
CONFLICT RESOLUTION

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2010

By

Nestan Tsiskaridze

School of Computer Science

2

Contents

Abstract 11

Declaration 13

Copyright 15

Acknowledgements 17

1 Introduction 19

Motivation . 19

Main Contribution . 20

A guide for Readers . 21

2 Background and Related Work 23

2.1 Basic Notations . 23

2.2 Statement of the Problem . 25

2.3 Historical Background and Applications 26

2.4 Related Work . 28

2.4.1 The Fourier-Motzkin Elimination Method 29

2.4.2 Modifications of the Fourier-Motzkin Method 31

2.4.3 The Simplex Method . 32

2.4.4 The Relaxation Method 33

3 Conflict Resolution 35

3.1 Algorithm Description . 35

3.2 Correctness and Termination . 41

3.3 Properties of the CRA Algorithm 42

3.4 Extensions of the CRA Algorithm 45

3.4.1 Extensions With {>,=} 45

3

3.4.2 Conflict Resolution and Linear Programming 47

3.4.3 Conflict Resolution and the Fourier-Motzkin Method . . . 47

3.4.4 Conflict Resolution and Satisfiability Modulo Theories . . 49

4 Implementation 51

4.1 Data Structure . 51

4.1.1 Parser . 52

4.1.2 Levels . 54

4.1.3 Order . 55

4.1.4 Processing Input Constraints 58

4.2 Implementation . 59

4.2.1 Phase I - Early Stage Implementation 60

4.2.2 Phase II - Implementation with Various Heuristics 61

4.2.2.1 Strategies for Selecting Conflicts 61

4.2.2.2 Strategies for Selecting Assignment Values 62

4.2.2.3 Other Heuristics 63

4.2.3 Phase III - Simple Preprocessing with Highly-Tuned Heuris-

tics . 64

4.2.3.1 Strategies for Setting the Order 65

4.2.3.2 Preprocessing to Avoid Half-Bounding Levels . . 65

4.2.3.3 Preprocessing to Avoid Almost Half-Bounding Lev-

els . 66

5 Experiments 69

5.1 Benchmarks with Randomly Generated Problems 70

5.2 Benchmarks Extracted From SMT-LIB With Hard Reality Tool . 71

5.3 Experimental Results . 73

5.3.1 Phase I - Early Stage Implementation 73

5.3.1.1 Randomly Generated Problems 73

5.3.1.2 Real-Life Problems 75

5.3.2 Phase II – Implementation with Various Heuristics 76

5.3.2.1 Randomly generated benchmarks 79

5.3.2.2 Real-Life Benchmarks 85

5.3.3 Phase III – Simple Preprocessing with Highly-Tuned Heuris-

tics . 93

4

6 Conclusions 97

6.1 Thesis Achievements . 97

6.2 Significance of the Research . 98

6.3 Future Work . 99

Bibliography 103

List of appendices 109

Appendix A 111

Appendix B 115

Appendix C 117

Appendix D 119

Index 160

Word Count 34.393

5

6

List of Tables

5.1 Randomly Generated Problems 74

5.2 Hard Reality Problems . 75

5.3 CRA vs Barcelogic on real-life HR benchmarks 76

5.4 List of the bundles of heuristics of the CRA algorithm 80

5.5 CRA vs CRA with simple preprocessing on the third set of real-life

benchmarks . 93

5.6 CRA with simple preprocessing vs Barcelogic, CVC3, Z3 on the

first and the second sets of real-life benchmarks. 94

7

8

List of Figures

4.1 Implementation Schema . 52

4.2 Data Structure Design . 54

4.3 Data Structure Design with Levels 56

4.4 Sorting Input Constraints . 59

5.1 A randomly generated problem 75

5.2 Implementations of the CRA for the major heuristics ‘FC’ on ran-

domly generated set of benchmarks, ‘number of variables versus

number of solved problems’. 81

5.3 Implementations of the CRA for the major heuristics ‘MAX’ on

randomly generated set of benchmarks, ‘time versus number of

problems solved’ . 82

5.4 Implementations of the CRA for the major heuristics ‘RC’ on ran-

domly generated set of benchmarks, ‘time versus number of prob-

lems solved’ . 83

5.5 Implementations of CRA with the best performance of all major

heuristics for the randomly generated set of benchmarks, ‘time

versus number of problems solved’ 84

5.6 A quadruple of implementations of CRA with ‘MP’ heuristics for

the first set of benchmarks, ‘time versus number of problems solved’ 86

5.7 A quadruple of implementations of CRA with ‘MP’ heuristics for

the second set of benchmarks, ‘time versus number of problems

solved’ . 86

5.8 A quadruple of implementations of CRA with ‘FC’ heuristics for

the third set of benchmarks, ‘time versus number of problems solved’ 87

5.9 A quadruple of implementations of CRA with ‘MIN’ heuristics for

the third set of benchmarks, ‘time versus number of problems solved’ 88

9

5.10 Implementations of CRA with the best performance of all major

heuristics for the first set of benchmarks, ‘number of variables ver-

sus number of solved problems’ 88

5.11 Implementations of CRA with the best performance of all major

heuristics for the first set of benchmarks, ‘time versus number of

problems solved’ . 89

5.12 Implementations of CRA with the best performance of all major

heuristics for the first set of benchmarks, ‘total run-time versus

number of solved problems’ . 90

5.13 Implementations of CRA with the best performance of all major

heuristics for the second set of benchmarks, ‘number of variables

versus number of solved problems’ 90

5.14 Implementations of CRA with the best performance of all major

heuristics for the third set of benchmarks, ‘number of variables

versus number of solved problems’ 91

5.15 Implementations of CRA with the best performance of all major

heuristics for the third set of benchmarks, ‘total run-time versus

number of solved problems’ . 92

5.16 Benchmarks where CRA with simple preprocessing and Z3 showed

different performances, ‘time versus number of problems solved’ . 95

10

Abstract

This thesis proposes a new method for solving systems of linear constraints over

the rational and real numbers (or, equivalently, linear programming) – the con-

flict resolution method. The method is a new approach to a classic problem in

mathematics and computer science, that has been known since the 19th century.

The problem has a wide range of real-life applications of increasing importance

in both academic and industrial areas. Although, the problem has been a subject

of intensive research for the past two centuries only a handful of methods had

been developed for solving it. Consequently, new results in this field may be of a

particular value, not mentioning the development of new approaches.

The motivation of our research did not arise solely from the field of linear

programming, but rather was instantiated from problems of Satisfiability Modulo

Theories (or shortly SMT). SMT is a new and rapidly developing branch of au-

tomated reasoning dedicated to reasoning in first-order logic with (combination)

of various theories, such as, linear real and integer arithmetic, theory of arrays,

equality and uninterpreted functions, and others.

The role of linear arithmetic in solving SMT problems is very significant,

since a considerable part of SMT problems arising from real-life applications

involve theories of linear real and integer arithmetic. Reasoning on such instances

incorporates reasoning in linear arithmetic. Our research spanned the fields of

SMT and linear programming.

We propose a method, that is not only used for solving linear programming

problems, but also is well-suited to SMT framework. Namely, there are cer-

tain requirements imposed on theory reasoners when they are integrated in SMT

solving. Our conflict resolution method possesses all the attributes necessary for

integration into SMT. As the experimental evaluation of the method has shown,

the method is very promising and competitive to the existing ones.

11

12

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

13

14

Copyright

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns any copyright in it (the “Copyright”) and s/he has given The

University of Manchester the right to use such Copyright for any adminis-

trative, promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in

accordance with the regulations of the John Rylands University Library of

Manchester. Details of these regulations may be obtained from the Librar-

ian. This page must form part of any such copies made.

iii. The ownership of any patents, designs, trade marks and any and all other

intellectual property rights except for the Copyright (the “Intellectual Prop-

erty Rights”) and any reproductions of copyright works, for example graphs

and tables (“Reproductions”), which may be described in this thesis, may

not be owned by the author and may be owned by third parties. Such Intel-

lectual Property Rights and Reproductions cannot and must not be made

available for use without the prior written permission of the owner(s) of the

relevant Intellectual Property Rights and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and exploitation of this thesis, the Copyright and any Intellectual Property

Rights and/or Reproductions described in it may take place is available

from the Head of School of Computer Science (or the Vice-President).

15

16

Acknowledgements
First of all, I would like to thank my supervisor Andrei Voronkov, who changed

my life by offering me this opportunity to continue my studies at Manchester

University, for suggesting an extremely interesting topic as a research direction,

and continuously helping, encouraging and understanding during the whole pe-

riod of my studies. From him I have learnt a lot and could always rely in tough

times through my PhD years. My most sincere gratitude to him for being the

best ever supervisor for me.

I would like to thank Konstantin, who has been always ready to help, for

his ideas, and constant attention, without whom the conflict resolution method

might not have come to life. It has been a great pleasure to work teamed up with

him and Andrei.

I am very grateful to my father, for encouraging me to continue study abroad,

for invaluable support and being aside despite the distance. Also, I am grateful

to Joseph and my siblings for their best support and encouragement. And along

with them, I would like to thank my mum for being an irreplaceable part of my

life, without whom I would never be where I am.

I would also like to thank the Department of Computer Science in Manchester

University, for all the support I have been getting from them, for awarding me

a best paper award, for everyday care and understanding, for granting me a

scholarship and making it possible for me to do my PhD.

Special thanks to Birte for being such a beautiful precious friend to me from

the very first days of my stay in the UK. Special thanks to Irakli for his constant

encouragement and for believing that I can make it. Also, I thank Eva and Rina

for being always caring and sharing beautiful times together. Great thanks to

Simon for being there to support me, also, to Pavel, Krystof, Juan and my office

mates. Special thanks to Veronica for her constant encouragement and for making

the last year of my PhD so cosy and colourful by being by my side every day.

There are many more people, who I like to thank, my friends in Georgia, in

Britain and around the globe, whom I am so happy to have in my life.

17

18

Chapter 1

Introduction

Motivation. This research has been motivated by solving problems of Satisfia-

bility Modulo Theories (SMT) [3]. SMT is a new branch of automated reasoning

dedicated to deciding satisfiability of formulae in first-order logic with respect to

various theories. SMT is a rapidly developing area of research. It has large variety

of real life applications, such as, software and hardware verification problems and

constraint satisfaction [12, 49, 10, 32, 43, 48]. Typical instances of SMT problems

may be presented as a system of thousands of constraints like:

p ∨ ¬q ∨ f(g(x1)) 6= x3 ∨ g(x1 − x2) = f(x3) ∨ x1 + x2 ≤ 3

This formula contains propositional atoms, and atoms over the combination of

two theories: linear real and integer arithmetic and equality with uninterpreted

functions. More examples of theories involved in SMT problems include theory

of arrays and list structures, and bit-vectors and others.

Deciding satisfiability of systems of such formulae concerns finding a satisfy-

ing assignment to all variables occurring in the system. If such an assignment

does not exist the SMT instance is unsatisfiable. Solving such systems directly

involves operation on sets of constraints over the theories presented in the formu-

lae. Namely, these operations concern deciding satisfiability of sets of constraints

within these theories.

A significant part of SMT problems involve theories of linear real and integer

arithmetic. These instances draw our interest and we took aim at finding new

methods of integrating linear arithmetic reasoning in SMT solving. Reasoning in

linear real (integer) arithmetic implies deciding satisfiability of systems of linear

constraints, i.e. solving systems of linear constraints.

19

20 CHAPTER 1. INTRODUCTION

The problem of solving systems of linear constraints, itself, is a classic problem

in mathematics and has been known for several centuries. However, there are only

a handful of methods for solving it: the Fourier-Motzkin elimination method of

the 19th century and the simplex and interior point methods of the 20th century.

An example of a simple system with linear constraints over the reals is given

below.

3x3 + 4x2 − 1 > 0

−x3 + x2 + 1 ≥ 0

2x2 − x1 = 0

This system consists of 3 variables and 3 constraints and is satisfiable when

the variables are assigned the values: x1 = 2, x2 = 1, x3 = 1.

In real-life examples systems are much bigger, with hundreds and thousands

of constraints and inequalities. Thus, real-life problems are more complex.

This problem has been proved to be equivalent to a so called linear program-

ming problem. A linear programming problem is a problem of optimising a given

linear function with respect to a system of linear constraints. The following is

an example of a simple linear programming problem, extracted from [7]. The

problem consists of 3 variables, 4 constraints and an objective function to be

maximised.

Maximise: 5x3 + 5x2 + 3x1

subject to:

−x3 − 3x2 − x1 + 3 ≥ 0

x3 − 3x1 + 2 ≥ 0

−2x3 + x2 − 2x1 + 4 ≥ 0

−2x3 − 3x2 + x1 + 2 ≥ 0

x3, x2, x1 ≥ 0

This problem has an optimal solution equal to 10.

Eventually, the motivation of this research was to find new ways of operating

with systems of linear constraints that would be friendly to, and integrate well

with, SMT solving methods. The research resulted in developing a new method

for solving systems of linear constraints over the rational and real numbers – the

conflict resolution method [30].

21

Main Contribution. This thesis is devoted to our conflict resolution method.

The method is new and has a number of properties crucial for integration into

SMT solving, but may also have an independent value for linear optimisation and

a number of other combinatorial problems.

The method works with a set of constraints and an assignment on variables.

It iteratively refines the assignment trying to make it into a solution. If such a

refinement is impossible, it is due to a pair of conflicting constraints. We resolve

the conflict by deriving a new constraint and adding it to the system. Adding

new constraints is done in such a way, that the expanded system has the same

set of solutions as the initial system. The refinements are done successively until

either the assignment becomes a solution of the system or the initial system is

expanded to a system containing a contradiction. Generation of new constraints

ensures that new constraints are non-redundant in some natural sense.

The use of the technique developed for resolving conflicts in our method makes

the method similar to the Fourier-Motzkin variable elimination method.

We implemented a solver based on our method and compared it with versions

of the Fourier-Motzkin elimination method and the simplex method incorporated

in the existing SMT solvers, as well as with our implementations of the Fourier-

Motzkin elimination method and its most prominent modification – the Chernikov

algorithm. As the experiments show our solver is highly competitive with existing

implementations of the linear arithmetic solvers integrated into the state-of-the-

art SMT solvers, and in some cases even outperforms some of them.

In this chapter we mainly aimed to introduce readers to the motivation behind

our research and explain on an intuitive level the essence of the proposed method.

The thesis discusses in detail the method, its implementation and experiments,

along with giving an overview of the historical background and related work. A

thesis guide for readers is provided in the next section.

We presented the conflict resolution method in 2009 at the Conference on

Principles and Practice of Constraint Programming (CP 2009), where our paper

was awarded a Runner-Up as the Best Paper Prize. The paper has also been

granted the Best PhD Paper Award 2009 at the School of Computer Science at

the University of Manchester.

22 CHAPTER 1. INTRODUCTION

A Guide for Readers. The thesis is structured as follows. Chapter 2 defines

basic notions used throughout the thesis, formulates the problem, gives a brief his-

torical overview of the background of the problem and its applications. It briefly

introduces the related work, including the Fourier-Motzkin variable elimination

method, its modification the Chernikov algorithm, the simplex method and the

relaxation method. In Chapter 3 we describe the conflict resolution method, prove

correctness and termination of the algorithm and discuss its properties along with

some extensions and its usability in SMT. In Chapter 4 we discuss in detail our

implementation of the conflict resolution algorithm. In Chapter 5 we present the

results of our experimental evaluation of the algorithm. Finally, in Chapter 6 we

summarise thesis achievements and discuss further research directions.

Chapter 2

Background and Related Work

In this chapter, we formulate the problem of solving systems of linear con-

straints, introduce basic notations used throughout the thesis. We also give a

brief overview of the historical background, importance of the problem, its appli-

cations and related work.

2.1 Basic Notations

Throughout the thesis we consider constraints and variables over the field Q
of rational numbers. This is the most important and frequently considered case,

which allows conducting exact calculation without rounding errors. Nevertheless,

the algorithmic part of the thesis remains valid for any sub-field F of a field of

real numbers R (including R). Let Q denote the set of rationals. Let n be a

positive integer, we denote by X a finite set of variables {x1, . . . , xn}.
Throughout the thesis we assume that all the variables have rational values,

i.e. xi ∈ Q for 1 ≤ i ≤ n. An expression anxn + . . .+ a1x1 + b � 0, where ai ∈ Q
for 1 ≤ i ≤ n and � denotes one of the binary relations {≥, >,=, 6=} is called a

Q-linear constraint over X. When all coefficients a1, a2, . . . an are equal to 0 the

constraint becomes b�0, which does not depend on variables x1, x2, . . . , xn and is

either true or false. The constraint that is identically true we denote by >, and

the constraint that is identically false we denote by ⊥. Such constraints are called

trivial. For brevity, in the sequel we will call such rational linear constraints over

X simply linear constraints. We call a system of linear constraints any finite set

of linear constraints.

Let � be a total order on X. To simplify the notations, without loss of

23

24 CHAPTER 2. BACKGROUND AND RELATED WORK

generality we may assume that xn � xn−1 � . . . � x1. We will say xi is higher

than xj (or xj is lower than xi) if xi � xj. We call x the highest variable in a

constraint if x is higher than any other variable present in this constraint.

A constraint is called normalised if its highest variable has a coefficient 1 or

−1. Evidently, the constraints ⊥, >, that do not contain variables are normalised.

If x is the highest variable in a constraint the normalised form of this constraint

should be of one of the forms: x + p � 0 or −x + q � 0, where p and q contain

only variables lower than x, and � is as defined above. If the highest variable x

has a coefficient a 6= 0, than the constraint can be normalised by dividing all its

coefficients by |a|. Evidently, every constraint can be effectively normalised, i.e.

transformed into an equivalent normalised constraint. In the sequel, we assume

that all constraints are normalised.

We define an assignment σ over the set of variables X as a mapping from X

to Q, i.e. σ : X → Q. Given an assignment σ and a variable x ∈ X we call

v = σ(x) a value of the variable x under the assignment σ. Thus all variables

xi ∈ X (1 ≤ i ≤ n) can obtain respective values vi = σ(xi) under the assignment

σ.

In what follows the notation xσ simply means σ(x). Given an assignment σ,

a variable x ∈ X and an arbitrary number v ∈ Q we can update σ at x by v,

denoted by σv
x, by changing the value of x in the assignment σ to v and leaving

the values of σ for all the other variables unchanged.

For a linear form q over X, we denote by qσ the value of q after replacing all

variables x ∈ X by their values under the assignment σ(x). An assignment σ is

called a solution of a linear constraint q � 0 if qσ � 0 is a true numeric relation;

σ is a solution of a system S of linear constraints if it is a solution of every

constraint in the system S. If σ is a solution of a linear constraint c (or a system

S of such constraints), we also say that σ satisfies c (respectively, S), denoted by

σ |= c (respectively, σ |= S), otherwise we say that σ violates c (respectively, S).

Thus, if σ violates a system of constraints S, it violates at least one constraint

contained in S. A system of linear constraints is said to be satisfiable if there

exists an assignment σ that satisfies S, otherwise it is said to be unsatisfiable.

To focus on the main ideas, all algorithms described in the thesis will be

initially considered for solving systems of linear constraints of the form q ≥ 0.

The general case will be discussed later in Chapter 3.

2.2. STATEMENT OF THE PROBLEM 25

2.2 Statement of the Problem

The problem of solving systems of linear constraints (essentially, equivalent to

the linear programming problem) is a classic problem in mathematics as well

as in computer science. It concerns deciding the satisfiability of a system of

linear constraints. Satisfiability is decided by either finding an assignment to all

variables that satisfies the system, or proving that such an assignment does not

exist.

Geometrically solutions of a linear constraint anxn+. . .+a1x1+b = 0 comprise

an (n− 1)-dimensional plane, so called hyperplane in Qn. Replacing equality by

a non-strict inequality anxn + . . . + a1x1 + b ≥ 0 the set of solutions expands to

a half-space bounded by this hyperplane. A system of linear constraints geomet-

rically represents an intersection of the half-spaces defined by these constraints.

A geometric object, shaped by the intersection of finitely many half-spaces is

called a convex polyhedron. This polyhedron shapes the set of all solutions of the

system. If the polyhedron is empty the system has no solutions.

The problem of solving a system of linear constraints is equivalent to a problem

of optimisation of a given linear function subject to a system of linear constraints.

Such an optimisation problem is called a linear programming (LP) problem. The

linear function to be optimised is called an objective function. These two problems

are equivalent in sense that any method for solving one of them directly yields

the method for solving the other one. A succinct proof of this statement can be

found in [44].

The geometric interpretation of a linear programming problem is also related

to a notion of polyhedron. The system of linear constraints defines a convex

polyhedron. The problem concerns finding a point in the polyhedron for which

the value of the objective function is optimal. Obviously, the linear programming

problem has no solution if the polyhedron is empty. It also has no solution if

the polyhedron is unbounded towards the direction of the optimisation of the

objective function.

26 CHAPTER 2. BACKGROUND AND RELATED WORK

2.3 Historical Background and Applications

The problem of solving systems of linear constraints dates back to the early 19th

century when Fourier, a French mathematician and physicist, suggested the first

method for solving it [17]. The method, however, had been forgotten for almost

a century and was rediscovered by Danes [13] and Motzkin [38] in the early 20th

century. The method is known as Fourier-Motzkin elimination method.

The Fourier-Motzkin method has number of properties that distinguish it from

other methods developed, however its performance in practice is poor compared

to other methods.

The traces of the idea of the linear programming were observed already in

Fourier’s works [16, 17]. But as a discipline linear programming was established

in 1940’s by the works of Dantzig, Kantorovich, Koopmans, and von Neumann.

In 1939 Kantorovich formulated certain practical problems for organising and

planning production and transportation purposes in terms related to linear pro-

gramming and proposed a method for solving them [24]. However, his works

were not recognised until the establishment of linear programming as a new the-

ory in works by Dantzig and others. Two decades later Koopmans, showed that

the problems formulated by Kantorovich are equivalent to the general linear pro-

gramming problem, and the method proposed by him was actually a method for

general linear programming [29].

The work by Koopmans [28], as of 1947, was the second rediscovery of linear

programming. He gave a linear programming formulation to the problem of

optimum allocation of the resources in a transportation system and presented a

method for solving this problem. His work illustrated the successful utilisation

of the linear programming framework in classical economic theories.

