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Abstract 

 

The design and optimisation of a modern gasoline direct injection (GDI) engine requires a 

thorough understanding of the fuel sprays characteristics and atomisation process.Therefore 

this thesis presents a detailed optical analysis of atomisation, penetration and interaction of 

multi-stream GDI sprays under engine relevant pressures and temperatures. The 

characteristics of the fuel spray in a  

GDI engine have a great influence on the fuel-air mixing and combustion processes as fuel 

injectors must provide adequate atomisation for vaporisation of the fuel to take place before 

combustion is initiated, whilst also avoiding spray impingement on the cylinder walls or piston 

crown. 

 

In this study multi-stream injectors, to be used within GDI engines, are quantified using Laser 

Doppler Anemometry (LDA) on an atmospheric bench. This process allowed for highly 

detailed spray analysis of droplet velocities and diameter at precise locations, using a three 

dimensional traverse, within the injector spray. The aim of the study was to analyse plume 

interaction between separate plumes of multi-stream injectors. Three multi-stream injectors 

were subjected to testing; two six-hole injectors and one three-hole injector. The injectors 

differed by having different distances between the plumes. The effect of fuel type on the 

liquid break-up and atomisation was investigated using Phase Doppler Anemometry (PDA) 

and Mie imaging. 

 

Mie imaging was also performed to capture images of fuel from a multi-stream injector as it 

was sprayed into a pressure chamber which was used to recreate the conditions found in an 

engine likely to cause flash boiling. In total, five variables were investigated: fuel pressure, 

ambient pressure, ambient temperature, fuel composition and injector geometry. 

Once processed, the recorded images allowed measurement of spray tip penetration and 

cone angle. Qualitative data on the change in shape of the spray was also available. 

The results showed that flash boiling has potential to reduce droplet diameters and improve 

fuel vaporisation, however, the associated change in spray shape must be taken into account 

to avoid problems with spray impingement. 

 

Keywords: Gasoline Direct Injection, multi-stream injector, atomisation, penetration, cone 

angle, Mie imaging, Phase Doppler Anemometry, flash boiling. 
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1. Introduction 

 

Increasing environmental concern and dwindling sources of energy are forcing automotive 

companies to develop new methods of propulsion for the future. Electric and energy cell 

vehicles are currently being researched, however, the combustion engine will remain the 

primary choice for the next 20 years. As automotive companies strive to reduce fuel 

consumption and hence CO2 emission whilst maintaining performance, the characteristics 

and structure of the fuel spray are very important to the air/fuel mixture preparation, affecting 

the efficiency of combustion and the levels of emissions. This, coupled with new technologies 

allowing different types of combustion to occur within one engine such as the Gasoline Direct 

Injection (GDI) the design of injectors and their spray characteristics continue to receive 

significant attention.  

 

To date, most investigations of fuel sprays involve cold bench tests or motored optical 

engines. For safety and convenience reasons these tests are often run with non volatile 

fluids. Such experiments neglect the effects of the fuel volatility and temperature on the spray 

structure Therefore, there is a limited source of data in realistic operating conditions to 

analyse how the properties of a fuel can affect the efficiency of the atomisation process. 

 

1.1 Study Definition  

 

The definition of this study is to investigate “The effect of fuel properties and injector 

parameters on atomisation performance.” 

 

The properties of fuel vary greatly due to their complex multi-component structure. The range 

of components changes the properties of the fuel and so it is difficult to define the exact 

values for the properties of fuel. With new alternative fuels such as gasoline-ethanol blends 

and the world-wide variation of fuel properties it is likely that the fuel properties will have a 

significant effect on the atomisation and combustion performance. However, of all the 

properties of a liquid only three density, viscosity and surface tension have an influence on 

the atomisation process [1].  
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The spray atomisation performance is important as it affects engine performance and 

combustion efficiency. In today‟s increasingly competitive and environmentally aware culture  

both engine performance and combustion efficiency which affects the level of emissions are 

vitally important design considerations. 

 

1.2 Aims 

 

The first purpose of this study is to investigate the effect different fuels have on the 

atomisation performance. Relationships between the properties of the fuel and their direct 

effect on the atomisation process will be analysed.  

 

The second aim is to study the influence of different injector geometry parameters in the 

case of multi-hole injectors and to analyse the interactions between the plumes of multi-hole 

injectors to establish the phenomenon that occur when the plumes are located closely 

together. The purpose is to gain relevant information on each injector‟s spray characteristics 

including axial and radial penetration and spray angle, at conditions comparable to those 

seen in a GDI engine by using a pressure chamber. A quantitative and qualitative analysis of 

the spray properties will be used to indicate potential reasons for the differences in emissions 

seen from engine testing and to explain the cause of such characteristics. The results will 

also provide details on the general affects of pressure and temperature on fuel sprays with 

different injector designs which will further the on-going research in this area in the pursuit of 

optimal engine design for emissions, fuel efficiency and performance.  

 

Alongside the purposes aforementioned a more general aim is to acquire a thorough 

understanding of fuel spray characteristics, measurement techniques, and GDI engine 

operation through a thorough literature review.  

 

The two optical techniques to be used in this study are Mie imaging and Phase Doppler 

Anemometry in order to obtain spray morphology and spray dynamics. These techniques 

provide basic physical understanding of spray processes and much needed spray 

propagation and interaction information for the engine designer. 
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1.3 Motivation and Relevance 

 

Alongside the primary motivation for this project, there is on-going research into spray 

development and the effect it has on the combustion process. Future emissions regulations 

and public concern over climate change are putting pressure on automotive manufacturers to 

reduce CO2 output i.e. fuel consumption from vehicles. At the same time, consumers are 

demanding improved safety from their vehicles and this has resulted in a trend of increased 

vehicle mass as vehicle models are updated with new safety structures. In order for new 

models to provide the same performance as the previous models, increased power must be 

available at the wheels to counteract the additional mass. Manufacturers therefore need to 

develop technologies which simultaneously reduce emissions, increase fuel efficiency and 

increase performance. 

 

Much recent work in the field of spark ignition (SI) engines has focused on the use of 

gasoline direct injection engines which have the potential to combine the specific power 

output of port-injection gasoline engines with the part load efficiency of diesel engines [2]. 

Of primary concern to the engine manufacturers is to meet the legislation set by the 

European Union for „tailpipe out‟ emissions. The past, present and future emissions 

standards are set out in Table 1.1, and what is obvious from the table is a continuing trend 

for reducing emissions. 

 

An important point to note is that there is no regulated limit on allowable CO2 emissions. 

Instead of a limit enforced by the European Union there is a voluntary agreement between 

the European Automobile Manufacturers Association (ACEA) and the European 

Commission. Signed in 1998, the agreement was set to achieve an average of 140g/km of 

CO2 by 2008 for new passenger vehicles sold in Europe. This target represented a reduction 

of 25% from the 1995 level of 186g/km. The European Commission also had agreements 

with the Japan Automobile Manufacturers Association (JAMA) and Korea Automobile 

Manufacturers Association (KAMA), however, the target date for these two was 2009. 

The ultimate EU target is for a reduction to 120g/km fleet-averaged CO2 for all new 

passenger cars by 2010.  However, by 2005 the average CO2 output had only been reduced 

to 160g/km and the European Commission announced in late 2006 that it was working on a 

proposal for legally binding measures. Progress towards these targets up to 2005, and 

predicted trends, are shown in Figure 1.1: 

 

  



Chapter 1 - Introduction 

 Page 4 
 

Table 1.1: EU Emissions Standards for Passenger Cars (g/km) [3] 

 

 

 

 

Figure 1.1: Progress towards international CO2 emissions targets [4] 

Tier Date CO HC HC+NOx NOx PM

Euro 1† 1992.07 2.72 

(3.16)

- 0.97 

(1.13)

- 0.14 

(0.18)

Euro 2, 

IDI

1996.01 1 - 0.7 - 0.08

Euro 2, DI 1996.01
a 1 - 0.9 - 0.1

Euro 3 2000.01 0.64 - 0.56 0.5 0.05

Euro 4 2005.01 0.5 - 0.3 0.25 0.025

Euro 5‡ 2009.09
b 0.5 - 0.23 0.18 0.005

Euro 6‡ 2014.09 0.5 - 0.17 0.08 0.005

Euro 1† 1992.07 2.72 

(3.16)

- 0.97 

(1.13)

- -

Euro 2 1996.01 2.2 - 0.5 - -

Euro 3 2000.01 2.3 0.2 - 0.15 -

Euro 4 2005.01 1 0.1 - 0.08 -

Euro 5‡ 2009.09
b 1 0.10

c - 0.06 0.005
d

Euro 6‡ 2014.09 1 0.10
c - 0.06 0.005

d

d - applicable only to vehicles using DI engines

‡ Proposed

a - until 1999.09.30 (after that date DI engines must meet the IDI limits)

b - 2010.09 for vehicles > 2,500 kg

c - and NMHC = 0.068 g/km

Diesel

Gasoline

* At the Euro 1..4 stages, passenger vehicles > 2,500 kg were type approved as Category N1 vehicles

† Values in brackets are conformity of production (COP) limits
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In the USA legislators have agreed that „combined car/light truck average fuel consumption 

should reach 35mpg in 2020, this being an increase of about 40% over 2007 average fuel 

consumption‟. 

 

One likely reason for the failure of manufacturers to meet these targets is the conflict 

between fuel efficiency and passenger safety, which increases vehicle mass. There is a 

great emphasis on safety in vehicle reviews in popular magazines such as Autocar, which 

always quotes a vehicle's Euro NCAP safety score. This leads to consumers purchasing 

vehicles based on safety rather than emissions, which, from a marketing point of view, 

means it is beneficial for a manufacturer to concentrate research efforts on safety and not 

only emissions. In addition to that, in some markets (American, Chinese...) even if the 

environmental concerns are growing, there remains a trend of customers wanting larger cars. 

 

The emissions standards set were created to reduce the effect of vehicle emissions on the 

environment. The most significant environmental effect is due to the excessive production of 

carbon dioxide. Carbon dioxide is a primary combustion product and as such can only be 

reduced by a reduction in carbon combustion. The carbon dioxide produced acts to increase 

the concentration of greenhouse gases, allowing the earth to absorb more thermal radiation 

emitted from the earth‟s surface and thus increase the earth‟s surface temperature (global 

warming) [5]. Other combustion products and their effect on the environment include; nitric 

oxides and hydrocarbons that combine with sunlight to form Ozone which is the major 

component of ground level smog, carbon monoxide which has the effect of reducing the 

oxygen levels in the blood stream, particulates which can act as a transporters for other 

substances to get into the body, and sulphur oxides which react with water in the atmosphere 

to form sulphuric acid, the main contributor to acid rain [6].  

 

Several technologies have been suggested and developed which have the potential to 

reduce CO2 output from passenger vehicles. These include: 

 

 Lean and lean boost Gasoline Direct Injection (GDI) 

 Advanced cylinder and valve control 

 Homogeneous Charge Compression Ignition 

 Fuel cells 

 Hybrid Electric Vehicles 

 Downsized, turbocharged engines 

 Bio-fuels such as E85 (blend of 85% ethanol and 15% gasoline) 
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1.4 Bio-Fuels 

 

Current UK gasoline contains up to 5% ethanol by volume. There are several benefits to this: 

 

 If the fuels and fertilisers used in ethanol production are produced using no CO2 then 

production and combustion of this fuel results in no net CO2 emissions. This is 

because the carbon released as CO2 from burning the fuel is absorbed by the plants 

used to produce more ethanol. 

 Increased use of domestically produced ethanol reduces reliance on imported oil, 

which often comes from politically unstable countries in the Middle East. 

 Crude oil prices have risen rapidly in recent years, as shown in Figure 1.2. A 

comparison of recent gasoline and ethanol costs is shown inTable 1.2. This shows 

that currently it is cheaper to run a vehicle on ethanol than gasoline. 

 

 

Figure 1.2: Variation in crude oil prices from 1986-2010 [7] 

 

Table 1.2: Comparison of gasoline and ethanol prices 

US Average Gasoline Cost February 2010 US Average Ethanol Cost February 2010 

$1.96 / gallon [7] $1.6 / gallon [8] 
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There are, however, some disadvantages to using ethanol as fuel: 

 

 Ethanol has a lower energy density than gasoline (24.0 MJ/l as opposed to 34.6 

MJ/l), so an increased volume of fuel is required for the same power output, thereby 

reducing fuel economy. 

 Increased demand for crops used to produce ethanol has increased worldwide food 

prices. 

 Vast areas of land are required to grow crops needed for ethanol production. For 

example, if the US was to use corn to produce ethanol to replace all the gasoline 

currently used to fuel passenger vehicles, 1.1 billion acres of land would be required 

for sustainable production.  The entire land area of the US is 1.94 billion acres [9]. 

 

In Brazil, Sweden and the United States a blend called E85, containing up to 85% ethanol 

with the remainder gasoline, is widely used. The increased proportion of ethanol increases 

the associated benefits relative to using only 5% ethanol. However, the use of this high 

proportion of ethanol requires engine modifications due to the different properties of ethanol 

when compared to regular gasoline. These modifications are: 

 

 Elimination of bare magnesium, aluminium and rubber parts in the fuel system, as 

these corrode when exposed to high concentrations of ethanol. 

 Use of fuel pumps capable of operating with electrically conductive fuel (ethanol) 

instead of non-conductive fuel (gasoline). 

 Use of fuel pumps which are able to withstand the acidity and low lubricity of ethanol. 

 Fuel injection systems with a wider range of injection duration, as approximately a 

40% increase in volume of fuel injected is required relative to gasoline due to 

ethanol's lower energy density of 24.0 MJ/l as opposed to 34.6 MJ/l for gasoline. 

 Stainless steel fuel line and tank [10]. 

 

The potential benefits of using E85 have led manufacturers to develop vehicles designed to 

run on this fuel, such as the Ford Focus Flex-fuel and Saab Biopower [11]. 

 

A literature review carried out by Orbital Engine Company [12] investigated the effects of 

gasoline-ethanol mixtures on engines. It was found that when ethanol was added to gasoline, 

the vapour pressure, and hence volatility, of the mixture was greater than that of either 

gasoline or ethanol alone. The reason for this is that strong hydrogen bonds exist between 

ethanol molecules, leading to pure ethanol having a relatively high boiling point for its 
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molecular mass. However, these bonds are not present in gasoline and when the two are 

mixed the gasoline molecules obstruct the bonds between the ethanol molecules, reducing 

the strength of the intermolecular forces and increasing the volatility of the mixture. Thus, 

gasoline-ethanol mixtures have a higher volatility than gasoline and as a result have different 

atomisation and vaporisation properties. This means that the resulting fuel sprays are 

different and must be investigated and understood when optimising an engine design to run 

on gasoline-ethanol blends. 

 

1.5  GDI Engines 

 

The characterisation of a fuel spray is the process of describing it in both a qualitative and 

quantitative manner. The various parameters used to quantify a spray will be described in 

more detail in Chapter 2. 

 

The main factors affecting combustion are in-cylinder airflow, the fuel injection process, and 

their mixing i.e. the mixture preparation. Therefore, an understanding of both is required if the 

primary design targets are to be optimised. 

 

Gas motion within the cylinder is one of the major factors affecting the fuel-air mixing. and 

the combustion process. In addition to this, it also has a significant effect on heat transfer. 

The two main features of air motion are bulk gas motion and turbulence, both of which are 

affected by the intake process and piston movement within the cylinder. During the first part 

of the intake flow, the interaction with cylinder wall and moving piston create large scale 

rotating flows either side of the intake valve(s). Either during the latter part of the intake 

stroke or during the compression stroke due to the rising piston movement, these large 

eddies become unstable and break down into three dimensional turbulent motion [13]. 

 

Automotive manufacturers have used and developed various methods for controlling the 

airflow within the combustion chamber. 

 

One method is the design of the intake port itself. There are five common intake port designs 

[14]: 

 

 Directed straight port – Flow is through a straight and parallel passage, which when 

entering the cylinder moves tangentially towards the wall and is then directed 

sideways and downwards in a spiral motion. 
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 Deflector wall port – Flow is through a slightly curved passage so that initial cylinder 

motion is circular and downwards. 

 Masked valve port – Flow is usually through a straight parallel port, and once at the 

valve, the valve mask forces the flow to enter the cylinder with a downward swirling 

motion. 

 Helical port – Swirl is generated within the port about the valve axis prior to the 

cylinder and enters the cylinder with established swirl. The port guides the flow 

downwards which is emphasised by the downward moving piston. 

 Tumble port – Flow is directed downwards through a straight parallel port, and on to 

the opposite cylinder wall to generate tumble. 

 

 

                              Tumble                                                                   Swirl 

Figure 1.3: In-cylinder air flow structures 
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Another method to control the in-cylinder airflow is the piston bowl design. Small gaps 

between the piston crown at top dead center (TDC) and the cylinder head can be used to 

create squish zones that create radially inward and transverse gas motion. The piston crown 

or bowl can also be used to promote further tumble bulk air motion within the cylinder. This 

was often used in first generation direct injection gasoline engines. In conjunction with a 

pressure-swirl injector, the fuel is injected towards the piston bowl and carried up towards the 

spark plug by the tumble air motion for ignition [13] [14].  

 

The other main process affecting the combustion event is the fuel spray injection process. In 

a GDI engine, unlike a conventional gasoline port injection engine, fuel is injected directly 

into the cylinder. In a similar manner to diesel compression ignition engines, combustion is 

largely controlled by the fuel-air mixing process. The mixing process itself is determined by 

the time of injection, the piston bowl and combustion chamber design, and the injector spray 

characteristics. The degree of mixing can be controlled by the timing of injection relative to 

the piston and crankshaft position. To obtain a stratified charge, injection takes place late in 

the compression stroke. Conversely, if injection is completed during the intake stroke, a large 

amount of time is given for the fuel and air mixture to mix and it creates a largely 

homogeneous charge. By varying the point of injection in the compression or expansion 

stroke, the length of time available for mixing can be controlled. 

The position and direction of the injector within the combustion chamber can be used to 

guide the spray and optimise mixing. Three common spray guiding techniques used are (see 

Figure 1.4); wall guided where the fuel is injected at the piston bowl which then directs the 

fuel up to the spark plug, air guided where the fuel is injected downwards but carried up 

towards the spark plug by tumble motion generated within the cylinder (enhanced by the 

piston bowl shape), and spray guided where the fuel is injected towards the spark plug itself 

[15]. Spray guided combustion systems are the focus of most research at this time [16] for 

their emissions and fuel efficiency benefits. In a spray guided system, the injector and timing 

can be configured such that a piston crown impact is avoided. This prevents a fuel film 

forming on the piston crown (this can occur with the other guiding techniques) that would 

burn rich and increase hydrocarbon and particulate emissions. The wasted fuel will also 

increase carbon dioxide emissions and fuel consumption. 
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Wall guided 

 

Spray guided 

 

Air guided 

 

Figure 1.4: Three common spray guiding techniques 
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The injector spray characteristics also have a large influence on the fuel-air mixing within the 

cylinder. The process of atomisation and then vaporisation of the spray also directly affects 

the following stage of fuel-air mixing and finally combustion. Therefore if the engine design 

and combustion strategy is to be optimised for emissions, fuel consumption and 

performance, this aspect must be understood. 

 

This study focuses on the use of different mono and multi-component fuels and GDI fuel 

sprays, however, knowledge of fuel properties and spray characteristics are important for any 

engine design and are hence applicable to almost all of the technologies previously 

mentioned. 

 

Next chapter gives first a general presentation of the injection process and the spray 

characteristics before detailing the different gasoline direct injection operating modes and 

injectors. 
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2. Injection Process and Spray Characteristics 

 

2.1 Fuel Break-up and Atomisation 

 

The initial stage of this research involved a survey of the basic theory of atomisation and 

spray characteristics. This was to gain a basic knowledge of the processes and concepts 

involved to assist in the analysis of the literature review. A summary of this research, 

predominantly taken from „Atomisation and Sprays‟ by Arthur Lefebvre [17], follows. 

 

In stratified mode, the combustion starts straight after the injection of the fuel late in the 

compression stroke. Hence the air-fuel mixing has a direct influence on the quality of the 

combustion. Thus an increase in GDI engine performance requires not only an in-depth 

study of the combustion process but also a good comprehension of the air-fuel mixing 

formation. 

The phenomena involved in the injection, atomisation and evaporation of the fuel have to be 

investigated in order to evaluate their respective impact on the quality of the combustion. 

 

In order to analyse the detail behind fuel atomisation it is important to understand the way in 

which an injector creates an atomised fuel charge. In general a fuel rail at higher pressure 

will create a better atomised fuel through an orifice. Fuel Parameters such as density, 

surface tension and viscosity have an effect on how a fuel is atomised along with injector 

geometry parameters which can generate turbulence, cavitation and flow separation within 

the nozzle. However, in this section only the physical parameters that cause a fuel to be 

converted from liquid to a vaporised state are discussed 

 

Atomisation is the process whereby a volume of liquid is disintegrated into a multiplicity of 

small drops. This is affected by the internal geometry of the atomiser, the properties of the 

gaseous medium into which the liquid is discharged and the physical properties of the liquid 

itself. 

 

There are several processes involved in all methods of atomisation. The development of the 

jet, the small disturbances that cause ligaments which then break down into drops, and the 

hydraulic flow in the atomiser or nozzle that govern the turbulent flow downstream are all 

important in determining the shape and penetration of the spray, as well as other more 

detailed characteristics such as drop-size, velocity, density and distribution.  
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Figure 2.1: Spray Parameter Interactions 

 

 

In many types of spray nozzle liquid is ejected from the orifice in the form of a thin liquid 

sheet or jet. The manner in which this sheet disintegrates into drops depends upon the 

operating conditions (velocity, shear gradients,...). However, the principal cause of instability 

is due to the interaction of the sheet with the surrounding atmosphere whereby rapidly 

growing waves are imposed on the sheet. Disintegration occurs when the wave amplitude 

reaches a critical value and fragments of sheet are torn off. The fragments rapidly contract 

into unstable ligaments under the action of surface tension and drops are produced as the 

latter subsequently break down as illustrated in Figure 2.2 [18]. 
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Figure 2.2:Disintegration of sheet [18] 

 

Ohnesorge found that by classifying data from photographic records, jet disintegration could 

be described according to relative importance of gravitational, inertial, surface tension and 

viscous forces. Three initial stages of break-up were found and characterised using Reynolds 

number and a dimensionless Ohnesorge Number: 

 

   
 

    
 

   

  
 

 

 

(2.1) 

 

 

Where    is the dimensionless Weber Number and    is the dimensionless Reynolds 

Number: 

 

   
    

 
   

 

 

(2.2) 

 

   
   

 
    

 

(2.3) 

 

Where           is the density of the fluid,         the velocity,       a characteristic 

length (droplet diameter),         the surface tension and          the dynamics viscosity. 
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Atomisation is greatly improved by using higher fuel rail pressures. The greater pressure 

differential between the fuel rail and the engine cylinder causes massive aerodynamic shear 

forces which tear the spray jets apart. This effect is related to the Weber number which is the 

ratio of inertial forces to surface tension forces. 

 

At high Weber numbers aerodynamic forces dominate surface tension forces and tend to 

distort and disintegrate the drops. This causes drop break-up, leading to a reduction in length 

  and a corresponding reduction in Weber number. This break-up and Weber number 

reduction continues until the Weber number becomes stable at a smaller value. Lin and Reitz 

[19], [20] give the following description:  

 

The initial condition for break-up is reached when aerodynamic drag is equal to surface 

tension force. 

We = 8/CD gives the critical Weber number for break-up, where CD is the drag coefficient. 

From this, the maximum stable drop-size     is: 

 

     
  

      
 
   

 

(2.4) 

 

and critical relative velocity       at which a drop will disrupt is: 

 

      
  

  

     
 
   

   
 

(2.5) 

 

Thus drop break-up will continue to occur until We < 8/CD. 

 

As the operating conditions are changed, liquid jets undergo different break-up regimes.  

These regimes are due to the action of dominant forces on the jet leading to jet break-up and 

it is important that these forces are identified in order to explain the jet break-up mechanism 

in each regime. Four main regimes have been identified [21] corresponding to different 

combinations of liquid inertia, surface tension and aerodynamic forces acting on the jet.  The 

regimes are described in Table 2.1 and a classification is given in Figure 2.3. 
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Figure 2.3: Ohnesorge chart for break-up regimes 
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Table 2.1: Jet break-up regimes (images from Lin and Reitz) [19] 

Rayleigh jet break-up: At low Reynolds Numbers, jet break-up is initiated by 

radial, symmetric waves formed by interaction between disturbances in the 

liquid and surface tension forces of the jet.  This is an idealistic break-up 

regime where drop formation is not influenced greatly by ambient air. Large 

drops of fairly uniform size and larger than the jet diameter are produced. 

The Rayleigh jet break-up or Rayleigh mechanism was defined by Rayleigh 

and showed that for low injection velocities the aerodynamic affect was much 

less significant that the affect of surface tension. The affect of surface tension 

on the viscous jets was further examined by Webber [22] and showed that 

disintegration was caused by the growth of axisymmetric oscillations that 

occurred at the jet surface due to viscous forces. This was an extension of 

Rayleigh‟s mechanism. Drop diameters were found to be larger than the jet 

diameter, and predicted by Rayleigh to be almost twice the jet diameter. 

Rayleigh jet break-up occurs when WeLiq > 8 and WeGas < 0.4 

 

First wind-induced break-up: In this regime the affect of aerodynamic drag 

is beginning to create a static pressure distribution across the jet which acts 

to increase disintegration. The affect of drag also acts to accentuate the 

oscillations seen in the first regime to further increase break-up. It sees a 

reduction in drop-size, with diameters approximately equal to the jet 

diameter. Jet break-up is induced by the relative velocity of the jet and 

ambient air.  A static pressure distribution is produced across the jet 

increasing the rate of break-up from the wave oscillations. Drops are 

produced closer to the nozzle than in Rayleigh break-up but still a relative 

distance away. 

First wind-induced break-up occurs when 0.4 < WeGas < 13 

 

Second wind-induced break-up: This regime sees a further increase in 

relative motion between jet and ambient gas which causes a corresponding 

unstable growth of shorter wavelength surface oscillations. The wave growth 

is further opposed by surface tension, but with a reducing effect. 

Disintegration occurs closer to the nozzle exit and the drops are now of much 

smaller diameter than the jet diameter. 

Second wind-induced break-up occurs when 13 < WeGas < 40.3 
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Atomisation: Complete disintegration of the jet. Atomisation is caused at 

high Reynolds number (high relative velocity between jet and ambient air) 

The jet is broken up completely at, or in close location to, the nozzle exit in a 

chaotic and irregular manner. The average drop-size is now much lower than 

the jet diameter. 

Atomisation occurs when 40.3 < WeGas 

 

 

The critical Weber numbers in Table 2.1 do not take into consideration any nozzle internal 

effects and these are known to be very important, particularly in high-speed jets. To take 

these effects into account, empirical formulae for the occurrence of atomisation were 

developed. Lin and Reitz [19] defined a dimensionless factor   based on the internal flow to 

predict atomisation to occur when: 

  

  
                  

 

(2.6) 

 

Where 

  

         
 

    
   

      

   
   

 

(2.7) 

 

Where ρ1 is air density, ρ2 liquid density, K the nozzle's internal flow effect constant, T 

temperature, a the nozzle diameter and l  is the nozzle length. 

The value of K takes into account the turbulence, cavitation and flow separation inside the 

nozzle which cause initial flow disturbances and have a great effect on the atomisation 

process. This predicts that atomisation is favoured at high gas densities and with nozzles 

with small length to diameter ratios and sharp-inlet geometries. 

 

A better method for categorizing the flow fields for a round liquid jet was introduced by 

Farago and Chigier [23] and considers the jet relationship based on jet Reynolds number and 

the gas Weber number. They used the limits in Table 2.2: Round Liquid Jet break-up 

regimes (Farago and Chigier) to show the break-up regimes they defined. 
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Table 2.2: Round Liquid Jet break-up regimes (Farago and Chigier) [23] 

Break-up Type Limits 

Axisymmetric Rayleigh WeGas < 15 

Nonaxisymmetric Rayleigh 15 < WeGas < 25 

Membrane break-up 25 < WeGas < 70 

Fiber-type break-up 70 < WeGas  

Superpulsating Re/WeGas 0.5< 100 

 

When determining the various break-up mechanisms, several methods have been used to 

characterise the jet. Another of these is presented by Czerwonatis and Eggers [24], where 

these researchers considered three distinct regions: droplet break-up (Rayleigh break-up), 

wave break-up (first and second wind induced), and ligament break-up (second wind induced 

and atomisation). In order to characterise the various break-up regimes, these researchers 

identified seven primary parameters influencing the flow: uliq (velocity in the axial (jet) 

direction), d (jet diameter),   (surface tension),      and      (laminar viscosity) and      and 

     (density). 

 

Mayer and Branam [25] investigated the jet behavior for a single injector element to 

determine the influence of the injection conditions on a round liquid jet. Their study focused 

on the atomisation of a liquid forming a classical spray. To adjust the relative velocity 

between the liquid jet and the gaseous ambient, a wind tunnel-like coaxial flow configuration 

was used. This made it possible to distinguish between effects of aerodynamic forces, 

chamber pressure and jet velocity, which determine the liquid Reynolds number and thereby 

the internal jet turbulence. Shadowgraphy and another image processing approach 

developed by the authors were used to determine the jet surface characteristics: wavelength 

and amplitude. The absolute injection velocity of the jet seemed to affect the structures the 

most with an increasing velocity causing the wavelengths to be smaller. An increase in 

chamber pressure seemed to have little influence on the jet with no relative velocity between 

the gas and liquid jet, but increased the amplitude and drop formation frequency at other 

testing conditions with relative motion. The study of the direction of the relative velocity 

demonstrated that injector performance cannot simply be described by scalar geometrical 

and operational injection parameters (e.g., We, Re or Oh), but has to include the injection 

„vector‟ or direction of the atomizing fluids in relation to each other and in relation to the 

ambient conditions (combustion chamber, etc.), thereby underlining the importance of 

injector-injector and injector-chamber interaction. 
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Wigley et al. [16] studied the fuel break-up and atomisation in the near nozzle region of a 

pressure swirl GDI injector using Mie imaging and phase Doppler anemometry to provide 

both morphological or macro-scale data as well as the micro-structure characteristics of the 

spray. They proposed a physical model of the processes of the liquid break-up and 

atomisation for a GDI pressure swirl injector based on the disruption of the wavy liquid cone 

into filaments and then droplets.  

 

Cousin et al. [26] also studied pressure swirl injectors. They performed an experimental and 

theoretical investigation on the formation and primary break-up of conical liquid sheets. They 

used an experimental technique based on the electrical conductivity of liquids to predict 

accurately the orifice sheet thickness and measure the break-up length. 

 

Kurachi et al. [27] used two methods based on laser Doppler signals to measure diesel spray 

break-up length. With the first method, spray tip penetration and spray break-up length are 

simply obtained by measuring the delay time of Doppler signals from injection start to spray 

tip arrival at each measuring point, as the measuring point is traversed along the center axis 

of the spray from the nozzle hole towards downstream. With the second one, spray break-up 

length is estimated by measuring the standard deviation of the delay time of Doppler signals, 

which indicates dispersion of the time from injection start to Doppler signal rising. 

 

Various numerical studies on the break-up process were performed. Among them, Pan and 

Suga [28] studied the break-up process of laminar liquid jets into a gas. They used a Navier-

Stokes solver coupled to a tension surface model to capture the dynamic of the primary 

break-up process (see Figure 2.4) and simulate the break-up length. Their results suggest 

that the conventional classification of the jet break-up regimes by the Weber numbers is not 

always successful particularly in cases of low Weber numbers whereas the classification by 

the Ohnesorge chart is reasonable. 

 

In his work, Ghannam [29] developed a computational analysis that predicts the break-up 

distance and velocity of fluidic jets, which is one of the important factors that helps in 

prediction of the spray pattern and droplet strike location, thus reducing the number of 

required injector prototypes and saving time and cost. He also conducted a parametric study 

to analyze the effect the jet break-up on the spray trajectory. 
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Figure 2.4: Distribution of instantaneous vorticity fields in an axis plane [28] 
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Most models of droplet formation and dispersion from a liquid jet are based upon a 

Lagrangian approach of numerical particles representing some physical droplets with 

identical size, velocity and temperature. The gas phase is simultaneously simulated using an 

Eulerian calculation. This type of model is not well adapted to the atomisation regime for high 

velocity liquid jet, as in recent GDI engines. These models describe the initial break-up of the 

jet with the aforementioned empirical laws. Moreover, the atomisation region is very dense, 

with significant exchanges between the two phases, which cannot be approached easily with 

a Lagrangian point of view. 

 

The model, based on an Eulerian approach, proposed by Vallet and Borghi [30] allows 

calculating, on the one hand, the dispersion of the liquid phase and, on the other hand, the 

size of the fragments produced, which need not be necessarily droplets. The approach is a 

generalised classical approach of turbulence modeling of non constant density flows. The 

basic postulate is that in the limit of large Reynolds numbers and Weber numbers, the 

viscosity as well as the surface tension does not influence the large scales of the flow. 

However, they do influence the smallest scales of the flow, i.e. the size of the liquid 

fragments. 

 

 

A spray contains a large range of drop-sizes which is the drop-size distribution; this 

distribution is dependent on the nozzle type and orientation. Factors such as properties of 

the fuel, injector nozzle capacity, spraying pressure and spray angle all affect the drop-size 

distribution. The ability to specify drop-size distribution can be used in calculations of heat or 

mass transfer between the dispersed liquid and the surrounding gas. The difficulty of 

specifying a drop-size distribution has led to the use of many mean or median drop-size 

diameters. A commonly used mean drop-size value is the Sauter Mean Diameter (SMD). 

This diameter is a ratio of the total volume to surface area of the spray. It is commonly used 

when combustion systems are being analysed where the heat and mass transfer to the spray 

is important. 

        
  

 

  
 

 
 

(2.8) 
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(2.10) 

 

Where    is the volume diameter,    the surface diameter,    the particle surface area and  

    the particle volume. 

 

Viscosity is one of the major factors affecting the atomisation process since it not only affects 

the drop-size distribution within the spray, but also the nozzle flow rate and spray pattern. 

The role of viscosity is to inhibit the growth of instabilities and hence delay the disintegration 

process. This is due to large viscosities needing a greater amount of energy to be used to 

overcome viscous forces, meaning less energy available for atomisation. In a pressure swirl 

injector, a very high viscosity fuel can cause the spray cone to collapse into a straight stream 

of large ligaments and drops. 

 

One way of characterising a spray is in terms of its increase in surface area due to 

atomisation. Before atomisation the surface area is simply that of the column of fuel from the 

nozzle. Following atomisation it becomes that of all the drops within the spray. This increase 

in surface area provides direct information on the level of atomisation, and is useful where 

surface phenomena such as evaporation and absorption are of issue.  

 

Surface tension is important to atomisation because it is the force that resists the formation 

of a new surface area. Therefore the minimum energy required for atomisation is equal to the 

surface tension multiplied by the increase in liquid surface area. 

 

In the study performed by VanDerWege and Hochgreb [31] on the effects of fuel volatility on 

the spray from a pressure-swirl injector, the authors distinguished three spray regimes 

depending on the fuel volatility, fuel temperature, and ambient conditions;  

1. Slow evaporation, where the conditions did not exceed the boiling point of the fuel 

mixture. 

2. Non-disruptive evaporation, that leads to the migration of more volatile components 

towards the spray axis. 

3. Disruptive evaporation or flash boiling, where the initial spray behaviour is affected by 

the vaporisation of the lighter components of the fuel, which leads to a narrowing of 

the spray as the smaller droplets are drawn to the low pressure zone created in the 

centre of the spray cone.  
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They also found that the vapour core penetrated more quickly than the bulk drops in the 

periphery. The penetration of the main portion of the spray is faster for higher fuel 

temperatures, lower ambient density, earlier injection timings and higher volatility 

components of the fuel. The converse of these conditions reduced the penetration speed, but 

also increased the spray cone width. The intake flows were also shown to affect the spray 

pattern, and this was emphasised at early injection timings where the intake flows are high. A 

higher degree of flash boiling was also witnessed due to the reduced ambient gas pressure 

and increased ambient gas temperature.  

 

A study into the effects of fuel spray momentum by Strauss and Zeng [32] showed that 

sprays with smaller droplets are more sensitive to bulk air movements and flow scavenging 

patterns, whereas sprays with larger drops are less sensitive. It was also seen that if the 

spray momentum was not large enough then unburned hydrocarbon emissions would 

increase greatly due to increased mixture short-circuiting despite the improved fuel 

vaporisation. 

 

Combustion of a liquid fuel in an oxidising atmosphere occurs in the gaseous phase, 

therefore gasoline must be vaporised before it can combust [33]. Vaporisation is the process 

by which molecules in a liquid state spontaneously become gaseous. For molecules to 

vaporise they must be located on the boundary between the liquid and the surrounding gas 

and this is the reason for the requirement of the atomisation process to give a large surface 

area. The increased surface area allows all the fuel to vaporise before the spark plug ignites 

the mixture. If the surface area is not great enough then some fuel will not vaporise before 

the mixture is ignited. The resulting mixture will be lean, and in leaner mixtures with an 

air/fuel ratio lower than 1.3, reliable flame initiation and propagation will not occur, leading to 

partial burns and misfires [34]. 

 

The factors controlling the drop evaporation constant are discussed by Fang et al. [35]. They 

found that the droplet morphology at a specific temperature was controlled by the physical 

properties of the liquid itself, such as the molecular weight, density, diffusion coefficient in air, 

and heat of vaporisation. Two processes are included in drop evaporation: diffusion of liquid 

molecules into the air (diffusion part) and flow of the liquid molecules from inside the drop to 

the free outer shell liquid layer within the liquid-vapor interface (evaporation part). The 

diffusion part remained steady during drying and was not sensitive to the variation of 

temperature. The evaporation part, however, was an active factor and determined the 

differences in drop evaporation behaviors. 
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Sprays produced by GDI injectors consist of droplets containing a wide range of sizes (from 

D10~5µm and D32~20µm up to 100µm for the sparse large drops) and velocities. The details 

of the combustion process are intimately affected by the spatial and temporal distributions of 

liquid and vaporised fuel within the combustion chamber, which in turn, depend on the details 

of the initial atomisation process. 

Based on the experimental observations, sprays are generally divided into three regions [36]: 

dilute spray region, dense spray region and churning flow region. In the churning flow region, 

a liquid jet emerging from the nozzle deforms and breaks into small droplets. In the dense 

spray region, droplets are very closely spaced so that there is a strong direct droplet-to-

droplet interaction. The number density of the droplets in this region is very high so it is 

sometimes difficult to perform an accurate measurement of the droplet distribution. In the 

dense spray region, on the other hand, droplets are spaced far enough from one another so 

that direct interaction between them is usually negligible In this region, well-known empirical 

correlations for isolated drops can be used to calculate the exchange rate of mass, 

momentum and energy between an individual drop and the surrounding gas [36].  

 

An experimental study was carried out by Ashgriz and Givi [37] in which the collision 

dynamics of two n-hexane fuel droplets were studied. The experiments were performed on 

the collision of two burning droplets, as well as two non-burning droplets, to assess the 

influence of the high temperature combustion environment on the dynamics of the collision. 

The results indicated that as the Weber number is increased, the collision type moves toward 

higher energy collision, and for the same Weber number, different types of collisions, 

depending on the local value of the collision impact parameter, may occur. In the range of 

Weber number studied (2 to 14), the results show that for the non-burning droplets, the 

collision type can be bouncing (the contact of the surfaces are prevented by the intervening 

air film resulting in bouncing of the droplets after the collision), grazing (the droplets just 

touch one another slightly without coalescence), temporary coalescence-satellite generating 

(the droplets coalesce temporarily with a subsequent separation accompanied by satellite 

drops) or permanent coalescence (the droplets coalesce and remain united permanently), 

depending on the local value of the impact parameter. For the burning droplets in the same 

initial Weber number range, only the temporary coalescence and permanent coalescence 

are observed.  
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A diagram of collision regimes presented by Ko et al. [38] in their numerical study on 

bouncing and separation collision between two droplets considering the collision-induced 

break-up can be seen in Figure 2.5. 

 

 

 

Figure 2.5: Diagram of collision regimes: (a) Bouncing; (b) Coalescence; (c) Reflexive 

separation; (d) Stretching separation  
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2.2 Spray Characteristics 

 

Spray characteristics commonly used in the literature and their definition are presented and 

discussed in this section. 

 

Dispersion can be defined as the ratio of the volume of a spray to the volume of a liquid in it. 

The main advantage of a good dispersion is that the liquid mixes rapidly with surrounding 

gas resulting in higher evaporation rates. GDI injectors are mainly governed by other 

characteristics such as cone angle, mean drop-size, drop-size distribution and properties of 

the fuel and surrounding medium. 

 

The mean drop-size is the average diameter of droplets in a fuel spray. Depending on its 

size, a droplet may impact or fail to impact on a solid surface or may follow a different path to 

a droplet of a different size. The distribution of droplet sizes represents the location of 

different sizes of droplets within a spray. 

 

Spray Angle is difficult to measure due to the curved boundaries of the GDI sprays so there 

are various methods of measurement. It is often given as the angle formed between two 

straight lines drawn from the discharge orifice to cut the spray contours at some specified 

distance from the atomiser face (see Figure 2.6). The existing definition for the measurement 

of spray angle as well as the correlation for the prediction of the spray angle in plain-orifice 

atomisers are summarised and reviewed by No [39]. The existing definition of spray angle in 

plain-orifice pressure atomisers can be classified into four groups; distance based on orifice 

diameter, distance based on spray tip penetration, definition based on surface wave, and 

definition based on atomisation. The existing definition of spray angle in plain-orifice 

effervescent atomisers can be divided into two groups: definitions based on outer boundary 

and axial distance. Therefore it is strongly required to specify the definition and measurement 

method when the data for spray angle is reported. In this study, the spray angle is defined at 

a distance from the nozzle tip based on spray tip penetration. 
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Penetration can be defined as the maximum distance a spray reaches when injected into 

stagnant air (see Figure 2.6). It is governed by the kinetic energy of the initial liquid jet and 

the aerodynamic resistance of the surrounding gas. The prediction of diesel spray 

penetration has been the subject of many studies and intensive investigations, both on diesel 

and GDI sprays, are still in process. No [40] summarised the correlations developed before 

1990 and introduced the correlations reported recently in the literature. The existing zero-

dimensional models for the prediction of diesel fuel spray penetration can be classified as 

theoretical and empirical correlations. The models considered in No‟s paper were selected as 

based on the evaluation results of previous reviews and the recently published works in the 

literature. Eight theoretical and two empirical correlations were included and evaluated in his 

review. According to the review of existing models, the dominating factors for the prediction 

of spray tip penetration are the spray angle, discharge coefficient, pressure drop across 

nozzle, ambient density and orifice diameter and time after the start of injection. 

 

 

Figure 2.6: Spray angle and penetration illustration for a multi-hole injector 

 

Spray Angle 

Spray Penetration 
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In all cases the penetration of a spray is better than that of a single drop due to the 

phenomena of entrainment. This is because the first few drops of a spray transfer their 

energy to the surrounding gas, which then begins to move with the spray which creates less 

resistance for the following drops and thus overall a greater penetration.  

 

It is known that one of the main parameters that govern the spray penetration development is 

spray momentum flux. In Desantes et al. [41], a model capable of predicting the development 

of the spray penetration using as an input the temporal variation of the spray momentum flux 

is presented. The model is based on the division of the momentum flux signal in momentum 

packets sequentially injected and the tracking of them inside and at the tip of the spray. 

These packets follow a theoretical equation which relates the penetration with the ambient 

density, momentum and time. In order to validate the method, measurements of momentum 

flux (impingement force) and macroscopic spray visualisation in high density conditions have 

been performed on several mono-orifice nozzles. High agreement has been obtained 

between spray penetration prediction from momentum flux measurements and real spray 

penetration from macroscopic visualisation. 

 

Patternation can be defined as the symmetry of the fuel spray pattern which is important for 

the even distribution of fuel to achieve low emissions and good combustion efficiency. Radial 

liquid distribution is the measure of patternation both radially and circumferentially to 

determine the distribution of liquid within a spray. 
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2.3 Fuel Effects 

 

Commercial fuels are generally a mixture of many different compounds, the properties of 

which can differ greatly depending on the climate and the market in which it is sold. “Market 

to market variations in octane and cetane lead to un-optimised calibrations and product 

availability limitations.” [42]. For instance in colder climates, additional additives are added to 

aid combustion due to the colder environment. These additives will change the volatility of 

the fuel which preliminary reading has indicated will affect the spray characteristics of a fuel 

spray [31]. Fuel viscosity, density and surface tension are three of the most important 

physical properties of fuel with respect to spray atomisation and resulting spray 

characteristics [43].  

 

The viscosity of a fuel will have an effect on the atomisation quality and spray angle. It will 

also affect the pumping power requirements and will vary with temperature [17]. It is a 

complex subject, the viscosity of a homogeneous liquid depends on the properties of the 

liquid only in the range of laminar flow; in the range of turbulent flow it depends on the motion 

of the liquid [1].  

 

 

Figure 2.7: Variation of viscosity with temperature for air and various fuel vapours [17] 
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The variations of viscosity with temperature for various fuels (N-Heptane, American army 

Diesel Fuel DF2 and Jet Propellant fuels JP4 and JP5) are shown in Figure 2.7. It can be 

seen clearly that different fuels have different viscosities and that the viscosity increases 

fairly linearly with an increase in temperature. The difference in viscosity is therefore likely to 

have an effect on the fuel spray characteristics due to its influence on the atomisation 

process.  

 

The density of a homogenous liquid is defined as the ratio of the mass m to the volume Vm of 

the liquid under certain conditions (temperature, pressure) and can be seen in equation 

(2.11): 

 

  
 

  
 

 

(2.11) 

 

The density ρ is a unique characteristic of every liquid; however this is difficult to define for 

hydrocarbon fuels due to the multi-component nature of their structure.  

 

As temperature increases by          the density will decrease from ρ1 to ρ2 and can be 

calculated using equation (2.12: 

 

   
  

     
 

 

(2.12) 

 

Where α is the coefficient of volumetric expansion the value of which is specific for every 

liquid. This decrease in density will vary depending on the properties of the fuel. An indication 

to the variations between fuel vapour densities for different fuels (N-Heptane, American army 

Diesel Fuel DF2, Jet Propellant fuels JP4 and JP5, and aviation gasoline AVGAS) is given in 

Figure 2.8. As expected, it shows density to decrease with an exponential decay when 

temperature increases. 
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Figure 2.8: Variation of fuel vapour density with temperature [17] 

 

Surface tension can be defined as the property of a liquid that resists the expansion of the 

liquids surface area. Surface tension forces must be overcome by aerodynamic, centrifugal 

or pressure forces to achieve atomisation [17]. In the case of mixtures the problem of surface 

tension depends on the type of mixture and the concentrations of its components. Figure 2.9 

shows the variation of surface tension for different fuels (Gasoline relative density = 0.745 

and Ethanol relative density = 0.789) with relation to temperature. 

