(50) 0.7459(5) 0.1128(3) 0.6520(4) 0.0205(16) 

C(51) 0.6493(5) 0.1163(3) 0.6177(4) 0.0211(17) 

N(7) 0.7404(4) 0.1966(3) 0.5754(3) 0.0200(14) 

N(8) 0.6885(5) 0.2369(3) 0.5459(4) 0.0319(18) 

C(52) 0.7392(6) 0.2564(4) 0.4954(5) 0.033(2) 

C(53) 0.8212(5) 0.2281(3) 0.4918(4) 0.0193(16) 

C(54) 0.8189(5) 0.1898(3) 0.5443(4) 0.0200(16) 

I(4) 0.92303(3) 0.24147(2) 0.42360(3) 0.02406(16) 

C(55) 0.7656(5) 0.0956(3) 0.7270(4) 0.0239(18) 
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C(56) 0.7792(6) 0.1329(4) 0.7816(5) 0.031(2) 

C(57) 0.8004(8) 0.1150(4) 0.8499(5) 0.045(3) 

C(58) 0.8079(8) 0.0608(4) 0.8645(6) 0.048(3) 

C(59) 0.7956(7) 0.0234(4) 0.8103(5) 0.036(2) 

C(60) 0.7749(6) 0.0415(4) 0.7425(5) 0.031(2) 

C(61) 0.5700(6) 0.1024(3) 0.6622(5) 0.0336(18) 

O(13) 0.5328(4) 0.0579(3) 0.6546(4) 0.0423(16) 

O(14) 0.5502(4) 0.1382(3) 0.7061(4) 0.0445(17) 

C(62) 0.4697(10) 0.1225(6) 0.7446(7) 0.053(4) 

C(62X) 0.4556(19) 0.0554(15) 0.7047(15) 0.032(8) 

C(63) 0.6362(6) 0.0996(3) 0.5415(4) 0.0281(19) 

C(64) 0.5284(8) 0.0968(5) 0.4418(5) 0.052(3) 

 

Table 3. Bond lengths [Å] and angles [°] for sdrc27. 

C(1)–N(1)  1.426(11) C(1)–C(2)  1.494(11) 

C(1)–C(3)  1.518(11) C(2)–C(7)  1.493(10) 

C(2)–C(3)  1.533(10) C(3)–C(13)  1.499(11) 

C(3)–C(15)  1.506(11) N(1)–C(6)  1.352(11) 

N(1)–N(2)  1.363(9) N(2)–C(4)  1.305(12) 

C(4)–C(5)  1.402(12) C(5)–C(6)  1.364(12) 

C(5)–I(1)  2.077(8) C(7)–C(8)  1.387(11) 

C(7)–C(12)  1.404(11) C(8)–C(9)  1.399(12) 

C(9)–C(10)  1.361(13) C(10)–C(11)  1.396(13) 

C(11)–C(12)  1.389(12) C(13)–O(1)  1.194(10) 

C(13)–O(2)  1.339(11) O(2)–C(14)  1.443(11) 

C(15)–O(3)  1.192(9) C(15)–O(4)  1.322(9) 

O(4)–C(16)  1.448(10) O(15)–C(63)  1.188(11) 

O(16)–C(63)  1.332(11) O(16)–C(64)  1.475(11) 
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C(17)–N(3)  1.419(11) C(17)–C(18)  1.501(11) 

C(17)–C(19)  1.518(11) C(18)–C(23)  1.480(11) 

C(18)–C(19)  1.530(10) C(19)–C(29)  1.488(11) 

C(19)–C(31)  1.513(11) N(3)–N(4)  1.351(9) 

N(3)–C(22)  1.355(10) N(4)–C(20)  1.308(11) 

C(20)–C(21)  1.411(12) C(21)–C(22)  1.366(12) 

C(21)–I(2)  2.076(8) C(23)–C(24)  1.396(10) 

C(23)–C(28)  1.401(11) C(24)–C(25)  1.388(12) 

C(25)–C(26)  1.393(13) C(26)–C(27)  1.378(13) 

C(27)–C(28)  1.397(12) C(29)–O(5)  1.195(10) 

C(29)–O(6)  1.315(10) O(6)–C(30)  1.463(10) 

C(31)–O(7)  1.194(10) C(31)–O(8)  1.330(9) 

O(8)–C(32)  1.462(10) C(33)–N(5)  1.437(9) 

C(33)–C(34)  1.506(11) C(33)–C(35)  1.524(11) 

C(34)–C(39)  1.506(11) C(34)–C(35)  1.526(11) 

C(35)–C(47)  1.503(12) C(35)–C(45)  1.518(11) 

N(5)–C(38)  1.354(10) N(5)–N(6)  1.367(9) 

N(6)–C(36)  1.333(11) C(36)–C(37)  1.391(11) 

C(37)–C(38)  1.381(11) C(37)–I(3)  2.077(8) 

C(39)–C(40)  1.383(13) C(39)–C(44)  1.396(13) 

C(40)–C(41)  1.399(13) C(41)–C(42)  1.370(16) 

C(42)–C(43)  1.386(18) C(43)–C(44)  1.381(16) 

C(45)–O(9)  1.185(10) C(45)–O(10)  1.319(11) 

O(10)–C(46)  1.455(10) C(47)–O(11)  1.203(10) 

C(47)–O(12)  1.327(10) O(12)–C(48)  1.454(11) 

C(49)–N(7)  1.439(10) C(49)–C(50)  1.487(11) 

C(49)–C(51)  1.519(11) C(50)–C(55)  1.496(11) 

C(50)–C(51)  1.519(10) C(51)–C(63)  1.503(12) 
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C(51)–C(61)  1.525(11) N(7)–C(54)  1.341(10) 

N(7)–N(8)  1.349(9) N(8)–C(52)  1.345(11) 

C(52)–C(53)  1.395(11) C(53)–C(54)  1.377(11) 

C(53)–I(4)  2.071(7) C(55)–C(60)  1.371(12) 

C(55)–C(56)  1.389(12) C(56)–C(57)  1.385(13) 

C(57)–C(58)  1.366(14) C(58)–C(59)  1.384(14) 

C(59)–C(60)  1.376(12) C(61)–O(13)  1.228(9) 

C(61)–O(14)  1.264(9) O(13)–C(62X)  1.53(2) 

O(14)–C(62)  1.484(12)  

 

N(1)–C(1)–C(2) 118.8(7) N(1)–C(1)–C(3) 117.8(7) 

C(2)–C(1)–C(3) 61.2(5) C(7)–C(2)–C(1) 123.0(7) 

C(7)–C(2)–C(3) 122.6(6) C(1)–C(2)–C(3) 60.2(5) 

C(13)–C(3)–C(15) 117.0(7) C(13)–C(3)–C(1) 117.1(7) 

C(15)–C(3)–C(1) 116.3(7) C(13)–C(3)–C(2) 119.0(7) 

C(15)–C(3)–C(2) 116.0(6) C(1)–C(3)–C(2) 58.6(5) 

C(6)–N(1)–N(2) 111.6(7) C(6)–N(1)–C(1) 128.4(7) 

N(2)–N(1)–C(1) 119.8(7) C(4)–N(2)–N(1) 105.3(7) 

N(2)–C(4)–C(5) 111.1(8) C(6)–C(5)–C(4) 105.9(8) 

C(6)–C(5)–I(1) 125.9(6) C(4)–C(5)–I(1) 128.2(7) 

N(1)–C(6)–C(5) 106.1(7) C(8)–C(7)–C(12) 119.0(7) 

C(8)–C(7)–C(2) 123.5(7) C(12)–C(7)–C(2) 117.4(7) 

C(7)–C(8)–C(9) 119.4(8) C(10)–C(9)–C(8) 121.7(8) 

C(9)–C(10)–C(11) 119.6(8) C(12)–C(11)–C(10) 119.5(8) 

C(11)–C(12)–C(7) 120.8(8) O(1)–C(13)–O(2) 124.8(8) 

O(1)–C(13)–C(3) 125.7(8) O(2)–C(13)–C(3) 109.5(7) 

C(13)–O(2)–C(14) 115.5(8) O(3)–C(15)–O(4) 125.3(7) 

O(3)–C(15)–C(3) 124.7(7) O(4)–C(15)–C(3) 110.0(6) 
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C(15)–O(4)–C(16) 114.2(6) C(63)–O(16)–C(64) 116.0(7) 

N(3)–C(17)–C(18) 119.9(7) N(3)–C(17)–C(19) 118.1(7) 

C(18)–C(17)–C(19) 60.9(5) C(23)–C(18)–C(17) 123.3(7) 

C(23)–C(18)–C(19) 124.0(7) C(17)–C(18)–C(19) 60.1(5) 

C(29)–C(19)–C(31) 117.2(6) C(29)–C(19)–C(17) 118.0(6) 

C(31)–C(19)–C(17) 114.5(7) C(29)–C(19)–C(18) 119.8(7) 

C(31)–C(19)–C(18) 115.6(6) C(17)–C(19)–C(18) 59.0(5) 

N(4)–N(3)–C(22) 111.9(7) N(4)–N(3)–C(17) 119.5(6) 

C(22)–N(3)–C(17) 128.5(7) C(20)–N(4)–N(3) 105.4(7) 

N(4)–C(20)–C(21) 111.3(7) C(22)–C(21)–C(20) 105.0(7) 

C(22)–C(21)–I(2) 128.4(6) C(20)–C(21)–I(2) 126.5(6) 

N(3)–C(22)–C(21) 106.4(7) C(24)–C(23)–C(28) 118.4(7) 

C(24)–C(23)–C(18) 118.1(7) C(28)–C(23)–C(18) 123.5(7) 

C(25)–C(24)–C(23) 121.0(8) C(24)–C(25)–C(26) 119.9(8) 

C(27)–C(26)–C(25) 119.9(8) C(26)–C(27)–C(28) 120.2(8) 

C(27)–C(28)–C(23) 120.5(8) O(5)–C(29)–O(6) 124.7(8) 

O(5)–C(29)–C(19) 125.7(8) O(6)–C(29)–C(19) 109.6(6) 

C(29)–O(6)–C(30) 115.7(7) O(7)–C(31)–O(8) 125.1(7) 

O(7)–C(31)–C(19) 125.2(7) O(8)–C(31)–C(19) 109.6(7) 

C(31)–O(8)–C(32) 114.1(6) N(5)–C(33)–C(34) 119.4(7) 

N(5)–C(33)–C(35) 118.8(6) C(34)–C(33)–C(35) 60.5(5) 

C(33)–C(34)–C(39) 119.7(7) C(33)–C(34)–C(35) 60.3(5) 

C(39)–C(34)–C(35) 119.0(7) C(47)–C(35)–C(45) 113.9(7) 

C(47)–C(35)–C(33) 116.8(6) C(45)–C(35)–C(33) 121.7(7) 

C(47)–C(35)–C(34) 116.1(7) C(45)–C(35)–C(34) 118.4(7) 

C(33)–C(35)–C(34) 59.2(5) C(38)–N(5)–N(6) 112.0(6) 

C(38)–N(5)–C(33) 130.7(7) N(6)–N(5)–C(33) 117.3(6) 

C(36)–N(6)–N(5) 104.1(7) N(6)–C(36)–C(37) 112.2(8) 
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C(38)–C(37)–C(36) 105.1(7) C(38)–C(37)–I(3) 128.1(6) 

C(36)–C(37)–I(3) 126.7(6) N(5)–C(38)–C(37) 106.6(7) 

C(40)–C(39)–C(44) 119.4(8) C(40)–C(39)–C(34) 121.9(8) 

C(44)–C(39)–C(34) 118.6(8) C(39)–C(40)–C(41) 120.6(9) 

C(42)–C(41)–C(40) 119.5(10) C(41)–C(42)–C(43) 120.1(10) 

C(44)–C(43)–C(42) 120.8(11) C(43)–C(44)–C(39) 119.5(11) 

O(9)–C(45)–O(10) 125.3(8) O(9)–C(45)–C(35) 122.1(8) 

O(10)–C(45)–C(35) 112.5(7) C(45)–O(10)–C(46) 113.1(7) 

O(11)–C(47)–O(12) 124.8(8) O(11)–C(47)–C(35) 125.2(8) 

O(12)–C(47)–C(35) 110.0(7) C(47)–O(12)–C(48) 116.8(7) 

N(7)–C(49)–C(50) 119.1(7) N(7)–C(49)–C(51) 118.9(7) 

