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ABSTRACT 
 

Potato is one of the most important food crops in the world, and viruses are largely 

responsible for the degeneration of this vegetatively propagated crop. At least 35 viruses 

have been reported to infect potato naturally. The majority and the most economically 

important ones are vectored by aphids. The objective of this study was to conduct 

molecular and biological investigations into virus transmission mechanisms, including 

developing diagnostic methods to help to control the spread of aphid-borne potato 

viruses, and disrupting the vectoring ability of their aphid vectors by insecticide spray.  

 

One way to control the spread of aphid-borne viruses is to control their aphid vector, but 

this is not always feasible as the majority of aphid-borne potato viruses, including the 

most important ones, are transmitted non-persistently, being acquired within a very 

short time before agrochemicals can act. Thus an alternative approach to controlling this 

class of viruses is through a full understanding of the interaction between the virus, the 

host plant and the aphid vector, which was the first objective of this project. In this 

respect, some aphid cuticle proteins were identified to interact with potato virus Y 

helper component (HC-Pro) through screening of an aphid cDNA expression library, 

and their potential role in virus transmission was discussed. Moreover, the concept of 

short retention of non-persistent viruses inside their aphid vectors was challenged; the 

results show that PVY can be retained inside its aphid vector for a long time but it is not 

transmissible. This novel finding together with binding to aphid cuticle proteins, 

generated some new ideas about transmission mechanisms that were proposed and 

discussed. In addition, the effect on aphid vectoring ability of the plants used to rear 

aphid colonies, as a virus source, and as a virus recipient was investigated. From 

laboratory studies of aphid transmission, it was concluded that the transmission 

efficiency of PVY was significantly affected by the host plant species used to rear M. 

persicae, or that used as a virus recipient plant.   

 

The availability of sensitive and cheap virus detection methods is critical for early 

detection and control of potato viruses. In this project a sensitive fully recombinant 

ELISA was developed and validated for routine testing of potato leafroll virus. This 

technology can be applied to detect other potato viruses and has the potential to replace 

the commonly used immune reagent antisera. 
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Chapter 1. Literature review 

 
1.1. General background  

 
Potato (Solanum tuberosum) is the third staple food crop in the world (Visser et al., 

2009), and the fourth most cultivated crop in the world after wheat, maize and rice 

(Milbourne et al., 2007). Potatoes originated in South America and were first 

domesticated in Peru approximately 10 thousand years ago.  The world’s annual 

production of potatoes has increased remarkably during the past few decades, 

particularly in developing countries due to regional and international organizations 

established to help people in these countries. Because of the substantial importance of 

potatoes in providing food and a source of income to many people around the world, the 

United Nations announced the year 2008 as the international year of the potato 

(Stapleton, 2008).  Seed potato production is an important industry in the UK, and 

British potato seed exports are worth about £18 million annually. The importance of this 

industry stems from the need to plant disease-free seed potatoes to avoid yield losses. 

 

Viruses are considered among the most economically important pathogens which 

threaten the production of this crop. “Potato degeneration” was the term used in the 

1800s to early 1900s to describe poor yields obtained from using potato tubers from 

plants infected with virus in the previous season.  It was speculated that this fatigue or 

deterioration happened as a result of continuous propagation or unfavourable weather or 

soil conditions (Van der Want, 1987). It was discovered later that potato viruses 

including potato leafroll virus (PLRV) and potato virus Y (PVY) were the cause of this 

degeneration, and these viruses are still major problems for potato production all over 

the world. The symptomless nature of infection on some potato cultivars (Singh and 

Singh, 1994; Baldauf et al., 2006; Hamm et al., 2010) and under some weather 

circumstances (De Bokx, 1977; Marco, 1981) make the control of such diseases very 

difficult. In addition, there is no drug or chemical which has any effect on plant viruses. 

Myzus persicae, the most naturally efficient vector of aphid-borne potato viruses, plays 

an important role in spreading infection between plants; considerable amounts of 

insecticides are being used regularly to control this vector (Parker et al., 2006).  
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Application of insecticides is effective in controlling the spread of PLRV, which is 

transmitted persistently (Section 1.5.1). But no insecticides are known to date to 

efficiently control non-persistent viruses (Section 1.5.1) such as PVY and potato virus 

A (PVA). The limited impact on PVY and PVA spread has resulted in these viruses 

becoming more dominant in potato production areas. The reasons for this difficulty 

come from the non-persistent mechanism of transmission which is characterized by 

brief probing; also a wide range of aphid species can transmit these viruses. Moreover, 

there is a lack of information about the exact mechanism involved in transmission of 

these viruses; such knowledge is needed to design methods to block or decrease 

transmission efficiency by aphid vectors.  

 

In order to obtain durable control of plant viral diseases in general and non-persistent 

ones in particular, it is important to understand virus – insect – plant interactions on a 

molecular level. This will help in the discovery of resistance genes to breed resistant 

cultivars and will provide better understanding of the vector –virus relationship so as to 

reduce or block virus transmission. In addition, another important component of disease 

control is to develop more sensitive, robust, and cheap assays for virus detection. 

Moreover, a goal of sustainable production systems is to optimize agrochemical 

applications to control the vector aphids. My research is directed towards control of 

virus spread by aphids in potato crops. 

 

1.2. Viruses which naturally infect potato  
 

There are more than 37 viruses which are reported to naturally infect potato (Beemster 

and de Bokx, 1987; Jeffries, 1998). However, only about one third of them are reported 

to commonly occur in the potato crop. Table 1.1 presents a list of the most important 

viruses which naturally infect potato crops; there are other viruses which naturally infect 

potato, but they are of limited incidence. The majority of the important potato viruses 

(more than 70%) are transmitted by insects, and more than 80% of the most common 

ones are vectored by aphids (Table 1.1). All important potato viruses except PLRV can 

also be transmitted mechanically. In nature, however, the aphid transmission route is the 

most important way to spread infection of most of these viruses except potato virus X 

(PVX) and potato virus S (PVS), which are transmitted by mechanical contact. A few 

potato viruses are reported to be spread by vectors other than insects, including potato 

mop-top virus (PMTV) which is vectored in soil by zoospores of the 
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plasmodiophoromycete fungus Spongospora subterranea, and tobacco rattle virus 

(TRV) which is transmitted by nematodes. Some potato viruses such as potato yellow 

mosaic virus (PYMV), potato yellow vein virus (PYVV), and tomato spotted wilt virus 

(TSWV) are of significant importance in some parts of the world on some cultivars and 

under particular conditions (Jeffries, 1998). Spread of these less economically important 

viruses should be monitored and controlled as they may emerge as serious pathogens if 

they spread to different parts of the world or if new crops are introduced in the areas 

where they exist.
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Virus Genus/Family Transmission 
in nature by vectores 

 
Yield decrease 

 
 

Potato leafroll virus 
(PLRV) 

 

Polerovirus/ 
Luteoviridae 

Aphids 
persistent 

Up to 90% 
(Jeffries, 1998) 

Potato virus Y (PVY)* 
PVYO 
PVYN 
PVYC 

 

Potyvirus/ 
Potyviridae 

 
 

Aphids 
non-persistent 

 
 

Up to 40 –70% 
(Kerlan, 2006) 

  

Potato virus A (PVA) Potyvirus/ 
Potyviridae 

Aphids 
non-persistent 

Up to 40% 
(Kerlan, 2006) 

Potato virus V (PVV) Potyvirus/ 
Potyviridae 

Aphids 
non-persistent 

Up to 40% 
(Salazar, 2003) 

Potato virus S (PVS) 
 

Carlavirus/ 
Flexiviridae 

Some isolates are 
aphid transmissible 

10–20%  
(Jeffries, 1998) 

Potato virus M (PVM) Carlavirus/ 
Flexiviridae 

Aphids 
non-persistent 

 

15–45% 
(Jeffries, 1998) 

Alfalfa mosaic virus 
(AMV) 

Alfamovirus/ 
Bromoviridae 

Aphids 
non-persistent 

 

20%  
(Salazar, 2003) 

Cucumber mosaic virus 
(CMV) 

Cucumovirus/ 
Bromoviridae 

Aphids non-persistent 
 

 10% 
(Salazar, 2003) 

Potato mop-top virus 
(PMTV) 

Pomovirus 
 

Plasmodiophoromycete 
fungus Spongospora 

subterranea 

40%  
(Salazar, 2003) 

Tobacco rattle virus 
(TRV) 

Tobravirus 
 

No aphid vectors 
Nematodes 

 

Cause spraing 
(Jeffries,1998) 

Potato virus X (PVX) 
Potexvirus/ 

Comoviridae 
 

No known vector 
 

15–20% 
(Jeffries, 1998) 

Potato aucuba mosaic 
virus (PAMV) 

Potexvirus/ 
Flexiviridae 

No known vector 
 

Little economic 
importance 

(Kerlan, 2006) 
Table 1.1 Commonly occurring viruses which naturally infect potato. 

All viruses can be transmitted through infected tubers; all viruses can be transmitted by mechanical 
inoculation except PLRV. Virus names and classification are according to the International Committee on 
the Taxonomy of Viruses (ICTV) http://www.ictvonline.org/.*: PVYNTN  , PVYNW, and  PVYN:O are new 
recombinant strains of PVY.  
 

http://www.ictvdb.rothamsted.ac.uk/ICTVdB/00.056.htm
http://www.ictvdb.rothamsted.ac.uk/ICTVdB/00.086.0.01.htm
http://www.ictvonline.org/.*
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1.3. Brief description of the most important aphid-borne potato viruses 

 
At least 14 potato viruses are transmitted by aphids. Some characteristics of the most 

important ones are presented below. In addition, a focus of this thesis, PVY, will be 

discussed further in section 1.4. 

 

1.3.1. Potato leafroll virus (PLRV) 

 

PLRV is the type member of the genus Polerovirus (Luteoviridae). It has small 

isometric particles (24–25 nm in diameter), and a single-stranded positive sense (5880–

5990 nucleotides long) RNA. PLRV was one of the first viruses discovered to cause 

potato “degeneration”, and is one of the most studied potato viruses. It is transmitted 

mainly by M. persicae in a persistent non-propagative manner. Aphids can transmit 

acquired virus after a latent period of 1–2 days, and carry the virus for the rest of their 

life. Symptoms of primary infection (Fig. 1.1) consist typically of paleness and 

reddening of the tip leaves, which may become rolled. Secondary symptoms in plants 

grown from infected tubers include stunting, upward rolling of leaflets and marginal 

necrosis (Harrison, 1984). 

         

 
Figure 1.1. Typical PLRV secondary infection symptoms of leaf rolling (SCRI). 
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1.3.2. Potato virus Y (PVY) 

 

PVY is the type member of the Potyvirus genus (family Potyviridae), which is the 

largest plant virus family. PVY is a single-stranded RNA virus with flexuous 

filamentous particles (730 x 11 nm). It has a positive sense RNA about 9,700 

nucleotides in length (Shukla et al., 1994). 

 

 

 
 

Figure 1.2. Schematic representation of the potyvirus genome map. 
 
VPg: 5' terminal linked protein, HC-Pro helper component CI: cylindrical inclusion, 
NIa: Nuclear inclusion A, NIb nuclear inclusion B, CP capsid protein.  An: 3' poly-A tail 
 
 
 
 
There are three main strains of PVY that infect potato, PVYN, PVYO, and PVYC, 

differentiated according to the symptoms they induce on tobacco indicator plants.  PVY 

was first recognized to be a problem on potato by Smith in 1931. The disease caused by 

the virus is known as vein banding, severe mosaic, leaf drop streak, or rugose mosaic. It 

is transmitted in a non-persistent manner by more than 40 aphid species with variable 

efficiency (Table 1.2), but M. persicae is the most efficient one under laboratory 

conditions. Symptoms induced by PVY on potato are different depending on the virus 

isolate, potato cultivar, climatic conditions, and type of infection (primary or secondary) 

(Draper et al., 2002). However, symptoms of the PVYO (Fig. 1.4) and PVYC (Fig. 1.3) 

strains are normally mild to severe mosaic, rugosity, and crinkling, severe systemic 

necrosis, dropping of leaves (leaf drop streak) and dwarfing (Barker et al., 2009). PVYN 

is normally symptomless but occasionally induces mild leaf symptoms and tuber 

necrosis. On the other hand, PVYNTN induces severe leaf symptoms and tuber necrosis. 

 

http://www.dpvweb.net/dpv/showrefs.php?dpvno=414#326
http://www.dpvweb.net/dpv/showrefs.php?dpvno=414#349
http://www.dpvweb.net/dpv/showrefs.php?dpvno=414#85
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Figure 1.3. PVYC symptoms on potato Phureja (SCRI). 

 

 

 

                  
Figure 1.4. PVYO symptoms on potato cv. Shula (SCRI). 
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1.3.3. Potato virus A (PVA) 

 

PVA is a commonly occurring potato potyvirus. It is similar to PVY in genome and 

morphological properties. These viruses cannot be distinguished by electron 

microscopy. However, they can be differentiated by serology and indicator plants. 

Symptoms of PVA on potato are mild mosaic, roughness of the surface, and waviness 

of the leaf margin. Some varieties develop a hypersensitive reaction producing top 

necrosis. However, symptoms are less on some potato cultivars and under some weather 

conditions: mixed infection with PVX or PVY produces crinkle symptoms on potato 

(Bartels, 1971). PVA is transmitted by aphids in the non-persistent manner; however, 

fewer aphid species were reported to transmit this virus compared with PVY and there 

is a lack of information about aphid species transmitting this virus and their relative 

efficiency values (Pickup et al., 2008).  

 

1.3.4. Potato virus V (PVV) 

 

PVV is also a potyvirus. It has filamentous particles of 760 nm in length. It has a 

positive-sense, single-stranded RNA of 9,851 nucleotides (Oruetxebarria et al., 2000). It 

is transmitted non-persistently by several aphid species including M. persicae. PVV is 

less common in potato growing areas than PVY and PVA. PVV is symptomless in the 

majority of potato cultivars; some cultivars show mosaic and necrotic spots on the lower 

leaves while severe systemic necrosis and leaf drop may occur on other cultivars 

(Jeffries, 1998). 

 

1.3.5. Potato virus S (PVS) 

 

PVS is a Carlavirus (Flexiviridae). It has a straight or slightly curved filamentous 

particle with dimensions 650 x 12 nm.  The RNA is single-stranded of 8,485 

nucleotides.  Some virus isolates are reported to be transmissible by several aphid 

species such as Aphis fabae, Aphis nasturtii, M. persicae and Rhopalosiphum padi in a 

non-persistent manner (Lin et al., 2009). However, it is reported to be transmitted 

mainly mechanically in Australia where it is considered a problem (Lambert et al., 

2007). PVS may cause mild symptoms on some cultivars or remain symptomless on 
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others. It is widespread and can cause up to a 20% decrease in potato crop yield 

(Jeffries, 1998). 

 

1.3.6. Potato virus M (PVM) 

 

PVM is a Carlavirus (Flexiviridae) with straight to slightly curved filamentous particles 

(650 x 12 nm). PVM has a single-stranded positive-sense RNA of about 8.5 kb (Zavriev 

et al., 1991). Most isolates are transmitted by aphids in a non-persistent manner. It is 

found worldwide where potatoes are grown, and often found to be accompanied by PVS 

on potato. Depending on the virus strain and potato variety, PVM symptoms vary from 

mild to very severe (Jeffries, 1998). 

 

 

1.4. PVY characteristics  

 
1.4.1. Emergence of PVY as the main potato virus 

 

The relative importance of potato viruses is different over time and region. Historically, 

PLRV was the most important virus affecting potato, and PVY was thought to be the 

second most important potato virus. However, all current reports indicate that PVY is 

the most important potato virus at present in many countries across the world where 

potatoes are grown (Kerlan, 2006), although it is not considered to be a problem in 

some countries, such as Australia (Lambert et al., 2007).  The reasons for this change in 

the relative importance of these two viruses can be summarized as follows. (1) 

Successful chemical control of PLRV transmission with the introduction of new 

systemic insecticides. (2) The capacity of PVY for recombination between strains and 

subsequent emergence of new PVY isolates having different biological properties. 

These novel properties include improved virus transmission efficiency by aphids 

(Verbeek et al., 2010) and more severe symptoms or mild symptoms that mask the 

infection completely in some potato cultivars (Hamm et al., 2010; Whitworth et al., 

2008, 2010). (3) The production of new potato cultivars which exhibit very weak or 

sometimes symptomless infection has led to infection being missed during field 

inspections. (4) The increase in global trade, even though seed tubers are inspected and 

certified disease-free by certification schemes, there is a risk of spreading new 

aggressive recombinant virus isolates between countries. 
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1.4.2. Host range of PVY  

 

Wide host plant range is a characteristic of viruses belonging to the Potyviridae. 495 

species in 72 genera of 31 families were reported to be infected by PVY in the 

laboratory (Kerlan, 2006). PVY has a wide range of natural host species, some of which 

are edible crops like potato, tobacco, pepper, and tomato, while others are ornamental 

plants (Dahlia and Petunia spp.) or weeds such as Datura spp., Physalis spp., Solanum 

dulcamara and S. nigrum (Jeffries, 1998). There are recent reports of such new hosts. 

For example, Fletcher (2001) reported that Cotula australis and Capsella bursa-pastoris 

can be infected naturally by PVY in New Zealand. It has been reported that the weed 

Solanum elaeagnifolium, which is abundant in potato fields in Tunisia and other 

Mediterranean countries, is infected up to 32% by PVYN which can provide a source for 

virus infection of potatoes (Boukhris-Bouhachem et al., 2007). Chikh Ali et al. (2008) 

reported that PVY is very common in S. nigrum and Physalis spp. which are abundant 

at the field margins in potato crops in Syria. Chikh Ali et al. (2008) speculated that 

these weeds may serve as a virus source for aphids alighting on potato crops. In Europe, 

Kaliciak and Syller (2009) reported other new wild hosts for PVY including Erodium 

cicutarium, Geranium pusillum, Lactuca serriola and Lamium purpureum. This 

growing list of alternative host species is very challenging when designing virus control 

strategies, particularly because of the important role of these hosts in providing virus 

sources for aphid vectors. 

 

1.4.3. PVY: Genetic diversity and strains 

 

The PVY genome encodes a large polypeptide which is processed into smaller proteins 

by virus encoded proteases: P1, HC-Pro, P3, 6K1, CI. 6K2, VPg, NIa, NIb and CP (Fig. 

1.2). Before the 1980s, three strains of PVY were known, the ordinary PVYO strain, the 

stipple streak PVYC strain and the veinal necrosis strain (PVYN). This classification was 

based mainly on the biological reaction of tobacco plants to these strains; PVYN is the 

only strain which induces necrosis on tobacco. However, after the emergence of the new 

recombinant strains, this old classification depending solely on biological properties 

became less useful.  A new classification of PVY isolates was therefore suggested. This 

http://www.dpvweb.net/dpv/showrefs.php?dpvno=414#162
http://www.dpvweb.net/dpv/showrefs.php?dpvno=414#99
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takes into consideration the biological reaction on different host plants, genome 

sequence, and serological properties (Singh et al., 2008). Natural recombination 

between PVYO and PVYN has led to the emergence of new aggressive PVY isolates 

named PVYNTN and PVYNW. Although both recombinant isolates cause necrosis on 

tobacco, PVYNTN has the PVYN serotype and PVYNW has the PVYO serotype. Recently, 

a new recombinant PVY isolate designated PVYNTN-NW was reported by Chikh Ali et al. 

(2010) to occur in Syria. This novel isolate shares properties with the two already 

reported recombinant isolates PVYNTN and PVYNW. 

 

Currently necrotic and recombinant strains are the most dominant PVY isolates in 

Europe and have largely replaced the ordinary strain population (Verbeek et al., 2010, 

Karasev et al., 2010). The potato tuber necrosis ring spot disease (PTNR) induced by 

infection with the PVYNTN strain is a very important factor in decreasing crop yield and 

quality of infected tubers. Moreover, disease symptoms normally develop on tubers 

during storage. The increasing numbers of recombinant PVY isolates will require a 

more comprehensive way to classify them, especially as it has been reported that some 

isolates show properties outside the known categories. It has been reported recently that 

some PVYNW, PVYN, and PVYNTN isolates do not induce necrosis in tobacco although 

they have the K/E amino acid motifs in their HC-Pro (Section 1.5.2.2.2) which is 

believed to be responsible for inducing such necrosis (Schubert et al., 2007).  

 

 

1.4.4. Indicator plants for differentiation and propagation of PVY 

 

Strains of the PVYN group are normally differentiated from the other strains by 

symptoms on N. tabacum cultivars White Burley, Samsun NN and Xanthi.  The typical 

reaction to PVYN strains is veinal necrosis, which is generally a unique biological 

characteristic of this group on tobacco. Physalis floridana is a typical indicator plant for 

PVYO and PVYC, which induce local and systemic necrosis in young plants and severe 

stunting. On the other hand, P. floridana develops mosaic symptoms after infection by 

PVYN. Local lesions are induced on Chenopodium amaranticolor after infection with 

PVYO and PVYC, but not PVYN (Barker et al., 2009). 

 

Differentiation between PVY and PVA is not possible by electron microscopy and 

indicator plants or serological tests are normally used. Mixed infections of PVY and 
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PVX are very common in potato. To separate PVY from the mixture, inoculation to 

potato cultivars resistant to PVX, such as cv. Saco, is used. In contrast, for PVY 

elimination D. stramonium, which is completely immune to PVY, is used. For PVY 

purification Nicotiana tabacum cv Xanthi, cv White Burley, or cv. Samsun are routinely 

used, and virus is normally purified from leaves 3–4 weeks post inoculation (Kerlan, 

2006). 

 

1.5. Transmission of potato viruses by aphids 

 
There are different mechanisms for virus transmission by insects which are highly 

specific and complex. The terminology used to describe such mechanisms has been 

changed several times (reviewed by Ng and Falk, 2006). 

 

1.5.1. Virus – vector relationship 

 

Plant viruses have been divided into two main groups according to their relation with 

their insect vectors. The term persistent is used to describe viruses that can persist in 

their insect vector for a long time, and non-persistent to describe viruses which do not 

survive for long inside their vectors. Sylvester (1956) first introduced the term semi-

persistent to discriminate between the viruses which can be acquired and transmitted 

briefly by their vectors (non-persistent) and the viruses that require a longer time than 

the non-persistent viruses to be acquired and transmitted. Subsequently, people have 

used different terminologies to describe plant–virus–vector relationships. Circulative 

and non–circulative viruses are the most comprehensive terms adopted by Ng and Perry 

(2004). The circulative viruses were divided into circulative propagative viruses and 

circulative non-propagative viruses. The non-circulative virus does not enter the insect 

blood system, however; it remains attached to the receptors in the insect mouth parts, 

and viruses belonging to this category were divided into non-circulative semi-persistent 

viruses and non–circulative non-persistent viruses (for review see Ng and Falk, 2006).  

 

In the circulative mode of virus transmission (reviewed by Sylvester, 1980; Gray and 

Gildow, 2003), the insect must feed on the phloem in order to acquire virus from the 

plant vascular system. The plant therefore must be a natural host for the insect vector in 

order to transmit these kinds of viruses. Aphids are unable to transmit persistent viruses 

immediately after feeding on the infected plant: a transit period inside the insect body is 
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required (hours to days depending on the virus).  This period is known as the latent 

period and has a particular importance in the chemical control of these viruses as aphid 

vector can be targeted before it becomes cabable to transmit virus. PLRV is one of the 

most studied potato viruses with a circulative non-propagative mode of transmission 

and its spread is now efficiently controlled by insecticides. 

 

The term non-circulative is split into non-circulative semi-persistent and non-circulative 

non-persistent.  There are no economically important potato viruses that are transmitted 

by the non-circulative semi-persistent mode. The majority of potato viruses, including 

the most important viruses PVY and PVA, are non-circulative non-persistently 

transmitted. It has been shown experimentally that aphids can acquire the virus during 

very short probes (5 seconds to a few minutes) provided they have fasted for some time 

before acquisition. Similarly, aphids can inoculate virus within a very short time and 

they lose the ability to transmit virus after a maximum of a few hours (Bradley, 1959). 

For simplicity, the terms persistent, semi-persistent and non-persistent will be used 

throughout this thesis.  

 

1.5.2. Mechanism of non-persistent virus transmission 

 

1.5.2.1. Background 

 

The non-persistent mode of virus transmission is a unique characteristic of aphids, 

which have piercing-sucking mouth parts (reviewed by Pirone and Harris, 1977; Pirone 

and Blanc, 1996; Ng and Falk, 2006). As mentioned above this kind of transmission is 

characterized by short acquisition and inoculation times. The virus can be acquired 

within very short probes. Unlike persistent viruses, acquisition of non-persistent viruses 

is normally decreased by increasing the acquisition period and enhanced by starving 

aphids for some time before they acquire the virus (Watson and Roberts, 1939). Once 

virus is acquired, the aphid vector can make up to 10 infectious probes (Hashiba and 

Misawa, 1969a). This means that one winged viruliferous aphid can spread a virus 

infection to 10 healthy plants if it performs a single probe on each one. Alternatively, 

many infection sites could be initiated if the aphid continued to probe on the same plant. 

In both situations, this probing behaviour will be harmful by spreading infection to 

many new healthy plants and increasing the probability of infection. Moreover, the 

majority of the aphid vectors of non-persistent transmitted viruses are non-colonizing 

http://www.dpvweb.net/dpv/showrefs.php?dpvno=414#405
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species, which means that the aphid will be likely to perform single probes on many 

plants while searching for a suitable host. 

 

It was first thought that non-persistent transmission was a purely mechanical process, 

and the needle-like hypothesis was proposed by Doolittle and Walker (1928). This 

hypothesis was challenged as early as the 1930s when Watson (1936) indicated that 

non-persistent transmission is a more complicated process and hypothesised that a 

vector substance is involved in the transmission process (Watson and Roberts, 1939). 

Many other studies criticized the needle-like hypothesis and suggested more 

complicated transmission mechanisms. 

 

The ingestion-egestion theory (Harris, 1977) proposed that non-persistent virus was 

acquired by ingestion and carried at the lining of the alimentary canal until inoculated 

by saliva egestion. This theory was extensively investigated but its importance declined 

after the emergence of new hypotheses, namely the helper virus strategy (Pirone and 

Blanc, 1996), and the conformational change hypothesis (Salomon and Bernardi, 1995). 

These hypotheses propose roles for virus-encoded helper component and the coat 

protein. 

 

1.5.2.2. Helper component (HC-Pro) 

 

1.5.2.2.1. Discovery and properties 

 

The concept of helper component (HC-Pro) was first introduced by Govier and 

Kassanis (1974 a,b) without exact characterization of its nature. They speculated that 

this helper component could be either a virus-coded or virus-induced sap component or 

a virus protein subunit that assisted aphid transmission. Studies on partially purified 

infected leaf tissues containing HC-Pro revealed that this helper factor is of a protein 

nature distinct from PVY coat protein or inclusion protein (Govier et al., 1977). HC-Pro 

was purified and characterized (Govier et al., 1977; Thornbury et al., 1985), and it was 

concluded that it is a virus-encoded non-structural protein of molecular mass between 

50 and 58 kDa depending on the potyvirus (Thornbury et al., 1985). However, the 

biologically active HC-Pro was between 100 and 150 kDa, which indicated a polymeric 

structure. Further structural characterization studies confirmed that HC-Pro is a dimer in 
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solution (Plisson et al., 2003). HC-Pro mediates the transmission of non-persistent 

viruses by a mechanism not fully understood.  

 

In addition, HC-Pro is a multifunctional protein (Reviewed by Maia and Bernardi, 

1996; Syller, 2005) which has been reported to have a role in many other functions, 

including proteinase activity (Carrington et al., 1990), virus movement (Rojas et al., 

1997; Saenz et al., 2002), virus synergy (Pruss et al., 1997), and suppression of gene 

silencing (Kasschau and Carrington, 1998). Furthermore, HC-Pro is suspected to be 

responsible for the necrotic symptoms induced by some PVY isolates on different hosts 

(Tribodet et al., 2005, Rolland et al., 2009). HC-Pro is able to interact with itself 

(Urcuqui-Inchima et al., 2001) and with some other viral gene products, including coat 

protein (Atreya et al., 1990; Roudet-Tavert et al., 2002), P1 protein (Merits et al., 

1999), and VPg (Yambao et al., 2003). Moreover, HC-Pro is reported to interact with 

many host proteins (Guo et al., 2003). 

 

 
Figure 1.5. Schematic representation of PVY HC-Pro showing the different 

molecular determinants and their biological roles. 
 

CP: Coat protein, DAG: motif at the N-terminus of CP involved in aphid transmission, KITC: higily 
conserved region at the N-terminus of the HC-Pro involved in transmission by aphids, PTK: conserved 
motif in the HC-Pro interact with virus particles, KE, amino acides at specific location at the N-terminus 
of  HC-Pro reported to be responsible for inducing necrosis.  

 

 

1.5.2.2.2. HC-Pro function in virus transmission 

  

It was speculated at an early stage of HC-Pro discovery that this protein controls aphid 

transmission by regulating virus uptake, binding virus to receptor sites in the aphid food 

canal to be eluted later, or protecting virus particles in the alimentary tract (Govier  and 
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Kassanis, 1974; Lobez-Abella et al., 1981; Raccah and Pirone, 1984). Naturally 

occurring aphid non-transmissible isolates of PVY (Thornbury et al, 1990; Canto et al., 

1995) produce transmission-defective HC-Pro due to the substitution of the amino acid 

lysine (K) with glutamic acid (E) in a conserved motif (KITC) at the N-terminus (Fig. 

1.5) (Thornbury et al., 1990). Similarly, TVMV HC-Pro lost its function when the 

corresponding positively charged lysine was substituted with glutamic acid (Atreya et 

al., 1992; Atreya and Pirone, 1993). Moreover, Blanc et al. (1998) found that the K to E 

mutation in the KITC motif of an aphid non-transmissible isolate of PVY (PVYC) and 

in the mutant TEV isolate resulted in  loss of aphid transmissibility. In addition, they 

found that this K to E mutation does not affect binding of HC-Pro to virus capsid 

protein but does prevent HC-Pro binding to aphid stylet. Additionally, the N-terminus 

of the HC-Pro was confirmed to be involved with other functions including virulence, 

genome multiplication, and virus accumulation (Atreya and Pirone, 1992; Atreya et al., 

1992; Kasschau and Carrington, 1998).   

 

Another conserved area containing proline-threonine-lysine (PTK) in the C-terminal 

part of HC-Pro (Fig. 1.5) was identified (Granier et al., 1993) and proved to be involved 

in binding to virions (Peng et al., 1998). The C-terminal region is also involved in the 

cell to cell movement and protease activity functions. The central area between the N 

and C terminal of HC-Pro was also reported to mediate long-distance movement and 

virus replication (Cronin et al., 1995; Kasschau et al., 1997; Klein et al., 1994). 

Furthermore, this central region of the HC-Pro molecule is responsible for suppression 

of gene silencing in the host’s defence response. It was reported that HC-Pro belonging 

to one potyvirus may assist transmission of another potyvirus; however, this is not a 

general rule (Harrison and Robinson, 1988; Lopez-Moya et al., 1995). All the reports of 

HC-Pro mediated transmission of potyviruses are for aphid vectors except for the semi-

persistent WSMV by the eriophyid mite Aceria tosichella (Stenger et al., 2005). 

 

1.5.2.3. Coat protein (CP) 

 

Molecular characterization of the coat protein of PVY started in the 1970s (Makkouk 

and Gumpf, 1975, 1976). Regarding aphid transmission, at least two viral proteins have 

been confirmed to be involved in the transmission of non-persistent viruses, the HC-Pro 

and the coat protein (CP) (Pirone, 1991; Pirone and Blanc, 1996). Shukla and Ward 

(1989) divided the CP into three main regions: an N-terminal surface-exposed region of 

http://www.dpvweb.net/dpv/showrefs.php?dpvno=414#271
http://www.dpvweb.net/dpv/showrefs.php?dpvno=414#273
http://www.dpvweb.net/dpv/showrefs.php?dpvno=414#318
http://www.dpvweb.net/dpv/showrefs.php?dpvno=414#318
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30 amino acids which is different in length and sequence in different potyviruses, a core 

region of 218 amino acids which is highly conserved among potyviruses, and a region 

of 19 amino acids which is surface-located at the C-terminus. Harrison and Robinson 

(1988) predicted that a highly conserved DAG motif located on the surface-exposed N-

terminus of potyvirus coat protein is involved in aphid transmission (Fig. 1.5). The 

DAG triplet was reported to exist in all PVY aphid transmissible isolates (Shukla et al., 

1991; Galon et al., 1992). However, this is not consistent between different potyviruses. 

While some potyviruses like PVY contain one DAG triplet, others like TEV contain 

two consecutive DAG motifs separated by the amino acid alanine. In contrast, some 

potyviruses such as PSbMV have a DAS motif. Mutation of the DAG motif to DAS in 

TVMV (Lopez- Moya et al., 1999) or to DAA or DAL in TVMV (Atreya et al., 1995; 

Lopez-Moya et al., 1999) decreased aphid transmission significantly, confirming that 

this motif plays an important role in aphid transmission but the exact motif depends on 

the potyvirus. For example, PVY with the motif DAGE was aphid transmissible but the 

same motif did not reflect aphid transmissibility in TVMV (Shukla et al., 1994). In 

addition, although the DAG region is highly conserved between aphid transmissible 

potyviruses (Atreya et al., 1995), there are some exceptions where it is found in viruses 

outside this category, for example the British isolate of PAMV, Potexvirus (Baulcombe 

et al., 1993). Other variants include a DAA motif in PeMoV (Flasinsky and Cassidy, 

1998) and DDG in PVY (Rosner and Raccah, 1988). Moreover, introducing a DAG 

motif in the N-terminus of the coat protein of DAS or DAL mutants of TVMV, to 

become DAS-DAG or DAL-DAG respectively, was not sufficient to restore aphid 

transmissibility. This finding suggests that the context in which the DAG motif exists 

plays a role in aphid transmission (Lopez-Moya et al., 1999). It seems likely that the 

third position in the DAG triplet is the most critical determinant for aphid transmission, 

and substituting the glycine residue in this position with glutamate, serine, asparagine, 

asparatate, or leucine always disabled aphid transmissibility (Atreya et al., 1991). 

Furthermore, aphid transmissibility is adversely affected by amino acid substitutions in 

the region directly after the DAG motif (Atreya et al., 1991; Lopez-Moya et al., 1999). 

Mutagenesis of this region of TVMV coat protein resulted in loss of binding between 

CP and HC-Pro (Blanc et al., 1997). In addition to binding to HC-Pro, the DAG motif 

was reported to be involved in potyvirus movement (Lopez-Moya and Pirone, 1998). 

 

 

 

http://www.dpvweb.net/dpv/showrefs.php?dpvno=414#324
http://www.dpvweb.net/dpv/showrefs.php?dpvno=414#324
http://www.dpvweb.net/dpv/showrefs.php?dpvno=414#326
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1.5.2.4. Hypotheses proposed for molecular mechanisms of potyvirus transmission 

 

There are two different models for non-persistent virus transmission, termed capsid 

strategy and helper strategy (reviewed by Pirone and Blanc, 1996). Direct interaction 

between the virion and the vector is the basis of the capsid strategy, which is the case 

for transmission of CMV, whereas a helper factor is required to mediate transmission in 

the helper strategy (Pirone and Blanc, 1996). 

 

The bridge hypothesis, introduced by Pirone and Blanc (1996), is a refinement of the 

early bridging concept suggested by Govier and Kassanis (1974), who suggested that 

HC-Pro works as a bifunctional molecule by joining the virus particles with putative 

virus receptors on the aphid’s stylet. This proposal followed their observations which 

demonstrated that aphid non-transmissible viruses (PVC, PAMV) were transmitted if 

aphids were fed first on a PVY infected source, whereas the transmission was inhibited 

if the feeding sequence was reversed (Kassanis and Govier, 1971a,b). Much evidence 

supports the bridge hypothesis (Taylor and Robertson, 1974; Pirone and Thornbury, 

1984; Berger and Pirone, 1986; Ammar et al., 1994; Wang et al., 1996; Blanc et al., 

1997, 1998; Uzest et al., 2007).  

 

The conformational change hypothesis suggests the indirect involvement of HC-Pro 

through causing conformational changes in the N-terminal part of the CP that eventually 

lead to direct attachment between the virus particles and the aphid’s receptors (Salomon 

and Bernardi, 1995). However, it was reported that intitation of the conformational 

change on the coat protein may be related to the DAG motif which highly conseved 

among potyviruses on the N-terminus of the coat protein (Jayaram, 1998).  

 

Although most lines of evidence support the bridge hypothesis, the exact mechanism 

behind non-persistent virus transmission is still unclear and further work is needed to 

investigate both hypotheses. 
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1.6. Aphid species transmitting potato viruses 

 
There are many aphid species which colonize potato crops. Colonizing aphids damage 

potato by depleting nutrients through feeding as well as by transmitting plant viruses. In 

addition, there are many aphid species that do not colonize potato but can transmit 

viruses. Table 1.2 presents a list of the aphid vectors that transmit PVY together with 

their reported efficiencies, and other potato viruses they transmit. The most important 

vector is M. persicae (Figs. 1.6, 1.7). 
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Aphid species 
 

Reference 
 Virus isolate 

Transmission  
efficiency* 

 

Other potato 
viruses 

transmitted 
Acyrthosiphon 

pisum  
 

Van Hoof 
(1980) 

 
PVYN 14% PLRV, PVS 

A. primulae Ragsdale et 
al. (2001) PVYN 15% NA 

Aphis citricola 
Raccah et al. 

(1985) 
 

PVY in 
pepper 6.2% CMV 

Aphis craccivora 
Fereres et al. 

(1993) 
 

PVY in 
pepper 4% NA 

Aphis fabae 
Van Hoof 

(1980) 
 

PVYN 
,
   

PVYO 24% PLRV 
TEV 

Aphis frangulae Verbeek et al. 
(2008) PVY 42% PVA 

Aphis glycines 
 

Davis et al. 
(2005); Davis 
and  Radcliffe 

(2008) 
 

PVYO, 
PVYN, 
PVPNTN 

14% to 75% 
depending on 

strain 

CMV, AMV, 
PLRV 

Aphis gossypi 
 

Raccah et al. 
(1985) 

 
PVYO 31% PLRV, PVA 

Aphis nasturtii 
Sigvald 
(1984) 

 
PVYO 7.1% PLRV, PVA, 

PVS 

Van Hoof 
(1980) 

 
PVYN 9% 

Aphis pomi Harrington 
and Gibson 

(1989) 
PVYO 2% 

CMV 

Aphis spp. Harrington et 
al. (1986) 

PVYO
,
 PVYN 

 6% CMV 

Harrington 
and Gibson 

(1989) 
PVYO  

4.3%  
Aphis sambuci 

 De Bokx and 
Piron (1990) PVYN 12% 

NA 
 

 
Aulacorthum solani 

 

Van Hoof 
(1980) 

 

PVYN 

PVYO 5% PLRV 

Brachycaudus 
helechrysi 

 
 

Piron (1986) 
 

 
PVYN 

 
 

12.5% PVA 

http://www.discoverlife.org/nh/tx/Insecta/Homoptera/Aphididae/Acyrthosiphon/pisum/index.html
http://www.discoverlife.org/nh/tx/Insecta/Homoptera/Aphididae/Acyrthosiphon/pisum/index.html
http://www.google.co.uk/url?q=http://www.commanster.eu/commanster/Insects/Bugs/SpBugs/Aphis.sambuci.html&ei=ALoKS8_bG4SNjAeBuqn3AQ&sa=X&oi=spellmeleon_result&resnum=1&ct=result&ved=0CAcQhgIwAA&usg=AFQjCNE-4bF1p2UQkylo30mEPu88xqXGFA
http://www.google.co.uk/url?q=http://www.rothamsted.ac.uk/insect-survey/STAulacorthum_solani.php&ei=Z7oKS4CwBeTTjAeG67X3AQ&sa=X&oi=spellmeleon_result&resnum=2&ct=result&ved=0CAkQhgIwAQ&usg=AFQjCNGwDGpbKFlY25HWOdRgjR8LCXVP1A
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Harrington et 
al.(1986) 

 
 
 

PVYO
,
 

PVYN 

 

 

 
 
 

7.2%  PVYO 

0.9%  PVYN 

 

 
 
 
 
 

 
 

Brachycaudus 
helechrysi 

 
Harrington 
and Gibson, 

(1989) 

 
PVYN 

 
5.9% 

        NA 

Brachycaudus spp. Piron , (1986) 
 

PVYN 

 14.7% NA 

B. cardui 
B. amygdalinus 
B. rumexicolens 

Perez et al. 
(1995) PVY pepper NA NA 

Capitophorus 
hippophoes 

Van Hoof, 
(1980) 

 

PVYN 

 3% NA 

Capitophorus 
eleagni 

Halbert et al. 
(2003) PVYO 2% NA 

Capitophorus spp. Perez et al. 
(1995) PVY pepper NA NA 

Piron , (1986) PVYN 

 
0.4% 

 Cavariella 
aegopodii Harrington 

and Gibson 
(1989) 

PVY 0.2% 

 
 

NA 

Cavariella 
pastinaca 

Salazar 
(1996) 

PVYN 

 NA NA 

Cryptomyzus 
ballotae 

Harrington et 
al. (1986) PVY 100% NA 

Cryptomyzus 
galeopsidis 

 
Piron  (1986) PVYN 

 17.4% NA 

Cryptomyzus ribis Piron (1986) PVYN 

 15.4% NA 

Diuraphis noxia Perez et al. 
(1995) PVY-Pepper 4-7% NA 

Dysaphis spp 
 

Harrington 
and Gibson 

(1989) 
PVYO 1.8% NA 

Drepanosiphum 
platanoidis 

Powell et al. 
(1995) 

PVYN 

 0.6% NA 

Hyadaphis 
foeniculi Piron (1986) PVYN 

 14.7% NA 

Hyalopterus pruni 
 Piron (1986) 

PVYN 

 

 
13.9% NA 
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Hyperomyzus 

lactucae Piron (1986) PVYN 

 17.4% NA 

Macrosiphum 
euphorbiae 

Van Hoof 
(1980) 

 

PVYN 

 29% PLRV , TEV 

Metopolophium 
dirhodum 

 

 
Van Hoof 

(1980) 
 

PVYN 

 3% NA 

Metopolophium 
albidum 

 

Van Hoof, 
(1980) 

 

PVYN 

 11% NA 

 
Metopolophium 

festucae 

 
Harrington et 

al. (1986) 

 
PVYO 

 
0.5% 

 
NA 

Myzaphis rosarum Harrington et 
al. ( 1986) PVYO 10% NA 

Neomyzus 
circumflexus 

 

Salazar 
(1996) PVYO , PVYN NA PLRV 

Myzus ascalonicus 
 

Verbeek et al. 
(2010) 

PVYN 
,PVYNTN, 
PVY NW 

NA PLRV 

Myzus cerasi 
Harrington 
and Gibson 

(1989) 
PVYO, PVYN 3.2% NA 

Myzus certus 
Van Hoof 

(1980) 
 

PVYN 

 71% NA 

Myzus ligustri 
Harrington 
and Gibson 

(1989) 
PVYO 50% NA 

Myzus myosotidis Harrington et 
al. (1986) PVYO 100% NA 

Kanavaki et 
al. (2006) PVYN 15.3% M. persice  

nicotianae Halbert et al. 
(1995) PVY NA 

PLRV 

Van Hoof 
(1980) 

 
PVYN 50% 

Harrington 
and Gibson 

(1989) 
PVYO , PVYN 8.4% 

Myzus persicae 

Piron (1986) PVYN 71.1% 

PLRV, PVA, 
PVS, TEV 

 
 

Phorodon humuli 
Van Hoof, 

(1980) 
 

PVYN 35% PLRV 

Rhopalosiphum 
insertum 

Van Hoof, 
(1980) 

 
PVYN 50% NA 

http://www.ecoflora.co.uk/search_phytophagy2.php?insect_species=Metopolophium%20albidum
http://www.ecoflora.co.uk/search_phytophagy2.php?insect_species=Metopolophium%20albidum
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Rhopalosiphum 
maidis 

Helbert et al. 
(2003) 

PVYO 

 

 

 

 

1.5% NA 

Kostiw (1979)
 PVYO 2.7% 

 
 

Van Hoof 
(1980) 

 

 
PVYN 

 
2% 

Piron (1986) PVYN 11.5% 
 

 
 
 
 

Rhopalosiphum 
padi 

 
 
 
 

Harrington 
and Gibson 

(1989) 
PVYO 2.4% 

 

 
 
 
 
 
 
 
 
 

NA 
 
 
 

Rhopalosiphum 
pseudobrassicae 

Ragsdale et 
al. (2001) PVY N/A NA 

Schizaphis 
graminum 

Perez et al. 
(1995) PVY pepper NA NA 

Harrington 
and Gibson 

(1989) 
PVYO 0.1% 

Sitobion  avenae 

Piron (1986) PVYN 

 1.8% 

NA 
 

Harrington 
and Gibson 

(1989) 
 

PVYO 

 0.5%  
 
 

Sitobion fragariae Piron (1986) PVYN 

 10.1% 

 
 

NA 

Sitobion graminum Verbeek et al. 
(2010) 

PVYNTN, 
PVY NW NA NA 

Staphylea 
tulipaellus 

 

Salazar 
(1996) 

PVYN 

 NA PLRV 

Therioaphis trifolii 
Therioaphis sp. 

Perez et al. 
(1995) PVY pepper NA NA 

Harrington 
and Gibson 

(1989) 

PVYO 

 0.5% 
Uroleucon spp. 

Piron (1986) PVYN 

 8.3% 

NA 
 

  
Table 1.2. Aphid species which are reported to transmit PVY. 

 
 * Transmission efficiency was determined differently depending on the methods used by the author and 
the variable experimental conditions. 
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Figure 1.6. M. persicae (winged adult), the main vector aphid species of PVY, 
SCRI. 

 
 

         
 

               Figure 1.7. Colony of apterous M. persicae red colour lineage (SCRI). 
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1.7. Controlling the spread of aphid transmitted viruses on potato 
crops 
 
Virus incidence in seed tubers is controlled by seed classification schemes, which are 

supported by monitoring of aphid activity and by using sensitive virus detection 

techniques. A second, long-term alternative is to breed virus or aphid resistant potato 

cultivars which can limit virus multiplication and spread. The third option is to control 

aphids using insecticides, but this is not effective for controlling the majority of non-

persistently transmitted viruses. 

 

1.7.1. Seed classification schemes 

 

Potatoes are vegetatively propagated and thus susceptible to build-up of disease when 

grown over successive generations. Seed classification schemes are employed to control 

the spread of disease in such vegetatively propagated crops. There are two main 

elements to these schemes. 1.  Inspections of growing crops, which is the main element 

used in the UK. This depends on regular field inspections (normally two per crop) by 

qualified inspectors to check plants for disease symptoms and trueness-to-type. 2. Post 

harvesting testing (PHT), which is more expensive but routinely used in the Netherlands 

and in France. 

 

1.7.1.1. British seed classification schemes 

        

70% of British potato seeds are produced in Scotland, and Science and Advice for 

Scottish Agriculture (SASA) is responsible for advising on all the seed certification 

activities. The remaining 30% of British potato seeds are produced in England, and the 

Food and Environment Research Agency (FERA) is responsible for this programme. 

Seed classification programmes in the UK are generally based on visual inspection of 

infected plants, which are carried out at different occasions during the growing season 

by experienced inspectors, and the crop is assigned a score reflecting its virus incidence 

before harvesting. Field inspection has some advantages over PHT, as a wide range of 

diseases can be inspected at the same time as well as trueness to type. Field inspection is 

normally repeated at least twice, which allows for development of disease symptoms.  

  



 26

Roguing, known as negative selection, is a disease control method used to identify and 

eliminate diseased and undesired plants from the crop according to their visual 

symptoms (Cortbaoui, 1984). Roguing is a common practice in potato crops to reduce 

virus spread by removing virus sources (Cadman and Chambers, 1960). Radcliffe 

(2006) reported that roguing is effective when the infection by virus is at low levels (<1-

2%), and if the field is small to enable inspection of all plants in the field.  Roguing 

virus infected plants is normally performed before crop flowering, in order to be able to 

identify atypical plants because cultivars are more easily identified at the flowering 

stage, and during cloudy weather, as mosaic symptoms are more recognizable under 

uniform light and direct sunlight prevents identification of changes in plant leaf color 

(Cortbaoui, 1984). It is recommended to perform roguing before the closure of the plant 

canopy, and not late in the season as the symptoms become less visible (Woodford and 

Gordon, 1990). 

 

1.7.1.2. Aphid monitoring and forecasting 

 

In addition to roguing, controlling virus spread on potato is enhanced by aphid 

monitoring programmes. Aphid forecasting to control virus spread in potato crops 

started with monitoring incidence of the most efficient vector, M. persicae. However, as 

information about the role of non-colonizing aphid species in transmission of non-

persistent viruses emerged, the importance of monitoring a greater number of aphid 

species has increased.  Aphid monitoring can be performed on a regional basis using 

suction traps (Pickup and Brewer, 1994). Aphid forecasting networks were established 

as early as 1965. A network was initiated in the UK by installing one 12.2 m suction 

trap, and nowadays the network has expanded to comprise 73 traps in 19 European 

countries (Radcliffe, 2006). Rothamsted Research in collaboration with SASA runs a 

forecasting system based on a network of 16 12.2 m suction traps (Fig. 1.8) in different 

sites in the UK. Information about aphid forecasting can be found on these two 

websites: http://www.rothamsted.ac.uk/insect-survey/ and  

http://www.sasa.gov.uk/seed_potatoes/aphids/bulletins/index.cfm. 

Aphid activity on crops can not be monitored using suction traps, and different kinds of 

traps are used for this pupose. 

 

 

http://www.rothamsted.ac.uk/insect-survey/
http://www.sasa.gov.uk/seed_potatoes/aphids/bulletins/index.cfm
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   Figure 1.8. 12.2 m Rothamsted type suction trap, used to monitor  
                                     aphids in the UK (SCRI). 

 

 

 

 

 

The most widely commonly used type is the yellow water trap (Fig. 1.9). FERA is 

currently running an aphid monitoring and forecasting programme in England.  

Information is obtained from about 100 water traps in the main potato production areas. 

Information about aphid flights is presented on this website: 

http://aphmon.fera.defra.gov.uk, or on the potato council website: 

http://www.potato.org.uk/aphids.  Information at the website is updated twice a day, and 

it can provide up-to-date information for seed potato producers about aphid flights. In 

http://aphmon.fera.defra.gov.uk/
http://www.potato.org.uk/aphids
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addition, farmers can sign up to receive weekly information, and email alerts when the 

number of aphids requires chemical spray in a certain region. 

 

 

 
Figure 1.9. Yellow water trap used to monitor aphids in potato crops in the UK 

(SCRI). 

 

1.7.1.3. Interpreting aphid monitoring data 

 

Capturing aphids does not provide a direct estimate of their potential risk in virus 

transmission. Raw data obtained from traps are interpreted in different ways. Relative 

efficiency factor (REF) values are commonly applied to estimate vector pressure; the 

bait plant system is another method which is used to interpret aphid efficiency in virus 

transmission. 

 

1.7.1.3.1. Relative efficiency factor (REF) 

 

REF is a score given to a particular vector to represent its efficacy in virus transmission 

compared with the most efficient vector. Van Harten (1983) suggested assigning a value 

of 1 to the most efficient vector of PVY (M. persicae), and values were assigned for 
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other vectors depending on their efficiency in PVY transmission compared with M. 

persicae. This method emerged in the 1980s, and was used commonly in 

epidemiological studies of PVY in order to estimate the best timing of chemical 

application or haulm destruction according to the abundance of the virus vectors caught 

in traps (Van Harten, 1983; Sigvald, 1987). Nowadays REFs are available for the most 

efficient PVY vectors (Table 1.3). However, there is some variation in these values (De 

Bokx and Piron, 1990). For example, the cereal aphid M. dirhodum was assigned the 

value of 0.3 although many reports in the literature confirm that the efficiency of this 

vector is only about 0.1-1%, which suggests the need to revise the assigned values. In 

addition, these values were calculated according to the efficiency of aphid vectors in 

transmitting the PVYO and PVYN stains only. The recent emergence of new 

recombinant isolates of PVY will necessitate some revision (Verbeek et al., 2010). 

