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Abstract
This thesis comprises three essays on ex ante evaluations of cash transfer programs.

Chapter 2 uses baseline data from the randomized experiment of the conditional cash transfer

program - Red de Protección Social (RPS), Nicaragua to forecast the impact on school enrol-

ment and compares results to those of the experimental evaluation. Reduced form estimation

of a behavioural model forms the basis of the evaluation. A Klein and Spady semi-parametric

single index model is used to predict unobserved outcomes under the treatment. The sample

consists of children aged 7-13 who have not completed grade 4 of primary school. The eval-

uation shows that the ex ante approach closely matches the experimental outcomes in most

cases.

Chapter 3 extends the behavioural model of chapter 3 to include a health production func-

tion and analyses the impact of the program on health care utilization outcomes for infants.

This chapter also uses baseline data from the randomized experiment, and applies the semi-

parametric single index model to predict the ex ante impact. It validates the model with the

results of the experiment and then simulates two alternate policy scenarios. The model per-

forms well in predicting the health related outcomes and shows different results for the two

sets of policy scenarios.

Chapter 4 also uses the data from Nicaragua’s RPS social protection program to forecast the

program’s impact on quantiles of WAZ for children below 5 years. It applies the reduced form

behavioural model of child health defined in chapter 3 to facilitate the empirical strategy.

The estimation compares two semiparametric approaches - a quantile regression approach

and a distributional regressions based approach with a nonparametric approach to estimate

the unobserved unconditional counterfactual distribution under the program. In all cases

the estimated effects are compared with those of the randomized experiment. The models

perform well in forecasting the distributional impacts of the cash transfer of WAZ. Like in

the experiment, the predicted outcomes show the greatest impact at the lowest quantiles of

the distribution.
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Chapter 1

Introduction

This thesis comprises three essays on forecasting the impact of social programs on education

and health outcomes. It tests a recently proposed approach by Todd & Wolpin (Forthcoming)

and uses as a benchmark results from a randomized experimental evaluation of the social

program to validate the results of the evaluation.

The motivation for testing the approach of Todd & Wolpin (Forthcoming) lies in increasing

the applications of ex ante evaluations particularly in resource constrained settings in de-

veloping countries, not as a substitute for ex post experimental evaluations but as a useful

complement to observe changes that can be expected. Ex ante evaluations differ from ex-post

applications in that they focus on simulating the effects of hypothetical/yet-to-be launched

programs or large changes in the parameters of existing programs. They involve extrapo-

lations from existing policy or variation in policy-relevant parameters. Typically, ex-ante

evaluation requires knowledge of past and future values of relevant exogenous variables and

if future changes are expected in parameters that have not previously changed then knowl-

edge of the structure of the relevant system is necessary (Marschak 1953).

Ex ante evaluations offer several advantages especially in development settings. In resource

constrained situations, ex ante evaluations of varying policy or program intensity can help

arrive at an optimal program design, without which multiple social experiments would need

to be carried out, involving significant financial investments. Ex post evaluations are critical

to assessing aid effectiveness, ex ante evaluations further enhance its effectiveness by ensur-

ing investments are not made in programs that are likely to have no or limited impact. They

can provide essential information on the target population most likely to benefit from the
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program while at the same time providing estimates of impact for changes in parameters of

ongoing programs. While ex post evaluations are critical in development, ex ante evaluations

are a useful complement offering scope for furthering aid effectiveness.

Ex ante evaluations like ex post methods depend on household surveys. However, in contrast

to ex post methods, ex ante evaluations involve generating a counterfactual representative of

the population likely to benefit from a hypothetical program. Changes in individual behaviour

under the counterfactual in response to policy change are then simulated to measure causal

effects. Such evaluations are then marginal as they capture the difference between the status

quo and a change in policy. These changes may or may not include behavioural responses

(Bourguignon & Ferreira 2003). The approaches to ex ante evaluations differ in their use

of microsimulation models or behavioural models that depend on structural or reduced form

estimations.

This thesis focuses on the last of these approaches. This approach varies from the other

two in that ex ante impact estimation is conducted without structural estimation and using

non-specific functional forms. The application is a modification on earlier work by Ichimura

and Taber (2000) who provide a general set of conditions for reduced form estimation under

which new programs can be evaluated using relatively weak structures and full estimation

of behavioural models is not required to identify program impacts. In their paper Todd and

Wolpin consider a variety of policies including wage, income and school subsidy programs.

Identification exploits variation in the policy variable to predict program impacts. In cases

where no variation exists in the policy variable their approach depends on variation in other

model variables that are indirectly related to the program. The key contribution of their paper

is in placing ex ante evaluations in the potential outcomes framework. Program impacts are

measured by a matching estimator that uses only control group (untreated) data and matches

untreated individuals with other untreated individuals based on functions of observable vari-

ables generated by the model. Using simpler economic models and in most cases a fully

nonparametric approach the authors show identification of conditions when such approaches

can be applied. Their motivation is to provide easily applicable methods to forecast the im-

pact of a wide range of social programs and interventions. This thesis tests their suggested

approach by applying the method to a conditional cash transfer program in Nicaragua. This
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program is particularly suited to this exercise as it was implemented as a randomized social

experiment and evaluated in full. It also provides data on a range of outcomes covering both

education and health - both binary and continuous.

The thesis is structured as a collection of three papers. Although they are presented as three

separate papers, they all have as a common theme the approach of Todd and Wolpin, also all

three papers use data from the randomized experiment in Nicaragua but use different samples

depending on the outcome being estimated. They also have in common some estimation

techniques and results which arise from the behavioural model and relate to the policy related

variables.

Chapter 2 begins the three applications by estimating the outcome of the RPS program on

school enrolment. The program provided a cash transfer conditional on school enrolment for

all households in the treatment group with children aged 7-13 who had not completed grade

4 of primary school, the estimation sample consists of individuals who meet this criteria. The

program also included a food security transfer. This chapter is essentially a direct applica-

tion of the idea in Todd and Wolpin’s paper but extends the behavioural model to include

time costs. The behavioural model is a household maximisation problem that models school

choices subject to a time constraint for the transfer eligible child and a household budget con-

straint. The time constraint models a choice between the time a child spends working and the

time a child spends in school. The optimal choice of school enrolment is estimated as a func-

tion of observable covariates generated by the behavioural model. In addition assumptions

are made about unobservable heterogeneity that require conditioning on a further set of co-

variates. In essence this approach relies on "selection on observables". The estimation of the

binary outcome is implemented using a semi-parametric single index model. The paper uses

data from the baseline survey of the experiment. The variation in the two policy variables -

full income of the household (which is proxied by ’consumption’ and school costs are used

to forecast the outcomes. The school costs are however observed in the survey only for those

enrolled in school at the time of the survey and are estimated for the other children in sample.

The ex ante impact is the difference between the estimated outcomes under treatment and the

observed outcomes pre-treatment. The results are compared with the one year effects of the

program from the double difference estimates of the experiment.
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Chapter 3 extends the behavioural model and analysis in chapter 2. It introduces a health

production function in the behavioural model and derives the reduced form for the optimal

choice of health care utilisation. Two preventive care outcomes for children under 5 years

are considered in this paper - health checks and full coverage of vaccinations. The estima-

tion procedure follows the same approach as chapter 2. The estimated school costs for the

sample of older children are also incorporated into the model exploiting the variation in this

variable along with full income (proxied by consumption). Given that chapter 3 is an ex-

tension of chapter 2 but written up as a separate paper, several segments of the two chapters

are identical . For instance, the section on school cost estimation is the same in both papers

as they are estimated only once for all children in the baseline survey, aged 7-13 years who

have not completed grade 4 of primary school. The health care utilization outcomes used

in this chapter are also binary measures and hence the empirical strategy section describing

the semi-parametric estimator is also similar. The analysis in this paper is however extended

beyond a comparison of experimental outcomes, to simulate counterfactual policy scenar-

ios. The analysis enables comparing different trade-offs families make between education of

older children and preventive health care for infants under different program designs. Two

alternate policy specifications are simulated; reducing the amount of the transfer by 25%

while maintaining the conditionalities and an unconditional transfer equal to the food secu-

rity component of the program.

Chapter 4 is a further extension of the ex ante approach applied in chapters 2 and 3. The

objective in this paper is to forecast the impact of the program on the entire distribution of

the outcome of interest. Heckman, Smith & Clements (1997) highlight the importance of

considering more than just the average impact of a program and exploring for heterogeneity.

This chapter tries to capture this aspect of program evaluation in an ex ante scenario. The

underlying motivation is the same reduced form approach of Todd and Wolpin and thus relies

on the same behavioural model as chapter 3 but is markedly different in its estimation strategy

to recover the unobserved distribution under treatment ie. the impacts at different quantiles

of the outcome distribution. The underlying behavioural model is therefore not presented

again in this chapter. The outcome of interest here is the weight-for-age Z score (WAZ) for

children under 5 years. While the age group is the same as chapter 3 the sample is different

in two ways; data for only the randomized out control group is used and the data is from the

2 year follow-up of the program (i.e. 2002) rather than the baseline data. The reason for this
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approach is that the outcome in the experiment was measured only at the baseline (2000) and

after two years (2002). To facilitate comparison with the experimental outcomes data from

the 2002 control group is used. Once again, as in the earlier chapters estimation of school

costs for program eligible children is necessary, but for the sample of children in the 2002

survey. Estimation of the counterfactual distribution is carried out using two semi-parametric

approaches and a non-parametric approach. The parameters of interest in this chapter are the

“quantile treatment effects” as opposed to the average effect of the earlier two chapters. The

quantile treatment effect is the difference between the estimated counterfactual distribution

and the observed distribution without treatment. Once again results are compared with the

treatment effects estimated from the experiment.

While the data used in this thesis is from a conditional cash transfer program, the methods

applied are applicable to any social program that channels its impact through a change in

budget constraints. This thesis is a first step towards towards testing the recommendations

of Todd and Wolpin of applying simple behavioural models and relaxing assumptions of

functional form to forecast outcomes of such programs. Each of the chapters builds on the

preceding one either to explore alternative outcomes or simulations or to extend the analysis

beyond the average impact. But in all cases it tries to use the randomized experiment as the

benchmark against which to compare the results of the ex ante exercise. The thesis explores

the feasibility of the assumptions made under this approach to ex ante evaluations for different

objectives and also tries to assess the limitations of such an approach. These are discussed in

summary in the conclusion chapter of this thesis (chapter 5).
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Chapter 2

Using a Semiparametric Estimator to Forecast

Education Outcomes in Nicaragua’s Red de

Protección Social

2.1 Introduction

The last few decades has seen billions of dollars channelled to developing countries as in-

ternational aid. Despite this impetus these regions continue to remain amongst the poorest

in the world with some of the worst indicators of poverty and health. Improving the critical

link between aid and outcomes requires ensuring resources are channelled to where they are

likely to have the greatest impact (White 2006). Research on this link involves the evaluation

of development programs to measure their impact. Most of this research has focussed on ex

post evaluations of programs by either randomized-experimental allocation of the interven-

tion or using observational approaches such as difference-in-differences, matching methods

or regression discontinuity. On the other hand, applications of forecasting in economics

have been widely applied in estimating demand and predicting impacts of macro-economic

policies but there are comparatively few applications in evaluating social programs. In devel-

opment settings with constraints on resources, ex ante evaluations are particularly useful in

making informed decisions for extending the target population of an existing program. They

also facilitate optimal usage of limited resources by ensuring governments make financial in-

vestments in programs that are likely to have a positive impact. These evaluations are useful

in considering implementation of new programs and serve as complements to future ex post

evaluations.
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Leading examples of ex ante evaluations of a social program are Todd & Wolpin (2006)

and Attanasio et al. (2005), who evaluate the impact of Mexico’s Progresa Conditional Cash

Transfer program by structurally estimating the parameters of a behavioural model that spec-

ifies the interactions of the program. In contrast to the structural estimation approach in a

recent simpler reformulation, Todd & Wolpin (Forthcoming) build on the work by Ichimura

& Taber (2000) and illustrate the use of reduced form estimation of behavioural models in

evaluating social programs without specification of functional forms. The authors illustrate

situations in which a non-parametric estimation strategy based on a behavioural model can

be used to estimate ex ante impacts. This reduced form ex ante approach differs from ex post

evaluations in the way it uses the traditional potential outcomes framework in that the data are

observed for only the untreated population. In this case the counterfactual to be estimated are

the outcomes for the population when treated rather than for the controls. Program impacts

using the behavioural model reduced form (BMRF) approach are estimated from an under-

lying economic model and use variation in the variable through which the policy instrument

operates for model identification.

The objective of this paper is to apply the reduced form estimation approach to a conditional

cash transfer program (CCT) and to compare the predicted outcomes with results from a

randomized experiment. It is based on an economic model of household consumption and

uses data from the experimental evaluation of Nicaragua’s Red de Protección Social (RPS),

a CCT program for rural households in Nicaragua. The program aims at improving school

enrolment and attendance of children aged 7-13 years who have not completed grade 4 of

primary school and health and nutritional status of children below 5 years by supplementing

household income through the cash transfers. The cash transfers are conditional on a certain

minimum school attendance by children of recipient households and attendance at health

workshops by mothers. The analysis in this paper focuses on education outcomes.

The estimation strategy uses variation in the costs of schooling, full income of households

along with several household characteristics to determine the impact of the program. The

large number of covariates determining outcomes does not permit fully non-parametric es-

timation. To overcome this, a semiparametric single index model for binary outcomes is

used to predict impact. This paper presents the economic model and estimates the impact on
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school enrolment using data from the randomized experiment.

2.2 Red de Protección Social

Red de Protección Social (RPS) is based on the design of Mexico’s PROGRESA program and

is the first CCT to be implemented in a low-income country1. The program was introduced

in 2000 and targets reducing financial barriers to accessing education and health care in rural

Nicaragua. In 1998 data from the Living Standards Measurement Survey (LSMS) indicated

that 48% of the population in Nicaragua was poor and 75% of this population lived in rural

areas (World Bank 1998). The program was implemented in two phases. The first phase

was designed as a pilot randomized experimental evaluation in two districts, Madriz and

Matagalpa, based on the level of poverty and capacity of these districts to implement the

program. In both these regions 80% of the rural population was poor and of this population

50% were exteremely poor (Maluccio & Flores 2005, IFPRI 2001a). Phase Two of the project

extended the program for a futher 3 years. This paper uses data from the pilot phase of

the program generated by the randomized experiment. From the two regions selected 42

comarcas or administrative units were selected based on a marginality index to participate in

the pilot.

The program consisted of two demand side components - the first focusing on food secu-

rity, health and nutrition and the second on education. Each eligible household received a

“food security transfer” in alternate months based on two conditions, attendance by moth-

ers at health education workshops held every other month and children under age 5 being

brought for scheduled preventive health check-ups. The demand side health initiatives were

complemented by supply-side enhancements including training and payment to private health

care providers to ensure the increased demand from the program was met. The food transfer

was a fixed amount and did not depend on the size of the family. The education component

of the program consisted of two cash transfer components to families with children aged 7-

13 years who had not completed grade 4 of primary school, conditional on enrolment and

1This section is based on the description of RPS provided by Maluccio & Flores (2005) in the impact evalua-
tion report of the randomized experiment
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regular attendance by the children. The first was a lump-sum transfer provided as a fixed

amount per family regardless of the number of eligible children, conditional on all eligible

children enrolling in school. In addition a cash transfer for school supplies was provided

for each eligible child, also conditional on enrolment. On the supply-side, incentives were

provided to teachers to compensate for the additional monitoring and reporting required to

ensure compliance with the program and the increase in class size from the enrolments. This

supply side component was administered through the student who presented the teacher with

the cash on going to school and is thus unlikely to affect school enrolment, which is the out-

come evaluated in this paper. The evaluation in this paper and the ex post results are for the

demand-side cash transfer components of the program. While Figure 2.1 presents a summary

of the eligibility criteria and requirements for RPS.

The transfers target a reduction in the net price of schooling and food consumption to reduce

short-term poverty while encouraging investments in human capital to eliminate long-term

poverty. The amounts of the transfer include the Córdoba 2000 equivalent of US$224 for food

security and US$112 for the educational component. The school supplies component for each

eligible family was US$21. Figure 2.2 presents a summary of the transfers. According to the

ex post evaluation of RPS by Maluccio & Flores (2005) the food transfer was equivalent to

13% of annual household expenditures and families with one eligible child for the schooling

components would receive an additional 8% of annual household expenditures. Beneficiaries

that did not comply with the specific requirements associated with each component failed to

receive the transfer for the particular component.

The randomized evaluation provides census data (for all eligible households and individuals)

in the 42 selected comarcas, baseline data for the final selection of households based on the

marginality index after assignment into treatment and control groups and follow-up data for

the next two years. Since the objective of this paper is an ex ante evaluation, the focus is on

data generated prior to the introduction of the intervention.
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Figure 2.1: RPS Eligibility and Requirements. Source: Maluccio and Flores 2005
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Figure 2.2: RPS Transfers. Source: Maluccio and Flores 2005

2.3 Economic Framework

The model uses the household production framework of Becker (1965). A household with

multiple eligible children i = 1...n, has utility U a function of C representing consumption,

a vector S, with Si = 1 a binary indicator of school enrolment of each child, and an indicator

of gender g. The household maximisation problem is then:

max
C,S

U(C, S; g, ν) (2.1)

The time constraint for an eligible child can be written as:

Ti = Tsi.Si + Twi(1− Si) (2.2)

where Tsi is time spent in school and is assumed to be a fixed amount for all enrolled children,

Twi is time spent at work. This specification follows Todd and Wolpin and does not allow
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for leisure in the time constraint as a substitute. However, a different form of time constraint

that does not assume substitution is possible, that allows total time Ti to be divided between

time spent on work, schooling and leisure. The reduced form in this case would be different

to the one derived here.

The money budget constraint can be written as:

C +
n∑
i=1

δi.Si = Y +
n∑
i=1

wi.Twi(1− Si) (2.3)

Where δi is the direct cost of schooling for child i. Primary schooling is free in Nicaragua

and most children face no tuition fees, hence δi includes all other school related costs faced

by families such as transport, uniforms, books and school meals. Y is household income net

of the earnings of the program eligible children.