C(50)–C(49)–C(51) 60.7(5) C(49)–C(50)–C(55) 121.8(7) 

C(49)–C(50)–C(51) 60.7(5) C(55)–C(50)–C(51) 122.4(7) 

C(63)–C(51)–C(49) 116.4(7) C(63)–C(51)–C(50) 116.6(7) 

C(49)–C(51)–C(50) 58.6(5) C(63)–C(51)–C(61) 115.0(7) 

C(49)–C(51)–C(61) 120.5(7) C(50)–C(51)–C(61) 118.2(7) 

C(54)–N(7)–N(8) 112.6(6) C(54)–N(7)–C(49) 129.0(7) 

N(8)–N(7)–C(49) 118.4(6) C(52)–N(8)–N(7) 103.6(7) 

N(8)–C(52)–C(53) 112.3(7) C(54)–C(53)–C(52) 103.9(7) 

C(54)–C(53)–I(4) 128.2(6) C(52)–C(53)–I(4) 127.8(6) 

N(7)–C(54)–C(53) 107.5(7) C(60)–C(55)–C(56) 118.5(8) 

C(60)–C(55)–C(50) 119.3(8) C(56)–C(55)–C(50) 122.1(7) 

C(57)–C(56)–C(55) 120.0(8) C(58)–C(57)–C(56) 120.7(9) 

C(57)–C(58)–C(59) 119.7(9) C(60)–C(59)–C(58) 119.4(9) 

C(55)–C(60)–C(59) 121.8(9) O(13)–C(61)–O(14) 125.6(8) 

O(13)–C(61)–C(51) 119.0(7) O(14)–C(61)–C(51) 115.4(7) 

C(61)–O(13)–C(62X) 107.6(15) C(61)–O(14)–C(62) 111.8(8) 

O(15)–C(63)–O(16) 125.6(8) O(15)–C(63)–C(51) 124.5(8) 
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O(16)–C(63)–C(51) 109.9(7)  

 

Table 4. Hydrogen coordinates and isotropic displacement parameters (Å2) for sdrc27. 

 

      x       y       z       U 

 

H(1) 0.1524 0.1917 0.4582 0.030 

H(2) 0.1409 0.2135 0.6081 0.022 

H(4) 0.2969 0.3639 0.4485 0.040 

H(6) 0.0809 0.3037 0.5419 0.032 

H(8) 0.0743 0.1171 0.4682 0.031 

H(9)  −0.0330 0.0476 0.4787 0.034 

H(10)  −0.0878 0.0267 0.5860 0.038 

H(11)  −0.0451 0.0802 0.6855 0.033 

H(12) 0.0596 0.1509 0.6761 0.029 

H(14A) 0.2746 0.0187 0.5322 0.089 

H(14B) 0.3399 0.0153 0.6032 0.089 

H(14C) 0.3793 0.0372 0.5321 0.089 

H(16A) 0.4514 0.2708 0.5932 0.054 

H(16B) 0.5253 0.2279 0.5696 0.054 

H(16C) 0.4864 0.2233 0.6459 0.054 

H(17) 0.1965 0.1857 0.3442 0.027 

H(18) 0.2061 0.2059 0.1937 0.024 

H(20) 0.0485 0.3558 0.3541 0.035 

H(22) 0.2641 0.2978 0.2583 0.027 

H(24) 0.2893 0.1442 0.1266 0.027 

H(25) 0.3989 0.0763 0.1187 0.035 

H(26) 0.4479 0.0259 0.2190 0.040 
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H(27) 0.3903 0.0454 0.3271 0.036 

H(28) 0.2786 0.1126 0.3353 0.028 

H(30A) 0.0512 0.0139 0.2751 0.065 

H(30B)  −0.0165 0.0134 0.2052 0.065 

H(30C)  −0.0497 0.0385 0.2768 0.065 

H(32A)  −0.1031 0.2692 0.2254 0.047 

H(32B)  −0.1779 0.2229 0.2346 0.047 

H(32C)  −0.1297 0.2282 0.1619 0.047 

H(33) 0.6636 0.1868 0.1320 0.023 

H(34) 0.5587 0.0949 0.1825 0.030 

H(36) 0.6241 0.2851 0.3370 0.039 

H(38) 0.4809 0.1611 0.2475 0.026 

H(40) 0.5522 0.1631 0.0343 0.040 

H(41) 0.5367 0.1334  −0.0833 0.058 

H(42) 0.5805 0.0457  −0.1110 0.077 

H(43) 0.6349  −0.0134  −0.0218 0.084 

H(44) 0.6415 0.0137 0.0958 0.066 

H(46A) 0.9349 0.1179 0.0945 0.074 

H(46B) 0.8920 0.1538 0.0303 0.074 

H(46C) 0.8661 0.0909 0.0354 0.074 

H(48A) 0.7686 0.1133 0.3965 0.080 

H(48B) 0.8753 0.1097 0.3842 0.080 

H(48C) 0.8124 0.0568 0.3744 0.080 

H(49) 0.6882 0.1894 0.6738 0.027 

H(50) 0.7922 0.1000 0.6195 0.025 

H(52) 0.7213 0.2860 0.4655 0.039 

H(54) 0.8646 0.1634 0.5564 0.024 

H(56) 0.7739 0.1707 0.7720 0.037 
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H(57) 0.8099 0.1407 0.8869 0.053 

H(58) 0.8216 0.0489 0.9116 0.057 

H(59) 0.8013  −0.0143 0.8198 0.043 

H(60) 0.7668 0.0157 0.7054 0.037 

H(62A) 0.4186 0.1133 0.7107 0.080 

H(62B) 0.4520 0.1530 0.7740 0.080 

H(62C) 0.4852 0.0910 0.7747 0.080 

H(62D) 0.4245 0.0203 0.6997 0.049 

H(62E) 0.4117 0.0847 0.6931 0.049 

H(62F) 0.4813 0.0598 0.7534 0.049 

H(64A) 0.5579 0.1240 0.4132 0.079 

H(64B) 0.4620 0.0982 0.4312 0.079 

H(64C) 0.5509 0.0606 0.4307 0.079 

 

Table 5. Torsion angles [°] for sdrc27. 

 

N(1)–C(1)–C(2)–C(7) 140.6(7) C(3)–C(1)–C(2)–C(7)  −111.6(8) 

N(1)–C(1)–C(2)–C(3)  −107.7(8) N(1)–C(1)–C(3)–C(13)  −141.5(7) 

C(2)–C(1)–C(3)–C(13) 109.1(8) N(1)–C(1)–C(3)–C(15) 3.6(10) 

C(2)–C(1)–C(3)–C(15)  −105.8(7) N(1)–C(1)–C(3)–C(2) 109.4(8) 

C(7)–C(2)–C(3)–C(13) 6.5(11) C(1)–C(2)–C(3)–C(13)  −105.7(8) 

C(7)–C(2)–C(3)–C(15)  −141.6(7) C(1)–C(2)–C(3)–C(15) 106.2(7) 

C(7)–C(2)–C(3)–C(1) 112.2(8) C(2)–C(1)–N(1)–C(6)  −46.3(11) 

C(3)–C(1)–N(1)–C(6)  −116.9(9) C(2)–C(1)–N(1)–N(2) 138.4(7) 

C(3)–C(1)–N(1)–N(2) 67.8(9) C(6)–N(1)–N(2)–C(4)  −0.4(9) 

C(1)–N(1)–N(2)–C(4) 175.6(7) N(1)–N(2)–C(4)–C(5) 0.8(10) 

N(2)–C(4)–C(5)–C(6)  −0.9(10) N(2)–C(4)–C(5)–I(1)  −178.0(6) 

N(2)–N(1)–C(6)–C(5)  −0.1(9) C(1)–N(1)–C(6)–C(5)  −175.8(8) 
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C(4)–C(5)–C(6)–N(1) 0.6(9) I(1)–C(5)–C(6)–N(1) 177.8(6) 

C(1)–C(2)–C(7)–C(8) 14.0(11) C(3)–C(2)–C(7)–C(8)  −59.2(10) 

C(1)–C(2)–C(7)–C(12)  −168.3(7) C(3)–C(2)–C(7)–C(12) 118.4(8) 

C(12)–C(7)–C(8)–C(9) 0.8(11) C(2)–C(7)–C(8)–C(9) 178.5(7) 

C(7)–C(8)–C(9)–C(10)  −2.0(13) C(8)–C(9)–C(10)–C(11) 2.4(13) 

C(9)–C(10)–C(11)–C(12)  −1.7(12) C(10)–C(11)–C(12)–C(7) 0.6(12) 

C(8)–C(7)–C(12)–C(11)  −0.2(11) C(2)–C(7)–C(12)–C(11)  −177.9(7) 

C(15)–C(3)–C(13)–O(1)  −121.3(9) C(1)–C(3)–C(13)–O(1) 23.5(12) 

C(2)–C(3)–C(13)–O(1) 90.9(10) C(15)–C(3)–C(13)–O(2) 58.3(9) 

C(1)–C(3)–C(13)–O(2)  −156.8(7) C(2)–C(3)–C(13)–O(2)  −89.4(8) 

O(1)–C(13)–O(2)–C(14)  −1.7(13) C(3)–C(13)–O(2)–C(14) 178.6(8) 

C(13)–C(3)–C(15)–O(3)  −149.8(8) C(1)–C(3)–C(15)–O(3) 65.1(10) 

C(2)–C(3)–C(15)–O(3)  −1.0(11) C(13)–C(3)–C(15)–O(4) 33.3(9) 

C(1)–C(3)–C(15)–O(4)  −111.8(7) C(2)–C(3)–C(15)–O(4)  −178.0(6) 

O(3)–C(15)–O(4)–C(16)  −6.2(12) C(3)–C(15)–O(4)–C(16) 170.7(7) 

N(3)–C(17)–C(18)–C(23) 139.2(7) C(19)–C(17)–C(18)–C(23)  −113.3(8) 

N(3)–C(17)–C(18)–C(19)  −107.5(8) N(3)–C(17)–C(19)–C(29)  −139.8(7) 

C(18)–C(17)–C(19)–C(29) 109.7(8) N(3)–C(17)–C(19)–C(31) 4.2(9) 

C(18)–C(17)–C(19)–C(31)  −106.3(7) N(3)–C(17)–C(19)–C(18) 110.5(7) 

C(23)–C(18)–C(19)–C(29) 5.5(11) C(17)–C(18)–C(19)–C(29)  −106.6(8) 

C(23)–C(18)–C(19)–C(31)  −143.6(7) C(17)–C(18)–C(19)–C(31) 104.3(8) 

C(23)–C(18)–C(19)–C(17) 112.1(8) C(18)–C(17)–N(3)–N(4) 139.2(7) 

C(19)–C(17)–N(3)–N(4) 68.5(9) C(18)–C(17)–N(3)–C(22)  −45.3(11) 

C(19)–C(17)–N(3)–C(22)  −116.1(8) C(22)–N(3)–N(4)–C(20) 0.5(9) 

C(17)–N(3)–N(4)–C(20) 176.6(7) N(3)–N(4)–C(20)–C(21) 0.0(9) 

N(4)–C(20)–C(21)–C(22)  −0.4(10) N(4)–C(20)–C(21)–I(2)  −177.9(6) 

N(4)–N(3)–C(22)–C(21)  −0.8(9) C(17)–N(3)–C(22)–C(21)  −176.5(7) 

C(20)–C(21)–C(22)–N(3) 0.7(9) I(2)–C(21)–C(22)–N(3) 178.1(6) 
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C(17)–C(18)–C(23)–C(24)  −166.6(7) C(19)–C(18)–C(23)–C(24) 119.4(8) 

C(17)–C(18)–C(23)–C(28) 13.8(11) C(19)–C(18)–C(23)–C(28)  −60.2(10) 

C(28)–C(23)–C(24)–C(25) 0.3(11) C(18)–C(23)–C(24)–C(25)  −179.4(7) 

C(23)–C(24)–C(25)–C(26) 0.1(12) C(24)–C(25)–C(26)–C(27)  −0.9(13) 

C(25)–C(26)–C(27)–C(28) 1.4(13) C(26)–C(27)–C(28)–C(23)  −1.0(12) 

C(24)–C(23)–C(28)–C(27) 0.2(11) C(18)–C(23)–C(28)–C(27) 179.8(7) 

C(31)–C(19)–C(29)–O(5)  −127.6(9) C(17)–C(19)–C(29)–O(5) 15.4(12) 