 

A temperature increase as the surface area tension decreases is shown in Figure 2.9, 

therefore the break-up of droplets will be faster at higher temperatures due to the reduced 

surface tension. Liquid streams injected into a gaseous environment tend to be unstable 

under a wide range of conditions. An important parameter is the Weber number, at higher 

Weber numbers, the aerodynamic force dominates, leading to distortion and disintegration. 

[44]  
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Figure 2.9: Surface tension-temperature relationship for hydrocarbon fuels of varying 

relative densities [17] 
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VanDerWege and Hochgreb [45] and [31] show that for a direct injection spark ignition 

engine (DISI), high pressure swirl injector, the spray structure changes not only with ambient 

gas density, but also with fuel temperature and fuel volatility. As ambient pressure decreases 

and temperature increases the volatile ends of multi-component fuels evaporate quickly, 

disrupting the spray and producing a vapour core along the axis of the spray. Beyond a 

certain point, the evaporation is rapid enough to expand the initial cone angle of the spray 

while causing a decrease in the overall spray width and a reduction in the mean droplet 

diameter. They used mono-constituent fuels to simulate volatility aspects of commercial 

gasoline using dopants of different boiling points in order to identify any differences in 

behaviour of light and heavy fuel components within a spray. The differences between 

acetone and cyclohexanone can be seen in Figure 3.1.1.  

 

 

Figure 2.10: Comparison of acetone and cyclohexanone spray distributions [45] 

 

Tong et al. [46] show that for a GDI engine, fuel volatility affects spray development and fuel-

air mixing and as a result the in-cylinder fuel distribution. High volatility components vaporise 

more quickly, resulting in smaller droplets, which have less penetration, whereas low volatility 

components vaporise more slowly resulting in larger drops which have greater penetration 

which are more likely to impinge on cylinder walls which leads to increased wall wetting. An 

increase in wall wetting is not good as increases the level of emissions in the combustion 

process.Tong et al supports the findings of VanDerWege and Hochgreb with the high 

evaporation rates of volatile fuels resulting in reduced penetration due to the lack of 

momentum due to faster rates of vaporisation. 
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This is supported further by the research of Change and Farrell [43] who discuss the effects 

of fuel viscosity. Using a high injection pressure diesel spray it was determined that low 

viscosity fuel sprays gave a greater near nozzle spray angle than high viscosity fuel sprays 

did in the initial part of the injection.  This would suggest that low viscosity and high volatile 

fuels induce greater evaporation rates but reduced penetration as the increase in cone angle 

means that a greater proportion of the velocity is in a radial direction, coupled with the high 

evaporation rates means that there is less momentum within the spray to achieve higher 

penetration levels. 

 

The low viscosity fuels had larger projected area per unit mass than high viscosity fuel 

sprays did, indicating more dispersion of the spray. This supports the findings of Chen and 

Lefebvre [47] about the liquid viscosity having an inverse effect on the spray angles. Sprays 

of low viscosity liquid had larger spray angles than those of high viscosity liquid sprays. 

 

Schick [48] found that an increase in the viscosity and surface tension increases the amount 

of energy required to atomise the spray. Therefore an increase in any of these properties will 

typically increase the drop-size. This is supported by Change and Farrell [43] whose 

investigation showed the Sauter mean diameter to have increased with an increase of 

kinematic viscosity and surface tension.  

 

Tong et al [46] stated that the spray development, fuel-air mixing and the resulting in-cylinder 

fuel distribution were affected by fuel component volatility. They concluded that the in 

cylinder fuel distribution of individual fuel components in a fuel blend depends on both the 

volatility of that component and the volatility of other components. 

 

Canaan et al [49] investigated the influence of fuel volatility on the liquid-phase fuel 

penetration in a Heavy-Duty Direct Injection Diesel Engine. It was concluded that the 

maximum liquid penetration is strongly influenced by fuel volatility and that there is a strong 

correlation (approximately linear) between measured maximum liquid length and fuel mid-

boiling point.  
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2.4 Fuel Comparison 

 

Most investigations involving fuels use fuel blends with different volatility characteristics such 

as the investigation by VanDerWege et al [50]. This may be of interest to determine the 

extent fuel volatility has on the atomisation performance. An example of a range used by 

Tong et al [46] can be seen in Table 2.3: Fuel blends of different volatility characteristic 

(Ethanol boiling point = 78°C). 

 

Table 2.3: Fuel blends of different volatility characteristics [46] 

Volatility High Volatility Baseline Low Volatility 

Fuel 2,3 dimethyl butane iso-octane n-nonane 

Boiling Point (°C) 57.95 99.25 150.85 

 

During design and development the performance of gasoline fuel injectors is often tested 

with standard single component fuels rather than gasoline. For spray studies this is more 

than often the case, this is in order to improve safety, or to utilise laser induced fluorescence 

(LIF). Furthermore, within the research community, idealised fuels are used where the 

chemistry is simplified and well documented as the analysis and understanding of the 

behaviour is then made simpler. However, the use of single component fuels can have a 

pronounced effect on the spray in comparable engine conditions [51]. 

 

An investigation into the effect of fuel properties on liquid break-up and atomisation in GDI 

sprays by Wigley et al. [51] showed that different fuels generate different spray 

characteristics and behaviour. The fuels tested and their properties can be seen in Table 2.4. 

Obvious variations between properties for the different fuels can clearly be seen. 

 

Table 2.4: Properties of test fuels available [51] 

Fuel 
Fuel Density 

(kg/m3) 

Kinematic Viscosity 

(mm2/s) 

Surface Tension 

(    kg/s²) 

Gasoline 745 0.74 21.0 

N-heptane 682 0.60 20.14 

Iso-Octane 690 0.72 18.77 

E25 755 0.94 22.0 

Exxsol 772 1.30 24.7 

Stoddard 780 1.28 26.0 
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The results from this investigation are shown in Figure 2.11. Although the flow fields for each 

fuel show a general trend the difference between the magnitudes and direction of the 

velocities are quite substantial. No fuel is seen to penetrate and the spray to develop faster 

than gasoline. 

 

 

Figure 2.11: Flow field maps for different fuels for a pressure swirl injector [51] 

 

As illustrated in Figure 2.11, N-heptane can be used to model gasoline as regards to spray 

morphology and droplet dynamics. The same is true for iso-octane to model E25. However, 

for scientific purposes it would be difficult to relate data from Exxsol and Stoddard to describe 

a gasoline spray even though these are common „calibration‟ fluids in automotive industry. 
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2.5 Gasoline Direct Injection  

 

Gasoline Direct Injection (GDI) differs from traditional port injection systems in that the fuel is 

injected directly into the cylinder rather than into the intake ports prior to the intake valves. 

Injecting the fuel in this manner allows much more flexibility over the conditions and mixture 

within the cylinder, and thus allows the designer to control the output emissions to a much 

higher degree.  

 

All automotive manufacturers nowadays are either developing or have developed a GDI 

combustion system within the market place. There are many variations in injection strategies 

used (although the basic principles of all systems are the same). 

 

In a PFI engine, fuel is injected into the inlet manifold manifold and on to the back of the hot 

inlet valve for fuel evaporation and mixing with the air. When the valve opens the 

aerodynamic shear forces caused by the rapid flow of air into the cylinder further break-up 

and atomise the fuel. These methods of atomisation have little reliance on the characteristics 

of the spray itself, provided that the spray is directed correctly onto the inlet valve. A PFI 

engine, using the concept of external mixture formation, has advantages in that there is a 

relatively long duration available for mixture generation outside the cylinder and that the fluid-

dynamics conditions are simpler and easier to control. Injecting the fuel into the intake 

manifold either continuously or sequentially allows for long trajectories of fuel droplets; an 

advantage for fuel atomisation and vaporisation. Good fluid-dynamic conditions result mainly 

from air wave propagation within the intake ducts and are characterised by well defined 

velocity and direction. However, during the mixture formation, the direct contact of fuel with 

walls and other surfaces cannot be completely avoided.  In the intake manifold fuel contact 

can be caused by air waves or partial spray impacts with surfaces. In the combustion 

chamber droplet impacts on surfaces caused by the intake flow conditions lead to localised 

incomplete combustion. Despite the advantages of a PFI engine, major disadvantages in 

terms of fuel consumption and emissions are created which makes a PFI engine unlikely to 

reach future legislations [52]. 
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In comparison to direct-injection compression-ignition diesel engines, gasoline spark-ignition 

engines (using PFI) generally have lower brake specific fuel consumption (BSFC) for a 

similar sized engine. GDI implements direct injection within a gasoline engine to try to 

achieve low BSFC without the drawbacks of a diesel engine (i.e. high levels of noise, higher 

particulate, nitrous oxides (NOx) emissions and limited speed range) while keeping the 

specific power output of a gasoline engine. A GDI engine can offer a potential further 

advantage over the diesel engines due to the fact that ignition is initiated by a spark source 

which eliminates many of the stringent quality requirements for the fuel in a diesel engine 

[53], [54].  

 

In GDI engines fuel is injected directly into the cylinder.  The spray characteristics directly 

influence the vaporisation process and hence are of paramount importance to combustion 

efficiency and engine-out emissions. By controlling the time at which the injector injects fuel 

into the cylinder, there is a possibility for these engines to run in both a stratified mode for 

improved fuel economy at low load and a homogeneous mode for maximum power output at 

high load. These operating modes are shown in Figure 2.12 which will be discussed further. 

 

 

Figure 2.12: Operating modes of GDI engine [55] 
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2.5.1 Stratified Mode 

 

The first mode to achieve high economy which is utilised at lower engine speeds and loads is 

stratified operation. This mode creates a stratified charge mixture by injecting late in the 

compression cycle so there is not enough time for the fuel and air to mix before ignition. The 

concept is to create a rich or close to stoichometric mixture near the injector but with an 

overall air-fuel mixture that is very lean, i.e. in much the same way as in diesel engines. 

Injecting at this late point in the engine cycle also means that injection occurs at higher in-

cylinder pressures which provides improved atomisation and reduced spray penetration. 

When this is combined with bulk air motion (tumble and swirl) already present, it acts to 

concentrate the spray around the spark plug. Within a port injection system utilising 

homogenous charge operation, the air-fuel ratio (AFR) is limited by flame stability. Utilising 

GDI in this manner allows much lower air-fuel ratios to be used due to the fuel concentration 

around the spark plug being maintained (this creates a stoichiometric charge at the spark 

plug whilst keeping the overall AFR very lean, possibly as much as 45:1 [56]), and this also 

helps to reduce the cycle-to-cycle variation inherent when operating very lean with 

homogeneous operation. Operating in this manner allows the load to be controlled by 

injection quantity, while eliminating the throttling losses associated with controlling the load 

by air flow rate. This mode of operation shares many similarities with diesel combustion 

operation.  

 

There are three methods currently used for directing the fuel spray towards the spark plug for 

stratified operation. These are outlined in Table 2.5. Although there are three basic separate 

mechanisms designed for achieving fuel stratification, the stratification in a working engine is 

generally achieved by a combination of these. The three different ways in which spray can be 

guided within a combustion chamber to achieve a stratified charge are: spray-guided, wall-

guided and air guided. Spray-guided uses the concept that the fuel spray is directed towards 

the spark plug from close proximity, with stratification created by the fuel spray penetration 

and mixing. Wall-guided uses piston crown design, often a bowl shape design within the 

crown, to direct the spray toward the spark plug. Air-guided enables a stratified charge via 

the interaction between the spray and charge motion. Both wall-guided and air-guided 

designs are generally designed with a relatively large distance between spark and injector. 

Due to the close arrangement of injector and spark plug, the spray-guided combustion 

system allows a spatially limited stratification, which allows a non-restricted operation down 

to idling loads with overall air/fuel ratios up to approximately 115 [52]. The appropriate air/fuel 

ratio at different engine loads (injected fuel quantities) must be realised by the penetration 

depth of the injected spray and is therefore mainly determined by the spray characteristics. 
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Table 2.5: Stratified operation mechanisms [2] 

Spray guided 

Stratification is controlled by the relative 

positioning of the injector and spark plug.  

Fuel is sprayed directly into the area near the 

spark plug with very little interaction with the 

air charge or cylinder geometry.  Atomisation 

quality is critical to the success of this system 

due to the limited time available for 

vaporisation. 

 

 

Figure 2.13: Spray guided 

 

 

 

 

 

 

 

Advantages: 

Easiest to apply to existing PFI engine 

design. 

Highest stratification capability. 

Achieved without a strong dependence on 

charge motion or piston crown design. 

Disadvantages: 

Problems with spark plug fouling and soot 

generation due to presence of relatively 

large fuel droplets near spark gap. 

Very sensitive to fuel spray characteristics, 

for example variations in spray symmetry, 

skew and cone angle due to production 

tolerances or injector deposits can cause 

excessive COV of IMEP. 

Requirements for close positioning of 

injector and spark plug can result in 

reduction of inlet valve area. 

Wall guided 

Fuel spray is injected towards a specially 

shaped piston crown and this directs the fuel 

towards the spark plug via charge motion and 

the momentum of the spray-induced air flow 

field.  Only a minority fraction of droplets 

actually impinge on the piston crown and form 

a fuel film.  The majority follow the wall 

contour whilst entrained within a highly 

transient air flow field generated by the 

Advantages: 

Increased distance between spark plug and 

injector relative to spray-guided systems 

gives increased time for mixing leading to 

lower HC and particulate emissions. 

Reduced sensitivity to spray characteristics 

and therefore more robust to spray quality 

degradation due to injector deposits and 

production tolerances. 

Disadvantages: 
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injection event.  The specific design of the 

combustion bowl is very important and must 

be carefully matched to the fuel spray.  The 

majority of systems use in-cylinder air swirl as 

the primary air motion to transport the fuel.   

 

Figure 2.14: Wall guided 

 

Possibility of increased spray impingement 

on combustion chamber surfaces. 

Shaping the piston crown for part-load 

stratified operation is detrimental to air 

utilisation at high loads when a 

homogeneous mixture is required. 

There is a trade-off between emissions and 

performance which must be optimised by 

the injector inclination angle. 

Air guided 

Charge stratification is controlled by the 

interaction of the fuel spray with the bulk in-

cylinder air motion.  The piston bowl shape 

must be optimised in order to create the 

necessary in-cylinder flow field. 

 

 

Figure 2.15: Air guided 

 

Advantages: 

Widest spacing between spark plug and 

injector allowing best air-fuel mixing. 

Reduction in wall wetting gives reduced oil 

dilution and HC emissions. 

Disadvantages: 

Flow-field fluctuations can cause 

combustion instabilities. 

At low engine speeds the overall strength of 

charge motion is reduced, leading to greater 

combustion instabilities. 

Careful calibration is required to match 

charge motion and spray characteristics 

over the whole engine speed range. 

Piston bowl design for flow-field generation 

is detrimental to air utilisation at high loads. 
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The stratified combustion mode has the disadvantage of increasing NOx and HC emissions 

due to increased local combustion temperatures, despite reduced peak cycle thermodynamic 

temperatures [2], and the presence of unburned fuel. The issue with this mode of operation 

lies with the fact that the conventional three way catalyst operates around a stoichometric air-

fuel ratio. Therefore when the engine is operating using a stratified mixture (the overall AFR 

is lean), the three way catalyst cannot function properly, and due to the increased oxygen 

quantity, will mean an increase in nitrous oxide emissions. Due to the engine running lean, 

unburned hydrocarbons and carbon monoxide emissions are minimal. To control the nitrous 

oxides formed during this period, GDI engines utilise exhaust gas recirculation (EGR) and 

either a NOx trap or Selective Catalytic Reduction (SCR) catalyst. 

 

Introducing recirculated exhaust gas into the fresh charge acts to dilute the charge, reducing 

the combustion flame adiabatic temperature. The exhaust gas also acts to increase the 

specific heat capacity of the mixture, further lowering the peak combustion temperatures. 

Since NOx chemistry is heavily temperature dependent and rises exponentially with 

temperature, the reduction in combustion temperature as a consequence of introducing EGR 

reduces the nitrous oxides formed during GDI stratified operation. Cooling the EGR mixture 

can also amplify this affect on flame temperature and hence reduce NOx emissions further. 

 

Using EGR can have a significant effect in reducing nitrous oxide emission but it is not 

sufficient to reduce emissions below current legislation and therefore further reductions are 

required, most of which included post-engine reductions in the tail pipe itself. One method of 

achieving this is to use a „NOx Absorber‟ or „NOx Trap‟. The absorber features a zeolite base 

material that traps the nitrous oxides NO and NO2. The absorber can be purged by 

introducing hydrocarbons into the exhaust. The stored nitrous oxides are unstable in the 

presence of hydrocarbon and will join to form water (H2O) and Nitrogen (N2). This can be 

easily achieved during the second mode of operation when using a homogeneous charge 

mixture.  

 

Another method to reduce nitrous oxide is to use an SCR catalyst. An SCR catalyst uses a 

reducing agent to reduce NOx into water and Nitrogen. The most commonly used reductants 

are ammonia or urea. The largest issues with this form of emissions control is the supply of 

reductant and the narrow temperature window in which the catalyst will operate. A supply of 

reductant is required at all times for the catalyst to function and for this to be possible the re-

fuelling infra-structure must be available. The temperature of the exhaust can be controlled to 

ensure the exhaust temperature remains within the operational window of the catalyst, but 

anywhere outside of this window and the performance of the catalyst drops of rapidly.  
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Due to issues mentioned with respect to SCR emissions control, many manufacturers are 

using NOx absorber based catalysts. Unlike diesel engines (which tend to almost entirely 

operate with a stratified lean mixture), direct injection gasoline engines tend to have periods 

where they operate with a stoichometric/slightly rich mixture for performance benefits. This 

provides the reducing agent in the form of hydrocarbons in which to purge the catalyst.  

 

In some examples, multiple injections during the compression stroke have been used to 

increase exhaust gas temperatures much more rapidly during the engine‟s warm-up phase. 

This has been used with dramatic effects (reports of reducing hydrocarbons by almost 50%) 

on reducing unburned hydrocarbons during this phase. 

 

Within GDI engines, stratified combustion systems are capable of realising optimised 

thermodynamic efficiency by avoiding any wall film generation without excessive air charge 

motion. The spark plug position in these combustion systems nowadays represents a 

compromise of cylinder head construction, water cooling jacket requirements, and the 

combustion system demands themselves. However, different atomiser concepts used in 

gasoline engines with direct injection lead to different combustion systems and thus, need 

different spark plug locations. For this reason a prototype combustion system with totally 

centered injector position and a low voltage spark ignition system was set up by Raimann et 

al. [57]. The idea was to reveal regions with perfect ignition conditions for the three different 

spray types with nominally an equal spray cone angle layout. In this engine the general spray 

propagation properties, generated by the different injectors, were investigated by high-speed 

(HS) imaging of Mie scattered light. These tests were performed using regular super gasoline 

(RON 98). The use of model fuels, a nearly regular fuel free of aromatic hydrocarbons, 

tracered by an exciplex makes fluorescent signals from liquid and vaporised fuel phases 

distinguishable. Statistical evaluation of Laser Induced Exciplex Fluorescence (LIEF) 

measurements allowed the identification of locations with and without high liquid and vapor 

concentration probabilities. Locations with a maximum vapor and a minimum liquid 

occurrence probability were chosen as potentially optimal spark positions. The chosen 

positions were tested for the different injectors in the transparent engines within 250 ignited 

cycles. Misfire rates and indicated mean pressure data were compared with the signals from 

high-speed color pictures taken from the combustion cycles. Finally, the correlation of the 

statistical evaluation of the combustion process with the gained results from the mixture 

formation investigations by LIEF was discussed [57]. 
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2.5.2 Homogenous Mode 

 

The second mode of operation is used at higher engine speeds and loads for improved 

performance. It also removes the flame instability issues associated with stratified 

combustion. This mode sees fuel injected during the intake stroke. This gives rise to 

improved mixing due to the larger time allowed for mixing to occur and is intended to provide 

a homogeneous mixture within the cylinder. In addition to this, the injected fuel has a cooling 

affect on the cylinder charge due to the vaporising fuel. This acts to improve volumetric 

efficiency due to higher charge density and improved knock resistance. The improvements in 

knock resistance allow a higher compression ratio to be used for improved efficiency, or if the 

engine is supercharged, higher boost ratios for further performance increases.  

 

A third mode can be created by a combination of the first two modes, utilising a largely 

stratified mixture with the majority of the injection late in the compression stroke, but also 

injecting a small quantity of fuel during the intake stoke. The initial injection causes the intake 

charge to cool in the same manner as used during the second homogeneous mode. This 

reduces the probability of knock and allows the ignition timing to be further advanced, 

improving performance and efficiency. This mode is used during high load low engine speed 

conditions for improved torque output, and to bridge the gap between the two main modes 

for smoothness of operation. 

 

The most fuel-efficient mode of operating a gasoline engine is to burn fuel in excess air 

without the use of a throttle to modulate the engine load. With homogeneous charge spark-

ignition burning a lean air-fuel mixture reduces the flame propagation speed until ignition 

limits are reached, therefore the engine can only be operated unthrottled over a restricted 

range of loads and speeds. The lean throttle-less operating region of the engine can be 

significantly extended using stratified charge combustion systems. In addition to pumping 

work reduction, operating lean increases the thermodynamic efficiency of the engine through 

increasing the ratio of specific heats and stratified charge combustion reduces heat transfer 

to the cylinder walls [58]. 
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The direct injection spark ignition, DISI, engine under homogeneous charge mode offers 

improved full-load performance and full-load fuel economy when compared with the present 

generation of port injected gasoline engines. Moreover, the DISI engine also offers the 

possibility of significant fuel savings under low and part-load conditions through the adoption 

of a stratified charge injection strategy. Stratified-charge operation in DISI combustion 

systems is achieved through the injection of fuel late during the compression stroke, 

therefore, the time available for air-fuel mixing and fuel vaporisation is restricted. This can 

lead to a high probability of finding liquid fuel, locally rich and extreme air-fuel regions in the 

overall air-fuel vapour mixture within the cylinder at the time of ignition.  

 

Many of the first generation wall-guided and air-guided GDI engines produced disappointing 

improvements in fuel economy and emissions due to the difficulty in optimising the complex 

nature of their combustion systems and the lack of appropriate lean exhaust gas after-

treatment. The most serious threat to the full acceptance of the DISI engine lies in the nature 

of the stratified charge combustion process itself, locally undiluted mixtures give rise to high 

flame temperatures, NOx production and the emission of high levels of sub-micron particulate 

matter. The development of the de-NOx catalyst, NOx sensing and control technology has 

enabled the benefits of lean operation via a stratified charge combustion system to be 

partially realised, though compromises in fuel economy potential due to emissions 

compatibility still remain [58]. 

 

The introduction of fully variable valve trains (FVVT) has allowed new strategies in engine 

control to be realised, two of the most significant being those of throttle-less combustion 

control and controlled auto-ignition. However, when combined with gasoline direct injection, 

whole new areas of engine control can be explored using conventional spark ignition, and 

offering some of the gains of fuel economy from lean burn operation to be obtained with 

homogeneous charge combustion. The FVVT systems remove the need for a throttle, as the 

inlet charge can be controlled by the valve events, and so minimise the throttling losses 

associated with a conventional throttle plate. This offers the chance to run the engine in 

direct injection, homogeneous mode, while still gaining the benefits of no throttle in the inlet 

system. The main advantage of homogeneous direct injection strategies is the avoidance of 

using a NOx trap and, with it, the associated extra materials costs. Additionally, there is a 

fuel consumption penalty with lean burn, to regenerate the NOx trap, which diminishes the 

theoretical benefits [59]. 
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Two principal valve strategies can be employed to control the quantity of fresh charge being 

introduced to the cylinder, early inlet valve closing, EIVC, and late inlet valve opening, LIVO. 

These processes will have a direct effect on both the in-cylinder pressure, and the flow 

structure developed during the inlet valve opening phase. The work presented by Pitcher et 

al. [59] investigates the morphology and penetration of the spray, with early injection, 40 

degrees after top dead center (ATDC), to gauge the effects of the in-cylinder conditions on 

the spray development. Four different valve timing strategies were used, standard, early inlet 

valve closing, EIVC, late inlet valve opening, LIVO and late inlet valve opening with early 

exhaust valve closing. The latter combustion mode is for controlled auto-ignition, CAI. 

 

Homogeneous direct injection strategies have the potential to reduce fuel consumption and 

emissions, without the requirement for a de-NOx trap. Combined with a fully variable valve 

system, the fuel consumption is improved by having the ability to run without a throttle. The 

work presented by Wigley et al. [58] is a preliminary study of the spray morphology with 

injection into different in-cylinder conditions due to three different valve strategies and engine 

speeds representative of all part load engine conditions. An initial analysis of the spray 

morphology has shown that the spray dynamics during injection are sensitive to flow 

structure at engine speeds over 1000 rpm for the standard and EIVC valve lift profiles. 

However, the in-cylinder pressure is seen to have the most important effect on both the early 

and late spray propagation. This is especially true for the LIVO valve timing profiles where 

the low in-cylinder pressure generates flash evaporation of the fuel and plays a significant 

role in determining spray shape and penetration even during the injection period. The paper 

[58] describes these mixing processes for each case and also discusses how the internal 

flow structure plays a controlling factor for spray distribution after injection for a range of 

engine speeds up to 4000 rpm. 
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In order to create the two main combustion modes in a direct injection gasoline engine, 

homogenous and stratified, it is important that an optimum relationship between spray 

characteristics and engine speed is achieved. The possible contribution of different 

components on the mixture formation is as follows [52]: 

 

Fuel Contribution on Mixture Formation: 

 Injection rate modulation and injection quantity 

 Injector location and nozzle shape 

 Start of injection 

 Duration of injection 

Air Contribution on Mixture Formation: 

 Intake duct position and shape 

 Control of the distribution by variable valve timing 

 Air pressure history at the intake port (supercharging, turbocharging, etc.) 

Combustion Chamber Design Contribution on Mixture Formation: 

 Piston surface and head geometry 

 Spark plug location 

Spark Plug Mixture Support: 

 Ignition timing 

 Ignition duration 

To achieve an optimum fuelling and combustion design, each of the factors should be 

adapted to changing conditions with respect to load, speed, thermodynamic state of fuel and 

air, surrounding conditions (i.e. wall temperature), transient conditions.  However, some of 

the factors cannot be adapted during engine operation, for example spark plug location, 

therefore an optimisation for a variation of conditions is required.  The following diagram 

shows an alternative system analysis of mixture formation mechanisms. 
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Figure 2.16: Model of GDI Application Parameter on Engine Performance and 

Emissions [60] 

 

It can be seen from Figure 2.16 that compensations and compromises needed to be made 

between certain parameters. Effects of one parameter on another are indicated by plus and 

minus signs to highlight counteracting mechanism (A higher injection system pressure for 

example leads to a lower droplet size, higher initial velocity and shorter injection duration). 

The injector parameters; spray angle, start of injection, and spray pattern are of particular 

interest for research in this study. 

 

A GDI engine has the potential to avoid disadvantages found with PFI engines and 

generates the potential for numerous advantages: 

 

 Avoidance of air throttling: Within a GDI engine system the engine load is 

controlled by the injection of the fuel therefore there is no need for throttling, hence 

reducing engine pumping losses at part load. The inlet air mass is adjustable via an 

electronically controlled throttle valve linked to an air/fuel ratio sensor. 
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 Increase of compression ratio: The compression ratio for a GDI engine can be set 

higher than that of a PFI. A higher compression ratio cannot be used for PFI engines 

as the extra pressure causes auto-ignition, with a GDI engine injecting the fuel 

directly into the cylinder gives a charge cooling effect, reducing the temperature and 

chance of detonation (or “knocking”). 

 

 Increase in the absolute heating value of the mixture: The maximum heating 

value of an air fuel mixture for a fixed volume is produced when homogenous and 

slightly under the stoichiometric value.  This appears to be a benefit for PFI external 

mixture formation. However, in a direct injection engine, scavenging occurring with 

pure air allows for optimum design of intake ducts, creating lower pressure losses.  

With no throttling the air mass captured during scavenging can be increased. 

Increasing the fuel mass proportionally with a higher air mass (maintaining a 

stoichiometric mixture) keeps the relative heating value constant while the absolute 

heating value is increased. An increase in the absolute heating value of the mixture 

results in a higher Brake Mean Effective Pressure (BMEP) [52]. 

 

 Possibility of mixture formation control until start of ignition: By adjusting the 

correlation of injection quantity, injection rate and ignition timing; control of the 

mixture formation can be achieved. In the stratified mode of combustion two zones 

are created in the combustion chamber: a combustible air/fuel mixture cloud at the 

spark plug embedded in an insulating layer of air and residual gas. This achieves a 

higher thermodynamic efficiency by reducing heat losses to the chamber walls. 

 

 Combustion control by mixture formation: Theoretically a mixture formation that is 

controlled in the optimum way can reduce the emissions that occur in a GDI engine. 

The control of the air fuel mixture has a great effect on the reduction of emissions 

from wall-wetting and localised rich mixtures. The air pressure within the cylinder 

during the compression process works against the injected fuel flow. When fuel is 

injected later in the process a higher opposing pressure acts of the mixture formation, 

affecting the spray development.  Different combustion chamber designs also allow 

the control of mixture formation. 
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GDI has difficulties that need to be overcome. In terms of emissions, nitrous oxides (NOx) 

levels are higher than PFI at both part and full load meaning that three-way catalysts need to 

be replaced. High hydrocarbon (HC) and increased particulate levels are also found due to 

wetting of the walls, possibly in a combustion chamber that is not of optimum design. When 

the spray is in close contact with the spark plug the liquid fuel can cause carbon fouling, 

affecting the performance of the spark plug. However, it is important that sufficient fuel is 

within close proximity to the spark plug at ignition especially in stratified conditions. It is also 

important that the fuel is sufficiently atomised and guided correctly with the combustion 

chamber. 

 

Levels of liquid fuel impingement on in-cylinder surfaces in direct injection spark ignition 

engines have typically been higher than those in port-fuel injection engines due to in-cylinder 

injection and higher injection pressures. The result is typically an increase in the levels of un-

burned hydrocarbons and smoke emissions which reduce the potential fuel economy 

benefits associated with direct injection engines. Although different injection strategies can 

be used to reduce these effects to some extent, full optimisation of the injection system and 

combustion process is only possible through improved understanding of spray development 

that can be obtained from optical engine investigations under realistic operating conditions. 

To this extent, Serras-Pereira et al. [61] studied the spray formation from a centrally mounted 

multi-hole injector in a single-cylinder optical direct injection spark-ignition engine under part-

load conditions (0.5 bar intake plenum pressure) at 1500 RPM. A high-speed camera and 

laser illumination were used to obtain Mie-scattering images of the spray development on 

different in-cylinder planes for a series of consecutive engine cycles. The engine temperature 

was varied to reflect cold-start (20°C) and fully warm (90 °C) engine conditions. A multi-

component fuel (commercial gasoline) and a single-component fuel (iso-octane) were both 

tested and compared to investigate the effects of fuel properties on spray formation and wall 

impingement. An experimental arrangement was also developed to detect in-cylinder liquid 

fuel impingement using heat flux sensors installed on the cylinder liner. Two different 

injection strategies were tested; a typical single-injection strategy in the intake stroke to 

promote homogeneous mixture formation, as well as a triple-injection strategy around the 

same timing to assess the viability of using multiple-injection strategies to reduce wall 

impingement and improve mixture preparation. A sweep of different locations around the 

cylinder bore revealed the locations of highest fuel impingement levels which did not 

correspond directly to the nominal spray plume trajectories as a result of spray-flow 

interactions. These results were analysed in conjunction with the observed effects from the 

parallel imaging investigation [61]. 

 



Chapter 2 – Injection Process and Spray Characteristics 

 Page 53 
 

In a GDI engine, the formation of the air-fuel mixture, which is governed by the fuel spray 

geometry, the air motion, and the interaction among the spray, air motion, and wall, directly 

influences the engine performance. The fuel injected into the cylinder generates air motion 

and evaporates to form the air-fuel mixture. The mixture is forced near a spark plug by the 

spray penetration, air motion, and/or wall reflection. In Kawajiri et al. [62], the authors 

investigated the spray wall impingement and the interaction between the spray, air motion, 

and wall using an experiment and a numerical simulation. A high-pressure swirl injector 

simulation model was developed and applied to calculate the spray characteristics and spray 

wall impingement. The simulation results of the spray shapes under atmospheric and 

pressurised ambient pressure agreed with the experimental results. Experimental tests of a 

normal and oblique spray-wall impingement by using a high-pressure swirl injector were then 

carried out to clarify the spray shapes after the impingement. The developed spray 

simulation model successfully calculated the spray-wall impingement and evaluated the fuel 

wall adhesion and the details of the spray shapes. The influence of the spray geometry on 

the mixture formation and fuel wall impingement was investigated. A full-cone spray and 

various hollow-cone sprays were tested. The interaction between the spray and air motion 

was investigated using an experiment and a numerical simulation involving fuel spray in a 

constant-volume swirl vessel. It was found that the main part of the hollow-cone spray was 

influenced strongly by the air motion, although the influence of the air motion on the central 

part was weak. Finally, DI engine combustion calculations were described using a developed 

spray and combustion model. A hybrid combustion model combining a flame area evolution 

model and a turbulent mixing model was developed to calculate the stratified combustion of 

the DI engine [62]. 

 

When a high load is required a homogenous air-fuel mixture is optimum to achieve the best 

possible combustion throughout the chamber. To achieve a homogenous mix within a GDI 

engine the fuel is injected during the intake stroke. However the major advantage of a GDI 

engine over a PFI engine is the ability to run a lean mixture at low engine loads. As the fuel is 

sprayed directly into the combustion chamber during the compression stroke the spray can 

be controlled and directed towards the spark plug, therefore achieving a stoichiometric 

mixture for combustion at the spark plug is achievable with a lower overall air/fuel ratio. An 

overall AFR in the region of 40-50:1, compared to stoichiometric (ideal value for complete 

combustion) value of 14:1, can be achieved at low loads for a GDI engine. This injection 

strategy is known as stratified, assuming that through injection timing a homogenous-lean 

mixture is not created [2]. 
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To summarise, the advantages of using a direct injection system are: 

 

 Due to being able to produce very precise fuel injection quantities, only the required 

fuel is supplied and therefore a reduction in emissions and fuel economy is achieved. 

This also helps to achieve higher power and torque outputs. 

 

 Using stratified operation allows a very overall lean mixture to be used, almost 

eliminating unburned hydrocarbons and carbon monoxide emissions. 

 

 Unlike diesel engines, gasoline direct injection engines have periods where they 

operate under homogenous charge conditions. This allows the NOx absorbers to be 

regenerated easily. 

 

 Due to the engine load being controlled by injected fuel quantity the throttle, usually 

employed by gasoline engines, can be removed therefore greatly reducing pumping 

losses. 

 

 The evaporative cooling affect associated with injecting fuel into the intake charge 

can be used reduce the risk of knock. Therefore a higher compression ratio (or 

increased boost pressure in supercharged applications) can be used for improved 

performance and efficiency. 

 

 Engine and catalyst light-up time can be reduced using multiple injections during the 

compression stroke to greatly reduce unburned hydrocarbon emissions during engine 

warm-up periods. 

 

 Using either, a pressure-swirl injector with dished piston crown geometry to direct the 

spray up towards the spark plug, or a multi-hole injector positioned with the periphery 

of the spray in close proximity to the spark plug, a very rich combustible mixture close 

to the point of ignition can be designed. 

 

 Maintaining the air-fuel mixture near the spark plug and away from the cylinder walls 

prevents wall wetting and excessive heat transfer, reducing hydrocarbon emissions 

and improving efficiency.  
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The theoretical benefits of GDI engines merit priority status for further development, however 

there are many challenges which need addressing before the GDI engine replaces the Port 

Fuel Injection (PFI) engine as the standard engine for production vehicles.  

These challenges are shown in Table 2.6. 

 

Table 2.6: Challenges of GDI engine development [2] 

 

Challenge Reason Mechanism 

Emissions High local NOx production at part 

load, stratified charge operation 

Locally rich mixture burns at high 

temperature 

High unburned HC Fuel spray impingement on 

cylinder walls and piston crown 

High particulate emissions Locally rich mixture burns 

incompletely, creating soot 

Control system Highly complex system required Seamless load changes need 

accurate cycle-to-cycle fuel 

metering 

Increased system development 

time 

Increased number of calibration 

variables which must be optimised 

Fuel economy Parasitic losses Increased fuel system pressure 

requires pump with high power 

consumption 

Increased electrical load required 

by injectors and drivers 

Periodically rich AFR Fast catalyst light-off and catalyst 

regeneration 

Durability Fouling of injectors and spark 

plugs 

Locally rich mixture burns 

incompletely, creating soot 

deposits 

Fuel system component wear Combination of increased system 

pressure and low lubricity of fuel 

Cylinder bore wear Dilution of engine oil with fuel due 

to cylinder wall impingement of fuel 
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2.5.3 Downsizing a Gasoline Engine Using Turbocharging with Direct Injection 

 

Nowadays, downsizing (reduction of the engine size by reducing the cylinder size or by 

removing one or more cylinders) appears as a major way of improving fuel consumption of 

spark ignited engines while maintaining the advantage of the low emission capability of three 

ways catalytic system. The downsizing approach with turbocharging to restore the power is 

now more and more oriented towards fuel economy, thanks to dedicated solutions. The use 

of gasoline direct injection system coupled with adapted turbochargers provides several 

ways of enhancing the engine resistance to knock especially at high load and low engine 

speed where existing PFI turbocharged engines are still limited [63]. 

 

The purpose of Lecointe and Monnier [63] was to highlight the combustion behaviour of the 

new generation of turbocharged direct injection engines and to demonstrate the potential of 

such a solution on a specific application. First, the authors explained the global system 

approach (injection, turbocharger, fluid motion, valve timing …) used to reach the necessary 

goals: high low end torque and specific power capabilities and low specific fuel consumption 

over the whole engine map. Then, they presented all the results at part load and full load 

obtained on the Renault basis 1.8l IDE concept modified by the French Petrol Institute (IFP) 

for a turbocharged application. This engine allowed advantage to be taken of its high 

knocking limit to replace a 3.0 liter naturally aspirated engine and thus to obtain a fuel 

consumption benefit of more than 15% with at least the same acceleration performance. 

 

With the 1.4 litre 125 kW TSI (Turbo Stratified Injection) engine with direct injection and dual 

charging, Volkswagen was the first volume manufacturer to introduce with great success a 

downsizing strategy which reduces CO2 emissions while also increasing driving fun. The new 

1.4 l TSI with 88 kW and a single-stage turbocharger starts off the next step in the 

implementation in the field of cost-effective high volume production engines. The special 

technical features of the engine include the further development of the combustion process, 

simplification of the injector engineering, meticulously optimised turbocharger in conjunction 

with optimised charge exchange and a newly developed design for water-cooling charge air. 

Due to the moderate downsizing of the new 1.4l 88 kW engine, about a 30 % reduction in 

displacement compared to the naturally aspirated engine with the same torque, the new 

engine can be configured with an economical, one-stage turbocharger, fulfilling all the 

requirements for the introduction of TSI technology in Volkswagen‟s volume segment. The 

combination of the new TSI technology with the new Volkswagen 7-speed dual clutch 

gearbox with dry clutches makes possible an improvement of 22 % in fuel consumption 
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compared to the predecessor Golf, completely attaining the target of 139g CO2/km in the 

European driving cycle (compared to 178g CO2/km for the previous golf) [64]. 

 

2.5.4 Controlled Auto-Ignition  

 

Controlled Auto Ignition (CAI) or Homogenous Charge Compression Ignition (HCCI) is 

characterised by the spontaneous ignition and burning of fuel and air charge within the 

cylinder in a short space of time. This self-ignition of fuel depends mainly on the charge 

temperature with the process being controlled by chemical reactions rather than turbulent 

flame preparation in direct injection spark-ignition (DISI) gasoline engines or by fuel spray 

and air mixing in direct injection diesel engines. In comparison with lean-burn charge 

stratification technology within a GDI engine, CAI gives the following advantages [65]:  

 Complex combustion chamber geometry and intake design not required as the 

ignition process is controlled by the charge temperature. 

 No need for lean NOx catalytic converters to meet emissions regulations. 

The challenges that CAI faces, however, are as follows: 

 Combustion infrequently occurs before Top Dead Centre (TDC) as it ignites once the 

charge has reached the auto-ignition temperature. 

 The combustion process is much faster in auto-ignition compared to a standard 

spark-ignition engine. This creates a large pressure rise, creating a noisy engine or 

damage in the extremes. 

 CAI operation range limited by knocking at high loads and misfires at low loads. 

 Unburned HC and CO are higher than in spark-ignition combustion due to incomplete 

combustion. 

 In order to cover complete engine operation range, smooth switching between CAI 

and SI combustion is required. 

The charge temperature can be controlled by intake air heating or faster thermal 

management, variable compression ratio and introducing or trapping hot burned gases in the 

cylinder. High centane-number fuels (diesel, dimethyl ether and n-heptane) can enhance CAI 

combustion because of their lower auto ignition temperature, with potential for dual-fuel 

mixing to be utilised to reduce the large pressure rise. 

There is a great potential for CAI to be used as an option for GDI engines. With injection 

timing and split injections viable for mixture control, there is a need for experimental research 

into spray development while varying both of these parameters [65]. 
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2.5.5 High Pressure Stratified Start 

 

Generally for start-up within a GDI engine system, a homogenous mixture formation is used.  

Low pressure primary fuel pumps are usually the only pump utilised which produces a start-

up pressure of around 0.5MPa, however, since the working pressure required in GDI 

combustion processes is in the range of 4 to 15MPa, this results in poor mixture preparation 

at start-up. Typical average droplet diameter at start-up are approximately 100µm (compared 

to 10 to 40µm for injection pressures between 4 to 15MPa); at this size the droplets have a 

resistance against atomisation and are relatively high momentum. The high momentum 

causes the droplets to travel further into the combustion chamber and being a likely cause of 

start-up emissions due to wall-wetting. Using a low pressure system start up, a large 

proportion of the injected fuel is wasted and produces HC and particulate emissions.  

 

At cold start, the poor mixture preparation for homogenous means that an enrichment factor 

of two to three times more than stoichiometric at 20OC (and higher at lower temperature) is 

used.  Bosch systems have produced extensive research into stratified start processes [66]. 

Stratified Start requires a high pressure build up; this is because injection takes place late in 

the compression phase in contrast to injection in the intake phase permitted for low pressure 

homogenous start. For a successful injection in the compression phase, sufficient pressure is 

required. Previous research found a minimum pressure required in compression to be 2 MPa 

for the first start up injection. In the Dahlander and Lindgren investigation [66] the fuel system 

components were optimised and produced such that a value of pressure of 2.2 MPa was 

created for the first stroke of the pump. This means that high pressure stratified start was 

possible for use within a direct injection gasoline engine.  

 

With the stratified start being produced at higher pressure the average droplet diameter 

produced will be lower than the equivalent low pressure homogenous start (approximately 

40µm). The fuel charge will have higher temperature and due to compression pressure 

allowing for greater vaporisation. To allow for the rich localised air fuel mixture at the spark 

plug for stratified start, injector and combustion chamber design must be optimised. An 

optimum design can allow for greater efficiency and reliability of start-up and allow for the 

enrichment factor to be reduced in relation to low pressure homogenous start.  
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To allow a detailed comparison between stratified start and homogenous start, a wall-guided 

standard combustion process with both swirl and multi-hole injectors was performed by 

Dahlander and Lindgren [66]. The HC emissions produced in the exhaust for both start 

strategies is shown in  

Figure 2.17. It was possible to reduce the amount of fuel used in start up by half and 

therefore the HC emissions in the exhaust are shown to be greatly reduced. This process is 

not only advantageous for start-up but the reduction of fuel film on the combustion chamber 

due to wall wetting allows for less HC emissions during engine warm-up further into the 

combustion process. 

 

Figure 2.17: HC emission production for stratified start and homogenous start [66] 

 

Spray angle and penetration length data were taken under cold start conditions for a Direct 

Injection Spark Ignition engine to investigate the effect of transient conditions on spray 

development. Previous investigations ( [67], [68]) demonstrated that during cold start, spray 

development depends primarily on fuel pressure, followed by Manifold Absolute Pressure 

(MAP). Injection frequency had little effect on spray development. The spray for a single 

hole, pressure-swirl fuel injector was characterised using high speed imaging [67] and phase 

Doppler anemometry [68]. The fuel spray was characterised by three different regimes. 

Regime 1 comprised fuel pressures from 6 to 13 bar, MAPs from 0.7 to 1 bar, and was 

characterised by a large pre-spray along with large drop-sizes. The spray angle (45°) and 

penetration lengths (30 to 70mm) were comparatively small. Regime 2 comprised fuel 

pressures from 30 to 39 bar and MAPs from 0.51 to 0.54 bar. A large pre-spray and large 

drop-sizes were still present but reduced compared to Regime 1. The spray angle (50°) and 

penetration lengths (40 to 85mm) were typically larger than in Regime 1. Regime 3 

comprised fuel pressures from 65 to 102 bar and MAPs from 0.36 to 0.46 bar. The fuel spray 
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had a fully developed hollow cone structure with recirculation vortices at the edges of the 

spray, which constricted the spray angle due to the effect of the pressure (higher on the 

outside edge of the spray). The spray angle was similar to Regime 2, while the penetration 

length increased. The pre-spray and drop-size were reduced compared to Regime 2. In all 

regimes, decreasing MAP enlarged the spray angle, while injection frequency was not a 

significant factor. 

 

2.5.6 Homogenous Split Injection 

 

The current process for catalyst heating, called „lean warm up‟, is not sufficient to meet future 

emission legislations. The amount of emissions created by internal combustion engines at 

start-up and cold start produces a significant proportion of total emissions during the time to 

working temperature of the catalyst. 

