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ABSTRACT 

“A Systems Biology Approach to the Human Hair Cycle”. A thesis submitted to 
The University of Manchester for the degree of Doctor of Philosophy by Yusur 
Mamoon Al-Nuaimi, 2011.  
 
The hair cycle represents a dynamic process during which a complex mini-
organ, the hair follicle, rhythmically regresses and regenerates. The control 
mechanism that governs the hair cycle (“hair cycle clock”) is thought to be an 
autonomous oscillator system, however, its exact nature is not known. This 
thesis aims to understand the human hair cycle as a systems biology problem 
using theoretical and experimental techniques in three distinct study 
approaches.  

Using mathematical modelling, a simple two-compartment model of the 
human hair cycle was developed. The model concentrates on the growth control 
of matrix keratinocytes, a key cell population responsible for hair growth, and 
bi-directional communication between these cells and the inductive fibroblasts 
of the dermal papilla. A bistable switch and feedback inhibition produces key 
characteristics of human hair cycle dynamics. This study represents the first 
mathematically formulated theory of the “hair cycle clock”. 

A second chronobiological approach was adopted to explore the 
molecular control of the human hair follicle by a peripheral clock mechanism. 
The hypothesis was tested that selected circadian clock genes regulate the 
human hair cycle, namely the clinically crucial follicle transformation from 
organ growth (anagen) to organ regression (catagen). This revealed that intra-
follicular expression of core clock and clock-controlled genes display a circadian 
rhythm and is hair cycle-dependent. Knock-down of Period1 and Clock promotes 
anagen maintenance, hair matrix keratinocyte proliferation and stimulates hair 
follicle pigmentation. This provides the first evidence that peripheral Period1 
and Clock gene activity is a component of the human “hair cycle clock” 
mechanism. 

Lastly, an unbiased gene expression profiling approach was adopted to 
establish important genes and signalling pathways that regulate the human hair 
cycle. This revealed that similar genes and pathways previously shown to 
control the murine hair cycle in vivo, such as Sgk3, Msx2 and the BMP pathway, 
are also differentially regulated during the anagen-catagen transformation of 
human hair follicles. 

In summary, by using a three-pronged systems biology approach, the 
thesis has shed new light on the control of human hair follicle cycling and has 
generated clinically relevant information: a) The hair cycle model may predict 
how hair cycle modulatory agents alter human hair growth.  b) Period1 and 
Clock are new therapeutic targets for human hair growth manipulation. c) Gene 
expression profiling points to additional key players in human hair cycle control 
with potential for future therapeutic targets. 
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This chapter provides an overview of the aims of the thesis and an explanation 

of the thesis structure. A short background describing the motivation of the 

project is provided with the specific aims of the thesis detailed. Following this, 

the format of the thesis is outlined. 

1.1 MOTIVATION AND AIMS 

The hair follicle (HF) undergoes continuous cyclical organ transformations 

involving co-ordinated regeneration (proliferation) and apoptotic regression of 

the HF in its own unique biorhythm (the hair cycle). This dynamic process relies 

on the co-ordinated spatio-temporal interactions of various cell compartments 

that exhibit both molecular and population changes in expression patterns. 

Understanding how the hair cycle mechanism occurs is of clinical 

importance as disruption of normal hair cycling is responsible for most hair 

disorders. In addition the current treatment options available are 

disappointingly ineffective. Although multiple molecules have been identified 

that alter hair cycling, the research relies heavily on other mammalian species 

such as mice. There remains neither an existing mechanistic explanation of how 

the human hair cycle rhythm may come about nor confirmation that synergy 

exists between established research findings in other mammalian species with 

the human HF. 

Systems biology aims to understand the complex interactions within a 

biological system that result in its normal function or dysfunction. The 

discipline involves interdisciplinary approaches and often mathematical 

modelling to elucidate the systems properties of the biological system of 

interest.  

The goal of this thesis is to apply a systems biology approach to 

understand the human hair cycle mechanism as a complex dynamic process. 

Within this work there is a particular focus on elucidating the controls of the 

transition from the growth stage of the hair cycle (anagen) to the regressive 

state (catagen). 

In order to address the problem from a systems biology perspective, 

three specific approaches will be taken for the thesis. Firstly, a theoretical 
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approach is applied via the use of mathematical modelling. Secondly, a directed 

experimental investigation elucidating the role of circadian clock genes and 

proteins as novel candidates in the human anagen-to-catagen transition is 

adopted. Finally, these two hypothesis-driven approaches are complemented by 

a gene expression profiling strategy to identify key genes and signalling 

pathways that control the transformation of human HFs from the anagen to 

catagen hair cycle stages.  

This three-pronged systems biology investigation aims to shed new light 

on the controls of human HF cycling and to generate clinically relevant 

information for the future management of human hair growth disorders. 

 

1.2 STRUCTURE OF THE THESIS 

The thesis is presented in the alternative format, as such; some chapters are in 

the form of a manuscript. Where this is the case this is clearly identified on the 

chapter title page and the nature of the authors’ contributions are also detailed 

there. This format was chosen so that these chapters may be understood 

independently with their own introduction, methods and discussion sections 

and reflects the various techniques and approaches adopted in the thesis.  

An introduction to the thesis aims and structure is provided in this 

chapter. Chapter 2 comprises a literature review introducing the human HF, the 

hair cycle and explores existing theories of the hair cycle mechanism. The 

chapter concludes that a systems biology approach may be adopted to address 

this problem. Additional literature reviews are also found in the relevant 

introductory sections of “manuscript” chapters. Chapter 3 is a viewpoint article 

that was published in Experimental Dermatology. This chapter argues that the 

HF is an ideal systems biology research tool, introduces systems biology and 

mathematical modelling and its status in terms of hair biology.  

The theoretical approaches utilised in the thesis are found in Chapters 4 

and 5, where Chapter 4 introduces dynamical systems theory and terminologies. 

Chapter 5 contains a proposed mathematical model of the human hair cycle 

using a dynamical systems approach. It concludes that the human hair cycle 



24 

 

rhythm is an autonomous process which requires the presence of bistability and 

feedback inhibition to produce the dynamic behaviour of the human hair cycle. 

Chapters 6-8 comprise the experimental work of the thesis beginning 

with experimental methodologies found in Chapter 6. The role of circadian 

genes and proteins in the human HF is presented in Chapter 7, which concludes 

that Period1 and Clock play a role in regulating the anagen-to-catagen transition 

in human organ-cultured HFs. Chapter 8 details a transcriptome study which 

identifies global gene expression profiles of human anagen and catagen organ-

cultured HFs. Novel genes that represent each state are identified. 

Finally, the conclusions along with future research perspectives are 

presented in Chapter 9.  
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2 CHAPTER 2: LITERATURE REVIEW 
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In this chapter the literature is reviewed in order to introduce HF anatomy, the 

hair cycle, current theories of the controls of hair cycling and the anagen-to-

catagen transition. There are additional literature reviews located in 

subsequent chapters that introduce specific topics relevant to the chapter.  

2.1 BASIC HUMAN HAIR DATA 

The human body is covered in 5 million hairs and, of that, approximately 80,000 

to 150,000 are found on the scalp (Krause and Foitzik, 2006). Hair is produced 

by the multi-cellular entity; the HF. There are two types of HFs in adult humans; 

vellus and terminal. These produce a small, fine vellus hair and thick, pigmented 

terminal hair respectively (Whiting, 2004, Paus and Cotsarelis, 1999, White and 

Cox, 2006). 

2.2 THE HAIR FOLLICLE 

The HF resides as an appendage of the skin and makes up one entity of the pilo-

sebaceous unit. The pilo-sebaceous unit consists of the HF, sebaceous gland, 

apocrine gland and arrector pili muscle. The HF, in adult life, undergoes cycles 

of growth (anagen), regression (catagen) and relative resting (telogen). 

Anatomically, the HF is most commonly described when it is in the mature 

anagen stage; anagen VI (Figure 2.1).  

In the mature anagen state the HF can be divided into an upper 

“permanent” portion the infundibulum and isthmus, which does not cycle, and a 

lower “non-permanent” segment comprising the suprabulbar region and the 

bulb (Figure 2.1A). It is the lower region of the HF which undergoes re-

modelling during the hair cycle.  

The infundibulum, at its proximal end, marks the opening of the hair 

canal to the surface of the skin. The infundibulum is lined by epidermis which is 

continuous with the surface of the skin. The lower part of the infundibulum is 

defined by the attachment of the duct of the sebaceous gland and it is via this 

duct that sebum is excreted into the HF and onto the skin’s surface (Schneider et 

al., 2009, Whiting, 2004). Distal to the infundibulum is the isthmus. The hair 
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shaft is not attached to either the isthmus or infundibulum and this allows free 

movement of the hair shaft. 

The isthmus of the HF extends upwards from the point of arrector pili 

muscle insertion, also known as the bulge area, to the sebaceous duct (Figure 

2.1B). The bulge region is of functional importance as it is here where 

melanocytic and epithelial stem cells reside and are responsible for activation of 

a new hair cycle (Cotsarelis, 2006). In human scalp HFs, the follicular 

trochanter, a protrusion of the outer root sheath (ORS), has been shown to 

represent the bulge region (Tiede et al., 2007). The isthmus marks where the 

inner root sheath (IRS) gradually disappears and is replaced by trichemmal 

keratin produced by the ORS until this layer is no longer visible. The lower end 

of the isthmus also marks the end of the “permanent” section of the HF. 

The supra-bulbar region is located between the isthmus and hair bulb 

(Figure 2.1). Proximal to the bulb, the IRS and ORS thicken and are well-defined. 

The keratinisation process in the IRS is completed half way up the supra-bulbar 

region of the HF (Whiting, 2004). 

The anagen hair bulb is the centre of the hair shaft factory (Figure 2.1C). 

The epithelial cells of the bulb; hair matrix keratinocytes (MKs) and 

melanocytes, surround the dermal papilla (DP). Melanocytes are interspersed 

between the MKs. The MKs are rapidly proliferating cells and the number of 

these cells determines the diameter of the hair shaft and hair bulb size (Legué 

and Nicolas, 2005). When these cells withdraw from the cell cycle (i.e. stop 

proliferating) they differentiate and migrate upwards to form concentric 

cylinders of cells (Figure 2.1D). Each cylinder comprises cells of different 

morphology which have followed separate differentiation patterns to form the 

various cell lineages of the hair shaft and IRS. 

The cells which make up the hair shaft are known as trichocytes. The 

shaft comprises three layers; the innermost medulla, cortex and cuticle (Figure 

2.1D). Hair matrix cells centrally located at the apex of the DP form the medulla 

of the hair shaft, whilst those lateral to these form cylinders around the shaft in 

a concentric formation. The hair shaft cells become compacted and keratinised 

as they move proximally in the HF. The outer area of matrix cells form the 
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cuticle of the hair shaft, which consists of 6-10 overlapping cuticle cells, and the 

IRS (Whiting, 2004). The hair keratins and their associated proteins, keratin 

associated proteins (KAPs), are the main structural components of the hair 

shaft. Hair keratins are structural proteins and can be subdivided into two 

families; the type I (acidic) and type II (neutral) hair keratins (Langbein and 

Schweizer, 2005). The expression patterns of type I and II keratins differ 

depending on their location in the hair shaft (see Figure 2.1E). Copolymers of 

type I and II hair keratins make up the intermediate filaments found in 

trichocytes. In the hair fibre, KAPs act to link keratin intermediate filaments 

within trichocytes. KAPs are classified according to their chemical composition; 

high sulphur KAPs, ultrahigh sulphur KAPs and high glycine tyrosine KAPs. 

mRNA expression of human KAPs has been mainly located to the cortex of the 

hair shaft with expression also seen in the hair cuticle and hair matrix-cortex 

cell region (Rogers et al., 2006). As with the hair keratins, the KAPs exhibit 

location specific expression patterns. In the hair cortex the KAP gene families 

KAP 1-4, 7, 8 are strongly expressed, whereas in the cuticle one finds KAPs 5, 10 

and 12. The KAP gene families found in the matrix-cortex region are KAP8 and 

KAP1J.  

The IRS comprises three layers; the Henley, Huxley and innermost cuticle 

layer. The latter interlocks with the cuticle of the hair shaft via outward 

projections. The IRS is itself surrounded by the ORS, though separated by the 

companion layer. The ORS derives from progenitor cells of polyclonal origin, 

which are different to those that form the IRS and hair shaft (Legué and Nicolas, 

2005). The ORS is continuous with the epidermis of the skin and is covered by 

the hyaline membrane laterally and this is continuous with the epidermal 

basement membrane surrounding the DP. The expression patterns of hair 

follicle keratins within the IRS and ORS is found in Figure 2.1E. The IRS hair 

keratins are K71-74 and K25-28, whereas those expressed in the ORS are K5, 

K6a/b, K14-17 and K19 (Porter, 2006, Schweizer et al., 2007). Another 

important structural component of the anagen hair follicle that is located in the 

IRS is trichohyalin. This large insoluble protein makes up a third of the total 

protein content of the IRS of the HF. It is also located in the medulla of the hair 
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shaft (Steinert et al., 2003). Trichohyalin is an important structural protein that 

forms multiple cross links between keratin chains in the IRS and serves to 

harden this layer of the HF (Steinert et al., 2003).  

The DP contains blood vessels and fibroblasts (Stenn and Paus, 2001, 

Tobin et al., 2003, Whiting, 2004) and has been shown to be important for 

determining the size of hair bulb, hair shaft diameter and the duration of anagen 

(Cotsarelis, 2006, Rendl et al., 2005, Stenn and Paus, 2001). Around this layer is 

the connective tissue sheath (CTS) which is continuous with the DP and 

surrounds the epithelial HF (Whiting, 2004). The CTS comprises loosely 

connected stromal cells and mesenchymal stem cells which act to replace DP 

cells (Tobin et al., 2003). 
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Figure 2.1 Histomorphology of the human hair follicle 

(A) Sagittal section human scalp anagen HF. (B) The isthmus region of the HF. (C) The hair bulb. 

(D) The concentric layers of hair follicle bulb. (E) Pattern of expression of the human HF keratins. 

APM Arrector pili muscle; BM, basement membrane; CL, companion layer; CTS, connective tissue 

sheath; DP, dermal papilla; GC, germative cells; He, Henley layer; Hu, Huxley layer; HS, hair shaft; 

ICU, IRS cuticle; IRS, Inner root sheath; K, keratin; ORS, outer root sheath; M, matrix; SG: sebaceous 

gland;. Figure comprised from Schneider et al 2009 and Schweizer 2007 with permission. 
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2.3 THE HUMAN HAIR CYCLE 

The hair cycle describes the continuous cyclical regression and regeneration of 

the HF (Figure 2.2). In 1924 Trotter documented the cyclical growth of hair in 

humans (Trotter, 1924). However, in 1959, Kligman first characterised and 

documented the structural changes in the HF during the human hair cycle 

(Kligman, 1959). The hair cycle commences immediately following 

morphogenesis of the HF and consists of distinct stages; anagen, catagen, 

telogen and exogen (Paus et al., 1999a, Milner et al., 2002). Each stage has an 

approximate length of duration, with anagen in scalp HFs ranging from 2 to 7 

years. Catagen normally lasts 10-14 days and telogen 2-4 months in humans 

(Krause and Foitzik, 2006, Whiting, 2004). Exogen describes the process of hair 

shedding (Higgins et al., 2009, Milner et al., 2002). There is a wide variation in 

HF size and hair cycle length between individuals and body regions (Saitoh et 

al., 1970). The variation in hair cycle length is attributed, in the main, to 

different lengths of the anagen phase (Krause and Foitzik, 2006). As hair is 

produced solely in anagen, this phase also determines the length of the hair. 

 

2.4 DYNAMIC CHANGES IN HAIR FOLLICLE ANATOMY DURING THE HAIR 

CYCLE 

As mentioned above, the HF is a mini-organ which perpetually cycles in three 

stages; anagen (active growth), catagen (apoptosis-driven regression) and 

telogen (relative “resting”) (Schneider et al., 2009). The HF is unique among 

mammalian organs in that it rhythmically undergoes these massive organ 

transformation events for the entire lifespan of the organism. During these 

organ remodelling events, the HF shows complex, patterned phenomena that 

are temporo-spatially restricted (Chuong et al., 2006, Widelitz et al., 2006).  

During anagen, matrix cells in the bulb of the HF proliferate and differentiate 

into the hair shaft trichocytes and IRS (Stenn and Paus, 2001, Legué and Nicolas, 
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2005). HF melanogenesis is tightly coupled to the anagen phase of the hair cycle 

(Slominski et al., 2005). This process is halted early in catagen and does not 

recommence until the next anagen. 

Catagen is coupled with the apoptosis of melanocytes (Slominski et al., 

2005). During catagen, apoptosis occurs in the lower two thirds of the HF 

involving the matrix, IRS and ORS cells. The hair shaft retracts upwards leaving 

behind an epithelial stela. During this process, the hair shaft and IRS slide 

upwards leaving trichemmal ORS below. The base of the retreating hair shaft 

becomes club shaped (club hair) and is surrounded by trichilemmal keratin, 

which produces a small white “cap” at the end of the hair shaft (often noticed at 

the end of shed hair). Apoptosis of the ORS produces a reduction in the volume 

of the ORS layer and there is a thickening of the surrounding hyaline layer. The 

DP is drawn upwards to the base of the permanent epithelial part of the HF until 

it lies close to the HF bulge. 

The HF has retracted to the level of the bulge when telogen commences. 

A germinal unit is found beneath the club hair and consists of trichilemma 

surrounded by basaloid cells. The telogen club is found to have a central mass of 

trichilemmal keratin, surrounded by trichilemma and a fibrous sheath which 

connects the telogen germinal unit and the hair shaft. It is thought that telogen 

ends when a signal arises between the DP and bulge region to initiate 

regeneration of the follicular epithelial cells which then act to regenerate the 

lower portion of the HF (Schneider et al., 2009, Stenn and Paus, 2001, Fuchs et 

al., 2001). This re-traces many HF morphological steps that occurred during HF 

development and the new anagen bud grows down the existing follicular stela 

forming an anagen HF. 
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Figure 2.2: The hair cycle 

The hair follicle enters a continuous cyclical process of organ regression (catagen; lasting a few 

weeks), a relative “resting” phase (telogen; lasting approx. few months) and a growth and 

pigmentation phase (anagen which lasts months in mice and years in man) in the hair cycle. This 

process is altered in hair disorders such as hirsutism in which HFs exhibit a prolonged anagen 

phase. This process demonstrates the dynamic nature of the HF with drastic molecular and 

structural changes associated with the passing of time (stage of hair cycle). The hair cycle occurs 

as a result of precisely co-ordinated and collective functioning of the component parts of the HF. 

Key: DP Dermal papilla, ORS Outer root sheath, HS Hair shaft, IRS inner root sheath, SG Sebaceous 

gland. Figure and figure legend presented as found in (Al-Nuaimi et al., 2010). Adapted after 

Schneider et al 2009 Current Biology (Schneider et al., 2009). 

2.5 THE RELEVANCE OF HAIR CYCLING TO HAIR DISEASES 

A wide range of pathologies affect the HF, its cycling and hair shaft structure 

(White and Cox, 2006). This section briefly introduces the relevance of the hair 

cycle to hair disorders. Pure structural diseases of the hair shaft are not 

addressed here.  
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Hair growth disorders may be divided into those causing hair loss and 

those leading to excessive hair growth. The common hair growth disorders 

include androgenetic alopecia, alopecia areata, telogen effluvium, anagen 

effluvium, hirsutism and hypertrichosis. The hair cycle is intrinsically important 

to these hair disorders as all of these pathologies exhibit alterations in normal 

hair cycling (Paus, 2006, Paus et al., 1999a).  

Anagen length is shortened in androgenetic alopecia, aging HFs and the 

effluviums (telogen effluvium and anagen effluvium). This results in shortened 

effective hair (White and Cox, 2006). In addition, in androgenetic alopecia, 

miniaturisation of the HF occurs which involves a transformation of the HF from 

a terminal to vellus follicle. The cyclical nature of the HF is therefore central to 

the occurrence of HF transformations (Stenn and Paus, 2001, Tobin et al., 2003). 

Transition from a vellus to terminal follicle results in a prolonged anagen phase 

as occurs in hirsutism and hypertrichosis (Schneider et al., 2009, Krause and 

Foitzik, 2006). The transition from anagen to catagen is of high clinical 

importance as an alteration in anagen length results in changes in the resultant 

hair shaft. 

In humans, synchronised hair cycling is lost in post-natal life and exhibits 

a mosaic or asynchronous cycling pattern (Whiting, 2004, Paus and Foitzik, 

2004). Therefore, the normal dynamics of multiple human HFs in relation to 

each other entails the asynchronous HF cycle in terms of one HF in comparison 

to its neighbours. This may also be described as the population cycling 

dynamics. Therefore, an abnormality of normal human HF dynamics is 

synchronisation. The synchronisation of populations of HFs leads to a patch or 

the whole scalp of hair shedding together. This occurs in the pathologies anagen 

effluvium and telogen effluvium whereby anagen is abrogated by factors such as 

chemotherapy and stress, respectively (Hadshiew et al., 2004, Paus, 2006) (see 

Figure 2.3). 
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Figure 2.3: Management of common hair disorders by hair cycle manipulation 

This figure demonstrates how different points within the hair cycle may be manipulated to treat 

hair disorders. (+) indicates stimulation and (–) inhibition of the transition from one cycle stage to 

the next. Figure obtained and reprinted from (Paus and Foitzik, 2004) with permission from 

Elsevier publishing.  

 

Therefore, understanding how hair cycling is controlled is clinically 

important as many hair diseases can be attributed to changes in normal hair 

cycling (Paus and Cotsarelis, 1999, Paus and Foitzik, 2004, Cotsarelis and Millar, 

2001, Stenn and Paus, 2001). Indeed, as Albert Kligman stated in 1959:  

“normal dynamics provide the basis for understanding how the follicle 

behaves in disease” (Kligman, 1959). 

A patient will notice the problem when HFs are affected as a population 

rather than in an individual HF. Determining how the hair cycle is controlled 

and, subsequently, deciphering how to modify this may identify new treatment 

options and address the clinical need for improved treatment of hair disorders.  
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2.6 WHAT CONTROLS THE HUMAN HAIR CYCLE? 

Here, the literature is reviewed regarding the postulated controls of the human 

hair cycle. A varied approach has been taken by researchers in this arena and 

therefore this section is split into two main sections; the first is concerned with 

the postulated theories of the controller(s) of the hair cycle and the second 

reviews a small selection of molecular candidates that have been identified as 

possible regulators of the hair cycle i.e. in the co-ordinated transition of the HF 

from one stage of the cycle to the next.  

2.6.1 Current theories of the hair cycle mechanism 

Here we consider the existing proposed theories on how HF cycling may be 

controlled. Here, mathematical models concerned with hair growth and cycling 

are not detailed. The reason for this is they do not explicitly consider the 

internal mechanisms that govern individual HFs through the hair cycle 

(Nagorcka and Mooney, 1982, Plikus et al., 2011, Halloy et al., 2000, Halloy et al., 

2002). These papers are explored further and discussed in Chapters 3 and 5. 

2.6.1.1 Inhibition-disinhibition switch theory 

Chase led this field when, over half a century ago, he identified that there was a 

need for the conceptualisation of the hair cycle mechanism as this would enable 

understanding of hair biology (Chase, 1954). Chase proposed that since “The 

hair cycle is clearly only the result of a cycle of follicular activity” the focus of 

investigation should be directed to the HF itself and its immediate surrounding 

environment (Chase, 1954). He described the hair cycle as a dynamic and 

continuous process and suggested that anagen is initiated by the release of an 

inhibitory substance i.e. an inhibitor of mitosis is lost in order for anagen to 

occur. This process involves the HF itself, but this concept of inhibitor-release is 

extended also to include communication between adjacent skin allowing waves 

of HF cycling to occur if a threshold is overcome.  

The theory offered by Chase is a very brief discussion of hair cycle 

control, therefore only a few sentences are provided regarding the postulated 

mechanism. There is no attempt to explain what the inhibitor(s) may be 
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specifically, nor where they are located exactly, but they are referred to as 

mitotic inhibitors. An inhibitory-release mechanism for hair cycling control has 

also been suggested by other authors (Argyris and Trimble, 1964, Argyris, 

1972). However, the work they present attempts to explain the propagation and 

stimulation of populations of HFs rather than the individual control mechanism 

of the hair cycle in a single follicle. Even Chase overlaps between the two 

processes and describes his observations regarding mouse hair cycling in 

waves. He then briefly discusses the release of the inhibitor as being involved in 

inter-follicular population controls of hair cycling (Chase, 1954). There is 

experimental evidence for an inhibitor release mechanism being involved in the 

control of the hair cycle; for example in the function of bone morphogenetic 

proteins with their antagonist noggin. This will be discussed in the molecular 

candidates section below. 

2.6.1.2 Epithelial theory 

Other theories on the mechanism of the hair cycle have been proposed over the 

years. Some suggest that the epithelial part of the HF is responsible for the 

initiation of the mature hair cycle. 

 Stenn proposes that the hair cycle is a regenerative system and compares 

the HF to the regenerating limb (Stenn in (Stenn et al., 1999)). In this context, 

the epithelium is known to be essential for regeneration to occur and, therefore, 

Stenn states that the epithelium is the key component of the hair cycle 

mechanism with the HF components that represent regenerative tissue being 

the hair germ and the papilla. The theory states that the signal for anagen 

initiation is under the control of a unique clock. The reasoning provided for why 

the clock is thought to be unique is that the HF does not exhibit a rhythm that is 

in synchronisation with the seasons, or the day-night rhythm and scalp HFs, for 

example, have a clock lasting years. Stenn proposes that the stem cells of the HF 

are the providing source for the regeneration of the HF during each cycle and 

thus are postulated to be the core controllers of the hair cycle. In addition, the 

stem cells exhibit very slow dividing behaviour in line with the long periodicity 

seen in the HC. Stenn postulates that the transient amplifying cells are 
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responsible for determining the anagen duration (Stenn in (Stenn et al., 1999)). 

As these arise from the stem cells, the clock is therefore hypothesised to be 

centred in the epithelial stem cells of the HF. The signal for anagen initiation is 

postulated to arise from the release of an inhibitor and the signal is then carried 

by a “special” communication between neighbouring epithelial cells. The role of 

the mesenchymal portion in this explanation is minimal. It is suggested that 

there is signalling between the mesenchyme and epithelium and that the 

inhibitory signal arises from the epithelium to the mesenchyme. Stenn then 

explains HF growth as a mechanical spring that is under inhibitory control. The 

inhibitory control is likened to a clamp on the spring, and release of this occurs 

in order for anagen to commence. The nature of what the “special” 

communication between epithelial cells is not expanded upon here. It is also not 

clear why only the epithelium is the controller in the HF, particularly when 

stated by the author himself that the mesenchyme is known to be important. 

There are parallels draw by Stenn (Stenn in (Stenn et al., 1999)) with Chase’s 

inhibitor release mechanism (Chase, 1954). 

2.6.1.3 Resonance theory 

Nixon postulates that the hair cycle arises from the tissue as a whole rather than 

one compartment or cell type that initiates the rhythm of the hair cycle (Nixon 

in (Stenn et al., 1999)). This has been coined the “Resonance theory” (Stenn and 

Paus, 2001). Nixon states that the “clock” responsible for the hair cycle may not 

be located in one place, but arises from the tissue as a whole. Nixon draws upon 

the well-known pattern formation reaction-diffusion mechanisms and suggests 

that spatio-temporal oscillations of “morphogen” molecules in the HF set up the 

changes that occur during the hair cycle. This may be considered a systems 

biology viewpoint of the hair cycle mechanism (see Chapter 3). The property 

described as “resonance” by Nixon could be considered as “emergence”; the 

behaviour that exists when a system is whole and not apparent when the 

system of interest is taken apart (Huang and Wikswo, 2006). 
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2.6.1.4 Quartz alarm clock theory 

In another postulated theory of the hair cycle, the hair cycle mechanism is 

suggested to be analogous to an alarm clock (McKay in (Stenn et al., 1999)). An 

impulse initiates oscillations of the clock and causes the hands to move. Once a 

trigger is reached the alarm is tripped and this co-ordinates the dissemination 

of the signal to the surrounding tissue. The author states that this analogy is 

useful for hypothesis building to aid the thought process into thinking about 

what the timing mechanism may be within the HF. This has some commonality 

with the HCC theory below. The offer of how the hair cycle mechanism is 

controlled is that the alarm trips and the clock moves from telogen into anagen.  

 This argument thus leads one to predict that a counting mechanism 

should exist during telogen to allow for the trigger to be tripped. What exactly 

this may be is not stated for certain, but the author suggests that this may be 

several things such as accumulation of glucose or the process of shortening of 

telomers. In addition, the author hints at photoperiod systems involving 

melatonin  also being involved in hair cycling (McKay in (Stenn et al., 1999)). 

Unfortunately, these processes are not further explored in the explanation. The 

theory fails to suggest either what the initiating stimulus for the clock to 

commence oscillations may be, or what the different phases such as anagen-

catagen transition are controlled by. There is also no clear explanation as to 

what exactly the “quartz chip” is within the HF anatomy (Paus and Foitzik, 

2004). 

2.6.1.5 Morphogenesis theory 

In another theory of the hair cycle Jahoda suggests that the “HCC” is established 

during morphogenesis (Jahoda in (Stenn et al., 1999)). The cyclical nature of the 

hair cycle is thought to have arisen as an evolutionary result of being capable to 

regenerate after damage; similar to a regenerating limb in amphibians. 

Therefore the “clock” driving the hair cycle has been set since morphogenesis. 

However, there is no explanation as to what the nature of this mechanism is in 

the proposed theory. Jahoda’s theory stands as a contrast to that of both Stenn 

and Paus (Stenn et al., 1999) who draw a distinction between the process 
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governing morphogenesis, coined the “morphogenesis clock” (Paus et al., 

1999a) and the controls governing the cyclical regeneration of the mature HF: 

the “HCC”. Jahoda supports his proposed morphogenesis theory by stating that 

rat vibrassae HFs cycle with a pattern that mirrors their sequential 

embryological appearance in the skin. Although it remains unclear which school 

of thought is right,  in the human hair cycle, it is apparent that the cyclical 

behaviour of populations of adult HFs differs strikingly after the neonatal 

period, with previously synchronised HF cycling becoming mosaic (or 

asynchronous) (Barth, 1987). 

2.6.1.6 Bulge activation theory 

The bulge activation theory was proposed after epithelial stem cells were 

localised to the bulge region of the HF experimentally (Cotsarelis et al., 1990). It 

was previously thought that the matrix cells located in the hair bulb were stem 

cells prior to this work. The bulge activation theory states that the DP stimulates 

the stem cells at the end of telogen or the beginning of anagen. This stimulates 

the proliferation of stem cells which then produce the hair germ and leads to 

growth of the lower HF. This causes the DP and bulge to no longer be in 

proximal contact and the authors suggest that this causes the stem cells to 

return to a less active, slowly dividing state. Another key component suggested 

by the authors is that during mid-anagen MKs stimulate DP fibroblasts to 

proliferate. This is supported by experimental evidence of proliferation 

occurring in the DP in anagen VI and also that MK proliferation precedes events 

in surrounding mesenchymal HF cells such as the growth of surrounding 

vasculature. They suggest that this burst of proliferation is key during the hair 

cycle to ensure the large size of the DP which determines the hair shaft width 

and bulb size (Cotsarelis et al., 1990). The third essential component of the hair 

cycle, as detailed in the bulge activation hypothesis, is that MKs determine the 

length of anagen as they proliferate with a finite duration and this property also 

explains why anagen length is not easily perturbed (Ebling 1976). The last 

property essential to the bulge activation theory is the process of upward 

movement of the DP during catagen as this allows the proximity of the DP to the 
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bulge and thus activation of stem cells to occur. The authors explicitly note that 

the activating factor(s) from the DP that stimulates the stem cells is not known, 

but they postulate that it may be growth factors or cell-cell contact. 

 The bulge activation theory (Sun et al., 1991) provides a well-

constructed account of the possible communication set up between 

compartments of the HF during the cycle. Spatio-temporal considerations are 

incorporated into the theory, namely allowing for the altering structure of the 

HF and thus the changes in proximity of the stem cell population to the DP. This 

sets up an anatomically orientated account of the control set up within the hair 

cycle and the theory is supported and inspired by experimental evidence. 

Indeed, stem cells are the source of cells for reconstruction of the HF during 

each cycle (Cotsarelis, 2006). As pointed out by the authors, the nature of the 

“activator(s)” of the stem cells from the DP is not known. In addition, what is the 

determinant of the proliferative burst seen in mid-anagen of DP fibroblasts and 

what is the nature of the activation of DP cells by the MKs during anagen? Also, 

what causes the MKs to cease proliferation at the end of anagen? 

 Although the bulge activation theory provides a detailed explanation of 

events that occur during the hair cycle, with some details of direction and timing 

of “controls” for example by stating that DP activates stem cells at the end of 

telogen and MKs stimulate DPs in mid-anagen, it is not clear how these events 

happen to culminate at this point. Also, this theory has been criticised for being 

unable to convincingly explain all the catagen-associated transformation 

processes, including HF keratinocyte and HF melanocyte apoptosis, HF 

basement membrane shrinkage and massive remodelling of the HF 

mesenchyme (Paus and Foitzik, 2004). The spatio-temporal incorporation of 

events seems to be a very important aspect of the hair cycle mechanism and is 

not explicitly adopted by the other theories. There is good evidence of 

proliferation and changes in stem cell dynamics during the hair cycle. This 

concept of bulge activation is also very much supported by recent work 

regarding stem cells, transient amplifying cells and the relationship between 

these in the HF and during the hair cycle (Hsu et al., 2011). However, the theory 
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would require to be tested by checking for activation molecules or processes at 

the points suggested by Cotsarelis and colleagues (Cotsarelis et al., 1990).  

2.6.1.7 Papilla morphogen theory 

The last theory that we shall discuss in this section is the papilla morphogen 

theory (Paus and Foitzik, 2004, Paus et al., 1999a, Stenn et al., 1999). The 

authors involved in the “papilla morphogen” (PM) theory addressed the control 

of the hair cycle from a distinctive perspective. There was a drive by these 

colleagues to fully address the need to understand the hair cycle mechanism. By 

constructing a hypothesis, just as Chase had postulated, and building a theory of 

the process this would enable clear, hypothesis-driven hair research (Paus et al., 

1999a, Paus and Foitzik, 2004, Stenn et al., 1999).  

 Firstly, when considering the PM theory for the hair cycle, the authors 

immediately draw upon other chronobiological timing mechanisms and bring 

the hair cycle mechanism into this context. The hair cycle is firstly likened to a 

clock and the term “hair cycle clock” to describe the core control mechanism of 

the hair cycle was coined (Paus et al., 1999a). In this theory, the HCC is thought 

to have at its centre an oscillator system responsible for the process. The DP is 

identified as the core component of this suggested theory for the hair cycle 

control. This is argued to be the case as the DP is necessary for the hair cycle to 

occur at all: its inductive properties in vivo and that it determines the width and 

size of the hair shaft.  

 The theory states that the DP fibroblasts secrete PMs exclusively during 

the G0 and G1 phases of the cell cycle (Paus et al., 1999a, Paus and Foitzik, 

2004). Anagen is initiated when the level of PMs exceeds a threshold level. The 

presence of PM is suggested to be necessary for the initiation and maintenance 

of anagen. The peak expression of PM occurs at the end of anagen. The PMs are 

suggested to alter signalling mechanisms that have been postulated to be 

essential to the mechanism of the hair cycle process. Catagen is heralded by a 

sudden drop in PM levels below a defined threshold. This arises when the DP 

fibroblasts enter the S, G2 and M phases of the cell cycle as they are no longer in 

the secretory phase. It is suggested that the lack of PM causes intra-follicular 
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apoptosis and all other signalling cascades that are associated with the anagen-

catagen transformation, such as termination of melanogenesis, deletion of the 

HF pigmentary unit, and remodelling of the HF mesenchyme. Anagen re-

initiates when the DP cells re-enter G0/G1 and, thus, PM levels reach the 

threshold level again (Figure 2.4).  

 In order for PM secretion to be maintained during the long phase of 

anagen, it is suggested in this theory that only a selection of the fibroblasts are 

proliferating at once and this crescendos with the greatest level occurring at the 

end of anagen. Along with the cyclical secretion of PM in line with the cell cycle 

of DP fibroblasts, this theory also suggests that an “inhibition-disinhibition” 

system is involved in the hair cycle control. Therefore, also secreted in anti-

phase to the papilla morphogens are mitosis inhibitors or “endogenous mitotic 

inhibitors”. These reach peak levels when PMs are commencing their decline in 

catagen. It is suggested that these may arise from the epithelial HF in response 

to the PMs. 

 

Figure 2.4: The papilla morphogen theory 

The figure shows the changes of papilla morphogen and endogenous mitotic inhibitor levels in 

terms of hair cycle stages and dermal papilla cell cycle stages. PM=papilla morphogen, PMA/PMmax 

= half maximal and maximum level of PM. EMI=endogenous mitotic inhibitor, DP=dermal papilla, 

T=Telogen, A= anagen, C= catagen. Figure reproduced with permission from (Paus and Foitzik, 

2004). 

 PM levels should be high in telogen skin, i.e. when hair growth is 

suppressed. In fact, limited experimental support for this theory has been 

provided by the demonstration that telogen, but not anagen, epidermis contains 
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a potent anti-mitotic activity that inhibits anagen development in mice (Paus et 

al., 1990). Signalling loops are thought to be present between the epithelium 

and mesenchyme driven by cyclical PM secretion. The inhibition-disinhibition 

concept is incorporated in the form of anti-phase expression to the papilla 

morphogens in this theory (Chase, 1954). In addition, the involvement of both 

the epithelium and mesenchyme is included. 

 Unfortunately, this theory conflicts with the fact that DP fibroblasts are 

not known to enter into the cell cycle at the time that has been suggested (i.e. 

anagen VI) (Paus and Foitzik, 2004). Nevertheless, the exercise in constructing 

the theory produced a testable hypothesis. Also, as argued by Jahoda (in (Stenn 

et al., 1999)), it remains possible that PM secretion by DP fibroblasts shows 

some form of cell cycle-linkage, yet without DP fibroblasts entering mitosis. 

Positively, the authors identify the need for theoretical consideration of how the 

hair cycle arises as they realise the importance of this. It brings forward the field 

by taking a detailed approach to the problem. This is also evident by the 

production of a thorough discussion and analysis of what the salient features 

are necessary to be addressed in a theory of the “HCC” (Paus et al., 1999a). The 

process adopted in trying to answer the question as to the nature of the hair 

cycle rhythm has been pioneering for the field. 

 On the negative, this theory tries to identify one region as being the HCC 

“command centre” (Paus and Foitzik, 2004, Paus et al., 1999a). Whilst this 

theory does incorporate the epithelial compartment more fully than other 

theories, the emphasis is placed on the DP as the coordinator. In addition, it is 

not known that if DP fibroblasts take turns in entering the cell cycle whether the 

necessary threshold of PMs would be reached. It is difficult to state whether the 

complex communication set up of inhibitory and excitatory loops detailed by 

the authors would behave in this way in reality without testing it, for example 

via mathematical modelling. This critique, however, holds for all the theories 

postulated above. A positive feature of the theory is that it is unique in that it 

focuses on the control of catagen as an essential component of the HCC. In 

addition, it gives a self-perpetuating explanation for the HCC. 
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 In the construction of the “Papilla Morphogen Theory” there was drive 

for the conceptualisation of the hair cycle mechanism and to determine what 

exactly a theory of the hair cycle should contain. In addition, the hair cycle is 

explicitly treated as a chronobiological rhythm. This theory is also unique in 

that the authors state that the hair cycle needs to be understood from the 

initiation of catagen rather than the initiation of anagen, whereas the other 

theories approach the problem from the initiation of anagen. 

2.6.1.8 Perspective on the current theories of the hair cycle 

A criticism of the current theories of the human hair cycle is that the majority of 

the theories aim to locate a cell type or region as being the controller of the hair 

cycle. However, it may be possible for there to be multiple regions involved; in 

particular regarding the complex multi-cellular composition of the HF. This is 

the essence of the argument provided in the Resonance Theory (Nixon in (Stenn 

et al., 1999)). In order for hair cycling to occur, it is apparent that there requires 

the communication to exist between the epithelial portion of the HF and the 

mesenchymal HF (Botchkarev and Kishimoto, 2003). This is supported by 

various studies that have shown the abrogation of the DP stops hair cycling 

(Stenn and Paus, 2001, Link et al., 1990).  

All of the theories manage to incorporate features that the authors feel 

are essential to the hair cycle. From the summaries and critiques of these 

theories, it is apparent that there is some discrepancy between individual 

researchers with respect to the features of HF cycling that are thought salient. 

The majority of theories are concerned with the control of anagen initiation, 

although a distinction was drawn between the completion of morphogenesis, 

which ends in an anagen-like stage, but must not be confused with anagen 

(Müller-Röver et al., 2001, Paus et al., 1999b). It has been postulated that the 

anagen-catagen transformation is more important for understanding the control 

of HF cycling, since at least morphologically, the hair cycle does not commence 

with anagen, but with catagen (Paus and Foitzik, 2004, Stenn and Paus, 2001).  

This literature review shows that the control of HF cycling is a complex 

issue and that none of the previously proposed theories provide a rigorous, fully 



46 

 

satisfactory explanation for the “HCC”. Moreover, none of these hair cycle 

theories have been tested using mathematical modelling. Given the complexity 

of the process and the numerous molecular players that are already known to 

be involved in its regulation (Stenn and Paus, 2001, Schneider et al., 2009) it 

appears almost mandatory to take a systems biology approach to understanding 

the regulated, rhythmic changes in HF function during the hair cycle. This is 

further explored and argued below (see Chapter 3).   

2.6.2 Molecular candidates in the human hair cycle 

Numerous molecules have been implicated in mediating the hair cycle. See 

(Schneider et al., 2009, Botchkarev and Kishimoto, 2003, Botchkarev and Paus, 

2003, Rendl et al., 2005, Stenn et al., 1994) for comprehensive overviews of the 

topic. Here, key methods adopted in experimental investigation of the hair cycle 

are provided and selected molecular candidates for controlling the anagen-to-

catagen transition are reviewed. The applicability of these findings to our 

interest in the human hair cycle is also considered further. More literature 

reviews are found in the introduction and discussion sections of each 

manuscript chapter following.  

2.6.2.1 Methods of investigating the human hair cycle 

The understanding of hair growth and hair cycling has been advanced by the 

development of molecular biology techniques. In particular, animal models of 

hair disorders arising via spontaneous or induced mutations have been a central 

method for advancing the functional roles of genes and their products in hair 

growth and cycling (Rogers and Hynd, 2001, Stenn and Paus, 2001, Stenn et al., 

1994). The murine model remains the most commonly used in hair research 

with the C5BL/6 type exhibiting colour differences in accordance to the hair 

cycle stage, thus allowing a readily accessible hair cycle study tool (Rogers and 

Hynd, 2001, Stenn and Paus, 2001).  

With regards to understanding the human hair cycle specifically, HF 

organ culture, which was developed by Philpott (1990), is a well established 

laboratory method used to study human HF biology and hair growth without 
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the need to experiment on human subjects (Randall et al., 2003, Rogers and 

Hynd, 2001, Kloepper et al., 2010). The ability of human HFs to grow at rates in 

culture that are almost the same as in vivo makes this experimental model 

useful for the study of hair growth and for investigating the response of human 

scalp HFs to test compounds added to the organ culture medium (Philpott et al., 

1994a, Rogers and Hynd, 2001, Kloepper et al., 2010). 

