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Abstract

Silicon carbide (SiC), with its wide bandgap, high thermal conductivity and natural
oxide is a substrate that has given rise to a new generation of power devices than can
operate at high temperature, high power and high frequency, though the material is not
without its problems. SiC “heterojunction devices” are layers of germanium (Ge) or silicon
(Si) that are deposited via molecular beam epitaxy (MBE) or wafer bonded onto the SiC
surface. These narrow bandgap thin films can provide a high mobility channel region
overcoming SiC’s crippling channel mobility, which is most often made worse by a high
density of interface states. Concentrating predominantly on Ge/SiC heterojunctions, this
thesis characterises the physical and electrical nature of these structures, investigating
the rectifying properties of the heterojunction interface and the ability of these layers to
support a depletion region.

A physical analysis of the layers revealed that the Ge formed in an unexpectedly
uniform fashion, given the large lattice mismatch involved. At a deposition temperature of
500oC the Ge initially clumped into wide, shallow islands before merging, forming at best
a 300 nm polycrystalline layer with a surface roughness of only 6 nm. This was in contrast
to MBE deposited Si/SiC layers that formed tall islands that at 1 µm thick, still had not
merged. After being formed into Ge/SiC heterojunction diodes they were electrically
characterised. The layers displayed near ideal (η = 1.05) turn-on characteristics, low
turn-on voltage (approximately 0.3 V less than Ni/SiC SBDs), reasonable on-resistance
(12 mΩcm2) and minimal leakage current. The devices were shown to suffer severe Fermi
level pinning that defined the way the materials’ bands aligned. This occurred as a result
of an inhomogeneous interface that also caused fluctuations in the size of the Schottky
barrier height across the interface. New characterisation techniques relating to these
phenomena were applied to a heterojunction for the first time.

MBE formed Ge/SiC layers and wafer bonded Si/SiC layers were formed into MOS
capacitors through the deposition of the high-K dielectric hafnium oxide (HfO2). The
increased conduction band offset between oxide and narrow bandgap semiconductor sup-
pressed leakage problems often seen in HfO2/SiC structures. Capacitance-voltage results
showed that they could both support a depletion region, though the best results came
from the MBE Ge/SiC diodes. Current-voltage results showed that the more uniform
Si/SiC devices could block 3.5 MV/cm.

xvii
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Chapter

1 Introduction

The pace of scientific discovery in the 20th century was unrivalled by any that had pro-

ceeded it, making possible a complete transformation in the way we live our lives through

the giant leaps forward in science, technology, engineering and industry. In the century’s

first year, a model was proposed by Planck to describe the emission of radiation from

a black body [5], using his now famous packet, or quantum, of energy. This was the

trigger for what was to come, first with Einstein’s quantisation of light, then by Bohr

who applied this theory to the atom, revolutionising our understanding of the materials

world. Soon, contributions from de Broglie, Heisenburg, Schrodinger, Bloch and Pauli

completed a distinctly European revolution of thought and understanding that had rede-

fined the understanding of the physical world.

It was, however, the application of these fundamental ideas in America that led to their

technological dominance, beginning with Bardeen and Brattain’s first transistor [6], which

was revealed at Bell Labs in 1947. Shockley’s first field effect transistor [7] and Kilby’s

invention of the integrated circuit [8] followed, giving way to our modern information

age. Now transistor based technology such as integrated circuits and computers dominate
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our day to day life, enabling such exciting technologies as the internet and the smart

phone, but also much more mundane things such as the washing machine, television or

air conditioning. As such the semiconductor industry is massive, with sales predicted to

be worth $325 billion for 2011, up 7% from the previous year [9].

As Shockley suggested back in April 1959, at the first International Conference on

Silicon Carbide [1], the question of high temperature electronics requires us to look up the

periodic table away from germanium (Ge) and silicon (Si) to the wide bandgap materials

of Silicon Carbide (SiC) and diamond. However, these are difficult materials to work

with and substrates of SiC were not commercially available until 1991 [1], whilst diamond

substrates are still not readily available. Another wide bandgap material, Gallium nitride

(GaN), is showing great promise for medium and high power applications [10]; however

the major draw back of the material is that it is not freestanding, having to be grown

on a substrate of either Si or SiC. As a result of these drawbacks with wide bandgap

semiconductors, silicon still dominates the power discretes market, worth $12 billion in

2008 [11]. The only real challenge SiC places in this market is with the Schottky barrier

diode, where devices are currently available [12] from 1 A/600 V up to 25 A/1700 V.

However, in the future, the dominance of the Si IGBT at medium to high power might

be challenged, with Cree having just released in early 2011 the first commercial 1200 V

SiC MOSFET [13], while SemiSouth have a range of 1200 V and 1700 V normally-on and

normally-off JFETs. As a result, the SiC market [11] was worth a comparatively tiny $23

million in 2008, chiefly through the blue L.E.D. market, though through the increased

uptake of SiC power devices, this is predicted to rise to $100 million by 2015.
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1.1 Motivation

1.1 Motivation

The aim of this thesis is to fabricate, characterise and understand heterojunction devices

that comprise a MBE formed Ge layer deposited onto a SiC substrate.

The initial motivation for what was to be a single experiment, was to compare the

rectifying characteristics of MBE formed Ge/SiC heterojunctions to that of MBE formed

Si/SiC heterojunctions produced previously at Warwick University [14–16]. Other Exper-

imentation with Si/SiC heterojunctions took place at Swansea University [17] and in in-

stitutions in Japan [18–20], Germany [21–23] and the United States [24], leading to Si/SiC

heterojunction rectifiers being used in Hybrid Car inverter circuits. Nissan amongst oth-

ers [18], recognised that by controlling the doping of the heterojunction layer, one may

adjust the turn-on voltage and reverse characteristics to suit the needs of a particular

device, whilst maintaining the high power, high frequency capabilities that made SiC so

popular in the first place.

A seemingly natural step following Warwick’s previous experimentation with MBE

formed Si/SiC, was to attempt to repeat some of these techniques using Ge as the hetero-

junction material on SiC. Based in the Physics department at the University, the MBE

capability facilitated doped Si and Ge deposition, and hence a set of experiments were

planned. The use of Ge was of particular interest due to its high mobility and its narrow

band gap which, when paired with SiC’s wide bandgap was expected to form a good

rectifying contact. However, whilst rectification was almost guaranteed, the really tan-

talising prospect was that of a SiC MOSFET with a Ge-based, high-mobility channel.

If successful, this could overcome two major problems with the SiC MOSFET, its poor

mobility and the carrier scattering that occurs at the silicon dioxide (SiO2) interface.
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1.2 Thesis Outline

1.2 Thesis Outline

The following Chapter introduces SiC and SiC heterojunctions in the context of the major

challenges that face the power electronics industry today. The power devices relevant

to this work are presented before we see how SiC is extending their range into high

temperature and high power operation.

Chapter 3 presents some of the concepts required to understand the results Chapters,

introducing first the band alignment of heterojunctions and the flow of current over a

Schottky barrier, before looking at heteroepitaxial growth and how layers form when they

are being deposited onto another semiconductor surface. Similarly introductory, Chapter

4 presents the many physical and electrical characterisation techniques that are used to

extract information about the heterojunction layers and diodes.

In Chapter 5, the MBE deposition onto SiC of first Si and then Ge is described,

presenting the results of layers that have been formed under varying temperatures and

thicknesses and with different dopants. The full physical characterisation of each layer

aims to establish the surface uniformity and crystallinity through the use of high reso-

lution TEM, AFM, helium ion microscopy and FIB/SEM images, and XRD and EDX

crystallographic analyses.

Chapter 6 describes how the Ge/SiC heterojunction diodes were fabricated using clean

room equipment and processes. A full electrical characterisation involves circular trans-

mission line measurements to extract contact resistivity and current voltage analysis at

room temperature and at 25 K steps from 225 K up to 450 K to extract information

about the turn-on voltage, barrier height, ideality factor, reverse leakage and breakdown.

C-V analysis is carried out to further assess barrier height and doping concentration but

is quickly discredited in the face of surface states.
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Some unusual results extracted about the Schottky barrier height in Chapter 6 re-

quire much more exploration, so Chapter 7 presents some more advanced characterisation

methods adapted for the first time for heterojunction analysis. Fermi level pinning of the

heterojunction interface is described, as well as fluctuations in the SBH brought about

because of the inhomogeneous Ge/SiC interface. Finally, a model is proposed to describe

why the doping of the Ge layers appears to make little or no difference to the devices’

forward characteristics.

The final Chapter of results, Chapter 8 describes how MBE Ge/SiC and wafer bonded

Si/SiC heterojunction layers were made into MOS capacitors, by the deposition of the

high-K dielectric hafnium oxide. The structures are analysed using current-voltage tests,

which show the leakage of the devices. Capacitance-voltage tests and the fitting of models

to the data enables the extraction of interface trap densities, whilst describing how a

depletion region spread across the heterojunction interface.

A summary of the results and the conclusions are presented in chapter 9. Suggestions

are made for further research, which would further advance the understanding of these

and other heterojunction devices.

5



Chapter

2 The Power Electronics Hierarchy

2.1 Introduction

In this thesis, Ge/SiC heterojunction diodes are characterised in an attempt to overcome

challenges that face the wide-bandgap semiconductor SiC, a material starting to make

a real impact in the power semiconductor industry. However, this is a difficult concept

without a frame of reference, and therefore, this Chapter aims to frame the research

presented herein by breaking down today’s biggest power engineering challenges into their

constituent parts, showing how materials science research at the bottom most rung might

impact all the way up the chain to the wind turbines and electric cars.

Figure 2.1 shows a Power Electronics hierarchy, beginning with three of the most rele-

vant challenges to today’s industry. The requirements of these systems will be discussed,

before breaking the technology down layer by layer, passing through the systems, circuitry

and devices until the materials are met. At this point SiC and its many successes and

challenges will be introduced before moving on to the state-of-the-art SiC heterojunction

research.
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Figure 2.1: The power electronics hierarchy, from applications and systems to devices
and materials.

2.2 The Systems

Renewable energy is the future of power generation and currently the only truly clean

form of energy generation with Nuclear Fusion still a long way from fruition. Excluding

biofuels, renewables including wind, solar, wave and hydro powers accounted for just

6 % of the global final energy consumption in 2009 [25]. Wind power accounts for a

large proportion of the renewables market and at the time of writing, the UK had 3157

turbines, with a maximum output capacity of 5.2 gigawatts (GW) of power [26], some 5 %
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of the national requirement. Being ideally positioned for offshore wind generation, just

under 4 GW of construction projects were under way, with another 5 GW given the go

ahead, and 8 GW in the planning stages [26]. These impressive figures show that this is a

huge, expanding industry, and power electronics plays an important role in optimising the

turbines. Beginning with the hugely variable energy supply of the wind, energy must first

be transferred from mechanical, rotational power to electrical power through a gearbox

and generator. This must then be transformed onto the correct AC rating to be placed

on the national grid, therefore requiring efficient bi-directional DC-AC converters at the

systems level of Figure 2.1.

Once onto the grid, the efficient and appropriate distribution of electrical power is the

next challenge. A recent buzz-word, the smart grid is an ideology that encompasses a

number of technological challenges that have a common theme of providing power in a

fashion that reduces cost, saves energy and improves reliability. At the forefront of this

idea is the increased use of control systems, smart meters in homes that can communicate

power requirements immediately back to the national grid and to the suppliers, thus

regulating output with up-to-the-minute demand. This is the popular face of the smart

grid idea; however, the true ”smart” network needs more. Power, like so much else, is

becoming an international affair, with the national grids all over Europe connected up.

However, each A.C. grid has its own requirements in terms of transmission frequencies

and powers. This means that each nation’s grid must be joined to the next by converting

the A.C. to D.C. and back to A.C. again. Seeing that DC power is generated at the

power stations and that most domestic products are D.C., one has to ask, why are we

not using a D.C. grid? Significant progress has been made in the field of high voltage

D.C. (HVDC) distribution and it is now the most energy efficient way to transmit power

over long distances. Many international HVDC cables already exist such as those linking
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Britain with France, Scotland with Northern Ireland, as well as many other connections

across Europe and the globe. At the moment however, the significant cost of these systems

has prevented HVDC being rolled out as a national grid. With a HVDC national grid

off the cards for the foreseeable future, the use of more efficient, smaller, cheaper and

lighter power conversion solutions is essential. Hence in a similar conclusion as the last

paragraph, the efficiency of DC-AC, AC-DC and DC-DC converters are essential.

After the power has been generated, transmitted and distributed, we end up with it in

our homes, and the role of power electronics does not end. It crops up in all our electronic

equipment converting the 220 V 50 Hz A.C. supply down to the 5, 9 or 12 V DC the T.V.,

computer or radio requires. However looking again to the future, it is likely to be our

domestic energy supply that powers our mobility, and it is the electric car in particular

that has so much to be won and lost in the quality of its electronics. The biggest challenge

currently facing the full electric car market is actually energy storage, as it is the absence

of a small and lightweight, but high capacity battery that prevents the electric car getting

further than their current 100 mile range [27]. As well as this so called “Range Anxiety”,

the biggest criticism of electric cars is the fact that they are only as green as the electricity

supply. This neatly brings us full circle in our demand for greener energy, reiterating the

previous need for investment in renewables. Currently these limitations hold us back from

using full electric vehicles, but hybrids are becoming ever more popular, with several on

the market already [28]. In both full electrics and hybrids we return to our recurring need

for efficient power conversion as these cars require an efficient inverter to convert stored

D.C. charge into the A.C supply powering the motor. Of course in reverse, as the motor

is acting as a generator, the opposite is true and the A.C. needs to be rectified to D.C.

for storage.
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2.3 Circuitry and the need for device efficiency

The need for efficient energy conversion is clear then; the efficient switching of energy

from one form to another is an issue that impacts on all the green technologies that will

become so prevalent over the next 50 years. But what makes an inverter, a rectifier or

a DC-DC converter efficient? Figure 2.2 shows the simplest inverter circuit, where the

application of a trigger to transistors 1 and 4 allow current flow one way through the

load, whilst the triggering of 2 and 3 forces it through in the opposite direction. The

use of pulse width modulation and some smoothing circuitry offers the opportunity to

reduce the harmonic frequencies in this circuit after smoothing, hence creating an AC

signal such as the dotted line in Figure 2.2. The peak-to-peak amplitude of the resulting

A.C. signal is twice the DC current, whilst the frequency is controllable by the devices’

switching speed. The diodes in this circuit prevent any inductive reverse current from the

load damaging the transistors. Further detail on this and more complex converters may

be found in [29].

Figure 2.2: An inverter circuit and the output across the load before and after
smoothing.

For efficient circuit performance, one needs efficient device performance, minimising
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loss in power. When ‘off’, the transistors and diodes must block all current and when

on, they should conduct losslessly; they would also switch between these states as quickly

as possible. However, real devices have real practicalities, and the above statements

often contradict each other leading to trade offs and compromise. Whilst typical inverter

efficiencies will be in the high nineties of percent, every fractional increase in this value

represents a significant saving in energy and money, especially when a typical supply chain

contains multiple energy conversions.

2.4 Devices

To outline the following discussion, the following is a general list of requirements for a

diode in this circuit:

1. The diode must be capable of blocking a voltage up to VB.

2. Reverse leakage current must be below a value Ir at VB.

3. Specific forward resistance must not exceed Ron,sp.

4. The forward voltage must not exceed VF for at a nominal current e.g. 1 A.

5. The time taken to switch between VB and VF must not exceed ton.

6. The device must work up to a temperature T .

7. Device area must not exceed A.

8. Costs including materials and processing must not exceed £X.

The problem with this list is that the modification of a given physical characteristic will

improve one of these requirements, but often at the detriment of another. This includes

the choice between unipolar or bipolar operation, device thickness, Schottky barrier height

(SBH), and most specifically material, which affects all of the above. Before looking at

the impact of materials in the next Section, here, three common diode devices will be

11



2.4 Devices

introduced showing how they satisfy the above list, before the common transistors are

also featured.

2.4.1 Schottky Barrier Diodes

Unlike the bipolar devices featured later, SBDs rely on only majority carriers for their

operation. This allows for a very fast operation as the switch from a conducting state to

a blocking state or vice versa involves no electron-hole recombination, a relatively slow

process. This unipolar behaviour also dictates that the SBD’s place in the power market is

at the low-medium blocking voltage end, with commercial silicon devices available capable

of blocking up to 200 V, whilst commercial SiC diodes are available up to 1200 V. This

is because the one-sided depletion region that forms at a metal-semiconductor interface

cannot support the same electric field in a given thickness as that of a p-n junction, whilst

VF tends to soar at higher SBD blocking voltages. A large VB in a SBD is reliant on a

thick epitaxial layer of low-doped semiconductor beneath the metal. Unfortunately, the

same thick layer will add a significant Ron,sp, and this is a common place trade-off as one

can have a large breakdown or low resistance, but not both.

Another trade off exists in the size of the SBH. A large SBH presents a large hurdle

to a reverse leakage current, and hence this is minimised. However, the larger the SBH,

the larger the amount of voltage require to turn the device on. Given that the choice of

metal (or indeed heterojunction layer) controls the height of the SBH, the selection of the

correct metal is a matter of optimising each property for the given application.

SBDs feature heavily throughout this thesis, similar as they are to the heterojunction

SBDs formed and analysed in Chapters 6 and 7. The theory behind these devices is

presented in Appendix A.5.

12



2.4 Devices

2.4.2 PiN Diodes

A significant switch in parameters sees unipolar action swapped for bipolar action, PiN

diodes exploiting a lightly doped intrinsic region between a highly doped p-n junction

to support large breakdown voltages at reasonable values of VF . The highest breakdown

voltages are attainable due to the high level injection of minority carriers into the intrinsic

region, which vastly reduces the Ron,sp of the otherwise resistive low doped layer [30].

As suggested before, the weaknesses of the SBD tend to be the strengths of the PiN

diode and vice versa, so the use of bipolar action is synonymous with low resistance and

high breakdown, but very slow switching due to the need to extract the slow minority

carriers from each layer. Commercial Si PiN diodes are available up to a VB of 20 kV;

however it is expected [30] that SiC devices will replace the Si devices for blocking voltages

upwards of 2 kV thanks to their very low VF . SiC has been shown to support voltages of

up to 20 kV [31], though these still suffer from forward voltage drift [32].

2.4.3 JBS Diodes

The junction barrier Schottky (JBS) diode mixes Schottky contact regions on an N-

drift region with P+ stripes or dot regions forming localised pn junctions [33]. Designed

as a halfway house between the PiN and Schottky diodes, the (JBS) diode specifically

exploits its bipolar features in the reverse direction where blocking and leakage is improved

compared to a regular SBD, though at the cost of some speed and VF increase. This

becomes another application based balancing act, where the separation of the p-type

regions have to be separated sufficiently far to allow maximum metal-drift region contact

to form free of the p-type regions, minimising VF . However, in the reverse they should

be as close as possible to prevent the build up of electric field at the metal-semiconductor
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interface and minimise reverse leakage [34].

2.4.4 Transistor Devices

Having a set of trade-offs very similar to that of the diode devices, the choice of transistor

is often based on balancing a range of characteristics for a given application. One must

again choose between unipolar and bipolar, with the former offering speed and minimal

losses, whilst the latter offers huge blocking and low resistance.

The unipolar metal-oxide-semiconductor field-effect transistor (MOSFET) is the most

common and well known transistor, featuring as it does in complimentary MOS (CMOS)

technology. CMOS is the mainstay technology in the microchips, processors and comput-

ers that have revolutionised modern day life. The MOSFET, pictured in Figure 2.3a, is

based on Shockley’s field-effect [7], whereby the application of a positive voltage to the

gate (the metal of a MOS structure) forms a region depleted of majority carriers at the

surface of the semiconductor. The depleted region is as a high mobility, low resistance

channel for electrons to pass from the n-type source through to the n-type bulk and drain.

With no applied voltage to the gate, the p-n-p structure between source and drain should

suffice in blocking all but the smallest leakage currents.

Its use in CMOS has made the Si MOSFET the most advanced semiconductor device,

with Intel’s latest chipset using channel regions just 32 nm across. As well as its success

in the low power, fast switching situations, there are a number of structures that allow

the MOSFET to support large blocking voltages. One of these is the vertically diffused

(VD) MOSFET, pictured in Figure 2.3a, where the use of a lightly doped drift region

has the same effect as it does in a SBD, providing a region that builds electric field and

hence VB at the expense of Ron,sp. This drift region can be built up laterally rather than
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Figure 2.3: a) A standard vertically diffused n-type MOSFET, b) a symmetric IGBT
and c) an IGBT equivalent circuit.

vertically, and laterally diffused (LD) MOSFETs involve a top contact drain, with the

drift region situated between the drain and the channel.

For very high voltage, low frequency operation, the Si Insulated Gate Bipolar Tran-

sistor (IGBT), pictured in Figure 2.3b is the current device of choice. The structure of

an IGBT is quite easily pictured as being similar to the VDMOS structure but with the

n+ substrate exchanged for a p-type one. Shown in 2.3c, this creates a bipolar p-n-p

transistor structure between the source and the drain, with the n-drift region acting as

the base contact to this structure. Therefore, applying a positive voltage to the MOS

gate and the collector causes bipolar conduction between the collector and emitter, a high

level injection of holes into the n-drift region from the collector causing a low resistance

bulk region.

In this thesis, the MOS gate is most relevant, featuring heavily in Chapter 8. The vast

detail of transistor operation is beyond the scope of this text. Further information on the

operation of the MOSFET and IGBT devices, and also Junction FETs, bipolar junction

transistors and thyristors may be found in [30, 34–36] whilst their use in power circuitry

may be found in [29].
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2.5 The Semiconductors

The final step on the power electronics hierarchy of Figure 2.1, the materials are the focus

of the majority of this thesis. Referring back to the list of requirements for a power device

in Section 2.4, every requirement in this list will be affected by the material choice. The

traditional semiconductor material silicon is the staple material for SBDs, PiN diodes and

MOSFETs; however, the emergence of wide bandgap semiconductors such as 4H-SiC is

beginning to dent Si’s dominance. Already, Cree [12] offer SiC SBDs with 1200 V blocking

capability, while Si languishes down at 200 V. Semisouth [37] also offer 1200 V JFETs

designed to replace Si MOSFETs and IGBTs of the same rating due to the low Ron,sp,

fast switching speeds and high temperature performance of SiC.

Table 2.1: The material properties of Si, Ge, 4H-SiC, 3C-SiC and GaN at 300 K.

Property Units Ge Si 3C-SiC GaN 4H-SiC

Physical Properties
Crystal Structure Diam. Diam. Z-B Wurt. Wurt.
Lattice Constant, a Å 5.658 5.431 4.360 3.189 3.073
Lattice Constant, c Å 5.186 10.053
Density gcm−3 5.323 2.329 3.166 6.150 3.211
Thermal Conductivity Wcm−1K−1 0.58 1.3 3.6 1.3 3.7
Thermal Expansion 10−6K−1 5.9 2.6 3.8 3.17 4.3
Melting Point ◦C 937 1412 3103 2500 3103
Electron Eff. Mass, m∗

n g 0.22m0 0.36m0 0.35m0 0.20m0 0.37m0

Hole Eff. Mass, m∗
p g 0.34m0 0.81m0 0.60m0 1.5m0 1.0m0

Electrical Properties
Bandgap Energy, EG eV 0.66 1.12 2.36 3.20 3.23
Dielectric constant, Ks 16.2 11.7 9.72 8.9 9.66
Electron Affinity, χ eV 4.0 4.05 4.0 4.1 4.05
Electron Mobility, µn cm2V−1s−1 3900 1400 800 1000 900
Hole Mobility, µp cm2V−1s−1 1900 450 320 350 120
Critical Field, ECF 106Vcm−1 0.1 0.3 2-3 5 3-4
Elec. Sat. Velocity vsat 107cm s−1 0.65 1.0 2 1.5 2
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Table 2.1 contains a list of semiconductor properties, both physical and electrical, for

the narrow-band semiconductors, Si and Ge, and the wide-bandgap semiconductors 4H-

SiC, 3C-SiC and GaN. Each material has an individual set of parameters, a band gap,

mobility, critical field and thermal conductivity, that all combine to position it within the

semiconductor industry.

Germanium (Ge) is a semiconductor with a very narrow band gap at only 0.66 eV.

As a result, it has a very high concentration of electrons in the conduction band at room

temperature making it an excellent conductor at low temperatures. Furthermore, its

mobility values are very high as a result of the low carrier masses. The downside is that

at raised temperatures, there are too many electrons in the conduction band and the

material acts like a metal. Also, the maximum electric field that a semiconductor can

withstand before breaking down is connected to the energy gap, and hence Ge, with the

lowest bandgap and critical field, can only be considered a low-power material.

Silicon (Si), is probably the best balanced semiconductor for room temperature op-

eration. With a band gap of 1.12 eV, it has reasonably low losses and sufficiently high

breakdown properties. Also, its reasonable mobility and its natural oxide in silicon diox-

ide have resulted in its dominant position in the semiconductor market. However, it does

not support the same high temperature, high power operation that SiC does due to its

comparatively low critical field, hence explaining the difference in breakdown voltages

achievable between Si and SiC SBDs - 200 V and 1.2 kV.

2.5.1 Silicon Carbide

SiC is hailed as the semiconductor most likely to replace Si in “high temperature, high

frequency and high power applications” [38]. This statement appears at the start of the
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majority of papers concerning SiC as a semiconductor. The properties that prompt this

commonly used statement are listed within Table 2.1. First and foremost is its wide

bandgap, which at 3.26 eV is nearly three times that of Si. This means that at any given

temperature far fewer electrons can cross from the valence band to the conduction band,

resulting in a low intrinsic carrier concentration (ni) within SiC at room temperature. Si

and Ge’s high ni prevents them operating at high temperature as the flood of carriers

in the semiconductors promote behaviour resembling that of a metal. The onset of this

problem in SiC happens at hundreds of degrees higher than that of Si - in fact, given

Equation A.4 in the Appendix, the ni experienced by Si at room temperature will not

be reached until around 700oC. Taking into account the material’s thermal conductivity,

which is nearly three times Si’s, SiC is clearly a material for high temperature operation.

The high power and high frequency statements, both stem from SiC’s ability to support

a large electric field, as given by the material’s critical electric field (ECF ) of 3 MV/cm,

twelve times that of Si. A semiconductor will breakdown at a voltage proportional to the

square of ECF , hence it is has a huge capacity to support a voltage, hence its high power

credibility. A weakness of SiC is its low carrier mobility which is particularly poor as a

p-type material, which leads to a high resistance for a given thickness of SiC. However,

the majority of a device’s resistance will be dropped over its low doped epitaxial layer

its drift region. As SiC can support a greater electric field per µm of epi-layer, the layer

can be made much thinner for a given blocking voltage, leading to a low on-resistance.