 

 

Aphid species Common name 
REF 

FERA 
 

REF 
Netherlands

 
Myzus persicae Peach-Potato Aphid 1 1 

*Acyrthosiphon pisum Pea Aphid 0.7 0.05 
Myzus certus Black Peach aphid NA 0.44 

Aphis frangulae NA NA 0.42 
Aphis nasturtii Buckthorn-Potato Aphid 0.4 0.42 

Rhopalosiphum padi Bird Cherry-Oat Aphid 0.4 0.03 
*Metopolophium dirhodum Rose-Grain Aphid 0.3 0.01 

Brachycaudus helichrysi Leaf-Curling Plum Aphid 0.21 0.01 

Aulacorthum solani Glasshouse and Potato 
Aphid 0.2 NA 

Myzus ascolonicus Shallot Aphid 0.2 0 - 0.01 
Macrosiphum euphorbiae Potato Aphid 0.2 0.1 

Myzus ornatus Violet Aphid 0.2 NA 
Rhopalosiphoninus 

latysiphon Bulb and Potato Aphid 0.2 NA 

Hyperomyzus lactucae Currant-Sowthistle Aphid 0.16 NA 
Phordon humuli Damson-hop aphid NA 0.15 

Aphis fabae Black-Bean Aphid 0.1 0.1 
Brevicoryne brassicae Cabbage Aphid 0.01 NA 

Sitobion avenae Grain Aphid 0.01 0 - 0.05 
Table 1.3. REF values for PVY aphid vectors reflecting difference in values 

between British and Dutch systems for some aphid vectors. 
 

*Aphid species which show big difference were presented in bold. 
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1.7.1.3.2. How REF is assigned 

 

REFs have been assigned to PVY vectors based on different experimental criteria, 

which give different values (Table 1.3). In the UK, Harrington et al. (1986) used 

indicator tobacco plants to assess if live-captured alate aphids were viruliferous or not. 

In the Netherlands, REFs were normally assigned based on laboratory and greenhouse 

experiments on apterous aphid transmission to indicator plants (Van Hoof, 1980). Live-

caught winged aphids were released in cages containing infected and healthy potato 

plants, and transmission efficiency was estimated based on transmission from potato to 

potato. Recently, Verbeek et al. (2010) in the Netherlands introduced another system to 

assess the REF for the new recombinant PVY isolates. In their new system they used 

laboratory maintained aphids to acquire PVY from potato and transmit to P. floridana 

indicator plants. The values determined in this system and the REF values determined in 

1980s were comparable for most PVY vectors. However, the results indicated that 

efficiency of some aphid species were underestimated (Verbeek et al., 2010). 

 

1.7.1.3.3. Bait plant system 

 

Bait plants are used in monitoring aphid activity on potato crops. Bait plants such as 

tobacco or potato plants are distributed in the field for a certain time and then 

transferred to a glasshouse to monitor symptom development. They are normally used 

to identify the time of virus spread in the field, determine the aphid vector species 

pressure, and to reveal the role of alate and apterous aphids in virus transmission 

(Peters, 1987). The bait plant system in the Netherlands was based on distribution of 

healthy tobacco at weekly intervals and assessing the effect of alate aphids carrying 

infection from potato virus sources distributed at the field borders (Van Hoof, 1977). 

Such tests revealed that there are aphid species other than M. persicae participating in 

the PVY transmission process (Van Hoof, 1977; Ryden et al., 1983). 

 

Peters (1987) reported that the bait plant method is of limited use in evaluating the 

magnitude of virus transmission in the field because of the potential higher transmission 

to these plants compared with the crop plants. Moreover, there are other factors which 

affect the results obtained from the bait plant method, including the distance of the bait 

plants from the crop, the virus source used, physical properties of the bait (colour and 
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size), and the location of the bait plants in the field, in particular proximity to the field 

borders. 

 

1.7.1.4. Aphid thresholds  

 

Control strategies should be started after the number of captured winged aphids reaches 

a certain threshold which is in the range of 20-100 aphids/100 leaves (Radcliffe and 

Ragsdale, 2002). However, advice differs depending on factors such as the kind of 

potato crop (ware or seed), the kind of virus (persistent or non-persistent), the virus 

inoculum source (e.g. virus-free seed or virus-contaminated seed), and the geographical 

isolation of the potato production area. In the UK, for example, it is recommended to 

start chemical applications in seed crops when aphids start to appear in the region, and 

to repeat the treatment every 7-10 days. On ware potato crops, chemical treatment is 

recommended at the start of aphid activity if the ware crops are in a close proximity to 

seed crops. But if ware crops are isolated then chemical treatment should be started only 

when the number of aphids exceeds 5-6 winged aphids/plant (Pickup and Evans, 2008). 

 

In Minnesota and North Dakota, USA, and in Canada, they recommend starting 

chemical applications when the number of aphids exceeds the 20-100 aphids/100 

leaves, but this threshold should be decreased to 1-10 aphids per 100 leaves when potato 

cultivars are susceptible to net necrosis caused by PLRV or if the crop is grown for seed 

production (Mowry, 2001). In the Netherlands, capturing more than two M. persicae in 

a yellow water trap was the threshold to start haulm destruction (Van Harten, 1983). 

PVY is more dangerous than PLRV in seed potato production in the Netherlands (De 

Bokx and Piron, 1990). The importance of PVY was particularly noticeable after 

invasion of the new PVYN isolates, which induce very mild symptoms that are difficult 

to recognize during roguing (Van Harten, 1983). Currently haulm destruction dates in 

the Netherlands are based upon aphid monitoring of the 11 most efficient aphid species 

in PVY transmission (Verbeek et al., 2010). In New Zealand, van Toor et al. (2009) 

reported that the threshold of 10 winged aphids/150 potato leaves is the start point for 

chemical control of aphid vectors to control aphid-borne viruses in potato fields. 
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1.7.1.5. Post-harvest testing/ Enzyme-linked immunosorbent assay (ELISA)  

 

Post-harvest testing is widely applied in the Netherlands and some European countries 

and involves ELISA testing samples of all lots of potato seed tubers. It is also used 

occasionally in some countries like Canada and Northern USA where inspection of 

growing crops is less reliable. In the post-harvest test, a sample of several hundred 

tubers is required for basic seeds, and one hundred tubers are enough for lower grade 

certified seeds (Oosterveld, 1987). In the UK, the scheme is used only to test cv. 

Estima, which induces indistinguishable symptoms when infected with PVA (E. 

Anderson, Scottish Agronomy, personal communication 2009). 

If the seed lot is given a score higher than a particular threshold (different for each 

virus), then the lot will be downgraded or even rejected. In the latter case, the potato lot 

will be used for human consumption or for starch production. Post-harvest testing is 

essential to detect late virus infection, which normally remains symptomless. 

 

ELISA is routinely used for the PHT. In the Netherlands for example, about 1.8 million 

ELISA tests are conducted annually for detection of potato viruses during the seed 

certification programme (Bergervoet et al., 2008). Nucleic-acid-based techniques such 

as RT-PCR are not yet suited to such high throughput, and so cannot replace ELISA 

when screening many samples. In addition, ELISA is a valuable tool during breeding 

programmes for virus resistance, when screening a large number of samples for the 

presence of the virus is needed.  

 

1.7.2. Breeding for virus and vector resistance 

 

Developing disease-resistant varieties by conventional breeding is difficult because the 

process is extremely long in potato. Moreover, virus resistance was not previously 

considered a priority in some breeding programmes, for example the breeding 

programmes in the UK. Thus most commercial potato cultivars lack virus resistance 

genes. The success of conventional breeding strategies is based on the fact that 

dominant monogenic resistance (R) genes confer good protection against plant viruses 

(Fraser, 1990). However, this approach is limited because it relies on the allele specific 

genetic interaction between a host R-gene and a pathogen avirulence (avr) gene. There 

are many review papers that discuss virus resistance in potato (Valkonen, 1994; 

Valkonen et al., 1996; Solomon-Blackburn and Barker, 2001a,b; Gebhardt and 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Gebhardt%20C%22%5BAuthor%5D
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Valkonen, 2001). Resistance to virus infection was reported to exist in some potato 

species such as S. phureja and S. brevidens (Gibson et al., 1990). Valkonen (1994) 

divided natural resistance genes in potato towards viruses into R type, which confer 

complete immunity or extreme resistance (ER), and N type, which confer a 

hypersensitive response (HR). In the ER resistance, plants stay symptomless or develop 

limited necrosis when inoculated with virus. On the other hand, the HR infected plant 

develops local lesions or systemic necrosis. The ER type resistance can sometimes 

confer broad spectrum resistance to more than one virus. For example, the Rysto gene 

confers resistance to PVY, PVA and PVV. In contrast, the HR type resistance is specific 

and is liable to breakdown in some environmental conditions (Solomon-Blackburn and 

Barker, 2001, b). 

The mechanism by which R and avr gene products trigger signal transduction that leads 

to a hypersensitive response and the arrest of pathogen invasion is still an open 

question. There is currently a list of resistance genes for the main viruses infecting 

potato with their locations (Solomon-Blackburn and Barker, 2001a).  

 

Given the increase in the incidence of aphid-borne viruses, I believe that genes 

conferring resistance to aphid attack should also be incorporated in breeding 

programmes. However, controlling virus spread through breeding for vector resistance 

is more likely to provide partial control which can be useful in integrated pest 

management if combined with other control measures, and vector resistance will be less 

effective in controlling non-persistent viruses compared with the semi-persistent and 

persistently transmitted viruses (Mutschler and Wintermante, 2006).There are many 

wild potato lines which have genes for resistance to aphids. For example, 36 potato 

species were identified which have high resistance towards M. persicae and 24 species 

which have resistance to M. euphorbiae (Ragsdale et al.,, 2001). Only limited efforts 

have been made to introduce these resistance genes into commercial potato cultivars 

(Flanders et al., 1999). Effects of glandular trichomes on non-persistent virus 

transmission by M. persicae were reported in some wild potato species (Gunenc and 

Gibson, 1980; Lapointe et al., 1987). However, recent investigations have focused on 

resistance to phloem feeding by aphids (Wilson and Jones, 1992; Alvarez et al., 2006; 

Le Roux et al., 2010), which has little impact on the transmission of non-persistent 

viruses. Alvarez et al. (2006) reported that combining aphid resistance at the early stage 

of crop growth with mature plant resistance (Beemster, 1987) to virus infection at the 

late stage can be very useful in controlling virus spread by aphids in potato crops. In 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Valkonen%20JP%22%5BAuthor%5D
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addition to natural resistance to aphids, Moran and Thompson (2001) demonstrated that 

phloem-feeding by the aphid M. persicae induced expression of genes in Arabidopsis 

thaliana associated with responses to pathogens as well as a gene involved in the 

wounding response pathway. Similar genes may be found to be expressed after virus 

infection or insect infestation on potato, which could be useful if exploited in virus and 

aphid resistance programmes. For example, different genes were induced in potato after 

mechanical inoculation of the PVYNTN strain (Pompe-Novak et al., 2005; Baebler et al., 

2009).  

 

As conventional potato breeding programmes are time consuming, “pathogen-derived 

resistance” has been investigated as a way to create virus resistant cultivars by 

introducing into plants viral components. These can be used as a plant defence against 

many viruses. Pathogen-derived resistance (Hull and Davies, 1992; Carr et al., 1992; 

Barker et al., 1992; Barker et al., 1998; Thomas et al., 2000) has been successfully 

applied to offer protection against plant viruses. For example, potato plants expressing 

the coat protein gene of PLRV have been developed (Barker et al., 1992), and several 

transgenic potato lines tested under greenhouse conditions show high levels of 

resistance to aphid inoculated PLRV. During infection, the host plant is often able to 

destroy the viral RNAs naturally by means of a gene silencing system (English et al., 

1996; Guo and García, 1997; Baulcombe, 1999). On the other hand, plant viruses can 

overcome this defense by encoding proteins responsible for suppressing this natural 

gene silencing (Kasschau and Carrington, 1998; Baulcombe, 2002; Simón-Mateo et al., 

2003; Chen et al., 2004; Qu and Morris, 2005). Gene silencing through genetic 

modification can be exploited to inhibit viral gene function, and fragments of viral RNA 

can be used to induce this mechanism in the plant (Ratcliff et al., 1997; Waterhouse et 

al., 1999). For example, Rovere et al. (2001) produced plants resistant to PLRV by 

introduction of the replicase coding sequence into potatoes. In addition, a successful 

silencing-based resistance to PVY was reported by Barker and McGeachy (2003). 

However, such genetic modification of crop plants (GM crops) has met with strong 

consumer resistance (Solomon-Blackburn and Barker, 2001a). 
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1.7.3. Chemical strategies for controlling potato viruses 

 

Methods used to target aphid vectors of potato viruses are divided into chemical 

methods and non-chemical methods. Chemical control of potato viruses started before 

the vectors responsible for virus transmission were known (Broadbent, 1957). 

Subsequent reviews have dealt with this topic (Perring et al., 1999; Robert et al., 2000; 

Radcliffe and Ragsdale, 2002). Chemical methods used in controlling potato virus 

spread belong to two main groups: mineral oils and synthetic insecticides. 

 

1.7.3.1. Mineral oils 

 

The earliest report about inhibition of non-persistent viruses by oil came from Bradley 

et al. (1962); there have been many subsequent reviews (Vanderveken, 1977; 

Loebenstein and Raccah, 1980; Raccah et al., 1980; Simons and Zitter, 1980; Sharma 

and Varma, 1982; Simons, 1982; Raccah, 1986). The clearest conclusion that can be 

drawn from all of this information is that mineral oils do protect crops from non-

persistent viruses but have no effect on the spread of persistent viruses. Virus control by 

mineral oils requires very frequent application because of the contact mode of action. 

However, plant phytotoxicity and yield loss were reported with oil concentrations of 

more than 1-2%. In order to be effective paraffin oils should have certain 

characteristics, the most important being a viscosity range of 66-150 SUS (Saybolt 

Universal Seconds; De Wijs et al., 1979). In addition, the application frequency should 

provide continuous coverage to new plant growth. In some reports a few applications 

(3-8) during the growing season were enough to offer reasonable protection (Shands, 

1977; Martin-Lopez et al, 2006), whereas others found that applications at weekly 

intervals were required (Boiteau et al., 2009; Groves et al., 2009). 

 

1.7.3.1.1. Mode of action of mineral oil in inhibiting virus transmission 

 

Considerable work has been carried out to investigate the mode of action of oils in 

inhibiting virus transmission and many hypotheses have been proposed (Bradley et al., 

1963; Vanderveken, 1977; Simons et al., 1977; Qui and Pirone, 1989; Powell, 1992; 

Wang and Pirone, 1996). However, the exact mode of action of mineral oils in 

inhibition of non-persistent virus transmission is still unknown. It seems that oil most 

likely interferes with the retention and inoculation of virus by somehow disrupting 
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attachment and/or release of viruses from their receptors on the aphid mouthparts (Qui 

and Pirone 1989; Wang and Pirone, 1996; Powell et al., 1998). This is supported by the 

fact that oil inhibits transmission of non-persistent and semi-persistent viruses but not 

persistent viruses. Further investigations should be done in order to understand the 

virus-vector relationship more clearly. 

 

1.7.3.1.2. Mixing oils with pyrethroids 

 

Gibson and Cayley (1984) reported that application of a mixture of mineral oil (Sunoco 

7E) and a pyrethroid insecticide (Cypermethrin) provided better inhibition of virus 

transmission than the application of each component separately. In addition to a 

decrease in PVY incidence they also found that colonizing aphid density was reduced 

compared to the control. The knock-down effect of pyrethroids was not increased by 

mixing with oil. However, it was speculated that toxicity was enhanced by mixing with 

oils (Gibson and Cayley, 1984). Electrostatic spraying of a mixture of cypermethrin and 

paraffin oil enhanced the deposition of the chemical on the plant and decreased the 

spray volume required. Efficiency of two mineral oils, Bayol 52 and SC811, in 

decreasing PVY spread on tobacco in the laboratory was greatly enhanced when they 

were mixed with low doses of WL85871, which is an enriched form of cypermethrin 

(Gibson and Rice, 1986). Similarly, Bell (1989) reported a 54% reduction in PVY 

transmission in a potato crop in Ireland when the crop was sprayed with a mixture of 

mineral oil SC811 and Cypermethrin. 

 

 

1.7.3.1.3. Synthetic insecticides 

 

Direct damage from insect attack on crops can be controlled using insecticides to 

decrease insect populations. However, the indirect damage caused by vectoring plant 

viruses is more difficult to prevent. This is because the aphid vectors can come from a 

variety of sources, both alate and apterous aphids from within and outwith the crop 

(Matthews, 1991). 
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1.7.3.1.3.1. Old classes of insecticides 

 

Insecticides have been used extensively to control vector-borne plant viruses 

(Broadbent, 1957), and the epidemic spread of persistent viruses like PLRV is normally 

controlled by chemical application (reviewed in Perring et al., 1999; Irwin et al., 2000; 

Robert et al., 2000; Radcliffe and Ragsdale, 2002). Unlike conventional contact 

insecticides, systemic insecticides provide consistent and long lasting protection from 

persistent viruses because they are transported throughout the plant in the phloem on 

which the aphids feed. Contact pesticides such as organophosphates and carbamates are 

of limited use to control non-persistent viruses because non-colonizing aphids acquire 

virus from the epidermal cells. Consequently, most attempts to decrease transmission of 

non-persistent viruses using synthetic insecticides have failed. The only exception was 

pyrethroids, one of the most important classes of pesticides which act quickly. 

However, their fast mode of action is still generally insufficient to prevent or decrease 

transmission of potyviruses alone and their performance is improved considerably when 

they are mixed with mineral oils as described above. It is argued that the repellent effect 

of pyrethroids may cause more virus spread by increasing aphid flights and probing 

activities (Gibson and Rice, 1989), but there is no report or evidence that supports this 

claim in the literature. 

 

1.7.3.1.3.2. New classes of insecticides 

 

New insecticides belonging to the Neonicotinoid and Pyridine groups are being used 

widely in potato crops and they were reported to be effective in decreasing PLRV 

spread (Mowry, 2005). Because some of the neonicotinoid and pyridine insecticides 

have antifeeding effects, they have a promising future in controlling non-persistent virus 

transmission. However, more investigation is required to validate such products in non-

persistent virus control programmes. Imidacloprid was reported to be effective in 

decreasing PVY spread when applied alone (Alyokhin et al., 2002) or mixed with 

mineral oils (Martin-Lopez et al., 2006). Harrewijn and Piron (1994) found that 

pymetrozine reduced PVY acquisition but not transmission. Similar results were 

recently reported by Davis et al. (2009). Margaritopoulos et al. (2010) reported that 

Pymetrozine is effective in decreasing PVY spread in tobacco crops in Greece; they 

found that pymetrozine can decrease both acquisition and transmission. 
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1.7.4. Non-chemical control strategies 

 

Various non-chemical control strategies were used to control virus transmission on 

potato before the identity of the vectoring agent was known. Farmers used separate 

areas for production of potato seeds from those used for growing potatoes for 

consumption. This idea came after they recognized that fields in certain areas were 

better than those in others for producing healthy potato seed (Van der Want, 1987). 

Early harvesting of potato tubers was another practice which was applied by farmers. 

Physical heat treatment of potato tubers before growing was observed to promote 

sprouting of virus-free tissues. For example, potato tubers were observed to be free from 

PLRV if stored at 37.5 °C for a few weeks before planting (Van der Want, 1987). These 

early observations were exploited in seed production and multiplication programmes to 

produce virus-free potato stocks in the past. 

 

1.7.4.1. Isolation of seed potato fields 

 

It is normal practice to separate growing of seed and ware crops of potato (Radcliffe, 

2006). The recommended isolation distance differs according to the transmission 

mechanism of particular viruses and the type of crop (seed or ware). Persistent viruses 

normally require more distance than non-persistently transmitted ones. It was suggested 

that a distance of 400 m to 5 km between seed potato fields and other potato fields is 

effective in decreasing PVY transmission. However, a space of 30 km or more is 

required to decrease the spread of PLRV (Halbert et al., 1990). In England, it is 

recommended to leave at least 800 m between potato seed crops and any potential PVY 

source (Harrington et al, 1986). In contrast, in Denmark, leaving only 40 m was enough 

to decrease PVY spread (Hiddema, 1972). 

 

 

1.7.4.2. Removing weeds and groundkeepers 

 

Weeds can be an important source of virus for aphids, which then spread the virus to 

potato crops. As discussed in section 1.4.2 on PVY host range, a large number of weed 

species can serve as virus reservoirs, particularly in warm regions like the 

Mediterranean countries where mild weather conditions enable overwintering of 
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infected plants. This has very important epidemiological implications in field 

conditions.  Groundkeepers, on the other hand, are plants which have grown from 

potato tubers left in the field after crop harvest. In ware potato, the incidence of PVY 

infection is normally high, and can be 100% in some fields and on particular cultivars 

(Barker, 1994). In this situation, groundkeepers from such highly infected fields will 

serve as an early virus source during the next season. Moreover, if these volunteer 

plants are present in potato fields, their harmful effect might increase because they will 

be a source of infection to neighbouring plants as well as producing infected tubers 

which will contaminate the crop. Potato groundkeepers were reported to be an important 

source of PVY inoculum in the Netherlands (Van Hoof, 1979) and in the USA 

(Thomas, 1983). Jones et al. (1996) investigated this problem in the ware potato cv. 

Record grown in different sites in the UK. They found a significant percentage of PVYN 

infection among the groundkeeper plants, which ranged between 16.5 and 73.5%.  

Srinivasan and Alvarez, (2008) reported that the weed hairy nightshade (Solanum 

sarrachoides) is an important virus source in potato fields in the north of the USA.  

They found that transmission of PLRV from infected weeds to potatoes is four times 

higher than the transmission efficiency from potato to potato. Moreover, they also found 

that aphids transmitted PVYO and PVYNTN  more frequently to hairy nightshade than 

they did to potato, regardless of the virus source used (J. Alvarez, University of Idaho, 

USA personal communication 2010). 

 

1.7.4.3. Haulm destruction 

 

The practice of haulm destruction started in the Netherlands in the 1940s (Van Harten, 

1983), and is now applied in many potato producing countries around the world. 

Radcliffe (2006) reported that haulm destruction or vine-kill is a widely recognized field 

practice in production of elite seed tubers. This method is especially effective when the 

aphid species do not colonize the crop until late in the season, which is the case in PVY 

transmission by cereal aphids leaving cereals after ripening. In the Netherlands, PVY is 

controlled by a system based on monitoring virus infection in the field, aphid 

monitoring by traps, and PHT by ELISA. Haulm destruction is carried out above a 

certain threshold in order to protect the daughter tubers from virus infection (Verbeek et 

al., 2008). It was reported that vine killing is performed in seed potatoes in Canada by 

mid August to decrease the risk of virus transmission to seed tubers by late season aphid 

flight. In addition, vine killing is effective in producing tubers of a specific size by 
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stopping tuber growth, promoting skin development and preventing bruising, and 

facilitates harvesting by easy separation of tubers (Lidgett, 2003). 

 

1.7.4.4. Border crops  

 

Border crops have been used in crop protection programmes for many years. The border 

crop is the first line of contact for any pests coming from other fields, and thus offers 

protection against infection or insect damage. There are many hypotheses about the 

mode of action of border crops in limiting spread of non-persistent viruses (Hooks and 

Fereres, 2006). However, the two most common hypotheses will be outlined briefly. 

  

The physical barrier hypothesis postulates that border crops attract aphids which alight 

on them and so reduce the aphid density inside the field (Simons, 1957). In experiments 

on PVY spread on pepper, Simons (1957) found that sunflower borders provided 

protection from PVY infection by physically trapping the alate aphids. In agreement 

with the above hypothesis, field studies on potato crops confirmed that M. persicae was 

more abundant in field borders compared to central areas after the aphids alighted on the 

crop (Suranyi, 1999; Carrol et al., 2004). 

 

The sink hypothesis proposes that aphids lose their virus charge when they land on the 

border crop and probe the leaves while exploring the host suitability (Toba et al., 1977). 

A correlation was found between using border crops and decreasing PVY spread in 

potato but there was no difference between plant species used in crop borders (DiFonzo 

et al., 1996).  It was concluded that a border of any unrelated crop could be effective in 

reducing virus spread.  More recently, Fereres (2000) used sorghum and maize borders 

to protect pepper from PVY infection. In this work barrier plants failed to decrease the 

number of aphids entering the pepper field but succeeded in limiting virus transmission. 

Moreover, laboratory experiments confirmed that the aphids lost their virus inoculum 

when allowed to probe sorghum and maize (Fereres, 2000). A study by Boiteau et al. 

(2009) also supports the sink hypothesis in decreasing PVY transmission in potato 

fields in Canada. They found a negative correlation between crop border incorporation 

and PVY incidence. 
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1.7.4.5. Host masking and reflective mulching 

 

It has been proposed that elimination of the contrast in the background between host 

plants and the soil is very useful in controlling non-persistent viruses (Jones, 1994). 

Many synthetic reflective materials have been used to evaluate the effect on 

transmission of non-persistent viruses on different crops. These include plastic 

(Loebenstein et al., 1975), aluminium foil (Shands and Simpson, 1972), and 

polyethylene coated with aluminium (McLean et al., 1982; Jones, 1991). In addition to 

this synthetic mulching, Saucke and Doring (2004) found that straw mulching was 

highly effective in suppressing PVY transmission. The effect was greater during the 

early stage of plant growth when aphid activity occurred early in the season, but 

efficiency declined after the plant canopy covered the ground and when aphid activity 

started later in the season. The maximum protection was achieved by combining pre-

sprouting with straw mulching. 

 

1.7.4.6. Using natural products 

 

Some natural compounds exhibit  repellent effects on vector aphids (Hori, 1999; Halbert 

et al., 2009), and thus  can be useful in controlling virus spread when applied on the 

plant alone or in combination with other synthetic compounds or agricultural practices 

(Radcliffe, 2006). Gibson et al. (1982) found that polygodial, which is an aphid 

antifeedant extracted from Polygonium hydropiper, decreased the acquisition of PVY 

by M. persicae. A contradictory result was reported by Powell et al. (1996), who also 

investigated the repellent effects of polygodial on stylet penetration and non-persistent 

transmission of plant viruses by aphids. They concluded that polygodial had no effect 

on stylet penetration and subsequent transmission of PVY or CMV. Extracts from the 

neem tree, Azadirachta indica, have been used to protect crops from a wide range of 

pests. Azadirachtin is a chemical compound extracted from the seed of the neem tree 

and has used as an antifeeding for many insects. Inhibition of acquisition and 

inoculation of PLRV by Azadirachtin was reported (Nisbet et al., 1996). There is 

limited information about the effect of such natural products on non-persistent virus 

transmission by aphids. For example, it was reported that 1.0% or 2.0% neem seed oil 

has an inhibitory effect on PVY acquisition and transmission to pepper by M. persicae 

(Lowery, 1997).  
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Vegetable oils were found to decrease PVY transmission in the laboratory (Bradley, 

1962). More recently, Martin-Lopez et al. (2006) reported that refined rapeseed oil 

combined with a low dose of imidacloprid decreased PVY infection by 40% in potato 

crops. 

 

The effect of aphids’ alarm pheromones on virus transmission was investigated 

(Dawson et al., 1982; Rice et al., 1983).  It was reported that PVY acquisition and 

transmission by M. persicae was inhibited by aphid alarm pheromones, (E)-β-farnesene 

and the saturated straight 14-carbon chain dialkyl ester of acetylene dicarboxylic acid 

(Gibson et al., 1984; Gibson, and pickett, 1984).  

 

 

1.8. Project’s aims 
 

This thesis will investigate diverse topics related to the most two important potato 

viruses (PLRV, PVY), which are of great importance due to their economic impact in 

potato yield reduction.  The ultimate goal is to control the spread of these viruses by 

aphids, and in order to achieve that, the following sub-topics were investigated: 

 

1- Mechanisms of potyvirus transmission are still uncertain, but many reports support 

that HC-Pro mediates the aphid transmission of potyviruses by forming bridge-like 

structures between the virus particles and putative receptors in the aphid stylets. 

However, limited information is available about the exact location or the nature of 

these proposed receptors, thus in chapter 3, an aphid cDNA library was screened   

for some aphid proteins that can interact with HC-Pro in vitro and can serve as virus 

receptors. In addition, sequence analysis was performed to characterize the 

identified clones and compare their sequence with other published aphid proteins.  

 

2- In order to understand the transmission process of potyviruses, interaction between 

the three components involved in the transmission is required.  The host plant effect 

on the aphid vectoring ability was investigated in the fourth chapter; in addition, the 

effect of the host plant when used as a virus source or as a test plant on transmission 

efficiency was studied. Findings obtained would have two implications, first they 

can be utilized to understand more clearly the transmission mechanism, second, they 

can provide valuable information to control virus spread in the fields by aphids. 
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3- Potyviruses are retained for a short time inside their aphid vectors, and this 

behaviour was behind the assumption that these viruses are stylet-borne or non-

persistent. In chapter 5 of this thesis, the concept of short retention was challenged 

and the likelihood of longer retention time of the virus inside different parts of the 

insect body and for a long time after acquisition will be investigated. The obtained 

results were discussed in the context of virus transmission mechanism by aphids. 

 

 

4- During certification schemes or screening virus resistant cultivars ELISA is 

routinely used to perform a large number of tests. In the sixth chapter, the aim was 

to develop a fully recombinant ELISA assay which can be used routinely to test for 

PLRV and can be as an alternative to the immune reagent antibodies which are 

currently being used. This will create a cheap consistent, and unlimited source of 

testing reagents without the need of immunizing animals. 

 

5- Agrochemicals are currently being used extensively to control the spread of non-

persistent potato viruses but with very limited effect. It is arguable that some 

insecticides can decrease virus transmission by interfering with aphid probing 

behaviour; this was the rationale for investigating the repellent effect of one insecticide 

on PVY transmission by aphids.  
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Chapter 2. General Materials and Methods 

 
2.1. Virus and aphid cultures  

 
Virus isolates used in this project are presented in table 2.1. Potyviruses were 

propagated by manual inoculation by pulverising 3–4 systemically-infected leaf tips in 

5–10 ml of SDW using a mortar and pestle. The extract was rubbed on to leaves dusted 

with carborundum powder, then the leaves were rinsed with water and plants were 

placed in a glasshouse at approximately 18 °C with a 16 h: 8 h light: dark cycle.  

 

Virus isolate Host Source 

PLRV Physalis floridana SCRI stock isolate 
PVYO-L Nicotiana tabacum cv. White Burley SCRI stock isolate 
PVYO-F Potato cv. Rosetta Field isolate, SASA 
PVYC Nicotiana tabacum cv. White Burley SCRI stock isolate 
PVA Potato cv. Hermens Field isolate, SASA 
PVX Nicotiana benthamiana SCRI 

TuMV Nicotiana benthamiana SCRI stock isolate 

TEV N. tabacum cv. Xanthi (N/N) J.J. Lopez-Moya, 
(Spain) 

Table 2.1. Virus isolates used in this project. 

 

 

M. persicae (genotype E), was obtained from Dr. Brian Fenton, SCRI. M. persicae 

colonies were maintained on Solanum tuberosum cv. Desiree, N. tabacum cv. White 

Burley, Brassica napus (oilseed rape), and P. floridana at 18 °C in a 16 h: 8 h light: 

dark cycle with plants replaced on a weekly basis. Aphid colonies were reared in clear 

perspex cages (35x40x45 cm). The front side was surrounded with a thin mesh for 

ventilation. In addition, the cage has an opening in the back side to pass air inside from 

a central fan to allow airflow. Whole plants were used for colony rearing, and plants 

were replaced every week. Sub-colonies were reared on detached leaves in plastic pots 

with a mesh on the top for ventilation. 

To kill aphids on plants, the plant and pot were submerged in a bucket of hot soapy 

water for 5 min. Plants used for virus culture were disposed of after autoclaving. 
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2.2. Virus transmission by aphids  

 
For potyviruses transmission wingless individuals (3rd–4th instar) were selected from the 

stock culture. They were fasted in batches of 1, 2, 3, 4, 5 or 10 in a plastic 1.5-ml micro 

centrifuge tube for a period of 2–3 h at 18 °C. Routinely, 5 individuals were used for 

virus transmission unless otherwise mentioned. 

 

Detached PVY-infected potato or tobacco leaves were placed onto a wet sponge within 

a small plastic box (Blackman box). Fasted aphids were placed on under side of the 

infected source leaf and allowed to acquire virus for 1, 2, 3, 4, 5, 10 or 20 min. A 

maximum of 5 individual aphids was used per batch. Aphids were then moved directly 

to test plants and the plants covered. Tobacco plants were covered with small plastic 

cages. For potato plants Perspex® tubes (8 cm external diameter, 7 cm internal diameter 

× 16 cm length; Stockline Plastics, UK) were used. To allow air flow, all tubes were 

capped with a thin muslin mesh (mesh size 200 micron, John Lewis, UK). In some 

experiments aphids were confined to one leaf by a clip cage. Aphids were allowed to 

feed for 12–16 h then killed by a combination of nicotine fumigation and the insecticide 

Plenum in a controlled access fumigation chamber.  

 

For PLRV transmission by aphids, Wingless aphids (3rd–4th instar) were transferred to 

PLRV source (detached P. floridana leaves) for a 48–72 h acquisition access period 

(AAP), then transferred to healthy P. floridana for a similar transmission access period 

(TAP). Plants were then transferred to the fumigation chamber and treated as described 

above. 

 

 

2.3. Virus detection 
 

ELISA was used routinely for PVY and PLRV detection in plants and occasionally RT-

PCR, nested RT-PCR, electron microscopy and Western blot were used. However, for 

PVY detection inside aphids, nested RT-PCR was the only method used, as ELISA and 

normal RT-PCR were not sensitive enough to detect low virus quantities. 

 



 46

 

2.3.1. General buffers for virus detection 

 

ELISA coating buffer 

 

0.015 M Na2CO3 and 0.035 M NaHCO3, pH 9.6 

 

ELISA extraction buffer 

PBS containing 0.05% (v/v) Tween 20 and 1% polyvinylpyrrolidone M.W. 

44,000, BDH Laboratory Supplies, UK. 

 

ELISA colour substrate buffer  

9.7 % (V/V) diethanolamine-HCl in SDW, pH 9.8 

 

Blot and ELISA blocking buffer 

5% (w/v) non-fat dried milk (Marvel) in PBS 

 

ELISA and Western blot washing buffer (PBST) 

1x PBS containing 0.025–0.05% (v/v) Tween 20 

 

PBS 

PBS was obtained from the SCRI media kitchen as a 10x stock, and then diluted in 

SDW to working concentration. 1x stock contains 137 mM NaCl, 2.7 mM KCl, 100 

mM Na2HPO4, and 2 mM KH2PO4, pH 7.4. 

 

SDS-PAGE 4x sample buffer 

0.1g bromophenol blue powder, 6.25 ml 1 M Tris-HCl (pH 6.8), 10 ml glycerol, 20 ml 

10% (w/v) SDS, 5 ml of β-mercaptoethanol. Then the volume was adjusted to 100 ml 

by addition of distilled water. 

 

PAGE electrophoresis buffer 

0.025 M Tris base, 0.192 M glycine, pH 8.3, 0.1 % (w/v) SDS. 

 

Immunoblot transfer buffer 

0.025 M Tris base, 0.192 M glycine, 20 % (v/v) methanol, pH 8.3. 
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Ponceau S stain 

 

0.5 % (w/v) Ponceau S in 10 % acetic acid 

 

Substrate stop solution 

20 mM Tris-HCl, pH 2.9, 1 mM EDTA 

  

2.3.2. ELISA 

 

ELISA was done following the methods described by Torrance (1992). Briefly, the 

wells of ELISA plates (Nunc, Maxisorp Immunoplate) were coated using 100 µl per 

well of the working dilution of coating reagents (Table 2.2), and incubated for 2–3 h at 

37 °C. Plates were then washed three times with PBST. Extracts of infected or healthy 

leaf tissues (1 g in 5 ml of extraction buffer) were added to coated wells (100 µl samples 

were placed in duplicate wells). The plates were incubated overnight at 4 °C, then 

detecting reagents were added at the working concentration and plates were incubated 

for 2–3 h at 30 °C. Plates were then washed as before, and conjugates were added at 

working concentration and incubated for 2–3 h at 30 °C except for the recombinant 

V3HCL-B (biotin-conjugated V3HCL) reagent, which was incubated together with 

streptavidin-AP for 2–3 h at 37 °C, and the α-PVA-AP Mab, which is conjugated 

directly to AP. Plates were washed as before. 

To prepare plant leaf extract, samples were pulverised in extraction buffer at 1:10 (w/v) 

using a mortar and pestle. For large number of samples, a power-driven crusher was 

used to prepare leaf extract as explained by De Bokx (1987).
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Antibody Working 
dilution Source Purpose 

α-PLRV PC 1:1000  SCRI Trap PLRV 
SCR1 Mab 1:2000 SCRI Detect PLRV 
α-PVY PC 1:1000 SCRI Trap PVY 

SCR39 Mab 1:1000 SCRI Detect PVY 
α-PVY Mab 1:1000 Agdia Detect PVY 

V3HCL 10 µg/ml SCRI Trap PLRV 
V3HCL-B 10 µg/ml SCRI Detect PLRV 

α-PVY HC-Pro  PC 1:2000 SCRI Detect HC-Pro 
α-PVA-AP Mab 1:4000 SCRI Detect PVA 
α-PVA Mab 1:1000 SCRI Trap PVA 

α-TEV HC-Pro PC 1:500 J.J. Lopez-
Moya Detect HC-Pro 

α-PVX PC 1:1000 SCRI Detect PVX 
α-PVY CI PC 1:400 Prepared Detect CI 

α-MPCP2D 1:2000 
Dombrovsky 
et al. (2007b) 

 
Detect M.P CUPs 

α-MPCP2N 1:2000 ” Detect M.P CUPs 
α-MPCP5D 1:2000 ” Detect M.P CUPs 
α-MPCP2N 1:2000 ” Detect M.P CUPs 

α-histidine Mab 1:3000 Sigma Detect His-tagged 
protein 

α-Myc Mab 1:1000 SCRI Detect Myc-tagged 
protein 

Streptavidin-AP 1:4000 Zymed Enzyme  conjugate 
α-Mouse AP 1:1000 Sigma Enzyme conjugate 
α-Rabbit AP 1:1000 Sigma Enzyme conjugate 

Table 2.2. Antibodies and enzyme conjugates used in this project with  
their sources and working dilutions. 
 

Mab: Monoclonal, PC: Polyclonal, AP: alkaline phosphatase, His: 6-Histidines tag, V3HCL: α-PLRV 
single-chain variable fragment (scFv). 
 
 

The substrate p-nitrophenyl phosphate (Sigma) was added (1 tablet/10 ml 9.7% 

diethanolamine pH 9.8 ) to each well and the plate was incubated at room temperature 

(approx. 22 °C) for 1 and 2 h then overnight (12 h) at 4 °C. Absorbance values (A405) at 

each time point were recorded using a Titertek Multiskan PLUS Photometer (Titertek, 

Huntsville, AL). Values were considered positive if they exceeded the mean control 

values by a factor of two. 
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2.3.3. RT-PCR for potyvirus detection  

 

2.3.3.1. cDNA synthesis 

 

Total RNA was prepared from leaf tissue using the Qiagen RNeasy Mini kit following 

the manufacturer’s instructions and quantified (Section 2.4.1.4). 

 

1 µg of RNA was mixed with 1 µl reverse primer (Singh AS480; Table 2.4) at 10 

pmol/µl and SDW added to a final volume of 11 µl. The solution was incubated at 70 

°C for 10 min, then immediately cooled in ice. 4 µl of M-MLV RT buffer (Promega), 1 

µl of RNasin ribonuclease inhibitor (Promega), 1 µl of 10 mM dNTPs, and 2 µl of 

sterile distilled water were added. The mixture was warmed up at 37 °C for 2 min, then 

1 µl of Moloney Murine Leukemia Virus Reverse Transcriptase (M-MLV) reverse 

transcriptase (Promega) was added and the solution incubated at 37 oC for 1 h. 

 

2.3.3.2. PCR conditions 

 

PCR was performed by mixing 2 µl of cDNA template, 4 µl 25 mM MgCl2, 10 µl of 5x 

GoTaq® Flexi buffer, 1 µl of 10 mM dNTPs, 2 µl of each forward and reverse primer 

(Singh S0 and Singh AS480; Table 2.4), 28.5 µl of water and 0.5 µl of Promega 

GoTaq® DNA polymerase (5 U/ µl). PCR conditions were: 95°C for 5 min followed by 

35 cycles of 94 °C for 1 min, 55 °C for 1 min and 72 °C for 1 min and a final extension 

at 72 °C for 10 min. 

  

2.3.4. Nested RT-PCR 

 

2.3.4.1. RNA extraction from aphids 

 

Individual aphids were collected in 1.5 ml micro centrifuge tubes, deep frozen in liquid 

nitrogen, then homogenised with a mini-pestle in 100 µl of TriPure isolation reagent 

(Roche Diagnostics) and incubated at room temperature for 5–10 min.  An equal 

volume of chloroform was added, and then the tube was inverted to mix and centrifuged 

at 13,000 rpm for 15 min. The aqueous layer was collected, mixed with 125 µl of 

isopropanol and allowed to precipitate for 10 min, then centrifuged at 14,000 rpm for 10 

min. The resulting pellet was washed with 500 µl of 75% (v/v) EtOH, centrifuged at 
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14,000 rpm for 5 min and air-dried. The pellet was resuspended in 5–10 µl of DEPC-

treated or RNase-free water and incubated at 50 °C for 5 min. 

 

2.3.4.2. RNA extraction from plants 

 

RNA was extracted from 50 to 100 mg leaf tissue using TriPure isolation reagent as 

described in section 2.3.4.1. The Triton method (Singh, 1999) was used as well to 

extract viral RNA from plant leaf material.  Briefly, a sample of the infected plant leaf 

was placed in a 1.5-ml micro centrifuge tube then 100 µl of 0.5% (v/v) Triton X-450R 

(Sigma) solution was added to the leaf sample, and leaf tissue was ground with a 

chloroform- rinsed mini-pestle. The mixture was incubated at 37 °C for 30 min, and 

then centrifuged at 12,000 rpm for 15 min in a bench top centrifuge. The supernatant 

was recovered and transferred to a new tube and 1–2 µl was used as a template for 

cDNA synthesis or for the first round of nested RT-PCR. 

 

2.3.4.3. First round – RT-PCR 

 

Illustra™ Ready-to-Go RT-PCR Beads (GE Healthcare, UK) were used following the 

manufacturer’s instructions with some modifications.  PVY primers (Singh et al., 1996; 

Singh, 1998) (Table 2.4) were used. Briefly, Illustra™ Ready-to-Go RT-PCR beads were 

dissolved in 48 µl of RNase-free water plus 1 µl each of forward and reverse primers 

(Singh S0 and Singh AS480; Table 4.2) and incubated on ice for 5 min.  Then 24 µl was 

added to a 0.2 ml PCR tube (Thermo Scientific, UK). To each aliquot was added 3 µl of 

the template RNA. The solutions were mixed and the tubes were placed in an Eppendorf 

Mastercycler PCR machine using the following programme: 42°C for 30 min; 95 °C for 

5 min; followed by 35 cycles of 94 °C for 1 min, 55 °C for 1 min and 72 °C for 1 min 

and then 72 °C for 10 min. 

2.3.4.4. Second round PCR 

 

Briefly, each Illustra™ Ready-to-Go PCR bead was dissolved in 22 µl of RNase-free 

water plus 1 µl of each nested forward and reverse primer (Malloch F, Malloch R; Table 

2.4) and incubated on ice for 5 min. The contents of each PCR bead sample were then 

split between two 0.2 ml PCR tubes. To each was added 1 µl of the first round PCR 
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product.  Tubes were transferred to a PCR machine programmed as above excluding the 

initial incubation at 42 °C. 

 

2.3.5. Electron microscopy (EM) negative staining  

 

To extract virus, leaf samples were pulverised in Sorensen’s phosphate buffer, pH 7.5–

8.0, using a mortar and pestle. A drop of virus extract was placed on a carbon-coated 

grid for a few seconds and drained with filter paper, and then one drop of 

phosphotungstic acid (PTA) was added for approximately 20 sec. Grids were drained 

and allowed to air dry then washed three times and examined under the electron 

microscope. 

 

2.3.6. SDS-PAGE 

 

SDS gel electrophoresis was performed essentially as described by Laemmli  et al. 

(1970) and Sambrook and Russell (2001). The Novex mini-PAGE system (Invitrogen) 

was used according to the manufacturer’s instructions.  

 

2.3.6.1. Resolving gel 

 

Resolving gels were made using Sigma Acrylamide/Bis-acrylamide, 30% solution (Mix 

Ratio 29:1), following the recipe in Table 2.3. Then, 33 µl of 10% ammonium 

persulphate (APS) was added to the mixture and the solution was mixed by gentle 

inversion. 8 ml was pipetted into a Novex gel cassette, and 1–2 ml of water was added 

gently to the top of the gel, which was left for a minimum of one hour to polymerise.    

 

 

Resolving gel 
composition 10% Novex-PAGE 12.5% Novex-PAGE 

Acrylamide 30% 3.33 ml 4.16 ml 
1 M Tris-HCl (pH 8.8) 3.75 ml 3.75 ml 

H2O 2.66 ml 1.83 ml 
10% SDS 100 μl 100 μl 
TEMED 5 μl 5 μl 
10% APS 33 μl 33 μl 

Table 2.3. Resolving gel preparation. 
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2.3.6.2. Stacking gel 

 

Stacking gels were prepared by mixing 1.5 ml of Acrylamide/Bis-acrylamide, 30% 

solution (Mix Ratio 29:1), 1.25 ml of 1 M Tris-HCl (pH 6.8), 7 ml of H2O, 100 µl of 

10% SDS, and 5 µl of TEMED. Then 200 µl of 10% ammonium persulphate (APS) was 

added. The solution was mixed by gentle inversion, and then applied to the top of the 

polymerised resolving gel and the sample comb inserted.  

 

2.3.6.3. Sample loading 

 

Protein samples were diluted in an equal volume of SDS-PAGE sample buffer (Section 

2.8.3) and boiled for 5 min. Gels were run at 140 V (constant current) for 1.5 h.  

 

2.3.6.4. Coomassie Blue gel staining  

 

Following electrophoresis, gels were washed with water then immersed in GelCode® 

Blue Stain Reagent (Thermo Scientific) and left overnight with gentle agitation. The gel 

was immersed in water for destaining and photos were taken digitally. 

 

2.3.7. Western blot analysis 

 

Proteins separated by SDS-PAGE were transferred to nitrocellulose membranes 

essentially as described by Towbin et al. (1979). Briefly, two pieces of Whatman 3MM 

filter-paper and Hybond-ECLTM Nitrocellulose membrane (Amersham Bioscience) were 

cut to the same size as the gel and rinsed in transfer buffer (Section 2.8.3) together with 

similar sized sponge pads. 

 

A transfer sandwich was made comprising a piece of pre-soaked filter paper, the gel, 

pre-soaked nitrocellulose membrane, and another piece of pre-soaked filter paper. 

Transfer was done using an XCell SureLock™ Mini Cell (Invitrogen) for 1.5 h at 125 

mA with constant voltage. Following transfer, membranes were stained in Ponceau S 

stain for 2 min to mark the position of the marker. Stained protein bands were 

visualized by destaining in 1x PBS; when visible the positions of the molecular weight 

markers was marked with a pencil. Membranes were then blocked by immersion in 5% 

https://products.invitrogen.com/ivgn/en/US/adirect/invitrogen?cmd=IVGNprodListLink&FeatureType=1101&Feature=175501
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non-fat powdered milk (Marvel) in 1x PBS with gentle agitation for at least 1 h at room 

temperature. 

 

Primary and secondary antibodies (Table 2.2) were diluted to working concentration in 

0.1% milk in PBST, and incubated sequentially with the membrane in a sealed plastic 

bag for 2–3 hours at room temperature or overnight at 4 °C. After each incubation step, 

membranes were rinsed with PBST for 10 min with gentle agitation, repeated three 

times. Membranes were finally incubated with NBT/BCIP substrate solution (Sigma 

catalogue number 72091) at room temperature for 20–30 min. The reaction was stopped 

by immersion in stopping solution or SDW. 

 

2. 3.8. Dot blot assay 

 

5 µl of protein sample was spotted on to nitrocellulose membrane (Amersham) and air 

dried. Blocking, incubation with antibodies, washing, and colour development steps 

were performed as described above for western blot analysis. 

 

 

2.4. Molecular biology methods  
 

2.4.1. Nucleic acid methods 

 

General molecular biology methods followed those described by Sambrook and Russell 

(2001). 

 

2.4.1.1. General media, buffers, and reagents 

 

LB Agar plates 

 

LB plates prepared using the following recipe was provided in-house at SCRI. 

2% (w/v) Agar powder, 1% (w/v) Bacto-tryptone, 0.5 % (w/v) Yeast extract, 1% (w/v) 

sodium chloride, pH adjusted to 7 with NaOH. 

LB AIX plates were prepared as for LB plates above with the addition of ampicillin 

(100 μg/ml), IPTG (32 μg/ml) and X-Gal (32 μg/ml). 

LB AMP plates were prepared as for LB plates above with the addition of ampicillin 
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(100 μg/ml). 

LB KAN plates were prepared as for LB plates above with the addition of kanamycin 

(50 μg/ml).   

  

SOC Medium 

 

2% (w/v) Tryptone, 0.66% (w/v) glucose, 0.5% (w/v) Yeast extract, 0.5 % (w/v) NaCl, 

0.25% (w/v) KCl. 

 

Antibiotics and inducers 

 

All antibiotics and inducers were prepared in the laboratory from powder and stored as 

frozen stocks at -20 °C. 

 

Ampicillin stock 

 

    1.0 g in 10 ml SDW, filter/sterilise = 100 mg/ml 

    Working concentration 100 μg/ml  

 

Kanamycin stock  

                           

                          1.0 g in 10 ml SDW = 100 mg/ml 

                           Working concentration 50 μg/ml  

 

Chloramphenicol stock  

 

                           1.0 g in 29.4 ml EtOH = 34 mg/ml 

                           Working concentration 34 μg/ml 

                                

X-GAL 

 

                             1 g in 10 ml di-methyl formamide = 100 mg/ml 

                             Working concentration 32 μg/ml 
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TBE 

 

This buffer is prepared by the SCRI media kitchen as a 10x stock. Then working 1x 

solution is prepared by 1:10 dilution with SDW. 

The recipe for 1x stock is: 89 mM Tris base, 89 mM boric acid, and 2 mM EDTA. 

 

6 x DNA Gel loading Buffer 

 

0.25% (w/v) bromophenol blue, 0.25% xylene cyanol, and 40% (w/v) sucrose in dH2O. 

 

2.4.1.2. Agarose gel electrophoresis of DNA 

 

A Horizon® 11X14 (Life TechnologiesTM) gel apparatus was used; 1–2 % (w/v) 

agarose (Invitrogen, UK) gels were prepared in 1x TBE, then the mixture was heated in 

a microwave until the agarose completely melted. Ethidium bromide (EdBr) was added 

to 0.5 µg/ml and the gel allowed to set at room temperature before use. DNA samples 

were mixed with 6x DNA loading dye (3–4:1 v/v) , and loaded into sample wells, then 

gels were run at 100 V. DNA bands were visualized under a UV transilluminator and 

photos were recorded using the UVP gel documentation system (Ultra-Violet Products 

Ltd). 