 

A Homogenous Split Injection (HSI) strategy combines low emissions with powerful heating 

capacity. It uses separate injections to produce optimum mixture formation. The first injection 

takes place during the intake stroke creating a homogenous lean base mixture. The second 

injection is timed within the compression stroke, allowing the benefits of good mixture 

formation mentioned in the stratified start process. The distribution of fuel mass between the 

two injection pulse and the timing of the injections need to be calculated; such that 

combustion reliability and engine speed stability is achieved. The ignition timing within a 

homogenous split injection process is after TDC within the combustion stroke. The lateness 

of the ignition is the reason that the catalyst heating can be utilised. The ignition at this late 

engine angle means that part of the combustion energy is not converted to mechanical 

energy but converted to heat energy, heating the catalytic converter. There are numerous 

potential positives in emission reduction using homogenous split injection. The stable 

combustion with slightly lean air fuel mixture results in a low concentration of unburned 

hydrocarbons; as produced in stratified start. This heating strategy can reduce noxious 

emissions by up to 50% compared to „lean warm up‟ when running on the FTP75 cycle, US 

equivalent to the Urban Driving Cycle (UDC) + Extra Urban Driving Cycle (EUDC). With the 

catalyst reaching working temperature earlier for homogenous split injection then HC, CO 

and NOx emissions will be reduced. A slight reduction of fuel consumption was also found 

during the FTP cycle due to the shortened heating phase of the catalytic converter [69]. 
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When studying the reduction of emissions for gasoline engines it is important to investigate 

the cold-start process. Hydrocarbon emissions during cold start and subsequent engine 

warm-up constitute the majority of the HC emitted. Reducing HC emissions during this 

operating period is necessary to meet future HC emissions regulations.   

 

Research has been introduced into the investigation of split or multiple injections for a GDI 

engine during cold start [69]. It has been found that with split or multiple injections the 

duration of injection required for safe starting at low temperatures is significantly reduced. 

 

Figure 2.18: Duration of injection required for safe starting with different injector 

strategies with E100 fuel [69] 

 

The injection duration required for safe starting at cold-start using different injection 

strategies is shown in Figure 2.18. E100 fuel was used as it was less likely to reduce imaging 

quality, the trend can be closely linked to which would be observed using gasoline.  

 

Further research into how the separate injection mixtures interact is required. This could 

reduce the emissions at cold start, thereby improving the overall fuel economy of the engine. 
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Lee et al. [70] investigated the effects of split injection, with a relatively short time interval 

between the two sprays, on the spray development process, and the air entrainment into the 

spray, by using laser induced fluorescence and particle image velocimetry (LIF-PIV) 

techniques. The velocities of the spray and the ambient air were measured. The cumulative 

mass of the ambient air entrained into the spray was calculated by using the entrainment 

velocity normal to the spray boundary. The vortex structure of the pressure swirl injector 

spray, formed around the leading edge of the spray, showed a true rotating flow motion at 

low ambient pressures of 0.1 MPa, whereas at 0.4 MPa, it was not a true rotating flow, due to 

the phenomenon of the small droplets (i.e. smaller than 10µm) separating from the leading 

edge of the spray and falling behind, due to air drag. The development processes of the 2nd 

spray were considerably different from that of the 1st spray since the 2nd spray was injected 

into the flow fields formed by the 1st spray. Therefore, the status of the flow field immediately 

before the 2nd spray injection, including the ambient air motion formed by the 1st spray, 

should be considered in the development process of the 2nd spray. Consequently, the 

development processes of the 2nd spray cannot be predicted without prior analysis of the 

effect of the 1st spray. Furthermore, the authors observed that the averaged mass flow rate 

increases with the time interval between injection events. This increase in mass flow rate is 

the result of eliminating the effects of the injection duration from the total mass of the ambient 

air entrained into the fuel spray. Nevertheless, the mass flow rate increases slightly because 

the air entrainment continues late into the injection period. Consequently, it is shown that the 

split injection, which has the same total injection duration as the single injection, favorably 

increases the air entrainment into the fuel spray over the single injection spray [70]. 

 

For all the different types of injection mode mentioned within this section, the atomisation 

quality of the injection is of particular importance. In the current study measurement 

techniques have been used which can quantify the fineness of an injector spray, which is of 

great importance for the development stage of GDI injection modes. 
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2.5.7 GDI Injectors 

 

The design of the fuel injector has significant impact on the air-fuel mixture preparation and 

therefore performance of GDI engines. Compared to traditional port injection engines, the 

available space and time for the atomisation process is significantly reduced for GDI engines. 

This requires the injector to deliver sprays with sufficiently small droplet size (smaller than 

40µm) and large flow rates (larger than 10g/s) for high-load conditions. Consequently, high-

pressure direct-injection fuel systems and swirl injectors dominate GDI engine applications 

worldwide because they can achieve both requirements simultaneously. However, this 

technology also has many inherent drawbacks, such as high system cost, complicated 

system configuration, excessive wall wetting, and lack of spray tailoring flexibility [71]. 

 

In order to obtain stable combustion the air-fuel charge resulting from mixing and 

vaporisation must be controlled both spatially and temporally. Preparing and locating the 

desired mixture over the full range of engine operating conditions is difficult as the mixing 

process is influenced by many time-dependent variables. This places great demands on the 

fuel injection system and in particular the injectors. Successful GDI engine design requires 

optimisation of the fuel system components and subsequent matching of this system to the 

in-cylinder flow field and combustion chamber geometry. 

 

GDI combustion systems require a "well atomised" spray under all operating conditions, with 

the definition of "well atomised" being one in which the D32 is less than 20μm [2]. 

 

The injectors must be able to provide for at least two distinct operating modes, stratified and 

homogeneous, or the engine would have a limited operating range of either low-load and 

low-speed or high-load and high-speed. Stratified operation requires injection during the 

compression stroke, with ambient backpressures up to 0.9MPa. This requires the injectors to 

work with an elevated fuel rail pressure relative to PFI injectors to ensure an adequate 

pressure differential across the injector tip to produce sufficient fuel atomisation. 

 

Many of the requirements of GDI injectors are the same as for PFI injectors, possibly with 

more stringent tolerances, however, there are also additional requirements. These are 

outlined in Table 2.7, based on information from Zhao et al. [2]. 
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Table 2.7: Fuel injector requirements [2] 

General Requirements for GDI 

and PFI Injectors 

Specific Requirements for GDI Injectors 

Accurate fuel metering (generally 

±2% over the flow range) 

Significantly enhanced atomisation level; application 

dependent but always under 20μm D32 

Desirable fuel mass distribution for 

the application 

Ability to deliver desired spray distribution under 

varying ambient backpressures 

Minimal spray skew for both sac 

and main sprays 

Expanded dynamic range 

Good spray axisymmetry over the 

operating range 

Combustion sealing capability (injector tip essentially 

part of combustion chamber) 

Zero drippage and fuel leakage, 

particularly for cold operation 

Avoidance of needle bounce which causes secondary 

injections 

Small sac volume Reduced bandwidth tolerance for static flow and flow 

linearity specifications 

Good low-end linearity between 

dynamic flow and fuel pulse width 

Greater emphasis on spray penetration control 

Small pulse-to-pulse variation in 

fuel quantity and spray 

characteristics 

Greater emphasis on control of sac volume spray 

Minimal variation in the above 

parameters from unit to unit 

Enhanced resistance to deposit formation 

Reduced flow variability under larger thermal gradients 

Ability to operate at higher injector body and tip 

temperatures 

Leakage resistance at elevated fuel and ambient 

pressures 

Greater emphasis on packaging requirements 

Flexibility to produce off-axis sprays at various angles 

to meet specific combustion system requirements 

Ability to conduct multiple injections within one engine 

cycle 
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Injection of gasoline directly into the combustion chamber is accomplished by an 

electronically actuated injector connected to a high-pressure common-rail fuel system. The 

fuel metering is achieved by precise control of the duration of a square-wave voltage pulse 

signal designated by the Fuel Pulse Width (FPW). The required FPW is calculated by the 

Engine Control Module (ECM) from calibration maps based on the output of sensors for 

engine speed, driver load demand and emissions after-treatment systems. This pulse is sent 

to the injector driver which is used to activate the injector solenoid. The square-wave voltage 

pulse and resulting needle lift dynamics are shown in Figure 2.19. It can be seen that there is 

a delay between the open command from the logic pulse and the physical opening of the 

injector which comprises of two components. The driver electronic delay is sometimes 

incorporated to charge a capacitor on systems which deliver over 36 volts to the injector and 

is used to enhance the injection-to-injection repeatability for a wide range of injection dwell 

periods and also minimise injector response times. 

 

Figure 2.19: Injector driver dynamics [2] 

 

The mechanical opening delay is caused by the time taken for the magnetic field in the 

solenoid to become powerful enough to overcome the fuel line pressure and to move the 

injector needle and the hydraulic time response. Added together these delays are called the 

"dead-time", below which no fuel is injected. As the needle begins to move, the lift increases 

very rapidly, reaching full lift in the region of tens of microseconds [2]. During this period the 
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fuel flow rate is non-linear and for accurate fuel metering the time taken for the needle to 

reach maximum lift and the injector to reach full flow capacity should be minimised. 

 

Once the close command is sent by the logic pulse, there is another delay. The magnetic 

component is due to the time taken for the magnetic field of the solenoid to decay to the level 

where the needle spring starts to close, and the mechanical component is due to the time 

taken for the needle to actually spring back to the close position. The needle closing bounces 

will cause additional sprays of fuel to be injected and should be eliminated if possible. 

 

Many different types of injectors have been researched to find sufficient atomisation and 

control to be used within a GDI engine. The main types of injectors are mentioned in Figure 

2.20 below: 

 

Figure 2.20: The six different types of injectors used in GDI engine design [2] 
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Inwardly-Opening, Single-Fluid, High-Pressure, Swirl Injector: 

 

 Hollow-cone spray 

 Solid-cone spray 

 Symmetric spray - spray is symmetrically distributed across the spray axis. The spray axis can 

be either aligned with the injector axis or offset from the injector axis 

 Asymmetric (shaped) spray - mass distribution across the spray axis is not symmetric.  The 

spray axis may or may not be on the injector axis 

 

Outwardly-Opening, Single-Fluid, High-Pressure, Swirl Injector: 

 

 In general, it produces a hollow-cone spray without a sac spray. It is difficult to produce an 

offset spray from this type of injector. 

 

Slit-Type Nozzle: 

 

 The geometry of the nozzle is in the form of a slit, which delivers a fuel spray in a fan shape 

 

Hole-Type Nozzle: 

 

 Single-hole  

 Multi-hole pattern – spray structure varies with the number and arrangement of the holes. 

 

Pulse-Pressurised, Air-Assisted Injector: 

 

 This type of injector uses a significantly reduced fuel pressure, but requires two separate 

solenoids and a source of compressed air for improved spray atomisation and dispersion. 
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There are several classifications of GDI injector, each of which generates different spray 

geometry. These can be further classified according to atomisation method, actuation 

mechanism, fluid state, pintle opening direction and nozzle configuration. These are 

summarised in Table 2.8. 

 

Table 2.8: Classification of GDI injectors [2] 

Actuation 

Mechanism 

Single solenoid 

Double solenoid 

Piezoelectric 

Hydraulic 

Cam 

Most common 

Fluid State Single fluid 

Two-phase (air assist) 

Most common 

Primary Atomisation 

Method 

Sheet (swirl plate) 

Pressure (slit type) 

Pressure (hole type) 

Turbulence (compound plate) 

Pneumatic (air assist) 

Cavitation 

Impingement 

Most common for first generation 
GDI injectors (swirl) 
 
 
Most common for second generation 
GDI injectors (Multi-hole) 

Nozzle Configuration Swirl 

Slit 

Multi-hole 

Cavity 

Most common for first generation 
GDI injectors 
 
 
Most common for second generation 
GDI injectors 

Pintle Opening 

Direction 

Inwardly opening 

Outwardly opening 

Most common 

Spray Configuration Hollow cone 

Solid cone 

Fan 

Offset 

Multi-plume 

Shaped 

Most common for first generation 
GDI injectors (swirl) 
 
 
 
 
 

Most common for second generation 
GDI injectors (Multi-hole) 

 

Several combinations of these characteristics have been developed for use in GDI engines, 

however this study focuses on the use of the solenoid actuated, single fluid, inwardly 

opening, multi-hole nozzle injector. Next section will discuss the solenoid actuated injector 

design configuration. 
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2.5.7.1 Solenoid Actuated Injector 

 

Electromechanical solenoids consist of an electromagnetically inductive coil wound around a 

moveable armature. When a current flows through the coil the armature is moved and this 

movement is used to open the injector nozzle. Most of the injectors tested in this study are 

solenoid actuated. 

 

Figure 2.21: Schematic of a solenoid actuated injector [15] 

 

2.5.7.2 Piezoelectrically Actuated Injector 

 

Piezoelectric actuation utilises the rapid change in the dimensions of quartz crystal lattices 

when a voltage is applied. If these crystals are arranged in series then they create a piezo 

stack and the total dimensional change is the sum of the changes of the individual crystals. 

The dimensional change (up to 40 microns) can be used to move the needle of a GDI 

injector. This movement occurs at least with an order of magnitude faster than a solenoid 

operated injector (around 80µs compared to 250µs for a solenoid actuated injector). The 

rapid opening time results in less time being spent in the period of low needle lift and creates 

a large pressure difference at the nozzle exit. This improves atomisation during injector 

opening. The injector dead-time is reduced and this has the effect of lowering the minimum 

operating pulse width to shorter values. This means that several injection events can occur 

during each engine cycle, giving additional control over in-cylinder mixture preparation. The 

variation in actuator dynamics from cycle to cycle is also improved with the piezo stack. A 

piezo stack is no more complex than a solenoid and has the benefit of reduced power 

consumption, however the level of manufacturing precision of each individual component is 
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higher for the piezo stack, leading to much increased production costs. A schematic diagram 

and a picture of a piezoelectrically actuated injector are shown in Figure 2.22 and Figure 

2.23. 

 

 

Figure 2.22:Schematic of a piezoelectrically actuated injector [2] 

 

 

Figure 2.23: Piezoelectrically actuated injector 

  

150mm 
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2.5.7.3 Multi-Hole Injector 

 

Many manufacturers have developed multi-hole nozzles for use in GDI applications. These 

injectors are similar to diesel injectors in that they have several holes for fuel delivery, 

although the conical pattern is much narrower than the ones found in diesel applications, 

approximately 30-90° as opposed to 130-170° [2]. Multi-hole injectors are defined by the 

number of holes, angle or angles of the spray pattern, the offset of the centroid of the pattern 

from the injector axis and the spray pattern itself. In principle, an infinite number of spray 

patterns may be generated by the manufacturer by altering the hole distribution, orientation 

and sizes (length/diameter ratios). Thus, it is possible for many combustion applications to be 

served by one base injector by changing the nozzle tip, thereby reducing development costs. 

The main advantage of the multi-hole injector is that nearly any spatial distribution of fuel 

mass can be obtained by varying the hole geometries, giving great flexibility in placing the 

fuel exactly where it is needed. Unfortunately, knowledge of exactly where this fuel should be 

targeted is not likely to be known during engine development, so some trial and error will 

take place in developing the optimised nozzle tip. The further development of CFD 

programmes will, however, enable quicker optimisation as in-cylinder flow fields can be more 

accurately predicted. An additional advantage of this style of injector is that the spray can be 

offset from the injector axis with little or no penalty in atomisation quality, since the pressure 

differential between the fuel rail and the in-cylinder conditions is responsible for the 

atomisation, as opposed to the swirl strength in a swirl injector. This results in the 

disadvantage that even higher fuel pressures than in a swirl injector are required to provide 

the required atomisation, with the added cost and durability penalties that this brings. 

 

Figure 2.24: Image of multi-hole injector tip 

 

Figure 2.25: CCD shadowgraph image of 

a symmetrical multi-hole injector spray 

 

Nozzle Tip  

Nozzle Hole  

Plumes  
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2.5.8 Injector Parameters and External Conditions 

 

2.5.8.1 Injector Geometry 

 

Plain-orifice atomisers, as in multi-hole injectors, produce a narrow compact spray in which 

only the liquid on the periphery of the spray is subjected to aerodynamic shear effects. The 

distribution of the spray is mainly dictated by the magnitude and directional components of 

velocity of the spray at the orifice exit. Thus a feature of this type of nozzle (and the same 

can be said for airblast atomisers) is a lack of sensitivity of spray geometry characteristics to 

the physical properties of both the liquid and the ambient gas. This is not the case for 

pressure-swirl atomisers where the initial cone angle formed at the nozzle exit is extremely 

dependent on nozzle design features, operating conditions and liquid properties. This is why 

cone angle is such an important feature of pressure-swirl spray analysis. 

 

 

Figure 2.26: Multi-stream nozzle hole length and diameter 

 

The effect of nozzle, orifice length and diameter (see Figure 2.26) on jet velocity has been 

studied by many workers, some with contradictory evidence. One piece of work performed by 

Hiroyasu et al. [72] showed that jet break-up length increased with increasing jet velocity up 

to a maximum break-up length with jet velocities approximately 60m/s. Above this the break-

up length was seen to decline with any further increase in jet velocity. This trend was also 

noticed at high ambient gas pressures but showed a reduction in break-up length and 

reduction in influence of nozzle orifice length-to-diameter ratio, lo/do (see Figure 2.27 and 

Figure 2.28). 

d 

l 
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Figure 2.27: Effect of lo/do and jet velocity on break-up length for low ambient 

pressures (Hiroyasu et al. [72]) 

 

Figure 2.28: Effect of lo/do and jet velocity on break-up length for high ambient 

pressures (Hiroyasu et al. [72]) 
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2.5.8.2 Ambient Gas Conditions 

 

The influence of ambient gas pressure on jet break-up length at varying jet velocity has been 

studied by Hiroyasu et al. [72]. It was shown that increasing the ambient pressure from 0.1-

3MPa has a large effect on jet break-up length, whereas 3-4MPa shows little effect on break-

up length. The influence of ambient gas pressure also shows a similar trend to that seen with 

the affect of lo/do on break-up length, a maximum break-up length is achieved at 

approximately 60m/s and there after a reduction in break-up length is seen. 

 

Figure 2.29: Influence of ambient pressure on break-up length (Hiroyasu et al. [72]) 

 

2.5.8.3 External Spray Characteristics 

 

The dispersion of a spray can be expressed quantitatively if at a given moment the volume of 

liquid within the spray is known. The degree of dispersion can be defined as the ratio of the 

volume of the spray to the volume of the liquid contained within it. Good dispersion shows 

that the liquid mixes rapidly with the surrounding gas, and the subsequent rates of 

evaporation are high. In general, it has been seen that the factors that increase the spray 

cone angle also tend to increase the degree of spray dispersion.  

Spray penetration is of significant importance in diesel and gasoline direct injection engines. 

In case of over-penetration, the fuel will impinge on the cylinder wall. If the cylinder wall is 
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cold or there is inadequate in-cylinder flow (as is the case in most quiescent combustion 

chambers) the fuel will deposit and cool. This can lead to an increase in soot and unburned 

hydrocarbon emissions and also reduce fuel economy due to the fuel wastage. If penetration 

is low, the cylinder air utilisation will be low and reduce the degree of fuel-air mixing, 

therefore limiting combustion efficiency. Therefore knowledge of the affects on spray 

penetration and the ability to predict spray penetration is necessary for efficient combustion 

chamber design.  

 

The penetration of a spray can be defined as the maximum distance it reaches when injected 

into stagnant air. It is controlled by the kinetic energy of the initial jet and the aerodynamic 

drag as a consequence of its contact with the ambient gas. Initial jet velocity is usually high, 

but as the jet proceeds to disintegrate and the surface area of the spray increases, the 

kinetic energy is dissipated to the surrounding gas due to frictional losses.  

 

A spray will penetrate further than a single drop due to the leading drops in a spray imparting 

their momentum into the ambient gas, which then results in entrainment. Therefore the 

following drops will experience less resistance than the first and will penetrate further. 

 

Many analytical studies have been performed in diesel engines with plain-orifice atomisers to 

create equations relating spray penetration in plain-orifice atomisers. Hiroyasu and Arai [73] 

managed to build upon work performed by others to create two equations for penetration. 

 

For injection times shorter than the jet break-up time, tb, the penetration S (in m) is: 

       
    

     
 

   

  
 

(2.13) 

 

And for t > tb: 

       
   

    
 
    

     
    

 

(2.14) 

 

Where the jet break-up time is equal to: 

                        
     (2.15) 

 

where ambinjL PPP   (in Pa) is the difference between the injection pressure and the 

ambient pressure and d0  (in m) is the nozzle hole diameter. 
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Aerodynamic drag also causes the spray to spread out. The drops on the periphery of the 

spray are subjected to shear forces as a consequence of aerodynamic drag. The shear 

forces cause the outer drops to slow down, and since the drops and liquid within the centre 

of the spray are unimpeded, the outer drops are pushed outwards further, thus widening the 

cone angle, and in the case of plain-orifice atomisers increases the spray head size. Thus an 

increase in ambient gas pressure increases the kinetic energy losses due to aerodynamic 

drag and causes an increase in cone angle and reduction in penetration. 

 

The angle of a spray is usually defined as the angle formed by two straight lines drawn from 

the discharge orifice to the outer periphery of the spray at a distance 60do downstream of the 

nozzle. 

 

Much work has been performed on quantifying spray angle. Abramovich [74] created a very 

simple equation based only on the density of the liquid and air. This has been elaborated by 

many other workers, namely Reitz and Bracco [75], where Bracco et al. [76] then went on to 

simplify their previous work, resulting in equation (2.16): 

     
  

   
 
  

  
 
   

 
 

(2.16) 

 

Hiroyasu and Arai [73] have also applied dimensional analysis to their work that was 

acquired at high pressures with which they derived the following equation (in radians): 

        
       

 

  
  

    

 
 

(2.17) 
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The effect of Reynolds number and nozzle orifice length-to-diameter ratio has also been 

investigated by Arai et al. [77], who produced Figure 2.30. Arai states that the shapes of the 

curves from Figure 2.30 are a consequence of a complex relation between jet turbulence, jet 

break-up length, and orifice discharge coefficient, all of which act to change the Reynolds 

number and nozzle lo/do ratio. 

 

 

Figure 2.30: Influence of Reynolds number and nozzle lo/do ratio on spray angle  

(Arai et al. [77]) 
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Hung et al. [78] present an imaging-based diagnostic technique to quantify the pulse-to-pulse 

variability of macroscopic fuel spray characteristics for Direct-Injection Spark-Ignition (DISI) 

engine applications. The analysis approach is based on the construction of a spray ensemble 

image, reflecting the regions of probability of liquid presence for a set of images. Overlaying 

of an individual spray boundary on the probability-based ensemble image can further 

enhance the two-dimensional visualisation of the pulse-to-pulse spray variations. Spray 

structures at three experimental conditions were examined: room ambient, and early and late 

injection conditions inside an optical engine. While the spray structure was observed to be 

considerably different for the three conditions, the magnitudes of variation of global spray 

shape and spray tip penetration distance were found to be of similar order [78]. 

 

An experimental study has been performed by de Francqueville et al. [79] in which the air 

entrainment characteristics within the periphery of gasoline direct injection sprays have been 

measured by particle image velocimetry (PIV). Two single fluid injector technologies, namely 

a pressure-swirl atomiser (PSA) and a piezoelectric atomiser (PEA) have been compared. 

Measurements have been performed, first of all, in a high-pressure constant volume 

chamber and, subsequently, in an optically-accessible, motored, single-cylinder GDI engine. 

The in-cylinder aerodynamics were characterised by PIV with and without fuel injection. The 

aim was to compute the coefficient of air entrainment into the spray, which was used as a 

basis for comparing air entrainment efficiency and the propensity of injector sprays to 

influence air/fuel mixing. The air entrainment characteristics have been studied for both 

injectors with variations in start of injection (SOI) timing, injection pressure and for three 

piston geometries. Subsequently, a proper orthogonal decomposition (POD) has been used 

to study the impact of the spray on the in-cylinder flow field.  

 

Chatterjee [80] provides an introduction to the Proper Orthogonal Decomposition which is a 

powerful and elegant method of data analysis aimed at obtaining low-dimensional 

approximate descriptions of high-dimensional processes. The POD was developed by 

several people (among the first was Kosambi), and is also known as Principal Component 

Analysis, the Karhunen–Loéve Decomposition, and the single value decomposition. The 

POD has been used to obtain approximate, low-dimensional descriptions of turbulent fluid 

flows, structural vibrations and has been used for damage detection, to name a few 

applications in dynamic systems. It has also been extensively used in image processing, 

signal analysis and data compression. Data analysis using the POD is often conducted to 

extract „mode shapes‟ or basis functions, from experimental data or detailed simulations of 

high-dimensional systems, for subsequent use in Galerkin projections that yield low-

dimensional dynamical models [80]. 
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De Francqueville et al. [79] results show that the calculated air entrainment coefficient which 

gives an indication of the efficiency to generate air/fuel mixing is similar for both injector 

technologies. However, the injection velocity and the rate of air/fuel mixing is increased in the 

case of the PEA. More importantly, the macroscopic spray structure generated by the PEA is 

maintained even under high density, gas-phase, conditions. As a result, the spray interacts 

more efficiently with the air available in the combustion chamber. Air entrainment induced by 

the spray significantly alters the natural engine flow that was present prior to injection. 

Injection with PEA enhances the energy of the mean in-cylinder aerodynamic motion by a 

factor of three. POD calculations were used to decompose the aerodynamic flow field 

according to kinetic energy criteria: 75% of the in-cylinder flow energy corresponds to the 

macroscopic scale motion, 15% is attributed to cyclic fluctuations and 10% to turbulence 

phenomena (down to the turbulence integral scale) [79]. 

 

2.5.8.4 Microscopic Characteristics 

 

There are several mean and characteristic diameters used for evaluating spray droplet size, 

Dab, each suited to a particular application. 

 

For diameters of the form Dab, the calculation is as follows: 

     
     

 

     
 
 

 
   

  

 

(2.18) 

Where    is the actual droplet diameter (   is a multiplicative coefficient). 

 

The droplet diameter terminologies and their applications are summarised in Table 2.9. 
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Table 2.9: Droplet diameter terminology [81] 

Term Description 

DV50 Also known as Volume Median Diameter (VMD). The VMD is the value where 

50% of the total volume of liquid sprayed is made up of drops with diameters 

larger than the median value and 50% smaller than the median value. Used to 

express drop-size in terms of the volume of liquid sprayed. 

DV10 The value where 10% of the total volume of liquid sprayed is made up of drops 

with diameters smaller than or equal to this value. Used to evaluate a nozzle's drift 

potential, which is the likelihood of droplets to drift off-target. 

DV90 The value where 90% of the total volume of liquid sprayed is made up of drops 

with diameters smaller than or equal to this value. Used in applications where 

complete evaporation of the spray is required. This is at least as important as 

SMD for emission correlation because a high proportion of relatively large drops 

will increase HC emissions [10]. 

Dmin The minimum drop-size by volume in the sample. Also used to evaluate a nozzle's 

drift potential. 

Dmax The maximum drop-size by volume in the sample. Also used in applications where 

complete evaporation of the spray is required. 

D32 Also known as Sauter Mean Diameter (SMD). The D32 is a measure of the degree 

of atomisation of the spray. It is the diameter of a drop having the same volume to 

surface area ratio as the total volume of all the drops to the total surface area of all 

the drops. Used to evaluate the efficiency and mass transfer rates in chemical 

reactions. Reduced D32 results in the fuel evaporating more readily and improves 

ignitability, reducing HC emissions. 

D10 Arithmetic mean diameter. Used to calculate evaporation rates. 

D20 Surface mean diameter. Used in surface-controlling applications such as 

absorption. 

D30 Volume mean diameter. Used in volume-controlling applications such as 

hydrology. 

D21 Surface mean diameter. Used in surface-controlling applications such as 

absorption. 

D31 Mean evaporative diameter. Used for evaporation and molecular diffusion studies. 

D43 Herdan or De Brouckere diameter. Used in combustion studies. 
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In order for fuel to undergo stable combustion it must first be vaporised. The vaporisation 

rate is related to the surface area and to the volume ratio of the fuel and it follows that an 

increase in surface area for a given fuel volume leads to an increased vaporisation rate. The 

process of atomisation is used to generate the required surface area for all the fuel to 

vaporise in the time available between injection and combustion. An average GDI engine 

running at light load uses approximately 10mg of gasoline per cylinder per cycle. This 

amount of fuel can have an infinite number of possible surface areas depending on the level 

of atomisation. In the limiting case, an unatomised spherical drop of fuel of diameter 3mm 

has a surface area of 28mm2. If that same amount of fuel was injected using a PFI injector, 

giving a D32 of 100μm, then there will be approximately 26,000 drops with a total surface area 

30 times that of a single drop. It has been established by Zhao et al. [2] that, for a late-

injection, a GDI engine will operate only marginally if fuel is introduced with a D32 of 35μm or 

greater. This value gives 600,000 drops with a surface area of 85 times that of the single 

drop. The time available for vaporisation is only 8ms and this surface area is still not 

adequate for all of the fuel to vaporise. Efficient GDI combustion will occur at a D32 of 15μm, 

at which point 10mg of gasoline is atomised into 8 million drops with a combined surface 

area 200 times that of a single drop. In order for a D32 of 10μm to be achieved the same 

10mg of fuel must be atomised into 26 million drops and this requires fuel rail pressures in 

the order of 200bar. This reliance on good atomisation to provide the necessary surface area 

for vaporisation in a short time period has led to much research being undertaken to 

understand and improve the process. A graph showing the variation in spray surface area 

and number of droplets with D32 is shown in Figure 2.31. The maximum allowable D32 for 

stable combustion in both GDI and PFI engines is indicated. 

 

Figure 2.31: Relationship between D32, spray surface area and number of drops [2] 
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The symmetry of a spray pattern created by an atomiser is an important spray feature for 

most applications. In an internal combustion engine a symmetrical spray pattern is desirable 

to achieve maximum of in-cylinder air utilisation and hence combustion efficiency unless the 

combustion chamber shape has been designed to perform with a specifically asymmetrical 

spray pattern. 

 

VanDerWege and Hochgreb [3] state that most investigations of fuel sprays from high-

pressure swirl injectors involve cold bench tests or motored optical engines, such 

experiments neglect the effects of fuel volatility and temperature on the spray structure. This 

finding highlights the potential for an investigation into the behaviour of fuel under different 

conditions and the influence of fuel properties on atomisation performance as there are 

currently limited resources to assist in the design process. 

 

Research into injector design includes investigating how the spray develops at different back 

pressures and temperature. There has been extensive research into different injector types 

in recent years, especially using swirl or multi-hole injectors. To evaluate how effective the 

injector is a general criterion is often used. This includes atomisation quality, robustness 

against fouling, ability to achieve inclined or offset spray and robustness through 

manufacture. 

 

Stansfield et al. [82] analysed the structure and penetration of the fuel spray produced by a 

multi-stream gasoline fuel injector in three experimental facilities using a Mie imaging 

technique. The facilities available were an atmospheric spray bench, a high pressure-

temperature cell and an optical engine. The cell was operated at pressures and temperatures 

from 1 to 10 bar and 20° to 80°C respectively while the engine was motored at 2000 rpm 

under throttled and un-throttled conditions to represent the in-cylinder environments 

necessary to achieve 2.7 bar IMEP(720°) under firing conditions. The fuel spray structure and 

propagation have been quantified using the iso-intensity contour image processing technique 

to identify the spray boundaries in an attempt to quantify the variations due to the 

experimental environments. The analysis revealed that, although high shear inlet air flows 

lead to a redirection of some of the fuel streams, and, while un-throttled conditions lead to 

the development of sub-atmospheric pressures, the axial propagation of the whole spray in 

the engine may be predicted with the use of spray penetration data obtained from 

atmospheric spray bench and high pressure-temperature cell data. The relationship between 

backpressure and axial spray penetration gives the capability of estimating the likelihood of 

spray-piston crown impact [82]. 
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The fuel break-up and atomisation processes in the near nozzle region of a second 

generation high pressure-swirl direct injection gasoline fuel injector have been 

characterised.by Stansfield et al. [83]. The Phase Doppler technique has been used to 

measure the axial and radial droplet velocities and the resultant flow angles of the fuel 

droplets. Mean estimates, based on time bin averaging the data over 20 microsecond time 

bins, have shown that, during the transient formation of the hollow fuel cone there is a 

distinct high frequency fluctuation in the mean flow angle. Images of the spray cone have 

confirmed the fluctuations found by the PDA analysis and suggest that the phenomenon is 

due to waves in the spray cone which can be attributed to the instabilities behind the break-

up of the conical liquid sheet. 

 

A phenomenological engine model has been developed Siewert [84] to study direct injection 

of liquid fuels in diesel and gasoline engines. Sub-models were obtained from the literature 

wherever possible and include those for initial drop-size, droplet vaporisation, and spray 

penetration. The progress of the injected spray, including both liquid and vapour, was 

visualised relative to the combustion chamber bowl boundaries and gave valuable insight on 

where the spray tip intersected the piston bowl surface, and whether it was in a liquid or 

gaseous state. The one-dimensional spray penetration used in the model is oblivious to 

surfaces (thus no spray-wall interactions), air motion, turbulence and mixing with air, but is 

properly influenced by gas temperature and density. An ignition delay sub model, based on 

the sum of droplet vaporisation time and reaction time, has been calibrated to experiments 

run at Sandia National Laboratories, and provides good results over a wide range of 

applications, including those for very late injection timings as used in low soot combustion 

(LSC), and those of very early injection where pre-mixed compression ignition (PCI or HCCI) 

combustion is desired [84]. 

 

A multi-component fuel vaporisation model has been developed by Tonini et al. [85] and 

implemented into an in-house multi-phase computational fluid dynamics flow solver 

simulating the flow, spray, and air–fuel mixing processes taking place in GDI engines. 

Multi-component fuel properties were modeled assuming a specified composition of pure 

hydrocarbons. High-pressure and temperature effects, as well as gas solubility and 

compressibility, were considered. Remote droplet vaporisation was initially investigated in 

order to quantify and validate the most appropriate vaporisation model for conditions relevant 

to those realised with GDI engines. Phenomena related to the fuel injection system and 

pressure-swirl atomiser flow as well as the subsequent spray development were considered 

using an one-dimensional fuel injection equipment model predicting the wave dynamics 

inside the injection system, an Eulerian volume of fluid-based two-phase flow model 
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simulating the liquid film formation process inside the injection hole of the swirl atomizer and 

a Lagrangian spray model simulating the subsequent spray development, respectively. The 

computational results were validated against experimental data obtained in an optical engine 

and include laser Doppler velocimetry measurements of the charge air motion in the absence 

of spray injection and charge coupled device images of the fuel spray injected during the 

induction stroke. The results confirmed that fuel composition affects the overall fuel spray 

vaporisation rate, but not significantly relative to other flow and heat transfer processes 

taking place during the engine operation. 

 

In their book, before addressing the various industrial spraying processes Nasr et al. [86] 

provided background coverage of the basics of droplet behaviour, spray structure, 

measurement techniques, modelling methods and described atomisation techniques as well 

as spray processes such as vaporisation and wall impaction. They also provided information 

on applications of sprays in industry, on the atomiser designs and performances with 

emphasis on their operating conditions for each application. This involves, first, a description 

of the application itself, the role of the spray in the process and thus the requirements that 

the process enforces on the ideal spray properties. Then a comparative description is given 

of the atomisers currently used in the process, their normal operating conditions and spray 

properties, and the experimental techniques used in diagnosing the spray performance as 

part of the process. A discussion is then given of problems and possible future developments 

for the process and the implications for future needs for atomisers and operating conditions. 
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3. Flash Boiling  

 

3.1 Flash Boiling Effect on Fuel Sprays 

 

A fuel at high temperature which is injected into a low pressure environment has its boiling 

point lowered. As the fuel expansion from the injector occurs in such a short time scale, the 

heat cannot be conducted by surface evaporation but causes rapid and explosive bubble 

growth inside the droplets. The phenomenon is known as flash boiling. It is known that this 

occurs within multi-hole injectors and that droplet size is affected. There is potential for flash 

boiling to reduce drop-sizes, increase spray cone angles, and produce more favourable fuel 

mixtures for a GDI engine than before. 

Flash boiling dramatically changes the fuel distribution and improves atomisation. The 

difference in temperature between the fuel exiting the injector nozzle and the boiling point at 

the pressure condition the fuel is injected drive the flash boiling phenomenon. To understand, 

and control, flash boiling could produce a more combustible fuel mixture for a GDI engine 

[87]. 

 

VanDerWege mentioned in his work [88] regions of flash boiling which results in the 

formation of vapour bubbles. If there is an internal flash region, in which the bubbles are 

formed inside the injector orifice it can lead to the injection of a two phase flow changing the 

characteristics of atomisation and the spray structure. The pressure will also change the 

boiling point or bubble point of a fuel, increased pressure will increase the chances of 

bubbles forming due to flash boiling. He also mentioned the effect of superheat on vapour 

distribution. The superheat is the difference between the liquid temperature and the prevalent 

ambient temperature or can be described as the difference between the ambient pressure 

and the fluid vapour pressure and defined by: 

  
                

        
 

 

(3.1) 

 

 

Despite being a relatively new field, some research has already been carried out specifically 

on the effects of flash boiling of sprays. The flash boiling phenomenon occurs when fuel is 

injected into a combustion chamber where the ambient pressure is lower than the saturation 

pressure of the fuel. The fuel is defined as superheated. Such a system is in a state of 

thermodynamic non-equilibrium and thus unstable. The system regains equilibrium by 

undergoing flash boiling [89]. 
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A research paper by Sher et al. [90] summarised current knowledge on the flash boiling 

mechanism. It was found that there are three stages to flash boiling: 

 

 

There are two different forms of bubble nucleation: 

 Homogeneous, in which nucleation sites form within the liquid itself with a homogeneous 

distribution. 

 Heterogeneous, in which the nucleation sites are the container walls and impurities within the 

fluid. 

Once the bubble nucleation sites have developed, small pressure fluctuations in the fluid can 

cause the sites to either collapse or grow. The stages of bubble growth were explained by 

Plesset et al. [91]: 

1. Whilst the bubble is still relatively small, the rate of growth is low and restricted 

by surface tension of the bubble. 

2. If the degree of superheat is great enough, the rate reaches a maximum as 

the bubble size increases. 

3. Liquid surrounding the bubble is cooled due to the transfer of heat energy 

required for evaporation. The vapour pressure decreases and bubble growth 

rate is controlled by inertia and thermal diffusion. 

4. Bubble growth rate further decreases and inertial effects become less 

important. Growth rate is controlled by thermal diffusion. The bubble interior 

pressure and temperature approach ambient values and when this happens 

the growth stops. 

 

The two-phase flow consisting of both fluid and vapour is in equilibrium and the flash boiling 

process is complete. 

 

Micro-boiling is commonly used in thermal inkjet atomisers (TIJ) and micro-electromechanical 

(MEM) devices. The TIJ and MEM devices performance is closely related to the dynamics of 

the bubble used to operate them; therefore, it is important to determine the conditions of 

input energy and power leading to specific bubble dynamics. The objective of Escobar-

Vargas et al. [92] was the characterisation, in a confined space, of the bubble dynamics on a 

range of input conditions of energy and power and what is the effect of the input conditions 

on the bubble extractable mechanical efficiency. Mechanical efficiency is defined by the ratio 

of the integral of the mechanical work (work done by the bubble expansion due to the 
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elevated internal pressure relative to atmospheric pressure minus the increase in bubble 

surface energy) to the total energy input to the micro-heater. Bubbles are generated with 

energies of 7–17 µJ under high heating rates and short pulses in de-ionised water. Resulting 

nucleation temperature measurements are consistent with homogeneous nucleation. The 

bubble lifecycle shows strong dependence on the input heater energy and input heating rate. 

This work presents new results in bubble growth where growth–shrink–growth derived from 

specific energy conditions. The bubble growth–shrink–growth may be due to sub-cooled 

fluid, local variation in the pressure field, and by the surface tension driven change in 

curvature of the bubble. Mechanical bubble efficiencies result in small values suggesting 

most of the energy applied to the heater is distributed in other processes which may include 

increasing the internal energy of the heater film and the fluid  [92]. 

Accurate modeling of bubble growth is needed to design fuel injectors that take full 

advantage of the potential of flash boiling sprays to reduce drop-sizes and to promote fuel 

vaporisation in direct injection spark ignition (DISI) engines. A new simplified bubble growth 

model has been developed by Chang and Lee [93] to substantially reduce the computational 

cost of capturing the bubble size and growth rate distributions at the fuel injector exit. These 

distributions have important effects on the formation and break-up of droplets. The simplified 

bubble growth model makes a parcel approach for simulating the bubble growth in a flash 

boiling fuel injector affordable. A parcel approach makes it possible to capture the 

distributions of large numbers of bubbles forming under different conditions within the fuel 

injector. The simplified bubble growth model was validated with experimental data of bubble 

growth in superheated water. The model showed excellent agreement with experimental data 

at more than 100 times less computational cost than coupling the bubble growth equation 

with the conservation of energy equation numerically. The model was applied to the 

simulation of a flash boiling spray from a swirl atomiser, and the simulated flashing spray 

resulted in smaller droplets and faster vaporisation than a non-flashing spray at ambient 

conditions of 0.445 MPa and 430°K [93]. 

 

When phase-change between vapor and liquid is present, a new key parameter is needed to 

define the system: the Jakob number, Ja, characterises the ratio of sensible to latent heat 

associated with the phase change. A Jakob number approaching zero means that the latent 

heat needed for phase change is diverging, so that a vapor bubble initiated with a certain 

size, remains that size. As the Jakob number is increased from zero, phase change occurs 

more readily so that a vapor bubble will grow or shrink rapidly depending on the local thermal 

environment. As a bubble grows in size, it rises rapidly, driving microscale convection and 

generating pseudo-turbulence, leading to an overall destabilisation of the flow [94]. 

 

http://pof.tnw.utwente.nl/3_research/3_t_lightparticles.html
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The Jakob number is defined as: 

   
                     

       
 

 

(3.2) 

 

where:    is the specific heat (J/kg.K) 

     is the latent heat of evaporation (J/kg) 

     corresponds to the saturation condition 

   corresponds to the far field condition 

 

The heat transfer mechanism in Rayleigh-Bénard convection in a liquid with a mean 

temperature close to its boiling point has been studied by Oresta et al. [94] through numerical 

simulations with point-like vapour bubbles, which are allowed to grow or shrink through 

evaporation and condensation and which act back on the flow both thermally and 

mechanically. It was shown that the effect of the bubbles was strongly dependent on the ratio 

of the sensible heat to the latent heat as embodied in the Jakob number Ja. For very small 

Ja the bubbles stabilise the flow by absorbing heat in the warmer regions and releasing it in 

the colder regions. With an increase in Ja, the added buoyancy due to the bubble growth 

destabilises the flow with respect to single-phase convection and considerably increases the 

Nusselt number [94]. 

 

Spherically symmetric bubble expansion in uniformly superheated infinite pools of liquid have 

been simulated numerically by Robinson and Judd [95]. Bubble growth curves have been 

generated for a range of Jakob numbers, 3     31  , by altering the initial metastable 

state of the system facilitated by changes in the initial superheat and system pressure. The 

detailed physics of vapour bubble growth is studied through delineation of the parameters 

governing the changes in the growth dynamics form surface tension, to inertia dominated, to 

diffusion controlled, and the domains between them [95]. 

 

The dynamics of boiling succeeding spontaneous nucleation on a small film heater immersed 

in ethyl alcohol are investigated by Okuyama et al. [96] for heating rates ranging from 1  
 K/s 

to approximately 1  
 K/s, under which spontaneous nucleation is dominant for the inception 

of boiling. Immediately after the concurrent generation of a large number of fine bubbles, a 

vapour film that covers the entire surface is formed by coalescence and rapidly expands to a 

single bubble. As the heating rate is increased, the coalesced bubble flattens and only a thin 

vapour film grows before cavitation collapse. Similar behavior was also observed with water. 

Based on the observed results, a theoretical model of the dynamic bubble growth due to the 
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self-evaporation of the superheated liquid layer, which develops before boiling incipience, is 

presented. The calculated results are compared with the observed results [96]. 

 

VanDerWege [88] identified two regimes of flash boiling. Internal flashing occurs when 

bubbles are formed inside an injector orifice leading to the ejection of a two-phase flow 

consisting of both liquid and vapour. The spray expands rapidly when exiting the injector. 

External flashing occurs when the liquid jet is intact as it exits the injector orifice and is then 

shattered by rapid bubble growth as it moves downstream of the orifice.  

 

Work carried out by Gebhard [97] investigated the effects of length to diameter ratio of the 

injector nozzle and found that for l/d < 3, there is no internal flash boiling inside the nozzle. 

The driving force for this phenomenon is the temperature difference between the fuel as it 

exits the injector nozzle and the fuel's boiling point at the pressure condition the fuel expands 

into. This can be quantified as the "degree of superheat" and research has shown that 

atomisation of a liquid jet is greatly enhanced when the degree of superheat is great enough 

to cause flash boiling. Previous work [91] has suggested that flash boiling will affect the spray 

structure noticeably when the degree of superheat is 20°C or more, however, the exact 

degree of superheat needed to cause flash boiling is reliant on the surface quality of the 

injector orifice and the Weber number of the liquid jet. The degree of superheat can also be 

defined as the difference between ambient pressure and the fluid vapour pressure. 

Once the bubble nucleation sites have developed, pressure fluctuations in the fluid can 

cause the sites to either collapse or grow. The stages of bubble growth were explained by 

Plesset et al. [91]: 

1. Whilst the bubble is still relatively small, the rate of growth is low and restricted by 

surface tension of the bubble. 

 

2. If the degree of superheat is great enough, the growth rate reaches a maximum as 

the bubble size increases. 

 

3. Liquid surrounding the bubble is cooled due to the transfer of heat energy required for 

evaporation. The vapour pressure decreases and bubble growth rate is controlled by 

inertia and thermal diffusion. 

 

4. Bubble growth rate further decreases and inertial effects become less important. 

Growth rate is controlled by thermal diffusion. The bubble interior pressure and 

temperature approach ambient values and when this happens the growth stops. 
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Kawano et al. [98] proposed a bubble growth analysis based on the following assumptions: 

 The temperature and pressure inside bubbles are uniform and temperature must be 

identical to the temperature of liquid fuel. 

 Bubbles grow spherically. 

 The phase change from liquid to vapor occurs continuously due to the growth process 

of cavitation bubbles inside the nozzle orifice and fuel droplets. 

 Marangoni convection in the liquid increases coalescence frequency among the 

growing bubbles [99]. 