This, combined with the material’s superior electron saturation velocity, results in low

switching losses.

The potential of the material is clear, yet the truth remains that at the time of writing,

20 years after the first commercial 6H-SiC wafer was produced [1], only SiC SBDs are

established within the power market [12], though a range of FETs are new to the market
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[37]. Furthermore, in 2008 power electronics accounted for only a small portion of the SiC

market lagging way behind the LED market that dominates more than 80% of the market.

The slow adoption of SiC is a reflection on the challenges that SiC has had to overcome,

and those it still faces. The multifarious reasons for this include substrate quality and

cost, technological issues including most specifically a low carrier mobility made worse

by the oxide quality and the slow adoption by companies that require extensive process

qualification.

Crystal quality was the first challenge, particularly micropipe defects, which were to be

found at a density of 1000 cm−2 in the first wafers. Formed via the convergence of several

smaller screw dislocations or by contamination during the crystal growth, micropipes

form as a hollow core penetrating the entire wafer along the c-axis [38]. Just one of these

micropipes located within the active area of a device will ruin its operation, hence SiC

device yield is reliant on the micropipe density being close to zero. It is only since 2007

that, thanks to the advance in materials processing techniques [39], Cree have been able

to sell a premium range of 100 mm wafers that are guaranteed to be micropipe free [40].

Their standard SiC wafers still only guarantee a micropipe density of 15 cm−2, which is

still too high to produce a good yield of many of the large area, high current devices. As

an example, to achieve an 80% yield of 50 A Schottky diodes, one would require a micro

pipe density better than 2 cm−2 [38].

Compounding the raw materials issue is the SiC wafer cost. Given a like for like low

current (<10 A) device, SiC is some 10-15 times more expensive than Si, a situation which

can only improve with greater competition, demand and substrate size. Competition

is increasing, with II-IV, Tanke Blue, Rohm and Norstel now all producing viable SiC

substrates. Demand is rising, thanks largely to the success of the SiC SBD. However,

demand is unlikely ever to reach Si levels, so some cost differential is always likely to be
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maintained. In this sense it will be important for SiC to justify the cost difference, proving

the savings that can be made in terms of energy saving in the end product, an inverter

for example. Addressing the substrate size, Cree are expected to release a 150 mm wafer

in the not too distant future [41], though for comparison, the Si industry are at a similar

stage of development for a 450 mm technology, with 300 mm the current standard.

The technological issues are perhaps the biggest barrier that remain, as a proven

SiC MOSFET would likely trigger a rise in demand and quality, and a drop in costs.

However, significant hurdles remain, and the most significant of these is finding a quality

oxide solution on SiC. Problems with reliability, threshold voltage drift and failures at

high temperature are all significant. Furthermore, the large density of interface traps

(Dit) at the metal-oxide interface cause a large reduction of SiC’s already low channel

mobility.

This flawed oxide was originally considered one of the key benefits of SiC, the materials

high Si content meaning that when the surface was oxidised, SiO2 could form. However,

the presence of the carbon has become a real hinderance as it is not simply being removed

via the oxidation process in the form of CO or CO2, as one might expect [42]. Instead, it is

building up at the SiO2/SiC transition region, perhaps as immobile carbon di-interstitial

clusters [43]. The C:Si ratio has been shown [44] to reach 1.2 in the SiO2/SiC transition

region, which is some 6-25 nm wide depending on the processing technique. Interestingly,

the same work shows that channel mobility is inversely related to the width of this interface

region, with the nitric oxide (NO) treated interface that produced an interface region of

only 6 nm having a highest mobility at 29 cm2/Vs. Over the last 15 years, various methods

have been used to try and suppress the Dit values and raise mobility, including the post

oxidation anneals in NO [44–47] and N2O [45,48]. The greatest success purely in terms of

mobility [48], saw the gate oxide grown in sintered alumina [49], producing a mobility of
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150 cm2/Vs; however this is still only 15% of the bulk value. Furthermore, the presence

of sodium within the oxide caused severe device instabilities during negative gate bias

stressing [49].

Further problems arise from the low dielectric constant of SiO2, at εSiO2 = 3.9. Gauss’

law (∇ · εε0
−→
E ) means that the product εSiO2ECF,SiO2 should exceed εSiCECF,SiC if SiC is

to reach its full critical electric field. With SiC having a dielectric constant of 10, SiO2

must be capable of withstanding 7 MV/cm to match the potential of SiC. In theory, SiO2

has a breakdown electric field of only 0.8 MV/cm [38] and hence investigations with other

oxides with large dielectric constants (High-K) have been investigated as an alternative

to SiO2. A trade-off exists however, and Figure 2.4 shows how an increase in dielectric

constant results in a sacrifice of bandgap width. Popular studies have included Al2O3

and HfO2 deposited onto SiC [50, 51]. Results have shown a reduction in interface trap

density compared to SiO2/SiC interfaces [51]; however large leakage currents occurred due

to the the reduction in bandgap [52]. The use of a thin SiO2 interlayer [53, 54] reduced

this leakage and achieved a reported [54] channel mobility of 300 cm2/(V s). However,

the reintroduction of SiO2 lowers the total dielectric constant value and reintroduces the

SiO2/SiC transition layer.

2.5.2 Silicon Carbide Heterojunctions

Despite its increasing popularity as a power material, the biggest share of the SiC market,

accounting for some 80% is its use in a heterojunction technology, as GaN is grown on

SiC substrates to produce the blue LED’s with which SiC has become synonymous. A

heterojunction is the unison of any two dissimilar semiconductors and other examples

include, most notably, the laser which is commonly an amalgamation of AlAs and GaAs,
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Figure 2.4: A plot of dielectric constant versus bandgap showing the trade off that exists
in the choice of an oxide. Data taken from [55].

semiconductors with very similar lattice parameters allowing their unison.

Considering the list of problems that plague SiC MOS transistor technologies, another

materials’ solution was sought [14, 15, 19, 20, 56] that might offer some relief to the oxide

and mobility problems. That solution was to try and reintegrate silicon into the channel

region, it being a material that has none of the described problems. This would provide

many experimental options. The entire Si layer could be oxidised returning the layers to

a SiO2/SiC MOS structure. The idea behind this is to control the oxidation time such

that the Si gets complete the oxidised, but the SiC does not, though this is a processing

challenge.

Alternatively one could partially oxidise the Si surface, or indeed deposit an oxide
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directly onto the Si surface, either method providing a Si channel between the oxide and

the SiC. This channel, if single crystal would have a high mobility and would bond well

with a SiO2 layer free of interface traps. The SiC would remain to provide a low doped

drift, or blocking, region though one might expect a reduction in the breakdown voltage

due to the reintegration of Si with its lower critical field.

Such a device was built by Hoshi et al [19], at the Nissan research Centre, form-

ing a Si/4H-SiC heterojunction tunneling transistor (HETT). This device was capable

of handling current densities greater than 1700 A/cm2 with a specific on-resistance of

2.9 mΩcm2.

Another use for the structures was presented [19,20] as the layers were used to produce

Schottky-barrier-like diodes using a degenerate Si layer (NASi
= 1× 1020cm−3) that acted

as a metal due to its large number of carriers. A small barrier to electrons compared to that

for holes ensured the heterojunction diodes were unipolar, with turn-on characteristics

exactly like SBDs. The Si/SiC diodes were shown to have a low forward voltage drop

and a large blocking voltage compared to SiC SBDs, being able to block 1600 V, with

an on-resistance of 1.4 mΩcm2. The work of [14, 15, 56] produced similar p-N and n-N

4H-SiC/Si heterojunction diodes, though the electrical results were not as encouraging,

most likely due to the fabrication techniques that were far simpler than the Japanese

devices. However, as we will see in Chapter 5, this work represented the first attempt to

form heterojunction layers on SiC via MBE techniques, which was an essential foundation

upon which the work in this thesis was laid.

With quite an extensive body of research existing on Si heterojunction layers on a SiC

substrate, the aim of this work is to see if Ge can emulate or even better this.
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2.6 Summary

The aim of this Chapter was to show that the material and device challenges facing SiC,

impact on the low-carbon, energy efficient projects that are so relevant in today’s society.

Wind turbine, smart grid and electric car technologies were directly linked to the efficient

transformation of power from one form into another, thus placing strict energy efficiency

requirements on the devices at circuitry level. SiC was introduced, showing the progress

and problems of the material as it tries to leverage a stake in the silicon dominated power

semiconductor market. Finally, the niche SiC heterojunction technology was introduced,

presenting the ideas that might help to alleviate some of the problems that face SiC in

its battle with channel mobility and interface states.
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Chapter

3 Theoretical Discussion

3.1 Introduction

This Chapter serves as an introduction to concepts that will be used throughout the

results Chapters. We are particularly concerned in Chapter 5 with the ways in which

the atoms of one semiconductor will arrange themselves when deposited onto another

semiconductor. Therefore, time is necessarily spent introducing the crystalline properties

of different semiconductors in Section 3.2 and heteroepitaxial growth in Section 3.3. Once

these layers have been formed, it is quite essential for the electrical characterisation of

Chapters 6 and 7 that the energetic interaction of these two layers is understood and

current flow. Hence, Section 3.4 describes the band alignment and barrier formation of two

semiconductors. Once formed, the highly doped Ge thin film causes the heterojunction

diodes to act like Schottky barriers, so Section 3.5 introduces the theory of Schottky

contacts and the flow of current over them.
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This Chapter, and indeed the proceeding Chapters presumes a level of understand-

ing about basic semiconductor physics. However, included in Appendix A are some of

the more basic theories of the subject. These include fundamental band structure, the

alignment of like semiconductors, metal-semiconductor theory and breakdown voltage

considerations.

The theory behind metal-insulator-semiconductor is left until the self contained Chap-

ter 8.

3.2 Semiconductor Crystal Structure

Throughout this thesis, the structure of a semiconductor will be frequently referred to. It

is therefore important to introduce the crystalline nature of the different semiconductors

used in this work and the differences that make the Si/SiC and Ge/SiC heteroepitaxy

difficult.

Solid elements and compounds form into regular crystal patterns that can be cate-

gorised by the shapes they make when split into unit cells. Si, Ge, and diamond form

into a diamond pattern, whilst 3C-SiC also forms the same pattern but being made up of

multiple elements, it is referred to as a zinc-blende pattern. 4H-SiC and 6H-SiC form into

hexagonal structures, though the fact that these structures also contain multiple elements,

this is referred to as a Wurzite structure. These can be seen in Figure 3.1, where a and c

represent the lattice constants of the cells. A tetrahedral arrangement is evident in both

structures, with each atom having four nearest neighbours. The bond formed between

each pair of atoms comes from the attraction of electrons with opposing spin.
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3.2 Semiconductor Crystal Structure

Figure 3.1: Two common crystal pattern structures in their unit cells. The Wurzite
structure contains labels pertaining to a SiC structure. (From Ref [36].)

3.2.1 SiC Polytypes

The hexagonal structure of Figure 3.1 may be seen as layers of silicon and carbon and is

the basis of the SiC molecule. To determine the relevant polytype of SiC, every carbon

layer should be discounted and the position of the Si layers assessed. Given that any

two bonds from one atom in a tetrahedral system are separated by 120 degrees, there

exists three lattice positions at which a Si atom may end up. These are represented by

layers A, B, and C in Figure 3.2a. The order with which these layers repeat determines

the SiC polytype. Figure 3.2b shows how these layers repeat for the three most common

SiC polytypes. 4H-SiC is represented by the repeating pattern ABCB, whilst 6H-SiC is

represented by ABCACB. These polytypes form only in the hexagonal cell structure.

3C-SiC is the simplest of the three being a repeating ABC pattern. By tilting these

hexagonal-style layers of 3C-SiC by 54.7 degrees down any of the hexagonal a-planes, the

resulting atomic pattern revealed is that of the zinc-blende cell structure.
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3.2 Semiconductor Crystal Structure

Figure 3.2: a) The location of the 3 Si atoms within a SiC stacking sequence and b) the
three different stacking sequences.

3.2.2 Miller Indices

To identify the correct orientation of a crystal, the cell structures are referred to in terms

of planes that dissect the axes of symmetry within each of the structures. This is known

as the Miller indices and for cubic cells this is a represented by a three term vector, (hkl).

h, k, and l are determined by finding respectively the intercepts of the plane in the x-

y- and z-axes and taking their reciprocal values. Hence, a 1 represents the cell’s lattice

parameter, whereas a 0 means that the plane will be parallel to the axis, the plane never

meeting the axis. A -1 or a 1̂ represents the plane crossing the negative axis, the full

lattice parameter distance from the origin. Three of the most common planes are shown

in Figure 3.3.

Similarly, for the hexagonal structures, the Miller indices uses the three axes of sym-

metry of the hexagon (a1, a2 and a3) and the z-direction to form a four term vector
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3.2 Semiconductor Crystal Structure

Figure 3.3: Three common crystal planes in cubic structures.

(hklm). Once again, the numbers within the vector are the reciprocal of where the plane

cuts the axis. Three common planes are shown in Figure 3.4.

Figure 3.4: Three common crystal planes in hexagonal structures.

Returning to the example of 3C-SiC; this material is a cubic structure as pictured in

Figure 3.1. However, taking a cut through the (111) plane will leave you with the (0001)

plane of the hexagonal structure, where the individual layers of Si and C repeat in the

ABC pattern.
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3.3 Thin Film Science

In this section the theory of heteroepitaxial growth will be investigated, building up from

the basics of surface science. Firstly a brief introduction will be given to surface tension

and surface energy, underlining why certain materials wet a surface when others ball up,

both of which we will see in the results sections. The epitaxial growth of new layers will

be investigated, showing that atoms with sufficient energy can find a bonding site that

minimises the dangling bonds of that atom and those around it. The idea of strained

and mismatched layers will be discussed, before an idealistic Ge on SiC growth regime is

presented.

3.3.1 Surface Tension and Wetting

To determine how materials interact in deposition, we must first understand how differing

surface tensions between the substrate and the deposited material can affect growth. The

term surface tension makes one think of liquids, waterboatmen sitting on a lake, or the

balling up of water on a Teflon pan. Indeed the theory behind surface tension is most

easily imagined given the analogy of a liquid upon another surface. The liquid will always

tend to the most energetically favourable situation, be it to ball up like the water in

the pan, or to spread out creating a very thin uniform layer, such as a teaspoon of oil

spreading thinly across a lake. The difference between these two examples is the relative

amounts of surface tension the two liquids have compared to the surfaces they sit upon.

In the balling up example the surface tension of the liquid is very high and the minimal

energy state of the liquid is when it is attached to itself rather than the surface. Of course,

the opposite state sees a liquid with low surface tension spreading itself thinly due to the

minimal energy state being to combine with the surface.
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3.3 Thin Film Science

Quantifying these two extremes, Figure 3.5 displays an example of a liquid that has

been deposited on to a solid surface, with a contact angle Ψ. The three components, the

gas, liquid and solid, come together at a single point known as the triple interface. Here,

the surface tensions associated with each interface must balance according to Young’s

equation,

γsl + γlg cos Ψ = γsg. (3.1)

where γ is the surface tension between the liquid (l) gas (g) or solid (s). At equilibrium,

the magnitude of Ψ determines how the materials are interacting. If Ψ > 0◦ then the

forces promoting the liquid to stay balled up outweigh those promoting spreading, hence,

γsl + γlg > γsg. (3.2)

If Ψ > 90◦ then the liquid has not wet the surface at all. This situation can be viewed as

it being energetically favourable for the liquid atoms to bond with themselves or the gas

rather than the solid. If 0◦ < Ψ < 90◦, then the liquid partially wets the surface, as in

Figure 3.5. If Ψ = 0◦ then the forces promoting spreading outweigh those promoting the

liquid to stay balled up, hence,

γsl + γlg ≤ γsg. (3.3)

The two extremes of wetting and balling up described here is important when it

comes to depositing solid materials heteroepitaxially. Given limitless energy, the atoms

of a deposited material would ball up in exactly the same way, if the surface tension of

the epitaxial material was great enough. However, in solid-solid deposition carried out

at moderate temperatures, the atoms lose the energy required to break the interatomic

bonds formed at bonding sites and thus there is not the fluid motion of a liquid. What
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3.3 Thin Film Science

Figure 3.5: A liquid on the surface of a solid. The contact angle of the liquid gas
interface, Ψ, is determined by the relative surface tension value γ at the interfaces of

each material. The contact angle dictates whether the liquid wets the surface (Ψ < 90◦)
or whether the surface tension of the solid, γsg, is too large (Ψ > 90◦) leading to the

liquid ‘balling up’. [57, 58]

will occur instead will be the formation of 3-dimensional islands during growth, the atoms

preferentially bonding to other like atoms rather than the surface. However, at the oppo-

site extreme, with a large substrate surface tension, the preferential bonding sites will be

on the surface rather than the other like atoms, leading to layer by layer growth. These

concepts will be revisited in Section 3.3.4.

3.3.2 Nucleation

The formation of an epitaxial layer begins with a cloud of the atoms above the substrate.

Provided the deposition is occurring at a raised temperature, the adatoms will arrive on

the surface with energy sufficient enough to move about the surface or find a nucleation

site as outlined in Figure 3.6a. Whilst the atoms arrive at the surface at a given rate, there

is also a lesser rate at which the atoms simply re-evaporate from the surface, rejoining

the atomic gas above the substrate. Those that do not re-evaporate have the energy to

move around the surface seeking a preferential bonding site, be it at a step edge, into a
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cluster or binding with another adatom to provide the beginnings of another cluster.

Figure 3.6: a) The behaviour of energetic adatoms on a substrate during deposition. b)
The cycle of nucleation that sees the deposited adatoms form eventually into stable

clusters. Both processes reproduced from [59] with permission from Elsevier.

Figure 3.6b shows the process that leads to the original adatoms forming the clusters,

that in turn merge to form an epitaxial layer. Individual adatoms will seek a position on

the surface that will minimise its dangling bonds and the simplest way that this happens

is by joining an existing cluster. It is energetically favourable for an atom to join a large

cluster, as it is reducing the total number of dangling bonds and decreasing the overall

surface area within the system. Such large clusters are deemed stable, and will only grow

in size, two- or three-dimensionally depending on the growth mode. However, up until
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a critical size, the bonds keeping the adatoms together are weak and the combining of

adatoms into the cluster is reversible. Hence, Figure 3.6b shows that the path from an

individual adatom to a subcritical cluster and a critical cluster is bidirectional. [59]

3.3.3 Lattice Mismatch Induced Strain

Strain within an epitaxial layer prevents uniform, layer-by-layer growth and is brought

about largely due the differing lattice properties of the materials in question. Take first

the example of homoepitaxial growth, whereby Si is grown upon a Si substrate. Energetic

Si adatoms deposited onto the surface of a clean, flawless Si(111) surface will have few

problems forming a single crystal layer on the substrate. This is because the layer being

formed and the substrate are exactly lattice-matched; the atoms forming on the surface

require the same spacing as those acting as a seed layer on the substrate beneath, and

hence the layer is free of stress. There are a few examples where different materials have

the same lattice parameters, and hence stress-free heteroepitaxial growth is possible. The

mismatch (f) between the two materials is given by [57,60],

f =
aA − aB

aB

, (3.4)

where aA and aB are the lattice constants of the two materials. The chief example

of lattice-matched layers is used in III-V laser technology, where AlAs and GaAs are

mismatched by only 0.12%, which can further be reduced by employing an AlxGa1−xAs

alloy. Similar is true of HgTe and CdTe mismatched by 0.3%, where HgxCd1−xTe/CdTe

is an important heterostructure used in infrared detectors and imaging arrays [61].

If the layers are mismatched by as much as 0.5% then the strain in the layer can

become unmanageably large. Using an example of Si deposited on a Ge substrate, the
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lattice mismatch is approximately 4.2%, with the Ge atoms having the larger separation

distance. When the Si adatoms arrive on the surface they will attempt to form its usual

crystal pattern whilst bonding to the substrate beneath, so minimising the number of

dangling bonds. However, the Ge atoms are too far apart to allow the Si to relax into its

normal lattice parameters. To minimise the dangling bonds, the Si atoms must spread

beyond their usual spacing, thus inducing strain into the system. This is only possible for

small mismatches and for thin epitaxial layers, as the strain in the layer quickly becomes

too large. When the strain reaches a threshold, something has to give, and dislocation

misfits will occur to relieve the strain at the expense of filling all the dangling bonds.

Figure 3.7 shows these situations where Si is deposited onto Ge, a large mismatch, and

where it is deposited onto a SixGe1−x compound, where the Si content is high enough

(x > 0.9) to strain the Si, without relief. As a strained layer gets thicker, the need to

relieve the strain increases until a critical thickness is reached, beyond which the uniform

crystalline growth no longer continues. This is the basis of Stranski-Krastanov growth

and will be touched upon later. The critical thickness of Si grown directly on Ge is 1 nm,

not large enough to practically use. In a SixGe1−x compound where x = 0.9, the lattice

mismatch is approximately 0.4%, and the critical thickness rises to approximately 20 nm.

With the Si lattice stretched beyond its usual lattice parameters, mobility in the strained

layer is increased due to the reduction of scattering events. This is known as strained

Si and the concept is exploited in the CMOS industry to provide low resistance channel

regions [62].
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Figure 3.7: A graphical representation of Si grown on Ge and on SixGe1−x [60].

3.3.4 Thin Film Growth Modes

In the previous sections we have seen that there is a lot to get right in order to grow perfect

layers. The wrong balance of surface tensions or the mismatch of lattice parameters by

the smallest of margins will affect the quality of the layers deposited. Here we describe

the very precise requirements of layer-by-layer growth, and explain the alternative growth

modes that occur in order to relieve strain or minimise surface energies.

Firstly, layer-by-layer deposition, otherwise known as Frank-van der Merwe (FM)

growth, can be seen in Figure 3.8a and is desirable for growing single crystal layers.

As mentioned in Section 3.3.3, FM growth happens most frequently in homo-epitaxial

growth whereby the material being grown has a lattice structure entirely matched to the

substrate beneath. The precise conditions for FM growth are as follows: Referring to

Figure 3.5 and Equation 3.3,

Ψ = 0 ⇒ γsg ≥ γsl + γlg. (3.5)

Furthermore, the layers should be precisely lattice matched to minimise strain, or, for
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layers that are slightly mismatched, the layer must not exceed the critical thickness for

that mismatch.

Figure 3.8: The three major growth modes of thin films; a) Frank-van der Merwe, b)
Volmer-Weber and c) Stranski-Krastanov

Any lattice mismatch between the substrate and the film will prevent the preferred

FM growth mode. In terms of the lattice mismatched adatoms on a surface, the adatom

can either bond with the substrate forming the strained layer, or bond preferentially with

other adatoms. The result of the latter is that the layers form in clumps on the surface,

or islands. This is known as Volmer-Weber (VW) growth and is displayed in Figure 3.8c.

Once the islands are large enough, they will begin to overlap and a solid layer will be

formed, albeit with a rough surface. The overall layer will tend to be polycrystalline with

many different crystal orientations. This growth mode can also occur in lattice matched

systems if the balance of surface tensions are not correct. If the minimal energy state is

for the deposited material to bond with itself, i.e. if,

Ψ > 0 ⇒ γsg < γsl + γlg, (3.6)

then wetting will not occur and the material will ball up.
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This third mode is known as Stranski-Krastanov (SK) growth and it occurs when the

depositing layer wets the surface as in Equation 3.3. In contrast to FM growth however,

the presence of strain from a small lattice mismatch allows the film to grow layer by layer

only up to a critical thickness, at which point islanding begins, as shown in Figure 3.8b.

Within an epitaxial layer that is thinner than the critical thickness, the atoms will be

strained, to comply with the lattice parameters of the substrate beneath. The example

of strained silicon given in Section 3.3.3 is a good example of the SK growth mode, where

the amount of Ge present in the SiGe layer will dictate the thickness at which the layer

by layer growth gives way to defects and islanding.

Predicting how one material will grow on another is a very difficult thing to do. Most

research into epitaxial growth is done practically, analysing the results of laying one

material on another given certain conditions. Of course we can attempt to pick materials

that are in theory lattice matched in some orientation using, for instance, the chart in

Figure 3.9 however, the proof lies in the experimental analysis. The case of Si or Ge

growing on SiC is presented herein, and the growth modes can be assessed in each case.

Both narrow band semiconductors can be seen in Figure 3.9 at around 5.5 Å, SiC down

at 3.2 Å. Taking into account the difference in crystal structure as well, the prospect of

anything but VW growth appears thin. Indeed, we will witness Si MBE depositions balling

up, forming distinct islands in a manner that suggests that VW growth is dominant. Ge

growth is not so clear cut however, with the islands that form being much more expansive,

covering a much larger surface area, overlapping at a much reduced thickness compared

to Si. This suggests that the surface is being wet much better in the case of Ge, and

hence the SK mode is more likely.
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Figure 3.9: A plot of bandgap against lattice parameter for the major
semiconductors [63].

3.4 Heterojunction Theory

A heterojunction is the union of dissimilar semiconductors, and heterojunctions of silicon

or germanium on SiC form the backbone of the proceeding Chapters. The theory behind

how these different semiconductors may coexist energetically is introduced here. However,

this basic theory is grounded in how a p-n junction forms when two like semiconductors

interact. Hence, in Appendix A.3.1, an introduction to homojunction theory may be

found. In heterojunctions as in homojunctions, Fermi levels must align in adjacent semi-

conductors, however with different bandgap widths, the conduction and valence bands

will not fully align.

Unlike in a p-n junction. the built in potential ψbi is not the only barrier that the

electrons have to overcome as the conduction and valence bands of the different semicon-

ductors are apart from each other. Considering the example of the p-N heterojunction of
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Figure 3.10: Band diagrams of a p-N and n-N heterojunction interface a) prior to
settling to the steady state and b) in the steady-state.

Figure 3.10, there is a barrier to electrons to be overcome in both directions. A majority

carrier electron, travelling conventionally from right to left must overcome potentials ψb,1

and ψb,2, which combine to a total of ψbi. A minority carrier electron travelling in the

reverse direction, will have to overcome the abrupt barrier of ∆EC , thus limiting electron

leakage. To holes the scenario is different, the majority carriers must overcome the full ψbi

in addition to ∆EV , whereas minority carriers will have a path clear of potential barriers.

This makes this example unipolar depending on the direction of the bias.