 

2.4.1.3. DNA extraction from agarose gel 

 

After electrophoresis, DNA bands were visualised using UV light and bands of interest 

excised from the gel using a clean razor blade. Samples were either processed 

immediately or stored at -20 °C.  DNA was recovered from the gel pieces using the 

QIAquick Gel Extraction Kit (QIAGEN Ltd.). 
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2.4.1.4. DNA recovery from PCR product and after enzyme digestion  

 

DNA recovery was performed using the Mini Elute PCR purification kit (QIAGEN). 

Briefly, 5 volumes of the supplied buffer PB was added to 1 volume of PCR reaction 

and mixed. The mixture was applied to a Mini Elute column and centrifuged at 14,000 

rpm for 1 min. Then the column was washed once with supplied buffer PE and eluted 

with 10 µl of supplied elution buffer (EB) or SDW. For DNA recovery after restriction 

digestion, at least two volumes of PB buffer was added to each sample and applied to a 

QIA miniprep column and centrifuged for 1 min at 14,000 rpm. The column was 

washed twice with QIA washing buffer and eluted with 30–50 µl SDW. 

 

2.4.1.5. DNA and RNA quantification 

 

DNA concentration was estimated by measuring the absorbance at 260 nm (A260), 

multiplying by the dilution factor, and using the formula A260 of 1.0 = 50 µg/ml pure 

DNA or 40 µg/ml pure RNA.  

Concentration (µg/ml) = (A260 reading) × dilution factor × 50 µg/ml (or 40 for RNA) 

 

2.4.1.6. DNA ligation  

 

T4 DNA ligase (Promega) was routinely used for all ligation of DNA inserts into 

cloning vectors. Ligation mixtures were prepared with variable molar ratios of vector 

and DNA insert according to the formula: 

Amount of vector (ng) x size of insert (kbp)     x    vector: insert = amount of insert (ng) 

                  Size of vector (kbp) 

Ligation reactions were continued for a minimum of 1 h at room temperature 

or overnight at 4oC. 

pGEM-T and pGEM-T Easy vectors (Fig. 2.1) were used routinely for cloning 

procedures. They enabled white–blue colony screening of transformed clones. Other 

vectors were used occasionally for different purposes, and they are presented whenever 

they were used. 
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Figure 2.1. pGEM-T Vector Map and Multiple Cloning Site, Promega  

 

 

2.4.1.7. Chemical transformation of E. coli 

 

Transformation was basically performed as described by Sambrook and Russell (2001). 

An aliquot of competent cells (XL10 Gold cells) (Stratagene) was thawed on ice. 5 µl of 

β-mercaptoethanol was added and mixed then the solution was kept on ice for 10 min. 

1–5 µl of plasmid prep or ligation reaction was mixed with the competent cells. The 

mixture was kept on ice for 45 min, given a heat shock at 42 °C for 45 sec, then 

incubated on ice for  2 min. 1 ml of SOC medium was added to the mixture, and the 

cells incubated with shaking at 37 °C for 40 min. 100 µl of the mixture was spread on to 

a pre-warmed LB agar plate containing a suitable selective marker and plates were 

incubated in an inverted position for about 16 h at 37 °C to allow colony growth. 

 

2.4.1.8. Transformation by electroporation  

 

E. coli strain AVB100 (Avidity), which has the birA (biotin holoenzyme synthetase) 

gene incorporated into the chromosome under the control of L-arabinose as inducer, 

was used for recombinant protein production after transformation by electroporation.  

500 µl of SOC medium was added to the electroporated cells, and the mixture was 
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transferred to a 50 ml tube, incubated for 45 min at 30 °C, then spread on prewarmed 

selective LB plates and incubated at 30 °C for 16–18 h. 

 

2.4.1.9. Colony pick PCR 

 

Sample colonies were transferred to 1.5 ml tubes containing 100 µl of sterile water, then 

10 µl of the mixture was inoculated in 5 ml LB containing selective antibiotic. The 

remaining test sample was boiled for 5 min then centrifuged for 5 min at 14,000 rpm. 

To give a quick identification of positive cultures from which to prepare plasmids, 5 µl 

of the supernatant was used as template for PCR with primers that amplify the insert. 

 

2.4.1.10. PCR primers 

 

The majority of primers used in this project were designed. Primers underlined in Table 

2.4 were already designed.  Primers were desined manually according to the following 

general rules: 

 

1- Primer length should be 20–30 bp with melting temperatures (Tm) of 55–65 °C.  

2- GC content 50–55%.  

3- Long runs of a single base, especially at the 3’ end, were avoided to prevent             

secondary priming. 

4- The 3’ end always terminated with a G or C. 

 

 

 
Primer 
Name 

Primer Sequence 
5’…………………………….3’ Purpose 

P72F-FOW 
GCGGTACCGAACAAAAACTCATCTCAGAAGAG

G 
ATCTGACGCGTCCGTTTCTGTACACAGTCATCG 

Amplify P72F 

P72F-REV CGAAGCTTGTATGCTGGTTTGTAAGCTGGC ” 

P817P-FOW 
GCGGTACCGAACAAAAACTCATCTCAGAAGAG

GA 
TCTGACGCGTCCGACACGTCCG 

Amplify P817P 

P817P-REV CGAAGCTTTGGGAGGCGATCAATTCCAAAGAC ” 

P820P-FOW GCGGATCCGAACAAAAACTCATCTCAGAAGAG
GATCTGCCCACGCGTCCGGTTGTCAG Amplify P820P 

P820P-REV CGAAGCTTATGCGTATGTGGTTGGCG ” 
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PVYFOR GGCTGAACACAGGCTTGAGGCG Amplify DAG motif 

PVYREV GCCCATTCATCACAGTTGGCATC ” 

HCspeFOR GACTAGTATGCTGAGAATTTTTGGAAG Amplify KITC motif 

HCrev GFP CCTCGCCCTTGC TCACCATAACTCTATAGT 
GTTTTATATCAG ” 

HC-seqFow GGTCTGGATAGTAATTGGGCACG Sequencing KITC 
motif 

HC-seqRev GATAACCTGCCCCACCTGTGC ” 

M13-F GTAAAACGACGGCCAGT sequencing pGEMT 

M13-R GGAAACAGCTATGACCATG ” 

Singh S0* ACGTCCAAAATGAGAATGCC Detect PVY 

SinghAS480* TGGTGTTCGTGATGTGACCT Detect PVY 

Malloch F+ GGAGCAGCCGTGCTAAACTTAGAAC Detection PVY 

Malloch R+ CGCGCTAAACCTACATCCCGCAGA Detect PVY 

V3FWDSf ATTACTCGCGGCCCAGCCGGCC Amplify scFv-CL 
Insert 

V3REVNot CGTGCGGCCGCGGACTCTCCCCTGT ” 

BIOFWD GTCTCCGCGGCCGCGGGGGCC Introduce NotI site 
into pAK300Bio 

BIOREV GGCCCCCGCGGCCGCGGAGAC ” 

V3NOTMutF
wd GCGGCCGGAGGATCCGC Mutate NotI site in the 

V3HCL 
V3NOTMutR

ev GCGGATCCTCCGGCCGC ” 

PAK300BioN
ot-F ACCGATAGCCGGAGCTCC Sequencing the NotI 

site of pAK300Bio 
PAK300BioN

ot-R CGAAGATGTCGTTCAGAC ” 

PVYOCIFWD CGCGAGCTCTCCTTAGACGATG Amplifying PVY-CI 
insert 

PVYOCIREV CGCAAGCTTTTGGTGATGAACG Amplifying PVY-CI 
insert 

Table 2.4. Primers used in the project for cloning, detection, mutagenesis, and 
sequencing. 

 
 
Primers with underlined names were already designed. * Are from Singh et al. (1996), + are from 
Malloch et al. (unpublished), and the rest of the primers were designed.   

 

Primers were synthesised commercially (Eurofins MWG Operon), and were received 

lyophilized then reconstituted in either TE buffer or SDW to 100 µM and kept at -20oC.  
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2.4.1.11. DNA sequencing, editing, and alignment 

 

All DNA sequencing was performed in-house using the sequencing lab facilities at 

SCRI. For sequencing a gene or part of a gene, inserts were PCR amplified then cloned 

into pGEM-T, and then plasmid minipreps were prepared and submitted directly to the 

sequencing lab. Sometimes amplified PCR products were directly sequenced without 

cloning into the pGEM-T vector. In this case, DNA samples were cleaned up first.  

 

All sequence analysis was done using the BioEdit program (Tom Hall). Sequence 

comparisons were performed using the BLAST (Blastx or Blastn) program through the 

NCBI website (http://blast.ncbi.nlm.nih.gov/) or the EMBL website 

(http://www.ebi.ac.uk/Tools/blast/). 

 

Analysis of aphid protein sequences was done using Blastn and Scaffolds databases 

available on-line at http://www.aphidbase.com/aphidbase/.  

 

2.4.1.12. Site-Directed Mutagenesis 

 

The Quick Change Site-Directed Mutagenesis Kit (Stratagene) was used either to 

introduce or to mutate restriction enzyme sites in plasmid DNA following the 

manufacturer’s instructions. The template DNA was digested by the addition of 10 U of 

DpnI enzyme for 1 h at 37 °C. 2 µl of the reaction mix was used to transform BL21 

Gold competent cells (Stratagene) as described in section 2.6.3.  Plates were incubated 

for around 36 h at 30 °C. Colonies were grown overnight in LB agar medium containing 

selective antibiotic and plasmid minipreps prepared then digested with restriction 

enzyme. The enzyme reactions and an undigested control sample were analysed on a 

1.2% agarose gel to confirm the mutation. Required bands were excised from the gel, 

and DNA was recovered using a QIAGEN gel purification kit

http://blast.ncbi.nlm.nih.gov/
http://www.aphidbase.com/aphidbase/
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2.4.2. Proteomic methods 

 

 

2.4.2.1. General buffers and recipes  

 

Freezing broth 

 

Tryptone 10 g 

Yeast Extract 5 g 

NaCl  5 g 

K2HPO4 6.3 g 

Na Citrate 0.45 g 

MgSO4.7H2O 0.09 g 

KH2PO4 1.8 g 

Glycerol 44.0 g 

                                                    

Adjust the pH to 7.2 with NaOH and the volume to 1000 ml with distilled H2O. 

 

 

2 x TY 

 

Peptone                                     16 g/l 

Yeast                                        10 g/l 

Sodium Chloride                       5 g/l 

Agar (Gibco)                          15 g/l 

 

L-arabinose 

                                0.15 g in 10 ml SDW, then filter-sterilised = 100 mM 

                                                             working concentration 1.5 μM  

 

IPTG 

 

                              0.25 g in 10 ml SDW, then filter-sterilised = 100 mM 

                               working concentration 1 mM  
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TBS 

20 mM Tris-HCl, pH = 7.5 

150 mM NaCl 

 

Lysozyme buffer 

50 mM Tris-HCl, pH 8.0 

150 mM NaCl 

5 mM MgCl2 

3% (w/v) BSA 

Add the following before use: 

Lysozyme from chicken egg white (Sigma) to 400 mg/ml 

 RQ1 RNase-free DNASE (Promega) to 1 U/ml 

 

Sorensen's Phosphate Buffer  

1 part of 0.1 M KH2PO4 + 4.5 parts of 0.1 M Na2HPO4, then adjust pH to 7.5–8.0. 

 

KPB buffer 

0.3 M Potassium phosphate, pH 9 containing 1 tablet/50 ml of protease inhibitor 

cocktail tablets. 

 

TSM buffer  

100 mM Tris-HCl, 20 mM MgCl2, pH 7.2   

 

2.4.2.2. Protein expression and purification buffers 

 

Bacteria lysis buffer 

 

Buffer B: 100 mM NaH2PO4, 10 mM Tris-HCl, 8 M urea, adjust pH to 8 using NaOH. 

 

Washing buffer 

 

Buffer C: for 100 mM NaH2PO4, 10 mM Tris-HCl, 8 M urea, adjust pH to 6.3 using 

HCl. 
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Elution buffer 

 

Buffer D: 100 mM NaH2PO4, 10 mM Tris-HCl, 8 M urea, adjust pH to 5.9 using HCl. 

Buffer E: 100 mM NaH2PO4, 10 mM Tris-HCl, 8 M urea, adjust pH to 4.5 using HCl. 

  

TEV HC-Pro Extraction Buffer 

 

100 mM Tris-HCl (pH 8.0), 20 mM MgSO4, 500 mM NaCl, 0.5 mM EGTA. Then 

immediately before use add: PVP M.W. 44,000 (BDH Laboratory Supplies, UK) 

at 0.1 g/100 ml  and sodium sulphite at 0.2 g/100 ml.  

 

2.4.2.3. PVY purification  

All operations were carried out at 4 °C. The borate method (Govier et al., 1977) was 

used for purification of PVY. PVY-inoculated N. tabacum cv. Samsun plants were 

harvested  3–4 weeks after manual inoculation and leaves were homogenised with three 

volumes of 0.1 M ammonium acetate (pH 7.0) containing 0.02 M EDTA, M/15 Sodium 

diethyldithiocarbamate (Na DEICA). The extract was passed through 3 layers of muslin 

fabric and centrifuged for 10 min at 8,000 rpm. The supernatant was recovered and 

Triton X-100 was added to 2.5 % (v/v). The solution was stirred for 20 min then 

centrifuged at 35,000 rpm in an ultra centrifuge using type 50.2 Ti rotor (Beckman) for 

1.5 h at 4 °C. The supernatant was discarded and the pellet was covered with 1–2 ml of 

0.01 M sodium borate buffer (pH 8.0) and kept overnight at 4 °C to allow sedimented 

virus particles to resuspend. 

 

Sucrose gradients (10–40 % w/v in sodium borate buffer, pH 8.0) were prepared in 

SW28.1 tubes (Beckman), and kept overnight at 4 °C. The resuspended virus pellet was 

centrifuged at 5,000 rpm for 10 min in a bench top centrifuge, and the supernatant 

centrifuged again at 35,000 rpm in a Beckman ultra centrifuge for 1.5 h. The pellet was 

resuspended in a small volume of 0.01 M sodium borate (pH 8.0), and 250 µl layered on 

to each sucrose gradient. Gradients were centrifuged for 2 h at 28,000 rpm in an 

SW28.1 swinging bucket rotor in the same type of centrifuge. Finally, virus was 

recovered by collecting 0.5–1 ml fractions manually. 
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2.4.2.4. Virus quantification  

 

Virus concentration was calculated from measurements of the OD at 260 nm, which 

was then multipled by the extinction coefficient of this virus (2.9) (CIP Training 

Manual). Additionally, protein concentration was estimated from the intensity of 

Coomassie stain following separation through 12.5% NOVEX-PAGE gels by 

comparison with a standard concentration of BSA. 

 

2.4.2.5. Recombinant protein expression and induction 

 

Protein was produced in bacteria following the QIAGEN expressionest booklet (2001). 

Briefly, transformed E. coli colonies were inoculated into 5 ml of LB or TY medium 

containing selective antibiotic and incubated at 30 °C for 12–16 h with shaking. The 

culture was diluted in a larger volume of the same medium and incubated in the same 

conditions for 2–3 h (OD = 0.4–0.6). Bacteria were then induced with IPTG at 1–2 mM 

and incubated in the above conditions for 3–16 h (depending on the induced protein). 

The bacteria were then harvested by centrifugation in a low speed centrifuge at 4,000 

rpm, and stored frozen at -20 °C or preceded with purification or inclusion bodies 

preparation depending where the protein is expressed (e.g. in chapter 3, IB was prepared 

during expression of HC-Pro in E. coli, whereas for V3 expression in chapter 6, the 

protein was harvested from the supernatant of the culture by extracting the PE from the 

bacteria.  

 

2.4.2.6. Bradford protein assay 

 

Standard concentrations (0.5, 1, 5, and 10 µg/ml) of BSA protein were prepared, then 

the Bradford dye (Bio-Rad) was diluted 1:5 in water, and 10 µl of each BSA protein 

sample was added to 490 µl of the diluted Bradford dye to make the standards. For each 

tested sample, 10 µl of the protein was mixed with 490 µl of the diluted Bradford 

reagent and the absorbance was measured estimated by eye. 

 

2.4.2.7. Protein dialysis 

 

Dialysis tubing (Medicell International Ltd) was boiled briefly in water and rinsed in 

SDW. The dialysis tube was sealed with a plastic clip at one end then protein solution 
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was added and the tube was sealed similarly at the other end, leaving enough space for 

the volume increase which may result from buffer exchange. The samples were dialysed 

in 500–2000 ml buffer (depending on the volume of the protein sample; generally, the 

volume of buffer was at least 100 times more than the volume of protein sample) with 

constant stirring. Dialysis was performed with at least two changes of buffer, one of 

them overnight at 4 °C. 

 

2.4.2.8. Ni-NTA resin protein purification system  

 

Ni-NTA resin (QIAGEN) is supplied as a 50% slurry in 30% EtOH. Resin was washed 

2 to 3 times with the buffer used to wash protein, then resin (usually 5–10 mg of protein 

per ml of resin is recommended) was mixed with the protein, and mixture then added to 

an  empty IllustraTM PD-10 desalting column (GE Healthcare) already equilibrated with 

protein washing buffer. The mixture was agitated gently for 1 h at room temperature, or 

for longer at 4 °C. Then, the bottom and top covers of the column were removed and the 

unbound fraction was removed under gravity flow. The column was washed 2 to 3 times 

with washing buffer; the 3–4 eluates were collected using a specific elution buffer 

depending on the protein.  

  

2.5. Statistical analysis 

 
The design of aphid transmission experiments was discussed with Biomathematics and 

Statistics Scotland (BioSS) staff at SCRI to ensure that replication was enough for 

analyzing results statistically. Statistical analysis was done using the 13th edition of 

GenStat statistical package (VSN International Ltd, Harpenden).
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Chapter 3. Identification of Myzus persicae proteins that interact with 

Potato virus Y helper component 

 

 

3.1. Introduction  
 

Helper dependent transmission of plant viruses is a subject of great importance, and 

elucidation of the exact mechanism of virus transmission would have a major impact on 

development of novel methods for virus control in the future. Potyviruses which belong 

to the largest known family (Potyviridae) of plant viruses are all transmitted by aphids 

in a non-circulative, non-persistent manner with the help of a multifunctional virus 

encoded protein known as the helper component (HC-Pro). The requirement for 

biologically active HC-Pro has been reported for successful aphid transmission of 

potyviruses (Kassanis and Govier, 1971a,b; Govier and Kassanis, 1974a,b; Pirone and 

Blanc, 1996). Moreover, electron microscopy studies revealed that virus retention in 

aphid stylet was always associated with presence of functional HC-Pro (Berger and 

Pirone, 1986). Recently, different cuticle proteins extracted from M. persicae were 

confirmed to interact with HC-Pro of the potyvirus Zucchini yellow mosaic virus 

(ZYMV) (Dombrovsky et al., 2007b). In a different virus helper component system, 

Uzest et al. (2007) localized the interaction between Cauliflower mosaic virus (CaMV) 

and putative aphid receptors on the tip of the stylet of Acyrthosiphon pisum, M. 

persicae, and Brevicoryne brassicae. They developed a novel in vitro assay based on 

expression of the P2 protein of CaMV as a fusion to the green fluorescent protein 

(GFP). After an acquisition access period (AAP), aphid stylets were dissected and the 

GFP-P2 complex was detected on the tip of the stylet by confocal laser scanning 

microscopy (CLSM). More recently, by employing their assay Uzest et al. (2010) 

confirmed that the GFP-P2 fusion protein was detected in other aphid species which 

vector CaMV but not in a non-vector species. In addition they proposed the “acrostyle” 

structure on the tip of the stylet, and confirmed that the GFP-P2 bound to this structure.   

 

During the past few decades scientists have concentrated on investigation of the virus 

molecular determinants involved in their transmission, and substantial information has 

been obtained in this respect. However, less effort was directed towards investigating 

the aphid vector determinants involved in the transmission process. The current 
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hypothesis indicates that there are at least two virus components which participate in 

transmission, namely specific motifs in the coat protein (CP) and the HC-Pro. However, 

the mechanism by which these two proteins contribute to the transmission process is 

still unclear. Moreover, the possible involvement of other virus-encoded proteins in the 

transmission process has not been excluded. 

 

Studies on the aphid vectors have included examination of light and electron 

microscopy sections of aphid mouthparts after virus acquisition and confirmed that 

virus particles exist in different locations inside the aphid body (Taylor amd Robertson 

1974; Berger and Pirone, 1986). Further studies demonstrated that potyvirus was 

located in the lumen of the aphid’s food canal, and showed that virus was transmitted 

when acquired simultaneously with HC-Pro or sequentially after HC-Pro was acquired, 

but not if virus was acquired first. However, the exact location and the nature of these 

receptors have not been identified (Ammar et al., 1994; Wang et al., 1996; Blanc et al., 

1998; van den Heuvel et al., 1999; Harris and Harris, 2001). Several factors have 

contributed to this gap in knowledge in identification of these putative virus receptors 

inside aphids. The first factor is the lack of information about aphid proteins in general 

and in particular aphid cuticle proteins, which are believed to form the core component 

of these aphid receptors (Dombrovsky et al., 2007b); secondly, the difficulty in 

handling aphid cuticle proteins; and third is the lack of collaboration among virologists 

and entomologists to investigate this process. 

The cuticle is a unique feature of the insect’s body that enables the insect to withstand a 

wide range of climatic conditions.  Insect cuticle is composed of chitin embedded 

within a protein matrix (Merzendorfer and Zimoch, 2003); chitin also exists in plants 

and other organisms such as fungi.  Thus it has been suggested that the only unique 

component of the insect cuticle that may interact with virus components is the cuticle 

proteins. This protein component is now the basis of investigations of the possible 

interactions between plant viruses and their aphid vectors. 

 

The aim of this Chapter is to identify aphid proteins that may interact with potyvirus 

HC-Pro. In this work, a portion of an aphid cDNA expression library constructed as 

described by Ramsey et al. (2007) was screened against purified recombinant PVY HC-

Pro protein by preparing high-density colony filters using a Genetix Q-Bot robot, and 

subsequently performing protein overlay assays. In addition, protein of one of the 

identified clones was expressed and the interaction with HC-Pro belonging to PVY and 
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other potyviruses was investigated. Moreover, bioinformatics analysis was done on 

three of the identified clones and their sequences were compared with other proteins in 

the sequence databases. Obtained results were discussed in the context of aphid 

transmission by aphids. 

 

3.2. Materials and Methods 

 
General materials and methods are presented in Chapter 2.  This section will deal with 

specific methods used particularly in this Chapter. 

 

3.2.1. Expressed colony screening 

A M. persicae cDNA expression library containing 7680 clones was screened. These 

clones represent a cDNA library constructed by Dr. B. Fenton and colleagues (SCRI), 

one of the sixteen expression libraries described by Ramsey et al. (2007). 

 

3.2.1.1. Q-Bot Filter printing 

 

A fresh copy of the library was prepared before individual printing by growing colonies 

in wells of Genetix 3.5 mm 384-well plates (Genetix, New Milton, Hampshire, UK), 

and incubation for 16-18 h at 37°C in “freezing” broth (Chapter 2) containing selective 

antibiotics. Protran nitrocellulose transfer membranes (PerkinElmer TM Life Science) 

were cut to fit into Q-Tray vented bioassay plates (22.2 × 22.2 cm; Genetix), and then a 

piece of Whatman 3mm paper was put on top of the Q-Bot printing cassette. Water was 

added to the Whatman paper until it became moderately wet. Afterwards the 

nitrocellulose membrane was placed on to the cassette and air bubbles were removed by 

rubbing with a glass pipette. The microtitre plate containing the freshly copied library 

was placed inside the Q-Bot hotel in numbered order, and the chamber was closed.  

Printing was started by selecting the appropriate programme. The process was 

completely automated (Fig. 3.1) and included three repeated steps. These were:  (1) 

picking the 384-well plates placed in the Q-Bot hotel; (2) immersing the Q-Bot printing 

head into the fresh cultures grown in the 384 well plates and printing on the 

nitrocellulose membranes; (3) passing the printing head through cleaning solutions 

placed in the Q-Bot trays then drying. The cycle was repeated 40 times to print all 

plates. 
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After printing, the membranes were placed on a Q-Tray containing either LB AMP or 

LB AIX medium (Chapter 2, section 2.4.1.1) for protein induction, and then the plates 

were incubated for 16 to 18 h at 37°C to allow colonies to grow (Fig. 3.2). 

Each large filter was subdivided into 6 small filters, and each one of these small filters 

contains 384 clusters in a 24x16 array.  Each cluster contains 16 spots, representing 

eight clones in duplicates from each of eight Genetix 384-well plates (See Fig. 3.3 for 

membrane layout). Each large membrane can therefore accommodate up to 48 Genetix 

384-well plates, divided into 6 sub-areas each with clusters of clones from 8 plates. 

Therefore the whole library of 7680 clones can be screened on one large filter. If the 

duplicate wells in a mini-cluster were positive, then the clone was selected. Dark purple 

colour shows a reaction; blue colour shows that the clone did not contain an insert.  

Each Genetix 384-well plate itself has numbers from 1 to 24 for rows, and letters from 

A to P for columns. Thus each clone will have a name such as P72F which means that it 

was selected from plate 7 with a match to row 2 and column F. Each plate is printed in 

24 mini-clusters of 16 wells in duplicate.  

 

Figure 3.1. The Q-Bot robot used for the filter printing process (Picture from 
SCRI Annual Report, 2007).
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Figure 3.2. Printed bacterial colonies on the filter in the Q-Tray 16-18 h after induction.  

The magnified part shows growing bacterial colonies.
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Figure 3.3. SCRI Q-Bot membrane layout and the basis for selection of positive clones. 

The magnified square on the right shows the arrangement of the duplicate clones from plates 1 to 8 in each clust
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3.2.1.2. Filter processing and overlay assay conditions 

 

Membranes carrying induced colonies were exposed to an atmosphere of saturated 

chloroform for 10 min by hanging over a beaker containing chloroform, then placed on 

Whatman 3mm paper to allow the chloroform to evaporate. The membranes were 

incubated for 1 h in 150 ml of lysozyme buffer (Chapter 2) with gentle agitation, and 

any remaining debris was removed by rubbing with a clean gloved finger. Membranes 

were then transferred to a fresh lysozyme buffer solution, and incubated for a further 

hour, then washed three times for 10 min each in TBST buffer. Blocking with 1% BSA 

(Sigma, UK) in TBS was performed for 1 h with gentle agitation. After blocking, 

membranes were incubated with 150 ml of  N-HC-Pro produced in E .coli (10 ng/ml) in 

TBS containing 1% BSA for 16 h at 4oC with gentle agitation, then washed three times 

with TBST and incubated with commercial α-histidine monoclonal antibody or α-HC-

Pro polyclonal antiserum  (Table 2.2) in PBSTM for 2-3 h at RT. Filter was then 

washed as before and incubated with either α-mouse-AP or α-rabbit-AP in PBSTM for 

2-3h at RT then filter was washed as before. Colour development was carried out as 

described for Western blots (Chapter 2). 

3.2.2. Cloning aphid proteins into the pQE-30 vector 

The pSPORT vector, which harbours the cloned aphid protein sequences (Ramsey et al., 

2007), does not incorporate any epitope tags to assist investigation of whether the 

protein is expressed or to estimate the level of expression. To overcome this problem 

the gene sequences of three identified clones (P72F, P817P, and P820P) were amplified 

by PCR from the pSPORT vector using primers described in Table 2.3, then inserts 

were cloned into the pGEM-T Easy vector, and finally sub-cloned into pQE-30 

(QIAGEN) to enable protein expression assessment through the 6-histidine tag fused to 

the N-terminus of the expressed protein. In addition, the sequence of the Myc-tag 

(Hilpert et al., 2001) was added to the 5′ end of the sequence of the primers in order to 

create a second fusion protein with c-Myc at the N-terminus, which is recognized by α-

Myc commercial monoclonal antibody (Table 2.2).  

3.2.3. Aphid cuticle protein expression and purification  

 

Aphid protein clones were expressed from the pSPORT and pQE-30 vectors after 

induction by IPTG for 1, 4, and 16 h following protein expression under conditions 



 73

described in Chapter 2. In addition, native CUP proteins were extracted from the aphid 

body. Unless otherwise mentioned, all protocols used to express recombinant proteins in 

E. coli were from the QIAexpressionest handbook (QIAGEN, 2001).  

 

 

3.2.3.1. Whole cell extract 

 

One ml of induced culture was centrifuged at 14,000 rpm for 1–2 min, and the pellet 

was resuspended in 100 µl of SDS-PAGE sample buffer and boiled for 5 min. The 

denatured protein was loaded onto an SDS-polyacrylamide gel (15 µl per well) or stored 

frozen at -20 °C for subsequent analysis. 

 

3.2.3.2. Periplasmic extract (PE)  

 

Bacterial cells were harvested as before, and then resuspended in 30 mM Tris-HCl (pH 

8), 20% sucrose, 20 mM EDTA. The mixture was incubated on ice for 30 min then 

centrifuged at 12,000 rpm for 20 min at 4oC. The supernatant was discarded and the 

pellet was resuspended in a small volume of ice-cooled 5 mM MgSO4, and shaken for 

10 min at 4oC, then centrifuged as before. An equal volume of SDS-PAGE sample 

buffer was added to the supernatant, then the mixture was boiled and used directly (15 

µl per well) for PAGE. 

 

3.2.3.3. Cleared lysate under native conditions 

 

After protein induction and harvesting, bacterial cells were subjected to freezing then 

thawing cycles in ice. Lysis buffer under native conditions (50 mM NaH2PO4, 300 mM 

NaCl, 10 mM imidazole (pH 8 with NaOH), containing lysozyme (Sigma) to 1.5 mg/ml) 

was added at 0.5 ml/0.25 g pellet for resuspension. The mixture was incubated on ice 

for 30-60 min then centrifuged at 12,000 rpm for 10 min. The supernatant was retained. 

An equal volume of SDS-PAGE sample buffer was added and the mixture was boiled 

for 5 min then used directly for SDS-PAGE (15 µl per well) and western blot analysis. 
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3.2.3.4. Cleared lysate under denaturing conditions 

 

Induced cultures were centrifuged, then the resulting pellets were lysed by freeze/thaw 

treatment and resuspended in 100 mM NaH2PO4, 10 mM Tris-HCl, 8M urea (pH 8 with 

NaOH), then kept on ice for 30 min. The mixture was vortexed until the solution 

became translucent, and was then centrifuged at 10,000 rpm for 20 min, and the 

supernatant was retained. For SDS-PAGE analysis, equal volumes of sample buffer and 

the supernatant were mixed and 15 µl of the boiled mixture was loaded per well. 

 

3.2.3.5. Inclusion body (IB) method 

 

Inclusion bodies were prepared from bacterial cultures as follows. Protein production 

was induced in the bacterial culture by addition of 1 mM IPTG and incubation for 3-4 h 

at 30 oC. Cells were harvested by centrifugation at 10,000 rpm for 30 min, resuspended 

in 4 ml/g of 0.1 M Tris-HCl pH 7.0, 1 mM EDTA, 1.5 mg/ml lysozyme (Sigma), and 

incubated on ice for 1 h. Then EDTA was added to 20 mM, Triton X-100 to 2%, and 

NaCl to 0.5 M.  The mixture was incubated on ice for 30 min. Viscosity of the mixture 

was decreased by a further incubation step with protease inhibitor (RNasin ribonuclease 

inhibitor, Promega) or by passing through a large syringe needle. Inclusion bodies were 

harvested by centrifugation at 10,000 rpm for 10 min at 4oC, then resuspended and 

washed three times in 0.1 M Tris-HCl pH 7.0, 20 mM EDTA then resuspended in SDS 

sample buffer for analysis. Each inclusion body pellet was resuspended in SDS sample 

buffer (100 µl per 0.1 mg), then the mixture was boiled for 5 min, and 15 µl of the 

boiled mixture was loaded per well. The mixture was then stored at -20 oC, and reused 

2–5 times after boiling for 5 min every time.  

 

3.2.3.6. Native CUPs extraction 

Metopolophium dirhodum, which is a very poor vector of PVY, was selected to test 

differences in HC-Pro binding to CUPs extracted from different aphid species.CUP 

proteins from M. persicae and M. dirhodum were extracted from the whole aphid body 

according to the method published by Dombrovsky et al. (2007b). Briefly, 1 g of aphids 

were collected and ground in liquid nitrogen and then mixed with 10 ml (1: 10, w/v) 

extraction buffer (20 mM Tris-HCl, 0.15 M NaCl, pH 7.5), 3 mM PMSF, 10 mM β-

mercaptoethanol. The mixture was centrifuged for 5 min at 4,000 rpm, and the pellet 
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was washed 4–5 times with 40 ml extraction buffer. The pellet was washed in 20 ml of 

the extraction buffer but containing a high concentration of NaCl (0.6 M). The pellet 

was washed twice with 10 mM Tris-HCl (pH 7.0) then extracted using  8 M urea in 10 

mM Tris-HCl, pH 7.0 (5 v/w). The mixture of aphid pellet with 8 M urea was shaken 

for 2 h at room temperature (RT), after which the supernatant was collected by 

centrifugation at 12,000 rpm. Supernatant was mixed 1:1 v/v with SDS sample buffer 

for Western blot analysis. 

 

3.2.4. HC-Pro protein expression and purification 

 

Different systems were used to express potyvirus HC-Pro in order to test the interaction 

between expressed virus protein and expressed aphid proteins. 

 

3.2.4.1. HC-Pro expression in E. coli 

 

Full length (52 kDa) and N-terminal (full length with deletion of the 14 kDa at the C-

terminus) recombinant HC-Pro containing 6-His tag at N-terminus, which were 

previously cloned in the pQE vector by G. Cowan, SCRI, were used first for aphid 

library protein screening. 

 

N-terminus HC-Pro expression and protein harvesting  

A single colony of bacteria harbouring a plasmid that contained the region coding for 

the N-terminus of HC-Pro was inoculated into 5 ml LB Amp medium (Chapter 2, 

section 2.4.1.1) containing 2% glucose and incubated overnight at 30oC.  Then the 

culture was sub-cultured into 200 ml LB Amp containing 1% glucose, and incubated for 

3 h at 30oC.  LB Amp medium was replaced after centrifugation of the culture for 15 

min at 4000 rpm at 4 oC, then protein was induced by addition of 1 mM IPTG and 

incubation for 16-18 h at 30 oC. Inclusion bodies were prepared as shown in section 

3.2.3.5. To solubilise the inclusion bodies, inclusion body pellets were resuspended in 6 

M urea, 0.1 M Tris-HCl (pH 8.0), 100 mM DL-dithiothreitol (DTT), 1mM EDTA to 

give a protein concentration of 10 mg/ml using Bio-Rad protein assay reagent with BSA 

standards diluted in urea buffer. Then 1 ml of solubilised inclusion bodies was diluted 

with 9 ml of 6 M urea, 0.1 M Tris-HCl (pH 8.0) and purified using Ni-NTA as 

described in Chapter 2. 
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Full length HC-Pro expression 

 

Bacteria carrying plasmid harbouring the full length HC-Pro were induced, and the full 

length HC-Pro was expressed and purified under denaturing conditions following the 

QIAexpressionest handbook (QIAGEN, 2001). The step was similar to that used for N-

HC-Pro except that harvested protein was resuspended in lysis buffer B (Chapter 2,) at 5 

ml per gram wet weight and stirred for 60 min at 20–22 oC. The suspension was 

centrifuged at 4,000 rpm for 30 min and the supernatant was collected for purification 

of denatured protein over Ni-NTA resin as described in Chapter 2 except that washing 

was performed with buffer C, and elution was performed 4 times with buffer D and 4 

times with buffer E (Chapter 2). 

 

3.2.4.2. HC-Pro expression in plant 

 

To overcome potential problems associated with poor yields possibly due to improper 

folding of expressed protein in bacteria, HC-Pro was expressed in planta as follows. 

 

3.2.4.2.1. PVY-HC-Pro in PVX system 

 

The PVX vector (Chapman et al., 1992) which harbours the PVY-HC-Pro (Sasaya et 

al., 2000) was first linearized by overnight digestion with SpeI restriction enzyme.DNA 

template was purified using the QIAGEN PB buffer, then  infectious RNA transcript 

was then prepared using the RiboMAXTM large scale RNA production system-T7 

(Promega, UK). Briefly, 4 µl (1–2µg) of template was added to 1.5 microcentrifuge 

tube, then the following were added, 8 µl of T7 5x buffer, 3 µl of each of Atp, Ctp, Utp, 

1 µl of Gtp, 4 µl of T7 transcription anzyme, 4 µl of 30mm Cap, and the volume was 

completed to 40 µl by SDW. Transcription reaction was incubated at 37°C for 2h. N. 

benthamiana plants at the 4–5 leaf stage were mechanically inoculated with the 

infectious RNA transcript after dusting with carborundum. One week after infection, the 

leaves which showed severe PVX symptoms were harvested and purified over Ni-NTA 

resin as detailed in Sasaya et al. (2000) with some modification as follows: PVX 

infected leaves (20 g) were harvested and disrupted using a blender in 50 ml of chilled 

0.3 M potassium phosphate (KPB; section 2.4.2.1) containing one protease inhibitor 

cocktail tablet (Roche, UK). The mixture was then centrifuged at low speed (14,000 

rpm) for 30 min in a Sorvall® RC-6 Plus1 centrifuge (F14-6X2 50Y rotor, Thermo 
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Scientific) then at high speed (35,000 rpm) for 60 min using a 50.2 Ti rotor (Beckman). 

The supernatant was mixed with Ni-NTA resin and incubated overnight at 4°C; the 

resin was then washed three times with chilled KPB. Elution was performed using a 

high concentration of imidazole (400 mM). Eluted fractions were combined and 

centrifuged at 12,000 rpm for 10 min to remove the plant components which bind non-

specifically to the resin by discarding the pellet and keeping the supernatant which 

contains the soluble HC-Pro in imidazole solution. The preparations were concentrated 

ten-fold by covering wet dialysis tubing containing the preparation with crushed 

polyethylene glycol (PEG 4000, BDH laboratory supplies) powder and allowing the 

volume to decrease to the required level. 

 

3.2.4.2.2. TuMV HC-Pro  

 

To purify TuMV HC-Pro, the method of Kadouri et al. (1998) was used with some 

modifications. This method exploits the ability of native TuMV HC-Pro to bind to Ni-

NTA resin.  Briefly, N. benthamiana plants at the 4–5 leaf stage were mechanically 

inoculated with TuMV infected sap as indicated in Chapter 2. About 10 days after 

inoculation, leaves showing severe symptoms were collected and disrupted in a blender 

using an adequate volume of pre-chilled  0.3 M K2HPO4, pH 8.8 (designated HCB for 

HC-Pro buffer). Plant debris was separated by centrifugation at 14,000 rpm for 30 min 

at 4°C in a Sorvall® RC-6 Plus1 centrifuge (F14-6X2 50Y rotor, Thermo Scientific); 

HC-Pro was purified from the supernatant by Ni-NTA resin as described before. The 

mixture was gently agitated overnight at 4°C, and elution performed with 250 mM 

imidazole in extraction buffer.  Eluted fractions were checked by SDS-PAGE, and 

Western blotting was used to confirm HC-Pro interaction with α-histidine antibody. The 

protein was stored at -20 °C until needed. 

 

3.2.4.2.3. TEV HC-Pro 

 

His-tagged TEV HC-Pro was expressed in plants, harvested and purified as described 

by Blanc et al. (1999) and according to the protocol modified by Ruiz-Ferrer et al. 

(2005). Briefly, N. tabacum cv. Xanthi (N/N) plants at the 4–5 leaf stage were 

mechanically inoculated with TEV infected leaf samples as previously described. Fully 

infected leaves showing virus symptoms were harvested 3–4 weeks after inoculation,  

and disrupted in a blender with 4 volumes of chilled extraction buffer (Chapter 2) after 
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adding 1 g/100 ml of solid PVP (M.W. 44,000, BDH Laboratory Supplies, UK), and 2 

g/100 ml Na2SO3 directly to the leaves. The mixture was then passed through a funnel 

covered with buffer-wet Miracloth (Calbiochem®) and 4 layers of cheesecloth into an 

ice-cold beaker.  Leaf extract was then transferred to 250 ml centrifugation bottles and 

centrifuged for 2.5 h at 14,000 rpm at 4 ºC using a Sorvall® RC-6 Plus1 centrifuge 

(F14-6X2 50Y rotor, Thermo Scientific). The supernatant was kept for protein 

precipitation by adding solid ammonium sulphate to 20% (w/v), and then the mixture 

was stirred at low speed in a cold room for 1–2 h. The mixture was centrifuged at 

14,000 rpm for 30 min at 4 ºC in the same centrifuge. The supernatant was transferred 

to a chilled beaker, then ammonium sulphate was added to reach 40% (w/v). The 

mixture was incubated for 1-2 h with gentle stirring and centrifuged at 14,000 rpm for 

30 min at 4 ºC. The pellet was then resuspended in cold buffer and kept with gentle 

stirring for 16 h at 4 ºC. Protein was then centrifuged at 2000 rpm for 10 min to remove 

plant debris which may block elution from Ni-NTA resin.  

Protein was then purified using Ni-NTA resin as described before except that the elution 

buffer was extraction buffer supplemented with 400 mM EGTA. In order to solubilise 

protein, it was important that pH was adjusted to 8.0 with NaOH. Eluted protein was 

checked by Western blotting using antiserum against 6-histidine tag and specific 

polyclonal antiserum against the TEV HC-Pro provided by J.J. Lopez-Moya (CSIC, 

Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain). 

 

3.2.5. Overlay assay  

 

The assay was done as follows: after SDS-PAGE and electroblotting, the membranes 

were blocked for 1–2 h at room temperature (RT) in PBS containing 5% BSA (Fraction 

V, Sigma). Then the membranes were incubated with the HC-Pro protein preparations 

for 16 h at 4oC with gentle agitation. Membranes were washed three times with PBS 

containing 0.5% Tween 20 (PBST). The membranes were then incubated with either α-

6-histidine monoclonal or α-HC-Pro polyclonal antibody (Table 2.2) and kept for 2–3 h 

at 20–22 oC, then washing was performed as in the previous step. Conjugates, α-mouse-

AP or α-rabbit-AP, were incubated with the membrane for 2 h at 20–22 oC. Finally 

Sigma BCIP /NBT substrate was added to the membranes after washing in PBST, and 

colour development was stopped by rinsing in colour stopping solution or SDW after 

20–30 min of incubation at 20 –22 oC.  

 



 79

 

 

3.3. Experimental Results 

 
3.3.1. Clones interacting with the full-length HC-Pro expressed in E. coli 

 

The first attempt to screen the aphid expression library for proteins that would bind to 

HC-Pro was performed with full length HC-Pro produced in E. coli. No obvious 

positive reaction was observed. Some faint positively reacting clones were picked and 

sequences of the inserts were determined (not shown). Sequence analysis of these 

clones did not reveal any match to EST sequences that are likely to be candidates for an 

interaction. The full length HC-Pro readily became insoluble forming large aggregates. 

Since the attachment between HC-Pro and the aphid’s mouthparts was shown to be 

controlled by the Lys sequence of the conserved region (KITC) in the N-terminus of 

HC-Pro (Blanc et al. 1998), it was decided, to express only the N-terminal part of the 

HC-Pro (N-HC-Pro), which contains the domains necessary for interaction with aphid 

stylets, then the library was screened against this protein fragment. 

 

3.3.2. Clones interacting with the N-terminus of HC-Pro expressed in E. coli 

 

N-HC-Pro was expressed from the pQE-30 vector. Soluble N-HC-Pro was produced in 

E. coli and the concentration of N-HC-Pro was estimated to be about 1 µg/ml as judged 

from Coomassie blue staining (Fig. 3.4, panel A, lanes 6-9), and 1:100 dilution was 

used to incubate the filter. Eight aphid clones were selected from both induced (Fig. 3.5) 

and non-induced (Fig. 3.6) clones after incubation with N-HC-Pro. DNA was prepared 

from the candidate clones, and the inserts were sequenced. The nucleotide sequences are 

presented in appendix 1. Table 3.1 presents the results BLAST searches of the NCBI 

database (See Section 3.4). This analysis revealed that three of the selected clones 

(clones P72F, P817P and P94A) gave good matches with aphid cuticular proteins that 

were previously characterized and reported to interact with HC-Pro of ZYMV 

(Dombrovsky et al., 2003, 2007a,b). These clones, in addition to clones P820P 

(exoskeleton protein) and P515A (beta-tubulin), might be candidates involved in the 

transmission process. The remaining clones were ATP citrate lyase (clone P136B), 

serine/threonine-protein phosphatase (clone P1424E), and a membrane protein (clone 

P58L). These other interactions may be non-specific binding or related to other 
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functions of HC-Pro since this protein is multifunctional. Thus, it was decided to 

concentrate on the CUP clones, which were considered to be the best candidate genes.     

The products of four clones which interacted with HC-Pro, including clone P820P 

initially identified as coding for an exoskeleton protein, were confirmed to be classified 

as cuticular proteins by searching in the cuticle protein database 

http://bioinformatics.biol.uoa.gr/cuticleDB/   (Magkrioti et al., 2004). Their predicted 

protein sequences were aligned together. Fig. 3.7 shows that there was little similarity 

among the selected clones, except for P817P and P94A. This indicates that the selected 

clones represent at least three different aphid CUPs.

http://bioinformatics.biol.uoa.gr/cuticleDB/   (Magkrioti et al., 2004)
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Figure 3.4.   SDS-PAGE and Western blot of N-HC-Pro expressed in E. coli used to screen the aphid cDNA expression library. 
A: Coomassie blue stain of HC-Pro elution fractions from Ni-NTA resin (lanes 6-9) compared with known concentrations of BSA protein (lanes 1-4). B: Western blot confirming the 
ability of expressed HC-Pro to bind to commercial α-6-histidine antiserum. C: Western blot incubated with specific polyclonal antiserum raised against recombinant HC-Pro. 
Lanes M: molecular size markers. 1, 2, 3, and 4: 1, 0.5, 0.25, and 0.125 µg/ml of BSA respectively in SDS sample buffer. 6, 7, 8, and 9: elution fractions of N-HC-Pro bound to Ni-
NTA resin in SDS sample buffer. 10: non-bound to Ni-NTA resin fraction. 
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Figure 3.5. Filter showing clones that reacted with N- HC-Pro expressed in E. coli after first screening of the induced aphid library.  
 
Clones which were selected for sequencing are indicated by arrows. The clusters containing a clone which was selected for sub-cloning into the pQE-30 vector is magnified (P72F). 
One magnified cluster contains blue spots representing examples of colonies with no inserts inside. The clones which appeared in the induced and non-induced filters (P515A, P72F, 
and P136B) are circled. HC-Pro concentration was 10 ng/ml (1:100 dilution of the original preparation in Fig. 3.4). 
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Figure 3.6. Filter showing clones reacting with N-HC-Pro expressed in E. coli after first screening of the non-induced aphid library.  
Clones which were selected for sequencing are indicated with arrows, and clusters containing clones which were selected for sub-cloning into pQE-30 are magnified (P72F, P817P, 
and P820P). The clones which appeared in the induced and non-induced filters (P515A, P72F, and P136B) are circled. HC-Pro concentration was 10 ng/ml. 
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10 20 30 40 50 60 70 80 90 100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

P7-2F MAAKFVIFAACVATALAQYSAPAYKPAYSAPAYSAPKAYAPEPAYAPTPYNFEYSVNDPHTYDVHSQSEYSDGNGYVKGSYS--------LVEADGSIRT
P8-17P --------MNTLVVLVAVVAAVAAAPPKEAAKAFTFSGFPSNQAYYPGQQAYYPGYQG--------YQGYQGYSGFRNGYYPRQQGYYPGYQGYQGYYPG
P9-4A --------MNTLVVLVAVVAAVAAAPPKEAAKAFTFSGFPSNQAYYPGQQAYYPGYQG--------YQGYQGYSGFRNGYYPGQQGYYPGYQGYQGYYPG
P8-20P ----------------------VVSPIK--------SQYHTQNEFGQYAYGYNDGFSS--------KSETKHANGLTEGAYS--------YVDPNGVLQQ

110 120 130 140 150 160 170 180 190 200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

P7-2F VEY----TADDYNGFN----AVVKNEGGYKAPSYSAPSYSAPAYKPAYSAPAYSAPAYSAPAYAAPAYSAPAYKPAYKPAYFIPCEPTLFFIFYFMFSSC
P8-17P YQTGYQGYYPGYQGYNRGYYPGAPAVYPAVGAVTPAPIIAPVPVVPKVVSPVYKPVDNKLPAIIRQSQ--EADVNGFKYGFETENGIVAQAAGYVKNAGS
P9-4A YQTGYQGYYPGYQGYNRGYYPGAPAVYPAVGAVTPAPIIAPVPVVPKVVSPVYKPVDNKLPAIIRQSQ--EADVNGFKYGFETENGIVAQAAGYVKNAGS
P8-20P YK-----YVSDENGYR------VSGTNLPVAPAVPAVEVPAVPAVPAVESVIEVKAAAPAPAPEAVSY--QSEIP--QQVQDTPEVAAAKAAHQIAYDEA

210 220 230 240 250
....|....|....|....|....|....|....|....|....|....|....|...

P7-2F TSLDRRVHIEPWFQSHTVPYYNIIWAMGTTMYLLCKYIQCIFIEKKKKGGA-------
P8-17P ENAAQVIEGSYSYVGDDGAPVEVKYYADETGYHAVGNVVPTIPSEIAKSLELIAS---
P9-4A ENAAQVIEGSYSYVGDDGAPVEVKYYADETGYHAVGNVXPXIPLXXRQVFXLIASXXX
P8-20P KKAADASPAED----EPSSDAVVQVSADASAAPAAPAAPAAAPAAPAADFANHIR---

 
Figure 3.7. Amino acid sequence alignments between selected aphid cuticle proteins that interacted with N-HC-Pro produced in E. coli.  
 
Nucleotide sequences of selected clones were translated, and then protein sequences were aligned, and similarities between selected clones were highlighted using the Bioedit 
programme.  Amino acids are colour coded according to their identities and similar chemical properties in conserved sequences. 
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3.3.3. Expression of cloned cDNA inserts in pQE-30 

Three candidate genes were sub-cloned into the pQE-30 vector, so that on expression 

they would to be fused to the epitop tags 6-His and c-Myc. The first clone selected was 

P72F, which matches with MPCP1 (Dombrovsky et al., 2003) and MPCP3 

(Dombrovsky et al. 2007a).  P817P is the second clone which was selected for sub-

cloning; it gave a top match in BLAST search with MPCP5 (Dombrovsky et al., 2007a). 

The last clone which was selected is P820P, which encodes an exoskeleton protein/ 

RR3 CUP protein (See Section 3.4). Selection was made based on the strength of the 

interaction with the HC-Pro reflected by the strong colour in the duplicate spots, and 

based on the likelihood that the putative virus receptors on the aphid stylet are of a 

cuticle protein nature. Cloning of this kind of protein with much repetitive sequence 

was difficult and only clone P72F was sub-cloned successfully (Fig. 3.8). Recombinant 

protein was expressed and purified as indicated in section 3.2.3.1.  Gel staining and 

Western blot analysis showed that the P72F gene product was not toxic to the bacterial 

cells as protein was induced with IPTG after 1-4 h, but the protein disappeared from the 

culture after the longer induction time of 16 h (Fig. 3.9). However, the molecular mass 

of induced proteins separated by SDS-PAGE was greater than expected from the 

sequence. The detected bands were between 36 and 45 kDa.  This main band of 36-45 

kDa was observed when induced proteins were incubated with α-His or α-Myc, but the 

bands were weaker when the α-Myc was used (Fig. 3.9). The deduced molecular mass 

of the cloned product of the P72F clone is approximately 20 kDa (Table 3.2). Due to the 

cloning strategy additional sequence of 20 amino acids from the vector, as well as the 6-

Histidine and the c-Myc tags given an estimated mass of 23.2 kDa, which is not 

recognized as one of the main bands by any of the antibodies which were used (Fig. 