In 1975 Kantorovich and Koopmans were jointly awarded the Nobel Prize in

Economic Science ‘for their contribution to the theory of optimum allocation of

resources’.

However, the work by Dantzig [8], presented in 1947, was the one that de-

cided the success of linear programming in practice, led to the recognition of its

importance, and originated it as a new branch of applied mathematics. He intro-

duced the simplex method for solving linear programming problems. The idea

behind the simplex method originates from Fourier’s works [16] and was put into

algorithmic shape by Dantzig in 1951 [8].

Dantzig’s work was followed by a rapid growth of real-life applications of

2.3. HISTORICAL BACKGROUND AND APPLICATIONS 27

linear programming in wast variety of areas that seemed of no relevance at first

sight. Such an advance in applications influenced further development of linear

programming as a new discipline itself.

One should also mention here von Neumann, who laid the mathematical fun-

damentals of linear programming in 1947, and first introduced the important

notion of Duality in linear programming [50].

Simplex is very efficient (almost linear) in practice and has a polynomial

behaviour in probability. However, its worst case complexity is exponential and

there is no version of the simplex method that shows polynomial time complexity

in all instances.

For a long time it was an open question whether there exists a polynomial time

algorithm for linear programming, or for the equivalent problem of solving systems

of linear constraints. This question was answered in 1979 by Khachiyan [26],

He showed that the ellipsoid method, developed by Shor [46, 45, 47] and Yudin

and Nemirovskii [51, 52] for nonlinear programming, can be successfully adopted

for solving linear programming problems and systems of linear constraints in

polynomial time.

Evidently, Khachiyan’s method was a significant theoretical breakthrough,

however it turned out to perform poorly in practice.

The success of Khachiyan was followed by a larger breakthrough of both the-

oretical and practical value. In 1984 Karmarkar introduced his interior point

method for solving linear programming problems [25].

Since Karmarkar’s first interior point method, many interior point methods

have been developed and analysed in the last three decades. Success of the early

implementations was based on the affine scaling variants of Karmarkar’s method.

The most common among them are the barrier function method by Nocedal and

Wright in 1999 [41] and the path-following method by Mehrotra in 1989 [34].

Even though both Khachiyan’s and Karmarkar’s methods are polynomial

time, the number of iterations, i.e. the number of arithmetic operations per-

formed, depends on the size of numbers in the input data. It remains an open

question, whether there exists an algorithm for linear programming that is strongly

polynomial – i.e. makes a polynomial number of elementary arithmetic opera-

tions, and this number depends only on the dimension of the problem (number of

variables and number of constraints). Elementary operations here are addition,

subtraction, multiplication, division, comparison.

28 CHAPTER 2. BACKGROUND AND RELATED WORK

A thorough survey of the history of linear programming can be found in Dantz-

ing’s monograph on linear programming of 1963 [9] and in a book by Schrijver

on theory of linear and integer programming [44].

Despite of rapid development of the simplex method and interior point meth-

ods and despite their success, the Fourier-Motzkin elimination method remained

significant because of some specific features. See below.

Applications. The problem of solving systems of linear constraints (equiv-

alently linear programming) has a great many applications in both academic

and industrial areas. It is used most extensively in the fields of business and

economics, in a variety of commercial and non-commercial applications, and in

engineering problems. It is used in a large number of combinatorial and optimisa-

tion problems, Satisfiability Modulo Theories, and hybrid systems. It is used for

solving problems of planning, scheduling, assignment, optimal resource allocation,

and design. Industrial applications include: transportation, telecommunication,

energy.

More applications of linear programming can be found in Riley and Gass [42],

and Gass [19].

2.4 Related Work

In this section we introduce related work and briefly discuss some of the existing

methods.

The problem of solving systems of linear constraints has been studied over

several centuries and there are only a handful of methods for solving it: the

Fourier-Motzkin elimination method of the 19th century and simplex and interior

point methods of the 20th century.

Nowadays, due to the computational cost of the Fourier-Motzkin elimination

method, the majority of linear programming solvers implement various modifi-

cations and versions of the simplex and interior point methods. Indeed, the best

performance has been retained by the simplex algorithm.

Nevertheless, the Fourier-Motzkin elimination method has a certain advan-

tage over them in the following respects: it yields an explicit representation of

a solution set of a problem, provides a symbolic solution, and allows paralleli-

sation. The Fourier-Motzkin elimination methods is also of particular value in

2.4. RELATED WORK 29

quantifier elimination for linear real arithmetic (see, e.g., [35, 37, 20, 15]). For

this reason, the method is still very convenient, sometimes even irreplaceable, in

certain situations.

The following sections briefly discusses existing methods related to our re-

search: the Fourier-Motzkin elimination method, its most prominent modifica-

tion – the Chernikov algorithm, the simplex and interior point methods, and the

relaxation method.

2.4.1 The Fourier-Motzkin Elimination Method

The first method for solving systems of linear constraints was proposed by Fourier

in 1826. His approach in its basis, was an analogue to the existing method of

variable elimination for linear equations, Gaussian elimination.

Let us consider a system S of linear constraints with variables x1, . . . , xn. The

method either finds at least one solution, or determines that S has no solutions.

The method is based on an iterative algorithm changing S by eliminating a vari-

able at each step. We assume that the variables are eliminated according to the

order � (defined earlier in Section 2.1), so that, the highest variable xn is elim-

inated first. At each step, if the highest variable in the current system of linear

constraints is xk, we denote the current system by Sk, thus Sn = S. When the

algorithm terminates, we obtain a system containing only trivial constraints, we

denote this system by S0.

Let k > 0. The system Sk−1 is obtained from Sk by (i) adding new linear

constraints as follows: for every pair of linear constraints xk+p ≥ 0 and −xk+q ≥
0 in Sk we add to Sk−1 a new constraint p + q ≥ 0 and (ii) removing all linear

constraints containing xk.

One can show that the original system S is unsatisfiable if and only if S0

contains ⊥. If S0 does not contain ⊥, we can build a solution σ to S using the

following observation: An assignment σ satisfies Sk if and only if σ satisfies Sk−1

and

xkσ ∈ [max{−pσ | (xk + p ≥ 0) ∈ Sk},min{qσ | (−xk + q ≥ 0) ∈ Sk}] . (2.1)

As usual, we assume that the minimum of the empty set is +∞ and the maximum

of it is −∞. Condition (2.1) essentially says that the value of xk lies in a certain

interval determined by the values of variables x1, . . . , xk−1. One can prove that

30 CHAPTER 2. BACKGROUND AND RELATED WORK

this interval is non-empty whenever σ satisfies Sk−1. Thus, we can change any

solution σ of Sk−1 into a solution of Sk by updating σ at xk by an arbitrary value

in this interval. In this way we can build a solution to S = Sn as follows. We

start with an arbitrary assignment σ (which obviously satisfies S0) and update

it at x1, . . . , xn as described above. In fact, all solutions of the initial system can

be derived this way.

As we know, geometrically S defines a convex polyhedron in n-dimensional

space (see Section 2.2). When eliminating the variable xn this polyhedron is

projected along the axis xn into the n − 1-dimensional space determined by the

variables xn−1, . . . , x1. The projection is represented by the system Sn−1 of linear

constraints. The Fourier-Motzkin elimination method generates a finite number

of constraints at each iteration. Therefore, Sn−1 also forms a polyhedron, this

time in n−1-dimensional space. The geometric idea behind the Fourier-Motzkin

elimination method is in succesive projections of the initial polyhedron into the

smaller-dimensional spaces along each of the axes.

Performance of the Method. Note that the Fourier-Motzkin algorithm ap-

plied to a set of linear constraints always terminates and generates only a finite

number of linear constraints. However, the algorithm is in general exponential.1

In general, the number of linear constraints in Sk−1 is in the worst case quadratic

in the number of constraints in Sk.

The poor performance of the Fourier-Motzkin elimination method is mainly

due to two main reasons:

1. It derives a large number of new constraints, a great many of which are re-

dundant - i.e. are a consequence of other constraints. Checking redundancy

is usually burdensome and expensive. Therefore, the method often results

in exponential blow up in the number of constraints.

2. It is a refutation method and is not suited for model searching, in contrast

to simplex and interior point methods. Thus, even if there is a trivial model

of the problem, the Fourier-Motzkin elimination method will go on deducing

constraints until all possibilities are exhausted.

1Some papers claim it is double-exponential but we could not find any paper proving this.
Schrijver [44] defines a sequence of systems of size O(n3) on which the method generates O(2n)
constraints. Some papers refer to [5] as giving an example of double-exponential behaviour but
[5] only repeats the example from [44] verbatim.

2.4. RELATED WORK 31

The performance of the Fourier-Motzkin method may be improved by reducing

the number of redundant inequalities and thus decreasing the number of inequal-

ities generated at each iteration. Several modifications of the Fourier-Motzkin

algorithm have been implemented, to which the next section is dedicated.

2.4.2 Modifications of the Fourier-Motzkin Method

During the past several decades, various modifications of the Fourier-Motzkin

method have been developed. All of them mainly aim to reduce the number of de-

rived constraints and improve the efficiency of the method this way. Namely, they

aim to identify redundancy among derived constraints by providing some easy-

to-check sufficient criteria for redundancy. One of the most prominent modifica-

tions of the Fourier-Motzkin elimination method is the Chernikov algorithm [6].

Chernikov suggested associating with each constraint some bookkeeping informa-

tion on how this constraint was derived. Under certain conditions a newly derived

constraint can be shown to be redundant based on this information. There are

a number of extensions and modifications of this and other ideas developed over

the past decades (e.g., [14, 27, 22, 23]).

The idea by Chernikov is to attach an index, a set of natural numbers, to

each constraint. The initial constraints in S are indexed with a natural number

corresponding to their ordinal number in the system. An index of each derived

constraint is defined as a union of indices of the predecessors of this constraint

(a pair of constraints it was derived from).

Chernikov’s redundancy criteria for constraints derived in the Fourier-Motzkin

elimination method are defined as follows:

A constraint derived on the k-th iteration is redundant if any of these criteria

holds:

1. The cardinality of the index of this constraint is greater than k + 1;

2. The index of the constraint contains a complete index of another constraint

derived on the same iteration.

Informally, the Chernikov algorithm extends the Fourier-Motzkin method with

these two restrictions on added linear constraints. The Chernikov algorithm

modifies the Fourier-Motzkin method in the following way. Let S = Sn be a

system of linear constraints. Define the index set of an initial constraint c ∈ Sn

32 CHAPTER 2. BACKGROUND AND RELATED WORK

to be {c}. Let k > 0. The system Sk−1 is obtained from Sk by removing all linear

constraints containing xk and adding new linear constraints as follows. For every

pair of linear constraints xk + p ≥ 0 and −xk + q ≥ 0 in Sk, with index sets I, J

respectively, we add to Sk−1 a new constraint p+ q ≥ 0 with the index set I ∪ J
if it is non-redundant within Chernikov’s definition, i.e. if neither of the above

stated Chernikov criteria hold. Based on these criteria it is possible to essentially

decrease the number of generated constraints when eliminating variables. It is

shown in [6] that the original system S is unsatisfiable if and only if S0 contains

⊥.

The method of Fourier-Motzkin with filtering of redundant inequalities based

on Chernikov’s method or its variations has been used in several software imple-

mentations (see, e.g., one of the recent works [33]).

2.4.3 The Simplex Method

The simplex method is the most prominent method for linear programming. It

was designed by Dantzig in 1947 and has, at the moment, the best performance

in practice among the existing methods for linear programming. In the current

section we briefly describe the simplex method; one can find a more detailed

introduction to the method in [8, 44, 7].

Simplex deals with linear programming problems, but can be efficiently adopted

for solving systems of linear constraints. Recall that a linear programming prob-

lem concerns finding an optimal value of a linear objective function subject to a

system of linear constraints. If the system has no solutions the linear program-

ming problem has no solution either.

Geometrically the system of linear constraints defines a convex polyhedron.

The essence of the problem is to find such a point in the polyhedron that makes

the objective function optimal. The convexity of the polyhedron guarantees that

if the problem has a solution than the optimal value of the objective function

can be achieved at a vertex of the polyhedron. Such a vertex is called an optimal

vertex.

The idea behind simplex is to walk along the edges of the polyhedron from

vertex to vertex until an optimal value of the objective function is obtained.

Simplex initiates the walk by finding one of the vertices of the polyhedron, i.e.,

constructing a solution of the system in the vertex of the polyhedron. Then, it

follows a path along the edges of the polyhedron towards the more or equally

2.4. RELATED WORK 33

optimised vertices, until the optimal vertex is reached.

If the polyhedron is empty, i.e., the system has no solutions, simplex termi-

nates, indicating that the system is infeasible. If the polyhedron is unbounded

towards the direction of the optimisation, the optimal value is either +∞ in case

of maximisation of the objective function or −∞ in case of minimisation.

The method is very fast in practice. Even though there are some instances

which take simplex exponential time to solve, experiments suggest the number

of vertices on the path towards the optimal vertex is almost linear in the dimen-

sions of problems. Also theoretically, in certain probabilistic models the simplex

method shows a linear-time (in the size of the problem) behaviour in average.

Obviously, the performance of simplex is directly related to the path chosen

when searching for the optimal vertex. So far none of the existing heuristics for

choosing the path results in polynomial-time performance of the simplex method

for each LP instance.

The good performance of simplex in practice is also caused by the constant

space used by simplex (it runs on a fixed simplex tableau).

2.4.4 The Relaxation Method

The methods described earlier in this chapter are direct methods ; they provide a

solution to a problem in finite number of steps. In this section we introduce an

iterative method for solving systems of linear constraints – the relaxation method.

With certain prerequisites on a system of constraints the method constructs a

sequence of assignments to the variables that either converges to a solution or

terminates with a solution.

The relaxation method was first introduced by Agmon [1], Motzkin and Schoen-

berg in 1954 [39]. We give a brief description of the method suited to our needs,

more extensive descriptions can be found in [44], [21].

The method of relaxation is a distinguished geometric approach to the prob-

lem.

Let S be a set of linear constraints over the variables x0, x1, . . . , xn. Choose an

arbitrary initial assignment to the variables σ0. The method constructs a sequence

of assignments σ0, σ1, σ2, . . . iteratively as follows. If at any iteration a satisfying

assignment is constructed, the method stops. Otherwise, the method goes on

constructing new assignments. Suppose, an assignment σk for some k > 0 is not

a solution to S. Then there exists a violated constraints in S. Geometrically the

34 CHAPTER 2. BACKGROUND AND RELATED WORK

fact that a constraint is violated under the assignment σk means that the point

Mk corresponding to σk lies outside the multidimensional half-spaces defined by

this constraint. Choose one of the violated constraints q ≥ 0 in S. Construct the

assignment σk+1 by going along the projection of the point Mk into the hyperplane

defined by q = 0 and choosing a new point on the projection. The points should

be chosen with one and the same predefined linear proportion at each iteration.

The choices for a violated constraint and a proportion value are subject to any

desired heuristics. However, the convergence and termination properties of the

method directly depend on some prerequisites on the system and the choices for

these parameters.

It has been proved, e.g. see [44], that if the system has a feasible solution

such a sequence of assignments either converges to a solution or terminates with

a solution provided the following:

• Always choose the “most violated” constraint, i.e. the one with the hyper-

plane farthest from the point corresponding to the current assignment.

• Always choose a new assignment within the interval defined by the point

corresponding to the current assignment and its reflection into the hyper-

plane of the chosen violated constraint.

The termination is guaranteed if the polyhedron is full-dimensional and the

assignments are constructed by reflecting the point corresponding to the current

assignment into the hyperplane of the “most violated” constraint. In other words,

by iteratively reflecting the point corresponding to the initial assignment into the

hyperplanes of the “most violated” constraints, the method eventually finds a

solution.

In case when the polyhedron is not full-dimensional the relaxation method re-

quires some modifications to be made to terminate and yield to the exact solution.

However, these modifications are very complex and computationally expensive.

For this reason, the relaxation method is not utilised much in practise.

In Chapter 4 we describe how we used the criteria posed in the relaxation

method for fine-tuning the conflict resolution method.

Chapter 3

Conflict Resolution

In this chapter we introduce our conflict resolution algorithm (CRA) for solving

systems of linear constraints over the rationals and reals. We present properties

of the CRA algorithm, prove its correctness and termination, and discuss some

CRA extensions.

3.1 Algorithm Description

As previously, we consider a system S of linear constraints and suppose that

we have the same order on variables xn � xn−1 � . . . � x1 (as introduced in

Chapter 2).

First, we introduce some auxiliary notions useful for describing our algorithm.

Let c be a linear constraint. If the highest variable in c is xk, then we say that k is

the level of c. Thus, each constraint is at a certain level. If c contains no variables,

then we define the level of c to be 0. In the description of the conflict resolution

algorithm we assume that all constraints are normalised. By the definition of a

normalised constraint, see Section 2.1, we assume that constraints written in the

form xk + p ≥ 0 or −xk + q ≥ 0 have the highest variable xk, and p and q do

not contain xk, thus these constraints are at level k. The notion of level induces

a partial order on linear constraints, which we will denote also by �, as follows.

For two linear constraints c1 and c2, we have c1 � c2 if and only if the level of c1

is strictly greater than the level of c2.

For every set S of linear constraints and a positive integer k, we denote by

S=k (respectively, S<k) the subset of S consisting of all constraints at level k

(respectively, of all levels strictly less than k).

35

36 CHAPTER 3. CONFLICT RESOLUTION

We consider constraints of level k split into two groups according to the sign

of the coefficient of the highest variable xk. This allows us to identify lower and

upper bounds on the value of the variable xk if an assignment to the smaller

variables is given.

For any system S of linear constraints, a non-negative integer k and an as-

signment σ we denote

L(S, σ, k)
def
= max{−pσ | (xk + p ≥ 0) ∈ S};

U(S, σ, k)
def
= min{qσ | (−xk + q ≥ 0) ∈ S};

I(S, σ, k)
def
= [L(S, σ, k), U(S, σ, k)].

Here, L(S, σ, k) and U(S, σ, k) represent, respectively, a lower and an upper

bound on the value of the variable xk, as the values of the smaller variables

are chosen from the assignment σ. These bounds essentially form an interval

I(S, σ, k) bounding the value of the variable xk. If the interval is empty, it means

that there is at least one pair of constraints that are conflict under the current

assignment σ, i.e. there is a k-conflict.

We say a level k is half-bounding if all constraints at level k have the same

sign of the coefficient of the highest variable xk; i.e. level k contains either only

constraints of the form −xk + p ≥ 0 and −xk + p > 0 bounding the maximal

value of the variable xk, or only constraints of the form xk + q ≥ 0 and xk + q > 0

bounding the minimal value of xk. Obviously, such levels define half-bounded

intervals for xk.

We call a state of a system a pair (S, σ), where S is a system of linear con-

straints and σ an assignment (as defined in the Chapter 2).

Let S = (S, σ) be a state and k a positive integer. We define a k-conflict in

the state S as a pair of constraints (xk + p ≥ 0,−xk + q ≥ 0) that satisfies the

conditions (i) both xk + p ≥ 0 and −xk + q ≥ 0 are linear constraints in S and

(ii) pσ + qσ < 0. Instead of “k-conflict” we will sometimes simply say “conflict”.

Note that if σ is a solution of S, then S contains no conflicts.

We will now formulate our method. Given a system S of linear constraints,

it starts with an initial state (S, σ), where σ is an arbitrary assignment and

repeatedly transforms the current state either by updating S – adding a new

linear constraint to S, or updating the assignment σ. These transformations are

applied in accordance to the two rules which we formulate below as transformation

rules on states S⇒ S′, meaning that S can be transformed into S′.

3.1. ALGORITHM DESCRIPTION 37

Let k be an integer such that 1 ≤ k ≤ n. The first transformation rule is

called the conflict resolution rule (CR), when applied it updates the current sys-

tem of constraints S by adding a new constraint to it. This rule is applicable at

level k with a condition that a k-conflict is present there. In terms of the interval

I(S, σ, k), this means that I(S, σ, k) is empty. The CR rule resolves the k-conflict

by deriving a new constraint from the conflicting pair of constraints and adding

it to the system.

The conflict resolution rule (CR) (at level k) is the following rule:

(S, σ)⇒ (S ∪ {p+ q ≥ 0}, σ),

where (S, σ) contains a k-conflict (xk + p ≥ 0,−xk + q ≥ 0).

The second rule is the assignment refinement rule (AR), as its name suggests

it refines the assignment on variables. The AR rule is applicable at level k when

(i) there are no k-conflicts; (ii) the current assignment satisfies all constraints at

levels below k, but violates at least one constraint at level k, i.e. σ |= S<k and

σ 6|= S=k. This, in terms of the interval I(S, σ, k), means that the I(S, σ, k) is

non-empty, but the value v of the variable xk does not belong to it v /∈ I(S, σ, k).

In such case the assignment can be refined. The AR rule updates σ at the variable

xk by a new value v′ so that now σv′
xk
|= S=k.

The assignment refinement rule (AR) (at level k) is the following rule:

(S, σ)⇒ (S, σv
xk

),

where

(1) σ satisfies all constraints in S at levels 0, . . . , k − 1.

(2) σ violates at least one constraint in S at level k.

(3) σv
xk

satisfies all constraints in S at level k.

We will call any application of an inference rule an inference. Thus, our

algorithm will perform CR-inferences and AR-inferences.

38 CHAPTER 3. CONFLICT RESOLUTION

Note, that the AR and CR rules exclude each-other: if one of them is appli-

cable, the other is not. This is formulated in the following lemma that is a key

lemma for our method.

Lemma 3.1.1 (Proved in Section 3.3) Let (S, σ) be a state and 1 ≤ k ≤ n.

Let σ satisfy all constraints in S at levels 0, . . . , k − 1 and violate at least one

constraint at level k. If I(S, σ, k) is empty, then the conflict resolution rule at level

k is applicable and the assignment refinement rule at this level is not applicable.

If I(S, σ, k) is non-empty, then the assignment refinement rule at the level k is

applicable and the conflict resolution rule at this level is not applicable.