Considering the electrostatic analysis, which is shown in full in Appendix A.4.3, the

depletion width edges x1 and x2 are found to be,

x1 =

√
2Ks,1Ks,2

q

ND,2

NA,1(NA,1Ks,1 + ND,2Ks,2)
ψbi (3.7a)

x2 =

√
2Ks,1Ks,2

q

NA,1

ND,2(NA,1Ks,1 + ND,2Ks,2)
ψbi (3.7b)
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3.4.1 Degenerate Semiconductors

Another important concept is that of the degenerate semiconductor, where a semiconduc-

tor is so highly doped that the large amount of carriers causes it ro behave like a metal.

The use of a degenerately doped Ge layer, allows the formation of ohmic contacts to the

heterojunction devices seen later.

In a non-degenerate semiconductor, the position of the Fermi level within the a semi-

conductor is dictated by the occupancy of states within the conduction band. At low dop-

ing, the quantum mechanical Fermi-Dirac statistics [36] which describes this occupancy

can be approximated using classical physics. Specifically, Boltzmann Statistics reduces the

Fermi-Dirac integral to an exponential equation resulting in the simple formulas of Equa-

tions A.2 and A.5 that can be seen in Appendix A.2.2.2. However, as the doping increases

above approximately 5×1018 cm−3, the Boltzmann approximation breaks down, due to the

interparticle distance reducing to a value below the thermal de Broglie wavelength, and

causing quantum interaction between the particles. On the energy scale, the Boltzmann

approximation is considered accurate until the Fermi level comes to within the thermal

voltage of the conduction or valence bands, such that EV + kT/q < EF < EC − kT/q.

Outside these bounds, one approximation to the Fermi-Dirac function was published by

Joyce and Dixon [64], such that Equations A.5 are replaced with,

φn =
EC − EF

q
≈ kT

q

[
ln

(
ND

NC

)
+

1√
8

ND

NC

−
(

3

16
−
√

3

9

)(
ND

NC

)2

+ ...

]
for n-type

(3.8a)

φp =
EV − EF

q
≈ kT

q

[
ln

(
NA

NV

)
+

1√
8

NA

NV

−
(

3

16
−
√

3

9

)(
NA

NV

)2

+ ...

]
for p-type

(3.8b)
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Semiconductors outside of the bounds of the Boltzmann statistics are known as degen-

erate, and the onset of degeneracy occurs as the doping increases towards the effective

density of states (NC or NV ). The behaviour of a degenerate semiconductor is rather like

that of a metal, and this is reflected in the make up of the band diagram when a mod-

erately doped semiconductor meets a degenerate semiconductor. Relevant to this thesis,

Figure 3.11 shows a lightly doped wide-bandgap semiconductor and a degenerate narrow

bandgap semiconductor and this n-N heterojunction is presumed to have a one sided

depletion region. The conduction band offset (using n-type SiC) allows us to treat the

heterojunction structure as if it were a metal-semiconductor Schottky diode, the theory

of which will be tackled in Section 3.5.

Figure 3.11: Band diagram of a n-N heterojunction, with degenerate doping of the
narrow-bandgap semiconductor.
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3.5 Schottky Contacts

The use of degenerate Ge or Si as a heterojunction sandwich layer between a SiC substrate

and a metal contact has two distinct effects which permits their treatment as Schottky

barrier diodes. First of all, the Ge or Si’s degeneracy makes the heterojunction interface

one sided, with the depletion region formed on the SiC side of the interface. Secondly,

the degenerate layer means that the potential barrier to the metal contact is so thin that

carriers tunnel through it, creating an ohmic contact. The net result is a single potential

barrier at the Ge/SiC interface and the flow of carriers over this may be controlled by the

voltage across it. For this reason it is synonymous with a Schottky diode structure.

The theory behind the formation of a Schottky barrier and the flow of electrons over it,

or thorough it, may be found in Appendix A.5. The Schottky contacts presented in this

thesis may be presumed to be dominated by the thermionic emission current transport

technique alone due to the very low doped SiC. As such, the most important consideration

of the theory is that the flow of current over the barrier is given by,

Js→m = A∗∗T 2e−βΦ0
B,n

(
eβV

)
(3.9)

where A∗∗ is the Richardson’s Constant and β is the inverse thermal energy (β = q/kT ).

J is the current density expressed as J = I/A, where A is the contact area. This can be

shortened to,

Js→m = JSeβV (3.10)

where JS is the saturation current shown to be

JS = A∗∗T 2e−βΦ0
B,n . (3.11)
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Equation 3.9 is an ideal scenario that does not consider any of the practical implications

of a real Schottky contact. Here, three factors will be described that can modify this

equation, specifically, other current transport mechanisms, series resistance and leakage

current.

3.5.1 The Ideality Factor

Equation 3.9 represents the current flow over the Schottky barrier when thermionic emis-

sion is the only current mechanism at work. If other mechanisms are involved or if

imperfections are present at the contact, then the current-voltage response can shift from

this model, with the logarithmic slope of the on characteristics becoming less steep. This

may be characterised by adding an ideality factor, η, into Equation 3.9, such that,

J = A∗∗T 2e−βΦ0
B,n

(
eβV/η − 1

)
. (3.12)

Thus as η tends to 1, so the diode is increasingly ideal as thermionic emission facilitates

the fastest device turn-on. As η increases towards 2, this suggests that some other current

mechanism is beginning to dominate, often recombination within the depletion region.

3.5.2 Series Resistance

Equation 3.9 and in turn Equation 3.12 consider that the only barrier to electron flow is

the Schottky barrier itself. Of course, any real device will have an associated resistance,

most often proportional to the thickness of the drift region used to suppress reverse

electric field. Therefore, if one is interested in modelling the turn on characteristics once

series resistance kicks in, then one must include a resistance value. In the most basic of

approximations [65], the applied voltage, V , in Equation 3.12, is simply replaced with
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(V − IRS), thus limiting the applied voltage as the current grows. Hence Equation 3.12,

would become,

J = A∗∗T 2e−βΦ0
B,n

(
eβ(V−IRS)/η − 1

)
. (3.13)

This is a very basic approximation however, and this model is clearly flawed as (V − IRS) →
0, however it is a very useful first approximation, used successfully in Section 6.3.4.1.

Other models exist to extract the series resistance, and these are especially useful when

the resistance is particularly large, preventing normal parameter extraction. The most

used of these is known as a Norde plot defined in [66].

Most often, the series resistance is not considered and modelling such as that in Section

7.2.3 ignores the series resistance, fitting only to the linear part of the plot.

3.5.3 Leakage Current

In the reverse direction, there are also practical limitations that prevent the perfect sce-

nario. A large barrier is presented to electrons passing from a metal into the semicon-

ductor. This appears independent of bias, and hence the current that crosses it may be

obtained from Equation 3.9, setting V = 0,

Jm→s = −A∗∗T 2e−βΦ0
B,n (3.14)

Hence combining Equations 3.9 and 3.14, we may obtain an overall equation for the

passage of thermionic emission in either direction over the Schottky Barrier,

J = Jm→s + Js→m = A∗∗T 2e−βΦ0
B,n

(
eβV − 1

)
. (3.15)
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From this, we can conclude, that in the reverse direction, due to thermionic emission,

the current will saturate at a leakage current of Ileak = −AA∗∗T 2e−βΦ0
B,n . However, with

increased voltage, the reverse leakage current increases beyond this threshold. This is due

to ΦB having, in practice, a small bias dependency, such that,

ΦB,n = Φ0
B,n −∆Φ. (3.16)

∆Φ arises due to an effect known as image-force lowering [36]. As an electron approaches

the metal at a distance x from the interface, a hole is induced within the metal at a

distance −x. The attraction that occurs between the two particles is known as the image-

force, and this had the ability to lower the potential barrier under a high electric field.

The image force lowering is defined as,

∆Φ =

√
qEmax

4πKs

, (3.17)

where Emax is the maximum electric field. This image-force lowering may be small com-

pared to Φ0
B,n, but the lowering can be enough to significantly enhance the leakage current.
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Chapter

4
Heterojunction Characterisation

Techniques

4.1 Introduction

The forthcoming results Chapters rely heavily on analytical techniques that are used to

extract information from the Ge/SiC or Si/SiC heterojunction layers. The first half of this

Chapter introduces a range of analytical techniques that assess the physical properties of a

layer. Measurable properties include surface roughness, layer crystallinity and stress, and

the existence of any unwanted contaminants or oxides. The second half of this Chapter is

dedicated to the electrical analysis, introducing techniques that measure, amongst others,

the Schottky barrier height, breakdown characteristics, contact resistivity and doping

profiles.

4.2 Physical Characterisation Techniques

The bulk of the work in this thesis concerns the heteroepitaxial growth of one semicon-

ductor upon another. Using microscopy tools, a picture of the surface quality of the

47



4.2 Physical Characterisation Techniques

heteroepitaxial layer, which can have an impact on channel scattering should the layer

be employed in a MOS transistor. Furthermore, through FIB/SEM and TEM, any tran-

sitionary layers at the interface can be identified. Using the spectroscopy tools, we can

identify the materials present within the sample locating any oxide formation or con-

tamination by foreign elements. We can also understand the form of the crystal, be it

crystalline, polycrystalline, or amorphous, whilst any stress induced in the heteroepitaxial

layer can also be identified. All this knowledge can be of great use when interpreting the

electrical results, helping to explain low resistance, non-ideal responses, SBH fluctuation

or reverse leakage.

In this Section, a brief overview of each of the nine microscopy and spectroscopy

techniques is given. As these are established techniques used widely, these techniques will

only be introduced here, with their relevance to their current work highlighted. Running

concurrent with this Section, Appendix B details some of the theory behind the techniques.

The AFM, TEM, RHEED and Raman measurements were all carried out by collabo-

rators in Warwick University Physics Department, whilst the FIB/SEM and HIM images

were carried out in collaboration with S. Boden at Southampton University.

4.2.1 Atomic Force Microscopy (AFM)

AFM is used to get very high resolution profiles of a surface by scanning a cantilever with

a very sharp tip over the sample. AFM is employed in this work after the deposition of

a heteroepitaxial layer to build up a 3-dimensional image of the surface. From this, the

surface roughness of the layer is immediately available, whilst this technique also provides

a first idea as to the crystalline nature of the layer.

There are three methods by which the surface profile may be constructed, details of
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which may be found in Appendix B.1 and in [67]. The dynamic contact, or ‘tapping’ mode

is used throughout this thesis because it is considered the most accurate of the methods

with sub-nanometer resolutions possible [68].

The model used throughout this work is an Asylum Research MFP-3D. It has a z-

range of 40 µm, with scanning in the x- and y-directions available over a range of 90 µm.

It is capable of operating in the standard AFM modes including contact, tapping, and

conducting AFM.

4.2.2 Focused Ion Beam (FIB) / Scanning Electron Microscopy

(SEM)

The focused ion beam is used to prepare a sample for SEM or TEM analysis, using gallium

ions to carve a wedge out of the surface, the shape of which may be seen in Figure 4.1.

A sheer, rectangular face perpendicular to the surface is formed, and the built-in SEM

in most machines is used to observe the detailed layers down from the surface. Two of

these sheer faces back to back form the very thin cross-sectional sample needed for TEM

analysis.

Figure 4.1: A graphical representation of the FIB ’wedge’ that is formed with the
rectangular face of the wedge perpendicular to the surface.

An electron gun built into the FIB system, allows SEM for imaging of the cross-

sectional profile. The unique advantage of a SEM over other imaging techniques, is the

huge depth of field with magnification possible, from 10x up to 500,000x. This is achieved
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through the use of a very small electron beam spot size, typically down to 1 nm, which

allows the very high resolution of the images. Details of SEM operation can be found in

Appendix B.2.

The operation of a FIB is very similar to that of a SEM, except that ions of usually

Gallium are used to bombard the specimen surface instead of electrons. However, as

they are bombarded onto the sample surface, the heavy, large ions displace much more

material at the surface as they have a very limited penetration depth. At low beam

currents very little material is sputtered and the system can be used as an imaging tool

with resolutions of 5 nm achievable. However,at high beam currents, a large amount of

material is displaced and the tool is used for the required high precision milling.

The FIB/SEM employed in this work is a JEOL4500, which contains two 30 kV

columns, one a vertical 30 kV electron column with a LaB6 electron gun, and the other an

inclined 30 kV ion column with a Ga+ ion source. The FIB/SEM images used throughout

are tilted 54o as required to view the surface cross section from a detector outside a trench

like that seen in Figure 4.1.

4.2.3 Transmission Electron Microscopy (TEM)

TEM is a very high resolution technique used in this work to observe the atomic structure

of the Ge/SiC heterojunction layers, at the interface and within the bulk. Unlike the

other techniques presented here, the beam of electrons fired at the sample is travelling

right through it, interacting with the lattice as it goes. As such, the sample must be very

thin, tens of nanometers at the most. This poses a problem with the very hard material

SiC, which must be thinned using polishing pads of either SiC or diamond, or, as in this

work, by using a FIB to dig two trenches back-to-back, resulting in the very thin sample
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that may then be cut out.

As the beam of electrons passes through a sample, the amplitude of the beam is

attenuated when it comes into contact with the the lattice. The amount of attenuation is

proportional to the square of the atomic number, and hence the amplitude of the beam

exiting a sample is proportional to the type of element that has crossed its path. Passing

this beam over a sample, one can build up a map of the elements within that structure.

The highest resolution results come with a very large signal and a very thin sample, less

than 10 nm, where the lattice interactions cause a phase shift of the electron beam signal.

The TEM used is a JEOL2000fx, capable of 750,000x magnification using a beam of

0.32 nm diameter and an acceleration voltage ranging from 80 to 200 kV. The machine also

has a built in EDAX facility and a reflection high-energy electron diffraction (RHEED)

detector.

4.2.4 Helium Ion Microscopy (HIM)

HIM is a very new form of microscopy, based on the concept of an SEM, which can attain

very high resolution images thanks to the use of helium ions that bombard the surface.

Similar to the FIB, these ions are very large when compared to the electrons fired from a

SEM. The short de-Broglie wavelength associated with the ions enables a sub-nanometer

resolution, and a depth of field 5 times that of the SEM. HIM images in this thesis were

taken in one day at Southampton University using their Carl Zeiss Orion HIM. Figure 4.2

is an example of the HIM’s capability, showing the surface of a SiC wafer that has been

damaged by acid. The tool is used in this thesis to look at the quality of polycrystalline

and amorphous surfaces.
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Figure 4.2: An example of the helium ion microscope: The surface of an acid damaged
SiC wafer.

4.2.5 X-Ray Diffraction (XRD)

The XRD is one of the initial tests carried out on a heteroepitaxially grown layer to

determine its crystallinity. X-rays, bombarding a sample, interact with the uppermost

monolayers of atoms, reflecting back X-rays when a critical angle is reached. The angle

at which this occurs is unique to an element in a given crystal orientation. Hence if only

one of these peaks is present one knows that only a single crystal-orientation is present,

and hence the it is likely to be single crystal. Conversely, multiple peaks are evidence that

the layer has formed in a poly-crystalline fashion. Given no peaks, it is likely that the

material is amorphous, having no single polycrystal big enough to emit a signal. Further

detail of XRD operation, which is based on Bragg’s law can be found in B.3.
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The XRD used throughout this work is a Philips 1820 diffractometer.

4.2.6 Energy Dispersive X-Ray (EDX)

EDX is a method for determining a detailed analysis of the elements present with a

sample. Electrons, which bombard a sample surface, often displace an electron from an

atoms’s inner shells. This electron is replaced by one of higher energy in an outer shell,

with an element and shell unique amount of energy being given off as an x-ray. This

element based x-ray signature is valuable in determining what materials are present in a

sample, be they intentionally deposited, or unwanted trace contaminants or oxides. X-ray

detectors are commonly found in most modern SEM and TEM systems, thus providing

the user multiple capabilities from the one system. Further detail of an EDX can be found

in B.4.

4.2.7 Reflection High-energy Electron Diffraction (RHEED)

RHEED uses the same principles as the XRD to attain a local snapshot of the crystal

structure, using electrons rather than X-rays, typically within a TEM. Its similarity to

XRD is shown in Figure 4.3b, with the concentric electron scattering patterns highlighted

and aligned with the XRD pattern for this sample. In this work, RHEED is used to

determine the crystal properties of a Ge sample undergoing TEM analysis.

4.2.8 Raman Spectroscopy

Raman spectroscopy is used within this thesis to demonstrate the amount of stress induced

in epitaxial layers formed on SiC. Based on photons interacting with the lattice structure,

the technique involves a laser being shone onto the sample. An individual photon will
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Figure 4.3: a) The RHEED profile of a Ge sample within a HfO2/Ge/SiC stack. b) The
same profile with the sample’s XRD scan aligned to the highlighted concentric rings.

interact with an atom, resulting in another photon being emitted, due to a transference

of energy.

The wavelength of the emitted photons from a sample are compared to those that were

fired into the sample, with the difference recorded as the Raman Shift. The Raman Shift of

a given element is unique, meaning the technique can be used for elemental identification,

as in the EDX. However, the Raman Shift is also dependent on the stress of a layer, so by

comparing the Raman Shift of a relaxed substrate with a layer heteroepitaxially grown

on another semiconductor, one can determine the level of stress induced in the layer.

The Raman spectrometer used throughout this work is a Jobin-Yvon T-64000 attached

to an Olympus microscope, equipped with a liquid-nitrogen-cooled CCD detector.

4.3 Electrical Characterisation Techniques

The physical characterisation can tell us only so much about how a device is going to

work. Given a flat single crystal surface, one expects that the mobility will be high, and

hence the resistance low. Given no unwanted oxide and few contaminants one would also
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expect a good interface between the materials. However, only in the electrical analysis

can we quantify these factors, discovering how the layers of materials will perform in a

real device.

4.3.1 I-V analysis

The cornerstone of device analysis is the simple, yet very powerful current-voltage (I-

V) measurement. I-V analysis of a simple Schottky diode, can provide the breakdown

voltage (VB) and the leakage current (IL) when reverse biased. The forward voltage drop

(VF ), ideality factor(n), Schottky Barrier Height (SBH)
(
Φ0

B,n

)
and specific on-resistance

(Ron,sp) can all be found under forward biased conditions.

4.3.1.1 Low Power I-V analysis

The majority of the I-V measurements described within this document were performed

on a simple probe station and the low power Agilent Technologies B1500A Semiconductor

Device Analyser. The probe station was setup for either lateral or vertical device mea-

surements with four Karl-Suss probes providing two pairs of force and sense, a setup that

removes probe resistances. A conducting back plate allows connections to be made to the

back of a device.

To perform a simple voltage ’sweep’, the analyser provides a known voltage across the

device and measures the current being passed through it. The voltage is incremented in

predetermined steps, for example, from -10 to 10 V at 20 mV steps is a very typical 1001

step sweep. The amount of current allowed to pass through the device is limited by the

power rating of each Source Measuring Unit (SMU) used. The high power SMU is able

to reach 20 V at 1 A or 200 V at 50 mA.
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An example of a simple J-V plot for a heterojunction Schottky diode is presented

in Fig. 4.4 to demonstrate the extraction techniques. The same data has been plotted

twice, in logarithmic form, and in linear form. The logarithmic shows the very small

leakage current in the reverse direction, as well as the turn on characteristics up until the

point at approximately 1 V, where the current begins to become limited by the specific

on-resistance. This can be seen in the linear plot where Ohms law allows for the simple

extraction of the resistance.

Figure 4.4: A typical current-voltage trace for a heterojunction Schottky diode with the
parameter extraction techniques indicated.

Considering the logarithmic plot, the linear turn-on characteristic displayed from ap-

proximately 0.3 to 0.8 V can be used to extract Φ0
B,n and the ideality factor. The linear

region is dictated by the thermionic emission equation, rearranged here from Equation

3.12,

J = Js

(
eβV/n − 1

)
. (4.1)
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and where the saturation current, Js, is defined as,

Js = A∗∗T 2e−βΦ0
B,n . (4.2)

Js can be determined graphically from the logarithmic plot of Fig. 4.4 by extrapolating

the linear region of the plot to V = 0. This enables the extraction of Φ0
B,n from Eq. 4.2,

given that the other values are all known constants. The ideality factor can be found by

rearranging Eq. 4.1 to,

ln (J) = βV/n + ln (Js) (4.3)

which is in fact the equation for the straight line in the logarithmic plot of Fig. 4.4. There-

fore the gradient of this line is equal to β/n, which then easily leads to the determination

of n due to β being a constant.

The extraction of Φ0
B,n and the ideality factor requires a reasonably high resolution I-V

sweep, so that there are sufficient data points available within the linear turn-on region.

The linear fit to this data is then carried out in Microcal Origin, a piece of software

designed specifically for graphing and data-analysis. It is worth pointing out that the

values of Φ0
B,n and ideality factor quoted herein are estimates, and the software gives an

uncertainty value as to the accuracy of these figures. All the data used in Chapter 6

was found to be within 0.25% accuracy - for example the maximum error of Φ0
B,n was

±0.0026 eV, though this was more typically lower than ±0.0015 eV. For this reason, these

values are quoted in this thesis to three decimal places with a good degree of accuracy.

4.3.1.2 I-V measurements at varying temperature

The SBH found via a single I-V measurement is a very useful first indicator; however, in

reality the SBH of an interface is a complex parameter that is dependent on temperature,
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whilst the quality of the interface and the build up of imperfections can lead to local SBH

fluctuations. Considering the SBH against temperature is a useful way to find out more

information about the parameter, and indeed the nature of the interface.

In order to extract this information, a Tenney environmental chamber is used to step

the ambient temperature up in 25oC intervals from -50oC to 175oC (225-450 K). To

contact to the diodes from outside the chamber, the individual diodes are wire bonded to

a PCB board, from which, heat proof wires are passed out of the chamber to the Agilent

Technologies B1500A Semiconductor Device Analyser. The temperature was controlled

and monitored in the chamber by a Watlow Series 942 temperature controller and verified

using a Fluke 52 II Thermometer, the ends of which were placed on the PCB board.
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Figure 4.5: Current-voltage curves taken at ambient chamber temperatures from -75◦C
to 175◦C

Figure 4.5 shows a temperature dependent I-V plot of a Schottky, heterojunction diode.

The temperature is seen to have a direct effect on the plot due to the reliance on tem-
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perature of most of a device’s key parameters. Carrier mobility drops away significantly

with rising temperature because increased lattice vibrations mean that there are more

scattering events. This causes the rise in resistance observed above 1 volt. Furthermore,

as temperature rises, thermionic emission current will increase, and the built-in poten-

tial decreases causing respectively, the variations in reverse leakage current and turn-on

voltage.

Using the techniques described previously, the SBH, ideality factor and the saturation

current may be extracted from each of the individual I-V plots of Figure 4.5. Though not

immediately obvious, the SBH and the ideality factor both rely on temperature to a similar

degree. Therefore, plotting the values against each other for a given temperature reveals

a straight line. One technique suggested by Schmitsdorf et al [69] uses the extrapolation

of this linearity to find an “ideal” barrier height, denoted Φη=1, at η = 1.0.

The saturation current was defined in Equation 4.2, and this may be rearranged in

order to quantify the SBH independent of temperature.

ln

(
JS

T 2

)
= −qφRich

k

1

T
+ ln (A∗∗) . (4.4)

Hence, plotting ln (J/T 2) against the inverse temperature will reveal a SBH value (φRich)

on its slope and the natural log of the Richardson constant (A∗∗) at its Y-intercept. φRich

represents an average value of all those extracted from the I-V-T plots. This technique is

known as a Richardson plot.

The techniques used to find Φη=1 and φRich will be used in Section 7.2, where we will

also look at the weaknesses of the Richardson Plot and ways to overcome this.
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4.3.1.3 High Power I-V analysis

The Agilent Technologies B1500A Semiconductor Device Analyser, is perfect for low volt-

age, high resolution testing. However, in analysing our devices we need to consider higher

voltages for breakdown and leakage tests. An ideal diode would have a very high break-

down voltage, up to which no reverse current would flow. In practice, the breakdown

voltage can reach hundreds of volts, but there will always be at least some minute leak-

age. To facilitate the higher voltages required, breakdown tests are carried out using a

Tektronix 571B Curve Tracer, a facility that can be run under high current (30 V/100 A)

or high voltage (3000 V/10 mA) modes. Whilst the resolution is not as high as the Agi-

lent, simple I-V plots can be acquired showing the point at which the reverse current has

suddenly surged, indicating breakdown.

4.3.2 C-V Analysis

Capacitance-Voltage (C-V) characterisation is a technique that has long since been used

to analyse metal-semiconductor contacts and MOS devices. When considering hetero-

junction layers, the use of a highly doped, degenerate heterojunction layer on the SiC,

allows many parallels to be drawn between the extensive research carried out on M-S

junctions [70] and the heterojunction diodes. Similar to a M-S interface, the space charge

region can be presumed to be entirely on the lower-doped SiC side due to the huge doping

differential. Hence, a variation of the voltage across the heterojunction alters the width

of this space charge region, in turn impacting on the interface capacitance.

Once again, the C-V characterisation technique is carried out using the Agilent Tech-

nologies B1500A Semiconductor Device Analyser. Using fundamental capacitance equa-

tions, one can build up an equation that relates the Schottky barrier height and the bulk
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doping to the inverse square of the capacitance (C−2), such that

1

c2
=
−2 (ψbi + VA + β)

qA2Ksε0ND

, (4.5)

This fundamental relationship is derived in Appendix C. After conducting a conventional

C-V plot of a diode, a plot can be constructed relating the inverse square of the capacitance

to the voltage, as shown in Figure 4.6. The doping of the structure is estimated from

the inverse slope of the data, whilst the built-in potential (ψbi) is estimated from the

x-intercept.

Figure 4.6: A typical C−2-V trace for a heterojunction Schottky diode with the
parameter extraction techniques indicated.

Despite being one of the most traditional measurement techniques available, its results

are riddled with cautionary tales, and in Section 6.3.1.2, the limitations of this technique

will be detailed.
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4.3.2.1 C-V analysis and its use for heterojunctions

C-V analysis can be used to produce a one-dimensional doping profile of a layer from

the surface downwards. For a given DC offset in a C-V sweep, the capacitance attained

can be used to find the SCR width (W ) and the majority carrier density n(W ) at this

point. Both of these values are attained from simple manipulations of earlier equations.

A rearrangement of Eq. C.6 gives,

W =
KSε0A

C
. (4.6)

The majority carrier concentration is attained from rearranging Eq. C.9 to,

n(W ) =
2

KSε0A2 (dC−2/dVA)
. (4.7)

Hence, the carrier concentration can be plotted against the SCR width for every given

capacitance value. A test of this technique was carried out using a Ge/SiC diode, with

300 nm of HD-Ge (ND = 5× 1019 cm−3) upon a SiC substrate (ND = 1.4× 1015 cm−3).

