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Percutaneous coronary intervention with stent deployment is the dominant form of 

revascularisation for patients with coronary artery disease. Although drug-eluting stents 

have reduced the incidence of instent restenosis, they are associated with late problems 

related to delayed vascular healing including late stent thrombosis. The use of gene-

eluting stents offers the potential to deliver localised gene therapy to the vascular wall 

with the aim of both reducing restenosis and promoting endothelialisation. 

Two candidate genes were investigated. Connective tissue growth factor (CTGF) 

promotes smooth muscle cell apoptosis and stimulates endothelial growth in vitro, and 

has an integral role in wound healing. Fibromodulin (FMOD) is involved in collagen 

metabolism and is a key mediator of scarless wound healing. Both genes have 

previously been shown to suppress restenosis in an ex vivo vein graft model. 

Plasmids containing these two genes were constructed with an expression cassette 

specially designed to maximise transgene expression in vascular smooth muscle cells. 

These plasmids were coated onto coronary stents with a polymer and the effects of these 

gene-eluting stents were investigated in an in vivo pig coronary artery model. Previous 

work by our group has suggested that systemic β-blockade can affect the degree of 

transgene expression from viral vectors, and experiments were also performed to 

investigate the effect of β-blockers on plasmid-mediated gene expression. 

At 28 days there was no significant difference in angiographic late loss or neointimal 

hyperplasia between the groups treated with stents coated with FMOD or CTGF and the 

group treated with stents coated with the marker gene lacZ. This lack of efficacy 

appeared to be as a result of extremely poor transgene expression rather than due to a 

genuine failure of the transgenes to elicit a relevant biological effect. There was no 

difference in in vivo gene expression demonstrated as a result of β-blockade, but again 

this result was probably due to limited transgene expression. 

The potential causes of poor transgene expression in this study are reviewed and future 

directions for research on plasmid-mediated gene therapy are considered. 
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1 Introduction 

Atherosclerotic coronary artery disease (CAD) is pandemic in the developed world and 

remains the most common cause of mortality
1
. Angina, symptomatic myocardial 

ischemia secondary to obstructive coronary stenoses, is responsible for an enormous 

symptom burden which is often refractory to medical therapy. In these cases, 

mechanical revascularisation either by means of coronary artery bypass grafting 

(CABG) or percutaneous coronary intervention (PCI) is frequently required. Since PCI 

was first performed in 1977, it has become the predominant method of revascularisation 

for patients with symptomatic CAD and 885,000 procedures were performed in Europe 

in 2004
2
 and ≈1 million in the US in 2005

3
. The original procedure of balloon 

angioplasty alone had important limitations. In the short-term, vessel wall dissection 

and thrombus formation were common and restenosis (progressive luminal narrowing 

due to constrictive remodelling and neointimal hyperplasia) occurred in 20-50% of 

patients within 12 months, often necessitating a repeat procedure. The widespread use 

of coronary stents (and improvements in periprocedural antiplatelet therapy) 

substantially reduced the incidence of short-term complications and, by eliminating 

constrictive remodelling, the long-term risk of restenosis. However repeated 

revascularisation is still needed to treat in-stent restenosis (ISR) in ≈14% of patients 

receiving a bare metal stent (BMS)
4
. This represents a huge clinical and economic 

burden with recent estimates suggesting that ISR costs >$2.5 billion annually in the US 

alone
5
. 

There have been many different approaches to solving the problem of ISR, the vast 

majority of which have not been shown to have clinical utility. Several systemic 

pharmacological approaches have been shown to be ineffective in clinical trials despite 

promising preclinical data
6, 7

. Localised intracoronary radiotherapy (brachytherapy) 

briefly reached clinical practice but was found to be limited by significant long-term 

complications. Drug-eluting stents (DES) coated with antimitotic agents were the next 

major development to address the problem of ISR, with seminal early trials reporting 

minimal restenosis
8, 9

. Commentators proclaimed that the death knell had tolled for 

ISR
10

. 
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However, DES have not lived up to their initial promise. Restenosis still occurs in high-

risk patients such as those with diabetes
11

 and, more worryingly, serious complications 

such as late stent thrombosis related to delayed endothelialisation of the stented segment 

have been recognised
12-20

. It has become apparent that safer, more effective methods of 

reducing restenosis are still required. Research is ongoing into coating stents with novel 

agents, including other antimitotic drugs and antibodies targeted at endothelial 

progenitor cells, and bioabsorbable stents have been developed. Currently, none of these 

approaches has been shown to have significant advantages over current stent 

technology. Gene therapy using coronary stents as a delivery mechanism offers an 

alternative approach to the problem of restenosis with the potential to modify the vessel 

wall response to injury favourably by both reducing neointimal formation and 

promoting rapid endothelialisation. 

1.1 The mechanisms of restenosis 

The normal arterial wall consists of three distinct layers (Figure 1). The intima, the 

innermost layer in contact with blood within the vessel lumen, consists of a single cell 

thickness layer of endothelial cells. The intima is bordered by the internal elastic lamina 

and surrounded by the media, which contains several layers of smooth muscle cells with 

separating elastic fibres. The media is separated from the adventitia by the external 

elastic lamina. The adventitia, the outermost coat, is composed primarily of collagen 

which gives the vessel structure, as well as anchoring it to adjoining structures. 

Occasional fibroblasts can be found within the adventitia. 
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Figure 1 - Anatomy of the arterial wall 

Adapted from diagram by Stijn Ghesquiere (under Creative Commons license) 

 

Restenosis can be defined as a reduction in lumen size at a late timepoint following an 

initially successful intravascular interventional procedure. Restenosis following balloon 

angioplasty is primarily a result of both vessel wall remodelling and neointimal 

hyperplasia. Negative remodelling i.e. vessel shrinkage, was identified as a key 

contributor to the restenotic process by intravascular ultrasound (IVUS) studies in the 

mid-1990s
21, 22

 and is thought to be related to neointimal extracellular matrix (ECM) 

remodelling, and increased collagen deposition by adventitial myofibroblasts
23

. The 

advent of routine coronary stent deployment in PCI has largely eliminated constrictive 

remodelling however
24

, leaving neointimal hyperplasia as the sole major contributor to 

ISR. The pathophysiology of restenosis in the stent era has been reviewed in detail 

recently
25

 and is illustrated in Figure 2. 
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Figure 2 - Flow chart illustrating the restenotic process 

ECM = extracellular matrix; EPCs = endothelial progenitor cells; SMCs  = smooth muscle cells 

 

The restenotic process can be thought of as a general wound healing response
26, 27

. 

Vascular injury by high pressure balloon injury or stent deployment causes immediate 

deendothelialisation, atherosclerotic plaque compression, and vessel stretch, often with 

dissection into the media and occasionally the adventitia. Circulating platelets are 

recruited and initiate thrombus formation. Platelet activation occurs via two distinct 

pathways, mediated by either collagen or tissue factor
28

. Firstly, exposure of collagen 

within the subendothelial ECM leads to platelet activation via glycoprotein VI, a 

collagen receptor on platelets, and via the interaction of platelet glycoprotein Ib-V-IX 

with collagen-bound von Willebrand factor. Secondly tissue factor, a membrane-bound 

cytokine receptor analogue found both within the vessel wall and in blood, forms a 
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complex with circulating factor VIIa thus initiating the proteolytic coagulation cascade 

leading to thrombin and fibrin generation, and subsequent platelet activation via 

cleavage of protease-activated receptor 4 on the platelet surface
28

. 

Activated platelets express P-selectin which causes leucocyte adhesion and rolling 

across the damaged endothelium, followed by stronger leucocyte adhesion and 

migration mediated by integrins (particularly leucocyte Mac-1
29

). 

Monocytes/macrophages accumulate within the vessel wall and, following stent 

deployment, cluster around the stent struts
30

. These cells can undergo phenotypic 

transformation into myofibroblasts
31

. The net result is a cycle of inflammation and 

thrombosis 
32

. 

Growth factors released from SMCs, platelets and leucocytes induce a cellular 

proliferative phase. Normally vascular SMCs remain quiescent in the G0 phase of the 

cell cycle and possess a contractile function. Following vascular injury there is 

phenotypic modulation of SMCs
33

 which enter the G1 phase of the cell cycle and 

migrate from the media to the intima where they proliferate
34

 and increase the 

expression of ECM proteins
35

. Phenotypic modulation of adventitial fibroblasts to 

collagen-producing myofibroblasts also occurs and some of these cells migrate to the 

luminal surface of the vessel
36-39

. However it is unclear to what extent myofibroblasts 

contribute to neointimal formation. A study of SMC differentiation markers including 

smoothelin, a marker of late SMC differentiation, in a porcine coronary artery model 

found that SMCs rather than myofibroblasts represent the main cellular component of 

neointima; this suggests that the adventitial response may be unrelated to neointimal 

proliferation
40

. 

Although it was thought originally that the principal component of neointima was an 

excess of proliferative SMCs, it is now appreciated that the neointima in humans, at 

least after a few months, consists primarily of large amounts of proteoglycan-rich ECM, 

with few SMCs and numerous cell-depleted areas
41-43

. Interestingly, although animal 

models have shown that early exuberant intimal SMC proliferation may be an important 

contributor to the restenotic process, this phenomenon has never been demonstrated in 

humans. For instance, O‟Brien and colleagues measured histone 3 mRNA expression, a 

sensitive marker of cell replication, in atherectomy specimens obtained from human 
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coronary restenotic lesions within three months of the original interventional 

procedure
44

. They found that the overall maximum percentage of replicating cells was 

less than 0.5%, although there were focal areas identified with higher levels of 

replication. These results raise the possibility that cellular replication may not contribute 

significantly to neointimal expansion in humans. 

Neointimal ECM consists of varying quantities of proteoglycans (biglycan, versican and 

decorin) and glycoproteins (fibronectin, thrombospondin-1, osteopontin and tenascin-

C), as well as the glycosaminoglycan hyaluronic acid and several members of the 

collagen family. Freshly deposited ECM is rich in the water-trapping macromolecules 

hyaluronic acid and versican
45

, as well as the glycoprotein fibronectin
46

. The cytokine 

transforming growth factor-β(TGF-β) is overexpressed in the arterial wall early after 

vascular injury and is a key regulator of ECM gene expression. 

Over a period of months, the neointima enters a chronic remodelling phase 

characterised by ECM protein degradation and resynthesis. Matrix metalloproteinases 

are important regulators of ECM remodelling and their expression is upregulated 

following vascular injury
47, 48

. Post-mortem human studies have shown that this process 

can extend for up to 18 months, with a gradual decline in cellularity, type III collagen, 

versican and hyaluronan content and a gradual increase in type I collagen and decorin
43, 

49
. The finding of cell-depleted areas in chronic neointima suggests that SMC apoptosis 

occurs during this process
42

. After the initial development of neointimal hyperplasia 

during the first few months following stent deployment a degree of neointimal 

regression can occur. In a porcine model neointimal regression was demonstrated 

between two and six months which was associated with a reduction in proteoglycan 

content but with no change in SMC density or overall collagen content although, as 

demonstrated in the human post-mortem studies, there was a relative increase in type I 

and relative decrease in type III collagen at six months
50

. Late neointimal regression has 

also been demonstrated with BMS in humans and typically occurs after six months
51-53

. 

During very long-term follow-up there appears to be a triphasic response, with the 

initial ISR regressing between six months and three years before further progression 

after three years
54

. The mechanism for these late changes is unclear. 
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Functional vascular endothelium is essential for maintaining normal vessel wall 

function and permeability. Circulating platelets contribute to this physiological steady 

state by the constitutive release of proangiogenic cytokines and growth factors from 

platelet granules which bind to specific endothelial cell surface receptors
55

. The normal 

endothelium is a key producer of nitric oxide, a potent vasodilator and thromboregulator 

which inhibits platelet aggregation and SMC proliferation
56

. It has long been established 

that endothelial denudation alone, without disruption of the underlying media, results in 

significant neointimal formation
57

. As discussed earlier, endothelial disruption and 

exposure of subendothelial collagen and tissue factor leads to rapid platelet aggregation 

and thrombus formation; deployment of a coronary stent causes more endothelial 

disruption than balloon angioplasty alone
58

. The recent discovery that mice lacking the 

P2Y(12) platelet receptor have significantly less neointima formation following 

vascular injury
59

 supports the theory that platelet aggregation and thrombus formation 

provide an important stimulus to neointimal formation, and as a consequence promoting 

re-endothelialisation may lead to a reduction in ISR. 

Circulating CD34-positive bone marrow derived stem cells, which have the potential to 

differentiate into endothelial cells, have recently been identified: so-called endothelial 

progenitor cells (EPCs)
60

. Re-endothelialisation is now known to be a result of both 

local proliferation and migration of endothelial cells from the edge of the injured 

segment
57

, and recruitment of circulating EPCs. A recent study has also highlighted the 

presence of bone-marrow derived smooth muscle progenitor cells which may contribute 

to the restenotic process
61

. In that study, coronary stenting induced recruitment of both 

types of progenitor cell from the bone marrow, an effect possibly mediated by Mac-1 

integrin dependent activated neutrophils. 

Facilitating endothelialisation might be expected therefore to reduce neointima 

formation, as well as reducing the risk of late stent thrombosis. This hypothesis is 

supported by evidence from recent animal studies. Vascular endothelial growth factor 

(VEGF), an endothelial mitogen, has been shown to reduce restenosis in several animal 

models
62-65

. Mobilisation of EPCs has been shown to promote endothelialisation and 

reduce neointimal hyperplasia in a rat model
66

 and ex vivo transduction of EPCs with 

the nitric oxide synthase (NOS) isoform eNOS improved endothelialisation and reduced 

neointimal hyperplasia further whilst also reducing thrombosis
67

. There appear to be 



Intracoronary gene transfer via plasmid-eluting stents  Paul Williams

   

 25 

important differences between NOS isoforms: adenoviral transfer of eNOS into the 

balloon injured rabbit carotid artery has been shown to both enhance endothelialisation 

and reduce neointimal hyperplasia, whereas transfer of iNOS impaired 

endothelialisation
68

. 

1.2 Clinical approaches to reduce restenosis 

Our knowledge of the molecular and cellular mechanisms of restenosis has provided 

several potential therapeutic strategies. These can be broadly divided into five 

categories: reducing thrombosis, minimising inflammation, inhibiting cellular 

proliferation, modifying ECM deposition and enhancing endothelialisation. 

Pharmacological approaches include a vast array of anticoagulant, antiplatelet, 

antifibrotic, antioxidant and immunosuppressant agents, as well as antibiotics, statins, 

angiotensin-converting enzyme (ACE) inhibitors and β-blockers
69

. However, despite 

promising animal data none of these agents have been shown to be beneficial in human 

trials
6, 7

, and it seems unlikely that a systemically administered therapy will reach 

sufficient local concentrations at the site of injury over an appropriate timeframe to be 

efficacious without causing side-effects. 

Coronary stents have proved a major advance in the management of coronary artery 

disease. By remaining permanently in the coronary wall, stents act as a scaffold device 

and essentially eliminate acute vessel recoil and constrictive remodelling
24

, thus 

significantly reducing the long-term risk of restenosis. Given that stents are now 

deployed in almost all PCI procedures, the current overriding clinical problem is that of 

ISR due to neointimal hyperplasia. 

Intracoronary radiotherapy (brachytherapy) became the “gold-standard” for treating ISR 

in the late 1990s with impressive short-term results. However the difficulty of setting up 

a brachytherapy service, with complex licensing procedures for physicians, and the 

recognition of the problems of delayed restenosis
70, 71

 and late stent thrombosis
72

 limited 

uptake, and the devices have now been withdrawn from market
73

. 

Drug-eluting stents represented the next major development in combating restenosis. To 

date, DES have been coated with a biocompatible polymer and an anti-mitotic agent that 

targets cell division and inhibits neointimal proliferation primarily by reducing SMC 
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proliferation
25

. The first stents to reach clinical practice in 2003 were coated with either 

paclitaxel or sirolimus. 

Early trials of DES demonstrated dramatic reductions in ISR by comparison with BMS, 

and a reduction in the need for repeat revascularization without evidence of systemic 

side-effects
8, 9, 74, 75

. These trials, however, offered relatively short-term follow-up, were 

not powered to examine safety end-points, and included only clinically stable patients 

with simple, newly-diagnosed lesions. Nonetheless, on the basis of this evidence, the 

uptake of DES was rapid and their use in clinical practice extended to higher risk 

patients with more complex lesions than were included in the original studies. In 2006, 

DES represented >90% of all stents implanted in some countries
5
 and millions have 

been implanted worldwide. 

However, DES do not represent a panacea for obstructive coronary disease. In high risk-

groups such as diabetic patients, a significant minority of patients still develop 

restenosis 
11

 and there is increasing realisation that there can be a late “catch up” 

phenomenon, with the restenotic process only being postponed rather than eliminated 
76-

78
. Late incomplete stent malapposition and stent-related aneurysms, which are 

extremely rare with BMS, have been described
79, 80

. 

Of more concern are reports showing that vessels containing a DES are at increased risk 

of late stent thrombosis (defined as >30 days after implantation)
12-20

. This often 

catastrophic event manifests as acute myocardial infarction (MI) or sudden death and 

has a mortality rate that may be as high as 50%
81-83

. Studies of the potential mechanisms 

of late thrombosis in DES have implicated delayed healing and increased inflammation 

at the site of stenting
84, 85

, characterised by persistent fibrin deposition, and incomplete 

endothelialisation of stent struts
86

. Delayed healing appears to be particularly marked in 

areas of stent overlap, where local drug concentrations are highest
86

; overlapping stents 

are very commonly deployed clinically in long lesions. Subsequent post-mortem and 

angioscopic studies have confirmed these findings in humans, and provided a 

pathophysiological explanation for late stent thrombosis
87-90

. Deendothelialisation 

remains significantly greater within DES at 6 months
89, 90

, associated with a >5-fold 

increase in adherent thrombus in stented segments at this time point
90

. Delayed healing 

and the subsequent risk of late stent thrombosis appears to be a particular concern when 
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DES are implanted as the primary treatment for an MI (primary PCI) when there is 

often a large area of necrotic core at the site of plaque rupture
83

. Late incomplete stent 

apposition, which is more common with DES than with BMS, has also been linked to an 

increased risk of late stent thrombosis
91, 92

. 

As well as directly inhibiting local endothelial cell proliferation, other mechanisms have 

been proposed for the delayed endothelialisation seen with DES. Deployment of 

sirolimus-eluting coronary stents significantly suppresses the mobilisation and 

subsequent differentiation of endothelial progenitor cells from the bone marrow, 

possibly by reducing inflammation locally
61

. Deployment of sirolimus-eluting stents 

also reduces circulating levels of VEGF, as compared with BMS, in patients undergoing 

PCI for stable angina
93

. Localised hypersensitivity reactions to the polymer or drug 

coating on DES also represent another mechanism for late stent thrombosis
88, 94

. A 

recent study by Cook and colleagues showed increased eosinophilic infiltrates within 

coronary thrombus aspirated from patients presenting with late stent thrombosis, and 

this correlated with positive remodelling of the vessel wall and incomplete stent 

apposition. These findings suggest that DES can induce a chronic necrotising vasculitis 

secondary to localised hypersensitivity 
92

, although it is unclear whether this reaction 

occurs in response to the drug or the polymer (or both). 

It is of some concern that registry data shows that the risk of stent thrombosis remains 

up to at least 3 years post-implantation, with a cumulative risk of 0.6% per year
95, 96

, 

suggesting that DES can cause chronic deendothelialisation. Although the risk of stent 

thrombosis can be mitigated by the use of longer durations of oral antiplatelet 

medications, it is currently not clear when, if at all, it is safe to discontinue antiplatelet 

agents, and these drugs can significantly increase the long-term risk of bleeding 

complications. 

In December 2006 the US Food and Drugs Administration‟s Circulatory Devices 

Systems Advisory Panel reviewed the current evidence surrounding this issue. They 

concluded that for licensed indications in relatively simple coronary lesions DES appear 

safe
19

, but when used “off-label”, in more complex disease and higher risk patients, the 

risks of late thrombosis, death and MI are possibly increased and prognosis may be 

worsened
13, 14, 16, 20

. Although several new DES have come to market
97, 98

, they all use 
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similar anti-mitotic agents to the original DES and are likely to have similar problems 

with delayed healing, chronic deendothelialisation and late stent thrombosis. As a result, 

DES utilisation has fallen significantly as interventional cardiologists return to using 

BMS when possible. 

Other stent-based technologies are in development. Clinical results with bioabsorbable 

stents have been disappointing so far; a recent trial with bioabsorbable magnesium 

stents, designed to degrade within a few months, demonstrated a revascularisation rate 

of 45% at 1 year, a rate substantially higher than with BMS 
99

. Negative remodelling 

was a major contributor to restenosis in this study suggesting that stents need to 

maintain their structural integrity for substantially longer periods of time to provide 

sufficient vessel wall scaffolding. Drug-eluting bioabsorbable stents have also been 

implanted in humans but there is no long-term data on their safety or efficacy
100, 101

. 

Stents coated with anti-CD 34 antibodies, so-called “pro-healing” stents, have been 

designed which serve to capture circulating endothelial progenitor cells derived from 

the bone marrow
60

. However, as CD 34 is a marker for several types of bone marrow 

derived stem cells including smooth muscle progenitor cells, it is possible that these 

stents may actually exacerbate restenosis thereby counteracting any potential benefits 

gained from promoting endothelialisation
61

. Early published registry data support this 

theory with an 8 month restenosis rate of 19% in relatively short lesions in large vessels, 

results similar to that found with BMS
102

. A recently published randomised controlled 

trial showed a strong trend to increased adverse outcomes with anti-CD 34 antibody 

coated stents as compared to BMS in patients suffering myocardial infarction, including 

an increased risk of stent thrombosis
103

. 

Against this background, gene therapy with localised gene transfer to the coronary 

vasculature offers the potential to alter favourably the response of the arterial wall to 

stent implantation whilst avoiding the pitfalls of chronic deendothelialisation. The 

emergence of DES has demonstrated that coronary stents provide a viable platform to 

allow delivery of a therapeutic agent to the site of pathology, thus minimising systemic 

toxicity, and this same principle can be applied to the delivery of gene transfer vectors
62

. 
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1.3 Gene therapy approaches to prevent restenosis 

Gene transfer into the vascular wall was first demonstrated in 1989 using ex vivo 

transduction of endothelial cells with a retroviral vector and subsequent catheter-

mediated introduction into porcine iliofemoral arteries
104

. Since then, a vast range of 

potentially beneficial genes have been investigated for their therapeutic potential in 

cardiovascular disease. Restenosis following vessel wall injury by PCI is an intuitively 

attractive avenue for vascular gene therapy as vectors can be delivered both locally and 

at the precise time of injury and, accordingly, there has been considerable research into 

this field. Unfortunately, despite extensive preclinical work, no transgene has been 

shown as yet to reduce restenosis in clinical studies. This subject has been extensively 

reviewed recently by others
105-108

. 

 Vascular gene therapy requires the combination of a gene encoding a therapeutic 

protein, a vector to allow transduction or transfection of target cells, and a delivery 

system to allow sufficient exposure of the target cells to the vector
107

. All three of these 

factors crucially affect the efficacy and safety of gene transfer. 

1.4 Choice of vector 

Multiple vectors having been investigated for their use in cardiovascular gene therapy, 

and these can be broadly divided into those of viral and non-viral origin. The ideal 

vector for a given clinical application would be target cell specific with no expression 

elsewhere, result in therapeutic levels of transgene expression which are not attenuated 

by the host immune response, produce a duration of transgene expression appropriate to 

the clinical problem, pose no risk of toxicity either acutely, as a result of 

immunogenicity, or in the longterm, such as oncogenesis, and be cost-effective and easy 

to produce. Although recombinant viral vectors demonstrate high transfer efficiency and 

have been utilised in the majority of preclinical and clinical studies so far there are 

several issues which potentially limit their clinical utility. Many viruses are inherently 

immunogenic which can pose a safety concern as well as reducing efficacy. Repeated 

dosing is likely to result in an attenuated response due to the production of neutralising 

antibodies to vector antigens. There are also concerns over long-term risks, particularly 

with integrative viruses such as retroviruses and lentiviruses which are potentially 

oncogenic as a result of insertional mutagenesis. As will be discussed, non-viral gene 
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therapy using plasmid vectors represents a potentially much more attractive option for 

the prevention of coronary stent restenosis. 

Three categories of virus represent the vast majority of work on cardiovascular gene 

therapy so far: adenovirus, adeno-associated virus (AAV) and lentivirus. Other 

retroviruses, sendaivirus, Semliki forest virus, herpes simplex virus and baculovirus
109

 

have all undergone preliminary investigation for cardiovascular gene therapy in vitro 

but have never been subject to clinical trials. The development of viral vectors for use in 

cardiovascular gene therapy has been the subject of a recent review by the author of this 

thesis
110

. 

Adenovirus is the most popular vector investigated in vascular gene therapy at present 

and most studies have used replication-deficient recombinant adenovirus 5 (Ad5) 
111-118

. 

Adenovirus has several features which makes it attractive for gene therapy: a high 

nuclear transfer efficiency ensures a rapid onset of transgene expression, it has no 

mechanisms for integration into the host genome and therefore the risk of oncogenesis 

is remote, it can infect both dividing and quiescent cells, and it can be produced 

relatively easily in large quantities. However adenovirus has several limitations: the 

ability to transduce non-target organs as a result of a broad natural tropism, the presence 

of pre-existing neutralising antibodies in a substantial proportion of human adults and, 

most importantly, the induction of an immune response which limits the duration of 

transgene expression and can cause clinical side-effects
119, 120

. Despite extensive 

research and further development of the vector
121

, immunogenicity remains a major 

hurdle to widespread clinical use and the death in 1999 of a patient in a clinical trial 

using high-dose adenovirus was attributed to an innate immune response
122

. Several 

good reviews on adenoviral vectors have been published
123, 124

. 

Recombinant adeno-associated AAV (rAAV) represents a potentially safer alternative 

to adenovirus for gene therapy as it is significantly less immunogenic and, unlike 

adenovirus, wild-type AAV has never been shown to cause human disease. Certain 

AAV serotypes have been shown to have cardiac tropism
125, 126

. However rAAV 

possess several disadvantages. The onset of transgene expression is substantially 

delayed as compared with other viral vectors as a result of slow nuclear transport and 

the need for the single-stranded genome to be converted to dsDNA prior to 
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expression
127

. The small packaging capacity (4.6 kb) severely limits the size of 

transgene and expression cassette that can be inserted. As with adenovirus, immune 

clearance of transduced cells can be a major problem, particularly given the high 

prevalence of neutralising antibodies in the general population
128, 129

. This immune 

response can be clinically relevant and a recent trial of AAV in patients with 

haemophilia B resulted in transient elevation of liver enzymes in two patients, likely as 

a result of immune rejection of transduced hepatocytes
130-132

. AAV is also very difficult 

to manufacture using currently available techniques. Despite these limitations, clinical 

trials have begun with this virus for the treatment of heart failure
133

. The phase 2 

CUPID trial presented at the Heart Failure Congress in May 2010, showed that the 

treatment was safe and was associated with improvements in several measures of 

cardiac function and clinical status. 

AAV may not represent an ideal choice of vector for the treatment of ISR given the 

relatively slow onset and limited duration of gene expression. In a comparative study of 

gene-eluting stents, stents coated with AAV serotype 2 demonstrated a significant 

decline in gene expression at 28 days following deployment, as compared with 

adenovirus-coated stents which showed stable levels of gene expression at this time-

point
134

. However the exact duration of gene expression required to elicit a beneficial 

effect on neointimal formation remains unclear. 

Although lentiviruses derived from HIV-1 have been used in several cardiovascular 

clinical trials, concerns remain about their long-term safety. Even though recombinant 

lentivirus has been rendered replication-deficient, there is the potential for homologous 

recombination to result in generation of wild-type HIV and, due to their integrative 

nature, there is a longterm risk of oncogenesis. Non-integrative lentiviruses have been 

developed
135

 but have only been shown to result in transient gene expression in the 

cardiovascular system as a result of immune clearance
136

. Recombinant lentiviruses will 

require significantly more development before they can be considered for use in further 

clinical trials of cardiovascular gene therapy. 

Given that currently available recombinant viruses do not represent ideal vectors with 

regards to vascular gene transfer for the reasons discussed above, recent attention has 

turned to non-viral vectors, including naked plasmid DNA, lipid-DNA, peptide-DNA 
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and polymer-DNA conjugates. Naked plasmid DNA represents the simplest form of 

gene delivery vector. Plasmids are found in virtually all bacterial species and consist of 

an extra-chromosomal DNA molecule which is usually circular and double-stranded. 

They can vary in size from 1 to over 200 kilobase pairs and usually encode proteins 

which engender antibiotic resistance to the host cell. A typical plasmid for use in gene 

therapy contains the gene encoding for the therapeutic protein, genes encoding for 

antibiotic resistance and a multiple cloning site (a short region containing several 

commonly used restriction sites which allows insertion of the transgene). Plasmids have 

the advantage of being easy to construct and readily produced in large quantities and of 

having an excellent safety profile, with virtually no risk of oncogenesis (as integration 

into the host genome is extremely inefficient) and very little immunogenicity as they 

contain no antigenic proteins. Plasmids have an extremely large DNA packaging 

capacity, being able to accommodate large segments of genomic DNA if required. They 

are very easy to handle as they remain stable at room temperature, unlike viruses which 

generally require storage at -80°C. However plasmid DNA has a gene transfer efficacy 

several orders of magnitude lower than with viral vectors
116

 given poor uptake across 

the cellular membrane and the difficulty in targeting plasmids to the nucleus where 

transcription can occur. Many ways of improving gene transfer efficacy have been 

developed and will be discussed in detail in the following sections. Although plasmid 

DNA is also readily lost from dividing cells and can be subject to transcriptional 

silencing, resulting in a limited duration of transgene expression, this is not necessarily 

a significant concern in developing treatments for ISR as the pathological process is 

usually complete within several weeks to months. 

Given the favourable safety profile and ease of handling, as compared with viral 

vectors, plasmid DNA represents the most attractive method of gene transfer in the 

coronary arteries. As will be discussed later, coronary stents are increasingly being used 

as a gene delivery system, and the advantages of plasmids in this setting are 

considerable. Although stent coating with viruses has to be performed at the time of the 

procedure due to their instability at room temperature, plasmids can be produced in 

large clinically relevant quantities and applied to stents in advance and there are no 

major storage concerns thus replicating the convenience of DES
137

. Proof of concept has 
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been established and plasmid-mediated gene transfer has already been demonstrated to 

have an effect on reducing neointima formation in animal models
62, 64, 138

. 