The constrained household maximisation problem is:

max
C,S

U(C, S; g, ν) (2.4)

The full income constraint combining both the time and money constraint is:

C +
n∑
i=1

[δi + wi.Tsi]Si = Y + wi.
n∑
i=1

Ti = F (2.5)

where F is full income of the household and the total price of schooling for all eligible

children in the family (θ =
∑n
i=1[δi +wi.Tsi]) is the cost of schooling plus the shadow wage

for the eligible children.

The optimal choice of schooling is S∗ = Φ(F, θ, n; g, ν)
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The RPS program has two cash transfers - the first focuses on changing the price of school-

ing for eligible children conditional on enrolment and the second is a food transfer meant

to boost consumption, nutrition and access to preventive health care conditional on mothers

attending the health workshops (Em). Where Em represents a binary indicator of mother’s

attendance at compulsory health education workshops. Under the assumption of full com-

pliance Em = 1 in the post program scenario. The school transfer is implemented as two

components (τ, ρ) to reduce the net price of schooling and substitute for any wages earned

by children not enrolled in school due to employment. A decrease in the price of schooling is

likely to encourage children to substitute away from labour market participation and increase

school enrolment. The first component τ is provided for each eligible child in the family

while ρ is a lump sum transfer irrespective of the number of eligible children. Both trans-

fers are conditional on all eligible children enrolling in school.The household food transfer

(µ) conditional on Em is modelled as a direct income effect, raising the income level of the

household and does not stipulate specific expenditure categories.

With the introduction of the subsidies µ.Em, τ.
∑n
i=1 Si.Sp and ρ.Sp, where Sp = 1 if∑n

i=1 Si = n ie. all eligible children enrol in school and Sp = 0 otherwise. The money

budget constraint can be written as:

C +
n∑
i=1

δi.Si = Y +
n∑
i=1

wi.Twi(1− Si) + µ.Em +
n∑
i

τ.Si.Sp + ρ.Sp (2.6)

The full income constraint is then:

C − ρ.Sp − µ.Em +
n∑
i=1

(δi + wi.Tsi − τ.Sp)Si = Y +
n∑
i=1

wi.Ti = F̃ (2.7)

The new price of schooling under the subsidy program is θ̃ = (
∑n
i=1[δi + wi.Ts − τ.Sp])

and the cost of consumption is C − ρ.Sp − µ.Em. The optimal choice under the subsidies is

S∗∗ = Φ(F̃ , θ̃, n; g, ν)
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(a) Household Consumption

(b) School Costs

Figure 2.3: Data Variation
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Empirically this exploits two sources of variation in the data to compare untreated individu-

als with outcomes S∗ with other untreated individuals with outcomes S∗∗ - the first is school

costs and the second is full income of the households at the baseline. As described earlier,

primary education is free in Nicaragua and most families face no fees, the cost here includes

other expenditure related to schooling which is exogenous in the sense that it is faced by all

families when enrolling children irrespective of whether the tuition is free or not. In addition,

the data do not provide a measure on income to be used as a proxy for full income, but has a

measure of consumption. Figure 2.3(a) shows a histogram of consumption of families, with

values ranging from c1,590 to c77,905. The second graph figure 2.3(b) shows the school

costs used in the estimation range from c12 to c1438. In addition to variation in school

costs and consumption, the level of the school grant also varies depending on the number

of children in the household. The treatment effect is estimated by matching the treated and

untreated groups on functions of observable characteristics. The key identification condition

in this approach is that the program has an impact only through the budget constraint of the

behavioural model (Todd & Wolpin Forthcoming), ensuring that the reduced form before the

program is also the same after, except for a change in the magnitude of the variables resulting

from the program. The approach also relies strongly on selection on observables to capture

heterogeneity. As specified by Todd & Wolpin (Forthcoming) extending the approach to

allow impact of the program to affect preferences would require specification of some func-

tional form. In such cases stronger assumptions are required and the similarity of the reduced

form before and after the program will depend on the nature of the functional form assumed.

Identifying the ex ante treatment effect also requires that any unobserved heterogeneity (ν)

remains the same before and after treatment ie. (ν) is independent of consumption and school

costs. However, the use of consumption in the reduced form means there is the problem of

potential endogeneity. This would particularly be the case if decisions about schooling de-

pend on the opportunity costs of enrolment or if parents are heterogenous in preferences to

invest in children’s education. These preferences are likely to depend a great deal on family

structure and background etc. To make this assumption on unobserved heterogeneity plausi-

ble, empirically the matching functions include a set of family characteristics - Xh and price

variables.

f(ν|F, θ,Xh) = f(ν|F̃ , θ̃, Xh)
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2.4 Empirical Specification

The above approach generates a set of variables that naturally extend to an empirical applica-

tion of the model. This relies on direct variations in the policy variables. In this case variation

in the costs of schooling and full income can be exploited and a matching estimator applied

to identify predicted program impacts.

Typical evaluation exercises use information on treated outcomes (S1) and estimate the coun-

terfactual of untreated outcomes (S0). In contrast, in the ex ante approach treated outcomes

are unobserved and is the counterfactual that needs to be estimated. From the model, as in-

dicated by Todd & Wolpin (Forthcoming), the unobserved S1 can be represented in terms

of the observed untreated outcomes conditional on an equivalent set of exogenous variables.

This idea can be represented as:

S1i = E[S0j |Fi = F̃j , θi = θ̃j , ni = nj , gi = gj , Xhi = Xhj ] + ε (2.8)

Todd and Wolpin propose a matching estimator of the average treatment effect for those

eligible for the program (intent-to-treat (ITT)) as:

α = 1
k

∑k
j=1 j,i∈SmE(Si|Fi = F̃j , θi = θ̃j , ni = nj , gi = gj , Xhi = Xhj)−

Sj(Fj , θj , nj , gj , Xhj) (2.9)

2.4.1 Estimating School Costs

Implementing the above matching estimator requires estimation of the unobserved treated

outcomes as a function of consumption, school costs and a set of household and child char-

acteristics. School costs (δi) are determined by the enrolment status of the child and hence

are observed in the data for only those children who are currently enrolled in school and zero

costs observed for those not enrolled. The problem of predicting school costs for the entire

23



sample of children requires using a two-step process decomposing the participation decision

and the determinants of the cost of schooling. A two-part model (2PM) 2is applied where in

the first part, the enrolment decision, is modelled using a probit and the second part predicts

the cost of schooling as a linear function of the determinants of school costs (Mullahy 1998).

The most common specification of the second part is a log transformation of the outcome

variable. A problem with using a retransformed OLS in this case is that zero school costs

are also observed in the sample of those children currently attending school. A log trans-

formation would drop these observations from the estimation sample. A further problem

arises with retransformation of the outcome variable to the original scale in the presence of

heteroskedasticity. Manning (1998) shows that heteroskedasticity leads to biased estimates

of the outcome variable and correction requires determining whether the heteroskedasticity

is across different groups or caused by a particular subset of the covariates. To overcome

these issues the second part of the 2PM is estimated using the extended estimating equations

model (EEE) proposed by Basu & Rathouz (2005). The EEE approach is an extension of a

standard generalized linear model (GLM) incorporating flexible link and variance functions.

Specifically, the EEE combines a Box-Cox transformation for the link function and includes

a class of link functions represented by an estimated parameter λ:

δλ − 1

λ

It also allows for heteroskedasticity and uses a general power function for the variance de-

fined by two-parameters θ1 and θ2:

θ1δ
θ2

The model is estimated separately for boys and girls.

2A bivariate selection model was initially estimated and the non-linearity of the inverse mills ratio showed no
evidence of selection bias. Also, school costs are not normally distributed and a log transformation would drop
the observations that indicated zero costs. A further difficulty arises in finding a suitable exclusion restriction that
affects school enrolment but not school costs. To overcome these problems a two-part model is used.
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2.4.2 Estimating Counterfactual Outcomes

The unobserved outcomes E(Si|Fi = F̃j , θi = θ̃j , ni = nj , gi = gj , Xhi = Xhj) can

be estimated using a binary response model to estimate the conditional probability P (S =

1|X = x) = G(xβ). If the distribution function G is known a priori then a parametric spec-

ification such as a logit or probit can be used. Misspecification of G would however result

in inconsistent estimates of β and inaccurate predictions of the unobserved outcomes. To

increase the flexibility and avoid misspecification problems the unobserved outcomes are es-

timated by regressing current enrolment status on income, estimated school costs, and a set of

family and child characteristics to capture unobserved heterogeneity using a semiparametric

single-index model. The single-index model defines the conditional mean function as:

E(S|x) = G(xβ) (2.10)

where β is an unknown vector and G is an unknown function and xβ represents an index.

The above index specification could be made entirely flexible using a fully nonparametric

approach to model outcomes eliminating the risk of any misspecification. Such an approach

is however constrained in this case by the dimensionality of the covariate vector (x). Non-

parametric approaches suffer from the curse of dimensionality where convergence rates are

inversely related to the number of continuous covariates and tend to be less precise as the

dimension increases. The single-index xβ reduces the dimensionality problem by aggregat-

ing across x and has the same convergence rate as a single dimensional quantity represented

by xβ. The single-index model also has advantages for predictions as the region of sup-

port extends beyond the observed x to points not in the support of x but in the support of

xβ (Horowitz 1998). However, unlike the nonparametric approach it builds in a parametric

assumption of the linearity of the index.

The single-index model involves the joint estimation of the two unknown elements β and G.

Estimation of both elements require several identification restrictions. Similar to all linear

models, identification of β requires G to be a non-constant function along with the absence
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of multicollinearity amongst the covariates. In addition, to uniquely identify the function

G(xβ) single-index models involve location normalization and scale normalization restric-

tions. Location normalization is achieved by requiring the covariate vector to include no

intercept term while scale normalization involves restricting the β coefficient of one con-

tinuous variable to equal one. Identification in single-index models is achieved because the

conditional mean function can remain constant with changes in x as long as the index xβ

remains constant. However, with continuous covariates a constant index (ie. xβ = k) for a

given set of covariates has probability zero. To overcome this a further identification restric-

tion is required where G is a differentiable function so that G(xβ) is close to G(k) when xβ

is close to k (Horowitz 1998). A final set of restrictions are required when X contains both

discrete and continuous variables. The first of these requires that the discrete elements of the

covariate vector do not divide the support of xβ into disjoint subsets. The final restriction

is referred to as the ’non-periodicity condition’ for the function G requiring it to be strictly

increasing.

The single-index model defined in (2.10) was adapted to binary outcomes by Klein & Spady

(1993). In the case of binary outcomes such as enrolment (where S = 0, 1) the index function

is defined as:

E(S|x) = P (S = 1|x) = G(xβ)

In a parametric setting with known G, β could be estimated efficiently using a maximum

likelihood estimator(MLE) where the log-likelihood is:

lnL(β,G) = n−1
n∑
i=1

[Si lnG(xiβ) + (1− Si) ln(1−G(xiβ))] (2.11)

In the semiparametric case following Ichimura (1993), Klein and Spady propose to estimate

β by maximising the (quasi) log-likelihood function(2.11) replacing the unknown function

G with a semiparametric likelihood estimate Gn(xiβ). ‘The index restriction permits mul-

tiplicative heteroskedasticity of a general but known form and heteroskedasticity of an un-

known form if it depends only on the index’ Klein & Spady (1993). Gn is estimated using a
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leave-one-out nonparametric estimator of the density of xβ̂ conditional on S, where for any z

Gn(xiβ) =
Pngn(z|S = 1)

Pngn(z|S = 1) + (1− Pn)gn(z|S = 0)
(2.12)

where gn is the kernel estimate of the conditional density of xβ (g(.|S)) and gn is defined as:

gn(z|S = 1) =

∑ n
i=1SiK(z − xiβ̂)/hn

nPnhn
(2.13)

gn(z|S = 0) =

∑ n
i=1(1− Si)K(z − xiβ̂)/hn

n(1− Pn)hn
(2.14)

where Pn is the empirical probability Pn =
∑ n

i=1Si, the proportion of children currently

enrolled in school, K is a kernel function and hn is the bandwidth.

Klein and Spady show that the estimator is asymptotically efficient and achieves the semi-

parametric efficiency bounds of Chamberlain (1986) and Cosslett (1987). The resulting vec-

tor of parameter estimates (β̂) is shown to have the following properties:

n1/2(β̂ − β) −→d N(0,Ω)

Ω = E

{[
∂G(Xiβ)

∂β

] [
∂G(Xiβ)

∂β

]T [ 1

G(Xiβ)(1−G(Xiβ))

]}−1

The unobserved treated outcomes E(Si|Fi = F̃j , θi = θ̃j , ni = nj , gi = gj , Xhi = Xhj)

are estimated using the Klein and Spady estimator by regressing school enrolment status of
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the observed “control group” children on observed consumption, school costs and a vector of

child and household characteristics. Scale normalization is achieved by setting the coefficient

for number of children under 5 years in the household equal to 1. The estimated model is

then used to first predict enrolment outcomes for the observed control group observations

and then extrapolate the predictions under treatment by evaluating the function at (F̃ , θ̃).3

Both within sample predictions and extrapolation can only be carried out in regions of com-

mon support. In the original formulation of the model, as required by the QMLE asymptotic

theory, Klein and Spady introduce trimming procedures on the likelihood function (14) to

ensure that G is bounded away from 0 and 1. But their simulations show that trimming has

little impact in empirical applications. Following their findings and other applications of

this model (Horowitz 1993, Gerfin 1996, Fernández & Rodríguez-Poo 1997) the likelihood

function is not trimmed before predicting outcomes for the observed data. Extrapolation

in nonparametric models is only valid at points with positive data density; hence while not

trimming the likelihood function, trimming is carried out to define the region of common

support i.e to identify regions of positive data density in the extrapolated values. The region

of support Sm is defined as Sm = (xβ) ∈ R2 such that f(xβ) ≥ 0 where f(xβ) is the non-

parametric density of the linear index4. Heckman, Ichimura & Todd (1997) propose that the

density should be strictly positive as defined by Sp and should exceed a minimum cut-off to

avoid points with very low density. Thus the extrapolation is valid for only those points of

evaluation where

f(xβ̂) > c (2.15)

Heckman, Ichimura & Todd (1997) recommend setting the cut-off at a percent quantile of

the estimated densities. Here c is set at the 2% quantile. Only those observations that meet

the above criterion are kept in the extrapolation sample.

3The statistical package np (Hayfield & Racine 2008) available for the software R was used. The model was
run separately for boys and girls. The scalar bandwidth for the index xβ for boys is 0.083 and for girls is 0.065.

4The densities are estimated using the method of Li & Racine (2003) who use ’generalized product kernels’
for mixed data. The bandwidths were set using the maximum likelihood cross validation
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2.5 Data and Variables

This paper uses data collected for the ex post randomized evaluation of RPS. Two datasets

(IFPRI 2005) from the ex post evaluation are applicable, the first is the census survey con-

ducted in May/June 2000 covering all eligible households in the two regions selected for

the program and the second, the baseline survey in August/September 2000, conducted for

the randomized experiment prior to introduction of the subsidies. The data in the baseline

survey includes detailed information on school enrolment, detailed direct and indirect costs

(including fees, transport, books, uniforms, etc.) on schooling for those enrolled; health care

utilization including consultations, type of provider, use of medication and hospitalization,

direct and indirect costs of medical care and waiting times. However, the information on

economic activity is sparse with only information on employment status, nature of employ-

ment, category of employment and hours worked. No information was collected on wages or

income. All the above information was collected for all individuals of age 6 and over. Lack

of information on income is substituted by information consumption.

2.5.1 Variables

The census data provides information on the highest grade and level of education completed

by all individuals aged 6 and over. The education of the household head can be mapped from

this to the baseline survey. The census survey is also useful in trimming the sample to the

program eligible children between the ages of 7-13 who have not completed grade 4. It also

provides information on the distance to the nearest primary and secondary school.

School costs are only observed in the data for those children currently enrolled in school

and must be estimated for all children in the sample. As mentioned above, both direct and

indirect costs are observed and are aggregated into a single measure of costs. Human capital

theory bases the family’s choice of schooling on costs - both direct and indirect (opportunity

costs), income and future returns to education (Becker 1975). School costs are estimated us-

ing variables that capture these factors and include child characteristics - age of the child and
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gender. The lack of wage data poses a problem in estimating time costs of schooling. To over-

come this, distance to school is used as a measure of opportunity cost of travel time. Family

characteristic variables such as household expenditure, age, gender and years of schooling

completed for the household head, number of children of school going age and number of

adults in the family are included. Additionally, number of children under 5 years is used as a

measure of demand for child labour as often older children are expected to care for younger

siblings.

The estimation of the unobserved schooling outcomes under treatment E(Si|Fi = F̃j , θi =

θ̃j , ni = nj , gi = gj , Xhi = Xhj) is driven by the variables in the reduced form equa-

tions derived by the economic model ie. the variables determining the schooling decision are

derived from S∗∗ = Φ(F̃ , θ̃, n, g; ν) and include consumption, a quadratic specification of

age, whether the community is a coffee growing community, estimated school costs, years

of education and gender of the household head, household composition and time and oppor-

tunity cost related variables - distance to nearest primary and secondary schools and public

transport.

The baseline data covers 9747 individuals (both treatment and control) for 1581 households.

This evaluation focuses on outcomes of children eligible for the schooling component of the

program. Such households receive both the food transfer and the education transfer compo-

nents of the program. The sample size for the purpose of this evaluation consists of 1786

children. Over half of this sample consists of families with more than one child eligible for

the program.