There are several advantages to human HF organ culture as opposed to 

fresh whole tissue analysis in the study of anagen and catagen HFs. For example, 

the occurrence rate of telogen and catagen HFs (5-10%) in vivo is very low 

compared to that of anagen HFs (90-95%) (Whiting, 2004). Organ culture 

allows access to a greater number of catagen HFs as they enter this stage within 

a few days in culture (Kloepper et al., 2010, Rogers and Hynd, 2001). As 

mentioned in the hair disorders section, understanding the anagen-catagen 

transition is of importance in hair disorders and therefore, this provides an 

instructive assay for investigating anagen-to-catagen transition in vitro.  

However, it is important to note that extra-follicular surroundings are 

likely to facilitate and modulate HF cycling. It is known, for example,  that 

human scalp HFs grow in follicular units and that there is better growth of HFs 

when they are transplanted as a whole unit rather than following separation 

(Jimenez and Ruifernández, 1999, Avram, 2006). A follicular unit consists of 1 to 

4 HFs and therefore one isolated HF, maintained in a well with 2 additional HFs 

may be a good approximate model for the in vivo follicular unit. Also, from 

studies of murine hair cycle waves, there is increasing appreciation of important 

extra-follicular inputs that impact within the skin on HF cycling (Plikus et al., 

2008, Plikus et al., 2011). In addition, neural inputs into HF cycling, which are 

also absent in human HF organ culture, must be considered, since the HF is one 

of the most densely innervated peripheral structures in the mammalian body 

(Peters et al., 2007, Peters et al., 2006, Botchkarev et al., 2004).  
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2.6.2.2 Molecular candidates of the hair cycle clock: anagen-to-catagen 

transition 

Numerous candidates have been implicated in regulating the hair cycle. In this 

section only a few key candidates have been chosen to be discussed. These have 

been selected as those that affect timing of the hair cycle and anagen to catagen 

transition. 

Insulin-like growth factor-1 (IGF-1) has been identified as a promoter of 

the anagen phase of the hair cycle. Growth of microdissected human scalp HFs 

has been shown to be stimulated by the addition of IGF-1 to culture medium and 

its withdrawal causes HFs to enter catagen (Philpott et al., 1994b). In-situ 

hybridisation and immunohistochemistry analyses of human skin has shown 

that IGF-receptor (IGF-R) mRNA and protein is down-regulated during the 

initiation of catagen, although these changes have not been quantified (Rudman 

et al., 1997). 

The Fuzzy phenotype exhibits accelerated hair cycling in mice with 

reduced proliferation and increased apoptosis of MKs (Mecklenburg et al., 

2005). This phenotype has been attributed to a mutation in Sgk3 (Campagna et 

al., 2008). Lack of the Sgk3 gene in mutant mice resulted in impaired 

maintenance of transiently amplifying matrix cells of the HF (Alonso et al., 2005, 

Okada et al., 2006). In addition, Sgk3-null mice exhibit accelerated hair cycling 

characterised by a shortened anagen phase and normal catagen and telogen 

phases (Alonso et al., 2005, Okada et al., 2006). This implicates Sgk3 as a 

possible “time-keeper” for the anagen phase in the murine hair cycle. The 

evidence regarding Sgk3 and the anagen to catagen transition has been reported 

in mice experiments. To date, Sgk3 has not been explored in the human hair 

cycle. 

Another growth factor implicated in the anagen to catagen transition of 

the hair cycle is hepatocyte growth factor (HGF) which has been investigated in 

both mice and man (Jindo et al., 1998, Jindo et al., 1995, Lindner et al., 2000). 

Human scalp HF growth was found to be promoted after the addition of HGF at 

several concentrations to the media during organ culture. The growth increased 
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in a dose-related manner when compared to the control group (n=6 in each 

group). DNA synthesis was also increased in the HGF-treated groups (Jindo et 

al., 1995). No other parameters, such as hair cycle parameters, were 

investigated in scalp HFs after HGF treatment.  

The expression pattern of HGF in HFs of C5BL/6 mice was found to be 

hair cycle dependent with HGF protein and gene expressed during anagen and 

down-regulated in catagen. HGF protein was found to be localised only to the DP 

of the mice HFs and its receptor Met localised in the follicular epithelium (Jindo 

et al., 1998). Injection of recombinant HGF in the dorsal skin of C5BL/6 mice, 

prior to spontaneous catagen onset, caused significant retardation of catagen in 

the HFs at the site of injection with a gradient effect seen on the periphery of the 

injection sites (Jindo et al., 1998). The expression profile of HGF in human HFs 

during the hair cycle is yet to be elicited. 

Fibroblast growth factor 5 (Fgf5) has been found to induce catagen. 

Deletion of the Fgf5 gene causes delayed onset in catagen, prolonged anagen, 

and produces angora phenotype mice which exhibit long hairs with no defect in 

HF structure (Hebert et al., 1994). In normal mice, total Fgf-5 mRNA was found 

to be expressed in the ORS of the HF with expression highest during late anagen 

(Kawano et al., 2005, Hebert et al., 1994, Rosenquist and Martin, 1996). The 

splice variant of Fgf-5, Fgf-5S, blocks the catagen-inducing properties of the 

complete Fgf-5 transcript. Fgf-5S is expressed in high concentrations during mid 

anagen and low concentrations during late anagen VI, catagen and telogen. The 

two variants of Fgf-5act together and it seems that communication with the DP 

may play a role in their function (Suzuki et al., 2000). The importance of Fgf-5 as 

a candidate in the anagen to catagen transition is highlighted in the work by 

Pena et al where a short hair phenotype of Bcl-xL transgenic mice was reversed 

in Fgf-5 deficient mice (Pena et al., 1999). 

Other agents found to promote catagen are neurotrophins (NTs). 

Multiple members of the NT family have been found to be up regulated in the 

proximal HF in late anagen and prior to catagen. Neurotrophin receptors have 

been shown to be expressed in the epidermal keratinocytes of the follicle and 

also the DP during the anagen to catagen transition (Botchkarev et al., 1998a). 
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In addition, NT-3 and brain-derived neurotrophic factor (BDNF) transgenic mice 

exhibit premature catagen entry and over-expression of BDNF causes shortened 

hair length; a hallmark of an abrogated anagen phase (Botchkarev et al., 1999b, 

Botchkarev et al., 1998b). 

The transforming growth factor-β (TGFβ)/Bone morphogenetic Protein 

(BMP) superfamily, consisting of cytokines and growth factors, is thought to be 

central in the modulation of the hair cycle and notably in the anagen to catagen 

transition. Transforming Growth Factor-β1 (TGF-β1) inhibits keratinocyte 

proliferation, induces keratinocyte apoptosis and causes premature catagen 

entry in isolated human HFs and in vivo in murine skin (Soma et al., 2002, 

Philpott et al., 1994a, Foitzik et al., 2000). TGF-β1 is most highly expressed 

during late anagen and early catagen in murine experiments (Foitzik et al., 

2000). Transforming Growth Factor-β2 (TGF-β2) has also been shown in both 

mice and man to be a potent catagen inducer. TGF-β1 and TGF-β2 have been 

localised to the IRS, ORS and CTS of HFs (Soma et al., 2002) and the TGF-β 

receptors type I and II are expressed in the IRS, ORS and MKs (Paus et al., 1997). 

Bone morphogenetic proteins (BMPs) are growth factors whose potent 

antagonist is noggin. Noggin is known to be mesenchymally derived 

(Botchkarev et al., 1999a) and acts by binding to BMPs and preventing them 

from binding to their receptor (Zimmerman et al., 1996). BMPs exert both pro- 

and anti-apoptotic effects; the pro-apoptotic action of BMPs is mediated by the 

BMP–MAPK pathway, while the BMP–Smad pathway is implicated in the control 

of survival (Botchkarev and Paus, 2003). The expression patterns for BMPs, 

noggin, and BMP receptors in the HF during catagen remain to be elucidated, 

though data obtained in genetic models suggest a role for BMP signaling in the 

control of catagen development. Deletion of BMP receptor IA (BMPR1A) in HF 

keratinocytes is accompanied by a markedly delayed entry of the HFs into first 

catagen (Andl et al., 2004) suggesting the involvement of BMPR1A in the control 

of the anagen–catagen transition. In addition, BMPs have been shown to have a 

functional relationship in the murine hair cycle with WNTs (Plikus et al., 2008) 

exhibiting rhythmical expression of BMP2 and 4 in an asynchronous phase to 

noggin and β-catenin expression. 
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In wild-type murine HFs, catagen is accompanied by changes in follicle 

morphology, including cessation in matrix cell proliferation and apoptosis in the 

hair bulb. However, in muscle segment homebox2 (Msx2) deficient HFs, these 

events are uncoupled (Ma et al., 2003). There is precocious onset of catagen in 

Msx2 knockout mice and this suggests that Msx2 normally plays a role in 

maintaining HFs in anagen (Ma et al., 2003). BMPs have been implicated in hair 

shaft-regulation via a link with Msx2 as BmpR1A mutant HFs exhibit absent or 

severely decreased expression of the hair-shaft regulatory gene Msx2 (Andl et 

al., 2004) thus suggesting that BMPs are upstream of Msx2. 

Novel candidates have been suggested as hair cycle controllers by time-

course gene expression profiling experiments in mice (Lin et al., 2004, Lin et al., 

2009). By clustering gene expression profiles by their pattern of expression 

during the murine hair cycle and subsequently grouping results by their 

function, novel candidates for regulators of the hair cycle were identified. 

Circadian genes (those responsible for the circadian rhythm, see Chapter 7 for 

details) were found to show a hair cycle-dependent oscillatory behaviour in 

mice (Lin et al., 2009). These novel candidates are thought to mediate their 

effect by cell cycle mediation as BMAL1 knockout mice exhibited delayed anagen 

onset and significant up regulation of p21, which indicates a block at the G1 

phase of the cell cycle (Lin et al., 2009). The effect was found mainly during the 

telogen to anagen transition, however, large oscillations in Period1 expression, 

for example, were also noted (but not further investigated) during the anagen to 

catagen transition (Lin et al., 2009). Circadian genes are thus rather novel 

candidates for the HCC and have been only briefly studied in the human system.  

Circadian genes, thus, are novel and intriguing candidates as components 

of the “HCC”, which have not yet been systematically studied in the human HF. 

Chapter 7 is concerned with circadian genes and proteins as possible co-

ordinators of human hair cycling, and argues why such a chronobiological focus 

on the problem of human HF cycling is particularly promising, both from a 

systems biology and from a clinical perspective.  

The evidence above relies heavily on murine data, with little or no 

parallel investigations performed on human HFs. The literature above points 
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towards several molecules that may coordinate the human hair cycle, however, 

we do not yet know whether this is the case in the human system.  

2.6.2.3 Epithelial-mesenchymal interactions in the control of the hair 

cycle  

The mature HF can be divided into the mesenchymal HF, consisting of the DP 

and CTS, and the epithelial HF (the remaining portions; including transient 

amplifying cells of the hair matrix that envelope the DP, hair shaft, IRS and ORS) 

(Figure 2.1). The communication between epithelium and mesenchyme is vital 

for understanding the cycling of the HF (Tobin et al., 2003, Paus et al., 1999a, 

Stenn and Paus, 2001, Rendl et al., 2005, Fuchs et al., 2001, Botchkarev and 

Kishimoto, 2003). The destruction of the DP, for example, has been shown to 

cause an inability for hair fibre growth (Cohen, 1961). DP cells in culture have 

been found to secrete morphogens that stimulate epithelial cells, supporting the 

notion that the DP cells act to mediate the epithelial compartment of the HF 

(Rogers and Hynd, 2001). DP cells have been found to exhibit their own 

molecular signature in comparison to their surrounding cells; the matrix and 

ORS cells. These contrasting signatures for signalling and transcriptional 

regulators may be essential for HF biology (Rendl et al., 2005, Botchkarev and 

Kishimoto, 2003). 

During catagen onset, there is down-regulation of factors promoting 

matrix cell proliferation and differentiation. As described above, promoters of 

anagen, such as IGF-1 and HGF are secreted by DP fibroblasts and stimulate the 

matrix cells, of epithelial compartment to proliferate and differentiate (Philpott 

et al., 1994b, Rudman et al., 1997, Lindner et al., 2000, Jindo et al., 1998, Itami et 

al., 1995, Shimaoka et al., 1995). HGF is known to function as an important 

mediator in epithelial-mesenchymal interactions in several systems and has 

been shown to be expressed solely in the DP and its receptor Met found only in 

the HF epithelium (Lindner et al., 2000). The interaction of the epithelial and 

mesenchymal HF is required for HGF-mediated HF growth. FGF-5 is expressed 



53 

 

in the ORS during late anagen and has been suggested to induce catagen by 

diffusion into the DP (Rosenquist and Martin, 1996). Another example of 

epithelial-mesenchymal interaction in the HF is that of BMP2, BMP4 and noggin 

(Kulessa et al., 2000, Plikus et al., 2008). There is evidence that BMP2, BMP4 

and noggin exhibit a BMP activity gradient in the HF (Kulessa et al., 2000). 

Thus the communication between HF epithelium and mesenchyme is 

crucial to hair cycle control, and we need to understand the exact mechanisms 

of these interactions in order to fully grasp the nature of the dynamic regulatory 

processes that underlie HF cycling.  

2.7 SUMMARY: THE BASIS OF THE THESIS 

In the hair cycle the HF exhibits a unique chronobiological rhythm, vast 

regenerative capacity, intricate communication between epidermal and 

mesenchymal-derived cells and dynamic spatio-temporal behaviour at the 

cellular and tissue level (Paus et al., 1999a, Schneider et al., 2009).  

There is still debate as to what comprises the so-called “HCC”. None of 

the “verbal” hair cycle theories published so far have been tested using 

mathematical modelling; therefore these models may not predict correctly the 

effect of certain feedback mechanisms or connections. 

On the molecular level, animal models have been central to advancing 

hair cycling research (Rogers and Hynd, 2001, Schneider et al., 2009). Murine 

systems such as balding, nude, hairless and angora display defects in HF 

formation and/or cycling through naturally occurring mutations. In addition to 

spontaneous mutant models, the use of transgenic and knockout mice has 

allowed further studies of the effect of genetic perturbations on hair cycling 

(Rogers and Hynd, 2001, Stenn and Paus, 2001, Schneider et al., 2009).  

Although numerous molecular pathways have been implicated in the 

control of HF cycling, the underlying mechanisms regulating its timing remain 

elusive. Namely, a fully satisfactory theory of HF cycling remains to be 
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developed, and the molecular nature of the “HCC” has still not been deciphered 

(Paus and Foitzik, 2004, Paus et al., 1999a, Schneider et al., 2009).  

The majority of research has relied on the murine model with gene 

expression and molecular signatures delineated in line with distinct hair cycle 

time points (Lin et al., 2004, Schneider et al., 2009, Lin et al., 2009, Rendl et al., 

2008). In contrast, the gene and protein expression profile of different stages of 

human HF cycling remains to be systematically defined. An experimental 

window exists to study human HFs as they can be isolated from skin and 

maintained in serum-free medium where they subsequently transit 

spontaneously from anagen to catagen before degenerating (Randall et al., 2003, 

Rogers and Hynd, 2001, Philpott et al., 1994a, Kloepper et al., 2010). 

Fortunately, this hair cycle window is also the clinically most relevant hair cycle 

switch, whose disturbance underlies most the of the hair growth disorders seen 

in clinical practice (Paus and Foitzik, 2004).  

In light of the above evidence and considerations, it is apparent that 

there is a disjoint between the phenomena observed at the tissue level and 

investigations performed at the molecular level. In addition, much of the 

molecular investigations are performed in rodent species as they allow the 

study of the whole hair cycle and provide an excellent tool for employing the full 

power of mouse genomics research. Evidently, it is quite uncertain to what 

extent the molecular controls of murine HF cycling correspond to those that 

drive the human hair cycle.   

The first basic tenet of the current thesis is that a systems biology 

approach to human HF cycling holds great promise to make substantial 

progress in reaching the ultimate goal, i.e. to understand the human “HCC” and 

to obtain novel pointers as to how it may be therapeutically manipulated more 

effectively. The above considerations will lead to the exploration of human HF 

cycling from a systems biology perspective with the focus directed to three key 

areas a) mathematical modelling, b) HF chronobiology, and c) gene expression 

profiling.   
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3 CHAPTER 3: THE CYCLING HAIR FOLLICLE AS 

AN IDEAL SYSTEMS BIOLOGY RESEARCH MODEL 
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3.1 ABSTRACT 

In the post-genomic era, systems biology has rapidly emerged as an 

exciting field predicted to enhance the molecular understanding of 

complex biological systems by the use of quantitative experimental and 

mathematical approaches. Systems biology studies how the components of 

a biological system (e.g. genes, transcripts, proteins, metabolites) interact 

to bring about defined biological function or dysfunction. Living systems 

may be divided into five dimensions of complexity: 1) molecular 2) 

structural 3) temporal 4) abstraction and emergence and 5) algorithmic. 

Understanding the details of these dimensions in living systems is the 

challenge that systems biology approaches aim to address. 

Here, we argue that the hair follicle (HF), one of the signature 

features of mammals, is a perfect and clinically relevant model for systems 

biology research. The HF represents a stem cell-rich, essentially 

autonomous mini-organ, whose cyclic transformations follow a 

hypothetical intra-follicular “hair cycle clock” (HCC). This prototypic 

neuroectodermal-mesodermal interaction system, at the cross-roads of 

systems and chronobiology, encompasses various levels of complexity as it 

is subject to both intra- and extra-follicular inputs (e.g. intra-cutaneous 

timing mechanisms with neural and systemic stimuli). Exploring how the 

cycling HF addresses the five dimensions of living systems, we argue that a 

systems biology approach to the study of hair growth and cycling, in man 

and mice, has great translational medicine potential. Namely, the easily 

accessible human HF invites preclinical and clinical testing of novel 

hypotheses generated with this approach 
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3.2 INTRODUCTION 

 

“The problem of biology is not to stand aghast at the complexity  

but to conquer it” 

Sidney Brenner, Nobel Laureate (Duncan, 2004) 

 

Systems biology is a fast-evolving life sciences field that aims to establish how 

the components of a living system combine to cause function (Klipp et al., 2009, 

2007). Biological systems can be divided into five levels of complexity: 1) 

molecular; 2) structural; 3) temporal; 4) abstraction and emergence and 5) 

algorithmic (Table 3.1) (Huang and Wikswo, 2006).  

In the past, cell cultures (particularly yeast) were often used in systems 

biology research to handle the complexity of living systems (Westerhoff and 

Palsson, 2004, Bruggeman and Westerhoff, 2006, Sauer et al., 2007, Di Ventura 

et al., 2006, Klipp et al., 2009). These models are far-removed from the reality of 

mammalian organisms. Identifying mammalian models that are sufficiently 

complex to encompass these five dimensions, and approach physiological 

relevance is an important challenge for systems biology (Klipp et al., 2009, 

Makarow et al., 2008).  

The HF consists of multiple different cell populations of neural crest, 

ectodermal or mesodermal origin, which are distinct in their location, function 

and gene and protein expression characteristics (Fuchs, 1998, Schneider et al., 

2009, Stenn and Paus, 2001, Paus and Cotsarelis, 1999). Additionally, the HF is a 

uniquely dynamic mini-organ that undergoes continuous cycling throughout 

adult life during which elements of its own morphogenesis are recapitulated 

(Schneider et al., 2009, Fuchs et al., 2001) (Figure 2.2). This process may arise 

under the dictates of an enigmatic oscillator system (the hair cycle clock (HCC)) 

(Paus and Foitzik, 2004, Lin et al., 2009, Stenn and Paus, 2001). Hair growth 

disorders can be attributed, at large, to changes in the normal dynamic 

behaviour of the HF (Paus and Cotsarelis, 1999, Hadshiew et al., 2004, Paus and 

Foitzik, 2004, Stenn and Paus, 2001, Cotsarelis and Millar, 2001). Common hair 
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diseases such as alopecia areata, telogen effluvium, hirsutism and 

hypertrichosis remain major, unsolved medical problems that call for new 

approaches in developing effective remedies. The HF is an attractive research 

model as hair growth; cycling and colour are of profound interest to biological 

and medical researchers and a vast industry that caters to individuals who wish 

to manipulate these parameters. The study of HF cycling brings together 

systems biology, stem cell biology, regenerative medicine, chronobiology and 

translational medicine (Ito et al., 2004, Yu et al., 2008, Lin et al., 2009, Batista et 

al., 2007).  

Induction, spacing, orientation and morphogenesis of the HF (Schmidt-

Ullrich and Paus, 2005) represent classical scenarios of developmental and stem 

cell systems biology (MacArthur et al., 2009, Vanag and Epstein, 2009, Baker et 

al., 2009). The hair patterning process is a prototypic neuroectodermal-

mesodermal interaction system which is beautifully demonstrated by the 

pioneering work of Nagorcka and Mooney (Nagorcka and Mooney, 1982, 

Nagorcka and Mooney, 1985, Mooney and Nagorcka, 1985). Mathematical 

theory was utilised to explain the spatial patterns of morphogens and thus 

patterned HF formation. Systems biology research in HF development has been 

previously covered (Sick et al., 2006, Stark et al., 2007, Baker et al., 2009), 

therefore here we focus on the cycling adult HF as a systems biology research 

model.  

We argue that the HF, a signature organ of the mammalian species, is 

optimally suited to address challenges in medical and systems biology research 

by studying clinically relevant biological phenomena from a comprehensive 

systems biology perspective. 
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Table 3.1: The five dimensions of living systems and hair cycle relevance 

  

Dimension 
Research 
objectives 

Approach Challenges 
HF (HF) and 

hair cycle 
relevance 

 
Dimension 
1 
 
Molecular 
complexity 
 

Integrating 
molecules and 
pathways to 
genome-wide 
networks 
(“horizontal 
integration”) 

Molecular 
biology, 
genomics, 
proteomics, and 
other “omics,” 
bioinformatics, 
applied 
computer 
science 

Database integration, 
annotation; high-
throughput analysis at 
higher functional 
levels; real-time, 
multiplex 
measurements of 
expression profiles 

The cycling HF is 
governed by key 
molecules; exact 
drivers are yet 
to be elicited. As 
a research tool, 
the HF can be 
studied in vivo 
using murine 
model, or in 
vitro in human 
HFs. See 
Dimension 2 
also. 

Dimension 
2 
 
Structural 
complexity 

Transcending 
many size-
scales 
(nanometer to 
meter): 
Organelles–
cells–tissues–
organs–
organism 
(“vertical 
integration”) 

Microscopy, 
nanotechnology, 
microfabrication, 
biophysics, 
biomedical 
engineering, 
mechanical 
engineering, 
anatomy 

Visualization of 
dynamic protein 
complexes in cells; 
cellular 
compartmentalization; 
external sensing and 
actuation of molecular 
states; bridging the 
gap between 
macromolecules 
and tissues—spanning 
nanometer to 
centimetre scales 

The HF can be 
reduced into 
different 
structural levels; 
from cells, to the 
microdissected 
and isolated 
mini-organ, to 
hair cycle 
domains, to 
whole 
organisms. It 
provides a mini-
system with 
which to analyze 
these 
dimensions. In 
addition, the 
structure of the 
HF changes 
dramatically 
during the hair 
cycle 
(highlighting the 
interrelationship 
between 
molecular, 
structural, 
temporal and 
emergence 
dimensions 
involved in the 
cycling HF). 
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Table 3.1 Continued: The five dimensions of living systems and hair cycle relevance 

 

Dimension 
Research 
objectives 

Approach Challenges 
Hair follicle 

and hair cycle 
relevance 

     

 
Dimension 
3 
 
Temporal 
complexity 
 

Transcending 
many time 
scales 
(nanoseconds 
to gigaseconds 
= decades) 

System 
dynamics, 
nonlinear 
dynamics, signal 
processing, 
biomedical 
engineering, 
control theory, 
time-series 
analysis, 
physiology 

Noise measurement at 
various levels; non-
linear time series 
analysis; multi-analyte 
measurements in 
nonequilibrium 
systems—spanning 
nanosecond to 
gigasecond time scales 

The HF 
demonstrates 
various 
temporal 
processes and 
traverses 
various 
temporal scales. 
For example, 
exhibiting 
circadian 
rhythm and hair 
cycle changes. 

 
Dimension 
4 
 
Abstraction 
and 
emergence 
 

Modelling 
system-level 
“emergent” 
features 

System 
dynamics, 
pattern-
formation, 
cybernetics, 
complex system 
sciences, agent-
based models, 
mathematics 

Levels of abstraction, 
multiscale models and 
scaling; use of larger-
scale effective 
variables to describe 
smaller-scale 
phenomena; 
“statistical mechanics 
of biology” 

Use of 
abstraction of 
the hair cycle, 
through 
modelling has 
proved to be 
useful in HF 
cycle research 
and provides 
meaningful 
input to 
biological 
understanding 
and hypothesis 
generation. The 
HF is an 
emergent organ. 

 
Dimension 
5 
 
Algorithmic 
complexity 
 

Understanding 
information 
coding and 
computation 
by the 
biological 
medium and 
developing 
theoretical 
models that 
simulate 
biological 
systems 

Theoretical 
computer 
science, 
information 
theory, electrical 
engineering 

Identifying a core 
system that is 
computationally 
irreducible; new 
syntax for simulation; 
the integration of 
hybrid 
analogue/digital 
models 

HF during 
cycling will 
compute 
problems in the 
context of the 
cells, tissue and 
organism. In 
addition, the 
complexity of 
the models 
needed to 
simulate the 
organisms’ 
computations 
will need 
consideration. 
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3.3 SYSTEMS BIOLOGY IN A NUTSHELL 

Systems biology is the study of how the components of a biological system (e.g. 

genes, transcripts, proteins, metabolites) interact to bring about function (and 

dysfunction) of that system (Kitano, 2002, Bruggeman and Westerhoff, 2006, 

Klipp et al., 2009, Di Ventura et al., 2006, Huang and Wikswo, 2006). This 

discipline rose in the post-genomic era as advances in molecular biology, and 

the production of high-throughput data such as deciphering the genome in the 

human genome project (Aderem, 2005, O’Malley and Dupré, 2005, Huang and 

Wikswo, 2006), still left a gap in our ability to translate the vast amounts of 

molecular knowledge to understanding biological function (Sauer et al., 2007). 

Understanding biological systems by a transition from reductionist study on the 

molecular level to the systems level of life phenomena is systems biology 

(Kitano, 2002, Bruggeman and Westerhoff, 2006, Noble, 2008b, Westerhoff and 

Palsson, 2004). In the next section, we provide further details about systems 

biology, emergence, mathematical modelling in systems biology and a summary 

of some important successes of systems biology in medical research. 

 

3.3.1 Systems Biology and medical research 

An indispensible feature of biological systems is that of emergence. Biological 

systems are composed of multiple interacting components and involve 

“communication” at various levels (Table 3.1). For example, individual enzymes 

do not function in isolation but act within complex pathways. The properties of 

these pathways in vivo, i.e. the systems properties, depend on the interaction of 

all the components and therefore on the molecular properties of each of the 

involved enzymes. Systems properties only arise in the presence of these 

interactions. This phenomenon is called emergence (2007, Sauer et al., 2007, 

Aderem, 2005). 
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Table 3.2: Summary table of successes of systems biology research in medical 

studies. 

Research Problem Approach taken Results References 

Aim to predict the 

resistance to  HER2-

targeting receptor 

tyrosine kinase (RTK) 

inhibitors (cancer 

therapies) 

An in vitro model of 

the key pathways 

involved was made. 

Predictions were then 

tested in vivo on 

human cancer patients 

Key resistance factor a tumour 

suppressor gene (PTEN) was 

found using the kinetic model. 

PTEN levels in the clinic were 

related to resistance to 

treatment. Enabled patients to 

be given more personalized 

treatment for breast cancer. 

(Faratian 

et al., 

2009b) 

To understand the 

cause of cardiac 

arrhythmias in the 

context of physiology of 

the heart. To improve 

drug design and reduce 

fatal side effects 

Virtual human heart 

models constructed 

using quantitative data 

Use of model led to success in 

predicting the side-effects of 

drugs, such as chronic angina 

medication Ranolazine 

(Noble, 

2008a) 

Establish the dynamic 

behaviour of HIV virus 

in response to 

combination therapy in 

order to better treat 

HIV-AIDS 

Quantitative data 

generated to establish 

the decay of HIV virus 

following combination 

therapy. Mathematical 

models incorporating 

the data predicted 

virus decay rates 

 

Decay rates of the virus (both 

free and in infected cells) were 

estimated. Prediction of re-

emergence of the virus (even at 

levels below detection) using 

the model enabled better 

understanding of the dynamics 

of HIV virus following therapy 

and better future therapy 

approaches 

(Perelson 

et al., 

1996, 

Perelson et 

al., 1997, 

Nowak et 

al., 1996) 

 

 

To elucidate the 

relationship between 

COX inhibitor pain 

relief and plasma 

concentrations to 

improve and predict 

dose regimes for 

chronic pain 

management 

A model was 

developed 

to assess the factors 

that correlate to 

response to 

COX inhibitors 

Modelling endogenous 

mediators of inflammation 

helped to elucidate the relation 

between exposure to the drug 

and therapeutic 

response 

(Huntjens 

et al., 

2005) 

Early studies indicated 

that gemcabene, a new 

experimental drug, did 

not lower lipids as 

much as statins. Would 

combination therapy 

make the drug 

commercially viable? 

Could modelling 

improve this process? 

Pfizer undertook a 

model-based analysis 

to compare the lipid 

lowering effects of 

gemcabene versus 

ezetimibe in 

combination with a 

statin. 

Modelling results indicated that 

gemcabene did not offer 

superior lipid lowering benefits 

to ezetimibe when used in 

combination with a statin. This 

result contributed significantly 

to the decision to stop 

development of the drug. This 

rapid decision-making reduced 

drug development time and 

costs may have been futile 

(Mandema 

Jaap et al., 

2005) 
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In systems biology, the use of mathematical modelling and 

computational simulation is an important tool for tackling the complex 

relationships existing between entities in a system (Kell, 2004, Wiley et al., 

2003, Di Ventura et al., 2006, Klipp et al., 2009). Mathematical models can bring 

together the details of linear and non-linear processes, handle numerous 

variables simultaneously, deduce experimental hypotheses and qualitatively 

and quantitatively predict behaviour of its components and the system as a 

whole (Schnell et al., 2007). This iterative process between modelling and 

experiments is considered a hallmark of systems biology (Kitano, 2002).  

Multi-factorial diseases, for example cancer, diabetes and the epilepsies, 

are brought about by interactions of parts creating higher-level properties or 

functions that would not be expected via analyses of only the individual entities 

(Gatenby and Maini, 2003, Faratian et al., 2009a, Schadt, 2009). In order to fully 

understand multi-factorial diseases they should be considered systems biology 

diseases (Schadt, 2009). The same argument holds for advancing understanding 

of normal function. Systems biology is already progressing areas such as cancer 

research (Faratian et al., 2009a, Faratian et al., 2009b), cell migration in 

malignancies, regeneration and development (Friedl and Gilmour, 2009) and 

stem cell dynamics (MacArthur et al., 2009) (See Table 3.2). Thus, systems 

biology should be considered an important approach in medical research by 

tackling the complexity of the human system, as shown in Table 3.1 (Faratian et 

al., 2009a, Gatenby and Maini, 2003, Faratian et al., 2009b, Di Ventura et al., 

2006, Makarow et al., 2008, 2007, Hunter et al., 2008). Some successes of 

systems biology in medicine have already been reported (Table 3.2) and the 

challenges posed by medical problems are themselves beginning to fertilise 

systems biology (Makarow et al., 2008, 2007). 
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3.4 THE HAIR FOLLICLE AS A PROTOTYPIC SYSTEMS BIOLOGY ORGAN 

 

HF cycling displays a number of properties that recommend it for systems 

biology research. The HF can be investigated at different levels that mirror the 

five dimensions of living systems (Table 3.1) (Huang and Wikswo, 2006). We 

discuss some previous studies where this has already been explored in hair 

cycling research. 

 

3.4.1 Molecular complexity of the hair follicle 

Despite the divergent cell types and number of molecular players that interact 

within a HF, the total number of HF protagonists is finite compared to larger 

organs. Moreover, the murine HF is among the best-characterized mammalian 

organs at the gene and protein level (Stenn and Paus, 2001, Rendl et al., 2005, 

Schneider et al., 2009). 

Typically, profiling tools such as metabolomics, proteomics and 

genomics are used to acquire a systematic analysis of the molecular components 

in living systems (Huang and Wikswo, 2006). Time-course gene expression 

profiling of murine skin has led to the identification of novel candidates in hair 

cycle regulation. This method of eliciting gene expression during the hair cycle 

also addresses the temporal dimension of living systems (Lin et al., 2009). By 

clustering gene expression profiles by their pattern of expression during the 

murine hair cycle and subsequently grouping the clusters by gene function, 

novel genes and pathways have been identified as candidates in murine hair 

cycle control. Clock genes (those responsible for the circadian rhythm) have 

been demonstrated to be hair cycle-dependent and are prominently expressed 

in the secondary hair germ (SHG) of telogen and early anagen HFs (Panteleyev 

et al., 2001). Bmal1 knock-out mice displayed retarded anagen development and 

lack mitotic cells in the SHG, suggesting that clock genes regulate anagen 

progression via their effect on the cell cycle. These findings indicate that clock 

genes can regulate complex non-diurnal organ transformation such as HF 
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cycling (Lin et al., 2009). Additionally, the systems approach used enabled novel 

candidates to be identified and allowed understanding of dynamic gene 

expression during the HF cycle.  

 

 

Figure 3.1: Sgk3 mutation and the hair cycle: molecular causes of Fuzzy phenotype 

Schema representing the Fuzzy phenotype and the association with the Sgk3 gene mutation. Figure 

incorporated into the flow diagram is adapted after Mecklenburg, L., et al., Premature termination 

of hair follicle morphogenesis and accelerated hair follicle cycling in Iasi congenital atrichia (fzica) 

mice points to fuzzy as a key element of hair cycle control. Experimental Dermatology, 2005. 14(8): 

p. 561-70. Wiley-Blackwell Publishers 

 

The murine model is diverse as mutations (both natural and engineered) 

exhibiting defined hair phenotypes can be used to probe the functional 

importance of molecular players in vivo (Schneider et al., 2009, Stenn and Paus, 

2001, Schmidt-Ullrich and Paus, 2005, Nakamura et al., 2001). One example, the 

fuzzy phenotype, exhibits strikingly accelerated HF cycling which is linked to a 

mutation in the gene Sgk3 (Mecklenburg et al., 2005) (see Figure 3.1). 

Researchers often investigate one gene or protein of interest, however, 
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functional overlap of hair cycle candidates (such as via common pathways) 

exist. For example, Figure 3.2 demonstrates how Sgk3 and IGF-1 are functionally 

linked. Anagen HFs express growth factors, such as EGF and IGF-1. These 

growth factors activate the MAPK and Akt pathways via interacting with 

tyrosine kinase receptors. IGF-1 is known a catagen-inducer in human HFs in 

vitro (Philpott et al., 1994b). Alonso et al showed that loss of Sgk3 was similar to 

gaining EGF signalling function. Using cultured primary keratinocytes from 

Sgk3-null and wild-type mice, Sgk3 was found to negatively regulate 

phosphatidylinositol-3-kinase (PI3K) signalling and thus antagonise the effects 

of IGF-1 induced PI3K signalling (Figure 3.2). This work shows the possible 

function for Sgk3 in controlling cell fate by modulating tyrosine kinase growth 

factor signalling pathways. Therefore, the HF exhibits interesting molecular 

complexity. Full comprehension of how these molecules function with regard to 

HF cycling would be best achieved using a systems biology approach to identify 

the common pathways involved and the interactions between molecules, rather 

than investigating these in isolation (such as those between Sgk3 and growth 

factor signalling pathways). A systems biology approach aims to link 

overlapping pathways and function. 

The use of mouse mutants (Nakamura et al., 2001, Schneider et al., 2009, 

Schmidt-Ullrich and Paus, 2005) represents an ideal systems biology instrument 

to investigate how the perturbation of a single gene product impacts on the 

entire HF in vivo (Sundberg et al., 2005). This approach can be complemented in 

the human system via organ-culture of micro-dissected human anagen scalp 

HFs and perturbing their normal behaviour in vitro by utilising and evaluating 

the impact of defined test agents on hair shaft formation, follicular 

melanogenesis, catagen transformation, hair MK proliferation and apoptosis 

and the gene expression profile (Philpott et al., 1994a, Kloepper et al., 2009, 

Bodo et al., 2005, Bodo et al., 2007). This naturally connects molecular 

complexity to its structural and temporal complexities by altering HF structure 

(evident in the hair cycle) and cycle duration (a temporal phenomenon). 
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Figure 3.2: The links between SGK3 and growth factor pathways 

Schema of the possible role of the Sgk3 gene in the anagen-catagen switch in hair follicles. 

*Philpott M., et al. Reference no. (Philpott et al., 1994b), **Alonso et al. Reference (Alonso et al., 

2005) 

3.4.2 Structural complexity of the hair follicle 

The tissue compartments of the HF are stringently circumscribed and of well-

defined composition. This makes the HF a microcosm and an ideal target for 

systems biology research. 

The structure of the HF can directly address the second dimension of 

living systems that Huang and Wikswo describe (Huang and Wikswo, 2006). 

HFs are easily accessible for experimentation, observation and perturbation due 

to their superficial location on the surface of mammalian bodies. This feature 

makes the HF ideal for systems biology research as access to molecular, 

structural and phenotypic information is readily available. In addition, the HF 

can be reduced into different structural levels; from cells (such as stem cells, DP 

cells, epithelial cells) to isolated mini-organs (e.g. HFs) to whole tissues (e.g. 
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hair-bearing skin) and organisms (such as humans and mice) (Rogers and Hynd, 

2001). Importantly these different structural levels all exhibit systems 

properties within themselves. 

The structural unit of the HF can be considered an essentially 

autonomous organ as it is able to grow after dissection from its neurovascular 

supply and transplantation into another part of the integument (Maurer et al., 

1998). In addition, isolated human HFs can be maintained in organ culture 

(Philpott et al., 1990, Philpott et al., 1996). This is an exciting prospect for 

systems biologists as these mini-organs exhibit emergent properties of great 

biological relevance: controlled cell proliferation; differentiation; apoptosis and 

organ regeneration. In addition, the basic autonomous clock driving the HF 

cycle may reside in the HF itself (Paus et al., 1999a), plus the HF “system” is also 

sensitive to extra-follicular communication e.g. neurovascular stimuli (Plikus et 

al., 2008, Plikus et al., 2009), thus increasing the level of system complexity by 

analysing greater levels of structural complexity.  

The mature HF can be divided into the mesenchymal HF, consisting of 

the DP and CTS, and the epithelial HF (the remaining portions; including 

transient amplifying cells of the hair matrix that envelope the DP, hair shaft, IRS 

and ORS). The structural complexity of the HF is intertwined with the molecular 

complexity of this mini-organ and epithelium and mesenchyme communication 

is thought to be vital for understanding the hair growth cycling of the HF (Tobin 

et al., 2003, Paus et al., 1999a, Stenn and Paus, 2001, Rendl et al., 2005, Fuchs et 

al., 2001, Botchkarev et al., 1999a, Botchkarev and Kishimoto, 2003). The 

accessibility and exhibition of epithelial and mesenchymal communication in 

the HF make it an excellent tool for those interested in this type of 

communication; for example in cancer research (Hu and Polyak, 2008, Faratian 

et al., 2009a) and molecular communication through time and space in general 

(Klipp et al., 2009). 

 



69 

 

3.4.3 Temporal complexity of the hair follicle  

Living systems exhibit different temporal properties and scales. For example, in 

the heart, depolarisation of myocytes takes 1 millisecond; the cardiac cycle, 1 

second; and longevity of the organism, gigaseconds (Huang and Wikswo, 2006). 

The temporal dimension of living systems (Table 3.1) is well-reflected in HF 

biology since this organ exhibits its own unique temporal cycle; the hair cycle. 

These cycling events are typical examples of patterns, namely breaks of 

homogeneity leading to the emergence of new structure (Widelitz et al., 2006). 

Temporal complexity of HF cycling also relates directly to structural and 

molecular complexities as these themselves exhibit dramatic hair cycle-

dependent changes. During the hair cycle, the HF shows complex, patterned 

phenomena that are temporo-spatially restricted (Widelitz et al., 2006, Chuong 

et al., 2006). Despite the large number of molecular candidates implicated in HF 

cycling control, such as IGF-1 (Rudman et al., 1997), hepatocyte growth factor 

(HGF) (Jindo et al., 1998, Jindo et al., 1995, Lindner et al., 2000) (anagen 

promoters), fibroblast growth factor-5 (FGF-5) (Kawano et al., 2005, Hebert et 

al., 1994, Rosenquist and Martin, 1996) and neurotrophins (NTs) (catagen 

inducers) (Botchkarev et al., 1999b, Botchkarev et al., 1998b), the mechanisms 

regulating its timing remain elusive (Paus and Foitzik, 2004, Stenn and Paus, 

2001, Paus et al., 1999a). An integrated, systems, approach to this problem has 

been lacking with researchers often looking only at one gene or protein of 

interest (Stenn et al., 1994). 

Organ-cultured human HFs are able to synthesize a hair fibre (at rates 

(Philpott et al., 1994a) and with a keratinisation process (Thibaut et al., 2003) 

similar to that in vivo) and subsequently enter a catagen-like stage i.e. in the 

absence of extra-follicular tissue, neural, vascular or endocrine signals. A full 

hair cycle is not exhibited in this in vitro model, however, this model has 

advantages for researching the human anagen-catagen transition as the 

occurrence rate of catagen HFs in vivo is low (Whiting, 2004) compared to the 

majority of HFs that spontaneously enter catagen with this model (Rogers and 

Hynd, 2001). 
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Since oscillatory behaviour is a classical emergent phenomenon 

(Whittington et al., 2000), the cycling HF is an ideal mammalian system for 

systems biology studies. The full temporal complexity of HF cycling is evident by 

the recent discovery that clock genes may play an important role in this 

“intrinsic” HCC (Lin et al., 2009), thus joining circadian oscillator systems (daily) 

with the rhythmic organ remodelling process that spans weeks (mice) or even 

years (man). The HF and skin exhibit circadian rhythms in gene transcription 

and protein expression (Zanello et al., 2000, Bjarnson et al., 2001, Lin et al., 

2009, Bjarnson and Jordan, 2002, Kawara et al., 2002, Mehling and Fluhr, 2006, 

Tanioka et al., 2009) and therefore this tissue operates on various time-scales 

simultaneously (Mehling and Fluhr, 2006). To fully understand how these 

distinct chronobiological systems interact constitutes a systems biology 

research challenge. Routine hair research approaches cannot hope to master 

this challenge if hair biologists do not cooperate closely with chronobiologists 

and systems biologists (Lin et al., 2004, Lin et al., 2009, Mehling and Fluhr, 2006, 

Schneider et al., 2009). 

 

3.4.4 Abstraction and Emergence 

3.4.4.1 The Follicular Automaton 

In order to cycle, HFs exhibit oscillations in structural and molecular properties. 

However, on a high level of abstraction, HF cycling can be studied without 

explicit reference to the exact molecular mechanisms that produce it. As a 

starting point to understand HF cycling, a rather abstract mathematical model 

was proposed; the follicular automaton model (FAM) (Halloy et al., 2000, Halloy 

et al., 2002). The FAM aimed to establish a model of the dynamics of human 

scalp hair to predict long-term changes of scalp hair growth and thus 

understand (and, ideally, predict) the manner by which different balding 

patterns occur (Figure 3.3). 