The result is shown in Figure 4.7.

The switch from using the doping concentration (ND) to using the majority carrier

concentration n(W ) is pertinent. Much discussion [65, 71–74] has concluded that this is

a more accurate parameter, as the derivations used in Appendix C, assumed a perfect

situation in which the space charge region (x < W ) was completely depleted of majority

carriers (n(x) = 0) and that the bulk (x > W ) is in neutrality (n(x) = ND). This is a

very good approximation when the device is reverse biased, such as it is for determining

the SBH. However under zero- or forward biased conditions, additional charge due to

excess minority carriers in the quasi-neutral regions renders this approximation inaccurate.
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Figure 4.7: A one-dimensional doping profile of a n-type 300 nm Ge/SiC heterojunction
diode.

Instead, the apparent carrier density is profiled n̂(x), a value that is an approximation

of the majority carrier density n(x). This is a good approximation until the electron

concentration varies on a scale less than the Debye Length (LD), a phenomena known as

Debye smearing. LD is defined as,

LD =

√
kTKsε0

q2n
. (4.8)

When n(x) varies by a significant amount over a distance less than LD, then n̂(x) will take

an average n(x) value over a distance, in the order of LD. Hence abrupt changes in doping

concentration from layer to layer will not be recorded by C-V profiling. In the examples

used here, the Debye length is calculated to be 127 nm for the bulk SiC and 0.47 nm for

the Ge. With an abrupt step change as from the degenerate Ge to the lightly doped SiC,

the n̂(x) averaging witnessed in Fig. 4.7 is significant, though at a distance 5LD from
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the interface, n̂(x) and the predicted ND appear to converge. A solution relating n̂(x)

back to n(x) over distances less than LD [75] has been proven by simulations [72] to be

an ineffective simplification.

4.3.3 CTLM Structures

Figure 4.8: Plan- and side-views of the test patterns used for ohmic contact
characterisation: (a) Rectangular TLM pattern, (b) CTLM pattern.

The Transmission Line Model (TLM) is a technique designed to extract the specific

contact resistance ρc of the metal-semiconductor contact, a value of units Ω − cm2 that

is used to compare the quality of ohmic metal-semiconductor contacts. The sheet resis-

tance of the material (Rsh) directly beneath the metal contacts is also extracted, a value

measured in Ω/¤. TLM structures consist of three or more rectangular contacts with

increasing spacing between them as seen in Figure 4.8a. By applying a constant current

through adjacent pairs of contact pads a voltage drop between them can be recorded, and

hence a value for the total resistance between the pads, RT can be extracted. Plotting

RT against d, the distance between the pads, results in a straight line, the gradient of

which is proportional to Rsh. Where this line crosses the X-axis, is a value equal to twice
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the transfer length (LT ), a distance over which most of the current will pass from semi-

conductor to metal or vice versa [65]. This is demonstrated in Figure 4.9, where the line

has been fitted to the data using a least squares routine.
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Figure 4.9: The determination of the Transfer Length parameter, LT .

Having extracted LT , Rsh can be determined using the dimensions of the TLM struc-

ture [76],

RT = Rsh
LT

Z

cosh (X/LT )

sinh (W/LT )
. (4.9)

If W >> LT then Equation 4.9 may be simplified to,

RT = Rsh
LT

Z
. (4.10)

The specific contact resistance ρc is found using the transfer length and sheet resistance,

LT =

√(
ρC

Rsh

)
. (4.11)
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The downside of this technique is that current can flow between the contacts in the region

beyond the test structure unless a mesa etch is used to isolate the test structure such as

that seen in Figure 4.8a. However, this is a potentially complicated extra processing step

requiring another mask. To overcome this Reeves [77], introduced a Circular Transmission

Line Model (CTLM) which was later refined by Marlow and Das [76]. In order to remove

the stray current flow, a series of circular pads were employed consisting of a conducting

inner region of radius r0, a gap of width d and a conducting outer region with radius

r1 [65]. One such structure is illustrated in Figure 4.8b. Throughout this work, five such

structures were used with r0 typically 150 µm and the gap width varying between 10 and

35 µm.

The total resistance, RT , between r0 and r1 is [76],

RT =
Rsh

2π

[
ln

r1

r0

+
LT

r0

I0 (r0/LT )

I1 (r0/LT )
+

LT

r1

K0 (r1/LT )

K1 (r1/LT )

]
, (4.12)

where LT is found using the same graphical method described above, and I0, I1, K0 and

K1 are the modified Bessel functions, given by Willis [78] as

Kv(t) =
( π

2t

)1/2

e−t

{
1 +

(4v2 − 12)

1!(8t)
+

(4v2 − 12) (4v2 − 32)

2!(8t)2
+ ...

}
(4.13)

Iv(t) =
1

(2πt)1/2
et

{
1− (4v2 − 12)

1!(8t)
+

(4v2 − 12) (4v2 − 32)

2!(8t)2
− ...

}
(4.14)

ρc can then once again be found using Equation 4.11.
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Chapter

5
Silicon Carbide Heterojunction

Formation

5.1 Introduction

In this Chapter the deposition of Ge (and briefly Si) onto SiC will be studied, with the

aim of producing heterojunction layers ideal for the diode and MOS devices that will

be formed respectively in Chapters 6 and 8. As such, the narrow bandgap layers are

required to be flat, crystalline, uniform and homogeneous to maximise channel mobility

and to minimise series resistance and interface charge. This is not a simple problem,

the difference in crystal structure between the cubic narrow bandgap semiconductors and

the hexagonal compound of silicon carbide dictating that the two materials should not,

and often will not, adhere. The Chapter concentrates on the use of Molecular Beam

Epitaxy (MBE) and wafer bonding (WB), the former offering the opportunity to form

better interfaces at the expense of the crystallinity and surface finish offered by WB. The

state-of-the-art microscopy techniques introduced in 4.2 show Ge layers outperforming

Si, as they produce shallower islands at low thickness and reasonably flat, polycrystalline

layers at 300 nm and above. It shall be seen that the use of high temperature, small,
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light dopants and optimal thicknesses will produce the layers with maximum crystallinity

and minimum grain boundaries, requirements necessary for producing the low-resistance

layers desired in future Chapters.

First however, this physical analysis will be introduced by considering to what degree

these layers meet the intended goals of a heterojunction device.

5.2 Ge/SiC Heterojunction Growth: The ideal situ-

ation and the realities.

From the theory introduced in Section 3.3, an ideal situation for the formation of a

heterojunction layer may here be outlined followed by a discussion on the realities that

most often prevent the formation of perfect layers.

To assess the ideal situation we must first revisit the purpose of forming the lay-

ers. A Si/SiC heterojunction could overcome one of two pertinent problems that hinder

SiC MOSFET development, namely the inferior oxide formation and channel mobility.

Silicon dioxide grown on SiC suffers from the build up of interface traps at the semi-

conductor/oxide interface, due to carbon clusters that are not released in the oxidation

process. This introduces scattering at the semiconductor surface, much reducing the al-

ready low channel mobility. Pure silicon has no such problem however, and hence two

options present themselves when considering a Si layer on SiC. The Si layer can either be

entirely sacrificed through the oxidation of the epitaxial layer, thus forming a SiC/SiO2

interface potentially free of carbon clusters, or the SiO2 layer can be formed on the top

of the Si, forming a SiC/Si/SiO2 device. Either option should dramatically reduce the

concentration of traps at the interface. The further benefit of the SiC/Si/SiO2 device is
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that the electron mobility of Si is 50% better than SiC’s whilst the hole mobility of Si is

5 times that of SiC’s.

The use of Ge is attractive due to its even higher mobility, which for n- and p-type

materials is respectively, 4 and 20 times bigger than SiC. The use of Ge however, rules

out the sacrifice of the entire layer, as the natural oxide of Ge is unusable. Hence when

considering Ge as a heterojunction solution, we must consider a High-K/Ge/SiC structure.

The issues that need to be considered in creating such a device are presented in Figure

5.1. The ideal situation shown is one where a flawless transition occurs between the

semiconductors, free of any inhomogeneities such as contaminants, surface roughness, or

defects. As a result, the SiC face would have to be atomically flat, upon which Ge would

be grown layer by layer (FM Growth) leading to an atomically flat Ge surface and hence,

a MOS channel free of scattering events. A single crystal of Ge would also maximise the

potential mobility that could be achieved due to the elimination of grain boundaries that

amorphous or polycrystalline layers introduce.

Figure 5.1: An ideal Ge/SiC heterojunction MOSFET.
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So the ideal Ge/SiC heterojunction MOSFET will be achieved if we can grow single

crystal Ge on atomically flat SiC. Atomically flat SiC is a challenge but attainable. The

SiC wafer bought from Cree Inc. is research grade, and AFM micrographs presented

in [79] of the SiC surface reveals the surface roughness before and after a RCA clean.

Prior to the clean, the rms roughness is 23 Å, reducing to 11 Å afterwards. It is possible

that this could be improved through polishing of the SiC wafer prior to processing [80].

Unfortunately, the limitations of mismatched lattices, discussed throughout this Sec-

tion, result in a challenging processing problem. Due to Ge being a cubic structure and

SiC being hexagonal, heteroepitaxial growth on the majority of planes will be hindered

by entirely misaligned bonding patterns. Having said this, the (111) crystal orientation

of Ge is hexagonal, and whilst the 1:1 match of Ge to SiC atoms is not possible, we will

see later that a rotation in the crystal allows for the potential alignment of every few

atoms. However, the likeliest outcome when forming any Ge layers on SiC is the build up

of strain and hence the formation of large polycrystals.

One way to relieve the strain between layers is to step up the lattice constant using

monolayers of materials with progressively larger lattice constants layer at a time, until

single crystal Ge can be grown to a reasonable width [81,82]. However, with mismatches

this large this would be a big task, and generally we must accept the usual growth mode

is VW or SK, with a polycrystalline layer forming.

Polycrystal formation has an effect on two of the requirements described in Figure 5.1.

Firstly, regardless of the substrate surface quality, the Ge surface will form in individual

polycrystals that result in a rough surface. This could possibly be polished afterwards,

though this has not been tried. Secondly, the channel mobility is diminished by the

presence of grain boundaries throughout the layer. A grain boundary can be seen as a

homojunction formed between two like materials of differing crystal orientation. Hence
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there is a very small barrier that will need to be overcome in passing between crystals due

to the differing conduction properties of different crystal orientations. Whilst the energy

loss will be minimal over only one of these boundaries, with crystal sizes no bigger than

200 nm, there may be a lot of them.

Another solution exists to tackle the surface quality of the Ge; however, it comes at a

price. Growing the layers at very low temperature leads to amorphous layers given that

the adatoms have little energy to find a bonding site. The lack of energy means that there

is no chance of the layer forming into a single crystal, due to the large amount of energy

the adatoms require to seek sites to minimise their dangling bonds. Instead, the adatoms

will tend to remain in the position where they are deposited, creating either an entirely

amorphous layer or a polycrystalline layer with very small grain sizes. The benefit of this

is that the resulting layer will be close to being as flat as the substrate beneath. However,

there is a large detrimental affect on the electrical characteristics, with the number of

grain boundaries having been multiplied, increasing on-resistance.

A second solution is to attempt wafer bonding, forcefully uniting the layers through

the exploitation of van der Waals forces which keep the layers together. This allows for

the creation of a single crystal heterojunction layer, with very high mobility and a flat

surface. However, the potential problem area with this solution is the heterojunction

interface, where a very inhomogeneous contact is likely to result between the SiC and the

narrow bandgap wafer.

5.3 Thin Film Processing Techniques

The starting point for all of the devices is an unprocessed 4H-SiC wafer bought from Cree

Inc. To develop this into the heterojunction devices, the surface must first be cleaned,

71



5.3 Thin Film Processing Techniques

removing any residual material from the wafer surface before depositing (or wafer bonding)

the silicon or germanium.

5.3.1 SiC Wafers

Cree Inc. [12] supply wafers of 4H-SiC and 6H-SiC up to a diameter of 100 mm, with

optional epitaxial layers formed 0.2-50 µm thick on the substrate surface. The doping of

both the substrate and the epitaxial layer can be selected independently between 9×1014

and 1×1019 cm−3, n- or p-type. The quality of the wafer is determined by the density of the

micropipe defects, with Cree’s best being guaranteed to have less than 1 micropipe/cm2

at elevated cost; these are their so-called “Micropipe free” range. One must also select the

orientation of the crystalline structure with respect to the surface of the wafer. So called

’on-axis’ wafers are available whereby the silicon and carbon layers within the crystal

structure align parallel to the surface leading to an atomically flat surface. However, with

the Si and C atoms forming SiC in stacked layers, the surface of on-axis wafers will always

be a silicon face or a carbon face. This prevents the growth of an epitaxial layer as both

the Si and C atoms will require bonding sites when they are deposited on the SiC surface.

Hence, any wafers with epitaxial layers are supplied either 4 or 8 degrees off axis. These

do not achieve the same atomically smooth surfaces. Other SiC substrate suppliers exist

other than Cree as do companies that grow the epitaxial layers; however Cree accounts

for around 80% of the market being the only company to offer both of these services at a

low micropipe density.

The cost of SiC makes exhaustive research a difficult task on a budget, with 100 mm

wafers typically costing between $3000 and $10000. The huge variation in cost comes

mostly from the epitaxial layer, which costs approximately $100 per µm, though there is
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Figure 5.2: The micropipe map of the 4H-SiC wafer used in this project (with
micropipes made larger for visibility).

also a wide variation in wafer quality available. For this reason the body of work carried

out in this thesis was carried out on half of a SiC wafer diced into smaller 10 × 10 mm

chips.

The wafer used for all the MBE work was a 100 mm diameter, 4o off axis 4H-SiC

substrate, with a bulk n-type doping of 1× 1018 cm−3 and a 10 µm, lightly n-type doped

(1.4 × 1015cm−3) epitaxial layer. The wafer was a research grade wafer meaning than it

had a reasonably large density of defects, defined by Cree as covering no greater than

30 % of the wafer. The micropipe density of the wafer was 31-100 per cm2, and the

“Micropipe Map” supplied with the wafer is shown in Figure 5.2. Given that this is a

100 mm diameter wafer, the density appears much better than projected. However, many

hundreds of micropipes appear right at the very wafer edge, not shown here, and hence,

chips from the centre of this wafer were used to develop these heterojunction devices. It

was calculated that in the worst case scenario, micropipes will occur in 1 in 30 of the
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Figure 5.3: The result of the laser cutting of the 4H-SiC wafer. a) the diced wafer and
the remaining half a wafer and b) a close up of the wafer surface at a chip corner.

devices made on this wafer at the most, as the eventual diodes were formed from 200 µm

diameter dots.

5.3.2 SiC Wafer Dicing

Due to the aforementioned expense of the substrate material, the half-wafer was diced

into 38 10×10 mm chips using a Nd:YAG micromachining laser. Figure 5.3a shows a

previous SiC wafer dicing performed by a University of Warwick colleague, with the chips

aligned as they were prior to dicing. 5.3b shows a close up image of the corner of a single

chip. The damage at the edges appeared to be minimal though a very large quantity of

dirt and dust was visibly spread over the wafer. To prevent this happening for the chips

used in this work, the chips were covered in photoresist prior to laser cutting. Although

the damage at the edges appears minimal here, a commonsense approach was taken when

selecting diodes for electrical testing, choosing those closest to the chip centre.

Those chips right at the wafer edge were used for testing due to the high density of
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micropipes, which left 25 chips for the Ge/SiC heterojunction devices.

5.3.3 SiC Pre-Processing

Before processing the chips with metal contacts or applying the thin films the trace

impurities on the substrate surface must be removed as they can have a detrimental affect

on the electrical performance of a device. The cleaning is achieved using a three-stage

process. A solvent clean is first, consisting of acetone, isopropanol and methanol being

sprayed onto the substrate surface whilst it is rotating in a spinner unit. This removes

some of the organic impurities [83].

Next, the Radio Corporation of America (RCA) cleans [84] are applied. The RCA

cleans work by first removing the organic matter in the RCA1 formulation, then the

metals and chemisorbed ions in the RCA2 formulation. The RCA1 clean consists of a

1:1:5 solution of NH4OH:H2O2:H2O at approximately 80oC for 10 minutes. This solution

leaves a very thin (∼ 10Å) SiO2 layer on the surface, which must be removed via a

quick immersion in dilute hydrofluoric acid (HF), at a ratio of 50:1 H2O:HF, at room

temperature. The RCA2 procedure then consists of a 1:1:6 solution of HCl:H2O2:H2O at

approximately 80oC for 10 minutes.

Finally, a ”Piranha” clean (so named due to its ferocity) is used to remove any final

organic material that may remain. A 10 minute dip in 1:1 mix of H2SO4:H2O2 produces

an exothermic reaction that reaches 130oC. Once again, a quick dip in 50:1 H2O:HF after

the Piranha clean removes any built up oxide.

Whilst this procedure has developed from the silicon industry, one study [14] has

suggested that a clean consisting only of an RCA2 clean produces the best results; however

this would not remove any metallic impurities.
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This cleaning procedure is not appropriate for use on Ge due to the HF and H2O2

etching the material. In Chapter 6 we will outline an alternative cleaning method specific

to forming metal contacts on the Ge/SiC surface.

5.3.4 Molecular Beam Epitaxy (MBE)

The MBE is used substantially within this work to deposit layers of Ge or Si onto SiC.

The MBE technique was invented in 1960 in Bell Laboratories and involves the growth

of epitaxial layers through the fine control of a beam of evaporated solids. Housed in

individual Knudsen Cells, or K-Cells, the elements to be deposited are heated under high

pressure until they sublimate [57]. In the University of Warwick’s V100S MBE system,

shown in Figure 5.4 these elements are the semiconductors Si or Ge, and the dopants

boron, arsenic and phosphorous. The resulting elemental gas is formed into a beam using

an aperture within the K-cell. The beam of gases is controlled by a shutter in front of

the aperture that can be rapidly open and shut. This allows for the deposited material

to be controlled down to the monolayer scale, whilst the amount of dopants employed is

also finely controlled.

The growth parameters, including temperature, pressure and growth rate can be con-

trolled during deposition, making the MBE a useful research tool. Temperature in par-

ticular has a large effect on the resulting layer, giving the individual atoms the energy

they require to find their optimal bonding site where the maximum number of dangling

bonds are eliminated. However, in a system where the minimum energy positions do not

coincide with smooth layer-by-layer growth, the raised temperature will initiate faceting,

the growth of islands, and the result will be a very rough, polycrystalline layer.

The 10x10 mm chips were entered into the MBE on a holding wafer of prime Si. As

76



5.3 Thin Film Processing Techniques

Figure 5.4: The University of Warwick’s MBE Facility.

this holding wafers were covered with the same epitaxial layers, they were used as dummy

substrates to perfect the fabrication processes before the SiC was used.

5.3.5 Si Wafer Bonding

Another method used within this thesis to form layers of Si on SiC, was that of wafer

bonding, using the SmartCut technique. Although the technique is now commonplace

within the silicon-on-insulator (SOI) industry, this is a new and somewhat experimental

approach when considering SiC. The SmartCut process is shown graphically in Figure

5.5. Due to the cost and complexity of the process, it was only carried out just once, and

hence the exact process is laid out here.

Wafer bonding was performed on commercial 3 inch 4H-SiC substrates from Cree

Inc., USA. Two wafers, one 4o-off axis, doped at 1.4×1018 cm−3, the other on-axis, highly

doped at 1 × 1019 cm−3 were used. The Smartcut process transferred a 300 nm p-type

Si wafer doped at 1 × 1017 cm−3 employing a hydrogen-ion implant, room-temperature

wafer bonding, and subsequent heat-treatment for wafer splitting. Before wafer bonding
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Figure 5.5: The SmartCut wafer bonding process.

was performed, the Si wafer was implanted with H+
2 ions at an energy of ∼200 keV and

a dosage in the range of 1 × 1016 − 1 × 1017 cm−2. Both wafers were then cleaned using

an oxygen (O2) plasma treatment and a modified RCA1, RCA2, and piranha cleaning

procedure for 20 min. Rinsing and drying of the wafers was performed before bonding.

The wafers were then bonded in a vacuum at room temperature followed by a 150oC

anneal in order to achieve a sufficient bond strength for cleaving. Next, the wafers were

cleaved at a temperature of 300oC with further annealing performed at 1100oC for 2 hours

to further strengthen the chemical bonds.

5.4 Si/SiC Heterojunction Structures

The difficulty in achieving the perfect heterojunction layer, a single crystal with a flat sur-

face and a defect free interface, was discussed in Section 3.3. Over the next two Sections,

the two methods of layer formation, MBE and wafer bonding, introduced previously will

be used to form Si/SiC and Ge/SiC heterojunctions and the resulting layers will be phys-

ically analysed using the techniques described in Section 4.2. When planning the MBE
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deposition process, one is faced with an array of choices including, but not limited to, the

choice of material to deposit, the temperature that it is grown at, the thickness of the layer

and the choice of dopant, with the specific choice of dopant element being surprisingly

relevant. All of these choices impact on both the physical and electrical characteristics

of the layers and the challenges of finding the right combination is of high priority. The

physical impact these deposition choices make on the layers can be monitored through mi-

croscopy techniques, AFM, HIM, TEM, FIB, and SEM and through crystal spectroscopy

techniques XRD and EDX. The huge impact that these choices have on the electrical

results, including the layer and contact resistivity, the Schottky barrier height manipula-

tion, the Fermi level pinning and the interface inhomogeneity will be looked at in great

detail in Chapter 6.

The idea of depositing a narrow bandgap semiconductor on SiC was reasonably novel

when this project began. No papers existed on Ge/SiC, and only a limited amount of

knowledge had been gathered on Si/SiC structures, much of it by a previous project

at Warwick University. Therefore, to begin this project it was decided to use the tools

available. The University had a wealth of expertise in using MBE to deposit Si, Ge or

SiGe on Si [81, 82, 85], skills that had been utilised in a previous Engineering project to

experiment with Si heterojunction layers on SiC [14,15,56]. Therefore, the starting point

for this project was to run a new physical analysis of these existing Si/SiC samples.

The aim of the new Si/SiC analysis was to show how the MBE settings affected the Si

growth. They also act later as a useful comparison, evidence as they are of how different

semiconductor layers form on the SiC substrate. The samples used came from the same

batch of chips processed in [14] and in [56]. The three depositions are shown in Figure

5.6.

The structures used in [14] came from single 10x10 mm SiC chips as described in
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Figure 5.6: The intended structure of Si/SiC heterojunction layers. Image a) shows the
amorphous 100 nm nSi layer, b) shows the polycrystalline 100 nm nSi layer and c) shows

the polycrystalline 1 µm iSi layer.

Section 5.3.2, which were placed into the MBE. Figure 5.6a shows the Si/SiC layer that

was expected to be amorphous, formed by depositing at 500oC, highly n-doped (ND,Ge =

5 × 1019 cm−3, antimony was the dopant) Si onto the chip. At a rate of 0.1 Ås−1, a

deposition of 10,000 s (2 hrs, 45 mins) was expected to deposit 100 nm of Si. The second

structure, shown in Figure 5.6b, was grown under identical conditions to the last layer but

with a deposition temperature of 900oC, it was intended to be polycrystalline. The third

structure was the similar to the second but with an intrinsic Si buffer layer between the

highly doped Si cap and the SiC substrate that would act as a drift region when it came

to analysing these devices electrically. Furthermore, when these devices are formed into

MOS devices, such low doped regions will form the channel, hence it will be imperative

to understand the nature of a Si/SiC (or Ge/SiC) interface that is not degenerate on the

Si (Ge) side. The buffer region was deposited at 1 Ås−1 for 10,000 s (2 hrs, 45 mins) and

hence it was expected to be 1 µm thick.

Full justification of the MBE settings can be found elsewhere [14, 56], but they were

chosen to compare the electrical and physical properties of amorphous/polycrystalline lay-

ers and the development of these properties with layer thickness. The doping was selected
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so that ohmic contacts would form when metal was deposited, whilst the thicknesses were

chosen to show two quite extreme examples of the thin and the thick films.

Figure 5.7: AFM images of the Si/SiC heterojunction layers. Image a) is of the high
temperature n+ layer which was designed to be 100 nm thick. Image b) is the high

temperature intrinsic layer that was designed to be 1 µm thick.

Considering first the high deposition temperature layers, a new physical analysis of

them is shown in Figure 5.7 using AFM. Figure 5.7a shows the heavily n-doped layer that

was designed to reach a uniform covering of 100 nm. However, the result was anything
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Figure 5.8: XRD results of the Si/SiC heterojunction layers.

but uniform, with the Si preferentially bonding to itself, forming quite significant islands

up to 1 µm in height, with large areas between them. Figure 5.7b shows what happened

to the Si when the layer thickness was increased. Some of the islands merged, but in

general, they appear to have continued to grow in stacks, with large trenches between

each one. The islands reached heights some 2-3 µm above the surface.

New XRD scans were performed over the entirety of the deposited layers and the

results are shown in Figure 5.8. The SiC peaks are ever present in all the layers as

expected. The high temperature layers show evidence of only the (111) and (220) peaks

of Si, with the (111) peak significantly dominant in the 100 nm layer. This suggests that

the majority of Si adatoms have sufficient energy to find a bonding site next to another

Si atom, forming in the hexagonal (111) plane.

Given these results, it seems unlikely that uniform Si can be deposited on SiC at these

raised temperatures as it appears to be energetically favourable for the Si to bond to itself
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Figure 5.9: AFM image of the low temperature n+ layer which was designed to be
100 nm thick. Image reproduced with permission from [56]

than to the SiC surface. The reason for this may be that the growth temperature was too

high, giving the layers too much energy as they come to the surface, thus enabling them

to find other Si adatoms to bond to over the SiC surface. Alternatively, it seems more

likely that the Si layers have a set of lattice parameters that are incompatible with the

hexagonal SiC surface, making a FM or SK growth mode unobtainable. Appraising the

poor electrical results achieved in [14, 15, 56] from these structures, it seems likely from

Figure 5.7, that the devices formed patch contacts, whereby the metal layer contacted the

Si and the SiC at the same time.