1.5 Improving plasmid-mediated gene transfer efficacy 

Many different methods have been investigated in an attempt to improve plasmid gene 

transfer efficacy. It is worthwhile to consider the journey the vector has to make from 

the introduction into the host to the successful production of the desired transgene 

product, as at all stages there are formidable barriers to overcome. If introduced 

systemically the plasmid needs to avoid breakdown by serum nucleases and find its way 

to the target tissue whilst avoiding transfection of non-target organs. Naked pDNA 

given intravenously is rapidly eliminated by the liver making this route of 

administration impractical for this form of vector
139

. Once the plasmid has reached the 

target organ, the endothelium (if delivered intravascularly) is relatively impermeable 

given the large molecular weight of pDNA. The next considerable barrier consists of the 

target cell membrane. Cellular uptake is very inefficient with plasmids which, unlike 

viruses, do not have dedicated mechanisms to facilitate cell entry. Once inside the cell, 

the plasmid must avoid lysosomal and cytoplasmic nucleases before localising to the 

nucleus where transcription can occur. Plasmids can persist in extrachromosomal 

episomal form in quiescent cells but are rapidly lost from dividing cells. However, even 

when there is episomal persistence, plasmids are susceptible to transcriptional silencing 

and, as a result, duration of gene expression can be an issue with plasmid-mediated gene 

therapy. 

At each stage of this journey there is the potential to improve plasmid gene transfer 

efficacy: physical techniques and carrier vehicles have been developed to aid target cell 

localisation and intracellular entry, nuclear localisation signals can aid nuclear 

trafficking and transcriptional targeting in terms of promoter and enhancer optimisation 

can increase target cell gene expression whilst reducing non-target organ expression. 

These methods will be discussed in the following sections. 

1.6 Physical targeting of plasmids 

The simplest method of physically delivering naked plasmid to a target organ is direct 

injection, e.g. intramuscular injection for skeletal or cardiac muscle gene therapy. This 
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is clearly impractical for vascular gene therapy and therefore initial attempts at 

delivering vectors to the vascular system in vivo involved balloon catheter systems. 

Although effective at gene delivery, with promising results from preclinical studies
64, 

113, 115, 117
, these systems had several important shortcomings. They usually involve 

prolonged vascular occlusion, which is not a viable option in the coronary tree given the 

deleterious consequences of even short periods of myocardial ischaemia, and they tend 

to cause significant vascular injury which may exacerbate neointimal proliferation. 

Human trials using balloon catheter systems for gene delivery have failed to show 

efficacy
112, 114

. 

The development and subsequent widespread use of coronary stents in clinical practice 

has provided a much improved system for gene delivery and balloon catheters have 

been rendered effectively redundant for the prevention of ISR. Coronary stents represent 

an ideal platform for gene transfer as they remain in the arterial wall permanently and 

thus allow sustained local exposure of the vessel wall to the gene vector whilst 

minimising the risk of non-target organ transfection. Stent deployment with a high 

pressure balloon causes localised vessel wall injury which results in two additional 

beneficial effects with regards to gene transfer. Firstly, endothelial denudation removes 

a potent barrier to plasmid transfer. Secondly, quiescent medial SMCs transform to a 

proliferative phenotype as a response to injury, as discussed above. This enhances gene 

transfer as nuclear transport can occur more readily in mitotic cells due to breakdown of 

the nuclear envelope
140

. As will be discussed later, effective plasmid-mediated gene 

delivery via coronary stents has already been demonstrated in vivo. 

Other physical methods for increasing pDNA gene transfer efficacy exist. Cellular 

uptake of naked DNA can be increased by electroporation, whereby discharge of an 

electrical field increases the cell membrane‟s permeability to DNA, and this has been 

shown to increase transfection in vitro and in vivo
141, 142

. Although the difficulties in 

applying an electric shock to the target tissue limit the usefulness of this technique in 

the vascular system, one group has demonstrated increased transfection of plasmid 

DNA within the porcine femoral artery using a specially modified electroporation 

balloon catheter 
143

. The gene gun, sonoporation and laser irradiation have all been 

shown to increase cell transfection in certain circumstances but none of these techniques 

is readily applicable to vascular gene therapy (see 
144

). 
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Finally, carrier vehicles for pDNA have been developed to reduce susceptibility to 

circulating nucleases and/or target the plasmid to the target tissue and/or increase 

cellular membrane uptake of pDNA by endocytosis. The most commonly used are 

cationic liposomes and polymers which have been the subject of a recent review
145

. 

Carrier microbubbles which can be destroyed by local application of ultrasound have 

been used to improve plasmid delivery of VEGF in a model of peripheral artery 

ischaemia
144

. However, although these techniques may ultimately prove useful for other 

gene therapy applications, they do not appear to offer any appreciable advantages over 

stent-based plasmid delivery in treating ISR. 

1.7 Transcriptional targeting and nuclear localisation 

One way of addressing the issue of poor gene transfer efficiency with plasmids is to 

modify the transgene expression cassette. Modifications can involve the use of cell-

specific promoters, the inclusion of enhancers and nuclear localisation signals and the 

removal of CpG dinucleotides. As the dominant cell in the arterial wall is the vascular 

SMC, this represents the logical target for vascular gene therapy. 

Transgene expression is usually driven by strong constitutively active viral promoters 

such as the major intermediate-early human CMV enhancer/promoter (MIEhCMV), 

which is commonly used in vectors designed for vascular gene therapy
146

. Although 

SMC specific promoters exist, such as SM22α, these have consistently been shown to 

result in inferior SMC gene expression than the MIEhCMV promoter
147

. The major 

intermediate-early murine CMV enhancer/promoter (MIEmCMV) results in 

significantly greater transgene expression than MIEhCMV using an Ad5 vector in a 

wide variety of cell-types
148

. The 0.6kb truncated form of MIEmCMV has been shown 

to have increased activity as compared with the full length 1.5kb promoter
149

 and has 

also been demonstrated to result in greater transgene expression than MIEhCMV in a 

wide variety of mammalian cell types using plasmid vectors
150

. 

The inclusion of cis-acting elements can further enhance transcription mediated by viral 

promoters. The woodchuck hepatitis virus post-transcriptional regulatory element 

(WPRE) increases transgene expression in a wide variety of cell types in vitro and is 

promoter and transgene independent
151, 152

. Enhancer regions of the mouse and rabbit 

smooth muscle myosin heavy chain promoters (ME and RE) have been investigated and 
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the inclusion of RE has been shown to increase vascular SMC transgene expression in 

vitro
153

. An enhancer element in the promoter region for the human VSMC α-actin gene 

(HE) has also been identified which demonstrates copy dependence and position and 

orientation independence when linked to the VSMC α-actin promoter
154

. However 

pairing of this enhancer with the SV40 promoter did not increase transgene 

expression
154

. The combination of MIEmCMV, RE and WPRE has been shown to 

dramatically increase SMC transduction using an Ad5 vector both in vitro and in 

porcine coronary arteries as compared with MIEhCMV alone
155

. 

The inclusion of an intron between the promoter and transgene has the potential to 

increase gene expression
156

. The inclusion of the EF-1α intron has been shown to 

significantly increase plasmid-mediated gene expression under the influence of the 

truncated MIEmCMV promoter
150

 . The inclusion of a chimeric intron composed of the 

donor site from the first intron of the human beta-globin gene and the branch and 

acceptor site from the intron of an immunoglobulin gene increases gene expression 

driven by MIEhCMV
157

. 

The inclusion of a polyadenylation signal induces transcription termination by RNA 

polymerase II by adding approximately 200 adenylate residues to the 3‟-end of the RNA 

transcript which increases RNA stability and subsequent translation. The late SV40 

polyadenylation signal has been shown to increase levels of mRNA significantly more 

than the early SV40 polyadenylation signal
158

. 

Nuclear targeting represents an additional strategy to improve plasmid gene transfer 

efficacy and has been reviewed recently
140

. On entering the cell, plasmids have to travel 

to and enter the nucleus via the nuclear pore complex in order for transcription to 

occur
159

; the speed of nuclear transport is critical as naked DNA is susceptible to 

nuclease digestion whilst in the cytoplasm. Nuclear entry represents the most significant 

barrier to plasmid-mediated gene transfer in quiescent cells
160

. The nuclear envelope 

breaks down during mitosis and, as a result, nuclear transport is significantly increased 

in dividing cells although the process remains relatively inefficient. Dean and 

colleagues have demonstrated that the 72bp Simian Virus 40 (SV40) enhancer is 

required for nuclear localisation to non-dividing cells in vitro
161, 162

. The inclusion of the 

SV40 enhancer downstream of the transgene also increased gene expression from rat 
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mesenteric vasculature cells in vivo by 10-40X, with the primary mechanism appearing 

to be increased nuclear transport
142

. This sequence has been termed a DNA targeting 

sequence (DTS). 

Gene therapy can be further refined by including nuclear localising DNA elements 

which contain binding sites for cell-specific transcription factors. This approach has the 

potential to increase gene transfer in target cells whilst improving safety by minimising 

non-target cell transfection. Dean and colleagues have identified a sequence consisting 

of 176bp of the chicken smooth muscle gamma-actin (SMGA) promoter, which when 

included downstream of the transgene acts as a DTS and results in SMC-specific gene 

expression. This region contains binding sites for SMC specific transcription factors: 

serum response factor (SRF; binding sites = SRE1 and SRE2) and the NK3 family of 

transcription factors (Nkx3-1 and Nkx3-2; binding site = NKE1), which can act as 

nuclear localisation signals (see Appendix 6.3). Mutation of these binding sites 

substantially reduces DNA nuclear import
163

. Successful SMC specific gene transfer 

with plasmids containing this sequence has been demonstrated in cultured SMCs
164

 and 

in the rat mesenteric vasculature in vivo
165

. 

The association of the Epstein-Barr nuclear antigen-1 (EBNA-1) and its binding site 

oriP, both of which are derived from Epstein-Barr virus (EBV), can also aid nuclear 

transport
166

. The EBNA-1 protein binds to oriP and can facilitate nuclear entry - the 

inclusion of the oriP sequence in plasmids has been shown to increase transgene 

expression significantly in EBNA-1 expressing cells
167, 168

. The inclusion of the EBNA-

1 gene and oriP binding site within the same plasmid has been shown to significantly 

improved plasmid-mediated transgene expression in cultured SMCs by a cis-acting 

mechanism
169

. 

As discussed above, the experimental data suggests that nuclear import presents a 

formidable barrier to successful gene therapy in stable, quiescent cells. Although arterial 

wall cells (specifically vascular SMCs) are non-dividing at rest, modification to a 

proliferative phenotype occurs in response to the vascular injury incurred during stent 

deployment. As a result, nuclear transport may not be a major limitation to gene therapy 

for the prevention of ISR. 
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Finally, although plasmids are inherently far less immunogenic than viral vectors they 

can still induce an inflammatory response. This has been related to the presence of 

unmethylated CpG dinucleotides which can lead to innate immune system activation via 

Toll-like receptors
170

. Completely CpG-free plasmids have been developed and have 

been shown to reduce inflammation and increase gene expression in a mouse model of 

cystic fibrosis
171

. However, as Toll-like receptors reside within endosomes, the presence 

of CpG dinucleotides is predominantly an issue with carrier-mediated plasmid delivery, 

for instance with liposomes. The complete elimination of CpG dinucleotides within a 

plasmid also dramatically limits the choice of promoter and enhancer elements which 

can be included which may outweigh any potential benefits in terms of reduced host 

immune response. 

In summary, modification of the gene expression cassette can increase transgene 

expression by a variety of mechanisms and also increase target cell selectivity. In 

combination with intracoronary stents which can deliver a vector directly to the target 

tissue for a prolonged time period and overcome the endothelial barrier, this offers the 

potential for safe, effective gene therapy to the vascular wall. 

1.8 Gene-eluting stents 

The use of gene-eluting stents coated with a plasmid vector for the prevention of ISR is 

conceptually very similar to that of drug-eluting stents. Both plasmid-eluting stents and 

DES can be prepared in advance, stored at room temperature and deployed in an 

identical manner. Following stent deployment, a therapeutic agent is delivered at the 

site of pathology for a circumscribed period of time. The only difference between the 

two technologies is that the therapeutic agent with a gene-eluting stent is a protein 

manufactured by the host‟s own cells rather than an exogenously administered drug. 

Ye and colleagues were the first group to demonstrate the feasibility of stent-mediated 

gene transfer in 1998, using custom bioabsorbable polymer stents impregnated with an 

adenovirus encoding for β-galactosidase
172

. Since then several further studies 

confirming the efficacy of gene-eluting stents with both viral and plasmid vectors have 

been published, which are summarised in Table 1. 
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Table 1 - Studies involving gene-eluting stents 

Transgene Vector Model Stent coating method Method of vector application  Dose/stent Primary outcome Change in outcome Reference 

lacZ Ad Rabbit 

carotid 

Custom bioabsorbable polymer stent Incubated in virus stock (1x108 – 

1x1010 pfu/ml) 

Not reported Transduction Success 172 

GFP Plasmid Porcine 

coronary 

PLGA polymer Dipcoated in polymer-plasmid 

mix 

900-1100 μg Transfection Success (1% transfection) 173 

GFP Ad Porcine 

coronary 

Anti-Ad antibody-collagen coated 

stent 

Incubated in virus-PBS solution 

for 1hr 

5x1010 viral 

particles/stent 

Transduction Success (5.9% total; 17% 

neointima) 

174 

GFP Plasmid Porcine 

coronary 

Denatured collagen & PLGA polymer Pipetted collagen-plasmid mix 

onto stents then dipcoated in 
polymer  

500 μg Transfection  Success (10.4% 

transfection) 

175 

lacZ, Luc, 

GFP 

Plasmid Rabbit iliac Synthetic polyurethane polymer Dipcoated in polymer-plasmid 

mix 

120 μg Transfection Success 137 

VEGF-2 Plasmid Rabbit iliac BiodivYsio stent (phosphorylcholine 
polymer) 

Not reported (performed by 
Biocompatibles) 

100 μg or 200 μg Neointima formation 

Endothelialisation (NO 

production) 

Decrease 

Increase 

62 

TIMP-3 & 
lacZ 

Ad Rat carotid BiodivYsio stent Pipetted onto stent 20 μl of 109 
pfu/ml 

Neointima formation Reduction 176 

lacZ Ad & 

AAV 

Rabbit iliac BiodivYsio stent Virus pipetted on stent 5x109 pfu/stent 

(Ad) 

5.3x109 drp/stent 
(AAV) 

Transduction Success 

2.73% d3; 7.31% d28 (Ad) 

5.78% d3; 2.12% d28 
(AAV) 

134 

GFP, iNOS Ad Rat carotid Bisphosphonate & anti-Ad Ab or D1 

(recombinant Ad-receptor fragment) 

3hr incubation in 5x1010 Ad 

particles/ml in 5% BSA/PBS 

10-15x109 

particles/ cm2 

Transduction 

Neointima formation 

Success 

Reduction 

177 



Intracoronary gene transfer via plasmid-eluting stents  Paul Williams   

 40 

lacZ, 7ND  Plasmid Rabbit & 

monkey iliac 

PVOH polymer Dipcoated in polymer-plasmid 

mix 

Not reported Neointima formation Reduction 178 

iNOS, Luc & 
GFP 

Ad Rat carotid Synthetic complex  Synthetic complex 1x109 particles Neointima formation Reduction 179 

GFP Plasmid Rabbit 

carotid 

Anti-DNA antibody-collagen coated 

stent 

Incubated in solution of 20mcg 

plasmid in 200mcl Dulbecco‟s 
MEM 

1.7 μg  Transfection Success (3% total, 7% 

neointima) 

180 

lacZ, eNOS Ad Rabbit iliac BiodivYsio stent Virus pipetted on stent  50 μl; 5x109 

pfus/stent 

Neointima formation 

Endothelialisation 

Decrease 

Increase 

181 

GFP, iNOS Plasmid Pig coronary Anti-DNA antibody-collagen coated 
stent 

Incubated in solution of 20mcg 
plasmid in 200mcl Dulbecco‟s 

MEM 

1.7 µg Transfection        

                             

Neointima formation 

Success (2.6% total, 6% 
neointima) 

Possible decrease 

(morphometry data not 

reported) 

182 

 

Ad=adenovirus; AAV=adeno-associated virus; NOS=nitric oxide synthase; Luc=luciferase; GFP=green fluorescent protein; VEGF=vascular endothelial growth factor; 

PLGA=polylactic-polyglycolic acid; TIMP-3=tissue inhibitor of metalloproteinase-3; PVOH=polyvinyl alcohol; eNOS = endothelial nitric oxide synthase; iNOS = inducible 

nitric oxide synthase; 7ND = mutant monocyte chemoattractant protein-1; pfu = plaque-forming units; drp =DNase-resistant particles
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The method of attaching the gene vector to the stent requires consideration. All 

currently available DES for clinical practice use a polymer coating to bind the drug, 

which can be applied by dipping or spraying. Concerns have been raised over a 

potential proinflammatory effect of these polymers. Van der Giessen and colleagues 

reported marked inflammatory reactions with subsequent neointimal thickening in five 

different biodegradable polymers and three different biostable polymers
183

. However in 

this study polymers were applied nonuniformly and as a thick layer (75-125μm strips as 

compared with 5-20μm applied by spraying on current clinically used DES) which may 

have increased the inflammatory response. In clinical practice using stents coated with 

thin layers of uniformly applied polymer, hypersensitivity reactions have been reported 

but appear to be rare
94

. Bioabsorbable polymers such as polylactic acid may offer 

potential advantages in terms of longterm safety and are available on some of the newer 

DES to reach the market
184

. 

Although the majority of research has centred on the use of polymers for drug elution, 

synthetic and naturally occurring polymers, such as collagen, have been used 

successfully for gene elution (see Table 1). Alternatives to polymers for vector binding 

to stents have also been studied. Klugherz and colleagues have successfully 

demonstrated cell transduction using adenovirus bound via anti-viral antibodies
174

, and 

plasmids have been bound to stents using anti-DNA antibodies by another group
180, 182

, 

but both of these studies also used collagen to coat the stents. Fishbein and colleagues 

recently demonstrated successful viral tethering to bare metal stents using an entirely 

synthetic 3-component complex
179

. Brito and colleagues immbolised poly(beta-amino 

ester) precondensed plasmid DNA-containing cationic liposomes or lipopolypexes onto 

stainless steel stents using a gelatin coating
185

. Marker gene transfection was then 

demonstrated in vivo following deployment of these stents in rabbit iliac arteries. 

1.9 Choice of target gene 

A huge range of candidate therapeutic transgenes have been studied to prevent 

restenosis and this field has been extensively reviewed
108

. These genes can be somewhat 

arbitrarily divided into strategies that reduce SMC proliferation and migration, inhibit 

thrombosis, reduce ECM deposition or enhance endothelialisation. However, transgenes 

exist which have multiple potentially beneficial, or pleiotropic, effects. Given the 
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complexity of the restenotic process, it is probable that either a single pleiotropic gene 

or multiple transgenes with different actions will be required for a clinically therapeutic 

effect. 

VEGF has been perhaps the most studied transgene in the field of restenosis and 

highlights the difficulties in extending basic science research to the clinical setting. 

VEGF is proangiogenic but also has been shown to be vital for vascular homeostasis 

and endothelial integrity
186

. In the rabbit iliac model, plasmid-mediated gene transfer of 

VEGF causes rapid reendothelialisation and reduced intimal thickening following 

vascular injury
64

 and stent deployment
65

. Recently Walter and colleagues demonstrated 

successful transfection and a reduction in neointima formation in a rabbit iliac model 

using a plasmid encoding for VEGF-2 bound with a phosphorylcholine polymer to a 

bare metal stent
62

. 

However clinical studies of VEGF gene therapy for restenosis have been disappointing. 

A pilot study with ten patients showed that catheter-mediated delivery of VEGF 

plasmid DNA in a plasmid-liposome complex at the same time as coronary stenting was 

safe and well tolerated
114

. However a larger follow up clinical trial using a perfusion-

infusion catheter and VEGF plasmid-liposome or VEGF adenovirus showed no 

difference in restenosis at 6 months
112

. These negative results may be at least partly 

explained by low gene transfer at the site of injury, an issue which has the potential to 

be overcome with the techniques discussed in the previous sections. However they 

clearly demonstrate that promising results in preclinical studies do not necessarily lead 

to clinically meaningful results. 

Table 1 shows the other transgenes which have demonstrated reductions in neointima 

formation when bound to gene-eluting stents in animal models. These include tissue 

inhibitor of metalloproteinase-3 (TIMP-3)
176

, nitric oxide synthase
179, 182

 and the anti-

monocyte chemoattractant protein-1 (MCP-1) gene, which encodes a mutant MCP-1 

protein called 7ND which acts as a dominant negative inhibitor of MCP-1
178

. Gene-

eluting stents have not been trialled in humans at the time of writing. 

As discussed in Section 1.2, DES coated with potent anti-mitotic drugs successfully 

reduce neointima formation via inhibition of SMC proliferation and migration, but also 
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inhibit endothelial cell proliferation and subsequent re-endothelialisation with 

potentially serious clinical consequences. Repair of vascular injury has many parallels 

to cutaneous wound healing (see Section 1.1), with neointimal formation analogous to 

scar formation. Therefore therapies which enhance vascular healing and repair offer an 

intuitively attractive approach to the problem of restenosis. 

This study will investigate two candidate transgenes which have been shown to have 

important roles in wound healing: connective tissue growth factor and fibromodulin. 

1.9.1 Connective Tissue Growth Factor (CCN2) 

Connective tissue growth factor (CTGF) or CCN2 is one of six secreted proteins 

making up the CCN (cyr61, ctgf, nov) family, each numbered by their order of 

discovery. The consensus amongst researchers in the field is that CCN members should 

not be called by their original names, which were often misleading; the preferred name 

for CTGF is therefore CCN2
187

. However CTGF currently remains the most commonly 

used term in the scientific literature and thus will be used throughout the rest of this 

thesis. CCN proteins are characterised by an extremely high cysteine content, consist of 

four (or three for CCN5) discrete domains, and regulate many important biological 

processes in multiple tissues including cell migration, proliferation, adhesion, 

differentiation, survival and stimulation of ECM production. Although they are not 

generally considered to be growth factors (which typically stimulate cellular growth and 

proliferation via specific receptors), CCN members have key roles as extracellular 

signal modulators between the cell surface and ECM and modify the signalling of other 

molecules such as TGF-β and integrins
188

. Several recent reviews have been published 

on the biology of CTGF
189-191

. 

1.9.1.1 Structure and function in vitro 

CTGF was first discovered in the conditioned medium of human umbilical vein 

endothelial cells in 1991
192

 and is the best characterised of the CCN family. It is a 

38kDa mosaic protein with four discrete modules aligned in tandem, each encoded by a 

separate mRNA exon: a non-functional insulin-like growth factor binding domain-like 

region (IGFBP), a Von-Willebrand factor type C like domain (VWC), a 

thrombospondin-1-like domain (TSP-1) and a C-terminal module which contains a 
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heparin-binding cysteine knot (CT) domain (Figure 3). A further exon encodes for a 

signal peptide required for secretion from the cell. The hinge regions between the 

domains are susceptible to proteolytic cleavage, particularly the region between VWC 

and TSP-1 and the region between TSP-1 and CT. These cleavage products have been 

identified in biological fluids
193

. Although a specific CTGF receptor has not been 

identified, it is thought that these four functional domains can act both independently 

and interact with each other
190

. The CT domain allows CTGF to associate with cell 

membranes and the ECM via heparan sulphate containing proteoglycans (HSPGs)
194

 

and cell surface integrins
195

 and the LDL receptor related protein has been shown to 

bind to the TSP-1 domain
196, 197

. Although CTGF appears to play a vital role in normal 

biological processes such as tissue repair, chondrogenesis, osteogenesis and 

angiogenesis
191

, excess production has been linked to fibrotic disorders in a variety of 

organ systems. 

 

 

 

 

Figure 3 – Structure of CTGF 

CTGF consists of a signal peptide required for secretion (SP) and four discrete modules: an insulin-like 

growth factor binding domain (IGFBP), a Von-Willebrand factor type C domain (VWC), a 

thrombospondin-1 domain (TSP-1) and a heparin-binding cysteine knot (CT) domain. The hinge region 

between VWC and TSP-1 and that between TSP-1 and CT are both susceptible to proteolytic cleavage. 

The molecules to which each domain has been shown to bind are shown. 

 

In vitro studies have shown that CTGF has little activity in isolation, but in association 

with other cytokines and growth factors, such as TGF-β, it can lead to fibroblast 

proliferation and myofibroblast differentiation
198, 199

, and stimulation of collagen and 

ECM production by both fibroblasts
200

 and SMCs 
201

. CTGF has been shown to 
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stimulate adhesion, migration and proliferation of endothelial cells
202, 203

, and promote 

endothelial cell survival in growth factor-deprived conditions which would normally 

result in apoptosis
203

. The effect of CTGF on endothelial migration and adhesion 

appears to be mediated by integrins, cell surface receptors which interact with the ECM 

and trigger intracellular signalling cascades. The integrin αvβ3 appears to be critical for 

this effect and binds to the CT module
203

. Inhibition of CTGF with antisense RNA and 

oligonucleotides results in reduced endothelial proliferation in culture
202

. CTGF has 

been shown to be expressed from cultured vascular endothelial cells in vitro
192, 204

 

suggesting that CTGF has an important role in maintaining endothelial cell homeostasis, 

possibly via autocrine regulation
202

. As well as its pro-angiogenic activities, CTGF also 

appears to be able to modulate the effect of other pro-angiogenic molecules: CTGF has 

been shown to bind to VEGF via the TSP-1 domain and reduce VEGF-induced 

angiogenesis in vitro and in vivo
205

.The role of CTGF in the regulation of endothelial 

function and angiogenesis has been reviewed recently
206

. 

Studies of the effect of CTGF on SMC proliferation have given conflicting results, 

suggesting that the effect of CTGF is dependent on the cellular context. A study using 

cultured rat aortic SMCs showed that CTGF promotes SMC migration and 

proliferation
201

. However, CTGF has also been shown to inhibit SMC proliferation and 

initiate apoptosis in cultured human SMCs by activating caspase 3
207-209

. Oemar and 

colleagues demonstrated that CTGF is expressed in high levels in intimal SMCs 

cultured from human atheromatous carotid arteries. These cells were not proliferating, 

as indicated by negative staining for PCNA, suggesting that CTGF does not stimulate 

SMC proliferation in vivo
210

. As with TGF-β, CTGF appears to have a dose-dependent 

effect on some tissues. Liu and colleagues demonstrated that at lower concentrations 

CTGF resulted in increased proliferation of human embryonic fibroblasts, whereas at 

higher concentrations CTGF had a growth inhibitory effect
211

. As a specific CTGF 

receptor has not yet been identified, differences in non-specific receptor distribution and 

subtypes may explain some of these differences. 

TGF-β is known to be a major inducer of CTGF expression
212

 and CTGF has been 

considered to primarily act as a profibrotic downstream mediator for TGF-β
213

. 

Conversely, CTGF can directly bind TGF-β1 via the Von-Willebrand factor domain and 

enhance its ability to bind to TGF-β receptors
214

. However, CTGF can be constitutively 
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expressed independently of TGF-β
215

 and other factors such as endothelin-1 can induce 

its expression via TGF-independent pathways
216, 217

. CTGF expression has also been 

shown to be suppressed by TNF-α and prostacyclins
218, 219

 and induced by glucose, 

thrombin, angiotensin II and hypoxia (via hypoxia-inducible-factor-1)
220-224

. CTGF 

therefore has both TGF-β dependent and independent actions and is likely to have 

different effects in different tissues depending on the local cell types and concentrations 

of growth factors. CTGF can bind fibronectin via the cysteine knot domain
225

 and it has 

been suggested that CTGF acts as an adaptor molecule, promoting and modulating the 

binding of ECM proteins to their cell surface receptors
189

. 

1.9.1.2 Function in vivo and role in wound repair and vascular healing 

The exact biological actions of CTGF in vivo remain to some extent unclear. CTGF 

expression has been shown to be present in normal uninjured adult tissue in a mouse 

model, with high levels present in the cardiovascular system (particularly the aorta and 

coronary arteries) and the gonads
226

. 

The development of CTGF knockout mice has allowed important observations of the 

function of CTGF in vivo. CTGF is vital for chondrogenesis as homozygous knockout 

mice die shortly after birth due to widespread skeletal dysmorphisms as a result of 

impaired chondrocyte proliferation and ECM remodelling
227

. CTGF is also necessary 

for normal bone development
228, 229

. Although CTGF has been shown to increase 

collagen production in vitro, it is not required for collagen synthesis in vivo as levels of 

collagen II and X are not decreased in knockout mice. However levels of the ECM 

components aggregan & link protein are severely reduced. 

Evidence from in vivo studies supports the in vitro data suggesting that CTGF plays a 

key role in angiogenesis
191, 203, 230

. VEGF expression is reduced in knockout animals 

suggesting that CTGF induces VEGF expression, which may represent one pathway for 

its proangiogenic effects. Despite this CTGF is not a necessary requirement for 

angiogenesis in vivo, as demonstrated by a retinal injury study in CTGF-knockout 

mice
231

,  

CTGF has been shown to be involved in wound healing in several in vivo models
211, 212, 

232
, and this action appears to be dependent on the presence of TGF-β. Mori and 
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colleagues showed that subcutaneous injection of either TGF-β or CTGF alone into the 

skin of newborn mice caused only a brief reaction, but that injection of both TGF-β and 

CTGF together resulted in a persistent fibrotic reaction
232

. A recent report demonstrated 

a beneficial effect of parenterally administered recombinant CTGF on the healing of 

burn wounds in the rhesus-monkey
211

. A study of virally mediated transfer of Cyr61, 

another member of the CCN family closely related to CTGF, recently showed beneficial 

effects with regards to angiogenesis. After femoral artery excision in rabbits, 

administration of an adenovirus carrying the Cyr61 gene resulted in significantly 

improved revascularisation of the ischaemic hindlimb as compared with control or 

VEGF
233

. 

Excessive expression or activity of CTGF has been shown to play a role in several 

human diseases. It is associated with fibrotic disorders in a variety of organ systems, 

including the liver, skin, kidney and heart, and the excess CTGF in these conditions 

appears to be largely derived from fibroblasts and myofibroblasts
234-237

. CTGF may also 

play a role in the development of atherosclerosis and has been shown to be expressed in 

high levels from SMCs in human atherosclerotic lesions, but not from those in normal 

arteries
210

. CTGF accumulates within the shoulders of human complicated atheromatous 

plaques and appears to stimulate monocyte migration in vitro which may offer a 

mechanism for promoting atherogenesis
238

. CTGF has been shown to be upregulated in 

the left atrial myocardium of patients with atrial fibrillation and may be a regulator of 

atrial scarring in this condition
239

. 

Two other members of the CCN family, CCN1 and CCN3, have similar amino acid 

sequences to CTGF (CCN2) and their role in vascular function and repair has also been 

investigated. CCN3 is constitutively expressed in the vascular media and is localised to 

VSMCs
240

. A recent paper investigated the vascular role of CCN3
241

. Administration of 

CCN3 protein inhibited VSMC proliferation and migration in vitro independently of 

TGF-β signalling. Unlike CTGF knockout mice, CCN3 knockout mice survive to 

adulthood and have a normal vascular phenotype. However vascular endothelial injury 

of the femoral artery using a photochemically induced thrombosis method resulted in 

markedly increased neointimal formation and reduced endothelialisation in CCN3-null 

mice suggesting that CCN3 has important roles in normal vascular healing. 
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The role of CCN1 appears to be in contrast to CCN3. CCN1 stimulates adhesion and 

migration of rat VSMCs in vitro
242

. CCN1 knockdown mice generated using lentiviral 

delivery of siRNA demonstrate significantly impaired VSMC proliferation which can 

be reversed by replenishment of CCN1. Balloon injury of knockdown mice resulted in 

significant suppression of neointimal hyperplasia in a rat carotid artery balloon injury 

model which could be reversed by lentiviral gene transfer of CCN1 to the vascular wall. 