C(18)–C(19)–C(29)–O(5) 83.8(11) C(31)–C(19)–C(29)–O(6) 51.4(9) 

C(17)–C(19)–C(29)–O(6)  −165.6(7) C(18)–C(19)–C(29)–O(6)  −97.2(8) 

O(5)–C(29)–O(6)–C(30) 1.9(12) C(19)–C(29)–O(6)–C(30)  −177.1(7) 

C(29)–C(19)–C(31)–O(7)  −146.7(8) C(17)–C(19)–C(31)–O(7) 69.0(10) 

C(18)–C(19)–C(31)–O(7) 3.2(11) C(29)–C(19)–C(31)–O(8) 36.4(9) 

C(17)–C(19)–C(31)–O(8)  −107.9(7) C(18)–C(19)–C(31)–O(8)  −173.7(6) 

O(7)–C(31)–O(8)–C(32)  −7.6(11) C(19)–C(31)–O(8)–C(32) 169.3(6) 

N(5)–C(33)–C(34)–C(39) 143.1(7) C(35)–C(33)–C(34)–C(39)  −108.5(8) 

N(5)–C(33)–C(34)–C(35)  −108.4(8) N(5)–C(33)–C(35)–C(47) 3.6(10) 

C(34)–C(33)–C(35)–C(47)  −105.8(8) N(5)–C(33)–C(35)–C(45)  −144.2(7) 

C(34)–C(33)–C(35)–C(45) 106.3(8) N(5)–C(33)–C(35)–C(34) 109.5(8) 

C(33)–C(34)–C(35)–C(47) 107.0(8) C(39)–C(34)–C(35)–C(47)  −143.3(8) 

C(33)–C(34)–C(35)–C(45)  −111.9(8) C(39)–C(34)–C(35)–C(45)  −2.2(12) 

C(39)–C(34)–C(35)–C(33) 109.7(8) C(34)–C(33)–N(5)–C(38)  −17.8(12) 

C(35)–C(33)–N(5)–C(38)  −88.2(10) C(34)–C(33)–N(5)–N(6) 161.2(7) 

C(35)–C(33)–N(5)–N(6) 90.8(9) C(38)–N(5)–N(6)–C(36)  −0.8(10) 

C(33)–N(5)–N(6)–C(36)  −180.0(7) N(5)–N(6)–C(36)–C(37) 1.6(10) 

N(6)–C(36)–C(37)–C(38)  −1.7(11) N(6)–C(36)–C(37)–I(3)  −178.4(6) 

N(6)–N(5)–C(38)–C(37)  −0.2(9) C(33)–N(5)–C(38)–C(37) 178.8(7) 

C(36)–C(37)–C(38)–N(5) 1.1(9) I(3)–C(37)–C(38)–N(5) 177.8(5) 

C(33)–C(34)–C(39)–C(40)  −40.6(11) C(35)–C(34)–C(39)–C(40)  −111.0(10) 
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C(33)–C(34)–C(39)–C(44) 139.3(9) C(35)–C(34)–C(39)–C(44) 68.8(12) 

C(44)–C(39)–C(40)–C(41) 0.7(14) C(34)–C(39)–C(40)–C(41)  −179.5(9) 

C(39)–C(40)–C(41)–C(42)  −2.1(16) C(40)–C(41)–C(42)–C(43) 1.2(19) 

C(41)–C(42)–C(43)–C(44) 1(2) C(42)–C(43)–C(44)–C(39)  −2(2) 

C(40)–C(39)–C(44)–C(43) 1.6(17) C(34)–C(39)–C(44)–C(43)  −178.3(11) 

C(47)–C(35)–C(45)–O(9) 40.9(11) C(33)–C(35)–C(45)–O(9)  −170.4(8) 

C(34)–C(35)–C(45)–O(9)  −101.0(10) C(47)–C(35)–C(45)–O(10)  −142.1(7) 

C(33)–C(35)–C(45)–O(10) 6.5(10) C(34)–C(35)–C(45)–O(10) 76.0(9) 

O(9)–C(45)–O(10)–C(46)  −1.5(12) C(35)–C(45)–O(10)–C(46)  −178.3(7) 

C(45)–C(35)–C(47)–O(11)  −136.3(9) C(33)–C(35)–C(47)–O(11) 73.4(11) 

C(34)–C(35)–C(47)–O(11) 6.5(12) C(45)–C(35)–C(47)–O(12) 44.3(9) 

C(33)–C(35)–C(47)–O(12)  −105.9(8) C(34)–C(35)–C(47)–O(12)  −172.9(7) 

O(11)–C(47)–O(12)–C(48) 0.2(14) C(35)–C(47)–O(12)–C(48) 179.5(8) 

N(7)–C(49)–C(50)–C(55) 139.2(7) C(51)–C(49)–C(50)–C(55)  −112.0(8) 

N(7)–C(49)–C(50)–C(51)  −108.7(8) N(7)–C(49)–C(51)–C(63) 2.7(10) 

C(50)–C(49)–C(51)–C(63)  −106.5(8) N(7)–C(49)–C(51)–C(50) 109.1(8) 

N(7)–C(49)–C(51)–C(61)  −144.4(7) C(50)–C(49)–C(51)–C(61) 106.5(8) 

C(49)–C(50)–C(51)–C(63) 106.0(8) C(55)–C(50)–C(51)–C(63)  −142.9(8) 

C(55)–C(50)–C(51)–C(49) 111.0(8) C(49)–C(50)–C(51)–C(61)  −110.3(8) 

C(55)–C(50)–C(51)–C(61) 0.7(11) C(50)–C(49)–N(7)–C(54)  −18.2(12) 

C(51)–C(49)–N(7)–C(54)  −88.8(10) C(50)–C(49)–N(7)–N(8) 161.2(7) 

C(51)–C(49)–N(7)–N(8) 90.6(9) C(54)–N(7)–N(8)–C(52)  −1.4(10) 

C(49)–N(7)–N(8)–C(52) 179.1(7) N(7)–N(8)–C(52)–C(53) 1.2(11) 

N(8)–C(52)–C(53)–C(54)  −0.6(11) N(8)–C(52)–C(53)–I(4) 179.8(6) 

N(8)–N(7)–C(54)–C(53) 1.0(9) C(49)–N(7)–C(54)–C(53)  −179.5(7) 

C(52)–C(53)–C(54)–N(7)  −0.2(9) I(4)–C(53)–C(54)–N(7) 179.3(5) 

C(49)–C(50)–C(55)–C(60) 160.1(7) C(51)–C(50)–C(55)–C(60) 86.9(10) 

C(49)–C(50)–C(55)–C(56)  −23.0(11) C(51)–C(50)–C(55)–C(56)  −96.2(10) 
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C(60)–C(55)–C(56)–C(57)  −0.8(13) C(50)–C(55)–C(56)–C(57)  −177.7(8) 

C(55)–C(56)–C(57)–C(58)  −0.2(16) C(56)–C(57)–C(58)–C(59) 1.0(17) 

C(57)–C(58)–C(59)–C(60)  −0.7(16) C(56)–C(55)–C(60)–C(59) 1.1(13) 

C(50)–C(55)–C(60)–C(59) 178.1(8) C(58)–C(59)–C(60)–C(55)  −0.4(14) 

C(63)–C(51)–C(61)–O(13) 42.0(11) C(49)–C(51)–C(61)–O(13)  −170.5(8) 

C(50)–C(51)–C(61)–O(13)  −102.2(10) C(63)–C(51)–C(61)–O(14)  −140.0(8) 

C(49)–C(51)–C(61)–O(14) 7.5(12) C(50)–C(51)–C(61)–O(14) 75.8(10) 

O(14)–C(61)–O(13)–C(62X) 3.1(18) C(51)–C(61)–O(13)–C(62X)  179.2(15) 

O(13)–C(61)–O(14)–C(62)  −5.0(15) C(51)–C(61)–O(14)–C(62) 177.2(9) 

C(64)–O(16)–C(63)–O(15)  −2.7(13) C(64)–O(16)–C(63)–C(51) 176.6(8) 

C(49)–C(51)–C(63)–O(15) 70.0(11) C(50)–C(51)–C(63)–O(15) 3.7(12) 

C(61)–C(51)–C(63)–O(15)  −141.1(9) C(49)–C(51)–C(63)–O(16)  −109.2(8) 

C(50)–C(51)–C(63)–O(16)  −175.6(7) C(61)–C(51)–C(63)–O(16) 39.6(10) 
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6.4. Appendix IV: X-Ray crystallographic data for 187a 
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Table 1. Crystal data and structure refinement for sdrc29. 

 

Identification code  sdrc29 

Chemical formula  C16H14IN3O6 

Formula weight  471.20 

Temperature  150(2) K 

Radiation, wavelength  MoK, 0.71073 Å 

Crystal system, space group  monoclinic, I2/a 

Unit cell parameters a = 20.177(10) Å  = 90° 

 b = 7.744(4) Å  = 93.667(4)° 

 c = 22.960(17) Å  = 90° 

Cell volume 3580(4) Å3 

Z 8 

Calculated density  1.748 g/cm3 

Absorption coefficient  1.827 mm−1 

F(000) 1856 

Crystal colour and size colourless, 0.26 × 0.25 × 0.13 mm3 

Reflections for cell refinement 2779 ( range 2.60 to 26.18°) 

Data collection method Bruker APEX 2 CCD diffractometer 

  rotation with narrow frames 

 range for data collection 1.78 to 25.00° 

Index ranges h −23 to 23, k −8 to 9, l −27 to 26 

Completeness to  = 25.00° 97.1 %  

Intensity decay 0% 

Reflections collected 7713 

Independent reflections 3058 (Rint = 0.0454) 

Reflections with F2>2 2335 
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Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.648 and 0.797 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0913, 188.9837 

Data / restraints / parameters 3058 / 0 / 237 

Final R indices [F2>2] R1 = 0.0955, wR2 = 0.2297 

R indices (all data) R1 = 0.1158, wR2 = 0.2419 

Goodness-of-fit on F2 1.097 

Largest and mean shift/su 0.001 and 0.000 

Largest diff. peak and hole 5.287 and −2.201 e Å−3 

 

Table 2. Atomic coordinates and equivalent isotropic displacement parameters (Å2) 

for sdrc29. Ueq is defined as one third of the trace of the orthogonalized Uij tensor. 

 

      x      y      z      Ueq 

 

N(1) 0.4221(5) 0.8163(13) 0.4617(4) 0.030(2) 

N(2) 0.3643(6) 0.8606(16) 0.4857(5) 0.041(3) 

C(1) 0.3208(7) 0.876(2) 0.4404(6) 0.045(4) 

C(2) 0.3501(7) 0.8395(17) 0.3873(5) 0.032(3) 

I(1) 0.31074(5) 0.84474(13) 0.30275(4) 0.0428(4) 

C(3) 0.4155(6) 0.8049(16) 0.4036(5) 0.030(3) 

C(4) 0.4830(6) 0.7792(15) 0.4936(6) 0.029(3) 

C(5) 0.4925(6) 0.7379(16) 0.5494(5) 0.025(3) 

C(6) 0.4381(6) 0.7248(15) 0.5912(5) 0.023(2) 

C(7) 0.4462(6) 0.5720(16) 0.6309(5) 0.026(3) 

O(1) 0.4552(4) 0.4278(11) 0.6144(4) 0.031(2) 
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O(2) 0.4499(5) 0.6168(11) 0.6873(4) 0.038(2) 

C(8) 0.4624(10) 0.475(2) 0.7282(6) 0.058(5) 

C(9) 0.4265(6) 0.8972(16) 0.6218(5) 0.029(3) 

O(3) 0.4678(5) 0.9969(11) 0.6334(5) 0.042(2) 

O(4) 0.3642(5) 0.9134(13) 0.6342(5) 0.052(3) 

C(10) 0.3480(10) 1.076(2) 0.6611(12) 0.087(8) 

C(11) 0.5622(6) 0.6981(16) 0.5706(5) 0.025(3) 

C(12) 0.5860(6) 0.7247(17) 0.6284(5) 0.029(3) 

C(13) 0.6499(7) 0.6817(16) 0.6471(6) 0.034(3) 

C(14) 0.6907(6) 0.6042(16) 0.6072(6) 0.029(3) 

C(15) 0.6690(6) 0.5752(17) 0.5503(6) 0.031(3) 

C(16) 0.6049(6) 0.6176(16) 0.5324(6) 0.030(3) 

N(3) 0.7582(5) 0.5541(16) 0.6278(6) 0.039(3) 

O(5) 0.7936(5) 0.4876(15) 0.5928(5) 0.053(3) 

O(6) 0.7768(5) 0.5811(14) 0.6788(4) 0.046(3) 

 

Table 3. Bond lengths [Å] and angles [°] for sdrc29. 