2.6 Results

2.6.1 Estimating School Costs

Table 2.1 shows the results from estimating the two part model for boys and girls. The probit

participation model for both boys (1) and girls (3) show a similar pattern, with enrolment
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Table 2.1: Estimating School Costs

(1) (2) (3) (4)
Probit-Boys EEE-Boys Probit-Girls EEE-Girls

VARIABLES Enrollment School Costs Enrollment School Costs
age8 0.116 0.117 0.251 0.168

(0.151) (0.139) (0.160) (0.103)

age9 0.265 0.180 0.544** 0.385***

(0.161) (0.147) (0.168) (0.103)

age10 0.174 0.0439 0.285 0.345*

(0.164) (0.124) (0.172) (0.172)

age11 -0.00216 0.0458 0.202 0.470***

(0.164) (0.133) (0.179) (0.116)

age12 -0.00164 0.189 0.147 0.523**

(0.172) (0.137) (0.188) (0.197)

age13 -0.554*** 0.0256 -0.159 0.205

(0.168) (0.138) (0.198) (0.134)

HH Consmp (adjusted) 0.0000116** 0.0000405*** 0.0000122* 0.0000264***

(0.00000447) (0.00000345) (0.00000593) (0.00000359)

School dist -0.00703*** 0.00346** -0.00806*** 0.00230

(0.00178) (0.00118) (0.00173) (0.00155)

No. of adults -0.0336 0.0536

(0.0328) (0.0413)

Children under5 -0.172** -0.224*** -0.228*** -0.0780

(0.0550) (0.0398) (0.0621) (0.0430)

Children 7-13 0.0814 -0.258*** -0.0462 -0.240***

(0.0463) (0.0443) (0.0557) (0.0391)

HHH gender 0.335 -0.0755

(0.183) (0.198)

HHH age 0.00714 0.00979

(0.00529) (0.00562)

HHH yrs of ed 0.106** 0.180***

(0.0381) (0.0436)

HHH works -0.0949 0.186

(0.173) (0.194)

Constant -0.0227 -0.377* -0.0752 -0.288*

(0.325) (0.155) (0.375) (0.131)

λ 0.289* 0.663**

(0.143) (0.204)

θ1 1.242*** 1.564***

(0.0887) (0.157)

θ2 1.597*** 1.737***

(0.106) (0.111)

Observations 945 687 845 631

Robust standard errors in parentheses, clustered at the household level

*** p<0.01, ** p<0.05, * p<0.1
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being most likely between the ages of 8 and 10 as compared to children aged 7 (reference

category)and declining with older children. Boys drop out earlier (above age 10) while girls

aged 13 are less likely to enrol when compared to the reference group. This pattern follows

most developing countries where many children enrol and stay in school only for a few years,

dropping out between the ages of 11-13 to find employment. Consumption net of school costs

(used as a proxy for income) and education of the household head are significant and have

a positive impact on enrolment. As mentioned earlier the probit model includes the number

of children under 5 years as a proxy for child labour. The estimates show similar negative

magnitudes for boys and girls indicating having younger children in the household decreases

the likelihood of enrolment. A similar effect of distance to the nearest school is observed,

with children being less likely to enrol if schools are further away. Enrolment probabilities

differ for boys and girls depending on the gender and the employment status of the head of

the household. Girls are less likely to enrol if a male is head of the household, as is the case

in 88% of the households in the sample. The direction of the coefficient for employment

status is less intuitive as boys seem less likely to enrol if the household head is employed.

This result is probably due to the nature of employment, with about 85% of the sample being

involved in farm activities. The last two variables though not significant in the model do

indicate the presence of a gender gap from additional opportunity costs for boys and cultural

differences that contribute to the differences in schooling.

Columns (2) and (4) of Table 2.1 provide results from the second part of the two part model

using the extended estimating equations model (EEE) (Basu & Rathouz 2005) for school

costs. 5 Boys in the reference category (age 7) face the highest school costs. At other ages

there is no significant impact on school costs. For girls however, school costs increase with

age. Families with greater consumption tend to spend more on education, although more

on the boys than the girls. In both cases children of the same age and children under five

is significant (except for girls -children under5) and negative. This is intuitive in the sense

that sharing of resources reduces the costs per child as the number of school age children

increases.

5An alternative approach to the EEE model would be to use a generalized linear model with a specified link
function and distribution. However, failure to specify the correct link function results in misspecification of
the model. To avoid such misspecifications, the EEE approach was used since it does not require an a priori
assumption of a link function or distribution. This approach ‘helps to identify an appropriate link function and to
suggest an underlying distribution for a specific application but also serves as a robust estimator when no specific
distribution for the outcome measure can be identified’ Basu & Rathouz (2005).
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In Column (2) for the boys sample the link parameter is estimated to be λ = 0.289 (95%

C.I: 0.01, 0.57). The variance function represented by θ1 = 1.2 (95% C.I:1.07 ,1.42) and

θ2 = 1.6 (95% C.I:1.39 , 1.80) is close to a gamma distribution. Column (4) provides the

estimates for the sample of girls. In this case with λ = 0.66 (95% C.I: 0.26, 1.06), the

link function is close to a square root link. The values θ1 = 1.5 (95% C.I:1.26 ,1.87) and

θ2 = 1.74 (95% C.I:1.51, 1.95) again suggest a gamma distribution.

2.6.2 Predicting Impacts

The empirical specification of the Klein and Spady model described in section 2.4 is used

to predict unobserved school enrolment (S∗∗ = Φ(F̃ , θ̃, n, g;Xh)) under the treatment, ac-

counting for the age of the child and a quadratic specification of age, number of children

under 5, number of children between 7 and 14 years, number of adults, years of education

and gender of the head of the household, the household lives in a coffee growing commu-

nity, consumption, school costs, distance to the nearest primary and secondary school and

public transport. Figures 2.4(a) and 2.4(c) illustrate the observed data from the comparison

group (Sj in equation 2.9) along with the Klein and Spady predictions for the extrapolated

unobserved outcomes under treatment (Si in equation 2.9). Figures 2.4(b) and 2.4(d) com-

pare predicted outcomes from the Klein and Spady model with those observed in the 2001

follow-up survey of the experiment. A comparison of Figures 2.4(b) and 2.4(d) shows that

the extrapolated outcomes are quite close to the observed follow-up data for both boys and

girls.

The estimator in equation (2.9) matches baseline program eligible children with characteris-

tics (F̃ , θ̃, Xh) with other baseline program eligible children with characteristics (F, θ,Xh).

The estimated treatment effect is only valid for those families within the region of common

support defined by equation (2.15). Figures 2.5(a), 2.5(b),2.5(c)and 2.5(d) compare the distri-

butions of the variables included in the matching before and after trimming is implemented in

the Klein and Spady estimator. They show that as required trimming eliminates observations

where the density is very low, this translates to the ends of the right-tail of the distributions

i.e families with very high consumption or school costs for whom matches are unlikely to be

available are dropped from the estimation of treatment effects.
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(a) Observed Baseline Outcomes with Predicted
Outcomes for Sample of Boys

(b) Observed Follow up Outcomes with Predicted
Outcomes for Sample of Boys

(c) Observed Outcomes and Predicted Outcomes
for Sample of Girls

(d) Observed Follow up Outcomes with Predicted
Outcomes for Sample of Boys

Figure 2.4: Comparing Observed and Predicted Outcomes
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(a) Consumption for Sample of Boys (b) School Costs for Sample of Boys

(c) Consumption for Sample of Girls (d) School Costs for Sample of Girls

Figure 2.5: Trimming Klein and Spady estimations

The predicted impacts are listed in column (1) of Table 2.2 along with corresponding results

from the ex post evaluation of RPS (column 3) 6. This paper evaluates the impact of RPS

using both treatment and control group data at the baseline as a single cross-section rather

than just control group data as in the case of Todd & Wolpin (Forthcoming). This is in

some ways similar to choosing a sample of program eligible households from any available

cross-section (such as the Living Standards Measurement Survey (LSMS)). A comparison

of the ex ante and ex post outcomes show that the ex ante approach predicts very closely

the overall program impact for both boys and girls and is statistically significant, with one

year of conditional cash transfers having a positive impact on enrolment of both boys and

girls. The estimated impact for boys is 0.19 and accurately predicts the results of the ex-post

evaluation. The one-year cash transfer increased enrolment of girls by 21 percentage points

as compared to 20 percentage points from the experimental evaluation. In comparing the

enrolment between boys and girls, girls continue to have higher enrolment rates even after 1

6The ex-post evaluation results from the published report of the evaluation of RPS provide only the overall
impact.The other values were calculated for this evaluation.
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Table 2.2: Predicted Impact

(1) (2) (3)
VARIABLES Predicted Impact Sample sizes@ Experimental impact
Boys 7 -13 0.19*** 859 / 876 0.19***

(0.0222)

Girls 7 -13 0.21*** 754 / 767 0.20***

(0.0219)

Boys & Girls 7-9 0.17*** 829 / 844 0.23***

(0.0255)

Boys & Girls 10-13 0.15*** 786 / 799 0.15***

(0.0316)

(1) The predicted and experimental results are the combined effects of all three

transfer components of the program Bono escular (school attendance),

Mochila escolar (school supplies) and Bono alimentario (food security).

(2) @ treatment observations after trimming, total number of observations.

(3) Bootstrapped standard errors clustered at the comarca level (500 reps).

(4) *** p<0.01, ** p<0.05, * p<0.1

year of the program. At the baseline 75% of program eligible girls were already enrolled in

school as compared to 72% of boys. The difference in opportunity costs could be a factor

in explaining this difference as girls could be more likely to enrol possibly due to lower

opportunity costs as compared to boys.

To examine further the predictions, the impacts are analysed by subgroups of age. The same

model specification used for the boys and girls is used to estimate ex ante impacts for two

sub-groups- children below 10 and those 10 years old and above. The ex ante evaluation

estimates an impact for children 10 years old and above as .15 which accurately predicts the

experimental results. In the case of children below 10 years, the experimental evaluation

shows a very large 23 percentage point rise in enrolment. The ex ante estimates for the same

age group are also large and positive but are lower in magnitude at 17 percentage points when

compared to the experimental estimates. The method relies on accurately capturing all direct

and indirect costs of schooling to reflect the price effect of receiving the cash transfer for

the school component of the program. The survey provided no information on time use and

earnings of children. The underprediction could reflect children being involved in work at

home outside of their school hours or in non-paid employment in the household. The lack

of more detailed information could be leading to the underprediction. In general the RPS

program shows large and positive impacts across boys and girls and for different age groups.
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However, the impacts on children of younger ages is greater than for older children. The

reduced form behavioural model approach applied here performs well in predicting one-year

ex ante impacts of the RPS program.

2.7 Conclusion

This paper presents an ex ante evaluation of Nicaragua’s CCT program Red de Protección

Social. It applies the methods proposed by Todd & Wolpin (Forthcoming) on using reduced

form estimation of behavioural models to carry out ex ante evaluations of social programs.

The key requirement in this approach is that the preferences remain the same before and after

the program so that the impact of the program is captured by a change in the magnitude of the

exogenous variables resulting from an introduction of the program. This paper extends their

approach to model education utilization outcomes and presents results from the schooling

component of the program.

The model considers the influence of both direct and opportunity costs of schooling. Vari-

ation in the policy variable (school costs) and full income of the household is exploited to

estimate program impacts on school enrolment. Empirically the model is implemented using

a semi-parametric single index framework that allows for an increase in the dimensionality

of the covariate vector. The outcome, school enrolment, is binary and the semi-parametric

estimator proposed by Klein and Spady is used to predict the unobserved outcomes under

treatment. The data set combines baseline data from the RPS experiment along with some

information from the census survey . The baseline data is used as a single cross-section

combining both control and treatment groups. Comparing the predicted estimates with the

experimental outcomes shows that the predictions all have the same direction as the experi-

mental impact. The predictions for overall impact of the program for boys, girls and the age

group - 10 years and above are very close in magnitude to the experimental impact. The pre-

diction for younger children however is lower than the experimental impact but still shows a

large positive effect of a one year cash transfer. The empirical approach used relies on selec-

tion on observables and performs well when the observables are fully captured. In general,

in keeping with the findings from the experiment, the ex ante evaluation finds a significant

and large overall impact of RPS on the target population.
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Chapter 3

Conditional Cash Transfers to Improve Edu-

cation and Health: An Ex ante Evaluation of

Red de Protección Social, Nicaragua

3.1 Introduction

Millions of children under 5 years face risks to their development from poverty, poor nutrition

and limited access to healthcare. Grantham-McGregor et al. (2007) estimate that the above

risks prevent more than 200 million children under 5 years from reaching their potential in

cognitive development. Poor nutrition, untreated infections and lack of growth monitoring

can result in growth retardation and stunting. Evidence from several developing countries

shows that these children are in turn less likely to enrol in school and perform as well as

children not facing these risks (Moock & Leslie 1986, Brooker et al. 1999, Glewwe et al.

2001). This lack of investment in human capital results in intergenerational transmission of

poverty and poor health.

Early interventions that promote child development ameliorate the above risks and are critical

to improving health outcomes and breaking the circle of poverty (Engle et al. 2007). To

address the problem conditional cash transfer(CCT) programs have emerged as popular social

protection schemes and are now implemented by many governments in Latin America and

several parts of Africa. While these programs have largely focused on improving access

to education for children, some programs have also implemented health components with a
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view to reducing current poverty while encouraging investment in human capital and health.

Typically the health components of these programs look to improve access to preventive

interventions and monitor child growth.

Evaluating the impact of these programs is critical to understanding their effectiveness in

different settings. A few of the CCTs in Latin America were implemented as pilot random-

ized experiments. While these experiments provide the best estimate of the ex post treatment

effect, they are limited in their application to exploring alternative policy scenarios or esti-

mating the impact of expanding a pilot program. Such analyses require ex ante evaluations

using behavioural models. Two approaches are available to carry out ex ante evaluations.

The first approach relies on structural estimation of a dynamic behavioural model. Todd &

Wolpin (2006) and Attanasio et al. (2005) apply this approach to estimate a discrete choice

dynamic programming model of education and fertility outcomes for the Progresa program

in Mexico. More recently, building on the work by Ichimura & Taber (2000), Todd & Wolpin

(Forthcoming) propose a second approach based on estimating reduced form equations using

minimal assumptions of functional form and applying non-parametric estimation methods to

compare predicted school enrolment outcomes with those of the experiment for the same pro-

gram. The present paper tests their reduced form approach and explores the feasibility of this

approach in forecasting health related outcomes. For the health related outcomes it relies on

a health production framework and considers the impact of the cash transfer on demand for

immunizations and the take up of child health checks. The paper also carries out simulations

of alternate policy scenarios.

The data used in this paper is from the Red de Protección Social CCT program in Nicaragua.

The program was implemented in 2000 as a randomized social experiment and has two

equally large cash transfer components, one for school enrolment and the second for food

security and nutrition. The behavioural model reduced form (BMRF) approach used in this

paper differs from Todd & Wolpin (2006) and Attanasio et al. (2005) in that it does not es-

timate the structural parameters of the model. Instead it relies on variation in the observed

policy related variables, and models the reduced form demand equations for the outcome vari-

ables from an underlying static model. Identification in this approach requires the program

to channel its influence solely through the budget constraint and the reduced form functions
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before and after the program remain the same. Empirically, the model is implemented using

a semi-parametric single index model which relaxes the limitation on the number of exoge-

nous variables possible in a fully non-parametric approach. The semi-parametric approach

also allows for greater flexibility in capturing confounders.

3.2 Background

3.2.1 CCTs and health services

CCT programs are social protection programs aimed at breaking the intergenerational trans-

mission of poverty and poor health. These programs offer cash transfers that can be spent

without restrictions, however receiving the cash transfer is conditioned on altering certain

behaviours - such as enrolment of children in school and investing in preventive health care

for children. The goals are to simultaneously reduce poverty while encouraging investment

in human capital. The cash transfers are a form of subsidy that reduce the financial barriers

to accessing either education or health services. The level of services accessed by a house-

hold are driven by both demand and supply side factors, where on the demand side the level

and frequency with which an individual or household accesses care depends on their level

of informed decision making i.e - the ability with which they are able to identify being ill

or the need for preventive care and the capacity to access and utilize care (Ensor & Cooper

2004). CCT programs target these demand side barriers. Three assumptions underlie the

health components of CCT programs (Glassman et al. 2007); the first, that poor households

under-utilize health services, the second, that these families do not possess sufficient health

education and knowledge about the benefits of accessing preventive care and third, in order

for the transfer to have an impact receipt of the transfers must be conditioned on some health

related behaviour altering requirement.

3.2.2 Health care utilization and vaccinations

Health services in a CCT program targeted at children are usually provided as a package of

services with the cash transfer serving as an incentive to access the package. CCTs recognize
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the production of child health has several inputs, including maternal schooling and endow-

ments (abilities of the mother, knowledge of nutrition and habits) and access to preventive

care (Behrman & Wolfe 1987). Embedding different outcomes in a package of services could

increase demand for individual outcomes more than if they are provided as separate services

as the marginal impact of one input may be higher when combined with the other relevant

inputs (Strauss & Thomas 2008).

One major outcome, that in most CCT programs is designed as an explicit conditionality,

is health checks for children below 3 years. The use of health checks for children is an

important input in overall health and development. Accessing these services is however

closely associated with the level of education of the parents and the time and financial costs

of accessing care. Thus, by making health checks for children a conditionality for the cash

transfer, these programs look to minimize the impact of a family’s socioeconomic status on

child health seeking behaviour. Evidence from ex post evaluations of CCT programs from

three Latin American countries - Honduras, Nicaragua and Colombia (see Glassman et al.

(2007) for a summary) have shown significant increases in the number of children being

taken to health clinics.

Vaccinations against preventable diseases such as measles, tetanus and whooping cough are

the most cost-effective of preventive health interventions (Miller & Hinman 2004, Hadler

2004) and are provided within the package of services provided by CCTs. However, unlike

health checks, they are rarely made an explicit conditionality and are typically provided un-

der the general set of services provided at health checks. The ex post evidence is limited

due to the lack of complete data for the different vaccines that are given to achieve “full im-

munization”. One exception is the RPS program in Nicaragua. The randomized evaluation

(Barham & Maluccio 2009) shows a 19 percentage point increase in full coverage as a result

of the program. Evidence from the Progresa program in Mexico and the CCT program in

Honduras is limited to certain vaccines, but both find small but positive impacts.

3.2.3 Red de Protección Social

Red de Protección Social (RPS) was implemented in 2000 as a pilot randomized evaluation

in 42 localities of six rural municipalities of Nicaragua. The pilot evaluation was maintained
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as an experiment for two years following which the initial control group was integrated with

the treatment group and provided the cash transfers. The program was designed to target

education of children in rural households and had two transfer components. The first was

a school transfer component given conditional on all children in the household between the

ages of 7-13 who have not completed grade 4 of primary school enrolling and maintaining

85% attendance. Independent of the school component the food security, health and nutri-

tion transfer was provided directly to mother’s of beneficiary households conditional on (1)

bringing her children to scheduled preventive health checks, (2) attending bimonthly health

education workshops and (3) adequate weight gain for children. Figure 3.1 presents a sum-

mary of the eligibility criteria and requirements for RPS.