1.9.1.3 CTGF - a potential therapy for instent restenosis? 

In summary, CTGF is involved in wound healing, angiogenesis and chondrogenesis and 

is overexpressed in fibrotic and atherosclerotic lesions. TGF-β represents one of the 

most potent inducers of CTGF action. CTGF induces collagen and elastin synthesis, 

promotes the migration and survival of endothelial cells, and may have varying effects 

on SMC migration, proliferation and apoptosis depending on the cellular context. 

Given the potentially beneficial effects on endothelial cell function and inhibition of 

SMC proliferation via apoptosis, and its integral role in animal models on wound 

healing, it is proposed that local overexpression of CTGF will both reduce restenosis 

and promote re-endothelialisation following coronary stent deployment. Our group has 

recently demonstrated a reduction in neointima formation following adenovirus-

mediated gene transfer of CTGF in a human saphenous vein graft ex vivo model 

(unpublished data). The mechanisms for this effect have not yet been investigated. It is 

hypothesised that any reduction in intima formation will be more marked in vivo when 

the potential effects of CTGF on improved endothelialisation will be apparent. 

1.9.2 Fibromodulin 

Fibromodulin is a member of the small leucine-rich proteoglycan (SLRP) family, which 

consists of eleven structurally and functionally related members; the others include 

decorin, biglycan, and lumican
243

. The SLRP family has been less studied than the CCN 

family and hence their functions both in vitro and in vivo are less well understood. 

A 59-kDa protein extracted from bovine articular cartilage was first described in 1986 

244
 and was later named fibromodulin in 1989

245, 246
. Fibromodulin is present in most 

connective tissues and is expressed at high levels in tendon and cartilage. It has been 

shown to be present in the intima of atherosclerosis-prone human internal carotid and 
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atheroma-free internal mammary arteries using a proteomics-based approach
247

 and in 

normal arteries and atherosclerotic lesions from apoE/LDLr knockout mice
248

. 

The human fibromodulin gene (FMOD) is located on chromosome 1q32
249

 and has two 

translated exons which generate a 376 amino acid 40-kDa protein
250

. The human form 

of fibromodulin is homologous to the bovine form with an overall sequence homology 

of 90%. Fibromodulin consists of a central domain containing ten leucine-rich repeat 

domains bordered by disulphide-bonded terminal sequences
251

. The core protein 

possesses N-linked oligosaccharide chains between the leucine-rich repeats which can 

be substituted with between one and four keratan sulphate chains via N-glycosidic 

linkage
252

. There is a tyrosine-rich domain at the N-terminus. A schematic 

representation of fibromodulin is shown in Figure 4. 

 

 

Figure 4 – Structure of fibromodulin 

Fibromodulin consists of a core protein with 10 leucine rich repeat domains flanked by two disulphide 

bonded domains. There are up to 4 keratan sulphate chains between the leucine rich repeat domains. 

 

Fibromodulin binds to fibrillar collagen and helps regulate fibril diameter during its 

formation and protects the fibrils from proteolytic damage by collagenases
253

. 

The roles of fibromodulin in vivo are still being elucidated. Fibromodulin knockout 

mice (Fmod-/-) are viable, fertile and do not exhibit any major functional deficits
254

. 
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However electron microscopy reveals abnormal tendon collagen architecture with an 

increase in the population of small diameter fibrils and these animals are prone to 

arthritis, confirming that fibromodulin contributes to collagen fibrillogenesis in vivo. 

Recent reports suggest that fibromodulin may be important in the pathogenesis of 

osteoarthritis, and most current research focuses on its role in this condition. The 

fibromodulin gene is upregulated  in the cartilage of osteoarthritic joints
255

. 

Fibromodulin has been shown to activate the complement pathway and its cleavage 

stimulates proteolytic enzymes, including matrix metalloproteinases, which may lead to 

persistent joint inflammation
256

. 

As well its putative role in the development of osteoarthritis, it has also been proposed 

that fibromodulin acts as a mediator of wound healing. A remarkable feature of foetal 

wound healing is the absence of scar tissue formation. Soo and colleagues examined 

fibromodulin expression in a foetal rat model of scarless healing
257

. In this model, 

ontogenetic transition from scarless healing to adult-type healing with scar occurs 

between days of 16 and 18 of gestation. They showed that significant fibromodulin 

expression occurred 36 hours following injury at day 16 gestation. However adult-type 

healing following injury at day 19 gestation was associated with a down-regulation in 

fibromodulin expression. Stoff and colleagues investigated the potential therapeutic role 

of fibromodulin on wound healing in a rabbit in vivo model
258

. Following creation of a 

full-thickness incisional wound and suturing, adenovirus encoding for human 

fibromodulin was injected intradermally. Scar formation was significantly reduced in 

the Ad-Fibromodulin animals as compared to two control groups. 

The mechanism for the effect of fibromodulin on healing has been proposed to be due to 

an inhibition of activity of TGF-β1, which is considered to be a key profibrotic 

cytokine. Fibromodulin has been shown to sequester TGF-β into the extracellular 

matrix
259

. A recent study showed that overexpression of fibromodulin by human 

fibroblasts resulted in a decrease in TGF-β1 and TGF-β2 expression, with increases in 

expression of TGF-β3 (which acts as a functional antagonist to TGF-β1) and TGF-β 

type II receptors
258

. There were also effects on matrix metalloproteinase activity with an 

up-regulation in secretion of MMP-2, TIMP-1 and TIMP-2 and a down-regulation in 

secretion of MMP-1 and MMP-3. 
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Gene transfer of the related SLRP decorin has been shown to reduce neointima 

formation in animal models of arterial injury, primarily as a result of a decrease in ECM 

volume rather than a reduction in cell number within the intima
49, 260

. Fibromodulin is a 

more potent antagonist of TGF-β1 activity than decorin, but has a lesser effect on TGF-

β3
259

. As TGF-β3 acts as a functional antagonist of TGF-β1 activity and exogenous 

TGF-β3 reduces cutaneous scarring
261

, fibromodulin might be expected to be more 

effective at suppressing neointima formation than decorin. 

The effects of fibromodulin on arterial injury have not been studied but our group 

recently investigated the effect of gene transfer of fibromodulin and decorin on 

neointima formation in an ex vivo organ culture model of human saphenous vein graft 

disease
262

. Delivery of the transgene was with an adenoviral vector and analysis was 

performed 14 days after infection. Both SLRPs reduced neointima formation as 

compared to placebo. However fibromodulin was a significantly more potent inhibitor 

of neointima formation than decorin. This reduction in neointima is likely to be at least 

partly explained by antagonism of TGF-β1. Another possible mechanism relates to the 

effect of fibromodulin on collagen formation and inhibition of collagenases. Fibrillar 

collagen has been shown to inhibit SMC migration which in turn contributes to the 

development of neointima
263

. 

In summary, fibromodulin is expressed in connective tissue including the vascular wall 

of healthy and diseased arteries. The function of fibromodulin function in vivo is 

incompletely understood but it is involved in collagen development and maintenance 

and is thought to play a key role in cutaneous wound healing, mediated by its antagonist 

effect on TGF-β1 activity. As with CTGF, fibromodulin gene expression has been 

shown to reduce neointima formation in an ex vivo saphenous vein graft model. 

Given the beneficial effects of fibromodulin on scarless wound healing and the positive 

results demonstrated ex vivo in the vein graft model, it is hypothesised that 

overexpression of fibromodulin will also result in a reduction in neointima formation 

following coronary artery stent deployment in vivo.  
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1.10 The influence of beta-adrenergic antagonists on transgene 

expression 

The treatment of most human diseases involves the use of pharmacological therapy. 

Given that gene therapy is essentially just an alternative means of delivering a 

biologically active “drug”, in this case a peptide expressed from a therapeutic transgene 

by transfected cells, the potential exists for interactions between gene therapy agents 

and standard pharmacological therapies. This may have important clinical implications, 

particularly as patients entered into early trials of new gene therapies tend to have 

advanced disease refractory to standard treatment and are usually on multiple 

medications. One such interaction which has been reported recently is between beta-

adrenergic receptor antagonists (β-blockers) and the human CMV promoter 

(MIEhCMV), which has been used in almost all clinical trials of cardiovascular gene 

therapy to date
264

. 

 

β-blockers are amongst the widely prescribed pharmaceutical agents for the treatment of 

cardiovascular disease. Multiple large randomised clinical trials have unequivocally 

demonstrated both symptomatic and prognostic benefit in patients with heart failure and 

following myocardial infarction, and as a result their routine use in these patient 

populations receives the highest level of recommendation in international guidelines
265, 

266
.  They are also widely used as antiarrhythmic, antianginal and antihypertensive 

agents. Unsurprisingly there is a very high rate of concomitant β-blocker therapy in 

patients enrolled in trials of cardiovascular gene therapy, with some studies reporting 

rates of use as high as 90%
112, 267

. 

The clinical effects of β-blockers occur as a result of numerous mechanisms but include 

alterations in gene expression mediated via the cyclic AMP system. The β-adrenergic 

receptor pathway represents a classic example of a second messenger system. 

Stimulation of β-adrenergic receptors with catecholamines results in activation of 

adenylyl cyclase by G proteins and an increase in intracellular adenosine-3‟,5‟-cyclic 

monophosphate (cAMP). cAMP activates protein kinase A which translocates to the 

nucleus where it can in turn activate the transcriptional factor cAMP-response element 

binding protein (CREB). CREB can then bind to regions of DNA called cAMP-

response elements (CRE), eight–base pair palindromic DNA sequences (TGACGTCA) 



Intracoronary gene transfer via plasmid-eluting stents  Paul Williams

   

 53 

which are found upstream of many eukaryotic genes. Binding of a CBP (CREB binding 

protein) co-activates CREB and results in alterations in downstream gene expression
268

. 

Several copies of the CRE are present within both the human and murine CMV 

promoters (MIEhCMV and MIEmCMV)
264

 and binding of CREB promotes 

transcription of the downstream gene. β-receptor stimulation therefore has the potential 

to increase transgene expression under the transcriptional regulation of these promoters 

via the CREB pathway and β-receptor blockade may attenuate this response. 

This hypothesis was examined in a recent study by our group
264

. β-receptor stimulation 

with isoprenaline resulted in increased transgene expression from both MIEhCMV and 

MIEmCMV promoters in cultured coronary SMCs, which was inhibited by β-blockade. 

The effect of isoprenaline was shown to be mediated by the CREB pathway as CRE-

decoy oligonucleotides inhibited the isoprenaline-induced enhancement of gene 

expression. This effect was then confirmed in vivo. Marker gene expression (lacZ) 

following adenovirus-mediated gene transfer within a porcine coronary artery model 

was significantly reduced in animals receiving β-blockers as compared to those 

receiving no β-blocker. 

Although β-blockers have been demonstrated to reduce transgene expression from 

CMV promoters following viral gene transfer into the vascular wall, this effect has not 

been studied using plasmid vectors. Given that, for the reasons discussed in Section 1.4, 

plasmids represent a more attractive choice of vector than viruses for vascular gene 

therapy, it is essential to know whether this interaction also applies to plasmid-mediated 

transgene expression. 

1.11 Research objectives 

Previous work from our group has identified a potentially beneficial effect on neointima 

formation following adenoviral delivery of CTGF in a SVG model of restenosis. 

Analysis of previously prepared slides will be carried out and further CTGF infections 

of human saphenous veins will be performed to assess for possible mechanisms for this 

effect. 

The next goal of this study is to improve plasmid-mediated transgene expression in 

vascular SMCs via expression cassette modification. Plasmids will be constructed 
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containing various combinations of the RE enhancer, the HE enhancer and the fragment 

of the smooth muscle gamma-actin (SMGA) promoter, which acts as a DNA targeting 

sequence. The most effective expression cassette at eliciting transgene expression will 

be ascertained by measurement of in vitro transfection of coronary arterial SMCs. 

Transgene expression of both FMOD and CTGF has been shown to reduce neointimal 

proliferation in a vein graft ex vivo model. The next goal is to investigate the effects of 

plasmid-mediated gene expression of these two transgenes delivered via gene-eluting 

stents in a porcine coronary artery model. 

Once the most effective expression cassette has been identified from the earlier 

experiments, three plasmids will be constructed using this expression cassette 

containing the cDNA for the therapeutic genes CTGF and FMOD, and the marker gene 

lacZ respectively. The ability of these plasmids to elicit transgene expression in vitro 

will be confirmed. 

Dose finding studies will be performed in vivo using gene-eluting stents coated with 

several different doses of the plasmid encoding the lacZ marker gene in a pig coronary 

model. Stents coated with the optimal dose of plasmid identified will then be prepared 

for each of the three transgenes and deployed in pig coronary arteries. Following 

sacrifice at 28 days, morphometric assessment will identify whether there has been an 

effect on neointimal hyperplasia. 

Further stent deployments will allow quantitation of the degree of transgene expression 

in the stented vessel segments using qPCR. If there is evidence of a biological effect, a 

variety of histological and immunohistochemical techniques will be performed to assess 

to what extent differences in neointimal hyperplasia are accompanied by differences in 

ECM deposition, reendothelialization and apoptosis. 

The final goal is to investigate the effect of systemic β-blocker administration on 

plasmid-mediated gene expression in vivo. β-blockers have been shown to reduce 

transgene expression from CMV promoters following vascular gene transfer with viral 

vectors in vivo. It is unclear however whether this applies to plasmid-mediated gene 

transfer and this will be investigated in the pig coronary model using gene-eluting 

stents. 



Intracoronary gene transfer via plasmid-eluting stents  Paul Williams

   

 55 

1.11.1 Summary of research objectives 

 Further investigate mechanistic effects of adenovirus-mediated gene transfer of 

CTGF on neointima formation in the SVG model 

 Investigate combinations of promoters to develop an improved expression 

cassette for plasmid-mediated transgene expression in coronary SMCs 

 Construct plasmids containing the CTGF, FMOD and lacZ transgenes with the 

most efficient promoters 

 Confirm the identity and function of these newly created plasmids (transfection 

in vitro and PCR) 

 Prepare gene-eluting stents coated with several doses of placZ 

 Confirm intact DNA elution from prepared stents 

 Identify the optimal plasmid dose in eliciting marker transgene expression in 

vivo in a pig coronary artery model 

 Prepare gene-eluting stents coated with the optimal dose of lacZ, CTGF and 

FMOD 

 Assess the effects of CTGF and FMOD gene transfer in vivo in a pig coronary 

artery model of instent restenosis 

 Assess the effects of systemic β-adrenoreceptor blockade on plasmid-mediated 

transgene expression in vivo in a pig coronary artery model 
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2 Methods and materials 

2.1 Cell culture techniques 

For in vitro assessment of gene transfer cell culture was performed with human 

coronary artery smooth muscle cells (HCSMC) and two cell lines: A-10 cells and HEK 

293 cells. All work was performed under sterile conditions in a laminar flow hood in a 

dedicated tissue culture facility. Cell incubation was performed at 37°C with 5% CO2. 

The general principles of cell culture are described below for HCSMCs and the 

differences are then discussed for A10 and HEK 293 cell culture. 

2.1.1 Growing up and maintenance  

Cryopreserved stocks of human coronary artery smooth muscle cells (TCS Cellworks, 

Bucks, UK) were thawed in a waterbath at 37°C. When a small amount of ice pellet was 

still present, the contents of the cryovial were transferred into a 15ml centrifuge tube 

containing 9ml of pre-warmed SMC medium (TCS Cellworks; see Appendix 6.1). The 

cells were pelleted by centrifugation at 1500rpm for 10 minutes, the supernatant was 

removed and the cells were resuspended in 6ml of SMC medium. The cell suspension 

was transferred into a 25cm
2
 cell culture flask and incubated at 37°C with 5% CO2. 

The culture medium was changed every 48-72 hours. The old medium was aspirated 

and the cells were washed with pre-warmed phosphate buffered solution (PBS). The 

PBS was aspirated and fresh pre-warmed SMC medium was added. 

Cell passage was performed when the cells reached 80-90% confluency. The old 

medium was removed and the cells were washed with pre-warmed PBS. 1-5ml of pre-

warmed trypsin 0.25%/EDTA 0.02% (Sigma) was added and the flask was incubated at 

37°C for 3-5 minutes until cell detachment had occurred. Pre-warmed SMC medium 

was added to neutralise the trypsin and the cell suspension was titurated to break up cell 

clumps. The cell suspension was divided at a ratio of 1:3 or 1:4 between 25cm
2

, 75cm
2

 

or 175cm
2

 flasks (depending on the initial flask size) before being returned to the 

incubator at 37°C with 5% CO2. 
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2.1.2 Production of stocks 

A 175cm
2
 flask of SMC cells at 80-90% confluency was trypsinised and neutralised 

with SMC medium. The cell suspension was transferred into a sterile 15ml tube 

(Falcon) and the cells were pelleted by centrifugation at 1,500rpm for 10min. The 

supernatant was aspirated and the cell pellet resuspended in 10ml of Freezing Medium 

(see Appendix 6.1 for composition). The cell suspension was transferred into cryovials 

in 500μl aliquots. The vial was wrapped in cotton wool, placed in a polystyrene 

container and left in a –80°C freezer overnight. The following day the cryovial was 

transferred to a liquid nitrogen storage tank. 

2.1.3 A-10 cells 

A-10 cells (ATCC, Virginia, USA; catalogue no: CRL-1476) are a clonal cell line 

derived from the thoracic aorta of rat embryos and possess many of the characteristics 

of smooth muscle cells. In particular, they have been shown to resemble neointimal 

SMCs
269

 and have been used in previous studies investigating vascular gene therapy for 

restenosis
173, 174

. 

Cell culture techniques were similar to the protocol above except A-10 medium was 

used instead of SMC medium (see Appendix 6.1 for composition). 

2.1.4 HEK 293 cells 

293 cells (Microbix, PD-02-01) are derived from human embryonic kidney fibroblasts. 

The original cell line was transformed with the E1A region from adenovirus type 5 

DNA sheared by passage through a fine needle. The resultant cell line is very easy to 

transfect using dedicated liposome-based techniques (e.g. 293fectin, Invitrogen). 

Cell culture techniques were similar to the protocol above except 293 medium was used 

instead of SMC medium (see Appendix 6.1 for composition). 
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2.2 Adenovirus-mediated gene transfer to saphenous vein 

graft segments 

2.2.1 Adenovirus titration 

The titre of stock adenovirus (Ad5-CTGF) was determined using an end-point dilution 

assay. 5x10
3
 293 cells in 100µl warmed 293 medium were seeded into each well of a 

96-well plate 24 hours before the titration.  Serial dilutions of the viral stock were then 

prepared in 293 medium, starting with the 1:1000 dilution (10
-3

) to 10
-13

.  The 293 cells 

were infected with the different virus dilutions as stated above with ten wells for each 

group. The remaining wells of the 96-well plate were used as negative controls for the 

presence of cytopathic effect (CPE).  The plates were incubated at 37°C for 10 days 

with the addition of 100l media every 3 days to prevent the pH of the medium 

changing or the medium evaporating.  After 10 days wells were examined for the 

appearance of CPE.  CPE-positive wells were analysed using an inverted phase-contrast 

microscope and the fractions of CPE-positive wells in each row were calculated.  The 

titre was determined according to the formula: titre (pfu/ml) = 10
(x+0.8)

.  X refers to the 

sum of the fractions of CPE-positive wells. 

2.2.2 Surgical preparation 

Harvested segments of human saphenous vein which were excess to surgical 

requirements were obtained from patients undergoing coronary artery bypass grafting. 

Side-branch ligation had already been performed. The segments were stored in organ 

transfer medium (see Appendix 6.1) at 4°C prior to transfer to our laboratory and 

processing on the day of surgical harvest. 

2.2.3 Adenoviral transduction and culture of saphenous vein 

segments 

All tissue culture steps were performed in a category 2 laminar flow cabinet using 

autoclaved equipment and taking all possible care to maintain sterility. The saphenous 

vein specimen was transferred into a 35mm tissue culture dish containing organ culture 

medium warmed to 37°C. The vessel was washed out with phosphate buffered saline 

(PBS) and cut into segments of approximately 2cm length. One end of each segment 

was closed with a Ligaclip (Ethicon) and nylon suture and any excess fluid was 



Intracoronary gene transfer via plasmid-eluting stents  Paul Williams

   

 59 

removed from the lumen. Luminal instillation of either thawed Ad5-CTGF or Ad5-lacZ 

was performed with a dose of 1 x 10
8
 plaque forming units (pfus) in 100μl of PBS and 

the proximal end of the segment was closed with a further Ligaclip and suture. 

Incubation of the segment was performed in organ culture medium at 37°C for one 

hour. Following this incubation period, the end clips were removed and the vessel was 

opened longitudinally with sterile scissors and washed with PBS. The segment was 

stretched and pinned onto a strip of sterile polyester gauze placed into a glass petri plate 

into which a 4mm layer of Sylgard 184 encapsulating resin (Dow Corning) had been 

cast. The opened vein was covered with fresh organ culture medium and incubated at 

37°C with 5% CO2. The culture medium was replaced every 48 hours. 

2.2.4 Snap freezing of vein segments and slide preparation 

Processing was performed following either three, seven or fourteen days of incubation. 

The segment was washed in PBS and cut into two using sterile scissors. One half was 

placed in a storage tube and directly snap-frozen in liquid nitrogen. The other half was 

placed into a 5ml syringe from which the tip had been excised and which had been filled 

with optimal cutting temperature compound (OCT). The syringe was snap frozen in 

liquid nitrogen and the OCT block was transferred to a 15ml centrifuge tube. The OCT-

embedded frozen segments were cut into 12μm sections using a cryostat and placed 

onto Superfrost microscope slides. All specimens were stored at -80°C whilst awaiting 

further processing. 

2.2.5 Indirect immunohistochemistry and immunofluorescence 

The initial slide preparation was similar for both immunohistochemistry and 

immunofluorescence. Slides with mounted sections were removed from the -80°C 

freezer, allowed to warm to room temperature and squares were drawn around the 

sections with a water-repellent delimiting pen (Dako, Cambridgeshire, UK). Fixation 

with 10% buffered formalin (Sigma) for 15 minutes was followed by three 5 minute 

washes in phosphate buffered solution (PBS). Immersion in Triton-X100 0.1% was 

performed for 10 minutes to reduce surface tension and allow reagents to cover the 

whole tissue section. Following three further washes in PBS, non-specific antigen 

blocking was performed with 1% bovine serum albumin (BSA) in PBS for 60 minutes. 

The primary antibody was diluted to an appropriate concentration (see Table 2) with 1% 
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BSA in PBS and applied to each section. For negative control slides, 1% BSA was 

applied without primary antibody. The slides were incubated at 4°C overnight. 

Table 2 - Antibodies used for immunohistochemistry and immunofluorescence 

Type Antibody Dilution Supplier (Cat 

no) 

Primary Rabbit anti-CTGF  1:200 Abcam (ab6992) 

Primary Rabbit anti-fibromodulin 1:200 A gift kindly 

provided by 

Dr PJ Roughley, 

Shriners 

Hospitals for 

Children, Canada 

Secondary Goat biotinylated anti-rabbit IgG 1:200 Vector labs (BA-

1000) 

Secondary Goat anti-rabbit IgG, Cy5 conjugate, 

species adsorbed: human, mouse, rat 

1:400 Millipore UK 

(AP187S) 

 

The following day the sections were washed with PBS. For immunohistochemistry, 

endogenous peroxidase activity was blocked by incubation with 0.3% hydrogen 

peroxide in absolute methanol for 30 minutes followed by a further PBS wash. An 

appropriate concentration of diluted secondary antibody (biotinylated for 

immunohistochemistry; fluorophore-conjugated for immunofluorescence; see Table 2) 

was applied and the sections were incubated for 1 hour at room temperature followed by 

a PBS wash. 

 For immunohistochemistry, processing was performed with the Vectastain ABC kit 

(Vector laboratories, Peterborough, UK). The slides were incubated in the ABC reagent, 

consisting of Avidin DH and biotinylated horseradish peroxidise H, for 30 minutes 

followed by a PBS wash. The slides were then incubated in diaminobenzidine 

tetrahydrochloride (DAB, Vector labs) for 5 minutes. If nickel chloride was added the 

precipitate was grey/black rather than brown. The slides were washed in dH2O and 

serial dehydration of the slides with increasingly concentrated alcohol solutions (50%, 

70%, 90%, 100%, 100%) and two xylene washes was performed with 2 minutes 
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incubation in each solution. Mounting medium and a coverslip was applied to each 

slide. 

For immunofluorescence, following secondary antibody binding, the slides were 

counterstained with DAPI for nuclear staining. Vectashield mounting medium (Vector 

labs) and a coverslip was applied and the perimeter was sealed with nail varnish. 

DAB-stained sections were imaged with light microscopy. Immunofluorescent sections 

were imaged with a Zeiss LSM 5 Pascal confocal laser scanning microscope using two 

channels. Collagen autofluorescence was detected via excitation at 488nm and detection 

between 505-600nm. Cy5 antibody binding was detected via excitation at 633nm and 

detection >650nm. 

2.2.6 Assessment of proteoglycan content with Alcian blue staining 

Alcian blue staining was performed as previously described
270

. Frozen samples were 

warmed to room temperature, weighed and fixed via immersion in 100% ethanol at 4°C 

for 20 minutes in the original tube. Specimens were then air-dried on paper for 

approximately 30 minutes. The samples were immersed in 1ml Alcian Blue (0.5% w/v 

in 0.1M HCl) at 4°C overnight in microcentrifuge tubes. The following day, the samples 

were washed briefly with 70% ethanol and then immersed in 5ml guanidine 

hydrochloride 8M at 4° overnight. Calibration of a spectrophotometer was made using 

guanidine hydrochloride as a blank and absorbance of the specimens was measured at 

595nm. Proteoglycan content was considered to be proportional to the A595/weight. 

2.2.7 Assessment of collagen content with picosirius red staining 

Microscope slides had been prepared by our group containing sections of vein graft 

segments previously infected with either Ad5-CTGF or Ad5-lacZ and stained with 

picosirius red. The area of red birefringent staining under circularly polarised light, 

which is proportional to collagen content, was measured using QWindows software 

(Leica) and a Leica Quantimet 600S digital analysis system 
111

. 
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2.3 Manipulation and cloning of plasmid DNA 

2.3.1 Restriction endonuclease digestion 

All restriction endonucleases and buffers were supplied by Promega (Southampton, 

UK) unless otherwise specified. DNA digestion reactions were performed using the 

manufacturer‟s recommended buffer for single enzyme digests and the buffer with the 

best compromise of efficiency in the case of double enzyme digests. Digests were 

carried out in a total volume of 20μl, except for when gel extraction was planned in 

which case a volume of 50μl was used. Unless specified otherwise, digestion reactions 

were performed in a waterbath at 37°C for one hour. A typical digestion reaction would 

consist of: 

For diagnosis (μl)  For extraction (μl) 

DNA   1-5 (typically 100-200ng) 1-10 (typically 2-5μg) 

Buffer (10X)  2    5 

Enzyme (10U/μl) 1    3 

dH2O   12-16    32-41 

Total volume  20    50 

 

2.3.2 Agarose gel electrophoresis 

Following restriction enzyme digestion DNA fragments were identified and quantified 

using agarose gel electrophoresis. A typical 1% agarose gel was made by dissolving 

500mg agarose into 50ml of 1x TAE buffer and adding ethidium bromide to intercalate 

DNA and allow identification of DNA fragments under ultraviolet light. 15μl of 1kb 

DNA ladder (Invitrogen, Paisley, UK; 15615-024) was used for DNA fragment 

identification and quantification; with this volume there was calculated to be 75ng DNA 

at the 1636bp band. Digital images were taken using the UVIpro Platinum system 

(UVItec, Cambridge, UK). 
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2.3.3 Gel extraction and purification 

Following restriction enzyme digestion and gel electrophoresis, the DNA fragment of 

interest was excised using a scalpel blade and purified using the Qiaquick gel extraction 

kit (Qiagen, West Sussex, UK). This system uses a silica membrane to bind DNA in 

high salt buffer prior to washing and elution with ddH2O. The procedure removes 

primers, nucleotides, enzymes, mineral oil, salts, agarose, ethidium bromide, and other 

impurities from DNA samples. 

2.3.4 DNA ligation 

T4 DNA ligase and the ligase buffer were supplied by Promega. The size and 

concentration of both the insert and vector DNA were used in the following equation to 

calculate the amount of each required for ligation reactions involving molar ratios of 

insert to vector of 1:1, 3:1 and 5:1. A typical ligation reaction would contain 100-200ng 

vector and be carried out in a total volume of 20μl at 4°C overnight. Restriction enzyme 

digested vector without insert was used as a control. 

wt. vector (ng) x  size insert (kb)  x molar ratio (i:v) = wt. insert (ng) 

                            size vector (kb) 

Assuming the vector and insert were both identical sizes and had a concentration of 

100ng/μl, a typical reaction would consist of: 

Molar ratio (i:v) 1:1 (μl) 3:1 (μl) 5:1 (μl) Control (μl) 

Vector   1  1  1  1 

Insert   1  3  5  0 

T4 DNA ligase 1  1  1  1 

Ligase buffer  2  2  2  2 

ddH2O   15  13  11  16 

Total volume  20  20  20  20 
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Once the ligation process was complete, bacterial transformation of the plasmid DNA 

solutions was performed. 

2.3.5 Bacterial transformation using heat shock 

Transformation-competent E. Coli cells stored at -70°C were thawed on wet ice. 50μl of 

competent cells were mixed with 10μl DNA ligation reaction solution and incubated on 

ice for one hour. The cells were then heat shocked by immersion in a water bath at 42°C 

for 45 seconds. Following rapid cooling on ice for 10 minutes, 700μl of LB broth was 

added and the cells were incubated at 37°C with continuous shaking for one hour. 150μl 

of the cell suspension was then pipetted and spread over an LB-ampicillin agar plate 

which was incubated at 37°C overnight. 

The following day, individual bacterial colonies were selected and inoculated in 5ml of 

LB broth containing ampicillin at a concentration of 100μg/ml. The bacteria were 

grown overnight at 37°C with continuous shaking prior to DNA purification the 

following day. Appropriate restriction enzyme digestion was then performed of the 

purified plasmid to identify colonies producing the correct ligation product. 