Note that the conflict resolution rule always derives a linear constraint that

is violated by current assignment σ:

Lemma 3.1.2 Let (S, σ) contain a k-conflict (xk + p ≥ 0,−xk + q ≥ 0). Then

σ 6|= p+ q ≥ 0. o

In the next lemma we give formal and more detailed explanation of the as-

signment refinement rule. The lemma illustrates the conditions (1) − (3) of the

AR rule in terms of the interval I(S, σ, k).

Lemma 3.1.3 (i) Condition (2) of the assignment refinement rule implies xkσ 6∈
I(S, σ, k). (ii) Condition (3) of the assignment refinement rule is equivalent to

v ∈ I(S, σ, k). (iii) The interval I(S, σ, k) is non-empty if and only if S contains

no k-conflicts.

Proof. (i) We assume that xkσ ∈ I(S, σ, k) and prove that σ satisfies S=k. Take

any constraint in S=k. Without loss of generality assume that it has the form

xk + p ≥ 0. Since xkσ ∈ I(S, σ, k), we have xkσ ≥ L(S, σ, k), that is, xkσ ≥
max{−pσ | (xk + p ≥ 0) ∈ S}. This implies xkσ ≥ −pσ, hence σ is a solution of

xk + p ≥ 0.

(ii) In one direction, assume v ∈ I(S, σ, k). Note that xkσ
v
xk

= v, so xkσ
v
xk
∈

I(S, σ, k). Using the same arguments as in (i) but with σ replaced by σv
xk

we

can prove σv
xk
|= S=k. In the other direction, assume σv

xk
|= S=k. We have to

prove v ∈ I(S, σ, k), that is, v ≥ L(S, σ, k) and v ≤ U(S, σ, k). We will only

prove the former condition, the latter one is similar. The former condition means

v ≥ max{−pσ | (xk + p ≥ 0) ∈ S}. To prove it, we have to show that for all

3.1. ALGORITHM DESCRIPTION 39

Algorithm 1 The Conflict Resolution Algorithm CRA
Input: A set S of linear constraints.
Output: A solution of S or “unsatisfiable”.
1: if ⊥ ∈ S then return “unsatisfiable”
2: σ := arbitrary assignment;
3: k := 1
4: while k ≤ n do
5: if σ 6|= S=k then
6: while (S, σ) contains a k-conflict (xk + p ≥ 0,−xk + q ≥ 0) do
7: S := S ∪ {p+ q ≥ 0}; . application of CR
8: k := the level of (p+ q ≥ 0);
9: if k = 0 then return “unsatisfiable”

10: end while
11: σ := σv

xk
, where v is an arbitrary value in I(S, σ, k) . application of AR

12: end if
13: k := k + 1
14: end while
15: return σ

constraints of the form xk + p ≥ 0 in S (and hence in S=k) we have v ≥ −pσ.

Since p may only contain variables in {x1, . . . , xk−1} and σ agrees with σv
xk

on all

such variables, we have −pσ = −pσv
xk

, so v ≥ −pσv
xk

. Using xkσ
v
xk

= v, we obtain

xkσ
v
xk
≥ −pσv

xk
, hence σv

xk
is a solution of xk + p ≥ 0, and we are done.

(iii) We will prove that I(S, σ, k) is empty if and only if S contains a k-conflict.

In one direction, assume I(S, σ, k) is empty. Then L(S, σ, k) > U(S, σ, k). Note

that this implies that both L(S, σ, k) and U(S, σ, k) are finite. Since they are

finite, S=k contains two constraints of the form xk + p ≥ 0 and −xk + q ≥ 0

such that −pσ = L(S, σ, k) and qσ = U(S, σ, k). This and L(S, σ, k) > U(S, σ, k)

implies −pσ > qσ, and so 0 > pσ + qσ. Therefore, (xk + p ≥ 0,−xk + q ≥ 0) is a

k-conflict. The proof in other direction is similar. o

The conflict resolution algorithm CRA is given as Algorithm 1.

Let us note that the algorithm is well-defined, that is, the interval I(S, σ, k) at

line 11 is non-empty. Indeed, the algorithm reaches this line if (S, σ) contains no

conflict at the level k (by line 6). Then I(S, σ, k) is non-empty by Lemma 3.1.3

(iii).

40 CHAPTER 3. CONFLICT RESOLUTION

Example 3.1. This example illustrates the algorithm. Let S0 be the following

set of constraints.

x4 − 2x3 + x1 + 5 ≥ 0 (1)

−x4 − x3 − 3x2 − 3x1 + 1 ≥ 0 (2)

−x4 + 2x3 + 2x2 + x1 + 6 ≥ 0 (3)

−x3 + x2 − 2x1 + 5 ≥ 0 (4)

x3 + 3x1 − 1 ≥ 0 (5)

Assume that the initial assignment σ maps all variables to 0. The algorithm

starts at level 0. The sets S=0, S=1, S=2 are empty, so the assignment σ trivially

satisfies them. However, it violates constraint (5) and so violates S=3. The

interval I(S, σ, 3) is [1, 5]. It is non-empty, so by Lemma 3.1.1 we can apply

the assignment refinement rule at level 3 by updating σ at x3 by any value in

[1, 5]. Let us choose, for example, the value 4. Let σ1 denote the newly obtained

assignment {x4 7→ 0, x3 7→ 4, x2 7→ 0, x1 7→ 0}. Now we move to the next level

4. There is a 4-conflict between constraints (1) and (2) (line 6). We make a

CR-inference between these two clauses deriving a new constraint

− x3 − x2 − 2
3
x1 + 2 ≥ 0 (6)

added to the set S at line 7. According to line 8 of the algorithm we set the level

k to the level of the new constraint, that is, to 3. Now there are no more conflicts

on level 3 and we have I(S, σ, 3) = [1, 2]. We should update the assignment at x3

by an arbitrary value in this interval. Suppose, for example, that we have chosen

1 as the value for x3 obtaining {x4 7→ 0, x3 7→ 1, x2 7→ 0, x1 7→ 0} and increase k

by 1 proceeding to level 4. At this moment all constraints at level 4 are satisfied

and the algorithm terminates returning σ. o

We complete the discussion of the general conflict resolution algorithm by

bringing up the issue of fine-tuning the algorithm. In Example 3.1 when we

detected a conflict at level 4 there was only one conflicting pair of constraints,

which we resolved applying the CR rule. In general we may encounter more than

one conflict at a level. In such case, we decide which conflict to resolve. Similarly,

at some level k when refining the assignment σv
xk

we have the flexibility to select

the value v from the interval I(S, σ, k). The choice of both, a conflict in the CR

rule and a value for refining the assignment in the AR rule, defines the course of

3.2. CORRECTNESS AND TERMINATION 41

the run of the CRA algorithm and affects its performance. Certainly, yet another

parameter central for the efficiency of the algorithm is the order on variables.

Indeed, entire course of the algorithm can change when the order on variables

is shuffled. Consequently, the CRA algorithm can be parametrised by various

strategies for (i) selection of conflicting pairs: we can choose any conflicting pair

(at line: 6), (ii) refinement of assignments: we can choose any value v inside

the interval I(S, σ, k) (at line: 11) and (iii) selection of the order on variables

�. We consider these strategies in the Implementation Chapter of the thesis, in

Section 4.2.2, where we discuss the details of various implemented heuristics that

we used for fine-tuning the algorithm.

In the next section we prove correctness and termination of our algorithm.

3.2 Correctness and Termination

In the following we give a proof of correctness and termination of the conflict

resolution algorithm.

The following theorem proves that the algorithm is correct and terminating.

Theorem 3.2.1 The conflict resolution algorithm CRA always terminates. Given

an input set of constraints S0, if CRA outputs “unsatisfiable”, then S0 is unsat-

isfiable. If CRA outputs an assignment σ, then σ is a solution of S0.

The proof requires establishing a series of lemmas that we will state below.

Some of these lemmas establish properties of the CRA algorithm and will be

proved in the next chapter along with the other properties. In these lemmas we

always denote the input set of constraints by S0.

The following is a key lemma for our method, it was introduced earlier when

describing the algorithm and we will formulate it here for readers’ convenience.

Lemma 3.1.1 (Proved in Section 3.3) Let (S, σ) be a state and 1 ≤ k ≤ n.

Let σ satisfy all constraints in S at levels 0, . . . , k − 1 and violate at least one

constraint at level k. If I(S, σ, k) is empty, then the conflict resolution rule at level

k is applicable and the assignment refinement rule at this level is not applicable.

If I(S, σ, k) is non-empty, then the assignment refinement rule at the level k is

applicable and the conflict resolution rule at this level is not applicable.

42 CHAPTER 3. CONFLICT RESOLUTION

Lemma 3.2.2 (Proved in Section 3.3) At any step of the algorithm the set S is

equivalent to S0, that is, S and S0 have the same set of solutions.

The following lemma is obvious.

Lemma 3.2.3 Every constraint occurring in S at any step of the CRA algorithm

belongs to the set of constraints derived by the Fourier-Motzkin algorithm applied

to S0. o

Lemma 3.2.4 (Proved in Section 3.3) The assignment σ at lines 4 and 6 satisfies

S<k.

Lemma 3.2.5 (Proved in Section 3.3) Let (S, σ) contain a conflict (xk + p ≥
0,−xk + q ≥ 0) at line 6. Then we have (p+ q ≥ 0) 6∈ S.

This lemma means that the same constraint will never be added again to S. In

fact, the algorithm has a much stronger property formulated below in Lemma 3.3.1.

Let us now give the proof of Theorem 3.2.1.

Proof. We start with proving termination. By Lemma 3.2.5 the algorithm never

adds the same constraint twice. By Lemma 3.2.3 we can add only a finite number

of different constraints. Therefore, the condition on line 6 can hold only a finite

number of times. From the moment this condition becomes permanently false, k

will always increase by 1, so the outermost while-loop will terminate.

Suppose now that the algorithm returns “unsatisfiable”. If this happens at

line 1, then ⊥ ∈ S0, so S0 is unsatisfiable. Otherwise, this happens at line 9. Then

σ 6|= p+q ≥ 0 by Lemma 3.1.2. Since k = 0, then the constraint p+q ≥ 0 contains

no variables, so this constraint is trivial and unsatisfiable. By Lemma 3.2.2, this

constraint is implied by S0, hence S0 is unsatisfiable too.

It remains to consider the case when the algorithm returns an assignment σ.

This only can happen at the last line of the algorithm. At this line, k = n + 1.

By Lemma 3.2.4, σ satisfies S<n+1. Note that S<n+1 = S, so σ also satisfies S.

By Lemma 3.2.2, S is equivalent to S0, hence σ also satisfies S0. o

3.3 Properties of the CRA Algorithm

In this chapter we prove properties of the CRA algorithm. Some of the properties

have been introduced in the previous chapter as the auxiliary lemmas needed for

the proof of correctness and termination of the algorithm.

3.3. PROPERTIES OF THE CRA ALGORITHM 43

In the following lemmas we always denote the input set of constraints by S0.

We start by proving the key lemma for our algorithm.

Lemma 3.1.1 Let (S, σ) be a state and 1 ≤ k ≤ n. Let σ satisfy all constraints in

S at levels 0, . . . , k − 1 and violate at least one constraint at level k. If I(S, σ, k)

is empty, then the conflict resolution rule at the level k is applicable and the

assignment refinement rule at this level is not applicable. If I(S, σ, k) is non-

empty, then the assignment refinement rule at the level k is applicable and the

conflict resolution rule at this level is not applicable.

Proof. Suppose I(S, σ, k) is empty. By Lemma 3.1.3 (iii) S contains a k-conflict,

so the conflict resolution rule is applicable at the level k. Since I(S, σ, k) is empty,

by Lemma 3.1.3 (ii) condition (3) of the assignment refinement rule is violated,

so the assignment refinement rule at this level is not applicable.

Suppose that I(S, σ, k) is non-empty. Then by Lemma 3.1.3 (iii) S contains

no conflict, so the conflict resolution rule at the level k is not applicable. Take an

arbitrary value v ∈ I(S, σ, k). By Lemma 3.1.3 (ii) condition (3) of the assignment

refinement holds. Conditions (1) and (2) of this rule hold by the assumptions of

this lemma, so the assignment refinement rule is applicable. o

Lemma 3.2.2 At any step of the algorithm the set S is equivalent to S0, that is,

S and S0 have the same set of solutions.

Proof. Observe that line 7 in the Algorithm 1 is the only line that changes S. It

is easy to see that the application of this line does not change the set of solutions

of S since the constraint p+ q ≥ 0 added to S is implied by S. o

The following lemma is obvious.

Lemma 3.2.3 Every constraint occurring in S at any step of the CRA algorithm

belongs to the set of constraints derived by the Fourier-Motzkin algorithm applied

to S0. o

Lemma 3.2.4 The assignment σ at lines 4 and 6 satisfies S<k.

Proof. By induction on the number of iterations of the outermost while-loop.

Before the first iteration the property is obvious since k = 1 and ⊥ 6∈ S. So we

assume that the property holds before an iteration of the loop and show it holds

after this iteration. If σ |= S=k at line 5, then by σ |= S<k we have σ |= S<k+1. It

44 CHAPTER 3. CONFLICT RESOLUTION

remains to consider the case when σ 6|= S=k at line 5. In this case the algorithm

may enter the internal while-loop starting at line 6. It is easy to see that at the

exit of this loop the property is satisfied as well, since k only decreases in the

loop and the new constraint p + q ≥ 0 is at the level k. So it remains to show

that after line 11 we have σ |= S=k. But this is guaranteed by Lemma 3.1.3 (ii),

so we are done. o

Lemma 3.2.5 Let (S, σ) contain a conflict (xk + p ≥ 0,−xk + q ≥ 0) at line 6.

Then we have (p+ q ≥ 0) 6∈ S.

Proof. By Lemma 3.2.4 at line 6 in the Algorithm 1 we have σ |= S<k. But we

have σ 6|= (p + q ≥ 0), hence (p + q ≥ 0) 6∈ S<k. Since the level of (p + q ≥ 0) is

strictly less than k this implies (p+ q ≥ 0) 6∈ S. o

This lemma means that the same constraint will never be added again to

S. In fact, the algorithm has a much stronger property formulated below in

Lemma 3.3.1.

We say, that a CR-inference at a level k is redundant w.r.t. a state (S, σ) if

the conclusion of this inference is a consequence of constraints in S<k. Let us

prove a key property that distinguishes our algorithm from the Fourier-Motzkin

method.

Lemma 3.3.1 Every CR-inference performed by the CRA algorithm is non-

redundant.

Proof. Suppose that the algorithm performs a redundant inference adding p+q ≥
0 at line 7. Then by the definition of redundancy p + q ≥ 0 is implied by S<k.

By Lemma 3.2.4 we have σ |= S<k, then σ must also satisfy p + q ≥ 0. This

contradicts the definition of a conflict. o

To illustrate this lemma, let us come back to Example 3.1. Note that in this

example we have not applied the conflict resolution inference between constraints

(1) and (3). It is easy to see that the conclusion of this inference is implied by

constraints (4) and (5) at smaller levels, therefore this inference would not be

applied independently of the choices of assignments made by the algorithm.

The interested reader can find yet another example of not applying redundant

inferences in Appendix C.

3.4. EXTENSIONS OF THE CRA ALGORITHM 45

Let us, now, extend our notion of redundancy to constraints. We call a con-

straint c at a level k redundant if this constraint is implied by S<k+1 − {c}.
It is not hard to prove that constraints xk + p ≥ 0 such that −pσ = L(S, σ, k)

are “almost” non-redundant in the following sense.

Lemma 3.3.2 Consider the set S+ of all constraints at a level k having the

form xk + p ≥ 0. Consider its subset S ′ consisting of all constraints xk + p ≥ 0

such that −pσ = L(S, σ, k). Then S ′ is not implied by S<k ∪ (S+ − S ′). o

One can formulate a symmetric property for constraints −xk + q ≥ 0 such

that qσ = U(S, σ, k).

Although our algorithm does not perform redundant inferences, the system

may contain redundant constraints at a level k for two reasons: (i) it may contain

redundant constraints initially; and (ii) addition of new constraints to a level k

may make other constraints at this and higher levels redundant. Choosing at line

6 in the Algorithm 1 a k-conflict xk+p ≥ 0 and −xk+q ≥ 0 in S (i.e. pσ+qσ < 0),

such that −pσ = L(S, σ, k) and qσ = U(S, σ, k) does not, in general, guarantee,

that the constraints forming the conflict are non-redundant but it guarantees that

they are “almost” non-redundant in the sense of Lemma 3.3.2.

3.4 Extensions of the CRA Algorithm

In this section we briefly mention two extensions of the method: one is for working

with strict inequalities and the other for linear programming.

3.4.1 Extensions With {>,=}

Extension with {>}.

The modification of the algorithm for working with strict inequalities p > 0

is straightforward. First, when we consider the interval

I(S, σ, k) = [L(S, σ, k), U(S, σ, k)]

if any endpoint of this interval corresponds to a strict inequality, we use a semi-

open or an open interval instead. For example, if there is a strict inequality

46 CHAPTER 3. CONFLICT RESOLUTION

(xk + p > 0) ∈ S such that −pσ = L(S, σ, k) but no strict inequality (−xk + q >

0) ∈ S such that qσ = U(S, σ, k), then we use the semi-open interval

I(S, σ, k) = (L(S, σ, k), U(S, σ, k)].

Second, the result of the conflict resolution rule is a strict inequality if at least

one of the premises is strict.

For the CR rule, we also have a slight modification. Namely, if at least one of

the constraints is a strict inequality then the resolvent will be a strict inequality

too.

Extension with {=}.

Now we describe the extension of the algorithm for equalities. As mentioned

earlier, when introducing the notion of a level, we split inequalities into two

groups according to the sign of the coefficient of the highest variable. In case,

when equalities are added to the system we add a third group.

Equalities at a level are treated as an explicit assignment to the corresponding

highest variable. In the following we show how we deal with equalities.

Let (S, σ) be a state, and k > 0. Suppose, at a level k we have equalities.

Suppose, all the constraints in S<k are satisfied by the current assignment σ.

Now, we try to adjust the assignment at the level k. First, we need to make

sure there are no k-conflicts. In case of equalities, conflict may occur between:

(i) a pair of equalities, (ii) inequality and equality, and (iii) a pair of inequalities.

Generally, presence of equalities at a level is very useful, as they serve as

explicit assignments to the corresponding highest variables and we can always

update their value with better precision.

However, if we have several equalities at a level they may produce conflicts

between each-other and with other constraints at that level as well. We extend

the notion of the k-conflict for equalities in a natural way as follows:

A pair of constraints (xk + p = 0, (−)xk + q � 0) is a k-conflict in a state (S, σ)

if it satisfies the conditions: (i) both constraints (xk + p = 0 and (−)xk + q � 0)

are linear constraints in S and (ii) (−)pσ + qσ � 0. Here � ∈ {≥, >,=, 6=}.

In case of a conflict (xk + p = 0, (−)xk + q = 0), we resolve the conflicting by

applying an extension of the CR rule for equalities:

3.4. EXTENSIONS OF THE CRA ALGORITHM 47

The conflict resolution rule (CR) for {=} (at level k):

(S, σ)⇒ (S ∪ {(−)p+ q = 0}/{(−)xk + q = 0}, σ),

where (S, σ) contains a k-conflict (xk + p = 0, (−)xk + q = 0), and � ∈ {≥, >,=}.
It is easy to show, that the modified system is equivalent to S. Indeed, it

is enough to show that the sets {xk + p = 0, (−)xk � q = 0} and {xk + p =

0, (−)p+ q � 0} are equivalent.

If equalities at a level k do not induce any conflicts, we check for conflicts

between inequalities. For this, we calculate the interval I(S, σ, k). If it is empty,

there is a conflict at level k and we resolve this conflict the same way as is done in

the original CRA algorithm. If the interval is non-empty, we calculate the value

v = pσ for the variable xk.

Since equalities do not induce k-conflict here, we are guaranteed that v ∈
I(S, σ, k) and we can update the assignment σv

x.

3.4.2 Conflict Resolution and Linear Programming

To use our algorithm for linear programming, we can use the following trick.

Suppose, for example, that we want to find a maximum of a linear function

p. To this end we assume that the constraints do not contain the variable x1

and add the equality p − x1 = 0. After that we use our algorithm with the

only modification that we always select the maximal possible value for x1 in the

assignment refinement rule. Special care should be taken when we have no a

priory upper bound on x1.

3.4.3 Conflict Resolution and the Fourier-Motzkin Method

In this section we compare the conflict resolution algorithm with the Fourier-

Motzkin variable elimination method. This comparison is of particular interest

since the use of the conflict resolution rule in the CRA algorithm makes our

method similar to the Fourier-Motzkin variable elimination method.

As mentioned in Section 2.4.1 the main disadvantages of the Fourier-Motzkin

elimination method that makes it perform poorly in practice are the following: (i)

the Fourier-Motzkin method generates a large amount of redundant constraints,

which are hard to check for redundancy, consequently a problem becomes large

48 CHAPTER 3. CONFLICT RESOLUTION

(in general exponential) and hard to deal with very quickly, (ii) even if there

is a trivial solution of a problem, the method of Fourier-Motzkin still needs to

perform all possible inferences in order to derive the solution.

Our method alleviates both of these problems. It does not derive redundant

constraints (Lemma 3.3.1) and stops immediately if a solution is found (guaran-

teed by the while-loop in the Algorithm 1).

We illustrated the comparison of the Fourier-Motzkin method and the conflict

resolution method on a randomly generated problem:

x4 − 2x3 + x1 + 5 ≥ 0 (1)

x4 + 2x3 + x2 + 3 ≥ 0 (2)

−x4 − x3 − 3x2 − 3x1 + 1 ≥ 0 (3)

−x4 + 2x3 + 2x2 + x1 + 6 ≥ 0 (4)

x3 + 3x1 − 1 ≥ 0 (5)

−x3 + x2 − 2x1 + 5 ≥ 0 (6)

This problem is satisfiable and consists of 4 variables and 6 constraints. In Ap-

pendix A and Appendix B we depict the running process of the Fourier-Motzkin

method and the conflict resolution method step-by-step. We consider this exam-

ple very interesting and easy to follow. Here we present only the results of the

comparison and refer interested readers to Appendixes A, B for more details.

As one can see, the comparison gives rather striking result. The Fourier-

Motzkin method derives 22 constraints before it constructs a solution. While the

conflict resolution method needs to derive one constraint only to construct the

same solution.