The health services provided during the compulsory checks included growth monitoring, vac-

cinations and nutrition supplements for anaemia and anti-parasite medicines. Beneficiaries

were required to use RPS trained and enlisted providers. Providers enlisted by RPS were

paid to travel to program regions by the program operators to provide vaccinations and the

additional health services in existing facilities or other community facilities. The required

infrastructure and stock of medicines and vaccinations were monitored and provided at these

facilities by the program operators. However, there was a delay in expanding the government

health services to meet the demand from the program and hence the health related condition-

alities were not enforced during the first 8 months of the transfers. This however means that

the experimental results are a combination of different aspects which cannot be isolated ie.

the result combines the effect of the cash transfer and the conditionalities (for the last four

months). In which case the ex ante results from this paper represent the effect of only the

cash transfer component. This point is discussed further in the results section.

The amounts of the transfer for each household included, the Córdoba 2000 equivalent of

US$224 for food security and US$112 for the education component per year. In addition

families also received a per child school supplies transfer of US$21. Figure 3.2 shows the

summary of the transfer amounts. Maluccio & Flores (2005) estimate that the food trans-

fer was approximately 13% of annual household expenditure and if families had only one

school component eligible child, then they received an additional 8% of annual household

expenditure.
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Figure 3.1: RPS Eligibility and Requirements. Source: Maluccio and Flores 2005

43



Figure 3.2: RPS Transfers. Source: Maluccio and Flores 2005

3.3 Theoretical Framework

This paper focuses on empirically estimating and predicting health related outcomes under

the RPS cash transfer program. It relies on a static behavioural model of infant health pro-

duction (below 3 years) and school enrolment of school aged children (7-13 years).

Health of an infant is assumed to be produced by a production function specified as a func-

tion of health related consumption inputs, medical care inputs and a vector of household

characteristics.

The health production function is:

Hi = h(µ.Em, Em,M ;Xh) (3.1)

where Em is a binary indicator of attendance at the conditional educational workshops by
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the mother, µ represents additional consumption of nutritional food or other health inputs

which is assumed to depend on the transfer received conditional on the mother attending the

workshop. This term is set equal to zero in the pre-program situation as Em equals zero

before the program. M represents nutritional and medical care inputs and Xh represents a

vector of household characteristics.

A household with multiple eligible children i = 1...n, has utility U a function ofC represent-

ing non-medical consumption, health status of children H , a vector S of binary indicators of

school enrolment, with Si = 1 indicating school enrolment, and an indicator of gender g.

The household maximisation problem is then:

max
C,H,S

U(C,H, S; g, ν) (3.2)

The time constraint for a school component eligible child can be written as:

Ti = Tsi.Si + Twi(1− Si) (3.3)

where Tsi is time spent in school and is assumed to be a fixed amount for all enrolled children,

Twi is time spent at work. This specification follows Todd and Wolpin and does not allow

for leisure in the time constraint as a substitute. However, a different form of time constraint

that does not assume substitution is possible, that allows total time Ti to be divided between

time spent on work, schooling and leisure. The reduced form in this case would be different

to the one derived here.

The money budget constraint of the household can be written as:

C +
n∑
i=1

δi.Si + pm.M − µ.Em = Y +
n∑
i=1

wi.Twi(1− Si) (3.4)

Where µ.Em = 0 in the pre-program scenario, δi is the direct cost of schooling for child

i. Primary schooling is free in Nicaragua and most children face no tuition fees, hence δi

includes all other school related costs faced by families such as transport, uniforms, books
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and school meals. pm is the cost per unit of medical care consumed and Y is household

income net of the earnings of the program eligible children. With µ.Em = 0 in the pre-

program scenario the money budget constraint is:

C +
n∑
i=1

δi.Si + pm.M = Y +
n∑
i=1

wi.Twi(1− Si) (3.5)

The constrained household maximisation problem is:

max
C,H,S

U(C,H, S; g, ν) (3.6)

which is maximised subject to a full income constraint that combines the time constraint of

school going children and the money budget constraint of the household:

C +
n∑
i=1

[δi + wi.Tsi]Si + pm.M = Y + wi.
n∑
i=1

Ti = F (3.7)

F is full income of the household. The full income constraint expresses the total price of

schooling for all eligible children in the family (θ =
∑n
i=1[δi + wi.Tsi]) as the costs of

schooling plus the shadow wage for the eligible children.

Optimising the utility with respect to the constraints gives the standard reduced form demand

functions for the outcomes of interest - schooling S∗ = Φ(F, θ, pm, n; g, ν), health is H∗ =

Ω(F, θ, pm, n; g, ν) and preventive care inputs is M∗ = Ψ(F, θ, pm, n; g, ν)

The RPS program has two cash transfers - the first focuses on changing the price of schooling

for eligible children conditional on enrolment and the second is a food transfer meant to boost
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consumption, nutrition and access to preventive health care conditional on mother’s attending

the health workshops (Em). The initial objective of RPS was to condition the food transfer

on a series of other requirements including taking children under 5 years for health checks

and maintaining up-to-date immunization. But as explained in the program description these

conditionalities were not enforced till almost the second year of the program and hence does

not affect the analysis in this paper. The household food transfer (µ) conditional on Em is

modelled as a direct income effect, raising the income level of the household and does not

stipulate specific expenditure categories. Under the assumption of full compliance, i.e. all

mothers attending the compulsory health education workshops and all children being taken

to scheduled health checks, the food security transfer is added to the full income of the

household along with the per child transfer for school supplies. By relaying the impact

of the program through the budget constraint this approach models the impact of the cash

transfer component of the policy. It does not allow for the impact of the different health

related conditionalities on health outcomes. At subsistence consumption levels, an increase

in income through a transfer is assumed to impact food consumption changing consumption

patterns to more nutritious components in the food basket and reducing financial barriers to

utilizing preventive care. The focus on health checks and immunization as outcomes without

their being implemented as a conditionality is useful in analysing the short-term impact of

increased economic status on accessing child health services.

The school transfer is implemented as two components (τ, ρ) to reduce the net price of

schooling and substitute for any wages earned by children not enrolled in school due to em-

ployment. A decrease in the price of schooling is likely to encourage children to substitute

away from labour market participation and increase school enrolment. The first component

τ is provided for each eligible child in the family while ρ is a lump sum transfer irrespec-

tive of the number of eligible children. Both transfers are conditional on all eligible children

enrolling in school.

With the introduction of the subsidies µ.Em, τ.
∑n
i=1 Si.Sp and ρ.Sp, where Sp = 1 if∑n

i=1 Si = n ie. all eligible children enrol in school and Sp = 0 otherwise, the full income

for a beneficiary family is:
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C − ρ.Sp − µ.Em +
n∑
i=1

(δi + wi.Tsi − τ.Sp)Si + pm.M = Y +
n∑
i=1

wi.Ti = F̃ (3.8)

The new price of schooling under the subsidy program is θ̃ = (
∑n
i=1[δi + wi.Ts − τ.Sp])

and the new level of full income is F̃ . The optimal choice under the subsidies is S∗∗ =

Φ(F̃ , θ̃, pm, n; g, ν) , health is H∗∗ = Ω(F̃ , θ̃, pm, n; g, ν) and preventive care inputs is

M∗∗ = Ψ(F̃ , θ̃, pm, n; g, ν)

Identifying the ex ante impact of the program using the approach of Todd & Wolpin (Forth-

coming) requires the health outcomes reduced form demand function H (and school out-

comes function S) to remain the same before and after the program is introduced ie.

M∗∗ = Ψ(F, θ, pm, n; g, ν) = Ψ(F̃ , θ̃, pm, n; g, ν) (3.9)

The above equation shows that the reduced form functions before and after the program are

the same except for the magnitudes of the exogenous policy variables. This assumes that the

program has an influence only through the budget constraint and does not directly enter the

utility function. Empirically this allows exploitation of two sources of variation in the data

to compare untreated individuals with outcomes M∗ with other untreated individuals with

outcomes M∗∗ - the first is school costs and the second is full income of the households at

the baseline. As described earlier, primary education is free in Nicaragua and most families

face no fees, the cost here includes other expenditure related to schooling which is exogenous

in the sense that it is faced by all families when enrolling children irrespective of whether

the tuition is free or not. In addition, the data do not provide a measure on income to be

used as a proxy for full income, but has a measure of consumption. Figure 3.3(a) shows

a histogram of full income of families, with values ranging from c1,590 to c77,905. The

second graph figure 3.3(b) shows the school costs used in the estimation, which range from

c12 to c1438. In addition to variation in school costs and consumption, the level of the
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(a) Household Consumption

(b) School Costs

Figure 3.3: Data Variation
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school grant also varies depending on the number of children in the household. The treatment

effect is estimated by matching untreated individuals with other untreated individuals on

functions of observable characteristics. Identifying the ex ante treatment effect also requires

that any unobserved heterogeneity (ν) remains the same before and after treatment ie. (ν)

is independent of consumption and school costs. However, the use of consumption in the

reduced form means there is the problem of potential endogeneity. This would particularly

be the case if decisions about schooling depend on the opportunity costs of enrolment or if

parents are heterogeneous in preferences to invest in children’s education. These preferences

are likely to depend a great deal on family structure and background etc. In the case of

preventive care utilization, consumption could be endogenous if accessing these services

affects work decision/earnings. To make this assumption plausible, empirically the matching

functions include a set of family characteristics - Xh and price variables.

f(ν|F, θ,Xh) = f(ν|F̃ , θ̃, Xh)

3.4 Empirical Specification

The behavioural model reduced form approach proposed by Todd & Wolpin (Forthcoming)

exploits exogenous variation in the policy related variables (in this paper full income and

school costs) at the baseline and matches untreated individuals on functions of observable

characteristics. The estimator they propose is broadly analogous to an ex post matching

estimator set in the potential outcomes framework (Neyman 1990, Rubin 1974). An ex

post matching evaluation uses information on both treated outcomes (M1) and untreated

outcomes (M0) from a suitable comparison group and matches individuals on observable

characteristics where the average outcomes for the matched untreated individuals is the

counterfactual for the average outcomes for the treated group if they had not been treated

(Heckman, Ichimura & Todd 1997). In the case of the ex ante evaluation the outcomes of

the treated group (M1) are unobserved and must be estimated from the observed (M0) un-

treated/baseline information. This translates to estimating:

M1i = E[M0j |Fi = F̃j , θi = θ̃j , pmi = pmj , ni = nj , gi = gj , Xhi = Xhj ] + ε (3.10)
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The estimator proposed by Todd & Wolpin (Forthcoming) for the ex ante evaluation estimates

the average treatment effect for those eligible for the program (intent-to-treat (ITT)) as:

α = 1
k

∑k
j=1 j,i∈SmE(Mi|Fi = F̃j , θi = θ̃j , pmi = pmj , ni = nj , gi = gj , Xhi = Xhj)−

Mj(Fj , θj , pmj , nj , gj , Xhj)

(3.11)

3.4.1 Estimating School Costs

Implementing the above matching estimator requires estimation of the unobserved treated

outcomes as a function of consumption, school costs and a set of household characteristics.

School costs (δi) are determined by the enrolment status of the child and hence are observed

in the data for only those children who are currently enrolled in school and zero costs ob-

served for those not enrolled. The problem of predicting school costs for the entire sample

of children requires using a two-step process decomposing the participation decision and the

determinants of the cost of schooling. A two-part model (2PM) 1 is applied where in the

first part, the enrolment decision, is modelled using a probit and the second part predicts the

cost of schooling as a linear function of the determinants of school costs (Mullahy 1998).

The most common specification of the second part is a log transformation of the outcome

variable. A problem with using a retransformed OLS in this case is that zero school costs

are also observed in the sample of those children currently attending school. A log transfor-

mation would drop these observations from the estimation sample. A further problem arises

with retransformation of the outcome variable to the original scale in the presence of het-

eroskedasticity. Manning (1998) shows that heteroskedasticity leads to biased estimates of

the outcome variable and correction requires determining whether the heteroskedasticity is

across different groups or caused by a particular subset of the covariates. To overcome these

issues the second part of the 2PM is estimated using the extended estimating equations model

1A bivariate selection model was initially estimated and the non-linearity of the inverse mills ratio showed no
evidence of selection bias. Also, school costs are not normally distributed and a log transformation would drop
the observations that indicated zero costs. A further difficulty arises in finding a suitable exclusion restriction that
affects school enrolment but not school costs. To overcome these problems a two-part model is used.
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(EEE) proposed by Basu & Rathouz (2005). The EEE approach is a semi-parametric exten-

sion of a standard generalized linear model (GLM) incorporating flexible link and variance

functions. It has two main advantages it identifies an appropriate link function from the data

enabling identification of an underlying model for the error distribution and when no partic-

ular distribution can be identified from the outcome variable it serves as a robust estimator.

Specifically, the EEE combines a Box-Cox transformation for the link function and includes

a class of link functions represented by an estimated parameter λ:

δλ−1
λ if λ 6= 0

log(δ) if λ = 0

It also allows for heteroskedasticity and uses a general power function for the variance de-

fined by two-parameters θ1 and θ2:

V (y) = θ1δ
θ2

The model is estimated separately for boys and girls.

3.4.2 Estimating Counterfactual Outcomes

In this paper the ex ante impact on two binary preventive care measures are estimated - health

checks for children under 3 years of age and full coverage of vaccinations for children be-

tween the ages of 12-23 months. The unobserved binary outcomes E(Mi|Fi = F̃j , θi =

θ̃j , pmi = pmj , ni = nj , gi = gj , Xhi = Xhj) are estimated using Klein and Spady’s

(Klein & Spady 1993) semiparametric estimator. The estimator belongs to the class of non-

parametric single index models with conditional probability P (M = 1|X = x) = G(xβ)

but where the distribution function G is left unspecified. The estimator is semiparametric in

the sense that the only nonparametric component of the estimator is the linear index G(xβ)

while the x’s maintain a linear specification as in the parametric counterpart of a probit or

logit. The semiparametric single index specification offers several advantages over a fully

nonparametric approach, it allows for as many covariates as required by the model by elimi-

nating the curse of dimensionality problem where the model’s convergence rates are inversely

proportionate to the number of covariates. It also offers greater regions of support for predic-
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tions as compared to a nonparametric model by extending the region of support beyond the

observed x to points not in the support of x but in the support of xβ (Horowitz 1998).

Klein and Spady adapted single index models for binary outcomes, the index function is

defined as:

E(M |x) = P (M = 1|x) = G(xβ)

The estimator, like more general single index models, involves two unknowns - β and G.

Estimation of both elements require several identification restrictions. Similar to all linear

models, identification of β requires G to be a non-constant function along with the absence

of multicollinearity amongst the covariates. In addition, to uniquely identify the function

G(xβ) single-index models involve location normalization and scale normalization restric-

tions. Location normalization is achieved by requiring the covariate vector to include no

intercept term while scale normalization involves restricting the β coefficient of one con-

tinuous variable to equal one. Identification in single-index models is achieved because the

conditional mean function can remain constant with changes in x as long as the index xβ

remains constant. However, with continuous covariates a constant index (ie. xβ = k) for a

given set of covariates has probability zero. To overcome this a further identification restric-

tion is required where G is a differentiable function so that G(xβ) is close to G(k) when xβ

is close to k (Horowitz 1998). A final set of restrictions are required when X contains both

discrete and continuous variables. The first of these requires that the discrete elements of the

covariate vector do not divide the support of xβ into disjoint subsets. The final restriction

is referred to as the ’non-periodicity condition’ for the function G requiring it to be strictly

increasing.

Klein and Spady’s adaptation of single index models for binary outcomes uses maximum

likelihood estimation(MLE) where the log-likelihood is:

lnL(β,Gn) = n−1
n∑
i=1

[Mi lnGn(xiβ) + (1−Mi) ln(1−Gn(xiβ))] (3.12)

The difference from a parametric estimator such as probit or logit is that Gn(xiβ) is a semi-

parametric likelihood estimate which is estimated using a leave-one-out nonparametric esti-
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mator of the density of xβ̂ conditional on M, where for any z

Gn(xiβ) =
Pngn(z|M = 1)

Pngn(z|M = 1) + (1− Pn)gn(z|M = 0)
(3.13)

where gn is the kernel estimate of the conditional density of xβ (g(.|M)) and gn is defined

as:

gn(z|M = 1) =

∑ n
i=1MiK(z − xiβ̂)/hn

nPnhn
(3.14)

gn(z|M = 0) =

∑ n
i=1(1−Mi)K(z − xiβ̂)/hn

n(1− Pn)hn
(3.15)

where Pn is the empirical probability Pn =
∑ n

i=1Mi, the proportion of infants taken to a

health check in the last six months or the proportion with full coverage immunization. K is a

kernel function and hn is the bandwidth.

Klein and Spady show that the estimator is asymptotically efficient and achieves the semi-

parametric efficiency bounds of Chamberlain (1986) and Cosslett (1987). The resulting vec-

tor of parameter estimates (β̂) is shown to have the following properties:

n1/2(β̂ − β) −→d N(0,Ω)

Ω = E

{[
∂G(Xiβ)

∂β

] [
∂G(Xiβ)

∂β

]T [ 1

G(Xiβ)(1−G(Xiβ))

]}−1
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E(Mi|Fi = F̃j , θi = θ̃j , pmi = pmj , ni = nj , gi = gj , Xhi = Xhj) (unobserved treated

outcomes for health checks and FCV) are estimated using the semiparametric estimator de-

scribed above. Each of the unobserved outcomes is estimated using a different model spec-

ification. They include the basic household characteristics - education and gender of the

household head, composition of the household, school costs and full wealth and age of the

child. In addition the model for health checks includes two community level characteristics

that serve as opportunity costs of accessing care - distance to the nearest health facility and

distance to the nearest public transport facility. In estimating the model for full coverage

of vaccination predicted outcomes are compared with Barham & Maluccio (2009) who esti-

mate two versions of the experimental outcome - one including community variables and the

other without. They find both give similar results. The estimation in this paper is a model

without community level characteristics and hence includes only the household and child

characteristics described above.