3.9). This discrepancy between the migration of proteins in SDS gels and their predicted 

size from amino acid sequence is a characteristic of cuticular proteins, which typically 

migrate 20-40% more slowly than expected (Cox and Willis, 1987; Andersen et al., 

1995; Dotson et al., 1998; Rebers and Willis, 2001). Therefore, it was concluded that it 

would be appropriate to induce the bacterial cultures for 3-4 h, and that the size of P72F 

protein was greater than what was expected. It is possible that the protein does not bind 

SDS in the expected ratios, and therefore migrates more slowly in the gel. 
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10 20 30 40 50
....|....| ....|....| ....|....| ....|....| ....|....|

P72F clone HHHHHHGSAC ELGTEQKLIS EEDLTRPFLY TVIVQFDKKT KNNTKMAAKF

60 70 80 90 100
....|....| ....|....| ....|....| ....|....| ....|....|

P72F clone VIFAACVATA LAQYSAPAYK PAYSAPAYSA PKAYAPEPAY APTPYNFEYS

110 120 130 140 150
....|....| ....|....| ....|....| ....|....| ....|....|

P72F clone VNDPHTYDVH SQSEYSDGNG YVKGSYSLVE ADGSIRTVEY TADDYNGFNA

160 170 180 190 200
....|....| ....|....| ....|....| ....|....| ....|....|

P72F clone VVKNEGGYKA PSYSAPSYSA PAYKPAYSAP AYSAPAYSAP AYAAPAYSAP

210
....|....| ...

P72F clone AYKPAYKPAY KLN

 

Figure 3.8. The sequence of expressed P72F clone in pQE-30 vector 

 

 

 

Start codon
    ATG 

6-His   Myc PSport 
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Figure 3.9. Over expression of protein from aphid clone P72F in pQE-30 and 
interaction in Western blots. 

Whole cell extracts prepared from three separate clones of P72F: P72F-1 (A, E, I), P72F-2 (B, F, J) and 
P72F-3 (C, G, K) after 1 h of induction (1), 4 h (2), and 16 h (3). Extract from control non induced empty 
pQE-30 is indicated as D, H, L. The first panel (A-D) is Coomassie blue staining of protein, the second 
panel (E-H) is α-His western blots, and the last panel (I-L) is α-Myc western blots. M: Molecular size 
markers. 
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3.3.4. Interaction between aphid proteins and antisera to aphid cuticular proteins 

Antisera against two M. persicae cuticular proteins expressed in E. coli characterized by 

Dombrovsky et al. (2007b), MPCP5 which contains an RR1 consensus (GenBank 

accession no. DQ108939), and MPCP2 containing an RR2 consensus (GenBank 

accession no. DQ108935), were provided by A. Dombrovsky (see section 3.4.3 for 

explanation of RR consensus sequences). For each protein, antisera were prepared 

against either native (N) or denatured (D) proteins. Western blots showed that both α-

MPCP2 and α-MPCP5 reacted with multiple bands in whole cell extract (WCE) of E. 

coli preparations of the P72F clone, The α-MPCP2-D and α-MPCP5-N gave stronger 

interactions when inclusion body preparations were tested (Fig. 3.10). This may suggest 

that the secreted proteins of the aphid CUP clones are directed to inclusion bodies inside 

the E. coli cells. However, the main band of molecular weight about 36 kDa was also 

recognized in the induced proteins from the empty-vector transformed E. coli. This 

suggests that the antisera are interacting non-specifically with E. coli proteins of similar 

size to the identified P72F protein as the interaction was absent when α-His or α-Myc 

antibodies were used instead (Fig. 3.10).  
 
 

 

Figure 3.10. Western blots showing the reaction of inclusion bodies from P72F sub-
clones with different antisera. 

Lanes 1-4 are inclusion bodies prepared of three separate clones of P72F sub-clone and the empty pQE-
30 vector, respectively. Control blot was incubated with α-rabbit-AP only. Positions of molecular size 
markers were shown on the left. 
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3.3.5. Interaction between aphid protein from clone P72F and PVY-HC-Pro 
expressed from PVX 

Previously, functional full length PVY HC-Pro protein was expressed in N. 

benthamiana using PVX as vector (Sasaya et al., 2000). We used this system to express 

the HC-Pro protein in the expectation that the HC-Pro expressed in plants might be 

more soluble than E. coli expressed protein and give higher yields. HC-Pro was 

expressed in tobacco and purified over Ni-NTA resin using a modified protocol as 

described in section 3.2.4.2.1. The yield was about 0.5 µg/ml (Fig. 3.11). The protein 

was concentrated about 20 times by decreasing the volume over PEG.  Elution of HC-

Pro from Ni-NTA resin is normally performed with 200 mM imidazole. However, when 

the concentration was increased 20 times, the imidazole concentration increased to 4 M. 

Thus dialysis in TSM buffer containing 200 mM imidazole and 5% sucrose was 

performed to remove the excess imidazole, which may block the biological function of 

HC-Pro (S. Blanc, INRA-CIRAD-SupAgro Montpellier, France, personal 

communication 2009). 

                               

Figure 3.11. Expression of PVY-HC-Pro in the PVX system. 
Panel A: Coomassie blue staining of different HC-Pro elution fractions, Panel B: Western blot of the HC-
Pro preparation. I, II: leaf extract of PVX infected and healthy tobacco leaf sample incubated with α-PVY 
CP antiserum. 1, 2, and 6 incubated with α-HC-Pro.M: protein size markers. Lanes 1–5: HC-Pro elution 
fractions, lane 6: non-bound fraction.  
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Figure 3.12. Western blots showing interaction of P72F protein with PVY HC-Pro 
expressed in PVX system. 

Blots of protein extracted from inclusion bodies of P72F sub-clones and separated by SDS-PAGE were 
incubated with HC-Pro preparations: A, HC-Pro (10 µg/ml) purified on NI-NTA resin and PEG 
concentrated without dialysis; B, as A but with dialysis against 200 mM imidazole and 5% sucrose in 
TSM buffer; C, negative control incubated with α-HC-Pro + α-rabbit-AP; D, membrane stained with 
Ponceau S. Numbers 1-4 represent three replicates of P72F sub-clones and the empty pQE-30 vector 
respectively. Positions of molecular size markers were shown on the left. 

 
 
 

 

 

Fig 3.12 shows that HC-Pro expressed from PVX in N. benthamiana interacted with the 

inclusion body preparations from the induced P72F clones. Interaction was with a 

protein of about 36 kDa in molecular mass, which is consistent with the result obtained 

with the α-MPCP, α-His, and α-Myc antisera (Fig. 3.10). No difference was observed 

when the concentrated HC-Pro was dialyzed to remove the excess imidazole (Blot B) 

compared with HC-Pro containing a high concentration of imidazole (Blot A). This 

finding suggests that imidazole has no harmful effect on HC-Pro biological activity and 

can be used at higher concentration to keep the protein in solution. In addition, HC-Pro 

interacted with protein products of smaller mass (14-26 kDa), which may represent 

degraded CUP protein products. Similar size bands were found when α-MPCP antisera 

were incubated with P72F protein (Fig. 3.10). 
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3.3.6. Experiments to study binding of P72F to HC-Pro of other potyviruses  

Preliminary experiments were done to test interaction of TuMV HC-Pro and P72F 

protein, again a low yield of HC-Pro was obtained, approx. 0.5 µg/ml. Therefore, His-

tagged HC-Pro belonging to another potyvirus (TEV) was purified from tobacco plants 

(Blanc et al., 1999; Ruiz-Ferrer et al., 2005) as presented in section 3.2.4.2.3. The yield 

of the HC-Pro was much greater (approx. 100 µg/ml), as shown in Fig. 3.13. 

 

 

Figure 3.13. Preparation of His-tagged TEV HC-Pro from tobacco by elution from 

Ni-NTA resin. 

Panel A: Ponceau S stained protein, Panel B: blot incubated with α-His, Panel C: blot incubated with α-
TEV-HC-Pro. M: marker size markers, 1-5 HC-Pro elution fractions, and 6: non-bound fraction. 

 

It was decided to use His-tagged TEV HC-Pro in all future experiments because of the 

high HC-Pro yield produced from this engineered clone. TEV HC-Pro was incubated 

with electroblotted aphid proteins prepared from the inclusion bodies of P72F sub-

cloned in pQE-30. Fig. 3.14 suggests that TEV HC-Pro interacts with P72F IB protein 

preparations at the same position as did PVY HC-Pro derived from the PVX vector. 

There also appears to be a reaction with smaller mass products which may be 

degradation products, as seen before in Fig. 3.12 and in the interaction with anti-MPCP 

antisera (Fig. 3.10).  



 92

 

 

 

 
Figure 3.14. Interaction between P72F protein and the His tagged HC-Pro of TEV 

expressed in tobacco. 
 
Panel A: Coomassie blue stain, panel B: blot was incubated with 100 µg/ml of purified TEV HC-Pro, 
panel C: blot was incubated with 50 µg/ml of purified TEV HC-Pro, panel D: blot was incubated exactly 
the same as in blots B and C but without HC-Pro. 
Lanes 1, 2, and 3 represent inclusion bodies from three replicates of P72F clone, lane 4 represents empty 
pQE-30 vector.  
 
 
 
 
 
Since different bands reacted with TEV HC-Pro, a further experiment was done to 

confirm that P72F protein preparations react at the same position as with PVY HC-Pro. 

A portion of the gel was stained with Coomassie blue and directly compared with 

sections of the same gel electroblotted and incubated with α-His, α-Myc or TEV HC-

Pro preparation followed by α-TEV HC-Pro antiserum. The results (Fig. 3.15) indicate 

that the band of mass of 36 kDa does react.  
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Figure 3.15. Comparison of P72F preparation stained with Coomassie blue or 
incubated with specific antisera. 

 
M: Molecular size markers. Lane 1: Coomassie blue stain of expressed P72F inclusion body protein, lane 
2: protein was incubated with α-His antibody, lane 3: protein was incubated with α-Myc antibody, lane 4:  
protein was incubated with TEV HC-Pro, lane 5: protein was incubated with α-mouse-AP only, lane 6: 
protein was incubated with α-TEV HC-Pro and α-rabbit-AP. 

 
 

 

3.3.7. HC-Pro binding to native aphid proteins 

CUP proteins were extracted from two different aphid species following the method 

published by Dombrovsky et al. (2007b). In addition to M. persicae, the poor PVY 

vector M. dirhodum was used.  
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Fig. 3.16. HC-Pro binding to native aphid proteins  

 
Panel A: Coomassie blue stain, panel B: blot was incubated with 2–3 months frozen TEV-HC-Pro (100 
µg/ml), panel C: blot was incubated with α-MPCP-2-D antiserum, panel D: blot was incubated with α-
rabbit-AP only, panel E: blot was incubated with α-TEV HC-Pro antiserum and α-rabbit-AP. Lane 1: 
native M. persicae CUP preparation, lane 2: native M. dirhodum CUP preparation, lane 3: Inclusion 
bodies of recombinant P72F protein, lane 4: whole M. persicae protein extract in SDS-PAGE buffer. 
Positions of molecular size markers were shown on the left. 
 
 
 
 

Fig. 3.16 shows that α-MPCP-2-D antiserum interacted with different CUP bands 

extracted from both M. persicae and M. dirhodum (panel C, lanes 1, 2), and with protein 

prepared from the whole aphid extract of M. persicae (Panel C, lane 4). CUPs extracted 

from both M. persicae and M. dirhodum interacted weakly with TEV HC-Pro (panel B, 
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lanes 1, 2), but whole aphid extract prepared from M. persicae (Panel B, lane 4) 

interacted with HC-Pro at different positions.
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3.4. Bioinformatic analysis of identified clones in NCBI 

 
3.4.1. General view of HC-Pro interacting clones 
 
All eight clones whose products were found to interact with N-HC-Pro preparations 

were sequenced (Table 3.1). The sequence data were subjected to a Basic Local 

Alignment Search Tool (BLAST) search via the National Centre for Biotechnology 

Information (NCBI) website (http://blast.ncbi.nlm.nih.gov/). The programme BLASTX 

was used by selecting the WU-BLAST2 or the NCBI-BLAST2 protein databases. 

Sequence analysis by BLAST revealed that three of the selected clones (clones P72F, 

P817P and P94A) gave good matches with M. persicae cuticular proteins that have been 

previously characterized by Dombrovsky et al. (2003, 2007a). The remaining clones 

were exoskeleton protein (clone P820P), beta-tubulin (clone P515A), ATP citrate lyase 

(clone P136B), membrane protein (clone P58L) and serine/threonine-protein 

phosphatase (clone P1424E). 

From this search it appears that P72F matches MPCP1 (91%) and MPCP3 (52%) RR2 

cuticle proteins (Table 3.1). In addition, clones P817P and P94A, which appear to be 

duplicate clones, matched with MPCP5 (90%), which is an RR1 CUP. P820P clone 

gave a match with an RR3 CUP characterized from insects other than aphids. 

A BLAST search of the EST sequence database gave a large number of EST matches to 

the P72F clone; interestingly two of the matched clones (ES451638.1, ES450274.1, 

96% identity) were sequences from the M. persicae cDNA library which was used for 

the initial screening. This large number of matches may indicate that this gene is highly 

expressed or represents a multi-copy gene family. Similarly a BLASTN search gave 

many EST sequences which matched clone P817P, with one of them matching the 

ES450857.1 sequence (96% identity) from the aphid cDNA library used in this study. 

The rest were genes from different lineages of M. persicae and A. pisum aphids. Clone 

P820P gave matches to many homologues when searched with BLASTN using the non-

human and non-mouse ESTs database. The first match (99% identity) is with 

ES450462.1, which is a sequence from the aphid cDNA library used in this study. 

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=146334680&dopt=GenBank&RID=VMTR0128013&log$=nucltop&blast_rank=1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=146333316&dopt=GenBank&RID=XKEFSZ59012&log$=nucltop&blast_rank=3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=146333899&dopt=GenBank&RID=XNDUZWKC016&log$=nucltop&blast_rank=75
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=146333504&dopt=GenBank&RID=XNH4W5DZ012&log$=nucltop&blast_rank=1
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Nucleotide search 

 
 

Protein sequence search 
 cDNA 

clone 
 EST match 

 

 
ID 

 

 
EMBL protein match 

 
Organism ID 

 
M. persicae 
ES451638.1 

 

 
96% 

RR2 cuticle protein/ 
Q95V16_MYZPE 

(MPCP1, Dombrovsky et al., 2003) 
Myzus persicae  

91%  
P72F 

 M. persicae 
ES450274.1 

 
 

96% 

RR2 cuticle 
protein/Q45V97_MYZPE 

(MPCP3, Dombrovsky et al., 2007a) 
M. persicae 52% 

 
M. persicae 
ES450783 

 
97% 

 

 
 

P817P 
 M. persicae 

ES450857.1 
 

96% 

RR1 cuticle 
protein/Q45V94_MYZPE (MPCP5, 

Dombrovsky et al., 2007a) 

 
 

M. persicae 

 
 

99% 
 
 

P94A 
 

M. persicae 
ES450783 97% 

RR1 cuticle protein/ 
Q45V94_MYZPE (MPCP5, 
Dombrovsky et al., 2007a) 

M. persicae 90% 

Exoskeleton protein 
(Nousiainen et al.,  1998) 

Homarus 
americanus  

66% 
 
 

P820P 
 
 

M. persicae 
ES450462.1 

 
99% 

Full cuticular protein 111, RR-3 
family (Nousiainen et al., 1997) 

Anopheles 
gambiae  72% 

P515A 
 
 
 

M. persicae 
ES224251.1 

 
95% A. pisum tubulin beta-1 

EMBL: ADI24738 .1 
 

A. pisum 
95% 

 

Putative uncharacterized protein 
(Richards et al., 2008) 

Tribolium 
castaneum  78% 

ATP-citrate synthase 
(Nene et al.,  2007) Aedes aegypti 75% P136B 

 
A. pisum 

FF330144.1 90% 

ATP citrate lyase, isoform C 
(Adams et al., 2000) 

Drosophila 
melanogaster  75% 

Serine/threonine-protein phosphatase 
(Carninci et al., 2005) Mus musculus  74% 

P1424E 

 
A. pisum 

FF332657.1 
 

88% Serine/threonine-protein phosphatase 
(Ghedin et al., 2007) Brugia malayi 73% 

 
P58L 

 
 
 

M. persicae 
EE571212.1 

 
95% 

Conserved Plasmodium membrane 
protein 

(Gardner et al. ,2002) 

Plasmodium 
falciparum  

28% 
 

 
Table 3.1. Results of BLAST sequence searches with clones selected after screening 
aphid library against N-terminal HC-Pro. 
ID: identity of the sequence, cDNA clone: clones from the cDNA expression library that interacted with 
HC-Pro. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=146334680&dopt=GenBank&RID=VMTR0128013&log$=nucltop&blast_rank=1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=146333316&dopt=GenBank&RID=XKEFSZ59012&log$=nucltop&blast_rank=3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=146333899&dopt=GenBank&RID=XNDUZWKC016&log$=nucltop&blast_rank=75
https://a90.scri.sari.ac.uk/taxonomy/,DanaInfo=www.uniprot.org+6706
https://a90.scri.sari.ac.uk/taxonomy/,DanaInfo=www.uniprot.org+6706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=146333504&dopt=GenBank&RID=XKFKDCPA01N&log$=nucltop&blast_rank=1
https://a90.scri.sari.ac.uk/taxonomy/,DanaInfo=www.uniprot.org+7165
https://a90.scri.sari.ac.uk/taxonomy/,DanaInfo=www.uniprot.org+7165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=134262593&dopt=GenBank&RID=VMSMTNZU01S&log$=nucltop&blast_rank=1
https://a90.scri.sari.ac.uk/uniprot/,DanaInfo=www.uniprot.org+?query=author:%22Richards+S.%22
https://a90.scri.sari.ac.uk/taxonomy/,DanaInfo=www.uniprot.org+7070
https://a90.scri.sari.ac.uk/taxonomy/,DanaInfo=www.uniprot.org+7070
https://a90.scri.sari.ac.uk/uniprot/,DanaInfo=www.uniprot.org+?query=author:%22Nene+V.%22
https://a90.scri.sari.ac.uk/taxonomy/,DanaInfo=www.uniprot.org+7159
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=177776297&dopt=GenBank&RID=VMSYXH5401S&log$=nucltop&blast_rank=1
https://a90.scri.sari.ac.uk/taxonomy/,DanaInfo=www.uniprot.org+7227
https://a90.scri.sari.ac.uk/taxonomy/,DanaInfo=www.uniprot.org+7227
https://a90.scri.sari.ac.uk/taxonomy/,DanaInfo=www.uniprot.org+10090
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=177781742&dopt=GenBank&RID=VMT7HCZG01N&log$=nucltop&blast_rank=1
https://a90.scri.sari.ac.uk/uniprot/,DanaInfo=www.uniprot.org+?query=author:%22Ghedin+E.%22
https://a90.scri.sari.ac.uk/taxonomy/,DanaInfo=www.uniprot.org+6279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=112432866&dopt=GenBank&RID=VMTF5EJX01N&log$=nucltop&blast_rank=1
https://a90.scri.sari.ac.uk/taxonomy/,DanaInfo=www.uniprot.org+36329
https://a90.scri.sari.ac.uk/taxonomy/,DanaInfo=www.uniprot.org+36329
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3.4.2. Sequence alignment of CUP clones with protein matches 

 
The sequence of each selected clone (P72F, P817P, and P820P) was compared against 

other protein databases (EMBL, NCBI) and the closest matches were aligned together 

using the ClustalW multiple alignment programme. The alignments are presented in 

Figs. 3.17, 3.18, and 3.19.  

The closest protein matches with clone P72F obtained from sequence databases 

(EMBL, NCBI) were aligned together (Fig. 3.17) using the ClustalW multiple 

alignment programme through the BioEdit program or on the EMBL website. There is a 

high level of identity among different sequences and the P72F clone. Fig. 3.18 shows 

that clone P817P has a high level of identity with both aligned proteins. In contrast, 

clone P820P is less similar to the best matching proteins than are the other two cuticle 

proteins (P72F, P817P; Fig. 3.19). 

In addition, protein sequences of the three selected aphid clones were compared with the 

other M. persicae cuticle proteins characterized previously by Dombrovsky et al. (2003, 

2007a). The published cuticle proteins designated MPCP, MPCP1, MPCP2, MPCP3, 

MPCP4, and MPCP5 with accession numbers and some properties are presented in 

Table 3.2. Sequence analysis of M. persicae CUPs (Table 3.2) revealed that they share 

some motifs at the N-terminus (Fig. 3.17, Fig. 3.18), but they are more likely to be 

distinct different protein particularly clone P72F.  

 

. 
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10 20 30 40 50 60 70 80 90 100
....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

uniprot|Q95V16|Q95V16_MYZPE MAYMFVVIAA SILATAYGSP VAAPIY-AAG PAYSAPAYSA APAYAAPSSY SAPSYKP-AY KPAAYGHESY DAPAPYNFEY SVNDPHTYDV KSQSEYADGN
uniprot|Q86GL1|Q86GL1_APHGO .......... .......... ......-..P A.....S.A. ..S....... .......A.. ..-....... .......... .......... ..........
uniprot|Q86GL0|Q86GL0_9HEMI .......... .......... ......S..P A.....S.A. ....S..... .......A.. .......... .......... .......... ..........
uniprot|Q86GK9|Q86GK9_APHFA .......... .......... ......-... .......... ..S....... .......A.. ..-....... .......... .......... ..........
uniprot|Q86GL3|Q86GL3_9HEMI .......... .......... ......-... .......... .......... .......-.. .......... .......... .......... ..........
uniprot|Q86GL2|Q86GL2_BREBR .......... .......... ......-... ........P. .......... .......-.. ......Q... .......... .......... ..........
P7-2F ..AK..IF.. CVAT------ --------.L AQ......-- K...S..-A. ...------- --K..AP.PA Y..T...... .......... H.....S...
Clustal Consensus **  **::** .: :              * . ****:*   *:*:** :* ***          **. *.  **:****** ********** :*****:***

110 120 130 140 150 160 170 180 190 200
....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

uniprot|Q95V16|Q95V16_MYZPE GYVKGSYSLV EPDGSTRTVE YTADDYNGFN AVVKKEGGYA APAYSAPAYS APAYKAPAYA APAYSAPAYK APAYAAPAYS APAYK---SP SYSAPAYKAP
uniprot|Q86GL1|Q86GL1_APHGO .......... .......... ...E...... .......... .......--- --..S....K .......... .......... .....---.. ..........
uniprot|Q86GL0|Q86GL0_9HEMI .......... .......... .......... .......... .........K ....S....K ....A....S ....S..... .....---.. ..........
uniprot|Q86GK9|Q86GK9_APHFA .......... .......... .......... .......... .......... .........S .......... .......... .....---.. ..........
uniprot|Q86GL3|Q86GL3_9HEMI .......... .......... .......... .......... .........K ....A....S .......... .......... .....---A. ..........
uniprot|Q86GL2|Q86GL2_BREBR .......... .......... .......... .......... .......... .......... .......... ..S.S..... .....---A. ..........
P7-2F .......... .A...I.... .......... ....N....K ..S....S.. .....P-..S .........S .......... .....PAYK. A.FI.CEPTL
Clustal Consensus ********** *.*** **** ***:****** ****:**** **:****     ** . ** ****:****. **:*:***** *****    * :*  *.  : 

210 220 230 240 250 260
....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ..

uniprot|Q95V16|Q95V16_MYZPE Y--------S APSYSAPAYK AP---SYSAP AY------SA PAYAAPAY-- ---------- --
uniprot|Q86GL1|Q86GL1_APHGO .--------. .......... ..---A.... ..------A. ...P....-- ---------- --
uniprot|Q86GL0|Q86GL0_9HEMI .--------. .......... ..---A.... ..------.. ...S....-- ---------- --
uniprot|Q86GK9|Q86GK9_APHFA .--------. .......... ..---A.... ..------A. ...S....-- ---------- --
uniprot|Q86GL3|Q86GL3_9HEMI .--------. .......... ..---A.... ..------.. ...ST...-- ---------- --
uniprot|Q86GL2|Q86GL2_BREBR .--------. .......... ..---A.... ..------.. ...S....-- ---------- --
P7-2F FFIFYFMFS. CT.LDRRVHI E.WFQ.HTV. Y.NIIWAMGT TM.LLCK.IQ CIFIEKKKKG GA
Clustal Consensus :        * ..* .  .:  *   :::.*  *      .: . *    *               

Figure 3.17. Differences and similarities in protein sequences between the P72F clone and the top protein matches in BLAST. 
 

Amino acids are colour coded according to properties. Amino acids identical to those in the reference sequence are represented by dots; gaps are represented by dashes. 
* indicates identity, and dots indicate alteration in conserved sequence 
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10 20 30 40 50 60 70 80 90 100

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|
uniprot|Q45V94|Q45V94_MYZPE MNTLVVLVAV VAAVAAAPPK EAAKAFTFSG FPSNQAYYPG QQAYYPGYQG YQGYQGYS-- --GFRNGYYP GQQGYYPGYQ GYQGYYPGYQ TGYQGYYPGY
uniprot|C4WSM8|C4WSM8_ACYPI .......... I.S....... .....I.... .......... ..G....... .......QGY NS........ .......... .......... -.........
P8-17P .......... .......... .......... .......... .......... ........-- --........ R......... .......... ..........
Clustal Consensus ********** :*:******* *****:**** ********** **.******* *******.    ********  ********* **********  *********

110 120 130 140 150 160 170 180 190 200
....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

uniprot|Q45V94|Q45V94_MYZPE QGYNRGYYPG APAVYPAVGA VTPAPIIAPV PVVPKVVSPV YKPVDNKLPA IIRQSQEADV NGFKYGFGTE NGIVAQAAGY VKNAGSENAA QVIEGSYSYV
uniprot|C4WSM8|C4WSM8_ACYPI .......... .-Q.F.T.S. ....S..... .......A.. ..N....... .V.......L .......E.. .......... .......... .......A.I
P8-17P .......... .......... .......... .......... .......... .......... .......E.. .......... .......... ..........
Clustal Consensus ********** *  *:*:*.* ****.***** *******:** ** ******* *:*******: ******* ** ********** ********** *******:*:

210 220 230 240 250
....|....| ....|....| ....|....| ....|....| ....|....| ..

uniprot|Q45V94|Q45V94_MYZPE GDDGAPVEVK YYADETGYHA VGNVVPTIPS EIAKSLELIA SQPQKPEDSK KK
uniprot|C4WSM8|C4WSM8_ACYPI .......... .......... .......T.P ....F..... .......... ..
P8-17P .......... .......... .......... .......... .--------- --
Clustal Consensus ********** ********** ******* *. **** ***** *           

 
Figure 3.18. Alignments of the protein sequences of the P817P clone with the closest two matches by BLAST. 

 
Amino acids are colour coded according to properties. Amino acids identical to those in the reference sequence are represented by dots; gaps are represented by dashes. 

* indicates identity, and dots indicate alteration in conserved sequence. 
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10 20 30 40 50 60 70 80 90 100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

uniprot|Q7QIK6|Q7QIK6_ANOGA ---------------MKLFVVVSSLLAVATAAPSATLYAAYAHQPALYAAAAPLAPATYIAAAGPAELHSQYHAQDELGQYSYGYNGGLSAKAESKSFDG
uniprot|Q7M497|Q7M497_HOMAM QLSYPGVYGGYPGVYGGYPG.YGGYPG.YGGY...SPIN.LTPYGGA.SGYPGVYN.APL.PVS--PVQ.K..L........F..A..P.TRS.TRDAF.
P8-20P --------------------...-------------------------------------------PIK....T.N.F...A....D.F.S.S.T.HAN.
Clustal Consensus *.::*:***:*:***::**.**:::*::*..**.*:*.:.:**.:**:**:.:*******.*.*:..:*.*.*:..***:*:*                 

110 120 130 140 150 160 170 180 190 200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

uniprot|Q7QIK6|Q7QIK6_ANOGA ITRGSYSYLDAENKLQTVAYTADALNGFRVAASNLPVAPVETRTAPEPVQDTPEVAAAKADHMAAIEEAKLRNAAAEKEDAAAAAAAADAAAADSTAIIA
uniprot|Q7M497|Q7M497_HOMAM NV..H.N.I..DG.V..QH.V...-L.....GT......--------------------------------------------D.P.PV.L..PGPLPEP
P8-20P L.E.A...V.PNGV..QYK.VS.E-..Y..SGT......------AV.AVEV.A.P.VP.--VESVI.V.----------...P.P.PE.VSYQ.EIPQQ
Clustal Consensus                                                                                                     

210 220 230 240 250 260 270 280 290 300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

uniprot|Q7QIK6|Q7QIK6_ANOGA AAPAPAAAPALPLPVATYAAAAPASFAYSTHSIAQPIASYATYAAPAAIELKAPASFAYSTYTAAAPLAYAQYAAAPAYATLPVAQYAAYPAPAIAFAAR
uniprot|Q7M497|Q7M497_HOMAM VQDT.EV.A.K-----------------VAFQA.YDE.AA.AA...DS----------------------------------------------------
P8-20P VQDT.EV.A.K-----------------AA.Q..YDE.KK.AD.S..ED.PSSD.VVQV.ADAS...A.P.AP.....-------------...AD..N-
Clustal Consensus                                                                                                     

310 320 330 340
....|....|....|....|....|....|....|....|

uniprot|Q7QIK6|Q7QIK6_ANOGA SQPVDIAAELPEPVQDTPEVAKAKEEHLKAVAEAKARSLQ
uniprot|Q7M497|Q7M497_HOMAM ----------------------------------------
P8-20P --------------------------.IR-----------
Clustal Consensus                                         

 
Figure 3.19. Protein sequence alignments of the P820P clone with the two closest matches in BLAST. 

Amino acids are colour coded according to properties. Amino acids identical to those in the reference sequence are represented by dots; gaps are represented by dashes. 
* indicates identity, and dots indicate alteration in conserved sequence. 
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Table 3.2.  Information about the selected M. persicae cuticle proteins. 

 
*The sequence of the cloned insert into the PQE vector, the actual protein size will be 23.2 kDa because of the added sequences of the added and Myc tags (See Fig. 3.8). 

 

 

Cuticle protein  name EMBL 
Accession number 

UniProt 
Accession number R&R type Deduced amino 

acids 
Estimated 

mass 
MPCP DQ108937 Q45V96 None 118 aa 13.2 kDa 
MPCP1 AF435075 Q95V16 RR2 226 aa 25 kDa 
MPCP2 DQ108935 Q44V98 RR2 228 aa 24.3 kDa 

MPCP3 DQ108936 Q45V97 RR2 205 aa 22.7  kDa 

MPCP4 DQ108938 Q45V95 RR1 135 aa 14.2  kDa 
MPCP5 DQ108939 Q45V94 RR1 248 aa 26.49 kDa 

P72F NA NA RR2 186 aa* 20.0  kDa* 
P817P NA NA RR1 247 aa 26.6kDa 
P820P NA NA RR3 193 aa 19.9 kDa 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=genbank&_cdi=4925&_issn=10964959&_originPage=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.ncbi.nlm.nih.gov%252Fentrez%252Fquery.fcgi%253Fcmd%253Dsearch%2526db%253Dnucleotide%2526doptcmdl%253Dgenbank%2526term%253DDQ108937%5baccn%5d
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=genbank&_cdi=4925&_issn=10964959&_originPage=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.ncbi.nlm.nih.gov%252Fentrez%252Fquery.fcgi%253Fcmd%253Dsearch%2526db%253Dnucleotide%2526doptcmdl%253Dgenbank%2526term%253DAF435075%5baccn%5d
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=genbank&_cdi=4925&_issn=10964959&_originPage=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.ncbi.nlm.nih.gov%252Fentrez%252Fquery.fcgi%253Fcmd%253Dsearch%2526db%253Dnucleotide%2526doptcmdl%253Dgenbank%2526term%253DDQ108935%5baccn%5d
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=genbank&_cdi=4925&_issn=10964959&_originPage=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.ncbi.nlm.nih.gov%252Fentrez%252Fquery.fcgi%253Fcmd%253Dsearch%2526db%253Dnucleotide%2526doptcmdl%253Dgenbank%2526term%253DDQ108936%5baccn%5d
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=genbank&_cdi=4925&_issn=10964959&_originPage=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.ncbi.nlm.nih.gov%252Fentrez%252Fquery.fcgi%253Fcmd%253Dsearch%2526db%253Dnucleotide%2526doptcmdl%253Dgenbank%2526term%253DDQ108938%5baccn%5d
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=genbank&_cdi=4925&_issn=10964959&_originPage=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.ncbi.nlm.nih.gov%252Fentrez%252Fquery.fcgi%253Fcmd%253Dsearch%2526db%253Dnucleotide%2526doptcmdl%253Dgenbank%2526term%253DDQ108939%5baccn%5d
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3.4.3. The R & R consensus sequences of selected clones  

 

Conserved motifs in the protein sequence were confirmed to be a characteristic of 

cuticle proteins of insects and are referred to as R & R (for Rebers-Riddiford) consensus 

sequences (Rebers and Riddiford, 1988). There are several types of these conserved 

regions which are named RR1, RR2, and RR3 (Andersen, 1998). The function of these 

conserved sequences was shown to be binding to chitin (Rebers and Willis, 2001; 

Togawa et al., 2004), which may enhance the physical properties of the aphid cuticle. 

Dombrovsky et al. (2007a) compared the insect RR consensus with the M. persicae 

cuticle proteins that they characterized. They found that MPCP4 and MPCP5 have the 

RR1 consensus, but the motifs are not identical to those reported generally in insects. 

Moreover, MPCP5 shows some differences in characteristic motif within the RR1 

consensus: a substitution from P to D in the PDG motif, the QP motif is absent, and 

there is a substitution from N to T in the ADENG motif. P817P shows some similar 

changes which may indicate differences in the RR1 sequence between M. persicae and 

other insects. MPCP2 and MPCP3 were reported to have a conserved RR2 motif, and 

the identified P72F was grouped in the same category. However, there are many 

differences in amino acid sequence between the MPCP proteins and the P817P protein 

and between both proteins and the published RR2 sequence (See Figures 3.20, 3.21, and 

3.22). 

In agreement with Dombrovsky et al. (2007a), the P72F protein, which was classified as 

an RR2 protein, contains three domains. The N-terminal region of 58 amino acids 

contains the YSAP motif, which was reported to be unique for cuticle protein isolated 

from M. persicae (Dombrovsky et al., 2007a). The second domain of the P72F protein 

is a central domain that consists of 73 amino acids and represents the RR2 consensus. 

The C-terminus of P72F exhibits PSYSA and AYSAP repeats resembling those 

reported to exist at the C-terminus of MPCP1, which is a previously characterized RR2 

CUP (Dombrovsky et al., 2007a). The P817P clone has an identical sequence to 

MPCP5 at the N-terminus starting with 

MNTLVVLVAVVAAVAAAPPKEAAKAFTFSGFPSNQ, a central area with identical 

sequence to MPCP5, and a C-terminal region containing the RR1 consensus. Clone 

P820P has the third type of conserved R & R sequence known as RR3. Cuticular 
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proteins having this type of R & R sequence have never been reported in aphid species. 

However, it was reported to occur in other insects such as the mosquito. 
 

 

10 20 30 40 50
....|....|....|....|....|....|....|....|....|....|

RR2 -------------------------------------EYDXXPXYX----
P7-2F MAAKFVIFAACVATALAQYSAPAYKPAYSAPAYSAPKAYAPEPAYAPTPY

60 70 80 90 100
....|....|....|....|....|....|....|....|....|....|

RR2 -FXYXVXDXXTGDXKSQXEXRXGD-VVXGXYSLXEXDGXXRTVXYTADXX
P7-2F NFEYSVNDPHTYDVHSQSEYSDGNGYVKGSYSLVEADGSIRTVEYTADDY

110 120 130 140 150
....|....|....|....|....|....|....|....|....|....|

RR2 NGFNAVVXXEX---------------------------------------
P7-2F NGFNAVVKNEGGYKAPSYSAPSYSAPAYKPAYSAPAYSAPAYSAPAYAAP

160
....|....|....|

RR2 ---------------
P7-2F AYSAPAYKPAYKPAY

 
 

Figure 3.20. RR2 consensus of the P72F Mp protein and the top match of M. 

persicae CUPs 
Similarities between the RR2 consensus sequence and the MPCP1 and P72F sequence were found by 
alignment of the protein sequences with the published RR2 sequence using the ClustalW multiple 
alignment programme. Amino acids are colour coded according to properties. 
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10 20 30 40 50

....|....|....|....|....|....|....|....|....|....|
RR1 --------------------------------------------------
P8-17P MNTLVVLVAVVAAVAAAPPKEAAKAFTFSGFPSNQAYYPGQQAYYPGYQG

60 70 80 90 100
....|....|....|....|....|....|....|....|....|....|

RR1 --------------------------------------------------
P8-17P YQGYQGYSGFRNGYYPRQQGYYPGYQGYQGYYPGYQTGYQGYYPGYQGYN

110 120 130 140 150
....|....|....|....|....|....|....|....|....|....|

RR1 --------------------------------------------------
P8-17P RGYYPGAPAVYPAVGAVTPAPIIAPVPVVPKVVSPVYKPVDNKLPAIIRQ

160 170 180 190 200
....|....|....|....|....|....|....|....|....|....|

RR1 ----------------------------------------GXXXYXXPDG
P8-17P SQEADVNGFKYGFETENGIVAQAAGYVKNAGSENAAQVIEGSYSYVGDDG

210 220 230
....|....|....|....|....|....|....|...

RR1 X-XXXXYXAD-ENGYQPX-XXXP---------------
P8-17P APVEVKYYAD-ETGYHAVGNVVPTIPSEIAKSLELIAS

 
Figure 3.21. RR1 consensus of the P817P Mp protein and the top match of M. 

persicae CUPs 
 
The P817P and published MPCP5 sequences were aligned with the RR1 consensus published for insects 
using the ClustalW multiple alignment programme. Amino acids are colour coded according to 
properties. 
 
  

10 20 30 40 50
....|....|....|....|....|....|....|....|....|....|

RR3 -V-XVXTXYHAQDXLGQXSFGHXXXXQXRXEXXDAAGNKXGSYXYVDPXG
P8-20P VVSPIKSQYHTQNEFGQYAYGYNDGFSSKSETKHANGLTEGAYSYVDPNG

60 70 80 90 100
....|....|....|....|....|....|....|....|....|....|

RR3 KVXXXXYVAD-AXGFRVAXX-NLPVXP-----------------------
P8-20P VLQQYKYVSD-ENGYRVSGT-NLPVAPAVPAVEVPAVPAVPAVESVIEVK

110 120 130 140 150
....|....|....|....|....|....|....|....|....|....|

RR3 --------------------------------------------------
P8-20P AAAPAPAPEAVSYQSEIPQQVQDTPEVAAAKAAHQIAYDEAKKAADASPA

160 170 180 190
....|....|....|....|....|....|....|....|..

RR3 ------------------------------------------
P8-20P EDEPSSDAVVQVSADASAAPAAPAAPAAAPAAPAADFANHIR

 

Figure 3.22. RR3 consensus of the P820P aphid protein clone 

The P820P sequence and the published RR 3 consensus were aligned using the ClustalW multiple 
alignment program. Amino acids are colour coded according to properties. 
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3.5. Bioinformatics analysis of CUP sequences in the aphid genome 

 
The pea aphid (A. pisum) genome sequence was published in April 2010 (The International Aphid 

Genomics Consortium, 2010). A further bioinformatics analysis on the sequence of the three CUP 

clones which I isolated was done using the aphid genome database: 

http://www.aphidbase.com/aphidbase/. Screening the pea aphid genome can help identify gene 

sequences that are related to enquiry sequence and which may be difficult to clone or identify in 

expression libraries. It is also useful to help identify members of closely related genes (such as gene 

families).   

 

3.5.1. Clone P72F 

 

Searching the aphid genome database using the BLASTN programme and Scaffolds (nuc.) databank 

option showed many scaffold matches. The top match was a region of EQ126624.1, (100% identity, 

E-value = 0) is presented as an example in Fig. 3.24. This genome region contained three CUP 

sequences repeated one after the other. The sequences of these genes was almost identical (See Fig 

3.25 (three of these sequences correspond to the genes on EQ1266241 are: XM_001951994, 

XM_001951976, and XM_001951964). Using the reference annotation option (transcript), 

sequences coding for three homologous A. pisum genes which are similar to cuticular proteins were 

identified in different locations in the EQ126624.1 sequence (Fig. 3.23). These represent a 

multigene family repeated in tandem and each sequence is almost identical to the next. As a result 

some ESTs are artefactually being mapped across all three genes. BLASTX search results for 

EQ126624.1 presented in Fig 3.23 show that the predicted gene products from this scaffold 

sequence are equivalent to M. persicae CUP proteins (MPCP1, MPCP3) characterized previously 

(Dombrovsky et al., 2003, 2007a). The sequence corresponding to one of the putative CUP protein 

matches (XM_001951994) is illustrated in Fig 3.24, which shows that the gene contains two exons 

separated by a small intron.  This structure is identical in the other two genes as shown in Fig. 3.23.  

 

All of the nucleotide sequence matches found from the Scaffolds search were aligned together with 

the P72F sequence and presented in Fig. 3.25. It is clear that the identified clone shares an identical 

5′ terminal sequence with the first three matches. However, there are differences in the sequence at 

the 3′ end (Fig. 3.25). Similarly, protein sequences of the first three matches were also compared 

(Fig. 3.26). It is clear from Fig 3.26 that the P72F clone shares an almost identical protein 

sequences with the top putative CUP sequence of A. pisum in the N-terminal part of the protein 

when the frame shift is modified which suggest a frameshift error in the database sequence.

http://www.aphidbase.com/aphidbase/
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Figure 3.23. EQ126624.1, the top match to P72F using the Scaffolds (nuc.) databank and the BLASTN programme on the aphid genome 
database website.  
Blue rectangle highlights the positions in the A. pisum genome of the three matches to P27F. The purple rectangles highlight matches with M. persicae proteins. 

       The thick red lines in the reference annotation indicate exons and the thin red lines introns. The direction of transcription is indicated by the taper on the exon.
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                                         Figure 3.24. Gene map and sequence of the top Scaffolds match (XM_001951994). 
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3510 3520 3530 3540 3550 3560 3570 3580 3590 3600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

P7-2F CG-CACCCACACCGTACAACTTCGAATACAGCGTAAACGACCCACACACCTACGATGTGCACAGCCAATCCGAATACAGTGACGGAAACGGTTACGTCAA
XM_001951994 ..-..........A.........................................C................................T........T..
XM_001951976 ..-..........A............................................CA.G........T.......................T.....
XM_001951964 ..-..........A......................................................................................
XM_001951937 ..-..........A...................................T..................................................
XM_001952004 ..-..........A.........................................C............................................
XM_001951966 ..-..........A.........................................C............................................
XM_001952039 ..-..........A.........................................C..T.........................................
XM_001950141 -.-.C..G..C..A...........G..........G............T..T..C..CA.G............C....C......C....AA.......
XM_001949941 -.-.C..G..C..A...........G..........G............T..T..C..CA.G............C....C......C....AA.......
XM_001950394 ..-.C..A..C.........................................T.....CA.G..T..............C....................
XM_001949867 ..-......................G................................CA.G...........G.....C.....C..............
XM_001949917 .C-..G...AG..A....G...T..C...TCT..C......TAT..A...GG......CA.A......G....G........T..C..GA---....G..
XM_001946796 ..-.C..AG.C..A....G.........................AC......T.....CA.G..............TGC.............A..A....
XM_001946681 ..-.C..AG.C..A............................................CA.G...............GC......C..............
XM_001947958 ..-.C..AG.C..A............................................CA.G...............GC......C..............
XM_001944979 ..-.C..G.A...A....G...................................................T..GC....C......T....CA.......
XM_001949893 ..-....A.....A.........................................C.......................C........T...........
XM_001949845 ..-.C..G.A...A....G...................................................T..GC....C......T....CA.......
XM_001945026 ..-.T..G..........G.....T.........G...A....GAC...T.....C..CA.G......G.A..G.C...C..T..C......A....A..
XM_001949817 ..-.C..AG.C..A............................................CA.G........T........C....................
XM_001945135 ..-.C..GG.C..A....G.......................................CA.G...........G...GC......C..............
XM_001945613 ..-.C..A..C......................................T.....C...................C...C............A.......
XM_001949856 ..-.C..AG.C..A....................GC.....GATGC...A.....CA.CA.G.................C.....T..............
XM_001947237 ..-.C..AG.C..A....................GC.....GATGC...A.....CA.CA.G.................C.....T..............
XM_001947384 ..-.C..AG.C..A....................GC.....GATGC...A.....CA.CA.G.................C.....T..............
XM_001949948 ..T.C..GT.G............C..........GC.....T........GGT..CA.CA.G.....GA....G...GC.....CC..............
XM_001952298 ..T.C..GT.G............C..........GC.....T........GGT..CA.CA.G.....GA....G...GC.....CC..............
XM_001943251 G.-....AC.C.AT....CG.A.A.G...G.T..C..A.....G.....GGG...CCACA.GCA...G..A..GC..C....T..TG...TA---..GC.
XM_001942784 .--.G....AG---...TCT...A.C...G....G..G...TAC......GGT..C..CA.GGA.....GG...G.G..A.....TG...T.---.....
XM_001950979 ..-....T.AG..A..TC.T.....G...G.T..G..A..T.TT......C.T..CA.CA.G......CA...GGTG..C.....TC.....A.......
Clustal Consensus    *  *       **    *     ***   **     *       **    **     *    **    **       ** *   *        *  *  
 

 
Figure 3.25. Similarity in nucleotide sequence between putative CUP sequences from the A. pisum genome and the identified P72F clone from 
M. persicae. 
  
Nucleotide sequence of genes for CUPs in the A. pisum genome database found to match with the P72F sequence (30 sequences) were aligned together. Identical nucleotides are 
represented by dots. Aligned sequence represents the region of high similarity between genes. 



 110

  
10 20 30 40 50 60 70 80 90 100

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|
XM_001951994 SSFLYPVNEX SEITTKITLK WPQRFVIFAA CVATALAQYS APAYKPAYSA PAYSAPKAYA PEPAYAPTPY NFEYSVNDPH TYDVHSQSEY SDGNGYVKGT
XM_001951976 SSFLYTVIEX FDQTTKRTLK WPLRFVIFAV CVATALAQYS APAYKPAYSA PAYSAPKAYA PEPAYAPTPY NFEYSVNDPH TYDVKSQSEY SDGNGYVKGS
XM_001951964 -SFLYTVIEX FVEKTKRTLK WPLRFVIFAA CVATALAQYS APAYKPAYSA PAYSAPKAYA PEPAYAPTPY NFEYSVNDPH TYDVHSQSEY SDGNGYVKGT
XM_001951994 (Frameshift) ---------- --MAAKX--- ----FVIFAA CVATALAQYS APAYKPAYSA PAYSAPKAYA PEPAYAPTPY NFEYSVNDPH TYDVHSQSEY SDGNGYVKGT
P72F clone ---------- --MAAKF--- -----VIFAA CVATALAQYS APAYKPAYSA PAYSAPKAYA PEPAYAPTPY NFEYSVNDPH TYDVHSQSEY SDGNGYVKGS

110 120 130 140 150 160 170 180 190 200
....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|

XM_001951994 YSLVEADGSI RTVEYTADDH SGFNAVVKNE GGYKAP---- ---------- AYAAPAYSAP AYSAPAYAAP AYSXXPAYKP AYKPAYXFIX SCEPTPFFIF
XM_001951976 YSLLEADGST RTVEYTADDH SGFNAVVKNE GGYKAPSYSA P-----AYKP AYSAPAYSAP AYSAPAYSAP AYS-APAYKP AYKPAYXIVX PCESTXFFFF
XM_001951964 YSLVEADGSI RTVEYTADDH SGFNAVVKNE GGYKAPSYSA P-----AYKP AYSAPAYSAP AYAAPAYSX- ----XPAYKP AYKPAYXFIX SCKPTPFFIF
XM_001951994 (Frameshift) YSLVEADGSI RTVEYTADDH SGFNAVVKNE GGYKAP---- ---------- AYAAPAYSAP AYSAPAYAAP AYSXXPAYKP AYKPAYXFIX SCEPTPFFIF
P72F clone YSLVEADGSI RTVEYTADDY NGFNAVVKNE GGYKAPSYSA PSYSAPAYKP AYSAPAYSAP AYSAPAYAAP AYS-APAYKP AYKPAYXFIX PCEPTLFFIF

210 220 230 240 250 260 270
....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|..

XM_001951994 YFMFXSCTTL GHCVHIEPWF QCHTMPYXY- -IRQLVXLMY LXXCKYTXQC VYLLKX---- ---------- -------
XM_001951976 YFMFSSCTIL GHCVHIEPWF XSHIIXX--- -IRQFVLLMC LFVXIYIXQX LYXFEHSXFV LFXLPFVLIY KTIXCKN
XM_001951964 YFMFXSCTTL DHRVX----- ---------- ---------- ---------- ---------- ---------- -------
XM_001951994 (Frameshift) YFMFXSCTTL GHCVHIEPWF QCHTMPYXY- -IRQLVXLMY LXXCKYTXQC VYLLKX---- ---------- -------
P72F clone YFMFSSCTSL DRRVHIEPWF QXHTVPYXYN IIWXMGTTMY LX-CKYIXQC IFXEKKKKXG A--------- -------

 

Figure 3.26. Protein alignments of the P72F protein sequence with the top three scaffold matches in BLAST using the ClustalW multiple 
alignment program and BioEdit.  
 

Amino acids are colour coded according to properties. Dots represent identical amino acids, tildes represent gaps, and asterisks represent stop codons.  
The alignments include the sequences before the starting methionine. 
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3. 5. 2.  Clone P817P 

 

Searching against the aphid genome database and using the same options as in the P72F search 

found only a single gene match located on the EQ124291.1 scaffold (90% identity, E-value e-166). 

This scaffold is presented in Fig 3.28.  

 
Using the reference annotation option, three matches (one is a match the other two it is coincidence) 

were found to be similar to cuticular proteins in the RR1 family. Only one of these genes 

(XM_001951031) was a match for P817P. 

http://www.ncbi.nlm.nih.gov/gquery?term=XM_001951031
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Figure 3.27. EQ124291.1, the only match to P817P using the Scaffolds (nuc.) databank and the BLASTN programme on the aphid genome 
database website. 

Blue rectangle highlights the positions in the A. pisum genome of the three matches to P817P. The Purple rectangles highlight matches with M. persicae proteins. 
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3. 5. 3. Clone P820P 

 

Similarly to the result found with the P817P clone, only a match to scaffold sequence 

EQ124381.1 (94% identity, E-value = 4e-93) was obtained (Fig. 3.28) when using the 

aphid genome database, and by searching with the BLASTN programme and Scaffolds 

(nuc.) databank option, which suggests that this gene(XM_001950803) is unique  

Also when using aphid genome database, only one protein match was verified for the 

P820P clone. This match corresponds to the full cuticular protein 111 of the RR-3 

family (Nousiainen et al., 1998) of Anopheles gambiae. 

http://www.ncbi.nlm.nih.gov/gquery?term=XM_001950803
https://a90.scri.sari.ac.uk/taxonomy/,DanaInfo=www.uniprot.org+7165
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Figure 3.28. EQ124381.1, the only match to P820P) using the Scaffolds (nuc.) databank and the BLASTN programme on the aphid base 
website.  