Let us now show that the Fourier-Motzkin algorithm cannot polynomially

simulate our algorithm in a very strong sense. This example is taken from [44]. It

contains all inequalities of the form ±xk±xl±xm ≥ 0, where n ≥ k > l > m ≥ 1.

Evidently, the size of the system is O(n3) and there exists only a single solution

assigning 0 to all variables. It is shown in [44] that the Fourier-Motzkin method

generates exponentially many (in n) inequalities for this example. Let σ be an

arbitrary assignment. Our method will start generating conflicts from level 3

containing 8 inequalities until it updates σ so that x1σ = x2σ = x3σ = 0. After

that it will proceed to level 4, where the interval I(S, σ, 4) will consist of a single

point 0. The assignment refinement will set x4σ to 0 and no conflicts will be

generated. The same will happen with all levels greater than 4, so the algorithm

3.4. EXTENSIONS OF THE CRA ALGORITHM 49

will terminate in a linear number of steps. Essentially, apart from the initial work

on level 3, the conflict resolution algorithm will only evaluate every inequality once

and so work in time linear in the size of the system, that is O(n3). Note that

this running time does not depend on either the choice of the initial assignment

or the choice of values in the assignment refinement inferences.

3.4.4 Conflict Resolution and Satisfiability Modulo The-

ories

Satisfiability Modulo Theories (SMT) [3] is a new and rapidly developing branch

of automated reasoning dedicated to reasoning in first-order logic with various

theories. The SMT problem concerns deciding satisfiability of a quantifier-free

first-order formula with predicates over certain background theories and their

combinations.

Examples of typical theories involved in SMT problems are linear arithmetic

with integer and real variables, theory of arrays, equality and uninterpreted func-

tions, theory of bit vectors and others.

Most of the current SMT solvers follow a so-called DPLL(T) approach [18].

This approach provides a framework for combining a general propositional solver

(SAT solver) with so-called theory solvers.

The SAT solver deals with the propositional structure of formula and searches

for a propositional model for it. Once a model is found the theory solvers check if

it is consistent with the theories involved. Checking consistency implies checking

satisfiability of sets of theory predicates.

In order to integrate well in DPLL(T) framework, the theory solvers are also

required to interact in the process of constructing propositional models. For

such interaction to work in the DPLL(T) system, the theory solvers must have

a number of necessary properties: incrementality and the ability to generate

explanations for unsatisfiability. These properties, along with the explanation of

their purpose, are described in detail in [18].

A considerable number of SMT problems arising from real-life applications

involve theories of linear real and integer arithmetic. For solving such instances

an incremental version of a linear arithmetic solver is plugged in, as a theory

solver, to the DPLL(T) system. This linear-arithmetic solver is responsible for

deciding satisfiability of the sets of linear arithmetic constraints, it is incremental

50 CHAPTER 3. CONFLICT RESOLUTION

and can generate explanations to the theory inconsistencies.

As we mentioned in the introductory chapter, our research was motivated by

the problems of Satisfiability Modulo theories with theories of linear real and in-

teger arithmetic. The work on searching for new methods for integrating a linear

arithmetic solver into SMT solving diverted us to searching for new ways of oper-

ating with systems of linear constraints. As a result of this research we developed

the conflict resolution algorithm, which solves systems of linear constraints, and

along with this, has the features important for SMT integration.

Indeed, the CRA algorithm (and our implementation) can easily be made

incremental: after adding/removing constraints we can always continue with the

current assignment, moreover the CRA never performs redundant inferences and

in particular, never performs the same inference twice (unless the conclusion was

removed). Explanations can be generated from the proofs of unsatisfiability which

are easily extractable from runs of the CRA algorithm.

As future work we are keen to integrate our algorithm with SMT solving.

Chapter 4

Implementation

In order to evaluate the efficiency of the conflict resolution method we imple-

mented a solver based on this method. This chapter describes the system design

and details of the major components of the implementation.

The implementation of the solver was done in the C++ language, within the

framework designed for, and used in, the automated reasoning system Vampire,

developed in the department of Computer science at the University of Manchester

by Prof. Andrei Voronkov, that regularly wins annual World Cups in automated

theorem proving, since 1999.

In our implementation we used the GMP library for arbitrary precision arith-

metic 1. Thus, all computations with rational numbers are done with arbitrary

precision.

Input to the solver is in a standard SMT format used in the SMT-LIB bench-

marks 2.

In the following we first describe the basic data structure utilised in our solver

and then discuss details of our implementation.

4.1 Data Structure

The first component evoked by the solver is a parser, it makes the necessary trans-

formation of the input data and passes it through, to a Sort Input Constraints

block, to be sorted and prepared for the run of the CRA algorithm. The schema

1http://gmplib.org/
2C. Barrett, S. Ranise, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories Library

(SMT-LIB). www.SMT-LIB.org, 2008.

51

52 CHAPTER 4. IMPLEMENTATION

Parser

Sort Input Constraints

Input Constraints

Input SMT Format

CRA

General Schema

Figure 4.1: Implementation Schema

of this process is shown in Figure 4.1.

4.1.1 Parser

An input to the parser is a system of linear rational constraints written in the

SMT format, that is a conjunction of the constraints in the system. The parsing

process consists of generating the constraints of the system and creating a data

structure essentially used in further processing of constraints.

• Constraint

All constraints are located in one chunk of memory of sufficient size. Each

constraint is represented by a vector of coefficients. The structure of con-

straints is defined by a pointer to a corresponding vector of coefficients, a

type of the constraint (≥, >,=) and a counter of the variables indicating

the size of the vector. Depending on the nature of the problem, it is pos-

sible to chose between two different representations of constraints. One is

a vector of fixed size equal to the number of variables in the system, and

4.1. DATA STRUCTURE 53

the other is a vector containing non-zero coefficients only. In the first case

it is enough to mere store coefficient values in the vector, so that each co-

efficient is stored under the index of its variable. In this case the structure

of constraints does not include a counter of variables, since all constraints

have the same number of variables. In the second case a coefficient is stored

as a pair of an index of the corresponding variable and a numeric value of

the coefficient. In the following we will call the data structure description

of constraints simply constraints

struct COEFF {
s i z e t IND ;

mpq class VALUE;

}

Not surprisingly, on randomly generated problems the first implementation

is slightly better in both time and space while the second one can be much

faster (and consume much less space) on non-random problems, where vec-

tors are normally sparse.

The variable counter is used when processing the initial constraints only

and will be discussed later in this chapter.

• Input Constraints

As we said, each constraint is allocated to a chunk of memory somewhere in

the whole memory. Input constraints are defined at parse time of the solver.

To access them we use a simple data structure, called Input Constraints.

This data structure represents a stack of pointers to the input constraints,

see Figure 4.2. The use of a stack here was motivated by the observation:

input constraints are acquired at parse time, without knowing their number

in advance, consequently gathering them in one data structure is easier

without controlling the number of constraints, which we realised by simply

pushing to a stack.

• Trace Variables

While processing the input constraints we often need to quickly find all

the constraints containing some variable. To handle this problem a data

structure called trace variables is introduced. It links each variable to a set

of input constraints containing this variable (Figure 4.2.).

54 CHAPTER 4. IMPLEMENTATION

Constraints*

Parser

Variable Trace Input

Constraints

Stack of

Variables

Stacks of

Indices

Stack of

Constraints*

...

Figure 4.2: Data Structure Design

After parsing is done the solver calls a subroutine responsible for sorting and

processing the input constraints. Before describing this part of the implementa-

tion we need to present another module of the system, called Levels.

4.1.2 Levels

The notion of a level was defined earlier, in Chapter 3. Each constraint is at

some level, depending on the highest variable occurring in it. The number of

levels corresponds to the number of variables in the system. Let k > 0. Each

constraint at level k is of one of the types: (i) xk + p � 0, (ii) −xk + q � 0 with

� ∈ {≥, >}, and (iii) xk + r = 0. We group constraints of the same type, so that

on each level we have three groups of constraints.

During the run-time of the conflict resolution algorithm we iteratively adjust

the assignment to the variables. This demands keeping updated the bounds on

the values of variables. In many cases the bounds on a variable remain unchanged.

This makes it reasonable to store the current bound values for each variable and

update them only when needed. Thus we characterise a level with a structure

4.1. DATA STRUCTURE 55

comprised of three groups of constraints and two bounds for the corresponding

variable. If the interval is half-bounded the bound of the corresponding end is

set to ’unbounded’.

struct BLRI {
Stack <Constra int∗> LI ; // Stack o f i n e q u a l i t i e s o f type (i)

Stack <Constra int∗> RI ; // Stack o f i n e q u a l i t i e s o f type (i i)

Stack <Constra int∗> MI; // Stack o f equa t ions (i i i)

Bound BLI ; // Bound fo r LI

Bound BRI ; // Bound fo r RI

}

We store the values of bounds together with the indices of the constraint

giving these bounds. See Figure 4.3. This information is kept and used for

effective choice of conflicts when applying the Conflict Resolution (CR) rule (see

Section 3.1).

Indeed, the bounds of the interval are used either for updating an assignment

of the corresponding variable (AR rule in Section 3.1), or for concluding that the

level is conflicting. If for some positive integer k at level k we have more than one

k-conflict, choice of a conflict can be realised with various heuristics. One of the

heuristics we studied selects a conflict with maximal overlap, i.e. selects the one

defining the bounds on the variable xk in the interval I(S, σ, k) (see Section 3.1).

Within such choice it becomes essential to keep together with bounds the indices

of the constraints defining them.

For the implementation of some other heuristics for choosing a conflicting

pair of constraints in the CR rule, instead of two bounds, it is essential to keep

bounds exposed on the variable by all the constraints. We keep these bounds in

two sorted stacks. Further details of these heuristics and their implementation

are given later in this chapter.

Now we describe how the processing of input constraints is implemented.

4.1.3 Order

The last, and one of the most important, design component of our algorithm is

Order. This component is responsible for ordering the variables.

In order to invoke the conflict resolution algorithm we first initialise it, i.e.

populate levels with the input constraints. In order to populate the levels, we

should have an order on variables. Thus, order of variables plays a crucial role for

the efficiency of the conflict resolution algorithm: different choices of the order

define different initialisation of the conflict resolution algorithm and substantially

56 CHAPTER 4. IMPLEMENTATION

Constraints*

Parser

Variable Trace Input

Constraints

Stack of

Variables

Stacks of

Indices

Stack of

Constraints*

Level

Array <BLRI>

Bound

LI

Bound

RI MI

...

Figure 4.3: Data Structure Design with Levels

4.1. DATA STRUCTURE 57

affect the course of the algorithm. This means, for each instance of the input data

some variable orders might be more efficient than others and we are interested in

obtaining the most effective one.

Also, in order to incorporate a linear arithmetic solver in various applications

it is essential and desirable that order on variables has a flexibility to be defined

(i) at run-time and (ii) dynamically. The conflict resolution algorithm allows such

flexibility.

(i) Let us first see how we can set variable order at run-time. For this we

first define order partially (on some of the variables) and successively extend

it to all variables. This is possible due to an important feature of the conflict

resolution algorithm: CRA can be invoked on subsets of constraints as well. In

such case we introduce order only on the variables present in the subset. Based

on such a partial order we populate levels partially, namely, populate only those

corresponding to the variables present in the current order. We say that CRA is

initialised partially if an order on the variables is set, and levels are populated,

partially. Otherwise, initialisation of CRA is complete.

We explain the partial initialisation of CRA in more detail below: say for

some positive integer k we have selected variables x1, . . . , xk, let Sk ⊂ S be a

subset of constraints containing these variables only. Without loss of generality

we can assume order � to be defined partially on these variables only, as follows:

xk �, . . . ,� x1. Then, we partially populate levels from 1 to k with constraints

from Sk and invoke CRA being partially initialised.

If Sk turns out to be unsatisfiable, the entire system S is also unsatisfi-

able. Otherwise, we can extend the order on one more variable by introducing

a new highest variable, say xk+1, and populate level k + 1. Constraints popu-

lating level k + 1 will be those constraints in S which contain only the variables

x1, . . . , xk, xk+1, thus have the highest variable xk+1. This allows defining the

order on variables at run-time of the CRA algorithm using partial orders on

variables.

(ii) Note that the CRA algorithm does not require fixing an initial order

on variables. When processing to level k it allows dynamically changing the

ordering if the following property of the current ordering is maintained, namely:

all variables exceeding xk in the current ordering remain exceeding xk in the new

ordering, and all variables preceding xk in the ordering remain preceding xk in

the ordering. This allows dynamically changing the ordering during the run-time.

58 CHAPTER 4. IMPLEMENTATION

Possible advantages offered by this flexibility are subject to further studies.

However, one obvious benefit of such a feature of the algorithm is for SMT solving,

where DPLL-based techniques incorporate the idea of dynamic changes of variable

orderings.

Based on the above observations we implemented our algorithm so that it

allows defining the order on variables both statically and dynamically. Note,

that the order can be set statically at different stages: before initialisation of

the CRA algorithm, during initialisation, and at run-time (partial initialisation

of CRA). Run-time setting of the order is also used for dynamic ordering. In all

cases we need to populate levels at least partially. The next section shows how

we order the variables at run-time, process constraints and populate levels.

4.1.4 Processing Input Constraints

In this section we discuss a part of the implementation responsible processing

constraints and populating the levels. There are two things we need to do to

populate levels:

1. Sort the coefficients in each constraint according the order on variables,

2. Process (assign) each constraint the level it belongs to.

In order to process constraints and populate levels, we need to have at least

a partial order on the variables. We implemented a run-time setting of variable

order which can also be used for ordering variables before and during a complete

initialisation of CRA. The process is following.

We populate levels one-by-one starting from the lowest level and sort the

input constraints right before allocating them at the corresponding level. For

this, we use the variable counter included in the implementation of a constraint,

see Section 4.1.1. Once a constraint is created its variable counter is set to the

number of variables with non-zero coefficients in the constraint. When processing

the constraints we start with the lowest variable, to populate the lowest level

first, and walk through our trace variables data structure, see Section 4.1.1. We

decrease the value of the variable counter in each constraint containing the lowest

variable. We proceed the same way with each variable. As soon as a counter in a

constraint becomes 0 for some variable xk, this means the level of this constraint

is k. At this point we sort variables in this constraint and push it to level k,

4.2. IMPLEMENTATION 59

.

.

.

x1
x2

xn

...

Constraints*

Variable Trace

x2 xnx1

x1

...

x2

Process to Level n

Figure 4.4: Sorting Input Constraints

thus populating all levels consecutively starting from the lowest one. Numeric

constraints are processed in place; If a numeric constraint is true it is simply

removed from the system, otherwise the system is unsatisfiable and the solver

terminates with the output UNSATISFIABLE. Sorting and processing of the

initial constraints is illustrated on the Figure 4.4.

In our experiments we studied two strategies for selecting the order of vari-

ables. The first strategy defines order randomly and statically, before invoking

the CRA algorithm on the entire problem (before complete initialisation of CRA),

the second, also defines the order statically and before invoking the CRA algo-

rithm on the entire problem, but analyse the input data and sets the order during

the complete initialisation of the CRA. This strategy is discussed in more detailed

later in Section 4.2.3.

4.2 Implementation

As a part of the research presented, we implemented a solver based on the con-

flict resolution method. The implementation process spanned three phases. The

first phase, Phase I, embodied a straightforward, early stage, implementation of

the solver. It aimed at constructing an effective framework, that would allow

easy expansion of the implementation on demand for further refinement of the

algorithm. This phase of the implementation allowed the conducting of the first

experiments, and yielded the first estimates of the performance of our algorithm.

60 CHAPTER 4. IMPLEMENTATION

The second phase, Phase II, was a pilot implementation of the solver. It enhanced

the initial implementation from Phase I with various heuristics. It provided an

empirical environment for the development and study of different heuristics for

fine-tuning the algorithm and improving its efficiency. The third phase, Phase

III, included the implementation of simple pre-processing in combination with

fine-tuned heuristics.

Next, we discuss the implementations of each phase in more detail.

4.2.1 Phase I - Early Stage Implementation

Our implementation follows Algorithm 1. The algorithm allows fine-tuning with

the following key parameters reflecting the choice of the strategies for: (i) selecting

conflicts, (ii) selecting values in the assignment refinement rule and (iii) the order

of variables.

The design of the implementation addresses the issue of tuning these parame-

ters by including separate modules responsible for the selection in each case. The

main algorithm works independently of these modules, but integrates them into

the implementation.

The first phase of the implementation incorporated the heuristics used when

describing the conflict resolution algorithm in the previous chapter. For readers’

convenience, we recall the chosen heuristics here:

• select conflicts with maximal overlap, i.e. a pair of constraints defining the

bounds of the interval for the value of the corresponding variable;

• update the assignment with the rational number closest to the mid point

of the interval with the least power of 2 in the denominator;

• set the order of variables at random.

In our implementation we deal with linear constraints over the rationals. For

handling arbitrary-precision rational numbers we use the GNU Multiple Precision

Arithmetic Library (GMP).

The implementation works with linear constraints of the form q � 0, for � ∈
{≥, >,=}.

4.2. IMPLEMENTATION 61

4.2.2 Phase II - Implementation with Various Heuristics

In the second phase of the implementation we enhanced our solver with several

heuristics for choosing the key parameters introduced earlier in this chapter. The

following presents our implemented heuristics.

4.2.2.1 Strategies for Selecting Conflicts

The issue of selecting a conflicting pair of constraints arises naturally when more

than one conflicting pair occurs at a level. We implemented a number of different

strategies.

1. Algebraic approach. One of the strategies we tried is based on maximal

overlaps, defined as follows. At line 7 of Algorithm 1 we select a k-conflict

xk + p ≥ 0 and −xk + q ≥ 0 in S (i.e. pσ + qσ < 0), such that −pσ =

L(S, σ, k) and qσ = U(S, σ, k). To explain the rationale behind this strategy

we refer to Lemma 3.3.2. This lemma defines a notion of “almost” non-

redundant constraints. Based on it we conclude that a choice of such a

conflict guarantees that the constraints xk + p ≥ 0 and −xk + q ≥ 0 are

“almost” non-redundant in the sense of Lemma 3.3.2.

2. Geometric approach. Another strategy comes from the geometrical ideas

behind the relaxation method described in Section 2.4.4. As we know, an

assignment σ represents a point M in n-dimensional space. The relaxation

method iteratively changes the assignment, trying to get inside the poly-

hedron defined by the constraints in the system S. A new assignment is

chosen by reflecting M over a hyperplane that (i) is defined by a constraint

in S violated by M , i.e. M is outside the feasible area defined by a hy-

perplane of one of the facets of the polyhedron, and (ii) is at a maximal

distance from M . A constraint defining such a hyperplane is called a most

violated constraint. This method has a substantial drawback – each itera-

tion leads to the solving of a new problem. However, the idea of reflection

over the hyperplane of the most violated constraint is itself geometrically

attractive. We integrated this idea into our algorithm as a conflict selection

criterion: choose a conflicting pair of constraints with the most violated re-

solvent. In contrast to the relaxation method, our algorithm with the same

conflict selection criterion does not require solving a new problem after each

iteration.

62 CHAPTER 4. IMPLEMENTATION

3. Random choice approach. Yet another option we implemented is drawing

a conflict with equal probability, which is a natural option and a rather

essential one in experiments.

4. Take the first.

The last strategy we tried simply takes the first detected conflict. It obvi-

ously saves the calculation time needed for evaluating all conflicts at a level,

but undermines some efficiency related qualities of the conflict resolution

algorithm.

4.2.2.2 Strategies for Selecting Assignment Values

We tried several strategies for selecting values in the assignment refinement rule,

as listed bellow:

1. Middle point. Select the mid point if the interval I(S, σ, k) (line 11).

2. Maximal (minimal) point. Always select the maximal (or always the mini-

mal) endpoint of the interval I(S, σ, k) (line 11).

3. Random choice. Another strategy we tried is a random choice of the as-

signment value.

4. Interleaved points.

Select alternately the maximal and the minimal endpoints of the interval

I(S, σ, k) each time the interval is updated.

Our experiments show that using these strategies frequently results in a

rapid growth of the sizes of numerators and denominators of rational values

in the assignment. In order to avoid this problem we used the following

strategy for selecting assignment values in the assignment refinement rule.

5. Closest binary or middle point.

First, if the endpoints of I(S, σ, k) coincide, then we select one of them.

Otherwise, we select a rational number n/m in I(S, σ, k) such that (i) m

is the least power of 2 among denominators of all rationals in I(S, σ, k),

and (ii) n is such that, n/m is the closest rational to the middle point of

the interval, among all rationals satisfying (i). It is possible to show that a

rational satisfying both (i) and (ii) always exists. In particular, if I(S, σ, k)

4.2. IMPLEMENTATION 63

contains integer points, then our strategy will select an integer in I(S, σ, k)

closest to the middle point. As our experiments show, such choice of values

considerably simplifies the assignment values and constraint evaluation. See

more details of the experiment results in Chapter 5.

6. Other strategies.

Other strategies may also appear useful. For example one can choose the

conflict leading to the resolvent with the least possible level.

Note, heuristics for setting the order on the variables have been studied at

the third phase of implementation and will be discussed in the next paragraph.

For the implementation at the second phase we used the randomly set order on

the variables.

4.2.2.3 Other Heuristics

There are also other heuristics that we considered interesting to study. One of

them concerns adding resolvents to the current system during the run-time of

the conflict resolution algorithm. Processing a resolvent in the CRA algorithm

may result in a new conflict instantiated by this resolvent at the level it belongs

to. Adding all resolvents obtained by resolving such consecutive conflicts may

result in a quick expansion of the system and adding only the final resolvent

(which instantiates no conflict) may improve the performance of the algorithm.

We studied the following heuristics:

1. Adding resolvents

– Add all resolvents derived during the run-time of the algorithm.

– Do not add a resolvent if it instantiates a new conflict at the level it

belongs to. Keep resolving conflicts without adding this resolvent and

add only the final resolvent, that is, when it instantiates no conflict.

This process is associated with ’jumping’ to the lowest level (the first

non-conflicting level) and adding the last resolvent at this level only.