The FAM has generated useful formation on the dynamics of human hair 

cycling, with a level of abstraction that may be advantageous (Huang and 
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Wikswo, 2006). On a population level, the distribution of HFs in the skin 

provides a striking example of a self-organised spatio-temporal pattern and 

molecular detail is not required to demonstrate this. In addition, the model 

simulation of the evolution of hair patterns is hypothesis-stimulating i.e. the 

pattern of hair growth on the human scalp can be manipulated to elicit male-

pattern baldness, diffuse alopecia and “normal” hair growth (Figure 3.3). This 

provokes hypotheses about HF parameters such as ‘heterogeneous distribution 

of follicular parameters produces a diffuse pattern’ whereas ‘gradients in mean 

duration of anagen phase (e.g. from centre to periphery of the scalp) cause a 

central balding pattern’. The authors also determine that the independence of 

HFs and variability in the length of the anagen phase are major determinants of 

collective dynamics of human hair cycling. This model could be advanced, 

predictions tested, implemented and improved by including molecular signals 

and further refined by experimental data and hair cycle staging. Despite the 

limitations (see legend, Figure 3.3); this model is an elegant example of how 

combined experimental and theoretical methods can be optimally utilized to 

explore specific scientific problems (here: to provide a basis for long-term 

prognoses of human scalp hair growth in response to manipulations), make 

predictions and create new hypotheses. The dynamic behaviour of single HFs 

and HF populations can be approximated by a simple model (abstraction) and 

the FAM thus perfectly illustrates a classical systems biology approach to hair 

research. 
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Figure 3.3: Spatiotemporal simulations of the follicular automaton model showing 

different patterns of hair growth 

Experimental (phototrichogram) data collected over 14 years was used to approximate the 

distribution of durations of hair cycle stages in each HF for each patient by using a log normal 

distribution. The follicular automaton model of the hair cycle in human scalp hair was defined 

using the assumptions that (i) each follicle is independent; (ii) each follicle traverses the cycle in 

the order of anagen-telogen-latency phases; and (iii) after latency the follicle may either enter a 

new cycle or undergo death or miniaturisation. The figure shows the simulation of human scalp 

hair growth over “25 years” using the follicular automaton model and various parameters. The 

model demonstrates how different patterns of alopecia could be achieved by simulating of a 

population of HFs on a “scalp”. Alopecia was achieved by enforcing a limit on the total number of 

cycles each HF could traverse and by introducing a gradient in the mean anagen duration of HFs 

across the area of the “scalp”. (A) “Hair follicles” were arranged on a grid (“scalp”) with hair 

follicles programmed with different mean durations of the anagen phase across a gradient as 

shown in left column (decreasing mean from periphery of the “scalp” to the centre). The hair 

follicles were also programmed to “die” after a set number of cycles. The final hair pattern at 25 

years corresponds to a diffuse alopecia commonly seen in women. (B) As in A, but steeper gradient 

set across the scalp to produce more dramatic balding pattern in the centre. (C) Grid programmed 

with temporal conditions as well as central gradient to achieve typical male pattern baldness. The 

final hair pattern at 25 years corresponds to androgenetic alopecia (male pattern baldness) as 

shown in Figures 4B and 4C. This model has limitations, for example, the method by which data 

was collected (phototrichogram method) provides only approximate temporal information 

regarding the durations of hair cycle stages as these durations represent what is observed from the 

skin’s surface and provides no more specific information of the molecular and temporal changes at 

the HF (rather than scalp) level. The assumption that the results obtained with this method can 

relate quantitatively to the molecular timings of the human hair cycle is tentative. This is 

demonstrated, for example, by the fact that catagen (which lasts a few weeks in human scalp hair) 

is not captured using this method. Adapted after Halloy, J., et al., Modeling the dynamics of human 

hair cycles by a follicular automaton. Proceedings of the National Academy of Sciences of the 

United States of America, 2000. 97(15): p. 8328-33. Copyright 2000 
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3.4.4.2 Intra- and extra-follicular communication in hair follicle dynamics 

The HF exhibits emergent properties, i.e. properties that exist in complex 

systems that are not demonstrated by the components alone and cannot be 

predicted through understanding the separated parts. For example, 

understanding the properties of hydrogen and oxygen does not equate to 

understanding the properties of water (Aderem, 2005). The HF is an emergent 

organ; the group of cells comprising the HF do not function in the same way 

when isolated than when operating together within the mini-organ. For 

example, isolated DP cells will not produce a hair shaft (Tobin et al., 2003, Rendl 

et al., 2005).  

Recently, Plikus et al. have shown that adult pelage HFs in mice exhibit 

hair cycle domains (i.e. spatially distinct HF populations that cycle 

synchronously within a defined skin territory) (Plikus et al., 2008). These hair 

cycle domains show the propagation of regenerating HFs as wave patterns (Ma 

et al., 2003, Suzuki et al., 2003). (Figure 3.4). Through directed experimental 

techniques, spatial-temporal patterns in HF activity were directly linked to 

expression levels of the BMPs (Bmp2 and Bmp4) within hair cycle domains 

(Figure 3.4). Cyclic changes were found in Bmp2 and Bmp4 that were 

asynchronous to hair cyclic changes, WNT/β-catenin signalling and noggin (a 

BMP antagonist) expression.  

On the basis of these studies, the hair cycle was redefined (in the context 

of a population of HFs and the intra-follicular status of the skin (Plikus et al., 

2008)), from the traditional anagen, catagen and telogen stages, into functional 

phases of propagating anagen, autonomous anagen, refractory telogen and 

competent telogen (Figure 3.4). This study addresses the population dynamics 

of cycling murine HFs, i.e. the population behaviour of HFs to either propagate 

and cycle in waves or not. Human HFs, however, behave differently to murine 

HFs in that they do not exhibit hair cycle domains and behave independently 

and stochastically or at the very most, in follicular units (Jimenez and 

Ruifernández, 1999). This murine study cannot be extrapolated to explain the 

behaviour of human HFs as yet, however, it could be that a similar mechanism 
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may exist between follicular units rather than cycle domains, but there is as yet 

no evidence to support this idea. 

The functional phases of the hair cycle proposed in this study, in terms of 

ability to propagate a wave, can be used to define spatial-temporal relationships 

and controls within murine skin. Plikus et al. (Plikus et al., 2008) demonstrate 

that stem cell regeneration is subject to control of biological rhythm. This work 

shows how the intra-follicular clock communicates with intra-cutaneous (but 

extra-follicular) timing mechanisms and lend themselves to the quantification 

and mathematical modelling of BMPs, noggin, WNT and β-catenin levels as a 

function of time and thereby predict and elucidate their function in the hair 

cycle. 

Plikus et al. (Plikus et al., 2008) have managed to demonstrate that the 

emergent properties of HFs within its macro-environment are essential for 

explaining function. Moreover, this study is a fantastic example of how 

emergent properties and molecular, structural and temporal complexity are all 

involved in the process of cycling HFs. This provides yet further evidence that 

the HF is a classic systems biology tool.  

 

3.4.5 Algorithmic complexity of the cycling hair follicle 

Living organisms must be able to “compute” inputs and convert these to 

outputs. As an example, gene regulatory networks within cells process a signal 

e.g. hormone level (input) into gene expression patterns and cellular phenotype 

(outputs) (Table 3.1). The “computational centre” (HCC) that drives the hair 

cycle in the HF has not been identified (Paus and Foitzik, 2004). The existing 

theoretical models that simulate hair cycling (Halloy et al., 2000, Halloy et al., 

2002, Kolinko and Littler, 2000) do not model the “computations” of the HF 

during this process. A systems biology approach to hair cycling research should 

carefully identify the drivers of the hair cycle (internal computer or HCC) 

whereby inputs to the cycling HF are converted to the outputs; such as a hair 

shaft formation, regression of the HF, stem cell activation and HF regeneration 

and so on. In addition, we need to ensure that we have the computational means 



75 

 

to create models that can handle the complexity of such simulations (Huang and 

Wikswo, 2006). 

 

Figure 3.4: Emergent property of murine hair follicles in hair cycling domains and 

BMP signalling 

Employing a technique whereby murine dorsal skin was cut longitudinally and arranged spatially 

and temporally; in situ-hybridisation was carried out. These spatio-temporal experiments revealed 

how the propagation of hair cycle waves on the dorsum may arise. Spatio-temporal patterns in HF 

activity were directly linked to expression levels of the BMPs within hair cycle domains. Cyclic 

changes were found in Bmp2 and Bmp4 that were asynchronous to hair cyclic changes and that of 

WNT/β-catenin signalling; which is required for HF stem cell activation and thus hair 

regeneration. Noggin, a BMP antagonist, was found to be expressed in a similar pattern to WNT 

signalling.  The figure shows the schematic summary of the hair-cycle rhythm (in black) and the 

dermal rhythm (red) as defined by Plikus et al. Together, they define four new functional stages 

that correspond to the ability to propagate and respond to hair cycle propagation, these are 

functional phases of propagating anagen, autonomous anagen, refractory telogen and competent 

telogen. Refractory telogen is characterised by low noggin, high BMPs and low WNT signalling. 

Competent telogen is defined by low noggin, low BMPs whereas, during propagating anagen high 

noggin levels and low BMPs are found. Autonomous anagen is distinguished by the expression of 

high noggin and high BMPs. Catagen is omitted for simplification. 

Reprinted by permission from Macmillan Publishers Ltd: Nature, Plikus, M.V., et al., Cyclic dermal 

BMP signalling regulates stem cell activation during hair regeneration. Nature, 2008. 451(7176): 

p. 340-4. Copyright 2008. 
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3.5  PERSPECTIVES – TACKLING THE HUMAN HAIR CYCLE 

We have described how the HF is an ideal tool for systems biology research; 

being a unique mammalian feature, easily accessible, defined in form and 

function and able to address all the dimensions of living systems as an 

essentially autonomous mini-organ. It is evident that the dimensions of living 

systems overlap and are intertwined and the HF demonstrates this flawlessly, 

for example molecular changes in BMPs are co-ordinated with spatio-temporal 

changes in the propagation of hair cycle waves and associated structural 

alterations of HFs as they traverse the hair cycle (Plikus et al., 2008, Plikus et al., 

2009). 

Human hair cycle research highlights the intertwining pathways that are 

relevant in the regulation and function of a multi-cellular mini-organ. 

Interesting recent findings show that circadian genes are differentially 

expressed in anagen and catagen human HFs (Al-Nuaimi et al., 2009). The 

cycling HF is thus relevant to regenerative medicine researchers, 

chronobiologists and stem cell biologists to name but a few (Yu et al., 2008). We 

would hope that more comprehensive and dynamic analyses of the human hair 

cycle, via perturbation with siRNAs, for example, and microarray and protein 

analyses, with the concomitant use of mathematical modelling would be an 

important direction for human hair research and systems biologists alike and 

systems biology may make it more possible to unravel the mystery of the 

enigmatic HCC. This understanding could facilitate the development of novel 

therapeutic agents for the more effective management of common hair growth 

disorders.  

 

3.6 CONCLUSIONS 

In summary: 

 HF cycling in mice and man offers an excellent, clinically relevant, 

research model for systems biology and also stem cell, chronobiology, 

regenerative medicine and neuro-endocrinology research; 
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 The HF model deserves to be fully discovered by dermatological and 

systems biology research communities; 

 We propose that a systems biology approach to human HF cycling via the 

use of mathematical modelling coupled to experimental work would 

greatly further hair cycle research. 
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4 CHAPTER 4: AN INTRODUCTION TO 

DYNAMICAL SYSTEMS 
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4.1 ABSTRACT 

Dynamical systems theory is a field of applied mathematics used to construct 

and explore dynamical systems and is used as an important tool in systems 

biology research. In this chapter we describe essential features of a type of 

mathematical model used for the description of temporal biological processes; 

nonlinear ordinary differential equations. 

We present a tutorial-style exploration of the basic concepts and definitions of 

this field that are important in the context of this thesis. In order to demonstrate 

key principles, we provide a two dimensional non-linear system formulated in 

the style of apoptosis and proliferation driven cell population dynamics. Using 

this system we explore its key bifurcation structures and as such demonstrate 

mechanisms by which oscillations and bistability may arise. This chapter 

therefore serves as a point of reference for the following chapter detailing a 

theory of human hair follicle dynamics.  



80 

 

4.2 INTRODUCTION 

Dynamical systems theory is an applied mathematical field of study concerned 

with describing and exploring dynamical systems (Strogatz, 1994). These are 

mathematical formulations of complex interactions, referred to as mathematical 

models that can be investigated in terms of their evolution from a pre-defined 

starting point as time progresses. Often, the formulation is in terms of 

differential equations, so that the evolution of important system components 

(the variables) can be expressed as continuous changes with respect to time. 

Other possibilities are discrete mappings which describe the evolution as 

discrete updates with respect to time. In both of these cases the systems 

variables (measurable quantities) are assumed to be continuous, i.e. expressed 

as real numbers. On a more abstract level of description, when both the time 

and the variables are updated in a discrete way, one speaks of cellular automata. 

In formulating interactions in these or other ways and examining the behaviour 

of the models, we learn about the mechanisms involved in the real-world 

counterpart of the mathematical system. This approach has interdisciplinary 

applications and is an essential tool in understanding and analysing complex 

systems in systems biology (Klipp et al., 2009). Here, we describe essential 

features of the most basic type of mathematical models used for the description 

of temporal biological processes, the nonlinear ordinary differential equations. 

4.3 USE OF DYNAMICAL SYSTEMS IN THE THESIS 

In the present context, an important feature of the HF is its ability to display 

characteristic dynamics, which at the macroscopic scale is observed by the 

rhythmic regeneration and regression of the HF known as the hair cycle. 

Crucially, most hair disorders of clinical interest are thought to be defined by 

abnormalities in these dynamics (Paus, 2006, Paus et al., 1999a). In addition, the 

mechanisms leading to normal or abnormal rhythms in the HF are unknown. 

The formulation and investigation of a mechanistic mathematical model of the 



81 

 

HF dynamics can therefore inform on the mechanisms underlying these 

rhythms.  

For an expanded motivation of the use of dynamical systems to develop a 

prototypic model of the HF oscillations the reader is referred to Chapter 5. In 

what follows, we give a brief overview relating to terminology and concepts 

used in Chapter 5. The reader may refer to (Strogatz, 1994) for a more 

comprehensive guide to non-linear dynamics.  

4.4 A BRIEF EXPLANATION OF DIFFERENTIAL EQUATIONS AND RELATED 

DYNAMICS 

Ordinary differential equations (ODEs) are concerned with systems’ evolution 

in continuous time, as opposed to discrete-time difference equations. Although 

HF cycling is often verbally described in terms of distinct stages, the 

morphological processes and observations are continuous on the macroscopic 

level. Therefore, we try to capture the dynamics of the HF in continuous time 

using a model composed of systems of ordinary differential equations. In this 

framework, key variables in the system are identified. These are the 

components of the system that change within the time scale of interest and that 

reflect the mechanisms that we are interested in. These are either directly 

measurable or indirectly related to measurable quantities and as such form the 

link between model and experimental data. The population of keratinocytes in 

the human HF is an example of an important variable in relation to the hair 

cycle (see Chapter 5). A mathematical model is formulated by relating how the 

selected variables change over time with regards to key interactions between 

variables (see Equation (1)). Therefore, the model is a formulation of the 

mechanisms of interest. When the output of the model is compared to data from 

the real system inference regarding these mechanisms can be made.  

 

  

  
               (1) 
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Equation (1) gives a general formulation for the ODE. Variables are represented 

by the vector x, and one can see in equation (1) that their changes over time 

(expressed as first-order derivatives with respect to time) at a given temporal 

instance are defined by some function (f) of their respective values at that time. 

The interactions specified by the ODE also contain static quantities known as 

parameters (µ). These capture quantitative effects that do not vary on the time 

scale of interest and might include, for example, the rate of increase of a 

population due to intrinsic, un-modelled processes or the weighting given to the 

interaction between two variables.  

The number of variables in the vector x, determines the dimension of the 

system. f is a function that defines the interactions of the system and its 

evolution in time. Given the variables, parameters and evolution equations (f), 

the final ingredient of the mathematical model is its initial condition. This 

specifies the value of all variables at t=0 and determines a unique trajectory as 

time evolves. The trajectory is composed of the subsequent values of x at all 

time points, i.e. x(t), t>=0. One can visualise the trajectory of the system as a 

time series plot with time on the abscissa. Alternatively, one can plot values of 

variables against each other. This gives a view of the phase space (or state space) 

of the system (see figures below). The phase space is the set of all points the 

system can possibly take, and is therefore of dimension equal to that of x. A 

vector field describes the direction of flow of the system at each point in space 

and is usually visualised by arrows pointing in this direction and with size 

representing the magnitude of velocity (see figures below).  

In general, if f was linear, the system could either evolve to a fixed point 

or blow up to infinity. Fixed points are solutions to          and therefore 

represent points at which the trajectory no longer changes over time (hence 

fixed point or steady state). Describing the number and location of fixed points 

is an important first step to characterising a dynamical system. In addition, one 

should know the stability of a fixed point. Stable fixed points attract nearby 
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trajectories such that if one is perturbed away from the fixed point, the system 

will eventually evolve back to that point. Unstable fixed points on the other hand 

are those at which nearby regions of phase space diverge, such that a 

perturbation of the system away from this point causes the trajectory to evolve 

to a different region of phase space. Unstable fixed points are thus not 

observable experimentally. An additional class of (unstable) fixed point is the 

saddle, which has both stable and unstable properties depending on the 

direction of perturbation away from it.  

In addition to fixed points, non-linear dynamical systems (where f is a 

non-linear function of x) can display more complex structures to which the 

trajectory is attracted or repelled from. Stable limit cycles, for example, are 

closed loops in phase space to which the system is attracted and will stay upon 

as time evolves, resulting in periodic or oscillatory behaviour. Similarly as 

above, unstable limit cycles are oscillations on which the system can evolve, but 

will deviate from if perturbed by an arbitrarily small amount. They are thus 

experimentally unobservable as are unstable fixed points. Their knowledge is 

nevertheless of interest as they play a role in ordering phase space structure. 

In general, a dynamical system can be qualitatively described by its 

number of structures (fixed points and limit cycles, see below) and their 

stability. In the first instance, we can explore the stable solutions of the model as 

these will provide an indication of how the equivalent real life system may 

behave. Stable structures can be found by numerical simulation of the equations 

using algorithms that approximate x given previous values and knowledge of f 

(in this thesis the MATLAB “ODE45” solver is used).  

Therefore, an initial pertinent description or exploration of the model 

dynamics can be found by simulating the system for different values of 

parameters. When one plots the outcome of these simulations (for example by 

extracting values of fixed points or the maxima and minima of oscillations) a 

bifurcation diagram is formed. This can be a useful technique in general but is 

especially important when model parameters cannot be determined 
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experimentally. This case frequently arises if abstractions of important 

processes are considered (which is generally the case in biology) or if 

experimental techniques do not facilitate the quantitative evaluation of their 

associated parameters. In these cases, the relative effect of these processes can 

be determined by examining the dynamics of the system over changes in its 

parameters. 

As the parameters,  , vary a bifurcation is said to occur if the qualitative 

characteristics of the system change. A bifurcation point is the point where 

specific parameter values are seen to produce the change. Thus, bifurcations can 

model, for example, the emergence of rhythms as a stable fixed point loses 

stability and forms a stable limit cycle. This is the scenario of a very common 

bifurcation known as the Hopf bifurcation and is a classic way for a dynamical 

system to generate oscillations.  

In order to demonstrate some of these important concepts, we introduce 

a simplified two dimensional system, which retains some of the properties of 

the HF model referred to in Chapter 5. The ODE and parameter set are given as 

follows:  

    
  

  
    

  

     
  

        

           
   

   (2) 

    
  

  
        

 

Table 4.1: Parameter set for example ODE 

Parameter a b c d e k Km1 Km2 Ca 

Value 0.1 0.1 Varies 0.7 0.02 2 0.1 0.1 Varies 

 

In relation to the previous notation x = (x, y), µ = (a, b, c, d, e, k, Km1, 

Km2, Ca) and f = (f1, f2). The system is two dimensional since there are two 

variables of interest. Seven parameters, the functional form of f and the set of 

initial conditions x(0) specify a solution to this system of ODEs.  
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In the first line of eq. (1) (variable x) there are two terms with positive 

sign that describe processes leading to the growth of the population (positive 

rate of change) and two processes with negative sign that describe processes 

leading to the decay of the population (negative rate of change). One of the 

growth terms is just a constant and therefore independent of variable x. The 

other growth term depends on x in a hyperbolic fashion and is therefore 

nonlinear. One of the decay terms depends on x linearly. The other decay term 

depends on x in a more complex fashion. The qualitative shape of the function is 

determined by the value assigned to parameter k. The second equation has no 

specific interpretation, it is meant to represent some other process which 

depends on the state of the population x. It can also be thought of as a 

condensed way of representing all other processes that depend on the state of 

the population.  

When Ca =0, the equation for variable x only depends on parameters and 

x itself and is said to be independent of the state of the other variable, y. As the 

evolution of y is assumed to depend on x (see equation for y), whenever one 

chooses to set Ca >0, the two variables compose a system of interwoven 

dependencies. Parameter Ca can thus be said to represent the strength of 

coupling or feedback of y on x. Mathematically then, one way of investigating the 

model is to first look at the equation for the population x in isolation (Ca =0), 

and then compare this to the dynamics of the full model with feedback Ca >0.  

With the parameter set described above 

Table 4.1) including Ca =0 and c=1.8, our simple system has two fixed points, 

one stable and one unstable. The stable and unstable fixed points can be seen in 

the following phase space diagram (Top panel, Figure 4.1):  
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Figure 4.1: Phase space diagram. 

Phase space diagram of model as detailed in Equation (2) with Ca=0 and c=1.8. Open circle 

indicates unstable fixed point and the full circle a stable fixed point. Bottom panel shows a plot of 

f1 over a range of x. Red arrows indicate the direction of flow with respect to x.  

 

In Figure 4.1 the two dimensional space is plotted in which the system 

resides. The arrows indicated on the upper panel of this figure constitute the 

vector field which describes the magnitude and direction of the change (or flow) 

of the system at each point in phase space. One can see that the vector field 

points towards the stable fixed point if approached from any direction. One can 

extract information regarding the flow in the x and y directions by examining 

the solutions to f1=0 and f2=0. In our simple system, f2=0 simply requires x=y. 

This is plotted as a nullcline on the figure (dashed line y=x). Information 

regarding direction of flow with respect to x is extracted from f1=0 which is 

plotted in the bottom panel of Figure 4.1. Note that in this case, f1 is independent 
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from y since Ca=0. Fixed points are located where both f1=0 and f2=0 and can be 

seen on the figure. The red arrows in the bottom panel indicate that when f1>0 

the direction of travel is in increasing x and vice versa for f2<0.  

Some example trajectories are given for different initial conditions as 

thin blue lines. It can be seen that in each case the system converges to the 

stable fixed point at (x,y)=(18.5,18.5). This is also demonstrated in the time 

series of the two variables, as shown in Figure 4.2. Note that the two variables 

assume identical final values due to the specific construction of the equation for 

y. In general their final values will differ. 

 

Figure 4.2: Time series of x and y simulated from random initial conditions.  

 

The stability of fixed points in our example were calculated by 

determining the eigenvalues of the Jacobian matrix of the system. The Jacobian 

is the matrix formed by all partial second derivatives of the system, which in our 

example gives: 

   

   
   

   
  

   
   

   
  

  

The eigenvalues, λ, of J are given as solutions to the following equation:  

      

and in practice are determined using: 

             

A fixed point is stable when all eigenvalues satisfy Re(λ) <0 and unstable 

if any of the eigenvalues satisfy Re(λ) >0. Here Re() refers to extracting the real 
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part of λ. When Re(λ)=0, conclusions on stability cannot be drawn from this 

method. In particular, Re(λ)=0 defines the point of bifurcation where the 

stability of a fixed point changes. 

In Figure 4.3 we demonstrate the presence of stable and unstable fixed 

points for our system eq. (2) in a bifurcation diagram. In this case, we set Ca =0 

and track the system behaviour over changes in c. We note that since the 

variable, x, in this system is analogous to a cell population density in Chapter 5, 

we limit solutions to those satisfying x >=0.  It can be seen that as parameter c 

changes, the number of stable and unstable fixed points, as well as their value, 

can change. We note the presence of bistability in this model when 0.4  c  1.4, 

which means that the system can evolve to one of two stable fixed points. The 

fate of the system, in terms of which of these fixed points it is attracted to, is 

determined by the initial conditions. Each stable fixed point has a basin of 

attraction. Any initial condition within the basin of attraction of a fixed point 

will evolve towards that fixed point as time progresses. In our case, the 

boundary between the basins of the two fixed points in the bistable region is 

given by the unstable fixed point between them (dotted line in Figure 4.3). 

 

Figure 4.3: Bifurcation diagram showing fixed points in the model with Ca = 0.  

Solid lines indicate stable points and dotted line indicates unstable points. There is bistability 

shown between approx. 0.4 and1.4 (values of c) 
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When we set Ca to 1 in the model system, oscillations can be produced. 

We demonstrate this in the bifurcation diagram below (Figure 4.4), again for 

changes in c.  

 

Figure 4.4: Bifurcation diagram for the model with Ca = 1 showing changes over c.  

Inset gives a close up of the oscillatory region between c = 1.93 and 2.04 

 

The oscillations are found in the range 1.93  c  2.035. The two time 

series of an oscillation at a given value of c are shown below (Figure 4.5):  

 

 

Figure 4.5:  Time series for the model where Ca = 1 and c=2.  
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In the phase space diagram below, we can see that at the parameter set 

of Figure 4.6, the trajectories of the system converge to the stable limit cycle 

shown as a thick black line. Thus the system oscillates indefinitely as time 

progresses. However, the stable fixed point near (10, 10) persists indicating that 

here the system is bistable between a fixed point and a limit cycle. This will be 

discussed below.  

 

 

Figure 4.6: Phase space diagram for the model where Ca = 1 

 

The details of the dynamics can be understood by considering the 

bifurcations in the model. As can be seen in Figure 4.4, its dynamics over 

changes in c present two important branches of fixed points. A contributing 

factor to the generation of the stable limit cycle, which exists for 1.93  c  

2.035, is the sub-critical Hopf bifurcation on the top branch at c=1.91. This 

bifurcation describes the transition from an unstable focus to a stable focus as 
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the real part of the pair of complex eigenvalues becomes negative. The term 

focus here refers to a fixed point whose eigenvalues have non-zero imaginary 

part, and leads to damped oscillatory dynamics in the vicinity of the fixed point 

if the fixed if it is stable. The transition in the eigenvalues of this focus can be 

seen in Figure 4.7 (the zero-crossing of the real part in the top panel; the 

transition from empty circles to filled circles in the bottom panel). As the focus 

gains stability, an unstable limit cycle emerges around it (shown in red in Figure 

4.8). The transition thus constitutes a so-called subcritical Hopf bifurcation. (In 

contrast, in a supercritical Hopf bifurcation a stable limit cycle is generated). 

Crucially, this unstable limit cycle separates the phase space of the system such 

that just next to the bifurcation point the two fixed points can now co-exist. The 

unstable limit cycle is therefore referred to as a separatrix, and the system is 

said to be bistable because one can observe either state for the same setting of 

parameters. The details of this bistability are shown in Figure 4.8.  

 

Figure 4.7: Eigenvalues of the fixed point on the top branch over changes in c  

(compare to the inset of Figure 4.4). At c=1.91 the fixed point gains stability in a sub-critical Hopf 

bifurcation as the complex eigenvalues cross the real axis. Top panel: changes in the real part of 

the eigenvalues over c. The horizontal dashed line is drawn at Re(lambda)=0. Middle panel: the 

imaginary components do not vary with c. Bottom panel shows the change in stability of the fixed 

point – open circle is unstable and closed circle is stable. 



92 

 

 

Figure 4.8: Bistability in the model with c=1.925.  

The panels show x and y nullclines (solid and broken black lines, respectively), stable and unstable 

fixed points (solid and open black circles, respectively), unstable limit cycle (broken red line) and 

example trajectories from different initial conditions (blue lines). The left panel shows all 

structures of interest, whereas the right panel shows a close-up of the different behaviours at either 

side of the separatrix. 

 

Then, as c is increased slightly, the stable fixed point on the bottom 

branch loses stability, as shown in Figure 4.9 (the zero-crossing of the real part 

in the top panel; the transition from filled to empty circles in the bottom panel).. 

As the eigenvalues of this fixed point are complex at the moment of transition, 

this constitutes a supercritical Hopf bifurcation. 
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Figure 4.9: Eigenvalues of the stable fixed point on the bottom branch.  

Top panel: real part which goes positive at c=1.93, leading to instability of the fixed point. Middle 

panel: imaginary part of the eigenvalues indicating the node temporarily becomes a focus. Bottom 

panel: location of the fixed point. Note that the fixed point disappears before c=2.05 (due to 

collision with the other unstable fixed point) 

 

This loss of stability of the fixed point on the bottom branch means that 

the two stable structures remaining are the stable limit cycle and the stable 

fixed point at the centre of the unstable limit cycle.  

The offset of oscillations at c=2.035 can also be explained. This is due to a 

fold bifurcation of limit cycles. This is closely related to an important bifurcation 

of fixed points, known as the fold bifurcation, or saddle-node bifurcation. This 

bifurcation occurs when two fixed points, one a saddle and one a node collide 

and annihilate each other. Similarly, limit cycles can collide as they grow or 

shrink with changes in the system parameters. In our system, as c increases, the 

unstable limit cycle around the stable fixed point on the top branch grows 

outwards and eventually (at c=2.035) collides with the stable limit cycle. This 
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annihilates both limit cycles leaving only the stable fixed point on the top 

branch remaining. This transition is demonstrated in Figure 4.10. 

 

Figure 4.10: Fold bifurcation of limit cycles.  

Shown are stable and unstable structures, together with nullclines for increasing c (from left panel 

to right panel). The stable limit cycle is shown in thick black lines and unstable limit cycle in broken 

red lines. Stable and unstable fixed points are solid and open black circles, respectively. A trajectory 

in the right panel is shown as a solid blue line.  

 

In general, a fixed point in the model relates to a stable situation in the 

real-world analogue, which in our case might be, for example, a keratinocyte 

population neither growing nor shrinking. In the region of oscillatory behaviour, 

however, the model predicts a periodically growing and shrinking population. 

As the analysis shows, this latter behaviour is only possible when one of the 

model’s fixed points becomes unstable. Thus, bifurcation analysis yields the 

conditions under which cycling (or rhythmic) behaviour can be expected. 

Following this brief introduction to dynamical systems we shall in the 

next chapter present the mathematical model of the human HF cycling. 
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5 CHAPTER 5:  A PROTOTYPIC MATHEMATICAL 

MODEL OF THE HUMAN HAIR CYCLE 
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5.1 ABSTRACT 

 

The human hair cycle is a complex, dynamic organ-transformation process 

during which the hair follicle (HF) repetitively progresses from a growth 

phase (anagen) to a rapid apoptosis-driven involution (catagen) and 

finally a relative quiescent phase (telogen) before returning to anagen. At 

present no theory satisfactorily explains the origin of the hair cycle 

rhythm. Based on experimental evidence we here propose a prototypic 

model that focuses on the dynamics of hair matrix keratinocytes. We argue 

that a plausible feedback-control structure between two key 

compartments (matrix keratinocytes and dermal papilla) leads to 

dynamic instabilities in the population dynamics resulting in rhythmic 

hair growth. The underlying oscillation consists of an autonomous 

switching between two quasi-steady states. Additional features of the 

model like bistability and excitability lead to new hypotheses about the 

impact of interventions on hair growth. We show how in silico testing may 

facilitate testing of candidate hair growth modulatory agents in human HF 

organ culture or in clinical trials. 
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5.2 INTRODUCTION 

The HF is unique to mammals and displays fascinating dynamic behaviour in the 

hair cycle. This cutaneous mini-organ undergoes continuous, self-organised, 

cyclical regeneration and regression events during which a pigmented hair shaft 

is produced and shed during each cycle. The hair cycle is the only organ 

transformation event that repeats cyclically for the entire lifetime of the 

mammalian individual. It represents a unique chronobiological rhythm that 

encompasses a complex set of changes at the tissue level. In addition, it shows 

diverse rhythmicity, dependent on where exactly on the integument a HF is 

located (e.g. scalp versus eyelashes versus eyebrow hair) (Dawber, 1997). The 

“control” system that governs the hair cycle is proposed to be an autonomous 

oscillator (Paus and Foitzik, 2004, Paus et al., 1999a). Its exact constituents, 

however, have essentially remained elusive. 

HF cycling commences immediately after HF morphogenesis and consists 

of three main phases: anagen, a phase of massive epithelial cell proliferation, 

during which pigmented hair shafts are generated in the anagen hair bulb; 

catagen, a phase of rapid, apoptosis-driven organ involution; and telogen, an 

interspersed stage of relative quiescence (Stenn and Paus, 2001, Paus and 

Foitzik, 2004, Schneider et al., 2009). Active hair shaft shedding occurs during 

exogen (Higgins et al., 2009, Milner et al., 2002). Each phase in the cycle is of 

distinct length (e.g. with anagen lasting several years, catagen several weeks, 

and telogen usually a few months in human scalp HFs). All human HFs show 

major site-specific variations in the length of each of these phases (Saitoh et al., 

1970, Kligman, 1959).  

Hair cycling is of clinical relevance as the majority of hair disorders are 

characterised by a pathological change in normal HF cycling dynamics 

(Cotsarelis and Millar, 2001, Paus, 2006). If anagen is abrogated and catagen 

induced prematurely, this will result in hair loss (effluvium). In contrast, when 

anagen is induced prematurely or lasts overly long, this leads to unwanted hair 

growth (hirsutism, hypertrichosis). In addition, dramatic transformations in HF 

size and state can occur during just one hair cycle, which may underlie the HF 
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transformation events seen when very small (vellus) HFs become large, or very 

large HF miniaturise during hirsutism, hypertrichosis or androgenetic alopecia, 

respectively (Tobin et al., 2003, Stenn and Paus, 2001, Paus and Foitzik, 2004, 

Schneider et al., 2009). 

Over the years, a multitude of genes, secreted molecules, enzymes and 

receptors have been identified that modulate HF cycling, hair shaft growth and 

hair pigmentation (Stenn et al., 1994, Stenn and Paus, 2001, Schneider et al., 

2009, Plikus et al., 2009, Geyfman and Andersen, 2010). It is the general 

consensus that controlled changes in the expression, secretion or activity of 

these molecules leads to switches in the local signalling environment, which 

ultimately drive the HF through its cyclic transformations (Paus and Foitzik, 

2004). However, we remain unsure of the “pacemaker(s)” that autonomously 

govern the coordinated and timely progression of the whole organ through the 

hair cycle (Paus et al., 1999a, Paus and Foitzik, 2004).  

5.3 THE “HAIR CYCLE CLOCK” 

The need to explain the origin of hair cycling was first systematically addressed 

over half a century ago by Chase who proposed an inhibition-disinhibition 

theory of how the hair cycle rhythm arises (Chase, 1954). More recently, this 

hair research challenge has been re-examined as an important, as yet 

unanswered, biological problem of general importance (Stenn et al., 1999, Paus 

et al., 1999a, Paus and Foitzik, 2004).  

Mathematical modelling may be employed to construct and test a theory 

of where the cyclic transformation activity of the human HF originates and how 

it is controlled. Unlike other biological cycles, such as the cell cycle and the 

circadian rhythm, the hair cycle is comparatively unchartered territory in the 

mathematical modelling arena. However, a small number of mathematical 

models concerned with hair growth, cycling, or the synchronisation of cycling 

between larger HF collectives (hair waves) have been proposed (Halloy et al., 

2000, Halloy et al., 2002, Nagorcka and Mooney, 1982, Kolinko and Littler, 2000, 

Golichenkova and Doronin, 2008, Plikus et al., 2011). 
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Nagorcka and Mooney mathematically modelled the differentiation of 

wool and mammalian hair shaft during anagen, but did not address the cyclical 

processing of the human HF (Nagorcka and Mooney, 1982).  Similarly, mouse 

hair shaft growth was modelled with respect to theoretical proliferative activity 

of MKs (Golichenkova and Doronin, 2008). A cellular automaton model has been 

adopted to both simulate and predict the dynamics of populations of human 

(Halloy et al., 2000, Halloy et al., 2002) and mammalian HFs (stem cell 

activation) (Plikus et al., 2011). A statistical model of human hair cycle laser 

treatment has been created that was namely concerned with predicting optimal 

timing for laser hair removal (Kolinko and Littler, 2000).  

The existing models either concentrate solely on hair growth (i.e. hair 

shaft formation) or relate primarily to highly synchronized hair wave pattern 

formation in rodents. Although it has been shown that the human HF relies most 

heavily on its intrinsic processes to cycle (Plikus et al., 2011), none of the 

existing models address the intrinsic processes within the human HF that may 

explain the fundamental nature of the hair cycle rhythm. As a consequence, a 

persuasive mechanistic theory of how the human hair cycle is induced and 

maintained is still missing. 

In the current contribution, we aim to outline a dynamical systems 

theory of the human hair cycle using mathematical modelling. We address the 

above question from the point of view that a dynamical instability underlies 

human HF cycling. 

5.4 MODEL DESIGN 

No molecules, genes or individual cells have as yet been identified as being the 

“pacemaker(s)” for the hair cycle rhythm. Here, we propose an abstraction from 

the consideration of the vast number of specific genes, molecules, interlinking 

pathways and cell-cell interactions that may potentially be involved in HF 

cycling. We begin by detailing basic criteria that a plausible hair cycle theory 

should meet and then define the key dynamic features that characterise the hair 

cycle. This ultimately leads us to a simple but prototypic mathematical model of 

human HF cycling. 



100 

 

5.5 ESSENTIAL FEATURES OF A GOOD HUMAN HAIR CYCLE THEORY 

A satisfactory theory of the human HF cycle should be able to explain, firstly, the 

autonomy of the cycle. It is particularly apparent that in the human HF the 

“oscillator system” governing the hair cycle rhythm is located in the HF itself. 

This is supported, for example, by the maintenance of location specific hair cycle 

features in transplantation surgery. A second key feature of a hair cycle theory 

should explain its unique rhythmicity i.e. a long anagen phase, extremely rapid 

catagen stage and relatively short telogen phase. Thirdly, the central role of the 

HF mesenchyme (DP and proximal CTS) in hair cycle control must be 

incorporated and explained (Paus et al., 1999a, Paus and Foitzik, 2004).  

Another important aspect that the theory should address in human hair cycling 

is the diverse periodicity seen in vivo between different HFs (for example how 

HFs located in anatomically different sites may come to vary). Lastly, a 

satisfactory theory of the hair cycle should address or be able to hypotheses as 

to how HFs might respond to specific treatment and how known hair disorders 

may arise from the normal healthy HF cycle. 

 

5.6 IDENTIFYING THE KEY PROCESSES AND DYNAMICAL CHANGES IN 

THE HAIR CYCLE 

The HF is a highly dynamic mini-organ in which multiple distinct cell 

populations that originate from mesoderm or (neuro-)ectoderm intimately 

interact in a precisely coordinated fashion in order to temporarily and 

rhythmically generate a (usually pigmented) hair shaft. The HF is 

predominantly constituted by epithelial cells, whose activities are controlled by 

specialised mesenchymal cells, i.e. inductive fibroblasts of the DP and the CTS. 

Jointly, these epithelial and mesenchymal cell populations control the activity of 

neural crest-derived, specialised melanocytes of the HF pigmentary unit (HFPU) 

(Schneider et al., 2009, Tobin, 2011). All three interacting cell populations arise 

from and are replenished by epithelial (or melanocyte) stem cells that are 
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mainly located in the so-called bulge region or secondary hair germ, or from 

stem cells located in the HF mesenchyme. 

Dramatic structural changes, inextricably linked to a dynamic 

redistribution of cell populations, occur in the HF as it processes cyclically 

through the three stages of the hair cycle after morphogenesis 

(catagentelogenanagen catagen) (Paus and Foitzik, 2004). In order to 

establish the core events that may be responsible for the hair cycle rhythm, the 

necessary cell populations, processes and interactions characterising the major 

cyclical HF transformations must be defined. A summary of these features 

during each hair cycle phase is provided in Table 5.1. Where available, estimates 

of population numbers are given. The bulge region and the secondary hair germ 

of the HF houses epidermal stem cells. Approximately 100-200 stem cells are 

located in the bulge of mouse pelage HFs. Proliferation of these epithelial stem 

cells occurs during late telogen and early anagen probably following activation 

by DP fibroblasts (Zhang et al., 2010, Waghmare et al., 2008, Ito et al., 2004, 

Greco et al., 2009). The stem cell progeny (transient amplifying cells (TACs)) 

proliferate to create the ORS, IRS and hair matrix (Ito et al., 2004, Zhang et al., 

2009). It is not clear at present whether these processes of proliferation and 

migration cause the number of stem cells to increase during the hair cycle or 

whether this activity leads to the production of semi-differentiated cells (TACs) 

to maintain the stem cell niche at an approximately stable number (Zhang et al., 

2009, Wilson et al., 1994, Ito et al., 2004, Lavker et al., 2003) (see Table 5.1 and 

Figure 5.1) Apoptosis has a negligible role in the stem cell niches and these cells 

are spared from the extensive apoptosis that characterises catagen. This 

preserves a cell pool that remains permanently available for HF regeneration (if 

epithelial HF stem cells get depleted, this results in scarring alopecia) (Harries 

and Paus, 2010).Therefore, an important tenet for the design of the hair cycle 

model is the assumption that the stem cell population within its niche remains 

largely constant and serves as a permanent pool for hair MKs and the HF 

(Figure 5.1).  
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Figure 5.1: Dynamic profiles of populations in the hair follicle 

Each cell population exhibits a unique dynamic profile in line with stages of the hair cycle. Anagen 

(A), catagen (C) and telogen (T). The figure shows an anagen hair follicle. Dynamic profiles are 

estimates of population dynamics of several core hair follicle cell populations obtained from the 

available evidence. The schemas depict the size of each population during each cycle stage. This 

investigation into the hair cycle on the population level summaries the behaviour from a 

compartmentalised viewpoint. In this model, we focus on the hair matrix keratinocytes (which at 

numbers close to zero also captures hair germ cells in this compartment). The matrix keratinocytes 

population is able to capture, in the simplest form, the core events of remodelling, regression and 

rest during the hair cycle. In addition, the matrix keratinocytes directly supply hair shaft cells 

(trichocytes). 

 

MKs arise from the differentiation of TACs, which themselves arise from 

stem cells the number of MKs differs greatly during the hair cycle (Table 5.1). 

During anagen, MKs undergo rapid proliferation and then terminally 

differentiate into various epithelial lineages that form the hair shaft and the IRS. 

The ORS appears to be largely generated by the immediate progeny of the TACs 

that have arisen from HF epithelial stem cells in the bulge (Panteleyev et al., 
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2001, Ito et al., 2004). When MK cells proliferate they do so to replace those that 

have already undergone terminal differentiation into the hair shaft and IRS 

Figure 5.1. Thus, another important tenet of our hair cycle theory is that the 

population size of MKs determines the size cell population available for hair 

shaft and IRS production.  