Blue rectangles highlight the positions in the A. pisum genome of the two matches to P820P. The purple rectangle highlights the protein match obtained through aphid genome 
database search. 
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3.6. Discussion 

In this chapter, the Q-Bot high density filter screening method proved to be efficient in 

screening large numbers of clones in a short time. Using this system, products of eight 

EST clones within an aphid cDNA library were identified to interact in vitro with the N-

terminal part of PVY HC-Pro expressed in bacteria. These identified clones belong to 

different groups, including aphid CUPs, other A. pisum proteins of unknown function, 

and some enzymes. This apparent diversity in HC-Pro interactions may reflect the 

multifunctional nature of this viral protein reported previously (reviewed by Maia and 

Bernardi, 1996). Since aphid CUPs were reported to be the most likely candidates to be 

the aphid receptors (Dombrovsky et al., 2007b; Uzset et al., 2007), three of these 

identified clones that represented different RR repeats were selected to sub-clone into 

the expression vector pQE-30 to express the proteins with epitop tags, in order to 

investigate their interaction with different antisera and with HC-Pro. The molecular 

mass of the protein that interacted with specific antisera was greater than the deduced 

molecular weight. However, CUP proteins when separated on SDS-PAGE have been 

reported to migrate 20–40% more slowly than expected (Cox and Willis, 1987; 

Andersen et al., 1995; Dotson et al., 1998; Rebers and Willis, 2001). This discrepancy 

between the migration of proteins in SDS gels and their predicted size from amino acid 

sequence was not reported by Dombrovsky et al., (2007b) when they expressed M. 

persicae protein in E. coli.   

 

On the Q-Bot filter, HC-Pro was found to interact with three different CUP proteins; 

this interaction was confirmed with one of these, P72F. There were differences in the 

results using different assays and when the clones were expressed in different vectors; 

in particular, weak and inconsistent results were obtained using the PVY HC-Pro 

preparations. The discrepancy can be explained on the basis of the sensitivity of the 

protein assay. On the Q-Bot printed filters, the size of the colony is very small; therefore 

a very small amount of protein would be enough to interact with the aphid protein. In 

contrast, using Western blotting, larger amounts of protein are employed and 

consequently more HC-Pro is required to differentiate between colours that result from 

interaction and those that result as a background. Therefore, HC-Pro expressed in plants 

from PVX was tested to try to improve yields of HC-Pro. 
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It was reported that HC-Pro of one potyvirus may help transmission of other potyviruses 

(Harrison and Robinson, 1988). This fact was exploited by using the HC-Pro of other 

potyviruses. TuMV HC-Pro can be readily purified from virus-infected leaf material 

using Ni-NTA Resin even though it does not contain a hexa-histidine tag (Kadouri et 

al., 1998). Although TuMV HC-Pro was reported to be purified readily by Ni-NTA 

resin (Kadouri et al., 1998), the quality of the preparation purified by these methods was 

poor in my hands. In addition, the absence of a specific antiserum against this TuMV 

HC-Pro restricted its usage in our overlay assay system as the expressed aphid protein 

has a 6-histidine residue, and the purified TuMV HC-Pro has the same tag.  

 

M. persicae can transmit different potyviruses. Moreover, PVY HC-Pro was reported to 

assist transmission of TEV (Pirone, 1981); thus it was anticipated that HC-Pro derived 

from TEV may interact with the identified CUP clones. An engineered TEV clone with 

a 6-histidine tag to assist purification of protein (Blanc et al., 1997) was used. The yield 

of HC-Pro expressed using this system was high enough to initiate recognizable 

interaction between the electroblotted P72F protein and purified HC-Pro protein. This 

result is in contrast to that reported by Dombrovsky et al. (2007b), who did not detect 

any interactions between aphid proteins expressed from a cDNA library and ZYMV 

HC-Pro. Therefore, they adopted an alternative method to isolate protein from the whole 

aphid body. By using this approach they confirmed an interaction of CUPs of M. 

persicae with HC-Pro of ZYMV. The isolated proteins were confirmed to interact with 

antiserum raised to cuticle proteins characterized from a cDNA library. They suggested 

that the characterized cuticle protein from the cDNA library may not exist in the aphid 

stylet (the proposed location of the virus receptors), or that cuticle proteins expressed in 

bacteria differ in binding properties from those extracted from the aphid body. In 

contrast to the first explanation, Csikos et al. (1999) reported that CUPs of insects are 

not restricted to the organ they are synthesized in as these proteins are mobile inside the 

insect body. The inconsistency between our result and what was reported by 

Dombrovsky et al. (2007b) can be explained by the fact that although PVY and ZYMV 

are both potyviruses, HC-Pro belonging to each virus may have different binding 

properties as the conserved region in the  ZYMV HC-Pro is KLSC not KITC.  

 

It has been some time since Bradley and Ganong (1955) first reported that non-

persistent viruses are retained at the distal part of the aphid vector stylet, although the 

methodology by which the result was obtained was criticized because of the physical 
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damage that may have been caused to the aphid stylet when it was treated with 

formaldehyde. However, it now seems more likely that this conclusion is valid. This is 

particularly true after the report by Uzest et al. (2007) that confirmed that virus particles 

of the semi-persistent virus CaMV are retained in the distal part of the A. pisum stylet. 

Semi-persistent viruses were first considered together with viruses that have a non-

persistent mode of transmission (Watson and Roberts, 1939). Traditionally it has always 

been thought that non-persistent viruses are retained inside the aphid stylet (stylet-

borne), whereas semi-persistent viruses are retained in the foregut of the aphid’s 

mouthparts (foregut-borne). However, there were more recent reports which indicated 

that non-persistent viruses were retained in various locations of the food canal (Berger 

and Pirone, 1986; Wang et al., 1996). Recently, Uzest et al. (2010) proposed the 

terminology of the “acrostyle” at the tip of aphid stylet. The acrostyle binds to specific 

antisera raised against a peptide of 16 amino acids (GSYSLLEADGSTRTVE), termed 

pepL. This peptide represents the RR2 conserved motif in 20 A. pisum CUPs.  Clone 

P72F, which was identified in this study, shares the same RR consensus and contains 

the sequence GSYSLVEADGSIRTVE, which is almost identical to the pepL sequence; 

there are only two differences between the two sequences, substitutions from L to V and 

from T to I at positions 5 and 10, respectively. In addition, clone P817P, which has the 

RR1 motif, was found to have a sequence (GSYS) which matches pepL at the N-

terminus. This resemblance may suggest a more specific binding motif inside the 

conserved RR2 motif itself. Taken together with those reported by Uzest et al. (2007, 

2010), my findings strongly support the concept of a receptor-like structure of a cuticle 

nature which mediates potyvirus transmission by aphid vectors.  

 

The binding of cuticle proteins to chitin is a characteristic of CUPs containing the R & 

R consensus. The RR1 motif is reported to exist in soft cuticle protein while the RR2 

protein occurs in hard cuticle only. The ability of HC-Pro to bind to both kinds of 

protein may suggest that it binds to a region conserved between the two types. Since the 

RR regions are different and moreover, cuticular proteins belonging to other arthropods 

were reported to have similar RR1 and RR2 sequences, the proposed area of interaction 

is most likely to be in the regions flanking this RR sequence. In the recent work by 

Uzest et al. (2010), the pepL sequence was derived from the RR2 region, which is 

conserved among different insects, was localized at the tip of the aphid stylets. In 

addition GFP-fusion protein to the CaMV helper factor was localized in 9 aphid species 

belonging to 8 genera at the same location indicating that the helper component bind to 
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this RR motif. Database search and sequence alignment studies of the cuticle proteins 

identified in this thesis showed strong similarity with other CUPs belonging to the same 

aphid species or to other species. In addition, the homologous gene products are 

identified from different locations of the M. persicae body and not just from the head. 

This may suggest that these genes are highly expressed in aphids. 

 

Another interpretation of these results could be that instead of a specific receptor for 

virus like a cuticle protein in the aphid stylet, there is a non-specific attachment between 

the cuticle proteins covering the interior lining of the aphid body and virus particles, but 

only particles which attach to the stylet may participate in the transmission process. One 

reason for proposing that only particles which attach to the stylet are transmissible is 

that cuticle protein ligands that might potentially bind to virus in other parts of the 

insect body may be damaged or inhibited due to the enzymes inside the aphid gut, while 

on the aphid stylet the exposure to such enzymes is less frequent. This assumption 

correlates well with the fact that aphid fasting enhances non-persistent virus 

transmission (Watson and Robert, 1939); fasting may decrease the activity of these 

enzymes on the virus transmissible complex (virus particle/HC-Pro/ligands). In 

addition, the finding in Chapter 5 of this thesis about the long retention of non-

transmissible virus inside different parts of the insect body and after different times of 

acquisition adds evidence in support of the existence of CUP ligands elsewhere in the 

insect body. Thus the virus may bind non-specifically to any cuticle proteins inside the 

aphid gut. More work is required to identify whether there are specific receptors or not, 

and my results can be utilized to design experiments to block virus transmission via 

approaches such as feeding insects on antibodies prepared against these identified 

proteins or genetically through silencing of the genes encoding such putative receptors 

if they exist in specific locations and not covering the whole insect body. 

 

The work presented in this chapter has provided evidence that HC-Pro interacts with 

proteins of the aphid cuticle, which is supportive of other reports which state that the 

virus receptors of aphids are of cuticle nature (Dombrovsky et al., 2007b; Uzest et al., 

2007; Uzest et al., 2010). Additionally, the non-specificity in binding to CUP proteins 

among aphid species and the abundance of these proteins in the aphid body may 

indicate either the existence of more than one receptor inside the aphid or the absence of 

specific receptors as the virus particles can be retained equally on any CUP proteins 

covering the food canal. However, due to some unknown reasons only those virus 
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particles which are retained on the tip of the stylet contribute to the transmission 

process. 

 

Because of the time limit for the PhD project, it was not possible to look at the function 

of the identified clones in detail. Future experiments could be designed to try to block 

virus transmission through aphid feeding on antisera prepared against aphid CUPs. In 

addition, site-directed mutations of TEV-HC-Pro and aphid CUP protein domains 

would be helpful to reveal amino acid motifs that are important to the interaction. 

Ultimately, continuing this work could contribute to the development of novel methods 

of controlling spread of non-persistent plant viruses. Further experiments are required to 

confirm the specificity of interaction and to investigate the function of these proteins 

inside the aphid body.  
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Chapter 4. Effect of host plant species and virus isolate on potato virus 

Y acquisition and transmission by aphids 

 
 

4.1. Introduction 
The mechanisms regulating non-persistent virus transmission by aphids are not 

completely understood. Some of the viral determinants involved in transmission have 

been identified. However, there is a lack of information about the effects of vector and 

host plant.  

The host plant can affect virus multiplication rate and systemic movement. Thus some 

plants or plant varieties enable high multiplication and translocation while others restrict 

virus multiplication or virus movement. Aphid transmissibility of PVY was reported to 

be dependent on virus concentration in the source plant (Bawden and Kassanis, 1946; 

Bagnall and Bradley, 1958, Bradley, 1962; De Bokx et al., 1978), and there are some 

reports which show that plants differ in suitability as a virus host (Watson, 1956, 

Bagnall and Bradley, 1958). Others have suggested that some potato cultivars (Bawden 

and Kassanis, 1946; Bagnall and Bradley, 1958) or certain tissues within the same plant 

(Bradley, 1962) are better virus sources than others for aphid transmission. Moreover, 

there are many other factors which control or determine virus transmissibility, such as 

the age of the virus source plant, aphid vector species and colony growing conditions, 

and the aphid life stage (Mackinnon, 1961; Orolob, 1962; Swenson, 1963; Matthews, 

1991). In addition to the effect on virus acquisition, the host plant can also affect the 

efficiency of virus inoculation. Matthews (1991) stated that “the species and even the 

variety of plant used as a source of virus or as a test plant may affect the efficiency of 

transmission”. There is very limited information about this topic in the literature, and to 

my knowledge, no detailed study has been done to investigate the effect of the host 

plant when used as a virus source or as recipient. In addition, the effect of the host plant 

used to rear aphid colony on their efficiency in vectoring potyvirus was not fully 

investigated.   

 

Changes to virus populations in the field occur in response to host genotype, vector 

pressure and environment whereas, in laboratory isolates, the selection pressures are 

different. It is known that a virus isolate may lose the capacity to be vector transmitted 

after successive manual passages on host plants (Pirone and Blanc, 1996). This was 

reported for some potyviruses (Watson, 1956; Atreya et al., 1991; Deborre et al., 1995) 
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and other non-persistent viruses such as Cucumber mosaic virus (CMV) (Badami, 1958; 

Ng et al., 2005). Loss of aphid transmissibility of viruses was associated with mutations 

in the HC-Pro or the coat protein sequence in the potyviruses, whereas no major change 

was observed in the coat protein of CMV.     

 

A proof-reading mechanism is lacking in RNA plant viruses (Roossinck, 1997), so that 

the possibility of changes due to mutation is high (Sanjuán et al., 2009). In addition to 

mutation there is another source of variance in plant virus populations resulting from 

their ability to recombine RNAs (Revers et al., 1996; Aaziz, 1999), and the latter source 

of variance in virus populations is an important feature among PVY isolates (Glais et 

al., 2002). There are well documented examples of modification in virus populations by 

passaging on host plants (Yarwood, 1979; García-Arenal et al., 2001). For example, 

Matthews (1949) found that the virulence of Potato virus X (PVX) towards potato 

decreased when the virus was passaged continuously on tobacco, and its ability to infect 

potato was lost completely after 19 passages through tobacco. This host adaptation was 

reported to be reversible in some viruses. For example, CMV was found to infect 

cowpea non-systemically, but after four passages on this host the virus caused more 

damage to cucumber than to cowpea. Moreover, the virus returned to its original form 

after about four passages through cucumber (Yarwood, 1979).  

 

Patterns of virus infectivity can be complex. PVY isolates from potato were shown to be 

able to infect tobacco but not peppers, and the pepper strains were unable to infect 

potato (Selassie et al., 1985). Similarly, Marte et al. (1991) found that PVY isolates in 

central Italy were better adapted to tobacco, whereas isolates from southern regions 

infected pepper more readily than tobacco. The term “founder effect” is used to explain 

the bottleneck in a virus population which may occur as a result of infecting a new plant 

or when the virus is introduced into a new geographical area. Host plant and vector 

passages of plant viruses can contribute to the founder effect as well (García-Arenal et 

al., 2001). Recently, Ohshima et al. (2010) reported that adaptation of TuMV (a 

potyvirus) to new plant hosts was associated with high diversity in nucleotide sequence 

compared to the isolate propagated on the original host. 

 

M. persicae is well known to show some level of preference or selection towards some 

plants compared to others (Margaritopoulos et al., 2005). For example, potato plants are 

favoured more than tobacco plants. However, preference for tobacco was observed for 
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the sub-species M. persicae nicotianae. Despite being a poor host for aphids, tobacco is 

extensively used in the laboratory for many kinds of virus studies including aphid 

transmission. The effect of the host on the aphid vectoring ability is often mitigated by 

using large numbers of individual aphids per plant for aphid transmission studies. Host 

plants can directly affect aphid vectors by affecting their fecundity or reproduction, 

generation time, and morphology. This kind of effect has been reported 

(Margaritopoulos et al., 2005; Fenton et al., 2010) and will not be discussed further 

here. However, the host plant may also have an indirect effect on the aphid capability to 

transmit plant viruses. It has been reported that the host plant has an influence on the 

transmission of the semi-persistent BYV. Gladders and Peters (1986) found that aphids 

taken from oilseed rape plants were less efficient in BYV transmission than those reared 

on sugar beet. Host plant effects on aphid vectoring ability have been reported for non-

persistent viruses as well even though the aphids do not require a long time to acquire or 

inoculate virus. Sylvester (1955) found that M. persicae reared on peach transmitted 

lettuce mosaic virus (LMV) less efficiently than did when reared on mustard, sugar 

beet, or radish. In addition, A. nasturtii was reported to be able to transmit PVY in some 

reports but failed to transmit it in others. The reason for the discrepancy in results is the 

host plant effect: aphids collected from the primary host were found not to transmit the 

virus whereas aphids collected from secondary hosts did transmit it (Orlob, 1962).  

 

Although host plant species are known to differ in suitability as virus sources and to 

influence the vectoring ability of aphid species, the reasons are still unknown. 

Moreover, the impact of changing the plant species used to rear aphids and as indicator 

plants is not usually considered. In this Chapter, the effects of using potato or tobacco as 

virus source are studied in combination with the effects of using different hosts (potato, 

tobacco, oilseed rape (canola), and P. floridana) for rearing the aphid colonies. The 

implications of these effects on the epidemiology and control of PVY will be discussed.   
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4.2. Materials and methods 

 
4.2.1. Virus source 

 

Two sub-isolates of PVYO (Ordinary stain) were investigated: the stock SCRI 

laboratory isolate (PVY-L) and a field isolate (PVY-F) that was obtained from naturally 

infected potato cv. Rosetta by Adrian Fox, Science and Advice for Scottish 

Agriculture (SASA), Edinburgh, Scotland, UK. Both isolates were maintained on 

different host plants. Symptomatic plants (3–4 weeks post inoculation) of potato, 

tobacco, and P. floridana were used as the virus source for aphid transmission. In this 

chapter, the source plant used to acquire virus is indicated by a superscript letter after 

the name of the virus. PVY propagated on potato as virus source will be represented as 

PVY-FP for the field isolate and PVY-LP for the laboratory isolate. Similarly PVY 

propagated on tobacco: PVY-FT or PVY-LT. 

 

 

 

Figure 4.1. An example of symptoms of PVY on a leaf of potato cv. Shula used as 
virus source for aphid transmission (right) compared with a healthy leaf (left).  
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4.2.2. Aphid colony maintenance 

 

M. persicae colonies (Fig. 4.2) were maintained on Solanum tuberosum cv. Desiree, N. 

tabacum cv. White Burley, Brassica napus (Oilseed rape), and P. floridana in a 

glasshouse at 18°C in a 16:8h light: dark cycle with plants replaced on a weekly basis. 

The aphids were reared on plants in clear perspex cages (40x40x40 cm) as described in 

Chapter 2. Single aphids were transferred from potato to establish colonies on other 

plant species. To kill aphids on infested plants, the plant and pot were submerged into a 

bucket of hot soapy water for 5 min. Plants used for virus cultures were autoclaved 

before being disposed of. 

 

In this chapter, the aphid colony used for virus transmission is tagged with the first 

letter of the plant on which it was maintained. Aphids maintained on potato are referred 

to as M. persicae-P, aphids reared on tobacco as M. persicae-T, aphids originating from 

oilseed rape as M. persicae-Osr, and aphids from P. floridana as M. persicae-Phy. 

  

 
                

Figure 4.2. M. persicae colonies reared on different host plants. 
Aphids on tobacco, oilseed rape, and P. floridana were originally taken from a potato colony two weeks 

after initiation of the colony. The white scale bars represent 1 cm. 
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4.2.3. Production of test plants  

 

All test plants used in this project were produced by the glasshouse staff at SCRI in 

compost free of Intercept (granular insecticide used routinely for controlling insects at 

SCRI). Briefly, potato plants, cv. Shula, were produced on request. Eye plugs were 

removed from healthy tubers after dormancy breaking and transplanted into 12.5–

17.5cm pots containing insecticide-free compost. Tobacco plants (N. tabacum cv. White 

Burley) were produced continuously throughout the year. The other host plants, oilseed 

rape and P. floridana, were produced on request by transplantation from a pre-

germinated seed pan. All the plants were kept in glasshouse conditions of 18°C in a 

16:8h light: dark cycle. 

For each aphid transmission experiment young plants (3–4 leaf stage) of similar size 

were selected. Plants of similar size or slightly bigger were used for transmission by 

mechanical inoculation. 

  

4.2.4. Aphid transmission 

  

Detailed information on aphid selection and transmission is presented in Chapter 2. In 

general, for each transmission experiment aphids were taken from a single plant, 5 

aphids per plant and 10 replicate plants were used and each experiment was repeated 

three times. Aphids were allowed for 5 min acquisition access period (AAP) from 

detached leaf taken from a single infected plant (3–4 weeks post inoculation or newly 

emerging sprouts from infected plant tubers). Aphids were allowed an overnight (16–18 

h) inoculation access period (IAP), and then were killed by Pymetrozine (Pyridine) 

spray and fumigation overnight with nicotine shreds. Then plants were transferred to the 

glasshouse for symptom development (2–3 weeks) and ELISA was used to confirm 

infection. 

4.2.5 Virus testing 

ELISA was used for virus testing following the methods presented in Chapter 2. 
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4.3. Results 

 
4.3.1. Effect of the virus source on virus transmission by aphids 

Two plant species (potato and tobacco) were tested for their suitability as a PVY source 

for aphid transmission by aphids reared on different host plants (Fig. 4.3). 

 

 
Figure 4.3. Schematic diagram of the experiments conducted to investigate the 
effect of the host plant used for rearing aphid colonies on virus vectoring ability. 
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4.3.1.1. Aphids reared on potato  

 

In preliminary experiments, acquisition of the PVY-F isolate from potato was greater 

than from tobacco. This finding was confirmed by performing three replications of the 

same experiment (Fig. 4.4, A, left). This result is different from the reports in the 

literature which concluded that tobacco is a better virus source for PVY than potato 

(Watson, 1956; Bagnall et al., 1958).  However, the aphids which were used in my 

experiments were reared on potato. Rearing aphid clones on tobacco considerably 

affected the outcome (Fig.4.4, A, right; see section 4.3.1.2). Therefore it was decided to 

investigate the link between aphid transmission capability and the host plant they 

originated from, which has been previously reported to be related for some plant viruses 

(Sylvester, 1955; Gladders and Peters, 1986). 
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Figure 4.4. Effects of the plant species used for rearing aphids and the species used 
as a virus source on PVY-F transmission to tobacco by M. persicae.  
 
Aphids were reared on potato (M. persicae-P), tobacco (M. persicae-T), oilseed rape (M. persicae-Osr), 
or P. floridana (M. persicae-Phy).  : Potato as virus source, : tobacco as virus source. Each experiment 
was repeated three times and for each sub-experiment (A, B) 40 tobacco plants were used. Error bares 
represent values of standard deviation. 
 

 

 

The transmission efficiency of PVY to tobacco was only 10 % when aphids were reared 

on potato and allowed to acquire PVY from tobacco. In contrast, much higher 

transmission rates (83.3%) were obtained when aphids were reared on potato and they 

were allowed to acquire virus from potato (Fig. 4.4 A). 



 128

 

 

4.3.1.2. Aphids reared on tobacco  

 

There may be several reasons for the low aphid transmissibility of the PVY-F isolate 

from potato when the virus is propagated in tobacco compared with propagation in 

potato. The first considered possibility was that aphid probing behaviour is different 

between the two hosts: aphids may avoid or delay probing tobacco, so decreasing the 

probability of virus acquisition. However, aphids were monitored during the 

experiments, and only aphids which were observed to be probing at the end of the AAP 

were transferred to the test plant. Moreover, acquisition times of 1 to 20 min from 

different parts of infected tobacco leaves and after different times post infection (1, 2, 3, 

and 4 weeks) were tested. None of these variations changed the transmission efficiency 

(not shown). 

 

A colony of aphids was established on tobacco and used to perform similar transmission 

experiments. When aphids were reared on tobacco, the situation changed and the 

transmission rate to tobacco was approx. 70% when aphids were allowed to acquire 

virus from tobacco infected with PVY-F, similar to that of M. persicae-P. Moreover, the 

transmission rate was also high when M. persicae-T acquired virus from potato. Thus, 

M. persicae-T acquired PVY-F   readily from tobacco and potato but M. persicae-P only 

acquired it readily from potato (Fig. 4.4A). 

 

4.3.1.3. Aphids reared on oilseed rape or physalis 

 

Comparable results to those found with M. persicae-T were obtained when either a non-

virus host plant (oilseed rape) or the indicator host P. floridana was used to rear the 

aphid colony. Transmission efficiency was about 70% when aphids reared on oilseed 

rape (M. persicae-Osr) were used for PVY-F transmission from either virus source (Fig. 

4.4B). Similarly M. persicae-Phy transmitted PVY efficiently from potato or tobacco, 

the efficiency was slightly greater (80%) from potato than from tobacco (65%). 
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4.3.1.4. Statistical analysis 

 

Genstat was used to analyse the significance of the host plant effect using the logistic 

regression analysis. Comparison of the host plant effect between potato and tobacco 

showed that both the host plant used to rear the aphid colony and the plant used as a 

virus source had affected the transmission significantly (P < 0.001), and the interaction 

was highly significant (p < 0.001). The same was obtained when the comparison was 

made between M. persicae-P or M. persicae-Phy, and the interaction was highly 

significant (P < 0.001). Comparison between potato and P. floridana showed that the 

effect of the virus source is highly significant (P < 0.001), but the host plant used to rear 

the aphid colony was less significant (P = 0.064), and the interaction between them was 

significant (P = 0.004).
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4.3.2. Effect of the recipient plant on virus transmission by aphids 

 

In addition to the effect of plant species on virus acquisition, the effect on transmission 

of the plant species used as a recipient was investigated (Fig. 4.5).  

       
Figure 4.5. Schematic diagram of the experiments conducted to investigate 
the effect of recipient host plant on aphid transmission ability. 

 
 

 

In this experiment, aphids were reared on either potato or tobacco then aphids were 

allowed to acquire virus from a source plant similar to the one they were reared on (M. 

persicae-P from potato, M. persicae-T from tobacco).Then each group of aphids were 
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allowed to inoculate virus to either potato or tobacco. The transmission rate was 

measured based on visual symptoms and ELISA 3–4 weeks post transmission. 
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Figure 4.6. Effect of the recipient host plant on PVY-F transmission by M. persicae. 
 
Aphids were reared on potato (M. persicae-P) or tobacco (M. persicae-T) and virus was acquired from 
potato and tobacco. : Potato recipient plants, : tobacco recipient plants. The experiment was repeated 
three times and for each sub-experiment 40 tobacco plants were used.  
  
 
Fig. 4.6 shows that the transmission rate was higher to tobacco than to potato 

irrespective of host plant used to rear aphids or for virus acquisition. For both aphid 

sources, about 80–90% of tobacco plants were infected compared with only 30% of 

potato plants. Regression analysis revealed that the recipient plant effect is highly 

significant (P < 0.001). However, the host plant effect was not significant (P = 0.393).  

 

4.3.3. Difference in aphid transmissibility between PVY-F and PVY-L isolates 

 

During investigation of the host plant effect on PVY transmission by aphids, a 

difference in aphid transmissibility between the laboratory (PVY-L) and the field (PVY-

F) isolates was noted. Initially, it was found that PVY-L was transmitted poorly from 

potato or tobacco (less than 10%), whereas PVY-F was transmitted efficiently from 
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potato (approx. 80%) and poorly from tobacco (Fig. 4.7 A). However, aphids used in 

this experiment were reared on potato. Rearing aphids on tobacco (4.7 B) increased 

transmissibility of both isolates from tobacco (about 70%), but transmissibility of PVY-

L from potato remained low (10%). 
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Figure 4.7. Differences in aphid transmissibility between the PVY isolates. 
 
PVY-L: laboratory isolate, PVY-F: field isolate. Virus source: : potato, : tobacco. The experiment was 
repeated three times and for each sub-experiment 40 tobacco plants were used (20 for each virus 
isolate).A: aphids were reared on potato; B aphids were reared on tobacco.  
 
 

Statistical analysis for the data in graph A revealed that there is a significant difference 

between the PVY-F and the PVY-L isolates (P < 0.001), and the difference was also 

significant between potato and tobacco when used as a virus source (P = 0.008). The 

interaction between virus isolate and the host plant used as a source was also significant 

(P < 0.001). For data in graph B, the difference was highly significant (P < 0.001), and 

the interaction was also highly significant (P < 0.001). 

 

 

4.3.3.1. Virus multiplication and concentration in source plants 

 

The reason for the difference in aphid transmissibility between PVY-F and PVY-L was 

investigated. Virus concentrations in tobacco and potato after infection were 

determined. Moreover, sequences of virus determinants known to be involved in 

transmission were obtained and compared with the published sequence of PVYO. 
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Efficiency of transmission by the vector aphid is partially related to virus concentration 

in the source plant (Bradley, 1962; De Bokx et al., 1978). The finding that PVY-L is not 

acquired from potato with the same efficiency as from tobacco prompted me to 

investigate the virus concentration in the two hosts. Both PVY-F and PVY-L were 

mechanically inoculated to 10 tobacco plants and 10 potato plants, 3–4 weeks after 

inoculation leaf samples of both plants were tested by ELISA. The experiment was 

repeated twice and results are presented in Table 4.1. 

   

 

Test plant Isolate Exp. 1 Exp. 2 

PVY-L 0.888 (±0.140) 1.067 (±0.049) 
Tobacco 

PVY-F 1.107 (±0.117) 1.142 (±0.080) 

PVY-L 0.338 (±0.194) 0.350 (±0.168) 
Potato 

PVY-F 1.254 (±0.344) 1.231 (±0.261) 

Table 4.1. Mean A405 values obtained in ELISA of extracts of tobacco and potato 
leaves infected with different isolates of PVY.  

 
For each experiment 10 plants of each host were inoculated with PVY-L and 10 plants with PVY-F. 
Samples were tested in duplicate wells and the mean A405 values (±SD) are presented. The mean A405 
value of the healthy controls was 0.07 for both hosts. 
 
 

 

No substantial differences were observed in absorbance values obtained in tests on 

tobacco plants infected with either virus isolate. However, on potato, PVY-F gave 

values three to four times greater than PVY-L (Table 4.1).  
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    A       B 

 
Figure 4.8. PVY symptoms three weeks after mechanical inoculation of PVY-L and 

PVY-F on potato (A) and tobacco (B). 
 
PVY-F induced severe mosaic symptoms on potato 2-3 weeks after inoculation. On tobacco, PVY-F 
developed severe mosaic; mottling and stunting.PVY-L induced mild mosaic symptoms on tobacco, and 
remained symptomless on potato. 
 
 
 
Comparing the data in Table 4.1 and the symptoms shown in Fig. 4.8 shows that 

whereas tobacco was a good host for propagation of both virus isolates, potato was a 

poor host for the PVY-L isolate. PVY-F also induced more severe symptoms on 

tobacco than did PVY-L. However, severity of infection decreased after several 

mechanical passages through tobacco. 

 

The mild symptoms of PVY-L on potato probably reflect an adaptation to tobacco after 

continuous passage through this host for many years. Moreover, PVY-L did not reach a 

high concentration in potato and could not be maintained by mechanical inoculations on 

potato (infectivity was lost after 4–5 mechanical inoculation passages through potato). 

In contrast, PVY-F multiplied normally on both hosts. However, the symptoms became 

less severe on tobacco after 8–10 passages by mechanical inoculation. This decrease in 



 135

symptom severity after several mechanical passages to tobacco may suggest the start of 

adaptation.  

 

To investigate after how many passages PVY-F would adapt to multiply on tobacco; it 

was mechanically inoculated to tobacco every three to four weeks. After two years (24-

30 passages), the isolate from tobacco was inoculated to potato and aphid 

transmissibility was investigated. The results (Fig. 4.9) show that PVY-F retained its 

aphid transmissibility and ability to multiply in potato after 24–30 passages through 

tobacco. This suggests that the adaptation observed in PVY-L may have occurred after 

many years of continuous passages through tobacco. PVY-L is a stock laboratory isolate 

that has been maintained for more than 20 years on tobacco by mechanical inoculation. 

 

                        

 
Figure 4.9. Transmission efficiency of PVY-F isolate after sequential manual 

propagation through tobacco or potato. 
 

 
PVY-F-P: PVY field isolate propagated continuously on potato. PVY-F-T: PVY field isolate propagated 
continuously 24-30 times on tobacco then propagated on potato. After two years of mechanical passages 
of the PVY-F isolate through tobacco, this isolate was mechanically inoculated to potato cv. Shula which 
was used as a virus source 3-4 weeks after inoculation. Aphids used in transmission were reared on 
potato. The experiment was repeated twice and in each experiment 10 tobacco plants were used for each 
virus isolate, then % transmission efficiency was estimated. The difference in transmissibility between 
PVY-F-P and PVY-F-T was not significant (P = 0.38).  
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4.3.3.2. Sequencing virus components involved in aphid transmission 

 

Two conserved motifs in the HC-Pro and in the potyvirus coat protein, termed the KITC 

region and the DAG motifs, respectively, have been reported to be critical for aphid 

transmission (See Chapter 1). The regions surrounding KITC/DAG motifs in PVY-F 

and PVY-L isolates were sequenced and compared with the published sequence of the 

PVYO (Fig. 4.10). It is clear from Fig. 4.10 that KITC is retained in both isolates. In 

addition, Fig 4.11 shows that the DAG region is intact in both isolates, and there are no 

differences in amino acid sequences directly after or before this region. However, the 

PVY-L sequence contains five substitutions in the amino acid sequence after the DAG 

region (labeled 1 to 5 in Fig. 4.11). The sequence of this region of PVY-F is identical to 

the published PVYO sequence. 
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Figure 4.10. Amino acid sequence of the region flanking the KITC sequence of the HC-Pro of the PVY-L and PVY-F isolates, and alignment 
of both isolates with the published sequence of the SCRI ordinary strain of PVY.  
 
 
 

Figure 
4.11. Amino acid sequence of the region flanking the DAG sequence of the coat protein of the PVY-L and PVY-F isolates, and alignment of 
both sequences with the published sequence of the SCRI ordinary strain of PVY.  
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2800 2810 2820 2830 2840 2850 2860 2870 2880
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

PVY-SASA-61 VHHQGNDTIDAGGSTKKDAKQEQGSIQPNLNKEKEKDVNVGTSGTHTVPRIKAITSKMRMPKSKGATVLNLEHLLEYAPQQIDISNTRAT
PVY-NTN-Tobacco_ VHHQGNDTIDAGGSAKKDAKQEQGSIQPNLNKEKEKDVNVGTSGTHTVPRIKAITSKMRMPKSKGATVLNLEHLLEYAPQQIDISNTRAT
PVY-Tu660 VHHQGNDTIDAGGSTKKDAKQEQGSIQPNLNKEKEKDVNVGTSGTHTVPRIKAITSKMRMPKSKGATVLNLEHLLEYAPQQIDISNTRAT
PVY-SASA-207 VYHQANDTIDAGGSSKKDARPEQGSIQSNPNKGKDKDVNAGTSGTHTVPRIKAITSKMRMPKSKGATVLNLEHLLEYAPQQIDISNTRAT
PVY-Eg VHHQANDTIDAGGSSKKDAKPEQGSIQPNPSKGKDKDVNAGTSGTHTVPRIKAITSKMRMPKSKGVAALNLEHLLEYTPQQIDISNTRAT
PVY-LYE8402 VHHQANDTIDAGGSSKKDAKPEQGSIQPTPNKGKDKDVNAGTSGTHTVPRIKAITSKMRMPKSKGVAALNLEHLLEYTPQQIDISNTRAT
PVYO-SCRI-O VHHQANDTIDAGGSSKKDARPEQGSIQSNPNKGKDKDVNAGTSGTHTVPRIKAITSKMRMPKSKGATVLNLEHLLEYAPQQIDISNTRAT
PVY-SASA-110 VHHQANDTIDAGGDSKKDAKPEQGSIQSNLNKGKDKDVNAGTSGTHTVPRIKAITSKMRVPKSKGATVLNLEHLLEYAPQQIDISNTRAT
PVY-L VHHQANDTIDAGGSNKRDAKPEQGSIQLNPDKGKDKDVNAGTSGTHTVPRIKAITSKMRMPKSKGATVLNLEHLLEYAPQQIDISNTRAT
PVY-F VHHQANDTIDAGGSSKKDARPEQGSIQSNPNKGKDKDVNAGTSGTHTVPRIKAITSKMRMPKSKGATVLNLEHLLEYAPQQIDISNTRAT
Clustal Consensus *:**.********. *:**: ****** . .* *:****.*******************:*****.:.*********:************  
 

Figure 4.12. Alignment of the amino acid sequence of the region flanking the DAG sequence of the coat protein of the PVY-L and PVY-F 
isolates with different published sequences of PVY isolates. 
 
 (Accession numbers, from EMBL unless otherwise indicated: PVY-SASA-61, AJ585198; PVY-Tu 660, AY166866; PVY-SASA-207, AJ584851; PVY-SASA-110, AJ585195; 
PVY-EG, EF455803; PVYNTN-Tobacco, FJ204165; PVY-LYE8402 (tomato isolate-Spain), AJ439545). 
 



 139

 

Sequences of the DAG regions of different PVY isolates were retrieved from the 

database and aligned (Fig. 4.12). None of the substitutions found in PVY-F or PVY-L in 

the region following the DAG motif are present in any of the other isolates, except for 

the third substitution after the DAG region (R to K). This is present in the Scottish 

isolates PVY-SASA-110, PVY-SASA-61, and PVYN-SCRI, in the PVYNTN isolate from 

pepper (PVY-Tu 660), in a recently characterized isolate from egg plant, PVY-Eg 

(Sadeghi et al., 2008), and in a PVY isolate from tomato in Spain (PVY-LYE8402), 

which has high similarity to PVY-Eg. However, there are substitutions in other PVY 

isolates from different host plants that are different from the ones found in PVY-L. 

Interestingly, many of these substitutions are in the same positions as substitutions in 

PVY-L, which suggests that these positions in the PVY coat protein may be particularly 

prone to mutation associated with host plant selection. The egg plant PVY (PVY-Eg) 

isolate does not show any changes at positions 1 and 2, position 3 is mutated to K as in 

PVY-L, and positions 4 and 6 have substitutions S to P and N to S, respectively, 

compared with S to R and N to D in PVY-L. 

 

Another substitution at position 1 is present in other PVY isolates (PVY-SASA-61 and 

PVYN-SCRI), S to T instead of S to N in PVY-L. Similarly, these two isolates have a 

substitution in the fourth position as in PVY-Eg.  The substitutions at positions 2 and 5 

(K to R and N to D, respectively) seem to be unique to PVY-L as no corresponding 

substitutions have been reported in any other PVY isolate published to date, except for 

the recently published PVY sequence from eggplant (PVY-Eg), where N is substituted 

with S not with D (Sadeghi et al., 2008).  

 

Surprisingly, the PVY isolate characterized from tobacco , PVYNTN-Tobacco (Hu et al., 

2009) exhibits similar substitutions next to the DAG region to the eggplant PVY-Eg 

isolate and has no similar substitutions to PVY-L, which seems adapted to tobacco, 

except the R to K substitution at position 3, which is found in all PVY isolates that are 

different from PVYO-SCRI. 
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4.4. Discussion 

 
In this study, the differences among several host plants in virus acquisition and 

inoculation by M. persicae were investigated, and were linked to the host used to 

maintain the aphid vector colony. Additionally, the difference in transmissibility 

between two PVYO isolates was investigated biologically and partially at the molecular 

level. The results indicate clearly that the host plant used to maintain aphid cultures 

influences the aphid ability to acquire PVY from certain host plants, and furthermore, 

there is an influence of the recipient plant on the transmission rate. The results suggest 

that adaptation to multiply on tobacco is the reason for variation in aphid 

transmissibility of the field and laboratory isolates of PVY. 

 

4.4.1. Effect of the host plant on virus source/aphid vectoring ability 

 

Potato is a favoured natural host for M. persicae. However, aphids reared on potato 

have a poor ability to transmit the virus from tobacco. The fact that PVY-F reaches a 

similar concentration in both potato and tobacco hosts removes one important factor to 

be considered when interpreting this result. Therefore, it is likely that poor ability of 

aphids reared on potato to transmit virus from tobacco is due to the tobacco host itself. 

However, when aphids were reared on tobacco, the transmission efficiency from 

tobacco was restored, which suggests that the poor transmission from tobacco is not 

solely related to the properties of tobacco as a virus host. When aphids were reared on 

tobacco, which was initially  a poor host for this lineage of aphid, and P. floridana, 

which is less favoured by aphids than potato (Mackinnon, 1960, 1963), virus was 

acquired equally from both tobacco and potato virus sources. Keeping aphids reared on 

potato for 2-3 days on tobacco was enough to restore the vectoring ability of aphids in 

virus transmission from tobacco, showing that M. persicae can adapt rapidly to different 

hosts. 

 

Recent investigations into the aphid transmission of plant viruses have focused on 

feeding and probing behaviour by electronic monitoring using the EPG technique. 

Important information has been gained by employing this technique to elucidate aphid 
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probing behaviour during both acquisition and inoculation (Collar et al, 1997; Powell, 

2005, Pelletier et al., 2008). It would be of interest to investigate whether the probing 

behaviour of the poor transmitters or non-transmitters changes if they are forced to 

switch to different host plants. 

 

Host plant effects on aphid vectoring ability are normally hidden because it is a 

common practice to maintain aphids on a host plant immune to the virus under study 

(Matthews, 1991). My results agree with this general rule, as virus transmission from 

both virus sources (potato and tobacco) was comparable when the aphid culture was 

maintained on oilseed rape, which is immune to infection by PVY. However, this 

change between hosts may change aphid feeding behaviour or create variation in the 

biochemistry of the virus particles and their attachment sites on aphid stylets in a way 

which may increase or inhibit attachment depending on the host plants under study (E. 

Jacquot, INRA, France, personal communication 2010). It may be better to use the same 

type of plant for both virus and aphid maintenance to rule out any possible impact of the 

host plant on the transmission efficiency of aphids. However, care should be taken to 

ensure that plants used for aphid rearing are not infected with the virus under study or 

with any other plant virus which may compete with the studied virus.  

 

It has been argued that rearing aphids on unrelated plants will increase their ability to 

transmit non-persistent viruses because the shock of changing host may induce changes 

in probing behaviour (Matthews, 1991). This could be the reason for high transmission 

efficiency of M. persicae in vectoring PVY compared with other PVY vectors (Table 

1.3) since M.persicae has a wide range of natural hosts. Host plant effects have been 

reported for M. euphorbiae which did not transmit PVY when potato cv. Russet 

Burbank was used as the source and test plant. However, this aphid species transmitted 

the virus when N. tabacum cv. Samsun was used as the source and recipient plant 

(Singh and Boiteau, 1984). In addition, Perez et al. (1995) found that D. noxia which 

was reared on wheat did not transmit PVY (pepper isolate) from tobacco to either 

tobacco or pepper, whereas it transmitted the virus to both test plants when the source 

was pepper. In contrast, D. noxia reared on pepper was able to transmit the virus 

irrespective of the combination of the source and test plants. Furthermore, Van Hoof 

(1980) reported that tobacco is not a suitable host for R. padi to acquire PVYN. Effects 

of the host plant from which aphids originate are likely to be very important in field 

conditions, and this is particularly critical for some aphid species which has wide range 
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of plant hosts. M. persicae, for example, colonizes plants belonging to more than 40 

plant families (Blackman and Devonshire, 1978), and so changes in the plant host are 

likely to cause changes in the aphid’s ability to vector different plant viruses. 

 

4.4.2. Recipient plant effects 

 

The effect of the recipient plant on virus inoculation is very important when assessing 

the REF values for aphid vectors. REFs were first introduced by Van Harten (1983) and 

are currently being applied widely to assess the ability of different aphid species to 

transmit particular viruses and for predicting virus pressure in the field. The use of REF 

is very common in epidemiological studies of PVY in the field. It is used together with 

information on virus vector species caught in traps in order to estimate the timing of 

chemical applications or haulm destruction. The results in this Chapter demonstrate that 

although tobacco was a poor virus source for aphids maintained on potato, tobacco was 

infected more readily by aphids than potato whether potato or tobacco were used to rear 

aphids or as a virus source . The bait plant system which is used to assess virus levels in 

the field routinely employs tobacco to check whether live captured aphids carry virus 

(Harrington and Gibson, 1989). Also, experiments to estimate the vectoring ability of 

laboratory raised aphids after feeding on potato as virus source employ further transfer 

to tobacco (De Bokx and Piron, 1990; Sigvald, 1984; Van Hoof, 1980). Recently, a new 

system has been introduced to determine REFs for aphid vectors of PVY. This system is 

based on using P. floridana as a recipient plant after allowing aphids reared on 

laboratory host plants to acquire virus from potato (Verbeek et al., 2010). In view of my 

findings about the effect of the recipient plant, a bait plant system that involves using 

indicator plants (tobacco or physalis) may not be accurate in assessing the aphid’s 

vectoring ability as assessment is based upon acquisition from the natural host and 

transmission to indicator hosts, whereas in the field both acquisition and inoculation 

normally occur on the natural host. Thus, in order to be more accurate, such systems 

should use potato as both the virus source and the test plant to avoid overestimation or 

underestimation of the virus risk in the field. 

 

In addition to affecting the assigned REF values for aphid vectors, and possible errors in 

estimation of the potential virus risk in the field, the recipient plant effect may be 

utilized. This would be possible in countries where tobacco can be grown, as this plant 
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could be used as a trap plant on field edges to deplete aphid charge of the virus. 

However, the trap plants should be disposed of regularly, for example weekly, to 

prevent aphids from acquiring virus from them. Moreover, the effect of tobacco in 

increasing vectoring ability of aphids when they are maintained on tobacco and acquired 

from tobacco may have an important epidemiological impact on virus transmission in 

the field. This is true in places like in the Mediterranean, where tobacco fields are 

located next to potato crops, so that the possibility of virus transmission from tobacco to 

potato crops is high. 

 

 

4.4.3. Searching the literature for host effects on aphid vectoring ability 

 

As explained earlier in this chapter, any host plant effect is normally hidden because 

large numbers of aphids are normally used to perform aphid transmission experiments, 

and because the common practice is to maintain aphids on an unrelated host plant that is 

immune to the virus under study. Information was gathered from the literature about 

host plants used to rear aphids (M. persicae) or to be used as virus source and test 

plants. Data are presented in Table 4.3 and are in agreement with the general rule 

reported by Matthews (1991) that virologists used to rear aphids on a plant which is 

immune for PVY and to acquire the virus from tobacco. 

 

A survey of the literature revealed a wide range of efficiencies of PVY transmission by 

M. persicae. Transmission efficiency ranged between 26% and 75% depending on the 

experimental conditions. However, all experiments used the standard method of rearing 

aphids on virus-immune plants, particularly brassica species. Table 4.3 presents a list of 

published experiments performed on PVY to date. It is evident from the table that no 

study has ever investigated the difference between potato and tobacco as virus sources 

after maintaining aphids on potato or tobacco. The majority of the studies used brassica 

species to rear the aphids, and tobacco as the virus source and test plants, and 

transmissibility was within the range (40–80%) depending on the number of individual 

aphids used per plant, the aphid clone used, the virus strain, the virus source and 

recipient plants, the AAP, and many other minor variables in experimental conditions. 
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The host effect on aphid vectoring ability of plant viruses may be specific to M. 

persicae. Orlob (1962) reared M. euphorbiae on potato, and then aphids were allowed 

to acquire PVY from tobacco cv. White Burley. Aphids reared under these conditions 

transmitted virus efficiently to tobacco, which is different from the findings with M. 

persicae in the present study. In agreement with Bradley and Rideout (1953), Orlob 

(1962) found that A. solani transmitted PVY inefficiently. However, this low efficiency 

may be attributed to the host plant effect on aphid vectoring ability as both authors 

reared aphids on potato and acquired from tobacco.
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REF* Aphid host Virus 
Source 

Virus 
Recipient AAP/min Aphids/ 

plant 

 
T. E% 

 
 

1 Radish, 
Turnip Tobacco Tobacco  

2.5 
 

1 34 –55% 

2 
 Potato Tobacco Tobacco 2 1 55% 

3 
 Turnip Tobacco Tobacco 1 N/A 50 % 

4 Oilseed rape Tobacco Tobacco 1 5 67.5% 

5 Radish, 
Pepper Potato Tobacco 3–10 

 
3 36–41% 

6 Chinese cabbage Potato 
 Potato 2 

 5 40% 

7 N/A Potato 
 Tobacco 3–10 

 
5 50% 

8 Trapped aphids No AAP Pepper No AAP  6.3% 

9 Trapped aphids Potato 
PVYN Potato 0.5 1 71% 

10 N/A Tobacco Tobacco 2 
 1 65% 

11 Trapped aphids No AAP Tobacco No AAP  4.6% 

12 Potato Potato Potato 0.75–1 
 

1 51% 

13 Oilseed Rape Potato 
 Potato N/A  26% 

14 Chinese cabbage Tobacco 
 Tobacco 5 

 1 37% 

15 Trapped aphids No AAP Tobacco No AAP N/A 8.4% 

16 Trapped  aphids Potato Potato 0.2 
 1 51% 

17 Potato Tobacco Tobacco N/A N/A NA 

18 Potato Potato 
 Potato 0.15–1 

 
1 7.2% 

19 Chinese cabbage Tobacco Tobacco 3–10 
 

1 33–37% 

Tobacco Tobacco 50% 

Tobacco Pepper 66. % 

Pepper Tobacco 66.6% 
20 Pepper 

 

Pepper Pepper 

5 
 5 

75% 

21 Chinese cabbage Potato P. floridana 2.5 1 34–38% 
Table 4.3. Differences in M. persicae transmission efficiency of PVY reported by 
different authors following transmission experiments under different conditions. 

*REF: Reference. 1: Watson and Roberts (1939), 2: Bradley and Rideout (1953), 3: Bradley (1959), 4: 
Bradley (1962), 5: De Bokx. (1977), 6: Kostiw (1979), 7: Van Hoof (1980), 8: Raccah et al. (1985), 9: 
Piron (1986), 10: Katis et al. (1986), 11: Harrington et al. (1986), 12: Singh and Boiteau (1984), 13: 
Sigvald (1984), 14: Gibson et al. (1988), 15: Harrington and Gibson (1989), 16: de Bokx and Piron 
(1990), 17: Boiteau et al. (1998), 18: Halbert et al. (2003), 19: Kanavaki et al. (2006), 20: Perez et al. 
(1995), 21: Verbeek et al. (2010). T.E: % transmission efficiency. AAP: Acquisition access period, N/A: 
Not applicable.   
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4.4.4. The reason: behavioural or molecular? 

 

Although host adaptation does influence transmission, other factors may be involved. 

All current information conclude that aphid transmission of non-circulative viruses 

involves biological interactions between different components of the virus and the 

vector, and more recently there is evidence that a plant component is involved in the 

transmission of Cauliflower mosaic virus (CaMV) (Martinière et al., 2009). This 

biological interaction requires certain conditions, and these conditions should be 

comparable between the virus and the aphid receptors in order for the transmission to 

happen. 

 

Whether probing activity controlled by host plant preference is the only reason for host 

plant effects on aphid vectoring ability needs to be confirmed. In this transmission 

experiments, the effect of host plant preference was minimized by using aphids that 

were observed to be probing at the end of the AAP. However, in order to rule out any 

host preference effect completely, acquisition should be performed with single aphids 

and by monitoring the stylet during the whole time of the AAP. Alternatively, the EPG 

technique should be utilized to monitor aphid stylet probing behaviour for aphids that 

originated on different hosts.  

 

It was reported that sinigrin produced by Brassicaceae species can inhibit virus 

transmission by aphid species that do not colonize these plants, but stimulated uptake by 

aphids that feed normally on plants containing sinigrin (Nault and Styer, 1972). 

Nicotine or other tobacco substances may have similar effects; as tobacco is not a 

favoured host for M. persicae virus uptake from tobacco will be inhibited, but when 

aphids are reared on tobacco, acclimation to this host occurs rapidly, so that virus is 

acquired readily. If this hypothesis is true, such substances may be useful in controlling 

plant viruses if they are identified and the active component is isolated.  

 

4.4.5. PVY-L Adaptation 

Adaptation of plant viruses after serial passages through host plants is a well 

documented phenomenon in the literature (reviewed by: Yarwood, 1979; Garcia-Arenal 

et al., 2001). Similarly, the greater ability of the PVY-L isolate to multiply in tobacco 

http://www.springerlink.com/index/V2T7X4086T63204X.pdf
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may be explained in the same way.  Sequencing results confirmed at the molecular level 

the identity in the KITC and the DAG regions of the HC-Pro and coat proteins 

belonging to both isolates and with published sequences.   