 

 

Figure 3.1: Break-up caused by bubble disruption [98] 

 

The growth of bubbles inside a droplet is limited. This limit is determined by the diameter of 

the droplet, surface tension, liquid viscosity, the number density of bubble nuclei, and growth 

rate. The limit of bubble growth rate inside a droplet is described by the void fraction, ε, 

defined as the volume ratio between the vapor and liquid phases: 

  
       

               
 

where Vbubble  is the volume of bubbles and Vliquid is the volume of liquid. Suma and Koizumi 

observed that break-up of a fuel jet occurs at ε ranging from 0.51 to 0.53 [100]. Then, it is 

assumed that the droplet breaks up into small droplets twice as many as the number of 

bubbles, as illustrated in Figure 3.1. As a consequence, both the number and diameter of 

droplets after break up caused by bubble disruption can be calculated. The momentum of the 

parent droplet is uniformly distributed among the child droplets. Once the flash boiling 

process is completed a two-phase flow consisting of both fluid and vapour in equilibrium is 

obtained. 
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3.2 GDI Applications 

 

For a direct injection gasoline engine flash boiling of the injected fuel can occur under part 

load operation, particularly when operation late inlet valve opening strategies, [101]: 

1. Fuel in injector is at high temperature (<100°C) due to conductive heat transfer from 

the cylinder head. 

2. The downward movement of the piston with the inlet valves closed creates a partial 

vacuum (down to around 0.1bar). 

3. The boiling temperature of the fuel at the in-cylinder pressure is below the 

temperature of the fuel inside the injector. 

4. Superheated liquid fuel is injected into the cylinder. 

5. Latent heat cannot be conducted by surface evaporation. 

6. Rapid and explosive bubble growth occurs inside the droplets and vapourises the 

fuel. 

Work carried out by Senda et al. [102]involved mixing n-tridecane, which represents diesel 

fuel, with a relatively low boiling point additive. When mixing the fuels the vapour-liquid 

equilibrium in the two-phase region, where both liquid and vapour of both fuel components 

are present, was taken into account. By controlling the proportion of additive the authors 

could control the physical processes in the spray such as fuel evaporation and vapour-air 

mixing. In the two-phase region, illustrated in Figure 3.2, the vapour of the lower boiling point 

fuel dominates, with the vapour of the higher boiling point fuel coexisting.  

 

 

Figure 3.2: Illustration of two-phase region
 

 

 

Figure 3.3: Flash boiling process [102] 
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The vapour of the higher boiling point fuel would not be present under the same conditions if 

it was the only component present in the system as this region lies below the fuel's saturated 

vapour pressure line, shown in Figure 3.3. This shows that blending a low boiling component 

fuel with a high boiling component fuel leads to an increase in fuel evaporation and hence 

multi-component fuels, such as gasoline, are more susceptible to flash boiling than single 

component fuels. 

 

Benefits of flash boiling are: 

 Reduced drop-sizes (smaller D32 for larger surface area and improved vaporisation) 

 Increased cone angles (for better air utilisation) 

 Reduced drop velocities (for reduced risk of piston crown impact) 

The combination of these three benefits results in reduced spray-impingement and gives 

lower engine-out HC emissions [87]. 

 

 

Figure 3.4 – Side-view and view from beneath of a multi-hole injector during flash 

boiling [87] 
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A fundamental study, where heated water was injected from a single-hole orifice into heated 

air, was performed by Reitz [103] to specifically investigate the mechanisms of flash boiling. 

Test conditions were: 

 Liquid pressure 0.7 MPa 

 Ambient air pressure 

 Liquid and air temperatures within 5°C of each other, tested between 27°C and 153°C 

 Orifice diameter 0.34mm and orifice length 1.37mm 

Both a backlit photography technique and regular photography were used to capture images 

of the spray under various temperature conditions. It was found that the flashing jets had an 

intact inner core, surrounded by a fine spray. The spray droplets were expelled from the 

unbroken liquid jet starting at the nozzle exit by rapid vapour bubble growth within the jet. 

The core spray remained intact for some distance downstream of the nozzle and eventually 

broke up into large drops. The length of the core and the eventual drop-size both decreased 

as temperature was increased. Thus it was concluded that operation close to the boiling 

point of water gave improved atomisation. 

 

 

Figure 3.5: Spray at room temperature.  

a) regular photographic image, exposure 

time 4000ns,  

b) backlit image, exposure time 20ns 

 

Figure 3.6: Spray at 153°C. 

a) regular photographic image, exposure 

time 4000ns,  

b) backlit image, exposure time 20ns 
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Two practical difficulties were discovered. Firstly, as the water temperature was increased to 

boiling point, bubbles of vapour forming within the nozzle caused the phenomenon of vapour-

lock, greatly reducing mass flow rate from the nozzle. However, this is unlikely to cause a 

problem in GDI fuel injectors as the internal pressures are high enough to prevent the 

formation of bubbles. Secondly, the backlit spray images did not clearly show the fine spray 

surrounding the core and the regular photographic images did not show the core, therefore 

both techniques were needed to show the effects of flash boiling. This can be seen in Figure 

3.5 and Figure 3.6. It is possible that overlaying several backlit images could clarify the 

vapour drop cloud, eliminating the need for regular photography. 

 

A study by Bouilly [104] investigated the occurrence of flash boiling in order to understand 

the phenomenon and how it could be modelled for use in computer software. Bubble 

nucleation in the fuel was found to have two origins: 

1. Cavitation inside the injector nozzle due to local low pressure in the internal flow. 

2. Flash boiling due to superheated fuel. 

 

Flash boiling was controlled by the parameters in Table 3.1: 

Table 3.1: Effects of different parameters on flash boiling level 

Increase in: Flash boiling level tendency 

Fuel temperature ↑ 

Cylinder pressure ↓ 

Fuel specific heat ↓ 

Fuel enthalpy of vaporisation ↓ 

Temperature of fuel normal boiling point ↓ 

 

 

Figure 3.7: Effects of flash boiling [87]  
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Increased flash boiling caused an increase in atomisation and spray plume angle, as seen in 

Figure 3.7. This had the effect of increasing the spray interaction with in-cylinder 

aerodynamics. The flash boiling phenomenon was modelled for four single-component fuels 

with various carbon contents and the models used to predict levels of fuel impingement on 

the piston under different levels of manifold absolute pressure. These results were then 

compared to smoke and HC emissions from a Lotus 3 cylinder low CO2 engine, which are 

highly dependent on fuel impingement. Example results are shown in Figure 3.8. 

It was found that increased piston impingement increased both HC and smoke emissions, 

however, the specific effects of flash boiling were unclear. The small variation in smoke and 

HC emissions at low manifold absolute pressure (MAP) is possibly caused by increased flash 

boiling resulting in spray being deflected away from the piston by air motion, but further 

investigation is needed to confirm this. 

 

  

Figure 3.8: Comparison of measured smoke and modelled piston impingement [104]] 

 

From this it is clear that targeted use of flash boiling has the potential to reduce engine-out 

HC emissions and thus mitigate one of the major disadvantages of GDI over PFI engines.  

This research will therefore investigate flash boiling in order to increase understanding of the 

conditions under which it occurs, the mechanisms involved and how it can best be used to 

improve GDI spray atomisation. An important point to note is that the high-temperature, low-

pressure conditions which cause flash-boiling are present during hot idle, for example when 

a vehicle is stuck in traffic. This means flash-boiling is likely a common occurrence in many 

vehicles under normal driving conditions and must be understood when designing and 

optimising an engine. 
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The major concern on the management of superheated liquids, in industrial environments, is 

the large potential hazards involved in cases of any accidental release. There is a possibility 

that a violent phase change could take place inside the fluid released generating a flashing 

jet. This violent phase change might produce catastrophic consequences, such as 

explosions, fires or toxic exposure, in the installations and in the surroundings. The 

knowledge and understanding of the mechanisms involved in those releases become an 

important issue in the prevention of these consequences and the minimisation of their 

impact. Polanco et al. work [105] presents a comprehensive review of information about 

flashing processes. The review begins with a description of the single phase jet followed by a 

description of the two-phase flashing jet. The concepts and implications of the 

thermodynamic and mechanical effects on the behaviour of the jets are considered at the 

beginning of the review. The second part of the review is devoted to the classification of the 

different study approaches used to understand flashing processes in the past, highlighting 

various critical parameters on the behaviour and the hazard consequences of flashing jets. 

The review also contains an extensive compilation of experimental, theoretical and numerical 

data relating to these phenomena, which includes information on the distinct characteristics 

of the jet, since type of jet, velocity distribution, expansion angle and mass phase change all 

require individual estimation. 

 

Park and Lee [106] found that the internal flow pattern inside the nozzle governs the 

behaviour outside the nozzle. For longer nozzles or larger degrees of superheat the spray 

droplets are smaller and more uniform in size because of active bubble formation inside the 

nozzle. The flow regime changes as a response to the steady increase in superheat. The 

flow changes from bubbly flow to slug flow and then to annular flow. As a result, the spray 

droplets become smaller and more uniform, providing the basis for a classification into the 

three different regimes of flashing, namely a, b and c, respectively, in Figure 3.9. In all these 

experiments, the aspect ratio (l/d) of the nozzle was about 7 and the fluid used was water. 

Initially, at low superheat a large intact core region is observed, and the droplets are formed 

at the sides of the nozzle. If the superheat is increased at the same ambient pressure, the 

nucleation and the growth of the bubbles become more active, so that when the bubbles 

collide with each other they coalesce inside the nozzle to form large slugs of liquid. When 

these slugs are discharged from the nozzle they break into ligaments and then disintegrate 

into small drops, but, exceptionally, with some of the larger ones remaining intact. In the 

annular flow regime, a liquid film forms on the nozzle wall and the vapour flows at a much 

higher velocity along the core region. In this regime, as the fluid is discharged from the 

nozzle, the liquid films disintegrate into fine droplets. The effect of the length of the nozzle on 
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droplet formation is similar to that of superheat, which means that longer nozzles encourage 

the formation of smaller droplets outside the nozzle. 

 

 

Figure 3.9: Jet types dependence on nozzle (a) bubbly flow, (b) slug flow and (c) 

annular flow patterns [106] 

 

A flash evaporation model was developed by Bianchi et al. [107] to capture the effects of 

bubble nucleation and growth inside multi-hole injector nozzles to investigate the flash 

evaporation in fuel injector sprays in Gasoline Direct Injection (GDI). The 1D flash 

evaporation model is a key tool for providing the 3D Eulerian-Eulerian or Lagrangian spray 

simulation model with the right droplet size in order to properly predict the effect of degree of 

superheating on mixture formation. Super heating conditions are likely to be found under 

partial load conditions in GDI applications or they might be deliberately induced to enhance 

fuel atomisation and vaporisation. A quasi-1D nozzle flow model has been developed to help 

quantifying the effects of main physical and geometrical parameters in promoting fuel flash 

evaporation. This model is based on a weakly compressible homogenous two-phase mixture 

assumption. A non-equilibrium model is used to predict the vapour formation rate along the 

nozzle. A fully explicit method based on a two-step Lax-Wendroff method is used together 

with a total variation diminishing (TVD) scheme. An atomisation model has been proposed to 

correlate the void fraction at nozzle exit to the most probable radius of the droplet generated 

from flashing atomisation. An accurate two phase speed of sound was adopted allowing to 

predict the choked flow conditions once saturation has been reached. Metastable states 

were not considered in this first approach. A preliminary validation has been carried out 

based on an experimental nozzle flow configuration at two different values of superheating 

degree. A preliminary assessment of the model capability in capturing the effect of fuel 

conditions on droplet most probable diameter was presented [107]. 
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Flash boiling conditions, where the fuel is superheated with respect to cylinder pressure, are 

often found in gasoline direct injection engines. This phenomenon affects the flow rate of the 

fuel and can cause choking of the nozzle. In their work, Gopalakrishnan and Schmidt [108] 

present multi-dimensional simulations of flashing internal injector flow. The modeled fluid 

quality (mass fraction of vapor) tends towards the equilibrium quality based on the 

Homogenous Relaxation Model. The relaxation time is dependent on the local pressure, the 

vapor pressure, and the void fraction. Simulations of the internal flow are presented and, 

where possible, validated with experimental data. Both two- and three- dimensional 

computational results show geometrically-induced phase change, similar to cavitation, near 

the nozzle entrance. Near the nozzle exit plane the phase change occurs at all radial 

locations and can be quite sensitive to temperature. Three-dimensional simulations run in an 

asymmetric injector tip at higher injection pressure showed reduced sensitivity to 

temperature [108]. 

 

A vaporisation model for multi-component fuel sprays was described by Ra and Reitz [109]. 

The discrete multi-component (DMC) fuel approach was used to model the properties and 

composition of gasoline and diesel model fuels. Unsteady vaporisation of single and multi-

component fuel droplets and sprays was considered for both normal and flash-boiling 

evaporation conditions. An unsteady internal heat flux model and a model for the 

determination of the droplet surface temperature were formulated. An approximate solution 

to the quasi-steady energy equation was used to derive an explicit expression for the heat 

flux from the surrounding gas to the droplet-gas interface, with inter-diffusion of fuel vapor 

and the surrounding gas taken into account. The density change of the drop as a function of 

temperature was also considered. In order to treat phase change under trans-critical 

conditions, a characteristic length was defined to determine the amount of vaporised fuel as 

a function of time. The present vaporisation models were implemented into a multi-

dimensional CFD code and applied to calculate evaporation processes of single and multi-

component fuel droplets and sprays for various ambient temperatures and droplet 

temperatures. Differences between representing model fuels using the single and multi-

component fuel description were discussed [109]. 
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Many projects investigating the behaviour of multi-hole injectors under different temperature 

and pressure conditions have been conducted by various universities, research institutions 

and commercial companies. The combined effects of operating temperature and ambient 

back pressure on the spray development of multi-hole injectors were summarised by Zhao et 

al. [2]. Multi-hole spray development and wetted footprint were found to change markedly 

between the two extremes of operation of high-load, early-injection and low-load, late-

injection, although the changes were less pronounced than for a swirl injector. The fuel spray 

collapsed from clearly defined spray plumes to a single plume as the ambient pressure was 

reduced, which is the opposite trend to swirl injectors. This trend was found during operation 

with injector bodies and fuel at 75°C or more. Some spray collapse was also observed as 

backpressures were increased over 0.45MPa. This transition region was much more robust 

than for swirl injectors, where the spray often oscillates between fully formed and collapsed 

from cycle to cycle. Experiments were carried out on a 50° spray angle, six-hole injector at 

four levels of ambient back pressure using indolene as fuel and a fuel rail pressure of 

11MPa. Spray development images from the indolene experiments are shown in Figure 3.10.  

Indolene is a chemical manufactured to have the same physical properties as gasoline. 

During bench tests at room ambient conditions, the spray was a collection of narrow, 

individual spray plumes with one plume for each hole and one wetted spot for each plume. 

As the injector body and hence fuel temperature were increased to normal engine operating 

temperatures of 75 to 90°C the plumes became wider with less well defined boundaries. As 

ambient pressure was decreased from typical late-injection values of 0.45MPa the plumes 

began to broaden and combine, eventually becoming a single plume at approximately 

0.15MPa back pressure. At this point the spray appeared very similar to that from a swirl 

injector, complete with outer toroidal vortex. The total cross-sectional area of the spray was 

decreased, as was the area of the wetted footprint. Further back-pressure reduction to 

0.1MPa gave a fully collapsed, highly penetrating spray very similar to a pressure swirl 

injector spray under the same conditions. Some increase in penetration rate was due to 

reduced droplet drag at lower back pressure, with the remainder due to the decreased drag 

of one narrow spray plume as opposed to multiple plumes. The atomisation of the spray was 

also found to change, but once again the multi-hole injector was affected to a lesser degree 

than the swirl injector. For the 50° angle, six-hole injector tested, there was a moderate 

increase in D32 as backpressure was increased. This was due to increased droplet 

coalescence at higher ambient densities. An improvement in the level of atomisation with 

increased fuel temperature was identified and was significant at all but the highest ambient 

backpressures. For injection into 0.1MPa backpressure, the D32 was halved by increasing the 

fuel temperature from 20 to 90°C, whereas at 0.6MPa the improvement was only 1.9μm.  

The enhancement in DV90 was also found to be very significant with heating. At elevated 
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operating temperature and low ambient backpressure, acetone-doped iso-octane was found 

to undergo flash boiling. The transition to flash boiling conditions occurred at 70°C, however, 

as the ambient backpressure was increased this transition became less pronounced. 

Experiments conducted using indolene as the fuel produced similar results. 

 

 

Figure 3.10: Effect on operation of a multi-hole injector for four levels of ambient 

backpressure. Six-hole nozzle, 50° nozzle angle, indolene fuel, temperature 90°C, 

injection pressure 11MPa, fuel injected 10mg per injection [2] 
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The observed solid-cone structure associated with flash boiling is explained by rapid 

evaporation of the volatile species followed by transportation of the smaller droplets to the 

centre of the jet. For common-grade gasoline which is a multi-component blend, low-boiling 

point components would be present that could alter the spray characteristics and result in 

flash boiling. 

 

Next chapter will first detail the experimental techniques and then gives a description of the 

facilities used and developed in the scope of this study. 
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4. Experimental Techniques and Facilities  

 

4.1 Experimental Techniques 

 

This section will document the various optical measurement techniques used to measure and 

analyse fuel sprays. Imaging techniques are classified by their output providing data over the 

entire measurement space but at one single point in time. A brief introduction of the 

techniques and facilities most commonly seen in the literature is presented and a detailed 

description of those used in this work is presented later. 

 

4.1.1 Shadowgraphy and Mie Scattering Imaging 

 

In both shadow and Mie imaging an image is taken of the spray at a specific point in its 

development phase using a high speed CCD camera. The CCD camera has a fast frame 

transfer rate (up to 16Hz), which enables it to store an image, and then be ready to capture 

another image very quickly. Due to the small timeframes involved in fuel injection this is still 

not fast enough. The time taken to take an image, and the speed with which it is required to 

be transferred to a PC, is sufficiently long that high resolution images cannot be taken at very 

high speeds using current CCD technology. Therefore a compromise is made between the 

number images taken per second and the pixel resolution of the images. This issue has been 

addressed by the manufacturer „LaVision‟ who have created an ultra high speed camera, 

based on CMOS (Complementary Metal Oxide Semiconductor) technology, that can 

maintain a large degree of resolution and still have a very large frame rate (1000*1000 pixels 

at 10kHz). 

 

A study was performed by Eisenberg [110] using an ultra high speed camera from LaVision 

into investigating shot-to-shot variation. It was found that using the ultra high speed camera 

that many high resolution images could be taken on a single spray, and when this data was 

compared to further results one could easily see the distinction between spray development 

phenomena occurring in one cycle from those occurring due to cycle-to-cycle variation. 

 

The work reported here is addressed by imaging a specific instant in the spray development 

and then taking a series of images at that point in time for many individual sprays at identical 

conditions. 
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In shadow imaging the spray is illuminated by a flash unit (usually Xenon) which consists of a 

panel with two dimensional array of optical fibres of uniform spatial arrangement to create a 

uniform field of light behind the spray. The flash unit is timed along with the injection and 

camera timing, so that the spray illumination and camera imaging are synchronised at the 

required image time after the start of injection. A schematic of the back lit imaging system 

used in the present work is presented in Figure 4.1. 

 

Figure 4.1: Schematic of back lit imaging system (shadowgraphy) 

 

The image recorded by the camera is a grey-scale shadow of the spray with a white 

background and spray density related to the shade of grey. For clarity, and to assist post-

processing techniques, the image is often inverted and a colour coded scale that varies with 

density is applied (this is more easily identified by the human eye). There are many different 

density based scales that can be applied to the raw spray image to assist in post processing 

and often a combination of several different scales are required to identify the various 

characteristics of a fuel spray. For example, a coloured scale is often used to assist in 

defining the penetration and cone angle of the spray, whereas a Sobel filter is often used to 

assist finding the boundary profile of a particular spray.  

 

It was found by Wigley et al. [111] that the cone edge for a pressure swirl atomiser can be 

found by a single shot due to the inherent stability and repeatability of the spray in that area, 

but the spray penetration should be derived from a mean image of many shots due to the 

transient effects at the front of the spray giving rise to large shot-to-shot variation. The spray 

boundary is defined as a specific light intensity transmitted through the spray as percentage 

of the peak light intensity. This is usually taken as 50% since it has been found to be a good 
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representation of the boundary between spray body and finely atomised drops in the 

periphery. Using the methods outlined above, shadow imaging can provide a very good idea 

of the overall boundary features of the spray, and of the development of a spray using 

multiple images at incremental time periods. This method can be used to fully characterise all 

aspects of a sprays‟ development. However, due to the limitations of the camera in relation to 

the time it takes to capture an image, the collection of images for the development of a spray 

can be complicated. Images are usually taken at different times in the injection process of 

different individual sprays and then compiled at the end to gain an average concept of spray 

development. It is not possible to follow accurately the development of a single spray shot. 

The determination of liquid and vapour mass requires additional imaging techniques.  

 

Mie scattering imaging uses a visible laser as a light source instead of a xenon flash. It 

allows visualisation of the light scattered by droplets and can be used in conjunction with 

Laser Induced Fluorescence (LIF) to distinguish between fuel liquid and fuel vapour in the 

LIF images by the addition of tracers to the fuel. Mie scattering and shadow imaging 

techniques provide useful qualitative and even some quantitative descriptions of spray and 

mixture formation processes, they do not provide complete information about the internal 

dynamics of the spray. Mie-scatter images can be particularly deceiving as the small 

particles present in GDI sprays have diameters approaching the wavelength of the light used 

to observe them and therefore, scatter light disproportionately to their diameter or mass. 

Determination of the location and concentration of liquid and vapour mass requires the use of 

additional diagnostics such as the laser induced fluorescence techniques [78]. A schematic 

of a Mie imaging system is presented in Figure 4.2. 

 

Figure 4.2: Schematic of Mie imaging system 
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Single point imaging techniques differ from planar imaging techniques in that the 

measurement volume is a single point in space while the data provide the time history at that 

point. 

4.1.2 Laser Doppler Anemometry 

 

Laser Doppler Anemometry (LDA) is a measurement technique that utilises the interference 

pattern created when two very highly polarised and coherent laser beams cross each other. 

The interference pattern consists of a series of fringes, with spacing specific to the 

intersection angle and laser wavelength. As a particle passes through the fringe spacing, the 

light is scattered and Doppler shifted and it is this signal that is received by the signal 

detector. The velocity with which the particle is passing through is proportional to the 

oscillation frequency of the sinusoidal signal and the fringe spacing of the interference 

pattern. This is the main property of the flow that can be analysed by LDA techniques. 

 

A schematic of a LDA system is presented in Figure 4.3. This schematic presents a static 

fringe pattern. In general a frequency shift is introduced by using a Bragg cell, which 

effectively makes the fringes move. The recorded frequency will be the addition of the 

frequency due to the droplet movement plus or minus the frequency shift.  

Due to the fringe spacing being created in the vertical direction, any particle passing through 

in the horizontal direction will generate a signal frequency equal to the frequency shift. The 

particles passing through the fringe pattern will generate a signal relative to the vertical 

velocity component. Therefore this technique is said to be directionally sensitive. 

 

Figure 4.3: Schematic of LDA system 
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4.1.3 Phase Doppler Anemometry 

 

Phase Doppler Anemometry (PDA) effectively uses the same principles and experimental 

set-up as the LDA analysis technique, but instead of one detector it uses two detectors, one 

above another. On the scattering plane, XY in Figure 4.4, defined by the axis of a transmitter 

and a receiver, as the particle passes through the fringe pattern, the top detector, A, receives 

a signal first, followed by the lower detector, B. The difference between the signal peaks on 

the upper and lower detectors is a time difference or phase lag, and the phase lag is directly 

proportional to the droplet diameter. Using this information, a correlation between particle 

size and velocity can be formed and used to show the variation of size/velocity over the 

entire fluid flow.  

 

Using a two component transmitter with different wavelength and a third detector allows the 

trajectory of a particle to be found by comparing the frequency signals received by the two 

detectors. This can provide a two dimensional velocity field and hence trajectory. 

 

The cross-sectional area of the measurement volume can be used with the time taken for a 

certain number of particles to pass through the measurement volume to find the particle 

concentrations and flux densities. A schematic of PDA data acquisition is presented in Figure 

4.4, in which a droplet crosses a fringe pattern. For LDA applications the droplet size would 

normally be chosen to be about half the fringe spacing. One fringe spacing is one blue and 

one white line. When the droplet falls through the fringe pattern, it generates a signal with a 

visibility of 100% when the droplet is in a dark i.e. a blue fringe, where there no light 

scattered. The droplet moves down through the fringe spacing and generates the signals. 

The phase lag between the signal from detector A and the signal from detector B can then be 

measured. 
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Figure 4.4: Schematic of PDA data acquisition 
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4.2 Experimental Facilities 

 

 

There are three main experimental methods used to examine fuel sprays and each have 

their respective advantages and disadvantages. 

 

Atmospheric Spray rigs: 

 

 Easy to set up. 

 Optical access to the spray is simple. 

 Only atmospheric conditions can be simulated which are not very representative in 

terms of in-cylinder charge pressure, temperature and movement. 

 The lack of effect of the moving boundaries and changeable conditions the spray 

experiences within the engine (the moving piston and valves and the changes in 

pressure, temperature and airflow as a consequence) reduce the variables affecting 

the spray and enable simpler analysis. 

                             ] 

Figure 4.5: Atmospheric spray bench [82] 

 

Pressure Chamber: 

 

 Optical access reduced. 

 Adequate illumination of the spray can be difficult. 

 Pressure and temperature representative of engine operating conditions  

 Engine cylinder airflow simulation not possible. 
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Xenon flash 
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Figure 4.6: Pressure chamber 

 

Optical Engines: 

 

 Optical access much more reduced unless a fully optical engine is used. 

 A fired engine rises in temperature exceptionally quickly meaning that to prevent the 

glass cylinder liner cracking it can only be fired for a very short period of time. If 

significant periods of firing are required, often a metal cylinder liner is used to cope 

with the temperatures reached. This reduces even more optical access. 

 Representative engine operating conditions. 

 More variables affecting the spray making the analysis much more complex. 

 

Figure 4.7: Single cylinder optical research engine [82] 
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4.2.1 Atmospheric Bench 

 

This rig has been developed primarily for the measurement of fuel sprays from automotive 

gasoline injectors, including both PFI and GDI. A two dimensional laser PDA system is 

capable of measuring simultaneously the droplet diameter and axial and radial velocities. In 

addition to this, the rig features an imaging system which is used to capture the macroscopic 

properties of the spray. Spray metrics of tip penetration, tip velocity and cone angle are 

measured from mean images of the spray (see Data Analysis at the end of section 4.2.2 

Pressure Chamberfor more details) 

 

The fuel injector is rigidly held in a rotation stage which permits 360 degrees of freedom. The 

rotation stage is in turn mounted on a precision 3 dimension orthogonal traverse system such 

that the injector sprays vertically downwards into an extractor system, see Figure 4.8 and 

Figure 4.9. 

 

 

 

Figure 4.8: Atmospheric spray rig injector mounts, traverse, extractor and imaging 

arrangement 
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Figure 4.9: Example of injector orientation for 6 hole symmetrical multi-stream injector 

 

The air flow into the extractor (~1-2m/s) is sufficient to remove the entire fuel spray without 

introducing significant bulk air motion around the fuel spray periphery. One of the traverse 

systems is electronically driven through a stepper motor by the data acquisition software. 

This automated degree of freedom is used to move the injector relative to the PDA 

measurement volume radially through the fuel spray. The other dimensions of the traverse 

system are manually set by the operator, where injector position is measured using digital 

verniers. Stage 

 

Fuel is stored in a 5 litre aluminium fuel tank which houses a submerged low pressure fuel 

pump. The low pressure pump is used to feed a high pressure 3 piston triplex pump. A back 

pressure regulator is used to control and vary the fuel pressure to the injector. Low and high 

pressure relief flows are returned to the fuel tank. 

 

The injector is driven by a pulse generator and Siemens injector driver unit. A 1 ms 

capacitive charging delay exists between the injector driver unit input pulse signal and the 

output injector driving signal. This delay is a design feature of the driver to prevent voltage 

drop off during the injection event and increase the speed of response. 
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Shadowgraphy System: 

 

The atmospheric spray rig imaging system utilises a Xenon flash unit, Fostec fibre optic 

panel and PCO Sensicam Fast Shutter CCD camera, with a Nikon 55mm macro lens with 

aperture f5.6, to produce backlight fuel spray images. Digital images of pixel resolution 1280 

x 1024 pixels are handled using PCO Picture Viewer software. The triggers for the camera 

and flash are provided by the injector pulse generator unit. All trigger pulses are monitored 

using an oscilloscope to confirm camera/flash timing delays (6.5µs delay for the flash with 

0.5µs camera exposure time). 

 

PDA/LDA System: 

 

The Phase Doppler Anemometry system uses an Argon ion type Coherent INNOVA-90-4 

LASER to produce two beams, blue (wavelength λ = 488 nm) and green (λ = 514 nm) which 

are used to determine the radial and the axial velocity components respectively while the 

latter is responsible for the drop-size measurements. 

 

The main beam is focused to produce a circular cross sectional area with a Gausian light 

intensity profile. The two colour wavelength beams are separated from the main beam using 

beam dispersing prisms. Each beam is steered into a Bragg cell which splits the beam with a 

50/50 intensity. The Bragg cell also produces a +40MHz frequency shift on one of the split 

beams. The green beam prior to the Bragg cell is passed through a half-waveplate to change 

the polarisation by 90°. 

 

The heart of this optical system is a Bragg cell that uses a tellurium dioxide crystal with an 

anisotropic acousto-optical interaction. It can provide 50=50 beam splitting of the input beam 

symmetrically about the optical axis and a 40MHz frequency shift between the output beam 

pair with low power built-in driver electronics. The main advantages of this Bragg cell are: 

thermal blooming with high incident laser power densities has been minimised, the output 

beams have a true circular cross-section and the effective Bragg angle has been increased 

dramatically. However, the Bragg condition is strongly polarisation and wavelength 

dependent while the frequency shifted beam has the polarisation direction rotated through 90 

degrees. 
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The advantages outlined above by Wigley et al. [112] have allowed the construction of a 

simple high power LDA/PDA transmitter system by integrating the Bragg cell with a two lens 

laser beam expander that offers variable beam separation and high beam expansion ratios. 

The excellent beam aligning properties of a symmetrical optical design are maintained so 

beam alignment devices are not necessary. A schematic of the LDA/PDA transmitter system, 

in one component form for simplicity, is shown in Figure 4.10. 

 

 

Figure 4.10: Schematic of optical layout of the LDA=PDA system [112] 

 

For multi-component velocity measurements and high laser powers a water-cooled Argon-ion 

laser is essential. Mirrors (1) steer the laser beam through a half-waveplate (2) to align the 

polarisation plane of the beam with the Bragg cell. The lens (3) images the laser cavity's 

beam waist into the Bragg cell (4) to ensure plane parallel wave fronts and a beam waist at 

the measurement volume. The focal length of this beam waist adjusting lens is determined 

by the laser beam output diameter and the required measurement volume diameter. 

 

Two beams of equal intensity exit the Bragg cell, symmetrically about the optical axis, with an 

angular separation of 1.88 degrees for the 514.5 nm wavelength. The first order diffracted 
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beam is frequency shifted by 40MHz and has a polarisation direction orthogonal to the zero 

order beam. The laser beam expander, lenses (5) and (6), expand and collimate these 

diverging beams to produce a beam separation of up to 50mm with an expanded beam 

diameter of 4.4 mm. Beam separation and beam expansion are directly linked so that a 

constant number of fringes in the measurement volume is maintained when the beam 

separation is changed. Changing the focal length of lens (3) allows the measurement volume 

diameter to be changed independently of beam separation. The beam separation control is a 

simple translation of the Bragg cell, along the optical axis, followed by a small refocus of 

lenses (3) and (5) to achieve collimation of the beams. A second half-waveplate (2) is then 

required to match the shifted and input beam polarisation directions. The light intensity in 

each beam is now matched by adjustment to the Bragg cell drive power. A mirror at 45 

degrees folds the two pairs of orthogonal beams to a three element front lens (7) and 

focuses the two collimated and parallel beams to form the diffraction limited measurement 

volume (8). The receiver optical system (9) was the larger aperture `classic' Dantec 57X10 

located at a scattering angle (10) of   degrees. The signal processing was performed by the 

Dantec enhanced 58N50 PDA covariance processor linked to a PC by the 58G130 interface. 

 

For two colour operation, 488 nm (blue) and 514 nm (green) wavelengths, the mirrors (1) are 

replaced by Pellin Broca dispersing prisms to separate the two wavelengths and the 

components (3) to (6) are duplicated, arranged side by side, with the second Bragg cell and 

half waveplate rotated through 90 degrees. The orthogonal blue beam pair are combined, on 

the optical axis of the green beam pair, with a mirror periscope positioned immediately after 

the beam expander lenses (6), [113].This is not seen as an unnecessary complication due to 

the high degree of flexibility offered. The variable beam expanders can be set to: (a) equalise 

the beam separation for each wavelength; (b) equalise the diameters of the two 

measurement volumes or; (c) create unequal measurement volume diameters with one 

inside the other. 

 

The specification for the beam diameters at the front lens and the measurement volume 

dimensions are given in Table 4.1. The focal length of the beam waist adjusting lens was 570 

mm. These have been calculated using Gaussian beam theory but substituting equivalent 

simple thin lenses for the complex optical geometry of the beam expander. This is shown in 

more detail in Figure 4.11 which specifies the geometry and dimensions of the integrated 

beam expander Bragg cell unit. One important operating feature to note is that the distance, 

d1, between the lenses (5) and (6) is small, a maximum adjustment of 1.15mm covers the 

beam separation range from 30 to 50 mm. [112]. 
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Table 4.1: Specification of PDA operational parameteres [112] 

 

Transmitter    Receiver   

Velocity component  Axial (u) Radial (v) Scattering angle  70 degrees 

(Brewster) 

Laser Wavelength  514 nm 488 nm Lens focal length  310 mm 

Beam Power  200 mW 100 mW Lens diameter  78 mm 

Beam diameter  5 mm 5 mm Detection aperture  0.5  mm 

Beam separation  50 mm 50 mm Refractive index  1.47 

Polarisation plane  Parallel Parallel Phase factor 6.6 deg/mm 

Lens focal length  300 mm 300 mm Signal processor   

Measurement volume    Frequency bandwidth  45 MHz 

Diameter  39 mm 37 mm Amplifier gain  Low 

Length  110 mm 110 mm Max size range <100 mm 

Fringe spacing  3.1 mm 2.9 mm Velocity range -30 to 120 m/s 

 

 

 

Figure 4.11: Geometry of the beam expander – bragg cell unit [112] 
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4.2.2 Pressure Chamber 

 

In 2005, a final year project by Wilkie [114], investigated the effects of temperature and 

pressure on a GDI Fuel Spray. Essentially the same experimental set up was used for this 

investigation but with the aim to improve the heating and scavenging processes, the 

electronic control and data logging of internal pressure and temperature, and the imaging 

timing electronics. The purpose of the study was to test a range of fuels and injectors in order 

to observe the effects of fuel properties and injector geometry on atomisation performance. 

 

Wilkie‟s project used an optical chamber as this created a controlled environment where both 

temperature and pressure can be controlled accurately over a wide range of values, and 

varied independently. Optical chambers, or High Pressure High Temperature (HPHT) cells, 

have some major drawbacks, the biggest being the necessity to scavenge it. It has been 

shown that unless this is done, image quality deteriorates after a maximum of 10 injections 

depending on the spray angle of the injector and the operating temperature. This leads to a 

very time-intensive method of collecting data. 

 

The HPHT cell used was constructed by Lotus Engineering, some 15 years ago, for a 

research project to investigate spray formation under stratified engine relevant conditions. 

The HPHT cell itself is a 180mm cube made from steel with an internal bored cylindrical 

volume of 725cm3. Two of the vertical faces of the cube hold 25mm thick quartz windows of 

75mm diameter to allow illumination and imaging of the spray. One face is blank and is used 

to secure the HTHP cell to the supporting surface. The other face has three tapings of which 

two are used for inlet and purging of the nitrogen gas and one is used for the pressure 

transducer and the temperature probe. Both the pressure transducer and the temperature 

probe are used within the control logic to ensure the desired conditions are achieved within 

the cell before spray imaging commences. The top face is used to mount the injector within 

the cell so that the spray is orientated from top to bottom as would be found in a conventional 

engine (see Figure 4.12). 
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Figure 4.12: Sectional view and photograph of HPHT cell 

 

Nitrogen is used in the cell instead of air to prevent oxidation and hence ignition of the fuel. 

At room temperatures Nitrogen exists as a diatomic molecule (N2), and the trivalent bond 

between the Nitrogen atoms is exceptionally strong, resulting in large amounts of energy 

being required to convert Nitrogen into other compounds. For this reason, Nitrogen is 

classed as inert and serves to ensure the fuel will not combust in this application.  

 

Wilkie [114] highlighted a problem with the original design of the injector housing with 

regards to the positioning of the injector in the optical chamber when considering the 

capturing of an image. As seen in Figure 4.13 the initial portion of the spray was difficult to 

see as the tip of the injector does not penetrate far enough into the optical chamber. This 

results in a proportion of the spray not being within the lit background when the picture is 

taken. As the injector was not properly in view, the camera had to be angled to capture the 

entirety of the spray. This meant that there are different backgrounds present along the 

distribution of the spray resulting in an incomplete analysis. From this it was concluded that a 

design allowing the injector to sit further into the chamber would be beneficial, producing 

clearer images allowing better analysis of the spray structure and the activity along the entire 

spray boundary. 
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Figure 4.13: CCD and colour scaled images of a pressures swirl injector from existing 

design of HPHT cell [114] 

 

For this investigation multi-stream injectors from Continental AG. were used which required a 

new design for the injector housing due to the different geometries of the injectors. The 

positioning of the injector further into the chamber has therefore been taken into 

consideration.  

 

Construction of rig 

 

Up until 2005 testing with the HPHT Cell had made use of an existing atmospheric flow rig. 

Although a fairly easy rig to adapt to incorporate the HPHT cell, it meant that the atmospheric 

flow rig was out of use whilst the HPHT cell was in situ. It was therefore suggested that a rig 

for the HPHT cell would be beneficial for long-term future testing to enable testing of both the 

HPHT cell and the atmospheric rig to be carried out side by side. 

 

A simple table frame was made from extruded aluminium with pieces of medium density 

fibreboard (MDF) for top and shelf. Holes were drilled in the table top for the location of the 

HPHT cell to ensure differences between capturing of images were minimised. A three 

dimensional model can be seen in. Figure 4.14. 

 

As the HPHT cell would reach temperatures of 100°C it was felt that it would be sensible to 

create a heat shield between the HPHT cell and the MDF tabletop, this consists of a square 

sheet of aluminium with holes drilled in the same orientation of those on the table top for the 

location of the HPHT cell.  
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Figure 4.14: Table design 

 

The camera stand was placed on a „rail‟ design enabling movement to cater for different focal 

lengths and types of images. 

 

Insulation 

 

Initial attempts to heat the HPHT cell, using 250Watt cartridge heaters, highlighted the need 

for insulation from severe heat loss to the surroundings. Insulation of the HPHT cell also 

lowers the potential hazard of burns by minimising the exposed faces. As access to clean the 

HPHT cell is required, it was necessary to incorporate easy access into the design of the 

insulation. For this reason a simple box like structure was considered, using a „jigsaw‟ 

approach to the design to minimise the effort in repeated construction. The material used 

was insulation foam which was readily available and considered to be capable of the task 

required. Two circular viewing windows were cut to allow the majority of the insulation to stay 

in place throughout the imaging procedure enabling the HPHT cell to be held at a more 

stable temperature. 

 

 

Figure 4.15: Insulation of HPHT cell 
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Preliminary testing 

 

A test over the full range of pressures to be tested was carried out. This immediately 

highlighted an air leak from the HPHT cell, which resulted in the purchase of a new O-ring to 

provide a better seal between the base of the injector housing assembly and the body of the 

HPHT cell itself. Once the HPHT cell was able to maintain levels of pressure over a 

prolonged period of time, it was considered a sealed compartment. 

The test run also showed that there was variation in position of the camera over a period of 

time. To try and keep the camera from moving, a tripod was used in addition to the mount on 

the table to improve stability which seemed to work fairly effectively. To err on the side of 

caution, background images were taken for every change in temperature or pressure to 

insure that the analysis of images at a later date would be as accurate as possible. 

 

 

Figure 4.16: Photograph of initial HPHT cell experimental set-up 
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A schematic of the equipment used is seen in Figure 4.17 and a detailed list of the 

equipment used follows.  

 

Figure 4.17: Schematic of HPHT cell equipment 

 

 CCD camera with 55mm Nikon Lens 

 Xenon flash unit in backlit spray imaging arrangement 

 Continental AG multi-stream injector 

 Continental AG injector driver and power supply 

 Extraction rig 

 Delayed pulse generator (timing unit) 

 PC running “Camware” software and “PCO Viewer” 

 Vari-ac, cartridge heaters and Thermocouple 

 Nitrogen cylinder and regulator 
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After a first measurement campaign, aimed at studying the injector atomisation performance 

difference when using gasoline and iso-octane, a number of improvements were made to the 

HPHT cell and the manner in which it is operated. It was identified that the process of taking 

images and controlling the inlet and purge valves with one person was difficult. To rectify this 

it was decided to make the HPHT cell operation more automated by using electronically 

controlled inlet and purge valves. To control the valves, a new control box was designed to 

be used in conjunction with the original departmental delayed pulse generator timing box. 

The two boxes would be used to control all the elements of the experimental set up. Another 

improvement to the test equipment was the addition of in-cell pressure and temperature 

measurements. A temperature probe was inserted into a drilling in the HPHT cell to take in-

cell temperature measurements. A pressure transducer was mounted nearby to obtain in-cell 

pressure measurements. In previous tests the Nitrogen bottle manometer was used to 

provide cell pressure data and a thermocouple fixed to the body of the cell used as an 

approximation for the in-cell charge temperature. The new pressure and temperature 

readings were viewed on the PC in real time, using a PicoScope acquisition box and 

software, and provided a good indication of the actual in-cell conditions. 

 

A new 3kW heater plate (electric cooking plate) was also installed which massively reduced 

the time taken to heat the cell. Using the previous heating elements (four cartridge heaters 

placed in each corner of the cell with a maximum rating of 110W each), heating the cell to 

100°C took over 7 hours, but using the new heater plate this temperature can be reached 

within minutes. During operation at higher temperatures the cell is enclosed in insulation 

foam to reduce heat loss to the surroundings and help maintain a more stable in-cell 

temperature.  

 

The injection frequency was set to 1Hz. When fuel is injected into the cell, the spray disturbs 

the air within the cell, therefore a 1Hz injection frequency would ensure sufficient time was 

given to allow the charge to become almost quiescent. An injection frequency of 1Hz also 

ensured that previous injections did not interfere with the injections following. 

 

The spray was illuminated by a EG&G MVS 7020 Xenon flash unit (8µs flash duration) which 

was connected to a Fostec fibre optic flash panel which was 3×3inches in size and was 

placed behind the cell to illuminate the spray from behind. Photographs showing the modified 

HPHT cell experimental set-up are presented in  

Figure 4.18 and Figure 4.19. 
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Figure 4.18: Modified HPHT cell experimental set-up 

 

 

 

Figure 4.19: Close up view of the modified HPHT Cell 
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The experimental work required control of temperature and pressure in the HPHT cell and 

accurate timing of the injector signal, flash panel and CCD camera. The equipment needed 

for this is illustrated in Figure 4.20 

 

Figure 4.20: HPHT cell equipment schematic 

 

In a final version of the HPHT cell setup a Buschi vacuum pump was used to generate sub-

atmospheric pressure to the required level inside the cell. This was controlled using the 

integral digital display on the top of the pump. The heater plate controlling the temperature of 

the cell and given the relative mass of the cell itself, the fuel in the injector was assumed to 

be at the same temperature as the cell due to conduction.being the main heat transfer 

phenomenon. The thermocouple (PT100) measures the temperature of the gas in the cell 

and displays this information on the HPHT control interface, which is also used to set the 

required temperature by sending a signal to the heater plate. Fuel is sprayed into the cell 

through the Continental AG injector at a pressure controlled by the adjustable pressure fuel 

pump (Siemens) described earlier in the atmospheric bench setup. There are two fuel 

pumps, one is a low pressure pump mounted inside the fuel tank which supplies fuel at 

3.5bar to an external high pressure pump which can operate at up to 200bar. The delayed 

pulse timing box is used to control the pulse width of the injection signal and the timing of the 

xenon flash panel and CCD camera relative to the start of the injection signal. This allows 

images to be captured at different stages of fuel spray development. The collected images 

are displayed on a PC running CamWare software, which saves the images for post-

processing. 
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A photograph of the final version of the setup is shown in Figure 4.21, with a detailed view of 

the HPHT cell in Figure 4.22. 

 

The fuel injector is positioned at the top of the cell, firing directly downwards. A schematic of 

the injector orientation is shown in Figure 4.23. It can be seen that although the injector has 

six holes, only three spray streams are seen because of superposition of the streams on top 

of one another. Also, the measured cone angle is not the actual cone angle, as the two outer 

streams seen do not lie in the focal plane. This is not a problem as measuring these angles 

still demonstrates the trends related to fuel and injector geometry effects. 

 

 

Figure 4.21: HPHT equipment layout 
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Figure 4.22: Close-up of HPHT cell 

 

 

 

Figure 4.23: Injector orientation schematic 
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During the measurement campaign performed at sub-atmospheric pressures, it was decided 

that capturing images of the side of the spray was inadequate for fully characterising the 

effects of flash boiling. It could be seen that the individual spray fingers collapsed inwards but 

these images did not show the radial spray distribution. Therefore, the following modifications 

were made so that images could be taken from underneath the injector. 

 

 HPHT cell rotated through 90° so that the injector was opposite the camera. 

 Addition of an extra viewing window to allow camera access to the spray. 

 Repositioning of the xenon flash panel above the cell to allow illumination of the 
spray. 

 Aluminium tape added to outside of HPHT cell to improve light reflection into 
chamber. 

 Injector mounting painted matt black with special high-temperature exhaust paint to 
reduce glare from reflected light. 

 

These modifications are shown in Figure 4.24 and Figure 4.25. 

 

 

Figure 4.24: HPHT cell modifications 
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Figure 4.25: Injector mounting modification 

 

Once these modifications had been made it was necessary to check the cell for any leaks, 

particularly around the new viewing window and the valves as these had all been modified.  