Two other heuristics concern the issues of (i) dealing with half-bounded inter-

vals in the AR rule and (ii) reducing constraints by the greatest common divisor

of their coefficients. In experiments half-bounded intervals occur very frequently

64 CHAPTER 4. IMPLEMENTATION

in the assignment refinement rule when assigning a value to a variable. In such

case we introduce an artificial bound to form the interval. If the CRA keeps

returning to a level with a half-bounded interval, it may become essential to in-

crease the size of the interval repeatedly. We tried two heuristics for dealing with

half-bounded intervals:

2. Dealing with half-bounded intervals in the AR rule

– Increase the length of the interval exponentially, by a power of 2 each

time, when returning to the same half-bounding level.

– Keep the length of the interval constant, equal to 10, on every return

to the same half-bounding level.

The last heuristic implemented responds to an important problem of decreasing

size of numerators and denominators during the calculations. Namely, if all co-

efficients of some constraint have the greatest common divisor different from 1

then the constraint can be reduced by dividing each of the coefficients by their

GCD. This simple idea evolves into the following heuristic:

3. Reducing constraints by GCD

– Always reduce each constraint by the GCD of its coefficients;

– Never reduce any constraint by the GCD.

4.2.3 Phase III - Simple Preprocessing with Highly-Tuned

Heuristics

The third phase of the implementation included experiments with the dynamic

ordering of the variables and simple preprocessing of the input data. We came up

with the idea of simple preprocessing when observing real-life benchmarks during

our experiments. These benchmarks contained several hundreds of variables and

constraints. On many occasions our solver continuously passed a considerable

number of levels, which expanded the system, without any contribution to the

solving process. To avoid such long runs we came up with preprocessing ideas

that are very natural and simple. In the following we first present our heuristic for

the dynamic variable ordering, then describe the above mentioned circumstances

and discuss the details of the preprocessing we used.

4.2. IMPLEMENTATION 65

4.2.3.1 Strategies for Setting the Order

The last parameter of the CRA algorithm that we consider here is the order on

variables. In the current implementation we tried two different approaches for

setting the order on variables. The first sets the order on all variables randomly,

statically, before initialising the CRA algorithm and invoking it on the entire

problem. The second, also sets the order statically before invoking the CRA al-

gorithm for the entire problem, but while initialising CRA and takes into account

the structure of the input set of constraints.

We analyse the input data and define the order on variables as follows. We

characterise each variable xi with a pair (li, ti), where li is the length of the short-

est constraint containing the variable xi and ti is the number of such constraints.

We set ordering xi � xj for some 0 ≥ i, j ≥ n if (i) lj < li or (ii) li = lj and

ti < tj.

Thus strategies for setting the order on variables are:

– set the order at random;

– set the order based on the analysis of the input data;

We believe that a careful selection of the order on variables based on the properties

of the input problem may have a considerable impact on the performance of

the implementation and studying order selection is one of the future research

directions.

4.2.3.2 Preprocessing to Avoid Half-Bounding Levels

In this section we define a notion of a half-bounding level and describe our pre-

processing idea to avoid such levels. Let us note, that if all occurrences of some

variable xk in the system are of the same sign, then xk will never be eliminated

with the CR rule. Moreover, if a derived constraint contains the variable xk, the

coefficient of xk in this constraint will be of the same sign too. We will call such

a level k – half-bounding level. If a level k is half-bounding it may expand during

the run-time of the CRA algorithm but will never give a bounded interval for xk.

In such instances the conflict resolution algorithm keeps running along half-

bounding levels without obtaining both bounds for the variables during the whole

run-time.

66 CHAPTER 4. IMPLEMENTATION

To avoid such situation we can remove from the system all constraints con-

taining xk. Solve the remaining system of constraints. If it has no solution, then

the original system has no solution either. Otherwise, we assign a value to the

variable xk based on the values assigned to the remaining variables. Since the

interval for xk is half-bounded such an assignment always exists.

Removing all such variables from the system reduces both the number of

variables in the system, and the number of initial constraints, as well as those

derived at run-time.

4.2.3.3 Preprocessing to Avoid Almost Half-Bounding Levels

More preprocessing ideas came with the observation of what we called almost

half-bounding levels. The difference between an almost half-bounding level and

a half-bounding level is in one constraint. This constraint is a so called unit

constraint, containing one variable only (the highest variable). Say at level k this

unit constraint is either (i) an equality xk = a (where a ∈ Q), or (ii) an inequality

that has the coefficient of xk of opposite sign to the sign of the coefficients xk in

the remaining constraints.

If all occurrences of the variable xk in the system have the same sign and case

(i) holds, the unit constraint xk = a explicitly assigns a value to the variable xk.

Therefore, it becomes useless to keep xk in the other constraints. We can directly

eliminate xk from the system by simply substituting all occurrences of xk by a.

Obviously, this brings us to an equivalent system with one variable less. If the

new system has a solution, the solution of the initial system is easily obtained

by adding the assignment of the value a for the variable xk. Note that we can

eliminate from the system all such variables one after another, thus reducing the

dimension of the system.

Case (ii) also allows elimination of the variable xk from the system. The only

condition we ask for is, that all occurrences of xk in the system are of the same

sign, opposite to the one of the unit constraint. In such a case, we can eliminate

the variable xk from the system by simply summing up the unit constraint with

the rest of the constraints containing xk. Obviously, this operation also results

in an equivalent system of constraints, solving which we obtain a solution to

the initial one. If the derived system has no solutions, the initial system has no

solutions either. Otherwise, we build a solution to the initial system by extending

the solution of the derived system on the variable xk. The value for the variable

4.2. IMPLEMENTATION 67

xk is obtained from the interval defined by the initial constraints containing xk,

by simply substituting the values of the other variables. Similarly to the previous

cases, it is possible to eliminate all such variables one after another, reducing the

dimension of the system this way.

Elimination of both half-bounding and almost half-bounding levels from the

initial system reducing the dimension of the system and can considerably sim-

plify the initial problem. Thus, the conflict resolution algorithm appears to be

quite sensitive to such preprocessing, this is also confirmed by the experiments in

Section 5.3.3.

68 CHAPTER 4. IMPLEMENTATION

Chapter 5

Experiments

In this chapter we present results of our experimental evaluation of the conflict

resolution method. As mentioned in the implementation chapter, there were three

phases of the software implementation:

(i) Phase I – straightforward (early stage) implementation,

(ii) Phase II – pilot implementation (enhanced with various heuristics),

(iii) Phase III – implementation with simple preprocessing and fine-tuned heuris-

tics.

Series of experiments were conducted at each implementation phase.

This chapter describes the benchmarks used in our experiments along with the

tools used for benchmark generation, and outlines the results of the experiments

in three sections spanning each of the implementation phases.

The algorithm was evaluated against different types of input data and com-

pared to some other well-known approaches, namely the Fourier-Motzkin elimina-

tion method, a modification of the Fourier-Motzkin elimination method, and the

simplex method. We evaluated our solver on two types of benchmarks: randomly

generated problems and benchmarks extracted from real-life problems.

The first type of benchmarks is comprised of randomly generated systems of

linear constraints, which we generated using GoRRiLA – a tool for the generation

of random benchmarks [31].

The second type of benchmarks consists of real-life benchmarks, namely sys-

tems of linear constraints extracted from the SMT-LIB – a library of real-life

benchmarks for Satisfiability Modulo Theories [2].

69

70 CHAPTER 5. EXPERIMENTS

In general, real-life problems differ considerably from randomly generated

ones. They differ not only in size but also in structure. First, the number of

variables and constraints is considerably higher in real-life problems; most of

the problems contain several hundreds of variables and constraints. On the other

hand real-life problems deal with sparse matrices and relatively simple coefficients.

We used three sets of real-life benchmarks: Two of them were generated using

the Hard Reality Tool (HRT) [31]. The difference between these two benchmarks

is in their difficulty levels.

Both of these benchmarks, as well as the randomly generated benchmarks,

are available on the web 1.

The third set was provided by Leonardo de Moura for experimental purposes,

and is also extracted from the SMT-LIB real-life benchmarks. These benchmarks

were also used in other works (e.g. [36]) and are available on the web 2.

In our experiments we compared the conflict resolution algorithm with var-

ious implementations of the Fourier-Motzkin elimination method, including the

Chernikov modification, and the simplex method. Some of these algorithms were

reimplemented by us in the same framework as the conflict resolution algorithm,

to make the results more comparative. To evaluate the performance of our im-

plementation some algorithms were taken from the state of the art SMT solvers:

CVC3 [4], Barcelogic [40] and Z3 [11].

In the following sub-sections we describe the benchmarks we used and give

results of our experiments for each phase of implementation.

5.1 Benchmarks with Randomly Generated Prob-

lems

For our experiments with random problems we used random benchmarks with

integer coefficients generated using the GoRRiLA tool. GoRRiLA was developed

at the Department of Computer Science at the University of Manchester by K.

Korovin and A. Voronkov. It is a generator of random problems for propositional

logic and for systems of linear constraints over the rational or integer numbers

(in SMT format).

1http://www.cs.man.ac.uk/~tsiskarn/CRA_bench
2http://www-verimag.imag.fr/~monniaux/simplexe/

5.2. BENCHMARKS EXTRACTED FROM SMT-LIB WITH HARD REALITY TOOL71

GoRRiLA permits generating the bunches of random problems with the num-

ber of variables increasing within a specified range. Characteristics of random

problems generated by GoRRiLA depend on several parameters listed below:

• range for the number of variables in the system;

• number of problems generated with the same number of variables;

• range for the values of the coefficients in a constraint;

• range for the number of variables with non-zero coefficients in a constraint;

• ranges for the number of constraints of each type (equalities, disaqualities,

non-strict inequalities, strict inequalities);

Note, that (i) the number of constraints in a system is the total of the numbers

of constraints of each type, (ii) ranges for the number of constraints of each type

can be specified proportional to the number of variables.

The randomness of size and structure of the generated problems is provided

by selecting randomly values of the following parameters:

• The values of non-zero coefficients are randomly selected from the specified

range (excluding 0).

• The number of variables with non-zero coefficients in a constraint is ran-

domly selected from the specified range.

• The numbers of constraints of each type are randomly selected from the

specified range.

Our random generated experimental benchmarks are available on the web 3.

5.2 Benchmarks Extracted From SMT-LIB With

Hard Reality Tool

In order to study the performance of our solver on real-life problems, we ran a

series of experiments with real-life benchmarks extracted from the SMT-LIB.

We obtained a set of real-life benchmarks using the Hard Reality Tool (HRT).

3http://www.cs.man.ac.uk/~tsiskarn/CRA_bench

72 CHAPTER 5. EXPERIMENTS

HRT allows randomly extracting hard and realistic theory problems from

SMT problems. The extracted theory problems are given as a conjunction of

constraints from this theory.

For our experiments we used the benchmarks from the QF LRA division of

the SMT-LIB – the benchmarks consisting of quantifier free SMT problems with

the theory of linear real arithmetic.

The following describes how the HRT works to extract linear arithmetic prob-

lems from the QF LRA benchmarks.

1. HRT searches for random theory problems

2. From the selected theory problem it extracts linear arithmetic terms;

3. Reduces linear arithmetic terms to the form:

(and [(> lin 0)]...[(>= lin 0)]...[(= lin 0)]...)

where lin represents various linear forms over the variables x1, x2, . . . , xk

with the coefficients c0, c1, . . . , ck expressed as a sum (+(∗cixi)...(∗c1x1)c0)

where all variables with 0 coefficients are omitted and no repetition of vari-

ables occurs.

4. Optionally, a difficulty level of the extracted problem can be specified as

follows:

(a) Accept only those input SMT problems which require a time to solve,

longer than a predefined time bound.

(b) Output only those extracted problems which require a time to solve,

longer or equal to the predefined time bound.

For more options, the HRT also allows the extraction of a maximal satis-

fiable subset and a minimal unsatisfiable subset of constraints (conjunction of

constraints) among the obtained random theory problems.

Our experimental benchmarks extracted with HRT are available from the

web 4.

4http://www.cs.man.ac.uk/~tsiskarn/CRA_bench

5.3. EXPERIMENTAL RESULTS 73

5.3 Experimental Results

In the following we present the results of our experiments for each implementation

phase.

5.3.1 Phase I - Early Stage Implementation

The experiments at the early stage of the implementation were presented in our

paper where the conflict resolution method was introduced [30]. To recall, early

stage implementation had neither any heuristics crucial for efficiency nor any kind

of preprocessing. All experiments at this stage were run on a Linux laptop with

CPU 2.8GHz and memory 4Gb.

The conflict resolution algorithm was compared with our implementation of

the Fourier-Motzkin elimination method and its modification - the Chernikov

algorithm, both implemented in the same data structures as CRA for better

transparency in comparison [30]. The conflict resolution algorithm was compared

with these implementations as well as with CVC3 [4] and Barcelogic [40] – well-

developed solvers for satisfiability modulo theories (SMT). CVC3 incorporates a

variant of the Fourier-Motzkin algorithm and Barcelogic incorporates the simplex

algorithm for reasoning with linear arithmetic.

First experimental results were very encouraging, showing that the conflict

resolution algorithm is considerably more efficient in solving linear constraints

than the standard Fourier-Motzkin algorithm. For example, an order of magni-

tude difference occurs already on small problems.

5.3.1.1 Randomly Generated Problems

We had two sets of random benchmarks:

1. 4000 randomly generated problems with the number of variables ranging

from 3 to 12

2. 400 randomly generated problems with the number of variables ranging

from 13 to 22

Results for the randomly generated problems are shown in Table 5.1.

The conflict resolution algorithm has solved all 4000 randomly generated prob-

lems with the number of variables ranging from 3 to 12 (within the total time of

74 CHAPTER 5. EXPERIMENTS

4000 problems vars 3-12 (unsat/sat)

CRA CVC3 FM Ch
timeout (20s) 0/0 11/9 790/329 149/10
av. time (s) 0/0 0/0 0.4/0.1 0.6/0.1

400 problems vars 13-22 (unsat/sat)

CRA CVC3 FM Ch
timeout (20s) 5/2 21/33 183/144 155/65
av. time (s) 0.2/0.3 0/0 0.1/0.5 1.9/0.6

Table 5.1: Randomly Generated Problems

7 seconds) and on the problems with the number of variables ranging from 13 to

22 fails only on 7 (5 unsatisfiable and 2 satisfiable problems).

The CVC3 implementation of the Fourier-Motzkin algorithm fails to solve 20

(11 unsat / 9 sat) problems from the first set of benchmarks and 54 (21 unsat / 33

sat) problems from the second set. Our implementation of the Fourier-Motzkin

algorithm solves considerably fewer problems than CRA. The Chernikov algo-

rithm improves over the Fourier-Motzkin but solves considerably fewer problems

than CRA and even than CVC3, see the Table 5.1.

The difference in performance between Chernikov and CVC3, i.e. between the

enhanced and elaborated realisation of the Fourier-Motzkin elimination method

respectively, point to the expected difference in performance between the straight-

forward and more elaborate realisation of CRA.

One of the most striking examples showing the algorithmic difference in per-

formance of the Fourier-Motzkin elimination method and CRA is shown in Fig-

ure 5.1. The problem in this figure was randomly generated and contains 5

variables and 10 linear constraints.

The standard Fourier-Motzkin algorithm run on this problem generated over

280 million linear constraints, while the conflict resolution algorithm generated

only 21 constraints. However, this example is not exceptional as compared to our

other experiments with early stage implementation.

5.3. EXPERIMENTAL RESULTS 75

2x5 − 3x4 + x3 − 3x2 − 2x1 + 3 ≥ 0
2x5 + x4 − 2x3 − 2x1 + 2 ≥ 0
−x5 + 3x2 + x1 + 2 ≥ 0
−3x5 + 2x3 − 3x1 − 2 ≥ 0
x5 − 2x4 − 2x2 + 3x1 − 2 ≥ 0

−2x5 + 2x4 − 3x3 − x2 + 2x1 + 3 > 0
3x5 − 2x4 + 2x3 + 3x2 + 2x1 + 1 > 0
x5 + 2x1 + 2 > 0

2x4 − x3 − 3x2 − x1 + 3 = 0

Figure 5.1: A randomly generated problem

304 problems (unsat)

CRA CVC3 FM Ch
timeout (60s) 1 4 44 42
av. time 0.2 0.13 0.1 0.12

Table 5.2: Hard Reality Problems

5.3.1.2 Real-Life Problems

Table 5.2 compares the solvers on the problems extracted from SMT benchmarks

using the Hard Reality Tool.

As in randomly generated benchmarks, the CRA also solves more problems

in the real-life benchmarks than any of CVC3, Fourier-Motzkin, and Chernikov

algorithms. The average time of the CRA is a bit higher than of CVC3 due to

additional time needed to solve extra problems that were not solved by CVC3.

Indeed, in a pairwise comparison on all solved problems in these benchmarks the

CRA is faster than CVC3.

Compared to the Simplex algorithm, the conflict resolution algorithm already

at its early stage (non-optimised) implementation showed promising potential.

In Table 5.3 the CRA is compared to Barcelogic. In the low-range problems

(with 12-22 variables) we had 400 problems with 197 unsat and 203 sat. Both

solvers showed equal performance in about 78% of the problems (74% of unsat

problems and 82% of sat). In the remaining 22% of the problems CRA timed out

on 7% and was faster than Barcelogic in about 45% of unsat problems and 19% of

sat. In the high-range problems (with 23-32 variables) we had 400 problems with

204 unsat and 196 sat. Both solvers showed equal performance in about 30% of

76 CHAPTER 5. EXPERIMENTS

400 problems vars 13-22 (unsat/sat)

faster same av. time timeout (20s)
Barcelogic 28/29 146/167 0.04/0 0/0
CRA 23/7 146/167 0.2/0.3 5/2

400 problems vars 23-32 (unsat/sat)

faster same av. time timeout (20s)
Barcelogic 110/67 31/88 0.25/1.0 0/0
CRA 63/41 31/88 0.7/1.6 60/37

Table 5.3: CRA vs Barcelogic on real-life HR benchmarks

all problems, though there is a considerable difference in handling sat and unsat

problems. Only 15% of unsat problems were solved with equal performance while

for sat the percentage reached 45%. From the remaining 70% of the problems

Barcelogic was faster in 63% (64% unsat and 62% sat) while CRA timed out in

about 35% and solved faster in 37% (36% unsat and 38% sat).

We can conclude that CRA was faster than Barcelogic on a considerable num-

ber of the problems, although Barcelogic has solved more problems than CRA

within 20 seconds.

To summarise, our experiments showed that an early stage implementation of

the conflict resolution algorithm outperformed both the Fourier-Motzkin and the

Chernikov algorithms in solving systems of linear constraints, and had promising

potential compared to the simplex algorithm.

5.3.2 Phase II – Implementation with Various Heuristics

The second phase of the implementation extended the CRA algorithm with var-

ious heuristics (i) for choosing conflicts in the conflict resolution rule and (ii) for

choosing values in the assignment refinement rule, (iii) for adding resolvents to

the system, (iv) for dealing with half-bounded intervals in the assignment refine-

ment rule, and (v) using optional reduction of constraints by the greatest common

divisor.

5.3. EXPERIMENTAL RESULTS 77

The implemented heuristics are listed below:

(i) Selecting conflicts

1. Select a conflict at random;

2. Select the first conflict detected;

3. Select a conflict with the maximal bound overlap;

4. Select a conflict with maximal violated resolvent in the lower dimen-

sional space (the Relaxation Method criterion);

(ii) Selecting assignment values

1. Select an assignment at random;

2. Select a closest binary assignment (an approximate mid point of the

interval);

3. Select the maximal bound of the interval;

4. Select the minimal bound of the interval;

5. Swap maximal and minimal bounds at each call at a level;

(iii) Adding resolvents

We studied the following heuristics:

1. Add each resolvent independently of whether it instantiates a new

conflict or not;

2. Do not add a resolvent if it instantiates a new conflict at the level it

belongs to, keep resolving conflicts without adding this resolvent and

add only the final resolvent, that is when it instantiates no conflict.

This process is associated with ‘jumping’ to the lowest level (the first

non-conflicting level) and adding the last resolvent at this level only.

(iv) Dealing with half-bounded intervals in the AR rule

As mentioned in Chapter 4, in experiments, half-bounded intervals occur

very frequently in the assignment refinement rule when assigning a value

to a variable. In such case we generate an artificially bounded interval that

may serve as a substitution of half-bounded intervals in the assignment

78 CHAPTER 5. EXPERIMENTS

refinement rule. If the CRA keeps returning to a level with a half-bounded

interval often, it may become essential to increase the size of the interval

repeatedly. We tried two heuristics for dealing with half-bounded intervals:

1. Double the size of an artificial substitution of the half-bounded inter-

val, each time when returning to the same half-bounding level;

2. Bound the half-bounded interval to the constant size of 10, every time

when returning to the same half-bounding level.

(v) Reducing constraints by the GCD

1. Always reduce each constraint by the GCD;

2. Never reduce each constraint by the GCD.

We studied various combinations of these heuristics integrated into the CRA

algorithm. We call the major heuristics the heuristics (i) for selecting conflicts,

and (ii) for selecting assignment values. Two other heuristics (a) for dealing with

half-bounded intervals in the assignment refinement rule and (b) for reducing

constraints by the GCD of their coefficients are general in their nature and can

be combined with any major heuristic mentioned above. Such a combination

entails four different heuristic bundles for each of the major heuristics:

1. Bound the half-bounded interval to the constant size (size of 10). Do not

reduce constraints by the GCD of their coefficients.

2. Bound the half-bounded interval to the constant size (size of 10). Reduce

constraints by the GCD of their coefficients.

3. Increase artificial bounds in half-bounded intervals exponentially (by powers

of 2). Do not reduce constraints by the GCD of their coefficients.

4. Increase artificial bounds in half-bounded intervals exponentially (by powers

of 2). Reduce constraints by the GCD of their coefficients.

In the sequel we will use the term ‘quadruple’ (or quadruple of implementa-

tions) when we refer to such a group of four implementations.

During the evaluation of the experiments we grouped the implementations

into such quadruples. From each of the quadruples we selected the one with the

best performance, and pairwise compared the selected implementations.