In adult human scalp skin, hair shaft production follows an 

approximately linear growth pattern in vivo, with the hair shaft thinning at the 

end of anagen (Ibrahim and Wright, 1982). Even microdissected and amputated 

hair bulbs of terminal human scalp HFs in anagen VI demonstrate the same hair 

shaft production speed as the living human scalp (Philpott et al., 1990). In 

Figure 5.2, we demonstrate the hair shaft elongation rate of anagen scalp HFs 

isolated from 18 different human individuals, whereby the linearity of hair shaft 

production is shown. Therefore, our mathematical model proposed below aims 

to produce a similar, approximately linear, human hair growth pattern. 

However, while hair shaft formation is linear, HF cycling is not. Each hair cycle 

phase is of very divergent length (for example, lasting weeks in catagen to years 

in anagen in human terminal scalp HFs).  

Catagen heralds the complete elimination of MK cells via apoptosis. The 

population remains at or near zero during telogen until the onset of the next 

anagen phase. When MKs undergo apoptosis in catagen, the supply of cells to 

the hair shaft is interrupted and hair production ceases. Very early during the 

anagen-catagen transformation, intrafollicular melanogenesis and all 

melanosome-based transfer of melanin from HFPU melanocytes into future hair 

shaft keratinocytes (trichocytes) is abruptly terminated (Slominski et al., 2005, 

Tobin et al., 1998, Tobin, 2011). As a result, the old hair shaft from the 

preceding anagen phase is transformed into a so-called “club hair”, whose 

proximal end is non-pigmented. This club hair is subsequently shed during 

exogen or is pushed out by the new hair shaft that is generated in the next 

anagen phase (Higgins et al., 2009). 

 



104 

 

 

Figure 5.2: Elongation of human hair follicles in organ culture 

Human hair follicle elongation data obtained from 18 patients (each patient is shown as the light 

grey lines) and the average percentage elongation of the 18 patients is shown by the thick black 

line. 

 

The dynamics of the MK cell population encompasses all key 

phenomenological cyclical events of a) hair production during anagen, b) 

cessation of hair production during catagen and telogen, and c) production of a 

new hair with each anagen phase. MK apoptosis during the catagen phase 

results in involution of the lower two thirds of the HF whereas MK proliferation 

during anagen represents a key event of cyclical HF regeneration. Since MKs 

produce hair via anagen-coupled terminal differentiation, the dynamics of the 

MK population have a crucial role in abnormalities such as hair loss, which are 

understood to be pathologies of HF dynamics (Paus et al., 1999a, Paus, 2006). 

Therefore, the MK population shows the most overt and dramatic changes of 

cell populations within the HF with proliferation, differentiation and apoptosis 

identified as key processes dictating these changes (Figure 5.1 and Table 1). In 

addition, MKs are extremely sensitive to damage (e.g. by drugs, reactive oxygen 

species, radiation, inflammatory mediators, metabolic and hormonal 
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abnormalities) and thus play a crucial role in multiple different hair loss 

disorders (Bodó et al., 2010, Paus, 2006). Therefore, we identify MKs as an 

excellent cell population to focus on when developing a simple mathematical 

model of HF cycling that operates at the level of tissue level dynamics. 

The CTS and the DP constitute the HF mesenchyme, without which 

proper HF morphogenesis and cycling are impossible. Indeed, inductive signals 

from CTS and DP fibroblasts are essential for the epithelial-mesenchymal 

crosstalk that drives HF cycling (Botchkarev and Kishimoto, 2003, Yang and 

Cotsarelis, 2010). The DP sits in the centre of the hair bulb and is directly 

connected to the CTS by the dermal stalk, with MKs enveloping the DP from all 

sides during anagen (Figure 5.1). A special, dynamically remodelled basement 

membrane separates MK and DP cells and is needed for proper epithelial-

mesenchymal communication in the HF (Link et al., 1990). The unique nature of 

the bi-directional communication between these two cell populations is evident 

from the fact that this membrane becomes fenestrated during anagen and that 

DP fibroblasts have cell processes that protrude into the innermost layer of the 

hair matrix (Matsuzaki and Yoshizato, 1998, Stenn and Paus, 2001, Nutbrown 

and Randall, 1995). Without fully functional bi-directional communication 

between MKs and DP cells HF cycling becomes grossly disturbed and eventually 

ceases altogether; if the disturbance persists, HFs become dystrophic and 

eventually disappear. 

The dynamics of the DP are mainly determined by bi-directional, hair 

cycle-dependent fibroblast migration between the DP and the proximal CTS 

(Table 5.1) (Tobin et al., 2003). Under physiological conditions, there is 

extremely little, if any apoptosis in the DP during the hair cycle, even in catagen 

and even under conditions that induce massive MK apoptosis (such as 

chemotherapy (Lindner et al., 1997)).  Also, fibroblast proliferation within the 

DP is a rare event and may essentially be limited to a narrow window during 

anagen development (Tobin et al., 2003, Paus and Foitzik, 2004). 

Therefore, as MK-DP cell interactions are undoubtedly crucial for normal 

HF cycling, signals emanating between the two compartments need to be 
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incorporated in the model. However, for simplicity’s sake, DP cell numbers shall 

not be explicitly modelled. 

To summarise, the hair cycle in man (and all other hair-bearing 

mammals) is underpinned by dynamic changes at the level of defined 

populations. Among these, MKs are an important cell population on whose 

analysis a theory of HF cycling can be based. This is since MK dynamics most 

perfectly reflect all key phenomena that underlie HF cycling, i.e. rhythmic 

changes in i) proliferation, ii) apoptosis, and iii) differentiation. In addition, 

since communication between e MK with the mesenchymal HF is essential for 

hair cycling, our attempt of a dynamical theory of human HF cycling will be 

based on a mechanistic mathematical description of MK cell numbers (changes 

in which result from MK proliferation, terminal differentiation or apoptosis) 

supported by communication with the DP (Figure 5.3). By highlighting the 

behaviour of selected HF cell populations and understanding the processes that 

govern the changes in cell numbers, we are able to specify a set of fundamental 

observations that should be captured in an adequate model for hair cycle 

dynamics. The most salient of these features is the asymmetric duration of each 

phase of the hair cycle. Based upon the aforementioned evidence, we now 

proceed to a mathematical formulation of human HF cycling. 

 

Figure 5.3: Schema representing the mathematical model’s core component and 

links to other cell and compartments within the hair follicle 

The core population of matrix keratinocytes are related to epithelial stem cells that supply new 

cells to the hair follicle (via differentiation). Matrix keratinocytes then differentiate into the hair 

shaft. The last important compartment involved is the dermal papilla that provides essential 

communication for hair cycling.  



 

 

Table 5.1: The population dynamics of distinct cell populations in the hair follicle.  

The number of cells in each population may be affected by; proliferation, differentiation, apoptosis and migration and these events are marked as present 

abundantly (++++) or not present (-) in line with hair cycle stages anagen, catagen and telogen. SC Stem cell, DP Dermal papilla, MK Matrix keratinocytes, CTS 

Connective tissue sheath, TAC Transient amplifying cell, ORS Outer root sheath, IRS Inner root sheath. 

Population  Anagen Catagen Telogen References 
SC No. of cells 100-200 100-200 100-200 (Zhang et al., 2010, Waghmare et al., 2008, Hsu et 

al., 2011) 
 Proliferation ++. Early anagen. Slows by late 

anagen. 2-5 divisions in one 
hair cycle. 

- - (Zhang et al., 2009, Wilson et al., 1994, Ito et al., 
2004, Hsu et al., 2011, Waghmare et al., 2008) 

 Differentiati
on 

+++ stem cell niche/germ 
transition zone. To TACs and 
MKs 

- - (Zhang et al., 2009, Lavker et al., 2003, Hsu et al., 
2011) 

 Apoptosis - - - (Ito et al., 2004, Hsu et al., 2011) 
 Migration To hair germ & basal layer ORS 

(May already be TACs) 
Lateral migration 
in newly 
generated club 
hair 

Bulge cells 
leave the 
niche 

(Zhang et al., 2010, Hsu et al., 2011, Zhang et al., 
2009, Lavker et al., 2003) 
 

MK No. of cells 100s 0  20-40 cells (Zhang et al., 2009, Ito et al., 2004). 
 Proliferation ++++ - -  
 Differentiati

on 
++++. Into IRS and HS - -  

 Apoptosis - +++++  - (Lindner et al., 1997, Matsuo et al., 1998). 
 Migration - - - (Taylor et al., 2000). 
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Table 5.1 continued: The population dynamics of distinct cell populations in the hair follicle 

The number of cells in each population may be affected by; proliferation, differentiation, apoptosis and migration and these events are marked as present (+) or 

not present (-) in line with hair cycle stages anagen, catagen and telogen. SC Stem cell, DP Dermal papilla, MK Matrix keratinocytes, CTS Connective tissue sheath, 

TAC Transient amplifying cells, ORS Outer root sheath, IRS Inner root sheath. 

Population  Anagen Catagen Telogen References 
HS No. of cells Proportional to no. of MKs. 

Fine distal tip, thicker mid-
region, narrow proximal club  

Ceases in early 
and mid-catagen 

0 (Tobin et al., 2003, Ibrahim and Wright, 1982) 

 Proliferation - - -  
 Differentiation +++ - -  
 Apoptosis - Mid & late catagen - (Matsuo et al., 1998, Lindner et al., 1997) 
 Migration - - -  
DP No. of cells Double no. in telogen.  

Ratio DP:MKs determines hair 
width  

- ½ anagen (Tobin et al., 2003, Ibrahim and Wright, 1982) 

 Proliferation ++++ Greatest anagen IV. Rare 
at anagen VI  

- - (Tobin et al., 2003) 
 

 Differentiation - - -  
 Apoptosis - - - (Lindner et al., 1997, Matsuo et al., 1998, Soma et 

al., 1998) 
 Migration +++ Into DP from CTS. In 

anagen VI cells migrate from 
DP to CTS 

Early catagen: 
(~50% migrate to 
CTS) 

-  
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5.7 A PROTOTYPIC HUMAN HAIR CYCLE MODEL 

5.7.1 Model formulation 

On the basis of the features elaborated above (see Figure 5.4 and Table 5.1) we 

formulate the following model for human HF cycling. The model focuses on the 

dynamics of MK cells with respect to the population level processes of 

proliferation, apoptosis and differentiation. A schematic overview of the model 

is provided in Figure 5.4. 

In general, the dynamics of MK cells, x, under these processes, can be 

captured mathematically as follows (Equation 1): 

 

                                                (1) 

 

The two functions, f and g, represent proliferation and apoptosis, 

respectively, and are in general non-linear. We note that both are assumed to 

depend on the state of the system, i.e. the size of the MK population. Parameter 

a represents a constant input to the population from stem cells and the term bx 

encompasses all processes leading to a decrease in the number of MKs apart 

from apoptosis, including differentiation. 

We assume saturation in growth, which is modelled with a saturation 

function e.g.  . This assumption is justified as growth of MKs is likely to 

saturate depending upon factors such as the supply of nutrients (which are not 

modelled explicitly here). The simplest case is when n=1 which leads to a 

hyperbolic function. The apoptotic function, g, follows a similar form, however 

we also include the possibility for feedforward inhibition via the parameter, k: 
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Within this framework, we introduce communication between the MKs 

and the DP. It is assumed that feedback with the DP affects either proliferation 

or apoptosis of MKs, for example via papilla morphogens or endogenous 

inhibitors (Paus et al., 1999a, Stenn and Paus, 2001, Botchkarev and Kishimoto, 

2003). These processes enter as additional terms in f and g, dependent upon a 

new variable, z. Here, we consider negative feedback only, introducing terms for 

feedback inhibition of the proliferative term and feedback activation of the 

apoptotic term. This leads to the following form:  

 



dx

dt

p1.x

p2  x
/(p3 Cprol * z1)

(p4 Capop * z1)* x

(p5  x
k )

 (a bx)                    (3) 

 

Here, constants Cprol and Capop regulate the strength of feedback of z on 

the population equation for x. In the present contribution we focus on the role of 

proliferation control (governed by parameter Cprol). We briefly explore the effect 

of apoptotic control (governed by parameter Capop) on the cycling behaviour but 

leave a detailed investigation of this term for future research. The index in 

variable z refers to the two-compartment version described below. 

Since communication between the hair matrix and DP are key to the hair 

cycle these spatial considerations are taken into account in the model (Figure 

5.4). We start with the simplest formulation of communication between two 

compartments, which is assumed to be mediated by signalling molecules. 

Specifically, we use the following set of differential equations (eq. 4): 

 

Compartment 1: 
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Compartment 2: 

   

  
              

   

  
                         (4) 

 

It is assumed here that the MK population produces a signalling molecule 

y (at rate c1) which produces no further direct effect on the population 

dynamics. However, it diffuses away from the compartment and can thereby 

either disappear altogether (being degraded or diffuse into compartments 

where it exerts no effect either) or it can diffuse into compartment 2 (the DP) 

where it induces the production (or activation) of a regulatory molecule z at 

rate c2. This regulator, in turn, exerts no effect in the DP but can diffuse in to 

either the surroundings or into compartment 1. The diffusion process is 

modelled by incoming molecules facilitating the production of native 

intermediaries. The inclusion of   accounts for the extent to which created the 

native intermediaries are lost above the rate at which they are created. Thus 

this accounts for escape and degradation. In compartment 1, control of the 

keratinocyte population is then performed by the regulator via proliferation 

inhibition or apoptosis activation as in the model equation (4) above. The 

diffusion processes take place at two different rates (Dy and Dz) which are the 

permeation constants in the present model. They would turn into formal 

diffusion constants in a space-continuous reaction-diffusion model. For all these 

processes we use first order differential equations as used e.g. for (bio)chemical 

reactions (see Chapter 4). 

5.7.2 Addition of hair shaft growth to the model 

Hair shaft production is the most distinctive output of the HF. It can be 

considered a marker for healthy HF function and normal cycling dynamics. 

Therefore, hair shaft (h) production was added to the model via an additional 

variable. A growth rate; dh/dt= x, is assumed in accordance with the 
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relationship between the MK cell population size and hair shaft production as 

discussed in Section 5.6 (Figure 5.2). Without loss of generality, we assume  =1. 

In order to simulate the termination of hair growth during telogen (relative 

quiescence) we introduce an algorithm which “wraps” the hair length back to 

zero during this stage. This is achieved by locating the plateau as a period of 

small increase in growth and applying a threshold to the derivative of the hair 

growth variable h. During time periods below this threshold, the hair length is 

reset to zero; with hair beginning to grow again once the threshold is traversed. 

 

 

Figure 5.4: Schema of the two compartment model. 

x denotes the matrix keratinocyte population in compartment 1 (epithelial hair follicle). Processes 

affecting the size of x are a constant input a (stem cell input), a proliferation process, an apoptotic 

process and a constant linear output denoting the differentiation of matrix keratinocytes into the 

other cell types i.e. layers of the inner root sheath and hair shaft. Bidirectional communication 

between compartment 1 and 2 is set up by the production of variable y that diffuses into 

compartment 2 causing the production of z. z diffuses back into compartment 1 where it affects the 

proliferation and apoptotic processes for x 
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5.7.3 The unperturbed model  

In this section we analyse the model eq. (4) in terms of its key nonlinear 

components, the power k in the apoptotic term and the influence of feedback in 

the proliferation term. Using the hair growth variable h as output, we then 

demonstrate the capability of the model to reproduce key features of the human 

hair cycle. Since we are ultimately interested in applying the model to hair 

pathology and its treatment, we also investigate some features of abnormal 

(non-oscillatory) dynamical behaviour. In the following section we report some 

results on the model’s response to external stimuli. 

5.7.4 Steady State for Cprol=0 and k=1 

Figure 5.5 shows bifurcation diagrams scanning one of the system parameters, 

namely, the growth rate p1, for different values of Cprol and k. All other 

parameters are fixed to the values displayed in Table 5.2. The simplest case is 

Cprol=0 and k=1, i.e. there is no feedback loop in the model and the apoptotic rate 

is modelled as a hyperbolic function just as the proliferation rate. This reduces 

the model to a one-dimensional system that can only have steady state 

solutions. Figure 5.5a shows the corresponding bifurcation diagram. For the 

values of p1 displayed there is only fixed point behavior. At p1≈0.04 there is a 

transcritical bifurcation leading to an abrupt change of slope in the otherwise 

linear dependence of the steady state value on p1. Such a behavior predicts that 

the dependence of an observed temporally stable keratinocyte population 

shows different rates of change as a function of the population growth rate. It 

cannot, however, account for autonomous cycling of the population. Nor does it 

allow for an interpretation of discrete growth states (anagen and telogen). 

 

5.7.5 Hopf oscillations for Cprol=1 and k=1. 

When Cprol=1, the keratinocyte population is additionally influenced by the 

regulatory factor z, implying that the model is now composed of 5 dependent 

variables. Therefore we noe have acontrol loop that results in feedback 
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inhibition because an increase in the concentration of z reasults in a decrease of 

the growth rate of the keratinocyte population. Feedback inhibition is 

implemented in our model via a two-species mechanism involving 

communication between the two compartments (Figure 5.4). 

 

 

Figure 5.5: Bifurcation diagrams  

Each subgraph demonstrates the bifurcations at different values of k and Cprol. In subgraph (a) k=1, 

Cprol = 0, in (b)  k=1, Cprol = 1. (c) demonstrates the results when k=2 and Cprol = 0. In (d) k=2, Cprol = 

1,  These graphs demonstrate that the human hair cycle requires feedback inhibition in order to 

produce cycling behaviour Cprol=1, in addition, bistability when k=2 as shown in subgraph (d) this 

leads to inhibition of apoptotic process when x is large (feed-forward inhibition) and results in the 

asymmetrical waveform and low frequency oscillations exhibited in the human hair cycle 

 

 

Such feedback is necessary and in our case sufficient to produce cyclical 

behaviour (Figure 5.5). The oscillatory behavior is seen for a wide range of 

parameter p1. Its amplitude depends strongly and nonlinearly on the value 
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chosen and shrinks to zero as either bifurcation point is approached. A time 

series of the oscillation is shown in Figure 5.5a (grey) and a phase space 

representation of the underlying limit cycle is shown in Figure 5.5b(grey).  

Mathematically, the oscillations result from a dynamical instability of a steady 

state. The specific instability in equation (4) is a supercritical Hopf bifurcation 

with the real part of a pair of complex eigenvalues passing from negative to 

positive. This happens twice and therefore the oscillatory region is bounded by 

stable fixed point behaviour. All mathematical terms relating to this feedback 

loop are linear with the exception of the control of the MK population by species 

z, originating in the DP. Therefore, the nonlinearity that causes self-organising 

instabilities in our model, resides in the equation for the keratinocyte 

population.  

This form of the equation with Cprol =1 and k=0 is therefore a variant of 

the kinetic feedback inhibition oscillator proposed by Goodwin (1963). Here, 

the delay in the feedback to the keratinocyte population is in part due to 

transport processes that mediate the feedback. A fast oscillating keratinocyte 

population is produced by these conditions and thus, feedback is demonstrated 

to be important to gain cyclical behaviour in the human hair cycle according to 

this model.  

5.7.6 Bistability for Cprol=0 and k=2 

If instead of switching on the feedback control (as described above) forward 

inhibition of the apoptotic process by the keratinocyte population is included 

(i.e. k=2) the dynamics of the keratinocyte population remains independent of 

other processes but shows a new type of dynamical phenomenon. Figure5.5c 

shows that this situation generates a region of bistability (compare with 

Figure5.5a). Two fixed point solutions (represented by black lines) can be 

observed for a finite range of parameter p1.  
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Figure 5.6: Hair cycle model time series and phase space  

(a) Time series of the hair cycle model, the output of the model simulates the characteristic 

dynamic behaviour of the hair matrix keratinocytes during the hair cycle (black line) where k=2. 

The output is contrasted with the case when k=1 (grey line). (b) The relationship between the level 

of matrix keratinocytes and z1. The large phase space is contrasted with the small trajectory when 

k=1 (grey). 

 

This is due to the appearance of three (real) steady state solutions in the fixed 

point equation for x (dx/dt=0). In such a situation, when parameter p1 is varied 

across the borders of the region of bistability, the system can be induced to 

change from one steady state to the other (e.g. switching from a near-zero to 

large value when p1 is increased above a value of 0.09 (see Figure 5.5c). We 

therefore explore a bistable switch as a possible mechanism for HF dynamics. 
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The lower steady state would represent “telogen” and the upper steady state 

“anagen”. In our model one possible realisation of switching would be that 

random fluctuations of the keratinocyte population result in (self-organised) 

switching between the states. Mathematically, the two stable states are 

separated by an unstable state which corresponds to a critical population size 

that lies between the no growth and the growth state (Figure 5.5c). This critical 

population size presents a decision point. If a random fluctuation of a 

population in the no growth state exceeds the critical size, the population will 

continue to grow until it reaches the growth state and then remain there. 

Switching back happens when a random fluctuation of the population in the 

growth state reaches a value that lies below the critical state. The population 

will then keep shrinking until it falls to the “no growth” state. In contrast, if a 

perturbation leads to a change close to the critical size but not quite reaching it, 

the population reverts to the original state.  

Adding a noise term to the model equation (4) with k=2 and Cprol 

=Capop=0, the amplitude of the noise can be adjusted such that it leads to random 

variation about a given steady state. When preparing the model in the bistable 

region near the critical parameter value where the no growth state disappears 

(p10.09), we can adjust the model in the presence of noise perturbations such 

that the mean duration in anagen is much longer than the duration in telogen as 

is the case in human hair cycling. However, careful preparation of the 

parameters of the model is required to reproduce these characteristics. As in the 

case of Figure 5.5a, the exclusively steady state solutions found do not allow for 

the explanation of an organised cyclical process. 

 

5.7.7 Relaxation oscillations for Cprol=1 and k=2 

In light of the above considerations, where neither the supercritical Hopf 

oscillations nor the bistability alone may fully account for the dynamics of the 

HF, we further explore the parameters using the combination of both. Now 

there is a feedback control of the keratinocyte population by variable z and 

there is a forward inhibition by the population itself, i.e. Cprol=1 and k=2. Figure 
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5.5d shows the corresponding bifurcation diagram where a region of bistability 

and a limit cycle region are indicated by a dotted bar. In this case, the forward 

inhibition again generates a region of bistability. However, compared to the 

situation with Cprol=0 (bistability of two fixed points), the bistability now is 

between a near-zero fixed point and a limit cycle (compare Figures 5.5c and d). 

The bistable region starts with a fold of limit cycles bifurcation at p10.415 and 

ends with a subcritical Hopf bifurcation at p10.51.  

The limit cycle is generated in the afore-mentioned fold of limit cycle 

bifurcation at p10.415 and vanishes with a saddle-node on limit cycle 

bifurcation at p10.56. In comparison with the situation in Figure 5.5b (no 

forward inhibition) the oscillations now start and vanish abruptly, i.e. with finite 

amplitude at the bifurcation point. The variation of amplitude In this region is 

much smaller than in the situation with k=1. Further differences between the 

dynamics of the limit cycles in the cases of Figure 5.5b and 5.5d are shown in 

Figure 5.6 where time series (Figure 5.6a) and phase space portraits (Figure 

5.6b) are plotted for k=1 and k=2. The Hopf cycle (k=1) has a small amplitude, 

high frequency, and a comparatively harmonic waveform. The cycle with k=2, in 

contrast, has a large amplitude, low frequency, and strongly asymmetric 

waveform. Notable generic features of this latter, non-harmonic limit cycle are: 

i) Two plateau-like phases where the change of state is comparatively 

slow. One is near zero and the other has an amplitude between 4 and 

6.8 approximately. Both phases can be related to the two respective 

fixed points in the bistable situation with Cprol=0 and k=2 as shown in 

Figure 5.5c.  

ii) Comparatively fast transitions between the two plateau-like states. 

iii) Notably, the durations of the two plateau-like states differ strongly 

with a long upper state and a short lower state being a consistent 

finding in the present model.  

Taken together, features i) and ii) define a type of dynamics classified as 

relaxation oscillations. The notable properties above directly relate to the 

dynamics of the HF (Figure 5.1 – matrix keratinocytes). The long upper steady 
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state is interpreted as anagen, the short lower state telogen and the rapid 

transition from growth to rest; catagen. Asymmetry in phase durations in each 

stage is representative of the durations of anagen (long), catagen (very rapid) 

and telogen (intermediate, but relatively short compared to anagen). The strong 

asymmetry in the cycle is explained by the vicinity of a saddle-node on limit 

cycle bifurcation which causes slowing down of the anagen phase but not of 

telogen. Therefore, the dynamics of the HF model requires both bistability and 

feedback inhibition, as achieved here with k=2 and Cprol=1 to approximate the 

key features of the HF cycle. 

In this version of the hair cycle model; the oscillatory time series of the other 

variables (y and z) produce, in comparison, a qualitatively similar waveform to 

the one described for the keratinocyte population. However, at a shorter time 

scale there are significant phase shifts between oscillations in the two 

compartments and between the oscillations of the keratinocyte population and 

the concentration of the feedback species z1. 

So far, we have only considered feedback on the apoptotic term in eq. (4). If 

the feedback loop to the keratinocyte population is instead closed in the 

apoptotic component, this results in a similar overall result to the above 

formulation. Model simulations with a parameter setting of Cprol=0 and Capop=1 

equally produce relaxation oscillations with an asymmetric waveform and 

distinct growth and resting phases Figure 5.7. The phase space structure is not 

identical but qualitatively similar, the only significant difference being the large 

amplitude in the present case (compare Figure 5.6 and 5.7). The differences are 

due to the asymmetry of the proliferation and apoptosis terms with k=2. Model 

settings with both feedback controls switched on (e.g. Cprol=, Capop=1) also 

produces large amplitude low frequency relaxation oscillations.  

For simplicity, we only explore feedback on the proliferation term (Cprol=1, 

Capop=0) in all studies below. A detailed exploration of apoptotic control is left 

for an extended version of the model including greater details of the 

communication channels between the DP and the keratinocyte compartment. 

 We finally consider hair production in the model in relation to the state 

of the matrix keratinocyte population. The near zero-state of the population 
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defines a no growth phase and the upper state defines a period of strong 

growth. As a passive output of the oscillatory model in Figure 5.8 hair shaft 

growth has a saw tooth-like waveform interrupted by brief “no growth” periods 

(shown in Figure 5.8, middle and right bottom panel). We verified the 

experimental growth pattern of isolated human HFs (total number of HFs = 

347) in organ culture from 18 patients. The growth pattern fits the model 

output, showing an almost linear Figure 5.2.  Human HF organ culture has been 

shown to grow at approximately the same rate as that in vivo (Kwon et al., 2006, 

Philpott et al., 1990) and therefore the reproduction of this supports the model 

as an approximation of the hair cycle and hair growth. 

 

Figure 5.7: Alternative mechanism for the hair cycle where Cprol=0 and Capop=1.  

(a) Time series showing the model output when k=2 (thinker black line) in contrast to the Hopf 

oscillations with no Bistability (thin grey line). The frequency is faster when compared to the other 

mechanism. (b) The relationship between the level of matrix keratinocytes and z1. The large phase 

space is contrasted with the small trajectory when k=1 (grey). 
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Table 5.2: Default parameter values used in the hair cycle model. Alterations to the 

parameter values in the study are listed in the figure legends or in the text in the 

relevant sections.  

Parameter Value Parameter Value 

a 0.1 Cprol 1 

b 0.01 Capop 0 

p1 0.48 C1 1 

p2 0.1 C2 1 

p3 0.1 Dy 0.5 

p4 0.5 Dz 0.1 

p5 0.1   1 

 1,  2,  3 , 4 2   

 

5.8 PERTURBATIONS OF THE HAIR CYCLE 

We now take the oscillatory model output presented in Section 5.7 as 

representing healthy hair cycle dynamics and study its properties (as well as the 

properties of the “no growth” state) under external perturbation. The 

investigation here aims to realize the impact of i) temporal variation of the 

environment; ii) external pulses applied during regular growth; and iii) pulse 

perturbations (“treatment”) under abnormal (“no growth”) conditions. 

 

5.8.1 Variation of parameters demonstrates a range of dynamics in hair 

cycling that may account for both normal hair cycling and 

pathological states 

The model predicts different hair cycling lengths depending upon the efficacies 

of the underlying mechanisms; i.e. different regions of parameter space. The HF 

does not always cycle and can be arrested in telogen for an abnormally long 

time period, e.g. in situations of advanced alopecia, and demonstrates 

transformation in size and dynamic properties depending on skin location or in 
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the context of hair pathology (Dawber, 1997). HFs are of greatly varying size 

and produce different types of hair shafts of very divergent length and width, 

depending on the body region. The model, as evident by the bifurcation diagram 

Figure 5.5d, is able to reproduce variations in the hair cycle lengths depending 

on the certain conditions in the model. In Figure 5.8 we demonstrate the output 

of the model with different values of p1 on the number of MKs and also the 

resultant hair shaft. This could potentially explain the various HF sizes and hairs 

seen in vivo and additionally the potential output of no hair growth (Figure 5.8, 

bottom left panel). 

 

 

Figure 5.8: Time series of matrix keratinocytes and hair shaft production 

Growth of hair can be widely altered depending on the parameter values in the model. Altering one 

parameter, here p1, demonstrates the “no hair growth” (no cycling, p1=0.35, left panel), small hairs 

(high frequency hair cycle, p1=0.48, middle panel) and long hairs (very low frequency cycling, 

p1=0.56, right panel). The transition of the hair follicle in alopecia via the process of 

miniaturisation may be captured in these transitions whereby the hair follicle shrinks and 

produces small, ineffective hair (e.g. p1 alters from right to left here). In severe cases of alopecia no 

visible hair is seen which may be captured by; either short hairs that do not reach the surface 

(middle panel) or a transition to the no growth situation (left panel). 
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5.8.2 Pulse perturbation results in changes in normal hair cycling and 

pathological states 

We explored the effect of a pulse perturbation in the key parameters a (stem 

cell supply), p1 (proliferation rate), and p4 (apoptosis rate). Initially the time, 

duration and amplitude of an individual pulse to each of these parameters was 

fixed. Figure 5.9 shows the result of selected perturbations to the HF oscillator 

in the standard state (monostable relaxation oscillations). In Figure 5.9a one 

sees a pulsed increase in parameter p1 during telogen that leads to a 

subsequent prolonged anagen phase (in this case approximately a 50% increase 

compared to the unperturbed phase) and consequently the production of a 

longer hair shaft.  

A similar pulse perturbation of parameter a (stem cell input) produced 

an increase in anagen phase duration (in this case about 90% increase 

compared to unperturbed phase) and hair length (Figure 5.9b). Since the 

increase in parameter a is proportionally higher than that of p1 (i.e. 90% 

increase in parameter value), the effect of this increase is larger and produces a 

much longer hair shaft.  

The administration of a pulse to parameter p4 within the resting phase 

produced a prolonged resting phase and also led to greater duration and 

amplitude of the subsequent growth phase. In contrast, when a pulse in the 

same parameter was administered during the growth (anagen) phase, anagen 

duration and the resultant hair length were shortened (Figure 5.9a). Therefore, 

a phase dependent effect is seen here. Regular maintenance of the change would 

require regular administrations of pulse perturbations or “treatment” at the 

correct phase of the hair cycle.  

5.8.3 Switching in bistability and excitability as methods to switch from 

“no hair growth” to the cycling mode  

We now explore the model’s features outside of the parameter range where the 

relaxation oscillator is the only solution. The parameters are chosen in the 

region of bistability where both relaxation oscillations and a lower “no growth” 
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steady state exist. In this setting we explore the possibility to perturb the 

system with a pulse to switch behaviour from fixed point to the oscillatory state, 

i.e. to induce oscillations without permanent change in any parameter. 

 

 

Figure 5.9: Pulse perturbation time series 

(a) Pulse in p1 commencing at time t=1995, with a maximum value of a= 1.9. (b)  Pulse in a 

commencing at time t=1995, with a maximum value of a= 1.9, denoted as a red arrow below. (c) 

and (d) Pulse perturbation of parameter p4 resulted in different effects on the hair cycle and hair 

growth. The effect was phase dependent with abrogation of anagen if pulsed during anagen (c) or 

stimulation of a longer hair cycle and hair if perturbation was timed with telogen (resting) phase 

of the cycle (d). Pulse in p4 at t=2100, with amplitude maximum value of p4=1.9. Pulse timing is 

marked by red arrow. 

 

The time series (Figure 5.10a) demonstrates a switch from the lower 

steady state into the oscillatory regime. Oscillations, and consequently hair 

growth commences as soon as the perturbation has ended. Importantly, as the 

oscillatory regime is stable, the cycling continues indefinitely in the model. We 
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test perturbations in all parameters and find parameter p1 to be the most 

sensitive in achieving the transition (i.e. inducing permanent oscillations with a 

minimum of relative change). For example, an 8.8% increase in p1 achieves the 

transition. Parameter c requires only a slightly larger change (10%) to achieve 

permanent oscillations. 

 

Figure 5.10: The hair cycle model predicts possible mechanisms for the treatment 

of hair loss.  

(a) Demonstrates how switching may be achieved from the lower steady state in the bistable 

region to the oscillatory state. One pulse in p1 achieved this result. The pulse starts at t=1000 and 

is of length=5 time points and is a step to a value of p1=0.49. (b) The pulse starts at t=1000 and is 

length=5 time points and is a step to a value of p1 =0.49. This demonstrates how apparent no hair 

cycling and thus no hair growth may be perturbed into a whole hair cycle. This is due to excitability 

demonstrated by the system currently lying outside of the bifurcation point. (c) sinusoidal pulses as 

in (b) to p1, i.e. regular administered therapy, in this case achieves repeated cycling behaviour. 
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The fact that the lower fixed point loses stability in a subcritical Hopf 

bifurcation implies that it might be excitable in the monostable state (Figure 

5.5d, p1<0.415), implying that a short pulse (treatment) could start a full cycle. 

The monostable state would be interpreted as a non-cycling hair (such as occurs 

in severe alopecia). To test this we apply a pulse perturbation in parameter p1 

to the system prepared in the no growth steady state outside of the bistable 

region. When the pulse is below a threshold, the effect of the stimulation is 

negligible and leads to a trivial damped oscillatory return to the no growth 

state. As such the perturbation can be considered ineffective. If, however, the 

pulse is suprathreshold as in Figure 5.10b the model produces a large amplitude 

excursion of nearly the amplitude and rather similar in period to the oscillatory 

solution (compare with Figure 5.10a). The duration of the pulse was 5 time 

points, however longer pulses also produce a longer cycle. Therefore, the MK 

population is in an excitable condition and a comparatively moderate stimulus 

can induce one full cycle of the HF oscillation. After the one cycle the system 

returns to the no growth fixed point and remains there, as it is the only stable 

solution. To maintain cyclical regeneration of hair growth, one must repeat the 

pulse once the MK population returns to the resting state. This is shown in 

Figure 5.10c, where a regular pulse of appropriate frequency into the 

monostable no growth system (with p1=0.3) induces “regular” cyclical 

behaviour. This uses the property that an excitable system performs the full 

cycle once induced by a suprathreshold stimulus. The period of this induced 

cyclical behaviour is less than the period in the autonomous cycling, mainly 

because the system is allowed to settle to the resting state before it is perturbed 

again. Comparing Figure 5.10b and 5.10c it can be noted that the amplitude of 

the periodically pulsed system is even slightly bigger than the amplitude of the 

cycle in the single stimulus simulation Figure 5.10b. If induced regular cycling 

with full hair growth is desired, the period of the stimuli cannot be decreased 

above a certain minimum length as a stimulus during the cycle or at the 

beginning of the resting phase, when the system is refractory, does not lead to a 

full new cycle. A smaller period than the one chosen in Figure 5.10c leads to 

irregular hair growth with hairs of different length and decreased average hair 
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length. Also phenomena like “missed beats” and induction of a full cycle for 

every second stimulus are observed in these cases. 

5.9 DISCUSSION 

The human HF exhibits a unique chronobiological rhythm known as the hair 

cycle. The molecular or cellular “control” mechanism(s) responsible for this 

regenerative process has not been identified. In this study, we reviewed 

essential dynamical features of the hair cycle and presented a prototypic 

mathematical model to advance a theory of the human hair cycle.  

The ODE model was constructed from features regarding HF dynamics 

and interactions derived from the literature and incorporated into the model on 

the cell population level while specific molecular processes were not included. 

However, the two compartment model opens the exploration of how human HF 

dynamics may arise from control processes governing the spatial scale of multi-

cellular MK population as a whole. 

An important finding in our study is that neither feedback inhibition nor 

the presence of bistability alone is sufficient to explain the full dynamics of the 

HF. However, both have been postulated as mechanisms for the hair cycle. 

Concerning delayed feedback inhibition Chase proposed that the hair cycle is 

based on an intrinsic inhibition-disinhibition switch (Chase, 1954) and, since 

then, several theories verbally described the oscillatory nature of the HF as a 

result of delayed feedback inhibition, although none have led to a mathematical 

formalisation so far (Paus and Foitzik, 2004, Paus et al., 1999a, Stenn et al., 

1999). We show that feedback inhibition indeed allows the production of 

oscillations in MK numbers and the oscillatory production of hair shafts. In our 

case part of the delay in feedback arises from transport processes between the 

two compartments rather than biochemical reactions. This produces 

oscillations that are described mathematically as the result of a supercritical 

Hopf bifurcation. Although the frequency of oscillations could be regulated to 

better fit the low frequency oscillations in the hair cycle via modulation of 

parameters in the feedback loop; we cannot assume the molecular processes 

(like synthesis and diffusion) to be much slower than population growth and 
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decay constants. Therefore, the resultant frequency of oscillations remains on a 

comparatively fast time scale in the absence of bistability (k=1). Importantly, it 

is unrealistic that feedback inhibition alone may account for the characteristic 

profile of the biological process as specified Figure 5.1. The reason for this is 

that a fast oscillating keratinocyte population would not clearly distinguish 

between durations of anagen, catagen and telogen phases in terms of periodicity 

as seen in vivo and therefore does not explain the asymmetric low frequency 

hair cycle profiles observed in human hair cycling. 

It is known that a simple linear sequence of biochemical reactions can 

explicitly produce time delays (see e.g. (Mocek et al., 2005)). The impact of 

negative feedback modelled by a chain of linear (first-order) reaction terms on 

the systems dynamics is well-studied, for instance in the Goodwin model 

(Goodwin, 1963). As the delay mechanism in our model is also described by 

linear terms, the feedback control (for example of the proliferation) can be 

expected to have similar impact on the population dynamics. As such the 

appearance of oscillatory solutions is not unexpected. However, the assumption 

of a feedback mechanism that involves diffusion between two spatially distinct 

compartments is a novel mechanism to realize the delay. It depends crucially on 

the communication between spatially separated compartments. 

The presence of a dynamical bistability to explain the two main dynamic 

“states” (anagen and telogen) of the HF was recently postulated but no 

mathematical model was provided (Bernard, 2010). The switching between the 

two states was proposed to be driven by random fluctuations. If we consider 

bistability alone as a possible mechanism for the hair cycle then this would 

imply that there is no continuous (monotonous) evolution towards the 

switching point. In reality, however, catagen HFs cannot transform back into e.g. 

anagen once they have started to enter catagen; instead, they have to run 

through telogen in order to re-enter anagen, since this “quiescent” state and its 

reorganisation of HF architecture appear to be important e.g. for proper 

reactivation of HF epithelial stem cells in the bulge and secondary hair germ as a 

prerequisite for anagen development. The in vivo situation is that different sub-

phases of the hair cycle are defined, but with continuous evolution of 
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morphological features (Kloepper et al., 2009, Müller-Röver et al., 2001). 

Therefore, if the mechanism of the hair cycle were to operate only via 

bistability, the ability to produce the wide range of dynamics typically seen in 

the HF would be impossible to achieve. 

Following these considerations, our theory of the hair cycle therefore 

requires both bistability and feedback inhibition to produce key dynamical 

features of the human HCC. When both bistability and inhibitory feedback are 

present, a cyclical switching occurs between a state of large population with 

strong growth (anagen), and a subsequent state of near-zero population with no 

growth (telogen). Anagen is explained as a period in which the proliferation rate 

and the apoptotic rate change continuously but at two time scales. One in which 

proliferation dominates over apoptosis such that the population level rises and 

one in which apoptosis dominates over proliferation and the population level 

falls. The slow decrease of the population during anagen is due to slow 

accumulation of the inhibitory feedback species. It continues until a threshold is 

reached and apoptotic processes take over so the decrease accelerates leading 

to catagen. The rapid decrease of the keratinocyte population results in 

abrogation of hair growth and shedding of the hair. The resting period (telogen) 

then maintains the near-zero population while the impact of the inhibitory 

species slowly decreases until a second threshold is reached and a new cycle 

starts leading to the creation and growth of a new hair. Thus, the crucial 

prerequisite for the switching mechanism is the combination of a bistability 

between a state of rapid growth and a no growth state with a cyclical process. 

Autonomous cycling between two pseudo-steady states yields the observed 

switching. The accumulation of inhibitory signals during anagen is described by 

Chase and it has been demonstrated experimentally that inhibitory signals are 

present during telogen in mouse skin (Paus et al., 1990). 

The model relies on several assumptions. Firstly, we assume that the 

behaviour of interest resides at the level of groups of cells; i.e. in the cyclical 

regeneration of the HF tissue sub-structures during the hair cycle and in the 

observation of hair growth. Thus, macroscopic cell population considerations 

form the basis of our theoretical treatment of the HF cycle. Indeed, important 
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processes will be involved at multiple scales and, in particular, molecular 

interactions that are often the subject of experimental investigations into the 

hair cycle will be described on the microscopic scale and here in the model 

presented we consider the high level of processes that may govern the whole 

cells and population of cells. This is in line with a current model of interacting 

populations of HF stem cells in mice (Plikus et al., 2011) and also with the initial 

dynamical hypothesis of Chase 1954 (Chase, 1954).  

Secondly, our population level approach focuses on the cells arising from 

epithelial stem cells that embody the dynamic changes in HF structure and are 

directly responsible for hair growth during the hair cycle, namely the MKs. 

Therefore, we assume that if we understand the controls governing the cyclical 

regeneration and regression of the MKs then we can understand the hair cycle 

mechanism. The MK population, at numbers close to zero, is likely to capture the 

stem cell progenitor population that derive from stem cells and become MKs. 

For simplicity and to emphasize key dynamic components, we did not explicitly 

differentiate between these cell types. Similarly, we assumed a simplified 

constant input of stem cells to the keratinocyte population. Biologically, the 

system is more complicated and we envisage future models to encompass 

processes on a multi-scale level. Despite the simplifications here, we have 

managed to account for a great amount of hair cycling or HF dynamic 

phenomena.  

Thirdly, we assume the process of the human hair cycle is autonomous. 

This is supported experimentally as described in the introduction and methods, 

but also by the experimental and modelling work performed by Plikus et al who 

predict the human HF to rely heavily on intrinsic processes in order to cycle 

(Plikus et al., 2011). 

In the model, we are able to observe the strong asymmetry between 

stage lengths in the human hair cycle caused by the vicinity of a saddle-node on 

limit cycle bifurcation that leads to slowing down of the anagen phase but not of 

telogen. The model thus offers an explanation for the unique periodicity of each 

phase of the hair cycle whereby human scalp hair can grow for some years 

before it sheds while telogen is typically of the order of a few months. The 
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previous postulated theories of hair cycling do not address how this salient 

feature may arise.  