This was done by pressurising the cell with nitrogen, then checking for a drop in pressure 

with the PicoScope, a screenshot of which is shown in Figure 4.26. PicoScope is software on 

the PC which allows measurement of cell temperature and pressure through a connection 

with the temperature probe and the pressure transducer. This check was carried out 

whenever modifications were made to any part of the cell which could affect its sealing 

capability. 

 

Figure 4.26: PicoScope screenshot 
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Heating the HPHT cell to 80°C or above was problematic as a high percentage of heat was 

lost through the cell walls. This was inefficient as a lot of time was spent waiting for the cell to 

warm up instead of actually carrying out tests. To solve this problem, insulating foam with an 

aluminium backing was purchased from Foam Techniques Ltd. and attached to the outside 

of the cell. This is shown in Figure 4.27. The insulating foam significantly reduced the heat 

loss from the cell and resulted in less time being spent waiting for the cell to achieve the 

desired temperature. 

 

Figure 4.27: Addition of insulating foam 

 

Experimental procedure was as follows: 

 

 Set HPHT temperature set point using the control interface. 

 Once the temperature has been reached, switch on both the low and high pressure 
fuel pumps and check the pressures.  Adjust these if necessary. 

 Set the required flash and camera timing on the delayed pulse timing box.  Also set it 
to give 10 injection pulses. 

 Set up the CamWare software to capture 15 images.  This will only capture images 
each time the flash panel flashes and will capture 10 spray images and 5 blank 
images which can be used as background images if needed. 

 Set the required ambient pressure on the vacuum pump. 

 Once the required ambient pressure is achieved, switch on the flash panel and 
injector driver, the images will be displayed on the CamWare software as they are 
collected. 

 After 15 flashes, switch off the flash panel and injector driver. 

 Stop the vacuum pump and allow the cell pressure to return to atmospheric. 

 Save the images onto the computer's hard-drive. 

 Open the exhaust valve and purge the cell with nitrogen. 

 Repeat for the next pressure set point. 

Aluminium Backing 

Insulating Foam 
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Occasionally it was necessary to take the top off the HPHT cell to allow cleaning of the inside 

of the window as fuel collects here and causes interference with the images. This was a 

particular problem at low ambient pressures and lower fuel temperatures as more fuel is 

impacting the viewing windows. 

 

Data Analysis 

Once the raw images have been recorded by CamWare, they are processed using PCO 

PictureViewer.  This software is specifically designed for processing spray images taken 

using CamWare and has several features which enable useful data to be extracted. 

 

Raw image The raw spray image recorded by 

CamWare is loaded. 

 

Apply scale An image is taken of a ruler in the 

same position as the injector.  

When this image is loaded it is 

used to apply a scale to all the 

images so that accurate spray 

penetration measurements can be 

made. 

 

 

 

 

 

 

 

 

45mm 
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Average 

images 

All 10 images at each test point 

are loaded in and the program 

automatically applies the scale.  

The mean of these images can 

then be calculated in order to 

enhance the main body of the 

spray and clarify the spray edges.  

A check should be made of each 

individual image before this is 

done. 
 

Colour 

manipulation 

The grayscale mean image can 

then be modified using a variety of 

different colour scales to make the 

different intensity levels clearer 

and allow image analysis.  

Selection of the colour scale used 

depends on the parameter to be 

measured and the spray itself.  

 

Measurements The angle between two points, 

vertical and horizontal distances 

can be measured and displayed 

on the image.   

 

 

It is also possible to take an image of the injector with no spray which can be used as a 

background image and subtracted from each spray image so that only the spray remains 

against a uniform background. However, most of the time the spray was found to be clearly 

defined without subtracting the background so this was not always necessary. 

Once all the necessary measurements have been collected they can be entered into an 

spreadsheet to allow comparisons to be made. 
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The same procedure is used for processing the images taken from underneath the spray, 

however, no geometric measurements were made as the scale and focus would vary through 

the depth of the spray. This is because the cone angle can already be measured from the 

side-view images and these images only show useful qualitative information. 

 

Macroscopic Characteristics 

 

Cone Angle 

 

Cone angle (CA) or spray angle is defined as the angle of the fully developed fuel spray. An 

example of cone angle for a multi-hole injector is shown in Figure 4.28. The raw greyscale 

image has been averaged and modified to show light intensity contours which represent 

spray density contours as these are much easier for the human eye to resolve than the raw 

image. 

 

 

Figure 4.28: Cone angle at 20mm downstream for a 60°CA multi-hole injector 

2ms ASOS 

Cone Angle 
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There are many difficulties in measuring cone angle as even when the spray is fully 

developed, the angle is not constant for the whole spray. Some measurement techniques 

involve fitting a quadratic to the edge of the cone [111], whilst some rely on measuring the 

angle at a certain distance from the spray nozzle. Injector manufacturers all have their own 

in-house criteria for cone-angle measurement and, because of this, there is no standard 

measurement technique. Therefore, it is not possible to compare sprays from different 

manufacturers by simply using their quoted data. When comparing different sprays it is vital 

to decide on a definition of cone angle and use this for all measurements to allow meaningful 

comparisons to be made. For the experimental work in this project it has been decided that in 

order to accurately describe the complex shape of the spray, several measurements are 

needed. At 1.7ms after the start of injection, the angle is measured at 7.5mm and 15mm 

downstream of the injector tip, for the light intensity contour representing 50% spray density. 

At 2.0ms after start of injection the angle is measured at 10 and 20mm downstream of the 

injector tip, using the same light intensity contour. Cone angle is important as it defines the 

likelihood of the spray to impinge upon the cylinder walls, which is a major source of 

unburned HC emissions and also causes problems with dilution of engine oil. 

 A balance must be struck between a cone angle which is wide enough to utilise as much air 

as possible, thus allowing maximum torque generation, whilst avoiding wall impingement. 

 

Tip Penetration 

 

Tip penetration is the distance which the leading edge of the spray has travelled at a given 

time. The tip penetration for the same multi-hole injector is shown in Figure 4.29. 

Similar to cone angle, there is no standard for either the time after injection at which the 

penetration is measured or the intensity contour used to define the tip. Previous research 

[111] has used the intensity contour relating to 85% maximum density, however due to the 

different spray characteristics caused by flash boiling this was not suitable for the current 

study. Therefore the intensity contour representing 50% spray density was used. 

Tip penetration is of great importance when designing injectors for stratified charge 

operation, as if the penetration is too great then spray will impinge on the piston crown, 

increasing HC emissions and diluting the engine oil. It also has an effect on cylinder wall 

wetting as a larger penetration gives more distance for the spray cone to spread out and 

impinge on the cylinder walls. 
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Figure 4.29: Spray tip penetration for a 60°CA multi-hole injector – 2ms ASOS 
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5. Preliminary Study: Spray Targeting Tool 

 

5.1 Introduction 

 

With the increasing use and the development of the second generation multi-stream GDI 

injectors, an important number of customers and engineers‟ demands concern the targeting 

of the spray inside the combustion chamber [115]. 

 

Few years ago, for the first generation pressure swirl GDI injectors, a simplified approach, as 

proposed later in this section, was not efficient. The fuel injection speed was moderate 

(around 50 m/s) and the strategy for targeting was complex with a strong interaction between 

the internal flow and the aerodynamics of the combustion chamber (air guided combustion) 

or the piston shape (wall guided combustion), so it was not possible to simulate the spray in 

the combustion chamber without performing 3D computational fluid dynamic (CFD), which 

was time-consuming, difficult and inaccurate concerning the validity of the results. An 

alternative to get a first idea of the spray targeting was to use a simple drawing software and 

to place conical shapes representing the sprays inside the combustion chamber. But this 

alternative was a rough approximation and could only be dedicated to the study of a single 

engine operating point. 

 

For the second generation GDI injectors (multi-stream injector, piezo injector), the fuel 

injection speed is now higher (between 100m/s and 200m/s) and the spray is denser, so the 

influence of the combustion chamber aerodynamic is reduced. It is then possible to use a 

simplified approach for spray targeting based on negligible spray/air interactions and purely 

geometrical considerations of the sprays as a function of engine crank angle. 

 

On the one hand, this simplified approach is faster than the CFD and on the other hand, the 

number of parameters that can vary simultaneously is more important, as for example: 

 Injector position and holes orientation (multi-stream injector) 

 Multiple injections 

 Variable Valve Timing (VVT) more commonly used in modern engines 

 Turbocharging more frequent, especially for downsizing. 
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The aim of this spray targeting tool is to determine the percentage of fuel quantity impacting: 

 The Piston 

 The Cylinder 

 The Intake Valves 

 The Spark Plug 

 

for different injection parameters and engine speeds. Once these percentages of impact are 

obtained, the optimum injector geometry and engine injection strategy can be defined in 

order to obtain the best combustion and engine efficiency for a minimum pollution, to 

guarantee the mixture formation in both homogeneous and stratified mode, to reduce HC, 

CO and NOx emissions and to limit the impact of the spray on the cylinder walls (HC and 

Soot emissions), the piston, the intake valves and the spark plug 

  

A large part of the soot emissions is due to the impact of the fuel on the cylinder walls [116], 

the aim is to minimise these impacts, and first of all, avoid any impact of the fuel on the 

intake valves, which generates a very negative effect on the combustion by affecting the 

air/fuel mixture inside the combustion chamber. 

 

A simple Matlab program written (under Matlab Release 13) by Jean-Luc Fremaux [115] and 

Dr Jérome Hélie from Continental AG in Toulouse is presented here. Basically this numerical 

tool simulates a spray shape inside the combustion chamber to evaluate the possible 

impacts using the geometrical data of the chamber, the intake valve lift profiles and the spray 

penetration and cone angle data obtained as detailed in chapter 4.  

 

5.2 Previous Spray Impact Tool 

 

A first try, using a simple Excel model, to simulate the targeting of the spray on the piston 

was previously performed. In this first model, the impact position was determined using a 

linear interpolation to obtain the spray position for the whole injection event, but the 

proportion of the spray impacting the piston was not calculated. This model did not simulate 

the impacts on the cylinder, valves and spark plug. 
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5.3 Hypothesis 

 

As mentioned previously, this simplified approach for spray targeting was based, at least for 

the first version of the program (some modifications have been added in the latest versions 

of the program), purely on geometrical considerations. It means that the physics of the spray 

is not taken into account, the temperature of the spray and the combustion chamber are 

assumed to be constant and the phenomenon of fuel evaporation is not considered. 

 

5.4 IMPACT Tool 

 

The purpose of this program is to simulate the piston, valves and spray motion during an 

injection period, and determine the impacts with the spray. A graphic user interface allows a 

simpler use of the program. Only the first two versions of the code (IMPACT 1 and IMPACT 

2) are presented in this section. 

 

The first step of the program is to choose the operation mode from the three different 

functioning modes available: 

 

 Point analysis mode concerns a single engine operating point illustrated graphically 

in time and space by the spray position inside the engine cylinder. An optimum spray 

position can be obtained from this mode (but the application of this configuration to 

actual engine operating conditions has to be validated experimentally with an optical 

engine). 

 

 Batch mode (see appendix C) offers a multi-parameter variation allowing to explore a 

given engine mapping. An optimum spray targeting can be deduced which will help to 

minimise HC, CO and NOx emissions  

 

 Graph mode (see appendix C) that allows the user to visualise the batch mode 

results. A graphic interface represents the spray impacts computed in the batch 

mode. 
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Figure 5.1: IMPACT tool presentation 

 

Point analysis mode: 

 

The Point analysis concerns a single engine operating point illustrated graphically in time and 

space. All the engine geometry, valve timing and injection parameters can be modified to 

optimise the results. The following graphic user interface (see Figure 5.2) is prompted when 

the user chooses the point analysis mode. The user enters all data concerning the engine 

and injection data and then loads a text file containing the valve lift function of the crank 

angle degrees. 

 

Two graphic windows are plotted at the end of the computation: 

 

The first one, the result window (Figure 5.2), displays the impact ratios and a graph 

representing the impact ratio on the cylinder, valves, piston and spark plug versus the 

injection period.  
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Figure 5.2: Point analysis mode graphic user interface 

 

In this graphic user interface, the user defines the geometrical data concerning: 

 

 Engine data: Stroke, bore, engine speed, compression ratio, connecting rod length, 

number of cylinders, AFR, mass air flow (MAF) 

 Injector data: Geometrical positioning, injector type, hole distribution in case of a 

multi-stream injector, bent angle, static flow rate, injection pressure, fuel/air 

equivalence ratio… 

  Valves data: Geometrical positioning, lift profiles 

 and obtains the impact ratios and a graph representing the impact ratio on the cylinder, 

valves, piston and spark plug versus the injection period. The results are given in terms of 

impact ratios, defined as the amount of fuel impacting on a given surface divided by the total 

mass of fuel injected. 
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A second window (Figure 5.3,Figure 5.4 and Figure 5.5) is generated and represents a 3D 

visualisation that shows the cylinder geometry with the intake valves, piston, spark plug and 

successive spray positions during the injection period. This visualisation is important to 

understand and illustrate the reasons of a good or bad targeting. Instead of an animation, the 

pictures present the valves and piston at their different locations during the injection, and the 

spray at the end of injection. 

 

 

Figure 5.3: Point analysis mode graphic window for a piezo injector 

 

 

 

 

 

 

 

 

 

  

3D View Top View 

Side View 1 Side View 2 

Spark Plug 

Piston 

Inlet Valves 

Injector 



Chapter 5 - Preliminary Study: Spray Targeting Tool 

 Page 141 
 

 

Figure 5.4: Point analysis mode graphic window for a pressure swirl injector 

 

Figure 5.5: Point analysis mode graphic window for a multi streams injector 
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The three versions first of IMPACT: 

 

Originally, three versions of this IMPACT tool were available (IMPACT 1). All of them 

performed the same computation but did not offer the same application.  

 

The first version, the one used and developed in this study, represents the most simple 

approach. The user enters all the engine geometrical and operational parameters, including 

the mass air flow rate, and the program returns the injector spray impact ratios on the 

cylinder, the piston, the intake valves and the spark plug as explained previously.  

A correlation between spray impacts and soot emissions can then be performed in order to 

optimise the spray geometry. 

 

The second version is the same as the first one but the mass air flow rate is computed by 

AMESim, a commercial engine simulation model, and not directly input by the user. 

 

In the third version, the impact tool is integrated into AMESim and returns the impact ratios 

directly to AMESim, the target of AMESim being an optimal combustion efficiency. 

 

Figure 5.6: The three versions of IMPACT 
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5.5 Computation Algorithm Description 

 

The IMPACT program is briefly described in this paragraph. An algorithm, available in 

appendix C, describes the computation with more details. 

 

In a first step, the positions of the injector, the intake valves and the spark plug are defined 

by specifying their respective geometrical data. Then, from the following user parameters, 

the injection phasing (Start of Injection (SOI)), the injection duration (Pulse Width (PW)) and 

the injector type, a time vector for the computation is obtained. This time vector is important 

because it has an influence on the computation time and the result accuracy (see Appendix 

F). 

 

The first value of the time vector is the value of the SOI converted in crank angle degrees 

and its last value corresponds to the SOI plus the PW, the time step is determined by the 

user.  

)(:
_
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steptime

sPWsSOI
sSOIvectortime


  

 

(5.1) 

 

 

It is then possible to deduce from the time vector the crankshaft angle displacement during 

the injection period: 

tRPMt **60)(   (5.2) 

 

 

From the crankshaft angle displacement, it is possible to define the piston position during the 

injection period with the following geometrical relation function of the time (t): 

 

 ))((sin())(cos(_ 22 ttRmotionpiston    (5.3) 

 

 

The intake valve position is deduced from the intake valves lift (given by the user). The 

cylinder is modelled by a circle whose diameter is equal to the bore and the spark plug 

electrode is represented by a small cylinder.  
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The aim then is to position the spray in the combustion chamber and find a method which 

can be applied to all the injector types (piezo injector, multi-stream injector and pressure swirl 

injector). For a more realistic spray targeting, the spray envelop is defined with one line every 

degree (for example the spray cone for the piezo injector is defined with 360 lines). The cone 

angle of the spray is given by the user and assumed to be constant all along the injection.  

 

Concerning the penetration of the spray, the user has to feed the program with a data file 

containing the penetration of the spray function of the injection time, the injection pressure 

and the back pressure inside the combustion chamber. The only way to obtain that kind of 

penetration data file is through the experiment, and as very few of them are available so far 

in the literature especially in hot conditions with varying over and sub-atmospheric back 

pressures. So here is the link with the experimental work performed in this study which will 

be developed in the next chapters. 

 

Spray/intake valves impact: 

 

To obtain the impact position between the spray and the intake valves, the equation of the 

plane surface containing the valves is computed for each time step, and as each spray 

envelop line direction is defined, the coordinates of the impacts between the plane surface 

and the lines can be determined. Once the coordinates of the impacts are obtained, the 

program checks that their position is inside the circle describing the valves. If the impact 

position is not in the circle, it means there is no impact. Otherwise the program determines 

the impact time elevation for each valve. Then it repeats this process for each line of the 

spray envelop. 

 

Spray/piston impact: 

 

To obtain the impacts between the spray and the piston, the spray projection in the cylinder 

axis is compared to the piston position. If the spray impacts the piston, which means:  

 

)(_)(_ tpositionpistontpositionZspray   (5.4) 

 

 

The program determines the piston/line impact time elevation for each line of the spray 

envelop. 
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Spray/cylinder impact: 

 

To obtain the impacts between the spray and the cylinder, the projection of the spray in the 

horizontal plane ((x,y) plane) is compared to the radius of the cylinder (half the bore). If the 

spray projection is equal or larger than the cylinder radius, which means:  
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(5.5) 

 

 

The program determines the spray/cylinder impact time elevation for each line of the spray 

envelop. 

 

5.6 Spray morpholgy integration 

 

In the first version of the program (IMPACT 1), the piezo injector spray was modelled by a 

regular cone, the pressure swirl injector spray by an irregular cone (radius varying with the 

distance from the nozzle) and the multi-stream spray with one line per stream. 

 

However, these spray envelops were not realistic enough to obtain accurate results, 

especially for the multi-stream injectors, since the spray characteristics (penetration, angle, 

width,…) depends on the back pressure, the rail pressure, the temperature and some other 

internal geometrical parameters. So, for a more realistic spray definition, a spray morphology 

was integrated into a second version of the program (IMPACT 2). Additional parameters, 

such as the rail pressure, an injection time function (depending on the air/fuel ratio, the mass 

flow rate and the injector static flow) and the in-cylinder pressure evolution during the 

injection period were integrated in the program. 

 

The function for the Pulse Width computation is: 

 

QstatpcorpmcylnMAFFPW /)*/()120*)_/(*(  (5.6) 

 

where rpm is the engine speed, pco is the stoichiometric air/fuel mass ratio, Φ is the air/fuel 

equivalence ratio, n_cyl the number of cylinders, MAFF is the intake mass air flow and Qstat 

is the injector mass flow rate. The intake mass air flow (MAFF) and the in cylinder pressure 

evolution can be extracted from the AMESim engine model computation, or, directly given by 

the user. 
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The multi-stream injector spray morphology is defined as follows: 

 

 

Figure 5.7: Spray morphology definition 

 

An image of the spray, where a single stream is isolated, is considered. The maximum 

penetration (penetration_max) of the stream, its maximum thickness (e_max) and the 

position, for which this maximum thickness (position e_max) is obtained, are determined 

from the image. Then, from the blue line passing through 6 points defining the spray contour, 

the red line (half ellipse with major radius equal to penetration_max/2 and minor radius equal 

to e_max) is extrapolated and used to define the stream.  

 

Each stream is modeled by 13 red lines, one every 30 degrees as illustrated in Figure 5.8. 
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Figure 5.8: Jet contour definition for morphology integration 

 

The same process is repeated for each stream to obtain the whole spray morphing used in 

IMPACT 2: 

 

 

 

Figure 5.9: Multi-stream injector morphology in IMPACT 2 

 

For the spray morphology integration, a new algorithm was used. The modifications affected 

the calculation of the spray/piston and spray/cylinder impacts. In fact, in order to find the 

impact positions between the spray and the piston, the equation of the plane surface 

containing the piston is computed for each time step. Moreover, knowing each spray envelop 

line direction the impact plane/line can be determined. To finish, the program checks if the 

plane/ line impact position is inside the circle describing the piston. 

 

The impact positions on the valves (green spots) and the piston (red spots) are illustrated in 

Figure 5.10. Positions are interpolated through the segment when a segment is found to 

belong partly to one side of the plane and partly to the other side. To calculate the spray 

impact ratios, the same procedure is repeated at each time step, as illustrated in Figure 5.11. 
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Figure 5.10: Impact position calculation for one time step 

 

 

Figure 5.11: Impact position calculation for the whole injection period 
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To compute the impact ratio the program calculates the ratio between the impact area and 

the whole area of the spray as illustrated below: 

 

 

Figure 5.12: Impact ratio calculation 
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5.7 An Example of IMPACT Utilisation  

 

In the following section, the use of the IMPACT tool is illustrated in the study of a Continental 

AG 6 holes multi-stream injector. The six holes are symmetrically positioned. A preliminary 

step prior to the use of IMPACT is an accurate definition the injector geometry and more 

particularly the orientation of the injector holes relative to the spark plug and the valves. 

 

 

Figure 5.13: Engine top-view with the orientation of the 6 holes multi-stream injector 

 

Figure 5.13 is a top-view schematic of an engine where the injector has been mounted.  

The positioning of the intake and exhaust valves, the spark plug and the injector with the 

orientation of the six holes are detailed in Figure 5.14 and Table 5.1. 
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Figure 5.14: Orientation of the 6 holes multi-stream injector 

 

Table 5.1: Injector stream angle definition 

Jet Angle "1" between jet axis and 

injector axis [°] 

Angle "2" between spark plug 

direction and jet axis in vertical 

projection [°] 

1 40 -35 

2 40 25 

3 40 -95 

4 40 85 

5 40 -155 

6 40 145 
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40° 
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Once the orientation of the 6 holes is defined, the user loads it in the IMPACT point analyse 

graphic user interface window and as previously explained the program returns two graphic 

windows at the end of the computation. The first one, the result window, Figure 5.15: 

IMPACT result window, shows the impact ratios and a graph representing the impact ratio on 

the cylinder, valves, piston and spark plug versus the injection period. 

 

 

Figure 5.15: IMPACT result window 

 

A second window is generated and represents a 3D visualisation, Figure 5.16: IMPACT 

graphic window (second version of the program including the spray morphology) below, 

which shows the cylinder geometry with the intake valves, piston, spark plug and spray 

position during the injection period. Here the calculation was performed with the second 

version of the program which includes the spray morphology. 
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Figure 5.16: IMPACT graphic window (second version of the program including the 

spray morphology) 

 

The next chapter will discuss the experimental results of this investigation obtained on the 

atmospheric bench. First, a study of the influence of the pulse width and the fuel properties 

using a pressure swirl injector is presented. Then a radial and a circumferential PDA scan 

are performed to study the stream to stream interactions of multi-hole injectors. 
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6. Results: Atmospheric Bench 

 

Before introducing the results, a brief summary of the details of the dynamics of GDI injectors 

is given along with their effects on spray morphology. An automotive fuel injector is a device 

which supplies a precise amount of fuel for mixing with air in an internal combustion engine. 

The fuel-air mixing can either occur outside (in-direct injection - IDI) or inside (direct injection 

- DI) the cylinder.  In general, injectors which operate in conditions outside of the cylinder 

inject at low pressures (3-4bar), whereas DI injectors can inject at far greater pressures up to 

200bar. 

 

Several features (see Figure 6.1) define the geometric design of a particular injector for a 

given engine: 

 

Injection Pressure - Higher injection pressure increases the velocity of the fuel exiting the 

nozzle, which provides greater tip penetration and atomisation. 

 

Nozzle Exit Hole - A reduced nozzle exit-hole diameter has been seen to have the effect of 

significantly increasing the level of fuel atomisation [117]. 

 

Dead Volume - This refers to the volume in 

which the fuel can reside inside the injector 

following an injection.  During the next 

injection, this fuel is forced into the cylinder 

without passing through the swirl chamber 

and thus does not have as much 

atomisation.  This leads to locally fuel rich 

areas in the engine cylinder which are 

harder to vapourise and to combust and 

thus reduces engine power and increases 

emissions. 

 

Tapered Tip - This is the exterior angle of 

the fuel injector nozzle and helps direct the 

fuel away from certain parts of the cylinder.  Certain taper angles can create a cone angle 

which is different across its profile, which can allow progressive opening and closing of the 

fuel inlet passage [118]. 

Figure 6.1: Pressure swirl injector nozzle 

cross-section 
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Corner Radius - This represents the internal radius of the nozzle tip.  Increasing the corner 

radius can lead to reduced cavitation film thickness [119]. 

 

Fuel Injection rate describes the profile of how gasoline is transferred from the injector nozzle 

to the cylinder over the period of one injection event. Injection rate is a crucial parameter in 

ensuring the combustion process meets current and future emission requirements for direct 

injection engines. 

Computational Fluid Dynamic (CFD) models have often been created with the assumption 

that injection rate is constant, and hence the mass of fuel injected is directly proportional to 

the needle opening duration.  However, experimental data shows a more complex link exists 

between the logical pulse, the injector‟s needle armature lift and fuel delivery rate. 

 

The following series of events is a description of the standard operating conditions of a GDI 

fuel injector. Note that the time periods shown in Figure 6.2 are not exact, and are for 

indication purposes only. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 6.2: Fuel Injector Dynamics 
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a. The engine control unit (ECU) sends a „square wave‟ open command to the fuel injector. 

There is a capacitance delay of approximately 300-1200µs, which is built into the injector to 

protect it from peak voltages. 

 

b. Another short delay of around 300µs accounts for the mechanical delay as the fuel injector 

retracts the armature from being fully closed to fully open. 

 

c. The small dip immediately after the fuel injector is fully open occurs as the armature builds 

sufficient velocity to cause it to bounce off the stopper. The bounce is not sufficient to 

drastically affect the rate of fuel being injected.  Once fully open, the flow rate of the fuel 

injector is now at a maximum.  The fully open time-based duration is dependent on the 

application of the fuel injector and engine load. 

 

d. After the ECU commands the injector needle to close, fuel continues to exit for 

approximately 400µs. This represents the time taken to remove the magnetic field, which is 

holding the armature open. 

 

e. The actual injector closing time accounts for the mechanical movement of the armature, 

from fully open to fully close. Nozzle closing can take up to 1ms, since the spring which 

closes the armature is weak compared to the magnetic force which opens the armature. 

 

f. The velocity of the closing armature once again may cause a bounce, resulting in a couple 

of post-injections of small quantities of fuel. 

 

In the present study, for most of the injectors tested, that were provided by Continental AG, 

for a given 3 ms pulse width signal, we consider 1ms for the solenoid pre-charge time, 0.2ms 

for the needle lift delay, 0.6ms of transient fuel delivery, 1.2ms of steady state fuel delivery. 

The needle starts closing at the end of the signal but we consider another 0.3ms for the 

needle to come back to its fully closed position. A needle bounce is observed approximately 

4ms after the start of the signal causing a small quantity of fuel to be injected.  
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Pressure swirl and multi-hole injectors have been subject of extensive research for use within 

GDI engines. When in direct comparison, it has been found that a multi-hole injector has 

more desirable spray formation and control under increasing chamber backpressure. A 

pressure swirl injector spray at increasing ambient pressure decreases in width, creating 

poorer fuel/air interaction and weaker homogeneity. This is a possible cause of soot 

emissions due to localised rich AFR mixtures. It can be seen from Figure 6.3 that the multi-

hole injector retains its spray angle at increasing chamber pressure. The smaller penetration 

of the multi-hole injector at greater pressures is advantageous due to the prevention of soot 

emissions from piston wetting. Directly comparing emissions from steady state engine 

operation at three load conditions for optimised swirl and multi-hole injectors was researched 

in [120]. It was concluded that at low loads conditions (0.5 and 2 bar BMEP) the multi-hole 

injector produced lower HC emissions, due to the multi-hole injector being able to build up a 

stable spray pattern quicker at short injection timings. At high load (4000 rpm and 10 bar 

BMEP) a lower fuel consumption was found while emissions remained roughly equal [60]. 

 

Figure 6.3: Swirl and Multi-hole Injectors at different chamber pressures
 [120] 

 

The multi-hole injector design allows for a great variety of spray shapes, given by number, 

position and orientation of the holes. The ability of a multi-hole injector to produce well-

atomised fuel spray is influenced by the number and diameter of the holes. There are 

different ways in which the nozzle holes can be configured. The nozzle can have more than 

six holes, be guided with an offset angle and use holes having different properties such as 

their l/d (length over diameter ratio, 0.7 to 2.5 for the injectors used in the current study). On 

the downside, multi-hole injectors are relatively sensitive against fouling when reducing hole 

diameters lower than 0.2mm. 
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Different injector configurations create different degrees of spray shear induced air motion. 

With the high fuel pressure in multi-hole injectors required to achieve sufficient atomisation, 

the fuel droplet velocity created is also high. The high velocity and therefore high droplet 

momentum forces air from within the spray vicinity to be entrained. Due to the pressure 

difference created the air will refill the original areas. This phenomenon is spray induced air 

motion. The high velocity and momentum creates a droplet mean direction that equals the 

direction of the nozzle holes, therefore changing the nozzle design has an effect on the 

amounts of air motion, which can be linked to the ease of vaporisation of fuel mixture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Potential variations within multi-hole injectors [120] 

 

 

After a preliminary study, in section 6.1, where a pressure swirl injector was used to 

determine the influence of injection pulse width and fuel properties on the atomisation 

performance, this study will focus mainly on multi-hole type injectors used in GDI engine 

applications. 
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6.1 Pressure Swirl Injector 

 

6.1.1 Influence of Injection Pulse Width 

 

The atmospheric spray bench (described in section 4.2) was used to investigate the 

influence of the injection pulse width on the spray penetration and spray angle (defined as 

the angle between the injector axis and the plume axis) of a 6 hole symmetrical multi-stream 

injector (90° cone angle). However, the study was limited by the size and positioning of the 

backlit flash panel relative to the recording CCD camera. With the current set up, the 

maximum distance between the camera and the flash panel allowed a measurements of the 

spray penetration up to 4.8ms after the start of the signal (ASOS) for a fuel injection pressure 

of 120bar. However, as it can be observed in Figure 6.5, there is no noticeable influence of 

the injection pulse width (PW) on the spray penetration.  

 

It can be noticed that, for 2ms injection pulse width, the spray penetrates only until 

approximately 3.8ms ASOS, after this period of time the spray edge is no longer clearly 

defined as the spray is evaporating. When using the D2 law of droplet evaporation (see 

appendix A) for the operating conditions, a droplet lifetime of around 2.5ms is obtained, 

which means that in the case of a 2ms pulse width injection (for which the actual fuel 

injection occurs between 1.2 and 2ms after the start of signal) the first droplets injected 

should have evaporated after around 3.7ms ASOS and the last droplets injected should be 

evaporated after 4.5 ms ASOS. 
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Figure 6.5: Comparison of the spray penetration for different injector pulse width 

 

In a same way it can be observed in Figure 6.6 that there is no noticeable influence of the 

injection pulse width on the spray angle, the small differences only being due to the little 

variations in the spray edge used during the post-processing of the images.  

 

 

Figure 6.6: Comparison of the spray angle for different injector pulse width 
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6.1.2 Influence of Fuel Properties 

 

During the development and production of gasoline fuel injectors standard, less volatile fuels 

are used, rather than gasoline, to assess their performance. Furthermore, within the research 

community, idealised fuels are often used where the chemistry is simplified and well 

documented. This is particularly so with fuel spray studies in order to improve safety, [121], 

or to utilise Laser Induced Fluorescence, [122]. However, the use of single component fuels 

can have a pronounced effect on the spray, especially in engine like conditions, [123]. 

In this section, the effect of fuel type on the liquid break-up and atomisation is to be detailed 

for a modern pressure swirl gasoline direct injection system operating at 100 bar injection 

pressure and an injection duration of 1.0ms. Six different fuels were used, standard 95 RON 

gasoline, the test fuels Exxsol D40 and Stoddard, the single component fuels, N-heptane and 

iso-octane and E25, a blend of 75% gasoline with 25% ethanol.  

 

Table 6.1: Fuel Properties 

Fuel Density 

Kg/m3 

Kinematic Viscosity 

mm2/s 

Surface tension 

mN/m 

Gasoline 745 0.74 21.0 

N-Heptane 682 0.60 20.14 

Iso-Octane 690 0.72 18.77 

E25 755 0.94 22.0 

Exxsol 772 1.3 24.7 

Stoddard 780 1.28 26 

 

Mie imaging and the Phase Doppler technique were used to capture the spray morphology 

and map out the droplet flow field under atmospheric conditions for each fuel. Radial profiles 

of the axial and radial velocities and drop-size were measured at distances 10, 20, 40 and 80 

mm below the nozzle tip. Each radial scan started from the geometric vertical axis through 

the nozzle tip and traversed out to the periphery of the spray. This horizontal traverse was 

computer controlled and programmed with a minimum radial step increment of 0.5, 1.0, 2.0 

and 4.0 at Z = 10, 20, 40 and 80 mm respectively in order to resolve local high velocity 

gradients across the cone of the spray at each horizontal plane. 

 

  



Chapter 6 – Results: Atmospheric Bench 

 Page 162 
 

The spray cone angle and penetration were derived from the mean of 20 images obtained at 

the instant that the injector was programmed to close, i.e. 2.12 ms after the start of the 

injection timing trigger as this represented the full development of the cone. The spray 

boundary was quantified as the 50% image intensity threshold by using colour coded 

stepped intensity contours. The mean image obtained for gasoline is shown in Figure 6.7. 

The spray is asymmetric about the axis through the injector, R = 0 mm, as the nozzle was 

configured to give a „bent angle‟ of nominally 7.5° for targeting purposes.  

Two estimates of the half spray cone angle, relative to the injector axis, are given 

corresponding to Z = 10 and 20 mm in Table 6.2, while the spray penetration is plotted, as a 

function of time, in Figure 6.8: Axial (upper) and Radial (lower) Penetration Profiles for the 

axial and radial penetration relative to the injector axis. 

 

Figure 6.7: Mean Image for Gasoline at 2.12 ms 

 

Table 6.2: Fuel Spray Half Cone Angles 

Fuel Half Cone Angle 

Z = 10 mm 

Half Cone Angle 

Z = 20 mm 

Gasoline 36.830 34.220 

N-Heptane 36.910 33.980 

Iso_Octane 37.920 36.220 

E25 37.230 35.850 

Exssol 37.520 34.490 

Stoddard 38.760 38.100 

Z 

R 

Z=10mm 

Z=20mm 

Z=0mm 

R=0mm 

Axial Penetration 

Radial Penetration 

Half Cone Angle 
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Figure 6.8: Axial (upper) and Radial (lower) Penetration Profiles 

 

For the near nozzle location of Z = 10 mm gasoline exhibits the smallest cone angle of 

36.83° and Stoddard, the largest at 38.76° so the variation in spray cone angle is less than 

2°. The dominant physical process occurring in the spray is break-up of the liquid sheet 

downstream from the nozzle exit. 

The spray cone angles are smaller for the 20 mm location and have a greater variation of 4°. 

There is a shear induced entrainment into the spray cone boundary which reduces the cone 

angle and, as the atomisation of the liquid fuel progresses differently for each fuel, large 

variations in the cone angle here can be expected. 

There is a definite inverse correlation between the spray cone angle at Z = 10 mm and the 

axial penetration of the spray cone boundary as seen in Figure 6.8. Gasoline and N-heptane 

have virtually equal low cone angles and high penetration rates while Stoddard has the 

largest cone angle and lowest axial penetration. It might be considered that the axial 

momentum accounts for this and the controlling fluid parameter would be the liquid density 

but this is not the case, especially since iso-octane, 690 Kg/m3 has a similar cone angle and 

axial penetration as Exxsol with a density of 770 Kg/m3. Variations in fluid properties have no 

influence on the radial penetration as this is virtually identical for the fuels studied. 
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The determination of spray characteristics from spray images only yields information as 

regards the spray boundary, the spray morphology. With small differences to be expected in 

the sprays with the different fuels the emphasis was put on the spray dynamics as obtained 

by the PDA technique. 

 

Rather than present all the PDA data it has been decided to concentrate on the data at Z = 

40 mm where the spray dynamics can be wholly attributed to the atomised fuel to droplet 

form. The raw PDA droplet data were time bin averaged into consecutive sectors of 40 m to 

provide time varying mean axial and radial droplet velocities and droplet size profiles. 

Before presenting the data it is necessary to have some discussion on the accuracy and 

consistency of the PDA data. Since the intention is to quantify the differences between the 

fuels the emphasis is really on experimental consistency. The optical and electronic system 

parameters were adjusted for high gain, small droplet detection to minimise the effect of laser 

beam obscuration by the spray while ensuring rejection of opto-electronic noise. The system 

parameters were then fixed throughout the measurement programme. Before each 

measurement scan was made across a spray radius, the alignment of the optical system with 

the injector nozzle was confirmed.  

 

The largest contributor to fluctuations in the estimates of droplet velocity and size is the 

number of samples collected in any one time bin. As the sprays are highly transient small 

time bins had to be chosen and the sample number in any time bin is related to the 

measurement location. As an indicator to the statistical significance of the data presented in 

this paragraph, a plot of the sample number in the time bin representing maximum axial 

droplet velocity for gasoline is shown in Figure 6.9. The sample number between the axis 

through the injector, R = 0 mm and R = 12 mm is low, the smallest count is between 10 and 

20 samples at R = 8 mm. However, as long as the velocity and drop-size variation are small 

inside the hollow cone then significant estimates can still be expected. Obscuration of the 

input laser beams is the primary cause for low data counts, particularly on the inside surface 

of the spray cone, i.e. R = 8 to 12 mm. Nevertheless, the number counts here are high and 

the velocity and drop-size estimates should have a good statistical significance. Although 

these distributions cannot be used to quantify droplet density they serve as an indicator of 

the variation in atomisation quality, i.e. a high sample count, between the fuels. N-heptane, 

file ZH40, demonstrates a high level of atomisation especially on the inside of the spray 

cone. Gasoline, ZGAS40, Iso-octane, ZI40, and E25, ZA40, all show similar atomisation 

characteristics. As seen from the spray morphology results Exxsol, ZE40, and Stoddard, 

ZS40, are widely different. 
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Figure 6.9: PDA sample number distributions in sector 69 

 

The mean droplet axial velocity profiles across the spray radius at Z = 40 mm are shown for 

each fuel in Figure 6.10. The cross-section for the measurement scan was the same as that 

used for estimates of the spray cone angle and penetration.  

The time dependence is given by the sector number. With each sector being 40 s then 

sectors 60 to 72 represent the time total period 2.36 to 2.88ms. The time span corresponds 

to the establishment of the spray cone at 40 mm below the nozzle. 

It must be remembered that these times refer to the time after the start of the electronic pulse 

of 2 ms which included a soak time of 1ms. This soak time improves the time response of the 

injector but there is a corresponding shift in time for the needle to open and for the actual fuel 

delivery to begin. 

 

Apart from the industry test fuels, Exxsol and Stoddard, the general trend for the axial 

velocity profiles for the developing spray cones is for a peak, at approximately 30 m/s, to 

occur in the velocity profiles at a nominal radius of R = 18 mm at sector 60, i.e. 2.36 to 

2.40ms. As time increases the peak velocity increases, up to 54 m/s, and its location moves 

towards R = 14 mm highlighting a transition of the spray towards the injector axis. 
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Figure 6.10: Axial Velocity Profiles 40 mm below the nozzle 
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As with the spray morphology data there are distinct similarities between the data for 

Gasoline and N-heptane and the data for Iso-octane and E25. The high axial penetration of 

Gasoline and N-heptane is confirmed with the highest recorded axial velocities of 54 m/s. 

However, between sectors 60 and 66 N-heptane demonstrates higher peak velocities and 

sample numbers, suggesting better atomisation. 

The PDA data also show that during the early cone development the Iso-octane spray cone 

develops faster than the E25 spray but between sectors 69 and 72 they are identical. 

However, this does not conform to the trend expected from the axial penetration data which 

shows E25 penetrating faster. 

 

These four fuels demonstrate a very similar behaviour in the spray periphery, R > 24 mm, 

with the axial velocities decaying from approximately 20 m/s at sector 60, down to near zero 

flow at sector 72. The axial velocity profiles are remarkably smooth inside the „hollow cone‟ of 

the spray considering how few samples make up the velocity estimates but do show variation 

of up to 10 m/s as a function of time. 

The poor axial penetration of the Exxsol and Stoddard sprays is due to the much lower 

droplet velocities, less than 40 m/s for Exxsol and only 30 m/s for Stoddard. Furthermore, the 

variation in axial velocity is small, less than 10 m/s, and the radial position of the peak 

velocity can be found between 18 and 20 mm for the whole duration of the spray cone 

development. 

 

Whereas these velocity profiles are essential for quantifying small differences between the 

sprays they do not necessarily provide an intuitive picture of the spray dynamics. Rather than 

perform a similar analysis for the radial droplet velocity profiles the two velocity components 

have been combined to allow a presentation of the droplet vector flow field. Two time sectors 

have been chosen, that representing the maximum axial velocity, i.e. a time of 2.74ms, and 

the time at which the spray cone starts to collapse with the end of injection, a time of 2.98ms. 

These vector flow maps are shown in Figure 6.11 and Figure 6.12 respectively with the axis 

through the injector in the middle and with the vertical lines either side at R = 10, 20 and 30 

mm. The vectors have a constant 2mm spacing along the radius. 

 

The flow angle and the velocity distribution across the spray cone are now readily visualised. 

The key to understanding the spray development lies with the magnitude of the vectors, the 

generation of the vortex, or recirculation zone, due to entrainment into the spray periphery 

and the transition of the spray towards the injector axis as the spray cone collapses.  
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Figure 6.11: Flow field map at Z = 40 mm and Time 2.74 ms for all fuels 

 

  Figure 6.12: Flow field map at Z = 40 mm and Time 2.98 ms for all fuels 
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The gasoline and N-heptane sprays have identical flow angles across the centre of the spray 

cone but the latter appears to be to be in advance of the gasoline spray as the flow vectors 

from 22 mm outwards are already turning into the vortex with a zero axial flow component. 

The Iso-octane spray has much reduced flow vector magnitudes across the cone when 

compared to the above, but, since the radial flow components are similar to gasoline the 

effect is to produce a steeper flow angle although the vortex still has to form. These 

comments apply equally to the flow field for E25. 

 

It is again obvious that Exxsol and Stoddard produce widely different flow fields to the other 

fuels. Since the axial flow component has reduced in comparison to the radial flow 

component the flow vectors are at steeper angles across the spray cone yet, with the 

reduced entrainment the vortex has yet to appear. 

 

At the later time of 2.98 ms the vortex on the spray periphery is clearly seen in the case of N-

heptane and gasoline while for iso-octane the vortex is only just formed. For E25 and Exxsol 

the axial flow component in the spray periphery has decayed to zero but, for Stoddard, the 

lag is appreciable as there is still no vortex appearing. 

The largest difference between the fuels is seen in the manner that the sprays for gasoline 

and N-heptane tend to produce a full cone spray as the maximum vectors occur close to the 

injector axis. E25 is the only other fuel that is beginning to demonstrate this behaviour. The 

spray cone is still in evidence though for iso-octane, Exxsol and Stoddard. 

 

To reinforce the differences between the fuels at this time the axial and radial droplet velocity 

and drop-size profiles are shown in Figure 6.13. The key to the profiles for each fuel is given 

in the top figure, where the file names, from top to bottom, refer to; gasoline, N-heptane, iso-

octane, E25, Exxsol and Stoddard respectively.  

 

The peak in the axial velocity profile for gasoline and N-heptane occurs at R = 8 and 7 mm 

respectively. As the full spray cone is bent, at an angle of nominally 7.5° to the injector axis, 

the expected offset for symmetry would be 5 mm. Furthermore, the sample distribution 

shows a dramatic increase in the sample count in the centre of the spray. To all intents and 

purposes these fuels produce a full cone spray after the collapse of the spray cone in the far 

field region downstream from the nozzle. The similarity between these two fuels is also seen 

in the radial velocity components where the negative flows occur during the high shear of the 

axial profiles at R = 22 mm which correlates to the smallest drop-sizes recorded of less than 

2 microns. The drop-size value plotted here is the arithmetic mean, D10 which the most 

representative of the droplet evaporation rate. 
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Figure 6.13: Velocity and drop-size profiles at Z = 40 mm and time 2.98 ms 
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Inboard from the minima in the drop-size profiles there is a step change in the slope of the 

profile. This corresponds to the collapse of the inside surface of the spray cone. In this region 

N-heptane produces the smallest droplets, from 5 to 7 m followed by E25 and gasoline. 

The droplets in the iso-octane and Exxsol sprays are some 2 to 3 m larger whereas for 

Stoddard the drop-size is double with up to 10 m diameter. However, the scatter is large 

due to a small sample number, but a minimum of 50, and a wide range in individual drop-

sizes.  

The drop-sizes in the spray periphery, R > 28 mm increase dramatically from less than 4 m 

to approach 20 m. The axial velocity component for these droplets is virtually zero with a 

radial velocity component of between 10 and 15 m/s. Although Stoddard produces the 

largest drop-sizes it is also the slowest penetrating of the fuels. 

 

The discussion above considered the drop-sizes for the fuels at the time of spray cone 

collapse. This part now considers the drop-size profiles during the development of the spray 

cone. Figure 6.14 complements Figure 6.10 which shows the axial velocity profiles 40 mm 

below the nozzle. 

In comparing the temporal variation in drop-sizes with time for the fuels, it is convenient to 

sort the plots into three spatial domains, R = 0 to 12 mm, 12 to 18 mm and 18 to 30 mm. The 

latter refers to the spray periphery and the high shear gradient of the axial velocity profiles. 

All fuels produce very similar droplet size profiles with a consistent decay in size with 

increasing time. Stoddard does produce drop-sizes that are some 10% higher than the other 

fuels.  

In the region of the highest droplet velocities, R = 12 to 18 mm there is a similar decrease in 

drop-size with time except for the early cone in sector 60. The high velocities also lead to a 

small variation in size particularly for the fuels that have low penetration rates, Stoddard, 

Exxsol and iso-octane. 