 

N(1)–C(3)  1.335(16) N(1)–N(2)  1.364(15) 

N(1)–C(4)  1.419(16) N(2)–C(1)  1.323(18) 

C(1)–C(2)  1.42(2) C(2)–C(3)  1.375(18) 

C(2)–I(1)  2.051(13) C(4)–C(5)  1.322(18) 

C(5)–C(11)  1.490(16) C(5)–C(6)  1.507(16) 

C(6)–C(7)  1.497(16) C(6)–C(9)  1.534(17) 

C(7)–O(1)  1.197(15) C(7)–O(2)  1.337(14) 

O(2)–C(8)  1.455(16) C(9)–O(3)  1.154(15) 

C(9)–O(4)  1.314(16) O(4)–C(10)  1.450(18) 

C(11)–C(12)  1.397(17) C(11)–C(16)  1.413(18) 
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C(12)–C(13)  1.374(18) C(13)–C(14)  1.404(19) 

C(14)–C(15)  1.369(18) C(14)–N(3)  1.465(16) 

C(15)–C(16)  1.371(17) N(3)–O(5)  1.223(16) 

N(3)–O(6)  1.224(15)  

 

C(3)–N(1)–N(2) 112.8(10) C(3)–N(1)–C(4) 121.9(11) 

N(2)–N(1)–C(4) 125.3(11) C(1)–N(2)–N(1) 104.3(11) 

N(2)–C(1)–C(2) 111.5(13) C(3)–C(2)–C(1) 104.6(11) 

C(3)–C(2)–I(1) 124.6(10) C(1)–C(2)–I(1) 130.7(10) 

N(1)–C(3)–C(2) 106.9(11) C(5)–C(4)–N(1) 128.0(12) 

C(4)–C(5)–C(11) 116.3(11) C(4)–C(5)–C(6) 124.5(11) 

C(11)–C(5)–C(6) 119.2(10) C(7)–C(6)–C(5) 112.8(10) 

C(7)–C(6)–C(9) 115.0(10) C(5)–C(6)–C(9) 111.9(10) 

O(1)–C(7)–O(2) 123.2(11) O(1)–C(7)–C(6) 123.9(10) 

O(2)–C(7)–C(6) 112.5(11) C(7)–O(2)–C(8) 115.2(10) 

O(3)–C(9)–O(4) 124.9(12) O(3)–C(9)–C(6) 124.0(12) 

O(4)–C(9)–C(6) 111.1(11) C(9)–O(4)–C(10) 114.8(12) 

C(12)–C(11)–C(16) 117.9(11) C(12)–C(11)–C(5) 122.7(11) 

C(16)–C(11)–C(5) 119.3(11) C(13)–C(12)–C(11) 121.3(12) 

C(12)–C(13)–C(14) 118.6(12) C(15)–C(14)–C(13) 121.8(12) 

C(15)–C(14)–N(3) 119.9(12) C(13)–C(14)–N(3) 118.3(12) 

C(14)–C(15)–C(16) 119.0(12) C(15)–C(16)–C(11) 121.4(12) 

O(5)–N(3)–O(6) 123.0(11) O(5)–N(3)–C(14) 118.0(12) 

O(6)–N(3)–C(14) 119.0(12)  

 

Table 5. Hydrogen coordinates and isotropic displacement parameters (Å2) for sdrc29. 
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      x       y       z       U 

H(1) 0.2755 0.9067 0.4431 0.054 

H(3) 0.4495 0.7781 0.3784 0.036 

H(4) 0.5217 0.7848 0.4722 0.035 

H(6) 0.3966 0.7023 0.5662 0.028 

H(8A) 0.4985 0.4031 0.7151 0.087 

H(8B) 0.4221 0.4055 0.7300 0.087 

H(8C) 0.4750 0.5219 0.7670 0.087 

H(10A) 0.3565 1.1712 0.6344 0.131 

H(10B) 0.3756 1.0909 0.6974 0.131 

H(10C) 0.3011 1.0764 0.6697 0.131 

H(12) 0.5574 0.7735 0.6553 0.035 

H(13) 0.6661 0.7039 0.6861 0.040 

H(15) 0.6979 0.5264 0.5237 0.037 

H(16) 0.5889 0.5923 0.4936 0.036 

 

Table 6. Torsion angles [°] for sdrc29. 

C(3)–N(1)–N(2)–C(1) 0.4(15) C(4)–N(1)–N(2)–C(1)  −177.4(12) 

N(1)–N(2)–C(1)–C(2) 0.6(17) N(2)–C(1)–C(2)–C(3)  −1.3(17) 

N(2)–C(1)–C(2)–I(1)  −178.5(10) N(2)–N(1)–C(3)–C(2)  −1.3(15) 

C(4)–N(1)–C(3)–C(2) 176.7(11) C(1)–C(2)–C(3)–N(1) 1.5(15) 

I(1)–C(2)–C(3)–N(1) 178.9(9) C(3)–N(1)–C(4)–C(5)  −159.2(13) 

N(2)–N(1)–C(4)–C(5) 18(2) N(1)–C(4)–C(5)–C(11) 177.4(11) 

N(1)–C(4)–C(5)–C(6)  −1(2) C(4)–C(5)–C(6)–C(7) 138.2(12) 

C(11)–C(5)–C(6)–C(7)  −40.2(15) C(4)–C(5)–C(6)–C(9)  −90.4(14) 

C(11)–C(5)–C(6)–C(9) 91.2(13) C(5)–C(6)–C(7)–O(1)  −50.6(16) 

C(9)–C(6)–C(7)–O(1) 179.5(12) C(5)–C(6)–C(7)–O(2) 122.1(11) 

C(9)–C(6)–C(7)–O(2)  −7.8(15) O(1)–C(7)–O(2)–C(8)  −3.2(19) 



245 
 

C(6)–C(7)–O(2)–C(8)  −175.9(12) C(7)–C(6)–C(9)–O(3) 97.9(15) 

C(5)–C(6)–C(9)–O(3)  −32.4(17) C(7)–C(6)–C(9)–O(4)  −80.4(13) 

C(5)–C(6)–C(9)–O(4) 149.3(11) O(3)–C(9)–O(4)–C(10) 4(2) 

C(6)–C(9)–O(4)–C(10)  −177.6(15) C(4)–C(5)–C(11)–C(12) 151.7(12) 

C(6)–C(5)–C(11)–C(12)  −29.7(17) C(4)–C(5)–C(11)–C(16)  −33.4(17) 

C(6)–C(5)–C(11)–C(16) 145.2(11) C(16)–C(11)–C(12)–C(13) 3.0(19) 

C(5)–C(11)–C(12)–C(13) 178.0(12) C(11)–C(12)–C(13)–C(14)  −2.2(19) 

C(12)–C(13)–C(14)–C(15) 1.8(19) C(12)–C(13)–C(14)–N(3)  −178.3(12) 

C(13)–C(14)–C(15)–C(16)  −2.3(19) N(3)–C(14)–C(15)–C(16) 177.8(11) 

C(14)–C(15)–C(16)–C(11) 3.2(19) C(12)–C(11)–C(16)–C(15)  −3.5(18) 

C(5)–C(11)–C(16)–C(15)  −178.7(11) C(15)–C(14)–N(3)–O(5) 0.4(19) 

C(13)–C(14)–N(3)–O(5)  −179.6(12) C(15)–C(14)–N(3)–O(6) 180.0(12) 

C(13)–C(14)–N(3)–O(6) 0.0(18)  
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6.5. Appendix V: X-Ray crystallographic data for 191e 
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Table 1. Crystal data and structure refinement for sdrc37. 

 

Identification code  sdrc37 

Chemical formula  C19H18N2O7 

Formula weight  386.35 

Temperature  150(2) K 

Radiation, wavelength  MoK, 0.71073 Å 

Crystal system, space group  triclinic, P1 

Unit cell parameters a = 7.9396(4) Å  = 78.8916(8)° 

 b = 8.0836(4) Å  = 86.8382(8)° 

 c = 16.8025(9) Å  = 60.6970(7)° 

Cell volume 921.82(8) Å3 

Z 2 

Calculated density  1.392 g/cm3 

Absorption coefficient  0.108 mm−1 

F(000) 404 

Crystal colour and size orange, 0.95 × 0.43 × 0.23 mm3 

Reflections for cell refinement 6027 ( range 2.47 to 29.65°) 

Data collection method Bruker APEX 2 CCD diffractometer 

  rotation with narrow frames 

 range for data collection 2.47 to 29.65° 

Index ranges h −11 to 11, k −11 to 11, l −23 to 23 

Completeness to  = 29.65° 99.0 %  

Intensity decay 0% 

Reflections collected 13713 

Independent reflections 5164 (Rint = 0.0193) 

Reflections with F2>2 4248 
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Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.905 and 0.976 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0758, 0.2359 

Data / restraints / parameters 5164 / 0 / 261 

Final R indices [F2>2] R1 = 0.0467, wR2 = 0.1266 

R indices (all data) R1 = 0.0565, wR2 = 0.1349 

Goodness-of-fit on F2 1.036 

Largest and mean shift/su 0.000 and 0.000 

Largest diff. peak and hole 0.409 and −0.169 e Å−3 

 

Table 2. Atomic coordinates and equivalent isotropic displacement parameters (Å2) 

for sdrc37. Ueq is defined as one third of the trace of the orthogonalized Uij tensor. 

 

      x      y      z      Ueq 

 

C(1) 0.32157(16) 0.09858(16) 0.25058(7) 0.0217(2) 

C(2) 0.12835(17) 0.27601(17) 0.21913(7) 0.0244(2) 

C(3) 0.15939(16) 0.19961(17) 0.30806(7) 0.0236(2) 

C(4) 0.49115(17) 0.13391(16) 0.24781(7) 0.0234(2) 

O(1) 0.50771(16) 0.25212(16) 0.19778(6) 0.0402(3) 

O(2) 0.61662(13) 0.02262(14) 0.30981(6) 0.0326(2) 

C(5) 0.7783(2) 0.0564(2) 0.31643(9) 0.0368(3) 

C(6) 0.35513(17)  −0.09286(16) 0.23845(7) 0.0238(2) 

O(3) 0.23954(14)  −0.14975(13) 0.25334(6) 0.0318(2) 

O(4) 0.52547(13)  −0.19034(12) 0.20684(6) 0.0292(2) 

C(7) 0.5713(2)  −0.38115(19) 0.19481(9) 0.0373(3) 
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O(5)  −0.00764(12) 0.25421(13) 0.18023(5) 0.02768(19) 

C(8) 0.01585(17) 0.24737(17) 0.09776(7) 0.0251(2) 

C(9) 0.17887(19) 0.2294(2) 0.05716(8) 0.0306(3) 

C(10) 0.1894(2) 0.2174(2)  −0.02492(8) 0.0333(3) 

C(11) 0.0372(2) 0.22738(18)  −0.06697(8) 0.0299(3) 

C(12)  −0.1258(2) 0.2474(2)  −0.02445(8) 0.0331(3) 

C(13)  −0.13726(19) 0.25662(19) 0.05715(8) 0.0296(3) 

N(1) 0.0441(2) 0.2251(2)  −0.15036(7) 0.0376(3) 

C(14) 0.19059(16) 0.29727(17) 0.36781(7) 0.0235(2) 

C(15) 0.1830(2) 0.47546(19) 0.34543(8) 0.0309(3) 

C(16) 0.2158(2) 0.56046(19) 0.40291(8) 0.0324(3) 

C(17) 0.25430(19) 0.4651(2) 0.48245(8) 0.0298(3) 

C(18) 0.2658(2) 0.2865(2) 0.50712(8) 0.0344(3) 

C(19) 0.2329(2) 0.20356(19) 0.44898(8) 0.0312(3) 

N(2) 0.2838(2) 0.5583(2) 0.54326(8) 0.0404(3) 

O(6) 0.2663(2) 0.7184(2) 0.52128(8) 0.0609(4) 

O(7) 0.3239(2) 0.4712(2) 0.61339(7) 0.0649(4) 

 

Table 3. Bond lengths [Å] and angles [°] for sdrc37. 