2.3.6 DNA purification 

Qiagen Mini-, Midi-, and Maxi-prep kits were used according to the quantity of DNA 

required (Qiagen). For DNA which was used in subsequent in vitro transfection or in 

vivo experiments EndoFree kits were used to minimise the quantity of bacterial 

endotoxin. All kits work on the same principle of alkaline lysis. Bacterial cells cultured 

under appropriate antibiotic selection were pelleted, resuspended and lysed with an 

alkaline buffer containing RNase A. Following neutralisation, the bacterial lysate 

containing chromosomal DNA, detergent, salt and proteins was cleared either via 

centrifugation or using a filtration unit. Plasmid DNA was bound to an anion-exchange 

resin under low-salt and pH conditions and RNA, proteins and low molecular weight 

impurities were removed with a medium-salt wash. Plasmid DNA was eluted in a high-

salt buffer and then concentrated and desalted by isopropanol precipitation. For 

endotoxin-free purification, incubation with an endotoxin removal buffer was performed 

following bacterial lysate clearing. 
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Typical culture volumes and DNA yields were 5ml and 10-20μg DNA for a Miniprep, 

100ml and 75-100μg DNA for a Midiprep, and 250ml and 250-500μg DNA for a 

Maxiprep. 

Large scale plasmid purification for use in the in vivo stent experiments was performed 

by PlasmidFactory GmbH & Co. KG (Beilefeld, Germany). 

2.4 Construction of novel plasmid expression cassettes 

The previously constructed pGEG.Psi-lacZ plasmid was used for cloning experiments 

(Figure 5). This plasmid is approximately 14kb in size and has been demonstrated by 

our group to elicit high level transgene expression in smooth muscle cells (unpublished 

data). pGEG.Psi-lacZ contains an expression cassette consisting of the truncated 

murine MIECMV promoter, a chimeric intron consisting of the donor site from the first 

intron of the human beta-globin gene and the branch and acceptor site from the intron of 

an immunoglobulin gene (obtained from the pCI vector, Promega
157

), the transgene 

(lacZ cDNA), the Woodchuck hepatitis virus post-transcriptional regulatory element 

(WPRE), and the late SV40 polyadenylation signal. The plasmid also includes the cis-

acting EBNA1 gene driven by a CAG promoter, the complementary oriP binding site 

for the EBNA1 protein, and the ampicillin resistance gene. The bacterial origin of 

replication is ColE1. 
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Figure 5 - Diagram of pGEG.Psi-lacZ 

See text for description. amp
r
=ampicillin resistance gene; SV40 PolyA=late SV40 polyadenylation signal; 

trIEmCMV=truncated murine CMV promoter 

 

To facilitate construction of the plasmids with novel expression cassettes, a 708bp 

custom DNA sequence was synthesised (Genscript, New Jersey, USA). This consisted 

of a 176bp fragment of the chicken smooth muscle gamma-actin promoter, which has 

been shown to act as a DNA targeting sequence within SMCs (D), two copies of the 

107bp enhancer fragment of the rabbit smooth muscle myosin heavy chain promoter 

(RE), and two copies of the 109bp enhancer fragment of the human VSMC α-actin 

promoter (HE). These elements were separated by various restriction sites to facilitate 

cloning experiments (see Appendix 6.3 for details). 

The custom DNA sequence was ligated into the pGEG.Psi-lacZ plasmid immediately 

upstream of the MIEmCMV promoter to create pGEG-D2RE2HE-Psi-lacZ. Restriction 
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enzyme digestion and religation of pGEG- D2RE2HE-Psi-lacZ was performed to create 

six further plasmids with the following combinations of HE, RE and D (see Appendix 

6.3.2 for specific cloning protocol). 

 

pGEG- 2RE2HE –Psi-lacZ 

pGEG- D2HE –Psi-lacZ 

pGEG- D2RE –Psi-lacZ 

pGEG- DREHE –Psi-lacZ 

pGEG- DRE –Psi-lacZ 

pGEG- D –Psi-lacZ 

 

Following cloning and purification, plasmid identities were confirmed by restriction 

digests. 

2.5 Assessment of transgene expression in vitro 

Two methods of cell transfection were used to assess transgene expression in vitro: 

liposome-mediated transfection (or lipofection) and electroporation. 

2.5.1 Smooth muscle cell transfection 

2.5.1.1 Liposome-mediated transfection 

Liposome-mediated transfection (lipofection) uses proprietary cationic liposomes which 

can electostatically bond with negatively charged pDNA.  These complexes are also 

positively charged which enhances cellular uptake via electrostatic interaction with the 

negatively charged cell membrane. 

The success of liposome-mediated transfection is highly dependent on the cell-type 

studied. Original studies showed extremely poor gene transfer efficiency using this 
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technique in vascular wall cells, including VSMCs
271

. For instance, in a study using rat 

VSMCs only 5% of cells transfected successfully as compared with 50% of COS-7 

cells
272

. Serum-free medium may increase the effectiveness of liposomal gene 

delivery
273

 and optimising conditions, particularly the liposome formulation and 

liposome:DNA ratio, has been reported to improve the transfection rate in VSMCs to 

approximately 50%
274

. 

On the day prior to transfection, cells were trypsinised and counted. 3x10
5
 cells were 

seeded into each well of a 6-well plate and returned to the incubator overnight to give 

approximately 90% confluency on the following day. As transfection with plasmids 

encoding for the lacZ transgene was to be assessed by visual inspection of X-gal, a cell 

monolayer on the base of the well was sufficient. However assessment of transgene 

expression of the therapeutic genes CTGF and FMOD required indirect 

immunocytochemistry and therefore a collagen-coated coverslip (BD BioCoat Cellware 

coated with rat tail collagen type I (BD Biosciences, Bedford MA; cat no: 354089) was 

placed into each well of the 6-well plate prior to cell seeding and lipofection. 

On the day of transfection the cells in the 6-well plate were washed with PBS, 800μl of 

pre-warmed OptiMEM I reduced serum media (Invitrogen; #51985-026) was added to 

each well and the plate was returned to the incubator. 

The following solutions were then prepared for each transfection experiment: 2μg 

plasmid was made up to 100μl with OptiMEM, and an appropriate amount of 

lipofectamine solution (depending on the cell-type to be transfected) was added to 100μl 

OptiMEM. For HEK-293 cells 10µl of 293fectin was used; for A10 cells 6µl of 

Lipofectamine LTX and 2µl of PLUS reagent was used (both Invitrogen). 

These two solutions were allowed to stand for 5 minutes at room temperature and then 

mixed together. The resultant solution was left to incubate at room temperature for 30 

minutes to allow DNA-lipofectamine complexes to form. Each lipofectamine-DNA 

mixture was added to one well of the 6-well plate and the plate was returned to the 

incubator for 5-6 hours. 
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Following transfection the cells were washed again with PBS, 2ml of the appropriate 

culture medium was added to each well and the plate was returned to the incubator. 

Transfection efficacy was assessed at 24-48 hours.  

2.5.1.2 Nucleofection 

In order to quantify the gene transfer efficiency of the novel expression cassettes, 

HCSMC transfection experiments were conducted in vitro. 

Electroporation was performed with Amaxa‟s Nucleofector technology (Lonza Cologne 

AG, Germany) which uses a combination of optimised electrical parameters generated 

by a Nucleofector device and cell-type specific reagents to allow efficient DNA transfer 

into the cytoplasm and nucleus. Nucleofection allows efficient transfection of both 

dividing and quiescent cells. 

Briefly, the nucleofection protocol was as follows. Human coronary artery smooth 

muscle cells were cultivated as described in the previous section to approximately 70-

80% confluency and harvested by trypsinisation. A cell count was performed with a 

haemocytometer and an appropriate volume was centrifuged at 100g for 1 minute and 

resuspended in Nucleofector solution to make a final concentration of 0.5-1 x 10
6
 

cells/100μl. 100μl of this cell suspension was mixed with 1-5μg plasmid DNA and 

transferred to a cuvette. The cuvette was placed in the Nucleofector device and the A-33 

programme was run. Following nucleofection, 500μl of pre-warmed SMC medium was 

added to the cuvette and the suspension was aspirated and seeded into 3 wells of one 6-

well plate. The cells were incubated at 37°C with 5% CO2 and the medium was changed 

at 18 hours post-nucleofection. 

At 72 hours, the cells were washed with PBS and 500μl of cell lysis buffer was added to 

each well (see Appendix 6.1). The lysed cells were transferred to a microcentrifuge tube 

and stored at -20°C in preparation for β-galactosidase and total protein assays. 

2.5.2 β-galactosidase assay 

β-galactosidase activity can be assayed by addition of a synthetic sugar, o-nitrophenol-

-D-galactopyranoside (ONPG). β-galactosidase cleaves ONPG into galactose and o-
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nitrophenol (ONP), which is a yellow colour and can be quantified using a 

spectrophotometer. Enzyme activity is directly proportional to the absorbance at 420nm. 

The following solutions were placed into a microcentrifuge tube on ice: 

ONPG 4mg/ml in PBS (substrate)   100μl 

10m gCl2/0.45M -mercaptoethanol (buffer) 45μl 

Lysed cell sample, diluted with PBS   345μl 

 

The tubes were incubated at 37°C for one hour. The reaction was terminated with the 

addition of 510μl of 1M Na2CO3, which denatures ONPG and renders it inactive. A 

blank sample was prepared to control for spontaneous lysis of ONPG, which used the 

above solutions but cell lysis buffer diluted with PBS instead of the lysed cell sample. 

Samples were transferred to cuvettes and absorbance was measured at 420nm using a 

spectrophotometer. 

2.5.3 Protein assay 

The BCA protein assay reagent kit was used (Pierce, Illinois, USA) which is based on 

bicinchoninic acid (BCA) for the colorimetric detection and quantitation of total 

protein. Cu
2+

 is reduced to Cu
1+

 by protein in an alkaline medium. Cu
1+

 is then detected 

using a reagent containing BCA, with two molecules of BCA chelating with one 

cuprous ion to form a purple-coloured reaction product. 

A set of cuvettes were prepared containing known protein concentrations to create a 

standard protein curve. Blank samples consisted of the cell lysis buffer alone. The BCA 

working reagent was prepared by mixing 50 parts of reagent A with 1 part of reagent B. 

25μl of each standard or unknown sample was pipetted into a pair of wells on a 96-well 

microplate and 200μl of the working reagent was added to each well and mixed 

thoroughly. Two wells were prepared for each sample. The plate was incubated at 37°C 

for 30 minutes and then cooled to room temperature. Absorbance was measured at 

570nm on a plate reader. 
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The average 570nm absorbance measurement of the blank samples was subtracted from 

each of the standard and unknown sample measurements. A standard curve was plotted 

using the known protein concentrations and the blank-corrected 570nm measurements.  

2.5.4 Calculation of transgene expression 

The β-galactosidase activity (which is proportional the 420nm absorbance) was divided 

by the protein concentration (which is proportional to the 570nm absorbance) for each 

sample to give an estimation of expression of the lacZ gene per cell. This calculation 

gives an estimation of the β-galactosidase activity controlled for protein content but 

does not have a meaningful unit of measurement as it is a ratio of absorbances. The 

mean of the values from the three wells prepared for each plasmid nucleofection was 

then calculated. 

2.6 Construction of plasmids for use in vivo 

Plasmids encoding for the lacZ, CTGF and FMOD genes with the expression cassette 

identified by the experiments detailed in section 2.5 to result in the greatest transgene 

expression in human coronary smooth muscle cells (pGEG-2RE2HE-Psi) were required 

for the in vivo experiments. Following cloning, large scale plasmid purification of the 

three plasmids was performed by PlasmidFactory. 

2.6.1 Cloning strategy for lacZ encoding plasmid 

pGEG-2RE2HE-Psi-lacZ was constructed as part of the experiments investigating 

expression cassette optimisation (see Section 2.4, Appendix 6.3.2 and Figure 6). 
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Figure 6 – Diagram of pGEG-2RE2HE-Psi-lacZ 

 

2.6.2 Cloning strategy for CTGF encoding plasmid 

A plasmid encoding for the human CTGF consensus coding DNA sequence (CCDNS; 

see Appendix 6.4.1 for DNA sequence), pΔE1C-CTGF, was kindly provided by Dr 

Kingston (see Figure 7) and the CTGF transgene was removed via digestion with SalI 

and NheI. pGEG-2RE2HE-Psi-lacZ (Figure 6) was also digested with SalI and NheI to 

remove the lacZ transgene. The CTGF transgene was then ligated into this backbone to 

create pGEG-2RE2HE-Psi-CTGF (Figure 8), preserving the NheI and SalI sites. 
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Figure 7 – Diagram of intermediary plasmid pΔE1C-CTGF 
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Figure 8 – Diagram of pGEG-2RE2HE-Psi-CTGF 

2.6.3 Cloning strategy for fibromodulin encoding plasmid 

Insertion of the FMOD transgene into the pGEG-2RE2HE-Psi backbone was 

considerably more complex than insertion of CTGF due to the paucity of convenient RE 

sites. Custom oligonucleotides and an intermediary plasmid were required to facilitate 

cloning. 

A shuttle vector, pCI (Figure 9), was digested with HindIII, which cut a single 

restriction site 749bp into the CMV promoter, and NotI, which cut at a single RE site in 

the MCS, to remove a 350bp fragment.  
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Figure 9 – Diagram of pCI shuttle vector 

 

Two 30bp custom complementary oligonucleotides were ordered (Sigma-Aldrich Ltd, 

Poole, UK) and annealed using a PCR machine to create a polylinker. Table 3 shows the 

RE sites in the polylinker. The 5‟ end was designed to be compatible with a digested 

HindIII sticky end but not regenerate a new RE site, and the 3‟ end was designed to be 

compatible with a digested NotI sticky end but again not to regenerate a new RE site. 

This polylinker was ligated into the pCI backbone to create pCI-polylinker. 

Table 3 – Oligonucleotides used to facilitate cloning of fibromodulin encoding 

plasmid 

Strand 1  agc-tctaga-agctt-aaaaaa-gctag-ctcga 

Strand 2 ggc-ctcgag-ctagc-tttttt-aagct-tctag 

Annealed 

product 

agc-tctaga-agctt-aaaaaa-gctag-ctcga 

     gatct-tcgaa-tttttt-cgatc-gagctc-cgg 

RE sites HindIII – XbaI – HindIII – NheI –XhoI –NotI 

Bold type indicates RE sites that the polylinker is compatible with but which do not reconstitute on 

binding. 
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pCI-polylinker was digested with HindIII and NheI. A plasmid containing bovine 

fibromodulin cDNA (see Appendix 6.4.2 for DNA sequence), p∆PREK1-FMOD, was 

kindly provided by Dr PA Kingston (Figure 10). Digestion was performed with HindIII 

and XbaI to remove the FMOD gene. The XbaI sticky end on the FMOD transgene is 

compatible with NheI allowing the FMOD gene to be ligated into the digested pCI-

polylinker to create pCI-FMOD. Ligation of XbaI and NheI does not regenerate a new 

RE site. 

 

Figure 10 – Diagram of p∆PREK1-FMOD 

 

The FMOD gene was then removed from pCI-FMOD with digestion by XbaI and XhoI 

(which were added with the polylinker). The lacZ gene was then removed from pGEG-

2RE2HE-Psi-lacZ with NheI and SalI digestion (see Figure 6). NheI sticky ends are 

compatible with XbaI, and XhoI sticky ends are compatible with SalI, although neither 

binding regenerates an RE site. This allowed the FMOD gene to be ligated into the 

pGEG-2RE2HE-Psi backbone to create pGEG-2RE2HE-Psi-FMOD (Figure 11). 
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Figure 11 – Diagram of pGEG-2RE2HE-Psi-FMOD 

2.6.4 Confirmation of identity and function of plasmids 

Following cloning and purification, the identity of the three plasmids planned for use in 

vivo was confirmed by restriction digests, polymerase chain reaction and by transfection 

in vitro. 

2.6.4.1 Polymerase chain reaction 

The polymerase chain reaction (PCR) amplifies a small quantity of a specific piece of 

DNA by several orders of magnitude. Two primer oligonucleotides, which contain 

sequences complementary to two target regions at either end of the DNA segment of 

interest, and a DNA polymerase are required. Thermal cycling in a PCR machine with 

multiple cycles of DNA melting, annealing and elongation results in a chain reaction in 

which the DNA template is exponentially amplified. 
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PCR was performed to confirm the identity of the newly constructed FMOD and CTGF 

plasmids. Custom primers for the CTGF and FMOD transgenes were designed 

(Invitrogen; Table 4) to give expected bands of 1003bp (CTGF) and 1020bp (FMOD). 

The binding sites for these primers are illustrated in Appendix 6.4.The four primers 

were each designed to have an approximate melting temperature (Tm) of 55°C. The 

concentration of primers and annealing temperature were optimised with a series of 

PCR experiments to minimise non-specific binding. 

Table 4 – CTGF and FMOD PCR primers 

CTGF 

forward  

5' - ccg ccg cca gta tgg gc - 3' 

CTGF 

reverse 

5' - aag atg tca ttg tct ccg gg - 3' 

FMOD 

forward 

5' - ctc cct ctc ctg ggc cc - 3' 

FMOD 

reverse 

5' - tcg ttg cca tcc agg cgc - 3' 

 

A typical 50μl PCR reaction mix would consist of: 

 Concentration Volume 

(μl) 

Final 

concentration 

PCR nucleotide mix (#C1141; 

Promega) 

10mM each 1 0.2mM each 

dNTP 

GoTaq DNA polymerase (#M3171; 

Promega) 
5u/μl 0.25 1.25u 

Upstream primer Variable 5 0.1-1μM 

Downstream primer Variable 5 0.1-1μM 

Template DNA Variable 5 <0.5μg/50μl 

GoTaq green reaction buffer 5X 10 1X 

dH2O  23.75  
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A typical PCR reaction was as follows: 

1.      Denature                 95°C                 5min 

 

2.      Denature                 95°C              15s 

3.      Anneal                    Variable         15s 

4.      Elongate                 72°C                1min 30s (approx 1min/kb extension) 

(Steps 2-4 repeated X30) 

 

5.      Final elongation         72°C                 10min 

6.      Hold                               4°C                  ∞ 

 

PCR was then performed with the original plasmids from which the transgenes were 

derived and with the newly constructed plasmids. 

2.6.4.2 Confirmation of transfection in vitro 

The ability of the three plasmids to transfect cells and produce the desired transgene was 

assessed in both 293 cells and A10 cells using liposome-mediated transfection in 6-well 

plates as described in section 2.5.1.1. Transfection efficiency was assessed at 24-48 

hours. 

For the lacZ encoding plasmid, successful transfection and production of the transgene 

was assessed with X-gal staining of the wells using the same technique detailed in 

section 2.8.3.1. 

For the FMOD and CTGF encoding plasmids, successful transgene production was 

confirmed with indirect immunocytochemistry and immunofluorescence with similar 

methodology to section 2.2.5. Briefly, the culture medium was carefully aspirated from 



Intracoronary gene transfer via plasmid-eluting stents  Paul Williams

   

 80 

the well and the cells were washed with PBS taking care not to disrupt the cell 

monolayer on the collagen coated coverslip. The cells were fixed with 4% 

paraformaldehyde for 15 minutes, washed with PBS, permeabilised with 0.1% Triton 

X-100 for 10 minutes and washed again with PBS. Non-specific antibody binding was 

blocked with a 30 minute incubation in 1% BSA. A strip of parafilm was placed on the 

lid of the 6-well plate and 60μl of the appropriate primary antibody (diluted in 1% BSA 

– see Table 2) was spotted for each coverslip. Each coverslip was removed from its well 

and placed monolayer down onto the spot of primary antibody. The coverslips were 

placed in a humid box and left at 4°C overnight. 

The following day the coverslips were returned to their wells and washed with PBS. 

The appropriate secondary antibody (Cy5 for immunofluorescence – see Table 2) was 

spotted onto a strip of parafilm and the coverslips were again placed monolayer down 

onto the spot. The coverslips were placed in a humid box at room temperature for 1 

hour followed by a further PBS wash. Nuclear counterstaining was performed with 

DAPI (4‟-6-Diamidino-2-phenylindole, Sigma) which forms fluorescent complexes 

with natural double-stranded DNA. The coverslips were coated with DAPI for 15 

minutes. The coverslips were then briefly dipped in dH2O, blotted dry and placed with 

the cell monolayer down onto a microscope slide spotted with Vectashield mounting 

medium (Vector labs). The perimeter was sealed with clear nail varnish and the slides 

were stored in the dark at 4°C. 

The slides were imaged with a Zeiss LSM 5 Pascal confocal laser scanning microscope 

using two channels. The first channel utilised a mercury lamp to assess nuclear staining 

(pseudoDAPI mode) and the second channel assessed Cy5 antibody binding with 

excitation at 633nm and detection at >650nm. 

2.7 Development of gene-eluting stents 

Dr Kingston (Vascular Gene Therapy Unit, University of Manchester) had formed a 

research agreement with Medtronic, Inc. (Minneapolis, MN, USA) who had committed 

to provide polymer-plasmid coated coronary stents for use within our in vivo 

experiments. Shortly after the research project commenced Medtronic‟s European 

interventional cardiology division unexpectedly closed, which led to considerable 

uncertainty as to whether the company would be able to provide the stents within an 
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appropriate timescale for the research to be completed in. There was initially therefore 

no choice but to investigate alternative methods of coating stents with a polymer-

plasmid mixture. 

2.7.1 Method 1: coating with polyvinyl alcohol/plasmid mix 

This method has been previously described by Egashira and colleagues
178

 and their 

protocol was kindly provided by Professor Egashira (Kyushu University, Fukuoka, 

Japan): 

 

  conc. amount （μl) final conc. 

PVA 5% 810 2.31% 

plasmid  500  

heparin  125  

TC-310 40%wt 36.5 0.83% 

EtOH 100% 280   

  1751.5  

 

Polyvinyl alcohol in the form of GOHSENOL EG-05 was obtained (Nippon Gohsei, 

Inc. Osaka, Japan) and a 5% solution was mixed slowly with plasmid to dissolve. The 

heparin and TC-310 (titanium sulphate to act as a cross-linking agent) were added 

followed by alcohol. 

Dip-coating of stents with this solution was attempted in our laboratory. However this 

lead to an uneven coat of polymer with marked webbing between the stent struts. There 

was no easy way of controlling the amount of polymer mixture (and hence plasmid) on 

each stent. 

It was decided that this was process was impractical for in vivo experiments and was 

therefore not investigated further; a commercial polymer company with experience in 

coating coronary stents was approached. 
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2.7.2 Method 2: dip-coating with urethane/plasmid mix 

Preparation of stents by this technique was performed by Surface Solutions 

Laboratories, Inc. (Carlisle, MA, USA). Surface Solutions provided the stents used 

previously in the gene-eluting stent experiments performed by Takahashi and 

colleagues
137

. 

3x16mm stainless steel coronary stents (Boston Scientific; Natick, MA, USA) were dip-

coated with a solution containing 17.6% w/w plasmid DNA and a hydrophilic urethane 

polymer and allowed to dry. Three weights of coating were obtained by dipping 3 times, 

5 times and 7 times giving an estimated weight of plasmid DNA of approximately 

260μg, 350μg, and 720μg respectively. 

These experiments were performed prior to the development of the plasmids designed 

for use in vivo. Therefore a plasmid previously constructed by our group (pGEG-PRIK-

lacZ; ~14kb) was used. 

A sample stent manufactured by Surface Solutions is shown in Figure 12. It can be seen 

that, although the polymer application appears uniform throughout the length of the 

stent there is considerable webbing between the stent struts. 

 

Figure 12 – Polymer-plasmid coated coronary stent prepared by Surface Solutions 
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Plasmid elution was assessed by incubation in TE buffer at 37 degrees with constant 

shaking. The buffer was changed at various time intervals and DNA concentration was 

quantified using a Nanodrop spectrophotometer (Thermo Scientific). Restriction digests 

were performed to confirm intact plasmid elution. 

These stents were investigated in vivo. Stents were deployed into both the LAD and Cx 

coronary arteries of four pigs as described in Section 2.8. In total, four stents coated 

with a plasmid-polymer mixture (pGEG-PRIK-lacZ) and four stents coated with 

polymer mixture alone were deployed. Following sacrifice at 7 days, en face X-gal 

staining was performed as described in Section 2.8.3.1. 

2.7.3 Method 3: spray-coating of polymer and poragen followed by 

dip-coating in plasmid solution 

After several months of discussion, Medtronic finally agreed to perform the plasmid-

eluting stent preparation at their World headquarters in Minneapolis, USA. These stents 

were therefore used for the in vivo work, as they were ready in time for the main 

experiments to be completed, and were of a substantially higher quality than those 

produced by the alternative methods described above. The technique Medtronic used is 

briefly described below. However this process was of a proprietary nature and we were 

not party to the full details of the polymer used or the coating method. 

3.5 x 15mm stainless steel stents were spray-coated with a primer coat and a polymer 

coating containing a poragen. The stents were then soaked in water to allow the poragen 

to dissolve and create a porous coating. A solution containing the plasmid was leached 

into the pores, which were closed with gentle heating. For the dosing experiments the 

lacZ-eluting plasmid containing the expression cassette which was found to elicit the 

maximal transgene expression was applied to stents at one of three theoretical loading 

doses: 100μg, 200μg and 400μg DNA. The dose which provided the highest gene 

expression would then be used for the subsequent therapeutic experiments. 

Figure 13 illustrates one of the polymer-plasmid coated stents provided by Medtronic. 

Although the stents prepared by Medtronic and Surface Solutions were all stainless 

steel, the Medtronic stent struts appear white whilst the Surface Solutions struts still 

appear metallic (Figure 12). This indicates there is considerably more polymer coating 
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on the Medtronic stents. As with the Surface Solutions stents, there is a fine polymer 

webbing which can be seen between some of the stent struts. 

 

Figure 13 – Polymer-plasmid coated coronary stent prepared by Medtronic 

DNA elution was assessed by Medtronic in the USA. The stents were incubated in PBS 

at 37 °C with constant shaking and then DNA concentration was quantified using the 

Quant-iT Picogreen dsDNA assay kit (Invitrogen). 

Once the stents had been delivered, DNA elution was rechecked in our laboratory by 

incubation of stents in TE buffer and quantification with a Nanodrop spectrophotometer 

as described for Method 2. Restriction digests were then performed to confirm intact 

plasmid elution. 

2.8 Assessment of in vivo action of gene-eluting stents 

2.8.1 Stent deployment procedure 

Juvenile male large white pigs of approximately 20-25kg weight were obtained 

commercially and housed in the University of Manchester Biological Services Facility. 

All surgical procedures conformed to the UK Animals (Scientific Procedures) Act 1986 

and were authorised by the Home Office. 
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To reduce the risk of stent thrombosis, dual antiplatelet therapy (aspirin 150mg and 

clopidogrel 150mg) was administered on the day prior to the procedure and on the day 

of the procedure itself
275

. Aspirin 75mg and clopidogrel 75mg were then continued 

daily following the procedure until the time of sacrifice. 

2.8.1.1 General anaesthesia 

Induction of anaesthesia was obtained via inhalation of nitrous oxide (2L/min), oxygen 

(4L/min) and 4% isoflurane (Abbot Laboratories). Following application of lidocaine 

spray to the larynx to reduce the risk of laryngospasm, endotracheal intubation was 

performed and the tube was secured (Figure 14). General anaesthesia was maintained 

using 2.5% isoflurane and oxygen (4L/min) via the gas circuit of an anaesthetic 

machine. During the procedure electrocardiograph and arterial oxygen saturation 

readings were continually monitored. 

 

Figure 14 – Pig following induction of general anaesthesia and tracheal intubation 
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2.8.1.2 Coronary catheterisation and stent deployment 

Full aseptic technique was adhered to throughout the procedure. The surgical site was 

cleansed with chlorhexidine solution and a 5cm left paratracheal incision was made 

midway between the xiphisternum and the left mandibular angle. The left carotid artery 

was identified and mobilised using blunt dissection. The artery was tied off cranially 

with an 0 gauge silk suture (Johnson & Johnson) and a further silk suture was applied 

loosely to the proximal artery to allow closure at the end of the procedure. Arterial 

access was obtained using a 7 French safe sheath inserted via the Seldinger technique 

and 5000 Units of heparin was administered intra-arterially for periprocedural 

anticoagulation. Anti-arrhythmic agents were not given routinely. 

A 7 French guide catheter, either an Extra Backup (EBU) 3.5 or Judkins right 4 (JR4) 

catheter (Guidant) was passed into the left main stem of the left coronary artery. 

Diagnostic angiograms were obtained during selective injection of contrast medium 

(Omnipaque 350; GE Healthcare) via fluoroscopy with an OEC Cardiac 9600 image 

intensifier (GE Medical Systems). Typically right anterior oblique 30° (RAO) and left 

anterior oblique 30° (LAO) views would be sufficient to identify suitable coronary 

artery segments for stent deployment: in most cases the proximal segments of either the 

left anterior descending (LAD) or proximal circumflex (Cx) coronary arteries were 

used. Segments without side-branches were preferred to reduce the risk of side-branch 

occlusion and periprocedural myocardial infarction. A 0.014” BMW guide wire 

(Guidant) was passed into the distal coronary artery and the stent (which had been 

crimped onto a monorail balloon system) was passed over the wire to the target vessel 

segment. The stent was deployed by balloon inflation to between 8 and 18 Atm of 

pressure depending on the experimental protocol and vessel size. Following stent 

deployment, the balloon was deflated and removed and an angiogram was obtained to 

confirm that there were no vascular complications such as vessel dissection or 

intracoronary thrombus. Quantitative coronary angiography (QCA) was performed 

during the therapeutic studies prior and following stent deployment. The steps of the 

stent deployment procedure are illustrated in Figure 15. 
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Figure 15 – Coronary angiograms demonstrating stent deployment procedure 

Panel A illustrates a right anterior oblique (RAO) coronary angiogram with the guide catheter 

(arrowhead) sitting in the ostium of the left main stem (LMS) of the left coronary artery which 

subsequently bifurcates into the left anterior descending (LAD) and circumflex (Cx) arteries. Panels B 

and C show stent positioning before and after contrast injection: a guidewire is passed into the distal LAD 

(arrow) and the stent balloon, with radioopaque markers at each end (arrowheads), is placed in the target 

vessel segment. The stent is subsequently deployed by balloon inflation (panel D). Following balloon 

removal a final angiogram is taken to ensure there are no vascular complications (panel E). 

 

Following all stent deployments, the arterial sheath was withdrawn and the 0 gauge silk 

suture applied to the proximal carotid artery was tied off to achieve haemostasis. The 

wound was closed in layers using an 0 gauge absorbable Vicryl suture (Johnson & 

Johnson). Intramuscular buprenorphine was given at the end of the procedure for post-

operative analgesia. 
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The inhalational anaesthetic agents were stopped, the animal was transferred back to the 

housing area, and the endotracheal tube was removed. The animal was closely observed 

during recovery and then remained in the housing area until the time of sacrifice. 

2.8.2 Sacrifice and extraction of stented coronary artery segments 

Induction of anaesthesia was obtained via inhalational agents as previously described. 

For the therapeutic studies, repeat coronary angiography was performed via a right 

carotid artery cutdown as described in the previous section. Euthanasia was achieved 

with a bolus injection of 100mg/kg of pentobarbitone sodium 20% (Animalcare Ltd, 

York), either administered directly into the arterial catheter or into an ear vein cannula if 

repeat angiography was not performed. 