By far the largest variation in drop-sizes between the fuels can be found between the injector 

axis and the inside surface of the spray cone. Again, the drop-size profiles decay with time 

for each fuel, but, apart from gasoline each profile exhibits a definite peak centered about R 

= 8 mm. The less penetrating the fuel spray the greater the peak drop-size. For these time 

sectors this region sees the transition from the pre-swirl component of the spray to the 

growth of the spray cone. Large mean drop-sizes here are a consequence of poor 

penetration and atomisation in the pre-swirl spray which results in a wide drop-size range 

with few small droplets. 
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Figure 6.14: Drop-size Profiles 40 mm below the nozzle  
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6.1.3 Summary 

 

Mie imaging and the Phase Doppler technique have been used to determine the spray 

morphology and dynamics of the sprays produced by a pressure swirl GDI injector when 

operated with six different fuels. The need for using these fuels stems from scientific 

requirements to either model gasoline with a single component fuel or for safety reasons 

while in industry stable and well defined fuels are needed for injection calibration.  

 

Basically N-heptane can be used to model gasoline as regards spray morphology and 

droplet dynamics. The same is true for iso-octane to model E25. However, for scientific 

purposes it would be difficult to relate data from Exxsol and Stoddard to describe a gasoline 

spray.  

 

Compared with gasoline and n-heptane the other fuels produce lower axial penetration rates 

and higher spray cone angles. The radial penetration rates are not particularly sensitive to 

fuel type. The spray dynamics show that the spray cone development is essentially retarded. 

The axial velocities are reduced which leads to a decrease in the shear gradient, a reduction 

in entrainment and an increase drop-sizes. The consequences of this are the very late 

development of, firstly, the vortex just upstream from the leading edge of the spray cone and, 

secondly, production of a full cone spray after the spray cone collapses. 
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6.2  Multi-Hole Injector 

 

In a horizontal plane through the spray cone of a pressure swirl injector there is a continuous 

ring like footprint of fuel. For the multi-hole injector the footprint has a ring of discrete islands 

of fuel. The interaction of each stream with the airflow is now more complex and if the stream 

spacing is small enough there will be stream to stream interactions. 

6.2.1 Plume Interactions 

 

Dahlander et al. [124] analysed the way in which different configurations of symmetrical and 

asymmetrical multi-hole injectors influence the fuel distribution, air entrainment, cross flow 

velocity and turbulence. Their study was based on CFD only and the simulated sprays had 

been carefully tuned to experimental data with regards to spray formation, penetration and 

atomisation. 

 

It was found, as illustrated in Figure 6.15, that for a six-hole injector, initially, air is entrained 

from the inside due to the vortex created by the spray front and upwards inside the spray 

plume. As the spray develops there is a 

large inwardly pointing velocity field above 

the point of the vortex, this concludes that 

at this point there is no flow mechanism to 

transport the fuel in any other direction than 

towards the spray centre. This spray 

model‟s flow fields are mainly governed by 

single jet theory and do not link into the 

interaction between plumes unless located 

within close proximity. 

Figure 6.15: Air Entrainment due to spray front vortex 

 

The authors also investigated the interaction between the separate plumes of an injector. 

CFD was used to simulate the air motion caused by the interaction separately in the 

horizontal plane. In Figure 6.16, different types of asymmetrical six-hole injector were 

compared to a symmetrical injector with the same l/d ratio (10) and umbrella angle (85°). 

It was noticed that with the holes closer together in the asymmetric injectors the degree of 

plume interaction increased, as would be expected. There is a compromise to be made in the 

air entrainment between adjacent plumes and the air entrainment into the centre of the 

spray. 
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Figure 6.16 – Plume interaction from multi-hole injector’s spray [124] 

 

Blaisot, et al. [125] performed PDA, Laser Diffraction (LDG / Malvern) and Image Analysis 

(IMA) to characterise multi-hole injector gasoline sprays. Despite the significantly different 

measurement volumes, results obtained with the three techniques were shown in good 

agreement. The measurement volume of the PDA system was 60,000 times smaller than the 

LDG however both techniques showed similar trends. The laser in PDA has a Gaussian 

intensity distribution, which means that in the vicinity of the outer edge of the measurement 

volume large drops will be detected while smaller drops less so. This will mean that the 

amount of smaller drops will be underestimated. 

The measurements were performed on a single plume of an asymmetrical multi-hole injector 

(see Figure 6.17) comparing results on the inner and outer edges; with and without 

interactions with other plumes. PDA was found to be producing higher results for drop-size 

on the outer edge of the plume than the other techniques. This was thought to have been 

due to the relatively low sample numbers passing through the measurement volume at this 

location. The greatest mean diameters were found at the leading edge of the spray on the 

outer side where conditions are favourable for fast evaporation of the smallest droplets  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17: Measurement location [125] 
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The axial velocity was found to decrease temporally throughout a single injection. The initial 

droplets are slowed by the drag in the ambient air; with the smallest droplets evaporating 

quickly so that only the larger drops with greater momentum are left. Later drops are 

protected by the initial drops creating a lower rate of evaporation of the smallest drops. This 

larger number of small drops has lower inertia and lower axial velocity. It was found that 

droplet velocities were greater on the side that is interacting with other plumes which is of 

particular interest to our study.  

 

Experimental and computational studies were carried out by Sato et al. [126] to characterise 

the spray development and evaporation processes of multi-hole injector for direct injection 

spark ignition (DISI) engines. The main injector parameter to be investigated in this study 

was a diverging angle between neighboring two holes (see Figure 6.18). In the experimental 

study, the influence of the diverging angle on evaporation process of fuel spray from two-hole 

injector was investigated using Laser Absorption Scattering (LAS) measurement. A smaller 

diverging angle caused larger spray tip penetration since the momentum of the spray from 

one hole influences another, when two spray merge to one. Moreover, spray tip penetration 

decreased at certain diverging angle due to the negative pressure region between two 

sprays. Mechanisms behind the above spray behaviors were discussed using the detailed 

information on the spray and ambient gas flow fields obtained by the three dimensional 

computational fluid dynamics (CFD). 

 

 

Figure 6.18: Definition of Diverging Angle between Two Holes 
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In a previous study by Wigley et al. [127] it has been found that the separate plumes within a 

multi-hole injector spray are not symmetrical. When assessing the spray using PDA it was 

found that, at a position of 5mm down the nozzle tip, the time varying axial mean velocity and 

RMS velocity either side of the stream central axis are different, as shown in Figure 6.19. 

 

 

Figure 6.19: Axial Mean and RMS Velocities of a Spray Jet [127] 

 

The figures of velocity profiles axially across the multi-hole spray plume show that the mean 

velocity is higher on the outer edge(R=37.5mm) at a time of 2.5ms after injection. The RMS 

velocity is shown to be lower on the outer edge of the stream than the inner at this time. The 

reasoning behind this must be an interaction between the inner surfaces of the plumes within 

a multi-hole injector generated by the exit orifice geometry. 

 

 

 

  

-----R=27.5mm 

-----R=32.5 mm 

-----R=37.5 mm 
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Three different injectors were used within this study of stream to stream interaction, two six-

hole injectors and one three-hole injector. In order to characterise the effect of plume 

interaction it was not only important to investigate plumes on a single injector but to enable 

comparisons between the different injectors as the distance between plumes varies. 

A six-hole injector with a 60 degree cone angle and one with a 90 degree cone angle were 

compared. The three-hole injector has a cone angle of 90 degrees; even though this specific 

injector has no practical engine use, it provided an example of minimal plume interaction and 

was used to compare with the 90°CA 6 hole injector. 

 

 

Figure 6.20: Six-hole 60 degree, six-hole 90 degree and 3 Hole 90 degree cone angle 

(from left to right) 

 

The aim of the work was to analyse the degree of 

interaction that occurs between separate plumes 

of multi-hole injectors. With PDA generating a 

small measurement volume and being a highly 

detailed measurement technique it is important 

that data collection is structured such that the 

required spray detail is achieved. Three locations 

below the injector nozzles were investigated; 

20mm, 40mm and 60mm below the nozzle.  

To investigate droplet size distribution and velocity across the plumes the automatic traverse 

was used to move the injector through the laser measurement volume. Measurements were 

taken over a wide range radially, extending from the centre of the spray to the outer edge of 

a single plume, with more measurements taken through the plume to provide greater detail. 

  

Figure 6.21: PDA traverse scans. (Left 

radial scan, right circumferential scan) 

1 

2 

3 
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Velocity vector and droplet diameter plots are used to show visually, areas of interest in both 

space and time from the radial traverse results. Velocity vectors show a combination of mean 

axial and mean radial velocities along with a scale of number of samples at each point. 

Droplet diameters are shown as the mean value D10 at each location and time sector, and 

scaled as circles. 

 

 

Figure 6.22 Vector plot produced from the radial scan. Arrows represent average 

droplet velocity, Circles represent average droplet diameters. 

 

The detail from the centre of the spray outwards through a plume is not the only area of 

interest for this study; a circumferential scan at the three vertical distances is required. This is 

performed from the calculated middle point of a plume (defined as a combination of number 

of samples and shape distribution of mean axial velocities) and data are recorded at a set 

range of angles. 

It is important that each of the injector spray temporal development is quantified in stages; 

initially, there is an increase in mean axial velocity as the spray is developing, this is followed 

by a period of steady injection and finally a gradual loss in axial velocity as the injection 

finishes. Data is processed from a total time period of 8ms per injection and processed into 

160 data sectors compromising of 0.05ms of data. A full list of radial traverse measurement 

locations is shown in Table 6.3 to Table 6.5. The locations of plume centres used in 

circumferential scans for the three injectors at the three vertical locations are also shown. 
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Table 6.3: Location of plume centre for radial scans at 20mm below injector nozzle 

Injector 

(z=20mm) 

Initial 

Location 

End Location Measurement 

Points 

Location of Plume 

Centre 

60°CA 6-hole 0 (spray 

centre) 

-15mm 16 -9mm 

90 °CA 6-hole 0 -26mm 14 -18mm 

90°CA 3-hole 0 -32mm 17 -20mm 

 

Table 6.4: Location of plume centre for radial scans at 40mm below injector nozzle 

Injector 

(z=40mm) 

Initial Location End Location Measurement 

Points 

Location of Plume 

Centre 

60°CA 6-hole 0 (spray 

centre) 

-25mm 14 -15mm 

90°CA 6-hole 0 -47.5mm 15 -35mm 

100°CA 3-hole 0 -47.5mm 15 -37.5mm 

 

Table 6.5: Location of plume centre for radial scans at 60mm below injector nozzle 

Injector 

(z=60mm) 

Initial Location End Location Measurement 

Point s 

Location of Plume 

Centre 

60°CA 6-hole 0 (spray 

centre) 

-35mm 16 -25mm 

90°CA 6-hole 0 -70mm 15 -50mm 

100°CA 3-hole 0 -70mm 15 -55mm 

 

The circumferential scans were used to provide a different aspect on plume to plume 

interaction compared to the radial traverse scans. The droplet size, axial and radial velocities 

of the drops in-between plumes are of particular interest along with drops affected by the 

location of nearby plumes. 

 

Two different types of general circumferential scans were performed. For the six-hole 

injectors a 120 degree scan in steps of 5 degrees was the first scan. This started at the 

centre of one plume 1, through a middle plume 2 to the centre of a third plume 3 as shown in 

Figure 6.21. This gave a good range of data at a constant radius from the injector central 

axis. The second scan for the six-hole injectors was a 360 scan in steps of 30 degrees. This 

generated data at the centre of each of the six plumes and the centre point between the 

plumes. There was a slight change in data collection for the three-hole injector. Five 

measurements were taken at each plume in 5 degree steps from the plume centre (-10, -5, 0, 
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+5, +100). Measurements at 30 degrees from each of the plumes were also performed to 

enable comparisons to be made with the six-hole 90 degree injector. 

 

The data produced from the processing creates 8ms of data from the start of signal. There is 

an injection delay for electronic pre-charge of 1ms. The injector nozzle opening takes around 

0.2-0.3ms with the first droplets reaching 20mm below the injector nozzle at around 1.6ms 

after start of signal (ASOS). The injection pulse width was 3ms with the axial velocity 

showing a drop from 3.6ms onwards. The steady state area of the spray is of interest within 

the results section of this section. 

 

The results are broken down into the two separate sections of analysis; radial traverse scan 

and circumferential traverse scan. The radial traverse scan is used to discuss the effect of 

interactions of neighbour plumes on the inside edge of plumes compared to the outside 

edge. The three injectors have different distances between plumes so how great the 

interactions are, will be discussed. Much of the previous work on multi-hole injectors has 

been performed using the radial traverse scan; therefore a circumferential scan will provide a 

different form of analysis. The data should detail the droplets that are forced into the areas 

between the plumes. 

 

6.2.2 Radial Traverse Scan 

 

6.2.2.1 Droplet Velocities 

 

Initially it was important that the results produced by the PDA investigation of the three 

injectors agreed with finding in previous studies. It was mentioned in section 6.2.1 that higher 

mean velocities were found on the inside edge of a plume and the side of a plume towards 

another plume respectively. The following results show the mean axial velocities on the 

inside and outside edges of plumes.  

 

For the six-hole 60 degree CA injector, at a vertical distance of 20mm below the nozzle, the 

mean velocities at the plume centre and ±2mm (negative away from injector axis) on the 

inside and outside were compared. The time period on the graph was shortened to 1.0-

5.0ms to highlight the steady state part of the spray in more detail. 
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Figure 6.23: Mean Axial Velocity for centre, inside and outside of plume - 60°CA  

at z = 20mm - positive towards injector axis 

 

It is shown in Figure 6.23 that, at a vertical distance of 20mm from the injector nozzle, the 

axial velocity is higher at 2mm on the inside than on the outside of the plume. This is in 

agreement with results found by Blaisot, et al. [125]. (The lack of data, disruption of the red 

plot in Figure 6.23, is due to laser beam obscuration) 

 

The mean axial velocity for the six-hole 60°CA injector at a distance of 40mm below the 

injector nozzle is shown in Figure 6.24. The axial velocity at the plume centre was compared 

to that at locations of ±3mm from the centre. These distances are on the outer edges of the 

plume with a significant number of samples to produce statistically significant data. Initially 

the mean axial velocity is higher on the outside of the plume but as the spray develops the 

velocity is higher on the inside. The initial part of the spray is affected by the ambient air 

while later in the spray plume, interaction should occur if present at all. 
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Figure 6.24 Mean Axial Velocity for centre, inside and outside of plume – 60°CA  

at z = 40mm - positive towards injector axis 

 

At 60mm below the injector nozzle the spray is more dispersed. It can be difficult to describe 

the exact point of the inside and outside of the plumes. For this case two locations are used 

to analyse the axial velocities, ±3mm and ±5mm. It can be seen in Figure 6.25 that the trend 

of axial velocities seen at z=40mm is similar at a distance of 60mm from the injector nozzle. 

The interesting feature within Figure 6.25 is how similar the two graphs are despite the 

different location within the spray. For this injector (six-hole 60°CA) it can be seen that 

initially the axially velocity is greater on the outer edge of the plume, but as the spray 

develops there is a significant increase of axial velocity on the inner edge of the plume. The 

end of injection is at approximately 3.6ms ASOS and this can be seen with the drop in axial 

velocities after this time at the three distances from the nozzle. Away from the nozzle a 

slower reduction in axial velocity can be observed as the droplets momentum are lower and 

the plume is greatly dispersed. An interesting phenomenon at z=60mm is that as the injection 

is ending the axial velocity on the inside of the plume is still increasing until around 0.5ms 

later. Also the velocity on the inside of the plume does not reach that of the plume centreline 

even at 5.8ms ASOS. 
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Figure 6.25 Mean Axial Velocity for centre, inside and outside of plume – 60°CA  

at z = 60mm (±3mm top, ±5mm bottom) - positive towards injector axis 
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The same figures are produced for the six-hole 90°CA and three-hole 90°CA injectors. It was 

important to establish whether the difference in axial velocities was linked to the injector 

nozzle design or whether nearby plumes affected droplet velocities. The results for the 

90°CA six-hole injector are shown in Figure 6.26: 

 

 

Figure 6.26 Mean Axial Velocities for 6-hole 90°CA, top left z=20mm, ±4mm, top right 

z=40, ±5mm, bottom left z=60, ±5mm, bottom right z=60mm, ±10mm 

 

Similar results are obtained with the 90°CA injector with an initial higher velocity seen on the 

outer edge of the plume but as the spray develops into the steady part of injection there is 

once again a significant cross-over in velocities. It does appear, however, that the increase in 

velocity on the inner edge of the plumes on the 90°CA injector is not as great as the 60°CA 

at 40mm and 60mm below the nozzle. It is of interest that Figure 6.23 and Figure 6.26 (top 

left z=20mm) show similar profiles with velocity difference between the inside and outside 

staying relatively constant across the main part of the spray. There is no continued increase 

in axial velocity of the droplets on the inside of the spray beyond the end of injection. This 

shows a contrast in behaviour between the two six-hole injectors with different cone angles. 
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As the three-hole injector has a greater distance between plumes than the six-hole injectors 

the results will be useful to make comparisons. Graphs at the same vertical heights are 

shown in Figure 6.27: 

 

 

Figure 6.27 Mean Axial Velocities for 3-hole 90°CA, top left z=20mm, ±2mm, top right 

z=40mm, ±2.5mm, bottom left z=60mm, ±5mm, bottom right z=60mm, ±10mm 

 

At 20mm and 40mm below the injector nozzle, the axial velocities on the inside and outside 

of the plume are comparable. This shows that the plumes from this injector are symmetrical 

around their axis and with a relatively large distance between plumes this agrees with the 

plume interaction theory. There is a difference between the velocities on the inside and 

outside of the plume at z=60mm. However, with the results seen at 20mm and 40mm, it 

would suggest that this is due to the centreline reading being taken at an incorrect location 

possibly 1 or 2mm slightly towards the outside of the plume (this would create higher results 

on inside than the outside as in Figure 6.26). 

 

By comparing the mean axial velocity from data sectors of 0.05ms it has been shown that 

there is a significant difference in results for the velocity on the inside and outside of the 

plume. When the cone angle of a multi-hole injector is reduced the separate plumes are in 

closer proximity. The results from the three-hole injector show that this proximity increases 

the axial velocity found on the inside of plumes. 
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6.2.2.2 Drop-Size 

 

Within the PDA measurements two different drop-size results are produced, Sauter mean, 

D32, and arithmetic mean, D10. They are both used to measure the droplet diameter across 

the axial scan of the three injectors. As a difference in axial velocity is seen on either side of 

the plume this paragraph investigates whether the average drop-size follows a similar trend 

i.e. high drop-sizes correlate with higher velocities. The six-hole 60°CA injector results are 

shown below. If there is a trend between the velocity difference and the droplet size then it 

should be shown in greatest detail in the 60°CA injector results. 
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At the location closest to the nozzle 

(z=20mm) five points were used for average 

drop-size measurements, the plume 

centreline and two 1mm steps either side. 

The time period of interest for the droplet 

diameter averages is the steady state part of 

the injection. The results are shown from 

2.5ms to 4.0ms with 2.5ms-3.5ms being the 

timing before the injection ends. The inside 

of the plume is at a distance of x= +2mm 

from the plume centre. The droplet average 

diameters for the range 2.5-3.5ms are 

reasonably constant with the values for D10 

and D32 being approximately 10µm and 

14µm respectively. When at +1mm from the 

plume centre there is a slight reduction in 

droplet diameter average values from the 

position 1mm to the inside. This is shown in 

both D10 and D32 as across the range 2.5 to 

3.5ms the diameter values are 

approximately 8µm and 11µm. There is a 

further decrease in the droplet diameter 

results at the central point of the plume 

(x=0) from those on the inside edge. This is 

a significant trend as it shows that from the 

plume centre inwards the average drop 

diameter increases. 
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Figure 6.28: D10 an D32 at +2, +1, 0, -1, -2mm from 

 plume axis (negative away from spray centre line) - 6-hole 60°CA injector at z=20mm  

 

 

Figure 6.29: Droplet size against axial position for 6-hole 60°CA injector at z=20mm 

2.5 till 3.5ms ASOS - left D10 and right D32 

 

The drop-size trend for both D10 and D32 is shown against radial position in Figure 6.29. To 

establish whether this trend was linked to plume interaction due to the localised plumes, 

drop-size for the other injectors and at distances of 40mm and 60mm were required. 
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On the outside of the plume, at a distance 

of 1mm from the plume centre, the 

average droplet diameter D10 and D32 are 

approximately 6µm and 9µm respectively.  

This is lower than the droplet diameter 

measured at the plume centre. On the 

outside edge of the plume (x= +2mm), 

where the spray is in contact with the 

ambient conditions the diameters across 

the 2.5-3.5ms range are constant. They 

are 5µm for D10 and approximately 8µm 

for D32. This is again lower than at x= 

+1mm and means that the trend continues 

throughout the full cross section of the 

plume. The highest droplet diameters for 

the 60 degree cone angle injector at a 

vertical height of 20mm below the nozzle 

are found on the inside edge of the plume, 

decreasing across the plume. 
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Figure 6.30: Droplet size against axial position for 6-hole 90°CA injector at z=20mm  

2.5 till 3.5ms ASOS - left D10 and right D32 

 

 

Figure 6.31: Droplet size against axial position for 3-hole 90°CA injector at z=20mm  

2.5 till 3.5ms ASOS - left D10 and right D32 

 

Using the results in Figure 6.30 the droplet size through the section of a plume, from the 90 

°CA injector at z=20mm and for the time interval 2.5 till 3.5ms ASOS, can be quantified. The 

increase in diameter for D10 and D32 from the outside of the plume to the inside shown for 

the 60°CA injector is not shown in Figure 6.30. The values of average D32 is relatively 

constant across the plume with a slight increase in average diameter from outside to inside 

for the arithmetic mean (D10). 

The three-hole 90°CA injector results at 20mm below the injector nozzle are shown in Figure 

6.31. The results of diameter across the plume axially for the three-hole injector are different 

to the six-hole injectors. The peak average droplet diameter is at the plume centre with lower 

values found on the inside and outside. When checking the sample numbers (see Figure 

6.32) against axial position for this injector there are much lower samples at this location.  

This suggests that the spray is very dense in the centre of the plumes for the three-hole 

injector causing less samples to be recorded due to attenuation.  This may explain the higher 

droplet diameters with less of the smaller droplets being processed.  
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Figure 6.32: Sample number at z=20mm for the three injectors 

 

To analyse the droplet diameter for each of the injectors at 40mm from the nozzle Figure 

6.33 to Figure 6.35 are used. It is of interest that the results for droplet diameters across the 

plume cross-section are similar to those found at z=20mm. The 60°CA injector has a clear 

trend across the plume with average droplet sizes increasing from the outside towards the 

inside of the injector. The 6-hole 90°CA injector shows a fairly constant trend for D32 but an 

increasing D10 (from approx. 5.5 to 7.2µm) across the plume. However, the rate of diameter 

increase is not as high as for the 60°CA injector. As seen at 20mm the droplet size for the 3-

hole 90°CA shows relative symmetry on either side of the plume, suggesting this injector 

plume is behaving as a single plume (i.e. no interaction). 

As seen on Figure 6.36 to Figure 6.38, at a distance of 60mm from the injector nozzle the 

separate plume are fairly well dispersed. Despite this it is interesting to find that the droplet 

diameter distributions across the plumes are similar to those found closer to the nozzle. The 

60° CA injector still maintains the higher droplet diameters on the inside of the spray just as 

the injector maintained the higher axial velocities on the inside (see paragraph 6.5.1.1). The 

droplet diameters for the 6-hole 90°CA and the 3-hole 90°CA injector are consistent across 

the plume (for the 6-hole 90° CA angle larger droplets are observed at 3ms ASOS as it is 

early within the spray; the larger droplets have greater momentum and reach the 

measurement volume sooner). 
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Figure 6.33: Droplet size against axial position for 6-hole 60°CA injector at z=40mm 

2.75 till 3.75ms ASOS - left D10 and right D32 

 

 

Figure 6.34: Droplet size against axial position for 6-hole 90°CA injector at z=40mm  

2.75 till 3.75ms ASOS - left D10 and right D32 

 

 

Figure 6.35: Droplet size against axial position for 3-hole 90°CA injector at z=40mm  

2.75 till 3.75ms ASOS - left D10 and right D32 
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Figure 6.36: Droplet size against axial position for 6-hole 60°CA injector at z=60mm 

3 till 4ms ASOS - left D10 and right D32 

 

 

Figure 6.37: Droplet size against axial position for 6-hole 90°CA injector at z=60mm  

3 till 4ms ASOS - left D10 and right D32 

 

 

Figure 6.38: Droplet size against axial position for 3-hole 90°CA injector at z=60mm  

3 till 4ms ASOS - left D10 and right D32 
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6.2.2.3 Summary 

 

The two previous sections have produced results that show consistency within the injector 

spray plumes. The axial velocity showed increases across the plume for both six-hole 

injectors with higher values found on the inside of the spray. The 60°CA injector showed a 

greater increase in velocities towards the inside than the 90°CA injector. This suggests that 

the cone angle affects the droplet axial velocities with a smaller cone angle creating a greater 

increase in velocities on the inside. The three-hole injector showed no difference in axial 

velocity on the inside and outside of the plume.  

 

In terms of droplet diameters the 60°CA injector has on average larger droplets on the inside 

decreasing in size across the plume. Once again the 6-hole 90°CA injector shows the same 

trend at z=20mm with a smaller difference. This trend continues for the 60°CA injector at 

greater distances from the nozzle while the other injectors show a consistent droplet 

diameter across the plume.  

 

The droplet diameter and axial velocity results suggest that the smaller the cone angle, and 

therefore closer the location of nearby plumes within multi-hole injectors, the higher the axial 

velocities and larger the droplets are found on the inside of plumes.  
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6.2.3 Circumferential Traverse Scan 

 

In addition to the radial traverse scans which are commonly encountered in the literature 

concerning PDA studies, the circumferential scans were used to provide a novel aspect on 

plume to plume interaction. The droplet size, axial and radial velocities of the drops in-

between plumes are of particular interest along with drops affected by the location of nearby 

plumes. 

 

As detailed in Table 6.3 to Table 6.5 the circumferential scans were performed from the point 

of plume centre at different locations around the injector. As the plume centres are at 

different distances from the central axis then the radial scans will have differing 

circumferences. It is important to establish the circumferential distance from the plume centre 

that a certain degree of turn creates. The total circumferential distances and the distance 

from a plume centre that a 5 degree or 30 degree turn creates are shown Table 6.6. 

 

Table 6.6: Distance moved during circumferential scan 

 Z(mm) Plume centre 

(mm) 

Circumferential 

distance (mm) 

5
0
 distance (mm) 30

0
 distance 

(mm) 

6
- 

H
o

le
 6

0
 d

e
g

re
e

 20 -9 56.5 0.78 4.71 

40 -15 94.2 1.31 7.85 

60 -25 157.1 2.18 13.09 

6
- 

H
o

le
 9

0
 D

e
g

re
e

 20 -18 113.1 1.57 9.43 

40 -35 220 3.06 18.33 

60 -50 314 4.36 26.2 

3
- 

H
o

le
 1

0
0
 D

e
g

re
e

 20 -20 125.7 1.75 10.48 

40 -37.5 235.6 3.27 19.63 

60 -55 345.6 4.8 28.8 
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One factor that may affect the results processed within the circumferential scan is the 

variations dependant on which side of the plume the radial scan is performed. Suppose a 5 

degree turn from the centre of the plume in either direction is compared. In one direction the 

laser beams reach the measurement volume with little disruption or attenuation from the 

injector spray as the plume beyond the measurement volume. With a turn of 5 degree from 

the plume centre in the opposite direction, the laser will pass through the injector plume 

before the measurement volume. This will reduce the amount of light so biasing detection 

towards larger droplets and reduce the number of samples processed. 

 

 

Figure 6.39: Three images from the circumferential scan - plume behind measurement 

volume (left) - plume in the centre of measurement volume (middle) - plume in front of 

measurement volume (right) 

 

It can be seen in Figure 6.39 that there is a greater amount of visible light seen in the image 

on the left than the right. This shows that more droplets will be detected with the plume 

behind the measurement volume. For the result analysis it is important to note that a positive 

turn moves the plume in front of the measurement volume and vice-versa for a negative turn. 

 

Droplet velocity and diameter around the injector at a constant radial distance from the 

injector were quantified using the circumferential scan data. Two different injector-to-injector 

comparisons were made. The two six-hole injectors were compared to provide information 

about how a change in cone-angle and therefore closer location of plumes affects drops 

within the spray. The second comparison made is between the 90°CA six-hole injector and 

the three-hole 90°CA injector. For the second comparison, as the cone angles are similar the 

circumferential distance is also similar meaning that 5 degree turns from the plume centre of 

each injector gives comparable results. 

  

Input 

laser 

beams 

direction 
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6.2.3.1 Six-hole 60°CA injector vs six-hole 90°CA injector 

 

The scans from the centre of one plume through a central plume to the centre of a third 

plume in 5 degree steps were compared. In total this is a 120 degree scan to quantify droplet 

velocity and diameter. A second scan of 30 degree steps throughout the whole 360 degrees 

of the injector was made. Of particular interest is the axial velocity, radial velocity (component 

of velocity into or away from the plume centre) and droplet diameter D10. 

  

Figure 6.40: Circumferential scan across three plumes - 60°CA and 90°CA injector - 

20mm below injector nozzle – 2.5ms ASOS - axial velocity (left) - radial velocity (right) 

 

Note: On the plots in Figure 6.40, the x axis shows position in mm but it actually corresponds 

to an angular position in degree used for the circumferential scan. 

 

The axial and radial velocity profiles at 20mm below the injector nozzle and 2.5ms after the 

start of signal are presented in Figure 6.40. The 60°CA injector has a greater axial velocity 

but a lower radial velocity, with a positive radial velocity being away from the centre. This is 

expected as due to the cone angle of the injector and the direction of the plumes. The angle 

243 on the graphs coincides with a plume centre; the results are fairly consistent on either 

side with slightly higher velocities shown on the positive side of the plumes (due to the plume 

being in front of the measurement volume). For the 60°CA injector, both the axial and radial 

velocity peaks corresponding to the 303° plume are slightly offset (around 298°); this is not 

shown at 243° or for the 90°CA injector, therefore there appears to be plume-to-plume 

variations within the injector. 

The droplets between the plumes for the 90°CA injector show a significant reduction in 

velocities compared to the centre of the plume. This injector produces none or very few 

samples at the centre point between two plumes therefore droplets do not reach this point. 

However, analysing the shape of the graph suggests that the velocities tend to zero both in 

the axial and radial directions. 
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For the 60°CA injector at 20mm below the injector nozzle there are a greater amount of 

samples between the plumes than with the 90°CA injector. The droplet velocities are 

approximately 10m/s axially and -10m/s radially. This means that on average the drops are 

slowed from the main plume and are moving towards the centre of the injector. This suggests 

that for the injector with the smallest cone angle the air between the plumes is being 

entrained to the centre of the spray. This is likely to be due to the spray forcing the ambient 

air away at the start of injection generating a pressure reduction in the spray centre. 

 

The droplet diameter is quantified using D10 and the same scan across the three plumes for 

the two injectors was used. Figure 6.41 shows the average droplet diameters for the sector 

at 2.5ms after injection at 20mm below the injector nozzle.  

 

 

Figure 6.41: Circumferential scan across three plumes - 60°CA and 90°CA injectors - 

20mm below injector nozzle – 2.5ms ASOS - D10 droplet diameter 

 

For the 60°CA injector there are some inconsistencies found at the centre points between 

plumes. From 243 to 303 degrees the droplets show a relatively consistent diameter but from 

183 to 243 there is a distinct reduction in average diameters between the plumes. The 90°CA 

injector shows consistent results over the three plumes. Droplet diameters in the centre of 

each plume (183, 243 and 303) are higher than those found on either side through 5-10 

degrees. As the measurement volume is moved between the plumes the sample number is 

lower coinciding with an increase in values of D10. With a lower sample number due to laser 

beam obscuration, it can often be found that PDA can over estimate droplet diameter. 

 

Note: The graph discontinuities observed in Figure 6.40 to Figure 6.44 are caused by laser 

attenuation leading to very few droplet samples being recorded. 
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Figure 6.42: 360 degree circumferential scan - 60°CA and 90°CA injector - 20mm below 

injector nozzle – 2.5ms ASOS - axial velocity (left) - radial velocity (right) (zero on 

graph equivalent to plume 243 on Figure 6.40) 

 

The full circumferential scan shown in Figure 6.42 is a useful measure of consistency in 

velocities across all 6 plumes of the injectors. The values of axial and radial velocities at 30 

degree intervals are similar to those found across the three plume scan. The peak at 60 

degree on Figure 6.42 corresponds to the same plume located at 303° on Figure 6.40. Both 

radial and axial velocities are low at this peak which shows that there is an irregularity within 

this injector plume. 

 

The two types of circumferential scans, described above, were performed at both 40mm and 

60mm below the injector nozzle; the results at 40mm are as follows while the significance of 

the results at 60mm were low as very little droplets were detected outside the plumes within 

the 90°CA injector. 

 

 

Figure 6.43: Circumferential scan across three plumes - 60°CA and 90°CA injector - 

40mm below injector nozzle – 2.5ms ASOS - axial velocity (left) - radial velocity (right) 
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The axial velocity shown on the left of Figure 6.43 is consistent with the axial velocity 

obtained at 20mm below the injector nozzle. The lower peak at 303° is also shown at 40mm. 

There has been an interesting development in terms of radial velocities for the 60°CA 

injector. At 20mm the drops between the plumes had a negative velocity whereas, at 40mm, 

the velocity ranges between 12 and 20m/s across the three plumes. This suggests that the 

droplets located in-between the plumes are moving away from the spray towards the outside 

of the injector at an angle closer to the horizontal than the main spray. 

 

Figure 6.44: Circumferential scan across three plumes - 60°CA and 90°CA injectors - 

40mm below injector nozzle – 2.5ms ASOS - D10 droplet diameter 

 

The data for droplet arithmetic diameter D10 at the same location show results that are similar 

either side of the central plume. At 40mm below the injector nozzle, the diameter for the 

60°CA injector shows an increase toward plume centres. The droplets between the plumes in 

the circumferential scan are, on average, smaller than those found within the spray plumes. 

The droplet diameter for the 90°CA injector shows that there is a large amount of attenuation 

causing an over estimation on the positive side of the plume. 

 

 

Figure 6.45: 360 degree circumferential scan - 60°CA and 90°CA injector - 40mm below 

injector nozzle – 2.5ms ASOS - axial velocity (left) - radial velocity (right) - (zero on 

graph equivalent to plume 243 on Figure 6.43) 
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The circumferential scans have shown differences in droplet velocities and droplet diameter 

found in the two six-hole injectors with different cone angle. Of particular interest are the 

droplets located between the plumes at 20mm from the injector nozzle. The results showed 

that, for the 60°CA injector, the droplets had a radial velocity towards the spray axis which 

suggests vortices caused by the plume front and pressure difference on the inside of the 

spray. It is only at 20mm below the injector nozzle that the inward velocity occurred as at 

40mm the velocity is relatively constant across the three plumes. At this point the droplets 

are moving away from the spray relative to the plumes direction. The 90°CA injector does not 

show the same effects between the plumes. There are fewer droplets in between as the 

majority stay located within the plumes. The closer the plumes are, because of a small cone 

angle, the denser spray in the gaps between plumes is due to the interaction caused by the 

close proximities. Overall it appears as though there are interactions on the inside of plumes 

found in two of the three injectors testes. The six-hole 60 degree cone angle injector shows 

plume interaction at each of the three heights, with the six-hole 90 degree cone angle injector 

only showing an effect at 20mm below the injector nozzle. The three-hole injector shows 

symmetrical results on the inside and outside of the plume radially which suggest no plume 

to plume interaction. 

 

6.2.3.2 Six-hole 90°CA injector vs three-hole 90°CA injector 

 

For both the 6-hole 90°CA injector and the 3-hole 90°CA injector, the circumferential scan 

showed very few droplets between the plumes. This suggests that a similar scan to the one 

used to compare the two 6-hole injectors would not be effective. A different scan consisting 

of measurements at five locations was performed; the plume centre, ±5 degrees and ±10 

degrees. Axial velocity, radial velocity and droplet diameter across the five points are shown 

in the following section of results. 

 

Axial and radial velocities for the 6-hole 90°CA and the 3-hole injector are shown against 

time in Figure 6.46. The steady part of the injection is over the first 1ms shown in the graph 

from 2.5 till 3.5ms ASOS. The areas to the side of the plumes are of interest as droplet data 

in these areas is relatively unknown. 
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Figure 6.46: Axial and Radial mean velocity against time at the centre point of the 

plume for the 6-hole 90°CA injector and 3-hole 90°CA injector at z=20mm  

 

 

Figure 6.47: Axial mean velocity against time for the 6-hole 90°CA injector and 3-hole 

90°CA injector at z=20mm below the nozzle - ±5° rotation 

 

A 5 degree rotation around the injector axis in both directions for the two injectors is shown in 

Figure 6.47. There has been a significant decrease in mean axial velocity for the 3-hole 

injector while only a slight decrease for the 6-hole 90°CA injector. This implies that the 5 

degree step for the 3-hole injector moves further to the outside of the plume than with the 6-

hole 90°CA injector. Both injectors show a constant axial velocity across the time period 

2.5ms to 3.5ms ASOS (steady part of the injection). For both injectors the axial velocity is 

higher on the positive turn side of the plume than on the negative. This shows that the 

attenuation caused by the plume being in front of the measurement volume gives a higher 

axial velocity. 
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Figure 6.48: Radial mean velocity against time for the 6-hole 90°CA injector and 3-hole 

90°CA injector at z=20mm below the nozzle - ±5° rotation 

 

The radial velocity for the two injectors at 20mm below the injector nozzle are shown in 

Figure 6.48. The large decrease of average velocity compared to the velocity in the centre of 

the plume (from approx. 68m/s to 38m/s) is shown for the 3-hole injector, with the 6-hole 

injector showing a smaller decrease (from approx 35m/s to 30m/s). The difference between 

positive and negative turns is that higher radial velocity is found on the positive side. This is 

the same trend as seen for the axial velocity. This is unlikely to be realistic as the velocities 

should be relatively consistent either side of the plume. Beam attenuation through the plume 

is the cause of the variation in velocities for the circumferential scan. The same data for a 10 

degree rotation is as follows. 

 

 

Figure 6.49: Axial mean velocity against time for the 6-hole 90°CA injector and 3-hole 

100°CA injector at z=20mm below the nozzle - ±10° rotation 
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Figure 6.50: Radial mean velocity against time for the 6-hole 90°CA injector and 3-hole 

100°CA injector at z=20mm below the nozzle - ±10° rotation 

 

The figures for the 10 degree rotation around the injector axis initiated from the plume centre 

(Figure 6.49 and Figure 6.50) show more consistent results on both sides of the plumes. As 

the circumferential distance corresponding to the rotation is greater the denser part of the 

spray will have moved out of the laser beam plane, creating less disruption to the amount of 

light reaching the measurement volume. 

There is no noticeable difference between the two sides of the plume when comparing axial 

and radial velocities. At a distance of 20mm from the injector nozzle the radial scan (see 

section 6.2.2) showed there was a slight disruption within the 6-hole 90°CA injector due to 

the location of nearby plumes. At the same height for the three-hole injector there was no 

visible disruption on the inside of the plumes. Despite the differences to be expected 

between the two types of scan with regards to beam attenuation, the axial and radial 

velocities obtained with the circumferential scan are similar at 10° both side of the plume 

centre and hence do not show the trend observed with the radial scan for the 6-hole 90°CA 

injector.  

 

Droplet arithmetic mean diameter calculations were analysed at the same locations for the 

circumferential scan. The Droplet data shown in Figure 6.51 at the centre of the plume is 

useful to describe the differences between the plumes of the two injectors. The mean 

diameter is approximately 1µm higher across the range of the 3-hole injector than the 6-hole 

90°CA injector at the plume centre. 
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Figure 6.51: Droplet diameter against time at the plume centre for the 6-hole 90°CA 

injector and 3-hole 90 degree injector at z=20mm below the nozzle  

 

 

Figure 6.52: Droplet diameter against time for the 6-hole 90°CA injector and 3-hole 

90°CA injector at z=20mm below the nozzle - ±5° rotation 

 

The droplet diameter obtained with a ±5° rotation shows variations on either side of the 

plume. This was shown with the velocity variations for the ±5° rotation and the higher droplet 

diameter on the positive turn coincide with the higher velocities. The attenuation on the 

positive side of the radial turn causes fewer droplets to be detected in the measurement 

volume. On average bigger drops are detected which in turn have higher velocities as they 

have more momentum than the small drops and hence are less affected by the aerodynamic 

forces. The ±10° rotation results are shown in Figure 6.53 
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Figure 6.53: Droplet diameter against time for the 6-hole 90°CA injector and 3-hole 

90°CA injector at z=20mm below the nozzle - ±10° rotation 

 

The droplet diameters for the ±10° rotation are similar to those found at ±5°. The velocity 

data showed more consistency at ±10° on either side of the plume for both injectors. 

However, for the 3-hole injector, the contrast in droplet diameter between the positive and 

negative rotation is found at both ±5° and ±10mm. This is an odd result as it would be 

expected that, as the components of velocity showed consistency between the two sides of 

the plume, there would be consistency in the droplet sizes. In general, the average drop 

diameters are slightly smaller at the sides of the plume for both injectors by approximately 

1micron, but it goes down to more than 3micron smaller in the case of the negative rotation 

for the 3-hole injector.  
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6.2.3.3 Summary 

 

The circumferential scans have been used to quantify the droplet velocity and diameter at a 

radial distance corresponding to the plume centres for the three different injectors. In 

particular, a distance of 20mm below the injector nozzle was of interest as from the radial 

scan section results there appeared to be different degrees of interaction between injector 

plumes. The two 6-hole injectors were compared and the results showed that droplets in 

between the plumes on the 60°CA injector varied in terms of diameter and velocity vector. At 

20mm downstream the injector nozzle, the drops were moving towards the spray centre 

while at 40mm the drops were moving away from the centre. This is caused by interactions 

with the ambient air and pressure differences caused by the fuel injection creating air 

induced spray motion. There were very little possibilities for comparing the 3-hole and 6-hole 

90°CA injector in between the plumes as the amount of droplets detected by the PDA system 

was very reduced. For this comparison small degree changes around the plume were used. 

The results for this test had been difficult to quantify as attenuation was perceived when the 

injector plume was in front of the measurement volume. Also it appeared that both injectors 

produced plumes that would be symmetrical around their axis, it is difficult to compare the 

two injectors as the plumes they generate appeared different, created by different injector 

internal geometries. Therefore a ±5° step for one injector measures a different section of the 

plume than the other. 

 

The next section will discuss the results with regards to pressure chamber using various 

multi-stream injectors, first at over-atmospheric pressures and then at sub-atmospheric 

pressures to study the effects of flash boiling on the atomization performance of the injectors. 
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7. Results: Pressure Chamber 

 

7.1  Over-Atmospheric 

 

In this section, three injectors were analysed; they are shown below in Figure 7.1 to Figure 

7.3. All three injectors are 6-hole symmetrical multi-stream GDI injectors provided by 

Continental AG (see Figure 7.4 and Appendix D for detailed geometrical characteristics) in 

order to study the influence of the nozzle geometry (cone angle, tip shape,...) on the 

atomisation performance. 

 

 

Figure 7.1: Injector 1: 6-hole 90° cone angle with a flat nozzle tip 

 

 

Figure 7.2: Injector 2: 6-hole 90° cone angle with a concave nozzle tip 
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Figure 7.3: Injector 3: 6-hole 60° cone angle with a concave nozzle tip 

Injector 3 was designed specifically with a 60° nozzle cone angle to prevent valve impact. 

 

 

Figure 7.4: Injector geometrical characteristics 
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Figure 7.5: Injector plume geometry [101] for injectors 1 and 2 

 

Injector 3 would have a 30° angle between plume and injector axis.  

 

In addition to Figure 7.5, it should be noted that the nozzle holes are 0.6mm from the injector 

axis which must be accounted for when setting up the plume origin in the image viewer 

software.  

 

Fuel pressures of 120bar and 190bar were tested. The injectors were positioned within the 

cell so that a single plume is clearly visible to the camera. 

  

45° Camera 
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 7.1.1 Intensity Contour Analysis 

 

Following the review of a number of publications it was realised that there was a reasonable 

amount of variation in the intensity contour used to define the spray boundaries, and hence 

penetration of a spray. When an image is captured, the flash unit situated behind the spray, 

illuminates the spray and surrounding area providing a white background and the spray 

being highlighted by the shadow cast. A spray is not of uniform density and therefore has a 

variation in light that is transmitted to the camera. When post processing the images, it is 

possible to apply intensity contours to the image to allow easy identifications of areas of 

constant density. When a spray‟s penetration is defined, it is defined by the distance from the 

nozzle to a specific intensity contour and the difference in penetration at different intensity 

contours is of interest here. 

 

Much of the importance of understanding a spray‟s penetration is to determine the 

percentage of the spray that will impact on the cylinder wall/piston/intake valve/spark plug. 

Therefore if a contour with a lower percentage of the maximum light intensity is used the 

penetration of a denser portion of the spray is used. No previous work could be found that 

quantifies the spray make-up at different intensity contours and therefore the exact intensity 

contour to use to best quantify a spray‟s penetration is unclear. Previous works ( [101], [51]) 

have used 50% and 85% of the maximum light intensity but due to the ambiguity of the 

choice of intensity contour to use, both 50% and 85% have been investigated and the 

differences in results evaluated. 

 

One of the modifications made to the test equipment was the use of a new Fostec fibre optic 

flash panel. Due to the age of the old flash unit it had lost a large percentage of its maximum 

light output intensity. Thus when the change to the new panel was made, the difference in 

quality of image recorded was substantial. The change was made after the images for 

Injector 1 were taken and therefore the images recorded for Injector 2 and 3 were recorded 

using the new flash panel.  

 

What became immediately clear when measuring the axial penetration for injector 1 was the 

increased difficulty in defining the penetration due to the reduced clarity of the intensity 

contours as a consequence of the reduced light intensity. This was especially apparent at 

50% maximum intensity. At low injection timings (1.25ms -1.35ms ASOS) the definition of 

both contours was difficult and thus could introduce an element of uncertainty to the results 

at low injection timings for injector 1. It was clear that the 50% intensity contour on the lower 

spray plume was not defining the true penetration above 1.6ms ASOS for 50% intensity, and 
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therefore the upper plume was used because it appeared to be a more true representation of 

the penetration. Although when the results were analysed, it was clear this was still not the 

case due to the large differences between the 50% and 85% intensity contours. This is 

shown in Figure 7.6 which compares axial penetration for 1bar backpressure, at 20°C at the 

two light intensity contours. The switch to the upper spray plume for Injector 1 at 50% light 

intensity is shown by the series „Injector 1 - Upper‟. 