 

C(1)–C(6)  1.4898(15) C(1)–C(4)  1.5036(15) 

C(1)–C(2)  1.5275(16) C(1)–C(3)  1.5476(16) 

C(2)–O(5)  1.3902(14) C(2)–C(3)  1.4869(16) 

C(3)–C(14)  1.4889(16) C(4)–O(1)  1.1993(15) 

C(4)–O(2)  1.3277(15) O(2)–C(5)  1.4509(15) 

C(6)–O(3)  1.2083(15) C(6)–O(4)  1.3307(15) 

O(4)–C(7)  1.4542(15) O(5)–C(8)  1.3960(14) 

C(8)–C(9)  1.3851(18) C(8)–C(13)  1.3899(17) 
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C(9)–C(10)  1.3961(18) C(10)–C(11)  1.3940(19) 

C(11)–C(12)  1.396(2) C(11)–N(1)  1.4025(17) 

C(12)–C(13)  1.3829(18) C(14)–C(15)  1.3889(17) 

C(14)–C(19)  1.3965(17) C(15)–C(16)  1.3897(18) 

C(16)–C(17)  1.3751(19) C(17)–C(18)  1.3815(19) 

C(17)–N(2)  1.4706(17) C(18)–C(19)  1.3874(18) 

N(2)–O(6)  1.2150(18) N(2)–O(7)  1.2198(18) 

 

C(6)–C(1)–C(4) 118.52(10) C(6)–C(1)–C(2) 117.79(10) 

C(4)–C(1)–C(2) 115.20(9) C(6)–C(1)–C(3) 116.07(9) 

C(4)–C(1)–C(3) 117.27(9) C(2)–C(1)–C(3) 57.83(7) 

O(5)–C(2)–C(3) 115.80(10) O(5)–C(2)–C(1) 119.56(10) 

C(3)–C(2)–C(1) 61.77(8) C(2)–C(3)–C(14) 123.94(10) 

C(2)–C(3)–C(1) 60.41(7) C(14)–C(3)–C(1) 119.76(9) 

O(1)–C(4)–O(2) 124.31(11) O(1)–C(4)–C(1) 124.42(11) 

O(2)–C(4)–C(1) 111.22(10) C(4)–O(2)–C(5) 115.60(10) 

O(3)–C(6)–O(4) 124.36(11) O(3)–C(6)–C(1) 124.09(11) 

O(4)–C(6)–C(1) 111.52(10) C(6)–O(4)–C(7) 114.96(10) 

C(2)–O(5)–C(8) 116.21(9) C(9)–C(8)–C(13) 120.55(11) 

C(9)–C(8)–O(5) 124.19(11) C(13)–C(8)–O(5) 115.25(11) 

C(8)–C(9)–C(10) 119.27(12) C(11)–C(10)–C(9) 121.15(13) 

C(10)–C(11)–C(12) 118.11(12) C(10)–C(11)–N(1) 120.99(13) 

C(12)–C(11)–N(1) 120.85(12) C(13)–C(12)–C(11) 121.44(12) 

C(12)–C(13)–C(8) 119.47(12) C(15)–C(14)–C(19) 119.09(11) 

C(15)–C(14)–C(3) 122.44(11) C(19)–C(14)–C(3) 118.46(11) 

C(14)–C(15)–C(16) 120.65(12) C(17)–C(16)–C(15) 118.58(12) 

C(16)–C(17)–C(18) 122.64(12) C(16)–C(17)–N(2) 118.27(12) 

C(18)–C(17)–N(2) 119.09(12) C(17)–C(18)–C(19) 118.05(12) 
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C(18)–C(19)–C(14) 120.97(12) O(6)–N(2)–O(7) 123.30(13) 

O(6)–N(2)–C(17) 118.43(13) O(7)–N(2)–C(17) 118.28(13) 

 

Table 4. Hydrogen coordinates and isotropic displacement parameters (Å2) for sdrc37. 

 

      x       y       z       U 

H(2) 0.1308 0.3998 0.2000 0.029 

H(3) 0.0886 0.1277 0.3295 0.028 

H(5A) 0.8428 0.0495 0.2648 0.055 

H(5B) 0.8702  −0.0422 0.3596 0.055 

H(5C) 0.7310 0.1847 0.3294 0.055 

H(7A) 0.5589  −0.4558 0.2459 0.056 

H(7B) 0.7042  −0.4480 0.1773 0.056 

H(7C) 0.4819  −0.3683 0.1531 0.056 

H(9) 0.2824 0.2252 0.0849 0.037 

H(10) 0.3022 0.2023  −0.0526 0.040 

H(12)  −0.2311 0.2549  −0.0522 0.040 

H(13)  −0.2489 0.2692 0.0852 0.036 

H(1A)  −0.026(3) 0.174(3)  −0.1629(12) 0.045 

H(1B) 0.166(3) 0.173(3)  −0.1682(12) 0.045 

H(15) 0.1552 0.5399 0.2903 0.037 

H(16) 0.2118 0.6818 0.3876 0.039 

H(18) 0.2954 0.2224 0.5623 0.041 

H(19) 0.2393 0.0812 0.4646 0.037 
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6.6. Appendix VI: X-Ray crystallographic data for 194 
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Table 1. Crystal data and structure refinement for sdrc28. 

 

Identification code  sdrc28 

Chemical formula  C34H30Br2N2O5 

Formula weight  706.42 

Temperature  150(2) K 

Radiation, wavelength  MoKα, 0.71073 Å 

Crystal system, space group  triclinic, P1 

Unit cell parameters a = 9.455(2) Å α = 77.879(4)° 

 b = 12.302(3) Å β = 88.511(4)° 

 c = 13.223(3) Å γ = 86.870(4)° 

Cell volume 1501.5(6) Å3 

Z 2 

Calculated density  1.563 g/cm3 

Absorption coefficient µ 2.745 mm−1 

F(000) 716 

Crystal colour and size colourless, 0.47 × 0.39 × 0.15 mm3 

Reflections for cell refinement 4346 (θ range 2.65 to 26.37°) 

Data collection method Bruker APEX 2 CCD diffractometer 

 ω rotation with narrow frames 

θ range for data collection 1.70 to 26.41° 

Index ranges h −11 to 11, k −15 to 15, l −16 to 16 

Completeness to θ = 26.41° 98.5 %  

Intensity decay 0% 

Reflections collected 12907 

Independent reflections 6078 (Rint = 0.0386) 

Reflections with F2>2σ 4689 

Absorption correction semi-empirical from equivalents 
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Min. and max. transmission 0.359 and 0.684 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0878, 0.4234 

Data / restraints / parameters 6078 / 0 / 392 

Final R indices [F2>2σ] R1 = 0.0497, wR2 = 0.1335 

R indices (all data) R1 = 0.0684, wR2 = 0.1435 

Goodness-of-fit on F2 1.035 

Largest and mean shift/su 0.001 and 0.000 

Largest diff. peak and hole 1.419 and −0.587 e Å−3 

 

Table 2. Atomic coordinates and equivalent isotropic displacement parameters (Å2) 

for sdrc28. Ueq is defined as one third of the trace of the orthogonalized Uij tensor. 

 

      x      y      z      Ueq 

 

O(1) 0.7187(2) 0.7561(2) 0.87816(19) 0.0260(5) 

N(2) 0.8300(3) 0.8363(2) 0.8667(2) 0.0265(6) 

C(3) 0.8290(3) 0.8990(3) 0.7585(3) 0.0232(7) 

C(4) 0.6857(3) 0.9711(3) 0.7506(3) 0.0221(7) 

C(5) 0.5560(3) 0.8940(3) 0.7807(3) 0.0215(7) 

C(6) 0.5873(3) 0.8192(3) 0.8862(3) 0.0231(7) 

C(7) 0.9606(4) 0.7673(4) 0.8942(3) 0.0371(9) 

C(8) 0.8700(4) 0.8346(3) 0.6747(3) 0.0256(7) 

C(9) 0.8108(4) 0.7373(3) 0.6603(3) 0.0329(8) 

C(10) 0.8657(4) 0.6827(3) 0.5853(3) 0.0373(9) 

C(11) 0.9786(4) 0.7216(3) 0.5207(3) 0.0344(9) 

C(12) 1.0355(4) 0.8196(3) 0.5337(3) 0.0323(8) 
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C(13) 0.9825(4) 0.8742(3) 0.6089(3) 0.0306(8) 

C(14) 1.0399(5) 0.6592(4) 0.4408(4) 0.0516(12) 

C(15) 0.6601(3) 1.0376(3) 0.6403(3) 0.0239(7) 

O(2) 0.6685(3) 0.9983(2) 0.5652(2) 0.0326(6) 

O(3) 0.6202(3) 1.1443(2) 0.6398(2) 0.0330(6) 

C(16) 0.5717(5) 1.2099(4) 0.5413(3) 0.0425(10) 

C(17) 0.6967(4) 1.0514(3) 0.8248(3) 0.0238(7) 

O(4) 0.6132(3) 1.0627(2) 0.89204(19) 0.0284(6) 

O(5) 0.8140(3) 1.1098(2) 0.8036(2) 0.0301(6) 

C(18) 0.8312(4) 1.1917(4) 0.8659(4) 0.0408(10) 

C(19) 0.4133(3) 0.9597(3) 0.7722(3) 0.0233(7) 

C(20) 0.3381(4) 0.9838(3) 0.8576(3) 0.0280(8) 

C(21) 0.2124(4) 1.0488(3) 0.8437(3) 0.0353(9) 

C(22) 0.1609(4) 1.0904(3) 0.7450(3) 0.0372(9) 

C(23) 0.2330(4) 1.0637(3) 0.6600(3) 0.0328(8) 

C(24) 0.3564(4) 0.9968(3) 0.6748(3) 0.0290(8) 

N(1) 0.4849(3) 0.7378(2) 0.9281(2) 0.0248(6) 

C(25) 0.3874(4) 0.6811(3) 0.8827(3) 0.0229(7) 

C(26) 0.3396(4) 0.6973(3) 0.7819(3) 0.0289(8) 

C(27) 0.2378(4) 0.6282(3) 0.7604(3) 0.0311(8) 

C(28) 0.1859(4) 0.5453(3) 0.8384(3) 0.0298(8) 

Br(1) 0.04449(5) 0.45408(3) 0.80477(4) 0.04394(15) 

C(29) 0.2293(4) 0.5278(3) 0.9383(3) 0.0267(8) 

C(30) 0.3309(3) 0.5971(3) 0.9617(3) 0.0223(7) 

C(32) 0.3864(4) 0.5402(3) 1.1580(3) 0.0274(8) 

C(33) 0.4686(4) 0.5688(3) 1.2318(3) 0.0289(8) 

Br(2) 0.45607(5) 0.49046(4) 1.37185(3) 0.04289(15) 

C(34) 0.5620(4) 0.6559(3) 1.2090(3) 0.0309(8) 
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C(35) 0.5762(4) 0.7155(3) 1.1089(3) 0.0280(8) 

C(36) 0.4927(4) 0.6881(3) 1.0330(3) 0.0234(7) 

C(31) 0.3983(3) 0.6012(3) 1.0566(3) 0.0229(7) 

 

Table 3. Bond lengths [Å] and angles [°] for sdrc28. 