Despite the abstraction of the hair biology involved; the model is able to 

capture the wide variation in dynamics exhibited by the HF and successfully 

addresses a large proportion of features that are thought essential to a 

successful theory of the hair cycle (Paus and Foitzik, 2004). The model produces 

unique asymmetric phases of the hair cycle, and a hair shaft output, as an 

autonomous process and additionally accounts for varied hair cycle lengths 

which is dependent on parameter values and even the provides some 

predictions of how hair disorders such as miniaturization of the HF and severe 

cases of “no growth” behaviour may arise. We show that the hair cycle and 

resultant hair may be different lengths by altering parameter values. These 

parameter differences may reflect the intrinsic properties of HFs located in 

different body regions or between individuals. This leads to the hypothesis that 

the intrinsic properties in HFs from one body region to the next (represented by 

variation in parameters such as p1) are the cause of the different hair lengths 

seen in vivo, for example between eyebrow and scalp hairs. Within the present 

framework, cycle to cycle variation can be accounted for by random fluctuations 

in model parameters.  

Great changes in hair cycle duration and hair growth were demonstrated 

to occur from one cycle to the next (Tobin et al., 2003) and this can be 

interpreted as variations of the period (and amplitude) of an autonomous 

cycling process due to environmental perturbations. In addition, we briefly 

studied how fluctuations in the lengths of anagen, catagen and telogen from one 

cycle to the next can be achieved by introducing random fluctuations in the 

input (supply from stem cells (a)) to the MKs and in the strength of activation of 

growth of these cells (p1) (Supplemental Figures 5.11 and 5.12). Random 

fluctuations in stem cells and p1 together seem to be important factors in the 

model, but for a future sensitivity analysis (to determine the processes that 

contribute strongest to the variability), estimates of the degree of fluctuations in 

each parameter are required. This gives a new account of the data presented in 

relation to the follicular automaton model, which suggests that the hair cycle is 
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a stochastic switching process assuming two underlying stable states but not an 

autonomous cycling process (Halloy et al., 2000, Halloy et al., 2002).  

As hair disorders are the result of a pathological alteration in normal hair 

cycle dynamics, the model allows us to capture not only normal variation in hair 

cycling behaviour, but also that of hair pathologies. The most common of these 

is androgenetic alopecia (pattern baldness) which is characterized by the 

miniaturization of the HF, shortening of the hair cycle and diminution of visible 

hair. This model provides several predictions to explain how these changes may 

arise. The opposite transition occurs in hirsutism whereby there is an increase 

in hair cycle length and hair size. For example, timed perturbation (e.g. increase 

in p1) of a short cycling HF can produce a longer hair cycle (Figure 5.10a) and 

the opposite is a possible mechanism for the terminal to vellus transition seen 

in pattern baldness (i.e. decrease in parameter such as p1). The results of these 

perturbations are occasionally non-intuitive but can be explained from the 

bifurcation and phase space structure of the model.  

The model predicts, firstly, in the bistable situation where the no growth 

state coexists with the periodic hair cycling there are possibilities of inducing 

regular cycling from the no growth state by applying a single, comparatively 

brief stimulus. Similarly, a single comparatively brief stimulus would be 

sufficient to switch the process from cyclical growth to no growth. In either case 

the minimum strength of the perturbation to achieve the transition depends on 

the critical population size as defined by the separating manifold (see Chapter 

4).  

This result would for instance predict the possibility that a normally 

cycling HF could switch to a “permanently” non-cycling follicle due to an 

accidental environmental stimulus if it is in this particular bistable state. This is 

a new hypothesis to explain the transition from growth to no growth that 

occurs, for example, in severe alopecia or in chemotherapy induced alopecia. 

The model also predicts that there might be effective treatments to cure this 

problem. Secondly, for the situation where there is a single stable state of no 

growth, such as may occur in advanced androgenetic alopecia (Cotsarelis and 

Millar, 2001), the model predicts that there is a potential way to cure. We 
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predict that the HF exhibits the dynamical property of excitability. Excitability is 

a generic feature in the vicinity of subthreshold Hopf bifurcation (Chapter 4). If 

the HF is in an excitable state (near the fold of limit cycle bifurcation in Figure 

5.5d), a short pulse (treatment) could start a full cycle. Of course the success of 

this intervention depends on whether the other model assumptions are fulfilled 

including, for example, sufficient supply from the bulge stem cells. Indeed, it has 

recently been shown that androgenetic alopecia arises from the lack of 

activation of stem cells rather than a lack or depletion in stem cell number, 

therefore, the possibility that such assumption of stem cell supply may be 

fulfilled (Garza et al., 2011). In addition, it is known that in advanced alopecia 

there is a prolonged telogen phase (Cotsarelis and Millar, 2001) and it may be 

that the HF is in this region and it takes some time for the stimulus to overcome 

the threshold and thus enter a full cycle again. Lacking a detailed quantitative 

model the threshold would have to be determined empirically, however, the 

model provides first hints as to which parameter(s) might be suitable and thus 

guide us in the means to realise the perturbation.  

The notion of HF excitability being an important feature in the dynamics 

of hair cycling is also reflected in Plikus et al. but at a higher spatio-temporal 

level (Plikus et al., 2011). If the goal of treatment is to maintain a cyclical hair 

growth in a single follicle under the excitable condition, it is necessary to apply 

appropriately timed periodic stimuli. In particular, at the end of catagen after 

shedding there is a refractory period during which a brief perturbation does not 

induce a new cycle (absolute refractoriness) or induces only a short cycle of 

small amplitude implying a short hair (relative refractoriness). The notion of 

refractory telogen had been postulated many years ago and the concept recently 

supported via experimental work (Plikus et al., 2008, Plikus et al., 2011). Our 

model further develops this concept in the dynamic behaviour of the single HF. 

In the future, this modelling approach may be used to dissect the seemingly 

complex interactions and roles of factors in the hair cycle to better understand 

the hair cycle mechanism an improve our approach to treating hair cycling 

abnormalities (Cotsarelis and Millar, 2001, Al-Nuaimi et al., 2010). 
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A major limitation of the study is the use of arbitrary parameters. The 

reason for working with arbitrary parameters is that the model is a reduced 

model and it is still unknown as to the mechanism of the hair cycle. The aim of 

this study was to conceptualise the hair cycle in terms of dynamics and to 

implement a theory of the process. The level of abstraction means that there is a 

lack of experimental data at this higher level. The parameters are likely to 

therefore represent “lumped” parameters. The use of multi-scale modelling 

would allow experimental data at the molecular level to marry with this higher 

tissue level processes that encapsulate the hair cycle. Now that we know some 

macroscopic properties of the system, we are able to build upon a directed 

experimental approach.  Biologically, an essential component in the hair cycle is 

the spatial interaction between compartments; in particular, bidirectional 

communication between the keratinocyte population and the DP. We 

implemented a two-compartment model assuming two (molecular) species to 

be involved in the communication. The communication process mathematically 

represents a feedback loop via coupling of compartments. Possible biological 

candidates include molecules that are known to diffuse between the DP and the 

hair matrix such as those interacting in SHH, WNT and BMP signaling 

(Botchkarev and Kishimoto, 2003). 

The autonomy of the HF is a pronounced feature in the human HF. This is 

demonstrated by the shedding of individual hairs rather than synchronised 

shedding and is a result of the population of HFs following an asynchronous 

cycle in relation to each other giving this mosaic pattern. In other mammals, 

such as mice, the HFs exhibit more synchronised cycling behaviour. This results 

in a patch of hair simultaneously growing or shedding. The mathematical model 

concerned with the coupling of HF stem cells in propagating the waves of the 

murine and rabbit hair cycles demonstrated in principle that human HFs must 

rely on their intrinsic signals rather than inter-follicular communication in 

activating each cycle. Our study greatly complements this work providing the 

missing investigation of the possible intrinsic hair cycle processes (Plikus et al., 

2011). We envisage coupling between HFs in our model may provide a model of 

murine and other mammalian hair cycling dynamics in the future. 
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The previous proposed theories of the hair cycle were verbally expressed 

and not tested mathematically. Therefore the present model is an advance from 

the important work of hair biologists (Paus et al., 1999a, Paus and Foitzik, 2004, 

Stenn et al., 1999, Chase, 1954, Sun et al., 1991). Likewise, previous 

mathematical models concerned with hair growth and cycling do not address 

the intrinsic processes that drive the HF through the cycle (Plikus et al., 2011, 

Halloy et al., 2000, Halloy et al., 2002). The mathematical model by Plikus et al is 

at a higher level of interest; namely the mechanism of HF coupling in the 

propagation of hair cycle waves in mice and other mammals (Plikus et al., 

2011). Our model complements this. The finding that alopecia may arise by 

reduction in activation of stem cells is exactly the result of the uncoupled stem 

cells that is shown to produce the independent HF cycling seen in adult human 

HFs. Again, the model does not explore what the internal mechanisms may be in 

the human case (Plikus et al., 2011). 

An important direction for the future use of the model would be to 

characterise hair growth modulators better and within this dynamical systems 

framework. For example growth factors that are considered to induce growth 

and proliferation (because they prolong anagen) may in reality act as inhibitors. 

As shown here an inhibitory effect in our model is predicted to be required at 

some level to maintain the long growth phase. This may explain why 

experiments may produce conflicting results depending on their outcome 

measurements and timing of interventions as the model also predicts that the 

phase of intervention is important in the result of certain perturbations. 

The hair cycle is a complex process involving multi-scale co-ordination of 

events. Mathematical modelling may play an essential role in dissecting the 

intricacies of the system (Al-Nuaimi et al., 2010). Here, our dynamical systems 

construction of the human hair cycle leads to a novel theory that the HF 

dynamics requires two key dynamical features; feedback inhibition and a 

bistable switch. The study represents a new approach to deciphering the core 

components driving the hair cycle and is a first attempt at mathematically 

modelling the dynamics of the HF. In addition, we predict that hair disorders 

may be treatable due to the HF exhibiting important dynamical features of 
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bistability and excitability. We envisage that this important step will be further 

developed and refined in future work. This will pave the way to exploring this 

complex system with the aim to understand and predict the systems properties 

of the HF. The model may be used to establish the key processes that produce 

the behaviour of interest in order to move towards understanding and 

eventually finding medical targets.   

5.10 CONCLUSION 

In this study, we use mathematical modelling to construct a theory of how the 

human hair cycle, a dynamic regenerative process, may be controlled. Previous 

proposed theories of the control mechanism of the hair cycle have been verbally 

expressed and not tested mathematically. Using this original, population based 

approach; we conclude that the human hair cycle may be explained by an 

autonomous relaxation oscillator whereby communication between matrix 

keratinocytes and the dermal papilla are essential to the process.   
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Supplemental figures 

 

Figure 5.11: Time course of keratinocyte population and hair growth under 

random fluctuations in parameters a and p1 
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Figure 5.12: Random fluctuations in a and p1 

 Anagen, catagen and telogen durations vary from one cycle to the next. This is achieved by 

introducing random fluctuations in parameters a and p1. Durations of each phase of the hair cycle 

were calculated by measuring the length of time each stage (anagen, catagen or telogen) lasted 

using the time series output of 16 consecutive hair cycles (i.e. such as in Figure 5.11). The graphs 

were then plotted for each cycle stage to show the variation achieved as the follicle proceeded 

through from one cycle to the next. 
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6 CHAPTER 6: RESEARCH METHODOLOGY 
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This chapter details the experimental protocols used in the project. The various 

methods are explained in turn. Where experiments are performed to generate 

data, the details of methodologies implemented are further detailed in the 

methods section of the corresponding chapter; this in-keeping with the 

manuscript style of these chapters.  

6.1 HUMAN TISSUE SAMPLE COLLECTION 

 

Human tissue was obtained from two sources following informed consent: 

1) Redundant human fronto-temporal and occipital scalp skin from females 

undergoing facelift surgery (the University of Luebeck, Faculty of 

Medicine, Germany Ethics Committee approved protocol 06-109.).  

2) Redundant human follicular units harvested from the occipital scalp of 

males undergoing hair transplantation surgery (the University of 

Manchester, Research Ethics Committee approved reference 

09/H1010/10) 

Tissue was placed in a universal container in “isolation media”; William’s E 

media (Sigma, Gillingham, UK) supplemented with 100 IU/ml penicillin and 

10µg/ml streptomycin (Gibco, Germany, Karlsruhe) and transported to the 

laboratory at 4°C. 

 

6.2 PROCESSING TISSUE 

Once in the laboratory, the tissue was processed as quickly as possible. For 

whole skin analysis, such as immunofluorescence and immunohistochemistry, 

whole skin was dissected into small blocks of approximate dimensions 1cm x 

0.5cm under the dissection microscope using a scalpel (Figures 6.1a and b). The 

skin was orientated (Figure 6.1c) and embedded in Shandon Cryomatrix 

(Pittsburgh, PA, USA). This was snap-frozen in liquid nitrogen and samples were 

stored at -80ºC until cryosectioned.   

Individual HFs were isolated from both whole skin and follicular units by 

micro-dissection as described below. Isolated HFs were either maintained in 



 

141 

 

culture (HF culture Section 6.4) or immediately embedded in Shandon 

Cryomatrix, snap frozen in liquid nitrogen and stored at -80ºC until used for 

further analyses. 

 

6.3 HAIR FOLLICLE MICRODISSECTION 

Human HFs were isolated for further study by the technique of HF 

microdissection. This is an established technique previously described (Philpott 

et al., 1990, Sanders et al., 1994). Briefly, this was carried out using aseptic 

technique under the dissection microscope (Figure 6.1): 

1) Tissue was orientated and amputated at the level of the dermis-subcutis 

junction using a scalpel (Figure 6.1d); 

2) The HFs were isolated by gently prising the HF out of surrounding tissue 

using tweezers(Figure 6.1f); 

3) HFs were assessed under a light microscope to ensure they had not been 

damaged during isolation and that, macroscopically, they appeared to be 

in anagen stage (Figure 6.1g) 

 

6.4 HAIR FOLLICLE ORGAN CULTURE 

Isolated anagen VI HFs were maintained in a 24-well plate; each well containing 

500µl serum-free Williams’ E medium (Sigma) supplemented with 2mmol/L L-

glutamine (Invitrogen, Paisley, UK), 10ng/ml hydrocortisone (Sigma), 10µg/ml 

insulin (Sigma) and 1% antibiotic/antimycotic mixture (100x, Gibco, Paisley, 

UK). Culture medium and supplement recipe follows that set up by Philpott et al 

(Philpott et al., 1990, Philpott, 1999, Philpott et al., 1994a). HFs were placed in 

an incubator at 37°C with 5% CO2 level. Supplemented media was changed 

every two days.  

This assay was employed as hair growth in culture has been shown to 

correlate with in vivo growth rates (Kwon et al., 2006) and it is considered the 

best available assay for studying human HFs at present (Rogers and Hynd, 
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2001). Elongation of hair shafts was measured using a Nikon binocular inverted 

microscope as previously described (Philpott et al., 1990).  

 

 

 

Figure 6.1: Microdissection of anagen VI hair follicles from adult human scalp skin.  

Fresh human scalp skin was obtained. In this figure (a) shows frontotemporal scalp skin from a 

female patient (b) Hair shafts now cut and small sections cut using a scalpel under the 

microdissecting microscope. (c) skin section orientated ready for either embedding or for 

amputation at the junction of the dermis and subcutis (d). (d) shows the plane at which the skin is 

amputated (at the dermis, subcutis junction). (e) The sample, is then orientated with the hair 

follicles facing upwards. (f) Using forceps, individual hair follicles are dissected out of the 

surrounding skin and placed in supplemented William’s E media (g). (g) Whole hair follicles are 

assessed under the microscope to ensure they are healthy, intact Anagen VI hair follicles (as shown 

in g). Figure courtesy of R. Paus. 

6.5 ANAGEN AND CATAGEN STAGING OF ISOLATED HUMAN HAIR 

FOLLICLES IN ORGAN CULTURE 

In order to investigate changes in expression of candidate genes and proteins in 

accordance with the hair cycle, HF organ culture experiments were performed 

whereby HFs were maintained in culture and assessed daily using light 

microscopy to determine whether they appeared, macroscopically, to be in 

anagen or early, mid and late catagen phases (Figure 6.2). The macroscopic 

characteristics of organ-cultured whole HFs were assessed under the dissection 
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microscope. Epithelial, mesenchymal and pigmentary characteristics of the HF 

were used to stage HFs.  

 

 

Figure 6.2: Macroscopic appearance of isolated whole human hair follicles in 

different hair cycle stages.  

Hair follicles in organ culture. Images taken using bright field microscope magnification x200. 

 

Anagen HFs were characterised by having maximal melanin content, an 

onion-shaped DP and large hair matrix volume. Early catagen HFs exhibited a 

thinner, stretched hair matrix, reduced melanin content and an oval shaped DP. 

Mid-catagen HFs were identified by a smaller, round DP, further decreased hair 

matrix volume, a pincer-like appearance of the proximal hair matrix and further 

reduced melanin content. Late catagen HFs can be categorised as they often 

exhibit a club hair, no melanin in the bulb region, a very small round DP and thin 

hair matrix. HFs were then placed into anagen, early catagen, mid-catagen and 

late catagen groups according to these features (Figure 6.2).  

Samples of whole human HFs were taken by two methods; 1) once HFs 

were seen to have entered the correct stage, HFs were immediately embedded 

in Shandon Cryomatrix and snap frozen in liquid nitrogen or snap frozen for 

qPCR analyses 2) HFs were staged and once equal amounts of HFs were 
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identified in either anagen or catagen, then the sample was taken on the same 

day and embedded or frozen whole as described above. 

Microscopic staging of anagen, early, mid and late catagen HFs was 

performed using the same morphological features as already described above 

for the macroscopic criteria i.e. shape of the DP and hair matrix volume (this is 

demonstrated in Figure 6.3). Microscopic staging allows for easier staging of 

each HF as the anatomy is more readily visible. Therefore, staging relied on 

morphological appearance for anagen, early, mid and late catagen stages rather 

than on counting number of proliferative and apoptotic cells. However, cell 

numbers and number of Ki-67 and TUNEL positive cells were used to 

distinguish anagen and early catagen. These criteria were published for 

objectively distinguishing between anagen and early catagen stages in human 

HFs (Kloepper et al., 2009) (Appendix B). 

 

6.6 VALIDATION STEP FOR MACROSCOPIC STAGING 

The original macroscopic stage allocated to whole human HFs in organ culture 

was compared to the final stage of anagen, early catagen, mid-catagen or late 

catagen the same HF was allocated to after cryosectioning. Figure 6.3 shows the 

correlation between macroscopic and microscopic staging when the HFs are in 

organ culture (Figure 6.3  Top panel) and when they have been cryosectioned 

(Figure 6.3 Bottom panel). 
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Figure 6.3: Macroscopic and microscopic appearances of anagen and catagen 

human hair follicles  

Top panel shows the macroscopically staged human hair follicles in organ culture. The bottom 

panel shows the corresponding stage in cryosections of human hair follicles. The morphological 

appearance of the hair follicles in each stage is assessed in order to stage the hair follicles. 

 

Figure 6.4 shows the accuracy of staging based upon the macroscopic 

appearance of whole HFs compared to the confirmed stage using microscopic 

staging methods in the same HF. The data was achieved for this accuracy test by 

staging whole HFs in organ culture from two separate patient samples. The 

staging was performed during a “catagen” culture which was performed to 

collect anagen, early, mid and late catagen HFs for analyses. The sample from 

Patient 1 sample comprised 42 HFs in total and patient 2 consisted of 45 HFs. 

The stages allocated to the HFs were documented and the HF identified by its 

location in a 24 well plate. The HFs were embedded and frozen for subsequent 

immunofluorescence or immunohistochemisty staining with the HF identifiers 

also documented. Once the cryosections were used for staining, the slides were 

blinded and photographs taken of each HF. Microscopic staging was then 

performed and the results were compared against macroscopic staging (Table 

6.1). 
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6.7 TRH CULTURE EXPERIMENT 

In order to investigate the effect of thyrotrophin hormone (TRH) on human HFs 

in organ culture (see (Gáspár et al., 2010)); anagen VI HFs were isolated from 

human scalp skin as described above. Isolated HFs were maintained in a 24-well 

plate supplemented with the following substances which were changed every 

two days: 

 5 ng/ml, 10 ng/ml and 100 ng/ml of TRH every two days 

 control was HFs maintained with no addition of TRH.  

HFs were maintained for 6 days in organ culture as previously described 

(Ackermann et al., 2007, Zanello et al., 2000). Once completed HFs were either 

frozen whole (5 ng/ml and 100 ng/ml concentrations) for qPCR analysis or 

embedded for subsequent cryosectioning and immunohistochemistry staining 

(5 ng/ml and 10 ng/ml concentrations).  
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Table 6.1: Data for accuracy of macroscopic hair cycle staging  

Stage the HF was 
finally allocated to on 
microscopic staging of 
cryosections 

Stage the same HF had been assigned to 
when in organ culture 

 
Anagen Anagen 

Early 
catagen 

Mid 
catagen 

Late 
catagen Total 

Sample 1 12 0 0 0 12 

Sample 2 8 3 0 0 11 

Total 20 3 0 0 23 

% 86.96% 13.04% 0.00% 0.00% 100.00% 

      
Early Catagen Anagen 

Early 
catagen 

Mid 
catagen 

Late 
catagen Total 

Sample 1 4 2 0 0 6 

Sample 2 0 13 0 0 13 

Total 4 15 0 0 19 

% 21.05% 78.95% 0.00% 0.00% 100.00% 

      
Mid Catagen Anagen 

Early 
catagen 

Mid 
catagen 

Late 
catagen Total 

Sample 1 0 6 6 0 12 

Sample 2 0 1 11 0 12 

Total 0 7 17 0 24 

% 0.00% 29.17% 70.83% 0.00% 100.00% 

      
Late Catagen Anagen 

Early 
catagen 

Mid 
catagen 

Late 
catagen Total 

Sample 1 0 0 0 12 12 

Sample 2 0 1 2 6 9 

Total 0 1 2 18 21 

% 0.00% 4.76% 9.52% 85.71% 100.00% 
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Figure 6.4: Results of the accuracy tests for staging whole human hair follicles 
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6.8 HAIR FOLLICLE CIRCADIAN CLOCK SYNCHRONISATION AND 24 

HOUR TIME SERIES 

Dexamethasone (Sigma Alrich D1756) powder was reconstituted in 41.25µl 

DMSO at 25°C to produce the stock solution 1mg/ml. Serial dilutions were 

performed with a resultant 100nM Dexamethasone solution.  

HFs were obtained and microdissected as described. They were 

maintained in constant conditions (5% CO2 at 37°C) in a Petri dish. HFs were 

incubated in 10mls of 100nM dexamethasone for 30 minutes to establish 

synchronisation. After 30 minutes, the media with dexamethasone was removed 

and replaced with normal HF culture media. Collection of samples for 24 hour 

time series experiments was performed allowing 4 hours following 

synchronisation prior to collection. Samples were collected for qPCR and stored 

in RNAlater® or embedded in OCT for cryosectioning for 

immunohistochemistry/ immunofluoresence analysis. 

 

6.9 IMMUNOHISTOCHEMISTRY AND IMMUNOFLUORESCENCE 

Immunohistochemistry staining protocols for localisation and quantification of 

candidate proteins in human anagen and catagen HFs was established and 

performed on either; whole human scalp skin cryosections, isolated human 

scalp HF cryosections or on both whole scalp skin and isolated HFs. The 

thickness of cryosections was 8µm in whole scalp skin and 6µm for isolated HFs. 

Sections that needed direct comparison for quantification were always 

processed at the same time to ensure that any variation in results were not due 

to variation in experimental conditions, such as temperature. Negative controls 

were performed in all experiments by omission of primary antibody. In 

addition, positive controls; i.e. the use of tissues with known expression of the 

antigen in question, and blocking peptides (as additional negative control) were 

used in all experiments where these were available.  

Non-specific binding was minimised by treating sections for 20 minutes 

with serum from the same animal that the secondary antibody had been raised 
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(all normal serums from DAKO, Denmark). Primary antibodies were incubated 

overnight at 4C. Sections were washed in either phosphate buffered saline or 

Tris-buffered saline between steps. Immunohistochemistry sections were 

mounted using Pertex and immunofluorescent slides mounted with 

Fluoromount. Images were captured using the fluorescence microscope Biozero 

8000 (Keyence; Osaka, Japan).  When intensity of staining or fluorescence was 

to be measured, the same exposure times were used for sections that were in 

the same experiment to ensure consistency. Analyses of images was performed 

using the ImageJ software (Abramoff et al., 2004). 

6.10 KI-67/TUNEL STAINING 

This established double staining protocol was performed to localise and 

quantify proliferation and apoptosis concurrently within the human HF. Ki-67 is 

a marker of proliferation and TUNEL (terminal deoxynucleotidyl transferase 

dUTP nick end labelling) an apoptosis marker. The methodology has been 

previously published and the protocol provided below. TUNEL staining was 

performed using the Apoptag Fluorescein In Situ Apoptosis Detection Kit 

(Millipore, UK). All washing steps were performed with PBS (phosphate 

buffered saline). Cryosections were dried at room temperature for 5 minutes. 

Fixation was performed in 1% paraformaldehyde (PFA) at room temperature 

for 10 minutes. Following two 5 minute washing steps, the slides were post-

fixed in ethanol-acetic acid (2:1) for 5 minutes at -20°C. Following two further 

washes, equilibration buffer (from the commercial kit) was pipetted on each 

section and incubated at room temperature for 5 minutes. Subsequently, the 

sections were incubated in 30% TdT enzyme (in 70% reaction buffer) for 60 

minutes at 37°C, followed by 10 minutes in Stop buffer (consisting of 2mls Stop 

buffer and 68mls distilled water) at 37°C. 

Following this step, pre-incubation with 10% normal goat serum in PBS 

was carried out for 20 minutes at room temperature. This was followed by 

overnight incubation with the Ki-67 primary antibody mouse anti-human Ki-67 

antigen (clone MIB-1, DAKO) at 4°C. The following day, three washes were 

performed and the fluorescent staining for TUNEL was performed using 
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fluorescent labelled anti-digoxigenin antibody (commercial kit) at a ratio of 

56µl:59µl blocking solution: antibody solution; this was incubated for 30 

minutes at room temperature. The secondary antibody for Ki-67 was then 

applied to the sections following another washing step. Goat anti-mouse 

rhodamine red (Jackson Immunoresearch) at 1:200 concentration in 2% normal 

goat serum was applied to the sections and incubated for 45 minutes at room 

temperature. The sections were counterstained with DAPI for 1 minute after a 

washing step and then the slides were washed again and mounted with 

Fluoromount® (Southern Technologies). Negative controls were performed in 

every experiment whereby the primary steps - 30% TdT enzyme and Ki-67 

antibody - were omitted at these points of the procedure.  

 

6.11 MASSON – FONTANA STAINING 

Masson Fontana stains argentaffin granules and melanin. Staining was 

performed on HF cryosections that were fixed with ethanol-acetic acid (2:1) for 

10 minutes. Post-fixation was followed by a washing step in TBS and then 

distilled water for 5 minutes at each step. The cryosections were then heated for 

1 hour at 56°C until the resultant black stain was produced. Following a 

washing step in distilled water for 5 minutes, the sections were placed in 5% 

sodium thiosulphate solution for 1 minute followed by a wash in distilled water. 

The sections were then counterstained with haematoxylin for 1 minute and then 

washed for 5 minutes under tap water. The cryosections were then dehydrated 

by placement in 70%, 96% and 100% ethanol for 2 minutes at each 

concentration.  

Masson Fontana staining was analysed by taking digital images of all 

stained sections at using the Biozero 8000 microscope (Keyence) at x20 

magnification. All images were taken at the same exposure time to ensure no 

differences in staining intensities were due to that. ImageJ software (Abramoff 

et al., 2004) was used to measure the intensity of stains in the three reference 

areas as shown in Figure 6.5. 
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Figure 6.5: Quantification of masson-fontana staining 

Images show the reference areas (three rectangular areas) drawn in ImageJ to quantify masson-

fontana staining 

 

Analysis of the measured intensity values was performed using Graphpad 

prism. Statistical analyses performed was the Student’s paired t-test with a p 

value <0.05 was taken as statistically significant.   

6.12 PERIOD1 STAINING 

PERIOD1 immunofluorescent staining protocol was established during the 

project. HF cryosections were firstly dried for 10 minutes at room temperature 

and then fixed in acetone at –20°C for 10 minutes. Following a further 10 

minutes of drying at room temperature, the sections were washed in PBS. 10% 

normal goat serum (DAKO) was used for preincubation for 20 minutes at room 

temperature and 1:200 primary antibody rabbit anti-human Per1 with 2% 

normal goat serum was then pipette onto each section and allowed to incubate 

overnight at 4°C. The following day, the secondary antibody goat anti-rabbit 

fluorochrome (Jackson Immunoresearch) was applied for 45 minutes following 

a 5 minute washing step with PBS. The sections were counter stained with DAPI 

for 1 minute and washed with PBS before being mounted with Fluoromount 

(Southern Biotechnologies). The stained sample slides were stored at -20°C. 

Positive and negative controls were performed with this protocol. Firstly, 

the use of a blocking peptide was employed. This was prepared by incubating 5 

µl blocking peptide per 1 µl of antibody in a separately prepared primary 

antibody mixture. This was incubated at room temperature for 2 hours prior to 

commencing the experiment. At the primary antibody step, several sections 

were incubated with this blocking peptide mixture rather than the primary 
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antibody, 2% serum mixture. Lastly, two positive controls were used namely 

HaCaT cells and human pineal gland as they were known to express Period1 

protein (Ackermann et al., 2007, Zanello et al., 2000).  

 

6.13 PERIOD1 IMMUNOFLUORESCENCE IN ANAGEN AND CATAGEN HAIR 

FOLLICLES 

Immunofluorescent staining for PERIOD1 protein was performed on isolated 

anagen and catagen HFs from organ culture. Human HFs were maintained in 

organ culture and HFs were embedded, frozen and cryo-sectioned. PERIOD1 

immunofluorescence was performed and cryosections staged into anagen (n=8), 

early- (n=15), mid- (n=14) and late catagen (n=9). Sections were photographed 

using the Biozero 8000 microscope (Keyence). Exposure time and all 

microscope settings were maintained at the same settings for all photographs of 

each section to ensure comparisons could be made between the stages. 

Statistical differences were tested for using Mann Whitney U test and 

corrections for multiple testing was carried out via Holm-Bonferroni.  

6.14 ANALYSES OF IMMUNOHISTOCHEMISTRY IMAGES 

Immunolocalisation and intensity analyses were carried out by taking both 

brightfield and fluorescent images of immunohistochemistry stains using 

Biozero 8000 microscope (Keyence). The immunofluorescent sections were first 

assessed to establish the optimal exposure time for analysis of the stains. This 

ensured that images taken were standardised and would allow accurate 

assessment and comparison of fluorescent intensity. Images were analysed 

using ImageJ software whereby a reference area of HFs was outlined in order to 

take into account the differences in HF area and cell numbers (Figure 6.6).  
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Figure 6.6: Reference area for PERIOD1 immunofluorescent staining analyses 

Image showing the reference area chosen for analysis of PERIOD1immunohistochemistry using 

ImageJ  (yellow outline) 

6.15 BMAL1 STAINING 

The BMAL1 immunofluorescent staining protocol was established during the 

project. All washes were performed with TBS. HF cryosections were fixed in 1% 

PFA (in PBS, pH 7.4) for 10 minutes at –20°C. A drying step (room temperature 

for 10 minutes) both proceeded and followed the fixation step.  Sections were 

washed with TBS before and after endogenous peroxidase activity was blocked 

with 3% H2O2 in TBS for 15 minutes at room temperature.  Pre-incubation with 

10% normal goat serum (DAKO) in TBS was performed for 20 minutes followed 

by application of the primary antibody; 1:40 rabbit anti-human BMAL1 (Alpha 

Diagnostics) with 2% normal goat serum overnight at 4°C. The secondary 

antibody goat anti-rabbit FITC (Jackson Immunoresearch) with 2% normal goat 

serum was pipette onto each section at a concentration of 1:200 in TBS. 

Following 45 minutes incubation time with the secondary antibody, the sections 

were washed and then counter stained with DAPI for 1 minute. The sections 

were then embedded in Fluoromount after being washed. The sections were 

stored at -20°C. The analysis of BMAL1 immunofluorescent staining was 

identical to that as described for PERIOD1 above.  
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6.16 ANTIGEN RETRIEVAL  

This protocol was used for the positive controls human pineal gland prior to the 

immunofluorescence protocols for PERIOD1 and BMAL1. Human pineal gland 

sections were only available embedded in paraffin.  

Deparaffinisation was achieved by incubating the paraffin sections in 

ethanol for 30 minutes at room temperature, followed by dipping the sections 

into successively less concentrated ethanol; 100%, 95%, 70% and 50% ethanol 

respectively. The sections were then washed in TBS or PBS (depending on 

whether the BMAL1 or PERIOD1 staining protocol was going to be used). Citrate 

buffer (0.01M) was made up at pH 6.0. The sections were heated in the 

microwave in citrate buffer for 15 minutes. At this stage sections were 

frequently checked to ensure that the buffer was not evaporating. Citrate buffer 

was topped up if so to ensure the sections remained wet. After 15 minutes, the 

sections were cooled at room temperature overnight. The sections were washed 

and then used following from the fixation steps in the protocols. 

 

6.17 SMALL INTERFERING RIBONUCLEIC ACID (SIRNA) TRANSFECTION 

OF WHOLE HUMAN HAIR FOLLICLES 

This section details the protocol established for the knock-down of genes of 

interest in microdissected human HFs using siRNA technology (SantaCruz 

Biotech). The Santa Cruz system was followed according to manufacturer’s 

instructions. 

Whole human HFs were obtained by microdissection using the described 

methodologies detailed in section 6.3. On day 0, the microdissected HFs were 

placed in supplemented William’s E medium in a 6-well plate (15 HFs per well). 

Solution A and Solution B were prepared under sterile conditions: 

Solution A:  6µl  siRNA duplex  

100µl siRNA transfection medium 

Solution B:  6µl  siRNA transfection reagent   

100µl siRNA transfection medium 
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Solution A and B were mixed gently with a pipette and incubated for 45 

minutes at room temperature. Following the incubation time, HFs were washed 

with siRNA transfection medium (2ml per well). siRNA transfection medium 

(800µl) was added to the mixed Solution A and B; 1ml was pipetted into each 

well of the 6-well plates after the transfection medium had been removed after 

washing. HFs were incubated with the mixture for 5-7 hrs at 37°C in a 5% CO2 

incubator. Following the incubation period, the transfection mixture was 

removed and HFs were incubated as normal in supplemented William’s E 

medium. 

For every siRNA transfection experiment performed, a parallel control 

group was run alongside the siRNA transfection. The HFs in the control group 

were always from the same person as those in the siRNA group so that direct 

comparisons such as hair cycle stage, mRNA and protein expression could be 

made. Therefore, half of the HFs obtained from each person were allocated to 

the siRNA knockdown group and half to the control group. The HFs in the 

control group were treated by replacing the 6µl siRNA duplex with 6µl 

scrambled oligonucleotides in Solution A. All other reagents and conditions 

were the same in the control group as the siRNA treated group.  

The siRNA and control samples were taken for qPCR and 

immunofluorescent staining to confirm knockdown of mRNA and protein after 

24 hours. HF cultures were also run for an additional 4 days as detailed in Table 

6.2.  
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Table 6.2: siRNA transfection protocol for human hair follicles 

 Day 0 Day 1 Day 2 Day 3 Day 4 

siRNA 

transfection 

group 

 

Half of the total 

number of HFs 

obtained from 

each person 

placed in this 

group 

Microdissection of 

HFs 

 

Preparation of 

Solution A and B 

 

Incubate with 

transfection 

medium 

 

After 5-7h remove 

transfection 

Medium 

 

 Incubate HFs for 

18-24h in William’s 

E medium + 

supplements  

 

Take 24 hour 

samples 

(confirmation of 

knock-down by 

qPCR and IF by 

comparing 

expression in the 

knockdown 

group with the 

control group) 

Change 

media 

 

 Collection 

of HFs; 

whole HFs 

for qPCR, 

embed for 

staining 

 

 

Control 

group 

 

Half of the total 

number of HFs 

obtained from 

each person 

placed in this 

group 

Microdissection of 

HFs 

 

Preparation of 

Solution A (with 6µl 

scrambled 

oligonucleotides 

rather than siRNA 

duplex with) and 

solution B 

 

Incubate with 

transfection 

medium 

 

After 5-7h remove 

transfection 

Medium 

 

 Incubate HFs for 

18-24h in William’s 

E medium + 

supplements  

 

Take 24 hour 

samples 

(confirmation of 

knock-down by 

qPCR and IF by 

comparing 

expression in the 

knockdown 

group with the 

control group) 

Change 

media 

 

 Collection 

of HFs; 

whole HFs 

for qPCR, 

embed for 

staining 
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6.18 QUANTITATIVE PCR METHODOLOGIES  

6.18.1 RNA extraction protocol 

Total RNA extractions from whole human HFs were carried out using the 

PureLink RNA Mini Kit (Invitrogen) and Purelink DNase treatment Kit 

(Invitrogen). The manufacturer’s instructions were followed (Invitrogen). RNA 

was extracted from whole human HF samples at the same time to ensure 

comparisons between samples were not due to variations in experimental 

conditions during RNA extraction.  

TRIzol (800μl) was added to each sample of whole HFs and the sample 

homogenised using a pestle and mortar for 30 seconds followed by an electrical 

homogeniser for 30 seconds. The lysate was incubated at room temperature for 

5 minutes. This was to allow dissociation of nucleoprotein complexes. 

Chloroform was added to each sample (160μl) and the samples were vigorously 

shaken for 15 seconds and then incubated at room temperature for 3 minutes. 

The samples were centrifuged at full speed for 15 minutes and then 400μl of the 

colourless upper phase was transferred to a fresh RNase free tube by careful 

pipetting and an equal volume of 70% ethanol was added. After mixing the 

sample with a vortex, 700μl of the sample was transferred to a spin cartridge 

and then placed in the centrifuge for 15 seconds. The flow through was 

discarded and 350μl Wash buffer I was pipette onto the spin column (which 

contains the bound RNA). After centrifuging the sample again for 15 seconds the 

flow through was discarded and the spin cartridge inserted into a new 

collection tube.  The samples were then treated with DNase at this step. To each 

spin cartridge 80μl of the DNase mix was pipette directly onto the surface of the 

spin cartridge membrane (each mix comprises 8μl DNase reaction buffer, 10μl 

DNase and 62μl RNase-free water). Following a 15 minute incubation step at 

room temperature, 350μl Wash Buffer I was added to the spin cartridge and 

then centrifuged at full speed for 15 seconds. The flow through was discarded 

and the spin cartridge inserted into a new collection tube. Wash Buffer II with 

ethanol was then pipette onto the to the spin cartridge (500μl) and the samples 

centrifuged for 15 seconds. The flow through was discarded and the wash step 
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plus the centrifuge step was repeated.  After discarding the low through, the 

spin cartridge was dried by a 1 min centrifuge step. The spin cartridge was 

inserted into a recovery tube and 30μl RNase-free water was added to the 

centre of the spin cartridge. Following incubation at room temperature for two 

minutes, the spin cartridge was centrifuged for 1 minute and the resultant RNA 

was either stored on ice when used immediately or stored at -80°C for long term 

storage.  

Traces of genomic DNA were minimised by the use of DNase treatment 

steps as described above. Total RNA purity and concentrations were established 

by analysing the UV absorbance using the Nanodrop ND-1000 (Fisher Scientific, 

Loughborough, UK). 

 

6.18.2 Reverse transcription 

Reverse transcription was carried out using the cloned AMV First Strand cDNA 

Synthesis Kit (Invitrogen, Paisley, UK) according to the manufacturer’s 

instructions. Total RNA (volume varied as explained below) was added to a 

maximum volume of 9µl in each reaction with 1 µl oligo (dT) primers, 10mM 

dNTP mix and DEPC-treated water to make up 12 µl volume. If the total volume 

of RNA was 9 µl then no DEPC-treated water was added to the reaction mix. A 

denature step was performed by incubating the RNA and primer at 65°C for 5 

minutes and placing the samples on ice. Then, the master reaction mix was 

prepared and stored on ice; a total volume of 8 µl was added to each reaction on 

ice; comprising 4 µl 5x cDNA synthesis buffer, 1µl 0.1M DTT (Dithiothreitol), 1µl 

RNase OUT™, 1µl DEPC-treated water and 1µl Cloned–AMV RT. The reaction 

tubes were transferred to a pre-heated thermal cycler and incubated. The 

following temperatures and incubation times were performed; 50°C for 50 

minutes followed by 85°C for 5 minutes. The sample was stored at -20°C until 

used for qPCR experiments.  

The volume of RNA added to the reaction mix was adjusted for each 

sample in each experiment to ensure the same concentration of RNA was loaded 

in the reverse transcription reactions for each sample set. This was to ensure 
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that samples whose results were going to be compared by qPCR were subjected 

to the same conditions and to minimise any variation being due to different RNA 

amounts included in the reverse transcription reaction rather than true 

differences. Controls were included for each sample whereby the reverse 

transcription reaction was carried out without any reverse transcriptase. This 

was to test for any genomic DNA contamination present in the RNA samples 

during qPCR. 

 

6.18.3 Assessment of amplification reaction efficiencies (qPCR) 

To utilise the delta delta Ct method for relative quantification in the qPCR 

experiments a standard curve was produced for the housekeeping gene, 

peptidylprolyl isomerase A (PPIA), and all target genes to check the efficiencies 

of the amplification reactions for these genes. This is because in order to use the 

delta delta Ct method, the efficiencies of the PCR amplification reaction for both 

the gene of interest and normaliser (housekeeper) should be approximately 

equal to ensure validity of relative quantification. The validations performed 

here were performed to check what conditions this would be true prior to 

proceeding to the data generating experiments.  

Serial dilutions were performed on cDNA obtained from isolated human 

HFs. This sample was representative of the samples to be used in later 

experiments. Quantitative PCR was carried out using the manufacturer’s 

protocol and delta Ct values plotted against template dilutions (relative 

efficiency plots). A linear line of best fit was plotted and a slope of absolute 

value <0.1 was determined as acceptable for employing the delta delta Ct 

method. If the efficiencies of the PCR reactions are equal, the plot of ΔCt against 

input amount would produce a slope of 0. The dynamic ranges for the assays of 

interest were established by determining the concentrations of input cDNA that 

produced a slope of <0.1 in the efficiency plots (Appendix C). 

Due to this work, the dynamic ranges were established as summarised in 

(Table 6.3) and detailed in Appendix C. In light of this analysis, the highest 

concentrations of cDNA (100ng or 10ng) were used in all qPCR experiments to 
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ensure the efficiencies between the normaliser and target genes were as equal 

as possible; minimising any errors in the effect of variation in amplification 

reactions. This controlled for the variation between target and housekeeper 

gene efficiencies seen with the lower concentrations of cDNA. Therefore, when 

performing the delta delta Ct method using these selected dynamic ranges, it 

was then assumed that the reaction was 100% efficient for analyses. 

 

Table 6.3: Acceptable cDNA concentrations to achieve 100% efficiencies in qPCR 

reactions 

Gene  Acceptable dynamic range (ng) 

Per1 0.1-100 

Bmal1 0.1-100 

Clock 0.1-100 

Cry1 0.1-100 

Cry2 0.1-100 

Nr1d1 1-100 

Cdkn1a 0.001-100 

c-Myc 0.1-100 

 

6.18.4 Real time qPCR 

Real time quantitative polymerase chain reaction (qPCR) was performed using 

human TaqMan® gene expression assays (Applied Biosystems, Warrington, UK) 

(Table 16). The TaqMan® gene expression assays are detailed in Table 16. The 

StepOne Plus™ Real-Time PCR system was used (Applied Biosystems). Each 

reaction well contained 1µl 20x TaqMan® gene expression assay, 10 µl 2X 

TaqMan® fast advanced master mix, 4 µl cDNA template (equal for all samples 

in an experimental study) and 5 µl RNase-free water. 