A left thoracotomy was performed via an incision along the left parasternal border 

which was extended at each end via two intercostal incisions. The rib segment was then 

everted to allow easy access to the thoracic cavity. The visceral and parietal pericardium 

was stripped from the surface of the heart and the heart was mobilised. The 

intracoronary stents could then be identified by gentle palpation. Traction was applied 

to the heart, avoiding applying any pressure to the stents, and the great vessels were cut 

with scissors allowing removal of the whole heart from the thoracic cavity. 

2.8.2.1 Removal and storage of stented segments 

The following steps were performed for tissue analysis experiments. Following heart 

extraction, the stented segments were carefully dissected out and any excess adventitial 

fat was removed. The vessel segment was cut longitudinally through both the vessel 

wall and stent with scissors and then opened to expose the luminal surface. This allowed 

the stent to be carefully removed with forceps. 

The segment could then be divided and either directly snap frozen in liquid N2 or 

embedded in OCT solution and then snap frozen in liquid N2. The segments were stored 

in a freezer at -80°C until further processing was performed. 
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2.8.2.2 Pressure perfusion of coronary artery segments 

For the therapeutic studies, which required cross-sectional morphometric analysis of the 

stented segments, pressure perfusion with formaldehyde was performed to ensure that 

the coronary arteries were fixed at a similar diameter to that seen in vivo. 

The heart was transferred to a fume cupboard immediately following extraction. The 

connection end of a venous giving set was placed into the aortic root and a seal created 

around the plastic tubing with several artery forceps. 110ml of 37-41% formaldehyde 

solution was injected into a 1 litre bag of 0.9% normal saline to make a 4% 

formaldehyde solution. This bag was placed into a pressure cuff inflated to 100mmHg 

pressure and connected to the giving set to deliver formaldehyde to the aortic root, and 

hence to the coronary arteries, at approximately physiological arterial pressure. 

Following delivery of 1 litre of 4% formaldehyde over approximately 15 minutes, the 

stented arterial segment was dissected out with a scalpel and stored in a 50ml tube 

containing 4% formaldehyde at room temperature until further processing was 

performed. 

2.8.3 Processing of stented coronary artery segments 

2.8.3.1 X-gal stain for visual assessment of β-galactosidase activity 

X-gal staining can be used to assess expression of the β-galactosidase protein by lacZ 

transfected cells. It can be performed on whole tissue segments en face, or on coronary 

artery sections which had been cut with a cryostat. 

X-gal ((5-bromo-4-chloro-3-indolyl--D-galactopyranoside) is cleaved by β-

galactosidase to yield colourless galactose and 5-bromo-4-chloro-3-hydroxyindole. The 

latter is subsequently oxidised to 5,5'-dibromo-4,4'-dichloro-indigo, an insoluble intense 

blue precipitate. X-gal staining solution was made by adding 500μl of freshly made X-

gal solution to 19.5ml of buffer solution (see Appendix 6.1 for compositions). 

Stored coronary artery segments or slide-mounted cryostat sections were removed from 

the -80°C freezer and allowed to warm to room temperature. Fixation was performed 

with 4% paraformaldehyde for 30 minutes and then the segments were washed twice 

with PBS. They were then permeabilised with 0.1% Triton-X 100 for 10 minutes 
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followed by two further PBS washes. The segments were incubated in X-gal staining 

solution at 37°C overnight followed by two PBS washes the following day. Blue 

staining was assessed by light microscopy. 

2.8.3.2 β-galactosidase and protein assay to quantify transgene 

expression 

β-galactosidase assay was performed to quantify the degree of lacZ transgene 

expression in transfected coronary artery segments.  

A pestle and mortar was cleaned with 70% ethanol and allowed to air dry. The pestle 

and mortar were placed in a polystyrene container containing enough liquid N2 to cover 

the mortar; the lid of the box was left closed to prevent further evaporation of liquid N2. 

The mortar was half-filled with liquid N2, removed from the box and placed on the open 

bench. The frozen tissue segment was removed from storage at -80˚C and placed in the 

mortar, ensuring that it remained submerged  in liquid N2 at all times. The tissue was 

ground until it became a fine powder and the liquid N2 was allowed to evaporate. An 

empty tube was weighed and the powdered tissue was scraped into the tube using a 

spatula. The tube was then re-weighed and the tissue weight calculated. 10ml of Lysis 

Buffer per 1g of tissue weight was added and the tissue lysates stored at -80˚C until 

required. 

On the day of processing, the samples were removed from the -80°C freezer and allowed 

to warm to room temperature. β-galactosidase and protein assay were then performed as 

described previously (Sections 2.5.2 and 2.5.3) and the degree of transgene expression 

could be calculated. 

2.8.4 Dose finding stent study 

In our group‟s most recent previous study of intracoronary β-galactosidase expression
264

, 

activity in vessel lysates was 0.0050.002iu/mg protein/min. A group size of 5 vessels will 

afford an 80% power of detecting a two-fold increase in β-galactosidase activity (i.e. an 

increase to 0.010.004) with P=0.05 (one-tailed test). There were planned for four groups 

(3 different plasmid doses and a control group) of 5 vessels each, meaning that twenty 
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vessels would need to be treated.  Two vessels would be treated in each animal and 

therefore ten animals would be required. 

3.5x12mm stents were prepared by Medtronic coated with one of three doses of plasmid 

encoding for lacZ or with polymer alone (with no plasmid). Stent deployment was 

performed within ten pigs, with each animal receiving two of the above stent types: one 

within the proximal LAD and one within the proximal circumflex. Stents were deployed 

at 8Atm. 

Sacrifice and vessel harvesting was performed at 7 days. Following stent removal, the 

stented segment was divided into two. One half was embedded in OCT solution and 

snap frozen in liquid nitrogen and the other half was directly snap frozen in liquid 

nitrogen and processed for en-face X-gal staining. The OCT embedded vessel segment 

was cut into 20μm sections with a cryostat and stained with X-gal solution as described 

in Section 2.8.3.1. 

2.8.5 Therapeutic stent study 

In our group‟s previous study of stent-mediated gene transfer of the secreted TGF-β type II 

receptor (RIIs)
276

, mean luminal area at 28 days in control vessels was 0.55±0.8mm
2
 

compared with 2.02±1.23mm
2
 in vessels receiving RIIs. A group size of 10 animals will 

afford an 89% power of detecting a difference of the same magnitude with P=0.05 (two-

tailed test).  

30 pigs were randomised to receive a single 3x12mm stent loaded with plasmid 

encoding for either CTGF, FMOD or lacZ (control) with 10 pigs in each group.  All 

stents were prepared by Medtronic. The stents were deployed in the proximal LAD at 

14Atm pressure aiming for a stent:vessel oversizing ratio of 1.1-1.2. According to the 

manufacturer‟s product information, at 14Atm pressure the 3mm stents will expand to a 

theoretical diameter of 3.33mm (stent area 8.7mm
2
) and therefore target vessel 

diameters of 2.5-2.8mm as assessed by QCA were used if possible. 

Vessel harvesting was performed at 28 days. Repeat coronary angiography and QCA 

calculation was performed prior to sacrifice. Following heart extraction, pressure 

perfusion and fixation of the coronary arteries was performed as described in Section 

2.8.2.2. 
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2.8.5.1 Processing of fixed stented segments for morphometric analysis 

This was performed by the osteoarticular pathology department of the University of 

Manchester. The fixed stented artery segments were removed from storage in 4% 

formaldehyde and placed in 70% ethanol for 2 days to prevent buffer salts in the 

formaldehyde from precipitating. They were then placed in an automatic processor at 

4°C and the following wash cycles were performed: 100% ethanol X 3, chloroform (to 

removed any lipid from the sample), 100% ethanol X 3 and LR White for Hard Tissue 

resin (London Resin Company). The samples were then warmed to room temperature, 

placed in trays half-filled with LR White resin and placed in a vacuum container 

overnight to remove any excess ethanol or chloroform. The resin was changed and the 

samples were placed in a pressure container at 60 PSI with dry nitrogen which was then 

placed in a 42°C oven overnight to polymerise the resin under anaerobic conditions. 

The samples were broken out of their containers and mounted onto an aluminium 

chuck. 8μm sections were cut from the proximal, mid and distal segments of the stented 

artery with an LKB powered microtome with a tungsten carbide D-profile blade. The 

sections were floated on a water meniscus to flatten them and were then mounted onto a 

Mylar sheet and placed on a hot plate. Staining of the sections was performed with 

toluidine blue (in which proteoglycans appear pink) and Miller‟s elastic stain 

counterstained with picosirius red (in which collagen appears yellow, muscle appears 

red and elastic tissue appears blue). A drop of Loctite ultraviolet (UV) adhesive (Glass 

Bond) was placed onto the section and a microscope slide adhered to the sample in a 

UV box. The Mylar sheet was peeled off and another drop of Glass Bond was placed on 

the slide and a coverslip placed on top. 

2.8.5.2 Morphometric analysis of stented segments 

Visualisation of the slides was performed with a Leica DMLB microscope and analysis 

and computed morphometry was performed using Leica Qwin software. 

For each section the cross-sectional area of the lumen, stent, internal elastic lamina 

(IEL) and external elastic lamina (EEL) were measured. The neointimal thickness 

(defined as the average of the minimum distance between each stent strut and the 

lumen) was calculated. 
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From the above measured parameters, the neointimal area (IEL area – lumen area) and 

media area (EEL area – IEL area) were calculated. 

Vessel injury was assessed using a modification of the scoring system originally 

described by Schwartz
277

, in which vessel stretch as well as deep injury can be 

quantified
278

. This scoring system is shown in Table 5 and a mean injury score for each 

section was calculated. 

Table 5 – Injury score (assessed for each stent strut) 

0 No IEL deformation 

1 IEL deformed < 45º (stretch) 

2 IEL deformed > 45º (stretch) 

3 Ruptured IEL (deep injury) 

4 Ruptured EEL (deep injury with complete medial rupture) 

 

2.8.6 Mechanistic stent study 

The processing methods described above to allow accurate morphometric measurements 

of the stented vessel segments rendered the tissue unsuitable for further analysis. 

Therefore a further series of stent deployments was performed to allow assessment of 

transgene expression using quantitative PCR and to enable further exploration of the 

mechanisms for any effect on the degree of neointimal hyperplasia demonstrated in the 

therapeutic experiments. 

A total of three CTGF-coated, three FMOD-coated and one lacZ coated stent (all 

3x12mm) were deployed at 14Atm in the proximal LAD of seven pigs. The vessels 

were harvested at 7 days. Following stent removal, the stented vessel segment was 

divided into two. One half was snap frozen in liquid N2 and stored at -80°C for RNA 

extraction and quantitative PCR. The other half was embedded in OCT and snap frozen 

in liquid N2 for sectioning at a later date. 
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2.8.6.1 Assessment of transgene expression by quantitative polymerase 

chain reaction 

RNA extraction 

The arterial segments were removed from storage at -80°C. All equipment to be used 

was sprayed with RNaseZap (Ambion) to remove RNase contamination. The arterial 

segment was cut into small pieces and placed in a dounce homogenizer with 0.5ml 

TRIzol (Invitrogen) to lyse tissues and cells. The tissue was homogenized until no solid 

tissue was visible, incubated at room temperature for 15 minutes and centrifuged for 5 

minutes at 4000g. The supernatant was transferred into a new tube and 0.2ml of 

chloroform was added. The tube was vortexed and incubated at room temperature for 3 

minutes, followed by centrifugation at 12000g for 15 minutes at 4°C. The upper aqueous 

phase (which contains the total RNA) was removed carefully with a pipette and placed 

in a new labelled tube. 0.25μl of ice-cold isopropanol, to precipitate the RNA, and 2μl 

of GlycoBlue (Ambion), to aid identification of the nucleic acid pellet, were added and 

the tube was incubated at room temperature for 10 minutes. Further centrifugation at 

12000g for 10 minutes at 4°C was performed and the supernatant was removed. The 

RNA pellet was washed with 0.5ml of 75% ethanol followed by a final centrifugation 

run at 7500g for 5 minutes at 4°C. The supernatant was removed and the pellet was 

allowed to dry for a few minutes at room temperature and then resuspended in 50μl 

DEPC-treated water. The RNA concentration was quantified with a NanoDrop 

spectrophotometer and stored at -80°C until use. 

Complementary DNA synthesis 

The SuperScript VILO cDNA synthesis kit (Invitrogen) was used to generate 

complementary DNA (cDNA) from the extracted RNA.  This contains an enzyme mix 

including a reverse transcriptase and an RNase inhibitor, and a reaction mix including 

random primers, MgCl2, and dNTPs in a buffer. The following components were placed 

in a tube on ice and mixed: 
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VILO reaction mix 5X   4μl 

SuperScript enzyme mix 10X   2μl 

RNA  2μg     variable 

DEPC-treated water    to make 20μl 

The tube was placed in a PCR machine and incubated at 25°C for 10 minutes, 42°C for 

60 minutes and 85°C for 5 minutes. The cDNA was diluted 20-fold in DEPC-treated 

water, quantified with a NanoDrop spectrophotometer and then stored at -20°C until use. 

Quantitative polymerase chain reaction 

The quantitative real time polymerase chain reaction (qPCR) aims to amplify and 

simultaneously quantify a region of a targeted DNA molecule. The Taqman system 

from Applied Biosystems (ABI; California, USA) utilises a specific probe for the gene 

of interest, which contains a reporter dye at the 5‟ end and a quencher dye which 

suppresses fluorescence at the 3‟ end. During PCR the annealed probe is cleaved by 

AmpliTaq Gold DNA polymerase at the 5‟ end freeing the reporter dye resulting in 

increased fluorescence which can be monitored in real time. 

Gene quantification requires analysis of an endogenous control gene which accounts for 

variability in the initial concentration and quality of total RNA (and therefore cDNA). 

Duplex PCR was performed using the target gene primers and endogenous control gene 

primers, with different reporter dyes, in the same reaction. Previous work from an allied 

group has identified the human 18S ribosomal RNA gene to work as a reliable 

housekeeping gene (with a relatively constant level of gene expression) in pigs. 

Therefore a Taqman gene expression assay for 18S rRNA with the VIC reporter dye 

(ABI; #Hs99999901_s1) and Taqman gene expression assays for human CTGF 

(#Hs00170014_m1) and bovine fibromodulin (#Bt03212663_m1) with the FAM 

reporter dye were used. 
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Each duplex qPCR reaction consisted of: 

Taqman Master Mix 2X     10μl 

Taqman gene assay (FMOD or CTGF)-FAM  20X  1μl 

Taqman 18S rRNA gene assay-VIC  20X   1μl 

cDNA (diluted 1:20)      5μl 

DEPC-treated water      3μl 

 

The PCR reaction solutions were transferred to a MicroAmp 96-well plate. Reactions 

with both the FMOD and CTGF primers were performed for each sample in duplicate. 

Non-template controls substituted the cDNA for DEPC-treated water. 

Analysis was with an Applied Biosystems 7500 Fast Real-Time PCR System. The 

threshold cycle (CT) is the cycle at which a statistically significant increase in 

fluorescence is detected. CT is measured for the S18 housekeeping gene (with the VIC 

dye) and for the target gene (with the FAM dye) for each sample. 

∆CT sample = CT target gene - CT endogenous control (S18) 

The mean ∆CT of the reference samples (those transfected with lacZ or the non-targeted 

transgene) was calculated. The fold-change (RQ) for each target sample can then be 

calculated as follows: 

∆∆CT = ∆CT sample – mean ∆CT reference samples 

RQ = 2
-∆∆CT

 

2.8.7 Assessment of effect of β-blockers on plasmid-mediated 

transgene expression 

Stent implantation was performed within six pigs. Three of the pigs were loaded with 

10mg of bisoprolol, a selective β1-receptor blocker, for 3 days prior to the procedure, 
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whereas the other three pigs did not receive a β-blocker. Heart rate was measured after 

induction of general anaesthesia to ensure adequate β-blockade. 

Two stents were implanted into each pig: a 3.5x12mm stent prepared by Medtronic 

coated with polymer and an estimated 400μg of lacZ plasmid deployed at 10Atm, and a 

3x12mm Liberté bare metal stent (Boston Scientific, MA, USA) deployed at 14Atm. 

The deployment pressures were selected to ensure a similar diameter of balloon 

expansion. The choice of artery to which a plasmid-coated stent was delivered was 

random, with one stent deployed within the proximal LAD and the other within the 

proximal Cx. 

Sacrifice and vessel harvesting was performed at 7 days. Following stent removal, the 

stented vessel segment was divided into two. One half was snap frozen in liquid N2 for 

en face staining with X-gal. The other half was snap frozen in liquid N2 for β-

galactosidase staining and protein assay to assess transgene expression. 
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3 Results 

3.1 Adenovirus infection of saphenous vein graft segments 

Previous work from our group has identified a potentially beneficial effect on neointima 

formation following adenoviral delivery of CTGF in a SVG model of restenosis. 

Analysis of sections from these previous experiments, which had already been stained 

with picosirius red, was performed. Further specimens of human saphenous vein were 

infected with Ad-CTGF to enable further mechanistic assessments. 

3.1.1 Picosirius red staining 

Collagen content, as assessed by area of red birefringent staining, was significantly 

greater in the lacZ-infected group compared with the CTGF-infected group (Figure 16; 

mean 3.18x10
6
 pixels vs. 1.86x10

6
; P=0.019). However when collagen content was 

controlled for the total area of the section this difference was no longer significant 

(Figure 17; mean 0.78 vs. 0.70; P=0.14). 
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Figure 16 – Collagen content as assessed by area of red birefringent staining with 

picosirius red 

Total collagen content is significantly greater in the lacZ infected sections as compared to the CTGF 

infected sections. Results are shown as mean (+- standard error). CTGF group = 11 sections; lacZ group = 

8 sections 

 

Figure 17 - Collagen content as assessed by ratio of area of red birefringent 

staining to total section area 

There is no significant difference between the lacZ and CTGF infected sections in the proportion of 

collagen in the vessel wall. Results are shown as mean (+- standard error). CTGF group = 11 sections; 

lacZ group = 8 sections 
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3.1.2 Saphenous vein graft infections 

A total of 17 vein segments were virally infected, with 9 segments infected with Ad5-

lacZ and 8 segments infected with Ad5-CTGF.  These segments were processed at 

various time points as shown in Table 6 with the OCT embedded sections subsequently 

being used for immunofluorescence and the direct frozen segments being used for 

Alcian blue staining. 

Table 6 - Method of processing of virally infected vein segments (numbers indicate 

number of vein segments) 

 lacZ  CTGF  

Day OCT Direct OCT Direct 

3 4 0 3 0 

7 7 7 7 7 

14 4 3 6 5 

 

3.1.3 Alcian blue staining 

There was no difference in proteoglycan content between the lacZ- and CTGF-infected 

groups at 7 days (mean A595/weight 0.42 vs. 0.33; P=0.12) or at 14 days (mean 

A595/weight 0.31 vs. 0.35; P=0.65) as assessed by this technique. 

3.1.4 Immunohistochemistry & immunofluorescence 

CTGF was present primarily in the endothelium and intima of both the Ad5-lacZ and 

Ad5-CTGF infected segments; representative sections are illustrated in Figure 18 and 

Figure 19 (immunohistochemistry) and Figure 20 (immunofluoresence). There was no 

difference in overall CTGF content between the lacZ and CTGF groups, as assessed by 

immunofluorescence, at any timepoint and also no change in CTGF content between 

days 3, 7 and 14 in either group (see Table 7). 
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Figure 18 – CTGF binding in lacZ-infected SVG section at day 3 

Representative sections from 4 vein graft infections with 3 sections stained from each experiment. 

A=anti-CTGF primary antibody; B=control (no primary antibody); x10 magnification 

 

 

Figure 19 - CTGF binding in CTGF-infected SVG section at day 3 

Representative sections from 3 vein graft infections with 3 sections stained from each experiment. 

A=anti-CTGF primary antibody; B=control (no primary antibody); x10 magnification 
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Figure 20 - Immunofluorescence of SVG sections with anti-CTGF antibody 

Representative sections at day 7 following infection. 6 infections were performed for each transgene and 

3 sections were processed from each specimen at this timepoint. A=Ad5-CTGF-infected; B=control (no 

primary antibody); C=Ad5-lacZ-infected; Green=collagen autofluorescence; red=anti-CTGF antibody 

binding; x40 magnification 

Table 7 - Mean intensity of staining of anti-CTGF antibody 

 Day 3 Day 7 Day 14 

lacZ 35.4 (4) 30.9 (6) 32.0 (5) 

CTGF 28.0 (3) 29.7 (6) 33 (7) 

Values in brackets indicate number of specimens analysed 
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3.2 Confirmation of identity of lacZ plasmids with different 

promoter elements 

The expected band sizes following specific restriction digests and gel electrophoresis of 

the newly constructed plasmids are detailed in Table 8. Confirmatory gels are shown in 

Figure 21, Figure 22 and Figure 23. In Figure 22 some of the plasmids have been 

subject to partial digests as evidenced by additional visible bands which are of weaker 

intensity than the smaller bands below and also correspond to the sum of the smaller 

bands. These can be seen for the D2RE2HE, D2RE, DREHE and 2RE2HE plasmids. 

Table 8 – Expected DNA fragment sizes following restriction enzyme digests 

 XhoI SwaI PmlI BstBI NotI & 

SpeI 

D2RE2HE 4 (9100, 

4500, 900, 

400) 

2 (14000, 

400) 

2 (14000, 

200) 

 4 (5500, 

5500, 3000, 

700) 

D2HE 3 (9100, 

5000, 400) 

2 (14000, 

200) 

2 (14000, 

200) 

  

D2RE 4 (9100, 

4500, 600, 

400) 

2 (14000, 

200) 

2 (14000, 

200) 

2 (14000, 

100) 

 

DREHE 4 (9100, 

4500, 600, 

400) 

2 (14000, 

200) 

2 (14000, 

200) 

1 

(linearised, 

14000) 

 

DRE 3 (9100, 

4900, 400) 

2 (14000, 

100) 

2 (14000, 

200) 

  

D 3 (9100, 

4800, 400) 

1 

(linearised, 

14000) 

1 

(linearised, 

14000) 

 4 (5500, 

5500, 3000, 

200) 

2RE2HE 4 (9100, 

4400, 900, 

400) 

1 

(linearised, 

14000) 

1 

(linearised, 

14000) 

  

Backbone 3 (9100, 

4600, 400) 

0 (uncut) 0 (uncut) 0 (uncut) 3 (5500, 

5500, 3000) 

The boxes detail the expected number of bands with the approximate fragment sizes in brackets (bp). 

Figures in bold indicate easily identifiable additional bands as compared to the control pGEG.PSi-lacZ 

plasmid. 
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Figure 21 – SwaI and PmlI digest of novel plasmids 

Lanes 1-8 = SwaI; lanes 9-10 = PmlI; backbone = pGEG.PSi-lacZ 
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Figure 22 - XhoI digest of novel plasmids 

Backbone = pGEG.PSi-lacZ 
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Figure 23 - Further confirmatory digests of novel plasmids 

3.3 Quantification of transgene expression with novel 

expression cassettes 

Figure 24 illustrates the relative transgene expression of plasmids containing the novel 

expression cassettes in human coronary SMCs following nucleofection. Transgene 

expression was approximately 12-fold greater with the 2RE2HE insert than with the 

original pGEG.Psi-lacZ plasmid (P=0.041) and approximately 11-fold greater than a 

construct with the inclusion of the D element as well as 2RE2HE (P=0.041). There was 

no statistically significant difference between any of the other expression cassettes and 

the original plasmid. 

Given that the addition of the 2RE2HE enhancer elements resulted in significantly 

greater transgene expression than with the pGEG.Psi-lacZ plasmid, pGEG-2RE2HE-

Psi-lacZ was selected as the control plasmid for use in the in vivo experiments and the 

therapeutic plasmids were constructed using the same expression cassette. 
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Figure 24 – β-galactosidase activity in cell lysates of cultured human coronary 

arterial SMCs following nucleofection with plasmids containing novel expression 

cassettes 

Results are expressed as the ratio of β-galactosidase activity (A420) to protein (A570). pGEG = pGEG.PSi-

lacZ plasmid. Controls were as follows: D-P = DNA without nucleofection programme; P-D = 

nucleofection without DNA; GFP = green fluorescent protein (control plasmid); Cells = cells alone 

without DNA or nucleofection. The bars indicate the mean of 3 experiments (+- standard error). 

3.4 Confirmation of identity of putative therapeutic constructs 

to be used in vivo 

The identity of pGEG-2RE2HE-PSi-lacZ had already been confirmed in the earlier 

experiments. The identity of pGEG-2RE2HE-CTGF and pGEG-2RE2HE-FMOD were 

confirmed with restriction digest patterns, PCR, and with transfection of cells in vitro. 

Restriction digest 

Table 9 shows the expected bands to be seen on agarose gel electrophoresis following 

selected restriction enzyme digestion of pGEG-2RE2HE-CTGF and pGEG-2RE2HE-

FMOD. The expected bands that would be seen for the original pGEG-2RE2HE-Psi-

lacZ are also shown. Figure 25 and Figure 26 show the gels following selected 

restriction digests confirming the identity of pGEG-2RE2HE-CTGF and pGEG-

2RE2HE-FMOD respectively. 
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Table 9 – Expected digest patterns for selected restriction enzymes 

Transgene Restriction 

Enzyme/s 

Expected bands for new 

plasmid 

Expected bands for 

pGEG.Psi-lacZ 

CTGF XhoI 4 (6729, 4043, 858, 438) 4 (9021, 4043, 858, 438) 

CTGF NheI, PmlI 3 (10262, 1407, 399) 2 (14360, 1407) 

CTGF NheI, SbfI 2 (11358, 710) 1 (linearised) 

FMOD BamHI 4 (12566, 850, 160, 106) 1 (linearised) 

FMOD SpeI 4 (5607, 3617, 2713, 1744) 3 (12180, 6573, 533) 

FMOD BglII 3 (12857, 564, 213) 0 (uncut) 

 

 

Figure 25 – Confirmatory restriction digests of pGEG-2RE2HE-Psi-CTGF 
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Figure 26 – Confirmatory restriction digests of pGEG-2RE2HE-Psi-FMOD 

3.4.1 Polymerase chain reaction 

Optimisation of the PCR reaction for the FMOD and CTGF primers was performed. 

The optimal conditions were as follows: 

 CTGF FMOD 

Primer concentration 1μM 0.1μM 

Annealing temperature 58°C 50°C 

 

Figure 27 shows the PCR products with the CTGF primers on the original EcoRI-CTGF 

and new pGEG-2RE2HE-Psi-CTGF, and with the FMOD primers on the original 

p∆PREK1-FMOD and new pGEG-2RE2HE-Psi-FMOD. The anticipated bands of 

1003bp for CTGF and 1020bp for FMOD are present confirming that both transgenes 

are present in the new plasmids. 
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Figure 27 – PCR products from original and new plasmids containing the FMOD 

and CTGF cDNA 

3.4.2 Functional analysis of novel plasmid constructs 

Optimisation of the lipofection procedure was performed for each cell type, which 

involved trialling different liposome formulations and different ratios of plasmid 

DNA:liposome. Despite this, transfection rates of HCSMCs using the marker gene lacZ 

were consistently <5%. Therefore lipofection with the plasmids encoding for the 

therapeutic transgenes to be used in the in vivo experiments was performed for 293 cells 

and A10 cells only. 

Successful production of the lacZ protein following transfection with pGEG-2RE2HE-

PSi-lacZ was confirmed using X-gal staining and is shown in Figure 28. Successful 

production of CTGF and FMOD following transfection with pGEG-2RE2HE-PSi-

CTGF and pGEG-2RE2HE-PSi-FMOD was confirmed with indirect 

immunocytochemistry and immunofluorescence which is shown in Figure 29 and 

Figure 30. 
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Figure 28 – Transfection with pGEG-2RE2HE-PSi-lacZ 

Liposome-mediated transfection of 293 cells (panels A & B) and A10 cells (panels C & D). Panels A & C 

show successful transgene expression of lacZ following transfection with pGEG-2RE2HE-PSi-lacZ as 

indicated by blue staining with X-gal. Panels B & D show controls incubated with liposome solution but 

no plasmid. All images are X20 magnification. 
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Figure 29 – Transfection with pGEG-2RE2HE-PSi-FMOD 

Liposome-mediated transfection of 293 cells (panels A & B) and A10 cells (panels C & D). Panels A & C 

show successful transgene expression of FMOD with immunofluorescence following transfection with 

pGEG-2RE2HE-PSi-FMOD. The red colour represents Cy5 fluorescence, indicating antibody binding to 

FMOD, and the blue colour represents DAPI nuclear staining. Panels B & D show controls incubated 

with liposome solution but no plasmid. All images are x40 magnification. 
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Figure 30 - Transfection with pGEG-2RE2HE-PSi-CTGF 

Liposome-mediated transfection of 293 cells (panels A & B) and A10 cells (panels C & D). Panels A & C 

show successful transgene expression of CTGF with immunofluorescence following transfection with 

pGEG-2RE2HE-PSi-CTGF. The red colour represents Cy5 fluorescence, indicating antibody binding to 

CTGF, and the blue colour represents DAPI nuclear staining. Panels B & D show controls incubated with 

liposome solution but no plasmid. All images are x40 magnification. 

 

3.5 Assessment of DNA elution from gene-eluting stents 

3.5.1 Method 2: dip-coating with urethane/plasmid mix 

DNA release curves for the three different weights of urethane polymer coating are 

shown in Figure 31. Following an initial burst there was a steady release of DNA over 

20 days with most of the theoretical DNA load being released by this timepoint.  
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Figure 31 – Cumulative DNA elution from urethane-coated coronary stents 

Stents 3 & 6 = 3 dips (theoretical DNA load: 260 μg); stents 4 & 7 = 5 dips (350 μg DNA); stents 2 & 5 = 

7 dips (720 μg DNA) 

 

Figure 32 shows gel electrophoresis of the eluted uncut plasmid (pGEG-PRIK-lacZ) at 

two timepoints. The DNA eluted in the first 6 hours is relatively pure but there is 

significant smearing between 6 hours and 4 days, suggesting DNA degradation. 

 

 

Figure 32 – Eluted uncut DNA at two different timepoints 

Three different dilutions are shown for each timepoint. High = undiluted buffer solution containing eluted 

DNA; Medium = 1:2 dilution; Low = 1:10 dilution 
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Restriction digests of the eluted DNA were performed using PacI and XhoI. There is a 

single binding site for PacI in pGEG-PRIK-lacZ and digestion results in linearisation of 

the plasmid and a single 14kb band. There are three XhoI binding sites and digestion 

leads to three bands: 9106bp, 5493bp and 330bp. 

Figure 33 and Figure 34 show restriction digests of eluted DNA at 0-6 hours and 6 

hours-4 days incubation. The expected bands are seen showing that the plasmid 

remained structurally intact during stent preparation. Again there was significant 

smearing of the DNA at the later timepoint suggesting that DNA degradation had 

occurred. However the correct bands can still be seen (arrowheads) indicating that some 

intact plasmid remains. Note that the 330bp band following XhoI digest is partially 

obscured by the loading buffer tracking dye in Figure 33, although it is well seen in 

Figure 34. 