Scale normalization is achieved by setting the coefficient for years of education for the house-

hold head equal to 1. The estimated models are then used to first predict outcomes for the

observed control (baseline) group observations and then extrapolate the predictions under

treatment by evaluating the function at (F̃ , θ̃).2

The above specifications are also used for simulating alternate policy scenarios for both the

health outcomes and school enrolment. For the simulation of school enrolment the model

consists of the same household and child characteristics described earlier and include vari-

ables for distance to the nearest primary and secondary schools, whether the household lives

in a coffee growing community and distance to the nearest public transport facility. The

enrolment models are estimated separately for boys and girls and jointly for different age

groups.

Both within sample predictions and extrapolation can only be carried out in regions of com-

mon support. In the original formulation of the model Klein and Spady trim the likelihood

function (equation 3.12) to ensure that G is bounded away from 0 and 1. Simulations of

2The statistical package np (Hayfield & Racine 2008) available for the software R was used. The scalar
bandwidth for the index xβ for the health checks model is 0.037 and for the FCV model is 0.077.
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their model and other studies using this estimator (Horowitz 1993, Gerfin 1996, Fernández

& Rodríguez-Poo 1997) find little impact of trimming in empirical applications. Following

these studies this application does not trim the likelihood function.Extrapolation in nonpara-

metric models is only valid at points with positive data density; hence while not trimming

the likelihood function, trimming is carried out to define the region of common support i.e

to identify regions of positive data density in the extrapolated values. The region of support

Sm in the semiparametric model is defined as Sm = (xβ) ∈ R2 such that f(xβ) ≥ 0 where

f(xβ) is the nonparametric density of the linear index. 3 Heckman, Ichimura & Todd (1997)

propose that the density should be strictly positive as defined by Sp and should exceed a min-

imum cut-off to avoid points with very low density. Thus the extrapolation is valid for only

those points of evaluation where

f(xβ̂) > c (3.16)

Heckman, Ichimura & Todd (1997) recommend setting the cut-off at a percent quantile of

the estimated densities. Here c is set at the 2% quantile. Only those observations that meet

the above criterion are kept in the extrapolation sample.

3.5 Data and Variables

The ex ante evaluation is carried out using data from the randomized pilot evaluation of RPS.

As part of the experiment data was collected in four rounds. The first, a census survey of

chosen localities in May/June 2000, this was followed by a comprehensive baseline for all

members of the treatment and control groups, followed by follow-up surveys in October 2001

and October 2002. This ex ante evaluation uses data from the census and baseline surveys

for the estimation and compares the predicted outcomes with those observed using the first

follow-up survey. A total of 1581 households were included in the experiment.

The estimation sample consists of 576 households with children aged 0-3 who were eligible

for the food security, health and nutrition component of the program. Of this sample 353

3The densities are estimated using the method of Li & Racine (2003) who use ’generalized product kernels’
for mixed data. The bandwidths were set using maximum likelihood cross validation
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households also had children between ages 7-13 who had not completed grade 4 of primary

school and were hence eligible for the school transfer as well.

The census survey collected basic information on living conditions and the distance to the

nearest school for each household and at individual level, information on education and

school enrolment, land ownership and work. The baseline and follow-up surveys collected

detailed information on the same categories and in addition the baseline survey had a de-

tailed module on health and health related variables for all members of the household. These

surveys however did not gather information on income and different sources of income but

instead collected information on complete household expenditure and asset ownership.

3.5.1 Dependent variables

The ex ante impact is estimated for two health related variables - health checks and full

coverage of vaccinations (FCV). In the randomized experiment parents of all children below

5 years in the household were asked whether the child had been taken for a health check in

the last six months. The estimation of predicted impact focuses on children below 3 years

with a balanced (households observed in the baseline and follow-up survey) sample size of

792. At the baseline just over 70 percent of children in this age group had been taken to a

health check within the last 6 months.

The full coverage of vaccination variable was constructed following the approach in Barham

& Maluccio (2009), using a series of questions on different vaccines. The baseline survey

recorded the number of doses each child received since birth for the following set of vaccines

(1) tuberculosis vaccine (BCG) (2) measles containing vaccine (MCV) or measles-mumps-

rubella (MMR) vaccine (3) oral polio vaccine (OPV) (4) diphtheria-pertussis-tetanus vaccine

(DPT) or pentavalent vaccine (or both). The international recommendation for up-to-date

time of vaccination is <12 months and 12-23 months of age depending on the vaccine. A

child is considered fully vaccinated if it receives all the required doses within the specified

time period. Table 3.1 gives the schedule for recommended vaccinations. A binary variable

for FCV was constructed equal to one if a child’s vaccine schedule was up-to-date and zero
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otherwise. The estimation was restricted to children 12-23 months of age to be sure that all

children had a chance to receive the BCG vaccine which is scheduled for below 12 months.

The total sample size of the balanced sample is 281.

Table 3.1: Basic vaccination schedule for up-to-date vaccinations

Disease Vaccine Dose Recommended age
Tuberculosis BCG 1 At birth

Measles MCV 1 12 months

Polio OPV 3 2, 4, 6 months

Diphtheria-pertussis-tetanus DPT 3 2, 4, 6 months

Source:Barham & Maluccio (2009)

A second objective of this paper is to evaluate alternate policy scenarios. These simulations

are carried out for both the schooling outcomes as well as the two health related variables de-

scribed above. The main policy variable considered for the school outcome is the enrolment

rate. Households with children between ages 7-13 who had not completed grade 4 of pri-

mary school were eligible for the school transfer conditional on all children in the household

enrolling and maintaining 85% attendance. The enrollment outcome is also a binary variable

equal to one if an eligible child enrols and zero otherwise. The estimation sample consists of

1786 program eligible children.

3.5.2 Explanatory variables

The estimation of the unobserved outcomes under treatment is driven by the reduced form

equations from the theoretical model. The policy enters the model through an impact on

the budget constraint and changes two key variables in the reduced form - school costs (for

families with children eligible for the school transfer) and full wealth (for all families). The

baseline surveys provide information on total household expenditure and asset ownership

which are together used as a proxy for full wealth. The second policy variable - school costs

is however observed only for those children aged 7-13 who are currently enrolled in school

and have to be estimated for the those who are eligible but not enrolled. For those families in

the sample without children eligible for the school component school costs remain zero.

The schools costs are estimated using variables that capture direct and opportunity costs,

set of household and child characteristics and family wealth. The census survey provides
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information on the education of the household head and distance to the nearest primary school

(used as a measure of opportunity cost of travel time). These variables are mapped to the

baseline survey. The baseline survey provides all the other variables. Family characteristics

include - household expenditure and asset ownership, age, gender and years of schooling

completed by the household head, number of children of school going age, number of adults

in the household and number of children under 5 years. To avoid problems of endogeneity,

household wealth (expenditure plus assets) is included net of the school costs and health

expenditure.

The unobserved outcomes E(Mi|Fi = F̃j , θi = θ̃j , pmi = pmj , ni = nj , gi = gj , Xhi =

Xhj) for health checks and FCV are estimated using the variables generated by the reduced

form of the behavioural model. These include, household characteristics - education and

gender of the household head, composition of the household, school costs and full wealth

and age of the child, distance to the nearest health facility and distance to the nearest public

transport facility (for the health checks model). The simulations of alternate policy scenarios

also use the same specifications.

3.6 Results

3.6.1 Estimating School Costs

Table 3.2 shows the results from estimating the two part model for boys and girls. The probit

participation model for both boys (1) and girls (3) show a similar pattern, with enrolment

being most likely between the ages of 8 and 10 as compared to children aged 7 (reference

category)and declining with older children. Boys drop out earlier (above age 10) while girls

aged 13 are less likely to enrol when compared to the reference group. This pattern follows

most developing countries where many children enrol and stay in school only for a few years,

dropping out between the ages of 11-13 to find employment. Consumption net of school costs

and education of the household head are significant and have a positive impact on enrolment.

As mentioned earlier the probit model includes the number of children under 5 years as a

proxy for child labour. The estimates show similar negative magnitudes for boys and girls

59



indicating having younger children in the household decreases the likelihood of enrolment. A

similar effect of distance to the nearest school is observed, with children being less likely to

enrol if schools are further away. Enrolment probabilities differ for boys and girls depending

on the gender and the employment status of the head of the household. Girls are less likely

to enrol if a male is head of the household, as is the case in 88% of the households in the

sample. The direction of the coefficient for employment status is less intuitive as boys seem

less likely to enrol if the household head is employed. This result is probably due to the

nature of employment, with about 85% of the sample being involved in farm activities. The

last two variables though not significant in the model do indicate the presence of a gender

gap from additional opportunity costs for boys and cultural differences that contribute to the

differences in schooling.

Columns (2) and (4) of Table 3.2 provide results from the second part of the two part model

using the extended estimating equations model (EEE) (Basu & Rathouz 2005) for school

costs. 4 Boys in the reference category (age 7) face the highest school costs. At other ages

there is no significant impact on school costs. For girls however, school costs increase with

age. Families with greater consumption tend to spend more on education, although more

on the boys than the girls. In both cases children of the same age and children under five

is significant (except for girls -children under5) and negative. This is intuitive in the sense

that sharing of resources reduces the costs per child as the number of school age children

increases.

In Column (2) for the boys sample the link parameter is estimated to be λ = 0.289 (95%

C.I: 0.01, 0.57). The variance function represented by θ1 = 1.2 (95% C.I:1.07 ,1.42) and

θ2 = 1.6 (95% C.I:1.39 , 1.80) is close to a gamma distribution. Column (4) provides the

estimates for the sample of girls. In this case with λ = 0.66 (95% C.I: 0.26, 1.06), the

link function is close to a square root link. The values θ1 = 1.5 (95% C.I:1.26 ,1.87) and

θ2 = 1.74 (95% C.I:1.51, 1.95) again suggest a gamma distribution.

4An alternative approach to the EEE model would be to use a generalized linear model with a specified link
function and distribution. However, failure to specify the correct link function results in misspecification of
the model. To avoid such misspecifications, the EEE approach was used since it does not require an a priori
assumption of a link function or distribution. This approach ‘helps to identify an appropriate link function and to
suggest an underlying distribution for a specific application but also serves as a robust estimator when no specific
distribution for the outcome measure can be identified’ Basu & Rathouz (2005).
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Table 3.2: Estimating School Costs

(1) (2) (3) (4)
Probit-Boys EEE-Boys Probit-Girls EEE-Girls

VARIABLES Enrollment School Costs Enrollment School Costs
age8 0.116 0.117 0.251 0.168

(0.151) (0.139) (0.160) (0.103)

age9 0.265 0.180 0.544** 0.385***

(0.161) (0.147) (0.168) (0.103)

age10 0.174 0.0439 0.285 0.345*

(0.164) (0.124) (0.172) (0.172)

age11 -0.00216 0.0458 0.202 0.470***

(0.164) (0.133) (0.179) (0.116)

age12 -0.00164 0.189 0.147 0.523**

(0.172) (0.137) (0.188) (0.197)

age13 -0.554*** 0.0256 -0.159 0.205

(0.168) (0.138) (0.198) (0.134)

HH Cons (adjusted) 0.0000116** 0.0000405*** 0.0000122* 0.0000264***

(0.00000447) (0.00000345) (0.00000593) (0.00000359)

School dist -0.00703*** 0.00346** -0.00806*** 0.00230

(0.00178) (0.00118) (0.00173) (0.00155)

No. of adults -0.0336 0.0536

(0.0328) (0.0413)

Children under5 -0.172** -0.224*** -0.228*** -0.0780

(0.0550) (0.0398) (0.0621) (0.0430)

Children 7-13 0.0814 -0.258*** -0.0462 -0.240***

(0.0463) (0.0443) (0.0557) (0.0391)

HHH gender 0.335 -0.0755

(0.183) (0.198)

HHH age 0.00714 0.00979

(0.00529) (0.00562)

HHH yrs of ed 0.106** 0.180***

(0.0381) (0.0436)

HHH works -0.0949 0.186

(0.173) (0.194)

Constant -0.0227 -0.377* -0.0752 -0.288*

(0.325) (0.155) (0.375) (0.131)

λ 0.289* 0.663**

(0.143) (0.204)

θ1 1.242*** 1.564***

(0.0887) (0.157)

θ2 1.597*** 1.737***

(0.106) (0.111)

Observations 945 687 845 631

Robust standard errors in parentheses, clustered at the household level

*** p<0.01, ** p<0.05, * p<0.1
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(a) Observed Baseline (2000) Outcomes and Pre-
dicted Outcomes for Health Checks

(b) Observed Baseline (2000) Outcomes and Pre-
dicted Outcomes for FCV

Figure 3.4: Comparing Observed and Predicted Outcomes

3.6.2 Predicting Impact

The counterfactual (unobserved) health related outcomes after program implementation (M∗∗ =

Ψ(F̃ , θ̃, pm, n, g;Xh)) are estimated using the Klein and Spady binary estimator described

in section 3.4.2. The health checks model is specified as a function of education and gender

of the household head, composition of the household, estimated school costs and consump-

tion (net of education and health expenditure) of the household after adjusting for the income

transfer, and age of the child. Figure 3.4(a) compares the observed baseline outcomes (Mj

in equation 3.11) with the predicted impact from the Klein and Spady model (Mi in equation

3.11). The figure shows a large increase in the estimated proportion of children being taken

to health checks with the cash transfer program.

Figure 3.4(b) shows similar graphs for the FCV model. When compared to the baseline, the

cash transfer induces a significant increase in the proportion of children under 2 years who

have up-to-date immunizations.

The predictions from the estimator (equation 3.11) are only valid in the region of common

support defined by equation 3.16. Figures 3.5(a),3.5(b),3.5(c)and 3.5(d) compare the distri-

butions of the policy variables before and after trimming at 2% quantile of the density of

the linear index (f(xβ̂)). The graphs show that observations with very low density - con-

centrated at the extreme right tail of the distributions are eliminated. Intuitively this means
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(a) Household Consumption (b) School Costs

Health Checks Estimation

(c) Household Consumption (d) School Costs

FCV Estimation
Figure 3.5: Trimming Klein and Spady estimations
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that families with very high consumption or school costs where no suitable matches could be

found are dropped from the estimated treatment effect.

Conditional cash transfers provide a social policy tool that combine improvement in child

health with education outcomes for school eligible children. The cash transfers are typically

accompanied by a package of health related conditionalities relating to preventive care. But

combining both does not allow separation of different pathways ie. the impact of the cash

transfer separate from the conditionality. The RPS program was also designed as a combi-

nation of three factors - a school enrolment transfer, a food security transfer and a series of

conditionalities relating to child health. But as described in the program description the RPS

program for the first 8 months of the program health services were not provided nor any con-

ditionalities enforced relating to the health/food security transfer. The impacts for the first

year are then largely the impact of the cash transfer in improving utilization of health services

without the conditionalities. However, it is possible that the last four months of implement-

ing the conditionalities did have some effect on the experimental outcomes. The double

difference estimates presented in 3.3 could contain the combined policy effects from the last

four months. In addition during the first year of the program there was also an improvement

in outcomes in the control group. One obvious reason for this could be positive spillovers

from the program to the control group â Barham & Maluccio (2009) test for this and find

no evidence of spillovers. Alternatively, due to the general strengthening of services in the

study area these could have benefited control groups as well. A similar rise was not observed

in non-study areas of Nicaragua (Barham & Maluccio 2009). As a result the experimental

double difference benchmark impacts are conservative and likely downward biased.

Table 3.3: Predicted Impact

(1) (2) (3)
OUTCOMES Predicted Impact Sample sizes@ Experimental impact
Health Checks 0.22*** 779 / 792 0.24*** (1 year)

(children below 3 years) (0.0250)

FCV 0.20*** 275 / 281 0.20**(1 year)

(Children below 2 years) (0.0451)

@ treatment observations after trimming, total number of observations.

Bootstrapped standard errors clustered at the comarca level (500 reps).

*** p<0.01, ** p<0.05, * p<0.1

Table 3.3 shows the one year predicted impacts for the two preventive healthcare utilization
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outcomes and compares them with the double difference estimates from the experimental

evaluation. Column (1) reports the results from the Klein and Spady estimates, column (2)

provides the sample size before and after trimming the predicted outcomes and column (3)

gives the experimental estimates. The impacts in this table are for the balanced sample de-

fined as observing a household in both the baseline and follow-up survey. The ex ante model

predicts closely the outcome of health checks in the last six months for children below 3

years, with one year of cash transfers resulting in a .22 increase as compared to a .24 increase

in the experimental evaluation. As mentioned earlier a rise of 3 percentage points was also

seen in the control group that could not be explained by spillovers but is most likely due to

the improvements made in the program region by the Government. Given this improvement,

the ex ante results already underpredict (marginally) the experimental effect on health checks

and are likely to be the true unconditional effects. The table also reports the one year impact

of on-time full coverage of immunization for children between 12 and 23 months of age. The

ex ante result shows a statistically significant .20 increase in FCV which perfectly predicts

the results from the experimental evaluation. In the case of FCV the control group had a 10

percentage point increase which shows that the ex ante results are much lower. These results

demonstrate that it may be possible to improve utilization of preventive services in low in-

come households without implementing conditionalities on their usage. Of particular interest

is the immunization outcome which in the RPS design is not a pre-requisite for receiving the

cash transfer. An improvement in household income encourages households to invest in child

health. Other studies have found similar results of cash transfers or income increases lead-

ing to improvements in child health. Fernald et al. (2008) disaggregate the ex post impact

of cash transfers in Mexico’s Oportunidades (Progresa) program from other aspects of the

program. They hold constant the conditionalities as required by the program and analyse the

impact of increases in the cash transfer. Since in Progresa the conditionalities for preventive

health were enforced rigorously from the beginning they look at direct health outcomes such

as stunting and find improvements in child health from larger transfers.5

Comparing the ex ante results to the experiment provides a way of validating the model used.