5.3. EXPERIMENTAL RESULTS 79

The full list of the bundles of the heuristics of the CRA algorithm, together

with their abbreviations used throughout the thesis, is given in Table 5.4

We evaluated the implementations on both randomly generated benchmarks

and real-life benchmarks extracted from SMT-LIB. The results of the experiments

were plotted on three types of graph:

1. ‘Number of variables versus number of solved problems.’ In such a graph

the Y -axis plots the number of variables and the X-axis plots the number

of solved problems. A point (x, y) on the graph indicates that x problems

were solved among the problems with a number of variables less than or

equal to y.

2. ‘Time versus number of solved problems.’ In such a graph the Y -axis plots

the time from 0 to the timeout limit, and the X-axis plots the number of

problems solved. A point (x, y) on the graph indicates that x problems

were solved in y time or less.

3. ‘Total run-time versus number of solved problems.’ In such a graph the Y -

axis plots the run-time, and the X-axis plots the total number of problems

solved within the corresponding time. A point (x, y) on the graph indicates

that in total x problems were solved within y time since the start of a solver.

In the following we present the results of the experimental evaluation. We ran

experiments on the second and the third phases of implementation on Intel Xeon

Quad Core machines with 2.33 GHz and 12 GB of memory.

5.3.2.1 Randomly generated benchmarks

For our experiments on Phase II we generated three sets of random benchmarks:

1. Randomly generated problems with a number of variables ranging from 3

to 10, 400 problems per variable number, 3200 problems in total;

2. Randomly generated problems with a number of variables ranging from 11

to 18, 200 problems per variable number, 1600 problems in total;

3. Randomly generated problems with a number of variables ranging from 19

to 26, 50 problems per variable number, 400 problems in total.

80 CHAPTER 5. EXPERIMENTS

Bundles of heuristics of the CRA Algorithm
Abbreviations Select Conflict Select

Assignment
Add
Resolvents

Half-
Bounded

GCD

MP Maximal Overlap Middle Pointa All Const No
MP gcd Maximal Overlap Middle Point All Const Yes
MP pow2 Maximal Overlap Middle Point All Exp No
MP pow2 gcd Maximal Overlap Middle Point All Exp Yes
MAX Maximal Overlap Maximal Bound All Const No
MAX gcd Maximal Overlap Maximal Bound All Const Yes
MAX pow2 Maximal Overlap Maximal Bound All Exp No
MAX pow2 gcd Maximal Overlap Maximal Bound All Exp Yes
MIN Maximal Overlap Minimal Bound All Const No
MIN gcd Maximal Overlap Minimal Bound All Const Yes
MIN pow2 Maximal Overlap Minimal Bound All Exp No
MIN pow2 gcd Maximal Overlap Minimal Bound All Exp Yes
SW Maximal Overlap Swap Minimal and

Maximal Bounds
All Const No

SW gcd Maximal Overlap Swap Minimal and
Maximal Bounds

All Const Yes

SW pow2 Maximal Overlap Swap Minimal and
Maximal Bounds

All Exp No

SW pow2 gcd Maximal Overlap Swap Minimal and
Maximal Bounds

All Exp Yes

RA Maximal Overlap Random All Const No
RA gcd Maximal Overlap Random All Const Yes
RA pow2 Maximal Overlap Random All Exp No
RA pow2 gcd Maximal Overlap Random All Exp Yes
FC First Conflict Middle Point All Const No
FC gcd First Conflict Middle Point All Const Yes
FC pow2 First Conflict Middle Point All Exp No
FC pow2 gcd First Conflict Middle Point All Exp Yes
RM Relaxation Method Middle Point All Const No
RM gcd Relaxation Method Middle Point All Cons Yes
RM pow2 Relaxation Method Middle Point All Exp No
RM pow2 gcd Relaxation Method Middle Point All Exp Yes
RC Random Middle Point All Const No
RC gcd Random Middle Point All Const Yes
RC pow2 Random Middle Point All Exp No
RC pow2 gcd Random Middle Point All Exp Yes
CRJ Maximal Overlap Middle Point Last only Const No
CRJ gcd Maximal Overlap Middle Point Last only Const Yes
CRJ pow2 Maximal Overlap Middle Point Last only Exp No
CRJ pow2 gcd Maximal Overlap Middle Point Last only Exp Yes

aRational closest to the interval middle point with the least power of 2 in the denominator

Table 5.4: List of the bundles of heuristics of the CRA algorithm

5.3. EXPERIMENTAL RESULTS 81

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 200 400 600 800 1000 1200 1400 1600 1800

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

FC
FC_gcd

FC_pow2
FC_pow2_gcd

Figure 5.2: Implementations of the CRA for the major heuristics ‘FC’ on ran-
domly generated set of benchmarks, ‘number of variables versus number of solved
problems’.

On random problems all implementations had certain similarities in perfor-

mance and behaviour within one quadruple as well as for the same sets of major

heuristics.

• The low-dimensional problems (with the number of variables upto 10), were

solved in 0.0 seconds with all heuristic bundles listed above.

• In the middle-sized problems (with the number of variables ranging between

11 and about 18) all bundles of heuristics showed an insignificant difference

in the number of solved problems and in performance.

• The difference in the number of solved problems became more significant

as the number of variables in the problems increased, ranging between 19-26.

We plotted experimental data from problems with the number of variables

ranging between 11 and 26. This observation is illustrated in Figure 5.2, plotting

experimental results on ‘number of variables versus number of solved benchmarks’

graph for a quadruple of one of the major heuristics (abbreviated as FC in Ta-

ble 5.4): (i) select the first conflict in the CR rule, and (ii) select as an assignment

the middle point of the interval in the AR rule.

82 CHAPTER 5. EXPERIMENTS

 0

 5

 10

 15

 20

 800 1000 1200 1400 1600 1800 2000

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

MAX
MAX_gcd

MAX_pow2
MAX_pow2_gcd

Figure 5.3: Implementations of the CRA for the major heuristics ‘MAX’ on
randomly generated set of benchmarks, ‘time versus number of problems solved’

Comparison of implementations of different quadruples resulted in the follow-

ing observation.

Equal and nearly equal performances. In some quadruples we observed

equal or nearly equal performances of several heuristics. These heuristics mainly

differed only in choice of one of the general heuristics.

An example of such a nearly equal behaviour can be observed for a quadruple

of implementations of the CRA algorithm with the set of major heuristics (ab-

breviated as MAX in Table 5.4): (i) select a conflict with the maximal overlap in

the CR rule and (ii) select for an assignment the maximal bound of the interval

in the AR rule.

Figure 5.3. plots experimental data for this quadruple of implementations on

a ‘time versus number of problems solved’ graph. As we can see, two pairs of plots

(MAX, MAX pow2) and (MAX gcd,MAX pow2 gcd) indicate almost equal per-

formances with slight superiority in the option of doubling the size of substituting

bounded intervals.

This leads to the conclusion, that for this particular set of major heuristics

(MAX), the difference in performances between heuristics of bounding substitut-

ing intervals to a constant size and bounding them by doubling their size is not

5.3. EXPERIMENTAL RESULTS 83

 0

 5

 10

 15

 20

 600 800 1000 1200 1400 1600 1800 2000

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

RC
RC_gcd

RC_pow2
RC_pow2_gcd

Figure 5.4: Implementations of the CRA for the major heuristics ‘RC’ on ran-
domly generated set of benchmarks, ‘time versus number of problems solved’

essential. Even though, there is, still, a slight superiority with doubling. Similar

behaviours were observed for quadruples of CRJ and SW.

Yet another conclusion from these quadruples is that reducing constraints

by the GCD of their coefficients leads to the best performance. This sounds

reasonable. However, for a number of other sets of major heuristics, the effect of

reducing constraints by the GCD was negligible.

For example, Figure 5.4. depicts the performance of a quadruple of the imple-

mentations of the CRA algorithm with the set of major heuristics (abbreviated

as RC in Table 5.4): (i) select a conflict at random in the CR rule, and (ii) select

as an assignment the mid point of the interval in the AR rule.

The chart shows nearly equal performance of the pairs of bundles of heuristics:

(RC, RC gcd) and (RC pow2, RC pow2 gcd), with slight superiority with reduc-

tions by the GCD. This means, that the improvement in performance caused

by reduction of constraints by the GCD is negligible. However, this time dou-

bling the size of the substituting bounded intervals appears to be considerably

more efficient than bounding intervals to a constant size. The same behaviour is

observed for the quadruple RA.

84 CHAPTER 5. EXPERIMENTS

 0

 5

 10

 15

 20

 200 400 600 800 1000 1200 1400 1600 1800 2000

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

FC_BMP_pow2
MO_BMP_BJ_pow2

MO_MAX_pow2
MO_MIN

MO_BMP_pow2
MO_RA

RC_BMP_pow2
RM_BMP_pow2

MO_SW

Figure 5.5: Implementations of CRA with the best performance of all major
heuristics for the randomly generated set of benchmarks, ‘time versus number of
problems solved’

Other quadruples had different performances for all four bundles of heuris-

tics, (but still close to each-other) with the best performances shown by either

‘pow2 gcd’ or ‘gcd’.

Plots for each of the quadruples are presented in Appendix D.

The best performance within the quadruples. In almost all quadruples

the best performance was shown when the constraints were reduced by the GCD,

although, in some cases the difference is insignificant. Within the constraint

reducing option, as a rule, the best performance was when substituting bounded

intervals were doubled.

In almost half of the quadruples, selecting a constant artificial interval or

doubling it showed nearly equal performance.

Conclusion. We plotted the best performances from each of the quadruples on

one chart, to define the best choice of the set of heuristics (including the general

ones). The result is depicted in Figure 5.5.

As wee see, the best bundle of heuristics appeared to be CRJ pow2 gcd, fol-

lowed by MP pow2 gcd and then by RM pow2 gcd, all close to each other.

5.3. EXPERIMENTAL RESULTS 85

As one could expect, non-random heuristics showed better performance com-

pared to the random ones. For the heuristic when the assignment was selected

at random (RA) one of the reasons (among others) causing poor performance

might be the fact that in randomly chosen assignments, the size of numerator

and denominator is larger than in other heuristics for choosing the assignment.

For the heuristic when a conflict was chosen at random (RC) poor performance

might be explained by the fact that the choice of resolving conflicts was not related

to any particular aim.

A full set of charts with our experiments is included in Appendix D.

5.3.2.2 Real-Life Benchmarks

As mentioned earlier in this chapter, in our experiments we used three sets of Real-

Life benchmarks. All of them were extracted from the real-life SMT benchmarks.

The first set was used in the experiments in phase I and was generated by us

using HRT, and consists of 305 problems with variable numbers ranging from 37

to 1416.

The second set was also generated by us using HRT, but compared to the

first, the problems had a considerably higher difficulty level and consisted of 128

problems of several variable numbers in the range between 251 and 1067.

The third set of benchmarks was by Leonardo de Moura and consisted of 688

problems with the variable numbers between 147 and 163.

We discuss results of the experiments on quadruples first.

Equal and nearly equal performances. Almost all sets of heuristics showed

that reduction of constraints by the GCD of their coefficients had almost no effect

on all three sets of real-life benchmarks.

Along with this observation, on the first two sets of benchmarks the effect of

exponentially increasing the length of artificially bounded half-bounded interval

was slightly less efficient compared to constant interval size. For example, Fig-

ure 5.6. and Figure 5.7. depict the performance of quadruples for MP heuristics,

for the first and the second sets of benchmarks respectively, plotted on ‘time

versus number of solved problems’ graph. We see, that the difference is almost

insignificant.

86 CHAPTER 5. EXPERIMENTS

 0

 5

 10

 15

 20

 290 292 294 296 298 300 302 304

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

MP
MP_gcd

MP_pow2
MP_pow2_gcd

Figure 5.6: A quadruple of implementations of CRA with ‘MP’ heuristics for the
first set of benchmarks, ‘time versus number of problems solved’

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

MP
MP_gcd

MP_pow2
MP_pow2_gcd

Figure 5.7: A quadruple of implementations of CRA with ‘MP’ heuristics for the
second set of benchmarks, ‘time versus number of problems solved’

5.3. EXPERIMENTAL RESULTS 87

 0

 5

 10

 15

 20

 250 300 350 400 450 500 550 600 650 700

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

FC
FC_gcd

FC_pow2
FC_pow2_gcd

Figure 5.8: A quadruple of implementations of CRA with ‘FC’ heuristics for the
third set of benchmarks, ‘time versus number of problems solved’

However, on the third set of benchmarks, by Leonerdo de Moura, exponential

increase of half-bounded intervals appeared to be rather efficient in some quadru-

ples (leads to solving up to 15% more problems) and, similarly rather inefficient in

others (leads to solving up to 15% less problems). For instance, Figure 5.8. plots

performance of a quadruple for the set of major heuristics FC (take first conflict)

on ‘time versus number of solved problems’ chart. As we see, doubling the size

of substituting bounded intervals leads to better performance. While Figure 5.9.

plotting a quadruple for MIN, shows that it is better to bound half-bounded

intervals to a constant size.

The best performance in quadruples. Based on the above observations, both

for the first and the second sets of the benchmarks the best performances were

shown by the implementations where half-bounded intervals were bounded to a

constant size and reduction by the GCD had almost no effect.

In the benchmarks by Leonardo de Moura, the best performance was achieved

when reduction by the GCD was used. Regarding bounding half-bounded in-

tervals, some quadruples had the best performance when these intervals were

doubled, while others were faster when intervals were bounded to a constant size.

88 CHAPTER 5. EXPERIMENTS

 0

 5

 10

 15

 20

 250 300 350 400 450 500 550 600 650 700

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

MIN
MIN_gcd

MIN_pow2
MIN_pow2_gcd

Figure 5.9: A quadruple of implementations of CRA with ‘MIN’ heuristics for
the third set of benchmarks, ‘time versus number of problems solved’

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300 350

N
u
m

b
e
r

o
f

v
a
ri

a
b
le

s

Number of solved benchmarks

FC

CRJ

MAX

MIN

MP

RA

RC

RM

SW

Figure 5.10: Implementations of CRA with the best performance of all major
heuristics for the first set of benchmarks, ‘number of variables versus number of
solved problems’

5.3. EXPERIMENTAL RESULTS 89

 0

 5

 10

 15

 20

 280 285 290 295 300 305

C
P

U
 t

im
e
 (

s)

Number of solved benchmarks

FC
CRJ

MAX
MIN
MP
RA
RC
RM
SW

Figure 5.11: Implementations of CRA with the best performance of all major
heuristics for the first set of benchmarks, ‘time versus number of problems solved’

All quadruples. As in case of randomly generated benchmarks, in all three

sets of real-life benchmarks, the worst performance was shown by RA and RC

(randomly choosing assignment and conflict, respectively).

On the first set of benchmarks, all implementations solved almost the same

number of problems with each number of variables (see Figure 5.10. with ‘number

of variablea versus number of problems’ plotting). However, there are slight

differences in times spent by the implementations on each problem. We can see

from Figure 5.11. and Figure 5.12. that the top three performances were by MP,

RM and MAX, all very similar to each other.

On the second set of benchmarks, all sets of major heuristics (apart from RA

and RC) had very similar performance, with the only main difference in shifts on

one problem (see Figure 5.13. with ‘number of variables versus number of solved

problems’ plotting). These shifts were caused mainly only by solving different

numbers of problems with 301 variables. The best performance was shown by

FC gcd. Then with an insignificant gap comes MP gcd, followed by CRJ gcd,

MAX gcd and RM gcd with hardly distinguishable performances.

On the third set of benchmarks, as in case of the first set, all sets of heuristics

(apart from RA and RC) solved the same number of problems for each number

of variables, see Figure 5.14.

90 CHAPTER 5. EXPERIMENTS

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350

T
o
ta

l
C

P
U

 t
im

e
 (

s)

Number of solved benchmarks

FC
CRJ

MAX
MIN
MP
RA
RC
RM
SW

Figure 5.12: Implementations of CRA with the best performance of all major
heuristics for the first set of benchmarks, ‘total run-time versus number of solved
problems’

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 5 10 15 20 25 30

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

FC_gcd
CRJ_gcd

MAX_gcd
MIN_gcd
MP_gcd

RA_pow2_gcd
RC_gcd
RM_gcd
SW_gcd

Figure 5.13: Implementations of CRA with the best performance of all major
heuristics for the second set of benchmarks, ‘number of variables versus number
of solved problems’

5.3. EXPERIMENTAL RESULTS 91

 146

 148

 150

 152

 154

 156

 158

 160

 162

 164

 0 100 200 300 400 500 600

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

FC_pow2_gcd
CRJ_gcd

MAX_gcd
MIN_gcd

MP_pow2_gcd
RA_gcd
RC_gcd

RM_pow2_gcd
SW_gcd

Figure 5.14: Implementations of CRA with the best performance of all major
heuristics for the third set of benchmarks, ‘number of variables versus number of
solved problems’

The difference was in times spent on each problem, which is visible on Fig-

ure 5.15. plotting total time against the number of benchmarks solved. We see,

that the top performances were by MP pow2 gcd, CRJ gcd and RM pow2 gcd,

close to the performance of MIN gcd.

Summary of Phase II experiments. To conclude, as it was expected, the

performance of various bundles of heuristics of the CRA algorithm was different

on randomly generated benchmarks and real-life benchmarks. We observed, that

our non-random heuristics considerably outperformed the random ones (RA and

RC).

For randomly generated problems the top three performers were major heuris-

tics: CRJ, MP and RM. However, all three were quite close to each other. For

real-life benchmarks, on the first set of benchmarks the best major heuristics were

MP, RM and MAX; on the second set of benchmarks MP, CRJ, and two sets of

heuristics MAX and RM with similar performance; on the third set, FC, MP, and

three sets of heuristics with similar performance CRJ, RM and MIN. As we can

see, three of the heuristics, MP, CRJ and RM were present almost always in the

top three performances in both randomly generated and real-life problems.

92 CHAPTER 5. EXPERIMENTS

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 100 200 300 400 500 600

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

FC_pow2_gcd
J_gcd

MAX_gcd
MIN_gcd

MP_pow2_gcd
RA_gcd
RC_gcd

RM_pow2_gcd
SW_gcd

Figure 5.15: Implementations of CRA with the best performance of all major
heuristics for the third set of benchmarks, ‘total run-time versus number of solved
problems’

Regarding the general heuristics (for dealing with half-bounded intervals and

for reducing by the GCD) the results of experiments were, again, different for ran-

domly generated and real-life benchmarks. On randomly generated benchmarks

there was not much difference in performance for these heuristics. In combina-

tion with some major sets of heuristics, reduction by the GCD was very effective,

in others it did not show much improvement. The same went for doubling the

size of artificially bounded intervals. However, the use of reduction by the GCD

and exponential increase of artificial bound of half-bounded intervals were two

heuristics leading to better performance.

On real-life benchmarks, the first two benchmarks showed better performance

when intervals were kept at constant length. Regarding reduction by the GCD,

it did not lead to any great difference in performance. For the third set of

benchmarks some sets of major heuristics showed better performance in com-

bination with general heuristics: reduction by the GCD and constant length of

half-bounded intervals; while others were more effective in combination with:

reduction by the GCD and doubling the size of artificially bounded intervals.

Based on these observation, for the experiments in the third phase of the

implementation, we selected the CRA with the major set of heuristics MP.

5.3. EXPERIMENTAL RESULTS 93

688 problems (unsat)

faster same timeout (20s) av. time
CRA + simple preproc 395 263 88 0.8
CRA 30 263 476 0.005

Table 5.5: CRA vs CRA with simple preprocessing on the third set of real-life
benchmarks

5.3.3 Phase III – Simple Preprocessing with Highly-Tuned

Heuristics

In the third phase, we ran experiments on the implementation of the CRA algo-

rithm with the major heuristics MP enhanced with some simple preprocessing.

To recall MP stands for the set of heuristics: (i) choose a conflict with the maxi-

mal overlap, and (ii) choose the closest binary assignment – an aproximate mid

point of the interval.

As for general heuristics, we used the best heuristics from the Phase II exper-

iments: reduce constraints by the GCD and exponentially increase intervals.

For setting the order of variables we used the strategy that is based on the

analysis of the input data. Both, the order selection strategy used and the im-

plemented preprocessing are described in Section 4.2.3.

We compared the implementation of the CRA algorithm enhanced with pre-

processing with (i) its predecessor implementation from the Phase II (with the

same bundle of heuristics), and also (ii) three state-of-the-art SMT solvers: Barce-

logic, CVC3 and Z3.

In general the performance of solvers differ considerably on randomly gener-

ated and real-life benchmarks. It is more important to have good performance

on real-life benchmarks, rather than on randomly generated ones. For this reason

when comparing our optimised implementation with the state-of-the-art SMT

solvers we decided to present results with experiments on real-life benchmarks.

We present results of experiments on the real-life benchmarks.

CRA with simple preprocessing vs its predecessor. First, we compare the

implementation of CRA with simple preprocessing with its predecessor. Table 5.5

presents results of such a comparison on the third set of real-life benchmarks.

As we see, the number of timeouts has decreased more than 5 times when

adding the preprocessing. Also, it improved the performance on more than half of

94 CHAPTER 5. EXPERIMENTS

CRA Better Same Worse

Barcelogic 161 151 120
CVC3 150 278 3
Z3 10 370 52

Table 5.6: CRA with simple preprocessing vs Barcelogic, CVC3, Z3 on the first
and the second sets of real-life benchmarks.

the problems. The CRA algorithm is sensitive to the implemented preprocessing

and to the variable ordering strategy chosen.

CRA with simple preprocessing vs state-of-the-art SMT solvers. As for

comparison with the linear arithmetic solvers incorporated in Barcelogic, CVC3

and Z3 the experiments showed the following.

In Table 5.6 we present results of experiments with our real-life benchmarks,

extracted with the HRT tool. CRA with simple preprocessing is faster than CVC3

on about one third of the problems and has the same performance for almost all

other problems. Compared to Barcelogic, CRA performs better again on about

one third of the problems, has the same performance on the second third, and

Barcelogic is faster than CRA on the other third of the problems. As for Z3,

on both sets of real-life problems CRA showed a competitive performance – on

about 93% of the problems it showed similar performance, and outperformed it

on a number of instances.

We also present results of comparison of CRA with simple preprocessing with

Z3 on the third set of benchmarks.