 

 

Figure 33 – Restriction digests of eluted DNA between 0-6 hours incubation 
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Figure 34 – Restriction digests of eluted DNA between 6 hours and 4 days 

incubation 

Arrowheads highlight the three bands following XhoI digest 

 

In vivo experiments were performed with eight stents (four coated with polymer-

plasmid mixture, and four coated with polymer alone) deployed into the LAD and Cx 

coronary arteries of four pigs. At sacrifice at 7 days there was extensive neointima 

formation over the stent struts of all the vessels treated. Removal of the stent from the 

vessel resulted in peeling of the endothelium and neointima away from the media in all 

cases (Figure 35, Panel C). 

There was diffuse non-specific blue X-gal staining in several of the segments, including 

the vessels treated with control (polymer only) stents (Figure 35, Panel B). However in 

the vessels treated with the lacZ plasmid there was more specific blue staining in the 

distribution of the stent struts (Figure 35, Panel A). This pattern of staining was not seen 
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in any of the control stent treated segments. All of the stents with adherent neointima 

were also stained with X-gal but no blue colouration was seen (Figure 35, Panel C). 

 

 

Figure 35 - X-gal staining of coronary artery segments treated with stents coated 

with urethane polymer mixture 

Representative samples from vessels treated with stents coated with pGEG-PRIK-lacZ (panel A) and with 

polymer alone (panel B) at 7 days. Panel C shows denuded neointima which was removed whilst 

extracting the stent from the vessel wall. 

 

3.5.2 Method 3: spray-coating with polymer and poragen followed 

by dip-coating in plasmid solution 

Medtronic developed a novel coating method to apply polymer and plasmid to the stents 

(described in Section 2.7.3) and performed measurements of the elution rates from these 

plasmid-coated stents, using a stock 8kb plasmid. The estimated plasmid dose was 
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calculated as the difference between the weight of the stent following application of the 

porous polymer coating and the weight after dipping into a plasmid solution and drying. 

All studies demonstrated an initial burst followed by a gradual release of DNA. Figure 

36 shows results from stents which had been coated, but not crimped onto a catheter 

balloon and re-expanded. Plasmid appeared to be steadily eluted up to 29 days with 

approximately 25% of the total predicted load released at this point. 

As the crimp-expansion process will stretch and potentially damage the polymer 

coating, which may affect plasmid elution, the experiments were repeated after a single 

crimp-expansion cycle. Figure 37 shows these results which demonstrate a slower initial 

burst of plasmid (although the first sample was taken at day 3 which will affect the 

results) and a higher total release, with approximately 50% eluted by day 18. 

Finally DNA release curves for stents prepared with three different theoretical plasmid 

loads are shown in Figure 38. Following the initial burst, a gradual release of DNA was 

again seen such that approximately 50% of the theoretical load was eluted by day 13. 

 

Figure 36 - Cumulative DNA elution from spray-coated stents 

The cumulative DNA release up to 29 days is shown for three stents each prepared with an estimated load 

of 350-400μg of a stock 8kb plasmid. Graph provided by Medtronic. 
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Figure 37 - Cumulative DNA elution from spray-coated stents after 

crimp/expansion 

The cumulative DNA release is shown for three stents each prepared with an estimated load of 350-400μg 

of a stock 8kb plasmid, following a single crimp and expansion cycle. Graph provided by Medtronic. 

 

Figure 38 – Cumulative DNA elution from spray-coated stents with different 

plasmid loads 

The cumulative DNA release is shown for three stents each prepared with a different predicted total 

plasmid load (stock 8kb plasmid). Graph provided by Medtronic. 
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The elution profiles supplied by Medtronic were considered to be sufficient to deliver a 

therapeutic DNA dose over an appropriate timescale. Stents were prepared by 

Medtronic coated with three doses of the plasmid encoding the control transgene 

(pGEG-2RE2HE-Psi-lacZ) for delivery in vivo to assess the optimum dose for gene 

delivery (see Sections 2.8.4 and 3.6). Two additional plasmid coated stents were 

supplied which allowed plasmid elution experiments to be performed in our laboratory 

to confirm the results of the elution experiments performed by Medtronic. A Nanodrop 

spectrophotometer was used to assess DNA concentration. 

Figure 39 shows the cumulative elution profile for stents with two predicted DNA 

loads. DNA elution was far more rapid than had been suggested by the results provided 

by Medtronic with approximately 90% of the total DNA release occurring within the 

first 4 hours of incubation and almost all DNA eluting within 48 hours. 

 

 

Figure 39 - Elution of DNA from stents prepared using original coating process 

Predicted plasmid load is shown for each stent in brackets 
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Given that the rapid DNA elution demonstrated by our experiments would be unlikely 

to result in adequate sustained gene transfer we discussed with Medtronic possible 

solutions. Medtronic suggested that application of a thin cap-coat of polymer over the 

plasmid may slow down the elution rate of the plasmid. This so-called “capcoating” 

would involve application of the polymer as a dilute solution, dissolved in the solvent 

tetrahydrofuran (THF). As a result of the time constraints of the project there would be 

insufficient time for Medtronic to perform further experiments to ensure that this did not 

adversely affect plasmid integrity or elution. However given the suboptimal elution 

profile with the previous technique we felt that there was no choice but to ask 

Medtronic to perform the “capcoating” process on the remaining stents to be used in 

vivo. 

In addition to the 30 stents to be deployed in vivo, two additional “capcoated” stents 

coated with the lacZ plasmid were supplied. Elution profiles for these stents were 

checked with spectrophotometry (Figure 40). DNA release was very similar to the 

previous method, with more than 90% eluted within 24 hours. This fast elution profile 

showed that the “capcoating” process was ineffective at slowing down release of 

plasmid from the polymer coating. Unfortunately there was insufficient time available at 

this juncture to investigate alternative coating techniques and thus these stents were 

accepted and used for the in vivo studies. 
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Figure 40 - Elution of DNA from stents prepared with “capcoating” process 

Predicted plasmid load is shown for each stent in brackets 

 

Restriction digests of the eluted DNA were performed using XhoI. There are four XhoI 

binding sites in pGEG-2RE2HE-Psi-lacZ and digestion leads to four bands of 

approximately 9100, 4400, 900 and 400bp. Figure 41 shows an XhoI digest of eluted 

DNA at two timepoints and confirms that the DNA was structurally intact. 
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Figure 41 – XhoI restriction digest of eluted DNA from “capcoated” stents 

XhoI digest of the stock pGEG-2RE2HE-Psi-lacZ plasmid is shown for comparison. 

 

3.6 Assessment of optimum dose of plasmid on gene-eluting 

stents within porcine coronary arteries in vivo 

Five stents were prepared for each of three estimated loading doses (100μg, 200μg and 

400μg) of pGEG-2RE2HE-Psi-lacZ, the lacZ-expressing plasmid containing the optimal 

expression cassette for SMC transfection. The estimated applied dose was calculated by 

weighing the stents before and after dipping into plasmid solution. These stents were 

designated low, medium and high dose respectively and the calculated plasmid weights 

are shown in Table 10. Five control stents were also prepared coated with polymer only 

and no plasmid. 
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Table 10 – Estimated plasmid weights on gene-eluting stents for dose finding study 

Dose Amount of Bound  

  Plasmid (ug) 

Low Dose 84.4 

  94.7 

  95.2 

  96.5 

  85.3 

Medium Dose 185.3 

  180.8 

  172.0 

  165.5 

  178.6 

High Dose 400.3 

  398.9 

  354.5 

  375.8 

  363.6 

 

The stents were deployed into pig coronary arteries as shown in Table 11. One stent 

embolised into the aorta following deployment and, although there were no adverse 

sequelae, only the circumflex artery could be used for analysis with this animal. There 

were no other procedural complications and all animals survived until sacrifice at day 7. 

In total there were segments suitable for analysis from coronary arteries treated with 5 

low, 4 medium and 5 high dose gene-eluting stents, and 5 control stents. 
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Table 11 – lacZ gene expression 7 days following deployment of gene-eluting stents 

for dose finding study 

Animal 

no. Vessel 

Plasmid 

dose 

β-gal 

(A420) 

Protein 

(A570) 

lacZ gene 

expression (β-

gal/protein) 

1 Cx Control 0.12 0.372 0.322 

 LAD Control 0.185 0.43 0.430 

2 Cx Low   Technical error 

 LAD Low 0.203 1.049 0.193 

3 Cx Medium 0.178 0.861 0.207 

 LAD Medium 0.17 1.146 0.148 

4 Cx High 0.2 0.919 0.218 

 LAD High 0.173 0.85 0.204 

5 Cx High 0.153 0.906 0.169 

 LAD Control 0.251 0.813 0.309 

6 Cx Low 0.16 0.702 0.228 

 LAD Medium 0.249 0.843 0.295 

7 Cx Control 0.167 1.174 0.142 

 LAD Medium   Embolised 

8 Cx High 0.114 0.432 0.263 

 LAD Low 0.201 0.82 0.245 

9 Cx Low 0.151 0.86 0.176 

 LAD Control 0.159 0.913 0.174 

10 Cx Medium 0.156 0.808 0.193 

 LAD High 0.161 0.819 0.197 

LAD = left anterior descending coronary artery; Cx = circumflex artery; β-gal=β-galactosidase 

Quantification of lacZ transgene expression was performed in tissue lysates using β-

galactosidase and protein assays as described in Sections 2.5.2 and 2.5.3. The results are 

shown in Table 11. There was a pipetting error during the preparation of the tissue 

lysate from the Cx stent from animal 2 and this sample was not used for analysis. 

The mean values for lacZ gene expression are shown in Table 12 (gene expression does 

not have a meaningful unit of measurement as it is a ratio of absorbances). There was no 
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statistical difference in lacZ gene expression between any of the 4 groups using this 

technique. 

 

Table 12 – Mean lacZ expression following different doses of pGEG-PSi-2RE2HE-

lacZ on gene-eluting stents  

 Mean lacZ expression 

Control 0.276 

Low 0.211 

Medium 0.211 

High 0.210 

 

X-gal staining of en face stented coronary artery segments was performed on two 

samples from each of the four groups to assess visually for lacZ gene expression. 

Representative samples are shown in Figure 42. Unexpectedly, blue staining was seen 

in all samples, including both of the control samples. However the pattern of staining in 

the control samples was of a diffuse nature between the stent struts; this pattern was also 

seen on some of the treated samples (see Figure 42, panel B). This pattern had the 

appearance of non-specific staining (ie. false positive). The plasmid-treated samples 

exhibited a different pattern of staining with focal areas of blue staining in the areas of 

artery which were exposed to the stent struts (panels B-D). This pattern was suggestive 

of lacZ gene expression (panels B-D). 
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Figure 42 – X-gal staining of coronary artery segments treated with stents coated 

with different doses of plasmid 

Samples from animals treated with a control stent (A) and low (B), medium (C) and high (D) dose 

plasmid-coated stents, at 7 days post-deployment. There was marked heterogeneity between samples 

within the same group and these samples were selected to demonstrate that there was no clear dose-effect 

relationship. 

There was limited evidence of transgene expression, as assessed with these two 

techniques, but certainly no suggestion of a correlation of plasmid dose with gene 

expression. 

Despite this lack of dose-effect correlation, it was encouraging that there was a more 

specific pattern of X-gal staining with the plasmid-coated stents and the highest dose of 

400µg was selected for the therapeutic study. Some previous studies of gene-eluting 

stents have demonstrated successful transfection with even higher doses of plasmids 

than this (up to 1mg; see Table 1) and have not identified any safety concerns. 
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3.7 Effects of plasmid-mediated delivery of connective tissue 

growth factor and fibromodulin via gene-eluting stents in 

vivo 

As detailed in Section 2.8.5, 30 pigs were randomised to receive a single 3mm stent 

deployed into the proximal LAD loaded with 400µg of plasmid encoding for either 

CTGF, FMOD or lacZ (control), resulting in a total of 10 pigs in each group. At day 28, 

repeat quantitative coronary angiography (QCA) was perfomed and then the pigs were 

sacrificed to allow vessel processing for morphometric analysis. 

There were no periprocedural complications. One pig (THER9), treated with a lacZ 

stent, died suddenly at day 17. A post-mortem was performed and showed occlusive 

neointima within the stented area but no intracoronary thrombus. No other 

abnormalities were detected. The presumed mechanism of death was ischaemic 

ventricular fibrillation. 

The QCA data for each of the groups is shown in Figure 43. There were no significant 

differences in target vessel diameter (TVD) or minimum lumen diameter (MLD) 

immediately following stent deployment. At 28 days there was numerically less late loss 

in the CTGF and FMOD treated arteries but this did not reach statistical significance 

(CTGF vs lacZ P=0.26; FMOD vs lacZ P=0.22; both 2-tailed T-tests). The full QCA 

data is presented in Table 14 in Appendix 6.5. 
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Figure 43 – Quantitative coronary angiography data from the therapeutic study 

Bars represent the mean values for each group. Error bars indicate the standard error of the mean. TVD = 

target vessel diameter; MLD = mean lumen diameter; late loss = MLD post-stent – MLD at 28 days 

 

Three sections were taken from each stented segment and processed for morphometric 

analysis as described in Section 2.8.5.1. Some sections were damaged or did not contain 

all of the stent struts as they were taken at the stent edge; these sections were not used 

for analysis. The internal elastic lamina (IEL) was severely disrupted and impossible to 

measure in many of the sections. The stent area was thus used as a surrogate for the IEL 

to allow calculation of the medial area. The section from each vessel with the smallest 

lumen area (and hence the greatest neointimal thickness and largest neointimal area) 

was used for subsequent analysis. Figure 44 shows a representative cross-section of a 

stented vessel.  
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Figure 44 – Cross-section of stented vessel 

The locations of the stent struts can be seen as white circles (panel A, arrowheads). The internal and 

external elastic laminae can be readily seen as blue lines with Miller‟s elastic stain (panel A, arrows). 

There is significant indentation but no frank disruption of the internal elastic lamina by the stent struts. 

Minor neointima formation has occurred. Panel A - Miller‟s elastic stain with picosirius red; Panel B - 

toluidine blue stain. The vessel shown was treated with an FMOD stent. 

 

The mean injury score between the three groups is shown in Figure 45. Injury scores 

were higher than anticipated with a mean injury score of >2.8 for all groups and deep 

injury (ie. an injury score >2) had occurred in most of the vessels. Moderate injury 

without disruption of the IEL (ie. vessel injury score <=2) only occurred in 3/29 vessels 

analysed. 
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Figure 45 – Mean injury score at 28 days 

Error bars indicate the standard error of the mean. 

 

On morphometric analysis there were marked differences in neointimal formation 

between stented vessels, even within the same group. Figure 46 shows four different 

vessels treated with FMOD stents. Panel A shows only minor neointima formation, 

panels B-C show greater degrees of neointima formation, and panel D shows almost 

occlusive neointima with only a tiny residual lumen (on angiography prior to sacrifice 

this vessel was occluded with no anterograde flow). Similar degrees of heterogeneity 

were seen with the CTGF and lacZ treated vessels. 

In many of the sections there was evidence of a small mononuclear cell infiltrate around 

the cell struts which was likely to be inflammatory in origin. This was often associated 

with significant disruption to both the IEL and external elastic lamina (EEL). This 

appearance is illustrated in panels C and D in Figure 46. 
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Figure 46 – Cross-sections of stented vessels showing varying degrees of neointima 

formation 

Sections are from four different vessels treated with FMOD stents stained with Miller‟s elastic stain and 

picosirius red. Panels A & B show vessels with no significant IEL disruption and only moderate 

neointima formation. In panel C there is evidence of peri-stent inflammation (arrowheads) with associated 

disruption of both the IEL and EEL (arrowheads). There is significant neointima formation. In panel D 

there appears to be severe peri-stent inflammation with almost complete circumferential disruption of the 

IEL and EEL. Neointimal formation is severe and almost occlusive. 

 

There was no significant difference in mean maximum neointimal thickness between 

the three groups (Figure 47). Lumen, EEL, stent, neointima and media areas for the 

three groups are shown in Figure 48. Again there was no significant difference between 

any of the groups. 

The full morphometric data are presented in Table 15 in Appendix 6.5.  
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Figure 47 – Mean neointimal thickness at 28 days 

Error bars indicate the standard error of the mean. 

 

 

Figure 48 – Morphometric data from the therapeutic stent study 

Morphometric data from the stented vessels at 28 days following deployment. Bars represent the mean for 

each group. Error bars indicate the standard error of the mean. EEL = external elastic lamina. 
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3.8 Expression of exogenous CTGF and FMOD in stented 

porcine coronary arteries 

Given that there was no demonstrable biological effect observed with either of the 

putative therapeutic transgenes, no further mechanistic studies were performed. 

One possible explanation for the absence of a biological effect is that there was 

insufficient transgene expression with the delivery system and plasmids utilised. 

Transgene expression in the vascular wall following plasmid-elution stent deployment 

was therefore quantified using the quantitative polymerase chain reaction (qPCR). 

3.8.1 Quantitative PCR 

As described in Section 2.8.6.1, three pCTGF-, three pFMOD- and one placZ-coated 

stents were deployed in the proximal LAD of 7 pigs. The stented coronary artery 

segments were harvested at 7 days and RNA extraction and complementary DNA 

synthesis was carried out. qPCR was then performed with the Taqman system using 

custom gene assays for human CTGF and bovine FMOD. The lacZ and non-targeted 

transgene transfected samples were used as reference controls. 

 Figure 49 shows the amount of transgene expression 7 days following deployment of 

pCTGF-coated stents. There was no detectable increase in CTGF expression at this 

timepoint in the pCTGF treated segments as compared to the reference controls which 

had been treated with either placZ or pFMOD. 

 

 

 

 

 

 



Intracoronary gene transfer via plasmid-eluting stents  Paul Williams

   

 135 

 

 

 

 

 

 

Figure 49 – CTGF transgene expression at 7 days in transfected coronary arteries 

in vivo 

CTGF transgene expression as assessed by qPCR is shown for the three transfected coronary artery 

samples. The left graph shows values plotted for each sample as fold change in gene expression as 

compared to the mean of the reference samples. The mean change in gene expression for the reference 

samples (n=4) and for the CTGF-transfected samples (n=3) are shown in the right graph. Error bars 

indicate the standard error of the mean. 

 

Figure 50 shows the amount of transgene expression at 7 days following deployment of 

pFMOD-coated stents. In all three treated segments there was a large increase in gene 

expression of FMOD, with increases in transgene expression of 118-, 5426- and 295-

fold as compared to the reference segments (treated with either placZ or pCTGF). 

 

 

Control CTGF
0.0

0.5

1.0

1.5

F
o

ld
 c

h
a
n

g
e
 (

R
Q

)

CTGF 1 CTGF 2 CTGF 3
0.1

1

10

F
o

ld
 c

h
a
n

g
e
 (

R
Q

)



Intracoronary gene transfer via plasmid-eluting stents  Paul Williams

   

 136 

 

Figure 50 – FMOD transgene expression at 7 days in transfected coronary arteries 

in vivo 

FMOD transgene expression as assessed by qPCR is shown for the three transfected coronary artery 

samples. The left graph shows values plotted for each sample as fold change in gene expression as 

compared to the mean of the reference samples. The mean change in gene expression for the reference 

samples (n=3) and for the CTGF-transfected samples (n=3) are shown in the right graph.  Error bars 

indicate the standard error of the mean. 

 

3.9 Effects of beta-blockers on gene expression in vivo 

The effect of β-blockers on transgene expression were assessed in six pigs, three of 

which had been pre-treated with the β-blocker bisoprolol as discussed in Section 2.8.7. 

The mean heart rate following induction of general anaesthesia was 103 in the 

bisoprolol-treated animals and 146 in the untreated animals (P=0.009) confirming 

adequate β-blockade. Each pig received both a bare metal stent and a plasmid-coated 

stent with an estimated dose of 400µg of pGEG-2RE2HE-Psi-lacZ (prepared by 

Medtronic), as shown in Table 13. There were no procedural complications and all 

animals survived until sacrifice at day 7. 
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Table 13 – lacZ gene expression 7 days following deployment of gene-eluting stents 

for β-blocker study 

Animal 

code 

Baseline 

heart 

rate Vessel 

Stent 

type 

β-gal 

(A420) 

Protein 

(A570)  

lacZ gene 

expression (β-

gal/protein) 

CON1 140 LAD placZ 0.077 0.87 0.089 

  Cx BMS 0.076 0.93 0.082 

CON2 136 LAD placZ 0.16 1.18 0.135 

  Cx BMS 0.188 1.50 0.126 

CON3 162 Cx placZ 0.216 1.45 0.149 

  LAD BMS 0.172 1.35 0.127 

BIS1 101 LAD placZ 0.134 1.42 0.094 

  Cx BMS 0.146 1.24 0.118 

BIS2 111 Cx placZ 0.335 1.71 0.196 

  LAD BMS 0.137 1.32 0.104 

BIS3 98 LAD placZ 0.305 1.66 0.184 

  Cx BMS 0.222 1.51 0.147 

BMS = bare metal stent; placZ = pGEG-2RE2HE-Psi-lacZ coated stent; β-gal = β-galactosidase 

 

Quantification of lacZ transgene expression was performed in tissue lysates using β-

galactosidase and protein assays as described in Sections 2.5.2 and 2.5.3. The results are 

shown in Table 13. The mean calculated lacZ gene expression for the six vessel 

segments treated with placZ coated stents was 0.141 and for the six treated with bare 

metal stents was 0.117. This difference was not statistically significant (P=0.26). 

For the six segments treated with placZ coated stents, the mean lacZ gene expression for 

the three in control animals was 0.124 and for the three in β-blocker treated animals was 

0.158. Again this difference was not statistically significant (P=0.41). 

X-gal staining of the en face stented coronary artery segments was performed at day 7 

to assess for β-galactosidase expression. There was visible blue staining in all of the 

segments treated with placZ coated stents and no staining visible in the segments treated 



Intracoronary gene transfer via plasmid-eluting stents  Paul Williams

   

 138 

with bare metal stents. X-gal staining was patchy across the stented segment with no 

direct correlation with the stent struts. There subjectively appeared to be less staining in 

the segments from β-blocker treated animals than in the segments from animals which 

did not receive β-blockers. However it was not possible to quantify this accurately given 

the limited degree of staining. Representative sections are shown in Figure 51. 

 

 

Figure 51 – X-gal staining of stented coronary artery segments in β-blocker treated 

animals 

Control segments (panels A & B) and segments from animals treated with β-blockers (panels C & D) are 

shown at 7 days. Panels A & C are from animals treated with bare metal stents and panels B & D are from 

animals treated with stents coated with placZ. 
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4 Discussion 

The introduction and widespread utilisation of coronary stents has revolutionised the 

treatment of coronary artery disease and drug-eluting stents, coated with potent anti-

mitotic agents, have dramatically reduced the rate of vessel restenosis seen with the 

earlier generation bare metal stents. However, as well as reducing neointimal 

proliferation, drug-eluting stents delay re-endothelialisation of the stented vessel 

segment and are associated with an increased risk of late stent thrombosis. There also 

remains a clinically important risk of restenosis when drug-eluting stents are deployed 

in patients with diabetes mellitus and in complex coronary lesions including 

bifurcations and chronic occlusions. 

Novel approaches are needed to tackle the enduring problems of restenosis and stent 

thrombosis following coronary stent deployment. Earlier work by our group has 

demonstrated a beneficial effect of gene therapy with both fibromodulin (FMOD) and 

connective tissue growth factor (CTGF) on neointima formation in an ex vivo human 

saphenous vein graft model. The main aim of this study was to develop gene-eluting 

stents, coated with vectors encoding these two transgenes, and then investigate the 

effect of these stents in vivo in a pig coronary model of instent restenosis. 

Plasmids were selected as the gene delivery vector for the main study. As gene delivery 

via plasmid vectors is substantially less potent than with viral vectors, several novel 

transgene expression cassettes were developed and their effects on transgene expression 

in coronary artery SMCs (the likely target cell for transfection) were investigated. 

Planned supplementary work included investigation of the potential mechanisms for the 

effect of CTGF on neointimal proliferation and the effects of β-blockade on transgene 

expression in vivo. 

4.1 Mechanisms of action of CTGF 

Our group has previously demonstrated that ex vivo adenovirus mediated gene transfer 

of CTGF in the SVG model reduces neointimal formation as compared to a lacZ control 

(unpublished data). Analysis of slides prepared from this earlier work, which had been 

stained with picosirius red, showed a greater collagen content in the lacZ group as 

compared with the CTGF group. However this appears to be solely as a result of the 
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greater quantity of neointima in the lacZ group since, when the collagen content is 

controlled for total area of the segment, there is no difference between the groups. This 

is not entirely surprising as, although CTGF has been demonstrated to increase collagen 

production in vitro, CTGF-knockout mice do not demonstrate reduced levels of 

collagen
227

 suggesting that the effects of CTGF on collagen may not be important in 

vivo. 

A limitation is that a true control group was not available for analysis. lacZ gene 

expression would not be expected to affect collagen production, but the presence of the 

adenoviral vector itself may have unforeseen biological effects. Although the original 

experiments had included vein graft specimens which had been exposed to PBS alone 

(with no viral vector present), sections stained with picosirius red had not been prepared 

from these specimens. There was no significant difference in the degree of neointima 

formation between Ad5-lacZ and PBS control in these original experiments 

(unpublished data). 

Further viral infections of SVG segments were performed using Ad5-CTGF and Ad5-

lacZ aiming to elucidate the mechanisms responsible for the previously demonstrated 

reduction in neointima formation with CTGF. At all time points in both groups CTGF 

production was evident in the intima and endothelium, as assessed by DAB 

immunohistochemistry and immunofluorescence (Figure 18, Figure 19 and Figure 20). 

As CTGF appeared to be present in the lacZ control group this suggests that either 

CTGF is constitutively produced within saphenous veins or is produced in response to 

the experimental conditions of this model, which is known to induce neointimal 

formation analogous to that which occurs with vascular injury. CTGF is known to be 

endogenously produced in certain blood vessels: constitutive production of CTGF has 

been described in the aorta and coronary arteries of the adult mouse
226

. Although there 

are no previous reports of CTGF production in the venous wall of any species, it is 

likely that this explains the results seen in these experiments. 

An alternative explanation is that the CTGF antibody used (Abcam, catalogue number: 

ab6992) is of limited reliability. Abcam recommends the use of human hippocampal 

protein extract as a positive control (http://www.abcam.com/CTGF-antibody-

ab6992.html) but we were unable to source any of this tissue to study. However, this 

http://www.abcam.com/CTGF-antibody-ab6992.html
http://www.abcam.com/CTGF-antibody-ab6992.html
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antibody has been used successfully in several published research articles and user 

reviews from the Abcam website suggest that it has high specificity. Positive results 

were obtained with this antibody following in vitro transfection using a CTGF plasmid 

(see Figure 30) and it is therefore most likely that the results seen in the vein segments 

were due to genuine endogenous neointimal/endothelial CTGF production. 

Surprisingly CTGF content was not higher in the Ad5-CTGF infected group than in the 

lacZ control. There are several possible reasons for this lack of difference. Firstly, it 

may be that, as discussed, there was endogenous production of CTGF in the vein 

segments and that the immunohistochemistry and immunofluoresence techniques used 

were of insufficient sensitivity to demonstrate an additional increase in CTGF 

production as a result of transgene expression. 

Secondly, adequate CTGF transduction may not have occurred. This may have been due 

to experimental error during the luminal instillation stage of the protocol. Following 

virus instillation, ligation and clipping of the ends of the vein is performed and the 

segment is placed in culture medium for an hour. During this stage it is possible for the 

viral solution to escape from the vein if the ligation is inadequate. Another possible 

cause for poor CTGF transduction is that the virus stock had inadvertently undergone a 

thaw-freeze cycle due to failure of the -70°C freezer in which it was stored. However 

the viral titre had been calculated by serial dilution end-point assay, demonstrating that 

the stock could still induce cytopathic effect, and therefore the gene transfer efficacy of 

the virus should not have been significantly impaired. 

A final limitation is that, as with the picosirius red experiments, no true control group 

was available for analysis. All vein graft specimens available were infected with either 

Ad5-lacZ or Ad5-CTGF and no specimens were instilled with a virus-free solution. 

As a result, interpretation of results from these Ad5 SVG infection experiments is open 

to considerable caution. For instance, there was no difference demonstrated between the 

groups in proteoglycan content as assessed by Alcian Blue staining. Although this may 

have been due to the technique (the protocol we adopted was used on micromass 

cultures rather than solid tissue
270

), or the fact that there is genuinely no difference 

between the two groups in terms of proteoglycan production, an alternative explanation 
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is that there was inadequate transduction of the CTGF gene due to one of the reasons 

discussed above. 

4.2 Promoter optimisation 

The ability of RE, HE and a DNA targeting sequence (D) to increase gene transfer 

efficiency within human arterial coronary SMCs was investigated. The pGEG.PSi-lacZ 

plasmid has been demonstrated previously by our group to have a high level of gene 

transfer efficiency in SMCs (unpublished data). Preliminary results from this current 

work suggest that the inclusion of two copies of the rabbit enhancer fragment and two 

copiers of the human enhancer fragment (i.e. 2RE2HE) in the expression cassette of this 

plasmid significantly increases transgene expression in human coronary artery SMCs 

further in vitro by a factor of 12 as compared with pGEG.PSi-lacZ. The other 

expression cassette constructs, which all included the SMC-specific DNA targeting 

sequence, did not improve gene transfer efficiency over the original plasmid. 

Importantly, the D2RE2HE insert had similar levels of transgene expression to 

pGEG.PSi-lacZ suggesting that the D element itself interferes with the enhancer effect 

of RE and HE. 

There are several possible reasons why the inclusion of D did not improve gene 

expression. In previously published studies D was inserted downstream of the transgene 

and polyadenylation sequence
163-165

 where it would not be transcribed into mRNA and 

potentially interfere with translation. As the D sequence contains binding sites for SRF 

and the NK family of transcription factors, binding of these factors to the plasmid DNA 

may also interfere with the function of the expression cassette regulatory elements. 

A comparison of 2RE2HE with the other combinations of these enhancers (2RE, 2HE, 

REHE, RE) cannot be made from this data given the interference from the D element. 

Although, given that enhancers demonstrate copy dependency, it might be expected that 

this is the most potent combination further experiments will need to be completed to 

confirm this. 

4.3 Development of gene-eluting stents 

Preparation of commercial DES, coated with a mixture of polymer and drug, is a 

complex industrial process. Medical device manufacturers have spent considerable 
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resources developing their own stent coating methods, with each company having 

developed their own proprietary polymer which is applied to the stent in different 

quantities and via different methods. This allows precise control over the amount of 

drug present and its elution profile over a desirable timeframe. An ideal polymer should 

be biocompatible and resistant to fracture during stent crimping and expansion. There 

should be a smooth, homogenous coat over the stent struts, which enhances 

biocompatibility whilst ensuring consistent drug elution throughout the length of the 

stent. Webbing of the polymer between stent struts (which can obstruct side-branches) 

must be avoided. 