 

Figure 7.6: An intensity contour comparison of axial penetration at 20°C 1bar 

backpressure with Injector 1 

 

What can also be observed from Figure 7.6 is the relatively small difference between 50% 

and 85% of the maximum light intensity. Since it is known that inside the spray plume the 

change in spray density can be very large over a very small distance, the small difference in 

axial penetration at 50% and 85% indicates that 50% and 85% are actually quite close to the 

extremities of the spray. This would also indicate that the percentage difference in droplet 

density would be small and thus either data recorded at 50% or 85% could be used for 

estimating penetration and the percentage of spray impact. This conclusion is acceptable 

assuming that the light intensity is sufficient. The trends mentioned here are also seen in the 

results taken at 2bar backpressure and for the radial penetration. The results for 2bar 

backpressure are shown in Figure 7.7. 
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Figure 7.7: An intensity contour comparison of axial penetration at 20°C 2bar 

backpressure with Injector 1 

 

As has been proved previously, if the maximum light intensity is not sufficient, the definition 

of the intensity contour at 50% maximum light intensity will not be accurate and the 85% 

intensity contour should be used. To ensure continuity, for the remainder of the section 7.1 

the intensity contour representing 85% of the maximum light intensity will be used to 

represent the spray penetration unless otherwise stated. 

 

7.1.2 Injector Analysis 

 

Images were recorded at 120bar injection pressure, 20°C charge temperature, 1 and 2bar 

charge backpressure for all three injectors tested. This has allowed a thorough evaluation of 

the variation in axial and radial penetration and cone angle with changing backpressure for 

each injector.  

The results obtained with each injector for axial and radial penetration are shown in Figure 

7.8 to Figure 7.11. 
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Figure 7.8: Axial penetration at 20°C 1bar backpressure 

 

 

Figure 7.9: Axial penetration at 20°C 2bar backpressure 
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Figure 7.10: Radial penetration at 20°C 1bar backpressure 

 

 

Figure 7.11: Radial penetration at 20°C 2bar backpressure 
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The axial penetration for injector 1 is shown to be lower than for injector 2 up to 1.4ms where 

their penetrations become almost equal for a period. This effect is shown at both 1 and 2bar 

backpressures. This is believed to be due to the affect of the nozzle tip geometry. Injector 1 

has a smaller proportion of fuel around the centre of the nozzle tip and forces the fuel radially 

much more efficiently. Injector 2, although having very similar radial penetrations to injector 1 

at these timings (radial penetration will be discussed later), maintains a larger portion of the 

fuel close to the injector nozzle centre. This is believed to be due to the concave tip on 

injector 2 constraining the initial spray formation and the flat tip found on injector 1 allowing 

the fuel to propagate outwards more efficiently. This is highlighted in Table 7.1: Spray density 

near the injector axis for injectors 1 and 2 with a series of images. 

 

Table 7.1: Spray density near the injector axis for injectors 1 and 2  

(1.25ms and 1.3ms below - 1.35ms and 1.4ms next page) 

Timing  

(ms ASOS) 

Injector 1 Injector 2 

1.25 

  

1.3 

  

20 mm 

20 mm 

Radial 

Axial 
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1.35 

  

1.4 

  

 

The effect of the nozzle tip geometry is seen throughout the spray formation. Although seen 

to be unaffected during the initial injection period, the radial penetration with injector 1 is 

consistently larger than that seen with injector 2 at both 1 and 2bar backpressures after 

1.3ms ASOS. This difference in radial penetration can be as large as 2.5mm at certain 

injection times and this affect is only due to the change in nozzle tip geometry.  

 

The axial penetration is also affected at larger timings. Although showing smaller radial 

penetrations, injector 2 exhibits larger axial penetrations and this affect is observed at both 1 

and 2bar back pressures.  

 

Unfortunately, due to time constraints, data were not available at different charge 

temperatures and therefore it is not possible to conclude that similar nozzle affects are seen 

with temperature, although since increasing the temperature of the cell, and thus the 

temperature of the nitrogen inside the cell, acts to reduce the density of the gas (increasing 

the backpressure increases the density of the nitrogen charge) similar trends with respect to 

changing the charge density are expected to be seen.  
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Thus it could be concluded that the difference between the nozzle tips of injectors 1 and 2 

affects the initial and predominantly the later parts of axial penetration, but affects the radial 

penetration throughout the injection period. The flat nozzle tip on injector 1 shows reduced 

axial penetration during the initial and later stages of spray formation and increased radial 

penetration after 1.3ms ASOS when compared to the concave tip on injector 2. 

 

Injector 3 has consistently higher axial penetrations and lower radial penetrations than both 

injector 1 and 2. This is due to the orientation of nozzle orifices, with it having a smaller 

nozzle cone angle of 60° opposed to 90° used with the other injectors. The radial penetration 

is seen to be affected to a larger degree than axial penetration, with a maximum difference in 

radial penetration of approximately 10mm at larger injection timings when compared to 

injectors 1 and 2.  

 

The results for the spray cone angle are shown in Figure 7.12 and Figure 7.13. 

 

 

Figure 7.12: Cone angle at 20°C 1bar backpressure 
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Figure 7.13: Cone angle at 20°C 2bar backpressure 

 

The cone angle for injector 1 is consistently higher than seen for injector 2. This is expected 

due to the higher radial penetrations seen with injector 1. The cone angle decreases but at a 

reducing rate converging on a constant angle with increasing injection timing. This trend is 

seen for both injector 1 and injector 2 but with injector 1 showing more uniformity.  

 

The cone angle for injector 3 shows a similar reducing trend at timings up to 1.5ms ASOS at 

1bar and 1.4ms at 2bar, always at a lower angle than injector 1 and 2 due to the nozzle hole 

orientation, but after these points the cone angle shows another reduction up to 

approximately 1.7ms where it begins to level again. This can be explained by examining the 

spray images themselves. Shown in Table 7.2 are a series of images showing the spray 

propagation for injector 3 at 20°C charge temperature and 1bar backpressure.  
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Table 7.2: Spray propagation at 20°C and 1bar backpressure for injector 3  

(1.4ms to 1.6ms below - 1.7ms and 1.8ms next page) 

Timing 

(ms ASOS) 

Injector 3 Image 

1.4 

 

1.5 

 

1.6 

 

40 mm 

40 mm 

40 mm 
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1.7 

 

1.8 

 

 

At 1.4ms ASOS the spray tip has become stretched and the intensity contours are wider at 

the tip showing large areas of low spray density. The spray is moving forward and pushing 

the charge in the cell outwards around the spray plumes. The charge movement around the 

plume causes the tip to be distorted and forces it around the outside of the plume, rejoining 

further down on the outside. This illustrates the affect of the spray forcing the charge around 

it as it progresses through the cell and that charge is entrained into the plume at the 

peripheries behind the tip of the plume. The sudden reduction in cone angle after 1.5ms is 

due to the head re-joining further down the plume, thus reducing the increase in radial 

penetration and reducing the cone angle. As this is occurring, the fuel behind it is forcing its 

way forwards re-creating the plume tip in a position slightly closer to the injector axis which 

then continues to propagate, stabilising the reduction in cone angle and levelling off in the 

same manner as seen with injector 1 and 2. Injectors 1 and 2 do not see the same 

phenomenon with each plume tip being separated sufficiently that it is not affected to the 

same degree by spray induced charge movement.  
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7.1.3 Backpressure Analysis 

 

Images were taken with injector 1 at three different backpressures, 1, 2 and 4bar at a 

constant temperature 20°C and 120bar injection pressure.  

 

The results observed for axial and radial penetration, and cone angle are shown in Figure 

7.14 to Figure 7.16. 

 

Figure 7.14: Axial penetration at 20°C with Injector 1 

 

The axial penetration shows a clearly defined reduction with increasing backpressure but 

with very little affect being seen up to 1.35ms. This follows the hypothesis that as the 

backpressure increases at a constant temperature, the density of the charge increases. 

Increasing the density increases the aerodynamic drag the drops experience as they 

traverse the cell, reducing their kinetic energy and thus reducing their velocity and distance 

travelled. 
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Figure 7.15: Radial penetration at 20°C with Injector 1 

 

Figure 7.16: Cone angle at 20°C with Injector 1 
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Another indication of the reduced axial penetration is that the intensity contours show 

increased fuel density closer to the plume tip at 4bar backpressure. This highlights the 

aerodynamics resistance felt by the plume tip and the spray core continuing unaffected, and 

this characteristic is amplified at higher backpressures.  

 

Table 7.3 shows this effect with pseudo intensity plots at 1.7ms for injector 1 at 2 and 4bar. 

The kinetic energy of the spray exiting from each injector nozzle should be very similar since 

the fuel pressure is maintained constant. There is little difference in penetration during the 

initial stages of spray development because the fuel has had little interaction with the in-cell 

charge and thus their kinetic energies and hence penetrations are similar.  

 

The radial penetration does not show a similar trend to the axial penetration. The radial 

penetration at 1 and 2bar backpressure is almost identical and only at 4bar backpressure is a 

drop in radial penetration seen. No easily identifiable reason for this is present in the images. 

The anomaly seen at 2bar backpressure could have been due to the cell pressure or 

temperature not being controlled properly and hence affecting the charge density. The in-cell 

pressure was not recorded for this part of the testing and the temperature data did not show 

anything that could have caused these errors thus no easily identifiable reason is present in 

the data reported in this section. Further testing should be completed to verify the 

measurement conditions and establish a reason for the anomaly of result. 
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Table 7.3: Color scaled images - injector 1 at 1.7ms ASOS - 2 and 4bar backpressure 

Backpressure (bar) Injector 1 at 1.7ms 

2bar 

 

4bar 

 

30 mm 

30 mm 
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The cone angle results seen at 4bar backpressure, especially during the initial stages of 

spray development, do not follow a similar trend as seen previously. The initial cone angle is 

much lower but does not reduce much before levelling off at values very similar to those 

seen at 2bar backpressure. The initially low value is due to a higher axial penetration. The 

results observed from 1.3 till 1.5ms ASOS should be repeated to ensure measurement error 

is not at fault. The cone angle at 4bar levels off at similar values to those seen at 2bar due to 

the difference in axial and radial penetration between 2 and 4bar being fairly constant 

throughout the middle and later stages of spray development. 

 

7.1.4 Temperature Analysis 

 

Injector 3 was tested at three different temperatures, 20°C 40°C 60°C, at 1 and 2bar 

backpressures and at constant 120bar injection pressure. The differences in axial and radial 

penetration and cone angle were examined. The results are shown in Figure 7.17 to Figure 

7.22. 

 

Figure 7.17: Axial penetration at 1bar backpressure with Injector 3 
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Figure 7.18: Axial penetration at 2bar backpressure with Injector 3 

 

Figure 7.19: Radial penetration at 1bar backpressure with Injector 3 
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Figure 7.20: Radial penetration at 2bar backpressure with Injector 3 

 

 

Figure 7.21: Cone angle at 1bar backpressure with Injector 3 
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Figure 7.22: Cone angle at 2bar backpressure with Injector 3 

 

What is immediately apparent is that for a constant backpressure there is not much 

difference in axial penetration at the three temperatures tested. This is due to the change in 

charge density being small at low backpressures of 1 and 2bar. This is proven by assuming 

the nitrogen charge acts as an ideal gas, then the density of the charge can be found using 

equation (7.1)and plotted as shown in Figure 7.23. 
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Figure 7.23: A plot showing the change in charge density with varying cell 

backpressure and temperature 

 

What is noticeable is the drop in axial and radial penetration (seen at both 50% and 85% of 

maximum intensity contours) after 2ms ASOS at 60°C. This is believed to be due to localised 

flash boiling occurring within the spray. Flash boiling causes rapid boiling and atomisation of 

the lighter components of the fuel into smaller droplets. These droplets have smaller mass 

and therefore momentum, causing the aerodynamic affect to become larger and reduce their 

velocity and penetration. It is believed the spray is experiencing this affect at the later stages 

of spray development at 60°C. At 1bar backpressure, up to 2.0ms ASOS the axial 

penetration at 60°C is very similar to that seen at 40°C but at 2.1ms the penetration at 60°C 

is seen to be lower than at 20°C and 40°C. At 2bar backpressure the flash boiling point has 

moved to a later timing where it is not until 2.2ms ASOS that a lower axial penetration at 

60°C is seen. This can be explained by the idea that as the pressure of a liquid is raised its 

boiling point also raised. The raised backpressure does not prevent flash boiling occurring 

but simply delays it. 
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If it is assumed that the spray has its own internal pressure that will be equal to the injection 

pressure just prior to the injector nozzle, but will then vary depending on the position within 

the spray, as the spray propagates and spreads out its internal pressure will reduce. This 

reduction in pressure at these conditions could fall below the vapour pressure of certain 

constituents of the fuel and cause flash boiling. The higher initial backpressure (at 2bar) 

would cause the sprays‟ internal pressure to be higher, and would thus require increased 

expansion before the local spray pressure had reduced below the vapour pressure to cause 

flash boiling. Hence flash boiling occurring at a later injection timing at 2bar backpressure 

than at 1bar. This phenomenon is usually found in multi-component fuels where each 

components of differing vapour pressures and boiling points cause disruption within the 

drops. Flash boiling will be discussed in more detail later in section 7.2. 

 

The results observed for radial penetration at 1 and 2bar and the three temperature 

variations show a similar correlation as seen with axial penetration. The cone angles at all 

three temperature conditions at 1bar back pressure are relatively similar throughout. At 2bar 

backpressure the results at 60°C show lower cone angles than both other temperature 

conditions. This is due to the lower radial penetration seen between 1.4 and 1.7ms ASOS as 

a consequence of the tip deformation. The tip deforms and is pushed around to the back of 

the plume lowering the radial penetration and thus cone angle until the tip is reformed with 

new drops from behind. This has been mentioned previously at 1bar, but, due to the 

increased backpressure, has a more significant affect and is thus why the radial penetration 

drops more at 2bar than at 1bar. Although tip deformation is visible at 20°C and 40°C, the 

degree of deformation is smaller. This is likely to be due to the higher charge density 

increasing the aerodynamic drag and thus increasing the deformation seen at the spray tip. 

Table 7.4 shows the tip deformation seen at 1.4 to 1.6ms ASOS, and the upper plume (not 

used for measurements) highlights this effect further 
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Table 7.4: A series of images showing plume tip deformation with injector 3 

Timing 

(ms ASOS) 

Injector 3 – 2bar backpressure, 60°C 

1.4 

 

 

1.5 

 

 

30 mm 

30 mm 
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1.6 

 

 

 

7.1.5 Fuel Pressure Analysis 

 

Injector 3 was also tested at two different fuel injection pressures, 120bar and 190bar. Tests 

at 20°C, 40°C and 60°C at two backpressures of 1 and 2bar were completed. The results are 

shown in Figure 7.24 to Figure 7.29. 

 

An increase in injection pressure increases the pressure differential across the nozzle tip 

which acts to increase the exit velocity of the spray. This increases the aerodynamic 

resistance due to the increased shear force and the increased turbulence within the spray 

promotes disintegration. Lefebvre [17] states that an increase in jet turbulence increases the 

ratio of radial to axial component of velocity therefore increasing the cone angle, however 

this is not seen in the results observed with injector 3. 
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Figure 7.24: 120bar and 190bar at 20°C and 1bar backpressure with Injector 3 

 

 

Figure 7.25: 120bar and 190bar at 20°C and 2bar backpressure with Injector 3 
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Figure 7.26: 40°C and 1bar backpressure with Injector 3 

 

 

Figure 7.27: 40°C and 2bar backpressure with Injector 3 
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Figure 7.28: 60°C and 1bar backpressure with Injector 3 

 

 

Figure 7.29: 60°C and 2bar backpressure with Injector 3 
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When raising the injection pressure, the initial axial penetration is smaller up to timings of 

1.6ms ASOS. After this point, the penetration is larger with higher injection pressure. This 

trend also follows for radial penetration, although the point at which the penetration starts to 

become larger for higher injection pressures is not as well defined as with axial penetration. It 

is believed that this trend is due to the increased turbulence causing an increase in flow 

resistance inside the nozzle that restricts initial propagation and hence shows lower initial 

axial and radial penetration. What is interesting, and in fact contradictory to Lefebvre‟s 

statement, is the minimal difference in cone angle seen at the two injection pressures. At 

20°C and 40°C very little difference is seen. There is a difference in results seen at 60°C at 

both 1bar and 2bar although, because the differences seen do not follow for each ambient 

charge pressure, it is unclear as to whether these are not just measurement uncertainties. 

During very early timings, 1.25ms and in some cases 1.3ms and 1.4ms ASOS, the spray 

does follow Lefebvre‟s theory but this difference quickly disappears thereafter. 

 

The images also show an increase in waviness at the periphery of plume highlighting the 

effect of higher injection velocities. An example of this is shown in Figure 7.30 circled in 

white. 

 

Figure 7.30: Highlighting the increase in spray surface ripples due to increased fuel 

pressure 
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7.1.6 Data Manipulation and Analysis 

 

In this section, empirical relationships are going to be developed to produce estimates of the 

spray‟s axial and radial penetration for each injector at part load conditions that can be 

encountered during the operating cycle of a GDI engine. The data were manipulated using 

common mathematical techniques to interpolate and estimate its characteristics under 

specific conditions. The part load engine condition of interest was 1.65bar pressure, 45°C 

temperature and 190bar fuel pressure. 

 

The axial and radial penetrations were of prime importance for estimation since these 

features determined the likelihood of a spray impact. Although the variation of a spray cone 

angle is relevant in terms of understanding spray characteristics, it is not relevant for the 

predictions under engine conditions and was therefore not analysed in this section. 

 

The axial and radial penetration results for each injector at 20°C, 1 and 2bar were fitted with 

quadratic best fit lines calculated by the least squares method. The coefficients from each 

plot were then plotted against backpressure and linear best fit lines used to form equations 

for axial and radial penetration of each injector as a function of backpressure and time.  

 

The results from this analysis are shown in Figure 7.31 to Figure 7.33. Equations 7.2 to 7.7 

were extrapolated and provide a sensitivity check on the square, linear and constant terms of 

the results at 120bar injection pressure, and Figure 7.34 to Figure 7.38 give an example of 

how the estimated results using the formed equations matches the actual results. 
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Figure 7.31: Axial penetration at 20°C and 1bar backpressure 

 

 

Figure 7.32: Axial penetration at 20°C and 2bar backpressure 
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Figure 7.33: Best fit coefficients for axial penetration as a function of backpressure 

 

 

SInjector 1, axial = (1.492p - 25.779)t2 + (-8.07p + 130.2)t + (7.86p - 122.16)   (7.2) 

 

SInjector 2, axial = (-2.84p - 10.803)t2+ (6.178p + 83.783)t + (-3.959p - 86.062)  (7.3) 

 

SInjector 3, axial = (-3.9863p - 3.7324)t2 + (10.33p + 68.953)t + (-7.288p - 77.993)  (7.4) 

 

where p is the in-cell charge pressure and t is the injection timing, and S is the axial 

penetration. 
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Figure 7.34: Predicted and actual results for axial penetration at 20°C as a function of 

backpressure for injector3 

 

 

Figure 7.35: Radial penetration at 20°C and 1bar backpressure 
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Figure 7.36: Radial penetration at 20°C and 2bar backpressure 

 

 

Figure 7.37: Best fit coefficients for radial penetration as a function of backpressure 
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SInjector 1, radial = (1.07p - 25.81)t2 + (-4.64p + 123.54)t + (4.72p - 113.32)   (7.5) 

 

SInjector 2, radial = (1.347p - 18.026)t2+ (-5.531p + 95.331)t + (-4.917p + 89.448)  (7.6) 

 

SInjector 3, radial = (1.1572p - 12.228)t2 + (-2.941p + 59.953)t + (1.351p - 53.174)  (7.7) 

 

 

 

Figure 7.38: Predicted and actual results for radial penetration at 20°C as a function of 

backpressure for injector3 
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predicted axial and radial penetration, it appears that a good approximation has been found, 
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The same technique developed above was also applied to the temperature data gathered 

with injector 3. This provided axial and radial penetration at 1 and 2bar for injector 3 as a 

function of temperature and time. The results from this analysis are shown in Appendix A. 

Once the equations for axial and radial penetration for injector 3, as a function of temperature 

and time were formed, a method of linking this and the equations formed previously as a 

function of backpressure was needed. There is no easy method of achieving this, and one 

method called neural networking was beyond the scope and time constraints of this study. 

Since the change in penetration with varying temperature was small, an approximation was 

made to assume that there was zero change in penetration with change in temperature. This 

would mean that predictions for penetration at the engine‟s part load conditions could be 

found, with only a small reduction in estimation accuracy. The estimation accuracy as a 

function of backpressure would only be compromised if predictions at higher charge 

temperatures were required due to a larger change in cell density. 

 

Due to the differences seen in axial and radial penetration with an increase in fuel injection 

pressure, a method of adjusting the penetration data at 120bar to predict the penetration at 

190bar was created. Three different conditions were analysed for both axial and radial 

penetration from the results gathered with injector 3, and the difference in penetration 

between 120bar and 190bar was calculated. The three conditions chosen were based on 

results with the fewest anomalies. The differences over the injection timing range were 

averaged over the three conditions to find an average difference. The average difference 

was then plotted against injection timing and fitted with a third order polynomial calculated by 

the least squares method. The resultant formulae were applied to the results gathered with 

injector 1 and injector 2 at 120bar, and used to predict the additional axial or radial 

penetration as a consequence of the higher injection pressure. Figure 7.39 and Figure 7.40 

show the results from this analysis and the formulae derived are shown in equations 7.8 and 

7.9. 

 

One of the limitations of this method is the best fit does not extrapolate correctly outside of 

the data range provided. If extrapolated, due to the polynomial the penetration will actually 

show a reducing trend after a peak penetration. This is obviously not the case and therefore 

the estimations can only be considered valid up to approximately 2.2ms ASOS. Another 

approximation made is that the effect of increasing injection pressure on injector 3 will be the 

same as seen with the other two other injectors. For improved accuracy, the tests should be 

repeated with injector 1 and 2, and a similar analysis performed for increased prediction 

accuracy. 
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Figure 7.39: Derivation of the additional axial penetration moving from 120bar to 

190bar injection pressure 

 

Figure 7.40: Derivation of the additional radial penetration moving from 120bar to 

190bar injection pressure 

  

y = -32.107x
3
 + 164.9x

2
 - 271.1x + 143.33

-2

-1

0

1

2

3

4

5

1.2 1.4 1.6 1.8 2 2.2

Time after SOS (ms)

A
v

e
ra

g
e

 D
if

fe
re

n
c

e
 i

n
 P

e
n

e
tr

a
ti

o
n

 (
m

m
)

y = -9.9371x
3
 + 50.706x

2
 - 82.756x + 43.099

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.2 1.4 1.6 1.8 2 2.2

Time after SOS (ms)

A
v

e
ra

g
e

 D
if

fe
re

n
c

e
 i

n
 P

e
n

e
tr

a
ti

o
n

 (
m

m
)



Chapter 7 – Results: Pressure Chamber 

 Page 245 
 

SAdditional penetration, axial =  -32.107t3 + 164.9t2 - 271.1t + 143.33    (7.8) 

 

SAdditional penetration, radial =  -9.9371t3 + 50.706t2 - 82.756t + 43.099    (7.9) 

 

 

Therefore the final equations for injectors 1, 2 and 3 to predict axial and radial penetration at 

190bar as a function of backpressure and injection time at low backpressures are: 

 

 

Injector 1 

 

SInjector 1, axial = [(1.492p - 25.779)t2 + (-8.07p + 130.2)t + (7.86p - 122.16)] 

+ [-32.107t3 + 164.9t2 - 271.1t + 143.33]     (7.10) 

 

SInjector 1, radial = [(1.07p - 25.81)t2 + (-4.64p + 123.54)t + (4.72p - 113.32)] 

  + [-9.9371t3 + 50.706t2 - 82.756t + 43.099]     (7.11) 

 

 

Injector 2 

 

SInjector 2, axial = (-2.84p - 10.803)t2+ (6.178p + 83.783)t + (-3.959p - 86.062) 

  + [-32.107t3 + 164.9t2 - 271.1t + 143.33]     (7.12) 

 

 

SInjector 2, radial = (1.347p - 18.026)t2+ (-5.531p + 95.331)t + (-4.917p + 89.448) 

  + [-9.9371t3 + 50.706t2 - 82.756t + 43.099]     (7.13) 

 

 

Injector 3 

 

SInjector 3, axial = (-3.9863p - 3.7324)t2 + (10.33p + 68.953)t + (-7.288p - 77.993) 

  + [-32.107t3 + 164.9t2 - 271.1t + 143.33]     (7.14) 

 

 

SInjector 3, radial = (1.1572p - 12.228)t2 + (-2.941p + 59.953)t + (1.351p - 53.174) 

  + [-9.9371t3 + 50.706t2 - 82.756t + 43.099]     (7.15) 
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To prove the value of the derived equations, the predicted axial penetration for injector 3 was 

compared with results obtained by direct interpolation. Testing was performed at 1 and 2bar 

and 40°C and 60°C and therefore the engine part load condition could be directly 

interpolated for injector 3 only. The part load condition at 120bar was compared with 

equation 7.4 and the part load condition at 190bar was compared with equation 7.14. The 

results from this are shown in Figure 7.41. 

 

 

Figure 7.41: Predicted axial penetration and the directly interpolated axial penetration 

at the part load engine condition 

 

The results show small differences of approximately 1.25mm and around the region of 1.8ms 

but apart from this show good agreement. The directly interpolated results are still an 

approximation and thus neither can be considered anything more than an estimation. 

 

Satisfied with the accuracy of the derived equations, the predicted axial and radial 

penetration for all three injectors at the engine part load condition was extrapolated and the 

results are shown in Figure 7.42 and Figure 7.43. 
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Figure 7.42: Predicted axial penetration for each injector at the engine part load 

condition 

 

 

Figure 7.43: Predicted radial penetration for each injector at the engine part load 

condition 
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7.1.7 Summary 

 

The objective of the preceding sub-section was to investigate three different injectors and to 

form potential reasons for the differences in results seen in the engine environment. The 

results formed and analysed in the previous paragraph will act as a basis for the conclusions 

formed in reference to the emissions issues seen during engine testing. 

 

The engine valve timing used during the engine testing is not known and thus several 

different scenarios are possible and will be commented on. It is known that two or more 

injection events are being used to prevent inlet valve impact when fresh charge is entering 

the cylinder. This would imply that because injection is not occurring during a valve opening 

event, significant spray distortion will not occur, although this is not always true since the air 

within an engine is never quiescent due to piston and valve movements, and in addition to 

this, the injection following the fresh charge entering the cylinder could be subjected to bulk 

air movements both radially and axially (swirl and tumble). Therefore two scenarios are 

considered when analysing the data, especially with respect to the radial component of 

penetration since the axial component can be considered a good approximation regardless 

of spray distortion: 

1. The first injection occurs into almost quiescent charge and thus the radial penetration 

data gathered in the pressure chamber can be considered a good approximation,  

2. The second injection is injected into a moving charge, thus the radial component of 

the data can only be taken as a severe approximation and could be vastly different.  

The potential effect of the charge motion on the data and its influence on the emissions 

problem will also be considered. 

 

From inspection of Figure 7.42, it can be seen that injector 3 has a significantly higher 

predicted axial penetration than both injector 1 and 2 at higher timings, 10mm larger than 

injector 2 and nearly 15mm larger than injector 1 at an injection timing of 2.2ms. The injection 

profile for injector 3 also does not appear to be levelling off like seen with injector 1 and 2. 

This would imply that if the predicted results could be extrapolated further its penetration 

would continue to rise before levelling off.  

 

This testing is based upon is a 1.3 litre 3 cylinder engine. If an assumption is made that the 

engine is square (both bore and stroke are equal) or nearly square, then the bore and stroke 

dimensions can be calculated to be approximately 82mm. If the maximum distance between 

injector and piston crown at Bottom Dead Center (BDC) is 82mm, the spray could easily 
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impact the piston crown. Indeed, injector 3 shows axial penetrations greater than 50mm at 

2.2mm and if the injection duration is continued until 4 or 5ms then piston crown impact is 

possible. Since the new generation of GDI engines are using spray guiding to guide the fuel 

to the spark plug, the piston crown is unlikely to be curve since it is not designed to guide the 

fuel to the spark plug. This would mean that fuel would impact the crown and not be 

deflected upwards, lowering atomisation efficiency and increasing hydrocarbon and soot 

emissions.  

 

The predicted radial penetration at the engine operating conditions is shown in Figure 7.43 

for all three injectors. Injector 1 and 2 show expected results of higher radial penetrations 

due to their increased nozzle plume angle. It appears a 30° increase in plume angle provides 

an increase in radial penetration of between 11-12mm at later injection timings. Injector 1 

shows larger radial penetrations (and smaller axial penetrations at later injection timings) due 

to the difference in nozzle geometry. As mentioned previously, the flat nozzle allows the 

spray to spread out more easily and does not constrain the spray in the same manner as 

injector 2 that has concave nozzle geometry. As the initial spray is more centred around the 

injector axis with injector 2, the initial available surface area for charge entrainment is smaller 

but the increased penetration at later injection timings will mean improved charge utilisation 

and therefore improve the overall charge utilisation and entrainment.  

 

If the bore of the cylinder is in the region of 82mm, with predicted radial penetration of almost 

35mm for injectors 1 and 2 at 2.2ms, longer injection durations of 4 or 5ms could show radial 

penetration large enough for cylinder liner impact. With the instability issues due to charge 

motion seen with injector 3, injector 3 could also see radial penetrations approaching those 

seen with injectors 1 and 2 even though it has a 30° reduction in spray cone angle. The 

increased likelihood of spray distortion with injector 3 could also cause an unexpected inlet 

valve impact if the injection timing was being controlled to a fine degree to miss a valve 

opening event.  

 

As mentioned previously, the plume tips formed with injector 3 are particularly sensitive to 

charge motion, and even in an almost quiescent charge in the pressure chamber, show tip 

deformation. This would indicate that any further increase in bulk air motion within the cell or 

as seen in the cylinder would cause more significant distortion of the tip and suggest that 

injector 3 is more likely to suffer increased spray distortion within the engine. This could 

affect the radial penetration sufficiently that either a cylinder liner or inlet valve impact could 

occur when otherwise not expected, even with the lower radial penetrations when compared 

to injector 1 and 2.  
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The large variations in spray penetration and distribution seen during the engine testing 

could be explained by the large differences seen between the 60° and the 90°cone angle 

injectors (see Figure 7.8 to Figure 7.13), but more predominantly by the effect of charge 

motion and that a more significant effect could be seen with injector 3, when initial thoughts 

would suggest that injectors with larger cone angle would be more affected. 

 

The reduction in emissions seen with a spray-valve impact is not easily understood and the 

actual cause is not possible to be identified with the data gathered during this testing and the 

little information provided of the problem. One idea is that, with a certain injection and valve 

timing, a valve impact is expected. However, with a significant spray distortion the impact is 

not actually occurring, thus not showing the increase in emissions expected.  

 

The data and predictive equations created as a consequence of testing in the pressure 

chamber is also of great use to the development engineer. Using experimental equipment 

like the pressure chamber can provide predictions of how the spray will behave inside an 

engine. The predictions created here can not only be used to establish reasons for poor 

performance issues, it can also be used as a starting point when starting calibration 

development including injection timing, quantity and pressure strategies, and used when 

developing injector features, combustion chamber geometries and valve timing events. 

 

Further to the additional uses of the data commented on above, the data is also of use to the 

research in fuel sprays in general. Our understanding of fuel sprays and the mechanics of 

the atomisation and spray propagation process is still not complete, numerical modelling of 

the whole injection event is not yet possible. Further testing in this field will lead us closer to 

a complete picture of the atomisation process and until this is fully understood the 

combustion process that follows will never be able to be predicted accurately. A thoroughly 

modelled combustion process will ultimately allow us to optimise the internal combustion 

engine. 

 

The difference in penetration due to the intensity contour chosen was analysed initially. It 

was found that assuming there is sufficient light, the intensity contour representing 50% of 

the maximum light intensity provides very similar penetration profile to that seen at 85%. 

Even at later injection timings the maximum difference between intensity profiles is only 

approximately 2.5mm. This suggests that the difference in spray density between 85% and 

50% is little and that either intensity contour could be used to form conclusions of penetration 

depth provided the original light intensity is large enough. 
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The nozzle tip geometry, injector 1 with a flat tip and injector 2 with a concave tip, was shown 

to affect the initial and later parts of the axial penetration profile. The concave tip increased 

the axial penetration in these regions. With respect to the radial penetration profile, the 

concave tip appeared to constrain the spray, reducing the radial penetration. The axial and 

radial penetration with a reduced nozzle cone angle produced predictable results, showing 

reduced radial penetration but increased axial penetration.  

 

The change in spray axial penetration profile with increasing backpressure followed the 

theory. Little difference in penetration is seen at early injection timings due to the penetration 

being largely governed by kinetic energy created by the pressure differential across the 

nozzle tip. The axial penetration then increases but at a reducing rate with increasing charge 

backpressure due to the increased interaction with the charge and the increased 

aerodynamic drag. The radial penetration profile at 2bar did not follow the expected trend, 

the results showing a very similar profile to 1bar backpressure. No in-cell temperature or 

pressure data was available for this test condition and, therefore, it was not possible to 

measure the cell density. The cone angle data did not show the expected trend at early 

injection timings either. This is expected to be due to measurement uncertainties due to 

insufficient light intensity (older xenon flash panel used for this data set).  

 

The temperature analysis proved that at low cell backpressures and with a small temperature 

scale, the change in charge density is small. Therefore the difference in both axial and radial 

penetration seen at the backpressure and temperature values evaluated was small. Points of 

localised flash boiling were found with reduced axial and radial penetration at later injection 

timings. The timing at which flash boiling occurred was found to be dependent on charge 

temperature and backpressure. Increasing the charge temperature increased the likelihood 

of flash boiling occurring, and increasing the charge pressure delayed the timing at which it 

occurred. Analysis of the spray images and cone angle data and showed the injector used 

for this part of the testing (injector 3) suffered from tip deformation due to aerodynamic 

effects, causing quite large variations in axial and radial penetrations when this occurred.  

 

The effect of fuel pressure on the spray penetration showed similar results for both axial and 

radial penetration. Increasing the fuel pressure affect the internal flow, reducing the initial 

axial and radial penetration. Once the spray has exited the nozzle, the larger pressure 

differential causes higher exit velocities and thus increases both the axial and radial 

penetration of the spray.  
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What is believed to be a flash boiling event was noticed during certain parts of the testing. 

Flash boiling appeared to occur with the lighter components being dragged towards the 

injector axis and the movement causing larger drops to follow their path. This caused all six 

plumes to collapse in on each other, and the spray remained in this state for approximately 

10 injections before regaining its original spray/plume structure. Only individual injections 

could be monitored and therefore a single spray collapsing transiently could not be 

monitored, making it difficult to draw conclusions as to why this phenomenon occurred. This 

phenomenon only occurred at the higher charge temperatures of 40°C and 60°C and only for 

the first run after cleaning of the pressure chamber. Flash boiling is considered in detail in the 

next section. 
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7.2  Sub-Atmospheric 

 

This final section deals with the topic of flash boiling of gasoline fuel sprays. As such, it is the 

major contribution to originality in this predominately industrially based work. A brief review of 

the subject of flash boiling in sprays will be given before detailing the experimental work. 

 

Flash-boiling occurs when fuel is injected into a combustion chamber where the ambient 

pressure is lower than the saturation pressure of the fuel. It has been known that flashing is a 

favorable mechanism for atomizing liquid fuels. On the other hand, alternative fuels, such as 

gaseous fuels and oxygenated fuels, have been used to achieve low exhaust emissions in 

recent years. In general, most of these alternative fuels have high volatility and flash-boiling 

takes place easily in the fuel spray when injected into the hot combustion chamber of an 

internal combustion engine under high pressure. Multi-component mixtures of high- and low-

volatility fuels have been considered in previous studies in order to control the spray and 

combustion processes in an internal combustion engine. It was found that the multi-

component fuels produce flash-boiling with an increase in the initial fuel temperature. 

Therefore, it is important to investigate these flash-boiling processes in fuel sprays [98]. 

 

In the Kawano et al. [128] study, sub-models of a flash-boiling spray are constructed. These 

sub-models consider the bubble nucleation, growth, and disruption in the nozzle orifice and 

injected fuel droplets. The model was implemented in KIVA3V and the spray characteristics 

of multi-component fuel with and without flashing are numerically investigated. In addition, 

these numerical results were compared with experimental data obtained in a previous study 

using a constant volume vessel. The flashing spray characteristics from numerical simulation 

qualitatively showed good agreement with the experimental results. In particular, it was 

confirmed from both the numerical and experimental data that flash-boiling effectively 

accelerates the atomisation and vaporisation of fuel droplets. This means that a lean 

homogeneous mixture can be quickly formed using flash-boiling in a combustion chamber.  

The flash boiling or flash vaporisation is a thermodynamic instability of a liquid jet that occurs 

under superheated conditions. As the pressure of an accelerated liquid goes below its 

saturation value, a metastable state is reached and then a rapid boiling of the liquid might 

occur. It must be underlined that cavitation is a particular form of evaporation which differs 

from fuel flash boiling. The difference is that flashing is thermodynamically driven while 

cavitation is mechanically driven. In flashing the fuel enters a nozzle (or an orifice) already in 

superheated conditions with respect to discharge pressure. Furthermore, the vapour bubble 

density is much higher in flashing than in cavitation because of the larger pressure at which 

evaporation occurs. The evaporation rate during flashing can be in turn affected by cavitation 
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since the latter makes available a liquid-vapour interface which greatly promotes the vapour 

bubble growth. This process can also occur during liquid fuel injection in internal combustion 

reciprocating engines. In both gasoline port fuel injection and direct injection engines, the 

liquid fuel might be injected into a gaseous ambient (port or cylinder) whose pressure is 

below the saturation pressure of one of the fuel blending components at the local 

temperature. This results in flash boiling of the fuel [107]. 

 

 

Figure 7.44: N-Heptane and Iso-Octane saturation vapour pressure vs temperature [129] 

 

The saturation curves for single component fuels N-Heptane and Iso-Octane for the range of 

temperature of interest in spark ignition engines are presented in Figure 7.44: N-Heptane 

and Iso-Octane saturation vapour pressure vs temperature. It can be easily noted that a 

liquid fuel injected at a temperature of 50°C will likely undergo flashing if the ambient (port or 

cylinder) pressure is below its saturation vapour pressure, i.e., 0.2 bar. At 100°C flash boiling 

can occur at ambient pressure. 

  

0

0,2

0,4

0,6

0,8

1

1,2

20 30 40 50 60 70 80 90 100

V

a

p

o

u

r

P

r

e

s

s

u

r

e
(

b

a

r)

Temperature (°C)

Saturation Vapour Pressure vs Temperature

N-Heptane Iso-Octane



Chapter 7 – Results: Pressure Chamber 

 Page 255 
 

The superheated condition of liquid fuel is the result of the combination of: the fuel 

temperature increase in high pressure pump GDI system, the heat exchange between 

injector and cylinder head, and a low discharge pressure.  

It has been recognised that flash boiling may greatly affect the fuel-air mixing process 

because it modifies: 

A. The initial liquid droplets‟ diameter; 

B. The evaporation rate, mainly outside the nozzle; 

C. The liquid and vapour penetration; 

 

Experimental images of the influence of superheating degree on the spray shape of a 6-hole 

multi-stream injector are shown in Figure 7.45 [87]. 

 

 

 

 

Figure 7.45: Effect of backpressure and fuel temperature on flashing in GDI multi-hole 

spray [87] 

  

In
c
re

a
s
in

g
 T

e
m

p
e
ra

tu
re

 a
n
d

 D
e
c
re

a
s
in

g
 P

re
s
s
u
re

 

G
re

a
te

r a
ffe

c
t o

f F
la

s
h
 B

o
ilin

g
 



Chapter 7 – Results: Pressure Chamber 

 Page 256 
 

In both types of gasoline injection systems (i.e., GDI and PFI), the spray targeting is a 

fundamental step to achieve the best engine efficiency in terms of minimisation of fuel 

consumption, raw gas emission, and lubricant contamination with fuel. Thus, fuel flashing 

investigation and modelling are mandatory for achieving an optimised spray targeting. 

Bianchi et al. paper focuses on the modeling topic. In particular, the emphasis is on the 

development of a 1D code able to provide basic information on nozzle flow condition of a 

superheated fuel and to provide correct initial condition for 3D CFD spray simulations for the 

prediction of the mixture formation. The latter calculations need the accurate initialisation of 

liquid spray otherwise they provide misinterpreting results. It must be noted that a 1D model 

can also provide information on the effect of different parameters (fluid type, injection 

pressure, superheating degree) on liquid characteristics at nozzle exit [107]. 

 

According to experimental results from Bianchi et al. [107], it can be concluded that 

depending on fuel composition, superheating degree, cavitation intensity, hydrodynamic 

condition and injector shape, a liquid jet undergoing a sudden expansion quickly evaporates 

if the local pressure goes below the saturation pressure. As a result the mass flow rate 

remains chocked for any change in downstream pressure and an effervescent atomisation 

might also occur. Depending on the combination of the above mentioned parameters, two 

main regimes can be identified: 

1. external flashing with surface evaporation at nozzle exit 

2. internal flashing with effervescent atomisation at nozzle exit. 

 

The first regime is likely occurring at low injection pressure (i.e. below 4 MPa) and/or in 

relatively very short nozzles or orifices. The second regime occurs at high injection pressure 

as those typical of GDI injection system. 

Focusing the attention on GDI injection systems, the high turbulence levels in the nozzle flow 

perturbs strongly the vapour bubbles at their interface, thus contributing to an effervescent 

atomisation just outside the nozzle according to experimental evidence { [130], [131]}. It must 

be outlined that the effect of turbulence in atomising the liquid jet has been strongly 

enhanced by both the reach of a free surface condition at liquid jet surface { [132], [133]} and 

also by the presence of gaseous bubbles in the liquid core. The latter provide a free-surface 

interface which can be deformed by the turbulence energy at the corresponding scales. The 

newly atomised droplet will likely be in superheated conditions with respect to ambient 

pressure and contain vapour bubbles whose growth then causes the liquid droplet 

disintegration. 
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The main processes governing the dynamics of a superheated liquid fuel with a focus on a 

cylindrical nozzle typical of GDI multi-hole injectors are summarised in Figure 7.46. 

 

Figure 7.46: Schematic review of the physics involved in the flash boiling of a liquid 

issuing from nozzle [107] 

 

7.2.1 Experimental Configuration 

 

In this section the effect of flash boiling on liquid break-up and atomisation is described in 

detail for two multi-stream gasoline direct injectors operating, with RON-95 gasoline and a 

fuel injection duration of 0.8 ms, into sub-atmospheric pressures between 1 and 0.1bar and 

temperatures between 20°C and 100°C. Both multi-stream injectors were supplied by 

Continental, one with a nominal external cone angle of 60° and a static flow rate of 18mm3/s 

at 120bar and the other, with a nominal external cone angle of 90°, had a static flow rate of 

12mm3/s at 120bar. The 60° injector was tested at 120 and 200bar and the 90° injector at 

120 and 180bar. The difference in upper limits was due to the maximum permissible fuel 

injection pressure for each injector. The high pressure fuel supply to the injector was 

achieved by two fuel pumps, the first, a low pressure pump mounted inside the fuel tank 

which supplied fuel at 3.5bar to the second, an external high pressure pump, which could 

operate at up to 200bar. The fuel output pressure to the injector was regulated by an 

adjustable pressure relief valve which returned the fuel spill to the fuel tank. 

The injectors were fitted into the constant volume chamber with three windows for optical 

access. The pressure inside the chamber could be varied from 0.1bar to 10bar. A Buchi 

V700 vacuum pump was used to achieve the sub atmospheric pressure range while a 

nitrogen cylinder was used to pressurise the chamber up to 10bar. The chamber had two 

electro-actuated valves, an inlet valve linked to the pressure release valve of a nitrogen 
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cylinder and an outlet valve linked to a vacuum pump which was connected to an exhaust 

extractor. A pressure sensor was used to monitor the pressure inside the chamber. 

 

The insulated chamber sits on top of a heating plate with a temperature control and an 

operating range between 20°C and 100°C. Considering the low injection repetition rate of 

1Hz and the low fuel quantity injected during the 0.8ms injection duration, nominally 10 and 7 

mg per shot for the 60° and 90° injectors respectively, it was assumed that conductive heat 

transfer through the injector was the main physical process affecting the temperature of the 

fuel injected into the chamber. Hence injector temperature was equal to the temperature of 

the chamber. A thermocouple measured the temperature of the gas in the chamber and 

displayed this information on a control interface and which was also used to determine the 

required power to the heating plate. The experimental setup is described with more details in 

chapter 4. 

Mie imaging was performed with a 12 bit PCO CCD camera (1280 by 1024 pixels resolution) 

mounted in front of the optical access of the chamber and a xenon flash panel mounted in 

front of the opposite optical access. A pulse timing box was used to control the pulse width of 

the injection signal and the timing of the xenon flash panel and the camera relative to the 

start of the injection signal.  This allowed images to be captured at different stages of the fuel 

spray development.  The collected images are displayed on a PC running PCO CamWare 

software, which saved the images for post-processing. 

 

Work carried out by Gebhard [97] investigated the effects of length to diameter ratio of a 

steel nozzle using water and found that for l/d < 3, there is no internal flash boiling inside the 

nozzle. Sato et al. [134] performed a similar study, also using water, and reported that the 

spray characteristic was not affected by bubble nucleation in nozzle orifice if the orifice length 

to orifice diameter ratio l/d was less than 7. The injectors used in this study have a ratio l/d < 

2.5. However, due to the differences in the type of injector and fuel used we can not assume 

anything about the occurrence of flash boiling inside the nozzle of the injectors used in our 

study. 
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7.2.2 Qualitative Analysis 

 

A qualitative analysis of the images was first undertaken to highlight the significant changes 

and phenomena visible in the spray images as the degree of superheat is increased.  An 

overview of these changes for the side and plan view spray images are described in Table 

7.5 for the 60° cone angle injector. These phenomena are also visible with the 90° cone 

angle injector but, with a greater separation of the streams, the effects of flash boiling on the 

spray are somewhat reduced. 

The main phenomena seen are: 

 Collapse of streams towards centre of spray and the creation of a "tulip" envelope. 

 Formation of recirculation zones. 

 Reduction in spray density. 

 Apparent re-orientation of spray streams. 