 

O(1)–C(6)  1.443(4) O(1)–N(2)  1.465(4) 

N(2)–C(7)  1.469(5) N(2)–C(3)  1.477(5) 

C(3)–C(8)  1.523(5) C(3)–C(4)  1.572(5) 

C(4)–C(15)  1.534(5) C(4)–C(17)  1.540(5) 

C(4)–C(5)  1.582(4) C(5)–C(6)  1.527(5) 

C(5)–C(19)  1.528(5) C(6)–N(1)  1.446(4) 

C(8)–C(13)  1.398(5) C(8)–C(9)  1.398(5) 

C(9)–C(10)  1.385(6) C(10)–C(11)  1.390(6) 

C(11)–C(12)  1.391(6) C(11)–C(14)  1.517(6) 

C(12)–C(13)  1.382(5) C(15)–O(2)  1.192(4) 

C(15)–O(3)  1.345(4) O(3)–C(16)  1.451(5) 

C(17)–O(4)  1.199(4) C(17)–O(5)  1.346(4) 

O(5)–C(18)  1.447(5) C(19)–C(24)  1.386(5) 

C(19)–C(20)  1.395(5) C(20)–C(21)  1.390(5) 

C(21)–C(22)  1.388(6) C(22)–C(23)  1.388(6) 

C(23)–C(24)  1.384(5) N(1)–C(36)  1.395(5) 

N(1)–C(25)  1.404(5) C(25)–C(26)  1.390(5) 

C(25)–C(30)  1.421(5) C(26)–C(27)  1.391(5) 

C(27)–C(28)  1.390(5) C(28)–C(29)  1.363(5) 

C(28)–Br(1)  1.911(4) C(29)–C(30)  1.401(5) 

C(30)–C(31)  1.433(5) C(32)–C(33)  1.376(6) 

C(32)–C(31)  1.398(5) C(33)–C(34)  1.405(5) 
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C(33)–Br(2)  1.904(3) C(34)–C(35)  1.379(5) 

C(35)–C(36)  1.399(5) C(36)–C(31)  1.410(5) 

 

C(6)–O(1)–N(2) 105.8(2) O(1)–N(2)–C(7) 104.3(3) 

O(1)–N(2)–C(3) 107.5(3) C(7)–N(2)–C(3) 113.5(3) 

N(2)–C(3)–C(8) 117.3(3) N(2)–C(3)–C(4) 103.8(3) 

C(8)–C(3)–C(4) 119.7(3) C(15)–C(4)–C(17) 109.8(3) 

C(15)–C(4)–C(3) 111.8(3) C(17)–C(4)–C(3) 106.6(3) 

C(15)–C(4)–C(5) 106.7(3) C(17)–C(4)–C(5) 111.4(3) 

C(3)–C(4)–C(5) 110.6(3) C(6)–C(5)–C(19) 115.7(3) 

C(6)–C(5)–C(4) 107.2(3) C(19)–C(5)–C(4) 112.9(3) 

O(1)–C(6)–N(1) 105.5(3) O(1)–C(6)–C(5) 108.4(3) 

N(1)–C(6)–C(5) 117.2(3) C(13)–C(8)–C(9) 117.1(3) 

C(13)–C(8)–C(3) 116.4(3) C(9)–C(8)–C(3) 126.5(3) 

C(10)–C(9)–C(8) 120.3(3) C(9)–C(10)–C(11) 122.6(4) 

C(10)–C(11)–C(12) 117.1(3) C(10)–C(11)–C(14) 121.9(4) 

C(12)–C(11)–C(14) 121.0(4) C(13)–C(12)–C(11) 120.8(3) 

C(12)–C(13)–C(8) 122.1(4) O(2)–C(15)–O(3) 124.4(3) 

O(2)–C(15)–C(4) 124.1(3) O(3)–C(15)–C(4) 111.4(3) 

C(15)–O(3)–C(16) 115.6(3) O(4)–C(17)–O(5) 123.4(3) 

O(4)–C(17)–C(4) 125.8(3) O(5)–C(17)–C(4) 110.7(3) 

C(17)–O(5)–C(18) 115.2(3) C(24)–C(19)–C(20) 118.6(3) 

C(24)–C(19)–C(5) 118.2(3) C(20)–C(19)–C(5) 123.2(3) 

C(21)–C(20)–C(19) 120.1(4) C(22)–C(21)–C(20) 120.4(4) 

C(23)–C(22)–C(21) 119.7(4) C(24)–C(23)–C(22) 119.5(4) 

C(23)–C(24)–C(19) 121.5(4) C(36)–N(1)–C(25) 108.0(3) 

C(36)–N(1)–C(6) 117.8(3) C(25)–N(1)–C(6) 133.3(3) 

C(26)–C(25)–N(1) 131.6(3) C(26)–C(25)–C(30) 120.3(3) 
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N(1)–C(25)–C(30) 108.1(3) C(25)–C(26)–C(27) 118.4(3) 

C(28)–C(27)–C(26) 120.3(4) C(29)–C(28)–C(27) 123.0(3) 

C(29)–C(28)–Br(1) 118.6(3) C(27)–C(28)–Br(1) 118.5(3) 

C(28)–C(29)–C(30) 117.6(3) C(29)–C(30)–C(25) 120.5(3) 

C(29)–C(30)–C(31) 131.8(3) C(25)–C(30)–C(31) 107.7(3) 

C(33)–C(32)–C(31) 117.7(3) C(32)–C(33)–C(34) 122.8(3) 

C(32)–C(33)–Br(2) 119.9(3) C(34)–C(33)–Br(2) 117.3(3) 

C(35)–C(34)–C(33) 120.0(4) C(34)–C(35)–C(36) 118.0(3) 

N(1)–C(36)–C(35) 128.6(3) N(1)–C(36)–C(31) 109.7(3) 

C(35)–C(36)–C(31) 121.6(3) C(32)–C(31)–C(36) 119.9(3) 

C(32)–C(31)–C(30) 133.7(3) C(36)–C(31)–C(30) 106.4(3) 

 

Table 4. Hydrogen coordinates and isotropic displacement parameters (Å2) for sdrc28. 

 

      x       y       z       U 

 

H(3) 0.9043 0.9538 0.7547 0.028 

H(5) 0.5557 0.8445 0.7297 0.026 

H(6) 0.5994 0.8675 0.9372 0.028 

H(7A) 0.9575 0.7323 0.9679 0.056 

H(7B) 1.0424 0.8140 0.8798 0.056 

H(7C) 0.9691 0.7094 0.8532 0.056 

H(9) 0.7326 0.7086 0.7021 0.039 

H(10) 0.8247 0.6162 0.5777 0.045 

H(12) 1.1117 0.8494 0.4903 0.039 

H(13) 1.0238 0.9407 0.6162 0.037 

H(14A) 1.1032 0.5973 0.4747 0.077 

H(14B) 1.0932 0.7099 0.3882 0.077 
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H(14C) 0.9628 0.6301 0.4078 0.077 

H(16A) 0.6469 1.2096 0.4889 0.064 

H(16B) 0.5482 1.2866 0.5483 0.064 

H(16C) 0.4874 1.1778 0.5203 0.064 

H(18A) 0.7577 1.2517 0.8486 0.061 

H(18B) 0.9248 1.2227 0.8520 0.061 

H(18C) 0.8227 1.1564 0.9393 0.061 

H(20) 0.3728 0.9558 0.9254 0.034 

H(21) 0.1613 1.0648 0.9021 0.042 

H(22) 0.0768 1.1370 0.7357 0.045 

H(23) 0.1980 1.0911 0.5923 0.039 

H(24) 0.4031 0.9759 0.6168 0.035 

H(26) 0.3756 0.7541 0.7289 0.035 

H(27) 0.2035 0.6378 0.6920 0.037 

H(29) 0.1920 0.4706 0.9902 0.032 

H(32) 0.3238 0.4811 1.1754 0.033 

H(34) 0.6154 0.6738 1.2626 0.037 

H(35) 0.6407 0.7734 1.0920 0.034 

 

Table 5. Torsion angles [°] for sdrc28. 

 

C(6)–O(1)–N(2)–C(7) 161.3(3) C(6)–O(1)–N(2)–C(3)  −77.9(3) 

O(1)–N(2)–C(3)–C(8)  −65.7(3) C(7)–N(2)–C(3)–C(8) 49.1(4) 

O(1)–N(2)–C(3)–C(4) 68.8(3) C(7)–N(2)–C(3)–C(4)  −176.3(3) 

N(2)–C(3)–C(4)–C(15)  −176.3(3) C(8)–C(3)–C(4)–C(15)  −43.0(4) 

N(2)–C(3)–C(4)–C(17) 63.8(3) C(8)–C(3)–C(4)–C(17)  −163.0(3) 

N(2)–C(3)–C(4)–C(5)  −57.5(3) C(8)–C(3)–C(4)–C(5) 75.8(4) 

C(15)–C(4)–C(5)–C(6) 174.6(3) C(17)–C(4)–C(5)–C(6)  −65.6(3) 
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C(3)–C(4)–C(5)–C(6) 52.7(3) C(15)–C(4)–C(5)–C(19)  −56.9(3) 

C(17)–C(4)–C(5)–C(19) 62.9(4) C(3)–C(4)–C(5)–C(19)  −178.7(3) 

N(2)–O(1)–C(6)–N(1)  −163.1(3) N(2)–O(1)–C(6)–C(5) 70.5(3) 

C(19)–C(5)–C(6)–O(1) 174.7(3) C(4)–C(5)–C(6)–O(1)  −58.4(3) 

C(19)–C(5)–C(6)–N(1) 55.4(4) C(4)–C(5)–C(6)–N(1)  −177.7(3) 

N(2)–C(3)–C(8)–C(13)  −123.5(3) C(4)–C(3)–C(8)–C(13) 109.3(4) 

N(2)–C(3)–C(8)–C(9) 53.3(5) C(4)–C(3)–C(8)–C(9)  −73.9(5) 

C(13)–C(8)–C(9)–C(10) 1.6(6) C(3)–C(8)–C(9)–C(10)  −175.2(4) 

C(8)–C(9)–C(10)–C(11)  −1.0(7) C(9)–C(10)–C(11)–C(12)  −0.3(6) 

C(9)–C(10)–C(11)–C(14) 178.4(4) C(10)–C(11)–C(12)–C(13) 1.0(6) 

C(14)–C(11)–C(12)–C(13)  −177.8(4) C(11)–C(12)–C(13)–C(8)  −0.3(6) 

C(9)–C(8)–C(13)–C(12)  −1.0(6) C(3)–C(8)–C(13)–C(12) 176.1(3) 

C(17)–C(4)–C(15)–O(2) 168.2(3) C(3)–C(4)–C(15)–O(2) 50.1(4) 

C(5)–C(4)–C(15)–O(2)  −70.9(4) C(17)–C(4)–C(15)–O(3)  −14.9(4) 

C(3)–C(4)–C(15)–O(3)  −133.0(3) C(5)–C(4)–C(15)–O(3) 105.9(3) 

O(2)–C(15)–O(3)–C(16) 6.2(5) C(4)–C(15)–O(3)–C(16)  −170.6(3) 

C(15)–C(4)–C(17)–O(4) 112.2(4) C(3)–C(4)–C(17)–O(4)  −126.5(4) 

C(5)–C(4)–C(17)–O(4)  −5.8(5) C(15)–C(4)–C(17)–O(5)  −67.1(4) 

C(3)–C(4)–C(17)–O(5) 54.2(4) C(5)–C(4)–C(17)–O(5) 174.9(3) 

O(4)–C(17)–O(5)–C(18)  −2.1(5) C(4)–C(17)–O(5)–C(18) 177.3(3) 

C(6)–C(5)–C(19)–C(24)  −157.7(3) C(4)–C(5)–C(19)–C(24) 78.3(4) 

C(6)–C(5)–C(19)–C(20) 22.3(5) C(4)–C(5)–C(19)–C(20)  −101.7(4) 

C(24)–C(19)–C(20)–C(21)  −3.3(5) C(5)–C(19)–C(20)–C(21) 176.7(3) 

C(19)–C(20)–C(21)–C(22)  −0.2(6) C(20)–C(21)–C(22)–C(23) 2.3(6) 

C(21)–C(22)–C(23)–C(24)  −0.8(6) C(22)–C(23)–C(24)–C(19)  −2.9(6) 

C(20)–C(19)–C(24)–C(23) 4.9(5) C(5)–C(19)–C(24)–C(23)  −175.1(3) 

O(1)–C(6)–N(1)–C(36) 74.5(4) C(5)–C(6)–N(1)–C(36)  −164.7(3) 
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O(1)–C(6)–N(1)–C(25)  −93.2(4) C(5)–C(6)–N(1)–C(25) 27.6(5) 

C(36)–N(1)–C(25)–C(26) 179.2(4) C(6)–N(1)–C(25)–C(26)  −12.2(6) 

C(36)–N(1)–C(25)–C(30) 1.8(4) C(6)–N(1)–C(25)–C(30) 170.4(3) 

N(1)–C(25)–C(26)–C(27)  −178.3(3) C(30)–C(25)–C(26)–C(27)  −1.1(5) 

C(25)–C(26)–C(27)–C(28) 0.0(5) C(26)–C(27)–C(28)–C(29) 0.7(6) 

C(26)–C(27)–C(28)–Br(1) 179.3(3) C(27)–C(28)–C(29)–C(30)  −0.1(5) 

Br(1)–C(28)–C(29)–C(30)  −178.7(2) C(28)–C(29)–C(30)–C(25)  −1.1(5) 