Genomic DNA contamination was tested for in the RNA samples by 

performed qPCR on the control reverse transcription samples as well as the true 

samples. No PCR amplification product was found with these samples. No 
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template controls (NTC) were performed for every gene analysed to exclude any 

contamination of reagents used in the qPCR reactions. Samples were run in 

triplicate and performed on the same plate.   

The conditions for qPCR were as follows;  20 seconds at 95°C, followed 

by 40 cycles of (denaturation, annealing and extension) 95°C for 1 second; 60°C 

at 20 seconds respectively. Real-time quantification plots were collected and 

stored by the StepOne™ software. Relative expression was determined using the 

delta Ct and delta delta Ct methods against the housekeeper gene PPIA. Results 

were plotted and analysed using Graphpad prism and excel. Statistical analysis 

of paired or unpaired Student’s t-tests, as appropriate, were performed and 

results were considered significant if p<0.05 (95% confidence interval).  

 

6.19 MICROARRAY EXPERIMENT ON HUMAN ANAGEN AND CATAGEN 

HAIR FOLLICLES 

Redundant human scalp skin was obtained from the scalp of three patients 

(females, ages 48, 54 and 68) all undergoing facelift surgery following informed 

consent. Individual HFs were isolated by micro-dissection as described. Anagen 

VI HFs for each patient were maintained in a 24-well plate in supplemented HF 

organ culture medium. HFs were placed in an incubator at 37°C with 5% CO2 

level, maintained in culture and assessed daily using light microscopy to 

determine whether they appeared, macroscopically, to be in anagen or late 

catagen phases. The supplemented media was changed every two days. Anagen 

and late catagen samples were taken for microarray analysis to determine gene 

expression pattern differences between these two distinct cycle points. 
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Table 6.4: TaqMan® Gene Expression Assays used for qPCR experiments during the 

project 

 

Gene 

symbol 

Genebank 

accession 

number 

TaqMan Assay 

ID 

Gene name 

CLOCK NM_004898.2 Hs00231857_m1 clock homolog (mouse) 

PER1 NM_001178.4 Hs00242988_m1 period homolog 1 

(Drosophila) 

BMAL1 NM_002616.2 Hs00154147_m1 aryl hydrocarbon 

receptor nuclear 

translocator-like 

CRY1 NM_004075.3  Hs00172734_m1 cryptochrome 1 

(photolyase-like) 

CRY2 NM_021117.1 Hs00323654_m1 cryptochrome 2 

(photolyase-like) 

Nr1d1 NM_021724.3 
Hs00253876_m1 

 

nuclear receptor 

subfamily 1, group D, 

member 1 

Cdkn1a NM_000389.4 Hs00355782_m1 cyclin-dependent kinase 

inhibitor 1A (p21, Cip1) 

c-Myc NM_002467.4 
Hs00905030_m1 

v-myc myelocytomatosis 

viral oncogene homolog 

(avian) 

 

SGK3 NM_013257.4 Hs00179430_m1 Serum glucocorticoid 

regulated kinase family, 

member 3 

MSX2 NM_002449.4 Hs00741177_m1 msh homeobox 2 

BMP2 NM_001200.2 Hs00154192_m1 bone morphogenetic 

protein 2 

BMP4 NM_130850.2 Hs00370078_m1 bone morphogenetic 

protein 4 

NOG  Hs00271352_s1 Noggin 

PPIA NM_021130.3 Hs99999904_m1 peptidylprolyl isomerase 

A 

ACTB NM_001101.3 Hs99999903_m1 actin, beta 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=Nucleotide&dopt=GenBank&term=NM_021117.1
http://www.ncbi.nlm.nih.gov/nuccore/NM_021724.3
http://www.ncbi.nlm.nih.gov/nuccore/NM_000389.4
http://www.ncbi.nlm.nih.gov/nuccore/NM_002467.4
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  Total RNA was extracted from the anagen VI and late catagen HFs using 

TRIzol® and the PurelinkTM RNA Mini Kit (Invitrogen, UK). The total RNA was 

extracted at the same time to ensure that the conditions were equal between 

samples. The quantity and quality of the extracted total RNA was assessed using 

a BioAnalyzer 2100 (Agilent technologies Ltd., UK) and the samples were 

submitted to the University of Manchester Genomic Technologies Core Facility. 

Total RNA (100ng) from each sample was converted into cDNA used for 

microarray analysis. Human genome U133A oligonucleotide microarrays were 

performed following manufacturer’s instructions (Affymetrix®, UK). The data 

was processed firstly, by ensuring quality control using dChip (Li and Wong, 

2004) and secondly, by performing background correction, normalisation and 

expression using the GC-RMA method (Wu et al., 2004).  

The baseline or “control” group was taken as anagen and therefore the 

fold changes were calculated as the expression in catagen compared to anagen 

per patient. The data was tested for statistical significance by comparing the 

average expression of the anagen state (average fold change for three patients) 

against the catagen samples (average fold change for three patients) using 

paired Student t-tests. In addition, subsets of probes were created where probe 

up or down-regulation was greater or less than 1.5 fold change in all three 

patients. These subsets were named anagen signatures for the group that were 

down-regulated in catagen compared to anagen and the catagen signature for 

the up-regulated group. These sets were separately analysed for over 

represented gene ontologies (GO) using Database for Annotation, Visualisation 

and Integrated Discovery version 6.7 (DAVID 6.7) (Huang et al., 2009, Dennis et 

al., 2003). 

Validations experiments for the microarray results was carried out using 

qPCR, performed in a collaboration with Dr. T. Biró,  Department of Physiology, 

University of Debrecen, Debrecen, Hungary. Analyses of the obtained qPCR 

results were performed by the candidate. Student’s t-test was performed to test 

for statistically significant differences between groups (anagen versus catagen). 
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7 CHAPTER 7: CLOCK GENES MODULATE THE 

HUMAN HAIR CYCLE: A MEETING OF TWO 

CHRONOBIOLOGICAL SYSTEMS 
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7.1 ABSTRACT  

 

The hair follicle (HF) continuously undergoes cyclic tissue remodelling 

events controlled by an, as yet unknown, oscillator system. We 

hypothesised that peripheral circadian clock genes are involved in hair 

cycle control; namely the anagen-to-catagen transition. Human HF organ 

culture was used as a clinically relevant model for studying intersecting 

developmental, chronobiological and growth-regulatory mechanisms in 

the absence of central clock influences. Isolated, organ-cultured human 

scalp HFs show circadian expression of core clock genes (Clock, Bmal1, 

Period1) and hair cycle-dependent changes in the expression of Period1. 

Knock-down of Period1 or Clock in human HFs significantly prolonged 

active hair growth (anagen), stimulated hair matrix keratinocyte 

proliferation and melanogenesis, and down-regulated clock-controlled 

genes Cdkn1a and c-Myc. Thyrotropin-releasing hormone, a hypothalamic 

regulator of clock gene activity, which promotes human hair growth, 

modulated clock gene transcription. This provides the first evidence that 

peripheral clock genes, namely Period1 and Clock, modulate human hair 

anagen-to-catagen transition. We also show that Period1 and Clock are 

novel regulators of human pigmentation in situ. Therefore, clock gene 

activity is identified here as an important regulator of human peripheral 

tissue physiology and remodelling, and constitutes a promising novel 

target for therapeutic modulation of human hair growth and 

pigmentation.  
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7.2 INTRODUCTION  

The HF is a unique, highly dynamic mini-organ that, for the entire life-time of 

mammalian organisms, undergoes a cyclical remodelling process called the hair 

cycle (Kligman, 1959, Stenn and Paus, 2001, Schneider et al., 2009). In these 

rhythmic, precisely timed and controlled organ transformations, the HF 

cyclically recapitulates key aspects of its morphogenesis, undergoes massive cell 

death, before it regenerates again owing to its rich endowment with several 

different stem cell populations (Cotsarelis, 2006, Lavker et al., 2003, Fuchs, 

2009). The growth stage (anagen) is characterised by long-lasting, intense 

epithelial proliferation and production of pigmented hair shafts. This is followed 

by rapid apoptosis-driven organ involution (catagen) where the lower two 

thirds of the HF regresses, and by a phase of relative quiescence (telogen) 

(Figure 7.1).  

As an archetype of cyclic regenerative events, the hair cycle represents a 

fascinating system which exhibits its own autonomic, site-dependent 

periodicity. The HF is an ideal model for studying complex mesodermal-

neuroectodermal tissue interactions and lies at the intersection of 

chronobiology, developmental biology, regenerative medicine and systems 

biology. 

Despite an ever-increasing range of candidates involved in the co-

ordination of the timely cyclic activity of the HF, the autonomous oscillator 

system that drives HF cycling remains essentially unknown, especially in the 

human HF (Paus & Foitzik Differentiation 2004, Lin et al. 2009, Plikus, Mayer et 

al. 2008; Schneider, Schmidt-Ullrich et al. 2009, Plikus et al. 2011). Thus, 

dissecting the regulatory molecules involved in dictating the rhythmic organ 

regeneration and regression of the HF promises new insights into the molecular 

mechanisms through which powerful biorhythms impact on mammalian organ 

regeneration and remodelling. Elucidating the controls that drive human HF 
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cycling is also of great clinical importance, since the vast majority of hair growth 

disorders can  

 

Figure 7.1: The hair cycle 

The hair follicle undergoes a continuous cyclical process after morphogenesis involving regression 

and regeneration of the lower two-thirds of its structure. This process, named the hair cycle, 

consists of three stages, firstly catagen is initiated (red) involving apoptosis of the epithelial 

compartment of the hair follicle causing the cessation of hair shaft production and leaving behind 

an epithelial strand. This stage lasts approximately two weeks in humans. The dermal papilla rests 

next to the bulge region (epithelial stem cell niche) in the telogen phase (yellow) of the hair cycle 

and a club hair formed. Shedding of the hair is described as exogen, but is a side path off the cycle 

stages. After approx. 2-4 months in humans, stem cells are activated and the anagen phase 

commences (green). This involves the total regeneration of the lower two-thirds of the hair follicle 

as rapid proliferation and differentiation occurs. Anagen involves the production of a new hair and 

lasts 2-7 years on the human scalp. DP = dermal (follicular) papilla, HS = hair shaft, ORS = outer 

root sheath, SG = sebaceous gland. Adapted after Schneider et al, 2009. The Hair Follicle as a 

Dynamic Miniorgan. Current Biology 19:R132-R142 

 

be attributed to changes in normal HF cycling dynamics, most notably to 

abnormalities in the anagen-catagen transformation (Cotsarelis and Millar 
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2001; Paus 2006). Unfortunately, none of the currently FDA-approved major 

anti-hair loss drugs (e.g. finasteride, minoxidil) counteract undesired anagen 

shortening at a satisfactory level of efficacy and reliability. Therefore, more 

effective “hair drugs” that target key components of the human hair cycle are 

urgently needed. 

 There is growing consensus that the regulatory mechanisms governing 

the human hair cycle are based on an autonomous, intra-follicular oscillator 

system (Al-Nuaimi et al., 2010, Robinson et al., 1997, Paus and Foitzik, 2004, 

Kwon et al., 2006). Here, we hypothesise that clock genes, responsible for the 

autonomous oscillatory timing system, that is the circadian rhythm, are core 

molecular elements of human hair cycle regulation. 

 Clock genes represent a crucial chronobiological system for the 

organisation of cyclic changes in the activities of cells, tissues, and organisms 

(Miller et al., 2007, Lowrey and Takahashi, 2004, Dunlap et al., 2004). The 

circadian rhythm is brought about by a self-autonomous process driven by 

transcriptional and translational feedback loops and post-translational 

processes (Figure 7.2). The result is a timing of approximately 24 hours. The 

central clock is governed by a central pacemaker (“master clock”) in the 

suprachiasmatic nucleus (SCN) (Dunlap et al., 2004, Dardente and Cermakian, 

2007, Langmesser et al., 2008, Shearman et al., 2000, Kume et al., 1999). The 

molecular components of the core clock mechanism are the PAS (PER-ARNT-

SIM) domain transcription factors including Clock, Bmal1,Npas2 and Cry1, Cry2, 

Period1, Period2 and Period3 (Lowrey and Takahashi, 2004). CLOCK and 

BMAL1 transcription factors form a heterodimer which bind to the E-box 

response element for Pers and Crys and induce their transcription making up 

the positive limb of the feedback process. Translated PER and CRY proteins 

heterodimerise in the cytoplasm and enter the nucleus to inhibit CLOCK-BMAL1 

heterodimerisation via interaction with the PAS domain of CLOCK-BMAL1 

forming a negative feedback loop and repress their own transcription (Dardente 
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and Cermakian, 2007, Langmesser et al., 2008, Shearman et al., 2000, Reppert 

and Weaver, 2002, Gekakis et al., 1998, Duffield, 2003, Takahashi et al., 2008). 

 

Figure 7.2: Basic core clock mechanism with regulatory inputs and outputs 

The mechanism governing the circadian system involves self-sustaining endogenous oscillators 

which consist of interlocking transcriptional feedback loops synchronised via a central pacemaker 

(“master clock”) in the suprachiasmatic nucleus (SCN) (Dardente and Cermakian, 2007, 

Langmesser et al., 2008, Shearman et al., 2000, Dunlap et al., 2004, Kume et al., 1999). The 

molecular components of this core clock mechanism (components within the blue circle represent 

this at a very simplified level) involve auto-regulated expression of a class of PAS (PER-ARNT-SIM) 

domain transcription factors including Clock, Bmal1, two Cryptochrome genes (Cry1 and Cry2) and 

three Period genes Period1, Period2 and Period3 (Lowrey and Takahashi, 2004). CLOCK and 

BMAL1 proteins form a heterodimer (positive loop, green arrows) which bind to the E-box response 

element for Per and Cry and induce their transcription. The translated PER and CRY proteins 

(negative loop, red dashed line) in turn inhibit CLOCK-BMAL1 heterodimerisation via interaction 

with the PAS domain of CLOCK-BMAL1 (Dardente and Cermakian, 2007, Langmesser et al., 2008, 

Shearman et al., 2000, Reppert and Weaver, 2002, Gekakis et al., 1998, Duffield, 2003). Other genes 

that are not involved in the clock mechanism, CCGs, such as D-box binding protein (Dbp), are 

regulated directly by the CLOCK-BMAL1 heterodimer. These CCGs have been found to be involved in 

physiological processes with 10% of genes within a tissue found to be CCGs. Importantly the 

expression of these genes have also shown tissue-specific expression (Duffield, 2003). The resulting 
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output of the clock mechanism is that mRNA and protein levels within this basic and extended 

system oscillate as seen in the graph. 
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A secondary loop exists comprising of orphan nuclear receptor NR1D1 

which associates with BMAL1. It is thought that this accessory feedback loop 

acts to improve the robustness of the circadian mechanism (Takahashi et al., 

2008). Recently, it has been shown that peripheral tissues also possess 

peripheral clocks responsible for implementing local physiology (Dardente and 

Cermakian, 2007). The core molecular components of both central and 

peripheral oscillators are preserved. A peripheral clock has been demonstrated 

in the murine skin (Tanioka et al., 2009). 

Other genes that are not involved in the clock mechanism; clock-

controlled genes (CCGs), such as c-Myc and Cdkn1a (also known as p21), are 

regulated directly by the CLOCK-BMAL1 heterodimer (Miller et al., 2007). CCGs 

have been found to be involved in physiological processes with 10% of genes 

within a tissue thought to be CCGs. Importantly the expression of these genes 

have also shown tissue-specific variability (Duffield, 2003). 

That clock genes and clock-controlled genes (CCGs) are evident 

candidates for an involvement in the human hair cycle (Geyfman and Andersen, 

2010) is further supported by the fact that clock genes not only exhibit 

autonomous, self-regulated oscillations (Dardente and Cermakian, 2007, Dunlap 

et al., 2004, Dibner et al., 2010) but also impact on cell cycle and apoptosis 

control (Lee, 2005, Chen-Goodspeed and Lee, 2007, Fu et al., 2002, Matsuo et al., 

2003, Miller et al., 2007, Takahashi et al., 2008); two key processes occurring 

during HF cycling. Indeed, CCGs and their encoded proteins are involved in 

murine HF cycling in vivo by interacting with cell cycle control (Lin et al., 2009). 

Even though it could not be excluded that this reflected the central clock 

influences on HF cycling, this study suggested that circadian clock genes are 

involved in cutaneous processes that transcend a 24-hour periodicity (Geyfman 

and Andersen, 2010). Also, human HF cells from plucked hair shafts have been 

shown to exhibit circadian rhythmicity in clock genes and CCG expression 

(Akashi et al., 2010).  
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The localisation and function of clock genes and proteins in the human 

HF remain to be characterised, and their impact on human HF cycling awaits 

clarification. More importantly, previous studies (Lin et al. 2009, Akashi et al. 

2010) were not able to distinguish between the central and the peripheral clock 

in the HF. On this basis, we have addressed the following specific questions: 

1. Does the expression of clock genes and proteins in intact human scalp HFs 

show circadian and/or hair cycle-dependent variations? 

2. Does clock gene silencing affect human HF cycling, hair growth and/or 

pigmentation?  

3. Does follicular (i.e. peripheral) clock gene expression underlie 

neuroendocrine controls that are recognised for the central clock, namely by 

TRH? 
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7.3 MATERIALS AND METHODS  

7.3.1 Human skin and hair follicle sample collection 

Redundant human scalp skin was obtained from the temporal or occipital 

regions from females undergoing routine facelift surgery (total n=10, 54-71 

years) and scalp occipital hair follicular units from males undergoing hair 

transplantation surgery (total n=6, 28-66 years). Tissue was obtained following 

ethical approval (Faculty of Medicine, Ethics Committee, University of Lübeck 

and Translational Medicine, University of Manchester) and informed patient 

consent. For whole skin analysis, skin was cut into small blocks and either fixed 

in 10% phosphate buffered formalin and snap frozen in liquid nitrogen or first 

embedded in Shandon Cryomatrix (Fisher Scientific) prior to snap freezing. For 

isolated HF analyses, these were isolated by microdissection and then used in 

HF organ culture experiments or embedded in Shandon Cryomatrix and snap 

frozen in liquid nitrogen for immunohistochemistry experiments. 

7.3.2 Human hair follicle organ culture  

Anagen VI HFs were isolated from human scalp skin according to previously 

described methods (Philpott et al., 1990, Sanders et al., 1994). Using this well-

established model, human HFs are able to continue growing in standardised 

conditions whereby late anagen (anagen VI) HFs will continue to produce a hair 

shaft exhibiting elongation and eventually enter a catagen-like state 

spontaneously. The other stages of telogen and early anagen are not captured 

using this method. 

Isolated HFs were maintained in a 24-well plate; each well containing 

500 µl serum-free Williams’ E medium (Biochrom) supplemented with 2 

mmol/L L-glutamine (Invitrogen), 10 ng/ml hydrocortisone (Sigma-Aldrich), 10 

µg/ml insulin (Sigma-Aldrich) and 1% antibiotic/antimycotic mixture (100x, 

GibCo). The supplemented medium was changed every second day. 
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7.3.3 Time series experiments for temporal gene profiling in anagen 

human hair follicles 

In order to establish the expression pattern of core clock genes and selected 

CCGs during the circadian cycle, human scalp occipital anagen VI HFs from two 

patients were obtained. The operations were performed during the time 

window of 09:30-13:00 GMT. Microdissection of the HFs was performed and the 

HFs maintained in culture media for 24 hours for two patients and 7 days in the 

third patient. Synchronisation of the HFs was then performed using 100nM 

dexamethasone for 30 minutes and whole HFs were harvested every 4 hours 

following synchronisation for a 24 hour period. The HFs were maintained in 

constant conditions in a 5% CO2 incubator at 37ºC. When harvested the HFs 

were stored in RNAlater and then processed for qPCR analysis (see below) to 

establish the expression pattern of Clock, Bmal1, Period1, Nr1d1, Cdkn1a, C-myc. 

A further experiment was performed without dexamethasone synchronisation 

as a comparison using 42 fronto-temporal anagen VI HFs (female, aged 64 

years). These HFs were maintained in the same conditions. Time points of 8:00, 

14:00 and 21:00 GMT were taken and the HFs snap frozen whole for qPCR 

analysis of Clock, Bmal1 and Period1. 

7.3.4 Hair follicle organ culture – “catagen culture” 

In order to investigate changes in clock genes and proteins in accordance with 

the hair cycle, organ cultured anagen VI human HFs were isolated and 

maintained in organ culture conditions as described. HFs were assessed daily 

using a Nikon Diaphot inverted binocular microscope to determine whether 

they appeared, macroscopically, to be in anagen or early, mid- and late catagen 

phases. Once identified to be in the correct stage (Kloepper et al., 2009, Müller-

Röver et al., 2001), HFs were immediately embedded in Shandon Cryomatrix 

and snap frozen in liquid nitrogen and 6µm thick cryosections cut by cryostat 

(Model CM 3050S, Leica) and stored at -80°C until required for 

immunohistochemistry analyses. HF stages (anagen versus catagen) were 



 

177 

 

assessed by applying carefully defined morphological and immunohistological 

staging criteria (Kloepper et al., 2009). For qPCR analyses anagen and catagen 

HFs were stored in RNAlater and then processed as described in the qPCR 

section (below and Chapter 6). This method was used for collecting HFs that 

were either maintained in anagen or had spontaneously entered catagen stages 

(early, mid and late catagen) and frozen for IF PERIOD1 and BMAL1. In addition, 

anagen and catagen HFs were obtained from one patient to check for any 

changes in expression between (non-synchronised) anagen and catagen HFs.  

7.3.5 Synchronised time series experiment of anagen and catagen hair 

follicles to determine clock gene expression 

Microdissected human scalp HFs were obtained from redundant hair 

transplantation surgery follicular units. Five patients were used for this 

experiment (Table 7.1). The first two patient samples for anagen were obtained 

as described for temporal profiling of anagen HFs. The last three patient 

samples were obtained after maintaining the HFs in organ culture as described. 

All HFs were assessed daily and staged according to macroscopic staging 

criteria (Kloepper et al., 2009). For patient C; once half the HFs had entered 

anagen and the other catagen, the samples were synchronised using 

dexamethasone and harvested into two groups anagen and catagen and the six 

time points for each group. For patients D and E, once all HFs were seen to be in 

catagen, the synchronisation and harvesting experiment over 24 hours was 

performed. This took between 7 and 14 days for the HFs to enter the correct 

stage. The HFs were maintained in RNAlater until processed for qPCR analysis 

to check the expression of Clock, Bmal1 and Period1.  

 

Table 7.1: Patient samples for 24 hour synchronised time series experiment 

Patient 

ID 

Age Gender Location Hair cycle stage when 

samples taken 

A 35 M Occipital Anagen 
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B 28 M Occipital Anagen 

C 40 M Occipital Anagen 

Catagen 

(Both stages harvested on the 

same day) 

D 40 M Occipital Catagen 

E 40 M Occipital Catagen 

 

7.3.6 Clock and Period1 knock-down in organ cultured human hair 

follicles  

Anagen VI HFs were isolated from human scalp skin as described (see above) 

(Philpott et al., 1990, Sanders et al., 1994). To inhibit the expression of Clock and 

Period1 genes in human HFs, HFs were transfected with Clock siRNA (Clock 

siRNA (h): sc-35074) and Period1 siRNA (Per1 siRNA (h): sc-38171) in separate 

organ culture experiments (see Table 7.2). All reagents were from Santa Cruz 

Biotechnology, Inc. and the transfections were performed according to 

manufacturer’s gene silencing protocol. HFs were incubated for 5 hours at 37ºC 

in an atmosphere of 5% CO2 and 95% air. siRNA Transfection medium was then 

removed and HFs incubated for either an additional 24 or 96 hours in 

supplemented William’s E Medium. Medium was changed every 48 hours. 

Control experiments were performed in parallel, using the same patient HFs, 

with random scrambled oligos (Control siRNA (FITC Conjugate)-A: sc-36869) 

(Santa Cruz). Whole HFs were collected from the siRNA transfected and control 

groups for qPCR or immunohistochemical analyses. PERIOD1 (PER1) protein 

staining, Masson Fontana and double staining for Ki-67/TUNEL were performed 

to decipher any effect on proliferation and apoptosis, melanin content and PER1 

protein production by siRNA treatment at either 24 hours or 96 hours. HFs 

were allocated into their correct hair cycle stage (either anagen or early, mid-, 

late catagen) using microscopic staging criteria on all cryosection pictures taken 

from IHC analyses after 96 hours culture. The results of each stain was analysed 
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by combining the data from the four patients for the siRNA Period1 data and the 

one patient for siRNA Clock data. Contingency table analysis (Fisher’s Exact test) 

was performed to test for significant differences in staged groups between the 

siRNA and control groups. Significant differences were taken as p<0.05. 

Table 7.2: siRNA transfection experiments – sample demographics and 

experimental plan 

 

7.3.7 TRH treatment of human hair follicles - 6 day organ culture 

To investigate the effect of TRH on human HFs in organ culture, isolated anagen 

VI HFs were maintained in a 24-well plate for 6 days. 5-100 ng/ml TRH was 

added to the culture medium every 48 hours as previously described (Gáspár et 

al., 2010). Once completed, HFs were either frozen whole (5 ng/ml and 100 

ng/ml concentrations) for qPCR analysis or embedded for subsequent 

cryosectioning and immunohistochemical staining (5 ng/ml and 10 ng/ml 

concentrations). All HFs were maintained in the same conditions in organ 

culture and all samples were harvested within the same time window (19:00-

22:00 h). 

 

Gene SiRNA probes 

used 

Patient Age No. of 

HFs 

Location Duration of 

knock-down 

Period1 Period1 siRNA 

(h): sc-38171 

and control 

siRNA 

69  yr, female 90 Scalp, 

occipital 

24 hrs 

53  yr, female 70 Scalp, 

temporal 

96 hrs 

47 yr, male 75 Scalp, 

occipital 

96 hrs 

48 yr, male 75 Scalp 96 hrs 

45 yr, male 83 Scalp 96 hrs 

Clock Clock siRNA 

(h): sc-35074, 

Control siRNA 

71 yr, female 95 Scalp, 

occipital 

24 hrs 

59  yr, female 92 Scalp, 

temporal 

96 hrs 
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7.3.8 Quantitative PCR – Method 1 

This method for qPCR was carried out for all experiments apart from those 

specified in the below section.  

Total RNA was extracted from whole HF samples using PureLink RNA Mini Kit 

(Invitrogen) following the manufacturer’s instructions.  Samples were all 

treated with Purelink DNase treatment Kit (Invitrogen) as directed by the 

instructions. RNA purity and concentrations were established by analysing the 

UV absorbance using the Nanodrop ND-1000 (Fisher Scientific, Loughborough, 

UK). Reverse transcription was carried out using the cloned AMV First Strand 

cDNA Synthesis Kit (Invitrogen, Paisley, UK) according to the manufacturer’s 

instructions. The volume of RNA added to the reaction mix was adjusted for 

each sample in each experiment to ensure the same concentration of RNA was 

loaded in the reverse transcription reactions for each sample set. This was to 

ensure that samples whose results were going to be compared by qPCR were 

subjected to the same conditions and to minimise any variation being due to 

different RNA amounts included in the reverse transcription reaction rather 

than true differences. Controls were included for each sample whereby the 

reverse transcription reaction was carried out without any reverse 

transcriptase. This was to test for any genomic DNA contamination present in 

the RNA samples during qPCR. Real time quantitative polymerase chain reaction 

(qPCR) was performed using human TaqMan® gene expression assays (Applied 

Biosystems, Warrington, UK) (Table 7.3). The TaqMan® gene expression assays 

are detailed in (Table 7.3). The StepOne Plus™ Real-Time PCR system was used 

(Applied Biosystems). Real-time quantification plots were collected and stored 

by the StepOne software. Relative expression was determined using the delta Ct 

and delta delta Ct methods against the housekeeper gene PPIA. Results were 

plotted and analysed using Graphpad prism and EXCEL (Microsoft®). Statistical 

analysis of paired or unpaired Student’s t-tests were performed or one way 

ANOVA when appropriate. Results were considered significant if p<0.05. 
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Table 7.3: Taqman® qPCR primers 

7.3.9 Quantitative PCR – Method 2 

The HF samples; 6 day TRH experiment, non-synchronised anagen and catagen 

samples, non-synchronised three time point samples and 24 hour knockdown 

with Period1 and clock confirmation were all performed in the Biro lab, 

Hungary. The following method was used: Total RNA was isolated using TRIzol 

(Invitrogen) and 1 μg of total RNA was reverse-transcribed into cDNA by using 

15 U of AMV reverse transcriptase (Promega) and 0.025 μg/μl random primers 

(Promega). Q-PCR was performed on an ABI Prism 7000 sequence detection 

system (Applied Biosystems) using the 5’ nuclease assay as detailed previously 

(Bodo et al., 2005, Tóth et al., 2009). PCR amplification was performed by using 

the TaqMan® primers and probes (Table 7.3) and the TaqMan® universal PCR 

master mix protocol (Applied Biosystems). The internal control gene used to 

normalise the data for all cases apart from TRH-treated HFs was peptidylprolyl 

isomerase A (PPIA). β-actin (ACTB) was used for the 6 day TRH treated-HFs. 

Gene GeneBank 

Accession No. 

TaqMan® assay 

ID 

Full gene name 

Clock NM_004898.2 Hs00231857_m1 clock homolog (mouse) 

Bmal1 NM_001178.4 Hs00154147_m1 
aryl hydrocarbon receptor 

nuclear translocator-like 

Period1 NM_002616.2 Hs00242988_m1 
period homolog 1 

(Drosophila) 

Cry1 NM_004075.3 Hs00172734_m1 
cryptochrome 1 (photolyase-

like) 

Cry2 
NM_021117.1, 

NM_01127457.1 
Hs00323654_m1 

cryptochrome 2 (photolyase-

like) 

Cdkn1a NM_000389.4 Hs00355782_m1 
cyclin-dependent kinase 

inhibitor 1A (p21, Cip1) 

c-Myc NM_002467.4 Hs00905030_m1 
v-myc myelocytomatosis viral 

oncogene homolog (avian) 

PPIA NM_021130.3 Hs99999904_m1 peptidylprolyl isomerase A 

ACTB NM_001101.3 Hs99999903_m1 actin, beta 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=Nucleotide&dopt=GenBank&term=NM_021117.1
http://www.ncbi.nlm.nih.gov/nuccore/NM_000389.4
http://www.ncbi.nlm.nih.gov/nuccore/NM_002467.4
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Normalisation was carried out based on the delta Ct method. Experiments were 

performed in triplicates; the average relative expression levels were calculated 

and plotted using EXCEL (Microsoft®) or Graphpad prism. Statistical analyses 

were carried out with SPSS 9.0 statistical software (SPSS Inc.) using 

independent sample t-tests and one-way ANOVA. Pair-wise comparison was 

performed using both Dunnett and Bonferroni tests in order to compare the 

means of more than 2 samples. 

7.3.10 In situ hybridisation for clock mRNA 

For the in situ hybridization, digoxigenin (DIG) labeled Clock sense and 

antisense probes were generated as previously described (Eichberger et al., 

2004) (Table 7.4). In brief, 6m tissue sections were pre-hybridised in pre-hyb-

solution (4x saline sodium citrate (SSC), 1x Denhardt’s, 50% formamide, 500 

mg/ml tRNA and 500 mg/ml salmon testes DNA, denatured at 100 ºC for 10 min 

and placed on ice before adding to the mix) and incubated at 42 ºC for 3-4 

hours. Hybridisation was carried out using fresh pre-hyb-solution containing 

80-100ng labelled probe (denatured at 65 ºC for 5 min) at 42 ºC overnight. 

Sections were washed in 2x SSC for 5 min (two times) and in 2x SSC, 1x SSC, 0.5x 

SSC, each containing 50% formamide, at 45 ºC – 55 ºC and in 0.1x SSC 50% 

formamide at 50 ºC – 60 ºC for 20 min. A final wash was in 2x SSC and rinsed in 

DIG buffer 1 (100mM Tris-HCl, 150mM NaCl pH 7.5). Sections were blocked 

with 10% normal sheep serum (NSS) in DIG buffer 1 and incubated with an anti-

DIG alkaline phosphatase-conjugated antibody (Roche) diluted 1:400 in 1% NSS 

DIG buffer 1 for 2 hours, followed by washing in DIG buffer 1 (two times) and 

DIG buffer 2 (100 mM Tris-HCl pH 9.5, 100 mM NaCl, 50 mM MgCl2) for 10 min. 

The hybrids were visualised by incubating the section with BCIP/NBT (Sigma-

Aldrich) liquid substrate in dark at 4 ºC overnight. The colour reaction was 

stopped by immersing the sections in 10 mM Tris-HCl pH8 1 mM EDTA for 30 

min. The developed slides were mounted and examined under a light 

microscope. 
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Table 7.4: Primer sequences for Clock mRNA in situ hybridisation 

 

7.3.11 Quantitative immunohistomorphometry 

Immunohistochemistry (IHC) staining for localisation and quantification of 

clock proteins was established and performed on whole human scalp skin 

cryosections (8 µm) and isolated human scalp HFs (6 µm). (Table 7.5 provides 

details of the individual IHC methodologies.) Primary antibodies were incubated 

overnight at 4°C. Sections were washed in either phosphate-buffered saline or 

TRIS-buffered saline between steps. Sections that were to be directly compared 

for quantification were processed at the same time to ensure that any variation 

in results were not due to different experimental conditions. IHC staining for 

Masson-Fontana and Ki-67/TUNEL double-immunofluorescence microscopy 

were carried out as previously described in (Ito et al., 2005b) and (van Beek et 

al., 2008), respectively. Immunolocalisation and intensity analyses were 

performed with the Biozero-8000 microscope (Keyence) and analysed using 

ImageJ software (National Institute of Health). Immunofluorescent images were 

taken using the same exposure time when using intensity of fluorescent stain 

for quantitative analyses. To compare staining intensity and positive cell 

numbers, the mean values from multiple cryosections was taken to allow for 

variation in sections. 

 

Primer  Forward (5’  3’) Reverse (3’  5’) Gene bank 

accession 

number 

Clock (h) AACAACTTCAGATGGT

CCATGGT 

GAGTTGTGCCAATGTGTCC

AGT 

NM_004898.2 

 

GAPDH 

(h) 

TCCCATCACCATCTTCC

A 

GTCCACCACCCTGTTGCT NM_002046.3 
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Table 7.5: Protocol summaries for clock protein immunofluorescence and 

immunohistochemistry experiments 

Protein  Primary 

Antibody  

Secondary antibody, 

detection system  

Negative control 

(besides omission 

of primary 

antibody) 

Positive 

control 

tissue 

References 

CLOCK Rabbit anti-

human Clock 

(Clock 

AB5418P, 

Chemicon) 

Horse anti-rabbit 

biotinylated (Vector 

Laboratories).  

ABC detection system  

 

 

HaCaT cell 

line 

(Zanello et 

al., 2000) 

BMAL1 Rabbit anti-

human 

MOP3, 1:40 

(MOP31-A, 

Alpha 

Diagnostics) 

Goat anti-rabbit 

fluorochrome 1:200 

(Jackson 

Immunoresearch) 

Primary antibody 

pre-incubated with 

blocking peptide  

(MOP31-P, Alpha 

Diagnostics) 

Human 

pineal 

gland 

(Ackermann 

et al., 2007) 

PER1 Rabbit anti-

human PER1, 

1:100 

(PER12-A, 

Alpha 

Diagnostics) 

Goat anti-rabbit 

fluorochrome 1:200 

(Jackson 

Immunoresearch) 

Primary antibody 

pre-incubated with 

blocking peptide  

(PER12-P,  Alpha 

Diagnostics) 

Human 

pineal 

gland & 

HaCaT cell 

line 

(Ackermann 

et al., 2007) 

(Zanello et 

al., 2000) 
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7.4 RESULTS 

7.4.1 Expression of the clock genes Clock, Bmal1, Period1 and clock-

controlled genes c-Myc, Nr1d1 and Cdkn1a exhibit a circadian 

rhythm in isolated human scalp anagen hair follicles 

In order to establish whether microdissected HFs exhibit a circadian expression 

pattern, qPCR was performed on isolated human scalp anagen VI HFs. Following 

dexamethasone synchronisation of clock gene activity, HFs were sampled 4 

hourly over a 24-hour period to determine whether Clock, Bmal1 and Period1 

were expressed. 

As shown in Figure 7.3, all three clock genes were expressed with circadian 

variation expression pattern displayed. The patients show similar expression 

patterns in terms of their phase distribution and mean overall relative 

expression values, however some variation was seen between patients (see 

Table 7.6). In the third patient, the expression patterns were noted to be 

different; in particular for Period1 expression (Figure 7.3c) Period1 mRNA was 

found to be undetermined in all samples apart from the 8 hours post 

synchronisation sample. The same patient samples did express Clock and Bmal1 

however (Figure 7.3c). This sample was taken after 7 days in culture, in contrast 

to the results in Figure 7.3a and 7.3b whose samples were harvested within 48 

hours of surgery. In the unsynchronised sample, variation in expression levels 

Bmal1 and Period1 mRNA was also seen over the three time points, although 

this was minimal (Figure 7.4). Human HFs also exhibited circadian rhythmicity 

of CCGs, Nr1d1, C-Myc and Cdkn1a (p21) in the patients A and B (Figure 7.5). 

Patient C was not tested for CCG expression. Subsequent to this analysis, all 

experiments not involving time series sampling were performed by harvesting 

HFs within the same time window (7-10 p.m.; see Methods) to control for these 

dynamic expression changes. 
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Figure 7.3: Circadian expression profiles of clock transcripts Clock, Bmal1 and 

Period1 in isolated human hair follicles. 

Clock, Bmal1, Period1 mRNA was quantified using qPCR in whole hair follicles synchronised with 

dexamethasone and sampled at time points 4, 8, 12, 16, 20 and 24 hours post synchronisation. Data 

shown are the mean relative expression levels for each gene compared to housekeeping gene PPIA 

in individual patients (A), (B) and (C) (black dots). Fourth order polynomial graphs were fitted to 

the data to demonstrate the oscillatory pattern of expression over 24 hours (solid black line). 
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Table 7.6: Summary table of the pattern of clock mRNA expression in anagen hair 

follicles  

Clock, Bmal1, Period1 mRNA was quantified using qPCR in whole hair follicles synchronised with 

dexamethasone and sampled at time points 4, 8, 12, 16, 20 and 24 hours post synchronisation. Data 

shown are the mean relative expression levels for each gene over all time points compared to 

housekeeping gene PPIA in individual patients (A), (B) and (C). S.d = standard deviation. 

 

 Patient Amplitude Mean expression s.d. 

Clock A 0.007 0.007 0.003 

 B 0.003 0.003 0.001 

 C 0.027 0.012 0.009 

Bmal1 A 0.003 0.006 0.001 

 B 0.005 0.006 0.002 

 C 0.015 0.008 0.006 

Period1 A 0.043 0.035 0.017 

 B 0.027 0.037 0.011 

 C 0.012 0.002 0.005 

 

 

7.4.2 Clock proteins are expressed in normal human scalp hair follicles  

Next, we studied follicular clock gene protein expression and localisation in 

microdissected human anagen VI HFs. Immunohistochemistry demonstrated 

that expression of the clock proteins CLOCK, BMAL1 and PER1 was restricted 

mainly to the HF epithelium, and was most prominent in the human ORS (Figure 

7.6). However, BMAL1 immunoreactivity (IR) was also localised to the CTS and 

the DP of the HF, the key mesenchymal centres of HF biology. Expression of 

these proteins was confirmed in full-thickness human skin cryosections, using 

appropriate negative and positive controls (Figure 7.7 and Figure 7.8). These 

experiments show that human HFs express clock gene transcripts and proteins. 
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Figure 7.4: Unsynchronised time series of anagen hair follicles in organ culture. 

Variation is seen in Bmal1 and Period1. Expression values are relative PPIA expression 

(housekeeper) calculated by using the delta Ct values. One way ANOVA and Student’s t-tests did not 

find any significant differences between time points. Error bars are standard error of the mean 

(SEM). GMT = Greenwich Mean Time. 
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Figure 7.5: Clock controlled genes exhibit circadian expression in human hair 

follicles. 

Two patients (A) and (B) are shown individually. Data is plotted as the mean relative expression 

value for each time point with PPIA as the housekeeping gene. Fourth order polynomial graphs 

were fitted to the data to demonstrate the oscillatory pattern of expression over 24 hours (solid 

black line). 
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Table 7.7: Immunoreactivity patterns of CLOCK, BMAL1 and PERIOD1 proteins in 

human hair follicles and skin. 

CTS, connective tissue sheath; DP, dermal papilla; ORS, outer root sheath. 

Antigen Hair follicle IR pattern Skin IR pattern  Comments 

CLOCK Supra-basal cell layers of 

the infundibulum and ORS. 

Not detected in the matrix 

cells, proximal germinative 

epithelial cells, DP and 

CTS. 

 

Detected in the epidermis (nuclear 

and cytoplasmic in the basal cell 

layer). Dermis: fibroblasts, blood 

vessels, nerve fibres, eccrine 

sweat gland, sebaceous gland 

(suprabasal layers of the 

sebaceous duct and mature 

sebocytes) 

Figure 7.6a 

and 7.7 

BMAL1 ORS, hair matrix, DP and 

CTS 

Epidermis: all layers and dermis; 

individual fibroblasts and blood 

vessels. 

Figure 7.6 

PER1 Whole length of the ORS, 

matrix keratinocytes 

(cytoplasm and nucleus). 

HF mesenchyme (DP, CTS) 

negative 

Basal layer of the epidermis and 

the sebaceous glands 

Figure 7.6 

and 7.8 
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Figure 7.6: Clock, Bmal1 and Period1 expression in human hair follicles 

(A) Clock protein and mRNA expression in human hair follicles. RT-PCR gel showing Clock 

expression in normal human skin. IHC detected CLOCK protein in the hair follicle (ORS and supra-

basal cell layers of the infundibulum) and in the basal and supra-basal layers of the epidermis in 

skin. (B) Immunofluorescence human BMAL1 protein in isolated micro-dissected human hair 

follicles. BMAL1 localised to the ORS and CTS. Expression did not significantly change between 

anagen and catagen stages using quantitative immunohistochemistry analyses of staining 

intensity (C) PERIOD1 (PER1) protein expression in isolated human hair follicle cryosections. 

PER1 is localised to the nucleus and cytoplasm (green). Cell nuclei are counterstained with DAPI 

(blue). PER1 is found in the ORS and MKs of the hair follicle. 
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Figure 7.7: Clock mRNA and protein expression in human skin cryosections 

Clock mRNA localisation in the human skin and hair follicle was confirmed by in situ 

hybridisation (ISH) of whole human scalp skin cryosections (Red staining, left panel). 

Immunohistochemistry for CLOCK protein (red/bown staining, right panel) detected 

in the outer root sheath and supra-basal cell layers of the infundibulum in the hair 

follicle and in the basal and supra-basal layers of the epidermis in skin. 

 

7.4.3 Period1 and Clock expression increase in catagen hair follicles 

To further test our working hypothesis that clock genes are implicated in the 

regulation of human hair cycling, we assessed whether the transcription and 

protein expression of clock genes was altered during the anagen-to-catagen 

transformation of organ-cultured HFs. 