The validated models are then used to simulate alternate policy scenarios. Two alternate pol-

icy formulations are estimated using the validated models, the first estimates the impact of

reducing the total cash transfer amount to 75% of the original program while continuing to

5Case et al. (2002) also find evidence that children in families with higher income have better health outcomes.
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Table 3.4: Simulating Counterfactual Policy Scenarios

(1) (2) (3) (4)
OUTCOMES Experimental

Impact
75% of origi-
nal

Unconditional
transfer (food
security)

Sample
sizes@

Health related outcomes
Health Checks 0.24*** 0.22*** 0.21*** 779 / 792

(0.0264) (0.0277)

FCV 0.20*** 0.21*** 0.12*** 275 / 281

(0.0431) (0.0427)

School enrolment outcomes
Boys 7 -13 0.19*** 0.19*** 0.17*** 859 / 876

(0.0207) (0.0209)

Girls 7 -13 0.20*** 0.21*** 0.16*** 754 / 767

(0.0224) (0.0169)

Boys & Girls <10 0.23*** 0.16*** 0.12*** 829 / 844

(0.0239) (0.0263)

Boys & Girls >=10 0.15*** 0.14*** 0.17*** 786 / 799

(0.0153) (0.0123)

@ treatment observations after trimming, total number of observations.

Bootstrapped standard errors clustered at the comarca level (500 reps).

*** p<0.01, ** p<0.05, * p<0.1

maintain the conditionalities. Both cash transfers, the school transfer and food security/health

transfer are reduced to 75% of the original amount. The per child component of the school

transfer is also reduced similarly. The results of this scenario are reported in column (2) of

Table 3.4. The second scenario estimated is that of providing a transfer equal to the value of

the food transfer. This component has two aspects, first the conditionality on enrolment is

removed ie. school costs are no longer adjusted but secondly, the conditionality for receipt

of the transfer ie. mothers attending health workshops continues. This is how the original

program was modeled except that there is no school component of the transfer. As men-

tioned earlier the conditionalities on accessing preventive care were not enforced in the first

8 months. The estimated impacts can provide an insight into how households are likely to

allocate resources between preventive health care for young children and education of older

children. The results of the second simulation exercise are reported in column (3) of Table

3.4. In both cases the estimated results are compared to the experimental results (column 1)

from the original program design. The last column of Table 3.4 reports the sample sizes for

the models before and after trimming.
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Comparing column (1) and column (2) of Table 3.4 shows that reducing the amount of the

transfer to 75% of the original amount has little impact on the preventive care utilization

outcomes. Health checks increase by .22 as compared to .24 in the original program while

FCV shows a 1 percentage point difference from the experimental impact. The price effect

of the school transfer is equally strong when reduced to 75%. Overall boys and girls show

similar outcomes from the reduced cash transfer scenario as they did under the original pro-

gram. For boys aged 7-13 both the original program and the reduced cash transfer show a .19

increase in school enrolment. The simulation for the sample of girls shows a 1 percentage

point increase difference of .20 to .21. Similar results are evident when looking at enrolment

by age groups. The same specification was used for the models for boys and girls and the

different age groups. A point of concern here is the predicted impact for boys and girls below

10. The predicted impact under the alternate policy scenario shows only a .16 increase in

enrolment as compared to .23 from the experimental outcome. Some caution is required in

interpreting this result as the ex ante model of the orignal program underpredicts the impact.6

The estimated impact for the reduced cash transfer is very close to the estimated ex ante

result from the original policy design. In general a reduction to 75% while maintianing the

conditionality for the school component has important budget implications for the program.

The price effect from reducing school costs by conditioning enrolment can be achieved with

a lower level of transfer. Even at the lower level of the transfer families access preventive

care at the same rate as the original program specification.

To test the importance of the conditionality of the school transfer and its implications for

other components of the household’s behaviour the validated model is used to estimate the

impact of a transfer equal to just the food security/health component with no adjustment of

school costs, thus relaxing the enrolment conditionality. Column (3) in Table 3.4 reports

the estimated impacts which are quite different from both the experimental results and the

policy scenario with 75% of the transfers and the conditionalities. School enrolment for

boys is lower by 2 percentage points while for girls there is a 4 percentage point difference.

More interestingly there is a large reduction in enrolment for children below 10 (.12 increase

from the baseline) and a rise in enrolment for children above age 9 years (2 percentage point

increase). The biggest difference is in the proportion of children who receive on-time full

6The ex ante estimation of the original progam shows a statistically significant .17 increase in enrolment for
children below 10 years. Results for all the other age groups are statistically significant and almost identical to
the experiment: boys .19, girls .21, children 10 years and over .15.
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coverage of vaccinations, the unconditional transfer results only in a .12 increase from the

baseline while taking children for health checks shows a 3 percentage point decline when

compared to the experimental impact. The less obvious income effect for health checks could

be the nature of the question in the survey which refers to a very short term of a health check

in the last 6 months as compared to the repeated visits over a longer time frame as required

by the vaccination outcome. One plausible explaination for the sharp decline in enrolment

amongst younger children and in the health outcomes is that without a compulsory enrol-

ment requirement for all children aged 7-13, parents now have to choose between enrolling

older or younger children. The school sample consists of children who have not completed

grade 4 of primary school. In the short term parents seem to invest in the enrolment of the

older children while delaying enrolment for the younger children. Also, the cash transfers

are meant to subsitute for the wages earned by the children enabling the family to have them

enrol in school. In the short term with a fixed budget constraint parents seem to compromise

accessing preventive care, particularly ensuring up-to-date vaccinations for infants, and en-

roling younger children for an extra year of education for older children who are less likely

to complete further education if they delay enrolment further. The idea of the food transfer in

addition to providing a school transfer was to improve nutrition and remove financial barriers

to accessing health care. This however does not appear to be the pathway with just a cash

transfer with no conditionality on schooling. Particularly for immunizations a strong income

effect emerges with greater income levels resulting in higher rates of child immunizations.

However, to improve investment in child health and school enrolment the conditionalities

seem critical, particularly to ensure enrolment of younger children is not compromised for

education of older children.7 Todd & Wolpin (Forthcoming) also find for the Progresa pro-

gram that conditionalities are necessary to have an impact on enrolment, although in their

sample they study older children (ages 12-15).

3.7 Conclusion

This paper applies the methods proposed by Todd & Wolpin (Forthcoming) to estimate ex

ante, the impact of Nicaragua’s conditional cash transfer program Red de Protección So-

7Simulations with just the school enrolment component - with conditionalities shows schooling results very
close to the those of ex ante model for the original program specification and also shows evidence of an income
effect on FCV.
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cial. This approach relies on reduced form estimation of the impact by matching untreated

individuals on functions of observable characteristics. Identification of the impact relies on

variation in the variables related to the policy being evaluated, in this case school costs and

full wealth. A simple household model of school enrolment and investment in child health

is used to derive the reduced forms that are empirically estimated. The approach is used to

estimate the impact of the cash transfer on accessing preventive care for children ie. taking

children below 3 years to health checks and full coverage of vaccinations for children be-

tween 12-23 months. Empirically the model is implemented using a semi-parametric single

index framework that allows for an increase in the dimensionality of the covariate vector.

The outcomes are binary and the semi-parametric estimator proposed by Klein and Spady is

used to predict the unobserved outcomes under treatment. The data set combines baseline

data from the RPS experiment along with some information from the census survey . The

baseline data is used as a single cross-section combining both control and treatment groups.

The estimated ex ante impact is validated against results from the randomized experiment.

These models are then used to simulate two policy scenarios that differ from the original pro-

gram in the amount of the transfer and the conditionality. These simulations are carried out

for both school enrolment (children aged 7-13 years) and preventive health care utilization

for younger children.

In general the estimated impacts all have the same direction as the experiment. The model

performs well in predicting the magnitude of the impact for the two health related outcomes.

An improvement in household income increases a households’ investment in child health.

The two policy simulations show interesting results. The first simulation maintains the school

related conditionality of the program but reduces both cash transfer components by 75%.

The estimations show little difference in most of the categories from the original program.

The price effect from reducing school costs by conditioning enrolment can be achieved with

a lower level of transfer as can similar levels of preventive care utilization. The second

simulation of a cash transfer equal to the amount of just the food security component without

the school related conditionalities shows a strong income effect for immunizations and is

accompanied by change in enrolment patterns, with higher enrolment levels for older children

but at the cost of delays in enroling younger children.
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Chapter 4

Ex ante Forecasting of the Distributional Ef-

fects of a Conditional Cash Transfer Program

on Child Health in Nicaragua

4.1 Introduction

The impact of conditional cash transfer programs on child health is well documented in the

literature (Gertler 2004, Fernald et al. 2008, Maluccio & Flores 2005). However these studies

restrict themselves to the average impact of the programs and do not highlight distributional

consequences. Even in cases where limited impact is found Heckman, Smith and Clements

(1997) emphasize the importance of extending program evaluations to explore beyond av-

erage impacts. The heterogeneity can exist either across different observed covariates such

as gender and age or the treatment effect itself may not be the same across all individuals.

Following the paper by Djebbari and Smith (2008) in which the authors provide a formal

analysis of heterogeneity in treatment effects, using data from Mexico’s social protection

program Progresa, there has been a small but growing literature on estimating distributional

impacts in evaluating social programs in developing countries, particularly conditional cash

transfer programs. This paper adds to the literature on distributional impacts of conditional

cash transfer (CCT) programs by analysing the impact of Nicaragua’s CCT program Red de

Protección Social on child health; but it is unique in that it attempts to forecast these impacts

from a pre-program scenario and by doing so makes an important contribution to the limited

literature on ex ante evaluations of social programs.
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Ex ante evaluations of social programs attempt to forecast the outcomes of a program before

it is implemented (Todd & Wolpin 2006, Attanasio et al. 2005, Todd & Wolpin Forthcoming).

These papers all rely on household behavioural models to forecast school education outcomes

for the Progresa program. But while the first two rely on dynamic structural estimation

procedures the last paper proposes the use of simple non-parametric estimation of reduced

forms derived from an underlying behavioural model with minimal assumptions of functional

form. In this approach exogenous variation in the variables relating to the policy are exploited

to predict unobserved outcomes after the program by using a form of matching estimator that

matches untreated individuals with lower policy variables with other untreated individuals

with higher magnitudes of policy variables mimicking a post treatment scenario. The current

paper is based on this reduced form approach of Todd & Wolpin (Forthcoming) but while

they focus on the mean impact this study extends their idea to forecast changes in the entire

distribution of weight-for-age z scores (WAZ) of children below 5. The data comes from

the randomized experiment of RPS and uses information for just the control group. The

estimated outcomes are then compared with the experimental results from the program.

This paper also adds to the existing literature by applying recently developed estimators to

forecast distributional impacts. It draws on three different estimators - two semiparametric

estimators, the first based on linear quantile regression (Melly 2005) and the second using

distributional regressions (Chernozhukov et al. 2009); while the third uses a completely non-

parametric specification to estimate the unobserved distribution (Rothe 2010). In all three

cases changes in different quantiles of the WAZ distribution under treatment are estimated

and compared with the linear quantile regression estimates from the experiment. Each of the

estimators is a two stage process involving first-step estimation of the observed conditional

distribution function of WAZ given a set of covariates. The second stage of estimating the

unobserved unconditional (marginal) distribution of WAZ under the program involves inte-

grating over the set of covariates in the post-treatment scenario. The main difference in the

estimators lies in the first stage, each of the estimators uses one of the three methods men-

tioned above to estimate the conditional distribution function. In addition, tests for stochastic

dominance are carried out to compare the estimated counterfactual distribution with the ob-

served untreated distribution.
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4.2 Background

4.2.1 Malnutrition and CCTs

Undernutrition of children is still widely prevalent in many parts and is associated with about

half of child deaths around the world. Malnourishment makes children more susceptible to

infections and less likely to survive other childhood illnesses such as diarrhoea and malaria.

In 2007, UNICEF estimated that one out of four children in developing countries is under-

weight. It also has severe long-term consequences on growth and development. Malnutrition

at an early age results in reduced mental and physical development and these children lose

more days to illness than children not faced by this risk, resulting in poor school enrolment

rates and education outcomes culminating in poor productivity and earnings in adulthood

(Glewwe et al. (2001),Grantham-McGregor et al. (2007), Mendez & Adair (1999)).

Nutrition levels in children are largely determined by the food consumed, exposure to ill-

nesses, availability and access to medical treatment and household and community factors.

Cash transfer programs aim at reducing financial barriers to improving food intake, accessing

education and health care while simultaneously investing in some household factors such as

education of mothers to invest in better nutrition levels for the family. The objective is to

reduce poverty while improving investment in human capital.

The positive relationship between income and child nutritional status is well documented in

the literature. Typically the literature explores a longer term outcome - height-for-age(HAZ)

Z score. In this paper the interest is in the short term impact of a conditional cash transfer

program on child nutrition and hence the outcome weight-for-age Z score (WAZ) is used as

a measure of nutritional status. In the literature the income effect of a cash transfer is ex-

pected to operate through food availability, women’s education and access to clean water and

sanitation facilities. Analyses range from cross country surveys to forecasting reductions in

child malnutrition based on income growth. Haddad et al. (2003) use household survey data

from 12 countries and malnutrition rates from a cross-section of countries to examine the re-

lationship between income and nutrition status. The authors find that raising income growth
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to beyond historical income growth rates will not reduce malnutrition sufficiently to achieve

the 2015 Millennium Development Goals on child malnutrition and conclude that income

growth must be accompanied by nutrition policies. Other studies looking to forecast reduc-

tions in child malnutrition include Glewwe et al. (2004) and Edmonds (2004), both of which

use data from 1993 and 1998 Vietnam Living Standards Measurement Survey to measure

income contribution to reduction in child malnutrition in this period. However, both these

papers conclude that income growth accounts for only a small fraction of the improvement in

child health status. A study that takes the analysis of these two papers further and is closest

in method to the ones applied in the current paper is O’Donnell et al. (2009). This study esti-

mates the full marginal distribution (counterfactual) from a change in covariates (over time)

and decomposes the observed difference in child height into the contribution of an income

change and a shift in the returns to an improvement in nutrition ie. ’nutrition function’. The

similarity lies in the approach used to estimate the counterfactual distribution,the objective

here though is not to decompose the change in nutrition status but to forecast the impact of

a conditional cash transfer program across the distribution of WAZ and compare results with

those of the experiment.

4.2.2 The RPS Program

The data for this paper is taken from the RPS conditional cash transfer program introduced in

2000 by the Government of Nicaragua. It is particularly suited to the exercise of forecasting

outcomes as it was implemented as a two year randomized social experiment which enables

comparing methods from the different estimators applied in this paper with those of exper-

iment, providing a suitable benchmark for the results. Like all cash transfer programs RPS

is a demand side social protection initiative that aims at reducing financial and informational

barriers to accessing education and health care. It aims at reducing poverty across genera-

tion by encouraging investment in human capital. Two rural districts of Central Nicaragua -

Madriz and Matagalpa were selected as pilot areas based on their poverty levels and capacity

to implement the program. According to the 1998 Living Standards Measurement Survey

48% of Nicaraguans were classified as poor. The randomized experiment was implemented

in 42 Comarcas (administrative units within municipalities) within the two districts chosen

based on a marginality index.

73



The program had two components - education and food security/health. Under each compo-

nent families received cash transfers conditional on their fulfilling certain requirements. In

the education component families with children between the ages of 7-13 who had not com-

pleted grade 4 of primary school were eligible for the transfers conditional on the eligible

children enrolling and maintaining 85% attendance. Families received two transfers (Maluc-

cio & Flores 2005) - a ’school attendance transfer’ provided as fixed sum for all families

equaling the Córdoba 2000 equivalent of US$112 per year; and a per child ’school supplies

transfer’ of US$5. If any of the children did not meet the conditionality the family failed to

receive the lump sum transfer.

The food security/ health component of the program also involved a per family cash transfer

of US$224. To receive this transfer two main conditionalities had to be met - mother’s of

children under age 5 had to attend in alternative months health education workshops, and the

children aged below 5 had to be taken to scheduled preventive health care appointments. Ser-

vices at the appointments were offered free of charge and included growth and development

monitoring, vaccinations, provisions of antiparasites, vitamins and supplements. Program

implementers found that there were frequent delays in the delivery of vaccines during these

health checks and consequently a sub-conditionality of maintaining up-to-date vaccination

schedules for the children was removed from the program design. While these supply-side

issues were being dealt with, for the first 8 months of the program none of the health related

conditionalities were imposed. After this period only the regular health-checks conditionality

was imposed.

4.3 Model and Empirical Specification

4.3.1 Model

This paper applies three different approaches to forecasting the impact of the RPS program

on different quantiles of the WAZ distribution. In an ex ante evaluation data is available on

the untreated population. Then the unobserved counterfactual to be estimated is the outcome

for the untreated group if they had been treated. In this case, the dependent variable H and
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a vector of covariates X are observed for the control group. Each of these has marginal

distributions FH and FX . The relationship between H and the covariates is assumed to to be

generated through a reduced form equation:

H = f(X, ε) (4.1)

In this paper FH represents the marginal distribution of WAZ for the control group in the year

2002 and FX the distribution of the covariate vector, which includes a measure of income

-F02 and school costs -S02 for the program eligible children. The pre-treatment reduced form

for the control group can then be represented as:

H = f(F02, S02, Z, ε) (4.2)

where Z includes all other covariates. Under the program the values of F02 and S02 are influ-

enced by the policy-maker and shift with the exogenous cash transfer and, together with the

Z variables, form a new covariate vector X̂ with a distribution FX̂ . Under this new distribu-

tion of covariates ie. the distribution under treatment for the control group, the unobserved

counterfactual in the ex ante evaluation is:

H∗ = f(X̂, ε) (4.3)

H∗ is assumed to have a distribution function F ∗H . The objective is to estimate this unob-

served distribution and compare different quantiles with the observed distribution of H , FH .

To specify the origins of the vector X̂ this paper relies on the reduced form behavioural model

approach proposed by Todd & Wolpin (Forthcoming). The approach relies on two key as-

sumptions, first, that the impact of the program on the outcome variable is transmitted solely

through the budget constraint and the second, that there is adequate variation in the observed

policy-related variables (household income and school costs) from which to extrapolate the

unobserved outcomes. The approach does not need specification of a utility function but as-

sumes a constant set of preferences before and after the program is implemented. By using
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the variation in the untreated data, untreated individuals with covariates f(X) are "matched"

with other untreated individuals through the function f(X̂).