C(28)–C(29)–C(30)–C(31)  −179.9(3) C(26)–C(25)–C(30)–C(29) 1.7(5) 

N(1)–C(25)–C(30)–C(29) 179.5(3) C(26)–C(25)–C(30)–C(31)  −179.2(3) 

N(1)–C(25)–C(30)–C(31)  −1.4(4) C(31)–C(32)–C(33)–C(34) 0.2(5) 

C(31)–C(32)–C(33)–Br(2) 179.2(2) C(32)–C(33)–C(34)–C(35)  −1.2(6) 

Br(2)–C(33)–C(34)–C(35) 179.7(3) C(33)–C(34)–C(35)–C(36) 1.6(5) 

C(25)–N(1)–C(36)–C(35) 179.4(3) C(6)–N(1)–C(36)–C(35) 8.8(5) 

C(25)–N(1)–C(36)–C(31)  −1.4(4) C(6)–N(1)–C(36)–C(31)  −172.1(3) 

C(34)–C(35)–C(36)–N(1) 177.9(3) C(34)–C(35)–C(36)–C(31)  −1.1(5) 

C(33)–C(32)–C(31)–C(36) 0.3(5) C(33)–C(32)–C(31)–C(30)  −179.2(3) 

N(1)–C(36)–C(31)–C(32)  −179.1(3) C(35)–C(36)–C(31)–C(32) 0.1(5) 

N(1)–C(36)–C(31)–C(30) 0.5(4) C(35)–C(36)–C(31)–C(30) 179.7(3) 

C(29)–C(30)–C(31)–C(32)  −0.9(6) C(25)–C(30)–C(31)–C(32)  −179.9(4) 

C(29)–C(30)–C(31)–C(36) 179.5(3) C(25)–C(30)–C(31)–C(36) 0.6(4) 
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6.7. Appendix VII: X-Ray crystallographic data for 198A 
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Table 1. Crystal data and structure refinement for sdrc36. 

Identification code  sdrc36 

Chemical formula  C15H12BrF3N2O2 

Formula weight  389.18 

Temperature  150(2) K 

Radiation, wavelength  MoKα, 0.71073 Å 

Crystal system, space group  monoclinic, P21/c 

Unit cell parameters a = 10.4447(4) Å α = 90° 

 b = 36.3216(12) Å β = 105.3551(5)° 

 c = 8.6004(3) Å γ = 90° 

Cell volume 3146.25(19) Å3 

Z 8 

Calculated density  1.643 g/cm3 

Absorption coefficient µ 2.654 mm−1 

F(000) 1552 

Crystal colour and size colourless, 0.31 × 0.30 × 0.13 mm3 

Reflections for cell refinement 9088 (θ range 2.31 to 28.01°) 

Data collection method Bruker APEX 2 CCD diffractometer 

 ω rotation with narrow frames 

θ range for data collection 2.02 to 27.50° 

Index ranges h −13 to 13, k −47 to 47, l −11 to 11 

Completeness to θ = 27.50° 99.9 %  

Intensity decay 0% 

Reflections collected 30392 

Independent reflections 7215 (Rint = 0.0282) 

Reflections with F2>2σ 5732 

Absorption correction semi-empirical from equivalents 
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Min. and max. transmission 0.493 and 0.724 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0405, 5.5534 

Data / restraints / parameters 7215 / 6 / 435 

Final R indices [F2>2σ] R1 = 0.0458, wR2 = 0.1031 

R indices (all data) R1 = 0.0607, wR2 = 0.1111 

Goodness-of-fit on F2 1.050 

Largest and mean shift/su 0.000 and 0.000 

Largest diff. peak and hole 1.798 and −1.277 e Å−3 

 

Table 2. Atomic coordinates and equivalent isotropic displacement parameters (Å2) 

for sdrc36. Ueq is defined as one third of the trace of the orthogonalized Uij tensor. 

 

      x      y      z      Ueq 

 

C(1) 0.6019(3) 0.31487(11) 0.7567(4) 0.0438(8) 

F(1) 0.6174(2) 0.28747(6) 0.6603(3) 0.0493(5) 

F(2) 0.4711(2) 0.31597(7) 0.7468(3) 0.0561(6) 

F(3) 0.6632(2) 0.30476(7) 0.9077(3) 0.0612(6) 

C(2) 0.6541(3) 0.35058(9) 0.7125(4) 0.0343(7) 

C(3) 0.7686(3) 0.35113(8) 0.6310(4) 0.0331(7) 

C(4) 0.6302(3) 0.35815(8) 0.5324(4) 0.0308(6) 

C(5) 0.6367(4) 0.38109(11) 0.8220(4) 0.0469(9) 

O(1) 0.5636(3) 0.38010(9) 0.9070(3) 0.0608(8) 

O(2) 0.7101(2) 0.41026(7) 0.8072(3) 0.0495(7) 

C(6) 0.6783(5) 0.44201(13) 0.8950(6) 0.0478(15) 

C(6X) 0.5971(19) 0.4184(5) 0.993(2) 0.069(8) 
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C(7) 0.8514(3) 0.31890(8) 0.6078(4) 0.0326(7) 

C(8) 0.9729(3) 0.31365(9) 0.7213(4) 0.0367(7) 

C(9) 1.0569(4) 0.28533(10) 0.7018(5) 0.0454(9) 

C(10) 1.0212(4) 0.26240(9) 0.5692(5) 0.0494(10) 

C(11) 0.9023(4) 0.26784(10) 0.4558(6) 0.0534(10) 

C(12) 0.8172(4) 0.29629(10) 0.4742(5) 0.0455(9) 

N(1) 0.5964(2) 0.39494(7) 0.4758(3) 0.0322(5) 

N(2) 0.4863(2) 0.41147(8) 0.4989(3) 0.0365(6) 

C(13) 0.4855(3) 0.44452(9) 0.4353(4) 0.0370(7) 

C(14) 0.5941(3) 0.44940(9) 0.3719(4) 0.0357(7) 

C(15) 0.6637(3) 0.41719(9) 0.3997(4) 0.0373(7) 

Br(1) 0.63404(4) 0.490915(10) 0.26377(5) 0.05171(12) 

C(16) 1.0336(3) 0.63801(10) 0.8258(4) 0.0375(7) 

F(4) 1.00766(19) 0.67386(5) 0.8068(2) 0.0422(4) 

F(5) 1.15864(19) 0.63342(7) 0.8162(3) 0.0570(6) 

F(6) 1.0327(2) 0.62964(6) 0.9773(2) 0.0570(6) 

C(17) 0.9364(3) 0.61503(8) 0.7041(3) 0.0286(6) 

C(18) 0.7933(3) 0.62796(8) 0.6336(3) 0.0255(6) 

C(19) 0.8903(3) 0.63161(8) 0.5363(3) 0.0258(6) 

C(20) 0.9611(4) 0.57448(10) 0.7281(4) 0.0446(8) 

O(3) 1.0582(3) 0.56270(8) 0.8251(4) 0.0771(10) 

O(4) 0.8686(3) 0.55368(6) 0.6382(3) 0.0411(5) 

C(21) 0.8983(6) 0.51444(12) 0.6615(7) 0.0504(15) 

C(21X) 1.043(2) 0.5216(4) 0.835(3) 0.093(10) 

C(22) 0.7287(3) 0.65972(8) 0.6947(3) 0.0274(6) 

C(23) 0.6702(4) 0.65305(10) 0.8195(4) 0.0469(9) 

C(24) 0.5990(5) 0.68042(12) 0.8715(5) 0.0592(11) 

C(25) 0.5870(4) 0.71461(11) 0.8014(4) 0.0493(9) 
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C(26) 0.6440(3) 0.72156(9) 0.6778(4) 0.0409(8) 

C(27) 0.7145(3) 0.69407(8) 0.6236(4) 0.0329(6) 

N(3) 0.8799(2) 0.60782(7) 0.3998(3) 0.0257(5) 

N(4) 0.9926(2) 0.59335(7) 0.3759(3) 0.0316(5) 

C(28) 0.9521(3) 0.57445(8) 0.2394(4) 0.0339(7) 

C(29) 0.8148(3) 0.57690(8) 0.1777(3) 0.0299(6) 

C(30) 0.7706(3) 0.59859(8) 0.2828(3) 0.0299(6) 

Br(2) 0.71148(4) 0.554753(10)  −0.01111(4) 0.04902(12) 

 

Table 3. Bond lengths [Å] and angles [°] for sdrc36. 

 

C(1)–F(1)  1.332(4) C(1)–F(3)  1.338(4) 

C(1)–F(2)  1.347(4) C(1)–C(2)  1.495(5) 

C(2)–C(5)  1.496(5) C(2)–C(4)  1.527(4) 

C(2)–C(3)  1.538(4) C(3)–C(4)  1.491(4) 

C(3)–C(7)  1.500(4) C(4)–N(1)  1.434(4) 

C(5)–O(1)  1.190(5) C(5)–O(2)  1.333(5) 

O(1)–C(6X)  1.569(14) O(2)–C(6)  1.463(4) 

C(7)–C(12)  1.380(5) C(7)–C(8)  1.394(5) 

C(8)–C(9)  1.391(4) C(9)–C(10)  1.381(6) 

C(10)–C(11)  1.376(6) C(11)–C(12)  1.399(5) 

N(1)–C(15)  1.349(4) N(1)–N(2)  1.357(3) 

N(2)–C(13)  1.318(4) C(13)–C(14)  1.393(5) 

C(14)–C(15)  1.365(4) C(14)–Br(1)  1.876(3) 

C(16)–F(4)  1.331(4) C(16)–F(5)  1.341(4) 

C(16)–F(6)  1.341(4) C(16)–C(17)  1.503(4) 

C(17)–C(20)  1.500(4) C(17)–C(19)  1.520(4) 

C(17)–C(18)  1.530(4) C(18)–C(19)  1.481(4) 
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C(18)–C(22)  1.500(4) C(19)–N(3)  1.438(3) 

C(20)–O(3)  1.208(5) C(20)–O(4)  1.306(5) 

O(3)–C(21X)  1.506(14) O(4)–C(21)  1.461(5) 

C(22)–C(27)  1.380(4) C(22)–C(23)  1.390(4) 

C(23)–C(24)  1.384(5) C(24)–C(25)  1.371(6) 

C(25)–C(26)  1.373(5) C(26)–C(27)  1.392(4) 

N(3)–C(30)  1.349(4) N(3)–N(4)  1.354(3) 

N(4)–C(28)  1.329(4) C(28)–C(29)  1.394(4) 

C(29)–C(30)  1.368(4) C(29)–Br(2)  1.877(3) 

 

F(1)–C(1)–F(3) 107.1(3) F(1)–C(1)–F(2) 105.7(3) 

F(3)–C(1)–F(2) 106.6(3) F(1)–C(1)–C(2) 112.2(3) 

F(3)–C(1)–C(2) 111.9(3) F(2)–C(1)–C(2) 113.0(3) 

C(1)–C(2)–C(5) 111.7(3) C(1)–C(2)–C(4) 116.2(3) 

C(5)–C(2)–C(4) 119.4(3) C(1)–C(2)–C(3) 120.5(3) 

C(5)–C(2)–C(3) 121.1(3) C(4)–C(2)–C(3) 58.2(2) 

C(4)–C(3)–C(7) 124.3(3) C(4)–C(3)–C(2) 60.53(19) 

C(7)–C(3)–C(2) 126.6(3) N(1)–C(4)–C(3) 117.8(3) 

N(1)–C(4)–C(2) 118.1(2) C(3)–C(4)–C(2) 61.3(2) 

O(1)–C(5)–O(2) 124.2(3) O(1)–C(5)–C(2) 124.7(4) 

O(2)–C(5)–C(2) 111.1(3) C(5)–O(1)–C(6X) 99.4(8) 

C(5)–O(2)–C(6) 111.3(3) C(12)–C(7)–C(8) 119.3(3) 

C(12)–C(7)–C(3) 123.0(3) C(8)–C(7)–C(3) 117.6(3) 

C(9)–C(8)–C(7) 120.2(3) C(10)–C(9)–C(8) 120.3(4) 

C(11)–C(10)–C(9) 119.6(3) C(10)–C(11)–C(12) 120.5(4) 

C(7)–C(12)–C(11) 120.1(4) C(15)–N(1)–N(2) 112.1(3) 