PER1 protein expression was found in the ORS and bulb MKs of anagen 

(A), early (EC), mid catagen (MC) and late (LC) catagen HFs Figure 7.9. In most 

analysed HFs, PER1 immunoreactivity was negative to minimal in the matrix 

during anagen, became increasingly positive during catagen stages, and was 

maximal in late catagen, as assessed by quantitative immunohistomorphometry 

(Figure 7.9). This expression difference in BMAL1 immunoreactivity between 

anagen and catagen HFs was not found (data not shown). 
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Figure 7.8: Immunofluorescent staining of BMAL1 and PER1 in positive control 

tissue and skin cryosections 

Top panel displays BMAL1 immunofluorescent staining (green) in positive control tissue pineal 

gland. The right side picture shows the use of blocking peptide as a negative control. 

PER1immunofluorescent staining (lower picture set, green fluorescence) is localised to the nucleus 

and cytoplasm. Cell nuclei are counterstained with DAPI (blue). Basal cell expression of PER1 is 

found in the epidermis of whole human skin and in nuclei and cytoplasm of positive control tissues 

HaCaT cells and human pineal gland. 

 

The protein expression data was also followed up on the transcriptional 

level (Figure 7.10). Synchronised samples comparing the expression of Clock, 

Bmal1 and Period1 in anagen and catagen HFs over 24 hours was obtained 
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(Figure 7.10). It was found that Clock exhibited a significantly higher mean 

expression in anagen when compared to catagen (mean anagen 0.007 (SEM 

0.001), mean catagen 0.004 (SEM 0.0005) unpaired Student’s t-test, p=0.046). 

There was no significant difference in mean expression values between anagen 

and catagen samples for both Bmal1 and Period1. On qualitative assessment of 

the data: the wave form appeared to be different between the two cycle stages 

in all three genes (Figure 7.10) therefore, amplitude of expression was 

calculated by subtracting the minimum expression level for each gene in each 

state from its maximum (Figure 7.11). Compared to anagen VI there was a 

significantly increased amplitude of Period1 mRNA expression in the catagen 

HFs (unpaired Student’s t-test; p<0.05) (Figure 7.11). No phase shift effect was 

noted in the Clock and Bmal1 samples between the anagen and catagen samples. 

In the Period1 sample, there appeared to be some phase shifting, but the main 

difference noted in the amplitude of expression in catagen compared to anagen 

here.  
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Figure 7.9: Differential expression of Period1 in human organ cultured hair 

follicles during anagen and catagen 

PER1 immunofluorescence on human anagen and catagen HFs. The HFs had been assigned to 

defined hair cycle stages on the basis of morphological criteria (Kloepper et al., 2009). As HFs were 

maintained in organ culture and a proportion spontaneously entered catagen. The time for this to 

occur varied between patients and is usually 4-9 days. PER1expression increased from anagen to 

late catagen with greatest expression in late catagen. Fluorescent images were analysed using 

ImageJ software. Intensity of fluorescent staining (FITC) was measured in reference area of 

interest (only the epithelial hair follicle) and average intensity in the reference area recorded. 

Intensity/area was calculated and results tested for statistical significance using Mann-Whitney U 

tests to compare two groups and p values were corrected for multiple testing using the Holm-

Bonferroni test (*p <0.05,***p<0.001). Abbreviations: CTS, connective tissue sheath; ORS, outer root 

sheath; IRS, ORS, outer root sheath; DP, dermal papilla; MK, matrix keratinocytes. 
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Figure 7.10: Time series expression of clock mRNA in anagen and catagen human 

hair follicles 

The average relative expression levels (from three patients in each group – anagen (green) and 

catagen (green)) (determined by the delta Ct method against housekeeping gene PPIA) for each 

time point are displayed in the graphs. Error bars shown are SEM. 
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Figure 7.11: Amplitudes of clock mRNA expression in anagen versus catagen hair 

follicles  

Difference in amplitude of expression was calculated by obtaining the maxima and minima 

expression levels for each gene (Figure 7.10). The plotted values show the means with SEM as error 

bars. Statistical significance was tested for using unpaired Student’s t-test. Period1 amplitude in 

catagen was significantly greater than the anagen sample with p<0.05. Error bars shown are SEM. 
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7.4.4 Period1 silencing in human hair follicles significantly prolongs 

anagen  

In light of these data, we went on to functionally investigate the possible role of 

Period1 and Clock in the anagen-to-catagen transition.  Given that Period1 

expression was low in anagen and sharply rose during catagen, we hypothesised 

that silencing of Period1 would prolong anagen duration. To test this hypothesis, 

human scalp HFs from four patients, were transfected with a Period1-specific 

siRNA probe. Success of the technique in human anagen HF organ culture was 

demonstrated on the mRNA and protein level (Figure 7.12). 

Human HFs transfected with Period1 siRNA showed a significantly 

greater proportion of anagen HFs (71.4%) than the control group (4.3%) 96 

hours following Period1 knock-down (p<0.05, Fisher’s exact test) (see Figure 

7.13 and (Table 7.8). In addition, the test group also showed a higher number of 

Ki-67 positive (i.e. proliferating) hair MKs compared to the scrambled 

oligonucleotide-treated HFs (three patients, total number of HFs in siRNA 

group= 10, control group = 12, non-significant) (Figure 7.14a). Since HF 

melanogenesis is tightly coupled to anagen (Tobin et al., 1999, Slominski et al., 

2005), HF pigmentation was assessed as another independent marker for 

anagen prolongation. As shown by quantitative histochemistry (Masson-

Fontana), 96 hours after Period1 knockdown, the melanin content of silenced 

HFs was higher than that of control HFs, but the difference did not reach 

statistical significance (three patients, total number of HFs in siRNA group= 12, 

control group = 10, Student’s t-test p=0.07)  (Figure 7.14b). 

 



 

199 

 

 

Figure 7.12: Period1 and Clock mRNA knock-down in human scalp hair follicles 

(A) Relative expression of Period1 mRNA in human hair follicles transfected with Period1 siRNA 

(n=24, mean 0.018) and corresponding control (n=24, mean 0.03). Housekeeping gene PPIA. 

Quantitative immunohistomorphometry of PER1 immunofluorescent staining 96 hours following 

Period1 knock-down compared to the control (random oligonucleotides). Hair follicles in the same 

hair cycle stage (mid catagen) were compared in the two groups to ensure that any differences in 

protein expression were not connected to the cycle stage differences in the two groups. (C) shows a 

box plot of the intensity of PER1 fluorescent staining in the matrix keratinocytes (reference area 

below Auber’s line). The hair follicles transfected with siRNA Period1 showed a statistically 

significant reduction in the expression of PER1 protein. Mann-Whitney U test, * p<0.05 (B) Relative 

expression of Clock mRNA following Clock knock-down (n=26, mean expression 0.0003) and 

corresponding control (n=25, mean expression 0.007). Housekeeping gene PPIA. The difference 

between knock-down and control groups for each knock-down experiment was tested statistically 

using Student’s t-test. ** p<0.01, ***p<0.001. 
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Figure 7.13: Hair cycle stages in Period1 knock-down hair follicles and controls 

Graph displays the number of hair follicles found to be in each hair cycle stage 96 hours post-

Period1 knock-down. This graph combines the staging results from 4 Period1 knock-down 

experiments performed for 96 hours on separate patients. 40 hair follicles were still in anagen in 

the Period1 knock-down group compared to only 2 hair follicles in the control group (treated with 

scrambled oligonucleotides). (p<0.05, Fisher’s exact test). 

 

7.4.5 Period1 inhibits human HF melanogenesis 

In order to check whether Period1 has a hair cycle-independent effect on human 

HF pigmentation, only anagen VI HFs were compared between silenced and 

control groups in one patient. The melanin content of Period1-silenced anagen 

HFs was significantly increased (p=0.034, Figure 7.15).  

 

Table 7.8: Hair cycle stages in Period1 knockdown hair follicles and control 

 

 Anagen  

n (%)  

Catagen  

n (%)  

Total 

siRNA Period1  40 (74.1)  14 (25.9)  54 (100)  

Control  2 (4.3)  45 (95.7)  47 (100)  
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Figure 7.14: Period1 knockdown in human hair follicles - effect on proliferation, 

apoptosis and melanin content 

In the 3 patients, 96 hours following Period1 knock-down, there was increased ki-67 positive cells 

and a decrease in TUNEL positive cells in the Period1 knockdown group These differences were not 

statistically significant. (B) An increased melanin content was also observed. (three patients, total 

number of HFs in siRNA group n= 12, control group n= 10, Student’s t-test p=0.07). Error bars 

shown are SEM. 

 

7.4.6 Clock knock-down prolongs anagen and increases both melanin 

content and hair matrix keratinocyte proliferation 

We assessed whether Clock silencing also prolonged anagen. In the Clock knock-

down group, 21.1% of HFs remained in anagen compared to 5.4% in the control 

group (Figure 7.16a). In addition, keratinocyte proliferation in the hair matrix 

was significantly increased after Clock silencing (p=0.017) (Figure 7.16b). As 

shown by quantitative histochemistry, when only anagen VI HFs were 
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compared between silenced and control groups, the melanin content of Clock-

silenced anagen HF was significantly increased (Figure 7.16c). 

 

 

Figure 7.15: Modulation of melanin content in anagen hair follicles following 

Period1 knockdown 

A. Period1 knock-down increases melanin content in human anagen scalp hair follicles 24 hours 

following transfection. Images show Masson Fontana staining (Mann-Whitney U test, p=0.016). 

Average intensities were obtained over multiple cryosections to ensure un-biased quantification of 

sections. (B) Period1 knock-down in human hair follicles resulted in an increase in proliferation of 

human HFs 24 hours following transfection. Double immune-staining for Ki-67/TUNEL was 

performed on hair follicles following Period1 knock-down and the control group. An increased 

percentage of Ki-67 positive matrix keratinocytes were found in Period1 knock-down hair follicles 

(46.7%) when compared to control group (36.0%) (transfected with random oligos). This 

difference was found to be non-significant (Mann-Whitney U test, p=0.2). Error bars are SEM. 

A 
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7.4.7 Period1 may regulate anagen to catagen transition via CCGs genes 

some of which are already implicated in the hair cycle control 

As a first attempt towards exploring the unknown mechanism by which clock 

genes may impact on human HF biology, we assessed by qPCR how Period1 

silencing affects the transcription of selected clock-controlled gene (CCG) 

expression, with emphasis on classical CCGs that are recognised as regulators of 

cell cycling and the apoptotic machinery. This revealed that Period1 knock-

down down-regulated the expression of c-Myc and p21(CDKN1A), although this 

is the result of a preliminary study (Figure 7.17). 

 

7.4.8 TRH may regulate the intrafollicular expression of clock-related 

transcripts 

We wanted to determine whether TRH may regulate clock genes in the human 

HF. By qPCR we show that, compared to vehicle control HFs, TRH-treatment 

significantly up-regulated the transcription of Clock and Bmal1, while it 

significantly down-regulated Period1 expression (at the lower concentration of 

TRH) (Figure 7.18). Moreover, by quantitative immunohistomorphometry, 

PER1 protein expression was down-regulated by TRH, when only anagen VI 

TRH-treated and control HFs were compared. 
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Figure 7.16: Clock knock-down in human hair follicles resulted in increased 

number of anagen hair follicles, melanin content and proliferation in human scalp 

hair follicles. 

(A) 96 hours Clock knock-down, 21.1% of hair follicles were found to still be in anagen as 

compared to 5.4% of hair follicles in the control group (using scrambled oligonucleotides). (B) 

Significantly increased melanin content was found in human hair follicles after Clock knockdown 

compared to the control (p=0.034). Average intensities were obtained over multiple cryosections to 

ensure un-biased quantification of sections. The intensity of the stains were measured in the 

reference areas as shown in B. (C) Double staining for Ki-67/TUNEL following Clock knock-down 

and the control group. The number of DAPI, Ki-67 (C) and TUNEL positive cells were counted 

within the reference area (C shows the reference area; this was the region bound by the epithelial 

hair follicle and below Auber’s line (red line)). The percentage of Ki-67 positive and TUNEL positive 

cells was calculating using the number of DAPI positive cells as the total number of cells. Mann-

Whitney U test compared Clock knockdown and control for differences. Clock knockdown resulted 

in a significant increase in the percentage of Ki-67 positive cells (p=0.017) after 

immunohistochemistry double staining for Ki-67 and TUNEL. The percentage of TUNEL positive 

cells also increased but this was not statistically significant. * p<0.05. Error bars shown are SEM. 
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Figure 7.17: Expression of clock-controlled genes c-Myc and Cdkn1a following 

Period1 knockdown 

 qPCR was performed on one patient sample and relative expression levels determined of target 

genes against housekeeper gene PPIA. Both CCGs are down-regulated in the knock-down group. 

Statistical analysis was not performed as a greater patient number is awaited. Error bars shown 

are SEM. 
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Figure 7.18: Thyrotropin-releasing hormone treatment - modulation of clock gene 

expression and PER1 protein expression.  

PER1 protein expression decreases in intensity with thyrotropin-releasing hormone treatment. (B) 

Clock, Bmal1, Cry1 and Cry2 mRNA expression increases in a dose-dependent manner with 

thyrotropin-releasing hormone treatment. Expression was determined relative to housekeeper 

ACTB. The effect of TRH on CLOCK expression was significant at p<0.01 at 5ng/ml and p<0.001 at 

concentration 100ng/ml. The effect of TRH on Bmal1 was significant at higher TRH concentration 

when compared to control HFs (p<0.001). Cry1 expression was found to be significantly higher 

(p<0.001) in hair follicles treated with 100ng/ml of TRH compared to the control group. Period1 

gene expression decreased compared to control hair follicles, but the trend was not dose-

dependent. Period1 transcription was highest in the control group, lowest in the group treated 

with 5ng/ml of TRH (p<0.05) and increased in the 100ng/ml TRH treated group. Hair follicles in 

the same stage were compared to each other. Error bars shown are SEM. 
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7.5 DISCUSSION 

The molecular control mechanisms that coordinate the human hair cycle have 

not been identified (Stenn and Paus, 2001, Paus and Foitzik, 2004, Paus et al., 

1999a). In this study the role of clock genes and proteins, as potential 

candidates in controlling the human hair cycle, have been investigated. This 

study implicates circadian clock genes as regulators of infradian tissue 

remodelling events i.e. the human hair cycle. Importantly, we show that 

peripheral clock genes are not only expressed in a circadian and hair cycle 

dependent manner, but also actively modulate human anagen-to-catagen 

transition in the absence of influences from the central clock. Specifically, we 

identify Period1 and Clock as functionally important anagen-terminating signals 

in the human HF. Although not established here, we present preliminary work 

that suggests that the mechanism may be via modulating the activity of cell- and 

hair cycle modulatory CCGs such as p21 or c-Myc. In addition, we report the 

novel finding that Period1 and Clock modulate HF pigmentation in situ. Finally, 

we explore the possibility that intra-follicular activity of clock gene activity in 

human HFs may be modulated by the neuroendocrine hormone TRH. 

Evidence of a functional peripheral circadian clock is demonstrated in 

both anagen and catagen isolated human HFs. Both core clock and clock-

controlled mRNAs were found to be expressed in a circadian manner (clock-

controlled mRNA expression was investigated in anagen HFs only). The 

experimental assay of healthy micro-dissected human scalp HFs was used so as 

to eliminate any extra-follicular inputs on HF cycling (including central clock 

influences). Therefore, from our results, organ-cultured human scalp HFs seem 

to exhibit a functional circadian clock when removed from any central clock 

influences. 

These results are in line with previous work on mammalian skin and cultured 

skin cell populations that show circadian expression of clock genes in these 

samples (Bjarnson et al., 2001, Balsalobre, 2002, Gachon et al., 2004, Lee, 2006, 
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Gréchez-Cassiau et al., 2008, Duguay and Cermakian, 2009, Lin et al., 2009, 

Akashi et al., 2010, Spörl et al., 2011). 

We also demonstrate that human scalp HFs differentially transcribe the 

core clock mRNA (Period1) and its protein product (PER1) in a hair cycle-

dependent manner; with up-regulation in catagen. In addition, knock-down of 

Period1 significantly promoted anagen maintenance. Interestingly, we saw that 

in Patient C, the anagen HFs exhibited very minimal Period1 mRNA expression 

(Figure 7.3c). The HFs had been maintained in organ culture for 7 days and both 

anagen and catagen HFs were harvested on the same day. Although, this was 

only reported in one patient, this fits into the hypothesis that Period1 promotes 

catagen. The anagen HFs may have remained in anagen as they had a “Period1 

repression” (or knock-down) status. Of course, this can be confirmed or refuted 

by repeating the experiment for greater patient numbers in the future. 

Our data also suggests that Clock promotes catagen, with knock-down 

promoting the anagen state. Our human data complements the previously 

documented role for Clock in the HF switch from telogen to anagen in mice in 

vivo with knock-out mice exhibiting delayed anagen entry (unfortunately, this 

switch cannot yet be studied in human HF organ culture as HFs do not enter 

telogen from catagen in organ culture) (Lin et al., 2009). Also, the Period1 

protein and mRNA expression differences between anagen and catagen 

reported here are mirrored in the murine hair cycle: Period1 mRNA expression 

in mouse skin increased during the anagen-catagen transformation of the HF 

(Lin et al., 2009), though less dramatically than seen during the human anagen-

catagen transformation here. While this murine in vivo study could not exclude a 

major influence of the central clock on HF cycling, our current study excludes 

the central clock from playing a role in our isolated human HFs and therefore 

suggests that the peripheral clock is important for HF cycling, at least in the 

human system. This would need to be further examined in future experimental 

work. 
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While clock gene expression has already been reported in isolated, 

cultured human melanocytes (Zanello et al. 2000), we demonstrate here that 

Period1 and Clock may be novel, endogenous inhibitors of human HF 

pigmentation, namely in the HF pigmentary unit (Tobin, 2011). This makes 

Period1 and Clock the first clock genes to be potentially important modulators of 

normal human pigmentation in situ.  Therefore, the current study extends upon 

previously published work by demonstrating circadian and hair cycle-

dependent clock gene activity in intact human HFs (not just hair shafts (Akashi 

et al., 2010)) in the absence of central clock influences, and by demonstrating 

that clock gene silencing impacts human HF cycling and pigmentation. 

The major hair growth- and proliferation-modulatory effects of clock 

gene silencing seen here are in line with the established concept that clock gene 

and CCGs directly control cell cycling (Lowrey and Takahashi, 2004, Miller et al., 

2007). In fact, we demonstrate, in preliminary data performed on one patient, 

that selected genes involved in cell cycling are modulated by a knock-down of 

Period1. For example, the effect of Period1 on the anagen-catagen 

transformation of human HFs may be via CCGs. The crucial cell cycle regulator 

and CCG, C-Myc, which is under direct circadian regulation (Lee, 2006, Fu et al., 

2002) and also controls murine HF cycling (Bull et al., 2005), is affected by 

Period1 knock-down. Thus, Period1 may regulate the human hair cycle via 

modulating the cell cycle machinery of HF keratinocytes, very similar to the 

CCGs investigated in the murine hair cycle study by Lin et al. 2009 (Lin et al., 

2009).  

Namely, we show that the cell cycle regulator, p21 (CDKN1A), acts as a 

CCG in isolated human HF and that Period1 knock-down reduces p21 

expression. This fits nicely to the findings of Lin et al. who have shown an up-

regulation of p21 in the secondary hair germ of Bmal1 knockout mice  which 

display delayed anagen induction (Lin et al., 2009). Intriguingly, Period1 is 

implicated in tumour suppression: Per1 and Per2 knockout mice exhibit 

neoplastic and hyperproliferative phenotypes, and deregulation of cell cycle 
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genes such as c-Myc and Cyclin D1 are found in mPer2 mutants (Lee, 2005, Lee, 

2006). Therefore, it is reasonable to propose that Period1 controls the anagen-

catagen transformation of human HFs by balancing apoptosis and proliferation 

in the hair matrix via CCG pathways as a hypothesis for future work. Among 

these classical Period1 target genes, c-Myc and p21 are recognised as important 

hair cycle-regulatory genes (Bull et al., 2005, Bull et al., 2001, Mitsui et al., 2001, 

Ohtani et al., 2007). Therefore, while this remains to be demonstrated, it is 

conceivable that Period1 regulates the anagen-to-catagen transition via its 

impact on CCGs genes that subsequent execute this HF transformation. 

It has been the experience in some laboratories that siRNA transfection 

induces apoptosis in human hair follicles in organ culture. To further delineate 

the role of Period1 and Clock in the human hair follicle, it would be prudent to 

check the hair growth, hair cycle, melanin content, proliferation and apoptosis 

effect of siRNA transfection compared to untransfected HF controls also. This 

would indicate whether the changes seen in the Period1 and Clock knock-down 

groups compared to the scrambled oligonucleotides controls was an effect that 

was over and above performing no transfection at all. This shall be performed in 

future experiments.  

Since our organ-cultured human HFs did not contain the bulge region 

and its epithelial and melanocyte stem cells (Philpott et al., 1994a, Ito et al., 

2004), the observed catagen inhibition and stimulation of HF pigmentation 

must have occurred independent of bulge epithelial and melanocyte stem cells. 

Using a recently developed model of keratin 15-promoter-driven GFP 

expression in human HF epithelial progenitor cells (Tiede et al., 2009), we hope 

to dissect, next,  how Period1 or Clock silencing impact on adult human 

epithelial stem cell biology in situ. A future question is therefore: How did clock 

genes and related CCGs impact on the progeny of these stem cells (i.e. transit 

amplifying cells) that constitute the hair bulb cells that have been studied in the 

current human HF organ culture assay? 
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The impact of thyrotropin-releasing hormone (TRH), a hypothalamic 

clock gene regulator (Gary et al., 1996, Gary et al., 2003) on human HF clock 

gene and PER1 protein expression was assessed here. This was particularly 

interesting in the current context, since it has been shown that TRH is expressed 

in human HFs and promotes human hair shaft growth and prolongs anagen 

duration in vitro (Gáspár et al., 2010). We found that TRH stimulated Clock, 

Bmal1, Cry1 and Cry2 mRNA expression, while its effect on Period1 mRNA was 

variable according to dose, but decreased PER1 protein expression in human 

HFs. This suggests that TRH may modulate clock gene activity within the human 

HF. It is not clear, however, whether these differences may be secondary to 

phase shifting effects. We are currently performing further experiments to 

confirm these results following acute treatment with TRH. Human HFs have 

recently been recognised as an extra-hypothalamic site of TRH expression on 

the gene and protein level. In addition, TRH has been shown to inhibit catagen 

and stimulates hair MK proliferation (Gáspár et al., 2010). Therefore, TRH may 

serve as an intra-follicular neuroendocrine input signal for the regulation of 

human hair cycling. This is in line with the recognition that TRH centrally 

modulates clock-related biological rhythms (Gary et al., 2003). Therefore, 

regulatory feedback loops between TRH expression and clock gene activity can 

be envisioned and this will require further analyses.  

This study extends upon previously published work by demonstrating 

circadian and hair cycle-dependent clock gene activity in intact human HFs in 

the absence of central clock influence. In addition, we demonstrate functional 

effects of clock gene silencing on human HF growth, cycling and pigmentation. 

Moreover, our data support the working hypothesis that spontaneous or 

neuroendocrinologically induced fluctuations in intra-follicular clock gene 

activity are an integral component of the proposed human “HCC” (Paus & 

Foitzik 2004). This begs the question of how the molecular machinery that 

governs circadian events (i.e. a 24 hour rhythm) may also be responsible for co-

coordinating infradian processes such as the human hair cycle (which lasts 
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several months to years). Our findings are in line with a growing body of 

evidence that circadian clock genes regulate multiple physiological processes 

including infradian rhythms, such as the cell cycle (Khapre et al., 2010, Matsuo 

et al., 2003), tumour suppression (Fu et al., 2002, Yang et al., 2009, Chen-

Goodspeed and Lee, 2007), seasonal rhythms (Hazlerigg and Loudon, 2008), 

breeding patterns (Miller et al., 2004), and the reproductive cycle. The control of 

infradian events by “circadian” clock genes may even extend to disease states 

such as diabetes and depression (Takahashi et al., 2008, Ando et al., 2009). 

Therefore, the concept that clock genes are part of the autonomous oscillator 

system that drives infradian HF cycling is in line with an evolving paradigm shift 

in our understanding of so-called “circadian” clock functions (Geyfman and 

Andersen, 2010). 

The activity of two core clock genes (Period1, Clock) modulate human HF 

growth, cycling and pigmentation. Our findings suggest a new mechanism for 

how human HF cycling may be autonomously and rhythmically controlled. 

Therefore Period1 activity is particularly highlighted here as a promising novel 

target for therapeutic hair growth modulation. Antagonising the activity of 

Period1, Clock and selected down-stream CCGs may serve to counteract various 

forms of hair loss characterised by premature catagen induction and 

subsequent telogen effluvium. Promotion of these targets may be exploited for 

treating unwanted hair growth (hirsutism) (Cotsarelis and Millar, 2001, Paus, 

2006). Furthermore, the novel inhibitory role of Period1 and Clock in human 

hair pigmentation identified here invites the speculative question whether 

excessive Period1 and Clock activity may in any way be related to hair greying.  

In summary, we show that the human HF offers a clinically relevant 

model for studying how two distinct chronobiological systems, i.e. “circadian” 

system and the oscillator system that drives non-diurnal, cyclic organ 

transformation intersect (Schneider et al., 2009, Plikus et al., 2008). Finally, 

human HF organ culture may facilitate dissection of the role of peripheral clock 

genes in peripheral human tissue physiology and remodelling.   
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8 CHAPTER 8: TOWARDS DEFINING A 

MOLECULAR SIGNATURE OF HUMAN ANAGEN 

AND CATAGEN BY TRANSCRIPTOME PROFILING 
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8.1 CHAPTER SUMMARY 

In the previous chapters, we presented two hypothesis-driven modes to 

investigate the human hair cycle (in particularly the controls that drive the 

anagen-to-catagen transition) from a systems biology perspective. The first 

approach used mathematical modelling to address the nature of the human hair 

cycle rhythm, and the second explored a chronobiological hypothesis regarding 

the role of circadian transcription factors as potential regulators of the anagen-

to-catagen transition.  

In the current chapter, these research strategies are complemented with a 

third “unbiased” experimental approach by exploring the global gene 

expression (transcriptome) profile of the human anagen and catagen states. 

This final component of the thesis was intended as an important step towards 

defining the molecular signature of human HF cycling, namely towards 

establishing an extended data base for future systems biology research into 

important genes and signalling pathways that participate in regulating the 

anagen-catagen transformation of human HFs.   
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8.2 ABSTRACT 

The human hair cycle represents a complex, dynamic systems process that 

is based on interconnected networks of molecules and signalling 

pathways. These are recruited to drive the hair follicle (HF) through its 

cyclic transformations from organ growth (anagen) via organ regression 

(catagen) to resting (telogen). Despite great advances in our 

understanding of the hair cycling process, for example with the use of 

mouse mutants, there are large gaps in the knowledge of how these 

candidates are expressed in the human hair follicle, and their impact on 

human HF cycling. Therefore, the global gene expression (transcriptome) 

profile of the human anagen and catagen states was explored by 

microarray and qPCR analysis of microdissected, organ-cultured anagen 

and catagen HFs from three female patients. Fold changes were calculated 

using anagen as the baseline sample. This gene profiling approach 

revealed that similar genes and pathways that had been shown to control 

the murine hair cycle in vivo, such as Sgk3, Msx2 and the BMP pathway, are 

also differentially regulated during the anagen-catagen transformation of 

human hair follicles. In addition, novel genes including AKR1C2 and Dsg4 

were found to be significantly up-regulated in catagen and anagen 

respectively. This study contributes to the identification of important key 

and novel genes in human hair cycle control and suggests targets for 

therapeutic hair growth regulation. In addition, this anagen-catagen 

transcriptome analysis allows future refinements of mathematical hair 

cycle models by integrating concrete molecular candidates into these 

models. 
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8.3 INTRODUCTION 

The HF undergoes dramatic structural and molecular changes in a cyclical 

manner during the hair cycle. This process represents dynamic, spatio-temporal 

changes at multiple scales. It has been suggested that changes in local signalling 

cause the transition from one cycle to the next (Stenn and Paus, 2001, 

Botchkarev and Kishimoto, 2003, Schneider et al., 2009). However, much of the 

data we have on the hair cycle relies on murine data. Previous studies have not 

looked at hair cycle associated gene profile changes in the human system.  

Hair cycle dependent changes in the transcription of individual genes 

and gene products during selected hair cycle stages has been identified, mostly 

in mice (see (Schneider et al., 2009, Stenn and Paus, 2001, Paus and Foitzik, 

2004)). Schlake et al published one of the first investigations of global hair cycle 

expression profiles using microarray analysis. The authors used murine dorsal 

skin, therefore, the HFs were synchronised in the murine hair cycle (Schlake et 

al., 2004). The work was limited by the fact that the HF itself was not extracted 

from the skin, thus results were confounded by hair cycle-associated 

transcriptional changes in peri- and inter-follicular skin cell populations. A 

similar temporal expression experiment on RNA extract from total skin was 

performed on the murine hair cycle by Lin et al (Lin et al., 2004). Again, 

synchronised hair cycling in the neonatal and juvenile mice was utilised in the 

microarray analyses. Unfortunately, the “first hair cycle” investigated in this 

analysis actually represented the end of postnatal HF morphogenesis. 

Therefore, this study did not allow one to distinguish clearly between 

morphogenesis and hair cycle associated transcriptional changes. 

To-date there is no published microarray analysis that has compared 

human anagen VI HFs and catagen HFs from the same patient. Previous global 

expression analyses of microdissected human HFs has focussed on identifying 

gene expression profile changes in human anagen VI HFs in response to defined 

test agents, such as hormones, polyamines or chemotherapy (Bodo et al., 2007, 

Langan et al., 2010, Gáspár et al., 2010, Ramot et al., 2010, Ramot et al., 2011). 

Another study has compared the transcriptome expression profiles between 
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white and grey human HFs (Choi et al., 2011). In addition, previous studies have 

investigated extracted human HF compartments, which also allow site specific 

expression profiles to be identified, such as human HF DP cells (Park et al., 

2007, Iino et al., 2007) and the CTS (de Schellenberger et al., 2011).  

Establishing changes in the global gene expression profile between 

human anagen and catagen states may provide important indications as to 

which genes: a) may be involved in regulating the human anagen to catagen 

transformation, and b) may serve as specific molecular markers of human 

anagen VI versus catagen.  

As argued before, understanding the complex systems changes that occur 

in the human HF in the normal anagen and catagen stages may aid in tackling 

the disease process (Al-Nuaimi et al., 2010, Paus, 2006, Paus and Foitzik, 2004). 

Human HFs, although possessing many similarities with murine hair, also 

exhibit important differences in their temporal and spatial cycling properties 

(Al-Nuaimi et al., 2010, Plikus et al., 2011). Moreover, definition of the human 

anagen-catagen transcriptome may facilitate future refinements of 

mathematical hair cycle models, since this could allow one to by integrate key 

molecular players into such models. 

In this pilot study, we aim to explore the human anagen and catagen 

states using microarray analysis and to establish whether important hair cycle-

regulatory candidate genes known from the murine hair cycle also are 

differentially regulated during the human anagen-catagen transformation. 
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8.4 METHODS 

8.4.1 Hair follicle isolation and culture for microarray analysis 

Redundant human scalp skin was obtained from the scalp of three patients (all 

females, ages 48, 54 and 68) undergoing facelift surgery following informed 

consent (Table 8.1). Individual HFs were isolated by micro-dissection as 

previously described (Philpott et al., 1990, Sanders et al., 1994).  

The HFs were assessed under the dissection microscope to ensure they had not 

been damaged during isolation and that they appeared to be in anagen VI 

(Kloepper et al., 2010).  Isolated, exemplary reference HFs were examined 

histologically, following published hair cycle staging criteria (Kloepper et al., 

2010) and using the hair staging accuracy investigation (Chapter 6.7) as 

validations for whether the “macroscopic” hair cycle staging had been accurate. 

The investigation presented in Chapter 6.7 and previous comparisons in the 

Paus lab (University of Luebeck), revealed a reasonable congruence between 

“macroscopic” and histomorphometric human hair cycle staging results. The 

HFs were assessed to ensure they had not been damaged during isolation and 

that, macroscopically, they appeared to be in anagen VI (Kloepper et al., 2009).  

Anagen VI HFs for each patient were maintained in a 24-well plate; each 

well contained 500µls serum-free Williams’ E medium (Biochrom, Cambridge, 

UK) supplemented with 2mmol/L L-glutamine (Invitrogen, Paisley, UK), 

10ng/ml hydrocortisone (Sigma-Aldrich, Taufkirchen, Germany), 10µg/ml 

insulin (Sigma-Aldrich) and 1% antibiotic/antimycotic mixture (100x, Gibco, 

Germany, Karlsruhe). The supplemented media was changed every two days. 

HFs were placed in an incubator at 37°C with 5% CO2 level, maintained in 

culture and assessed daily using light microscopy to determine whether they 

appeared, macroscopically, to be in anagen or late catagen phases. Once HFs 

were seen to have entered the appropriate stage for experimentation, HFs were 

immediately snap frozen in liquid nitrogen. Anagen and late catagen samples 

were taken for microarray analysis to determine gene expression pattern 

differences between these two distinct cycle points. 
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8.4.2 RNA extraction for microarray analyses 

Anagen VI and late catagen HF samples for three female patients were taken for 

total RNA extraction (Table 8.1). The extractions were performed together in 

one run to ensure consistent experimental conditions and subsequent 

microarray analyses. Total RNA was extracted following the manufacturer’s 

protocols using TRIzol® and the PurelinkTM RNA Mini Kit (Invitrogen, UK) 

(homogenisation was performed by adding 800μl TRIzol® to each sample and 

using a pestle and mortar for 1 minute followed by 30 seconds with a 

homogeniser). The quantity and quality of the extracted total RNA was assessed 

using a BioAnalyzer 2100 (Agilent technologies Ltd., UK). 

 

Table 8.1: Summary of the patient samples used for microarray and qPCR 

experiments 

Patient Gender Location Stage Samples Microarray qPCR 

1 

 

Female Fronto-

temporal 

Anagen 30HFs   

  Late 

catagen 

10 HFs   

2 Female Fronto-

temporal 

Anagen 28 Hfs   

  Late 

catagen 

28 Hfs   

3 Female Fronto-

temporal 

Anagen 20HFs    

  Late 

catagen 

20 HFs    

4 

 

Male Occipital Anagen 30 HFs   
  Late 

catagen 

30 HFs    

5 Male Occipital Anagen 25 HFs   
  Late 

catagen 

37 HFs   
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8.4.3 Microarray analysis 

Human genome U133A oligonucleotide microarrays were performed by the 

University of Manchester Genomic Technologies Core Facility following the 

manufacturer’s instructions (Affymetrix®, UK). Technical quality control was 

performed using dChip (Li and Wong, 2004) followed by background correction, 

normalisation and expression using the GC-RMA method (Wu et al., 2004). 

Anagen state was taken as the baseline and fold changes were calculated as the 

expression in catagen compared to anagen for each patient. Differential 

expression between anagen and catagen samples was tested using paired 

Student’s t-tests. The data was filtered by creating a subset of probes whereby 

up or down-regulation was greater or less than 1.5 fold change in all three 

patients. Genes were subsequently analysed for over represented gene 

ontologies (GO) using the online tool Database for Annotation, Visualisation and 

Integrated Discovery version 6.7 (DAVID 6.7) (Huang et al., 2009, Dennis et al., 

2003). 

 

8.4.4 Additional hair follicle cultures for validation by real-time qPCR 

Two additional HF cultures were performed in exactly the same way as 

described above (see Table 8.1), however, in these samples the HFs were 

harvested on the same day when half the HFs in culture were in anagen and the 

other half were in catagen.  

 

8.4.5 Real-time qPCR 

In order to validate the results from the microarray experiment, total RNA 

extracted from three patients (Table 8.1) was used to perform qPCR on a sub-

selection of genes identified from the microarray. Total RNA isolations, reverse 

transcriptions and qPCR experiments were performed by University of 

Debrecen Physiology Department, Biro lab, Hungary. Taqman® (Applied 

Biosystems) gene expression assays were obtained for msh homeobox 2 

((Msx2) Assay ID Hs00741177_m1, RefSeq: NM_002449.4, Amplicon length 
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130bp), serum/glucocorticoid regulated kinase family, member 3 ((Sgk3) Assay 

ID Hs00179430_m1, RefSeq: NM_013257.4,  Amplicon length 88 bp), bone 

morphogenetic protein 2 ((Bmp2), Assay ID Hs00154192_m1, RefSeq : 

NM_001200.2,  Amplicon length  60 bp), bone morphogenetic protein 4 

((Bmp4), Assay ID Hs00370078_m1, RefSeq: NM_130850.2,  Amplicon length  

58 bp), secreted phosphoprotein 1 ((Spp1), Assay ID Hs00959010_m1, RefSeq: 

NM_001040058.1, Amplicon length 84 bp), frizzled homolog 10 (Drosophila) 

((Fzd10, Assay ID Hs00273077_s1, RefSeq: NM_007197.3, Amplicon length 

116bp), desmoglein 4 ((Dsg4), Assay ID Hs00698286_m1, RefSeq: 

NM_177986.3, Amplicon length 154 bp), FK506 binding like protein (FKBPL, 

Assay ID Hs00276690_g1, RefSeq NM_022110.3, Amplicon length 75 bp), BMP 

and activin membrane-bound inhibitor homolog (Xenopus laevis) ((Bambi), 

Assay ID Hs03044164_m1, RefSeq: NM_012342.2, Amplicon length 52 bp). The 

relative expression was obtained against the endogenous control peptidylprolyl 

isomerase A (cyclophilin A) ((PPIA), Assay ID Hs99999904_m1, RefSeq: 

NM_021130.3, Amplicon length 98 bp) ), because previous analysis in the Biró 

lab had shown this housekeeping gene to undergo only minimal hair cycle-

dependent expression changes during the human anagen-catagen 

transformation (data not shown).  

Total RNA was isolated using TRIzol (Invitrogen) and then 1 μg of total 

RNA was reverse-transcribed into cDNA by using 15 U of AMV reverse 

transcriptase (Promega; Madison, WI, USA) and 0.025 μg/μl random primers 

(Promega). Quantitative PCR was performed on an ABI Prism 7000 sequence 

detection system (Applied Biosystems; Foster City, CA, USA) using the 5’ 

nuclease assay as detailed in our previous reports (Tóth et al., 2009, Bodo et al., 

2005) and the TaqMan® universal PCR master mix protocol (Applied 

Biosystems). Experiments were performed in triplicates; the average relative 

expression levels were calculated using delta Ct method and relative fold change 

in catagen compared to anagen was calculated using the delta delta Ct method. 

The normalised relative expressions obtained via delta Ct method for anagen 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_007197.3
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_177986.3
http://www.ncbi.nlm.nih.gov/nuccore/NM_022110.3
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and catagen was tested statistically using the paired Student’s t-test. Statistical 

analysis was performed using GraphPad prism 5. 
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8.5 RESULTS 

8.5.1 Microarray results 

Of the 54613 probe sets arrayed, 29244 (53.55%) were up-regulated and 25269 

(46.27%) down-regulated in catagen compared to anagen (Table 8.2 and Figure 

8.1). This global result represents the average expression of each probe set 

across the three patients. However, in order to establish the “transcriptional 

signature” in anagen, we selected genes that were down-regulated by a fold 

change of ≤1.5 in all three patients as an “anagen signature” subset. Likewise 

genes up-regulated with ≥1.5 fold change in all three patients were considered 

to provide the “catagen signature” (Figure 8.2). Each of these signature groups 

reassuringly contained genes associated with each state. For example, multiple 

hair keratins were seen to be differentially expressed in the anagen subset and 

several extracellular matrix genes in the catagen subset. Comprehensive lists of 

the genes in each subset can be found in Table 8.3 and 8.4. Of these subset 

genes, very few genes were up- or down-regulated by greater than 2 fold in all 

three patients. Twenty-four genes were down-regulated (by a fold change of <2 

in all three patients) in catagen compared to anagen (Table 8.3). Only three 

genes were up-regulated by >2x in all three patients in catagen compared to 

anagen (Table 8.4). These were secreted phosphoprotein 1, disabled homolog 1 

and aldo-ketoreductase family 1, member C2. 

 

 

Table 8.2: Table detailing the numbers of genes in each subset selected for further 

analysis (corresponds to red data values in Figure 8.2) 

 Probe sets Genes 

Total number of probe sets on the microarray 54613 - 

Up-regulated in catagen 29244 - 

Down-regulated in catagen 25269 - 

≥1.5 in all three patients (catagen signature) 26 20 

≤-1.5 in all three patients (anagen signature) 118 100 
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Figure 8.1: Scatter plot of the microarray results  

Fold change values of catagen samples compared to the anagen samples and the p-values obtained 

from paired Student’s t-test. 

 

Figure 8.2: 3D scatter plot of the fold change values for each probe set in three 

patients.  