AFM results of the low temperature Si/SiC sample, repeated in Figure 5.9 with per-

mission from [56], show a uniform Si covering but a very bumpy surface, the resulting

roughness being 12 nm RMS over the scanned 25×25 µm area. The XRD result from

this layer shows that a (111) peak is evident, despite the intention that this layer be

amorphous. This suggests that this layer was in fact polycrystalline, explaining the high

roughness value, whilst suggesting that the deposition temperature was not quite low

enough to reach the degree of uniformity expected.
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The point of relevance here is that lessons were drawn from these results that heavily

affected the Ge/SiC depositions. The first point was that a high temperature deposition,

900oC in this case did achieve a polycrystalline layer. Just as importantly, there is evidence

that a 500oC deposition is not low enough to form an amorphous layer. Because of

the balling up of the Si in the high temperature layers, little can be concluded about

deposition thickness. However, the intended values of 100 nm and 1 µm seem valid,

allowing comparison between those layers forming and those (supposedly) fully formed.

As for doping values, it is necessary that the top metal-semiconductor contact is ohmic,

leaving the only rectification coming from the heterojunction region and hence the value

of ND,Ge = 5 × 1019 cm−3 seems valid as it, in theory, makes the semiconductor layer

degenerate, though the validity of this will be checked in the next Chapter.

5.5 Ge/SiC Heterojunction Structures

In this Section, the development of the Ge/SiC structures will be traced, starting initially

with their like-for-like comparison to the Si/SiC diodes that preceded them. Following

the development of a second generation of the diodes it will then be possible to compare

the Ge layers across thickness and dopant lines. Table 5.1 summarises all the layers that

were produced over the two batches.

Dopant n n i i n n p p i
Dep. Temp. (oC) 300 500 300 500 200 500 200 500 500
Intended Thickness (nm) 100 100 1000 1000 300 300 300 300 500
Rq (nm) 1.8 60 6 45 2.1 6.7 3.5 30 32

Table 5.1: The deposition parameters and resulting surface roughness (Rq) of all the
Ge/SiC layers formed over the two generations. The n-type dopant is antimony and the

p-type dopant boron.
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Off of the back of the Si/SiC analysis, the design of the Ge/SiC heterojunction diodes

could begin. The most important difference between the depositions of Ge and Si is

that Ge has a melting point of only 937oC compared to 1420oC for Si. This heavily

influences the deposition temperatures required to form polycrystalline and amorphous

layers. Taking first the amorphous layers, the failure of the Si layers to form smooth

amorphous layers free of lumpy crystalline material, meant that the amorphous Ge layers

needed to be relatively much smaller. Hence, it was decided to start the first Ge/SiC

batch with a value of 300oC, which could be modified up or down later if required. As

for the high temperature deposition, the value of 500oC was arrived at in an attempt to

scale down the successful polycrystalline Si/SiC deposition that was 500oC lower than its

melting point. The rest of the deposition remained the same: 100 nm highly doped Ge

(ND,Ge = 5× 1019cm−3) with antimony as the dopant and 1 µm intrinsic Ge depositions.

However, this time both high and low temperature depositions were carried out at the

thicker layer completing a 2×2 test matrix of temperature and thickness. Each of the

four depositions was carried out on one 10×10 mm SiC chip.

The first set of AFM results, shown in Figure 5.10, suggested immediately that the

quality of Ge/SiC layers may be markedly better than that of the bunched, island ridden

Si/SiC samples. Experimentally this set of AFM results consisted of only one 25x25 µm

AFM scan per sample, though the results were typical of the layer.

Addressing first the amorphous layers. The chief problem with the Si/SiC layers

was that the deposition temperature was likely too high, resulting in bumpy, somewhat

polycrystalline layers. The AFM scan of Figure 5.10a shows that the layer appears very

smooth, though significant diagonal marking appears. These marks can also be seen

in Figure 5.10c, and are actually polishing marks from the SiC surface that have been

faithfully replicated in the Ge layer. Also seen in Figure 5.10a are two vertical scratch
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Figure 5.10: AFM Micrographs of the first Ge/SiC Heterojunction Layers with the
following intended layer thicknesses and deposition temperatures: a) 100 nm, 300oC b)
100 nm, 500oC c) 1 µm, 300oC and d) 1 µm, 500oC. Rq is the surface roughness values.
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Figure 5.11: Higher resolution AFM Micrographs of the 100 nm, 300oC Ge/SiC layer
with a) a 5x5 µm scan and b) a 1x1 µm scan.

marks that have come through from the SiC surface beneath. These features somewhat

skew the surface roughness which was taken from the 25×25 µm AFM scan as 4.5 nm for

the 100 nm Ge layer. To get a better idea of the roughness induced by the amorphous

deposition, areas between the SiC defects were zoomed into, and new higher resolution

5×5 µm and 1×1 µm AFM scans were taken. These are shown in Figure 5.11, where

avoiding the vertical scratches, the 5×5 µm scan revealed a roughness of 1.8 nm. In

later analysis, the figure of 1.8 nm is used for this sample being the fairest comparative

figure out of these, having no scratches but still considering the roughness from the SiC

which is the same for all the samples. Zooming in with the AFM further and avoiding the

polishing marks, the 1×1 µm scan reveals a very smooth surface with only tiny dimples

that accounts for a roughness of just 0.5 nm. This suggests that given a smooth starting

surface a very flat layer of Ge can be formed, something that could be achieved through

SiC wafer polishing services such as NovaSiC [86].

XRD scans for all these layers are shown in Figure 5.12. The 100 nm, amorphous
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Figure 5.12: XRD θ-2θ scans of the first MBE Ge layers deposited on 4H-SiC.

layer shows no sign of any polycrystalline Ge, as expected given the AFM results. To test

for amorphous Ge on the 200oC, 100 nm layer, Energy Dispersive X-Ray (EDX) analysis

was carried out. This technique is not reliant upon the material under scrutiny being

crystalline for identification, unlike the XRD analysis. Figure 5.13 shows that distinct Ge

peaks were found along with peaks of the dopant element, antimony. As part of the SiC,

silicon is also highly visible; however carbon is outside the range of this particular scan.

Contrary to the 100 nm layer, the results of the XRD scan show that the 1 µm thick,

low temperature layer contains significant crystalline material, particularly in the (220)

and (311) orientations. This suggests that as the layer thickens, at 300oC the adatoms

have sufficient energy to form small polycrystals. The SiC peak can be seen to almost

entirely disappear in the polycrystalline 1 µm layer due to the increasing thickness of Ge

covering the substrate.
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Figure 5.13: EDX scan of the 100 nm 300oC Ge/SiC layer.

Considering now the polycrystalline layers, there is here a marked improvement from

the Si results, Figure 5.10b showing the layer that was designed to be 100 nm thick. There

is clearly a large amount of islanding with peaks as high as 300 nm. However, compared to

the Si results these are very shallow and wide islands that show evidence of merging even

at these reduced thicknesses. Confirmation that uniform high temperature deposition was

possible came from the 1 µm thick polycrystalline layer of Figure 5.10d, which shows a

consistent coverage of polycrystals. Of course this makes for a large roughness and 45 nm

for this layer is particularly high. However, it proves that Ge can be deposited on SiC at

high temperature and a further polishing stage could flatten this layer.

Having analysed this first generation of Ge/SiC layers, it was possible to refine the

MBE process, tweaking the settings to form a more uniform set of structures. In the

hope of improving on the crystalline islands of the 500oC, 100 nm Ge/SiC, this deposition

was repeated under exactly the same conditions but the deposition time was tripled, thus

aiming for a 300 nm layer, structure b) in Figure 5.14. With the aim of comparing a

new variable, the dopant type, a 500oC, 300 nm layer was also formed with boron as the
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Figure 5.14: The intended structure of second generation of Ge/SiC heterojunction
layers. Image a) represents the two amorphous 300 nm layers to be highly doped n-type

and p-type, b) represents the two polycrystalline 300 nm layers to be highly doped
n-type and p-type and c) shows the polycrystalline 200 nm iGe layer.

dopant, making the layer heavily p-doped. To complete a 2×2 experimental matrix of

dopant type and temperature, amorphous 300 nm layers of p-type and n-type were also

formed. However, to prevent the chance of crystalline material appearing as occurred

with the 1 µm thick layer, the temperature was dropped to 200oC. Finally, in an attempt

to reduce a serious series resistance problem with the 1 µm thick polycrystalline layer,

which we will see in the next Chapter, this structure was repeated with only 500 nm of

intrinsic buffer instead of 1 µm.

These were, in fact, the last Ge/SiC diodes to be made. Layers that were planned to

further study the growth modes and the heterojunction interface were not completed as

the unique Ge MBE deposition system at the University of Warwick was decommissioned

due to various problems and its expensive running costs.

However, over the next sections the influence of first layer thickness, then dopant type

will be assessed in the thin highly doped layers. Following this, the new intrinsic layer

will be discussed briefly.
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Figure 5.15: XRD θ-2θ scans comparing Ge layer thickness and deposition temperature.

5.5.1 Layer Thickness and Deposition Temperature

The 100 nm and 300 nm layers’ crystallinity, and hence their conducting properties,

was investigated using XRD analysis as shown in Figure 5.15, where 4H-SiC spikes are

apparent for all the deposition conditions. Both samples deposited at 500oC display the

same four main Ge peaks, suggesting that Ge polycrystals of multiple orientations form.

It appears logical that the thicker 300 nm layer displays larger, more defined peaks, due

simply to the larger volume of material. The new amorphous 300 nm layer grown at

200oC displays no Ge spikes, suggesting that there is no crystalline Ge in this layer.

Figure 5.16 shows the AFM images of the new 300 nm layers over a 25× 25 µm area

of each Ge layer. These images are typical of three scans taken on each wafer, whilst

the roughness values quoted are average values. The 100 nm AFM results are repeated

here for ease of comparison. As before, the amorphous layer of Figure 5.16c reveals only
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Figure 5.16: AFM Micrographs of the Ge/SiC Heterojunction Layers with the following
layer thicknesses and deposition temperatures: a) 100 nm, 300oC b) 100 nm, 500oC c)

300 nm, 200oC and d) 300 nm, 500oC. Rq is the surface roughness values.
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polishing marks from the SiC beneath. Its surface roughness of 2.1 ± 0.2 nm compares

well with 1.8 nm roughness of the 5×5 µm 100 nm AFM result of Figure 5.11, which was

the view free of scratch marks. However, there are no patches on the three AFM scans

that could give a roughness as flat as the 0.5 nm roughness seen on the 1× 1 µm scan of

Figure 5.11, so the layer is becoming more disordered with thickness.

The AFM scan of Figure 5.16d suggests that the 300 nm polycrystalline layer is a

vast improvement on the large islands that formed in the supposed 100 nm layer. With

a surface roughness of 6.7± 0.1 nm it appears as if the large islands will have continued

their S-K growth until the point at which they merged together.

The 300 nm layers were studied in greater detail using a helium ion microscope (HIM)

and FIB/SEM analysis, the results of which can be seen in Figure 5.17. The HIM allowed

for a greater appreciation of the deposition temperature contrast at a very high resolution,

with Figure 5.17a and 5.17b showing the surface features of the low and high temperature

layers respectively, at 500 nm and 1 µm fields of view. As with the AFM micrographs,

the contrast between the surface roughnesses is visible, though at this magnification the

difference in individual crystal size also becomes apparent. The amorphous layer shows

some order with approximately 20 nm ‘dimples’ occurring on the surface, perhaps sug-

gesting very small poly-crystals. Much clearer are the larger poly-crystals of the higher

temperature deposition, with crystal grains appearing on the surface up to 200 nm in size.

The cross-sectional images of Figure 5.17c and 5.17d taken from the SEM within a

FIB system show the three individual layers of both 300 nm layers. From the bottom up,

SiC, then Ge, Ni and a protective carbon cap are clearly defined. In both cases, a double

layer of Ni is evident due to the deposition of two 300 nm layers. Once again, a slightly

rougher Ge surface is evident on the higher temperature deposition.

To summarise this Section, a trade off is evident in the choice of deposition temper-
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Figure 5.17: HIM (a and b) and FIB/SEM (c and d) images of the 300 nm Ge/SiC
Heterojunction Layers grown at 200oC (a and c) and 500oC (b and d). The samples are

tilted 54o away from the detector, hence the vertical axis is not to scale.
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Figure 5.18: XRD θ-2θ scans of the MBE Ge layers deposited on 4H-SiC with different
dopants and deposition temperatures.

ature. It is expected that the polycrystalline layers will form the best electrical contacts

having the least grain boundaries within the layer. The amorphous layers have the ad-

vantage of producing a flat surface; however, this advantage could be negated if the

polycrystalline layers were polished to improve the finish.

5.5.2 The Role of the Dopant

It is not immediately obvious how the selection of a dopant may impact on the physical

properties of the layer. However, XRD and AFM results will here show that there is in

fact a physical difference between the 300 nm layers that were doped p-type with boron

(B) and those doped n-type with Antimony (Sb). High and low temperatures are again

compared with the n-type layers being the 300 nm layers used in the last Section.
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Figure 5.18 shows the XRD results of the p-type layers compared with the n-type

layers. SiC is evident in all the samples; however, the cubic Ge content is sample specific.

As witnessed previously, the layers deposited at high temperature are poly-crystalline,

whilst those at low temperature are much smoother. The AFM results, which may be

seen in Figure 5.19, follow the previous trends with rough high temperature surfaces and

smooth low temperature surfaces. The 200oC p-type layer seen in Figure 5.19b has a

surface roughness of 3.5± 0.2 nm, whilst the 500oC p-type layer of Figure 5.19d is up at

30± 2 nm.

Comparing across dopant lines, the p-type layers have in general, X-ray intensities

greater than their n-type counterparts, suggesting greater crystallinity. This is evident in

the (220) direction especially. The low temperature depositions show some contrast, with

the p-type layers displaying evidence of crystallinity in the (220) and (311) orientations,

the same as the 1µm iGe layers of Figure 5.12. This comes despite the lowering of the

deposition temperature from 300oC to 200oC. Furthermore, the p-type layers have rougher

surfaces, whilst the individual grains are noticeably larger in the high temperature p-layer

than in its corresponding n-layer.

With all other conditions being equal, these differences are most likely due to the

difference in the dopants. Given the physical nature of this analysis, the difference cannot

simply be attributed to the choice of a p-type or n-type dopant, but instead to the

properties of the doping element. The p-dopant B, is a light and small atom compared

to Ge and the n-dopant Sb, is heavy and large in comparison. With high doping levels

(ND,Ge = NA,Ge = 5 × 1019cm−3), there is approximately 1 dopant atom for every 1000

Ge atoms, so the atom size will have an impact on the crystal structure. The smaller

B atoms are likely to be incorporated into the Ge lattice with some ease whereas the

larger Sb atoms will not perfectly fit the lattice and will displace a number of Ge atoms.
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Figure 5.19: AFM Micrographs comparing Ge dopant type. The 300 nm Ge/SiC
Heterojunction Layers have the following layer dopant types and deposition

temperatures: a) n-type, 200oC b) n-type, 500oC c) p-type, 200oC and d) p-type, 500oC

97



5.5 Ge/SiC Heterojunction Structures

Figure 5.20: AFM Micrographs of the iGe/SiC Heterojunction Layers with the following
layer thicknesses and deposition temperatures: a) 500 nm, 500oC b) 1 µm, 300oC and c)

1 µm, 500oC.

This will affect the growth of the layer, with extra strain in the lattice likely to lead

to a greater number of defects and hence smaller polycrystals. Secondary to this, the

difference in mass between the atoms could also be pertinent. The light Ge/B atoms may

have more energy than the heavy Ge/Sb atoms to find a site that minimises its dangling

bonds on the SiC surface, creating larger polycrystals.

5.5.3 Intrinsic Ge Layers

Considering again the layers with an intrinsic drift layer, the second generation of layers

grown included a new layer deposited at 500oC that used a 500 nm intrinsic region, halved

from the original 1 µm in a hope to reduce series resistance. This provided an opportunity
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to examine a high temperature layer grown to another intermediate thickness. The AFM

results from all the intrinsic layers are presented in Figure 5.20. The surface roughness

of the high temperature layers appears to increase quite consistently with layer thickness,

the new 500 nm layer having a roughness of 31.9±0.3 nm, two thirds that of the 1 µm

layer. Similarly, the size of the polycrystals also appear to increase with thickness, most

likely due to the releasing of the strain that the SiC lattice induces. In Figure 5.20c,

the AFM is used to concentrate on the polycrystals from a 1×1 µm area on the high

temperature 1 µm iGe layer. One can see the polycrystals, which reach half a micron in

diameter, with valleys up to 150 nm deep between the crystal peaks. The low temperature

layer is relatively smooth, though its roughness at a thickness of 1 µm is three times what

it was at 300 nm.

5.5.4 Ge Layer Growth Summary

Over the two generations of diodes, a total of nine different Ge layers were deposited on

SiC, at varying deposition temperature, dopant type and thickness. A summary of the

results is presented in Figure 5.21, where deposition temperature and layer thickness is

compared in turn to the resulting surface roughnesses. Over the last Sections it has been

evident that surface roughness is proportional to the degree of crystallinity extracted from

XRD scans, hence it is fair to say that the results of Figure 5.21 would look little different

if surface roughness were replaced by relative XRD X-ray intensity.

Despite being a small sample set, patterns are evident that may well be illustrative

of the larger picture. The Temperature-Roughness plot gives the clearest evidence of the

trade-off between crystallinity and roughness, with every pair of diodes with like dopant

types and layer thickness, showing the improvement in roughness at lower temperature.
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Figure 5.21: An overview of the different Ge layers, comparing surface roughness to
temperature (left) and thickness (right).
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The Thickness-Roughness plot shows a reasonably linear proportional relationship

between the two in the amorphous results. Less clear, but implied from the Thickness-

Roughness plot is the idea that, for the high temperature layers, there is an optimal

thickness at which roughness is at a minimum, potentially around 300 nm. This idea

may be described qualitatively. Large, shallow islands were formed at 100 nm, as seen

in Figure 5.16b. At 300 nm in thickness the gaps between these islands have filled in

leaving a fairly smooth layer in the case of the n-type layer of Figure 5.16d. Increasing

the thickness further, reduces the impact of the strain induced from the SiC surface and,

as seen in the intrinsic results, the layers becoming rougher and the polycrystals grow in

size. Across both graphs in Figure 5.21it appears that the p-type layers are rougher than

their n-type contemporaries. As described in Section 5.5.1, this is likely due to the size

and mass of the dopants.

This is not an exhaustive data set unfortunately due to problems with the MBE

equipment midway through the proposed set of layers. Had this not occurred, the ideas

proposed above may have had more concrete evidence backing it up. However, for now,

the layers that are missing must now go down as future work.

5.5.5 The Ge/SiC Interface

Perhaps some of the most revealing physical results come from the TEM analysis of a

HfO2/Ge/SiC sample that was being used for the MOS experimentations of Section 8.5.1.

The Ge layer involved was a 300 nm, intrinsic Ge layer similar to the highly doped layer

analysed in Sections 5.5 and 5.5.1. Figure 5.22 shows the various TEM images, zooming

in from image 5.22a, a cross section that reveals all the layers, to image 5.22c, which

reveals the individual monolayers of Ge at the interface.

101



5.5 Ge/SiC Heterojunction Structures

Figure 5.22: TEM images of the 300 nm Ge/SiC heterojunction layers with a HfO2

oxide layer
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Image 5.22a shows very clearly the individual layers and the polycrystalline patterns

within the Ge layer, with the difference in contrast between the layers resulting from

the ability of the electrons to pass through them. The most detail appears in the Ge

layer, where defects between the polycrystals appear as diagonal lines. Zooming in on

the interface in image 5.22b, the boundary of multiple polycrystals may be seen in much

greater detail. Each individual polycrystal may be identified by the differing contrasts or

by the angle of the lattice features. Zooming in further, image 5.22c shows the interface

between the SiC and a single large Ge crystal which is greater than 50 nm wide. At

this magnification (800,000x), the individual monolayers of Ge can be seen thanks to the

huge resolution of the TEM. These monolayers are clearest within the first 10 nm of the

interface, where approximately 40 monolayers were counted. Closer inspection reveals the

distance between monolayer edges is approximately 3.1 angstroms. This corresponds with

the spacing of monolayers within the (111) plane of a Ge unit cell, as shown in image

5.22d, which was formed using the crystallography freeware program VESTA (standing for

Visualization for Electrical and STructural Analysis, this tool is downloadable from [87]).

The two atoms highlighted, at opposing corners of the unit cell, are exactly three mono-

layers apart and perpendicular to the (111) plane. Measuring their separation in VESTA,

they are 9.8 angstroms apart, leading to a monolayer separation of 3.27 angstroms. This

implies that in image 5.22c, (111) Ge is forming on the SiC surface. One peculiarity here

though is that the Ge is angled some 12 degrees from the interface, which means that the

Ge layer is not aligning perfectly with the (0001) SiC plane, as that is only 4 degrees off

axis. This is however a hugely positive result as it shows that the Ge is forming on the

SiC surface in a distinctly layer by layer, monocrystalline fashion.

Beyond the first 10 nm of Ge in image 5.22c, the monolayers can be seen to continue,

though they eventually fade into the darker contrast. The reason for this may be down
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to the formation of other polytypes at this thickness, which in turn could be due to the

release of strain within the Ge layer at this thickness (more of which in Section 5.5.5.1), by

the formation of dislocations. As we progress further into the Ge bulk, big polycrystals

continue to form and image 5.22e shows one near the HfO2 interface. It is a single

individual Ge polycrystal that appears to have a diameter of about 50 nm. Monolayers

again appear at an angle of about 60◦ from the surface. Image 5.22f shows a diffraction

pattern image taken from the bulk of the Ge layer using the built in reflection high-energy

electron diffraction (RHEED) apparatus within the TEM. The regular concentric circles

imply that the sample is indeed polycrystalline. The spacing of the circles agree exactly

with the Ge peaks of the sample’s XRD response in Figure 5.15, confirming that crystals

of (111), (220), (311), (440) and (331) orientation are all located within this sample.

5.5.5.1 The possibility of strained Ge

The discovery that Ge forms in a uniform, potentially layer by layer fashion on SiC, leaves

one very obvious question; why? In Section 5.4, AFM evidence suggested that Si forms

on SiC in the Volmer-Webber mode, forming distinct islands that do not merge even at

2-3 microns of deposition. So why is it that Ge can produce such uniform layers? Is it

possible that there is a lattice match?

Figure 5.22c shows that (111) Ge is growing on SiC and hence VESTA is used to

compare the hexagonal faces of (0001) 4H-SiC, and (111) Ge. The individual (0001) Si

face of SiC can never align atom for atom with the (111) Ge face due to different lattice

constants; however, there is a single geometry that aligns approximately 1 in 7 Ge atoms

with 1 in 12 of the SiC’s Si atoms. This alignment can be seen in Figure 5.23, where the

lattice parameters involved are 1.0644 nm in the SiC and 1.0585 nm in Ge.

If this alignment was indeed possible, the 0.5% mismatch between the layers would
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Figure 5.23: A potential lattice match between the (0001) Si face of SiC and the (111)
plane of Ge.

place the Ge under tensile strain; the individual Ge atoms being forced further apart

than they ordinarily would be. Similar to strained Si, this “strained Ge” may well have

a mobility greater than bulk Ge due to the increased lattice spacing, which results in less

scattering events for a given carrier. This opens the door to a potential new device, a

lateral high-mobility Ge MOSFET that is developed on a SiC heat sink.

5.5.6 Si Wafer Bonded Results

Finally in this Chapter, the physical results of the Si/SiC wafer bonding technique will

be introduced paving the way for the MOS analysis carried out on these structures in

Chapter 8.

The wafer bonded structures that were described in Section 5.3.5 were analysed phys-

ically using AFM and XRD. First though, Figure 5.24 shows the results of the bonding
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Figure 5.24: The areas of wafer bonding achieved, comparing off- and on-axis SiC
substrates.

process, where image a) shows the off axis wafer and b) shows the more successful on-

axis wafer. The dark regions on each wafer represent the bonded areas of which there

is very little on the off-axis wafer. This can be explained by AFM measurements which

were conducted on both SiC wafers prior to the bonding process. The RMS roughness of

the off-axis material was 1.5 nm, most likely due to the 4o-off step bunch. The on-axis

4H-SiC material yielded a low RMS value of 0.6 nm, which approaches the limit for SiC

wafer bonding - it is assumed that SiC requires a RMS roughness of ∼ 0.5 nm or less for

successful room-temperature bonding. The Si/SiC bonding coverage is much better on

on-axis material because of its low surface roughness value, and in the case of an off-axis

wafer, only a few atoms are indeed contacting the Si layer. Improved polishing techniques

and the optimisation of the cleaning procedure may improve the yield of both wafer types.

Discarding the off-axis wafer due to its lack of cohesion, Figure 5.25 shows the AFM

scans taken from an on-axis WB sample. The first image is one of a defect free area, where

the surface is not smooth, undulating fairly consistently to a level 20 nm above or below

the normal. This leads to an RMS roughness of 5.8 nm for the non-blistered regions.
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Figure 5.25: AFM images of two WB Si/SiC regions; left, a detailed picture of a defect
free area and right a more macroscopic, birds eye view of a single blister.
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Figure 5.26: A comparison of the XRD scans taken from the two different Si/SiC wafers.
Above is the MBE layer and below, the wafer bonded layer.

Another polishing stage post-bonding could reduce this value. The second image clearly

show a very large blister some 50 µm in diameter. The blister itself rises approximately

1 µm above the surface, creating a valley of a similar depth next to it.

XRD scans of the WB Si layer are presented in Figure 5.26 in comparison to the

intrinsic MBE layer that was designed to have a 1 µm thick layer, which was presented

initially in Figure 5.8. Reassuringly, only one Si peak was present over the entire layer,

evidence that the Si wafer maintained its crystallinity during the WB process.
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5.6 Summary

The formation of narrow bandgap - wide bandgap heterostructures was attempted, with

Ge and Si both being deposited via MBE onto the surface of a 4o off axis, lightly n-type

doped 4H-SiC epitaxial layer. The impact of these physical results will be felt in the

preceding electrical analyses, the layers that appear most crystalline offering the lowest

resistance, whilst those with the flattest surface finish being most suited to MOS channel

production.

Beginning as just a comparison between the narrow bandgap semiconductors, the

MBE Ge deposition proved rather successful, mitigating the problems of the seemingly

incoherent lattice parameters much better than the Si/SiC layers. At the intended de-

position width of 100 nm, both semiconductors formed large island structures when the

material was deposited at high temperature. However, the Ge islands were very shallow,

reaching heights no greater than 400 nm and covering nearly the entire SiC surface as

they had begun to merge. The Si islands by comparison were tall tower blocks reaching

1 µm thick and covering very little area. At thicker layers the trend continued; the Ge

layer merged completely forming a uniform layer, which at best had a 6 nm roughness at

a thickness of 300 nm. This value could be improved even further through the use of a

pre- and post-deposition polishes. The Si islands on the other hand did not merge, and

even at a intended thickness of 1 µm, large gaps remained between the ugly sprawling

blobs of crystalline material. With little hope remaining for poly-Si uniformity, the focus

shifted entirely to Ge MBE layers.