 

The low concentration of PVY-L in potato may reflect the adaptation of this isolate to 

multiply on tobacco after many years of passages in this host. However, such adaptation 

may have happened after many cycles of mechanical passage through tobacco as no 

such effect of the host plant on virus accumulation was observed after two years (Fig. 

4.9). In addition, this adaptation seems to be irreversible as there was no increase in 

virus accumulation in potato after successive inoculation of PVY-L to potato. 

Moreover, PVY-L was not maintained after 4-5 passages into potato. This result 

suggests that there may be other changes in the PVY genome away from the sequenced 

regions, possibly in the Nib gene responsible for virus multiplication as reported to 

happen in PPV (Wallis et al., 2007). In the future, it will be interesting to investigate 

whether any of these substitutions are responsible for limiting virus multiplication or 

cell to cell movement in potato, as they apparently had no impact on the aphid 

transmissibility of PVY-L when acquired from tobacco provided that aphids were 

reared on tobacco or other hosts other than potato. 
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Chapter 5. Retention of Potato virus Y inside Vector 

Aphids: Implications for the Mechanism of Transmission  
 

 

5.1. Introduction 
 

Some determinants of the molecular mechanisms which mediate the transmission of 

non-persistent plant viruses are still unclear. Early studies concluded that viruses 

originally classified as being transmitted in the non-persistent manner were lost 

shortly after the vector aphid fed on a healthy plant for different periods of time 

(Watson and Roberts, 1939; Bradley, 1959). The concept of short retention of non-

persistent viruses inside their vectors has remained unchallenged since then (Pirone 

and Harris, 1977; Pirone and Blanc, 1996; Ng and Falk, 2006). At that early date there 

were no molecular biology techniques to enable researchers to investigate clearly 

what happens to the virus after it was acquired by the vector. Serological methods 

were also unavailable at that early stage and their application was limited to some 

important viruses after that. Thus in most experiments, visual symptom induction in 

test plants was the only method used for virus detection. The question which arises is- 

Is it really true that non-persistent viruses are lost rapidly from their aphid vectors 

after they have fed on a healthy plant? 

 

Electron microscopy studies showed that when aphids acquire transmissible 

combinations of HC-Pro and potyvirus particles, virions are retained within the 

maxillary stylets (Berger and Pirone, 1986) and potyvirus helper component (HC-Pro) 

mediated adherence to the cuticular lining of the food canal (Ammar et al., 1994; 

Wang et al., 1996). The electrical penetration graph (EPG) technique (Tjallingii, 

1978), monitors insect probing behaviour on the basis of the associated changes in 

electrical signals (potential drop) during different phases of probing and feeding. EPG 

was widely applied to study the mechanism of non-persistent virus transmission by 

aphids. The uptake of virions occurs when the maxillary stylet tip punctures the 

plasma membrane of an epidermal cell (Lopez-Abella et al., 1988; Powell, 1991), and 

further studies confirmed that specific subphases in the potential drop are associated 

with the acquisition and inoculation of Cucumber mosaic virus (CMV) and PVY 
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(Martin et al., 1997). Moreover, the volume of sap ingested by aphids was found to 

correlate with the length of the intercellular stylet puncture, which may increase the 

probability of virus acquisition (Powell et al., 1995; Collar et al., 1997). Collar and 

Fereres (1998) reported that subphase II-3 of the potential drop related to virus 

acquisition is variable and is longer during the first intercellular stylet puncture. On 

the other hand, subphase II-1 is short and unique during different interacellular stylet 

punctures. Powell (2005) determined that virus inoculation is associated with the first 

intracellular activity (subphase II-1 of the potential drop) following maxillary 

puncture of an epidermal cell which is associated with active injection of saliva 

directly into the cytoplasm. 

 

Regardless of the mechanism of transmission, there is general agreement among 

virologists about the retention time of the virus inside its vector. The majority of the 

literature about aphid-borne viruses concludes that non-persistent viruses are lost 

shortly after the aphid has fed on a healthy plant. There are very few reports about the 

likelihood of longer retention time of non-persistent viruses. Examples include, Van 

Hoof (1980) who reported that PVYN was retained for 4 and 8 hours in M. persicae 

and P. humuli respectively. Winged forms of A. nasturtii remained viruliferous up to 

17 hours after acquisition (Kostiw, 1975). In addition, Heinze (1959) found that M. 

persicae immobilized at -1°C for 6 days after PVY acquisition were still able to 

transmit virus once restored to room temperature (Zeyen and Berger, 1990). Similarly, 

Bradley (1959) found that viruliferous aphids that probed glass lost acquired PVY less 

frequently than those allowed to probe on plant tissue. 

 

In this chapter, PVYO was detected inside an aphid vector up to two weeks after 

acquisition and successive feeding on healthy plants. However, the virus was not 

transmissible. Aphid vectors were dissected to investigate where the virus had 

accumulated, and the quantity of virus inside the aphid was estimated and compared 

with other reports about the virus charge required for an aphid vector to initiate an 

infection. This new observation is discussed with respect to virus transmission 

mechanisms and new insights about virus transmission were proposed. 
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5.2. Materials and methods 
 

5.2.1. Aphid transmission 

 

Information on aphid handling and virus transmission is presented in Chapter 2. All 

aphids used in these experiments were apterous M. persicae at 3–4 instar stage; aphid 

colonies were reared on potato in clear perspex cages (35x40x45 cm) as mentioned in 

Chapter 2.  

Unless otherwise stated, all aphids used were starved for 2–3 h in groups of 10 in 1.5 

ml microcentrifuge plastic tubes.  

The PVY source was a detached leaf taken from 3–4 week infected potato plants 

showing fully developed virus symptoms and infection was confirmed by ELISA. 

  

5.2.2. Aphid dissection 

 

In this experiment, aphids acquired virus from an infected potato leaf during a 5 min 

acquisition access period (AAP). Aphids were then transferred to fresh healthy plants 

on a daily basis without having access to a virus source then tested for virus by N-RT-

PCR after dissection. 

For dissection, aphids were anaesthetized using CO2 then mini-forceps were used to 

release the stylet from the bundle under suitable magnification (Zeiss microscope). 

Each aphid was dissected to separate the head from the body or stylet from the rest of 

the body on a clean filter paper. To decrease the potential of contamination between 

different aphids, forceps were rinsed successively in four dilutions of hypochlorite 

disinfectant solution (2.5 % Chloros) after each dissection, with a final rinse in SDW. 

 

5.2.3. PVY preparations 

 

PVY particles were purified and quantified as described in Chapter 2, and then the 

virus preparation (1.5 µg /μl)   was diluted using Sorensen's phosphate buffer, pH 7.5–

8.0 (Chapter 2). Five- and ten-fold dilutions were prepared and virus presence in the 

diluted samples was investigated using biological assay, ELISA, RT-PCR, and N-RT-

PCR. 
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5.2.4. Virus detection  

  

ELISA of test plants, or RT-PCR, and N-RT-PCR of aphids and the primers used are 

as described in the Chapter 2. For N-RT-PCR, the primers used were Singh S0, Singh 

AS480 for the first round and Malloch F, Malloch R for the second round. For RT-

PCR, primers Singh S0 and Singh AS480 were used (Table 2.3). RNA extracted from 

either infected leaf plants or viruliferous aphids were used as a positive control 

template for RT-PCR or N-PRT-PCR. For negative control, RNA extracted from 

either healthy plant leaves or from non-viruliferous aphids was used. Plants were 

either tested by ELISA or inspected by visual symptoms to test virus infection. 

 

5.2.5. Successive feeding experiments 

 

In these experiments aphids that had already transmitted PVY were starved 2-3 h, and 

allowed to access the virus source a second time, then transferred to a healthy plant to 

assess their vectoring ability after performing the first transmission. 

 

5.3. Results 

 
5.3.1. Virus retention inside the whole aphid  

 

Aphids were starved in batches of 10 in 1.5 ml microcentrifuge tubes then allowed to 

acquire PVY from infected potato leaves with a 5 min AAP. The aphids were then 

transferred to a healthy tobacco plant and then transferred successively to a fresh plant 

on a daily basis. Ten aphids which were observed to be feeding were collected after 1, 

2, 7, and 14 transfers (days) of feeding on successive healthy plants. The collected 

aphids were tested by nested RT-PCR for PVY (Fig. 5.1), and two experiments were 

done (replication R1+R2). The results show that virus was detectable in all 10 aphids 

after 7 successive transfers to healthy plants (7days). After 14 transfers (14 days), 

which is the longest period tested, virus was detectable in 9/10(R1) and 10/10 (R2) 

aphids. 
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Using ELISA, only the first tobacco plant (H1) tested virus positive, and all the other 

plants (H2-H14) were found to be virus-free.  

 

Figure 5.1. Experimental design and N-RT-PCR results of PVY detection in 
aphids 1, 2, 7, and 14 days post acquisition of PVY. 
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5.3.2. Retention in different parts of the aphid body 

 

N-RT-PCR was used to investigate virus retention in different parts of the insect 

body. Aphids were fasted in batches of 10 for 2–3 hours, and then allowed a 5 min 

AAP. Aphids which were observed to probe were transferred to healthy tobacco 

plants and kept caged overnight. Aphids were transferred on a daily basis to fresh 

healthy tobacco plants, and simultaneously aphids which had performed virus 

transmission were dissected and either the body separated from the head (B), head and 

the body without stylet (H+B), stylets separated from the rest of the body(S), or 

stylets attached to the head and separated from the rest of the body(S+H) were tested.  

These tests were done once after 1, 4, and 7 successive transfers of viruliferous aphids 

to healthy plants, and 10 individual aphids were dissected for each time point in each 

experiment.  
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Figure 5.2. Retention of PVY in different parts of the aphid body 1, 4, and 7 days 
after acquiring the virus and following daily transfer to healthy tobacco plants.  
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The results show that virus is retained in all parts of the insect body (stylet, head, and 

body), but was detected in fewer aphids after 7 transfers (Fig. 5.2). This finding is 

contrary to the currently accepted view of non-persistent viruses being only stylet-

borne. However, this result may suggest that more than one type of receptor exists in 

the aphid’s body, but only the one located at the tip of the stylets carries transmissible 

virus particles as will be discussed further in the next sections.  

 

5.3.3. Retention of a non-transmissible virus isolate inside aphids 

 

A similar experiment was done using the non-aphid transmissible strain of PVY, 

PVYC. Twenty aphids were fasted in batches of 10. Aphids were allowed to have 5 

min AAP on PVYC infected potato leaf and then kept on healthy plants overnight, and 

10 individual aphids were taken to be tested by N-RT- PCR for virus retention. 

.  

 

 

 
 

Figure 5.3. Detection of non-transmissible PVYC in aphids after acquiring the 
virus and following feeding on healthy tobacco plants for 1day. 

 

The result presented in Fig. 5.3 showed that aphids were also able to retain PVYC, 

which may suggest that the detectable form of the virus is not infectious.  

 

 

 

 

 



 156

5.3.4. Finding the detection limit of the nested RT-PCR technique 

 

Previous experiments showed that aphids were not able to transmit virus detected by 

N-RT-PCR inside their bodies. Possibly because the technique is highly sensitive it 

can detect virus quantity below the limit of infection. It was decided therefore to find 

the detection limit of the N-RT-PCR technique and compare that with available 

information in the literature about the virus quantities required for an aphid vector to 

transmit a potyvirus. Obtained data will be helpful to reveal if the detectable virus was 

not transmissible.    

A 10-fold dilution series of PVY preparation (1.5 µg /μl) was tested by N-RT-PCR 

and RT-PCR and ELISA, and   ten- fold dilutions were tested by inoculation to 

healthy tobacco plants (Table 5.1).  

The results from two experiments revealed that the detection limit of the mechanical 

inoculation method is 0.015 µg /μl compared with 0.00015 µg /μl using ELISA. This 

means that ELISA is approx. 100 times more sensitive than mechanical inoculation. 

The sensitivity of detection was increased by a further factor of 104 times by using 

RT-PCR alone. The lowest detection limit was 0.015 ag/μl by using nested RT-PCR 

(Figs.  5.4 and 5.5)
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10-fold dilutions of 
1.5 µg /μl prep. 

ELISA 
Values 

(Titration) 

ELISA 
Values 
(Plant)±  

RT-PCR N-RT-PCR 

Exp.1 0.88* 0.70* -* -* 
1 

Exp.2 0.91* 0.72* -* -* 
Exp.1 1.05 0.76 + + 

2 
Exp.2 1.08 0.78 + + 
Exp.1 1.12 0.92 + + 

3 
Exp.2 1.15 0.92 + + 
Exp.1 0.74 0.11 + + 

4 
Exp.2 0.73 0.10 + + 
Exp.1 0.24 0.07 + + 

5 
Exp.2 0.23 0.07 + + 
Exp.1 0.10 0.06 + + 

6 
Exp.2 0.11 0.06 + + 
Exp.1 0.07 0.06 + + 

7 
Exp.2 0.08 0.06 + + 
Exp.1 0.06 0.06 + + 

8 
Exp.2 0.07 0.06 + + 
Exp.1 0.06 0.06 + + 

9 
Exp.2 0.06 0.06 + + 
Exp.1 0.06 0.06 + + 

10 
Exp.2 0.06 0.06 + + 
Exp.1 0.06 0.06 - + 

11 
Exp.2 0.06 0.06 - + 
Exp.1 0.06 0.06 - + 

12 
Exp.2 0.06 0.06 - + 

 
Table 5.1. Summary table showing detection limit of PVY using different assays. 

*: Detection of the virus was inhibited or decreased by PCR or ELISA respectively at higher virus 
concentration, +:  virus positive, -: virus negative. 

 
±Plants were mechanically inoculated with PVY virus particles at 1.5–1.5 x10-11  µg /μl in 10-fold dilution 
series that were tested by ELISA. 
Results for dilutions 13-15 were not presented as they were all negatives. 
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        Figure 5.4. Limit of detection of PVY by two RT-PCR techniques. 
 
Panel A: titration of PVY prep by N-RT-PCR, panel B: titration of PVY prep using RT-PCR, M: DNA 
marker, 1-13: 10-fold dilution series, + positive control. 
* Results for samples 14-15 were not presented as they were all negative. 
 
 
It is clear from Fig. 5.4 that the N-RT-PCR method (panel A) is about 1000 times more 

sensitive than the standard RT-PCR method (panel B). However, while RT-PCR 

showed a decreasing quantity of PCR product with virus law concentration in the tested 

sample, the N-RT-PCR method gave bands of similar quantity in each sample. With 

both techniques PCR reaction was inhibited when the sample contained a high virus 

concentration, as can be seen from the results of the first dilution. 
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Figure 5.5. Summary diagram showing the sensitivity of different detection 

methods in measuring the quantities of purified PVY particles. 
 

 

 

 

5.3.5. Investigation of the ability of aphids to acquire and transmit PVY more than 
once. 
 
Interference between different plant viruses with respect to their vector transmission 

ability was reported by Katis et al. (1986). In contrast, interference between particles of 

the same virus affecting vector efficiency has not been reported. In fact, Watson (1936) 

observed a small decrease in efficiency after successive transmission of virus by aphids. 

The interpretation was that either (1) the aphids (M. persicae) lost their appetite to feed 

on tobacco, which is not a favourable host, or (2) aphids were mechanically damaged 

after successive transmission, and (3) the aging of aphids after successive transmissions 

may affect their ability to transmit virus. Watson’s experiments on aphid transmission 

were carried out on hyoscyamus virus 3 which considered sharing the same 

transmission properties as PVY. However, Hyoscyamus virus 3 was not found in the 

ICTV taxonomic index as a member of the Potyviridae or other virus families which 

may suggest that this virus has been lost or renamed.   
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Experiments were done to examine the effect on transmission efficiency by aphids that 

had already transmitted PVY; the experimental plan is illustrated in Fig.5.6. Aphids 

were reared on healthy potato plants then fasted 2–3 h and allowed 5 min AAP to 

acquire virus from infected leaf for 5 min. A prolonged access period was tested by 

allowing aphids which had been reared on healthy potato plants to have access to a virus 

infected source for overnight (16–18h) AAP and then they were transferred to healthy 

tobacco plants for 16–18 h IAP.Then aphids were individually numbered and fasted 2–3 

h and allowed an AAP of 5 min to infected virus source and then transferred to healthy 

tobacco plants. In addition, the transmission behaviour of aphids were tested after 

continuous access (1–2 weeks) to virus source, then aphids were fasted 2–3 h and were 

given 5 min AAP to virus source and transferred to healthy tobacco plants, then fasted 

for 2–3 h and allowed to acquire virus for a second time then transferred to healthy 

tobacco plants.  
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Figure 5.6. An outline of the successive transmission experiments using single 
aphid. 

 

 

 

5.3.5.1. Transmission efficiency after brief acquisition period (5min) 

 

In this study, experiments to test the effect of successive transmission on aphid 

vectoring ability were performed initially by using 5 aphids per test plant. The 

transmission rate achieved ranged between 70–90%. There was a slight decrease in 
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aphid transmission ability at the second transmission to between 60 and 80% (Table 

5.2), but the difference was not significant. 

 

Experiment First transmission% Second transmission% 

Exp. 1 70* 60 
Exp. 2 80 70 
Exp. 3 90 80 

Average 80 % 70 % 
 
Table 5.2. Transmission of PVY by aphids in successive transmissions experiments 

using 5 aphids/plant. 
 

 *Percent plants infected with PVY 
Five aphids per plant were used to perform transmission. Aphids were fasted for 2–3 h and allowed to 
acquire virus for 5 min AAP, then allowed an overnight TAP, then the same aphids were fasted for 2–3 h, 
allowed to acquire virus again for 5min AAP, and 16-18h TAP. The difference was not significant 
according to Chi-square test. 
 
 
The results in table 5.2 show that aphids transmitted virus the second time as efficiently 

as in the first transmission. However, this result is based on using 5 aphids per plant, 

which may mask any effect due to difference among individual aphids (Gibson et al., 

1988). For this reason, single aphids were used in the following experiments. The 

results in table 5.3) indicate that aphids which infected a plant in the first transmission 

were less likely to do so in the second transmission and vice versa. This result does not 

support Watson’s observations about the capacity of a single aphid to acquire the virus 

twice or three times in successive acquisition and transmission tests. However, this may 

be explained by the fact that she used a different virus. 

 
 

Experiment 
 

First Transmission Second transmission 

Exp. 1 4, 8 6, 2 
Exp. 2 1, 6, 10 3, 8 
Exp. 3 1, 6, 7, 8 1, 5, 3 

Average transmission 
efficiency 30 % 23.3 % 

 
Table 5.3. Variation in ability of aphids to transmit PVY in successive virus 

transmissions using 1aphid/plant and brief AAP. 
  
Aphids were individually numbered 1-10 and the number of the aphid that transmitted the virus in the 
first or the second transmission is shown. 
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5.3.5.2. Transmission efficiency after prolonged (16–18h) or continuous (1–2 
weeks) acquisition periods 
 

Further investigations into the effect of virus acquisition access time on successive 

acquisition and transmission of the same virus species were conducted. First, the 

aphid’s capacity to acquire the virus after being kept overnight (16–18h) on a virus 

source was investigated. In these experiments, the aphids were fasted for 2–3 h, kept 16-

18h on detached virus-infected leaves, then transferred to healthy plants overnight and 

fasted for 2–3 h to perform a second acquisition for 5 min before being transferred to 

healthy tobacco test plants.  

The results (Table 5.4) show that few of the aphids which were kept 16–18 h on PVY 

infected source and succeeded in transmitting the virus and only a few did so when they 

were given a second AAP of 5 min. However, the results are in agreement with the 

previous experiment that all aphids which transmitted virus in the first transmission 

after 5 min AAP failed to transmit after a second 5min AAP. Moreover the average 

transmission rate dropped from 23–30% (Table 5.3) to about 6.5% or 16.5% when the 

acquisition period was prolonged to overnight and followed by the first and second 

transmission opportunity, respectively (Table 5.4). 

Experiment 
 

 
First Transmission 

 
Second transmission 

Exp. 1 1 6, 8 
Exp. 2 - 3, 5 
Exp. 3 2 10 

Average transmission 
efficiency % 6.6 % 16.6% 

 
Table 5.4. Variation in ability of aphids to transmit PVY in successive transmission 

opportunities after a prolonged AAP for 16–18h. 
 
Aphids were individually numbered 1–10 and the number of the aphid that transmitted the virus in the 
first or the second transmission is shown. 
 

 

Similar results were obtained when the aphids were reared continuously on potato 

leaves infected with PVY.  In agreement with the previous experiments, the majority of 

aphids which were able to transmit after this continuous access period failed to transmit 

the second time (Table 5.5).  
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Experiments 
 

First transmission 
 

Second transmission 
 

Exp. 1 1, 5 6, 8 
Exp. 2 2, 9 3, 5 
Exp. 3 1, 2, 8 2 

Average transmission 
efficiency % 23.3 % 16.6 % 

 
Table 5.5. Variation in the ability of aphids to transmit PVY in successive 

transmission opportunities after a continuous AAP. 
 

Aphids were individually numbered 1-10 and the number of the aphid that transmitted the virus in the 
first or the second transmission is shown. 
 

 

Transmission rate decreased considerably after this continuous association between the 

virus and the aphids.  
 

5.3.5.3. Transmission effect after acquisition of other potyviruses 

  

PVA is another potyvirus which has similar morphological and molecular properties to 

PVY. In the following experiments aphids which had performed PVY transmission 

were given 5 min access to PVA and compared with aphids allowed to acquire PVA 

directly. Five aphids/plant were used. The aphids were treated the same as in PVY 

experiments in terms of fasting and acquisition. The experiment was repeated and 10 

plants were used in each experiment.  

 

% Virus Transmission  
Experiment 
 

PVY then 
PVA 

 

PVY over-
night then 

PVA 

PVY only 
 

PVA only 
 

Exp. 1 30% 40% 80% 70% 
Exp. 2 40% 50% 70% 50% 
average 35% 45% 75% 60% 

 
Table 5.6. Percent plants that became virus infected by aphids that had previously 

been exposed to potyvirus. 
 
Ten plants were used for each experiment, and transmission was carried out using 5 aphids per plant. 
PVA transmission was performed by allowing fasted aphids 5 min AAP, and 16–18h IAP. ELISA was 
used to detect PVY and PVA. 
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The results summarized in Table 5.6 show that the group of aphids which transmitted 

PVY transmitted PVA less efficiently (35%) from potato to tobacco than did the aphids 

which were allowed access to PVA only (60%). 

 

5.4. Discussion 

 
The mechanism of non-persistent transmission of plant viruses by their aphid vectors 

has been studied extensively by plant virologists. However, these studies have focused 

on one component of the transmission process (the virus) with less investigation of the 

other components (vector, plant) in the virus–plant–vector complex. In order to 

understand the role of the aphid vector in the molecular mechanisms of transmission, 

better information about all components should be available. In Chapter 3, the possible 

identification of some aphid receptor proteins involved in virus particle recognition and 

acquisition was discussed, and the effect of the host plant on the aphid transmission 

process was investigated in Chapter 4. Early studies reported that potyviruses are lost 

from their aphid vector within a relatively short time depending on the conditions. For 

example, Hashiba and Misawa (1969b) used electron microscopy and found that virus-

like particles of Bean yellow mosaic virus (BYMV) were visible at the tip of the aphid 

stylet, and that virus particles were released from the aphids after they were observed to 

probe when confined in a glass vial for a period of time. The transmission efficiency of 

those aphids which were observed to probe the glass decreased by half compared with 

aphids that did not probe. Hashiba and Misawa (1969b) suggested that the most credible 

hypothesis for inoculation of non-persistent viruses is that virions are released from the 

stylet tips by salivation. This is possible because, although the salivary canal remains 

distinctly separate from the food canal for almost the entire length of the aphid stylet 

bundle, the two canals converge 2–4 µm from the tips (Forbes, 1969, 1977). At the point 

of convergence, the maxillary stylets form an enclosed common duct (Kimmins, 1986) 

where mixing of food and salivary canal contents may occur. Ingested virions adhering 

to the cuticular lining of the common duct may therefore be flushed out during saliva 

secretion into the plant, providing an ‘ingestion–salivation’ hypothesis for transmission 

(Martin et al., 1997). According to the ingestion–salivation theory, the virus should be 

flushed out of the retention sites in the common duct shortly after viruliferous aphids 

feed on a healthy plant. 
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In this Chapter, a sensitive nested RT-PCR technique was used to confirm that PVY is 

retained in the aphid after feeding on healthy plants. Virus RNA was detected within the 

aphid body (S, S+H, B+H, B) even after 14 successive transfers to healthy plants, but 

only the first plant became infected. In addition, the aphid non-transmissible strain of 

PVY (PVYC) was detected inside aphids after feeding for 1 day on healthy plants. It 

was found from successive virus transmissions, that an aphid vector became less able to 

acquire virus for a second time, and this result was the same whether aphids were taken 

from a healthy plant or allowed to access virus source for 16–18 h or 1–2 weeks before 

being starved and given 5 min AAP to infected virus source. This finding may indicate 

that, successful virus acquisition and transmission may lead to blocking of the virus 

receptors inside aphid vector and thereby decreasing by that the chance for successive 

virus transmission. 

 

A specific number of virus particles must be introduced by a vector into a host plant in 

order to initiate infection by a particular virus. If the number of virus particles falls 

below this threshold an infection will not occur. It was assumed that the virus content 

inside an aphid after feeding on a healthy plant becomes too low to be infectious. 

However, due to the extreme sensitivity of the N-RT-PCR technique being used, it was 

found that such aphids tested positive for viral RNA. Potyviruses were reported to be 

aphid transmissible when the acquired virus was in the femtogram range, which is equal 

to a few thousand virus particles (Pirone and Thornbury, 1988).  My results suggest that 

the N-RT-PCR technique can detect virus quantities in the attogram range, which are 

only a few virus particles and 1000 times less than the threshold reported by Pirone and 

Thornbury (1988) which means that the virus detected by the N-RT-PCR inside the 

aphid is less than the infection limit. However, more recently it was reported that 

approx. 1–3 virus particles (attogram range)  were enough for an aphid to initiate an 

infection with PVY (Moury et al., 2007), and a comparable result was reported by 

Moreno et al. (2009). The threshold reported by Moury et al. (2007) is similar to that 

detected by the N-RT-PCR technique which was used in this study. On balance, these 

reports suggest that the aphids are carrying sufficient virus to initiate an infection, but 

the virus was not transmissible. A possible reason could be because it was no longer 

present on the tip of the stylets and inaccessible to being flushed out during salivation.  
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5.4.1. Conformational/bridging effect of HC-Pro 

 

The DAG motif located near the N-terminus of the potyvirus coat protein was reported 

to be involved in the interaction with HC-Pro to initiate aphid transmission of 

potyviruses (Harrison and Robinson 1988; Lopez-Moya et al., 1999). Shukla et al. 

(1988) found that trypsin digestion of potyvirus particles remove the N-terminus but the 

treated virus particles are still infectious by mechanical inoculation. Therefore, it is 

possible that aphid saliva, which is speculated to contain trypsin activity, may cause 

breakage of the attachment between virus particles and putative receptors on the aphid 

mouthparts by removing of the the DAG motif and releasing virus particles with the 

flushed out saliva. 

This hypothesis is compatible with both the bridge hypothesis and the conformational 

change hypothesis. Moreover, it may explain the decrease in transmission efficiency of 

the virus by aphids between 1 and 10 min or after an overnight acquisition access 

period. Releasing virus particles from their attachment sites by cleaving the DAG motif 

with aphid saliva can possibly lead to leaving some part of the transmission components 

(HC-Pro according to bridge hypothesis and N-terminus of CP with the DAG motif 

according to the conformational change hypothesis) attached to the receptor site and 

blocking by that attachment of other virus particles. 

As indicated above, this proposal is in agreement with the bridge hypothesis. However, 

it is more in favour of the direct binding hypothesis which states that interaction 

between the viral HC-Pro and the DAG motif on the coat protein initiates a 

conformational change in the coat protein. As a result, direct binding between virus 

particles and the aphid’s receptors on the stylet occurs. This hypothesis is supported by 

the work of Salomon and Bernardi (1995), who were able to block aphid transmission 

of Maize dwarf mosaic virus (MDMV) after feeding aphids on the N-terminal part of 

the virus CP expressed in bacteria, which suggests that this peptide can compete with 

the virus particles and block the receptor sites on the aphid’s stylet. In addition this 

hypothesis is supported by long retention of virus inside aphid vector which may be a 

result of releasing the infectious virus particles by trypsin and keeping the DAG with 

the N-terminus part of the CP attached to the aphid receptors. 
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5.4.2. Blocking of aphid’s receptors 

 

The putative interaction between aphid proteins and virus particles, like any other 

biological protein-protein interaction, should be controlled by the kinetics of the 

biochemical reaction. It can be speculated that the interaction between virus particles 

and aphid receptors which is mediated by the helper component protein of the virus is 

very weak during the first while of attachment, thus acquired virus can be inoculated by 

flushed out saliva. 

 

Virus + receptor            virus-receptor complex (two-way reversible binding) 

 

 However, the interaction starts to become stronger over time until it becomes 

irreversible after a certain time when the aphid’s ability to inoculate the virus is lost. 

This possibly happens after 1–2 h after aphids acquire PVY under normal acquisition 

conditions. The interaction stops and the virus bind very tightly (irreversibly) to the 

aphid receptors. The aphids therefore will no longer be able to infect healthy plants, but 

they can be detected by N-RT-PCR. Moreover, these defective virus particles attached 

to aphid mouthparts may block virus receptor sites decreasing by that the chance for 

aphids to acquire virus again after they transmitted and given an access to virus source 

again. In support of this hypothesis, Katis et al. (1986) found that PVYO transmission 

by aphids decreased when the aphids were allowed to access a PVYN infected plant 

first. Moreover, it has also been reported that aphids which transmit the first time do not 

necessarily transmit a second time when they were given another AAP and transferred 

to healthy plants, and those that did not transmit virus the first time are more likely to 

transmit PVY in the second transmission (Gibson et al., 1988). 

 

Data presented in tables 5.2 to 5.6 about the effect of successive transmission of virus 

on aphids vectoring ability are preliminary. Validation of such results would require 

conducting successive transmission experiments using a large number of replications to 

confirm the findings that once an aphid has acquired the virus, its ability to transmit 

again is decreased or inhibited. 
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5.4.3. Primary and secondary aphid’s receptors 

 

In my opinion, the existence of two types of aphid receptors can be proposed, and these 

can be termed primary and secondary receptors. Primary receptors are probably located 

at the tip of the stylet, and the interaction between these receptors and virus is proposed 

to be very weak and short. In addition, this interaction may be sensitive to plant sap 

materials and aphid inhibitory enzymes. This kind of receptor is speculated to be 

important for virus transmission, and the interaction is probably controlled by the virus 

HC-Pro and is suspected to be dominant in both directions (reversible) all the time. 

 

Virus + receptor            virus-receptor complex       (two-way reversible binding) 

 

On the other hand, the secondary receptors are not important in virus transmission 

because interaction is suspected to be irreversible all the time due to the direct 

attachment of virus particles non-specifically to any cuticle protein inside the aphid 

digestive system which may disable the virus particles by preventing them to release. 

This hypothesis is in agreement with the observations about the retention of the virus 

inside the body, but detecting the virus in dissected stylets disagrees with the proposed 

nature of a weak interaction between the primary receptors on the stylet and the virus 

particles via the HC-Pro bridge. However, detection of the virus in the stylet can be 

explained by the possible contamination from the secondary receptors when the stylet is 

removed from the stylet bundle. Detecting virus inside the body (without the head) 

suggests that the proposed secondary receptors might exist anywhere in the cuticle 

proteins embedded inside the insect body. In addition, detection of HC-Pro defective 

PVY (PVYC) long time after acquisition may suggest that PVYC is possibly retained on 

the secondary receptors and not on the tip of the aphid stylet.  

 

In conclusion, the newly-observed long retention of virus inside aphids can be related to 

one of these factors: (1) the virus becomes inactive due to the binding to specific/non-

specific targets so that it can not be released by aphid saliva; (2) the virus binds directly 

to aphid receptors according to the conformational change hypothesis, or (3) only RNA 

targets were detected inside aphid which is not infectious by itself.  
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Chapter 6. Application of Recombinant Antibody Technology for Plant 

Virus Detection 

 

6.1. Introduction 

 
Serological tests are used in virology laboratories worldwide. Nucleic acid-based 

techniques such as RT-PCR are not as highly applied as ELISA for screening large 

numbers of samples because of the technical and financial difficulties associated with 

RNA extraction and the expense of the reagents. Moreover, for rapid field detection, 

antibody-based kits such as the pocket test developed by FERA for simultaneous 

detection of five of the most important potato viruses are very practical (Hims and Hill, 

2001). However, despite the advantages of antibody-based assays in plant virus 

diagnosis, there are some problems with antibodies produced by conventional methods. 

For example, it is known that the N-terminal amino acids of potyvirus coat proteins are 

surface located, and contain most of the antigenic epitopes (Shukla et al., 1988). 

Degradation of the N-terminus of viral coat proteins of the potyvirus group after 

purification is common, and this problem is common also in Beet necrotic yellow vein 

virus (BNYVV) during storage of sugar beet (Uhde et al., 2000). Immunization against 

these degraded antigens may lead to production of less specific but more effective 

antibodies particularly when monoclonal antibodies are raised for specific epitopes in 

the coat protein.  In addition to that, some viruses are very difficult to purify because of 

their low concentration, such as Potato leafroll virus (PLRV) (Barker, 1994), or 

instability, such as Potato mop-top virus (PMTV) (Cerovská et al. 2003). Some virus 

particles, such as BNYVV, aggregate with plant cell materials (Griep et al., 1999), and 

immunization of animals with impure virus preparations can lead to production of 

antibodies to plant components giving non-specific or false positive results (Harper et 

al., 1997). Another disadvantage of producing antibodies by traditional methods is that 

some viruses are weakly immunogenic. For example, it has been difficult to produce 

antibodies by conventional methods to viruses such as Blackcurrant reversion 

association virus (BRAV) (Susi et al., 1998) and Cucumber mosaic virus (CMV) 

(Ziegler et al., 1995).  In addition, it is difficult to standardize or devise uniform tests 

between different laboratories or testing stations when different preparations of antisera 

are used, since antisera produced by different animals vary. In addition, some 

hybridoma lines may die or lose their ability to secrete antibodies after periods of 
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storage in liquid nitrogen. Recombinant antibodies can be used to rescue these lines and 

provide a continuous supply of a particular antibody. Furthermore, statutory licensing is 

required in some countries for immunizing animals, and experience is also required 

when working with animals to ensure their welfare. And in some countries, particularly 

the UK, there is a desire to find alternatives to using animals for research. 

 

With advances in molecular biotechnology and molecular immunology, it has become 

easy to isolate the gene sequences coding for antibodies and insert these genes into 

heterologous expression systems using suitable vectors. After that, it is possible to 

obtain the antibodies as fusion proteins. Therefore recombinant antibody technology has 

emerged in the field of plant viral diagnosis. Phage display is the most common 

technique to select antibody molecules with the required specificity (Hoogenboom et 

al., 1998). The principle of this method relies on displaying a portion of the antibody 

molecule on the minor coat protein P3 of filamentous phage. The antibody gene is large 

and so usually a portion that contains only the binding sites of the whole antibody is 

displayed on the phage surface. The most common format of antibody fragments for 

phage display is the scFv (Fig. 6.l), which contains the variable regions of the heavy and 

light chains of immunoglobulin (McCafferty et al. 1990; Marks et al., 1991). In 

addition, the stability of a phage library produced from displaying scFv is better than 

that of libraries produced from other fragments such as Fab (Hoogenboom et al., 1998). 

Furthermore, it is usual to express functional scFv in bacteria rather than the whole 

antibody, which needs post translational modifications such as glycosylation for proper 

folding and expression (Daly et al. 2001). 

 

Antibody libraries can be constructed for general use by using DNA from non-

immunised human donors to construct naïve libraries (Vaughan et al., 1996) or from 

synthetic genes to construct synthetic libraries (Nissim et al., 1994). After production of 

the phage library, phage ELISA can be used to screen the library for any antigen of 

interest by conducting several rounds of panning and enriching (Dyson et al. 1995). 

Once a desirable clone has been selected, it can be sub-cloned into a suitable cloning 

vector to produce fusion proteins with different characteristics. For example, Toth et al. 

(1999) produced α PLRV scFv fusion proteins with different physical properties by sub-

cloning into different vectors. For example, fusing the α-PLRV scFv to the CL domain 

of the light chain of human immunoglobulin improved the stability of the scFv 

molecule, which tends to denature when used alone to coat ELISA plates. Another 
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detecting molecule was produced by Toth et al. (1999) by fusing scFv to the alkaline 

phosphatase enzyme and using the resulting product directly in ELISA. Moreover, both 

scFv-CL and scFv-AP fusions tend to dimerize spontaneously, thereby improving their 

functional affinity (Ziegler and Torrance, 2002) (Fig. 6.2). 

 

 Many systems have been used to express these recombinant molecules. Bacterial 

expression systems such as E. coli are commonly used as they are cheap and easy to 

maintain and manipulate (Harper et al., 1997; Daly et al., 2001). The possession of 

post-transcriptional modification capacity in eukaryotic systems makes them better than 

prokaryotic systems, which lack this important machinery (Daly et al., 2001). 

Introducing a translocational signal in E. coli which directs the produced protein to the 

periplasm can lead to a more functional scFv as the secreted antibodies follow a similar 

route when produced naturally in the endoplasmic reticulum of the lymphocyte (de 

Haard et al. 1998). In addition, many expression systems have been used such as yeast, 

insect cells (Reavy et al., 2000) and plants (Firek et al., 1993; Ziegler et al., 2000), but 

such systems are less commonly used than E. coli.  

 

Phage display antibody libraries can be considered as a potentially unlimited source of 

testing reagents with similar efficiency to polyclonal and monoclonal antibodies. In 

addition, they can be produced cheaply and quickly with simple techniques and without 

immunization of animals, and they can be stored indefinitely as DNA (Toth et al., 1999; 

Daly et al., 2001). Low affinity is the major limitation of recombinant antibody 

technology for routine virus detection. However, this problem can be overcome by 

construction of diverse libraries. In addition, the affinity of such diagnostic proteins can 

be improved before incorporation into virus detection kits by cloning into vectors which 

enable expression of bivalent or multivalent molecules. 

 

 The affinity of biotin towards avidin or streptavidin is extremely high; the dissociation 

constant (Kd) is ~10-15  M/L, one of the strongest known non-covalent bonds, and this 

high affinity is currently exploited by labelling proteins for detection and purification 

(Bayer and Wilchek, 1990, Wilchek and Bayer, 1990). Chemical biotinylation has been 

used to facilitate purification and detection of proteins by targeting biotin to the free 

amino groups on the lysine residues of the protein. However, because of the problems 

associated with random biotin labelling, a more targeted approach is sometimes 

required to maintain biological activity of the biotinylated products. In vivo 
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biotinylation is a mimic of what happens to biotinylated proteins in nature: the biotin 

acceptor domain of the biotin carboxyl-carrier protein (BCCP) acts as a natural substrate 

for the biotin ligase enzyme in bacteria (Schatz, 1993). This fact has been exploited by 

fusion of this substrate sequence to the protein of interest and subsequent biotinylation 

of the expressed protein by the E. coli endogenous biotin ligase (Cronan, 1990). Since it 

was introduced, the in vivo process has been used to biotinylate many proteins for 

different purposes, such as affinity purification of antibodies (Cronan, 1990; Lesley and 

Groskreutz, 1997). It has been used in molecular diagnostics as well to improve the 

functional affinity of some antibody fragments such as the Fab fragment (Weiss et al., 

1994; Sibler et al., 1999) and the scFv fragment (Cloutier et al., 2000; Santala and 

Lamminmaki, 2004).   

 

Previous work at SCRI has revealed the feasibility of recombinant antibody technology 

for producing reagents for routine testing, but before these reagents are introduced 

commercially, the stability and  affinity of such products must be improved (Torrance, 

1999). The aim of the experiments reported in this chapter was to improve the detection 

efficiency of α-PLRV scFv by coupling it to biotin, in order to devise a detection system 

based on the biotin/streptavidin binding (Fig. 6.3), and by optimizing ELISA conditions 

to create a fully recombinant ELISA test for routine PLRV detection, with high 

sensitivity and low background. 

 

 

 

 
Figure 6.1. Schematic diagram showing the scFv fragment in relation to the whole 

IgG molecule. 
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Figure 6.2. Schematic representation of the monomeric and dimeric forms of ScFv.  

 
Adapted from Ziegler and Torrance (2002). 

 
 

VH: variable region of the heavy chain, VL: variable region of the light chain. 
AP: Alkaline phosphatase, CL:  constant region of the light chain. 

 
 

                           
 

Figure 6.3. Schematic diagram of the proposed recombinant biotinylated ELISA 
format. 

 
scFv-CL exists in dimeric form, so it is shown as a bivalent y shape. 
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6.2. Materials and methods 

 

6.2.1. V3HCL (V3) protein expression and purification from E. coli 

 

The pCL vector containing the PLRV specific scFv insert was obtained in-house and its 

construction was previously reported (Toth et al, 1999). Competent E. coli cells (XL10 

Gold, Stratagene) were transformed with pCL-V3 which already been constructed (Toth 

et al., 1999) as explained in Chapter 2. Transformed colonies were grown in 5 ml LB 

medium containing 100 µg/ml kanamycin and 1% glucose overnight at 30°C with 

shaking. 10 ml of each culture was diluted into 100 ml 2x TY medium containing 100 

µg/ml kanamycin and 0.1% glucose and grown with shaking at 30°C for 2 h. The 

culture was centrifuged in a bench top centrifuge for 20 min at 4,000 rpm, and the cells 

were resuspended in 250 ml fresh 2x TY medium containing 100 µg/ml kanamycin. 

Expression of scFv was induced by the addition of IPTG to 1 mM, with the culture 

grown overnight (16-18h) with shaking at 30°C.  

Cells were harvested from induced cultures by centrifugation (Eppendorf 5810R 

centrifuge) at 4,000 rpm for 30 min at 4°C. The supernatant was retained on ice, and the 

harvested bacterial cells were resuspended in ice-cold PBS containing 1 mM /L EDTA 

at 1ml/per 1g of dry weight of the bacterial pellets. Then 2 ml/ g of 1: 20 dilution of 

PBS-EDTA in water was added to the mixture and the mixture was incubated in ice for 

30 min then centrifuged for 10 min at 14,000 rpm at 4°C to produce the periplasmic 

extract (PE). Supernatant and PE were combined and protein precipitated by addition of 

solid ammonium sulphate (30 g/100 ml) with stirring. Precipitated protein was collected 

by centrifugation at 4,000 rpm for 30 min at 4°C then resuspended in 1–2 ml of PBS 

and dialyzed against PBS with several changes.  

 

Ni-NTA resin (Qiagen) was used for purification following the manufacturer’s 

instructions (see Chapter 2). The protein was incubated with resin for 60 min at 4°C. 

The resin was washed twice in 10 mM imidazole in PBS and gently shaken at 4°C for 5 

min, then resuspended in 500 mM imidazole in PBS and shaken at 4°C for 10 min to 

elute protein. The eluate was added to a PD-10 desalting column containing 

Sephadex™ G-25 (GE Healthcare) previously equilibrated in 20 ml PBS. Then 20 

fractions each containing 10 drops, were eluted from the desalting column with PBS. 
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The A280 of each fraction was measured and protein concentration estimated according 

to the protein extinction coefficient (1 absorbance unit = 0.7 mg/ml). Fractions with 

protein concentrations greater than 1 mg/ml were combined and total protein 

concentration was calculated. 

 

6.2.2. Chemical biotinylation of V3 

 

Chemical biotinylation was performed by using the EZ-Link NHS-Biotin  preparation 

(Pierce) following the manufacturer’s instructions. Briefly 1.5 mg of V3 was dialyzed 

with several buffer changes (one overnight and 2 for 2 h each) against 1 L of Sorensen’s 

phosphate buffer at 4°C. Then biotin was dissolved in DMF at 1 mg/ml, and added to 

protein samples at different biotin: V3 molar ratios (10:1, 20:1, and 40:1). The solution 

was incubated in ice for 2 h, and finally dialyzed against PBS as before. 

6.2.3. In vivo biotinylation of V3 

6.2.3.1. Constructing the V3-CL insert 

PCR was used to amplify the insert coding for the variable heavy and light chains and 

the CL domain using pCL plasmid, which contains this insert, as template. Primers 

(V3FWDSfi, V3REVNot) which contain SfiI and NotI sites were designed (Table 2.4). 

Taq DNA polymerase (Roche) was used following these conditions: initial denaturation 

at 94°C for 2 min; 24 cycles of denaturation for 30 s at 94°C, annealing for 30 s at 

60°C, and elongation for 30 s at 72°C; and final extension at 72°C for 1 min. 

 

After successful amplification, the V3-CL insert was cloned into the pGEM-T Easy 

vector (Promega Corporation) and sequenced. Qiapreps (QIAGEN) were prepared from 

white colonies, and after restriction enzyme digestion three of these clones were chosen 

for sequencing. One clone was selected to prepare a midiprep which was used to release 

the V3 insert by restriction enzyme digestion for cloning into the biotinylation vector. 

6.2.3.2. Biotinylation vector 

The pAK300Bio plasmid, which is a modified version of the pAK300 vector (Krebber 

et al. 1997), was modified as described below to enable in vivo biotinylation of 

expressed protein by adding a biotin acceptor domain before the His-tag coding 

sequence. 
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6.2.3.3. Introducing a NotI site into pAK300Bio plasmid 

 

In order to be able to clone the V3-CL SfiI/NotI insert, it was necessary to introduce a 

NotI site into the pAK300Bio vector instead of its second SfiI site. The QuikChange II 

Site-Directed Mutagenesis kit (Stratagene) was used to change the SfiI site into a NotI 

site using the primers BIOFWD and BIOREV (Table 2.4), by following the 

manufacturer’s instructions and the method presented in Chapter 2. The PCR conditions 

were: initial denaturation at 95°C for 1 min; 17 cycles of denaturation for 50 s at 94°C, 

annealing for 50 s at 60°C, and elongation for 6 min at 68°C; and final extension at 

68°C for 7 min. 

6.2.3.4. Mutation of NotI site in the insert 

 

The V3 insert sequence contained a NotI restriction site which interfered with cloning. 

This site was removed by mutagenesis using the primers V3NOTMutFwd and 

V3NOTMutRev (Table 2.4), and by following the site directed mutagenesis method 

presented in Chapter 2. PCR conditions were similar to those mentioned above except 

that the elongation cycles at 68°C lasted for 5 min only. 

6.2.3.5. Cloning V3 into biotinylation vector 

 

The V3-CL insert and pAK300-Bio-Not plasmid were ligated overnight at room 

temperature using Promega T4 DNA ligase enzyme following the method presented in 

Chapter 2. The ligation products were electroporated into the E. coli AVB100 strain 

(Avidity), which has the birA gene incorporated into the chromosome under the control 

of L-arabinose inducer. A clone which was confirmed to have the right size insert was 

used for expression a scFv-CL 

 

6.2.3.6. V3B protein expression and purification 

V3B was induced and purified according to the method published by Warren et al. 

(2005) with some modifications. Prior to induction, the bacteria were grown in 2x TY 

containing 1 g/l glucose, 30 mg/L chloramphenicol, 50 mM/l  K2HPO4 . pH 7.2), and 5 

mM/l MgSO4 for 3-4 h until the OD reached A600/cm = 0.6-0.8  Then protein 

production  was induced by addition of both IPTG to 1 mM and L-arabinose to 1.5 µM/l 
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in the presence of 50 µM/l D-biotin (Sigma). Recombinant protein was harvested 16-18 

h after induction at 30°C by centrifugation of cultures for 20 min at 4000 rpm at 4°C. 

Supernatant (S1) was collected, and  the pellet was resuspended (2:1 V/W)  in ice-cold 

200 mM/l Tris-HCl (pH 8) containing 0.5 mM/l EDTA and 500 mM/l sucrose, then 1:5 

dilution of the previous buffer was  added,  and the mixture was incubated in ice for 30 

min then centrifuged for 10 min at 14,000 rpm at 4°C. Supernatant (S2) was collected, 

and combined with S1.  Protein was precipitated by addition of solid ammonium 

sulphate (30 g/100 ml) with stirring and collected by centrifugation at 3000 rpm for 30 

min at 4°C. Finally protein was resuspended in a small volume of PBS and dialyzed 

against PBS for 2 h, then buffer was changed into 1 L fresh PBS, and dialysis was 

continued overnight at 4°C. Afterwards, the absorbance of the protein was measured 

and protein concentration was determined, then biotinylated protein was ready to be 

used. 

 

A simpler method was also used which excluded the ammonium sulphate precipitation 

step. The harvested protein was resuspended (2:1 V/W) in ice-cold 200 mM/l Tris-HCl 

(pH 8) containing 0.5 mM/l EDTA and 500 mM/l sucrose, then the mixture was diluted 

in 1: 5 dilution of the ice-cold 200 mM/l Tris-HCl, and then the mixture  was incubated 

for 30-60 minutes at 4°C. Supernatant was collected afterwards by centrifugation at 

14,000 rpm for 10 min at 4°C.   Protein was dialysed as above, and then was used 

directly for detection. 

 

6.2.3.7. ELISA and Western blot procedures 

 

General ELISA conditions are presented in Chapter 2. Control (standard) ELISA with 

immune reagents used 1:1000 dilution of SCRI α PLRV polyclonal antibody for coating 

wells and 1:1000 diluted α PLRV SCR1 monoclonal antibodies with 1:1000 diluted α 

mouse AP for detection; recombinant ELISA used biotinylated V3-CL and streptavidin-

AP for detection (Table 2.2). Incubation of the conjugates was performed together with 

the detecting reagent as the sequential incubation of the recombinant reagents was poor. 

Unless otherwise mentioned, leaf extract was used at 1:10 dilution in extraction buffer, 

and absorbance values (A405) were routinely measured after 1h of incubation with 

substrate but in some experiments readings were recorded after 1, 2, and after overnight. 

 Absorbance values were measured for duplicate samples and mean values are 

presented; in addition to ensure reproducibility, each experiment was repeated three 
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times and representative results were presented in each table.  Absorbance values of 

extracts from infected plant leaves were compared with absorbance values of non-

infected leaf extract controls. Samples were considered positive if the value was more 

than two times greater than the value obtained from the negative control.  

Western blot was performed as indicated in Chapter 2; protein electroblotted on 

membranes was incubated with α-histidine antibody (α-His) then with anti-mouse-AP 

(α-mouse-AP) conjugate or streptavidin-AP (S-AP) at working diltions stated in 

Chapter 2. 

 

6. 3. Results  

6.3.1. Chemical biotinylation 

 

Biotin:V3 Molar Ratio Recombinant ELISA 10:1 20:1 40:1 

V3/V3B* Incubation 
Time I NI I NI I NI 

1 h 0.11 0.08 0.14 0.15 0.11 0.14 
2 h 0.17 0.09 0.23 0.15 0.15 0.20 1 µg/ml 
12 h 0.43 0.25 0.54 0.51 0.35 0.47 
1 h 0.20 0.08 0.1 0.08 0.12 0.11 
2 h 0.35 0.09 0.15 0.11 0.19 0.16 5 µg/ml 
12 h 1.00 0.85 0.38 0.25 0.47 0.39 
1 h 0.42 0.08 0.08 0.06 0.13 0.09 
2 h 0.74 0.09 0.09 0.07 0.20 0.16 10 µg/ml 
12 h 2.01 0.34 0.20 0.20 0.55 0.38 

 
Control (P/M)  

Incubation 
Time I NI 

1 h 0.56 0.08 
2 h 0.86 0.10 

 

12 h 2.34 0.20 
Table 6.1. Absorbance values (A405) obtained from ELISA plate readings when in 
vitro biotinylated V3 preparations were used for detection of PLRV in infected P. 
floridana plant leaf extracts.  