In the third set of real-life benchmarks Z3 solved each of the problems in 0

seconds. Our implementation of the CRA algorithm with preprocessing showed

the same performance on a little more than a half of the problems. On the rest

of them Z3 was superior. To illustrate the difference in performance on problems

where Z3 was faster, we plotted the data from such problems on ‘time spent per

each problem versus number of problems’ graph, see Figure 5.16.

As we see, in the majority of problems where Z3 was superior, the difference

between the times spent on each problem was less than 5 seconds. More precisely,

about 65% of the problems where Z3 was superior were solved by CRA with simple

preprocessing in less than 5 seconds.

5.3. EXPERIMENTAL RESULTS 95

 0

 5

 10

 15

 20

 0 50 100 150 200 250 300 350

C
P

U
 t

im
e
 (

s)

Number of solved benchmarks

Figure 5.16: Benchmarks where CRA with simple preprocessing and Z3 showed
different performances, ‘time versus number of problems solved’

Summary of Phase III experiments. To conclude, the performance of the

CRA algorithm enhanced with simple preprocessing and optimised with fine-

tuned heuristics improved considerably over its predecessor without preprocess-

ing. Compared to the linear arithmetic solvers incorporated in the state-of-the-art

SMT solvers, it was faster than the Fourier-Motzkin based linear arithmetic solver

of CVC3 and was competitive with the simplex based linear arithmetic solvers

incorporated in Barcelogic and Z3. On certain problems CRA was faster than

the three solvers, and on a significant part of the problems it showed the same

performance.

Conclusions. The experiments showed that choosing different parameters has

a significant impact on the performance of the solver. Also, depending on the

nature of the problem, different heuristics may appear preferable. At the same

time, one can outline the most preferable strategies in general: in selecting a

conflicting pair the reasonable choice seems to be the maximal overlap strategy, or

the relaxation approach, as for selecting the assignment one could recommend the

so called mid point strategy (based on binary approximation). Using boundary

assignments may also appear successful if additional information on the system is

taken into account. For instance, the ratio of the number of positive and negative

96 CHAPTER 5. EXPERIMENTS

coefficients at the highest variable on the current level.

Among the general heuristics, choosing the combination of the ‘gcd’ with

‘pow2’ in most cases appears to be the best choice.

The algorithm appeared to be sensitive to the implemented preprocessing and

order of variables used. Choosing an appropriate ordering on variables may also

yield a significant benefit. This problem needs further detailed study.

On the whole, considering that we used some of the best SMT solvers for

comparison, conflict resolution showed itself to be potentially competitive with

the simplex method, and definitely outperforms the Fourier-Motzkin method with

modifications.

Chapter 6

Conclusions

In this thesis, we presented a new method for solving systems of linear constraints

over the rational numbers. We call the method the conflict resolution method. As

a part of the research presented we implemented a solver based on this method and

evaluated its performance in a range of experiments. In this chapter we summarise

the research conducted, pointing out its significance, and outline future research

directions.

6.1 Thesis Achievements

We presented a new algorithm for solving systems of linear constraints, called

conflict resolution. The method successively refines an initial assignment with the

help of newly derived constraints, until either the assignment becomes a solution

of the system or the inconsistency of the initial system is proved. We have shown

that this method is correct and terminating. The conflict resolution method has

a number of attractive properties such as blocking of redundant inferences. We

implemented our method and evaluated its performance in a series of experiments,

compared it with various existing methods, and studied the problem of improving

its efficiency.

A historical survey of the problem and existing methods were introduced in

Section 2.3. Some of these methods, the most important and relevant to our

research, were briefly discussed in Section 2.4.

The main results of the dissertation were presented in Chapter 3, Chapter 4

and Chapter 5. In Chapter 3 we introduced our method and proved its correctness

and termination. We presented the properties of the algorithm, supplied with

97

98 CHAPTER 6. CONCLUSIONS

the necessary proofs, and discussed its extensions, worst case complexity, and

application to SMT solving.

Then, we described the design of our implementation system (in Chapter 4)

outlining in detail all intermediate phases of the implementation. Along with

this, we introduced the heuristics that we developed for improving the efficiency

of our solver.

We devoted Chapter 5 to the experimental part of our research. We described

the full set of benchmarks we used. The results of the experiments evaluated on

these benchmarks were presented for each of the phases of implementation. We

concluded the chapter with a summary of the experimental results.

6.2 Significance of the Research

The subject of this dissertation is a well-known classical problem in mathematics

and computer science. It concerns deciding satisfiability of systems of linear

constraints over the rationals. The problem had been studied since the 19th

century, when Fourier proposed the first method for solving it, now known as

the Fourier-Motzkin elimination method. Because of a number of drawbacks, his

method turned out to have poor performance in practice.

Since then, many attempts have been made to find more effective ways to solve

this problem. As a result a number of modifications and alternative methods have

been proposed but their number is still very small. Thus, there are the simplex

and interior points methods developed in the 20th century. Among them the best

performance has been shown by simplex. However, the worst case complexity of

simplex is exponential, even though it is very fast in practice.

It is essential to mention, that despite the fact that some methods (in this

case the Fourier-Motzkin method, see Section 2.4.1) have worse performance in

practice, there are complex applications were they might be of a clear superiority

than others. This, obviously, is entailed by the structural characteristics of the

applications, and one particular method can be better suited to an application

than others. Consequently, scarcity of options available for solving a particular

problem may be restricting on some occasions.

Significance. The significance of the presented research is thus obvious. It

presents a new method for this problem, that not only showed itself to be very

6.3. FUTURE WORK 99

competitive with (sometimes even outperforming) the existing methods, but also

has a number of substantial properties.

To conclude:

• We presented a new algorithm for solving systems of linear constraints –

CRA.

• The method works well for both satisfiable and unsatisfiable problems.

• One of the important properties of the CRA algorithm is that it never

performs redundant inferences, as defined in Chapter 3. Our notion of re-

dundancy seems to be orthogonal to others developed in similar situations

for the Fourier-Motzkin method (see Section 2.4.2). In particular our re-

dundancy criterion is based on constraint ordering and semantic entailment

from smaller constraints.

• Our implementation of the CRA is orders of magnitude better than the

Fourier-Motzkin method and Chernikov algorithm.

• CRA shows good potential when compared to the simplex method. On a

whole range of problems it showed performance similar to state-of-the-art

solvers. On certain problems it even outperforms some of them.

• Our method can be easily made incremental and can easily generate ex-

planations for unsatisfiability (which is important for SMT).

6.3 Future Work

As future work, we have several research perspectives that can be grouped into

two main directions – SMT solving and Linear Programming itself.

SMT solving.

1. Integration into SMT. A future direction, that we have been constantly out-

lining throughout the thesis, concerns integration of CRA into SMT. The

conflict resolution method has been discovered while working on SMT prob-

lems with theories of linear real and integer arithmetics. It has a number

of attractive properties including those necessary for SMT integration. We

100 CHAPTER 6. CONCLUSIONS

aim to plug the conflict resolution solver in existing state-of-the-art SMT

solvers and also study possible advantages of the conflict resolution method

(drawn by its specific characteristics) for SMT solving purposes, this mainly

refers to using the conflict resolution method for model searching directly

in the space of numeric structure of SMT problems with linear arithmetic.

2. Combination with reasoning methods in other theories. Research on com-

bining reasoning methods for multiple theories is of high interest and signif-

icance for SMT solving. Our future work towards the integration in SMT

solving also considers perspectives of combining conflict resolution methods

with reasoning methods in other theories.

3. Research towards dynamic change of variable orderings. Currently the most

efficient approach for SMT solving is DPLL(T). This approach uses dynamic

change of the order on variables. Therefore we consider modifications of the

conflict resolution method with dynamic orderings on variables as one more

future research direction towards SMT solving.

Research directions related to Linear Programming involve further modifica-

tions and extensions of the conflict resolution method.

Linear programming.

1. Modification for integer arithmetic. Extension of the CRA algorithm to-

wards the integer and mixed (integer and rational) problems may also be

considered.

2. Modification for solving systems of Pseudo-Boolean linear constraints. We

may also consider extension of the CRA algorithm for solving systems of

Pseudo-Boolean linear constraints.

3. Modification for non-linear arithmetic. Generally, theories involved in SMT

problems are decidable theories. However, due to the increasing need in

dealing with non-linear arithmetic over the real numbers involving special

functions a need of using non-linear arithmetic constraints in SMT solv-

ing became natural. Introduction of such constraints in general leads to

undecidable theories, therefore extension of SMT to undecidable theories

became essential. However, there is a very little success in this direction.

6.3. FUTURE WORK 101

As a further research direction we may suggest modification of CRA for

non-linear arithmetic, considering that development of a non-linear version

of the conflict resolution method can be better suited for some particular

types of non-linear constraints.

4. Extension of the implementation. The current implementation works with

strict and non-strict inequalities, and equalities. The implementation may

be extended for constraints with {6=}. Extension for disequalities makes

it natural to consider clauses containing disjunctions of inequalities and

multi-interval domains targeting variables assignment.

5. Optimisation of the implementation. One obvious future topic is to opti-

mise the implementation of our solver. This, first of all, includes adding a

wrapper for rational numbers that is utilised in almost all state-of-the-art

solvers today in order to improve the performance of the solvers.

6. Further development of heuristics. New heuristics for improving the per-

formance of our algorithm may keep being under development constantly.

For now, we have certain ideas related to:

• Changing the order of the variables at run-time (discussed in Sec-

tion 4.2.3.1);

• Developing methods for avoiding unnecessary re-evaluation of con-

straints;

• Investigating whether it is possible to combine our notion of redun-

dancy with restrictions used by other methods.

102 CHAPTER 6. CONCLUSIONS

Bibliography

[1] S. Agmon. The relaxation method for linear inequalities. Canadian Journal

of Mathematics, 6:382–392, 1954.

[2] C. Barrett, S. Ranise, A. Stump, and C. Tinelli. The Satisfiability Modulo

Theories Library (SMT-LIB). www.SMT-LIB.org, 2008.

[3] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability Modulo

Theories. In A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors,

Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence

and Applications, pages 825–885. IOS Press, 2009.

[4] C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns, editors,

CAV ’07, volume 4590 of Lecture Notec in Computer Science, pages 298–302.

Springer Verlag, 2007. Berlin, Germany.

[5] V. Chandru. Variable elimination in linear constraints. The Computer Jour-

nal, 36(5):463–472, 1993.

[6] S. N. Chernikov. Linejnye Neravenstva. Nauka, Moscow, 1968. (In Russian).

[7] V. Chvatal. Linear Programming. W.H. Freeman and Company, 1983.

[8] G. B. Dantzig. Maximization of a linear function of variables subject to linear

inequalities. In Tj. C. Koopmans, editor, Activity Analysis of Production and

Allocation, pages 339–347, Wiley, New York, 1951.

[9] G. B. Dantzig. Linear Programming and Extensions. Princeton, New Jersey:

Princeton University Press, 1963.

[10] L. de Moura. Invited tutorial: Applications of SMT solvers in software

verification. VSTTE’08, Toronto, Canada 2008.

103

104 BIBLIOGRAPHY

[11] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In C. R. Ra-

makrishnan and J. Rehof, editors, TACAS, volume 4963 of Lecture Notes in

Computer Science, pages 337–340. Springer, 2008.

[12] L. de Moura, H. Rueß, and M. Sorea. Lazy theorem proving for bounded

model checking over infinite domains. In A. Voronkov, editor, CADE, volume

2392 of Lecture Notes in Computer Science, pages 438–455. Springer, 2002.

[13] L. L. Dines. Systems of linear inequalities. Annals of Mathematics,

2(20):191–199, 1918 9.

[14] R.J. Duffin. On Fourier’s analyse of linear inequality systems. Mathematical

Programming Study, 1:71–95, 1974.

[15] B. C. Eaves and U. G. Rothblum. Dines-Fourier-Motzkin quantifier elimi-

nation and an application of corresponding transfer principles over ordered

fields.

[16] J. B. J. Fourier. Analyse des travaux de l’Académie Royale des Sciences.

pendant l’année 1823, Partie Mathématique, Histoire de l’Acadé mie Royale

des. Sciences de l’Institut de France, 6(xxix-xli), [1823](1826).

[17] J. B. J. Fourier. Analyse des travaux de l’Académie Royale des Sciences.

pendant l’année 1824, Partie Mathématique, Histoire de l’Académie Royale

des. Sciences de l’Institut de France, 7(xlvii-lv), [1824](1827). English Trans-

lation (partially) in: D.A. Kohler, Translation of a report by Fourier on his

work on linear inequalities, Opsearch, 10, 1973, pages 38-42.

[18] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli.

DPLL(T): Fast decision procedures. In CAV, volume 3114 of Lecture Notes

in Computer Science, pages 175–188. Springer, 2004.

[19] S. I. Gass. Linear Programming. New York: McGraw-Hill, 1975.

[20] S. Ghilardi and S. Ranise. MCMT: A model checker modulo theories. In

Jürgen Giesl and Reiner Hähnle, editors, IJCAR, volume 6173 of Lecture

Notes in Computer Science, pages 22–29. Springer, 2010.

[21] J. I. Goffin. The relaxation method for solving systems of linear inequalities.

Mathematics of Operations Research, 5:388–414, 1980.

BIBLIOGRAPHY 105

[22] J. L. Imbert and P. Van Hentenryck. A note on redundant linear constraints.

Technical Report CS-92-11, CS Department, Brown University, 1992.

[23] J. Jaffar, M. J. Maher, P. J. Stuckey, and R. H. C. Yap. Projecting CLP(R)

constraints. New Generation Computing, 11, 1993.

[24] L. V. Kantorovich. Mathematical methods in the organisation and plan-

ning of production. Publication House of the Leningrad State University,

Leningrad, 1939. English translation: Management Science, vol. 6, 1960,

366422.

[25] N. Karmarkar. A new polynomial-time algorithm for linear programming. In

Proceedings of Sixteenth Annual ACM Symposium on Theory of Computing,

Washington, pages 302–311, The association of Computing Machinery, New

York, 1984.

[26] L. G. Khachiyan. A polynomial algorithm in linear programming (in Rus-

sian). Doklady Akademii Nauk SSSR, 244:1093–1096, 1979. English transla-

tion: Soviet Mathematics Doklady 20 (1979) 191-194.

[27] D.A. Kohler. Projection of Convex Polyhedral Sets. PhD thesis, University

of California, Barkeley, 1967.

[28] Tj. C. Koopmans. Optimum utilization of the transportation system. In

D. H. Leavens, editor, Proceedings of the International Statistical Confer-

ences, volume V, pages 136–146, The Econometric Society Meeting, Wash-

ington, D.C., 1948.

[29] Tj. C. Koopmans. A note about Kantorovich’s paper, M̈athematical methods

of organizing and planning production”. Management Science, 6:363–365,

1959-60.

[30] K. Korovin, N. Tsiskaridze, and A. Voronkov. Conflict Resolution. In I. P.

Gent, editor, CP, volume 5732 of Lecture Notes in Computer Science, pages

509–523. Springer, 2009.

[31] K. Korovin and A. Voronkov. GoRRiLA and Hard Reality. In PSI, Lecture

Notes in Computer Science. Springer, 2011. To appear.

106 BIBLIOGRAPHY

[32] S. Lahiri and S. Qadeer. Back to the future: revisiting precise program verifi-

cation using SMT solvers. In Proceedings of the 35th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, POPL ’08,

pages 171–182, New York, NY, USA, 2008. ACM.

[33] A. M. Lukatskii and D. V. Shapot. A constructive algorithm for folding

large-scale systems of linear inequalities. Computational Mathematics and

Mathematical Physics, 48(7):1100–1112, 2008.

[34] S. Mehrotra. On the implementation of a primal-dual interior point method.

SIAM Journal on Optimization, 2(4):575–601, 1992.

[35] D. Monniaux. A quantifier elimination algorithm for linear real arithmetic. In

Proceedings of the 15th International Conference on Logic for Programming,

Artificial Intelligence, and Reasoning, LPAR ’08, pages 243–257, Berlin, Hei-

delberg, 2008. Springer Verlag.

[36] D. Monniaux. On using floating-point computations to help an exact linear

arithmetic decision procedure. In A. Bouajjani and O. Maler, editors, CAV,

volume 5643 of Lecture Notes in Computer Science, pages 570–583. Springer,

2009.

[37] D. Monniaux. Quantifier elimination by lazy model enumeration. In Tayssir

Touili, Byron Cook, and Paul Jackson, editors, CAV, volume 6174 of Lecture

Notes in Computer Science, pages 585–599. Springer, 2010.

[38] T. S. Motzkin. Beiträge zur theorie der linearen ungleichungen. Inaugural

Dissertation Basel, Azriel, Jerusalem, 1936. English translation: Contribu-

tions to the theory of linear inequalities, RAND Corporation Translation 22,

Santa Monica, California.

[39] T. S. Motzkin and I. J. Schoenberg. The relaxation method for linear in-

equalities. Canadian Journal of Mathematics, 6:393–404, 1954.

[40] R. Nieuwenhuis and A. Oliveras. Decision procedures for SAT, SAT modulo

theories and beyond. The Barcelogic Tools. In G. Sutcliffe and A. Voronkov,

editors, LPAR, volume 3835 of Lecture Notes in Computer Science, pages

23–46. Springer, 2005.

BIBLIOGRAPHY 107

[41] J. Nocedal and S. Wright. Numerical Optimization. New York, NY: Springer,

1999.

[42] V. Riley and S. I. Gass. Bibliography of Linear Programming. Baltimore:

Johns Hopkins Press, 1958.

[43] N. Bjørner, L. De Moura, and N. Tillmann. Satisfiability Modulo Bit-precise

Theories for Program Exploration. Fifth International Workshop on Con-

straints in Formal Verification, 2008.

[44] A. Schrijver. Theory of Linear and Integer Programming. John Wiley and

Sons, 1998.

[45] N. Z. Shor. Convergence rate of the gradient descent method with dilita-

tion of the space (in Russian). Kibernetika (Kiev), 2:80–85, 1970. English

translation: Cybernetics 6 (1970) 102-108.

[46] N. Z. Shor. Utilization of the operation of space dilitation in the minimization

of convex functions (in Russian). Kibernetika (Kiev), 1:6–12, 1970. English

translation: Cybernetics 6 (1970) 7-15.

[47] N. Z. Shor. Cut-off method with space extension in convex programming

problems (in Russian). Kibernetika (Kiev), 1:94–95, 1977. English transla-

tion: Cybernetics 13 (1977) 94-96.

[48] S. Srivastava, S. Gulwani, and J. S. Foster. Vs3: SMT solvers for program

verification. In A. Bouajjani and O. Maler, editors, CAV, volume 5643 of

Lecture Notes in Computer Science, pages 702–708. Springer, 2009.

[49] A. Stump, C. Barrett, and D. Dill. Cvc: A cooperating validity checker. In

E. Brinksma and K. G. Larsen, editors, CAV, volume 2404 of Lecture Notes

in Computer Science, pages 500–504. Springer, 2002.

[50] J. von Neumann. Discussion of a maximum problem. Unpublished working

paper, Institute for Advanced Study, Princeton, N.J.,1947. Reprinted in:

John von Neumann, Collected Works, Vol. VI (A. H. Taub, ed.), Pergamon

Press, Oxford, 1963, pages 89-95.

[51] D. B. Yudin and A. S. Nemirovskii. Evaluation of the informational com-

plexity of mathematical programming problems (in Russian). Ékonomika i

108 BIBLIOGRAPHY

Matematicheskie Metody, 12:128–142, 1976. English translation: Matekon

13 (2) (1976 7) 3-25.

[52] D. B. Yudin and A. S. Nemirovskii. Informational complexity and efficient

methods for solution of convex extremal problems (in Russian). Ékonomika

i Matematicheskie Metody, 12:357–369, 1976. English translation: Matekon

13 (3) (1977) 25-45.