Table 7.5: Spray pattern evolution with reduction in cell pressure. 60° cone angle 

injector, 120bar Fuel @ 60°C, 2ms ASOS 

0.969bar 

Individual streams are  

clearly distinguishable 

  

0.9bar 

 

  

0.8bar 

  

0.7bar 
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0.6bar 

Up to here only obvious  

changes are increases in stream 

penetration, width and interaction 

with a decrease in spray angle  

  

0.5bar 

Spray tip vortices forming on  
plume tips and spray is becoming 
more curved as it collapses inwards. 
Plan view image shows presence of  
spray in between streams 

  

0.4bar 

Spray takes on "tulip" shape  

and vortices become even clearer.  

Plan view image shows  

interstitial streams developing  

in between main streams   

0.3bar 

"Tulip" shape is narrower and  

penetration is increased.  

Original streams barely 

visible as interstitial streams   

dominate.  

Appears as if spray has rotated  
  

0.2bar 

Spray collapses with central core   

surrounded by a fine cloud of  

spray.   

Spray width increases at the tip.  

Original streams have 

disappeared and interstitial 

streams continue to grow 

  

0.1bar 

Spray width increases but density 

reduces. 

New streams visible between 

interstitial streams. 

Are mainstreams reappearing 

or is there interaction 

between interstitial streams? 
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The spray developments for chamber pressures from 0.969 to 0.3bar at a fixed temperature 

of 60°C are shown in Table 7.5. As the pressure is reduced the individual spray streams 

collapse inwards towards the spray axis. At 0.4bar the side image shows the individual spray 

streams are indistinguishable and the spray has formed a tulip shape, with recirculation 

zones around the stream tips. This is very similar to the spray shapes seen by Zhao et al. [2] 

and Reitz [103] with a pressure-swirl injector when the ambient pressure is increased. As the 

cell pressure is further reduced, to 0.2bar, the spray width increases and a cloud of fine 

spray can be seen surrounding the main spray body. The spray width is further increased as 

ambient pressure is reduced to 0.1bar.  At the same time a reduction in spray density is 

observed, suggesting that an increased proportion of the spray from the injector has 

vapourised due to flash boiling. 

 

Research on spray formation from pressure-swirl injectors has attempted to explain the 

reasons behind spray collapse. Work carried out by Delay et al [135] using fluorescent 

particle image velocimetry showed that interaction between the spray and the surrounding air 

caused the formation of vortices on both the inside and the outside of the spray cone. The 

inner vortex was seen to pull in air from the outside of the cone and this dragged relatively 

small droplets with it, causing the edge of the spray to curve and eventually collapse.  Similar 

work, using the phase Doppler technique was carried out by Allocca et al. [136] and the 

same phenomenon was observed. A recirculation zone is clearly visible around the spray tip 

for the 0.5 and 0.4bar images in Table 7.5. It is likely that the same aerodynamic effects are 

responsible for the recirculation in each case, and the collapsed stream recirculation is the 

result of the individual recirculation zones interacting as the streams collapse inwards. The 

recirculation zones themselves are due to aerodynamic interaction between the fuel spray 

and the surrounding air. This is the same mechanism responsible for spray collapse, but in 

this case the outer vortex causes the observed effect [2]. 

 

The plan view images for 0.5 to 0.3bar in Table 7.5 show an apparent rotation of the spray 

streams about the injector axis. Inspection of the 0.5bar image shows that there is no 

physical rotation of the spray, rather, additional interstitial streams develop between the main 

streams and the main streams themselves disperse, as observed by Dahlander [87]. Once 

the pressure has reached 0.2bar, the original streams are almost invisible and the interstitial 

streams dominate the spray. As the pressure is further reduced these streams extend in the 

radial direction and increase in width. It is also noticed at 0.1bar that more streams grow in 

between the interstitial streams. The presence of spray between the main streams is due to 

the interaction between individual streams as the spray collapses inwards. This interaction, 

which can be classified by the distance at which the individual streams are joined, increases 
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with increasing superheat, as seen in the side images in Table 7.5. A further contributory 

factor to the interaction between streams is, again, the formation of vortices due to 

aerodynamic interaction between the fuel spray and the surrounding air. Whereas in a 

pressure-swirl injector toroidal vortices form on the inside and outside of the cone (see 

Figure 7.47: Pressure-swirl atomiser: mechanisms of spray/air interactions when increasing 

the ambient pressure), in a multi-hole injector the vortices form around each spray stream. 

This leads to interaction between neighbouring streams as the vortices transport droplets 

from one stream to another. This transfer increases as the level of flash boiling increases. 

Therefore, the increased visible stream interaction with increased degree of superheat is 

likely to be due to a combination of the individual streams being bent inwards and the 

individual streams interacting with one another due to the interaction of the vortices.  

 

 

Figure 7.47: Pressure-swirl atomiser: mechanisms of spray/air interactions when 

increasing the ambient pressure [137] 
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7.2.3 Quantitative Analysis 

 

The image processing technique detailed in Figure 7.48 allows simple quantification of the 

spray cone angle and axial penetration. The 50% intensity contours have been used to 

identify the spray boundaries with cone angle measured at 20mm downstream from the 

nozzle. All the quantitative data presented in this section can be used to further develop the 

IMPACT tool presented in Chapter 5. 

Figure 7.48: Image processing technique 

 

7.2.3.1 Spray Characteristics - Chamber Pressure 

 

Varying the ambient pressure in the chamber alters the fuel's boiling point and, as a result, 

changes the degree of superheat. This affects the spray penetration, cone angle, and the 

shape of the spray. It can be seen in Figure 7.49 that as pressure is reduced and the degree 

of superheat of the fuel increases it has the effect of increasing the spray angle. These 

increases are greatest below approximately 0.3bar ambient pressure. Spray width decreases 

further downstream as the spray collapses inwards on itself, creating a curved spray profile 

(see Table 7.5). 

Raw Image 

 

Mean of 10 raw images 

 

Mean image with background 

subtraction and invertion 

 

Coloured iso-contours show axial 

Penetration and cone angle 

 



Chapter 7 – Results: Pressure Chamber 

 Page 264 
 

 

 

Figure 7.49: Spray angle comparison for ambient pressure variation. 60° cone angle 

injector, 120bar Fuel, 2ms ASOS 

 

 

Figure 7.50: Penetration comparison for ambient pressure variation. 60° cone angle 

injector, 120bar Fuel, 2ms ASOS 
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The spread of spray angles over the temperature range is greatest further from the injector 

tip, particularly at ambient pressures close to 1.0bar. The spray angle for 20°C fuel 

temperature is relatively stable compared to the other fuel temperatures as pressure is 

decreased, and in fact decreases only slightly from 0.3 to 0.1bar at 20mm downstream, 

which appears to be the opposite behaviour to the general trend. Spray angles are lower for 

higher fuel temperatures.  

 

The penetration data displayed in Figure 7.50 show an increase in penetration as ambient 

pressure is decreased mainly due to the reduced air density causing less aerodynamic 

resistance to the spray. The higher the temperature of the spray then the greater the 

penetration as pressure is reduced. This is particularly noticeable at 2.0ms ASOS, where it 

can be seen that the 100°C spray begins to increase in penetration immediately as pressure 

is reduced, whilst the 20°C spray remains relatively unchanged until the chamber pressure is 

reduced to 0.2bar. The penetration for 60°C and 100°C fuel temperatures extended beyond 

the viewing window of the chamber as pressure was reduced. 

 

7.2.3.2 Spray Characteristics - Chamber Temperature 

 

Increasing the temperature of the fuel is another way of increasing the degree of superheat 

of the fuel as it is injected into the chamber. The trends for changes in spray angle and 

penetration due to temperature are shown in Figure 7.51 andFigure 7.52. Data for spray 

angle, Figure 7.51, are not shown between 0.9 and 0.6bar as there is very little change. The 

trends, as temperature is increased, vary for different ambient pressures. The spray angle 

increases with temperature for low ambient pressures but decreases with temperature for 

higher ambient pressures. In all cases, the spread of spray angles over the pressure range 

increased at higher temperatures, suggesting that spray was affected to a greater extent at 

the extremes of pressure. Also, the spray width reduced further from the injector tip, showing 

that the spray boundary was curved as it collapsed inwards. Spray angle was greater for 

lower pressures at all conditions but with two exceptions. At 0.96bar ambient pressure and 

20mm downstream, the decrease in angle with increase in fuel temperature was lower than 

that for 0.5bar between 60 and 80°C, resulting in the higher pressure condition having a 

greater spray angle. This trend changed at 100°C and the 0.96bar conditions followed the 

general trend of reduced spray angle at higher ambient pressure. 
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Figure 7.51: Spray angle comparison for fuel temperature variation. 60° cone angle 

injector, 120bar Fuel, 2ms ASOS 

 

 

Figure 7.52: Penetration comparison for fuel temperature variation. 60° cone angle 

injector, 120bar Fuel, 2ms ASOS 
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Spray penetration data are shown in Figure 7.52. The general trend is for increased 

penetration as fuel temperature is increased and the spread of penetration values also 

increases with temperature. There are, however, several exceptions to this general rule. 

There was a decrease in penetration between 60°C and 80°C before an increase between 

80°C and 100°C for pressure conditions from 0.7 to 0.96bar.  

Due to the limited diameter of the viewing window the spray tip was out of range for the 

lowest chamber pressure conditions. This was due to the original choice of a 2ms ASOS 

image time and a much reduced aerodynamic drag on the spray causing maximum 

penetration. An interesting point is that the penetration for 0.1bar went off the scale at 60°C, 

returned at 80°C and then left again at 100°C whereas for the other pressure conditions 

there was no return once the spray tip was out of range. 

The increase in penetration with increased temperature is most likely a result of the change 

in shape of the spray. As temperature is increased, the intensity of flash boiling increases 

and causes the fuel spray to collapse. This collapsed spray has liquid fuel more concentrated 

on the spray axis and, as such, has a reduced aerodynamic drag relative to spray with six 

individual streams. 

 

7.2.3.3 Spray Characteristics - Fuel Pressure 

 

Higher fuel pressures increase the spray velocity as it exits the injector nozzle which affects 

droplet break-up and atomisation by altering the Weber number. 

 

Spray angle data, Figure 7.53, show that in general, higher fuel pressures give increased 

spray angles. This is likely to be due to the increased pressure differential between the fuel 

and the atmosphere causing increased break-up and atomisation generating smaller droplets 

which are more susceptible to the aerodynamic conditions in the chamber. The trends for 

both fuel pressures are similar but this similarity is reduced at lower ambient pressures, for 

example, the 20°C-120bar data show a reduction in spray angle between 0.3 and 0.1bar 

whereas the general trend is for an increase. 
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Figure 7.53: Spray angle comparison for fuel pressure variation. 60° cone angle 

injector, 2ms ASOS, 20mm downstream 

 

 

Figure 7.54: Penetration comparison for fuel pressure variation. 60° cone angle 

injector, 2ms ASOS 

 

20

40

60

0 0,2 0,4 0,6 0,8 1

S
p

ra
y
 A

n
g

le
 (

°)

Chamber Pressure (bar)

20°C, 120bar 60°C, 120bar 80°C, 120bar

100°C, 120bar 20°C, 200bar 60°C, 200bar

80°C, 200bar 100°C, 200bar

20

25

30

35

40

45

50

55

60

0 0,2 0,4 0,6 0,8 1

P
e
n

e
tr

a
ti

o
n

 (
m

m
)

Chamber Pressure (bar)

20°C, 120bar 60°C, 120bar 80°C, 120bar

100°C, 120bar 20°C, 200bar 60°C, 200bar

80°C, 200bar 100°C, 200bar



Chapter 7 – Results: Pressure Chamber 

 Page 269 
 

Fuel penetration data are shown in Figure 7.54. Higher fuel supply pressures give increased 

penetration due to the increase in velocity of the fuel droplets as they leave the injector. 

Once again the trends are very similar regardless of fuel pressure. 

 

7.2.3.4 Fuel Comparison 

 

Gasoline and E22 fuels were tested to investigate how fuel properties affect flash boiling. 

Spray angle data are shown in Figure 7.56. E22 and gasoline present very similar trends at 

20 and 40°C. Spray angle obtained with E22 becomes larger than the one obtained with 

gasoline at 60°C with the greatest variation seen at 100°C fuel temperature. Penetration data 

are shown in Figure 7.57. It is clear that E22 has lower spray penetration than gasoline over 

the entire ambient pressure range, with the exception of 100°C fuel temperature, 0.96bar 

ambient pressure at 2.0ms ASOS. E22 shows the same general trends as gasoline of 

increased penetration with a decrease in ambient pressure and an increase in fuel 

temperature. 

 

 

Figure 7.55: In Reid vapour pressure profile for gasoline-ethanol fuel blends [138] 
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Figure 7.56: Spray angle comparison for fuel type variation. 60° cone angle injector, 

120bar injection pressure, 2.0ms ASOS, 20mm downstream 

 

 

Figure 7.57: Penetration comparison for fuel type variation. 60° cone angle injector, 

120bar injection pressure, 2.0ms ASOS 
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7.2.3.5 Injector Comparison 

 

To investigate whether a change in nozzle geometry and spray pattern would lead to a 

variation in spray characteristics two injectors were tested, one with a nominal cone angle of 

60° and the other with a nominal cone angle of 90°. As expected, it can be observed in Table 

7.6 that the 90° injector, with its increased cone angle, has a reduced axial penetration 

relative to the 60° injector. For the images shown at 0.3bar, the 60° injector spray is fully 

collapsed whereas for the 90° injector spray streams are just beginning to turn inwards. This 

demonstrates that the spray from the 60° injector is collapsing earlier than the 90° injector as 

the chamber pressure is decreased. This is due to the fact that as the spray streams for the 

60° injector are closer together they interact more with each other and start collapsing with a 

lower degree of superheat 

 

Table 7.6: Spray pattern evolution. Injector comparison-120bar FP-60°C-2ms ASOS 

 60° cone angle injector 90° cone angle injector 

0.6bar 

  

0.3bar 
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0.1bar 

  

 

In Table 7.6, it can also be noticed that, as the chamber pressure is reduced further, the 

variation in penetration for the 90° injector spray is smaller than for the 60° injector. As a 

consequence the tulip shape is wider for the 90° injector. These observations have also been 

made as the fuel temperature is increased. This suggests that for injectors with large spray 

stream angles the fuel spray penetration is more robust to increases in the degree of 

superheat. 

 

 

Note: More detailed image tables for the 60° and 90° cone angle injectors obtained with E22 

are available in Appendix J. 
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7.2.4 Summary 

 

The flash boiling effects on spray evolution has been described for two multi-stream gasoline 

direct injectors operating with RON-95 gasoline at 120 bar and 200 bar pressure with fuel 

injection into sub- atmospheric pressures between 1 and 0.1bar and temperatures between 

20°C and 100°C.  

The general trend is that as the degree of superheat is increased, through either fuel 

temperature increase or ambient pressure decrease, the individual spray streams collapse 

inwards towards the injector axis, thereby reducing the diameter of the spray footprint. Once 

fully collapsed, the individual streams are no longer visible, but, as the degree of superheat is 

further increased interstitial streams become visible between the main stream locations. 

These then grow away from the injector axis in the radial direction, resulting in the diameter 

of the spray footprint increasing. These trends were also visible over the range of 

temperatures studied at a fixed pressure. This suggests that the mechanisms behind the 

spray changes relies on a combination of both temperature and pressure as regards boiling 

point of the fuel. 

The dependence of the flash boiling on both temperature and pressure for a multi-component 

fuel is highly complex. However, this level of complexity is likely to increase as gasoline-

alcohol blends become more common place in fuel spray studies. In the mean time an 

analysis of sprays with single component fuels with a range of boiling points representative of 

the range found for gasoline, like iso-octane or n-heptane, should help reducing the 

complexity of the flash-boiling study. 

 

The results found are difficult to describe concisely due to the complex nature of the 

superheat effects. The following summary is therefore based on general trends. 

 

Table 7.7: Results summary 

Variable Spray Angle Penetration 

Ambient pressure 

decrease 

Increased Increased 

Fuel temperature increase Increased Increased 

Fuel pressure increase Increased Increased 

Fuel type Greatest with E22 Greatest with gasoline 

Injector type Greatest with Hotfire 90° Greatest with Lotus 60° 
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The results suggest that the degree of superheat is determined by a combination of ambient 

pressure, fuel temperature, fuel pressure and fuel chemical properties. The injector type, 

defined by the spacing of the individual spray plumes, determines the necessary degree of 

superheat to cause flash boiling. This makes predicting the onset of flash boiling difficult as it 

depends on many variables. 
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8. Conclusions and Recommendations for Future Work 

 

8.1 Summary 

 

Table 8.1: Summary of available data 

Injector Type 

Present Investigation 

Pressure Swirl Multi-Stream 

Ambient Pressure Atmospheric 0.1bar to 10bar 

Fuel Pressure 120bar 120bar and 190bar 

Fuel Temperature Atmospheric 20°C to 100°C 

Fuel Type Gasoline 

E25 

Iso-Octane 

N-Heptane 

Exxsol 

Stoddard 

Gasoline 

E22 

Iso-Octane 

N-Heptane 

 

Cone Angle 90° 60° and 90° 

Injection Duration (Pulse 

Width) 

2ms to 5ms 2ms 

Injector Type  Single Central Hole 3-Hole 

6-Hole (Symmetrical) 

Penetration Available for all operating 

conditions 

Available for all operating 

conditions 

Mean Velocity Axial and Radial Axial and Radial 

(atmospheric conditions 

only) 

Mean Drop Size D10 and D32 D10 and D32 (atmospheric 

conditions only) 

Flash Boiling No Yes 
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8.1.1 IMPACT Tool 

 

One source of engine emissions in GDI engines is due to the unintended spray impact on 

either piston, cylinder liner, intake valve or spark plug. An impact causes a cooling of the 

spray, reducing vaporisation and causing the air-fuel mixture to be burnt rich, increasing 

particulate and hydrocarbon emissions. The direction and penetration velocity of a spray can 

be determined to produce an empirical model for the spray morphology, which, in conjunction 

with the time varying engine geometry can be used to determine the probability of the spray 

impacting on the engine valves, liner or piston. Contact with the intake valve can occur if the 

valve movement intercepts the spray, although this is very time dependent and various valve 

timing and fuel injection strategies are employed to prevent any impact. Contact with any of 

the three geometries can occur if the spray is distorted due to in-cylinder airflow. The inlet 

valve timing and lift profile can therefore be very influential on the spray structure itself.  

 

Stansfield et al. [82] investigated the difference in results gathered with three different spray 

measurement mediums; an atmospheric bench, a pressure chamber and an optical engine, 

with a view of quantifying the validity of using less representative measurement methods (the 

atmospheric spray bench and the pressure chamber) to investigate spray characteristics. 

One key aspect of their work was that even with significant spray distortion due to intake 

charge entering the cylinder, the spray axial penetration was similar to that seen when the 

intake valve timing prevented charge entering the cylinder during injection. It was also 

reported that a good approximation of the axial penetration was achieved when the same 

conditions were generated in the pressure chamber, thus proving that the pressure chamber 

could be used to predict in-cylinder spray penetration characteristics.  

 

Therefore the penetration and cone angle data obtained in the pressure chamber can be 

used in the IMPACT tool to provide, for specific multi-hole injectors and under a range of 

engine relevant thermodynamic conditions for which plume to plume interaction and flash 

boiling can be neglected, a very useful approximation of the spray impact inside the 

combustion chamber. 
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8.1.2 Plume to Plume Interactions 

 

The second part of the experimental work was set to investigate the possibility of interactions 

found due to the close location of plumes within multi-hole injectors. Comparison of different 

injector designs has shown that droplets within plumes of multi-hole injectors can be affected 

by the proximity of other plumes. Droplets on the inside edge of a plume have a greater axial 

velocity (velocity along the injector axis) than those found on the outside for the injectors that 

have closely located plumes. Drop diameters are also different on the side of plumes 

interacting with other plumes and this becomes less prominent with a greater cone angle of 

the injector. Plumes that are closer together create a distortion such that the spray is no 

longer symmetrical around its axis, whereas, as the plumes become more distant each 

plume tends to be more symmetrical as if the plumes were separate, i.e. approaching single 

jets. 

 

Phase Doppler Anemometry was used to measure the droplet diameters and two directions 

of droplet velocity at locations around the injectors. Three different multi-hole injectors were 

used for the investigation each having plumes at different distances apart. A six-hole injector 

with a cone angle of 60° had the smallest distance between plumes, while a second six-hole 

injector had a 90° cone angle. A third injector with three holes 120 degrees apart with a cone 

angle of 90° was also used. Phase Doppler Anemometry is a highly detailed measurement 

technique that has a very small measurement volume. The areas of the injector sprays that 

were of greatest importance were used for the analysis and these were composed through 

two different types of scans; a radial and a circumferential scan. The radial scan was 

performed at locations from the spray centre line outwards through the axis of a plume to the 

outer edge of the plume and the circumferential scan was performed at points around the 

injector at constant distance equal to that of the plume centre. Both of the scans were 

performed at three different distances from the injector nozzle; 20mm, 40mm and 60mm. 

 

At 20mm below the injector nozzle, when comparing the axial velocities of the six-hole 60° 

cone angle injector at equal distances on the inside and outside of plume, they were found to 

be higher on the inside. Further away from the nozzle the results showed further contrast 

with axial velocity on the outside of the plume initially being higher, but as the spray develops 

the velocity on the inside sharply increases. The same measurements on the six-hole 90° 

cone angle injector also showed an increase in velocities on the inside of the plume but not 

as sharp as for the injector with the smaller cone angle. The velocities for the third injector; 

the three-hole 90° cone angle injector showed symmetry around the plume centre. As the 
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axial velocity on the inside of the plume increased as the distance between plumes 

decreased it is clear that this was an effect of the plume interaction. 

 

When using the radial scan to measure droplet diameters a similar trend to the axial velocity 

was found. The average droplet arithmetic mean diameter D10 for the six-hole 60° cone angle 

injector was 5µm at 2mm from the plume centre on the outside and increased through to 

10µm at 2mm on the inside. An increase in diameter from the outside to the inside is seen at 

20, 40 and 60mm below the injector nozzle but the difference is less prominent the further 

away. This increase in diameter is also seen at 20mm for the six-hole 90° cone angle injector 

but this was also less prominent than the smaller cone angle injector. The three-hole 90° 

cone angle injector does not show this trend as its droplet diameters are relatively 

symmetrical at either side of the plume centre. 

 

The radial scan shows that multi-hole injectors with plumes that are close together create 

interactions changing the distribution of the fuel in the plumes in terms of axial velocity and 

droplet diameter. The six-hole 60° cone angle injector shows interaction on the plume inside 

edge at the three vertical heights, the six-hole 90° cone angle injector shows interaction at 

20mm only while the three-hole 90° cone angle injector appears symmetrical at all vertical 

locations. 

 

The circumferential scans were used to provide further information about plume interaction 

within the three injectors. When comparing the two six-hole injectors, the velocities between 

the plumes on the circumferential scan were found to be different. At all vertical heights the 

90° cone angle injector‟s velocities showed no fuel between the plumes. However, the 60° 

cone angle injector showed varied results. At 20mm below the injector nozzle the droplets 

between the plumes on average had a negative radial velocity, showing air entrainment into 

the centre of the spray. At 40mm the radial and axial velocity components show that the 

drops are moving away from the plume towards the outside of the spray. This is due to the 

spray front causing a vortex at the sides of the spray along with pressure differences created 

as the spray from injectors with small cone angle force the ambient air away. There are likely 

to be different directions of velocities found in between the plumes for the 60° cone angle 

injector if measurements were taken at further vertical heights. The circumferential scans for 

the six-hole 90° cone angle injector and three-hole 90° cone angle injector showed 

symmetrical results once the degree movement went beyond the plume attenuation but no 

sign of plume interaction through air entrainment was found even at 20mm below the injector 

nozzle. 
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Overall it was found that the distance between plumes affects the amount of interaction. The 

injector with the smallest cone angle showed plume interaction effects on droplet size and 

velocities at all three vertical heights, the six-hole injector with the wider cone angle showed 

slight interaction at 20mm but little further away from the nozzle. The three-hole injector 

showed no signs of plume interaction behaving symmetrically as though it was three 

separate plumes. 

 

The performance of GDI engines is highly dependent on fuel spray development. The main 

requirements are: 

 Small droplet size (D32 less than 20μm) to ensure all fuel is vaporised prior to ignition. 

 High air utilisation to enable maximum power output. 

 No spray impingement for reduced HC emissions and improved fuel economy. 

 

Thus, the characteristics of the injector must be matched to the combustion chamber during 

engine development to ensure maximum benefits are attained from the GDI system. The 

spray characterisation work has led to empirical relationships that when incorporated into the 

targeting tool IMPACT will play a major role in helping the development engineers to tailor 

injection systems to specific combustion systems. 
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8.1.3 Flash Boiling 

 

When a hot engine is running at idle, fuel which has been warmed via conduction of heat 

from the cylinder head can be injected into a low pressure environment. If the ambient 

pressure in the cylinder is lower than the saturation pressure of the fuel at that temperature 

then flash boiling can occur. Flash boiling has been found to significantly alter the shape of 

the fuel spray, therefore consideration must be given to the behaviour of flash boiling sprays 

if an engine is likely to create these conditions. 

 

Flash boiling reduces droplet size and increases vaporisation and therefore has potential to 

reduce engine-out HC emissions and improve fuel economy as an increased percentage of 

fuel injected will undergo combustion. At the same time, penetration and spray angle are 

increased, leading to the possibility of spray impingement on the cylinder walls which has 

potential to increase engine-out HC emissions as fuel is captured by the cylinder wall oil film 

and released during the exhaust stroke. The increase in penetration is very unlikely to cause 

a problem with impingement on the piston crown as flash boiling conditions are created 

during the intake stroke, when the piston is moving away from the injector. To ensure flash 

boiling does not cause increased emissions it is necessary to carefully control the injector 

positioning and tip design to limit the possibility of fuel spray impingement. 

 

There are several factors which have been investigated and found to affect flash boiling: 

 Ambient pressure 

 Fuel temperature 

 Fuel chemical composition 

 Fuel pressure 

 Injector tip configuration 

The first three factors in the list affect the degree of superheat of the fuel as it is injected into 

the cylinder. A fuel‟s boiling point is reduced with a reduction in ambient pressure. As the fuel 

temperature is increased inside the injector, this boiling point can be far surpassed, 

particularly if the ambient pressure in the pressure chamber is very low. The short duration of 

the injection process is such that no heat energy is lost via conduction to the surrounding 

gas. The combination of the temperature and injection duration effects raises the degree of 

superheat when fuel is injected from the high pressure condition inside the injector to the low 

pressure condition inside the pressure chamber. The fuel boiling point is also dependent on 

the chemical composition of the fuel. By definition, a fuel with a relatively low boiling point will 
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have a higher degree of superheat than a fuel with a relatively high boiling point under the 

same atmospheric conditions. The effects are complicated in the case of multi-component 

fuels where some components reach their boiling point at lower temperatures than others. 

Increased fuel pressure increases the exit velocity of fuel from the injector. This increases 

the aerodynamic shear forces on the fuel droplets and encourages droplet break-up. This 

directly affects spray development, but is not related to flash boiling. It is possible that this 

droplet break-up affects the intensity of flash boiling but the results are inconclusive and 

more work needs to be done to fully understand the effects of fuel pressure on flash boiling. 

One way in which fuel pressure could affect the degree of superheat is that if fuel with a very 

low boiling point was used, higher fuel pressures would allow higher fuel temperatures to be 

reached without causing problems with vapour lock in the fuel lines. However, modern GDI 

fuel pressures of 120bar are high enough to keep standard fuel in their liquid state at 

temperatures likely to be seen under regular operating conditions. 

 

Injector tip configuration (number of holes and their positioning, l/d ratio, cone angle and tip 

shape i.e. flat or concave) defines the spacing of the individual spray plumes of a multi-hole 

injector and controls the required degree of superheat for the fuel spray to collapse inwards. 

This is because if the plumes are close together to start with, as in the six-hole 60° cone 

angle injector case, less superheat is required to increase the level of plume interaction to 

the point at which spray collapse occurs. In other words, injector configuration does not affect 

flash boiling itself, but affects the intensity of the phenomena caused by flash boiling. 

Images of the spray recorded have shown that flash boiling causes some phenomena which 

are impossible to fully explain without knowledge on the behaviour and temperature of 

individual droplets in the spray. These include the apparent rotation of the injector spray with 

increased degree of superheat, 

 

Addition of ethanol to standard gasoline fuel has the potential to offset CO2 output, as the 

CO2 generated during combustion is absorbed by the plants grown to produce the fuel. It is 

important to realise that addition of ethanol does not reduce CO2 tailpipe emissions, as the 

amount of fuel combusted for a given power output has to be increased to make up for the 

decrease in calorific value of the fuel. This means that the targets set out by the automobile 

manufacturer associations worldwide are even less likely to be met with increased use of 

ethanol unless the CO2 offset effect is taken into account. 
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The results have shown that E22 fuel behaves significantly differently to gasoline when 

undergoing flash boiling and hence care must be taken by manufacturers when converting 

vehicles to use ethanol-based fuels, particularly if the proportion of ethanol is increased in 

future years. This difference is due to the change in the two-phase region of the fuel mixture. 

It is very difficult to determine the precise saturation point of any multi-component fuel as 

each compound boils at a different temperature. Also the presence of low boiling point 

components induces vaporisation of higher boiling point components. This makes it difficult 

to predict exactly when flash boiling is likely to occur in a multi-component fuel. The results 

show that the fuel spray does not transition from non-flashing to flashing at one easily 

recognisable point, rather, part of the fuel spray begins to flash boil and as the degree of 

superheat is further increased, more and more of the fuel flash boils. This adds further 

complexities to any modelling as the observed phenomena occur at different degrees of 

superheat and these vary for different operating conditions, fuels and injectors. 

 

Recent advances in computing power mean that CFD modelling of fuel sprays is a viable tool 

for assisting in engine development. It is necessary that a flash-boiling mechanism be 

included in any model so that the spray shape changes under flash-boiling conditions can be 

accounted for. This part of the model is likely to be very complicated to produce as the 

effects have shown to be highly complex. If a complete spray development, air movement 

and combustion model can be developed which takes account of flash boiling then it will 

enable rapid optimisation of combustion chamber and injector design, allowing further 

reduction in harmful emissions at a reduced development cost. The results obtained in this 

study aids in the understanding, development and validation of such models. 
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8.2 Recommendations for future work 

 

8.2.1 Rigs 

 

The in-cell temperature and pressure measurement instrumentation proved adequate in 

determining the actual in-cell conditions. However, it was found that neither pressure nor 

temperature was being controlled to sufficient accuracy. The control logic did not allow long 

enough for the charge temperature to lower to that of the cell after pressurisation. A large 

variation in temperature was also seen, especially at the higher control temperatures of 80°C 

and 100°C. A reduction in charge temperature of around 1-2°C was observed following 

injection. This is due to conductive heat transfer from the charge to the spray during injection 

and atomisation. Like the in-cell temperature, a relatively large variation in in-cell pressure 

was also noted and seen to be as large as 10% in places. This is due to either poor control of 

the inlet and purge valves or due to valve actuation being too slow. Therefore longer settling 

times are needed alongside with larger and faster inlet and purge valves, the latter being 

essential for PDA measurements with realistic time scales. 

 

Both the light sheet and PDA setups are relatively easy to apply to spray on an atmospheric 

spray bench but the limited optical access available in the pressure chamber make it more 

difficult in these cases. A chamber with larger windows allowing simultaneous recording of 

side and underneath images of the spray while performing PDA measurements would 

provide very useful information and allow a more accurate analysis of the spray dynamics. In 

the current study, the temperature of the injected fuel is assumed to be the same as the 

chamber temperature, however, a more accurate control of the injector temperature would be 

beneficial. 

 

8.2.2 Imaging 

 

It would be useful to use a light-sheet to illuminate a cross section of the spray. Currently the 

images captured show the entire spray and this makes it difficult to know the exact shape in 

3D. Capturing cross sectional images would generate knowledge on the composition of the 

centre of the spray, for example, whether the spray cone is hollow or filled with droplets. 

Laser sheet imaging could be used as well to provide patternation of the spray. 
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8.2.3 PDA 

 

The shadowgraph imaging technique, used for the flash boiling study described in section 

7.2, is very useful for investigating the behaviour of the bulk spray, however it is not suited to 

investigate the mechanisms behind this behaviour. To do this, information on the size and 

velocity of individual droplets is required and for this a laser-based technique such as PDA 

should be employed. There are several phenomena which PDA could be used to further 

investigate. 

 

Droplet Distribution: Using PDA to measure droplet distribution would help to confirm the 

presence of additional spray plumes. Currently these plumes are visible on the underneath 

images but not the side images and using a completely different method of detecting droplets 

in this region would help to confirm exactly what is happening. 

 

Droplet Size: The change in droplet size with increased degree of superheat could be 

measured. This would help to confirm whether severity of spray collapse is related to droplet 

size. It would also be possible to measure the size of the droplets in the interstitial plumes, 

observed under 0.5bar backpressure with the six-hole 60° cone angle injector, to see if they 

are smaller than the droplets in the main plumes. 

 

Droplet Velocity: Measurement of droplet velocity throughout the spray would help confirm 

whether the collapse is due to movement of particles inwards towards the spray axis due to 

air movement caused by formation of vortices, similar to the collapse of pressure-swirl 

injector spray. 

 

All the three multi-hole injectors, used in the plume interaction study described in section 6.2, 

have established sprays at a height of 20mm below the injector nozzle. For the two six-hole 

injectors plume interaction is occurring while there is no interaction for the three-hole injector. 

Therefore it would be interesting to perform macro imaging and 1D PDA to establish whether 

the six-hole injectors show distinct plumes or if the three-hole injector shows plume 

interaction closer to the nozzle. 
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PDA measurements in the near nozzle regions of transient hollow cone high pressure swirl 

GDI fuel sprays have been attempted successfully by Pitcher et al. [139]. Imaging of the 

spray with the input laser beams identifies the bulk spray morphology, the spray density, the 

propagation of the input laser beams and the location of the PDA measurement volume. It 

was revealed that the major problem to obtaining successful PDA data in the near nozzle 

region of the hollow cone spray was the obscuration of the input beams when the 

measurement volume was aligned with the inside surface of the spray cone when the input 

laser beams would be obscured before the crossover. When the measurement volume is 

positioned on the spray cone centre line multiple scatter from droplets and remnants of the 

liquid sheet in, or near, the measurement volume results in a significantly reduced signal 

validation rate, the effects of which could be reduced by increased data acquisition times 

[139]. The probability of successful PDA measurements can be increased by minimising the 

dimensions of the measurement volume, maximising the probability of laser beam crossover 

and droplet detection and performing preliminary measurements to establish the trade off 

between increasing the „system gain‟ and optical noise break through on the data. Reducing 

a PDA system configuration from two component to one component velocity provides 

another option for maximising the probability of the formation of the laser beam crossover 

albeit at the cost of reducing the full measurement potential [140]. 

 

Mojtabi et al. [140] detailed analysis of velocity and drop-size measurements made with 1D 

and 2D PDA system configurations in the primary break-up region of the dense spray 

produced by a GDI multi-stream injector has attempted the quantify the effects caused by 

laser beam and measurement volume obscuration. The 3-hole injector allowed one particular 

spray stream to be studied without any interference from the other streams while maintaining 

stream similarity with a conventional 6 hole injector. The probability of only two laser beams 

crossing in the spray and generating a valid signal is significantly greater for the 1D system. 

This is readily seen in the sample number plots where, in some cases sample numbers can 

be a factor of two larger and this gives the velocity and drop-size data greater statistical 

significance. The 1D configuration also provides better estimates of the smaller size classes 

but it was found that reduced beam quality does not lead to a simple exclusion of the lowest 

sizes. Effectively all sizes below 10 microns would be discriminated against. Whereas this 

affects the arithmetic mean values the Sauter mean values are less affected. Where the 

droplet velocities are concerned there are only small differences in the profiles across the 

spray stream, at the 2% level, between the 1D and 2D systems. The overall conclusion is 

that for dense sprays a 1D PDA system configuration provides the best estimates of sample 

number, droplet velocity and size with a 2D configuration providing adequate estimates of the 

droplet trajectory [140]. 
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8.2.4 Injectors 

 

Injector geometry, with not only the hole layout but also the internal geometry, plays an 

important part in the plume interactions and flash boiling phenomena observed. Therefore it 

would be useful to perform measurements with only one varying characteristic between each 

injector tested. For example if symmetrically designed six-hole injectors that had the same l/d 

ratio but with a range of cone angles were used then a quantified rate of interactions may be 

able to be established. Another example would be six-hole injectors with common l/d and 

cone angle that were asymmetrically designed such that the plumes were closer in terms of 

radial distance. Furthermore, information concerning detailed internal geometry of the 

injector prototype used in our study is very difficult to obtain from the manufacturers 

supplying the injectors, so the influence of the cavitation effects occurring inside the injector 

(initiated in the needle seat and observed around the sharp edges at the entrance of the 

needle holes) is difficult to quantify. Both phenomena, cavitation and flash-boiling, are a 

transition from liquid to vapor due to a drop in pressure. In contrast to nucleate boiling, the 

enthalpy for vaporisation is not provided at walls during the phase change process, but is 

instead provided by inter-phase heat transfer. A gross distinction between cavitating and 

flash-boiling nozzle flow is simply that the enthalpy of the cavitating flow is below the 

saturated liquid enthalpy at the downstream pressure, while the enthalpy of the flash-boiling 

flow exceeds the saturated liquid enthalpy at the downstream pressure. 

 

8.2.5 Fuels 

 

Although it is valuable to perform experiments with real fuels such as gasoline and E22, it is 

difficult to quantify fuel properties which are important to flash boiling as the fuels contain 

many different compounds. Therefore it would be useful to test with specific blends of fuels 

for which properties such as volatility are known, as the effect of specific fuel properties could 

then be determined. 
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Appendices 

 

Appendix A D2 law of droplet evaporation 

(Atomization and sprays, Arthur H. Lefebvre [17]) 

 

During the steady state period of an evaporating drop, its diameter at any instant may be 

related to its initial diameter by the expression: 

tDD st 22

0
                                                                                                                       (1) 

where st  is the steady state evaporation constant.            

 

The drop lifetime during this period is 
st

st

D
t



2

0                                                                      (2) 

 

When the heat-period is too long to be neglected, the time required to fully evaporate the 

drop is obtained as the sum of the unsteady state period and the steady state period, i.e.: 
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where D1 is the diameter of the drop at the end of the heat-up period and hu  is the 

evaporation constant during the heat-up period. 

  

The total drop lifetime when we consider the heat up period and the convective effects 

(relative motion between the drops and the surrounding air or gas) is: 
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in which Rehu and Rest are based respectively on the diameter of the drop during the heat-up 

period and the steady state period and Pr is the Prandtl number. 

 

Then we can define an “effective” value of evaporation constant to be assigned to any given 

fuel at any stipulated conditions of ambient pressure, temperature, velocity and drop size as: 

e

eff
t

D 2

0                                                                                                                                (5) 
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This concept of an effective value of evaporation constant considerably simplifies 

calculations of the drop lifetime as: 

eff

e

D
t



2

0                                                                                                                                  (6) 

Numerical application: 

 

We want to calculate the lifetime of a D0 = 10*10-6 m initial diameter droplet of gasoline in an 

injector spray where the ambient pressure and temperature are 1 bar and 293 K, and the 

average relative velocity U between the air and the drop is around 50 m/s. The normal boiling 

temperature of gasoline is 420 deg K.  

 

We obtain by interpolation of Chin and Lefebvre [141] results that for P = 100 kPa and UD0 = 

500 (m/s)(10-6m) (see Figure A.1): 

 
610*04.0 eff m2/s  

which gives a drop lifetime of: 
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Figure A.1: Effective evaporation constant for a 10-5m drop diameter 

and 3 different relative velocities between the drop and the air 
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Appendix B Penetration of a single droplet in air 

(The atomisation of liquid fuels, Giffen, E and Muraszew, A [142]) 

 

For the movement of a single spherical droplet discharged into still air with initial velocity v0, 

neglecting the effect of gravity, the equation of motion is: 

0 R
dt

dv
m  

where m is the mass of the droplet and R is the air resistance given by: 

 

for laminar flow (Re<2), vdR air3   

for semi-turbulent flow (2<Re<500), vddvR airair  505.0( 22   

for turbulent flow (Re>500), 22055.0 dvR air  

 

where air  is the density of the air, air  is the viscosity of the air and d the diameter of the 

droplet. 

 

With these expressions and using fueldm 
 3

6
  , we obtain: 
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for turbulent flow, 
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When we integrate these equations we obtain: 

 

for laminar flow, 
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and for the penetration of the droplet, 
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for semi-turbulent flow, 
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and for the penetration, 
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for turbulent flow, 
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and for the penetration, 
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Numerical application: 

 

We consider a 10*10-6 m diameter droplet of gasoline discharged by an injection of 120 bar 

into air at atmospheric pressure and ambient temperature 20 deg C. 

So we have: 

Droplet diameter, d = 10*10-6 m (approximation from PDA measurements performed with our 

6 holes multi-streams injector)    

Air density at 20 deg C, air = 1.205 kg/m3  

Air viscosity at 20 deg C, air = 15.11*10-6 m2/s 

Gasoline density at 20 deg C, 
gas = 725 kg/m3 

 

The discharge coefficient can be determined experimentally by measuring the volume of 

liquid discharged from an atomiser of known orifice size, during a given time interval and with 

a given pressure drop across the atomiser. If V is the volume of liquid, v its velocity, a the 

area of the orifice, p the pressure difference across the orifice and t the time, then  
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Let‟s consider one single hole from our 6 holes multi-streams injector whose theoretical static 

flow rate is Qs = 7.64 g/s at 70bar with n-heptane (density at 20 deg C, 
hept = 682 kg/m3). 

The discharge coefficient for one hole is: 
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The initial velocity is 89.93
2
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d

gp
Cv


 m/s 

 

The corresponding value of Reynolds number for flow around the droplet is  

 

57.74Re 0
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air

air dv


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showing that the flow is initially in the semi-turbulent range. 

 

The flow will become laminar when Re = 2 and then its velocity will be 52.2
Re

2*

0

0 
v

v  m/s 

 

The time for the velocity to fall to this value is found from the equation (7) i.e.: 
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giving t = 4.999*10-4 s i.e. approximately 0.5 ms 

 

The velocity and penetration at any time less than this value are found by inserting the 

chosen value of t in the equations (6) and (7): 
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  tes 41.62521*7457.01ln14.20   m 

 

For t > 0.5 ms, the flow is laminar with an initial velocity v0 = 2.52 m/s 

 

The velocity and penetration at any time from the beginning of this stage are given by the 

equations (4) and (5), which become: 
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)1(67.0 45.3751 tes   m 

 

So the maximum penetration in laminar flow (when t is infinite in equation (6)) is 0.67 m. 
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Appendix C Hiroyasu model 

(Diesel Engine Combustion and Its Modelling, H. Hiroyasu [143]) 

 

We consider the Hiroyasu and Arai (1980) quasi-steady model for spray penetration without 

swirl whose equations are: 

For 0 < t < tb                                t
P

SS
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2
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With                                             
P

d
t

air

fuel

b





 0
65.28                                                            (3) 

Where ai PPP   is the difference between the injection pressure and the ambient 

pressure (Pa) and d0 is the nozzle hole diameter. 

 

Numerical application: 

In our case we consider one single hole, from our 6 holes multi-streams injector, whose 

diameter is d0 = 0.18*10-3 m. 

 

Air density at 20 deg C, air = 1.205 kg/m3  

Gasoline density at 20 deg C, 
gas = 725 kg/m3 

For 1bar backpressure we have P = 120-1 = 119 bar = 119*105 Pa 

With these values, we obtain tb = 1.0058 ms 

For 2, 4, 6, 8 and 10 bar backpressure, P  is smaller so tb > 1.0058 ms and for our 

experimental measurements the time range goes from 0 to 0.8 ms after start of injection so 

we will be using the equation (1) of the Hiroyasu and Arai model i.e. for 1 bar backpressure 

at 20 deg C: 
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Appendix D Geometrical characteristics and functioning of Continental Automotive 

second generation multi-stream injectors 

 

 

Figure C.1: Geometrical characteristics 

 

The functioning of the MSI injector is based on the operating mode of a standard solenoid 

injector: 

 

 The injector is pressurised with fuel up to 200bar. 

 A current signal applied to a coil creates a magnetic field that creates a magnetic 

force. 

 Applied on the needle, this magnetic opening force is greater than the closing forces 

(created by the fuel pressure (hydraulic force) and the spring return). 

 When the magnetic field is applied, the needle lifts up to a precise cote (55 µm). 

 Fuel flows through the sealing gap to the hole inlets. 
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 Holes are generating spray jets. 

 When the current signal stops, the closing forces (hydraulic + spring) move the 

needle down to its closed position. 

 

 

Figure C.2: Schematic of 1/5 of the injector seat for a 5+1 hole configuration 
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Appendix E IMPACT tool algorithm 
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Appendix F IMPACT results accuracy 

 

 

 

This graph shows the competition between the computation time and the percentage of error 

as function of the time step. A big time step increases the percentage of error and improves 

the computation time length. On the contrary, a small time step increases considerably the 

computation time and improves the results accuracy. In IMPACT we use 0.0001 sec for the 

time step.  
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Appendix G Spray Predictions as a Function of Temperature 

 

Figure G 1 – Predictions for axial penetration at 20°C and 1Bar backpressure as a 

function of temperature 

 

Figure G 2 – Predictions for axial penetration at 20°C and 2Bar backpressure as a 

function of temperature 
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Figure G 3 - Best fit coefficients for axial penetration as a function of temperature 

 

S1Bar, axial = (-0.1921T - 1.7111)t2 + (0.6404T + 59.39)t + (-0.504T - 69.825) 

 

S2Bar, axial = (-0.1338T - 9.553)t2 + (0.4284T + 82.997)t + (-0.3155T - 87.929) 
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Figure G 4 – Predictions for radial penetration at 20°C and 1Bar backpressure as a 

function of temperature 

 

Figure G 5 – Predictions for radial penetration at 20°C and 2Bar backpressure as a 

function of temperature 
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Figure G 6 - Best fit coefficients for radial penetration as a function of temperature 

 

S1Bar, radial = (-0.0426T - 9.007)t2 + (0.1585T + 49.711)t + (-0.1314T - 45.833) 

 

S2Bar, radial = (0.0325T - 10.751)t2 + (-0.1289T + 57.289)t + (0.1184T - 53.184) 
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Appendix H Technical drawing of the HPHT cell 
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Appendix I Technical drawings of the injector housing 

 

 

 

 

 