Figure 4.1: Data Variation

This exploits two sources of variation in the data to compare untreated individuals with out-

comes H with other untreated individuals with outcomes H∗ - the first is school costs and

the second is the full income of the households at the baseline. Primary education is free in

Nicaragua and most families face no fees, the cost here includes other expenditure related to

schooling which is exogenous in the sense that it is faced by all families when enrolling chil-

dren irrespective of whether the tuition is free or not, these include books, transport, school

meals, uniforms etc. The dataset provides as a proxy for full income, a measure of household

consumption. Figure 4.1(a) shows a histogram of consumption of families, with values rang-

ing from c2618 to c67130.39; Figure 4.1(b) shows that school costs used in the estimation

range from c0 to c969.

The underlying idea in the method proposed by Todd & Wolpin (Forthcoming), and the em-

pirical strategy applied here, is similar to other non-experimental methods such as matching
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which rely on ’selection on observables’ (Heckman et al. 1998). The identification assump-

tion in the methods used to estimate the reduced form is that conditional on these covariates

unobserved factors are independent of the policy variables. In this paper, both components of

the program are included. The school component of the program involves adjusting the indi-

rect/compulsory costs of schooling with the lump sum school transfer. Under the assumption

of full compliance, i.e. all mothers attending the compulsory health education workshops

and all children being taken to scheduled health checks, the food security transfer is added to

the ’full income’ of the household along with the per child transfer for school supplies. By

relaying the impact of the program through the budget constraint this approach models the

impact of the cash transfer component of the policy. It does not allow for the impact of the

different health related conditionalities on health outcomes. Isolating the contribution of the

cash transfer is in itself useful as it addresses a criticism of randomized experiments - in that

they operate as a ’black box’ (Deaton 2010) and it is impossible to see which components

produce the change. In a program such as this, with conditionalities that are likely to influ-

ence health outcomes, it then provides an ex ante decomposition of the contribution of one

year’s cash transfer to the distribution of WAZ for the year 2002. The nature of the estimation

techniques used in this paper are all built around cross-sectional approaches and hence do not

account for unobserved heterogeneity that could be caused by correlated unobservables. Par-

ticularly in this paper, the use of consumption as a measure of socio-economic status could

be correlated with the unobservables that jointly determine nutrition status. Hence the effects

detected here do not provide a causal effect of the cash transfers but can be interpreted as a

partial effect of the cash transfer to the total change in the WAZ distribution.

The reduced form under the program is then:

H∗ = f(F̂02, Ŝ02, Z, ε) (4.4)

Rothe (2010) refers to the above set up as a “dependent policy scenario” with a data structure

(Yi,Xi,X̂i)ni=1. The policy causes changes in the marginal distribution of the covariate vector

that determines the WAZ score while maintaining the same conditional distribution of WAZ

given X . In their paper Todd & Wolpin (Forthcoming) focus on estimating the average

impact ie. the intent to treat (ITT). This paper goes beyond their approach by looking at
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changes in different points of the WAZ distribution rather than just the mean. It also uses

different estimation approaches that allow recovery of the differences in quantiles before and

after treatment. The parameters of interest in this paper are the “quantile policy effects”:

∆Q(τ) = Q∗H(τ)−QH(τ) (4.5)

The following section describes the different estimators used. In addition, linear quantile

regression is also used to estimate the results from the ex post randomized experiment to

provide a benchmark to assess the performance of the ex ante estimators.

4.3.2 Empirical framework

Estimating School Costs - Two part model

The identification of the change in WAZ due to RPS relies on two policy variables - full

wealth and school costs for the households. School costs are however observed in the sur-

vey only for those enrolled in school at the time of the survey and must be estimated for

those not enrolled. Estimating unobserved costs typically involves using models with two

components - one that determines participation ie. enrolment in school and one that involves

the determinants of the cost component that is used to extrapolate the costs for the unob-

served individuals in the sample. The two-part model assumes that the participation decision

Pr(y > 0|x) is determined by a parametric binary regression model either a logit or a probit,

while the second part is a linear specification of x. Various specifications for the second part

have been applied. Typically to deal with skewed cost data log transformations are applied.

In this paper although costs are skewed a log transformation is not applicable since the ob-

served school costs also include zeros. To deal with these issues a common specification of

the second part is the generalized linear model which allows different distributional specifi-

cations from the exponential family to link the random with the stochastic components of the

model. This however requires a priori specification of both the link and variance functions, in

the latter case assuming certain forms of heteroskedasticity. Incorrect specifications can lead

to bias and inefficiency in the estimates. An alternative is to use an approach that does not

require prior assumptions about the link and variance functions. In this paper the second-part
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is estimated using a semi-parametric extended generalized linear model (Basu & Rathouz

2005) which allows for a flexible link function and variance parameter, both of which as

estimated from the data. The approach allows for a family of link functions represented by

λ:
g(µi;λ) =

µλi −1
λ if λ 6= 0

log(µi) if λ = 0

where g is a function that links µ to the linear predictor XT
i β and µi = µ(X). The variance

is characterized by family of functions represented by a power variance which allows for

common distributions such as Poisson, Gaussian and Gamma:

h(µi; θ1, θ2) = θ1µ
θ2
i

Ex post outcomes - Linear quantile regression

Results from the randomized social experiment can be used to provide a benchmark for com-

parison of results from the ex ante approach. Linear quantile regression goes beyond the

mean and provides information of the impact of the program at different points of the dis-

tribution. Heckman, Smith & Clements (1997) highlight various parameters of interest that

require more than the mean, including the proportion that benefit from the program and im-

pacts at quantiles. Of particular interest in social programs such as CCTs is the impact at

the lowest ends of the distribution. In the case of WAZ children with scores less than -2 are

considered malnourished. Then it is important to see if the program had any impact on the

weakest sections of the population by exploring heterogeneity. Focusing on the average im-

pact could disguise potentially important benefits to those most likely to need it. The impact

at a given quantile of the WAZ distribution is the vertical distance between the quantile func-

tions in the treatment and control groups. Figure 4.2 shows the quantile plots of WAZ for the

two groups in the year 2002. The graph shows that the distribution of WAZ in the treatment

group is marginally higher than in the control group in the lower quantiles but they converge

at the upper quantiles of the distribution. The vertical distance between the two plots at each

quantile is the quantile treatment effect.

Empirically, the required impact at a particular quantile (τ) is the coefficient on the dummy
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Figure 4.2: 2002 Quantile functions

variable representing participation in the program Koenker & Basset (1978) :

Qτ (h|T ) = α(τ) + β(τ)T (4.6)

The above equation represents the change in the distribution of WAZ in 2002 due to participa-

tion in RPS. Interpreting these results as the treatment effect for individuals requires a further

assumption of "rank preservation". This requires that the rank of the potential outcome for a

specific individual remains the same with and without the treatment. This however is a strong

assumption and can only be tested in terms of the observables. Since this assumption does

not extend to the ex ante methods used here, the interpretation used is a general change in

the quantiles of the WAZ distribution in the treatment and control groups and no inference

is made about individuals at specific quantiles of the distribution. From a policy perspective

knowing the change in distribution of WAZ due to RPS is in itself informative. An upward

shift would indicate an overall improvement in the WAZ score.

Quantile regression based approach

The first of the two semiparametric approaches applied in this paper is based on linear quan-

tile regression. Proposed by Melly (2005) it involves a two step procedure to estimate the
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unobserved F̂h. In the first step the conditional distribution of WAZ, given X, is estimated

using linear quantile regression:

F−1h|x(τ |x) = x′β(τ) (4.7)

whereF−1h|x(τ |x) is the τ th quantile of WAZ conditional on the covariates. The semi-parametric

nature of this estimator comes from maintaining the assumption of a linear functional form

for the conditional distribution but relaxing the requirement of assuming a specific distri-

bution. The second step involves integrating the estimated conditional distribution over the

vector of covariates under the policy ie X̂ to recover the unconditional distribution of WAZ

after treatment:

F ∗H(h) =

∫
X
FH(h|x)dFX̂(x) (4.8)

where from equation (4.7):

FH(h|x) =

∫ 1

0
1[F−1h|x(τ |x) ≤ h]dτ (4.9)

Then for particular quantiles of WAZ the sample equivalent of the “quantile policy effect”

is estimated by replacing F−1h|x(τ |x) by its consistent estimate x′β(τ) in equation (4.8) and

averaging over all the covariates in X̂ . Thus the difference between the observed and the

estimated counterfactual is explained by changes in characteristics. This estimator is similar

to the one proposed by Machado & Mata (2005). Both estimators use linear quantile re-

gression regression to estimate the conditional distribution in the first step. The Machado &

Mata (2005) approach differs in the second step by using a process of random sampling from

the covariate vector under the policy X̂ and weighting (combining) these with the vector of

coefficients from the first step. Both methods have been shown to give similar results in large

samples (Albrecht et al. 2009). In this paper the Melly (2005) approach is used as the sample

is quite small and the repeated random sampling from different quantiles for the Machado &

Mata (2005) does not work well.
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Distributional Regression

The second approach used in this paper relies on a method applied initially by Han & Haus-

man (1990) and Foresi & Peracchi (1995) to allow for flexible estimation of conditional

distribution functions. In this approach families of binary response models of varying ’cut-

offs’ are used to estimate a binary response, modeling the conditional distribution function

separately at a set of thresholds. Chernozhukov et al. (2009) replace the linear quantile re-

gression of Melly (2005) by applying this idea to the first step of the estimator to estimate

the conditional distributional function of the outcome pre-policy:

FH(h|x) = Λ(m(h, x)) (4.10)

where a separate binary response model is estimated for each threshold h, Λ is a known

link function such as a probit or logit and m(h, x) = (x′β(h)). Each β(h) is estimated

by maximum likelihood using a set of indicator variables 1 [H ≤ h] : h ∈ H . The second

step of this estimator follows the same process as Melly (2005) and integrates over the new

covariate vector to recover the marginal distribution:

F ∗H(h) =

∫
X
F̂H(h|x)dFX̂(x) (4.11)

Similar to the linear quantile regression approach, the Chernozhukov et al. (2009) method

also provides the marginal quantile function which can be used to estimate the quantile policy

effect in equation (4.5):

QĤ(τ) = inf[h : F ∗H(h) ≥ τ ] = Q∗H(τ) (4.12)

Nonparametric Approach

The two approaches described above are both different forms of semiparametric estimators,

while the first makes no assumptions about a distribution, it still assumes a linear functional
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form for the conditional quantiles. The second makes clear assumptions about a particular

link function but is more flexible in that it allows for a series of binary response models that

approximate the unknown distribution by a step function. The last approach applied in this

paper is a nonparametric estimator (Rothe 2010) which makes no assumptions about either

the distribution or functional form in estimating equation (4.4). Like the others, this estimator

is also a two step process. The conditional distribution function is first estimated using kernel

regression:

F̂h|x(h, x) =
ĝHX(h, z)

f̂X(x)
(4.13)

where

ĝHX(h, x) = 1
n

∑
j {I(Hj ≤ h}Kx,h(Xj − x)

f̂x(x) = 1
n

∑
jKx,h(Xj − x)

In the above equations K is a kernel function, h represents the bandwidth. The above speci-

fication is similar to the Nadarya-Watson estimator for kernel regression commonly available

in statistical software. The second step estimates the marginal distribution using sample

counterparts:

F̂ ∗H(h) =
1

n

n∑
i=1

F̂h|x(h, X̂i) (4.14)

As this is a nonparametric estimators extrapolation is valid only in regions of support in the

data: the estimated policy effects are only valid to regions of X̂ that are in the support of X .

Rothe (2010) shows that despite the estimator being nonparametric it is not affected by the

“curse of dimensionality” problem that frequently limits the application of such estimators.

The estimates of the parameters of interest are shown to converge at the usual parametric rate

of
√
n irrespective of the dimension of the covariate vector X .
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4.4 Data and Variables

The dataset used in this paper was collected as a panel survey for the randomized experi-

mental evaluation. Three rounds of data were collected - baseline (2000) and two years of

follow-up (2001, 2002). In total 1581 families were included in the experiment across both

treatment and control groups. In addition to the main survey, in the years 2000 and 2002

an additional module was included that captured information on the health of children aged

under 5. The outcome used in this paper - weight-for-age (WAZ) Z scores was collected in

this module.

The analysis in this paper uses data from the 2002 follow-up survey and pre-program census

survey. The analysis includes individuals from only the randomized out control group. In

total the estimation sample consists of 358 households with children under the age of 5 who

are eligible for the food security and health component of the program and have been in the

program for at least 2 years (i.e the length of the program); of these 236 families also have

children between the ages of 7-13 who have not completed grade 4 of primary school and

hence were eligible for the school transfers as well. While the total number of children in the

control sample in 2002 is 530, only 239 of these children were in the baseline ie, have been

in the program for the 2 years of the experiment. The analysis is restricted to this subgroup.

The surveys gathered information on individual, household and community level variables.

At the individual level detailed information was collected on education and school enrolment,

direct and indirect costs of all school related expenditures, illnesses in the previous six months

and health care expenditure. For all children under 5 detailed information was gathered on

immunization, health checks, weight measurements. In the additional module each child

was weighed and heights recorded by the surveyor and entered. The survey however does

not include detailed information on earnings and income, instead detailed information on all

household consumption.

The unobserved distribution of WAZ under treatment, F ∗H(h), is estimated using the reduced

form specification in equation (4.4). The specification includes the two key policy related
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variables - consumption and school costs of the household. It also includes other variables

referred to in the previous section as the vector Z, that are likely to influence the health of the

child such as individual characteristics - mother’s age, child’s age and gender. The literature

often cites “sibling effects" as a determinant of child health, where greater the number of

siblings below a certain age, smaller is the amount of resources available per child. To capture

these effects, number of children aged under 5 in the household is included. To capture time-

related costs of accessing health care two community level variables - distance to the nearest

form of public transport and travel time in hours to the nearest nurse are included. Most

areas in the program have limited access to formal health care with the most likely being a

health post or a trained nurse. Also included in the specification is the travel time in hours

to the nearest pharmacy which is expected to capture the effect of treatments not captured

by visiting a health care worker. If the time costs for parents are high due to waiting times

to see a health care worker then parents might choose over-the-counter medication as a first

point of medical care. The measure of “full wealth” included is expected to capture effects

of having access to clean water and sanitation which are largely determined by economic

status and hence these two variables are not included separately in the model. Following this

argument the main specification does not include a variable to capture the education of either

the mother or the head of the household. Both these variables have a large number of zeros.

To test for specification robustness, the models are re-estimated including education of the

household head.

The school costs for all children in the family eligible for the school components are esti-

mated using a two part model with the same specification of variables for both parts. Due

to the small sample size the model is estimated jointly for boys and girls. The variables in-

clude characteristics of the household head such as age, gender, employment and years of

education. Child related variables - age and gender, and household composition variables -

number of children aged under 5, number of children between 7 and 13 and the number of

adults. Log of household expenditure is included as a measure of economic status. In addi-

tion, as a measure of opportunity and time costs of schooling, the distance of the household

to the nearest primary school is included. The variable number of children aged under 5 in

the household is also an indicator of the opportunity costs which could involve caring for

younger siblings in the household.
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4.5 Results

4.5.1 School costs

As discussed in the earlier sections, the first step was to estimate the school costs for the

children eligible for the school transfer but not enrolled in school. The results from the two

part model are listed in Table 4.1. Column 1 provides the estimates for the probit partici-

pation model for school enrolment. The binary indicators of different age groups show that

younger children are more likely to enrol in school. The coefficients are positive and sta-

tistically significant. As the children grow older (age 13) they are less likely to enrol, as is

common in developing countries and possibly drop out to either begin work or stay home to

care for younger siblings in the household as is reflected in the negative coefficient on age 13.

The coefficient on gender provides more insight and shows that boys are less likely to enrol

in comparison to girls. The negative and statistically significant coefficient on gender indi-

cates that boys may be beginning employment earlier. Most of the households in the sample

cultivate lands and the gender difference may also be related to the negative coefficient on

employment of the household head. This variable largely reflects land cultivation for coffee

in Nicaragua which is the primary occupation of most of these households. It could mean

that boys may begin to work in the fields much earlier than girls. The results show that house-

hold wealth (as measured by expenditure and asset ownership) has a positive and statistically

significant effect on enrolment, with households having greater wealth being more likely to

enrol. Also important is the composition of the household. Families with children under the

age of 5 are less likely to have older children enrolled in school. This variable is included as

a measure of the opportunity costs of schooling where older children if not employed may be

expected to provide care for younger siblings. A similar negative and statistically significant

effect is observed for distance to school, with children being less likely to enrol if schools are

far away. The coefficient on the variable- number of children of the same age (ie 7-13 years)

in the household is positive. This possibly indicates a sharing of resources that enables them

to participate in school. The other key determinant of enrolment in the model is the years of

education of the household head, with a positive coefficient that is statistically significant; the

greater the levels of education of the household head, the higher is the likelihood of children

enrolling in school. The age of the household head and gender ie. if the household head is
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male, have a positive influence on the likelihood of children in this age group enrolling in

school.

The second column of Table 4.1 shows the results from the generalized extended linear model

or the extended estimating equations approach of Basu & Rathouz (2005). As can be ex-

pected, school costs increase with age and the coefficients are statistically significant with

children aged 11 having the largest school costs. While children aged 12 and 13 tend to have

marginally lower school costs they are still greater than for children below 11. Wealthier

families spend more on education as do families where the household head has more years of

education. School costs are lower for households where there are children between the ages

of 7-13 reflecting economies of scale. Children of the same age group may be likely to share

limited resources available including books and supplies across classes and age groups. A

similar negative effect is observed for children under 5 years and could mean that expendi-

ture on education is constrained by large family size and could reflect the opportunity costs

of schooling as observed in the participation model for enrolment. Gender, age and employ-

ment of the household head all have negative effects on school costs but are not statistically

significant. Expenditure tends to be lower when women are the head of the household. The

negative coefficients on the age and work of the household head could once again reflect

opportunity costs of working on the land if the household head is elderly or employed in

cultivation.

As discussed in the section on empirical specification, the extended estimating equations

approach allows for a flexible link and variance function, both of which are estimated from

the data. The value of λ = 0.914 is close to an identity link function while θ1 = 0.693 and

θ2 = 1.246 together are close to a Gamma distribution which requires θ1 > 0 and θ2 = 2.