Progressively increasing the thickness of the polycrystalline Ge layer to 500 nm and

1 µm allowed the relaxed (non-strained) polycrystals to grow larger with thickness, creat-

ing bigger polycrystals and very rough layers with valleys between the crystals. Lowering
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the deposition temperature bore layers that were almost entirely uniform, but at the cost

of crystallinity, the layers being entirely amorphous. At best, a roughness of 0.5 nm was

achieved by measuring between the polishing marks that had emanated through from

the SiC surface. Changing the dopant in the layers also seemed to affect the physical

morphology, with larger, heavier n-dopant atoms causing greater stress in the individual

polycrystals. This in turn, caused defects to occur at a smaller polycrystal size, and hence

a flatter layer was produced by more polycrystals.

Wafer bonding provided an alternative method for forming a heterojunction and

600 nm of a Si wafer was bonded to a SiC wafer. Vastly more successful from a physical

standpoint than Si MBE, the resulting Si layer appears flat, with an RMS roughness of

5.8 nm in all the non-blistered regions.

5.7 Conclusions

1. For a given set of conditions, a more homogeneous, crystalline and flat layer will be

produced via the deposition of Ge, rather than Si onto 4o off-axis 4H-SiC.

2. The best layers formed from MBE deposition are achieved at high temperature,

using physically small dopants. Roughness increases with thickness; however, it is

possible to achieve the smoothest layers by depositing layers too thick and polishing

them back to the desired thickness.

3. It is likely that a high temperature post deposition anneal would improve interface

homogeneity and layer crystallinity; perhaps increasing the volume of deposited

material that forms into a single preferential crystal orientation.

4. Wafer bonding of Si or Ge to on-axis 4H-SiC leads to fully crystalline layers, that
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are reasonably smooth without polishing. However, this comes at the expense of a

highly resistive, inhomogeneous interface, a cost that appears prohibitive.
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Chapter

6
Characterisation of Silicon Carbide

Heterojunction Diodes

6.1 Introduction

In the last chapter, heterojunction layers were produced for diode and MOS devices, with

layers of minimal grain boundaries and surface roughness. In this chapter, the rectifying

properties of the layers are tested using the electrical analysis tools of Section 4.3 to

investigate the heterojunction interface. Ohmic contacts with low contact resistivity are

formed on the Ge front and SiC back, meaning that as current flows through the device,

the rectifying heterojunction interface will be the only barrier that the carriers have to

overcome. Furthermore, being unipolar rectifiers, the devices may be characterised as a

regular Schottky Barrier Diode, and I-V analysis shows that the diodes produced have

very low ideality factors and remarkably consistent barrier heights. Series resistance is

very variable however, and those layers that were shown to form in the last Chapter with

a minimum of grain boundaries, produce the layers of least resistance.

This Chapter naturally splits into two Sections. In the first, the procedures used to

form heterojunction diodes, will be introduced. Following this, the results of the diode
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characterisation will be discussed in the second Section.

6.2 Heterojunction Diode Production Procedure

The transformation of two layers of semiconductor into a heterojunction diode is a rea-

sonably simple processing problem, requiring only a single photolithography step and the

use of a small number of clean room machines. The basic process is shown in Figure 6.1,

whilst a SolidWorks representation of the final structures is shown in Figure 6.2. Firstly,

Ni front contacts are patterned forming the dots and circular transmission line measure-

ment (CTLM) structures that will be used to test the device. Using the Ni features as

a mask, each device is then isolated by etching the Ge from between the metal contacts.

As seen in Figure 6.2, half of the chip is protected from this final step to maintain the

functionality of the CTLM structures. Having processed the front, a simple back contact

may be formed.

Figure 6.1: The basic process for forming the semiconductor layers into heterojunction
diodes, involving the fabrication of the metal front contacts, the etch that forms the

mesa isolation and the forming of the back contact.

The dots and CTLM structures formed on the top of these devices can be achieved
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Figure 6.2: The layout of the Ni/Ge/SiC mesa diodes and CTLM Structures (not to
scale).

via one of two processes, the lift-off technique or the metal-etch. Figure 6.3 outlines both

of these methods. The lift-off technique involves coating the sample with photoresist in

all the places to be protected prior to metal deposition using a positive photolithographic

mask. After a layer of the metal has been sputtered onto the entire sample, a dip in

acetone causes all the photoresist and unwanted metal to “lift-off”.

In the metal-etch process, the whole sample is covered in the required metal. A

negative photolithographic mask then allows the deposition of photoresist covering all the

wanted metal. A wet etch such is then used to remove the unwanted metal. In the case

of nickel, which is used on all the Ge/SiC samples, aqua regia (HNO3:HCl, 1:5) is used

as the etchant.

Further details of both techniques may be found in [88]. Both featured in prototype

runs, carried out to form Ni contacts on stock Si wafers; this allowed the fabrication

process to be refined. The wet etch required in the metal-etch process was a particularly

difficult process, requiring the immersion of Ni samples in the vicious aqua regia etch for

just the right amount of time, typically 5 seconds. The results were variable, sometimes
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Figure 6.3: The lift off (above) and metal etch (below) processes used to form patterned
metal on a semiconductor.

etching too much other times not enough, and the etch also attacks the semiconductor

surface, leaving it unusable if you did need to continue to process it. However, given

many practice iterations, the process can be refined resulting in very well defined metal

contacts. Furthermore, this processing step was followed by an etch to remove all the

semiconductor between the metal contacts, so this problem was negated.

Preferably, one would always use the lift-off technique, as it does not require the etch,

and the semiconductor surface is well protected. However, practically, the metal definition

just did not compare, with features often appearing jagged around the edges where the

photoresist had ripped the metal off the surface. As such, the metal etch technique was

used for all these devices. The difficulty with this technique is controlling the very fast

acting etch, that will seriously undercut the photoresist mask if left a few seconds too long.

Hence, with improved facilities, work and a lot of process refining, the lift-off technique

would be worth mastering as it is a much more repeatable and consistent process.
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The detailed processes that were used in the metal etch process are laid out below.

6.2.1 Thin Film Surface Clean

Prior to depositing the metal, the surfaces must be cleaned as the earlier physical charac-

terisation was not performed under clean room conditions and hence foreign particles will

have accrued on the surface. When cleaning the heterojunction layers, the type of clean

used depends on the materials in question. Having been designed specially for silicon, the

RCA1/RCA2/Piranha cleans described in Section 5.3.3 are appropriate for any Si/SiC

devices. However, the common factor between all these cleans is hydrogen peroxide, an

acid that etches Ge very quickly. At the concentrations it is used in the common cleans,

100 nm of Ge will be stripped in under 40 seconds.

There are a few papers which suggest alternative cleans. Used in the processing of all

the 300 nm Ge layers, a 1996 paper [89] suggested an aqueous ammonia (28% NH4OH:DI,

Water 1:4) treatment at room temperature for 30 seconds to remove residual metals,

followed by a diluted sulphuric acid dip (H2SO4:DI Water, 1:7) for 2 minutes to remove

hydrocarbon-related contamination. A more comprehensive paper was published in 2008

by IMEC [90]. This work lists the Ge etching rates of some 50 chemical recipes, concluding

that the most appropriate clean is a 0.5% concentration of hydrofluoric acid in DI water

for 5 minutes at room temperature. This removed all the metals tested in their work,

doing so at a suitably slow etch rate.

In this work, the clean in aqueous ammonia followed by diluted sulphuric acid dip was

used.
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6.2.2 Metal Deposition

The deposition of metals is carried out in the University of Warwick clean room using a PC

controlled CVC deposition tool, or ‘sputterer’. This can process 4” wafers or the smaller

samples considered here, utilising 4 inch targets of aluminium, nickel and titanium. The

sputtering process employs a plasma under a high vacuum, with the sample surface facing

the metal target. With a bias applied to the target, the ions within the plasma bombard

the metal surface dislodging individual atoms. These metallic atoms then coat the surface

of the sample, forming the amorphous metal layer.

Nickel was the chosen metal for the heterojunction diodes due to its large work function

of 5.15 eV, which forms a SBH sufficiently large to SiC that the largest blocking voltages

and minimum leakage voltages are achieved [91–94]. Whilst the Ni/Ge contact should be

ohmic due to the large amount of doping in the layers (ND,Ge = NA,Ge = 5× 1019cm−3),

the large work function of the Ni will influence the amount of band bending in the SiC.

1 µm of Ni was deposited onto the Ge/SiC surface using an argon plasma that was

maintained at a flow rate of 20 sccm, a pressure of 2 mTorr, and an RF power of 500 W.

Though 1 µm of Ni is quite a thick layer, this helped in the processing, allowing for more

controllability on the Ni etch time.

6.2.3 Photolithography

A standard photolithography routine [95] was used to pattern the Ni/Ge/SiC structures.

Photoresist was deposited over the entire chip using a Headway spinner machine. Shipley

1818 photoresist was applied to the chip using a pipette as the sample was spun at

4000 RPM, resulting in a photoresist thickness of 1 µm. The photoresist was selectively

softened by exposure to 350 W of UV light for 30 seconds using a Karl Suss MJB21 mask
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aligner and the mask shown in Figure 6.4. To protect the Ni dots and CTLM structures

from the aqua regia etch, the light field half of the mask was employed. Once softened, the

unwanted photoresist was removed by dipping the samples into a beaker of 319 Developer

for 30 seconds. A DI water dip removed the remaining 319 developer.

Figure 6.4: A photo and a diagrammatic view of the mask used to create the
heterojunction diodes.

6.2.4 Device Isolation and Materials Etching

Full device isolation prevents the build up of an electric field at the abrupt edge of a

contact, so that the highest possible breakdown can be achieved for the devices in question.

A full treatment of state of the art techniques, such as guard rings and field plates is given

in A.6. Here, due to the ease of processing, device isolation was achieved through a mesa

etch using the existing metal contacts as the mask. This was carried out on half of each

chip so that the CTLM structures on the protected half could be used to determine the

contact resistivity at the Ni/Ge interface. The etch was achieved using a BOC-Edwards

Plasma System RIE Machine, removing up to 1 µm of Ge with a 20:80 SF6/Argon plasma

for five minutes at a power of 10 W.
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6.2.5 Contact Annealing

The final step in the fabrication process is an optional anneal. Annealing improves the

interface between metal and semiconductor, creating more cohesion between the layers

and hence improving ohmicity. At annealing temperatures ranging from 200 to 800oC,

nickel and Si form transitional silicide layers such as NiSi, Ni2Si and NiSi2, lowering the

barrier height between the semiconductor and metal as they form [36]. Titanium and

nickel silicides also form at a SiC interface [93,96].

As will be seen in the proceeding Sections, a lot of the scientific interest in the Ge/SiC

structures lay in the difference between Ge grown at low temperature and high tempera-

ture. It was imperative that the devices remained with their structural differences in tact

after processing. Hence, the metal contacts, which had to be formed after Ge deposition

to stop MBE contamination, were not annealed. This meant that experimental interest

was retained at the expense of a higher contact resistance.

6.2.6 Resulting Structure

The finished Ni/Ge/SiC heterojunction processing may be seen in Figure 6.5, complete

with dots and CTLM structures. This was the half of the wafer that had been etched, the

other half having been protected from the etch for the CTLM testing. The cross section

of these devices was shown in Figure 6.2.

6.3 Electrical Analysis of Heterojunction Layers

This Section describes the electrical analysis carried out on the heterojunction diodes.

The progression of this Section is concurrent with Section 5.5, describing the electrical
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Figure 6.5: The result of all the processing: CTLM and TLM structures, and dots all
ready for testing.

behaviour of the same thin films, comparing the different samples along lines layer thick-

ness, deposition temperature, dopant type and deposition technique (MBE or WB). All

the layers that were described in Section 5.5 underwent the processing described in the

last Section, producing heterojunction diodes, and CTLM structures. The performance

of the rectifiers will be analysed using I-V, C-V, IVT and CTLM analyses. A detailed

description of these techniques can be found in Section 4.3.

6.3.1 The thickness and deposition temperature of MBE layers

Section 5.5 showed how the 100 nm and 300 nm n-type layers suffered from the same

temperature deposition trade off, with the higher temperature layers forming the poly-

crystalline layers, whilst the low temperature layers were amorphous. The poor surface

quality of the 100 nm layers improved as the thickness increased to 300 nm, the gaps

between islands filling in to form a complete surface though this was still a way from
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being perfectly smooth. In this Section the performance of these layers as heterojunction

rectifiers will be assessed using I-V and C-V analysis. With the MBE layers of Ge highly

doped, the heterojunction barrier should behave as a Schottky barrier as described in

Section 3.4.

6.3.1.1 I-V Analysis
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Figure 6.6: I-V results for the n-type 100 nm and 300 nm Ge/SiC heterojunction diodes.

Current-Voltage results for the 100 nm and 300 nm n-type diodes are shown in Figure

6.6. These results are typical of the ten contacts that were tested for each diode and were

taken at room temperature (approximately 24oC) using the probe station and Agilent

Parameter Analyser as described in Section 4.3.1.1. Using the techniques described in

Section 4.3 a lot of information may be extracted about these diodes. First of all though,

visual inspection alone shows a great deal. The 300 nm, 500oC diode has the highest
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forward current, and hence, the lowest resistance, of any of the diodes. With the 100 nm

and low temperature layers having a much larger resistance we can see immediately the

straightforward correlation between the physical results and the electrical ones. In Section

5.5, the 300 nm, 500oC layer was the only layer to be polycrystalline and free from patch

contacts. What is more, this layer produced the smoothest surface of any polycrystalline

layer produced. Comparing this layer to the amorphous, 300 nm, 200oC layer, at 5 volts we

can see that the polycrystalline layer has a current approximately 200 times greater than

its otherwise equal, amorphous counterpart. Therefore, the multitude of grain boundaries

within the amorphous layer has a significant effect on the electrons passing through the

layer. Comparison between the 500oC layers shows that the 100 nm layer has only a

slightly higher resistance but a visibly poor turn on characteristic, most likely due to

the poor patch contact. Further visual inspection of Figure 6.6 shows a split along layer

thickness lines in the reverse direction. The leakage current is below the threshold of

the measuring equipment for the thicker layers, whilst the thinner layers are experiencing

leakage in the realm of 0.1 mA/cm2 at only -5 V, values that will lead to unacceptable

reverse leakage currents.

One curiosity of the Ge/SiC diodes is their low forward voltage drop. All the diodes

begin to turn on very early, at approximately 0.3 V which is earlier than regular Ni/SiC

Schottky barrier diodes [91–94]. This alone is an energy saving achievement, as minimal

voltages are required to reach good current values. This is compounded somewhat by

the high forward resistance of even the best diodes on display here, but if this resistance

could be reduced by improving the Ge/SiC interface, then a markable power saving could

be made. The reason for this early turn-on is that the Schottky barrier height at the

Ge/SiC interface is likely to be smaller than that of a Ni/SiC interface. This is illustrated

in Figure 6.7.
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Figure 6.7: The band diagrams of a) Ni/SiC and b) Ge/SiC, showing the larger SBH in
the metal-semiconductor.

Carrying out some more detailed analysis of the data that makes up Figure 6.6, the

ideality factor (η) may be calculated, a value that gives some indication as to how well a

device replicates the ideal diode equation of Equation 3.12. Close correlation, as η → 1,

indicates that thermionic emission current dominates and the diode will turn on efficiently

and quickly. With η nearing 2, or more, then recombination current dominates. The

300 nm heterojunction diodes had ideality factors of 1.03 and 1.01 for the low- and high-

temperature layers respectively. The 100 nm diodes produced ideality factors of 1.12 and

2.23 for the low- and high-temperature layers respectively. Hence, with the exception of

only one layer the diodes demonstrate a quality Ge/SiC interface dominated by thermionic

emission. The reason for the poor result in the 100 nm, 500oC diode is understandable

when one considers the AFM micrograph of this layer from Figure 5.16b. When the Ni

is deposited on this surface, it contacts both the Ge islands and the SiC between the

islands. Hence, as the device is turning on, there are multiple paths that electrons may

follow, some more energetically favourable than others, explaining the visibly poor turn

on characteristic.

The Schottky barrier height (SBH) may also be extracted. The SBH is the amount of

energy that electrons must gain to pass from metal to semiconductor or indeed between
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semiconductors at a heterojunction interface. As previously discussed, it is found by

estimating the saturation current from the data and entering this into the ideal diode

equation of Equation 3.15. The SBHs of the 100 nm diodes were 1.015 eV and 1.013 eV

for the low- and high-temperature layers respectively. The 300 nm heterojunction diodes

had SBHs of 1.085 eV and 1.094 eV for the low- and high-temperature layers respectively.

The difference between these values is quite negligible and inconclusive. The absolute

values themselves are very interesting, as they all concur that the SBH at a Ge/SiC

interface is approximately 1.1 eV. When considering how the semiconductors align and

form a band offset, it is clear that this value is too large to support a theory based on the

classic Schottky-Mott principal [97, 98], which states that the vacuum levels will align,

leaving the electron affinities to dictate the offset. With both semiconductors having

electron affinities of approximately 4 eV, the Ge-SiC offset should be no more than 0.2-

0.3 eV under this principal. Hence, in Section 7.3, Fermi level pinning will be discussed

and used to explain these large offsets.

6.3.1.2 C-V Analysis

Capacitance-Voltage (C-V) measurements of these devices are shown in Figure 6.8. They

were taken at room temperature using the low power Agilent Technologies B1500A Semi-

conductor Device Analyser, as described in Section 4.3.2. A frequency of 1 MHz was

used and Figure 6.8 is typical of three runs that were taken on each of ten diodes. The

doping concentration of the SiC and the built-in potential (ψbi) was extracted, from which

the SBH was estimated. Cree suggested that the epitaxial layer was doped n-type at a

concentration of 1.4× 1015 atoms per cubic cm. Calculating the inverse slope (dx/dy) of

each of the diodes in the Figure 6.8 produces doping concentrations of 6.3 × 1015 cm−3

and 2.4 × 1015 cm−3 for the 100 nm, low- and high-temperature layers respectively, and
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1.6 × 1015 cm−3 and 1.7 × 1015 cm−3 for the 300 nm, low- and high-temperature layers

respectively. All of these represent reasonable experimental error from the doping levels

promised by Cree.
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Figure 6.8: 1 MHz C-V results for the n-type 100 nm and 300 nm heterojunction diodes.

The built-in potential values, read from where the C-V data crosses the x-axis, can also

be taken from Figure 6.8. The low- and high-temperature 100 nm diodes yielded values

of ψbi = 2.0 and 1.5 eV respectively. Both 300 nm layers produced values of ψbi = 1.1 eV.

The built-in potential is related to the SBH as,

ΦCV = ψbi + φn,SiC − φn,Ge, (6.1)

where φn,SiC and φn,Ge are the fermi potentials as measured from the conduction band

in SiC and Ge respectively, defined in Equation A.5 for a non-degenerate semiconductor,
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and in 3.8 for a degenerate semiconductor. Using the calculated values of φn results in

SBH values for the 100 nm layers of approximately 2.3 eV and 1.8 eV for the low- and

high-temperature layers respectively, and of 1.4 eV for both 300 nm layers.

There is clearly a large discrepancy between the CV results and the SBH values taken

from the I-V data (0.29 eV for the high temperature, 300 nm diode). This could be

explained by the method in which the two techniques estimate barrier height. The C-V

technique presumes that one is dealing with a homogeneous, uniform layer, where the SBH

will be of one value at any one given point across the interface. However, most interfacial

systems are far from being this perfect. Inhomogeneities at the surface cause a two-

dimensional fluctuation in the SBH; the source of the inhomogeneities being from surface

roughness, non-uniform doping or imperfect surface preparation leading to an unclean

surface or an interfacial oxide. This is quantified and explained in detail in Section 7.2.

Thus, a very commonly reported [70, 99–104] phenomena occurs where the C-V attained

SBH value exceeds that attained from I-V methods. This occurs because by using I-V

analysis, the majority of current passing through the layer will do so over only the lowest

barriers, this being the path of least resistance. Values from C-V analysis are an average

across the entire interface.

However, it seems likely that a discrepancy of nearly 0.3 eV is too high to be explained

away this easily, and by consulting the M-S SBH theory [70] and performing further

analysis, a secondary explanation was found for the large discrepancy. Figure 6.9 shows a

10 kHz C−2− V plot of the high temperature, 300 nm diode. A linear fit to the full data

set has been plotted to satisfy Eq. 4.5 and the extraction of the built in potential. This

results in a ψbi of over 2 eV, grossly over estimating the ψbi of 0.855 eV, that was extracted

from I-V analysis (considering a SBH of 1.1 eV). This value drops by 0.5 eV if the data

set is reduced to the data closest to the x-axis as was done previously for the 1 MHz data
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Figure 6.9: A 1/C2 − V plot taken at 10 kHz for a polycrystalline n-type layer, with
linear and polynomial fits to the experimental data.

in Figure 6.8; however this is an act that sits most uncomfortably. The accuracy of the

linear fit to the experimental data can be brought into question by visual inspection alone,

with the data scattered either side of the fit. However, attempting many non-linear fits of

different order, a third order polynomial was found to produce the tightest fit to the data

having a coefficient of determination (R2) of 0.943. This fit can also be seen in Fig. 6.9.

The ψbi extracted from this method results in a SBH much closer to that provided by the

I-V analysis; however, ψbi is largely dependent on the frequency of the C-V measurement,

varying from 1.25 eV at 1 kHz to 1.45 eV at 100 kHz. With a non-linear fit, the extraction

of the doping could only be estimated by differentiating this curve at various points along

its arc, a situation that produces doping levels ranging from 3.2 × 1015 cm−3, closest to

x-axis, to 1.0 × 1016 cm−3 nearest the y-axis, with the manufacturer stating a bulk SiC

value of 1.4× 1015 cm−3.

The reason for the non-linearity originates form the way that the way that the C−2−V

relationship is derived, as repeated in Appendix C. It is presumed that the only charge

from the semiconductor is that from the space charge region, such that QS = QSC .
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This statement can only be true when the Fermi level and charge neutrality level of a

semiconductor are in alignment, under homogeneous and intrinsic conditions. In reality,

the total charge should consider also charge at the interface (QGS), brought about by the

inhomogeneous interface, thus making Eq. C.1

C =
d (QSC + QGS)

dV
. (6.2)

The addition of this extra charge has a distinct impact on the parameters extracted

from C-V analysis as seen in Figure 6.9. Various models exist attempting to include

QGS in CV analyses, though the exact nature of the interface is still uncertain. Unique

relationships exist between the interface parameters and the capacitance dependent on

whether the metal and/or the semiconductor contribute charge to the interface, whether

the charge on either side of the interface can follow the AC signal, and any combination of

the above [105]. This is further complicated by the knowledge that these models presume

that some interfacial layer has formed between the metal and the semiconductor due to

processing defects. The validity of such a model has been brought in to question [70], due

to its reliance on the original Schottky-Mott equation when the materials come in direct

contact.

Realistically, these results are only useful in proving that interface states are prominent

at the heterojunction interface. This will be further investigated in Section 7.3.

6.3.1.3 Thickness Conclusion

The results over this Section have consistently shown that the polycrystalline heteroepi-

taxial layers form the better contacts as suggested by their near ideal turn on and lower

on-resistance. The thicker, 300 nm layers also outperform the 100 nm layers, achieving
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good forward characteristics, and a low leakage current across their more uniform Ge/SiC

interface. Encouragingly, all the devices produce near ideal I-V results, and a 0.3 V

turn-on voltage. However, the forward resistance is high, potentially due to the lack of

annealing of the contacts.

6.3.2 The Role of the Dopant

The layers of Ge considered in Section 5.5.1, consisting of p- and n-type dopants grown

at low and high temperatures, are here electrically analysed after they were formed into

mesa Schottky diodes. The physical analysis revealed that boron-doped p-type layers

have greater x-ray intensities compared to the antimony-doped n-type layers, whilst the

polycrystals of the p-type layers also appear bigger and leave a rougher surface. All

this is evidence that the small, light boron dopants induce less stress than the big, heavy

antimony dopants when they are incorporated into the SiC lattice. Hence, during growth,

the crystals can grow to a large size before misfit dislocations and other stress-induced

lattice faults prevent the crystals growing any bigger.

First of all, CTLM analysis was used to verify the ohmicity of the front and back

contacts and to compare the conductivity of the Ge layers. Using I-V analysis the effect

of the dopant on the layers was then analysed electrically.

It is worth repeating that the layers used here are all 300 nm layers, with the layers

varying only in dopant type and growth temperature an a 2 × 2 matrix of parameters.

The 300 nm n-type devices are those that were compared to the 100 nm n-type layers in

the Section 6.3.1.
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Figure 6.10: The CTLM I-V responses from the p-type Ge/SiC sample grown at 500oC.
Inset: Microscope images of the corresponding CTLM structures

6.3.2.1 CTLM Analysis

The ohmicity of the Ni-Ge layers can be verified using the techniques described in Section

4.3.3, confirming that the only rectifying action within the devices occurs at the Ge/SiC

interface. The contact resistivity (ρc) and the sheet resistance (Rsh) can both be extracted

from the CTLM measurements, of which a typical set is shown in Figure 6.10, taken at

room temperature using the Agilent B1500A parameter analyser. ρc can be used to

calculate the resistance of the Ni-Ge interface, whilst Rsh denotes the resistance of the

Ge layer. These values may be extracted from I-V measurements taken from each of the

CTLM structures using a spreadsheet to handle the extraction of the transfer length and

the complex mathematics of Equation 4.12 with its associated Bessel Functions.

The contact and sheet resistance of all the Ni-Ge contact layers considered here are

displayed in Table 6.1 and shown graphically in Fig. 6.11. The results clearly divide

along crystallinity lines with the high temperature, polycrystalline layers forming the
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Figure 6.11: The contact resistivity and sheet resistances of four Ni/Ge layers as
extracted using CTLM structures.

interfaces with the lowest resistance. All the contacts were proven to be ohmic, with the

high temperature layers’ contact resistivity of the order of 1 × 10−3 Ωcm2. The sheet

resistance of the p-type layer is over 25 times less than that of the n-type layer. This is

most likely due to the greater incorporation of the dopant within the lattice that leads to

large polycrystals and few grain boundaries.