∗ V3/V3B: V3 coating and V3B detecting (See Fig. 6.3). I: infected P. floridana leaf extract, NI: non-
infected P. floridana leaf extract. 10:1, 20:1, and 40:1 biotin: protein molar ratio. 
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P/M: polyclonal antibody for coating and monoclonal antibody for detection. 
Different ratios of biotin to V3 in the biotinylation reaction were tested as indicated. S-AP was used at 
1:4000 dilution. 

 

 

V3 protein was biotinylated in vitro using different molar ratios (Table 6.1) of biotin to 

V3 protein and the resulting products were tested in ELISA for PLRV detection at a 

range of concentrations. Results were compared with those obtained in a standard 

ELISA test with polyclonal antibody for coating and monoclonal antibody for detection. 

Table 6.1 shows that only the ratio with the lowest biotin concentration (10:1 biotin: V3 

molar ratio) gave good discrimination between positive and negative samples. The 

reason could be that at higher concentrations of biotin, over-biotinylation might occur, 

and as a result the scFv binding site is inactivated by modification of any accessible  

lysine residues, especially if they are located in the active site of the protein (Chames et 

al. 2002). The preliminary results (Table 6.1) showed that the best working 

concentrations of both V3 and V3B were 10 µg/ml, which gave high sensitivity and low 

background when a 10:1 biotin:V3 ratio had been used in the biotinylation reaction. 

 

6.3.1.1. Optimizing ELISA conditions 

 

6.3.1.1.1. Reagent concentrations 

 

The effect of using different dilutions of V3 and S-AP was investigated as well as 

blocking and other conditions. Previous work at SCRI showed that the optimum 

concentration of V3 for coating was 10 µg/ml, and this was confirmed here by coating 

with 5, 10, and 20 µg/ml (not shown) of V3, and detecting with 5 or 10 µg/ml of V3B.  

ELISA results from a typical experiment are presented in Table 6.2.  They show that 10 

µg/ml V3B gave lower non-specific background readings than 5 µg/ml. In addition, 

different concentrations above and below 10 µg /ml were tested. However, the 

concentration (10 µg/ml of both V3 and V3B) gave better discrimination between 

infected and non-infected samples, and was used subsequently for coating with V3 and 

detecting with V3B. 
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V3/V3B 
10/10 
µg/ml 

  

V3/V3B 
5/10 

µg/ml 

V3/V3B 
10/5 

µg/ml 

V3/V3B 
5/5 

µg/ml P/M Incubation 
time I NI I NI I NI I NI I NI 
1 h 0.38 0.08 0.24 0.08 0.32 0.1 0.19 0.09 0.44 0.06 
2 h 0.6 0.12 0.37 0.1 0.51 0.16 0.3 0.12 0.71 0.06 
12 h 1.88 0.33 1.18 0.27 1.61 0.44 0.96 0.3 2 0.08 

Table 6.2. A405 values obtained from ELISA plate readings when different 
concentrations of V3 and V3B were used for coating and detection of PLRV in 
plant leaf extracts.  

S-AP was used at 1:4000 dilution. 
I: infected P. floridana leaf extract at 1:10 dilution in extraction buffer, NI: non-infected P. floridana leaf 
extract at 1:10 dilution. 
P/M: polyclonal antibody for coating and monoclonal antibody for detection. 
 

 

 
S-AP Dilution  

1:1000 1:2000 1:4000 1:8000 
P/M 

Incubation 
Time I NI I NI I NI I NI I NI 

1 h 0.23 0.22 0.24 0.18 0.29 0.09 0.27 0.08 0.35 0.06
2 h 0.41 0.37 0.4 0.28 0.52 0.09 0.46 0.09 0.64 0.06
12 h 1.14 1.17 1.22 0.85 1.45 0.32 1.42 0.7 1.77 0.06

 
Table 6.3. A405 values obtained when different concentrations of streptavidin-AP 
were used in the recombinant ELISA assay with V3 for coating and V3B for 
detecting. 
P/M: polyclonal antibody for coating and monoclonal antibody for detection. I: PLRV-infected P. 
floridana leaf extract; NI: P. floridana non-infected leaf extract. 

 

 

S-AP was tested at dilutions from 1:1000 to 1:8000. The lowest background readings 

were obtained with a 1:4000 dilution of S-AP, and so this was considered to be the best 

dilution for the conjugate (Table 6.3). The values from the samples showed some 

difference between recombinant (0.29) and immune reagent (0.35) antibodies 1 h after 

incubation with the substrate. In addition, higher background was obtained when using 
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the recombinant antibodies (0.08 compared with 0.06 for the immune reagents). It was 

concluded that a combination of 10 µg/ml of V3 for coating and 10 µg/ml of V3B for 

detecting, with a 1:4000 dilution of the S-AP, gave the best results in terms of 

difference between specific and non-specific reactions. 

 
6.3.1.1.2. Effect of blocking and leaf extract concentration 
 
 

V3/V3B 
10/10µg/ml Control (P/M) ELISA  

format 

Leaf 
extract 
dilution I NI1 NI2 I NI1 NI2 

1:10 0.32 0.08 0.08 0.59 0.06 0.06 
1:20 0.22 0.09 0.08 0.34 0.05 0.06 +   

blocking 
1:40 0.15 0.09 0.09 0.23 0.05 0.06 
1:10 0.25 0.09 0.08 0.57 0.06 0.06 
1:20 0.2 0.09 0.08 0.3 0.06 0.06 

- 
  

blocking 1:40 0.15 0.09 0.07 0.22 0.06 0.06 
Table 6.4. A405 values obtained from ELISA plates when a blocking step was 
included in the recombinant ELISA assay. 
 
V3/V3B: V3 (10 µg/ml) coating and V3B (10 µg/ml) detecting, P/M: polyclonal antibody for coating and 
monoclonal antibody for detection. 
I: infected P. floridana leaf extract, NI1: non-infected P. floridana leaf extract, NI2: non-infected potato 
leaf extract. S-AP was used at 1:4000 dilution. 
 

The effect of blocking the nonspecific binding sites with 3% non-fat dried milk 

(Marvel) on the performance of the assay with in vitro biotinylated V3 was investigated.  

It can be concluded from Table 6.4 that including a blocking step had little impact on 

increasing efficacy of biotinylated protein in virus detection, and the background in the 

non-infected leaf samples remained the same. Moreover, increasing the dilution of plant 

extracts from 1:10 to 1:40 decreased the absorbance about two times for infected 

material but did not reduce the background reading.  

 

6.3.1.1.3. Antibody buffer composition 

 

For immune reagents antibody, it is recommended to perform incubation steps in PBST 

buffer. In addition, it is recommended to add PVP to the extraction buffer to prevent 

interferance by components of plant extract. In the following experiments (Table 6.5) 

the effect of different buffers for incubation of the recombinant antibodies was 

investigated. 
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Detection buffer conditions 

PBSTM PBST PBSM 

ELISA 

Format 

 

Incubation 

Time 
I NI1 NI2 I NI1 NI2 I NI1 NI2 

1 h 0.25 0.08 0.09 0.25 0.13 0.13 0.09 0.06 0.07 

2 h 0.42 0.09 0.1 0.42 0.21 0.2 0.12 0.07 0.08 V3/V3B 

12 h 2.62 0.52 0.53 2.63 1.34 1.34 0.61 0.25 0.33 

1 h 0.85 0.07 0.07 0.98 0.07 0.07 1.23 0.06 0.06 

2 h 1.48 0.07 0.07 1.71 0.08 0.08 2.11 0.07 0.06 P/M 

12 h 5.54 0.18 0.16 4.84 0.28 0.28 4.43 0.15 0.11 

Table 6.5. A405 values obtained in ELISA to test the effect of blocking agents in the 
buffer on virus detection.  

PBSTM: 1x PBS + 0.05% Tween 20 + 0.1% non fat powdered milk. PBST: PBS + 0.05% Tween 20. 

PBSM: PBS + 0.1% non-fat powdered milk. I: infected P. floridana leaf extract, NI1: non-infected P. 
floridana leaf extract, NI2: non-infected potato leaf extract. 10 µg/ml of V3 was used for coating and 10 
µg/ml of V3B for detecting, and S-AP was used at 1:4000 dilution. 
 
 

The effect of addition of Tween 20 and non-fat powdered milk to the detection antibody 

(V3B) buffer was tested. Table 6.5 indicates that although both PBSTM and PBST 

buffers gave the same absorbance for infected samples, PBSTM performed better as the 

background was much lower. In the assay with V3 and V3B, absorbances for infected 

samples were much lower with PBSM than with PBST and PBSTM. 

 

The next experiment (Table 6.6) was designed to investigate the effect of adding PVP to 

the extraction buffer on the performance of the recombinant test when an incubation 

step with 3% Marvel was included or not. 
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No blocking Blocking 
 

+PVP - PVP +PVP - PVP 
Leaf extract 

dilution 
V3/V3B P/M V3/V3B P/M V3/V3B P/M V3/V3B P/M

1:10 0.12 0.85 0.29 0.98 0.15 0.91 0.32 0.94
1:20 0.1 0.59 0.23 0.7 0.17 0.53 0.19 0.6 I 
1:40 0.08 0.35 0.15 0.42 0.12 0.32 0.14 0.36
1:10 0.06 0.06 0.06 0.05 0.06 0.07 0.06 0.05
1:20 0.06 0.06 0.06 0.05 0.06 0.06 0.05 0.06NI1 
1:40 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.06
1:10 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
1:20 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06NI2 
1:40 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.06

Table 6.6.  A405  values obtained in recombinant ELISA to test the effect of adding 
PVP to extraction buffer on the efficiency of recombinant ELISA.  

V3/V3B: V3 coating and V3B detecting, P/M: polyclonal antibody for coating and monoclonal antibody 
for detection. 
I: infected P. floridana leaf extract, NI1: non-infected P. floridana leaf extract, NI2: non-infected potato 
leaf extract. 10 µg/ml of V3 was used for coating and 10 µg/ml of V3B for detecting, with 1:4000 S-AP. 
 

 

 

Table 6.6 shows that adding PVP to the infected leaf extract reduced the absorbance 

values of infected samples to approximately half their values without PVP when the 

recombinant assay was used. On the other hand, little difference was observed in the 

immune reagent control (P/M) whether PVP was added or not. Moreover, the blocking 

had no effect in decreasing the background reaction. 
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6.3.1.2. Comparison of the performance of in vitro biotinylation with immune 

reagents  

 

Table 6.7 shows that fully recombinant antibodies gave less absorbance values 

compared to immune reagents when readings were made after 1 h incubation, and the 

background non-specific reaction was higher and became stronger after a prolonged 

incubation period. 

 

V3/V3B P/M Leaf 
extract 
dilution 

Incubation 
time I NI1 NI2 I NI1 NI2 
1 h 0.45 0.08 0.09 0.68 0.06 0.06 
2 h 0.83 0.12 0.13 1.22 0.06 0.06 1:10 
12 h 3.08 0.4 0.44 2.2 0.09 0.09 
1 h 0.3 0.09 0.09 0.38 0.06 0.06 
2 h 0.53 0.12 0.13 0.75 0.06 0.06 1:20 
12 h 2.08 0.39 0.41 1.45 0.09 0.09 
1 h 0.2 0.09 0.09 0.15 0.06 0.06 
2 h 0.35 0.13 0.13 0.25 0.06 0.06 1:40 
12 h 1.4 0.41 0.44 0.93 0.09 0.09 

Table 6.7.  A405 values obtained from recombinant ELISA in comparison with 
immune reagent ELISA for detection of PLRV in different concentrations of leaf 
extract.  

 

V3/V3B: V3 coating and V3B detecting, P/M: polyclonal antibody for coating and monoclonal antibody 
for detection. I: infected P. floridana leaf extract, NI1: non-infected P. floridana leaf extract, NI2: non-
infected potato leaf extract. 
10 µg /ml of V3 was used for coating and 10 µg/ml of V3B for detecting, with 1:4000 S-AP. 
 
 

 

For example, the background in the recombinant assay was relatively low (0.08-0.09) 

after 1h of incubation with the substrate; it became higher with prolonged incubation, 

and this was similar with potato and physalis extracts at all dilution of leaf extracts. 
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6.3.1.3. Variation between chemically biotinylated batches 

Three separate batches of chemically biotinylated V3 were compared. Table 6.8 shows 

that although ELISA readings were similar for infected samples, the performance varied 

between different prepared batches. 

 

Batch 1 Batch 2 Batch 3 Incubation 
time I NI I NI I NI 
1 h 0.34 0.14 0.27 0.08 0.3 0.06 
2 h 0.63 0.23 0.45 0.1 0.55 0.06 
12 h 1.79 0.61 1.41 0.25 1.51 0.07 

Table 6.8. A405 values obtained from recombinant ELISA showing variation in 
detection performance between different chemically biotinylated V3 batches.  

I: PLRV-infected P. floridana leaf extract; NI: non-infected P. floridana leaf extract. 
10 µg/ml of V3 was used for coating and 10 µg/ml of V3B for detecting, with 1:4000 S-AP. 
 
 

 

This is because of the background non-specific reaction readings. In batch 1, the 

background reading after 1 h was high (0.14) compared to 0.08 in batch 2 and 0.06 in 

batch 3. After overnight incubation, the background was 0.61, 0.25, and 0.07 

respectively for the three batches. This means that batch 3 was the best as the 

background remained at a low level and comparable with the control’s background 

reading (0.08). Batch variation can be attributed to either differences in proportion of 

functional V3 protein relative to inactive E. coli protein, or the number of biotinylated 

lysine residues in the scFv fragment, and possible interference with the scFv active sites 

after biotinylation as discussed in Section 6.4. 
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6.3.2. In vivo Biotinylation 
 

6.3.2.1. Construction of the expression vector 

 

The expression vector pAK300 was fused with the sequence coding for the biotin 

acceptor domain (BAD) to enable in vivo biotinylation of expressed protein. In addition, 

a NotI site was introduced successfully (Fig. 6.4) into the pAK300 vector using site-

directed mutagenesis.  The modified version of this vector is named pAK300-Bio-Not.  

 

 

 
Figure 6.4. Agarose gel showing linearized pAK300-Bio-Not vector after restriction 
enzyme digestion with Not I. 
 
M: DNA molecular size markers, Lanes 1-10: NotI digests of randomly chosen clones after a NotI site 
was introduced inside the vector. 
 
 

The V3 gene sequence contains an internal NotI site. This site was destroyed by site-

directed mutagenesis in order to be able to perform complete digestion of the vector 

harbouring the insert (Fig. 6.5), as partial digestion resulted in low quality insert. The 

mutated V3 insert was ligated into the pAK300-Bio-Not vector to create the pAK300-

Bio-Not-V3 expression plasmid (Fig. 6.6). Successful ligation of the insert was 

confirmed by restriction enzyme digestion. The expected size insert (1.2 Kb) was 

released by digestion of the ligated vector (Fig. 6.7). 
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Figure 6.5. Agarose gel showing successful mutation of the Not I site in the scFv-
CL insert. 
 
M: DNA molecular size markers, Lanes 1-6: NotI digests of randomly chosen clones after mutation of the 
NotI site inside the insert. Upper band: vector. Lower band: insert arrowed. 
 
 

 

 
Figure 6.6.  Schematic representation of the pAK300-Bio-Not expression vector 
map, and the ligation of the insert. 
 
The key elements of the pAK300-Bio-Not vector are,the pelB  signal peptide, chloramphenicol antibiotic 
resistance marker (Cam R), the Lac I promoter, the Coi E1 origin of replication, Not I and SfiI cloning 
sites, the 6-Histidine tag. In addition, the BAD was fused, and the the NotI site was introduced to enable 
V3 cloning. 
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Figure 6.7. Successful ligation of the scFv-CL (V3) insert into the pAK300-Bio-Not 
vector. 
 
 
M: DNA molecular size markers, Lanes 1-8: NotI / SfiI digest of randomly chosen clones after 
transformation. Upper band: vector. Lower band: insert arrowed. 
 

 

6.3.2.2. Optimizing V3B expression conditions 

 
Induction of V3B production was tested under several different conditions, for example, 

addition of K2HPO4 and MgSO4 for enrichment expression cultures to increase bacterial 

cell growth, induction with different concentrations of IPTG and L-arabinose or adding 

only one of them (data not shown). Both inducers are required for V3B production as 

the IPTG induces expression of V3 whereas arabinose induces the BirA enzyme. The 

optimal conditions for V3B production were in accordance with the results published by 

Warren et al. (2005) who used the system to biotinylate a scFv to be used as a capturing 

reagent for minimizing the interference from heterophilic antibodies in immunometric 

assays. Induction was for 16 h after addition of IPTG and arabinose at 1 mMl/l and 1.5 

µM/l respectively to the culture, which is supplemented with 50 µM/L D-biotin, 50 

mM/l potassium phosphate (pH 7.2), and 5 mMl/l MgSO4. 

 

Fig. 6.8 shows that biotinylated protein was successfully expressed, and the protein was 

detected using α-histidine antibody and streptavidin-AP or anti-mouse-AP conjugates. 

However, the detection was better using the streptavidin-AP conjugate. The protein was 
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detected after 1h induction and reached the maximum concentration after 16 h post 

induction. 
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Figure 6.8. SDS-PAGE and western blot analysis of V3B expression in E. coli.  
 
Upper panels (A-D): whole cell extracts. Lower panels (E-H): periplasmic extracts.  Coomassie blue 
stained SDS-PAGE (A, E); western blots with α-histidine and α-mouse-AP conjugate (B, F) and 
streptavidin-AP (C, G); control blots minus α-histidine (D) or streptavidin-AP (H). Lane M: protein size 
markers (molecular mass of markers indicated on the left). Lanes 1, 2, 3, 4: samples harvested 1, 3, and 
16 h after induction or after 16 h without induction respectively; Lane 5: Non-transformed AVB100 
bacterial strain grown for 16 h without induction; Lane 6: AVB100 strain harbouring the pAK300-Bio 
plasmid after 16 h without induction. 
 
 
 

6.3.2.3. Performance of the in vivo biotinylated V3 

 

Protein was prepared in different batches. The maximum yield (6 mg/l) was obtained by 

increasing the concentration of EDTA in the buffer used to extract the periplasmic 

extract from 0.5 mM/l to 1 mM/l and applying a second periplasm extraction. In 

addition, the protein elution step from Ni-NTA resin was repeated and the products 

combined.  
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ELISA 
format 

V3/V3B 
10/5 µg/ml 

V3/V3B 
10/10 µg/m 

V3/V3B 
10/20 µg/ml P/M 

 I NI I NI I NI I NI 
1h 1.58 0.07 1.79 0.07 1.98 0.07 1.12 0.08 

Table 6.9.  A405 values obtained from recombinant ELISA when diferent 
concentration of V3/V3B were used. 
V3/V3B: V3 coating and V3B detecting, P/M: polyclonal antibody for coating and monoclonal antibody 
for detection.  
I: PLRV-infected potato; NI: non-infected potato leaf extract. 
S-AP 1:4000  
 

Table 6.9 shows that V3/V3B worked as well as the P/M antibody combination for 

PLRV detection on potato using a 1:4000 dilution of the S-AP conjugate. V3B 

performance in virus detection was comparable using 5, 10 or 20 μg/ml of this protein. 

 

6.3.2.4. Optimization of ELISA conditions with in vivo biotinylated V3 

In order to find the best conditions for the recombinant ELISA test, all coating and 

detecting reagents and the conjugate were titrated with PLRV-infected P. floridana and 

potato leaf extracts. 

 

6.3.2.4.1. Using infected P. floridana leaf extract 

 

Optimization was carried out to decide the best concentration of the in vivo prepared 

V3B and the S-AP conjugate only. The best concentration of the V3 for coating was 10 

μg/ml; this was similar to the results found during optimization of the in vitro 

biotinylated reagent and some as found previously by Toth et al. (1999). Frozen PLRV-

infected physalis leaf tissue was initially used to optimize the recombinant ELISA assay 

conditions. 
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ELISA 
format V3/V3B P/V3B 

Streptavidin-
AP 1:1000 1:4000 1:8000 1:1000 1:4000 1:8000 

I 0.44 0.38 0.07 0.96 0.68 0.09 V3B 
10 

µg/ml NI 0.15 0.08 0.07 0.08 0.07 0.06 

I 0.75 0.47 0.09 1.29 0.83 0.12 V3B 
20 

µg/ml NI 0.1 0.07 0.07 0.07 0.07 0.06 

   
I 0.85 

P/M 
NI 0.07 

Table 6.10.  A405 values obtained from recombinant ELISA with different 
concentrations of V3B and S-AP. 
V3/V3B: V3 coating and V3B detecting, P/M: polyclonal antibody for coating and monoclonal antibody 
for detection, P/V3B: polyclonal antibody for coating and V3B for detecting. 
I: PLRV-infected P. floridana leaf extract; NI: non-infected P. floridana leaf extract. 
10 µg/ml of V3 for coating and 10 µg/ml of V3B for detecting, and 1:4000 S-AP. 

. 

Table 6.10 shows that the detection ability of the fully recombinant assay was less than 

the immune reagent assay, but the problem is with the combination of V3 for coating 

and V3B for detecting. For example, when V3B was applied for detecting but 

polyclonal antibody was used for coating (partially recombinant assay) and with 1:4000 

of streptavidin, the reading was 0.68 compared with 0.85 for the P/M control, but this 

value decreased to 0.38 when V3 was used for coating and V3B for detecting (fully 

recombinant assay). Moreover, the background problem which appears when the S-AP 

concentration is increased seems to be related to the coating reagent not the biotinylated 

reagent.  This was concluded because with a 1:1000 dilution of the S-AP, the reading 

for the half recombinant test (P/V3) was 0.96 and the background reading was 0.08, 

whereas in the fully recombinant test (V3/V3B) with the same dilution of S-AP, the 

reading was 0.44 but the background became 0.15. 

 

Although using either 10 or 20 µg/ml V3B for detection combined with 10 µg/ml V3 

for coating gave comparable absorbance readings, there was a slight increase in the 

absorbance reading when the V3B concentration was increased to 20 µg/ml. The data 

presented in Table 6.10 show that increasing the V3B concentration from 10 to 20 

µg/ml slightly increased the reading from 0.38 to 0.47 when 10 µg/ml of V3 was used 
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for coating and 1:4000 S-AP as a conjugate. In general, the best combination is 10 

µg/ml of V3B for detecting and 1:4000 diluted streptavidin-AP  

 

 

V3B concentration (μg/ml) 
 

2.5 5 10 2.5 5 10 2.5 5 10 
 V3/V3B 

1:1000 S-AP 1:4000 S-AP  
1:8000 S-AP 

P/M
 

I 0.44 0.61 0.91 0.43 0.66 0.56 0.13 0.2 0.17 0.88 1:10 
sap NI 0.51 0.45 0.42 0.12 0.09 0.07 0.07 0.08 0.07 0.07 

I 0.39 0.42 0.46 0.19 0.23 0.2 0.08 0.1 0.09 0.41 1:40 
sap NI 0.55 0.5 0.45 0.11 0.09 0.08 0.07 0.07 0.06 0.07 

I 0.43 0.39 0.38 0.12 0.13 0.1 0.07 0.07 0.07 0.18 1:160 
sap NI 0.58 0.54 0.45 0.11 0.1 0.07 0.07 0.07 0.06 0.07 

I 0.51 0.5 0.39 0.11 0.1 0.09 0.06 0.07 0.08 0.1 1:640 
sap NI 0.64 0.55 0.51 0.14 0.11 0.08 0.09 0.07 0.08 0.08 

 
Table 6.11. A405 values obtained from fully recombinant ELISA during 
optimization of assay conditions and finding the detection end point with P. 
floridana leaf extract. 
 

V3/V3B: V3 coating and V3B detecting, P/M: polyclonal antibody for coating and monoclonal antibody 
for detection. 
I: PLRV-infected leaf extract (sap); NI: non-infected leaf extract (sap). 
10 µg/ml of V3 was used as the coating reagent 
 
 
 
 
 

A further experiment was carried out to investigate the effect of using lower 

concentrations of V3B and to determine the dilution endpoint of the fully recombinant 

assay. The experiment was repeated three times. Table 6.11 shows the results of a 

representative experiment, which are consistent with the results in Table 6.10: again, the 

combination of 10 µg/ml of V3B for detecting and 1:4000 S-AP was the best result in 

term of discrimination of infected samples and low background reaction. Table 6.11 

also shows that the detection limits of the recombinant ELISA was 1:40 compared with 

1:160 for the assay based on immune reagents on frozen infected P. floridana leaf 

extract. 
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V3B concentration (µg/ml) 
2.5 5 10 2.5 5 10 2.5 5 10 P/V3B 

1:1000 S-AP 1:4000 S-AP 1:8000 S-AP 

P/M
 

I 0.36 0.89 1.54 0.78 1.1 1.22 0.21 0.42 0.29 0.771:10 
sap NI 0.1 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.06 0.07

I 0.15 0.22 0.39 0.19 0.3 0.29 0.12 0.13 0.11 0.341:40 
sap NI 0.08 0.08 0.08 0.07 0.07 0.07 0.1 0.06 0.06 0.07

I 0.09 0.09 0.11 0.08 0.09 0.09 0.08 0.08 0.07 0.171:160 
sap NI 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.07

I 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.1 1:640 
sap NI 0.07 0.07 0.08 0.07 0.07 0.07 0.12 0.07 0.07 0.07

Table 6.12. A405 values obtained from partially recombinant ELISA during 
optimization of assay conditions and finding the detection end point with P. 
floridana leaf extract. 
 

V3/V3B: V3 coating and V3B detecting, P/M: polyclonal antibody for coating and monoclonal antibody 
for detection. 10 µg/ml of V3 for coating and 10 µg/ml of V3-B for detecting, and 1:4000 of the S-AP. 
I: PLRV-infected leaf extract; NI: non-infected leaf extract. 
 

 

 

To investigate further the effect of coating antibody on the assay, the experiment in 

Table 6.11 was repeated except that coating was with polyclonal antibody instead of 

V3. Table 6.12 shows that the absorbance values of recombinant reagent were higher 

than the control immune reagent. The absorbance values (1.22 compared to 0.77) when 

1:4000 S-AP was used, and these values increased to 1.54 compared to 0.77 when the 

S-AP dilution was 1:1000. In contrast to what was found in the fully recombinant assay, 

the background reaction remained the same whether S-AP was used at 1:1000 or 1:4000 

dilution. It was concluded that, the high background reaction with V3B is related to the 

weak ability of the coating reagent (V3) rather than in the detection ability of the V3B. 

 

In addition, the results in Table 6.12 provides futher confirmation of the findings shown 

in previous tables: it indicates that increasing the concentration of detecting reagent 

from 5 to 10 µg/ml had little impact on increasing absorbance values in infected 

samples and decreasing the background in the healthy samples.  
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Test format V3/V3B P/V3B 
V3B µg/ml 10 20 10 20 10 20 10 20 

S-AP 1:4000 1:8000 1:4000 1:8000 

P/
M

 

I 0.59 0.51 0.19 0.32 1.29 1.17 0.39 0.58 0.81 1:10 
sap NI 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08 

I 0.22 0.19 0.11 0.15 0.36 0.39 0.2 0.17 0.38 1:40 
sap NI 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 

I 0.12 0.1 0.08 0.09 0.13 0.12 0.1 0.08 0.13 1:160 
sap NI 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.07 

Table 6.13.  A405 values obtained from fully/partially recombinant ELISA during 
optimization of assay conditions and finding the detection end point with P. 
floridana leaf extract. 

V3/V3B: V3 for coating and V3B for detection, P/V3B: polyclonal antibody for coating and V3B for 
detection, P/M: polyclonal antibody for coating and monoclonal antibody for detection.  
I: PLRV-infected leaf extract (sap); NI: non-infected leaf extract (sap). 
10 µg/ml of V3 was used for coating. 
 

 

The results shown in Table 6.13 confirm that with a 1:4000 dilution of S-AP, there is 

little difference in absorbance reading whether 10 or 20 µg/ml of V3B is used for 

detection, and 10 or 20 µg/ml of V3 is used as coating reagent. Thus it was decided to 

use the lower rate (10 µg/ml) for both coating and detecting with V3 and V3B 

respectively. 

 

6.3.2.4.2. Using infected potato leaf extract 

 
All previous optimization experiments were performed with extracts from infected 

leaves of P. floridana, which is an indicator plant used to study PLRV in the laboratory. 

Thus it was important to test the performance of the recombinant reagents with leaf 

extracts from infected potato, which is the major natural host for PLRV in the field. 
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ELISA format V3/V3B P/V3B 
 

Leaf extract 
 

1:2000 
S-AP 

1:4000  
S-AP 

1:2000  
S-AP 

1:4000  
S-AP 

P/M 

I 1.17 1.3 1.86 2.15 2.05 1:5 
NI 0.12 0.08 0.07 0.08 0.07 
I 0.73 0.78 1.13 1.33 1.2 1:10 

NI 0.13 0.08 0.07 0.07 0.07 
I 0.52 0.55 0.74 0.86 0.68 1:20 

NI 0.13 0.08 0.07 0.07 0.07 
Table 6.14.  A405 values obtained from fully/partially recombinant ELISA during 
optimization of assay conditions for potato leaf extract. 
 
V3/V3B: V3 for coating and V3B for detection, P/V3B: polyclonal antibody for coating and V3B for 
detection, P/M: polyclonal antibody for coating and monoclonal antibody for detection.  I: infected potato 
leaf extract frozen at -20 °C in ELISA extraction buffer, NI: non-infected potato leaf extract. 
10 µg/ml of V3 was used for coating and 10 µg/ml of V3B for detecting. 
 

 

 

The preliminary results on frozen potato leaf extract, presented in Table 6.14 are in 

agreement with what was found with frozen physalis leaf extract that using V3 for 

coating gave higher values for non-infected background compared with the polyclonal 

antibody and stronger A405 values were obtained from infected samples.  

 

The best combination of reagents seems to be in agreement with the combination 

chosen after titration on physalis: coating with 10 µg/ml of V3 and detection with the 

same concentration of V3B. The data in Table 6.14 confirm that although the fully 

recombinant (V3/V3B) assay gave rather lower absorbance reading as the immune 

reagent assay, the partially recombinant assay (P/V3B) performed better than the 

immune reagent assay. In Table 6.14 the reading for the fully recombinant when 1:4000 

dilution of S-AP was used was 0.78 compared with 1.2 for the control, but this value 

became 1.33 when V3 was replaced by polyclonal antibody for coating, suggesting that 

a superior recombinant assay could be designed if the coating condition was improved. 

 

It was decided to use fresh potato leaf extract to investigate the effect of freezing leaf 

samples on the recombinant assay sensitivity. The data in Table 6.15  show that  while 

A405 values for infected samples in the  fully recombinant assay  were lower compared 

with the partially recombinant assay, but the values were similar to those obtained with 

immune reagents and the end point was 1:160 for all tests.  
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ELISA 
Format V3/V3B P/V3B 

Leaf 
extract 

1:2000 
S-AP 

1:4000
S-AP 

1:6000
S-AP 

1:8000
S-AP 

1:2000
S-AP 

1:4000 
S-AP 

1:6000 
S-AP 

1:8000
S-AP 

P/M
 

I 1.35 1 0.3 0.09 2.54 1.77 0.61 0.3 0.821:5 
 
 NI 0.09 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.07

I 0.81 0.59 0.18 0.07 1.61 1.08 0.33 0.16 0.491:10 
 
 NI 0.09 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.07

I 0.49 0.34 0.12 0.07 0.94 0.64 0.2 0.11 0.311:20 
 
 NI 0.09 0.07 0.06 0.06 0.07 0.07 0.07 0.06 0.07

I 0.32 0.23 0.1 0.07 0.52 0.33 0.12 0.08 0.221:40 
 
 NI 0.09 0.06 0.06 0.06 0.07 0.07 0.07 0.06 0.07

I 0.21 0.14 0.08 0.06 0.32 0.2 0.09 0.07 0.151:160 
 
 NI 0.1 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.08

I 0.16 0.09 0.07 0.06 0.12 0.1 0.07 0.06 0.111:320 
 
 NI 0.11 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.08

Table 6.15. A405 values obtained from fully/partially recombinant ELISA during 
optimization of assay conditions and finding the detection end point for potato leaf 
extract. 
 

V3/V3B: V3 for coating and V3B for detection, P/V3B: polyclonal antibody for coating and V3B for 
detection, P/M: polyclonal antibody for coating and monoclonal antibody for detection. I: infected potato 
leaf extract, NI: non-infected potato leaf extract.  
10 µg/ml V3 was used for coating and 10 µg/ml V3B for detection. 
 
 

 

The data shown in Table 6.15 confirm clearly that the detection limits are comparable 

between the recombinant assay and the standard immunoassay when fresh leaf extract 

was prepared. For example, with 1:160 dilution of potato leaf infected sap and S-AP 

diluted 1:4000; the reading was 0.14 for with the fully recombinant assay compared 

with 0.15 for the control immune reagent assay 

 

From the combined results of the optimization experiments, it was concluded to use 10 

µg/ml V3 for coating, 10 µg/ml V3-B for detection, and 1:4000 dilution of streptavidin-

AP and to use freshly prepared leaf extract.  
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Figure 6.9. Comparison of the detection of PLRV by the recombinant ELISA 
(V3/V3B) with an assay based on immunoglobulins. 
 
 (■), V3 coating and V3 detecting reagents; (▲),  polyclonal anti-PLRV coating and MAb SCR1 
detecting reagents; for each data point the absorbance value (A405) of the non-infected samples was 
subtracted from the infected sample values (mean non-infected value 0.07). Absorbance values were 
recorded 1 h after incubation at RT. Freshly prepared potato leaf extract was used. 
 

Data in Fig. 6.9 are means from three experiments (a typical one of them was presented 

in Table 6.15) about the sensitivity of PLRV detection between the recombinant and the 

immune reagent ELISA. 

 

 

6.3.2.5. Sensitivity and batch variation between in vivo biotinylated V3 
preparations 
 
In an attempt to track batch-to-batch variation, and to compare detection limits between 

fully recombinant and immune reagent assays, two preparations of V3B were used to 

test different dilutions of PLRV-infected potato leaf  extract and the results were 

compared with the immune reagent assay. Both V3B batches and the immune reagent 

assay were able to detect virus in dilutions up to 1:160 of infected potato leaf extract. 
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Figure 6.10. Comparison of detection of PLRV in potato leaf extract using two 
independent preparations of in vivo biotinylated V3B. 
 
Two preparations of V3B (■, ♦) were used in the V3/V3B assay; P/M (▲), polyclonal anti-PLRV coating 
and MAb SCR1 detecting reagents; non-infected samples (X) tested in both assays. 10 µg/ml V3 used for 
coating, 10 µg/ml V3B for detecting, with 1:4000 dilution of S-AP. Absorbance values were recorded 1 h 
after incubation at RT. Freshly prepared potato leaf extract was used. 
 
 
 

Fig. 6.10 shows that with 10 µg/ml of V3 for coating, 10 µg/ml of V3B for detecting, 

and 1:4000 dilution of the S-AP, there was no difference between the two biotinylated 

V3 batches, and both were as sensitive as the immune reagents. 

 

6.3.2.6. Stability and Storage 

 
To check the stability and to optimize storage conditions of biotinylated products, it was 

decided to store samples under different conditions and test them periodically. The 

storage conditions were: 4°C, -20°C, -20°C in 50% (v/v) glycerol, and 37°C. Samples 

were tested after 1 day, 1 week, 2 weeks, 3 weeks, 1 month, 2 months, 4 months, 8 

months, and 1 year of storage. Only results of storing after 1 day, 1, 2, 6, and 12 months 

are presented in Fig 6.11. 
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Figure 6.11. Absorbance values (A405) obtained in ELISA with in vivo biotinylated 
protein preparations after storage under different conditions. 
 
10 µg/ml V3 used for coating, 10 µg/ml V3B for detecting, with 1:4000 dilution of S-AP. Reagents were 
stored at 4°C (♦), -20°C (■), -20°C in 50% (v/v) glycerol (▲), or 37°C (X). For each data point the 
absorbance value (A405) for the non-infected samples was subtracted from value for the infected samples 
(mean non-infected value 0.07). Absorbance values were recorded 1 h after incubation at RT. Frozen P. 
floridana leaf extract was used.  
 
 
 
 
V3B did not retain its functionality after 1 day of storage at 37°C. However, V3B was 

stable for up to 1year in all other combinations. 

 
 
 
6.3.2.7. Recombinant versus immune reagents 

 

After finding the best conditions, I compared the performance of fully recombinant and 

immune reagent ELISA formats to detect PLRV in naturally infected potatoes. Field-

infected potato leaf samples obtained from SASA were used to compare the efficiency 

of the recombinant test and our immune reagent antibodies at SCRI. 
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Figure 6.12. Comparison of the detection of PLRV in potato samples by 
recombinant and immune assays. 
 
Ten fresh potato leaf samples were diluted 1:10 in extraction buffer and tested in both ELISA formats (□, 
V3/V3B; ■, P/M). The mean value of the healthy samples (0.07) was subtracted from the infected 
samples. 
 
 
It is clear from Fig. 6.12 that the recombinant assay gave similar absorbance reading to 

that obtained from the immune reagent assay. 

 

6.3.2.8. Naturally infected leaf samples 

 

In order to compare performance of the recombinant test with ELISA procedures in 

other labs, 54 field-infected potato leaf samples which had been previously tested by 

SASA were tested using the recombinant assay. 
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Figure 6.13. Comparison of the detection of PLRV in naturally-infected potato leaf 
samples by recombinant and immune assays. 
 
Absorbance values obtained in the V3/V3B ELISA (□) or the SCRI immune reagents test (■). Mean non-
infected control values were 0.07 in both tests.  Samples 25 and 51 were considered to be negative (less 
than twice mean control value). Frozen potato leaf extract were used 
 
 
 
 
 
Fig. 6.13 shows that there was about 100% agreement between recombinant and 

immune assays done at SCRI. There are 96% agreement in discrimination of infected 

samples between SCRI tests and those done at SASA. Two samples scored positives in 

SCRI tests were negatives in SASA tests. The difference could be because the leaves 

were frozen at -20°C before being tested and possibly PLRV was detected more 

efficiently using the recombinant test in the fresh samples (Fig. 6.12). An RNA based 

test (such as RT-PCR) could be used to verify the results. 
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6.4. Discussion 
 

ScFv-based immunoassays for plant viruses have been reported (Harper et al., 1997; 

Terrada et al., 2000). However, despite the potential advantages in terms of assay 

standardization and limitless supply, these assays have not been widely applied to date 

(reviewed by Ziegler and Torrance, 2002).  For PLRV one of the reasons is that the 

scFv-AP fusion proteins are not stable over time. In order to produce a robust, fully 

recombinant test, an alternative method of labelling scFv was investigated by exploiting 

the well known streptavidin-biotin system (Bayer and Wilchek, 1990).  Preparations of 

V3 were modified successfully by chemical coupling to biotin but the results were not 

reproducible between batches.  Chemical biotinylation is a process that targets lysine 

residues of proteins and it is difficult to control precisely which residues are modified. 

Moreover, for antibodies, biotinylation of lysine residues within the domains conferring 

binding specificity (the complementarity determining regions; CDRs) can lead to loss of 

function due to disruption of the antigen binding site (Bulow and Linbladh, 1998). The 

scFv V3 contains 7 lysine residues (Fig. 6.14) and one of them is located within the 

CDR2 of the light chain; differential biotin labelling of these various lysine residues, 

including that present in the CDR2, may explain the observed variation in performance 

of different batches of chemically biotinylated V3. 

 

 

Figure 6.14. Amino acid sequence of the anti-PLRV scFv-CL (V3HCL).  
Taken from A. Ziegler, SCRI. 

The complementarity determining regions (CDRs) are underlined, and the letters in italics represent the 
hinge region between the light and heavy chains of the scFv. Lysine residues are highlighted in red. 
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It can be concluded that chemically biotinylated scFv can give results comparable to 

immune reagents, but a limitation of chemical biotinylation is the lack of 

reproducibility. A more reproducible method is needed to biotinylate this protein in 

order to devise a robust, fully recombinant ELISA assay to detect PLRV. In vivo 

biotinylation can be achieved by adding a short biotin acceptor sequence to the C-

terminus of a protein sequence (Schatz, 1993). On production of the protein in an E. coli 

strain that carries the birA gene for the enzyme biotin ligase, the protein becomes 

labelled with biotin. In this system the protein is modified specifically at the C-

terminus, thereby decreasing the likelihood of loss of function. This work demonstrated 

that in vivo biotinylation can be effectively applied to V3 and that the process is 

reproducible between different experiments. The E. coli expressed V3B preparations 

were used together with preparations of V3 and streptavidin-AP to devise a fully 

recombinant assay to detect PLRV.  The recombinant ELISA gave results that were 

comparable to those obtained by an assay based on immunoglobulins for the detection 

of PLRV in P. floridana and naturally-infected potato. A partially recombinant ELISA 

format in which polyclonal antibody was used for coating and V3B was used for 

detection was also tested. In this assay it was shown that the coating ability of V3 was 

weak compared with the detecting performance of the V3B. The reason for that could 

be because the polyclonal antibody is less inhibited by components of plant extract 

compared with the recombinant V3. The weak coating ability would both increase the 

non-specific and reduce the specific reactions. Thus the performance of the recombinant 

assay could be improved if the coating capacity of V3 was improved by coating with 

mixtures of scFv or increasing the affinity of the molecule. 

 

V3 was shown previously to be stable for 6 months at 4°C (Toth et al., 1999) and here 

the V3B preparations were found to be stable for more than one year. Although greater 

amounts of recombinant proteins were used in the biotin assay compared with 

monoclonal antibodies, the recombinant proteins were expressed in reasonable yields in 

E. coli shake-flask cultures quickly and cheaply. This system could be readily applied to 

produce other recombinant antibodies for virus detection. 

 

The results demonstrate that scFv reagents derived from synthetic phage display 

platforms can provide effective alternatives to assays incorporating immune reagents. In 

addition, this work showed that recombinant ELISA based on the scFv can be as 

effective as immune reagent ELISA for routine testing of PLRV if biotinylation of the 
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scFv is performed in vivo. In addition, this recombinant test can be applied for other 

plant viruses, with a potential to replace immune reagent immunoassays. 
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Chapter 7: Effect of Agrochemicals on PVY Transmission by Aphids 
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This Chapter was taken out due to the confidential agreement with the insecticide 

company. 
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Chapter 8. General Discussion and Future Recommended Work 
 

 

8.1. General discussion  

 
Aphid-borne viruses cause economically important diseases on potato crops through 

yield reduction and the direct damage which some viruses may induce in potato 

tubers. In addition, viruses are largely responsible for the degeneration of vegetatively 

propagated seed potatoes. PVY in particular is now the main problem affecting potato 

production in many countries around the world. In the UK, for example, it is 

estimated that PVY alone causes 45% of the total loss caused by all potato diseases 

(Valkonen, 2007), and this is estimated to cost £34 million annually (Anonymous, 

1999). In addition, considerable amounts of insecticides are being employed in 

controlling the vector aphids with limited effect due to the short time required by 

aphids to acquire and transmit the virus between infected and healthy plants. Breeding 

for resistance is the most durable way to control virus transmission in potato crops. 

However, most commercial potato cultivars still lack resistance genes because 

breeding in potato is a lengthy process and most breeding programmes have 

considered viruses as a relatively low priority, including breeding programmes in the 

UK. 

The overall aim of this PhD project was specifically to support improved virus control 

in potato crops by increasing the general understanding of the transmission 

mechanism, developing a more sensitive and robust serological assay for virus 

diagnosis, and investigating the effect of agrochemicals on the aphid vectoring ability 

of PVY. 

 

The mechanism by which potyviruses are transmitted has not been fully elucidated, 

and this is a focus of research groups in many laboratories across the world. The 

transmission is known to be mediated by the well known virus encoded protein 

known as HC-Pro; the most widely accepted hypothesis postulates that HC-Pro 

regulates the transmission process by forming bridge-like structures between the virus 

particles on the one hand and the putative receptors in the aphid mouth-parts on the 

other hand. However, no adequate information is available yet about the exact nature 
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and the location of these putative aphid virus receptors. A detailed understanding of 

the mechanism of virus transmission could greatly enhance the control of this 

important pathogen. By using the knowledge to interfere with the acquisition or 

inoculation process by the aphid vector, it would be possible to decrease or block the 

process. Interfering with the transmission process can be performed genetically for 

research purpose through silencing the genes responsible for encoding virus receptor 

proteins inside the aphid vector if there are specific receptors. Alternatively, 

transmission can be blocked through competition to interact with or disable the 

function of virus receptors. However, before that the putative receptors need to be 

characterized and fully studied. To date, there is limited information about the 

composition or location of such proteins inside aphid vectors, but evidence has 

accumulated that the putative virus receptors inside the aphid are of cuticle nature 

(Dombrovsky et al., 2007b; Uzest et al., 2007, 2010).  

 

In this project several putative receptors for PVY were identified in the aphid M. 

persicae by screening an aphid cDNA library, and their possible binding to HC-Pro of 

other potyviruses was demonstrated. The high level of homology of these identified 

proteins with other CUPs belonging to other aphids (Chapter 3) may suggest non-

specific binding. Non-specificity of binding between HC-Pro and aphid CUPs is 

supported by the long retention time of PVY inside its aphid vector (Chapter 5). In 

addition, detection of virus inside aphids after a long time of feeding on healthy plants 

is a novel finding and could be useful in understanding the transmission mechanisms 

of potyviruses. However, further investigations are required to enable precise 

localization of the virus retention sites inside the aphid body, and to fully characterize 

the range of CUPs that HC-Pro can bind to.
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Bioinformatic work on the aphid cuticle protein identified in Chapter 3 suggests that 

clone P72F, shares a high level of similarity with other aphid CUP proteins, which 

supports the evidence from the genomic sequence that there is a multi-gene family or 

highly expressed genes. The CUP protein represents about 1% of the total sequenced 

clones in the screened library. Thus, HC-Pro can theoretically interact with any CUPs 

that cover the interior part of the aphid digestive system if the nonspecific binding 

theory is correct. However, only those virus particles which stick on the stylet are 

transmissible. One possible explanation for that is the inhibitory effect of aphid 

enzymes on the infectivity of the virus particle, which may be more abundant in the 

other interior parts of the aphid feeding system than on the tip of the stylet. The fact that 

transmission efficiency of non-persistent and semi-persistent viruses is enhanced by 

fasting supports this hypothesis. Powell (1993) found that while starvation increased 

transmission efficiency of non-persistent viruses, the occurrence of electrically-recorded 

membrane punctures during acquisition access did not change, which can be explained 

by the assumption that fasting does not interfere with the probing behaviour of the aphid 

but may provide enzyme-free active virus attachment sites which become available for 

the virus. It is possible to test the inhibitory effect of aphid enzymes on PVY activity in 

vitro. This can be conducted by collecting aphid saliva and incubating it with purified 

virus particles under different conditions then allowing aphids to acquire saliva-

incubated virus particles through membranes in the presence of biologically active HC-

Pro. 

The localization of the GFP-P2 fusion of CaMV on the tip of the stylet only (Uzest et 

al., 2007) is evidence that only viruses that stick on the distal part of the stylet are 

transmissible, despite earlier work which reported that semi-persistent viruses are 

foregut-borne while non-persistent ones are stylet borne. Berger and Pirone (1986) 

showed that aphids acquired on average similar amounts of purified virus particles 

whether the HC-Pro was present or not. However, when active HC-Pro was present, 

virions were detected in the stylet, the foregut, and to some extent the gut, whereas 

virions were detected only in the gut regions of aphids which were allowed to have 

access to defective HC-Pro. The explanation may be that virions retained in the gut bind 

non-specifically and do not participate in the transmission process, and only those that 

are retained in the stylets and the foregut may contribute to the transmission process.  

 

 

 

http://www.dpvweb.net/dpv/showrefs.php?dpvno=414#277
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Figure 8.1. Schematic putative representation of the mechanisms of potyvirus 
transmission by aphids. 

 
CUP: aphid cuticle protein, putative virus receptors on the aphid mouthparts, KITC, PTK: two conserved 
motifs in the HC-Pro, DAG: a conserved motif in the coat protein. Purple arrows: interaction which can 
lead to successful transmission, Green arrows: the interaction may occur but does not contribute to the 
transmission process.1 and 2: interaction leads to successful virus transmission, 3: interaction leads to 
unsuccessful transmission. Small arrows refere to possible sites of release of attached virus particles in 
the virus/HC-Pro/ CUPs complex. 
 
 
 

Fig. 8.1 is based on Fig. 1.2 and outlines the proposed mechanism for the interaction 

between potyvirus and aphid putative receptors. In this proposed diagram successful 

virus transmission by the aphid can occur only if the KITC region of HC-Pro interacts 

with a specific motif on the aphid CUPs, and the PTK region interacts with the DAG 

region on the virus coat protein. Binding of the virus particles directly to CUPs can lead 

to non-specific interactions which can be responsible for the observed long retention of 
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virus inside the aphid. However, this hypothesis is based on assumption although it is 

partially supported by findings obtained from this project about the abundance and 

similarity between identified CUPs and other CUPs, and the retention of the PVY in 

different part of the aphid vectors after long time of acquisition and feeding on healthy 

plant. If more time had been available, investigations would have been carried out to 

localize the identified CUPs inside aphid stylets using antisera prepared against them. 

Moreover, site-directed mutagenesis could be employed to identify specific motifs 

inside the CUPs which may be responsible for the interaction with HC-Pro and 

mediating virus transmission. 

 

Virus transmission by aphids is a complicated process. There are three participants 

involved in this process: the virus, the aphid vector, and the host plant. All components 

may influence each other (Fig. 8.2). Thus it is important to study how the three 

components do affect each other in order to understand the transmission process. In this 

project valuable biological observations relating to the transmission process were made, 

and highlighted some critical areas where the plant may affect the outcome of the 

transmission process. The key finding is that the host plant used to maintain an aphid 

vector colony has an impact on the aphids vectoring ability from different host plants 

particularly rearing aphids on potato significantly decreased transmission efficiency 

from tobacco, but rearing aphids on tobacco restored aphid transmissibility from 

tobacco. In addition, recipient host plant influenced the transmission efficiency of the 

aphid vector, thus aphids transmitted PVY to more tobacco plants than potato. The 

recipient plant effect is usually overlooked by plant virologists as they normally focus 

only on the source plant used for acquisition and use a high number of aphids to 

perform virus transmission, which masks the recipient plant’s effect on efficiency of 

virus transmission by aphids. This point is critical for estimating the REF values of 

different virus vectors, and for assessing virus infection pressure in the field, which may 

lead to either over or underestimation of the virus risk if the aphid culture or the 

recipient plant was not selected properly. It was an important finding that rearing aphids 

on potato decreased their ability to acquire virus from tobacco. However, the opposite 

was not true: aphids which were reared on tobacco acquired virus readily from either 

potato or tobacco. This result may suggest that aphids which reared on potato adapted to 

this host so that their appetite to feed on tobacco and acquire the virus from it is 

decreased significantly. However, this cannot exclude the involvement of other 

unknown molecular factors which remains an opened question.  
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Figure 8.2. Schematic diagram shows the three components of the 
transmission process. 

 
Arrows represent the inter-relationships between the virus, the vector, and the host plant 

Thicker arrows were the relationships studied in this project. 