Red indicates the subsets taken for further analyses. 
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Table 8.3: Genes selected as “anagen signature”  

Average fold change across three patients is displayed ordered by the greatest fold change. Bold 

indicates those that were significant - paired Student’s t-test (p<0.05). The gene names presented 

in bold were those taken for verification with qPCR 

Genes Average Fold 
change  

p value Genes Average Fold 
change  

p value 

KRT33A -13.3 0.20 MSX2 -2.7 0.17 

KRT81 -11.0 0.16 RARRES1 -2.7 0.12 

GPRC5D -10.3 0.27 WNT3 -2.7 0.09 

KRTAP4-5 -8.8 0.17 MSX1 -2.6 0.07 

KRTAP4-3 -8.5 0.10 KIF26A -2.6 0.06 

KRTAP4-4 -6.8 0.13 SHROOM3 -2.5 0.01 

KRT34 -6.6 0.08 GPR37 -2.5 0.01 

LY6G6D -6.5 0.01 NALCN -2.5 0.01 

KRTAP1-3  -6.4 0.11 PPM1H -2.4 0.05 

KRTAP2-4 -6.3 0.04 CYP26B1 -2.4 0.15 

KRTAP2-1 -5.9 0.08 PSORS1C2 -2.4 0.15 

DSG4 -5.8 0.08 NPR3 -2.4 0.04 

KRTAP1-1  -5.8 0.08 CAMK2N1 -2.3 0.06 

KRTAP9-4/ 9-9 -5.7 0.09 LONRF2 -2.3 0.01 

KRTAP2-2 -5.6 0.07 HHIP -2.3 0.03 

KRTAP2-4 -5.4 0.09 H2AFJ -2.3 0.10 

KRTAP4-2 -5.3 0.10 XK -2.2 0.11 

KRTAP3-1 -4.9 0.11 MT4 -2.2 0.01 

KRTAP4-6 -4.8 0.06 CKMT1A/B  -2.2 0.07 

KRTAP4-9 -4.7 0.08 IFRD1 -2.2 0.08 

KRTAP4-7 -4.7 0.05 ILVBL -2.2 0.04 

RNF182 -4.6 0.12 DLX1 -2.2 0.07 

SELENBP1 -4.5 0.02 TC2N -2.2 0.02 

CRNN -4.3 0.06 PCYOX1 -2.2 0.03 

KRT31 -4.2 0.19 QPCT -2.2 0.005 

KRTAP3-3  -4.2 0.03 GPR37 -2.1 0.05 

FAM126B -4.1 0.10 SMAD6 -2.1 0.04 

FZD10 -4.0 0.04 GAS2L3 -2.1 0.06 

BAMBI -3.9 0.03 DLX3 -2.1 0.04 

KRT73 -3.9 0.04 KRT73 -2.1 0.09 

C8orf44/ SGK3 -3.8 0.08 TDH -2.1 0.06 

DLX2 -3.7 0.06 LOC100131317 -2.1 0.03 

KRT86  -3.7 0.07 SAMD8 -2.0 0.03 

P2RY5 -3.6 0.05 OCA2 -2.0 0.05 

LONRF2 -3.6 0.04 KCNK7 -2.0 0.04 

KRTAP3-2  -3.5 0.07 SNHG3 -2.0 0.04 

MUC15 -3.4 0.06 AXIN2 -1.9 0.03 

KIF5C -3.4 0.05 MUCL1 -1.9 0.02 

DYNC1I1 -3.4 0.05 FBXO8 -1.9 0.03 

LOC100131317 -3.3 0.05 PAG1 -1.9 0.03 

MYCN -3.3 0.10 VPS8 -1.8 0.05 

MSX2 -3.2 0.02 EFHD1 -1.8 0.01 

PPP2R1B -3.2 0.06 MAP3K7IP3 -1.8 0.005 

KIF5C -3.2 0.06 ID3 -1.8 0.01 

MYB -3.2 0.03 EEA1 -1.7 0.01 

GAS2L3 -3.1 0.06 FKBPL -1.7 0.04 

NCRNA00084 -3.0 0.08 DPY30 -1.7 0.004 

SGK3 -2.9 0.06 TTC9 -1.6 0.01 

PPP2R1B -2.9 0.10 NAV2 -1.6 0.001 

FAM49A -2.8 0.08 PRKAG2 -1.6 0.005 

KRT37 -2.8 0.08 RNF149 -1.6 0.02 

NCRNA00084 -2.8 0.07 SLC6A15 -1.6 0.01 

KRT85 -2.8 0.03 ARHGAP29 -1.5 0.001 
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Table 8.4: Genes selected as “catagen signature”  

Fold change >1.5 in all three patients. Here the average fold changes across the three patients is 

provided and ordered by the greatest fold change. Bold indicates probes that were significant by 

paired Student’s t-test p<0.05. The gene names presented in boldwere those taken for verification 

with qPCR 

Gene Fold 
change  

p value 

SPP1 3.7 0.07 

TNFAIP6 3.1 0.11 

COL14A1 2.7 0.10 

DAB1 2.7 0.002 

AKR1C2 2.6 0.02 

CCDC3 2.5 0.05 

MMP16 2.5 0.05 

NEFL 2.4 0.07 

COL27A1 2.1 0.02 

FHL1 2.0 0.04 

C18orf1 2.0 0.03 

AKR1C1 2.0 0.05 

NFATC1 2.0 0.04 

KCND3 1.8 0.04 

LOC143381 1.8 0.05 

PARD6G 1.7 0.01 

LOC100130097 1.7 0.01 

PARVA 1.7 0.01 

TANC2 1.6 0.01 

ANKRD6 1.6 0.01 

 

Using the DAVID online tool (Dennis et al., 2003), over-represented gene 

ontology (GO) categories were identified in the two subsets of anagen signature 

and catagen signature. The functional categories are provided in Figure 8.3 and 

8.4 and Table 8.5. The significantly over-represented groups in the catagen 

group were found to be: cell adhesion, steroid dehydrogenase activity, 

regulation of cellular component size, collagen, cell projection and cell division. 

In anagen the significantly over-represented categories were: keratin filament, 

pattern specification process, skeletal system development, cell fate 

commitment, embryonic morphogenesis, response to protein stimulus, 

serine/threonine kinase signalling pathway, neuron differentiation and BMP 

signalling pathway. These are considered key biological processes that 



 

227 

 

significantly distinguish anagen and catagen states in these three patients. The 

full lists of functional categories are found in Appendices D and E.  

 

Figure 8.3: GO functional categories for the anagen signature  

(Genes down-regulated in catagen compared to anagen) *indicates significant increase in 

biological representation when compared to the background genome expression (this is provided 

by DAVID). 

 

 

Figure 8.4: GO functional categories of genes up-regulated in catagen  

(compared to anagen) *indicates significant increase in representation over the background 

genome expression.   
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Table 8.5: Significantly overrepresented functional categories in anagen and 

catagen states 

Functional categories determined by DAVID analysis to be significantly over-represented compared 

to background genome expression. Gene abbreviations are according to the NCBI listings. 

*indicates genes that have been previously shown to be involved in hair growth, development, 

cycling or hair disorders. 

 

Table 8.6: Microarray results for BMP2 and BMP4 in anagen and catagen hair 

follicles 

Gene Patient 1 Patient 2 Patient 3 Average p value 

Bmp2 -5.1 -1.9 -1.1 -2.7 0.22 

Bmp4 -1.50138 -1.0495 -1.01651 -1.2 0.34 

 

8.5.2 Quantitative PCR verification results 

To verify the microarray findings, qPCR was performed on nine genes selected 

from the anagen and catagen subsets. In addition, due to the DAVID gene 

Functional category Catagen Anagen 

Cell adhesion 
SPP1*,  COL27A1  
COL14A1*,  TNFAIP6 
(*TNFalpha) 

 

Steroid dehydrogenase 
activity 

AKR1C2, AKR1C1  

Regulation of cellular 
component size 

SPP1*, FHL1, NEFL  

Collagen COL27A1, COL14A1*  

Cell projection 
SPP1*, KCND3, NEFL, 
PARVA 

 

Cell division PARD6G  

Keratin filament  

KRTAP2-2, KRTAP1-3, KRT85*, KRTAP3-2*, 
KRT86*, KRTAP4-7, KRTAP4-9, KRTAP4-3, 
KRTAP3-1, KRTAP2-4, KRTAP4-6, KRT73, 
KRTAP4-5, KRTAP4-2, KRTAP3-3, KRT81*, 
KRTAP1-1*, KRTAP9-4/9-9, KRTAP4-4, 
KRTAP2-1 

Pattern specification process  
AXIN2, SMAD6, DLX1*, WNT3*, HHIP, 
SHROOM3, DLX2*, CYP26B1 

Cell fate commitment  DLX1*, WNT3*, IFRD1, DLX2*, CYP26B1 

Skeletal system development  MSX2*, AXIN2, DLX1*, MSX1*, NPR3, DLX2 

Neuron differentiation  KIF5C, EFHD1, DLX1*, ID3*, DLX2* 

Serine/threonine kinase 
signaling pathway 

 MSX2*, SMAD6, BAMBI, MSX1* 

Response to protein stimulus  MSX2*, ID3*, MSX1*, LY6G6D 

Embryonic morphogenesis  
WNT3*, MSX2*, SHROOM3, MSX1*, DLX2*, 
CYP26B1  

BMP signalling pathway  MSX2*, SMAD6, MSX1* 
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ontology analyses finding BMP signalling as a significant biological process, 

Bmps 2 and 4 were also included in the qPCR analysis, even though the genes 

Bmp2 and Bmp4 were not identified from the microarray analyses as being 

differentially expressed (Table 8.6). 

The qPCR results revealed large differences in average relative 

expressions of the target genes between the anagen and catagen samples (Table 

8.7, Figure 8.5 and Figure 8.6). The differences were, however, not significant at 

the 0.05 level.  

Statistically significant differences were found on comparing the anagen 

and catagen relative expression levels for each gene by individual patients 

(Figures 8.7 and 8.8). Spp1 was not up-regulated in catagen compared to anagen 

apart from in the individual patient 2 (Figure 8.8) and therefore, the trend and 

fold change difference were not confirmed in this transcript.  

 

Figure 8.5: qPCR results from three patients’ anagen and catagen samples.  

Relative expressions of candidate gene targets are provided and obtained from the delta Ct 

normalisation method. Large fold change differences are seen, however none are statistically 

significant on p<0.05 level. 



 

230 

 

 

Figure 8.6: Validations of microarray results using the nine selected target genes in 

qPCR. 

 The average fold change in expression in catagen compared to anagen is shown here and was 

obtained using the delta delta Ct normalisation method (n=3, Error bars: SEM). 

 

Table 8.7: Fold changes in candidates mRNA in catagen compared to anagen 

determined by qPCR 

Performed on anagen and catagen for three patients. Fold changes were obtained using the delta 

delta Ct method. 

 Fold change (Catagen compared to Anagen) 

Patient Msx2 Sgk3 Bmp2 Bmp4 Fzd10 Dsg4 Bambi Fkbpl Spp1 

2 -6.3 -1.1 -5.7 -4.8 0 -4.3 -5.7 -3.0 1.0 

4 -4.9 -1.7 -2.7 -1.9 0.7 -3.3 -15.1 -6.6 -1.3 

5 -10.2 -14.1 -10.7 -10.5 -12.9 -14.7 -9.8 -10.9 -5.2 

Average -7.1 -5.6 -6.3 -5.8 -4.1 -7.4 -10.2 -6.9 -1.8 

 

8.6 DISCUSSION 

In this pilot study, we report the transcriptome profile of the human anagen and 

catagen state in microdissected, organ-cultured anagen and catagen HFs from 

three female patients. This gene profiling approach revealed that similar genes 

and pathways that had been shown to control the murine hair cycle in vivo, such 

as Sgk3, Msx2 and the BMP pathway, are also differentially regulated during the 

anagen-catagen transformation of human hair follicles.  
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Although this transcriptome analysis of the human anagen-catagen 

transformation needs to be extended to additional individuals before definitive 

conclusions can be drawn, it already points to both recognised and novel key 

players in human hair cycle control and suggests additional targets for 

therapeutic hair growth regulation. In addition, this anagen-catagen 

transcriptome analysis allows future refinements of mathematical hair cycle 

models by integrating concrete molecular players into these models. 

Bone morphogenetic protein (BMP) signalling was identified as having a 

significant representation in human anagen compared to catagen follicles. BMP 

signalling has been shown to be involved in murine HF biology and cycling 

regulation (Andl et al., 2004, Kulessa et al., 2000, Plikus et al., 2008, Botchkarev 

and Sharov, 2004, Botchkarev, 2003, Guha et al., 2004, Kobielak et al., 2007, 

Kwan et al., 2004, O’Shaughnessy et al., 2004, Rendl et al., 2008, Sharov et al., 

2006, Zhang et al., 2006).  

Here, we show, for the first time, that the BMP pathway is significantly 

over-represented in human anagen HFs, in particular genes that have been 

intimately associated with BMP signalling, such as Msx1 and Msx2, Bambi and 

Smad6 were significantly up-regulated in this microarray investigation. The 

results from the microarray for Bambi and Msx2 were verified by qPCR and we 

additionally checked the expressions of Bmp2 and Bmp4 in the qPCR 

experiments and these were significantly up-regulated in anagen compared to 

catagen. Additionally, we found that there was an anagen-associated expression 

of Bambi, a BMP pathway inhibitor. This was verified by qPCR. These results are 

complimented by a microarray analysis on depilation-induced hair cycling in 

rats whereby Bambi was identified as being up-regulated during the hair cycle 

(Umeda-Ikawa et al., 2009). In addition, miRNA-3 has been shown to regulate 

Bambi in the murine HF (Mardaryev et al., 2010). In addition, we found that the 

gene ID3 is significantly up-regulated in anagen. This gene has also been shown 

to be controlled by BMP in murine HFs (O’Shaughnessy et al., 2004). Therefore, 

in light of the evidence, BMP functioning is an important anagen process in the 

human HF.  
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Figure 8.7: qPCR results for Msx2, Sgk3, Bmp2, Bmp4 and Fzd10 in anagen and catagen hair follicles in each individual patient.  

* p<0.05, ** p<0.01, p<0.001. Error bars shown are SEM.
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Figure 8.8: qPCR results for the expression of Dsg4, Bambi, Fkbpl and Spp1 in anagen and catagen hair follicles for three  individual patients 

 * p<0.05, ** p<0.01, *** p<0.001. All results were significant apart from Spp1 where we see conflicting results. Patients 2 and 4 have similar change between anagen and 

catagen whereas patient 5 shows that there is actually a decrease in Spp1 in catagen compared to anagen. Error bars shown are SEM. 
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This study has also identified possible novel genes in the physiology of the 

anagen and catagen state. Interestingly, the genes AKR1C2 and AKR1C1 were 

significantly up-regulated in catagen compared to anagen. These genes are 

members of the aldo-keto reductase (AKR) superfamily and code for enzymes 

responsible for steroid metabolism (Arthur and Reichardt, 2010, Penning et al., 

2004). AKR1C1 and AKR1C2 encode for the proteins; 20α-HSD and Type 3α-HSD 

respectively. 20α-HSD eliminates progesterone and Type 3α-HSD eliminates 5α-

dihydrotestosterone (Jin and Penning, 2007). These enzymes not only 

metabolise steroids but also regulate androgen receptors (Penning et al., 2004) 

and AKR1C1 is involved in the metabolism of prostaglandin (Colombe et al., 

2007).  

Skin and the HF are known to metabolise and produce steroids 

(Hoffmann, 2003, Ito et al., 2005a) and androgens play a key role in the 

pathogenesis of hair disorders such as androgenetic alopecia and hirsutism 

(Eicheler et al., 1998, Chen et al., 2002, Steiner et al., 2008, Riedel-Baima and 

Riedel, 2008, Naito et al., 2008). However, there is comparatively little research 

specifically concerning the AKR superfamily in the physiology of skin and 

particularly HF function (Hoffmann, 2003). One study has shown that AKR1C2 is 

implicated in hirsutism (Steiner et al., 2008). Here we show that these genes are 

also important as catagen markers, which has not been reported previously 

(Zouboulis et al., 2007). 

In addition, a previous study has shown that increased AKR1C1 and 

AKR1C2 expression occurs following UV treatment of human skin with 

concomitant expression of apoptosis markers (Marίn et al., 2009). These authors 

suggest a role in keratinocyte survival and protection of keratinocytes from 

apoptosis. This is highly interesting as this information and our findings that 

these two genes are significantly up-regulated in catagen (a hair cycle stage 

heralded by apoptosis), provides a novel hypothesis that they are important in 

HF cycling and function and may even be the important factors in the 

pathogenesis of hormone related hair disorders, namely androgenetic alopecia. 

Another gene identified as differentially expressed in catagen was Spp1 

(secreted phosphoprotein 1) commonly known as osteopontin (OPN)). It is 
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known to be expressed in human DP cells (Chermnykh et al., 2010), however, 

there are limited reports on osteopontin and its role in the HF.  

In the skin, osteopontin has been implicated in psoriasis, skin cancer 

(Chang et al., 2008) and has been shown to have anti-apoptotic effects (Buback et 

al., 2009). Spp1 has been shown to protect cells from environmental insults 

(Wang and Denhardt, 2008, Denhardt et al., 2001) and may function to protect 

surviving HF cells during catagen. One report in rat HFs shows that osteopontin 

is expressed specifically in catagen (Yu et al., 2001). Yu et al showed that the 

expression of osteopontin was specific to the DP and the catagen stage in rat DP 

cells (Yu et al., 2001). Our study shows inconclusive results regarding the 

expression of Spp1 as the qPCR validations did not show up-regulation in 

catagen. The report in rat DP cells supports our microarray finding that Spp1 is a 

catagen-specific gene in human HFs, but the exact expression profile will need to 

be clarified further. 

Desmoglein 4 (Dsg4) mutations lead to hypotrichosis (Kljuic et al., 2003, 

Meyer et al., 2004, Schaffer et al., 2006, Bazzi et al., 2009). Here this was 

identified as an anagen associated transcript via microarray and qPCR analyses. 

Dsg4 is specifically expressed in the HF (Bazzi et al., 2006) and therefore may be 

a suitable anagen marker.  

Loss of muscle segment homeobox 2 (Msx2) causes major defects in hair 

cycling and hair shaft differentiation resulting in “cyclic alopecia” in mutant mice 

(Ma et al., 2003). Here, Msx2 was significantly up-regulated in human anagen HFs 

compared to catagen. Msx2 has been reported, to be expressed in human skin 

(Stelnicki et al., 1997). The microarray and qPCR results presented here are the 

first human hair cycle-dependent findings concerning this gene. Msx2 is also 

linked to BMPs as a downstream target (Cai et al., 2009) and has functional 

connections to another anagen-to-catagen regulatory gene, i.e. Dlx2 (Distal less 

homeobox 2) as shown in gene ontology analyses. Interestingly Dlx3 has been 

postulated to play a role in normal HF cycling (Hwang et al., 2008). The current 

transcriptome analysis identifies Dlx2 and Dlx1, but not Dlx3, as candidates for 

maintaining anagen in human HFs. 

Another gene that has been prominently implicated in timing of the 

murine hair cycle was identified as a member of the human anagen transcript 
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profile here. Sgk3 is responsible for the fuzzy phenotype (Campagna et al., 2008, 

Alonso et al., 2005, Okada et al., 2006) (see Chapters 2 and 3 also). Again, there 

are no reports on Sgk3 expression in the human HF. Sgk3 has been shown to 

affect cell survival and beta catenin expression; which are also known to be 

important in hair cycling (McCormick et al., 2004). Therefore, this gene may play 

an important role in human hair cycling. 

Other candidate human hair cycle-regulatory genes identified via the 

current microarray analysis are Wnt3 and Smad6. Wnt3 has already been shown 

to affect murine HF morphogenesis and cycling (Millar et al., 1999, Charpentier 

et al., 2000). In addition, Wnt has been demonstrated to maintain the anagen-like 

expression properties of DP cells in vitro (Kishimoto et al., 2000). 

Frizzled 10 (Fzd10) is a cell surface receptor for Wnts and is known to be 

expressed in the matrix, ORS and DP of postnatal murine HFs (Reddy et al., 

2004). There is evidence that Bmp2 modulates several Wnts and Frizzled 

proteins including Fzd10 (Yang et al., 2006). The results of the microarray 

analysis here showed that there was up-regulation in anagen; however, this was 

not confirmed by the qPCR analysis. This is the first report of Fzd10 expression 

in the human HF. Since the results were conflicting between qPCR and the 

microarray, this is best followed-up in additional patients and on the protein 

level, before one reaches conclusions. 

Fkbpl (fk506) was chosen as an interesting new candidate to verify the 

microarray date with. This was chosen as Fkbpl (otherwise known as 

Tacrolimus) is important in treating many dermatological conditions. In 

addition, it has been shown to induce anagen (Iwabuchi et al., 1994). Fkbpl 

decreases the expression of VEGF and IGF-1 in human skin, while no hair growth 

effect was found (Wang et al., 2009). However, in mice, Fkbpl is a very potent 

anagen-inducing and catagen-suppressing agent (Maurer et al., 1997, Paus et al., 

1996). 

Since we used isolated human HFs maintained in organ culture, one must 

consider the possibility that the human HF in vitro does not utilise the same 

signals for controlling its cyclic anagen-catagen transformation as it does in vivo. 

This is thought to be unlikely, since the “HCC” is an intra-follicular mechanism 

and should be preserved even after HF microdissections, culture, and 
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transplantation (Paus and Foitzik, 2004). Another limitation of the work is that 

we present mainly microarray data, which could be followed-up only very 

selectively within the temporal confines of this thesis.  In order to fully 

investigate the current pilot observations further, we would now expect to 

systematically compare the transcriptome results on the translational level, 

namely by immunohistology. Indeed a thorough investigation of these processes 

should now include protein analyses as transcription changes may not be 

reflected on the protein level (White and Salamonsen, 2005). 

We attempt to explore these issues by establishing 

immunohistochemistry protocols for some of the most interesting gene products, 

namely MSX2 and SGK3. In addition, we also plan to perturb these genes and the 

BMP pathway by using RNA interference technology; using the simple, small-

interfering RNA silencing strategies that we had successfully employed for intra-

follicularly expressed circadian genes (see Chapter 6).  

To further dissect the complex interactions that exist in the HF, namely 

epithelial-mesenchymal interactions, future work should entail isolated cell 

compartments of the HF, such as by laser capture microdissection to obtain the 

expression profiles of these HF compartments  (Rogers and Koike, 2009). Also, 

we only investigated the proximal HF, thus excluding e.g. hair cycle-dependent 

gene expression changes in the HF’s epithelial stem cell compartment, the bulge. 

Thus future transcriptome analyses should explicitly include this region, using 

full-length scalp HFs, as they become available e.g. during routine hair transplant 

surgery. 

A major limitation of the study is the low number of patients that was 

available for transcriptome analysis. A larger patient set, which should also 

include HFs from male donors, would ensure that confidence can be placed on 

the dissected human anagen and catagen signature, and may reveal gender-

specific gene expression differences. Due to the severe limitation of available 

human skin and HFs, the microarray arrays were performed on female patients, 

while and the additional patients for qPCR validations (patients 4 and 5) were 

male. The majority of results agreed between the female patient in qPCR (patient 

2) and the male results (patients 4 and 5). 



 

238 

 

While constitutive gender differences in the gene expression patterns of 

human HF have not yet been systematically studied, it is already known that 

there are substantial gender-dependent differences in the transcriptional 

response of male versus female scalp HFs when these are exposed to oestrogen 

(Ohnemus et al., 2006) or prolactin in HF organ culture (Langan et al., 2010). 

This makes the future search for gender-dependent differences in the human 

anagen and catagen gene expression profile both interesting and important. 

One study performed on plucked human HFs (Kim et al., 2006) aimed at 

to use HFs as a clinical diagnosis tool.  Therefore, the study design differed to the 

needs of our study. The limitations of that study were that only hair shafts were 

plucked and analyses were performed in ignorance of the exact hair cycle stage. 

Also, only a portion of the proximal epithelial HF would have been analysed, 

excluding much of the hair matrix and the entire HF mesenchyme (Botchkarev 

and Kishimoto, 2003).  

To conclude, previous studies have either looked at the transcriptome 

changes in RNA extracts from total skin between different murine hair cycle 

states or have investigated transcriptional changes in human anagen HFs in 

response to defined test agents. However, there are no previous publications 

which systematically compare the transcriptome of spontaneously developed 

human anagen and catagen HFs in organ culture. Therefore, despite its evident 

limitations, the current pilot study provides novel pointers to the transcriptional 

changes that may be functional important during the anagen-catagen 

transformation.  

This suggests important new molecular targets for therapeutic 

intervention in common human hair growth disorders. Working hypotheses 

generated on the basis of the current transcriptome analyses can be tested 

functionally in human HF organ culture, e.g. by antagonising signalling mediated 

by the identified target genes (such as Msx2). 

In addition, this work may be used to develop future mathematical 

models of the signalling pathways involved in human hair cycle control.  
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9 CHAPTER 9: SUMMARY OF THE THESIS AND 

FUTURE PERSPECTIVES 
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The human hair cycle has been investigated in this thesis using both theoretical 

and experimental approaches. This final chapter summarises the main  

conclusions drawn from the work presented in this thesis, and develops 

perspectives for future work on human hair cycle research from a systems 

biology viewpoint (for more extensive discussion and future perspectives of the 

individual results generated in this thesis, see the Discussion sub-chapters of 

Chapters 5 to 8). 

After introducing the general field of research (Chapter 1), the relevant 

literature regarding our current understanding of the molecular mechanisms 

that drive human HF cycling was reviewed (Chapter 2). This analysis 

established that the molecular nature of the “HCC”, both in man and in mice, is 

still unknown and that fully convincing theoretical models of HF cycling remain 

to be developed. 

In Chapter 3, the HF was presented as a complex, multilevel, systems 

biology problem, which deserves to be fully discovered as a unique and 

clinically relevant research model by mainstream system biology researchers. In 

addition, it was concluded that in order to understand the human hair cycle, 

systems biology approaches (i.e. integration of experimental data 

complemented by the construction of a mathematical model) should be 

employed. 

In Chapter 4 non-linear dynamics was introduced in the thesis with the 

principles and important terminologies explained. In Chapter 5, these general 

principles were then applied to the human hair cycle via the construction of a 

mathematical model that captures key features of human HF dynamics. In this 

model, the human hair cycle was portrayed as a multi-cellular dynamical 

system. It is argued that the hair cycle controls act on a tissue level which act to 

coordinate distinct cell populations through the cycle. To conclude, we have 

presented a simple mathematical model that captures the dynamics of the 

human HF. Using a dynamical systems approach we provide the first 

mathematically formulated theory of the intrinsic components of the “HCC”. Our 

prototypic two compartment model is based on the key cell populations 

responsible for hair growth; MKs with communication set up by a second 
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compartment; the DP. The key conclusion is that HF dynamics requires two 

essential features; a bistable switch and feedback inhibition. Importantly, this 

simple model not only captures normal cyclical behaviour of the HF, but other 

essential features of HF dynamics as seen in vivo and may be a future tool for 

experimental and treatment predictions. The model is a novel contribution to 

the field and accounts for both the dynamics of the normal cycling human HF 

and pathological states. This is an important feature of the model as its 

behaviour, depending upon parameter values and initial conditions, can account 

for both the normal cycling dynamics of the human HF and pathological 

behaviour. This is in line with the concept of “dynamical disease” in that disease 

is a pathological alteration of normal dynamics (Glass and Mackey, 1988).  

After detailing the experimental methodology employed in the current 

thesis (Chapter 6), Chapter 7 turns to another hypothesis-driven application of 

systems biology to studying the problem of human HF cycling. It is argued that 

clock and clock target genes represent a classical systems biology paradigm. 

These “circadian” genes control and coordinate very complex processes on both 

the cell and tissue level, while their own activities are also subject to multiple 

external controls. Specifically, we test in Chapter 7 the working hypothesis that 

selected clock and clock target genes are functionally important in the control of 

the anagen-catagen transformation.  

We show that circadian genes and proteins, responsible for 

autonomously coordinating the circadian rhythm, are involved in human HF 

cycling. In vitro, isolated human HFs exhibit both a circadian rhythm and hair 

cycle-dependent expression changes independently from central clock 

influences (such as from the suprachiasmic nucleus). By adopting siRNA 

technology for gene silencing purposes, Period1 and Clock are identified as 

modulators of the anagen-catagen transition in human scalp HFs in organ 

culture. Period1 and Clock also affect melanin content in anagen HFs, which 

produces new hypotheses regarding the role of these molecules in 

melanogenesis. 

This work is novel as circadian clock genes have not previously been 

implicated in human hair cycle control. This work establishes that the human 
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HF exhibits multiple chronobiological rhythms on several levels. The exact 

mechanisms by which the circadian clock system affects the infradian hair cycle 

remain to be elucidated. It is hypothesised firstly, that the effector mechanisms 

may be via clock-controlled genes such as c-Myc and Cdkn1a. Secondly, intra-

follicular clock gene activity may be under hormonal controls such as regulation 

by the intra-follicularly generated (hair growth and pigmentation modulating) 

neurohormone, TRH.   

In Chapter 8, the transcriptome profiles of isolated, organ-cultured 

human scalp anagen and catagen HFs is established. Significantly over-

represented gene functional categories in catagen were cell adhesion, steroid 

dehydrogenase activity, regulation of cell compartment size, collagen, cell 

projection and cell division. Anagen was characterised by the over-

representation of keratin filament, BMP signalling, patterning, development, 

differentiation, serine/theorine kinase signalling and morphogenesis genes 

compared to background genome expression. This unbiased human 

transcriptome analysis not only identifies  many genes that were known to be 

important in the control of murine HF cycling, but also demonstrates differential 

expression of novel candidate marker genes between anagen and catagen 

human HF. 

This pilot study suggests that anagen and catagen in human organ 

culture HFs have distinct gene expression profiles.  The identified marker genes 

could be used in the future to: verify human hair cycle staging, develop novel 

hair therapeutic targets and be factored into mathematical models of human HF 

cycling. The study remains to be complemented by additional systematic 

analyses on the protein level. 

In the experimental components of this thesis, anagen and catagen 

human scalp organ cultured HFs were utilised for study. The organ culture 

model is currently the best available assay for studying human HF cycling in 

vitro, however, this needs to be complemented on the in vivo level. Feasible 

future experiments include corresponding clinical trials, using e.g. the 

phototrichogram technique (Dhurat and Saraogi, 2009) and analysis of fresh 

samples of whole human skin. Unfortunately, this is severely limited by the fact 



 

243 

 

that usually only 5-10% of human scalp HFs are not in the anagen stage at one 

time. Therefore, such in vivo analyses will require many months or years to 

collect enough catagen and telogen human HFs for analyses. 

The distinct, but complementary research approaches employed in this 

thesis underscore that there is a challenge in dealing with the complexity in 

scales that one faces in hair biology i.e. both microscopic and macroscopic 

processes are involved in the hair cycle. A logical next step towards this 

challenge would be to integrate the novel molecular hair cycle control 

mechanisms (such as circadian clock genes or newly identified anagen/catagen 

marker genes) into the existing mathematical model of human HF cycling. The 

aim would be to then understand how such fast oscillators (circadian clock and 

cell cycle oscillators) may function together to regulate the slow human HF 

oscillator in a coordinated manner. This will require multi-scale modelling. 

Complementary experimental investigations would involve laser capture 

microdissection to gain compartmentalised expression of mRNA and proteins of 

interest. This will elegantly complement the compartmentalised mathematical 

model proposed here and thus build a spatio-temporal expression edifice of the 

anagen and catagen states. In addition, siRNA technologies may be implemented 

to further probe the functional role of candidate genes in human hair cycle 

control and to dissect the underlying mechanisms of action. 

To conclude, this thesis constitutes a first major step towards human 

hair research from a systems biology perspective. The thesis demonstrates that 

human HF cycling provides a most intriguing and clinically relevant systems 

biology problem.  The current work raises the hope that the application of 

classical tools of system biology to human hair research will improve our 

understanding of human hair biology and pathology. 

 

In summary, the key findings of the thesis are: 

a. The human hair follicle is a dynamic organ whose cyclical activity may be 

controlled at the tissue level in the form of an autonomous relaxation 

oscillator. The mechanism requires delayed feedback between two 
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compartments (the MKs and DP). This presents a new theory of the 

human ‘hair cycle clock’. 

b. Knock-down of core circadian clock components; Clock and Period1, 

prolongs anagen phase in isolated human hair follicles. 

c. Human isolated hair follicles in anagen and catagen have differential 

transcriptome signatures which may utilised to develop markers for 

human hair anagen and catagen states 

Finally, the thesis is presented in a graphical abstract below.  

 

 

Figure 9.1: Graphical abstract of the thesis 

Microarray chip image obtained from http://www.nchu.edu.tw/~ibms/ibms1/JJW/microarray%20lab%20index.htm 
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11 APPENDIX 

APPENDIX A FRONT PAGE REPRINT OF THE CYCLING HAIR FOLLICLE AS 

AN IDEAL SYSTEMS BIOLOGY RESEARCH MODEL 
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APPENDIX B REPRINT METHODS IN HAIR RESEARCH: HOW TO 

OBJECTIVELY DISTINGUISH BETWEEN ANAGEN AND CATAGEN IN HUMAN 

HAIR FOLLICLE ORGAN CULTURE 
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APPENDIX C  EFFICIENCY RESULTS FOR QPCR VALIDATION EXPERIMENT 

 

Appendix C provides all the efficiency plots (and the corresponding data) for all 

TaqMan® target genes against the housekeeping gene PPIA used in the thesis. 

This section corresponds to Chapter 6.18.3 in the thesis where the methodology 

can be found. Efficiency validations were performed prior to carrying out the 

qPCR experiments to ensure that the delta delta Ct method could be used to 

obtain relative expression level results for qPCR experiments performed. In this 

section each target gene is presented on its own individual page with the 

efficiency plots and the table containing the data plotted below. The results of 

the efficiency experiments were used to determine the range of concentrations 

of cDNA to use for qPCR experiments (A summary table is provided in Section 

6.18.3 or alternatively provided in the far right column of all the tables 

presented here).  
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Relative efficiency plot and table of results for Period1 and PPIA 

 

 

Input 

concentration 

cDNA (ng) 

PPIA 

Normaliser 

gene 

Average Ct  

Period1 

Target gene 

Average Ct 

ΔCt  

PPIA - Period1 

Acceptable 

dynamic range 

(ng) 

100 14.4 22.0 -7.6 

0.1 to 100 

10 17.8 25.5 -7.7 

1 21.7 29.7 -8.1 

0.1 25.4 32.7 -7.3 

0.01 29.5 36.0 -6.5 

0.001 33.9 40.0 -6.1 
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Relative efficiency plot and table of results for Bmal1 and PPIA 

 

 

Input 

concentration 

cDNA (ng) 

PPIA 

Normaliser 

gene 

Average Ct  

Bmal1  

Target gene 

Average Ct 

ΔCt  

PPIA - Bmal1 

Acceptable 

dynamic range 

(ng) 

100 14.9 22.3 -7.4 

0.1 to 100 

10 17.9 25.4 -7.4 

1 21.3 28.7 -7.4 

0.1 24.8 32.4 -7.6 

0.01 28.5 36.4 -7.9 

0.001 31.7 40.0 -8.3 
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Relative efficiency plot and table of results for Clock and PPIA 

 

 

Input 

concentration 

cDNA (ng) 

PPIA 

Normaliser 

gene 

Average Ct  

Clock  

Target gene 

Average Ct 

ΔCt  

PPIA - Clock 

Acceptable 

dynamic range 

(ng) 

100 14.9 24.3 -9.4 

0.1 to 100 

10 17.9 27.3 -9.4 

1 21.3 30.6 -9.3 

0.1 24.8 34.1 -9.3 

0.01 28.5 40.0 -11.5 

0.001 31.7 40.0 -8.3 
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Relative efficiency plot and table of results for Cry1 and PPIA 

 

 

Input 

concentration 

cDNA (ng) 

PPIA 

Normaliser 

gene 

Average Ct  

Cry1 

Target gene 

Average Ct 

ΔCt  

PPIA – Cry1 

Acceptable 

dynamic range 

(ng) 

100 14.9 21.5 -6.6 

0.1 to 100 

10 17.9 24.5 -6.6 

1 21.3 27.9 -6.6 

0.1 24.8 31.3 -6.5 

0.01 28.5 34.6 -6.1 

0.001 31.7 36.9 -5.2 

 

  



 

282 

 

Relative efficiency plot and table of results for Cry2 and PPIA 

 

Input 

concentration 

cDNA (ng) 

PPIA 

Normaliser 

gene 

Average Ct  

Cry2 

Target gene 

Average Ct 

ΔCt  

PPIA – Cry2 

Acceptable 

dynamic range 

(ng) 

100 14.9 24.2 -9.3 

0.1 to 100 

10 17.9 27.5 -9.6 

1 21.3 31.0 -9.7 

0.1 24.8 34.2 -9.4 

0.01 28.5 37.0 -8.5 

0.001 31.7 40.0 -8.3 

 

 

 

  



 

283 

 

Relative efficiency plot and table of results for Nr1d1 and PPIA

 

Input 

concentration 

cDNA (ng) 

PPIA 

Normaliser 

gene 

Average Ct  

Nr1d1 

Target gene 

Average Ct 

ΔCt  

PPIA – Nr1d1 

Acceptable 

dynamic range 

(ng) 

100 14.9 25.1 -10.2 

1 to 100 

10 17.9 28.5 -10.5 

1 21.3 31.5 -10.2 

0.1 24.8 35.8 -10.9 

0.01 28.5 36.7 -8.2 

0.001 31.7 36.7 -5.0 
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Relative efficiency plot and table of results for Cdkn1a and PPIA 

 

Input 

concentration 

cDNA (ng) 

PPIA 

Normaliser 

gene 

Average Ct  

Cdkn1a 

Target gene 

Average Ct 

ΔCt  

PPIA – Cdkn1a 

Acceptable 

dynamic range 

(ng) 

100 14.9 22.8 -7.9 

0.1 to 100 

10 17.9 25.9 -8.0 

1 21.3 29.2 -7.9 

0.1 24.8 32.6 -7.8 

0.01 28.5 35.9 -7.4 

0.001 31.7 40.0 -8.3 
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Relative efficiency plot and table of results for c-Myc and PPIA 

 

 

Input 

concentration 

cDNA (ng) 

PPIA 

Normaliser 

gene 

Average Ct  

c-Myc Target 

gene Average 

Ct 

ΔCt  

PPIA – c-Myc 

Acceptable 

dynamic range 

(ng) 

100 14.8 20.6 -5.7 

0.1 to 100 

10 18.0 23.0 -5.9 

1 21.3 27.3 -6.0 

0.1 24.8 30.6 -5.8 

0.01 28.1 34.3 -6.1 

0.001 31.6 34.4 -2.9 
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APPENDIX D ADDITIONAL MICROARRAY RESULT: GENE FUNCTIONAL 

CATEGORIES DOWN-REGULATED GENES IN CATAGEN 

 

Appendix D provides additional data arising from the work detailed in Chapter 

8. Human anagen and catagen hair follicle gene expression profiles were 

obtained via microarray experiments (see Chapters 6 and Chapter 8 for more 

methodologies and details). An anagen “signature” was defined as the probe set 

down-regulated in catagen by a fold change of >1.5 in all three patients. Here 

the functional categories of the genes in the anagen “signature” produced by 

performing DAVID bioinformatics analysis of this list is provided in the table. 

BP = Biological process, MF = molecular function, CC=cell compartment 
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 Term Genes 

CC 
intracellular non-
membrane-bounded 
organelle 

KIF5C, KRT31, KRT33A, KRT86, KRTAP3-2, KRT85, MYCN, KRTAP4-7, 
KRTAP4-6, KRTAP4-5, KRTAP3-3, KRT81, KRTAP2-4, CAMK2N1, 
KIF5C,KRTAP4-4, SHROOM3, KRTAP2-1, DYNC1I1, KIF26A, KRTAP2-2, 
KRTAP1-3, KRT37, H2AFJ, KRTAP4-9, KRTAP4-3, KRTAP3-1, KRT73, KRT34, 
KRTAP4-2, KRT73, KRTAP1-1, KRTAP9-4/9-9, NAV2 

CC Cytoskeleton 

KIF5C, KRT32, KRT33A, KRT85, KRTAP3-2, KRT86, KRTAP4-7, KRTAP4-6, 
KRTAP4-5, KRTAP3-3, KRT81, KRTAP2-4, CAMK2N1, KRTAP4-4, SHROOM3, 
KIF5C, KRTAP2-1, DYNC1I1, KIF26A, KRTAP2-2, KRTAP1-3, KRT37, KRTAP4-
9, KRTAP4-3, KRTAP3-1, KRT73, KRT34, KRTAP4-2, KRT73, KRTAP1-1, 
KRTAP9-4/9-9 

CC intermediate filament 

KRT33A, KRT31, KRT86, KRTAP3-2, KRT85, KRTAP4-7, KRTAP4-6, KRTAP4-5, 
KRTAP3-3, KRT81, KRTAP2-4, KRTAP4-4, KRTAP2-1, KRTAP2-2, KRTAP1-3, 
KRT37, KRTAP4-9, KRTAP4-3, KRTAP3-1, KRT73, KRT34, KRTAP4-2, KRT73, 
KRTAP1-1, KRTAP9-4/9-9 

CC keratin filament 
KRTAP2-2, KRTAP1-3, KRT85, KRTAP3-2, KRT86, KRTAP4-7, KRTAP4-9, 
KRTAP4-3, KRTAP3-1, KRTAP2-4, KRTAP4-6, KRT73, KRTAP4-5, KRTAP4-2, 
KRTAP3-, KRT73, KRT81, KRTAP1-1, KRTAP9-4/9-9, KRTAP4-4, KRTAP2-1 

MF structural molecule activity 
KRT33A, KRT31, KRTAP1-3, WNT3, KRTAP3-2, KRT86, KRT85, KRT37, 
KRTAP3-1, KRT73, KRT34, KRTAP3-3, KRT73, KRT81, KRTAP1-1 

MF transcription factor activity MSX2, SMAD6, DLX1, MYCN, POU4F1, MSX1, DLX2, DLX3 

BP 
pattern specification 
process 

AXIN2, SMAD6, DLX1, WNT3, HHIP, SHROOM3, DLX2, CYP26B1 

BP neuron differentiation KIF5C, EFHD1, DLX1, ID3, POU4F1, KIF5C, DLX2  

BP Regionalization AXIN2, SMAD6, DLX1,WNT3, HHIP, DLX2, CYP26B1 

BP 
skeletal system 
development 

MSX2, AXIN2, DLX1, MSX1, NPR3, DLX2 

BP cell fate commitment DLX1, WNT3, IFRD1,DLX2, CYP26B1 

BP embryonic morphogenesis MSX2, WNT3, SHROOM3, MSX1, DLX2, CYP26B1 

BP 
chordate embryonic 
development 

AXIN2, DLX1, SHROOM3, MSX1,DLX2 

BP 
negative regulation of 
apoptosis 

MSX2, SGK3, SMAD6, DLX1, MSX1 

BP 
protein serine/threonine 
kinase signaling pathway 

MSX2, SMAD6, BAMBI, MSX1 

BP 
response to protein 
stimulus 

MSX2, ID3, MSX1,LY6G6D 

BP epidermis development KRT31,KRT34, KRT85 

BP 
negative regulation of 
signal transduction 

AXIN2, SMAD6, HHIP,CYP26B1 

BP 
proximal/distal pattern 
formation 

Dlx1, Dlx2,  Cyp26b2 

BP BMP signaling pathway Msx2,Msx1, SMAD6 

BP cartilage development Msx1, Dlx2 

MF microtubule motor activity KIF5C, DYNC1I1, KIF26A, KIF5C 

BP appendage morphogenesis Msx2,Msx1, Cyp26b2 

BP 
forebrain neuron fate 
commitment 

Dlx1, Dlx2 

BP 
regulation of 
oligodendrocyte 
differentiation 

Dlx1, Dlx2 

MF 
structural constituent of 
epidermis 

Krtap1-3, Krtap1-1 
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APPENDIX E  ADDITIONAL MICROARRAY RESULT - FUNCTIONAL 

CATEGORIES UP-REGULATED GENES IN CATAGEN  

 

Appendix E provides additional data arising from the work detailed in Chapter 

8. Human anagen and catagen hair follicle gene expression profiles were 

obtained via microarray experiments (see Chapters 6 and Chapter 8 for more 

methodologies and details). The catagen “signature” was defined as the probe 

set up-regulated in the catagen samples when compared to the anagen samples. 

(fold change of >1.5 in all three patients). The catagen “signature” produced 

much less genes and functional categories as seen in the table below (compare 

to Appendix D – Anagen functional catgegories) 

BP = Biological process, MF = molecular function, CC=cell compartment 

 

 Term Genes 

BP Cell adhesion 
SPP1,  COL27A1  COL14A1,  TNFAIP6, 
PARVA, DAB1 

MF zinc ion binding KCND3, FHL1, MMP16 

CC Cell projection SPP1, KCND3, NEFL, PARVA 

CC extracellular region part SPP1, COL27A1, COL14A1, MMP16 

BP regulation of cellular component size SPP1, FHL1, NEFL 

BP Cell division PARD6G 

CC extracellular matrix COL27A1, COL14A1, MMP16 

MF steroid dehydrogenase activity AKR1C2 , AKR1C1 

CC Collagen COL27A1, COL14A1 

MF monocarboxylic acid binding AKR1C2 , AKR1C1 

BP regulation of axonogenesis SPP1, NEFL 

MF steroid binding AKR1C2 , AKR1C1 

BP response to toxin AKR1C1, NEFL 

BP 
regulation of neuron projection 
development 

SPP1, NEFL 

CC tight junction PARD6G 

BP 
regulation of cell morphogenesis 
involved in differentiation 

SPP1, NEFL 

 