The contact resistivities presented here are reasonably high, and will undoubtedly

contribute to the series resistance of the I-V characteristics. The large values are due to

the relatively low temperature anneal carried out. A higher temperature anneal (900-

1000oC) could reduce the contact resistivity of the Ni/SiC interface to a value as low as

1 × 10−6 Ωcm2 [106]. However, a higher temperature anneal would affect the physical

characteristics of the Ge layers, reducing the effects of the MBE deposition temperature,

which we are trying to observe.
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Diode n200 n500 p200 p500

Rq (nm) 2.1 6.7 3.5 30

ρc (Ωcm2) 2.8 4.93e-4 5.8 1.37e-3
Rsh (Ω/¤) 2.1M 1262 1.8M 48.8
η 1.103 1.039 1.071 1.047
ΦB,n (eV) 1.085 1.094 1.119 1.127
Ron,sp (mΩcm2) 474 18.3 26.6 17.3
VB (V) 150 250 150 250

Table 6.1: The electrical properties of the 300 nm Ge/SiC heterojunction diodes, as well
as the surface roughness (Rq) from the Section 5.5.1 for reference. The diode names
refer to the doping type (n or p) and the deposition temperature (200oC or 500oC).

6.3.2.2 I-V Analysis

Typical current-voltage (I-V) results, taken from the Ge/SiC heterojunction diodes at

25oC, are shown in Figure 6.12. From this data the ideality factors and Schottky barrier

heights have been extracted using the techniques described in Section 4.3, and summarised

in Table 6.1. The specific forward resistance was extracted from the graph in the inset

of Figure 6.12 by taking the gradient (dV/dJ) at the linear region of each curve. All

the heterojunction diodes approach perfect ideality factors, 1.1 being the highest value,

with both the polycrystalline diodes having values under 1.05. The barrier heights (ΦB,n)

were all between 1.05 and 1.15 eV, and the specific forward resistance (Ron,sp) of the

polycrystalline diodes was below 20 mΩcm2. These results compare well with the state

of the art Ni/SiC diodes, which will be shown in Section 6.3.4.1. The breakdown voltage

(VB) of the polycrystalline diodes was over 250 V , with this expected to vastly improve

with the addition of passivation and proper junction termination.

Fig. 6.12, displays the strongest argument for opting for the polycrystalline layers

formed from the higher deposition temperature of 500oC. The amorphous layers have a
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Figure 6.12: I-V analysis comparing dopant type and deposition temperature. The
logarithmic and linear (inset) responses are plotted.

much larger specific forward resistance due to the large number of grain boundaries that

slow the progress of an electron through the material. A better solution for overcoming

the surface roughness seems to lie in post deposition polishing, such as has been carried

out on SiC surfaces [80].

In comparing the dopant types, it is not surprising that the p-type layers have a lower

specific on resistance than the n-type layers, considering the difference in poly-crystal

grain size already discussed. What is more interesting about the differing dopant types is

the complete lack of differences between the two, especially in the high temperature layers.

They both turn on in a near ideal fashion, with only about some 40 mV gap between the

two in a distinctly unipolar, Schottky manor. What is more, the SBHs extracted are only

33 meV apart.

The unipolar action in the p-N devices deserves an explanation, as one might expect

some bipolar action. This can be attributed to a high barrier to holes, similar to that

reported in Si/SiC heterojunction devices [19,20]. This is further demonstrated in Figure
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6.13, where the band diagrams of the p-N Ge/SiC structures are shown before and after

the bands align. Given the vast 3.25 eV bandgap of SiC, and a SBH of 1.1 eV taken from

the experimentation, there is already another 2.15 eV between the Ge Fermi level and the

SiC valence band before the layers enter equilibrium. This gets larger as the SiC bands

bend downwards to align the Fermi levels, and hence there is an even greater barrier to

electrons.

Figure 6.13: The band diagrams for p-N Ge/SiC heterojunction before and after
alignment.

The near identical turn-on and SBH values across the p-N and n-N barriers has sig-

nificant implications, suggesting that the Ge is pinned within the SiC bandgap such that

the doping has no effect on the characteristics. In Section 6.3.1.2 the evidence of surface

states at the interface are a further indicator that Fermi level pinning may be occurring.

Whilst interesting, Fermi level pinning is quite an in-depth subject that is an aside from

the comparison of layer types presented in this Chapter, hence it will be addressed fully

in Section 7.3.
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6.3.3 Intrinsic Ge Diodes

The final MBE structures analysed in this Chapter are thick layers of intrinsic Ge (iGe).

Layers 500 nm and 1 µm thick were deposited without any intentional doping. The thicker

layers were grown at high and low temperature, while the single thinner layer was grown

at high temperature. All the layers were topped with a high temperature, 100 nm highly

n-doped layer (5 × 1019 cm−3) in order to form an ohmic contact with the metal. C-V

analysis will first be used to assess how ’intrinsic’ these structures turned out to be, given

that it is a virtual impossibility to reduce unintended doping to zero. Secondly the I-V

results of the structures will be compared.

6.3.3.1 Intrinsic or lightly doped?

One caveat to the term intrinsic used here, is that MBE deposition is a somewhat dirty

process, and stray, unintentional dopants are likely to have contaminated the layers to a

degree. Two ways to check the doping of the layers involve the C-V techniques introduced

in Section 4.3.2. Although significant doubt has been cast upon the use of 1/C2-V analysis

in the previous Sections, taking a tangent to the sloping profiles should still be adequate to

give a ’ballpark’ indication of the doping. An example of this, taken at room temperature

and 100 kHz, from the 1 µm high temperature iGe diode, is shown in the inset of Figure

6.14, where both n-type and p-type dopants contribute capacitance slopes either side of

zero volts. Extracting the doping from these slopes, furthest away from zero, results in a

doping in the region of 4×1017 cm−3. The presence of both dopant types in equal measure

suggests that the most likely source of this doping is contamination from the MBE. The

absolute value of this does seem high; however.

A second technique was used to assess the doping profile of the 500 nm high tem-

135



6.3 Electrical Analysis of Heterojunction Layers

0 200 400 600 800 1000
1x1014

1x1015

1x1016

1x1017

1x1018

1x1019

-2 -1 0 1 2
0

2

4

 500nm iGe Doping Profile

 

 

D
op

in
g,

 N
D
 [c

m
-3
]

Depth, x [nm]

 1 m iGe C-V Profile

 

 

qA
2

G
e

0/2
C

2  [f
F-2

]

Voltage, V

Figure 6.14: Capacitance-voltage results of a 1 µm thick, high temperature intrinsic
Ni/Ge/SiC diode prepared in a 1/C2-V plot. Inset: The doping profile of the 500 nm
thick, high temperature intrinsic Ni/Ge/SiC diode as extracted from a C-V sweep.

perature iGe diode, a sample from which the C-V results were inconclusive. Originating

from [65], and introduced in Section 4.3.2.1, this technique gives an effective doping pro-

file, which is approximately the sum of the two dopant types at that point, though this

is approximately equal to the majority carrier profile when n >> p or vice versa. This

means that one cannot differentiate the dopant types and hence the MBE contaminating

species using this method. The doping profile of the diode is shown in Figure 6.14 shows

a region of high doping 100-150 nm from the surface, as expected with the 100 nm highly

doped cap layer forming an ohmic contact to the metal. This then drops away to a value

of approximately 5× 1014 cm−3 for 500-600 nm, before raising again to a value just above

1× 1015 cm−3, approximately that expected from the SiC. This is the profile that would

be expected from this structure, and therefore it may suggest that the doping figure taken

from the 1/C2-V technique is just an average over the top few hundred nanometers of Ge.
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However, given the evidence of p-type dopants to a similar level as n-dopants, the value

of 5× 1014 cm−3 for the Ge bulk is likely the product of both dopant types.

6.3.3.2 I-V Results

The current-voltage plots for the three intrinsic Ge diodes are shown in Figure 6.15 along

with that of the high temperature 300 nm Ge/SiC diodes from the last Section for com-

parison. The Figure shows that like the highly doped layers, the intrinsic layers are all

turn on at around 0.3 V, though there is clearly quite a difference in performance between

the best 500 nm iGe diode and the 1 µm iGe diodes. The properties extracted from these

diodes are listed in Table 6.2. The 500 nm diode produced an ideality factor of only 1.026,

with a series resistance of 12.2 mΩcm2, which represents the best performance of any of

the diodes so far. The 1 µm diodes appear to be plagued by high resistance and ideality

factors that exceed most of the other diodes.

Figure 6.15: Current-voltage results of the intrinsic Ni/Ge/SiC diodes in both log-linear
and linear (inset) format.
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The previous Chapter revealed the difference in grain size and surface roughness be-

tween the thin and thick high temperature intrinsic diodes, the 500 nm iGe layer having

an rms roughness of 30 nm, compared to 45 nm rms for the 1 µm iGe layer. The inset of

Figure 6.15 now shows the vast difference in series resistance between the layers, which

could be explained by the impact of a less homogeneous Ni/Ge interface with increased

surface roughness. Alternatively, it could well be that the threshold was reached, whereby

increasing the thickness of the Ge layer stops benefitting the overall system due to the Ge

forming into larger crystals, and begins simply adding more resistance and grain bound-

aries. However, it seems most likely that the biggest single influence on the poor 1 µm

iGe diodes will have been the immaturity of the processing, as the 500 nm diodes were

produced a long time later, with a much more refined and elegant fabrication process.

Dopant n n p p i i i
Dep. Temp. (oC) 200 500 200 500 500 300 500
Thickness (nm) 300 300 300 300 500 1000 1000

Rq (nm) 2.1 6.7 3.5 30 32 6 45

η 1.103 1.039 1.071 1.047 1.026 1.120 1.082
ΦB,n (eV) 1.085 1.094 1.119 1.127 1.086 1.040 1.153
Ron,sp (mΩcm2) 474 18.3 26.6 17.3 12.2 36.9 35.3

Table 6.2: The electrical properties of the intrinsic Ge/SiC heterojunction diodes,
compared to the 300 nm n- and p-type Ge diodes. The surface roughness (Rq) from the
Section 5.5.1 is included for reference. η is the ideality factor, ΦB,n the SBH and Ron,sp

the specific on-resistance.

Comparing now the best iGe layer to the best highly doped layers, the series resistance

of the intrinsic layer is evidently a little lower. The reason for this is most likely the reverse

argument of the previous paragraph, whereby the thicker 500 nm layer is allows the Ge

more space to relax and form into bigger crystals, or, that the huge reduction in dopant
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concentration is allowing the Ge adatoms a more stress free environment in which to

develop. Given the reasonably small decrease in the resistance from the p-type layer

to the n-type layer, an increase in surface roughness by 2 nm appears to back up this

hypothesis.

6.3.4 Benchmarking to SiC SBDs

The best MBE Ge/SiC diodes considered within this Chapter in terms of forward resis-

tance, blocking voltage, leakage current and ideality factor were those grown to a thickness

of between 300 and 500 nm, at the higher temperature of 500oC. In this Section, these

high temperature Ge/SiC diodes, which were formed from intrinsic, p-type and n-type

Ge, will be compared to SiC metal/semiconductor Schottky Barrier Diode results taken

from the literature.

6.3.4.1 The Model Diodes

The diodes considered here [91–94] originate from four different groups and feature devices

designed for high voltage blocking and those rated at a lower voltage but with a much

lower specific-on resistance. The results are showed in Figure 6.16.

As suggested in Section 2.4 and Appendix A.6, a trade off exists between blocking

voltage and series resistance due to the thickness of the epi-layer. This is shown in its

extreme when, 10 years ago, the then brand new material, SiC, was being pushed to its

limits. Singh et al [94]produced a 5 kV SBD, formed from a 50 µm epitaxial SiC layer

doped at 5 × 1014 cm−3. The authors of this work claimed a specific on-resistance of

17 mΩcm2; however, a simple fit to their data using the ideal diode equation suggests

that a figure of 45 mΩcm2, may be more accurate. Made using a Ni contact, this is one

of the reference diodes displayed in Figure 6.16. Another more extreme example [107],
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(a) Ideality Factor and SBH Profiles.

(b) Resistance Comparisons.

Figure 6.16: A comparison between the Ni/Ge/SiC diodes and SiC diodes found in the
literature [91–94].
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not shown here, was a 10 kV device produced from a massive 115 µm epitaxial SiC layer

doped at 5× 1014 cm−3. The price paid for this was the specific on-resistance, which was

up at 97.5 mΩcm2.

At the other end of this trade-off is the work by Chang et al [92], who used a 10 µm

epitaxial SiC layer doped at 3 × 1014 cm−3, - very similar substrates to those used to

produce the Ge/SiC heterojunction diodes. Conducting a study that optimised the use

of floating metal rings to distribute the electric field at the SiC surface, they achieved a

breakdown close to 1 kV for a Ni/SiC diode at a specific on-resistance estimated to be as

low as 1.75 mΩcm2. Similarly impressive on-resistance values were achieved for titanium

and aluminium contacts, and these are also shown in the Figures.

Two other SBDs are presented in Figure 6.16, the details of which are listed in 6.3.

Vassilevski et al [91] produced a 3.4 kV SBD from a 20 µm epi-layer at 16 mΩcm2. Finally,

for a comparison across polytypes, a 6H-SiC SBD produced by La Via et al is also included.

Their 4 µm epi-layer produced an on-resistance of 17 mΩcm2, but breakdown is not stated.

Diode nGe pGe iGe Ni [94] Ni [91] Ni [93] Ni [92] Ti [92] Al [92]
Epi (µm) 10 10 10 50 20 4 10 10 10
Epi ND (cm−3) 1.4e15 1.4e15 1.4e15 7e14 3e15 2.8e15 3.5e15 3.5e15 3.5e15

VB (V) 250 250 – 5k 3.4k – 900 850 600
Ron,sp (mΩcm2) 18.3 17.3 12.2 17/45* 16* 17* 1.75* 3* 1.8*
η 1.039 1.047 1.026 1.1 1.1* 1.07 1.163 1.094 1.176
ΦB,n (eV) 1.094 1.127 1.086 1.41 1.4 1.30 1.38 0.99 0.77
ρc (Ωcm2) 5e-4 1.e-3 – – – 4e-5 – – –

Table 6.3: The best Ge/SiC heterojunction diodes compared to Ni/SiC SBDs taken
from the literature as follows: a) Singh [94], b) Vassilevski [91] c) La Via [93] d)

Chang [92]. VB is the breakdown voltage, Ron,sp the specific on-resistance, η the ideality
factor, ΦB,n the SBH and ρc the contact resistivity. Parameters with the * are estimated

from fitting parameters.

Considering the very experimental nature of the Ni/Ge/SiC structures, these devices
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do not look out of place amongst these metal-semiconductor devices. All three Ni/Ge/SiC

structures produce an ideality factor below 1.05, lower than all the diodes taken from the

literature. This indicates that thermionic emission dominates the transport of carriers

over the heterojunction interface, as predicted by the diode equation of Equation 3.12.

The best heterojunction diode has an on resistance of just 12.2 mΩcm2, which compares

favourably with La Via [93] and Singh’s [94] diodes, though they fall behind the other

diodes employing a 10 µm epi layer. This is however in light of a number of imperfections

such as grain boundaries and poor contact resistivity, the improvement of which will

lower this resistance further. Considering the ohmicity of the contacts, the p- and n-type

Ge/SiC devices are respectively 2 and 1 orders of magnitude higher than that reported

by La Via et al [93]. Having proven that high temperature layers produce good diodes,

experimentation with post MBE anneals is a future project that will produce better

Ni/SiC back contacts and Ni/Ge front contacts.

However, the heterojunction diodes simply cannot compete in terms of breakdown volt-

age. Proven in extensive studies on oxide/poly-Si [108–110], such rough surfaces and the

large number of grain boundaries promote the build up of an electric field at the surface,

diminishing breakdown and causing leakage through the oxide layer. The Ge/SiC struc-

tures also suffer from their very simple structure. For ease of fabrication, these devices

were formed from very simple mesa-etched dots that required just one photolithographic

mask level to produce. The devices from [91, 92, 94] in Table 6.3 involve the use of edge

termination, whilst [91] also employs surface passivation. Boron implants in [91, 94] are

used to form their junction termination extensions (JTE) adding complexity, mask levels

and cost. The lack of such an edge termination in the Ge/SiC devices explains the low

breakdown values as the spreading of the electric field across the surface is unabated and

the devices are allowed to breakdown at the weakest point, the contact edge. A potential
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device structure including JTEs is shown in Figure 6.17. The potential is clear in these

structures to block a significant voltage, as 250 V is not insignificant. What is also greatly

encouraging, is the results of Si/SiC heterojunction diodes [19,20], that managed to block

1600 V using the same 10 µm SiC epitaxial layers but with JTEs and field plates. It

seems likely that Ge could reach very similar levels given these more advanced processing

techniques.

Figure 6.17: A heterojunction SBD with Junction termination extensions.

There are two further mitigating points for the breakdown results. The barrier height

for these devices is around 75 % that of a Ni/SiC Schottky diode and the effect that this

has can be witnessed in Table 6.3. Chang et al’s aluminium and titanium diodes with

barrier heights of 0.77 and 0.99 eV respectively give rise to breakdown voltages of 600

and 800 V. Given a barrier height of 1.1 eV, the 800 V figure should be a minimum figure

achievable by the Ge/SiC diodes. However, the final mitigating point is that the use of

Ge most likely has an impact on the breakdown values as well, being that it has a critical

field only one tenth that of SiC.
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Of course, with funding, facilities and time, exploration into the use of post deposition

polishing and edge termination techniques ought to be explored to maximise the break-

down values of these devices. However, one reasonably cheap way to achieve such a result

will be to employ the floating metal ring edge termination, which features in Chang et

al’s work [92]. Claiming an increase in breakdown voltage of 142 %, their very simple

design looks possible to implement in only one mask layer.

6.3.5 Si/SiC Results

Figure 6.18 shows the I-V results of the wafer bonded Si/SiC diodes compared to MBE

Si/SiC diodes taken from [14, 15]. The metal contact to these layers was formed using a

mercury probe, therefore the results do not stand up in comparison to the Ge/SiC diodes.

Taking first the wafer bonded samples, the results indicate a huge series resistance and a

meagre reverse characteristic. However, given the experimental nature of these structures,

that they were formed via wafer bonding it is quite an achievement to see that they

produce a Schottky-like response. It even produces a reasonable turn on characteristic,

free of the bumps that plague the MBE formed layers. With an ideality factor of 2,

recombination dominates in these structures.

In Section 5.4, high temperature layers were shown to form non-uniform layers with

large islands at thicknesses up to 3 µm. This means that any metal placed on the substrate

surface will be contacting both Si and SiC at the same time. This accounts for the turn-

on characteristics of the MBE high-temperature (900oC) Si/SiC diode, where the many

bumps that appear in the I-V response as the device is turning-on represent the differing

Ni/Si/SiC and Ni/SiC SBHs. Also, the low temperature Si/SiC diode has a large leakage

current.
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Figure 6.18: A comparison between the wafer bonded Si/SiC diodes and MBE Si/SiC
diodes found in the literature [14,15]. In this log-linear format, the ideality factors and

the SBH dictated turn-on voltage can be compared.

Undoubtedly these results would improve with full processing using Ni front and back

contacts. The series resistance would drop and a more homogeneous metal-semiconductor

interface may prevail. However, it is highly doubtful that they would match the the

Ge/SiC results due to the non-uniformity and poor coverage achieved by the MBE device

and the inhomogeneous heterojunction interface of all the Si/SiC layers.

6.4 Summary

Central to this thesis, the work in this Chapter has seen the heterojunction layers of MBE

Ge/SiC and wafer bonded Si/SiC formed into heterojunction diodes through the imple-

mentation of ohmic front and back contacts and a mesa etch. The MBE diodes performed
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well, producing devices that compared very favourably with SBDs found in the literature.

The intrinsic and p-type diodes in particular gave a low specific on-resistance and an

exceptional ideality factor indicating that thermionic emission dominates the transport

of carriers over the heterojunction interface. A barrier height of approximately 1.1 eV for

all the diodes mean that they require less voltage to turn on in comparison to a standard

Ni/SiC SBD. This is likely to come at a cost and there is likely to be an impact on leakage

current and maximum achievable breakdown.

Comparing between Ge layer types, the influence of deposition temperature, layer

thickness and dopant type became evident and parallels nicely with the results from the

physical section. The general trend appears to be that the layers formed from the fewest

and largest polycrystals tend to form the best layers, most likely due to the reduced num-

ber of grain boundaries and the better interaction with the SiC surface. Evidence for this

was seen in this Chapter as polycrystalline layers significantly outperformed amorphous

ones and as the rougher intrinsic and p-type layers out-performed their n-type counter-

parts, most likely due to the physical size of the dopant atoms in the Ge lattice. The

one caveat to the “bigger is better” crystal theory seems to come in the layer thickness.

The biggest single crystals were evident in the thinnest, 100 nm layers; however, the fact

that these had not at this thickness merged to form a uniform layer, meant that a patch

contact was formed and the results were poor. Also there appeared to be an optimum

thickness, somewhere between 300 and 500 nm, where it seems the increasing thickness

only adds resistance despite the increasing surface roughness and crystal size.

6.5 Conclusions

1. Ge/SiC layers formed via MBE produce very ideal turn-on characteristics with a
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consistent barrier height of 1.1 eV. The lowest on-resistance is produced by the layers

with the least grain boundaries, grown at high temperature and with physically small

(or even without) dopants.

2. The rough surfaces and the lack of edge termination, passivation or other techniques

promote the build up of an electric field, and hence the low breakdown values.

3. The use of C-V techniques in heterojunction analysis was seemingly discredited as

the presence of interface states between the semiconductors added non linearities to

the 1/C2 - V plots.
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Chapter

7
Inhomogeneities, Surface States and

their Impact on the Heterojunction

Interface

7.1 Introduction

Heterojunctions are prevalent throughout the semiconductor industry, occurring in ap-

plications including lasers, solar cells and many modern transistors such as HEMTs and

those employing strained Si. Therefore, some of the issues raised in the last Chapter,

such as SBH discrepancies and Fermi level pinning have a much wider impact than being

refined to just these SiC devices. Therefore, with this in mind, the focus of this PhD

thesis shifts from the production of power devices to the explanation of the device physics

- an attempt to solve the materials science problems that impact the wider semiconductor

community.

It must be pointed out that Ge/SiC is an extreme example in most senses, espe-

cially when compared to more common heterojunction structures such as Si/SiGe and

GaAs/AlGaAs. The large lattice mismatch leads to polycrystalline lumps of Ge covering

the SiC surface, hence the defects and the roughness of the layers produce countless inho-

mogeneities at the interface. Furthermore, the conduction band offset and hence the SBH
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between the layers, is also huge, the SBH regularly being measured via I-V techniques

at 1.1 eV. However, it is in this extreme example with its large SBH and inhomogeneous

nature that techniques have been refined to quantify both.

This whole Chapter sets out to answer the lingering questions from the last Chapter by

analysing in great detail the interface between the layers. Firstly, the I-V/C-V discrepancy

is revisited using detailed analysis techniques to quantify a large distribution of SBH values

at the interface. Next, in Section 7.3, Fermi Level pinning of the SiC layer is cited as the

reason why the SBHs extracted are so large, when the Schottky Mott principle states it

should be so much lower. In Section 7.4, the question is raised of why the p-type and

n-type Ge layers produce such consistent SBH values. A Pinning Model is proposed that

explains the behaviour of these seemingly inseparable layers, showing that they can indeed

be separated when one looks at their reverse bias characteristics.

Of course, many of these questions have already been answered in the far more familiar

setting of the metal-semiconductor interface. Many studies over the last 50 years have

quantified the Fermi level pinning of these Schottky barrier devices [70, 111–113] and

likewise Tung’s papers on SBH fluctuations at these interfaces [70, 100–102], are seminal

works. Here, this existing work is built upon, changing the boundaries by considering two

semiconductors in contact, each with their inhomogeneities, surface states and surface

band bending, and consider how they interact in intimate contact.

Throughout this Chapter the 300 nm, p-type Ge layer grown at 500 oC on n-type

4H-SiC will remain the benchmark sample, on which all the proceeding theory is tested.

The techniques have been verified on the other heterojunction diodes, and their results

shall also be reported.
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7.2 Ge/SiC SBH Fluctuation

In Chapter 6 a number of discrepancies arose, chief amongst these being that a SBH

extracted from C-V analysis always exceeded one taken via I-V analysis. The reason for

this can be partially explained by the non-linearities within the C-V plot, which discredits

the accuracy of this technique. However, in devices that are not inhomogeneous to this

degree, this SBH discrepancy still arises. Indeed, a polynomial line of best fit to any of

the C-V results in Section 6.3.1.2 still produce C-V SBH results that are greater than the

I-V results.

The reason for the discrepancy can be very easily explained: Quite simply, there is no

one SBH at an inhomogeneous interface and instead one should consider the interface as

an array of patches of varying SBH. Without actually passing current through the device,

C-V techniques look at this entire interface and produce an average value. I-V techniques

involve a significant current passing over the interface, and as such, the carriers find the

path of least resistance, i.e. the lowest barriers. This situation naturally leads to some

questions, namely: Which is correct? Can the fluctuations be quantified? What impact

does this have on our devices? In this Section, these questions are answered using various

techniques to quantify the fluctuations, resulting in an array of information about the

interface.

I-V/C-V discrepancies and SBH fluctuation is not uncommon in SBH extraction, with

this phenomena having been explained at length in several metal-semiconductor studies

over the last two decades [100–104,114–117], with inhomogeneities at the interface always

being cited as the cause for the error. Despite the comprehensive treatment of this subject,

it was obvious that this had never before been reported for heterojunction structures, and

hence a novel opportunity arose to adapt this technique for use in heterojunction devices.
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7.2.1 Inhomogeneities and their Impact on the Interface

Inhomogeneities are imperfections at the interface between two intimate materials. They

are borne from the surface not being atomically flat due to grain boundaries, multiple

phases, facets and defects [116]. Other sources of inhomogeneity include non-uniformity

within the doping profile [103] and residual materials left over from processing [104] cre-

ating interfacial states between the surfaces.

Figure 7.1: a) The band diagram of an inhomogeneous Ge/SiC heterojunction extended
into three dimensions, showing the potential fluctuation in the SBH. b) The interface as

it is perceived here, with patches of varying SBH sitting in a background mean SBH
value.