C(15)–N(1)–C(4) 127.6(3) N(2)–N(1)–C(4) 120.3(2) 

C(13)–N(2)–N(1) 104.7(3) N(2)–C(13)–C(14) 111.2(3) 
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C(15)–C(14)–C(13) 105.9(3) C(15)–C(14)–Br(1) 126.7(3) 

C(13)–C(14)–Br(1) 127.4(2) N(1)–C(15)–C(14) 106.1(3) 

F(4)–C(16)–F(5) 106.5(3) F(4)–C(16)–F(6) 106.7(3) 

F(5)–C(16)–F(6) 106.8(3) F(4)–C(16)–C(17) 112.3(3) 

F(5)–C(16)–C(17) 112.2(3) F(6)–C(16)–C(17) 111.9(3) 

C(20)–C(17)–C(16) 112.9(3) C(20)–C(17)–C(19) 121.3(3) 

C(16)–C(17)–C(19) 115.3(3) C(20)–C(17)–C(18) 118.1(3) 

C(16)–C(17)–C(18) 120.9(3) C(19)–C(17)–C(18) 58.10(18) 

C(19)–C(18)–C(22) 124.6(2) C(19)–C(18)–C(17) 60.62(18) 

C(22)–C(18)–C(17) 125.5(2) N(3)–C(19)–C(18) 119.5(2) 

N(3)–C(19)–C(17) 118.3(2) C(18)–C(19)–C(17) 61.28(18) 

O(3)–C(20)–O(4) 123.9(3) O(3)–C(20)–C(17) 121.7(4) 

O(4)–C(20)–C(17) 114.4(3) C(20)–O(3)–C(21X) 108.0(10) 

C(20)–O(4)–C(21) 112.7(3) C(27)–C(22)–C(23) 118.9(3) 

C(27)–C(22)–C(18) 123.0(3) C(23)–C(22)–C(18) 117.8(3) 

C(24)–C(23)–C(22) 120.5(3) C(25)–C(24)–C(23) 120.2(3) 

C(24)–C(25)–C(26) 119.9(3) C(25)–C(26)–C(27) 120.3(3) 

C(22)–C(27)–C(26) 120.2(3) C(30)–N(3)–N(4) 112.8(2) 

C(30)–N(3)–C(19) 128.6(2) N(4)–N(3)–C(19) 118.4(2) 

C(28)–N(4)–N(3) 104.4(2) N(4)–C(28)–C(29) 111.0(3) 

C(30)–C(29)–C(28) 106.2(3) C(30)–C(29)–Br(2) 127.0(2) 

C(28)–C(29)–Br(2) 126.8(2) N(3)–C(30)–C(29) 105.6(3) 

 

Table 4. Hydrogen coordinates and isotropic displacement parameters (Å2) for sdrc36. 

 

      x       y       z       U 

 

H(3) 0.8218 0.3743 0.6548 0.040 
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H(4) 0.5872 0.3379 0.4581 0.037 

H(6A) 0.7341 0.4629 0.8826 0.072 

H(6B) 0.6951 0.4358 1.0095 0.072 

H(6C) 0.5846 0.4485 0.8515 0.072 

H(6X1) 0.5432 0.4218 1.0693 0.104 

H(6X2) 0.5775 0.4380 0.9120 0.104 

H(6X3) 0.6914 0.4191 1.0508 0.104 

H(8) 0.9983 0.3295 0.8123 0.044 

H(9) 1.1392 0.2817 0.7800 0.054 

H(10) 1.0785 0.2430 0.5564 0.059 

H(11) 0.8777 0.2522 0.3643 0.064 

H(12) 0.7358 0.3001 0.3947 0.055 

H(13) 0.4195 0.4627 0.4331 0.044 

H(15) 0.7434 0.4116 0.3713 0.045 

H(18) 0.7307 0.6069 0.5971 0.031 

H(19) 0.9219 0.6572 0.5247 0.031 

H(21A) 0.8259 0.5001 0.5920 0.076 

H(21B) 0.9076 0.5079 0.7745 0.076 

H(21C) 0.9814 0.5090 0.6335 0.076 

H(21D) 1.1212 0.5114 0.9131 0.140 

H(21E) 1.0357 0.5106 0.7289 0.140 

H(21F) 0.9633 0.5160 0.8697 0.140 

H(23) 0.6791 0.6295 0.8696 0.056 

H(24) 0.5584 0.6755 0.9559 0.071 

H(25) 0.5393 0.7335 0.8384 0.059 

H(26) 0.6353 0.7452 0.6290 0.049 

H(27) 0.7531 0.6990 0.5373 0.039 

H(28) 1.0091 0.5611 0.1903 0.041 
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H(30) 0.6815 0.6057 0.2750 0.036 

 

Table 5. Torsion angles [°] for sdrc36. 

 

F(1)–C(1)–C(2)–C(5)  −179.8(3) F(3)–C(1)–C(2)–C(5)  −59.4(4) 

F(2)–C(1)–C(2)–C(5) 60.9(4) F(1)–C(1)–C(2)–C(4) 38.6(4) 

F(3)–C(1)–C(2)–C(4) 158.9(3) F(2)–C(1)–C(2)–C(4)  −80.8(3) 

F(1)–C(1)–C(2)–C(3)  −28.4(4) F(3)–C(1)–C(2)–C(3) 92.0(4) 

F(2)–C(1)–C(2)–C(3)  −147.7(3) C(1)–C(2)–C(3)–C(4) 103.8(3) 

C(5)–C(2)–C(3)–C(4)  −107.5(3) C(1)–C(2)–C(3)–C(7)  −9.0(5) 

C(5)–C(2)–C(3)–C(7) 139.7(3) C(4)–C(2)–C(3)–C(7)  −112.8(4) 

C(7)–C(3)–C(4)–N(1)  −135.1(3) C(2)–C(3)–C(4)–N(1) 108.6(3) 

C(7)–C(3)–C(4)–C(2) 116.3(3) C(1)–C(2)–C(4)–N(1) 140.8(3) 

C(5)–C(2)–C(4)–N(1) 2.3(4) C(3)–C(2)–C(4)–N(1)  −108.1(3) 

C(1)–C(2)–C(4)–C(3)  −111.1(3) C(5)–C(2)–C(4)–C(3) 110.4(3) 

C(1)–C(2)–C(5)–O(1)  −17.2(5) C(4)–C(2)–C(5)–O(1) 123.0(4) 

C(3)–C(2)–C(5)–O(1)  −168.5(3) C(1)–C(2)–C(5)–O(2) 165.3(3) 

C(4)–C(2)–C(5)–O(2)  −54.5(4) C(3)–C(2)–C(5)–O(2) 14.0(4) 

O(2)–C(5)–O(1)–C(6X)  −5.5(9) C(2)–C(5)–O(1)–C(6X) 177.3(8) 

O(1)–C(5)–O(2)–C(6)  −6.2(5) C(2)–C(5)–O(2)–C(6) 171.3(3) 

C(4)–C(3)–C(7)–C(12) 12.5(5) C(2)–C(3)–C(7)–C(12) 88.9(4) 

C(4)–C(3)–C(7)–C(8)  −172.5(3) C(2)–C(3)–C(7)–C(8)  −96.1(4) 

C(12)–C(7)–C(8)–C(9)  −1.6(5) C(3)–C(7)–C(8)–C(9)  −176.8(3) 

C(7)–C(8)–C(9)–C(10) 0.5(5) C(8)–C(9)–C(10)–C(11) 0.4(5) 

C(9)–C(10)–C(11)–C(12)  −0.3(6) C(8)–C(7)–C(12)–C(11) 1.7(5) 

C(3)–C(7)–C(12)–C(11) 176.7(3) C(10)–C(11)–C(12)–C(7)  −0.8(6) 

C(3)–C(4)–N(1)–C(15) 49.2(4) C(2)–C(4)–N(1)–C(15) 119.7(3) 

C(3)–C(4)–N(1)–N(2)  −129.7(3) C(2)–C(4)–N(1)–N(2)  −59.3(4) 
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C(15)–N(1)–N(2)–C(13) 0.2(3) C(4)–N(1)–N(2)–C(13) 179.3(3) 

N(1)–N(2)–C(13)–C(14)  −0.1(4) N(2)–C(13)–C(14)–C(15) 0.0(4) 

N(2)–C(13)–C(14)–Br(1) 178.0(2) N(2)–N(1)–C(15)–C(14)  −0.2(4) 

C(4)–N(1)–C(15)–C(14)  −179.2(3) C(13)–C(14)–C(15)–N(1) 0.2(4) 

Br(1)–C(14)–C(15)–N(1)  −177.9(2) F(4)–C(16)–C(17)–C(20)  −177.7(3) 

F(5)–C(16)–C(17)–C(20) 62.4(4) F(6)–C(16)–C(17)–C(20)  −57.7(4) 

F(4)–C(16)–C(17)–C(19) 36.9(4) F(5)–C(16)–C(17)–C(19)  −83.0(3) 

F(6)–C(16)–C(17)–C(19) 156.9(2) F(4)–C(16)–C(17)–C(18)  −29.7(4) 

F(5)–C(16)–C(17)–C(18)  −149.6(3) F(6)–C(16)–C(17)–C(18) 90.4(3) 

C(20)–C(17)–C(18)–C(19)  −111.2(3) C(16)–C(17)–C(18)–C(19) 102.3(3) 

C(20)–C(17)–C(18)–C(22) 135.3(3) C(16)–C(17)–C(18)–C(22)  −11.2(4) 

C(19)–C(17)–C(18)–C(22)  −113.5(3) C(22)–C(18)–C(19)–N(3)  −137.1(3) 

C(17)–C(18)–C(19)–N(3) 108.1(3) C(22)–C(18)–C(19)–C(17) 114.9(3) 

C(20)–C(17)–C(19)–N(3)  −4.4(4) C(16)–C(17)–C(19)–N(3) 137.9(3) 

C(18)–C(17)–C(19)–N(3)  −110.0(3) C(20)–C(17)–C(19)–C(18) 105.7(3) 

C(16)–C(17)–C(19)–C(18)  −112.1(3) C(16)–C(17)–C(20)–O(3)  −7.4(5) 

C(19)–C(17)–C(20)–O(3) 135.6(4) C(18)–C(17)–C(20)–O(3)  −156.5(4) 

C(16)–C(17)–C(20)–O(4) 171.5(3) C(19)–C(17)–C(20)–O(4)  −45.4(4) 

C(18)–C(17)–C(20)–O(4) 22.5(4) O(4)–C(20)–O(3)–C(21X)  −6.5(11) 

C(17)–C(20)–O(3)–C(21X) 172.3(10) O(3)–C(20)–O(4)–C(21)  −2.8(5) 

C(17)–C(20)–O(4)–C(21) 178.2(3) C(19)–C(18)–C(22)–C(27) 23.7(4) 

C(17)–C(18)–C(22)–C(27) 99.8(4) C(19)–C(18)–C(22)–C(23)  −162.3(3) 

C(17)–C(18)–C(22)–C(23)  −86.2(4) C(27)–C(22)–C(23)–C(24) 0.0(6) 

C(18)–C(22)–C(23)–C(24)  −174.3(4) C(22)–C(23)–C(24)–C(25)  −0.8(7) 

C(23)–C(24)–C(25)–C(26) 1.0(7) C(24)–C(25)–C(26)–C(27)  −0.3(6) 

C(23)–C(22)–C(27)–C(26) 0.7(5) C(18)–C(22)–C(27)–C(26) 174.7(3) 

C(25)–C(26)–C(27)–C(22)  −0.6(5) C(18)–C(19)–N(3)–C(30) 45.4(4) 
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C(17)–C(19)–N(3)–C(30) 116.5(3) C(18)–C(19)–N(3)–N(4)  −138.0(3) 

C(17)–C(19)–N(3)–N(4)  −66.9(3) C(30)–N(3)–N(4)–C(28)  −0.1(3) 

C(19)–N(3)–N(4)–C(28)  −177.2(2) N(3)–N(4)–C(28)–C(29)  −0.1(3) 

N(4)–C(28)–C(29)–C(30) 0.2(4) N(4)–C(28)–C(29)–Br(2)  −179.6(2) 

N(4)–N(3)–C(30)–C(29) 0.2(3) C(19)–N(3)–C(30)–C(29) 177.0(3) 

C(28)–C(29)–C(30)–N(3)  −0.3(3) Br(2)–C(29)–C(30)–N(3) 179.6(2) 
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