 

 

As mentioned earlier the purpose of this project was to improve control of potato 

viruses. The first Chapters (3, 4, and 5) focused on controlling non-persistent plant 

viruses indirectly by elucidation of how transmission happens. On the other hand, in 

Chapters 6 and 7 the focus was to tackle the virus transmission directly. In this respect, 

developing cheaper and more robust diagnostic assays based on recombinant antibody 

fragments was investigated in Chapter 6. The work demonstrated that anti-scFv 

fragment selected from a naïve phage library against PLRV was as effective as 

conventional immune reagent antibodies provided that the scFv was biotinylated in 

vivo. The reagents produced in this way have high yields, which compensates for the 

fact that the working concentration is 5–10 times higher than for the monoclonal 
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antibodies, and they can be stored for a long time under different conditions. This 

method should theoretically apply to any plant virus, and provide an unlimited source of 

diagnostic reagents cheaply and rapidly if access to antibody libraries becomes routinely 

available. This step is very important for controlling plant viruses as to control viruses 

efficiently; detection methods should be available cheaply and continuously. 

 

In conclusion, this project has contributed to the pool of knowledge related to aphid 

transmission mechanisms of plant viruses, and control. In addition, new windows of 

research were opened, and further ideas and issues were raised and discussed in the 

context of aphid transmission mechanisms, detection, and control of plant viruses on 

potato crops. 
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8.2. Future recommended work 

These studies have raised new ideas and hypotheses that could be explained in the 
future. 

 

8.2.1. Investigations of virus receptors in aphids 

8.2.1.1. Specificity of interaction between HC-Pro and CUPs  

This work started to investigate the specificity of interaction between aphid CUPs and 

HC-Pro by studying the interaction between native proteins extracted from two aphid 

species with different virus vectoring ability. However, the experiment can be expanded 

to include non-vector aphid species as a negative control and repeated enough to 

validate the findings. Moreover, the cDNA library used for screening contains 

sequences coding for about 20 CUPs. It would be useful to express these proteins and 

incubate them with HC-Pro to find out whether they interact with HC-Pro or not.  

The above experiments should be useful in revealing the range of CUPs to which HC-

Pro can bind. To investigate the specificity of the HC-Pro interaction, it would be 

helpful to study the interaction between the PVY coat protein and the identified CUPs. 

This can be achieved by incubating the CUPs with whole virus particles, but it is better 

to use CP preparation from virus particles. Alternatively, the gene for coat protein can 

be cloned into a suitable expression vector and the protein can be produced in E. coli.  

In Chapter 5, PVY was detected inside the aphid vector at attogram levels using N-RT-

PCR after transmission but the detected virus was not transmissible. It is important to 

check the content of aphid honeydew for virus particles to support the findings in 

Chapter 5, and to eliminate the possibility that virus particles were detected in the aphid 

gut not on virus receptors. 

It is possible also to feed aphids through membranes on purified PVY preparations in 

the attogram range in the presence of active HC-Pro to find out if aphids can transmit 

virus at this low virus concentration. If aphids are able to transmit virus at the attogram 

level this will indicate that either the infectivity of virus particles was disabled or virus 

particles are firmly attached to aphid CUPs which prevents them from initiating 

infection after hours of feeding on healthy plants. In addition, investigation of virus 

retention inside non-vector aphid species and poor vectors is required to determine 
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whether virus can be retained as frequently as in the efficient vector, and this will help 

to inform whether virus particles can bind to any cuticle protein structure inside the 

insect body. Moreover, electron microscopy can be utilized to localize the virus 

retention sites inside aphids by preparation of immunogold-labelled (to anti-coat protein 

antibody) sections of aphids which were allowed to acquire the virus and kept overnight 

on healthy plants. Examination of sections under electron microscopy will reveal 

whether or not there are any virus particles after the aphid has fed on the healthy plant. 

Another way to confirm the specific interaction between HC-Pro and the aphid cuticular 

proteins would be to mutate the KITC domain in the HC-Pro to render it non-functional. 

If deficient HC-Pro is expressed and purified as normal, protein overlay with aphid 

proteins should reveal no interaction. Similarly, to determine the motif in the aphid 

protein responsible for binding HC-Pro, mutation into suspected motifs (YSAP) which 

are abundant at the N and C-terminus of aphid CUPs could be used. Then interaction 

with functional HC-Pro should be absent. In addition, yeast two hybrid system could be 

a useful in vivo technique to investigate interaction between HC-Pro and indentified 

CUPs. 

8.2.1.2. Localization and blocking of virus receptors 

Nucleic acids can be extracted from different parts of the aphid body (head or body 

without head) then PCR can be used to perform differential gene expression studies to 

partially localize the CUPs that interact with HC-Pro. Furthermore, it would be useful to 

employ the system developed by Uzest et al. (2007) in order to investigate the 

interaction between aphid stylets and PVY HC-Pro. A fusion of the green fluorescent 

protein (GFP) to the protein sequence of the PVY HC-Pro can be constructed. The 

construct then can be agroinfiltrated into N. benthamiana plants. Then functionality of 

the GFP-HC-Pro fusion will be revealed by feeding aphids on the agroinfiltrated leaves 

then on PVY purified particles through parafilm membranes. The GFP-HC-Pro binding 

site in the aphid stylets can be investigated under microscopy. 

Blocking of aphid receptors can be tested by preparing antisera against aphid proteins 

from clones P72F/P817P, which are the best candidates. Then blocking of aphid 

transmission of PVY can be tested by feeding aphids on the antibody then testing 

transmission efficiency compared to the controls. Another thought would be to fuse the 

antibody with a fluorescent tag and investigate the position of interaction by looking at 

the aphid stylet under the confocal microscope. Alternatively an immunogold conjugate 
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can be prepared in order to label the place of interaction on the aphid stylet by using the 

electron microscope. 

 

8.2.2. Host plant effect on virus transmission 

 

Investigation of the host plant effect on poor aphid vectors (e.g. R. padi, M. dirhodum) 

was of great interest to this project. However, due to the time limit this effect was 

investigated only in the efficient vector M. persicae. Further work is recommended to 

determine whether analogous host differences are found with other aphid species or 

other field isolates of PVY.  
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10. APPENDIXES 

10.1 APPENDIX 1 

 

Sequencing and bioinformatics data 

  
 

10.1.1. Nucleotide Sequence of the identified aphid protein clones from 
cDNA library (raw sequence data).     
                                             

>P7 2F 
 
TGNNNTTNAANACTTGACGTCGCATGCACGCGTACGTAAGCTTGGATCCTCT
AGAGCGGCCGCCCTTTTTTTTTTTTTTTCAATAAATATACATTGTTATATATA
TTTACACAATAAATACATAGTCGTACCAATTGCCATATTATATTATATTAAT
ACGGCACGGTATGACTTTGAAACCACGGTTCAATGTGAACGCGACGGTCAA
GAGAGGTACACGAAGAAAACATGAAGTAAAAGATGAAGAAGAGTGTTGGT
TCACACGGCTAAATAAATTAGTATGCTGGTTTGTAAGCTGGCTTGTAGGCCG
GGGCAGAGTATGCTGGTGCGGCGTAGGCTGGTGCAGAGTAAGCTGGGGCAG
AGTAAGCTGGCGCGGAGTAAGCTGGCTTGTAGGCTGGTGCGGAGTATGATG
GGGCAGAGTATGACGGGGCCTTGTATCCACCTTCGTTCTTGACGACGGCGTT
GAAACCGTTGTAGTCGTCAGCGGTGTATTCGACGGTGCGGATGGAGCCGTC
GGCTTCGACGAGGCTGTAGGATCCCTTGACGTAACCGTTTCCGTCACTGTAT
TCGGATTGGCTGTGCACATCGTAGGTGTGTGGGTCGTTTACGCTGTATTCGA
AGTTGTACGGTGTGGGTGCGTATGCGGGCTCTGGGGCGTAAGCCTTTGGTGC
CNANTAAGCGGGCGCANANTACGCTGGCTTGTAAGCTGGGGCGGANTATTG
GGCGAGGGCGGTANCNCNCAGCGGCGAAATGACNACTTANCGCCATTTAGN
GTGTTTTTGTTTTTTGNCAATGGGACNAGACTGTGTACANAACGGACCNTGG
TCGACCCGGATTCCGACGGTACTGCAGCGTACACTTCCTATAGGANCGATA
AACTG 
 
>P817P 
NGGNANTNAAGAACTATGACGTCGCATGCACGCGTACGTTAAGCTTGGATC
CTCTAGAGCGGCCGCCCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTAAACTTCA
AGTTTTTATATTTTCATCTTTTTTTGTTACATCCAACATAACTGAATTATTGN
GTACAGTAAATGNGTCGATATTCGTCTTTCANATACGAATAACGAAAATCA
CTGCAAACACAATATTTGCAATGGTAAAAATATGTGCATGATTTCTCACGCA
GTGTCTAATAGCTAATGGTATACGAGTGTTTGGGCCGTTTCAGGTTACATGC
GGGCTGGGTTTACTTCTTTTTGGAGTCTTCTGGTTTCTGTGGTTGGGAGGCG
ATCAATTCCAAAGACTTGGCGATTTCTGAGGGGATGGTCGGGACGACGTTT
CCGACTGCGTGGTAACCGGTCTCGTCGGCGTAGTACTTGACTTCGACTGGAG
CACCATCGTCACCAACGTAGGAGTAAGAGCCTTCGATCACTTGGGCGGCGT
TTTCTGATCCGGCGTTCTTCACGTATCCGGCGGCCTGGGCGACGATACCGTT
TTCGGTTTCGAATCCGTATTTGAATCCGTTCACGTCAGCTTCTTGGGATTGTC
TGATGATAGCTGGCAATTTGTTGTCTACTGGTTTGTACACTGGAGAAACAAC
NTTGGGTACNACTGGCACANGTGCGATGATCNGGGGCTGGGGTGACGGCAC
CNACGGCGGGGTAAACGGCTGGGGCACCTGGGTAGNANCCCGGGTGNANC
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TTGGATCCTGGGNAAANCCTGGGATCCAGTTGGATCCNGGGANNACCCTGG
AACCTGGATCCGGGGAGAACNTGTGCCTGGGANAACCGTACGANCCGAAA
NCNTGGAA 
 
>P8 20P 
ATATATNGGAAGCTGGTCGCCTGCAGGTACCGGTCCGGAATTCCCGGGTCG
ACCCACGCGTCCGGTTGTCAGCCCGATCAAGAGCCAATACCACACCCAAAA
CGAATTCGGACAGTACGCCTACGGCTACAACGACGGATTCTCCAGCAAATC
CGAGACCAAGCACGCCAACGGTCTGACCGAAGGCGCGTACTCGTACGTCGA
CCCGAACGGCGTTCTCCAGCAATACAAATACGTGTCCGACGAGAACGGTTA
CCGAGTATCTGGTACCAACTTGCCAGTGGCTCCAGCCGTCCCCGCAGTAGA
GGTTCCCGCCGTCCCCGCCGTCCCCGCCGTCGAGTCCGTGATCGAAGTCAAG
GCCGCCGCCCCGGCCCCGGCCCCAGAAGCCGTCTCCTACCAGTCCGAGATC
CCACAGCAAGTGCAAGACACCCCGGAAGTGGCGGCCGCCAAGGCAGCTCA
CCAGATCGCTTACGACGAGGCTAAGAAGGCCGCAGACGCCTCTCCGGCCGA
AGACGAACCGTCGTCCGACGCCGTCGTCCAGGTTTCCGCCGATGCATCCGCC
GCGCCAGCCGCACCAGCCGCACCAGCCGCCGCACCCGCTGCACCAGCCGCC
GACTTCGCCAACCACATACGCATAAAAAANAA 
 
 
>P9 4A 
NNNTNAANACTTGACGTCGCATGCACGCGTACGTAAGCTTGGATCCTCTAG
AGCGGCCGCCCTTTTTTTTTTTTTTTTTTTAAACTTCAAGTTTTTATATTTTCA
TCTTTTTTTGTTACATCCAACATAACTGAATTATTGTGTACAGTAAATGTGTC
GATATTCGTCTTTCAGATACGAATAACGAAAATCACTGCAAACACAATATTT
GCAATGGTAAAAATATGTGCATGATTTCTCACGCAGTGTCTAATAGCTAATG
GTATACGAGTGTTTGGGCCGTTTCAGGTTACATGCGGGCTGGGTTTACTTCT
TTTTGGAGTCTTCTGGTTTCTGTGGTTGGGAGGCGATCAATTCCAAAGACTT
GGCGATTTCTGAGGGGATGGTCGGGACGACGTTTCCGACTGCGTGGTAACC
GGTCTCGTCGGCGTAGTACTTGACTTCGACTGGAGCACCATCGTCACCAACG
TAGGAGTAAGAGCCTTCGATCACTTGGGCGGCGTTTTCTGATCCGGCGTTCT
TCACGTATCCGGCGGCCTGGGCGACGATACCGTTTTCGGTTTCGAATCCGTA
TTTGAATCCGTTCACGTCAGCTTCTTGGGATTGTCTGATGATAGCTGGCAAT
TTGTTGTCTACTGGTTTGTACACTGGAGAAACAACCTTGGGTACGACTGGCA
CAGGTGCGATGATCGGGGCTGGGGTGACGGCACCGACGGCGGGGTAGACG
GCTGGGGCACCTGGGTAGTACCACGGNTGTAACCTNGGTATCCNGGGTAGN
ACCNTGGGATCNAGTTNGGNACCNGGGTAGNACCCTGGTANCTNGGTACCN
GGGNAGNANCCTGGTGNCNGGGNATACCGTACGAANCCGAAAACCTGGAA
CCTGGACCNTGNAC 
 
>P5 15A 
CNNTGAAGACTTGACGTCGCATGCACGCGTACGTAAGCTTGGATCCTCTAG
AGCGGCCGCCCTTTTTTTTTTTTTTTTTTTAAATTTTAATCTCATAAAGCTATA
TTGTTCAATTATAATAATTCAAAATAAAAAAGCAGTGTTTTTTAGTATGAGG
GAAATGTATCATGGAATGAAAAAGCATTAAGTATAAAAAAATAATGGATTA
ATATACAGAATTTTTTTTAAAATAAAAAGTAACAAAAAATGACATTTTAAA
GCTAATTGTTTAAAAAAAGTCTAGTTTTCATCAACTTCTTGTTCTTGTTCTTC
ATCAAATTCAGCTTCCTCATCAGCGGTAGCTTCTTGGTATTGTTGGTATTCA
GATACTAAATCATTCATGTTGGATTCGGCTTCAGTGAATTCCATCTCATCCA
TACCTTCACCAGTATACCAATGCAAGAAAGCCTTACGCCTGAACATAGCAG
TGAATTGTTCACTGATTCTCTTGAACAACTCTTGGATAGCTGTAGAGTTACC
AATAAATGTAGCAGACATTTTAAGACCTCTTGGAGGAATATCACACACTGC
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AGTTTTAACATTGTTGGGAATCCATTCACCGAAGTAGCTCGAATTTTGTCCT
GATATTAACATTTGGTCATCACTTCTTCAGGNCATACGGCNCGGANACAGCT
GCTCNGTAGANACGTCCAGNCTGGGNCCATGCTGCNTCAGNTTTGGCACAA
CATTGTGGGAAGTCGGGACGNTAGGCCTGATGTGCTCCCANAGTAAAGACG
ANCCGCTGAAANGNACNGGGAAGACNGTGCGCAGTNCGAACGCTCATGCN
GGACNGAN 
 
 
>P13 6B 
CTTNAGACTTGACGTCGCATGCACGCGTCGTAAGCTTGGATCCTCTAGAGCG
GCCGCCCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTAAGGGAAGGNATTGCCTC
TACCAACTAAGAAGTTGGAGACATTTATTATACNCTTCAGACCGGNGNGAG
AGTTTACATCTGAAATAACNCTAAAAAATACGAAAATAAAAATCTAAAAAT
TGAATATTATCNCCATTATTTAAGTCAATACATAATCAAGTCAATAATAACA
AACTTATTTTATCTTAAACAATTTCTAAAAAAATCTTTGTAAAGGCCAACAA
AAAAATAAGACGGNGCATTAAAAATGNATGCAATTTTTGTACAGGCTTACA
TTTAAACCCGATGAATAAATAGTTATTATTATGTACAAAGTAATAATTATTA
ATATTGATATCTAATCAAATGCAAAACTGTTTTAAATATTTGAAACTGAGAT
GGAAAAATGCTTGTGTGTAGACTTATCAGGTAATAAATTGTGCGCAACCAA
AACTTCTATTGGCATTTGTATAGCGCAAAATGGCTTTGTTCACTTGTCGACC
AATTAAAAATAGAAAACAAAATTAAAAAAATTCTCCTAGTTATATTGNTCT
GGNAAGACATAAGAAATGTCGTCCCNTGGATGACGGTAAAGCCCTTGNTTT
AATCTCTTTTGATCCNTAAAATGNCCNATAAATCCCATACTTCNTCCAGTAC
NAACAACNGGTGATGNGCCCNTATCAATGNACNCTGGGCTCCTCCGAGNGA
ACTCCCNATTTCNCACAATCCNGANGNTNCGCTNACTCCTCACNTCATAAAA
ATGGGTTTTGNAGGGGGATTTCACTCAAGCAAGTCANANGGGGGGGG 
 
>P14 24E 
GCNTGAGNCTTGACGTCGCATGCACGCGTACGTAAGCTTGGATCCTCTAGA
GCGGCCGCCCTTTTTTTTTTTTTTTTTTTTTAANGNTAATACATATATATATAT
GCATATATATTTCATAACACAAACAAGGNTACACCTAAATTATAATCTATGC
CTACACATAATTAAATTTGTTAACTAAATAAAATGGNGATTATCTATATACA
AAGTACATAAAATTAAAATCGAATAATCCATTAATACTTAGGACTTTATATA
ATTTAGGNCACAAGTAACCATTATTAAATGATTGNTAAAGATAATTTTTTTA
TACACGCACATACATACATACATACATACACACTCATTTATATATATACATA
CATACACACACACATACATATATATATAACATTATTTGTTATTATATAGAAA
GTCCAAATTTTTAAAGTAAAATTATTCAAGCACAGAGTTATTAGAGTAAGA
ACAACCTCGTTTAGTTGTTCATAATCAATATTCAATCAAATACGATTTATTTC
TTTTTCACAGCAGTTGTATTACTAGCCGGTCTTCCAGAGTTTAATCCTGAGT
ATTGATACTTCGCCTTCTTTTCAGATGGTTTCAAAATTTGAAATGAACACAT
TAGTGNTGCATCAACAGACATCATTCCACCAGCATTATCAAATTCTCCACAA
TAATTTGGTGCGGAAAACAATGNAACCNATTGNCTCTTGGCAAAAAATTCG
TAACCNTCTTCTACANCNNGATGNGCTCTACATATGAGATCTAAGTCANGG
CTATTTAAAAATTTGGCTACGACNTCNGNACCAAAGGGGAAGAACACCTCT
ATCATTTCCCCCCACCAGTACCTCTTGGNCGGGTCGGACCTAATAATCCNTA
ATANCCGTNCGG 
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> P6 13B 
CTNCGCTCCTATAGGGAAGCTGGTCGCCTGCAGGTACCGGTCCGGAATTCCC
GGGTCGACCCACGCGTCCGCAACGACAATGTCTTCGGATTCAGACACAATG
CCGGGGAAGATTTTTGGTTACGAAAAACAAGTACATACCGGTCGGAACTCG
ATCGAAGACTTTTTAGAGAACCTAAAAGGCGTATTCCTTGGACCCGCAATAT
GGGTTAGAGAAACCATTGTAAAGCCCAACCAGAAAGACTACAACTACTATC
ATGAACAGTTGCGAAGAGTGCCCACTGTTGATCAATGTTATGACGATGATA
GGCTGTGCAAATGGGAGGCAAATCAACAGTTAATTCGGGATAAGCTGGTAG
ATAGCAATATTCTATCTATTTTAAGACAGAGGTATGAAGATTGTCGGATTTA
TGAAGCACCAGATGGCATGAGGAAATGCAAACCATTGTCTGATATTTACCA
GGAAGCTGAAGAAAATTACTCAATCAAATATGGCGATTTGGGAGTTGCTGT
CACTGCTGAAAGATGCTATGCAAAACAACTGAATCGCATGTTATGGGAGAG
ACGCCATGGACCCGTTGGAACCGGAATGAAGAAAGATAGCTTGTAATCAAT
GATTTTTAACACACAGTATATAATTATACAGAAGTGTATAAAATTAGAAAA
CAAACTCAGTCAGGAATTTAGAGAAGAAAATTATATTCTGAAATGTTCAAT
ATGAAAATGTATGTTTTTTTTTTAATACAGGTACTTTGTACCAATTGTTACNG
TTAATTATTAAGCNTGTGCNAATACNAATATTGAGCCTTAAAAAAAAAAAA
AAAAAAAAAAA 
 
 
10.1.2. Protein sequences of CUP identified clones 
 
 
>P7-2F 
MAAKFVIFAACVATALAQYSAPAYKPAYSAPAYSAPKAYAPEPAYAPTPYNFE
YSVNDPHTYDVHSQSEYSDGNGYVKGSYSLVEADGSIRTVEYTADDYNGFNA
VVKNEGGYKAPSYSAPSYSAPAYKPAYSAPAYSAPAYSAPAYAAPAYSAPAYK
PAYKPAY*FI*PCEPTLFFIFYFMFSSCTSLDRRVHIEPWFQSHTVPY*YNIIWAM
GTTMYLLCKYI*QCIFIEKKKKGGA 
 
>P8-17P  
MNTLVVLVAVVAAVAAAPPKEAAKAFTFSGFPSNQAYYPGQQAYYPGYQGY
QGYQGYSGFRNGYYPRQQGYYPGYQGYQGYYPGYQTGYQGYYPGYQGYNR
GYYPGAPAVYPAVGAVTPAPIIAPVPVVPKVVSPVYKPVDNKLPAIIRQSQEAD
VNGFKYGFETENGIVAQAAGYVKNAGSENAAQVIEGSYSYVGDDGAPVEVKY
YADETGYHAVGNVVPTIPSEIAKSLELIAS 
 
>P9-4A 
MNTLVVLVAVVAAVAAAPPKEAAKAFTFSGFPSNQAYYPGQQAYYPGYQGY
QGYQGYSGFRNGYYPGQQGYYPGYQGYQGYYPGYQTGYQGYYPGYQGYNR
GYYPGAPAVYPAVGAVTPAPIIAPVPVVPKVVSPVYKPVDNKLPAIIRQSQEAD
VNGFKYGFETENGIVAQAAGYVKNAGSENAAQVIEGSYSYVGDDGAPVEVKY
YADETGYHAVGNVXPXIPLXXRQVFXLIAS 
 
 
>P8-20P  
VVSPIKSQYHTQNEFGQYAYGYNDGFSSKSETKHANGLTEGAYSYVDPNGVLQ
QYKYVSDENGYRVSGTNLPVAPAVPAVEVPAVPAVPAVESVIEVKAAAPAPAP
EAVSYQSEIPQQVQDTPEVAAAKAAHQIAYDEAKKAADASPAEDEPSSDAVVQ
VSADASAAPAAPAAPAAAPAAPAADFANHIR 
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10.2. APPENDIX 2 

Production and Characterization of a Polyclonal Antiserum 

for PVY Non-Structural Fusion Protein* 

 

 
* Unless otherwise stated, all information about antisera production was derived from Harlow and lane, 
(1988), and Leenaars et al., 1999.   
 
 
10.2.1. Introduction  

Polyclonal antisera are produced by the immunization of suitable animals such as mice, 

rats, rabbits and goats with an antigen in order to obtain high titer, high affinity antisera 

for use in experimentation or in diagnostic tests. The production of antibodies in 

animals must be carried out in strict accordance with the legislation of the country 

concerned. 

There are many specialized companies which offer polyclonal antibody production 

(examples, Eurogentec, Open Biosystems, and Precision Antibody), the customer only 

having to provide purified antigen sufficient for the immunizations involved and for 

initial analysis of the antiserum. In addition, ready to use antibodies for the most 

important plant viruses are available to purchase from some companies such as Agdia, 

Agden, and Bioreba. 

10.2.1.1. Selecting animal 

The selection of the animal is typically made depending on the amount of antiserum 

needed, usually; rabbits are the most common choice for laboratories. However, many 

other animals may be used including, mice, rats, hamsters, horses, goats, and guinea 

pigs. Chickens are sometimes used, with the advantage that the chicken antibodies are 

extracted from the egg yolk. However, chicken IgY antibodies are more difficult to 

purify than mammalian antibodies.  For commercial purposes horses, sheep, goats and 

pigs are used.  

http://en.wikipedia.org/wiki/Titer
http://en.wikipedia.org/wiki/Antisera
http://www.openbiosystems.com/ndm/custompoly/
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As different animals even off the same species react differentially to certain antigen, it 

is advisable to use more than one animal for immunization with the same antigen 

(Harlow and lane, 1988) 

 10.2.1.2. Antigen production 

Microgram to milligram quantities of protein in adjuvant are necessary to elicit high 

titer antibodies. The amounts of antigen used differs depending on the animal species 

e.g. it is recommended to inject 50–1000 µg of the antigen when rabbit is used. The 

purity of the antigen is the most important factor that influences the quality of the 

antiserum that is produced. Small proteins (<3000-5000 Daltons) and non-protein 

antigens generally need to be conjugated or crosslinked to a larger carrier moleculein 

order to increase their immunogenicity (Harlow and Lane, 1988).  Plant virus antigens 

may often be purified from infected plants, but when this is not possible then cloning of 

the protein of interest gene into a bacterial expression system is a useful alternative  

 

10.2.1.3. Selecting Adjuvant 

Producing high affinity antisera for diagnostic use requires the use of adjuvants to help 

improve and enhance the immune response. The role of the adjuvant is to protect the 

antigen from degradation and to prolonge the immunogenic response. In addition, 

adjuvants are used for non-specific stimulation of the immune system. There are many 

types of adjuvants including oil emulsions, mineral salts, microbial-like products, 

saponins, synthetic products and adjuvant formulations containing mixtures of products 

(Leenaars et al., 1999).  The adjuvants that are used for routine polyclonal production 

include Freund’s Complete Adjuvant (FCA), Freund’s Incomplete Adjuvant (FIA), Quil 

A, Titermax and RIBI.  Freund’s adjuvants are mineral oil based solutions with the FCA 

containing, in addition, inactivated and dried mycobacteria.  This is recommended for 

poorly immunogenic weak antigens, however, its use is tightly controlled because 

intradermal injections may cause skin ulceration and necrosis and it can induce 

anaphylactic shock. 

10.2.1.4. Immunisation  

Before beginning an immunisation schedule reference to the relevant local rules must be 

made in order to ensure that the correct procedures are being followed.  This is to ensure 

the antigen does not contain any toxic or harmful contaminants. The site of injection is 

http://en.wikipedia.org/wiki/Antisera
http://en.wikipedia.org/wiki/Mycobacterium
http://en.wikipedia.org/wiki/Skin_ulcer
http://en.wikipedia.org/wiki/Necrosis
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determined by the volume of injected antigen, the type of adjuvant, and how quickly the 

immunogen should be released. For immunizing rabbits, antigen is normally given at 

multiple subcutaneous sites, typically, 500 µg of antigen is used. Following this initial 

immunisation, the animal’s primary immune response will produce only IgM antibodies 

with a lower affinity.  It is the subsequent booster immunisations, given typically 2-3 

weeks later that lead to a class switch to the more desirable higher affinity IgG 

antibodies.  Booster immunisations may be given until the antibody titre has reached a 

usable level for the purposes for which it was designed. 

10.2.1.5. Bleeding and antiserum collection 

As indicated before handling animals for the purpose of antibody production is 

subjected to legal regulations, therefore blood sampling to monitor the immune 

response is controlled to ensure minimum stress for the animal.  No more than 15 % 

total blood volume may be taken over any 28 day period.  When an antiserum with the 

desired titre has been confirmed then exsanguination is performed under general 

anaesthesia.  Blood samples are allowed to clot at 4 °C then centrifuged to separate the 

serum from the clot. Then antiserum can be stored at -20 for many years. 

In this appendix an antigen of bacterially-expressed PVY cylindrical inclusion protein 

(CI) was used to prepare a polyclonal antiserum.  

 

 

10.2.2. Material and methods 

10. 2.2.1. Preparation of CI insert 

 
Total RNA was extracted from PVYO infected tobacco plants using the RNeasy Mini kit 

as described previously. cDNA was synthesized from the total RNA by Transcriptor 

reverse transcriptase as described previously, then used as a template in PCR to amplify 

CI gene using primers PVYOCIFWD and PVYOCIREV (Table 2.3) that include SacI 

and HindIII restriction sites used for cloning.  The PCR was done using Taq DNA 

polymerase (Roche), and the following conditions: 

94 °C for 2 min; 29 cycles of 30 s at 94 °C, 30 s at 55 °C, and 1 min at 72 °C; then 72 

°C for 3 min. The PCR product was electrophorised through 1% agarose gel and stained 

with Ethidium bromide, as described previously, and a band corresponding to the CI 
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insert excised and purified from the gel using the Zymo-spin I column kit.  The purified 

insert was ligated into pGEM-T easy vector (Promega) and used to transform XL10 

Gold competent cells (Invitrogen) as described previously.  Plasmid preparations from 

transformed clones were digested with SacI and HindIII and the insert gel purified as as 

described previously. 

10.2.2.2. pQE30 vector cloning of CI insert 

SacI/HindIII digested pQE30 and pGEM-T derived CI inserts were ligated using T4 

DNA ligase and used to transform XL10 Gold competent cells (Invitrogen) as described 

previously.   

10.2.2.3. Protein expression and purification 

CI expression and purification analysis was performed using both native and denaturing 

conditions as described previously.  

10.2.2.4. CI protein dialysis and concentration 

CI protein (5 ml) was dialyzed for four hours with two changes of 10 mM Tris-HCl (pH 

7.0) at 4°C. Then concentration was calculated according to the protein coefficient: 1 

A280 = 1.61 mg/ml. 

To concentrate the protein the volume was decreased by placing the prep (in pre-wetted 

dialysis tubing) in crushed Polyethylene glycol (PEG). CI concentration became 0.43 

mg/ml which is close to the recommended concentration for immunization (0.5 mg/ml). 

Then samples of concentrated protein were analyzed with SDS-PAGE and western blot 

(Fig 10.2.1, Fig 10.2.2).  

10.2.2.5. ELISA & Western blot analysis 

For antiserum titration, plate trapped ELISA (PTE) was used. In this ELISA format, the 

antigen was used to coat the plate at different concentrations which then was used to 

trap the antibody which was similarly used at different dilution to detect immobilized 

antigen on ELISA plate. All washing and incubation steps were performed according to 

the standard ELISA methods presented in Chapter 2. 

Wester blot was carried as explained in Chapter 2. 
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10.2.2.6. Preparatiojn of α -CI polyclonal antiserum  

The anti-CI serum was prepared in a New Zealand White rabbit. Approximately, 500 ng 

of purified protein was emulsified in Freund’s Incomplete Adjuvant and injected 

subcutaneously at four sites on the back on days 0 and 14.  Antiserum was taken 2 

weeks after the second injection.  Seven weeks after the first immunization an 

exsanguination was performed. 

 

10.2.2.7. Preparation of IgG fraction of CI antiserum 
 

 

A 1:5 dilution of crude CI antiserum was prepared in water and an equal volume of 

saturated ammonium sulphate (pH 7.0) slowly added with gentle stirring.   Gentle 

stirring was continued for 1 h, before pelleting the precipitated IgG by centrifugation for 

10 min at 10,000 rpm.  The pellet was resuspended and then dialysed overnight in PBS.  

The solution was clarified by centrifugation as before and the supernatant IgG fraction 

retained and stored at 4°C with the inclusion of 0.05 % Sodium azide.  The IgG 

concentration was determined spectrophotometrically using the extinction coefficient of 

1.4.  

10.2.3. Results  

 
10.2.3.1. Bacterial expression of CI 

 

The expected size of the CI protein is about 70 kDa. Our product is about 25-30 kDa. 

This means that the CI protein has degraded see figure (10.2.1). To prevent degradation 

expressing of the protein we repeated for clone 3 under denaturing condition in the 

presence of Protease inhibitor (Roche). However, this step was not useful to prevent 

degradation, thus it was decided to raise the antiserum against the Histidine-tagged 

terminus of the CI. 

Western blot was used also to check the reaction of series of dilution antiserum (1:100, 

1:500, 1:2500, and 1:12500) towards CI antigen. Purified CI protein has been separated 

by SDS-PAGE and transferred to membrane as mentioned previously. Bands of smaller 

molecular weight than the expected CI protein were detected by the first antiserum. This 

result (not presented) confirms that the raised antiserum is against the His-tag part only 

of the CI protein due to the proteolysis of the CI protein during production. There was 
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some background reaction towards E.coli protein, but this is not a problem, as the 

prepared antiserum will be used to detect CI in plant or to localize CI in aphid sections. 

                  

 

 

     
 
     Fig  7.1a detected CI Protein  
     by α-His antibodies in 
           dot blot assay. 
A: clone 3 eluted with buffer D. 
B: clone 3 eluted with buffer E. 
C: clone 8 eluted with buffer D. 
D: clone 8 eluted with buffer E. 
1-4: number of elutions. 
5: Negative control.  

 

 

     
           Fig. 7.1b the size of detected CI  
            protein by α-His antibodies in  
                        Western blot.                                      

M: protein marker 

1: clone 3 first elution buffer E 
2:clone 3 second elution buffer E. 
3:clone 3 third elution buffer E. 
4: clone 3 fourth elution buffer E. 
 

Fig 10.2.1. Overexpression of the CI Protein in bacteria and estimation of the 
protein fragment size by binding to α-His antibodies 
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           Fig. 7.2a PAGE staining of CI 
             protein before dialysis. 
 
 
M: protein marker 
1-4: clone 3 eluted after adding Protease inhibitor 
to purification buffers. 
5-7: clone 3 eluted before adding Protease 
inhibitor. 
8-12: clone 8 without adding Protease inhibitor. 

 

 

      
 
 
            Fig. 7.2b PAGE staining of CI Protein  
                  after dialysis and concentration. 
 
 
M: protein marker 
1-4: BSA: 1, 0.5, 0.25, 0.125 µg respectively. 
6: CI protein after dialysis. 
8: CI first concentration. 
10: CI second concentration.  
 

 

Fig 10.2.2. Coomassie blue staining of overexpressed CI Protein in bacteria before 
and after dialysis 

 
 
 
 
 
 
 
 

10.2.3.2. Antiserum production and characterization 

 

 

10.2.3.2.1. Characterization by ELISA  

 

First bleed 

Blood samples collected after two weeks of immunization were used to detect the 

immunogenic response to injected antigen. 
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CI antiserum Pre-immune blood Antigen 
μg/ml 

1:100 1:400 1:1600 1:6400 1:25600 1:100 1:400 1:1600 1:6400 1:25600 
2 0.58 0.22 0.10 0.07 0.06 0.12 0.08 0.06 0.06 0.06 
1 0.35 0.15 0.08 0.07 0.06 0.11 0.08 0.06 0.06 0.06 

0.5 0.23 0.12 0.08 0.07 0.06 0.11 0.08 0.06 0.06 0.06 
0.25 0.15 0.09 0.07 0.06 0.06 0.11 0.08 0.06 0.06 0.06 
0.125 0.12 0.08 0.07 0.06 0.06 0.11 0.08 0.06 0.06 0.06 

0.0625 0.12 0.08 0.07 0.06 0.06 0.11 0.08 0.06 0.06 0.06 
Table. 10.2.1 Titration of the first bleed of CI antiserum 

 

Absorbance values were recorded after 1 hour of incubation with the substrate 

 

Second bleed 

Similarly, after two weeks from the first bleeding another blood sample was collected 

and immunogenic reaction was checked. 

 

CI antiserum Pre-immune blood Antigen 
μg/ml 

1:100 1:400 1:1600 1:6400 1:25600 1:100 1:400 1:1600 1:6400 1:25600 
2 0.99 0.48 0.20 0.10 0.07 0.12 0.08 0.07 0.06 0.06 
1 0.62 0.36 0.18 0.09 0.07 0.12 0.08 0.07 0.06 0.06 

0.5 0.42 0.24 0.13 0.08 0.07 0.12 0.08 0.07 0.06 0.06 
0.25 0.27 0.17 0.12 0.07 0.06 0.11 0.08 0.07 0.06 0.06 
0.125 0.17 0.10 0.09 0.06 0.06 0.11 0.08 0.07 0.06 0.06 

0.0625 0.13 0.09 0.07 0.07 0.06 0.11 0.08 0.07 0.06 0.06 
Table. 10.2.2 Titration of the second bleed of CI antiserum 

 

Third bleed 

One week after the second bleed, it was decided to collect the final bleed as the 

immunogenic reaction was enough to use the produced antiserum for CI testing. 

 

CI antiserum Pre-immune blood Antigen 
μg/ml 

1:100 1:400 1:1600 1:6400 1:25600 1:100 1:400 1:1600 1:6400 1:25600 
2 0.67 0.37 0.21 0.12 0.09 0.17 0.10 0.07 0.09 0.09 
1 0.47 0.28 0.15 0.09 0.07 0.15 0.09 0.07 0.09 0.09 

0.5 0.32 0.18 0.11 0.08 0.06 0.14 0.09 0.07 0.09 0.09 
0.25 0.26 0.14 0.10 0.07 0.06 0.13 0.09 0.07 0.09 0.09 
0.125 0.16 0.11 0.08 0.07 0.06 0.13 0.08 0.07 0.09 0.09 

0.0625 0.13 0.09 0.07 0.06 0.06 0.12 0.08 0.07 0.09 0.09 
Table. 10.2.3 Titration of the first bleed of CI antiserum 
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It cam be concluded from the ELISA results that the second bleed contained the better 

quality antisera while the quality of the antiserum in the third bleed was decreased. 

It has been decided to use bleed 2 at 1:400 dilutions as a working concentration to 

detect CI. 

 

10.2.3.2.2. Characterization by Western blot  

 

Recombinant CI protein, and other virus recombinant proteins were SDS-PAGE 

electrophoresed, then proteins were transferred to Hybond-ECLTM nitrocellulose 

membrane. Membranes were then overlaid with 1:400 or 1:1000 dilution of the crude 

antiserum. Non-recombinant E. coli protein was produced following the same 

conditions of CI production except adding the inducer, and this protein was used as a 

control.  

 

 

                                                  
                    Fig. 10.2.3. Characterization of the third bleeding of CI antiserum 
 
A blot was incubated with 1:400 dilution of the crude CI antiserum 
B: blot was incubated with 1:1000 dilution of the crude CI antiserum 
 

1- Prestained protein marker. 
2- PVY-CI preparation produced in E.coli used to inject the rabbit 
3- PVA recombinant CI produced in E.coli 
4- PVY recombinant HC-Pro produced in E.coli 
5- PVY recombinant VPG produced in E.coli 
6- Non-recombinant E. coli 
7- PVY- recombinant CI  new preparation  
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Protein of two weeks infected N. Tabacum cv. Samsun leaves were extracted by adding 

1 ml of PAGE sample buffer (Laemmli buffer) to 1 g on tissue and the mixture 

homogenized by using a mortar and a pestle. Then mixture was boiled for 5 min and 

centrifuged for 5 min at 5,000 rpm. Then the supernatant was used directly in PAGE 

gel. Protein was transferred to nitrocellulose membrane and overlaid with different 

dilutions of the crude antiserum.Similary; a protein sample was extracted from a healty 

tobacco leaf and used as a control. 
 

 

 

 
 

Fig. 10.2.4. Characterization of the third bleeding of CI antiserum using PVY 
infected plant 

 
A control blot of recombinant CI overlaid in 1:400 of the CI antiserum 
B: control blot of healthy and infested plant overlaid with 1:2000 of α-CP antiserum 
C, D, and E represent titration of the CI antiserum at 1:400, 1:800, and 1:1600. 
F: negative control overlaid in 1:400 of the pre-immune blood 
M: Prestained protein marker. CI: recombinant protein produced in E.coli,   
H: Healthy tobacco leaf sample, I: PVY infected tobacco leaf sample 

 

 

It can be concluded that the produced antiserum can recognize natural CI as well as 

recombinant when used at dilutions between 1:400 to 1: 1600 but better result was 

obtained at 1:400. Moreover, CI was detected in the plants as a multiband rather than 

one single band which may indicate that degradation of this protein occur in plant as 

well as when expressed in bacteria. 
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It was impossible to detect CI in infected plant sap using ELISA coated with either 

Polyclonal or Mab which may either indicate that the CI protein compromise a low 

portion of the virus particle can not be detected by ELISA or it is existed free in the 

plant sap unattached to the virus particles, thus it is washed during the washing steps in 

ELISA   

 

10.2.4. Discussion 

 
Production of high affinity antisera for diagnostic purpose or for investigation of protein 

interaction mechanisms is very important to control plant viruses. The cylindrical 

inclusion protein (CI) is one of the non-structural proteins produced by potyviruses. 

There are many reported function of this protein in the potvirus life cycle including 

formation of pinwheel structures and potyvirus movements. CI is reported to self 

interact, and the domains responsible for this interaction have been identified at the N-

terminus (Lopez et al., 2001).  In addition, potyvirus CI is reported to interact with the 

CP, and with the HC-Pro protein (Lin et al., 2009).  

 

HC-Pro is a multifunctional potyvirus protein, and one of the most important function is 

mediating the aphid transmission of  potyviruses, and the mechanisms  by which HC-

Pro is working is the main focus of my study in this thesis. There is no comprehensive 

study which indicates clearly that CI interfering with the aphid transmission of 

potyviruses. However, the interaction of the HC-Pro with this protein, and the 

multifunctional nature of the potyvirus proteins in general, and HC-Pro in particular 

were the reason to investigate if CI has any role in the transmission mechanism. Thus it 

was important to prepare an antiserum which can recognize this protein in order to 

detect any binding between this protein and the aphid proteins or the others domain that 

participates in the transmission process (HC-Pro, CP). CI exists in low concentration in 

the infected plant, so it is difficult to purify this protein to obtain enough amounts for 

antiserum production. Thus, it was decided to express a fusion of the 6-Histidin tag at 

the N-terminus of this protein of this viral gene, and express the protein in bacteria, then 

purification over Ni-NTA resin. In this study, the method produced sufficient amount of 

the antigen. However, the protein was degraded, and all the attempts to stop degradation 

by adding protease inhibitor enzymes were unsuccessful.  Thus it was decided to 

proceed with the antiserum preparation against the N-terminus part of the protein which 

is believed to be responsible for protein-protein interaction. 
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Characterization of the produced antiserum by ELISA and western blot revealed that the 

produced antibody can be used detecting CI at dilution between 1:400 to 1:1000. 

However, the interaction was stronger when the antiserum was used at 1:400 .So it was 

recommended that to use 1:400 routinely as working concentration for measuring CI 

interaction with the other proteins. Due to the time restriction, I was not able to use the 

produced antiserum to investigate if CI protein can interact with aphid CUPs or with 

HC-Pro. 
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10.3. APPENDIX 3 

Scientific contributions 
 

10.3.1. Research paper from chapter 6 

Al-Mrabeh, A., Ziegler, A., Cowan, G. and Torrance, L. (2009) A fully recombinant 

ELISA using in vivo biotinylated antibody fragments for the detection of potato leaf roll 

virus.  J. Virol. Methods 159, no2, pp. 200-205. 
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10.3.2. Review paper adapted from the literature review chapter 
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10.3.3. Oral presentation - The BIT Life Sciences' 2nd Annual International 

Congress of Antibody 2010, which was held on  Mar. 21-23, 2010 Beijing, China 

Title: A fully recombinant ELISA based on in vivo biotinylated antibody fragments is 

effective for routine virus detection. 

 

Authors: Lesley Torrance, Ahmad Al Mrabeh, Graham Cowan and Angelika Ziegler 

Abstract 

Recombinant antibody fragments (ScFv) derived from naïve phage display libraries have the 

potential to replace antibodies derived from animal immunizations in routine assays for 

pathogen detection and diagnosis.  There are many advantages of this approach including 

the limitless supply of reagents compared with polyclonal sera, economy of production and 

storage compared with monoclonal antibodies and assay standardization to ensure quality 

and reproducibility of tests within and between testing stations.  Moreover, they allow the 

replacement of animals for antibody production which is of ethical importance in some 

countries.  A perceived disadvantage is that these reagents are of relatively low affinity and 

stability compared to antibodies obtained from the serum of hyperimmune animals and so 

the limit of detection of such assays is not adequate for some purposes.  Here we report an 

enzyme-linked immunosorbent assay (ELISA) based on scFv that have been genetically 

modified to create fusion proteins with the constant domain of the immunoglobulin light 

chain and a biotin tag.  The biotin tag was introduced by chemical coupling in vitro or by an 

in vivo method and the assay incorporated a streptavidin-alkaline phosphatase conjugate.  

We found that the in vivo introduction of biotin was superior to chemical coupling and the 

limit of detection of this ‘fully recombinant’ assay was similar to an assay based on 

immunoglobulins for virus detection in potato.   The scFv-biotin preparations were stable 

and retained specific activity for more than one year when stored at 4˚C or -20˚C.  The 

results demonstrate that scFv reagents derived from synthetic phage display platforms can 

provide effective alternatives to assays incorporating immune reagents.   

 

 

http://events.linkedin.com/BIT-Life-Sciences-2nd-Annual/pub/223612
http://events.linkedin.com/BIT-Life-Sciences-2nd-Annual/pub/223612
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10.3.4.  Oral presentation- The 14th triennial meeting of the Virology Section of the 

European Association for Potato Research (EAPR), Hamar, Norway 4–9th  July 2010 

Session: Virus Transmission 

 

Title: Studies on molecular and biological aspects influencing aphid transmission and 

control of potato virus Y 

 

Ahmad Al-Mrabeh1, 2, Angelika Ziegler1, Brian Fenton1, Graham Cowan1, and Lesley 

Torrance1 
 
1Scottish Crop Research Institute (SCRI), Invergowrie, Dundee, Scotland, UK, DD2 5AD 
2Institute for Research on Environment and Sustainability (IRES), School of Biology, University of 

Newcastle, Newcastle upon Tyne, UK, NE1 7RU 

 

 

Potyviruses are a group of non-persistently transmitted viruses which require the virus 

encoded protein helper component-proteinase (HC-Pro) in order to be transmitted. The 

molecular mechanism of non-persistent transmission of plant viruses by aphid vectors is 

not fully understood. A better understanding of the potyvirus transmission mechanism 

requires more knowledge about the three components involved in the transmission 

process (virus/host/vector).  In this work, we have identified aphid cuticle proteins 

(CUPs) that may be potential virus receptor proteins and the impact of the host plant on 

the vectoring ability of the aphid was investigated. Three CUPs that interacted in vitro 

with PVY HC-Pro were identified by screening a Myzus persicae cDNA library 

(Ramsey et al., 2007).  Identified CUP protein genes were cloned and the recombinant 

proteins were purified and the interaction was confirmed to occur with HC-Pro of 

another potyvirus.  The choice of host plant can influence virus transmission by aphids 

because virus concentration may vary and aphid vectors have different feeding 

preferences.  We investigated the influence of different plants (potato, tobacco, oilseed 
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rape and Physalis floridana) as virus sources and for aphid colony propagation. Our 

results suggest that the host plant used for maintaining aphids influenced their capacity 

for virus acquisition and there was also an influence of recipient plant host on virus 

transmission. The results will be discussed in the context of understanding the 

transmission process and methods of controlling non-persistent viruses.  In addition, the 

data highlight the importance of the choice of plant species used in assessment of aphid 

vectoring ability. 

 

Key words 

PVY, HC-Pro, potyvirus, virus receptors, host effect.  

References  

Ramsey et al. 2007. BMC Genomics 8, 423. 

 

 

10.3.5. Poster presentation- Crop Protection in Northern Britain Conference 

(CPNB) in Dundee west park conference centre from 26 - 27 February 2008. 

 

 

Site specific biotinylation is a powerful technique to improve performance of a 

recombinant antibody  

Ahmad Al-Mrabeh
1, 2

, Angelika Ziegler
1
, Graham Cowan

1
, Angharad Gatehouse

2
, 

Ethan Hack
2
, and Lesley Torrance

1
.  

1
Scottish Crop Research Institute, Invergowrie, Dundee, Scotland, UK, DD2 5AD  

2
Institute for Research on Environment and Sustainability, School of Biology, 

University of Newcastle, Newcastle upon Tyne, UK, NE2 7RU.  

 

V3HCL is a fusion protein comprising an α- PLRV ScFv and the CL
 
domain of the 

immunoglobulin light chain. Both chemical and in vivo biotinylation were performed on 

the fusion protein with the aim of devising an ELISA assay for PLRV detection based 

only on recombinant antibody fragments. For chemical coupling, standard methods 

were used to modify the V3HCL proteins with EZ-Link NHS-Biotin. The PAK300Bio 

vector, containing a biotin acceptor domain, was modified to enable cloning of the 

scFv-CL
 
sequence and biotinylation of the protein in vivo. The chemically biotinylated 

product gave comparable result to immune reagents but different preparations varied in 
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the level of background non-specific reactions. On the other hand, no variation was 

observed when different batches were biotinylated in vivo, and their performance was as 

sensitive as the immune reagents. Furthermore, biotinylated protein remains functional 

for at least two months under different condition of storage. It was concluded that in 

vivo biotinylation gives the best results in terms of reproducibility and stability 

compared to the in vitro process.  

 

Abbreviations: PLRV: Potato leafroll virus, scFv: single chain antibody fragment, 

ELISA: enzyme-linked immunosorbent assay 

 

 

 

10.3.6.  Plant Virus workshop, 162nd Society for General Microbiology (SGM) 

Meeting - Edinburgh International Conference Centre - 31 March - 3 April 2008.  

The same poster as above. 
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10.3.7. Poster presentation- Potatoes Viruses and their vectors Conference, 

association of applied biologists (AAP), at SASA, Edinburgh, UK on 16 September 

2009. 
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10.3.8. Poster presentation: International Advances in Plant Virology to be held at 

Arnhem, the Netherlands 5-7 September 2010 

 

Investigations into molecular interactions between Potato virus Y and Myzus 

persicae 

 
Ahmad Al-Mrabeh1, 2, Brian Fenton1, Angelika Ziegler1 Graham Cowan1, and Lesley Torrance1 

 
1Scottish Crop Research Institute (SCRI), Invergowrie, Dundee, Scotland, UK, DD2 5AD 
2Institute for Research on Environment and Sustainability (IRES), School of Biology, University of 

Newcastle, Newcastle upon Tyne, UK, NE1 7RU. 

 

 

The molecular mechanisms of potyvirus transmission are not fully understood, and 

there are a number of reports which speculate the involvement of virus-like receptors in 

the transmission of potyviruses by aphids. However, limited information is available 

about their nature or their location inside the aphid vector. In this study, three aphid 

cuticle proteins (CUPs) which interacted with the potyvirus PVY helper component 

(HC-Pro) were identified. Sequence analysis of the identified clones revealed that the 

selected clones belong to three different families of insect CUPs. The clone which has 

RR-2 consensus was sub-cloned into an expression vector and expressed protein was 

confirmed to interact with HC-Pro of TEV potyvirus. In another study, a nested RT-

PCR technique developed to detect PVY inside aphids was used to investigate virus 

retention. PVY was detected in aphids that were allowed access to infected plants and 

were then transferred several times to healthy plants, but the detected virus was not 

transmitted. Aphid dissection revealed that virus was retained in the aphid stylet as well 

as in the aphid body. Similar results were obtained with a non aphid-transmissible virus 

isolate. 

These findings will be discussed in the context of aphid transmission mechanisms, and 

virus control.  

Key words 

PVY, HC-Pro, potyvirus, aphid virus receptors.  

 

 



 297

 

 


	There are many specialized companies which offer polyclonal antibody production (examples, Eurogentec, Open Biosystems, and Precision Antibody), the customer only having to provide purified antigen sufficient for the immunizations involved and for initial analysis of the antiserum. In addition, ready to use antibodies for the most important plant viruses are available to purchase from some companies such as Agdia, Agden, and Bioreba.
	M: protein marker