Appendices

109

Appendix A

111

112 APPENDIX A.

113

114 APPENDIX A.

Appendix B

115

116 APPENDIX B.

Appendix C

117

118 APPENDIX C.

Appendix D

119

120 APPENDIX D.

Rendomly Generated Benchmarks

 0

 5

 10

 15

 20

 800 1000 1200 1400 1600 1800 2000

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

FC
FC_gcd

FC_pow2
FC_pow2_gcd

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 200 400 600 800 1000 1200 1400 1600 1800

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

FC
FC_gcd

FC_pow2
FC_pow2_gcd

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 200 400 600 800 1000 1200 1400 1600 1800

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

FC
FC_gcd

FC_pow2
FC_pow2_gcd

121

Rendomly Generated Benchmarks

 0

 5

 10

 15

 20

 800 1000 1200 1400 1600 1800 2000

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

CRJ
CRJ_gcd

CRJ_pow2
CRJ_pow2_gcd

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 200 400 600 800 1000 1200 1400 1600 1800

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

CRJ
CRJ_gcd

CRJ_pow2
CRJ_pow2_gcd

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 200 400 600 800 1000 1200 1400 1600 1800

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

CRJ
CRJ_gcd

CRJ_pow2
CRJ_pow2_gcd

122 APPENDIX D.

Rendomly Generated Benchmarks

 0

 5

 10

 15

 20

 800 1000 1200 1400 1600 1800 2000

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

MAX
MAX_gcd

MAX_pow2
MAX_pow2_gcd

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 200 400 600 800 1000 1200 1400 1600 1800

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

MAX
MAX_gcd

MAX_pow2
MAX_pow2_gcd

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 200 400 600 800 1000 1200 1400 1600 1800

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

MAX
MAX_gcd

MAX_pow2
MAX_pow2_gcd

123

Rendomly Generated Benchmarks

 0

 5

 10

 15

 20

 800 1000 1200 1400 1600 1800 2000

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

MIN
MIN_gcd

MIN_pow2
MIN_pow2_gcd

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 200 400 600 800 1000 1200 1400 1600 1800

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

MIN
MIN_gcd

MIN_pow2
MIN_pow2_gcd

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 200 400 600 800 1000 1200 1400 1600 1800

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

MIN
MIN_gcd

MIN_pow2
MIN_pow2_gcd

124 APPENDIX D.

Rendomly Generated Benchmarks

 0

 5

 10

 15

 20

 800 1000 1200 1400 1600 1800 2000

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

MP
MP_gcd

MP_pow2
MP_pow2_gcd

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 200 400 600 800 1000 1200 1400 1600 1800

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

MP
MP_gcd

MP_pow2
MP_pow2_gcd

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 200 400 600 800 1000 1200 1400 1600 1800

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

MP
MP_gcd

MP_pow2
MP_pow2_gcd

125

Rendomly Generated Benchmarks

 0

 5

 10

 15

 20

 200 400 600 800 1000 1200 1400 1600 1800 2000

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

RA
RA_gcd

RA_pow2
RA_pow2_gcd

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 100 200 300 400 500 600 700 800

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

RA
RA_gcd

RA_pow2
RA_pow2_gcd

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 100 200 300 400 500 600 700 800

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

RA
RA_gcd

RA_pow2
RA_pow2_gcd

126 APPENDIX D.

Rendomly Generated Benchmarks

 0

 5

 10

 15

 20

 600 800 1000 1200 1400 1600 1800 2000

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

RC
RC_gcd

RC_pow2
RC_pow2_gcd

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 200 400 600 800 1000 1200 1400

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

RC
RC_gcd

RC_pow2
RC_pow2_gcd

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 200 400 600 800 1000 1200 1400

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

RC
RC_gcd

RC_pow2
RC_pow2_gcd

127

Rendomly Generated Benchmarks

 0

 5

 10

 15

 20

 600 800 1000 1200 1400 1600 1800 2000

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

RM
RM_gcd

RM_pow2
RM_pow2_gcd

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 200 400 600 800 1000 1200 1400 1600 1800

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

RM
RM_gcd

RM_pow2
RM_pow2_gcd

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 200 400 600 800 1000 1200 1400 1600 1800

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

RM
RM_gcd

RM_pow2
RM_pow2_gcd

128 APPENDIX D.

Rendomly Generated Benchmarks

 0

 5

 10

 15

 20

 800 1000 1200 1400 1600 1800 2000

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

SW
SW_gcd

SW_pow2
SW_pow2_gcd

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 200 400 600 800 1000 1200 1400 1600 1800

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

SW
SW_gcd

SW_pow2
SW_pow2_gcd

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 200 400 600 800 1000 1200 1400 1600 1800

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

SW
SW_gcd

SW_pow2
SW_pow2_gcd

129

Rendomly Generated Benchmarks

 0

 5

 10

 15

 20

 200 400 600 800 1000 1200 1400 1600 1800 2000

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

FC_BMP_pow2
MO_BMP_BJ_pow2

MO_MAX_pow2
MO_MIN

MO_BMP_pow2
MO_RA

RC_BMP_pow2
RM_BMP_pow2

MO_SW

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 200 400 600 800 1000 1200 1400 1600 1800

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

FC_pow2_gcd
CRJ_pow2_gcd

MAX_pow2_gcd
MIN_gcd

MP_pow2_gcd
RA_gcd

RC_pow2_gcd
RM_pow2_gcd

SW_gcd

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 200 400 600 800 1000 1200 1400 1600 1800

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

FC_pow2_gcd
CRJ_pow2_gcd

MAX_pow2_gcd
MIN_gcd

MP_pow2_gcd
RA_gcd

RC_pow2_gcd
RM_pow2_gcd

SW_gcd

130 APPENDIX D.

Real-Life Benchmarks (The First Set)

 0

 5

 10

 15

 20

 290 292 294 296 298 300 302 304

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

FC
FC_gcd

FC_pow2
FC_pow2_gcd

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

FC
FC_gcd

FC_pow2
FC_pow2_gcd

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

FC
FC_gcd

FC_pow2
FC_pow2_gcd

131

Real-Life Benchmarks (The First Set)

 0

 5

 10

 15

 20

 288 290 292 294 296 298 300 302 304

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

CRJ
CRJ_gcd

CRJ_pow2
CRJ_pow2_gcd

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

CRJ
CRJ_gcd

CRJ_pow2
CRJ_pow2_gcd

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250 300

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

CRJ
CRJ_gcd

CRJ_pow2
CRJ_pow2_gcd

132 APPENDIX D.

Real-Life Benchmarks (The First Set)

 0

 5

 10

 15

 20

 290 292 294 296 298 300 302 304

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

MAX
MAX_gcd

MAX_pow2
MAX_pow2_gcd

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300 350

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

MAX
MAX_gcd

MAX_pow2
MAX_pow2_gcd

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

MAX
MAX_gcd

MAX_pow2
MAX_pow2_gcd

133

Real-Life Benchmarks (The First Set)

 0

 5

 10

 15

 20

 290 292 294 296 298 300 302 304

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

MIN
MIN_gcd

MIN_pow2
MIN_pow2_gcd

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

MIN
MIN_gcd

MIN_pow2
MIN_pow2_gcd

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

MIN
MIN_gcd

MIN_pow2
MIN_pow2_gcd

134 APPENDIX D.

Real-Life Benchmarks (The First Set)

 0

 5

 10

 15

 20

 290 292 294 296 298 300 302 304

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

MP
MP_gcd

MP_pow2
MP_pow2_gcd

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300 350

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

MP
MP_gcd

MP_pow2
MP_pow2_gcd

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

MP
MP_gcd

MP_pow2
MP_pow2_gcd

135

Real-Life Benchmarks (The First Set)

 0

 5

 10

 15

 20

 286 288 290 292 294 296 298 300 302 304

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

RA
RA_gcd

RA_pow2
RA_pow2_gcd

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

RA
RA_gcd

RA_pow2
RA_pow2_gcd

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

RA
RA_gcd

RA_pow2
RA_pow2_gcd

136 APPENDIX D.

Real-Life Benchmarks (The First Set)

 0

 5

 10

 15

 20

 280 285 290 295 300 305

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

RC
RC_gcd

RC_pow2
RC_pow2_gcd

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

RC
RC_gcd

RC_pow2
RC_pow2_gcd

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250 300

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

RC
RC_gcd

RC_pow2
RC_pow2_gcd

137

Real-Life Benchmarks (The First Set)

 0

 5

 10

 15

 20

 286 288 290 292 294 296 298 300 302 304

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

RM
RM_gcd

RM_pow2
RM_pow2_gcd

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300 350

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

RM
RM_gcd

RM_pow2
RM_pow2_gcd

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

RM
RM_gcd

RM_pow2
RM_pow2_gcd

138 APPENDIX D.

Real-Life Benchmarks (The First Set)

 0

 5

 10

 15

 20

 290 292 294 296 298 300 302 304

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

SW
SW_gcd

SW_pow2
SW_pow2_gcd

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

SW
SW_gcd

SW_pow2
SW_pow2_gcd

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

SW
SW_gcd

SW_pow2
SW_pow2_gcd

139

Real-Life Benchmarks (The First Set)

 0

 5

 10

 15

 20

 280 285 290 295 300 305

C
P

U
 t

im
e
 (

s)

Number of solved benchmarks

FC
CRJ

MAX
MIN
MP
RA
RC
RM
SW

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300 350

N
u
m

b
e
r

o
f

v
a
ri

a
b
le

s

Number of solved benchmarks

FC

CRJ

MAX

MIN

MP

RA

RC

RM

SW

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350

T
o
ta

l
C

P
U

 t
im

e
 (

s)

Number of solved benchmarks

FC
CRJ

MAX
MIN
MP
RA
RC
RM
SW

140 APPENDIX D.

Real-Life Benchmarks (The Second Set)

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

FC
FC_gcd

FC_pow2
FC_pow2_gcd

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 5 10 15 20 25 30

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

FC
FC_gcd

FC_pow2
FC_pow2_gcd

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

FC
FC_gcd

FC_pow2
FC_pow2_gcd

141

Real-Life Benchmarks (The Second Set)

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

CRJ
CRJ_gcd

CRJ_pow2
CRJ_pow2_gcd

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 5 10 15 20 25 30

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

CRJ
CRJ_gcd

CRJ_pow2
CRJ_pow2_gcd

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

CRJ
CRJ_gcd

CRJ_pow2
CRJ_pow2_gcd

142 APPENDIX D.

Real-Life Benchmarks (The Second Set)

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

MAX
MAX_gcd

MAX_pow2
MAX_pow2_gcd

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 5 10 15 20 25 30

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

MAX
MAX_gcd

MAX_pow2
MAX_pow2_gcd

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

MAX
MAX_gcd

MAX_pow2
MAX_pow2_gcd

143

Real-Life Benchmarks (The Second Set)

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

MIN
MIN_gcd

MIN_pow2
MIN_pow2_gcd

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 5 10 15 20 25

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

MIN
MIN_gcd

MIN_pow2
MIN_pow2_gcd

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

MIN
MIN_gcd

MIN_pow2
MIN_pow2_gcd

144 APPENDIX D.

Real-Life Benchmarks (The Second Set)

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

MP
MP_gcd

MP_pow2
MP_pow2_gcd

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 5 10 15 20 25 30

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

MP
MP_gcd

MP_pow2
MP_pow2_gcd

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

MP
MP_gcd

MP_pow2
MP_pow2_gcd

145

Real-Life Benchmarks (The Second Set)

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

RA
RA_gcd

RA_pow2
RA_pow2_gcd

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 2 4 6 8 10 12 14

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

RA
RA_gcd

RA_pow2
RA_pow2_gcd

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

RA
RA_gcd

RA_pow2
RA_pow2_gcd

146 APPENDIX D.

Real-Life Benchmarks (The Second Set)

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

RC
RC_gcd

RC_pow2
RC_pow2_gcd

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 2 4 6 8 10 12 14 16

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

RC
RC_gcd

RC_pow2
RC_pow2_gcd

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14 16

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

RC
RC_gcd

RC_pow2
RC_pow2_gcd

147

Real-Life Benchmarks (The Second Set)

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

RM
RM_gcd

RM_pow2
RM_pow2_gcd

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 5 10 15 20 25 30

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

RM
RM_gcd

RM_pow2
RM_pow2_gcd

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

RM
RM_gcd

RM_pow2
RM_pow2_gcd

148 APPENDIX D.

Real-Life Benchmarks (The Second Set)

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

SW
SW_gcd

SW_pow2
SW_pow2_gcd

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 5 10 15 20 25

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

SW
SW_gcd

SW_pow2
SW_pow2_gcd

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

SW
SW_gcd

SW_pow2
SW_pow2_gcd

149

Real-Life Benchmarks (The Second Set)

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

FC_gcd
CRJ_gcd

MAX_gcd
MIN_gcd
MP_gcd

RA_pow2_gcd
RC_gcd
RM_gcd
SW_gcd

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 5 10 15 20 25 30

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

FC_gcd
CRJ_gcd

MAX_gcd
MIN_gcd
MP_gcd

RA_pow2_gcd
RC_gcd
RM_gcd
SW_gcd

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

FC_gcd
CRJ_gcd

MAX_gcd
MIN_gcd
MP_gcd

RA_pow2_gcd
RC_gcd
RM_gcd
SW_gcd

150 APPENDIX D.

Real-Life Benchmarks (The Third Set By L. de Moura)

 0

 5

 10

 15

 20

 250 300 350 400 450 500 550 600 650 700

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

FC
FC_gcd

FC_pow2
FC_pow2_gcd

 146

 148

 150

 152

 154

 156

 158

 160

 162

 164

 0 100 200 300 400 500 600

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

FC
FC_gcd

FC_pow2
FC_pow2_gcd

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

FC
FC_gcd

FC_pow2
FC_pow2_gcd

151

Real-Life Benchmarks (The Third Set By L. de Moura)

 0

 5

 10

 15

 20

 250 300 350 400 450 500 550 600 650 700

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

CRJ
CRJ_gcd

CRJ_pow2
CRJ_pow2_gcd

 146

 148

 150

 152

 154

 156

 158

 160

 162

 164

 0 100 200 300 400 500 600

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

CRJ
CRJ_gcd

CRJ_pow2
CRJ_pow2_gcd

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

CRJ
CRJ_gcd

CRJ_pow2
CRJ_pow2_gcd

152 APPENDIX D.

Real-Life Benchmarks (The Third Set By L. de Moura)

 0

 5

 10

 15

 20

 300 350 400 450 500 550 600 650 700

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

MAX
MAX_gcd

MAX_pow2
MAX_pow2_gcd

 146

 148

 150

 152

 154

 156

 158

 160

 162

 164

 0 100 200 300 400 500 600

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

MAX
MAX_gcd

MAX_pow2
MAX_pow2_gcd

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

MAX
MAX_gcd

MAX_pow2
MAX_pow2_gcd

153

Real-Life Benchmarks (The Third Set By L. de Moura)

 0

 5

 10

 15

 20

 250 300 350 400 450 500 550 600 650 700

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

MIN
MIN_gcd

MIN_pow2
MIN_pow2_gcd

 146

 148

 150

 152

 154

 156

 158

 160

 162

 164

 0 100 200 300 400 500 600

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

MIN
MIN_gcd

MIN_pow2
MIN_pow2_gcd

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

MIN
MIN_gcd

MIN_pow2
MIN_pow2_gcd

154 APPENDIX D.

Real-Life Benchmarks (The Third Set By L. de Moura)

 0

 5

 10

 15

 20

 250 300 350 400 450 500 550 600 650 700

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

MP
MP_gcd

MP_pow2
MP_pow2_gcd

 146

 148

 150

 152

 154

 156

 158

 160

 162

 164

 0 100 200 300 400 500 600

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

MP
MP_gcd

MP_pow2
MP_pow2_gcd

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

MP
MP_gcd

MP_pow2
MP_pow2_gcd

155

Real-Life Benchmarks (The Third Set By L. de Moura)

 0

 5

 10

 15

 20

 100 200 300 400 500 600 700

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

RA
RA_gcd

RA_pow2
RA_pow2_gcd

 146

 148

 150

 152

 154

 156

 158

 160

 162

 164

 0 50 100 150 200 250 300 350

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

RA
RA_gcd

RA_pow2
RA_pow2_gcd

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 50 100 150 200 250 300 350

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

RA
RA_gcd

RA_pow2
RA_pow2_gcd

156 APPENDIX D.

Real-Life Benchmarks (The Third Set By L. de Moura)

 0

 5

 10

 15

 20

 200 250 300 350 400 450 500 550 600 650 700

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

RC
RC_gcd

RC_pow2
RC_pow2_gcd

 146

 148

 150

 152

 154

 156

 158

 160

 162

 164

 0 50 100 150 200 250 300 350 400

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

RC
RC_gcd

RC_pow2
RC_pow2_gcd

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 50 100 150 200 250 300 350 400

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

RC
RC_gcd

RC_pow2
RC_pow2_gcd

157

Real-Life Benchmarks (The Third Set By L. de Moura)

 0

 5

 10

 15

 20

 250 300 350 400 450 500 550 600 650 700

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

RM
RM_gcd

RM_pow2
RM_pow2_gcd

 146

 148

 150

 152

 154

 156

 158

 160

 162

 164

 0 100 200 300 400 500 600

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

RM
RM_gcd

RM_pow2
RM_pow2_gcd

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 100 200 300 400 500 600

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

RM
RM_gcd

RM_pow2
RM_pow2_gcd

158 APPENDIX D.

Real-Life Benchmarks (The Third Set By L. de Moura)

 0

 5

 10

 15

 20

 250 300 350 400 450 500 550 600 650 700

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

SW
SW_gcd

SW_pow2
SW_pow2_gcd

 146

 148

 150

 152

 154

 156

 158

 160

 162

 164

 0 100 200 300 400 500 600

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

SW
SW_gcd

SW_pow2
SW_pow2_gcd

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 100 200 300 400 500 600

T
o
ta

l
C

P
U

 t
im

e
(s

)

Number of solved benchmarks

SW
SW_gcd

SW_pow2
SW_pow2_gcd

159

Real-Life Benchmarks (The Third Set By L. de Moura)

 0

 5

 10

 15

 20

 200 250 300 350 400 450 500 550 600 650 700

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

FC_pow2_gcd
CRJ_gcd

MAX_gcd
MIN_gcd

MP_pow2_gcd
RA_gcd
RC_gcd

RM_pow2_gcd
SW_gcd

 146

 148

 150

 152

 154

 156

 158

 160

 162

 164

 0 100 200 300 400 500 600

N
u
m

b
er

 o
f

v
ar

ia
b
le

s

Number of solved benchmarks

FC_pow2_gcd
CRJ_gcd

MAX_gcd
MIN_gcd

MP_pow2_gcd
RA_gcd
RC_gcd

RM_pow2_gcd
SW_gcd

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 100 200 300 400 500 600

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

FC_pow2_gcd
J_gcd

MAX_gcd
MIN_gcd

MP_pow2_gcd
RA_gcd
RC_gcd

RM_pow2_gcd
SW_gcd

160 APPENDIX D.

Index

S<k - subset of constraints, 35

S=k - subset of constraints, 35

I(S, σ, k) - interval, 36

L(S, σ, k) - lower bound, 36

σv
x - update of assignment, 24

S - state of the system, 36

� - order on variables, 23, 35

U(S, σ, k) - upper bound, 36

k-conflict, see conflict

σ - assignment on variables, 24

Agmon S., 33

AR rule, see assignment refinement rule

(AR)

assignment refinement rule (AR), 37,

38, 55, 63, 82

Barcelogic, 70, 73, 75, 93–95

benchmarks

randomly generated benchmarks, 69,

70, 73, 79, 89, 91

real-life benchmarks, 69, 71, 76, 85,

87, 89, 91, 92

bundles of heuristics, 79, 91

Chernikov algorithm, 21, 31, 31, 70, 73,

74, 99

redundancy criteria, 31

Chernikov S. N., 31

conflict, 36

conflict resolution method, 20, 21, 34,

35, 35–42, 48, 51, 65, 69, 94,

95, 97

I(S, σ, k) - interval, 36

L(S, σ, k) - lower bound, 36

U(S, σ, k) - upper bound, 36

algorithm, 39

conflict, 36

correctness and termination, 41

extensions, 45–47

half-bounded intervals, 36

half-bounding levels, 36

implementation, 59

inference, 37

level of constraints, 35

non-redundant constraints “almost”,

45

order on variables, 55, 55–59

properties, 42, 42–45

conflict resolution rule (CR), 37, 55, 82

constraint

implementation, 52

most violated constraint, 61

redundant, 31

CR rule, see conflict resolution rule

CVC3, 70, 73, 74, 93–95

Dantzig G. B., 26, 28, 32

de Moura L., 70

Dines L. L., 26

161

162 INDEX

DPLL(T), 49

ellipsoid method, 27

Fourier-Motzkin method, 20, 21, 26, 28,

29, 29, 29–31, 47, 48, 69, 70, 73,

74, 98

geometric interpretation, 30

modifications, 31

Fourier J. B. J., 26, 29, 98

GMP library, 51

GoRRiLA - tool, 69, 71

half-bounded intervals, 63, 85, 92

Hard Reality Tool (HRT), 70, 71

heuristics

general heuristics, 78

major heuristics, 78

HRT

see Hard Reality Tool, 70

hyperplane, 25, 34

implementation, 51

data structure, 51

input constraints, 53

levels, 54

parser, 51

Phase I, see Phase I

Phase III, see Phase III

preprocessing, 65

almost half-bounding levels, 66

half-bounding levels, 65

quadruple, see quadruple

sort input constraints, 51

trace variables, 53

incrementality, 21, 49, 50, 99

interior point method, 20, 27, 28, 98

Kantorovich L. V., 26

Karmarkar N., 27

Khachiyan L. G., 27

Koopmans Tj. C., 26

Korovin K., 70

level

half-bounding level, 36

implementation, 54

of a constraint, 35

linear constraint, 23

level of constraints, 35

normalised linear constraint, 24

solution of a linear constraint, 24

linear programming, 20, 25, 26, 32, 47

Mehrota S., 27

method

barrier function method, 27

Chernikov algorithm, 21, 31, 31, 70,

73, 74, 99

conflict resolution method, 20, 21,

34, 35, 35–42, 48, 65, 69, 94,

95, 97

ellipsoid method, 27

Fourier-Motzkin method, 20, 21, 26,

28, 29, 29, 29–31, 47, 48, 69, 70,

73, 98

interior point method, 20, 27, 28,

98

path-following method, 27

relaxation method, 61

simplex method, 20, 21, 26–28, 32,

32–33, 69, 70, 75, 98, 99

Motzkin T. S., 26, 33

Nemirovskii A. S., 27

INDEX 163

Nocedal J., 27

non-redundant constraints “almost”, 45

order on variables, 55, 55–59

performance

equal and nearly equal performances,

82, 85

the best performance in quadruples,

84, 87

Phase I, 69

experiments, 73

summary of experiments, 76

Phase II, 69

summary of experiments, 91

experiments, 76

Phase III, 69

experiments, 92

summary of experiments, 94

polyhedron, 25, 30, 32, 34

preprocessing

almost half-bounding levels, 66

experiments, 92

half-bounding levels, 65

quadruple, 78, 82, 85

real-life benchmarks, 75

redundancy

see redundant constraints, 47

redundant constraints, 31, 47

relaxation method, 61

geometric interpretation, 33

Satisfiability Modulo Theories (SMT),

19, 49, 49–51, 69, 73, 99

SMT-LIB, 51, 69, 71, 79

QF LRA, 72

Schoenberg I. J., 33

Schrijver A., 28, 30

Shor N. Z., 27

simplex method, 20, 21, 26–28, 32, 32,

32–33, 69, 70, 75, 98, 99

geometric interpretation, 32

strategies

adding resolvents, 63

closest binary, see middle point

for adding resolvents, 77

for choosing conflicts, 77

for selecting assignment values, 62,

77

interleaved points, 62

maximal (minimal) point, 62

middle point, 62, 93

random choice, 62

for selecting conflicts, 61

algebraic approach, see maximal

overlap strategy

geometric approach, 61

maximal overlap strategy, 61, 93

random choice approach, 62

take the first, 62

for setting order on variables, 65

half-bounded intervals, 64, 77

maximal overlap strategy, 82

reducing constraints by GCD, 64,

78

system of linear constraints, 20, 23, 29,

35, 40

application, 28

geometric interpretation, 25

solution of a system, 24

solving, 20, 25, 28, 32, 33, 97

164 INDEX

unsatisfiability explanations, 21, 49, 50,

99

value of the variable, 24

Vampire theorem prover, 51

von Neumann J., 26, 27

Voronkov A., 51, 70

Wright S., 27

Yudin D. B., 27

Z3, 70, 93–95