The majority of commercial DES for use in humans have the polymer applied by spray 

coating. This results in a smooth layer of polymer, with a precise thickness and no 

intrastrut webbing, which is resistant to crimping and expansion. Given the difficulties 

in replicating this process in our laboratory, a research agreement had been formed with 

Medtronic, Inc. (Minneapolis, MN, USA), one of the largest medical technology 

companies in the world and one of the leading developers of coronary stents. Medtronic 

committed to provide polymer-plasmid coated coronary stents for use within our in vivo 

experiments, prepared using a proprietary industrial process at Medtronic‟s European 

research facility, the Bakken Institute in Maastricht. 

Shortly after the research project commenced, the interventional cardiology division at 

the Bakken Institute was unexpectedly closed, in part as a result of the global economic 

downturn. This lead to considerable uncertainty as to whether Medtronic would be able 

to provide the plasmid-coated stents within an appropriate timescale for the in vivo work 

to be completed in. Alternative methods of coating stents with a polymer-plasmid 

mixture were therefore considered and preliminary experiments on two separate 

techniques for polymer coating stents were performed. 

Egashira and colleagues have previously described the use of stents dip-coated with a 

mixture of polyvinyl alcohol and plasmid
178

. The authors reported that a film of 

polymer formed over the outside surface of the stent, but these stents were successfully 

deployed in iliac arteries of rabbits and monkeys with demonstration of transgene 

expression. Stents were prepared using this technique in our laboratory but there was an 

uneven, irregular distribution of polymer coating which resulted in marked webbing and 
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bridging between the stent struts. Although this external polymer film may not have 

been a concern in iliac arteries, it is extremely undesirable in coronary arteries. If there 

is webbing between the stent struts then the polymer could embolise distally or interfere 

with flow in side-branches during stent deployment causing intraprocedural myocardial 

infarction. Another limitation of this process is that it proved impossible to control the 

exact amount of polymer (and hence amount of DNA) which will bind to the stent; 

multiple dips were often required which exacerbated the problem. It was decided not to 

investigate this technique further. 

Subsequently a collaboration was formed with Surface Solutions Laboratories (Carlisle, 

MA, USA), a specialist American polymer company with previous experience in 

preparing gene-eluting stents which were deployed successfully by Takahashi and 

colleagues in rabbit iliac arteries
137

. Surface Solutions also applied the polymer-DNA 

solution to stents by hand dip-coating and the stents provided had a thin film of polymer 

webbing between the stent struts. However this was of a far more homogenous nature 

than that obtained with dip-coating of polyvinyl alcohol in our laboratory and survived a 

crimp-expansion cycle without cracking. DNA elution experiments showed a 

satisfactory elution profile. However although the initial eluted DNA was intact, there 

appeared to be significant degradation of the DNA eluted after the first six hours.  

The polymer coated stents prepared by Surface Solutions were subject to preliminary 

investigation in vivo. There was an aggressive neointimal response, with the stent struts 

completely covered at 7 days in every case. This was in marked contrast to the stents 

provided by Medtronic, and used in the later experiments, in which no stent struts were 

covered at 7 days following deployment. This coating technique was not investigated 

any further, as Medtronic were able to perform the stent coating process as originally 

agreed in an appropriate timeframe. 

The technique Medtronic utilised involved initial spray coating of the stent to create a 

porous coat followed by immersion in a plasmid solution and gentle heating to close the 

pores. As this process also necessitated a dip-coating step, there was still some webbing 

between the stent struts but this was far thinner than with the other two processes and 

the amount of polymer on the stent struts was visibly thicker. Although still not ideal for 

in vivo use, this process was considered to be the best of the three options available. 
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The lengthy process in obtaining suitable polymer-coated coated stents for the in vivo 

experiments illustrates the difficulties in performing complex translational basic science 

research. Collaboration with industrial partners is often required which has the potential 

to cause significant delays and intellectual property concerns mean that detailed 

methodology is often unavailable. 

4.4 Use of lacZ as a marker gene in pig coronary arteries 

lacZ has been used as the marker gene in numerous studies of stent-mediated vascular 

gene transfer in rabbit carotid, rabbit iliac, rat carotid and money iliac arteries
134, 137, 172, 

176, 178, 181
. Our group has extensive experience of gene therapy using the lacZ transgene 

in pig coronary arteries in vivo delivered via viral vectors, applied via a specialised 

delivery catheter
155

 and via collagen-coated stents (unpublished data).  These 

experiments demonstrated convincing staining in the treated arteries and absence of 

staining in the control arteries. As a result of this experience, lacZ was selected as the 

marker gene in the current study of plasmid-eluting stents. 

The initial studies examined the effects of stents coated with different doses of the lacZ 

plasmid, in order to ascertain whether a plasmid dose-response relationship existed. X-

gal staining of the stented segments at day 7 showed blue staining along the areas of 

vessel exposed to stent struts, which appeared suggestive of β-galactosidase transgene 

expression. However staining was also seen in the vessels exposed to control stents 

coated with polymer alone. In these vessels, the staining had a more diffuse nature, 

being present throughout the vessel wall and not specifically related to the stent struts. 

Some of the plasmid treated vessels exhibited both non-specific staining, and specific 

strut-related staining. 

The finding of blue staining with the X-gal stain in vessels not exposed to a lacZ gene 

vector is surprising. However false positives, presumed related to endogenous β-

galactosidase activity has been described in a variety of different mammals
279

.  Lim and 

colleagues investigated delivery of lacZ via plasmid vectors (mixed with Lipofectin) in 

canine coronary arteries and assessed β-galactosidase expression with X-gal staining
280

. 

They reported that 13 out of 18 transfected arterial segments showed positive X-gal 

staining, but activity was also detected in three of 11 non-transfected segments and four 

out of six segments exposed to Lipofectin alone. Luciferase, an alternative marker gene, 
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was far more specific with absent activity in non-transfected vessels. They concluded 

that lacZ may not be an appropriate marker gene for use in the canine vasculature. 

A potential mechanism for endogenous β-galactosidase staining is related to cellular 

senescence.  Senescent cells have entered a permanent state of growth arrest and are 

enlarged in morphology and express negative regulators of the cell cycle
281

. 

Atherosclerosis and neointima formation following vascular injury have been associated 

with the development of senescent cells as a result of increased cellular replication
281

. β-

galactosidase positivity (at pH 6) is considered to be a biomarker of replicative 

senescence and has been demonstrated following vascular injury to the rabbit carotid 

artey
282

 and in atherosclerotic coronary arteries
283

. 

The false positive staining appears to be related to the use of the polymer coatings on 

the stents. Blue staining was seen in the preliminary in vivo experiments with stents 

coated with urethane polymer only (Figure 35) as well as in the dose-finding study with 

stents coated with Medtronic‟s proprietary polymer only (Figure 42). In the β-blocker 

studies, the control stents used were “bare metal” stainless steel without a polymer 

coating. There was no blue X-gal staining in any of these control vessels. 

It can be hypothesised that the inflammatory response to the polymer can induce 

endogenous β-galactosidase expression in porcine coronary arteries. The mechanism for 

this may be the development of cellular senescence due to increased cellular replication 

as discussed above. Future experiments investigating the deployment of polymer-coated 

stents as gene delivery vehicles in the porcine coronary artery model should consider 

the use of alternative control genes such as luciferase or green fluorescent protein 

(GFP). 

4.5 Lack of biological effect with FMOD and CTGF gene-

eluting stents 

The main study compared the action of stents coated with plasmids encoding for the 

“therapeutic” genes: CTGF and FMOD, and the control gene lacZ. The plasmid 

backbone identified from the in vitro experiments as resulting in the maximum gene 

expression in SMCs was used. Stents were deployed in vivo in juvenile pig coronary 

arteries and the effects on neointimal hyperplasia and instent restenosis, as assessed by 
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quantitative coronary angiography and by morphometric analysis were assessed at 28 

days. At this timepoint there was no difference in the degree of neointimal hyperplasia 

or restenosis between either of the two therapeutic transgenes and the control group. 

Why was there a lack of observed effect? It is unlikely that there was an issue with the 

plasmid DNA itself. All three transgenes used in this study (human CTGF, bovine 

FMOD and lacZ) have been utilised by our group previously and effective transgene 

expression has been demonstrated using viral vectors. Following plasmid construction 

in this study, great care was taken to ensure that plasmid identity was correct before 

proceeding with the in vivo experiments. Three separate techniques were used for this. 

Firstly, selective restriction enzyme digestion was performed which confirmed that the 

anticipated DNA bands were present. Secondly PCR was performed, using custom 

primers for CTGF and FMOD, on both the newly constructed plasmids and the original 

plasmids from which the transgenes were derived. Finally, the plasmids were shown to 

be functional, and successful in vitro transfection was demonstrated with all three 

transgenes. 

The in vivo experiments suggested that transgene expression was occurring, but at much 

lower levels than anticipated. The dose-finding and β-blocker studies showed that lacZ 

expression was sparse and not seen adjacent to all stent struts. To assess for gene 

expression of the therapeutic transgenes, quantitative PCR using gene assays for CTGF 

and FMOD was performed. Evidence of transgene expression was demonstrated for 

FMOD, but there was no evidence of increased gene expression with the CTGF stents 

as compared to the control group. The reason for this probably relates to endogenous 

CTGF production, which has been previously demonstrated to occur within both 

healthy and diseased blood vessels. CTGF is produced at high levels within 

atheromatous lesions in human aortas
210

 and constitutive production of CTGF has also 

been described in uninjured coronary arteries in the healthy adult mouse
226

. Earlier work 

from this study suggested that there was significant endogenous expression of CTGF in 

the neointima which forms during tissue culture of human saphenous vein grafts. These 

combined results imply that there is likely to be significant endogenous expression of 

CTGF within the injured coronary artery wall following stent deployment. Therefore 

any increase in gene expression as a result of transgene transfer may have been 
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insufficient to be measurable with the techniques used (i.e. the signal:noise ratio was too 

low to be detected). 

Although it is possible that the proteins chosen are simply ineffective at reducing 

restenosis, earlier work in the SVG model using viral vectors demonstrated a positive 

biological effect and the most likely explanation for the neutral results of the current 

study is that the degree of transgene expression was inadequate to exert any potential 

beneficial effect. These results therefore should not be interpreted as indicating that 

FMOD and CTGF are ineffective at reducing restenosis, but rather that the methods 

used to deliver these genes to the vasculature were inadequate to produce sufficient 

transgene expression and protein production.  

4.6 Lack of impact of β –blockers on plasmid-mediated 

transgene expression 

β-blockers have been demonstrated to reduce transgene expression from CMV 

promoters following viral gene transfer into the vascular wall
264

. Unpublished data from 

our group has shown that the β-adrenergic agonist isoprenaline does not affect transgene 

expression in cultured SMC transfected with plasmid, but the effect of β-blockers on 

plasmid-mediated gene expression has not been studied in vivo. 

 In this study, there was no difference in lacZ gene expression at 7 days in β-blocker 

(bisoprolol) treated animals, compared to those not treated with β-blockers, following 

deployment of coronary stents coated with pGEG-2RE2HE-Psi-lacZ. There was a 

significant reduction in heart rate in the bisoprolol treated group indicating adequate β-

blockade. 

These results are difficult to interpret as, although numerically higher, there was no 

statistically significant difference in lacZ gene production between the placZ stent and 

control stent groups. En face staining of the stented segments suggested only very 

patchy lacZ expression in the placZ group. This suggests that the degree of transgene 

expression in this study was minimal and insufficient to draw any meaningful 

conclusions on the effect of β-blockade on plasmid-mediated gene expression. 
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Given that a clear increase in gene expression was only identified in pFMOD-treated 

vessels, as compared to control vessels, it may be that the use of pFMOD stents would 

have generated meaningful results. Unfortunately the placZ stents used in the β-blocker 

experiments were prepared at the same time as the stents used in the main experiments 

and no additional pFMOD coated stents were available. 

4.7  Reasons for inadequate transgene expression 

Poor gene transfer efficacy represents the Achilles heel of plasmid-mediated gene 

therapy. This shortcoming was manifest in this study and the likely reason for the 

failure to demonstrate meaningful results in either the therapeutic or β-blocker studies. 

Although numerous factors may contribute to this (discussed in detail in Section 1.5 of 

the Introduction), several issues are pertinent to this study and will be discussed in 

detail. 

4.7.1 Plasmid issues 

The likely target cell for stent based coronary gene therapy is the medial or neointimal 

SMC and these cells are notoriously difficult to transfect. In this study the in vitro 

transfection rate of human coronary SMCs using a lipofection technique was 

consistently <5%, despite attempts to optimise the protocol. For comparison, the 

transfection rate with 293 cells was >95% and the rate with A10 cells (which resemble 

neointimal SMCs) was approximately 10% (see Figure 28). A high transfection rate 

may not be necessary to result in successful protein production: Dulak and colleagues 

reported high levels of VEGF production following plasmid-mediated transfection of 

SMCs in vitro despite a low transfection efficiency of <5%
272

. However if the 

transfection rate is low in vitro, then the transfection rate in vivo is likely to be even 

lower, especially given the inability to use lipofection agents with stent based vector 

delivery. Therefore efforts to maximise SMC transfection are justified. 

Our group has developed a complex expression cassette which has been shown to 

improve gene expression in SMCs (the likely target cells) in vitro. Attempts were made 

in this study to optimise this expression cassette further, and the addition of enhancer 

elements was shown to increase SMC transfection. The plasmids used for the in vivo 

studies contained the following elements (Figure 6): the woodchuck hepatitis virus post-
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transcriptional regulatory element (WPRE), an intron, the Epstein-Barr nuclear antigen-

1 (EBNA-1) and its binding site oriP, two copies of the rabbit smooth muscle myosin 

heavy chain promoter (RE) and two copies of the human VSMC α-actin promoter (HE). 

The addition of these elements to a „simple‟ plasmid vector has resulted in large 

plasmids: pGEG-2RE2HE-Psi-lacZ (14.5 kb), pGEG-2RE2HE-Psi-CTGF (12.1 kb) and 

pGEG-2RE2HE-Psi-FMOD (13.7 kb). For comparison, other preclinical studies of 

gene-eluting stents which have shown successful transgene expression have used much 

smaller plasmids: phVEGF-2 (5.2 kb)
62

, pEGFP-C1 (4.7 kb)
180, 182

, pQBI25-fPA (6.2 

kb)
137

 and pCMVβ (7.2 kb)
137

.  

Plasmid size has been shown to be inversely proportional to the efficiency of gene 

transfer, particularly if carrier vehicles are not used
284

; smaller molecules enter the cell 

more rapidly by endocytosis and have a more rapid rate of nuclear transport through the 

cytoplasm to the nuclear pore complex
285

. Another potential benefit of simpler plasmids 

is that additional backbone elements may be immunogenic, particularly if they include 

unmethylated CpG dinucleotides which can lead to innate immune system activation
170

. 

Completely CpG-free plasmids reduce inflammation and increase gene expression
171

. 

DNA minicircles are derived from plasmid DNA and consist solely of an expression 

cassette, lacking any bacterial components. They increase gene transfer efficiency both 

in vitro and in vivo but are currently complex and expensive to produce and have not 

been used in human studies of cardiovascular gene therapy
284, 286

. 

There is clearly a balance between including additional elements which may increase 

gene expression or confer cell-type specificity (such as enhancers, DNA targeting 

sequences and cis-acting elements), and attempting to minimise plasmid size to enhance 

cellular uptake and nuclear trafficking and reduce immunogenicity. Factors such as 

immunogenicity would not be applicable in vitro and it is possible that the size and 

complexity of the plasmids used in this study impaired in vivo transgene expression, 

despite being efficacious in vitro. It would be worth considering substantially reducing 

the size of the plasmid backbone for future experiments in order to improve gene 

transfer efficiency. 

The choice of plasmid dose is another important factor and is largely empirical. 

Previous published studies have used doses of between 100μg and 1700μg per stent 
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(Table 1) and a clear dose-effect relationship is often absent from studies of plasmid 

mediated gene therapy. For instance, Walter and colleagues reported a reduction in 

neointima following deployment of pVEGF-eluting stents in rabbit iliac arteries
62

.  

However there was no difference in efficacy between the two doses of VEGF studied 

(100µg and 200µg).  In the current dose-finding study three doses were examined: 

100μg , 200μg and 400μg per stent. Given the lack of a clear dose-effect correlation, the 

400μg dose was selected for the therapeutic studies in an attempt to maximise transgene 

expression. Although it is possible that simply increasing the dose of plasmid would be 

sufficient to increase transgene expression, the fact that doses as low as 100µg/stent 

have been reported to be effective suggests that other factors may have been more 

important in the failure of efficacy in this study. 

4.7.2 Polymer issues 

The stent coating process used in the in vivo studies has already been discussed and 

several potential issues can be identified which may contribute to the poor gene transfer 

efficacy seen. 

Commercial drug-eluting stents (DES) typically elute their therapeutic agent over a 

period of months as a result of specially developed polymer coatings, and this 

prolonged release is essential for optimal results. The XIENCE V stent (Abbott, IL, 

USA), which has arguably the most impressive clinical data of the currently available 

DES, elutes everolimus in a controlled manor for 120 days
287

. Conversely the 

ENDEAVOR stent developed by Medtronic (MA, USA) possessed a rapid drug elution 

profile and was associated with a high rate of restenosis
288

. This prompted Medtronic to 

redesign the polymer coating to provide extended drug release and the new RESOLUTE 

stent, with the same drug and stent backbone as ENDEAVOR, demonstrated 

significantly improved clinical results
289

. 

Although the optimal release profile for drug elution from DES has been established in 

clinical trials, the best release profile for gene therapy vectors as a treatment for instent 

restenosis is not well understood and will depend on the vector studied. The neointimal 

process induces rapid cell division and typically takes weeks to months to complete. 

Drug elution from DES has been shown to be needed for the duration of this process to 
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attain optimal clinical results. As plasmids are not well retained in dividing cells, it is 

likely that the optimal elution profile will be similar to that of DES. 

The polymer-coated stents used in this study were prepared with a proprietary process 

by Medtronic in the USA for which the full details were not available. The in vitro 

DNA elution experiments performed by Medtronic appeared to show satisfactory results 

for use in vivo. This data showed an initial burst of plasmid release from the stents 

followed by a steady release extending out to 29 days. Although the initial experiments 

showed that only about 25% of plasmid had eluted at this point, once a crimp-expansion 

cycle had been applied to the stents, approximately 50% had eluted by day 13. Given 

these results, Medtronic were instructed to provide the first batch of stents for use in the 

in vivo dose-finding study. 

Once these stents arrived, the elution profiles were repeated. The results from these 

experiments were substantially different to those provided by Medtronic: approximately 

90% of the predicted DNA load eluted within the first 4 hours, with minimal further 

elution occurring after 48 hours. Following discussion with Medtronic they suggested 

that an additional step of  “capcoating” the stents with an extra layer of polymer could 

be applied to try and reduce the rate of elution. Given the time constraints on the 

project, there was insufficient time for confirmatory experiments to ensure that this did 

not adversely affect plasmid integrity or elution. However, it was felt that the initial 

method of stent coating would be extremely unlikely to result in sustained plasmid 

elution and this additional “capcoating” step was performed on the remainder of stents 

to be used in vivo. 

Unfortunately elution experiments on the new stents showed very similar results to the 

previous method, with more than 90% of the predicted load eluted within 24 hours, 

confirming that the “capcoating” process was ineffective at slowing down release of 

plasmid from the polymer coating. There was insufficient time available at this juncture 

to investigate alternative coating techniques and thus these stents were used for the in 

vivo studies. This rapid elution of plasmid from the polymer coating almost certainly 

represents a major factor in the poor transgene expression demonstrated in this study. 
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The conflicting results from the elution experiments performed by Medtronic and in our 

laboratory are difficult to reconcile. The DNA assays were different: Medtronic used the 

Quant-iT Picogreen dsDNA assay kit (Invitrogen) and our laboratory used a Nanodrop 

spectrophotometer (Thermo Scientific). However both methods should provide an 

accurate measurement of DNA concentration and the experimental protocol was 

otherwise identical. The most likely explanation relates to the fact that Medtronic was 

going through a process of staff restructuring at the time of the study. The researcher 

originally allocated to the project developed the stent coating protocol and completed 

the initial experiments demonstrating a desirable elution profile. After the main 

experimental work had been performed another researcher was allocated to the project, 

who performed the stent coating process using the original researcher‟s notes. It is 

feasible that there was an error in interpreting these notes and the coating process was 

not performed in an identical manner to the first researcher. 

Another issue which warrants discussion is the heterogenous nature of the neointimal 

process. Even between stents in the same group there were marked variations in 

neointimal hyperplasia, with some vessels only demonstrating minimal late loss and 

others developing occlusive neointima. In the vessels with the greatest neointima there 

was extensive mononuclear infiltrate around the stent struts suggesting an inflammatory 

process may be responsible for this phenomenon. This heterogeneity made it very 

difficult to ascertain whether there were any genuine differences between the treatment 

groups. 

There were no obvious factors in the methodology to explain this observation. Stent 

polymers have been shown to induce a significant inflammatory response
183

 . Given that 

the details of the stent coating process were not divulged by Medtronic, one can 

speculate that inconsistencies in polymer application may explain the variability seen. 



Intracoronary gene transfer via plasmid-eluting stents  Paul Williams

   

 154 

5 Future directions 

Plasmid-mediated gene therapy has the potential to result in therapeutic gene expression 

with an acceptable safety profile, and instent restenosis offers an ideal target as 

prolonged site-specific therapy can be achieved with gene-eluting stents. Despite this 

promise, the results from this thesis clearly demonstrate that several hurdles have to be 

crossed before therapeutic gene therapy can be extended past the preclinical stage. 

Promoter optimisation offers the potential to increase gene expression and cell 

specificity. The addition of 2RE2HE has been shown to substantially increase gene 

expression in vascular SMCs. As addition of the D element interfered with the function 

of the other expression cassettes assessed, plasmids with various combinations of RE 

and HE but with the D element removed will need to be constructed. Insertion of the D 

element after the polyA sequence, where it will not be transcribed, has the potential to 

increase SMC gene expression and is the subject of active investigation by our group. 

An alternative approach to increase transgene expression is to minimise the size of the 

plasmid backbone. The plasmids used in this study contained the EBNA-1 gene and its 

binding site oriP, which have been shown to increase nuclear transport via a cis acting 

mechanism but substantially increase the size of the plasmid. Co-transfection with two 

smaller plasmids, one containing the transgene and oriP and a second containing the 

EBNA-1 gene, offers a novel method to minimise plasmid size whilst preserving the 

enhanced nuclear transport. Although not suitable for large scale plasmid production 

using current techniques, DNA minicircles offer another intriguing prospect for further 

studies of non-viral gene transfer. 

For future studies of gene-eluting stents, more preliminary work will need to be 

performed on the stent  platform and the polymer application. In particular DNA elution 

from the stent should be deemed acceptable prior to proceeding with animal 

experiments. This is likely to require further liaison with industrial partners who have 

access to state of the art polymer and stent technology. 

Given the minimal gene expression seen in vivo, it would be worth considering using a 

higher dose of plasmid for future experiments as, unlike viral vectors, there is less 

potential for toxicity with higher doses. Certainly there seems to be little role for 
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performing formal dose-finding studies given the lack of correlation seen in this study. 

Given the issues with “false positive” blue X-gal staining seen in the segments exposed 

to polymer coated stents, it would be reasonable to investigate alternative marker genes 

for future studies. 

Once the above issues have been remedied, further studies of CTGF and FMOD gene 

therapy to the coronary arteries are warranted given the positive results demonstrated in 

reducing neointimal formation in the SVG model. 
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6 Appendix 

6.1 Composition of solutions 

All chemicals and reagents were obtained from Invitrogen unless otherwise stated. 

293 medium 

Minimum Essential Medium (#21090/022)     

Foetal bovine serum (#10106-169)      

MEM non-essential amino-acids 1x (#11140-035) 

L-glutamine 200mM (#25030-024) 

Penicillin/streptomycin (5000iu/ml-5000g/ml) 

 

500ml 

50ml (10%) 

5ml 

5ml (2mM) 

5ml 

A10 medium 

Dulbecco‟s Modified Eagle Medium (#41965-039)     

Foetal bovine serum (#10106-169)      

Penicillin/streptomycin (5000iu/ml-5000μg/ml)    

 

500ml 

50ml (10%) 

5ml 

SMC culture medium (TCS Cellworks) 

Smooth muscle cell basal medium (#ZHC-3933) 

Growth supplement (insulin, human epidermal growth factor, human 

fibroblast growth factor and foetal bovine serum) (#ZHS-8951) 

Antibiotic supplement (25mg/ml gentamicin and 50μg/ml 

amphotericin B) (#ZHR-9939) 

 

500ml 

5ml (5%) 

 

5ml 

Organ transfer medium 

RPMI 1640 with 20mM HEPES 

Penicillin/streptomycin (5000iu/ml-5000μg/ml) 

Gentamicin (25mg/ml stock) 

Amphotericin B (50µg/ml stock) 

Sodium heparin  

 

500ml 

5ml 

5ml 

5ml 

2000U 

Organ culture medium 

RPMI 1640 with 2g/l sodium bircarbonate 

Penicillin/streptomycin  (5000iu/ml-5000μg/ml) 

Gentamicin (25mg/ml stock) 

Amphotericin B (50µg/ml stock) 

Foetal bovine serum (to make 30% concentration) 

 

500ml 

5ml 

5ml 

5ml 

150ml 

Freezing medium  
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Dulbecco‟s Modified Eagle Medium (#41965-039)    

Dimethyl sulphoxide (DMSO) (Sigma-Aldrich)     

Foetal bovine serum (#10106-169) 

5ml 

1ml 

4ml 

Cell lysis buffer 

100mM Tris-HCl (pH 7.8)       

Glycerol         

1M MgCl2         

Triton X-100         

0.5M EDTA (pH 8)        

ddH2O  

 

12.5ml 

7.5ml 

500μl 

500μl 

100μl 

28.9ml   

Buffer solution for X-gal assay 

Potassium ferrocyanide        

Potassium ferricyanide        

Magnesium chloride     

0.1M PBS 

 

42mg (5mM) 

 32mg (5mM) 

4mg (2mM) 

19.5ml 

X-gal solution 

X-gal (bromo-chloro-indolyl-galactopyranoside)    

DMSO 

 

20mg 

500l 

6.2 1kb ladder 

The 1kb ladder was supplied by Invitrogen (15615-024) and gives the following band 

sizes during gel electrophoresis: 
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6.3 Cloning protocol for novel plasmids 

6.3.1 DNA sequences of expression cassette inserts 

The DNA sequences of the DNA targeting sequence and fragments of the rabbit and 

human enhancer elements are listed below. 

Chicken Smooth Muscle Gamma Actin Promoter (GenBank accession number: 

AF012348) 

CACTAAAGGGAAACGCGAACGAAACCACGCTTTGCAGGCACGCTTTATTTGCTTCAACAACGAGGGCTGC

ATGTTTTGCAGGGACTCCCCCCCACCCCTGCCTATCTGGTGCCCTCACACAAAGGAACGGAACCAAGCCC

GTGGCCCGAGCTCCCAGCCAGGAGCCCTCAGCAGCAGCAGAACGTGTGAGCGTTACCCATATAGGGAGGT

GCAGAGGGCTGGTGGTGCACGGGGAGCTCTGCATCCCCCCGCGGCCCTCAGCCTGCAGCCCCCTCCCGCT

CGTGGCACCGGGTTGGCCTCGCGTGCCGTGGGGTAGCCGGGCGTTCCTGCGAGCATCCCAGGCCGGCCAG

CAGGCCCTCCCTGCAGCCCGGGCACAGCCATGCTCCGACAGCTGATTGGCTGCGGTGGCCGAACCTTTCC

TTTTTAGGCTGCATCTGCTCTGGCTCTGGCTCTGCCTCCGCGGTCCCAACTTCAGCCTCCCCGTGCCGAG

GCTCAGCTCCAACAGAGGGACTGCTGCACGGTGGGACGCCCTGCATGGCTGGGTGAGACCAGGGGGCTGG

GGAGGGCTGGGATGGCTCTGGCTTGGACACGGCGGGGCTCGTGCGCTATGGGCAGAAGTGCTGTGGCTTT

TGGCACCGTTCCCTTTCCTATGGCTGGGATACAGCTGTCGCATCGGCTCCGTGTGGCCGTGGTCCCCCCC

CCCCCCTCCCCCGCAGCGTGGGCGCAATGGACCCGGTGGCCAACCTGCCTCCATCCCACTCCCTTCTGAT

TCCTTTTTCCTTACGCTCTGCTGGGTTGGGTTGTTTTTTTTTTTAATTTTTTTTTTTTTTTTTGCAGCAT

GTCATATATGGCAACCTTTTGCCTCGGTGACCTCATGTTTGGCAGCAGGCCGGGTGACGCGGGCTGGGAT

GAAAGCAGCTGTGGGTGTCTCGCGTGAGGCTGCGGTGCAGAGCATGCTGAGACGCACAGCTGGGACCTGG

GGACACATCCAGCCCAGGGATGGGGGGGACCGGGCAGTGCACCGCTGTGGGACGCTCTGAGACCGTGCCC

ACATCCTCATTGCACGATGACAGCTCCGAGCTGCACCCACACCTCCGCATCCTCGCCCCGAGAATGGATC

GGGATGCAGCAAAACGAAGCAGAAGCGGCGCCTGCTCGTGCCTCAGTTTCCCAGCTGCAGCCTCACTTCC

CACAACTCTCAAGTAGCAGCTCCGTGGCTTCCTCCCATCCTCAGGCTCCAGAGAGAGGCCCCAGAACGGG

ATGGCTGCCCTTAAAAAGGCACTGGGCCGATCAGCAGGTGCTGTGCGAGGGATGGGGGCCGATGCCTTTG

CCATGGTGGGGCATTGAGGTGTCCCCAGTGCTGCTCGGGGGCAGCAGACCTCCACCTCCCCTGGGACTGG

GGCTCATCCTGCTTCCAAACCTCCTGGAGGGAAGCTGAGGGCGCACCCACCGTACAGGGCCAGGTTTGGA

AGGACCCACATGGGGCTCAACGATGAGGGGTTTGGGGTTTTGGCCAGGCTGTGTGGTGCCCAGAGGACCT

TTTTGGTGTCAGGGTAAACGCAGCACTGCCAGGACTCCCGCAGCACCTTTCAGCCTTGCACTGAATTGGG

CCCATCTGCCCTGGGGGTCCCTGCCCCCAATAACTGCAACGATGGGAGGGAAAAAATCCCACAGAGGGAA

CCCCAGGGTGGGGATGCCGGGTCGCAGGGATGGAGCAGCACCTCGAGGCTGTGACGCACCGCCCATCACC

TGGTGTGCAGCTGGGATGCTGAACCTCTTCCAAATCAGGATATGCCATGGTTCTATGACTCAGGTGCACA

GCAGCCCCGGGCCATCCCTACAGCCACCGCCTTCCTGGGCAGGGCTGTGGTCAGAGAGGACCAAAGGCCA

TCGACTGGAGTACCTCCACCTCGCTTTTGCTGAACGTCGCTTATAAGGACTTGTGTCTCGCCTGTTTATC

GAAGCATAGCATAAAAAGGAACAGACTCACCAATGGGATGTTGCCTCCTAAGCATAGCCCCACGTAGATT

TTTTTTTTTCCCCTTACAATAATTTAACTGTTGCTGGGTCCTACCCATCAGTCCAAGGTCAATTTTAATG
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CAATAAAACACCTTATATGGCCATATGGCTAACACACCATCACTTAGCCTATTTAGGGTCTTTGTGTAGA

GAGGATCCGCCTCTGAGGTTTCGTGGGCTCGTGGTATTTATACCAAAGCAGATCGGGATTCGGTC 

 

The bold sequence represents the 176bp fragment of the chicken SMGA promoter that 

acts as a SMC-specific DNA nuclear transport sequence (D; bp 2060 to 2235 of the 

published sequence). 