4.5.2 Ex post - distributional impact

The quantile effects provide information on how the impact of the cash transfer varies at

different points of the WAZ distribution. Figure 4.3 plots the quantiles using post-treatment
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Table 4.1: Estimates of the model for School Costs

(1) (2)
Probit EEE

VARIABLES Enrolment School Costs
age8 0.495** -0.004

(0.191) (0.073)

age9 0.383** 0.181**

(0.169) (0.072)

age10 0.581*** 0.163*

(0.187) (0.058)

age11 0.720*** 0.340***

(0.212) (0.107)

age12 0.450** 0.195**

(0.989) (0.091)

age13 -0.024 0.222*

(0.221) (0.118)

Gender -.310*** -0.088

(0.115) (0.054)

Full Wealth (log) 0.292** 0.632***

(0.125) (0.088)

Distance to school -0.008*** -0.001

(0.002) (0.001)

No. of adults 0.035 -0.001

(0.414) 0.024

Children under 5 -0.217*** -0.022

(0.074) (0.045)

Children 7-13 0.127* -0.092**

(0.069) (0.036)

HHH gender 0.061 -0.088

(0.275) (0.112)

HHH age 0.021 -0.001

(0.007) (0.004)

HHH yrs of ed 0.168*** 0.028

(0.047) (0.023)

HHH works -0.245 -0.149

(0.293) (0.134)

Constant -2.170 -5.73***

(1.217) (0.809)

λ 0.914***

(0.194)

θ1 0.693***

(0.051)

θ2 1.246***

(0.123)

Observations 785 657

Robust standard errors in parentheses, clustered at the household level

*** p<0.01, ** p<0.05, * p<0.1
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information for the year 2002. 90% confidence intervals are also plotted calculated by boot-

strapping the standard errors. Also plotted as a horizontal dotted line on the graph for com-

parison is the average treatment effect from the double difference estimates. The average

treatment effect on the treated is the difference between the changes in the treatment and

control groups before and after the program was implemented. This parameter assumes a

constant treatment effect across all quantiles, equal to the average value. The quantile effects

in the graph show the vertical distance between the quantile functions in the treatment and

control groups displayed in Figure 4.2. Changes in the distribution of an outcome at quantiles

can only be classified as a ’quantile treatment effect’ for an individual under the assumption

of rank preservation. Without rank preservation no interpretation on treatment effects for in-

dividuals is possible. Hence the results in this paper are interpreted as the impact of the cash

transfer on shifting the distribution of WAZ without any reference to individuals at different

quantilies of the distribution.

Table 4.2: Estimated Policy Effects

Mean Q10 Q50 Q90 Q90-Q10 Q90-Q50 Q50-Q10

Total Change 0.145 0.33 0.30 -0.12 - 0.45 -0.42 -0.03
(0.124) (0.121) (0.107) (0.216)

Quantile Policy Effect
Distributional Regression 0.20 0.33 0.00 -0.20 -0.33 0.13

(0.119) (0.133) (0.226)

Quantile Regression 0.26 0.21 0.10 -0.31 -0.26 -0.05
(0.102) (0.099) (0.103)

Nonparametric Regression 0.15 0.18 -0.11 -0.26 -0.29 0.03
(0.248) (0.309) (0.307)

Overall the graph shows that WAZ is greater in the treatment group than in the control group

with positive quantile effects in all but the highest quantile where a negative but statistically

non-significant effect is observed. The greatest impact is seen at the lowest quantile and

the difference decreases from the lowest percentile to the highest indicating that children

with the worst WAZ scores ie those that are malnourished show the biggest improvement.

Table 4.2 row 1 shows the changes between the lowest, middle and highest quantiles of

WAZ. The negative magnitudes show that the inequality declines across the distribution of

WAZ in both the lower (Q50-Q10) and upper (Q90-Q10) segments of the distribution. These

findings suggest that the average impact does not necessarily reflect an accurate picture and

89



Figure 4.3: Ex-post Quantile Treatment Effects

that nutrition does improve more for those who are malnourished and, as expected, little

impact is seen at the higher segments of the distribution where children with the highest

WAZ scores are not likely to improve any further.

4.5.3 Ex ante - distributional impact

Figures 4.4(a),4.4(b) and 4.4(c) graph the results of the ex ante effects of RPS on the distri-

bution of WAZ using the semiparametric methods of Chernozhukov et al. (2009) and Melly

(2005) and the nonparametric method of Rothe (2010). In all three graphs the solid line

represents the ex post quantile effects discussed above and the horizontal dotted line repre-

sents the average effect from the double difference estimates. Overall the methods have the

same direction as the ex post results and show the greatest impact at the lowest and middle

quantiles of the WAZ distribution. Rows 2, 3 and 4 of Table 4.2 shows the results across

quantiles, measured in standard deviations, for the three methods. Compared to the ex post

statistically significant effect of 0.33 in the lowest quantile the two semiparametric methods

show an improvement in child nutritional status with estimates of 0.20 and 0.26 standard

deviations. In the nonparametric approach however the magnitudes of the effects are much

smaller, particularly at the lowest quantile with 0.15. In the case of the 50% quantile of the

WAZ distribution the distributional regression approach shows a 0.33 (statistically signifi-

cant) estimate as compared to 0.30 improvement in the ex post case. The quantile regression
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(a) Distributional Regression - Chernozhukov et al (2010)

(b) Quantile Regression - Melly (2005)

(c) Nonparametric Regression - Rothe (2010)

Figure 4.4: Ex ante Quantile Treatment Effects
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approach also shows a positive impact on the lower tail of the distribution but understimates

the effect at 0.21 standard deviations while the nonparametric approach has an estimate of

0.18. All three approaches show the least impact at the highest quantiles of the WAZ distri-

bution. While the ex post impact is negative and not statistcally significant, the distributional

regression and quantile regression approaches are also not statistically significant and show

close to zero effects of RPS (0 and .10) while the nonparametric approach shows a negative

and not statistically significant result. This follows the expected result where children who

are not malnourished and at the upper tail of the WAZ distribution are unlikely to show large

improvements from a cash transfer given to families that seem to already be investing in ad-

equate nutrition. Table 4.2 also shows the change in the distribution across quantiles. As in

the ex post case the quantile regression approach shows a decline in inequality in both the

upper and lower segments of the distribution of WAZ. The same trend is seen for the upper

quantiles (Q90-Q50) using distributional regressions and the nonparametric approach but the

underprediction of WAZ at Q10 shows an increase in the Q50-Q10 segment of the distribu-

tion. This however is due to the lower predictions from these two approaches at the lowest

quantile. In comparing the other quantiles (shown in Table 4.3) the distributional regression

and nonparametric approaches perform well and show much closer estimates to the ex post

case as compared to the quantile regression approach of Melly (2005) particularly at the up-

per tails of the distribution of WAZ. For example, Table 4.3 shows the results for the nine

quantiles of the WAZ distribution. Both semiparametric approaches perform similarly for the

lower quantiles of the distribution by marginally overestimating the impacts at the .30 and

.40 quantiles. The two approaches however perform differently for the upper quantiles and

for different specifications of the models. In the current specification the quantile regression

approach over predicts the impacts across all quantiles of the upper tail of the distribution.

The distrbutional regression approach is much closer in magnitude to the ex post results. For

the .80 and .90 quantiles, the approach in keeping with expected results finds no impact of

the RPS program on WAZ. The nonparametric method shows results quite similar to the dis-

tributional regressions and is closer in magnitude to the ex post results in the upper quantiles

of the distribution. However, none of the estimated effects are statistically significant. The

reported results for this approach are bias-corrected effects from bootstrapping the standard

errors. Like the Machado & Mata (2005) approach the method is sensitive to the random

draws due to the small sample size and the results are less robust than the other approaches.
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As discussed earlier the methods allow recovery of the entire distribution of WAZ under

treatment. This permits tests for stochastic dominance between the treated (predicted) and

untreated distributions. In both the semiparametric approaches a test for stochastic domi-

nance of a positive quantile treatment effect was carried out ie QTE(τ) > 0 for all τ . The

test results fail to reject the hypothesis of an improvement in the WAZ scores across all quan-

tiles (Kolmogorov-Smirnov statistic p-values of 0.96 and 0.825 for distributional and quantile

regressions respectively).

In addition to the above specification for the model a further specification including years of

education of the household head is estimated. This variable includes a large number of zeros.

The estimations show no change in the results of the distributional regressions but show

much quantitatively larger estimates in the quantile regression approach across all quantiles,

overpredicting the results across all quantiles. The nonparametric approach shows similar

results to the original specification with very little change in the magnitude of the estimated

effects or the standard errors

In general the three estimators provide plausibly close results to the ex post outcomes. The

predicted results all have the same direction as the experiment. The distributional regression

approach seems to perform marginally better than the quantile regression approach across all

quantiles and is more stable than the nonparametric approach in small samples. In interpret-

ing the ex post results it is important to recognize that they are in effect after two years of

program intervention including the various conditionalities. If the conditionalities relating to

health do have a positive effect on a short term outcome such as WAZ then the ex ante results

should be lower than the outcomes from the experiment. This may particularly be the case at

the lowest quantiles of WAZ where undernourished children are also more likely to belong to

families not investing in preventive care due to resource constraints. This is reflected in the

results of the lowest quantiles of WAZ. However, the ex post treatment effects themselves are

rather small in magnitude across all quantiles. The ex post experimental evaluation found that

2 years of RPS decreased the percentage of underweight children (WAZ < −2.0) by 6.2

percentage points. Overall, the reduced form method of Todd & Wolpin (Forthcoming) does

provide a close approximation of the effect of RPS on short term outcomes such as WAZ.
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4.6 Conclusion

This paper combines the reduced form ex ante evaluation approach proposed by Todd &

Wolpin (Forthcoming) with new empirical estimation strategies to forecast the outcomes of

Nicaragua’s conditional cash transfer program across the full distribution of weight-for-age

Z scores for children aged under 5. The Todd & Wolpin (Forthcoming) approach relies

on selection on observables and uses variation in the policy variables ie. full income and

school costs of households to extrapolate the unobserved outcomes under treatment. The

application in this paper however goes beyond predicting the average impact of the program

and recovers the entire unobserved unconditional distribution of WAZ under the program.

This facilitates forecasting the impact at different quantiles of the outcome distribution by

comparing the predicted distribution with the observed pre-treatment distribution. The results

are then compared with the linear quantile treatment effects from the randomized experiment.

The empirical procedure uses three different estimators - two semiparametric and one non-

parametric in their specification. This first, uses linear quantile regression to estimate the

conditional distribution pre-treatment and integrates this function across the distribution of

the covariates under the program. The second differs by using distributional regressions to

estimate the conditional distribution in the first stage - in this case a series of binary re-

gression models are estimated at various cutoffs of the WAZ distribution. The third uses a

nonparametric Kernel regression to estimate the first step and as in the other approaches av-

erages over the distribution of the covariates under treatment. All three procedures provide

estimates of the unconditional distribution of the outcome under treatment. The specifica-

tions in the empirical section are generated by the reduced form approach of Todd & Wolpin

(Forthcoming).

The results show that the models provide close estimates of the effect of the cash transfers

on child health across all quantiles. The distributional regression approach seems to be more

stable and more precise than the quantile regression and nonparametric approach. Tests for

stochastic dominance show that the program does improve WAZ across all quantiles however,

the least impact is seen as expected in the highest quantiles where children are already in good

health. No assumptions are made about rank preservation and hence inference is restricted
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to changes in the distribution of WAZ pre and post treatment without assumptions about the

impact on specific individuals at different quantiles.
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Chapter 5

Conclusion

The common objective across all three papers in this thesis is to test the behavioural model

reduced form approach proposed by Todd and Wolpin and in addition, to extend their idea

to measure distributional impacts. In all three cases results from the ex post experimental

evaluation from a randomized social experiment is used as a benchmark.

Chapter 2 focusses on school enrolment for children between the ages of 7-13 who had not

completed grade 4 of primary school. This was the primary objective of the RPS Program

in Nicaragua. The counterfactual outcome of school enrolment was estimated as a function

of covariates that included household expenditure as a proxy for full wealth, school costs

incurred for the eligible children, variables to capture opportunity costs of schooling. The

intent-to-treat average treatment effect is estimated by matching individuals over functions

of these observable characteristics. A comparison of the ex ante and ex post outcomes shows

that the matching estimator predicts school enrolment quite closely for most sub-groups.

The one year cash transfer increases enrolment for boys by 19 percentage points and for

girls by 21 percentage points. While the analysis by sub-groups of age shows an increase

in enrolment of 15 percentage points for boys and girls between the ages of 10-13 years.

In all the above categories the ex ante approach provides estimates very close to the results

from the experimental evaluation. In one sub-category of boys and girls aged 7-9 the ex

ante approach under predicts the impact of the program. The method relies on accurately

capturing all direct and indirect costs of schooling to reflect the price effect of receiving the

cash transfer for the school component of the program. The underprediction could reflect

not having complete information on time use and costs of schooling and can be considered
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a constraint of the approach given that it relies exclusively on extrapolating from observed

variation in the policy related variables.

Chapter 3 extends the analysis in chapter 2 to health outcomes for infants. Once again binary

outcomes are considered - in this case accessing health checks and full coverage of vaccina-

tion. In both cases the model provides very close estimates of the experimental impact. In

addition, once the model was validated with the experimental results simulations of alternate

policy scenarios were carried out. Two policy formulations were tested, the first reducing the

amount of the cash transfer to 75% of the original program amount while maintaining the

conditionalities and providing an unconditional cash transfer equal to just the food compo-

nent of the program. These policy scenarios provide insight into how households are likely

to allocate resources between preventive care for infants and education of older children. The

simulations find that maintaining the school conditionality and assuming full compliance of

mothers attending the health education workshops, but reducing the cash transfer has little

impact on preventive care and on school enrolment. Important budget implications emerge

in that the experimental impact could have been achieved at a 25% lower outlay. To test the

importance of the conditionality of the school transfer a model of an unconditional transfer

equivalent to the “food security, health and nutrition” component of the program was esti-

mated. The results show a large reduction in enrolment for children below age 10 and a

rise in enrolment for older children. The simulation also shows a drop in the proportion of

children who were fully vaccinated. In general a trade-off emerges between enrolling older

children who will no longer be eligible for the school component for primary education and

delaying enrolment for younger children with a strong negative income effect for vaccination

of infants.

Both these chapters focus on binary outcomes and estimate the impact of the CCT program

using the matching estimator proposed by Todd & Wolpin (Forthcoming). The method ap-

pears to work well and the alternative policy scenarios show interesting trade-offs between

education and preventive health care.

The final chapter (4), is an extension of their idea to forecast distributional impacts of the

CCT program. It combines new empirical procedures for estimating unobserved uncondi-

tional distributions with the theoretical approach of Todd and Wolpin by using the reduced
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form method to motivate the empirical strategy. Limited literature exists on heterogeneous

treatment effects of social programs in developing countries. All of these are restricted to ex

post evaluations of social experiments. This chapter is unique in combining new empirical

methods with the ex ante literature. The underlying theoretical model and motivation is the

same as chapter 3 but in the empirical section three different estimators are applied, two semi-

parametric and one nonparametric. Unlike the other two chapters, in this chapter data from

only the control group of the ex post experiment is used to allow comparisons with the two

year effects of the program. The outcome of interest is weight-for-age z score for children

under 5, a continuous variable and a short-term measure of child nutrition. By focussing

on a short-term outcome the results are reasonably close to the ex post quantile treatment

effects from the experiment and provide estimates in the same direction. The distributional

regression approach provides the best estimates of the impact followed by the nonparamet-

ric approach, which even though smaller in magnitude captures the direction of the ex post

results better than the quantile regression based approach. However, the nonparametric ap-

proach is less stable in the case of small sample sizes. In all cases the methods show that

the program had the greatest impact on the lowest quantiles of the WAZ distribution thus

improving the well-being of malnourished children. Like the ex post results however, the

magnitudes of the impact are modest.

The evidence in this thesis reveals that the Todd and Wolpin approach does work well in

forecasting the impacts of cash transfer programs (conditional or unconditional). However,

several assumptions required by this approach may not always be feasible. The first of these

is its restriction to programs that only affect the budget constraint. Built into this is the as-

sumption of constant preferences before and after the program. This assumption is also made

in the case of microsimulations in tax-benefit models. But while they may be applicable in

such programs, not all social programs will be restricted to changes in the budget constraint.

For example if the subsidy received under the program directly affects utility then the re-

duced form equations before and after the program will not necessarily remain the same and

will require specification of the utility function and depend on the assumed functional form.

Also this approach is less helpful in cases where the conditionalities themselves are likely

to impact outcomes. For example if the conditionality “mothers attending health education

workshops” improves health outcomes (which it likely will) in the long term, the method

does not allow for capturing this behavioural dynamic. The applications in this thesis have
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all been restricted to short-term impacts (1 year in the first two papers) or short-term out-

comes (WAZ). The underlying idea of the Todd and Wolpin approach does not allow for

cumulative effects that are best explored using dynamic models. The static models proposed

by them focuses on maximising within period budget constraints and may not be appropriate

for long term health outcomes with cumulative effects when cash transfers are provided over

several years. In their paper, they propose matching on two year’s policy related variables

to forecast 2 year impacts (ie. baseline and follow up). This strategy was tested in chap-

ter 4 (results not presented) and did provide similar results to the cross-sectional approach

presented in the thesis. However, it’s applicability to long-term dynamic outcomes remains

unanswered. A further critical assumption relates to unobserved heterogeneity. Like the ex

post matching estimator the one proposed for the ex ante case also relies on “selection on

observables” and, that conditional on these covariates the distribution of any unobserved het-

erogeneity remains the same before and after the program. While this assumption is plausible

in the case of outcomes such as school enrolment, it is less likely to provide full causal effects

in longer term outcomes such as health, and hence the assumption in chapter 4 identifies a

partial contribution of the program on the WAZ score.

The above discussion must however be considered alongside the benefits of this approach.

The methods do provide good estimates in the short-term and are useful in isolating the im-

pact of the cash transfer component of the programs. If used as a pre-cursor to an experiment

it can provide an estimate of the effect of the cash transfer component of such programs.

The inability of experiments to isolate the impacts of its different components has been fre-

quently mentioned in the literature. In addition, it provides information on potential alternate

policy formulations. In all cases these are short-term effects, but they are relatively simple to

achieve in comparison to more complex structural estimation approaches. In limited resource

settings this approach could provide an exploratory method for new program implementers

to be followed by a non-experimental ex post evaluation.
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