SRE2 = initial underlined sequence (CCTTATATGG) 

NKE1 = second underlined sequence (CACTTAGCCT) 

SRE1 = overlapping sequence with NKE1 (CCTATTTAGG) 

 

Enhancer fragment of the rabbit smooth muscle myosin heavy chain promoter (RE; 

107bp) 

CGCGCGGGGTGCAGGGTGCCCTCCCCCGCACCGGCCGAGCCGAGAGGCCGCGAGGCACCATATTTAGTCA

GCGGGAGCGGGCAGCCCCGGGCTGGTATGCGGCGCTG 

 

Enhancer fragment of the human smooth muscle myosin heavy chain promoter (HE; 

109bp) 

ATCGTGAGAACTCACTCACTTTCATGAGAACAGCATGGTATAAAACGCCCCCATCGATCCAGTCACCTCC

CACCATGCCTTTCTCTGGACATGGGATTATGGAGATTAG 

 

Full cloned DNA sequence (D2RE2HE; 708bp) 

GCGGCCGCACGTGTTGCTGGGTCCTACCCATCAGTCCAAGGTCAATTTTAATGCAATAAAACACCTTATA

TGGCCATATGGCTAACACACCATCACTTAGCCTATTTAGGGTCTTTGTGTAGAGAGGATACCGCCTCTGA

GGTTTCGTGGGCTCGTGGTATTTATACCAAAGCAGATCGGGATTCGGTCATTTAAATCACGTGTTCGAAC

GCGCGGGGTGCAGGGTGCCCTCCCCCGCACCGGCCGAGCCGAGAGGCCGCGAGGCACCATATTTAGTCAG

CGGGAGCGGGCAGCCCCGGGCTGGTATGCGGCGCTGCTCGAGCCTAGGTTCGAATATTCGCGCGGGGTGC
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AGGGTGCCCTCCCCCGCACCGGCCGAGCCGAGAGGCCGCGAGGCACCATATTTAGTCAGCGGGAGCGGGC

AGCCCCGGGCTGGTATGCGGCGCTGCGATCGCTTCGAATCGTGAGAACTCACTCACTTTCATGAGAACAG

CATGGTATAAAACGCCCCCATCGATCCAGTCACCTCCCACCATGCCTTTCTCTGGACATGGGATTATGGA

GATTAGATGCATCCTAGGATCGTGAGAACTCACTCACTTTCATGAGAACAGCATGGTATAAAACGCCCCC

ATCGATCCAGTCACCTCCCACCATGCCTTTCTCTGGACATGGGATTATGGAGATTAGCGATCGCATTTAA

ATACTAGT 

A = additional A to remove BamHI site from D sequence 

This sequence contains the following restriction sites to allow digestion and ligation of 

various combinations of D, RE and HE: 

 

 

 

6.3.2 Cloning protocol for novel expression cassettes 

pΔPSi-lacZ (an intermediary plasmid obtained from Dr Kingston) was double digested 

with NotI and SpeI and the D2RE2HE insert was ligated into the plasmid immediately 

before the MIEmCMV promoter to create pΔ-D2RE2HE-PSilacZ. The entire 

expression cassette (consisting of the D2RE2HE insert, the truncated murine CMV 

promoter, the pCI intron, the lacZ gene, WPRE and the polyA sequence) was then 

removed with double digestion using NotI and BamHI. pGEGPSilacZ was also double 

digested with NotI and BamHI to remove its expression cassette and the expression 

cassette from pΔ-D2RE2HE-PSi-lacZ was ligated into the pGEG backbone to create 

pGEG-D2RE2HE-PSi-lacZ. 

Restriction enzyme digestion and religation of pGEG- D2RE2HE –Psi-lacZ was 

performed to create further plasmids with the following combinations of HE, RE and D 

as follows (all enzymes cleave sticky ends and incubation was performed at 37°C unless 

otherwise specified) : 
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PmlI digestion (blunt end)    pGEG- 2RE2HE –Psi-lacZ 

BstBI digestion (65°C)    pGEG- D2HE –Psi-lacZ 

SgfI digestion       pGEG- D2RE –Psi-lacZ 

AvrII digestion      pGEG- DREHE –Psi-lacZ 

SgfI digestion then BstBI digestion    pGEG- DRE –Psi-lacZ 

SwaI digestion (25°C)     pGEG- D –Psi-lacZ 

 

Confirmatory digests were performed using various restriction enzymes as described in 

Section 3.2. 

6.4 DNA sequences of transgenes 

Base pair sequences highlighted in red are the targets for the custom primers designed 

for PCR in section 2.6.4.1. 

6.4.1 Connective tissue growth factor 

Human CTGF consensus coding DNA sequence (CCDNS)  

1050bp 

ATGACCGCCGCCAGTATGGGCCCCGTCCGCGTCGCCTTCGTGGTCCTCCTCGCCCTCTGCAGCCGGCCGG

CCGTCGGCCAGAACTGCAGCGGGCCGTGCCGGTGCCCGGACGAGCCGGCGCCGCGCTGCCCGGCGGGCGT

GAGCCTCGTGCTGGACGGCTGCGGCTGCTGCCGCGTCTGCGCCAAGCAGCTGGGCGAGCTGTGCACCGAG

CGCGACCCATGCGACCCGCACAAGGGCCTATTCTGTCACTTCGGCTCCCCGGCCAACCGCAAGATCGGCG

TGTGCACCGCCAAAGATGGTGCTCCCTGCATCTTCGGTGGTACGGTGTACCGCAGCGGAGAGTCCTTCCA

GAGCAGCTGCAAGTACCAGTGCACGTGCCTGGACGGGGCGGTGGGCTGCATGCCCCTGTGCAGCATGGAC

GTTCGTCTGCCCAGCCCTGACTGCCCCTTCCCGAGGAGGGTCAAGCTGCCCGGGAAATGCTGCGAGGAGT

GGGTGTGTGACGAGCCCAAGGACCAAACCGTGGTTGGGCCTGCCCTCGCGGCTTACCGACTGGAAGACAC

GTTTGGCCCAGACCCAACTATGATTAGAGCCAACTGCCTGGTCCAGACCACAGAGTGGAGCGCCTGTTCC

AAGACCTGTGGGATGGGCATCTCCACCCGGGTTACCAATGACAACGCCTCCTGCAGGCTAGAGAAGCAGA

GCCGCCTGTGCATGGTCAGGCCTTGCGAAGCTGACCTGGAAGAGAACATTAAGAAGGGCAAAAAGTGCAT

CCGTACTCCCAAAATCTCCAAGCCTATCAAGTTTGAGCTTTCTGGCTGCACCAGCATGAAGACATACCGA

GCTAAATTCTGTGGAGTATGTACCGACGGCCGATGCTGCACCCCCCACAGAACCACCACCCTGCCGGTGG
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AGTTCAAGTGCCCTGACGGCGAGGTCATGAAGAAGAACATGATGTTCATCAAGACCTGTGCCTGCCATTA

CAACTGTCCCGGAGACAATGACATCTTTGAATCGCTGTACTACAGGAAGATGTACGGAGACATGGCATGA 

 

6.4.2 Fibromodulin 

Bovine fibromodulin cDNA 

2656bp 

AAGGAGGCCAGACAGAGGGACGTGGTCACTCTCTGAAAGATTCAACTTCAAGAAACACAAAATGCAGTGG

GCGTCCATCCTGCTGCTGGCAGGGCTCTGCTCCCTCTCCTGGGCCCAATATGAGGAAGACTCTCACTGGT

GGTTTCAGTTCCTCCGCAACCAGCAGTCCACCTACGACGATCCCTATGACCCCTACCCCTATGAGCCTTA

TGAGCCTTACCCTACGGGAGAAGAAGGTCCAGCTTATGCTTACGGCTCTCCACCCCAACCAGAGCCCCGA

GACTGCCCCCAGGAGTGCGACTGTCCCCCCAACTTCCCCACAGCCATGTACTGCGACAATCGCAATCTCA

AGTACCTGCCCTTCGTCCCCTCCCGCATGAAATACGTCTACTTCCAGAACAACCAGATCTCTTCCATCCA

GGAGGGTGTCTTCGACAATGCCACTGGGCTGCTCTGGATTGCTCTCCATGGCAACCAGATCACCAGTGAT

AAGGTGGGCAAGAAGGTTTTCTCCAAGCTGAGGCACCTGGAGAGGCTGTATCTGGACCACAACAACCTGA

CCCGGATACCCAGCCCACTGCCTCGGTCCCTGAGAGAGCTCCATCTTGACCACAACCAGATCTCAAGGGT

CCCCAACAATGCGCTGGAGGGGCTGGAGAACCTCACAGCCTTGTACCTTCATCACAACGAGATCCAGGAA

GTGGGCAGTTCTATGAAAGGCCTCCGATCATTGATCTTGCTGGACCTGAGCTACAACCACCTTAGGAAGG

TACCTGATGGACTGCCCTCAGCCCTTGAGCAGCTGTACCTGGAGCACAACAACGTCTTCTCAGTCCCCGA

CAGCTACTTCCGGGGGTCACCCAAGCTGCTGTATGTGCGGCTATCCCACAACAGCCTCACCAACAATGGC

CTGGCCTCAAATACCTTCAATTCCAGCAGCCTCCTTGAGCTCGACCTCTCCTACAACCAGCTGCAGAAGA

TCCCCCCAGTCAGCACCAACCTGGAGAACCTCTACCTCCAAGGCAATAGGATCAATGAGTTCTCCATCAG

CAGCTTCTGCACCGTGGTGGATGTCATGAACTTCTCCAAGCTGCAGGTGCAGCGCCTGGATGGCAACGAG

ATCAAGCGCAGCGCCATGCCCGCTGACGCGCCCCTCTGCCTGCGCCTGGCTAGCCTCATCGAGATCTGAG

CGCCACTGGGCGAGGGCCATGCCCCCACGCCTCTTTGCATTTGGCTTGATGGTTTGGTTTGGCTTATGGA

AGGTCTGGGACAGACCGTGTGACAGAGGTCCATGGGCTCTCTCTCTAGTCTTCTTCTTCCCTGTAGGCAG

TTTTAGGTGGAGTCAGGGGACAGGCAGCTTTCTGCTGAGGGACATGACACGTCCGTTTCCAAGACAGAAA

GTGGTTGGCAGAAGGTGTAAACCCTGAAGTCCCAGTCCCCGAAATCTCATTACCCTCAAGGTCTTCACAG

TGATCCAGTGTCCTGAACCATTGCCTGAGCAATAGAATAACTGTGCTTTTGAAGTAATGTCTGACTCTGA

AGGCAGCACCTGACCGCTCCCCCGCGTGCTGGGCTGGTCGTGCCGATACTCTGGGCTCCCAGTTGCTGCT

TCTCAGATATACCTCTTGCCCGACTGCCGCCTCCTCAGTCCACCTCATCCACTCAACCATGCCCCACAGA

CATCTTAGGTAGAGGCAGGAGAAGCCAAGGCGTATGCACAGCTGCCCAGTGACTGCGCAGAGAACTCACA

CTGGTGGCTGAGGCTGGAAGGACACCAAGAGTCACCTTTTCACCACAGGTCACCAGTGTGATGACAATAT

TCCAGGCTTGACGTGGGAGGAGACAGCCAACCTCAGACTTAGCTAAATGCGTGGGGCTGTATTTTAACAA

CTGGGCAGTTCTCTGAAGGTGGGTCAGACTTCAGAAAAGGAAAGCGACCTGATGTTGCGTATTACCAGCA

TCCATAGTGGAGGCAAATACACCTTGAATTGGCTGAACTGAGGAGGCAGCCCAGGAGTGTCATTCTTGCC

CAGCACTCTCTGCATTCCCAGCAGCTCCCTACTTGAGTTTTTATCTTCAAAGGCAGAGGCCATGTGGCTC
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TCAAAGTATGAGAGAGGTAATTTGTCCTCTTATGCAAGCAGAAAGGTCAATAACCTGATTGGAGAGACAG

ACTCCAACCAGCCCTGGAGTTGCCACCCTCGTTACTGAAGCTGGCTGTTGCTTTATAGCTTGGCTGGAGA

GCAATTAATCTTTCCCGTTTCTGAAAGTAGTGCTGCCTGGGGACCTAACCCCTGCTTTGTGGGGTACCAC

TGGGATGGGGCCATCTGGGCAGCCATGGGCAGAGACTGCTTGAGGAGAGCTCCCTGCACAGATGCTGTTG

CTTCCCTGATACCGTGTATGCTTTGAAGCAGTTCCCTGAAGAAAGAAGAGGGGATCCTTGAACTATGTTC

TTGGCTCCAGAACCTCAAATCCACAAAAGCCAAACCAGCTCATTTCAACAAAGAAGCTCTGATGTGAGGG

GCAAGGCTGCCCCTTGCCCCAGGGCTCTTCAGAAAGCATCTGCATGTGGACACCATCATGCCTCTATAAA

GGATCCTTATTACAGGAAAAGCATGAGTGGTGGCTAACCCAACCAATAAAGTTATTTTACAATTGC 

 

6.4.3 lacZ 

lacZ cDNA 

3386bp 

CTCGAGCGGGGCTGGGACACTTCACATGAGCGAAAAATACATCGTCACCTGGGACATGTTGCAGATCCAT

GCACGTAAACTCGCAAGCCGACTGATGCCTTCTGAACAATGGAAAGGCATTATTGCCGTAAGCCGTGGCG

GTCTGGTACCGGTGGGTGAAGACCAGAAACAGCACCTCGAACTGAGCCGCGATATTGCCCAGCGTTTCAA

CGCGCTGTATGGCGAGATCGATCCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAA

CTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCC

CTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTTGCCTGGTTTCCGGCACCAGAAGCGGTGCC

GGAAAGCTGGCTGGAGTGCGATCTTCCTGAGGCCGATACTGTCGTCGTCCCCTCAAACTGGCAGATGCAC

GGTTACGATGCGCCCATCTACACCAACGTAACCTATCCCATTACGGTCAATCCGCCGTTTGTTCCCACGG

AGAATCCGACGGGTTGTTACTCGCTCACATTTAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCG

AATTATTTTTGATGGCGTTAACTCGGCGTTTCATCTGTGGTGCAACGGGCGCTGGGTCGGTTACGGCCAG

GACAGTCGTTTGCCGTCTGAATTTGACCTGAGCGCATTTTTACGCGCCGGAGAAAACCGCCTCGCGGTGA

TGGTGCTGCGTTGGAGTGACGGCAGTTATCTGGAAGATCAGGATATGTGGCGGATGAGCGGCATTTTCCG

TGACGTCTCGTTGCTGCATAAACCGACTACACAAATCAGCGATTTCCATGTTGCCACTCGCTTTAATGAT

GATTTCAGCCGCGCTGTACTGGAGGCTGAAGTTCAGATGTGCGGCGAGTTGCGTGACTACCTACGGGTAA

CAGTTTCTTTATGGCAGGGTGAAACGCAGGTCGCCAGCGGCACCGCGCCTTTCGGCGGTGAAATTATCGA

TGAGCGTGGTGGTTATGCCGATCGCGTCACACTACGTCTGAACGTCGAAAACCCGAAACTGTGGAGCGCC

GAAATCCCGAATCTCTATCGTGCGGTGGTTGAACTGCACACCGCCGACGGCACGCTGATTGAAGCAGAAG

CCTGCGATGTCGGTTTCCGCGAGGTGCGGATTGAAAATGGTCTGCTGCTGCTGAACGGCAAGCCGTTGCT

GATTCGAGGCGTTAACCGTCACGAGCATCATCCTCTGCATGGTCAGGTCATGGATGAGCAGACGATGGTG

CAGGATATCCTGCTGATGAAGCAGAACAACTTTAACGCCGTGCGCTGTTCGCATTATCCGAACCATCCGC

TGTGGTACACGCTGTGCGACCGCTACGGCCTGTATGTGGTGGATGAAGCCAATATTGAAACCCACGGCAT

GGTGCCAATGAATCGTCTGACCGATGATCCGCGCTGGCTACCGGCGATGAGCGAACGCGTAACGCGAATG

GTGCAGCGCGATCGTAATCACCCGAGTGTGATCATCTGGTCGCTGGGGAATGAATCAGGCCACGGCGCTA

ATCACGACGCGCTGTATCGCTGGATCAAATCTGTCGATCCTTCCCGCCCGGTGCAGTATGAAGGCGGCGG
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AGCCGACACCACGGCCACCGATATTATTTGCCCGATGTACGCGCGCGTGGATGAAGACCAGCCCTTCCCG

GCTGTGCCGAAATGGTCCATCAAAAAATGGCTTTCGCTACCTGGAGAGACGCGCCCGCTGATCCTTTGCG

AATACGCCCACGCGATGGGTAACAGTCTTGGCGGTTTCGCTAAATACTGGCAGGCGTTTCGTCAGTATCC

CCGTTTACAGGGCGGCTTCGTCTGGGACTGTTTATCCGGGCAAACCATCGAAGTGACCAGCGAATACCTG

TTCCGTCATAGCGATAACGAGCTCCTGCACTGGATGGTGGCGCTGGATGGTAAGCCGCTGGCAAGCGGTG

AAGTGCCTCTGGATGTCGCTCCACAAGGTAAACAGTTGATTGAACTGCCTGAACTACCGCAGCCGGAGAG

CGCCGGGCAACTCTGGCTCACAGTACGCGTAGTGCAACCGAACGCGACCGCATGGTCAGAAGCCGGGCAC

ATCAGCGCCTGGCAGCAGTGGCGTCTGGCGGAAAACCTCAGTGTGACGCTCCCCGCCGCGTCCCACGCCA

TCCCGCATCTGACCACCAGCGAAATGGATTTTTGCATCGAGCTGGGTAATAAGCGTTGGCAATTTAACCG

CCAGTCAGGCTTTCTTTCACAGATGTGGATTGGCGATAAAAAACAACTGCTGACGCCGCTGCGCGATCAG

TTCACCCGTGCACCGCTGGATAACGACATTGGCGTAAGTGAAGCGACCCGCATTGACCCTAACGCCTGGG

TCGAACGCTGGAAGGCGGCGGGCCATTACCAGGCCGAAGCAGCGTTGTTGCAGTGCACGGCAGATACACT

TGCTGATGCGGTGCTGATTACGACCGCTCACGCGTGGCAGCATCAGGGGAAAACCTTATTTATCAGCCGG

AAAACCTACCGGATTGATGGTAGTGGTCAAATGGCGATTACCGTTGATGTTGAAGTGGCGAGCGATACAC

CGCATCCGGCGCGGATTGGCCTGAACTGCCAGCTGGCGCAGGTAGCAGAGCGGGTAAACTGGCTCGGATT

AGGGCCGCAAGAAAACTATCCCGACCGCCTTACTGCCGCCTGTTTTGACCGCTGGGATCTGCCATTGTCA

GACATGTATACCCCGTACGTCTTCCCGAGCGAAAACGGTCTGCGCTGCGGGACGCGCGAATTGAATTATG

GCCCACACCAGTGGCGCGGCGACTTCCAGTTCAACATCAGCCGCTACAGTCAACAGCAACTGATGGAAAC

CAGCCATCGCCATCTGCTGCACGCGGAAGAAGGCACATGGCTGAATATCGACGGTTTCCATATGGGGATT

GGTGGCGACGACTCCTGGAGCCCGTCAGTATCGGCGGAATTCCAGCTGAGCGCCGGTCGCTACCATTACC

AGTTGGTCTGGTGTCAAAAATAATAATAACCGGGCAGGCCATGTCTGCCCGTATTTCGCGTAAGGAAATC

CATTATGTACTATTTAAAAAACACAAACTTTTGGATGTTCGGTTTATTCTTTTTCTTTTACTTTTTTATC

ATGGGAGCCTACTTCCCGTTTTTCCCGATTTGGCTACATGACATCAACCATATCAGCAAAAGTGATACGG

GTATTATTTTTGCCGCTATTTCTCTGTTCTCGCTATTATTCCAACCGCTGTTTGGTCTGCTTTCTGACAA

ACTCGGAACTTGTTTATTGGTCTAGA 

 

6.5 Therapeutic stent study 

Table 14 shows the QCA data for the therapeutic stent study. THER9 died at 17 days 

and was found to have occlusive neointima at post-mortem. Table 15 shows the 

morphometric data from the stented sections suitable for analysis. No morphometric 

data was available for THER9. 
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Table 14 – Quantitative coronary angiography data for therapeutic stent study 

Pig 

code 

Weight 

(kg) Transgene 

TVD pre-stent 

(mm) 

MLD post-stent 

(mm) 

Stent:vessel 

oversize ratio 

MLD at 

28 days 

(mm) 

Late 

loss 

(mm) 

THER1 27 FMOD 2.8 3 1.19 1.1 1.9 

THER2 28.5 CTGF 2.8 3.1 1.19 1.1 2 

THER3 31 lacZ 2.5 3 1.33 1.9 1.1 

THER4 27 FMOD 2.7 3.1 1.23 2 1.1 

THER5 26 CTGF 2.5 3.1 1.33 2 1.1 

THER6 26 lacZ 2.8 3 1.19 2.8 0.2 

THER7 21 FMOD 2.6 3 1.28 2.5 0.5 

THER8 21 CTGF 2.6 3 1.28 2.4 0.6 

THER9 20 lacZ 2.6 3 1.28 N/A N/A 

THER10 23 lacZ 2.5 2.9 1.33 1.5 1.4 

THER11 22 CTGF 2.6 3.1 1.28 1.1 2 

THER12 21 FMOD 2.4 2.9 1.39 0 2.9 

THER13 22 lacZ 2.6 3 1.28 1.1 1.9 

THER14 16 CTGF 2.6 3.1 1.28 2 1.1 

THER15 27 FMOD 2.8 3.1 1.19 1.9 1.2 

THER16 26 CTGF 2.5 3.1 1.33 1.7 1.4 

THER17 23 lacZ 2.5 3.2 1.33 1.3 1.9 

THER18 19 lacZ 2.7 3.1 1.23 0.9 2.2 

THER19 24 CTGF 2.5 3.2 1.33 1.5 1.7 

THER20 23.5 FMOD 2.6 3.3 1.28 1.4 1.9 

THER21 26 lacZ 2.5 2.9 1.33 0 2.9 

THER22 23 CTGF 2.7 3.1 1.23 1.4 1.7 

THER23 22 FMOD 2.6 3 1.28 2.8 0.2 

THER24 24 lacZ 2.6 2.8 1.28 0 2.8 

THER25 25 FMOD 2.8 3.1 1.19 1.7 1.4 

THER26 27 CTGF 2.9 3.4 1.15 1.4 2 

THER27 29 FMOD 2.9 3.3 1.15 2.3 1 

THER28 26 FMOD 2.9 3.1 1.15 1.6 1.5 

THER29 24 CTGF 2.8 3.2 1.19 2.3 0.9 

THER30 27 lacZ 2.8 3 1.19 2 1 

TVD = target vessel diameter; MLD = minimum lumen diameter; late loss = MLD post-stent – MLD at 

28 days 
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Table 15 – Morphometric data for therapeutic stent study 

Animal code Transgene Segment 
Mean neointima 
(mm) 

Mean 
injury 
score 

Lumen 
(mm

2
) IEL (mm

2
) EEL (mm

2
) Stent (mm

2
) 

Neointima area 
(mm

2
) 

Media area 
(mm

2
) 

THER1 FMOD 2 0.94 3.18 0.91 5.97 10.72 7.49 6.58 3.22 

  3 0.82 2.94 1.73 6.28 10.05 7.85 6.13 2.20 

THER2 CTGF 1 0.61 3.05 1.76 8.82 14.07 7.25 5.49 6.82 

  2 0.95 3.17 1.19 N/A 16.22 7.52 6.33 8.70 

  3 0.97 3.21 0.92 N/A 17.84 7.71 6.79 10.13 

THER3 lacZ 1 0.34 2.35 4.19 7.44 9.12 7.47 3.29 1.65 

  2 0.45 1.79 3.43 7.00 8.74 7.16 3.73 1.58 

  3 0.31 1.95 3.73 6.87 8.00 6.87 3.14 1.12 

THER4 FMOD 1 0.88 3.25 1.20 N/A 13.60 7.44 6.24 6.16 

  2 0.85 3.15 1.44 N/A 17.02 7.71 6.27 9.31 

  3 0.64 3.50 2.28 N/A 18.88 7.47 5.19 11.40 

THER5 CTGF 1 0.27 1.40 4.84 7.54 8.84 7.58 2.74 1.26 

  2 0.48 1.70 2.94 6.94 8.40 7.47 4.53 0.93 

  3 0.58 1.95 2.70 7.51 8.84 7.56 4.85 1.29 

THER6 lacZ 1 0.32 2.50 4.60 8.29 10.19 7.97 3.37 2.23 

  2 0.11 2.00 6.91 8.78 10.37 8.17 1.26 2.21 

THER7 FMOD 1 0.21 2.31 5.57 7.84 8.75 7.63 2.05 1.12 

  2 0.42 1.15 3.58 7.34 8.96 7.55 3.97 1.41 

  3 0.32 1.45 3.47 6.40 7.85 6.18 2.70 1.67 

THER8 CTGF 1 0.48 2.20 3.33 7.54 8.98 7.53 4.20 1.45 

  2 0.39 2.10 3.71 7.59 9.00 7.39 3.68 1.61 

  3 0.31 1.90 4.88 8.10 9.62 8.30 3.41 1.33 
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THER10 lacZ 1 0.87 2.90 1.77 7.75 13.06 7.75 5.98 5.32 

  2 0.92 3.40 1.03 N/A 13.99 7.81 6.78 6.18 

THER11 CTGF 2 0.69 3.32 1.84 N/A 9.45 7.37 5.53 2.08 

  3 0.82 3.35 1.31 N/A 10.39 7.99 6.68 2.40 

THER12 FMOD 1 1.31 4.00 0.14 N/A 10.35 7.31 7.17 3.04 

  2 1.41 4.00 0.02 N/A 15.65 7.60 7.58 8.05 

  3 1.40 3.85 0.06 N/A 12.82 7.75 7.69 5.08 

THER13 lacZ 1 0.98 3.90 1.02 N/A 17.66 7.76 6.74 9.90 

  2 1.00 3.65 0.97 N/A 13.10 8.20 7.23 4.90 

THER14 CTGF 1 0.51 2.40 3.84 8.17 9.47 8.28 4.44 1.18 

  2 0.65 3.80 2.61 N/A 9.43 7.87 5.26 1.55 

  3 0.70 3.10 1.95 N/A 8.65 7.77 5.83 0.87 

THER15 FMOD 2 0.81 2.75 1.41 N/A 14.93 7.48 6.07 7.46 

  3 0.80 3.30 1.67 N/A 15.23 7.51 5.84 7.72 

THER16 CTGF 1 0.75 3.80 2.44 N/A 11.24 8.85 6.41 2.38 

  2 0.71 3.75 2.89 N/A 14.25 9.75 6.86 4.50 

  3 0.77 3.00 2.68 N/A 13.95 9.49 6.81 4.46 

THER17 lacZ 1 0.69 3.80 2.16 N/A 18.34 7.66 5.50 10.68 

  2 0.82 3.10 1.55 N/A 16.86 7.71 6.17 9.14 

  3 0.90 3.90 1.30 N/A 14.65 8.26 6.96 6.39 

THER18 lacZ 1 0.79 3.25 1.51 N/A 15.72 7.29 5.79 8.42 

  2 0.82 2.95 1.48 N/A 17.67 7.56 6.08 10.11 

  3 0.79 3.00 1.64 N/A 15.73 7.82 6.18 7.91 

THER19 CTGF 2 0.64 2.35 2.21 7.47 9.95 7.93 5.72 2.03 

  3 0.22 2.45 5.36 8.07 9.42 7.96 2.60 1.46 

THER20 FMOD 2 0.80 2.92 1.47 N/A 13.26 7.43 5.96 5.82 
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  3 0.71 3.40 1.82 N/A 15.75 7.67 5.85 8.07 

THER21 lacZ 1 1.52 3.35 0.00 N/A 12.84 7.60 7.60 5.24 

  2 1.55 2.90 0.00 N/A 12.05 7.81 7.81 4.24 

  3 1.36 3.10 0.06 N/A 12.63 7.39 7.33 5.25 

THER22 CTGF 2 0.83 3.10 1.02 N/A 13.34 6.90 5.88 6.44 

THER23 FMOD 1 0.25 1.60 4.55 6.96 8.11 6.94 2.39 1.18 

  2 0.27 2.10 4.49 7.18 8.52 7.28 2.79 1.23 

  3 0.21 2.09 5.10 7.36 8.56 7.34 2.24 1.21 

THER24 lacZ 1 1.48 4.00 0.00 N/A 12.24 7.62 7.62 4.62 

  2 1.53 3.80 0.00 N/A 12.17 7.85 7.85 4.31 

  3 1.55 3.75 0.00 N/A 12.43 8.02 8.02 4.41 

THER25 FMOD 2 0.99 3.17 1.26 N/A 10.82 7.60 6.34 3.22 

  3 0.84 3.10 1.35 N/A 11.08 7.80 6.44 3.28 

THER26 CTGF 1 0.99 3.20 0.90 N/A 13.87 7.89 6.98 5.99 

  2 0.75 2.75 1.69 N/A 10.43 7.54 5.85 2.89 

  3 0.68 2.67 1.77 N/A 11.04 7.67 5.90 3.37 

THER27 FMOD 2 0.80 2.95 1.79 N/A 11.21 7.89 6.10 3.32 

  3 0.74 3.25 1.81 N/A 12.68 7.68 5.87 5.00 

THER28 FMOD 1 0.75 2.90 1.71 N/A 12.23 7.62 5.91 4.61 

  2 0.72 3.15 1.78 N/A 13.01 7.42 5.64 5.59 

  3 0.80 2.88 2.23 7.99 13.24 7.80 5.58 5.44 

THER29 CTGF 2 0.61 2.40 3.21 8.55 10.09 9.00 5.79 1.09 

  3 0.52 1.95 3.72 8.55 9.94 8.77 5.04 1.18 

THER30 lacZ 2 0.45 2.17 3.25 7.67 8.91 7.82 4.57 1.09 

  3 0.28 2.50 5.02 8.09 9.30 8.17 3.15 1.14 

IEL = internal elastic lamina; EEL = external elastic lamina
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