Inhomogeneity at the interface of two materials causes spatial fluctuations in the

SBH to occur. Figure 7.1a, represents this by extending the band diagram into three

dimensions to effectively include a 1-dimensional profile of the SBH variation. Extending

this idea further, one may imagine the heterojunction interface as in Figure 7.1b. Against

a background, mean SBH value (Φ0), patches of varying SBH are present [100–102], the
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physical size of which are considered to be small compared to the depletion width of the

semiconductor [117]. Over an entire contact, the SBH is assumed to have a Gaussian

distribution with a standard distribution (σ) about Φ0 [101–103, 114, 116]. Given this,

many patches exist with a SBH significantly lower than the mean value, which explains

the I-V and C-V analysis discrepancy. When finding a path through the interface of

the two materials, the carriers choose the path with the lowest barrier to overcome, the

result being that the I-V analysis yields a lower than average barrier height. C-V analysis

considers an average value over the whole interface, therefore this value is very likely to

be closer to Φ0 [103, 114]. Ballistic electron emission microscopy on Pd/6H-SiC barriers,

has recently confirmed the presence of a nanometer scale distribution of SBH [118], whilst

conductive atomic force microscopy has also been used to map inhomogeneities on Au/4H-

SiC samples [119].

The origins of inhomogeneous Schottky barrier research dates back to the 1960’s

when non-linearities within the classic Richardson plot (a technique introduced in Section

4.3.1.2) hindered the extraction of the correct SBH and Richardson constant (A∗∗) [120].

This became known as the T0 effect whereby it was found that adding a temperature

constant into the thermionic emission equation the plot would linearise and aid in the

extraction of the SBH. It is now known that at an inhomogeneous Schottky Barrier, the

SBH will rise and the ideality factor drop as the temperature is lowered due to the junction

current becoming dominated by fewer low SBH patches [100–102]. This SBH tempera-

ture dependence is what causes the non-linear Richardson Plots. Many solutions were

suggested to return linearity to the plots [120–122] before the link with inhomogeneities

was made [101,103,114,123].

Two techniques exist to modify the classic Richardson plot to information about the

barrier height, taking into account the inhomogeneous patches of low SBH that dominate
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the I-V extraction. The first involves the presumption that the majority of current flows

over the few smallest barriers, and hence the experimental I-V-T data is simulated using

lower SBH values and smaller areas. The second technique uses Gaussian statistics to

extract a distribution of barrier heights surrounding a mean SBH value (Φ0), which is

considered close to that extracted by C-V analysis [103,114].

In Sections 7.2.3 and 7.2.4, these techniques will be explained in greater detail and

used on the Ge/SiC diodes to attain the relevant SBH values. First however, the classic

techniques introduced in Section 4.3.1.2, including the unmodified Richardson plot, will

be applied to our test sample to produce more information on it.

7.2.2 The Extraction of the SBH via Classic Techniques

The two techniques introduced in Section 4.3.1.2 allow us to exploit the temperature

dependence of the diode equation parameters to produce further information about the

300 nm, n-type Ge layer grown at 500 oC on n-type SiC. The starting point for all the

analysis is the extraction of information from I-V-T plots of the sample. Figure 7.2 shows

the I-V plots and the SBH and ideality factor values extracted from it, plotted against

the relevant temperature.

The diode equation of Equation 3.12 is repeated here for ease.

I = AA∗∗T 2e−βΦ0
B,n

(
e

βV
η − 1

)
. (7.1)

The values of A, A∗∗, T and β (β = q/kT ) are all known prior to any testing, making

them fixed. Φ0
B,n and η can both be determined from a single I-V plot; however, the

temperature dependence of both dictate that the value extracted will only be accurate at

the temperature of measurement. This dependency is evident when analysing the SBH
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Figure 7.2: a) the I-V-T plots of the 300 nm, n-type Ge layer grown at 500 oC on n-type
SiC (Repeated from Figure 4.5) and b) the extracted ideality factors and SBH values

plotted against temperature.
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and ideality factor values of Figure 7.2(b), where η decreases and Φ0
B,n increases with

increasing temperature over the range tested. At 25oC, the ideality factor of this device

was 1.145 proving that it is a contact of good quality. ΦIV at 25oC is 1.056 eV.

Plotting the barrier heights against their respective ideality factors as shown in Figure

7.3 displays the linear correlation between the two. Extrapolating a linear fit of the data

to η = 1 reveals the theoretical barrier height of an ideal diode, Φη=1. As such this should

represent a maximum SBH in the region of Φ0, representing an ideal interface with no

SBH fluctuation. Indeed, when Schmitsdorf et al [69] first reported this relationship, they

referred to the ideal barrier height as the homogeneous barrier height. Extrapolation to

η = 1 in Figure 7.3 provides an ideal barrier height of Φη=1 = 1.163 eV. Analysing the

data in Figure 7.3, the technique appears to break down when the temperature rises above

100oC and the diodes appear to reach an ideality factor minimum and a SBH maximum.

Introduced in Section 4.3.1.2, another technique used to extract information about

the barrier height is the Richardson plot, with ln (Js/T
2) plotted against the inverse

temperature, where Js = Is/A. Figure 7.4 shows the Richardson plot for the Ge/SiC

heterojunction diode where φRich was found to be 1.069 eV. Unfortunately, this SBH

represents little more than average of the individual SBH values extracted from Figure

7.2(b) as this technique does not consider the temperature dependence of the SBH. The

weakness of this technique is further revealed when one considers that the Richardson

constant A∗∗ extracted from the Y-intercept of Figure 7.4 was 50.368 Acm−2K−2. This

is approximately one third that of the calculated figure [124] of 146 Acm−2K−2, though

the method for calculating this value has been disputed [125].

Whilst seemingly meaningless now, the Richardson plot does have a role to play.

However, it must be modified to remove the non-linearity. It is therefore necessary to
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Figure 7.3: With the barrier height plotted against the ideality factor, the extrapolation
to η = 1 via a linear fit gave the ideal barrier height Φη=1 = 1.163.

use the techniques presented in Sections 7.2.3 and 7.2.4 to facilitate the extraction of

temperature independent values, taking into account the patches of low SBH hidden

amongst the mean values.

7.2.3 The Extraction of the Effective Barrier Height

This method of extracting the SBH presumes that within an inhomogeneous contact, the

distribution of low SBH patches that contribute to I-V analysis can be represented by one

common SBH, Φeff , and that all the current passing through the device does so only over

these patches. The value Φeff is representative of the SBH whenever the diode is being

used in any practical situation.

Considering the interface represented in Figure 7.1b, a Gaussian distribution of SBH
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Figure 7.4: An unmodified Richardson plot, ln (Js/T
2) vs 1000/T . A SBH, φRich, of

1.069 eV was extracted from the slope of the linear fit, which also produced a
Richardson constant of 50.368 Acm−2K−2 from the Y-intercept.

values around Φ0 will mean that there are a lot of patches with a SBH approximately

equal to Φ0, many with a little lower SBH and very few with much lower SBHs. As

carriers pass over this interface, they are naturally seeking the path of least resistance

and hence the patches with the lowest barriers are used preferentially. Using this logic, a

simulation technique was designed that involves replacing A and Φb,n in the thermionic

emission equation with modelling parameters, NAeff and Φeff , such that Equation 7.1

becomes,

I = NAeffA
∗∗T 2e−βΦeff

(
eβV/n − 1

)
. (7.2)

Here, Aeff represents the average area of a patch of low SBH, and N is the number of
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them in an area A. The product NAeff can be represented as a percentage of the original

area A, a value typically 1-5%. Φeff is an effective SBH, a value that is lower than Φ0, but

remains an average value of the lowest SBH values that are relevant to I-V analysis. These

parameters, shown graphically in Figure 7.5, are refined until they produce an accurate

fit to the experimental data. After a good fit is achieved, a Richardson Plot based on

Equation 7.2 is used to further refine the Φeff . Using this technique, the Richardson plot

becomes linear as only one temperature independent SBH value was used, which leads to

the extraction of an accurate value of A∗∗. This technique is based on work by Roccaforte

et al [104], which in turn is based on Tung’s model [100–102].

Figure 7.5: The interface as it is modelled, employing a number (N) of patches with
average area Aeff and average barrier height Φeff .

According to Tung [100, 101], the parameter Aeff is determinable knowing value of
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Φeff , being defined as

Aeff =
4πγ

9βψbb

(
Φ0

B − Φeff

)
(7.3)

where ψbb refers to the total band bending brought about by the built-in potential (ψbi)

and the applied voltage VA and γ = Ks/qND.

With Aeff joining the ranks of constants from Equation 7.2, three parameters remain

that can be used to manipulate a theoretical fit of the IVT data, namely N , Φeff and

η. Figure 7.6 shows graphically how altering each of these variables affects these plots.

Increasing the number of low SBH patches, N , allows more current to pass through the

device for the same voltage and hence the fits move upwards. Increasing the SBH, Φeff ,

causes a reduction in the current flowing over the barrier, hence a vertical drop in the

fits; however, being an exponential term, all the temperature fits also spread out away

from each other. Increasing the ideality factor, η, causes the resistance of the device to

increase, thus decreasing the gradient of the slope.

Figure 7.6 shows that selecting the correct balance of the variables N , Φeff and η,

provides a very good approximation to the linear fits of the experimental data. The values

of η used were those extracted from each individual I-V plot, as was illustrated in Figure

7.2. Once the fit is close to being correct the values of Φeff and N are used within a

modified Richardson Plot, which further refines these values producing a tighter fit. The

modified Richardson plot is achieved by rearranging Equation 7.2 to,

ln

(
Js

T 2NAeff

)
= ln (A∗∗)− qΦeff

kT
. (7.4)

The combination of the fitting process and the modified Richardson Plot facilitates a

closed loop system that hones in on a value of N and Φeff , that produces both a very

tight fit to the experimental data, and a linear Richardson plot that produces an accurate
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Figure 7.6: A graphical indication of how a theoretical model based on Equation 7.2 can
be used to simulate experimental data. The scattered shapes are experimental data

extracted from IVT measurements. The dashed lines are linear fits of the experimental
data extrapolated to Y=0. The solid black lines are the theoretical fits from Equation

7.2. The effect of altering the parameters N , Φeff and η in Equation 7.2 are also shown.

value of A ∗ ∗.
Using this method on the p-type, 500oC Ge/SiC diode, Φeff was found to be 1.028 eV

and N was 1.1× 107. As a result, at 25oC, Aeff was found to be 2.9× 10−9 cm2 and the

product NAeff represented 3.2% of the total area A. The resulting modified Richardson

Plot can be seen in Figure 7.7. The Richardson constant extracted was 142.3 Acm−2K−2.

The list of fitting parameters and results for all the diodes may be found in Table 7.1;

however η and Aeff are not included as they were temperature dependent values. The

ideality factors, though described as a variable above, were fixed to their experimentally
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Figure 7.7: The modified Richardson plots for the extraction of the effective SBH, Φeff ,
and the Mean SBH, Φ0. The y-axis represents respectively, ln (Js/T

2NAeff ) and
ln (Js/T

2)− 0.5β2σ2 vs 1000/T . An effective barrier height of 1.028 eV and a mean
barrier height of 1.174 eV were extracted.

extracted values. Aeff for each diode and temperature can be calculated from Equation

7.3. The technique was only carried out on those diodes with very ideal behaviour because

the equations, such as Equation 7.2, are based on the diode equation, which holds true

only for thermionic emission. At η >1.15, fitting via this technique became inaccurate.

The diodes tested all produced good fits, resulting in Φeff values lower than the

experimental results over a fraction of the area. The verification of the values came in the

form of the Richardson Constant, all of which produced values within experimental error

of the 146 Acm−2K−2
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Dopant n p p i
Dep. Temp. (oC) 500 200 500 500
Thickness (nm) 300 300 300 500

ΦIV (eV) @ 25oC 1.099 1.056 1.118 1.069

N 5.1e7 5.7e6 1.1e7 4.0e6
A∗∗ (Acm−2K−2) 140.8 148.4 142.3 144.6
A/NAeff @ 25oC 8% 1.3% 3.2% 1.4%
Φeff (eV) 1.033 1.012 1.028 0.928

A∗∗ (Acm−2K−2) 142.8 130.1 147.2 150.5
σ (eV) 0.0385 0.0846 0.0534 0.0649
Φ0 (eV) 1.126 1.254 1.174 1.121

Table 7.1: Properties of the Ge/SiC heterojunction diodes extracted via basic I-V
analysis (ΦIV ), the graphical fitting method (Φeff ) and the statistical fitting method

(Φ0).

7.2.4 The extraction of the mean barrier height

This technique uses Gaussian statistics to relate experimental values of SBH extracted

from I-V analysis, back to a mean SBH, Φ0. A value for the standard deviation of

the SBH over the entire interface is extracted from the experimental data before this is

used to modify the Richardson plot. Φ0 is analogous to the SBH extracted from C-V

analysis [103,114], that is, an average of the barrier heights over the entire contact, with

no SBH of any size contributing any more than any other. This is a method first described

in the paper by Song et al [114] and further built on by Werner and Güttler [103].

The amount of patches (dn) that will have SBH values falling between Φ0, and the

value of SBH measured from the individual I-V curves ΦB,n, has a Gaussian distribution

given by [103,114],

dn =
N

σ
√

2π
exp

[
−(Φ0 − ΦIV )2

2σ2

]
dΦ0. (7.5)
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where σ is the standard deviation of the distribution and N the total number of patches in

the area A. Song et al [114] show that the total forward current can be given by merging

Equations 7.1 and 7.5, and integrating, giving

I = AA∗∗T 2e−βΦIV +0.5β2σ2 (
eβV/n − 1

)
. (7.6)

The thermionic emission equation for current over the a barrier of mean SBH Φ0 is

I = AA∗∗T 2e−βΦ0
(
eβV/n − 1

)
. (7.7)

Combining Equations 7.6 and 7.7 and rearranging leaves

ΦIV = Φ0 − βσ2

2
. (7.8)

This allows the values of SBH measured from the I-V analysis to be plotted against the

inverse thermal energy, to extract σ and Φ0. This is shown in Figure 7.8 where the p-

type, 500oC Ge/SiC diode was found to have a σ of 0.0534 eV. The value of Φ0 extracted

was 1.176 eV. Verification of this value can be carried out using a Richardson plot after

Equation 7.6 has been rearranged to

ln

(
Js

T 2

)
−

(
β2σ2

2

)
= ln (A∗∗)− qΦ0

kT
. (7.9)

Figure 7.7 shows the resulting Richardson Plot where Φ0 was found to be 1.174 eV and

A∗∗ was 147.2 Acm−2K−2.

The results from this statistical technique are summarised in Table 7.1 along with the

other techniques. All the values were found to have Φ0 greater than the experimental val-
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Figure 7.8: The barrier heights extracted from I-V analysis plotted against the inverse
thermal energy. Φ0 is 1.147 eV and σ is 0.0534 eV.

ues, as expected. Interestingly, the one low temperature diode tested produces the greatest

standard deviation suggesting its interface, which will have the greatest number of grain

boundaries, might also have the greatest array of SBH values. As before, the Richardson

Constants produced were within close proximity to SiC’s reported 146 Acm−2K−2 value.

7.2.5 A comparison of the results

The various analysis techniques have produced an array of data that was summarised in

Table 7.1. The results for the p-type, 500oC Ge/SiC diode have been further analysed

graphically in Figure 7.9, where the effective area relevant to the two featured techniques

is plotted against the SBH. As well as the two SBH values from the techniques above,
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included in this plot are the experimental I-V and C-V values, ΦIV and ΦCV , and the ideal

barrier height Φη=1. This final value is representative of a SBH from an ideal (η = 1),

homogeneous diode [69] and as such, one would expect a uniform barrier height over

the interface, with no patches of low, or high SBH. As such, the value of Φη=1 should

be close to the mean background SBH and also represent a theoretical SBH maximum

for the diode in question. Reassuringly, the value of Φ0 extracted from the Gaussian

technique is very close to Φη=1, somewhat validating the technique. With the exception

of the consistently erroneous ΦCV , all the SBH values fall beneath Φη=1. As expected, the

effective barrier height, Φeff a product of only 3% of the total contact area produces the

lowest SBH at 1.033 eV due to the current transport over only the lowest barriers. Φeff

can be considered the most relevant of the SBH values as it demonstrates what happens

when the diode is being used in its day-to-day application. This was demonstrated in

Figure 7.6, where Φeff was employed to produce an accurate fit to the experimental IVT

data.

The theory [103,114] indicates that the values of ΦCV and Φ0 values should be very as

the statistical measures employed in calculating the mean SBH should compensate for the

patches of low SBH. However, the SBH extracted from C-V analysis was 1.38 eV, a value

much higher than the relatively consistent values of Φ0 and Φη=1. This does not help

corroborate this analysis but is in itself a reflection on the weakness of the C-V analysis

as it was described in Section 6.3.1.2.

Having presented all the techniques, a single obvious question remains: Which tech-

nique is right?! Quite simply they all are (perhaps with the exception of ΦCV ), and one

needs to consider very carefully the reason they need the value and the mechanisms in

use. If building a current voltage model ΦIV is perfectly valid, provided that it is not used

at any other temperature than the one it was extracted. If temperature is to be used in
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Figure 7.9: A comparison of the SBH extraction techniques, showing the effective area
percentage that each barrier height occupies within the total area A.
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the model then it should be altered to use Φeff and NAeff , ensuring that the diodes in

question are ideal. If they aren’t ideal, then a similar modification as the one presented

in Section 7.2.3 would need to be carried out on the current transport mechanism in

question, be it from TFE, FE, or recombination/generation. Of course for a model not

concerned with the direct transport of current over the boundary, then Φ0 is the most

relevant. This is the only one that gives a realistic picture of the interface due to its

statistical distribution, above and below the mean value; however it has little relevance

to the practical situation most diodes are used in.

One interesting experiment which must go down as future work will be to confirm the

variation of the barrier height at the Ge/SiC interface through the use of conducting-

AFM, which could give a 2-dimensional map of barrier heights across the surface. Similar

was done to confirm fluctuations at the Au/SiC interface [119].

7.3 Fermi Level Pinning

Fermi level pinning is a subject that has attracted a lot of research in the determination of

M-S SBH behaviour [70,111–113]. Here, the same techniques are applied to the degenerate

Ge/SiC interface. The presence of interface traps at the surface was suggested by the

non-linear nature of the C-V data in Section 6.3.1.2. Further evidence that the Fermi

levels were pinned originated in the I-V analysis of the heterojunction diodes, in Section

6.3.2.2, where one peculiarity was the absolute size of the SBHs (approximately 1.1 eV).

This value is clearly too large to support a theory based on the classic Schottky-Mott

principal [97, 98], which states that the vacuum levels will align, leaving the electron

affinities to dictate the offset. With n-type doping in both semiconductors, and nearly

equal electron affinities, the Ge-SiC offset would be closer to 0.1 eV under this principal.
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Hence, this Section details the idea that the Fermi level has been pinned at the surface

of the SiC.

Within the Appendix, Sections A.3 and A.5 introduce the basics of semiconductor-

semiconductor and metal-semiconductor interfaces, including a review of the Schottky-

Mott principle. This states that the vacuum levels of different materials will align, with

the conduction and valence bands bending from their bulk positions to align the Fermi

levels. As a result, for any given semiconductor Sφ = 1, given that the slope parameter

is given by

Sφ =
dΦ0

B,n

dΦM

. (7.10)

However, in tests carried out in 1939, Schweikert showed that Sφ = 0.08 for Selenium

Schottky contacts, having characterised many different metals [112]. Eight years later,

Bardeen [126] proposed that surface states with an energy inside the bandgap of the

semiconductor were responsible for this very weak correlation.

In practice, the Schottky-Mott principle only holds true only under very specific and

ideal conditions due to the presence of the semiconductor surface that does not behave

in the same fashion as the bulk. This affects the alignment of the bands prior to Fermi

level alignment and hence affects the Schottky barrier height.

The surface of a semiconductor can be seen as an abrupt end to the uniform bulk crys-

tal lattice structure, giving way to the atmosphere or another material, be it insulating

or conducting. As such, electronic states unique to the semiconductor surface exist orig-

inating from the rearrangement of surface atoms that minimise dangling bonds. Other

sources of surface states include inhomogeneities, surface imperfections such as surface

roughness, non-uniform doping or imperfect surface preparation leading to an unclean

surface or an interfacial oxide. Surface states can exist at any given energy including
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within the bandgap of the semiconductor and here they will be treated as uniform across

the entire bandgap surface. To maintain the balance of the charge within the surface and

the space charge region, surface band bending occurs, effectively pinning the semiconduc-

tor Fermi level to an energetically neutral point at the surface.

Figure 7.10: A band diagram of a semiconductor experiencing Fermi level pinning due
to the existence of surface states. Reproduced from [70]

Charge neutrality occurs when the conduction band is devoid of charge and the valence

band filled. Any state (be it interfacial, surface or defect) that exists within the bandgap

will add to the overall charge by being there [111]. By occupying a state in the bandgap

close to the valence band, a very small negative charge is added. If it is not filled it

contributes a large positive charge. The opposite is true near the conduction band. The
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charge neutrality level (ECNL), an intrinsic property of the semiconductor in question,

indicates the point at which the influence on that charge from valence and conduction

bands is equal, where occupation of the state would contribute the same negative charge

as positive charge from it being empty.

The bulk Fermi level (EF ) should not be confused with ECNL. EF indicates the point

within the bandgap where filled surface states give way to empty ones - the point at which

there is a 50% chance of occupancy. If EF does not coincide with ECNL then a net charge

will exist at the semiconductor surface. If EF is closer to the conduction band than ECNL

then there will be an excess of electrons and a net negative charge; this is the case in Fig.

7.10. If the Fermi level is closer to the valence band then a net positive charge will exist.

This net charge (QGS) can be defined as [70],

QGS = qDGS

(
Φ0

B,n + φCNL − EG

)
(7.11)

where DGS is the density of surface states, Φ0
B,n is the SBH, EG is the bandgap energy

and φCNL is the energy difference between the valence band and ECNL. φCNL (also known

as the branch point energy) of SiC and Ge are reported [112, 113] as 1.44 and -0.28 eV

respectively. At the surface, the Fermi level will align with ECNL, if there is no charge

from within the space-charge region (QSC) that requires neutralising. The charge in the

space-charge region is given as [70],

QSC =
√

2εsNDq
(
Φ0

B,n − Φn

)
(7.12)

where Φn = EC − EF . In practically all real semiconductors, QSC 6= 0 and there will

necessarily be some deviation of the surface Fermi level from the CNL to maintain charge
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neutrality. This interdependency leads to the combination of Eq. 7.11 and 7.12,

QSC + QGS = qDGS

(
Φ0

B,n + φCNL − EG

)
+

√
2εsNDq

(
Φ0

B,n − Φn

)
= 0. (7.13)

A rearrangement of Equation 7.13 allows DGS to be plotted against Φ0
B,n, which can be

simply modelled in Matlab. Figure 7.11 is an example of this for moderately n-doped SiC

and degenerately n-doped Ge. The Figure shows us that the Fermi level at the surface of

the semiconductor will be pinned at the CNL when DGS is large, resulting in the situation

seen in Figure 7.10. As DGS tends to 0, the surface Fermi levels return to the their bulk

positions, and the Schottky-Mott principle will once more prevail.

3

2

1

0

1x109 1x1010 1x1011 1x1012 1x1013 1x1014

1x1013 1x1014 1x1015 1x1016 1x1017 1x1018

0.9

0.6

0.3

0.0

   -DGS

    DGS

n- Silicon Carbide

 

 

Abs. Density of Surface States |DGS| [cm-2]

0 B
,n
  [

eV
]

n+ Germanium

 

 

0 B
,n
  [

eV
]

Abs. Density of Surface States |DGS| [cm-2]

EC

EF

ECNL

EV

ECNL

EV

EC
EF

Figure 7.11: A plot of DGS against Φ0
B,n, as extracted from Equation 7.13 for

moderately n-doped SiC and degenerately n-doped Ge. This shows how a metal may be
pinned to the CNL rather than the Fermi level.
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Despite evidence in the literature [127] of Ge being pinned by Ni and other metals,

the doping of the Ge (NA,Ge = 5×1019cm−3) is so great that the amount of surface states

(|DGS| > 1e14 cm−2) required to move the Fermi level from its bulk position are greater

than the amount required to completely pin the SiC Fermi level at ECNL. Therefore, it is

here presumed that the Ge remains unpinned at its bulk position, helping to justify the

assumption that the degenerate Ge acts as a metal in these devices.

Of course in light of the last Section, it is difficult to say what the precise SBH of any

one contact is, making the precise determination of DGS and Φ0
B,n from this technique

impossible. However, taking the effective SBH of the polycrystalline diodes, 1.028 eV,

and assuming that the Ge acts as a metal, then reading from Figure 7.11, this equates to

a surface state density of DGS,SiC = 2.3× 1011 cm−2.

Figure 7.11 and the above calculations can be used to explain the size of the SBH of the

heterojunction interfaces. Undoubtedly, the charge neutrality level is causing the Ge to

be pinned to a point within the SiC bandgap. However, the absolute values attained must

be treated only as estimates due to the assumptions made. The value of φCNL = 1.44 eV

for the bulk material of SiC is essential to determining where the Fermi level is pinned.

The source of this figure [112, 113] seems somewhat hazy, with the specific SiC polytype

on which this is based not mentioned.

Fermi level pinning affects the surface of most semiconductors and explains many

experimental irregularities. As regards the validity of the Schottky-Mott principle, a first

approximation of how materials will energetically align is essential. For this purpose, and

for initial device design, it must continue to be used due to the complexity of predicting

the affects of the surface states. In practice however, the only way to attain a valid idea

of the SBH between materials, is via experimental and analytical means.
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7.4 Fermi Pinning and the Experimental Results

A final mystery may be addressed in light of the Fermi level pinning discussions. In

Section 6.3.2.2, the lack of difference between n-type and p-type layers was discussed,

with both layers having a SBH extracted by conventional I-V characterisation of 1.1 eV,

an ideality factor < 1.05, and their turn-on voltages were separated by just 40 meV. The

amount of voltage require to turn on a device is determined by the height of the built-in

potential (ψbi), therefore, given this evidence ψbi,pN must be very similar to ψbi,nN . In

light of all this it appears that the doping has of the Ge has no effect, but that just

cannot be the case. The potential shift of the Ge Fermi level from one doping extreme

to the other must impact on a device as no physical model can allow the conduction and

valence bands, and the Fermi levels from the Ge to remain in the same position in the

SiC bandgap regardless of doping. The implications of these results will be discussed here

in light of the Fermi pinning models built up in this Chapter. Given a full understanding

of the results, and by revisiting the experimental results a thorough picture is built up of

how the Ge/SiC interface forms and behaves.

7.4.1 Defining the heterojunction SBH

Until now, the heterojunction diodes have been treated exactly as metal-semiconductor

diodes and as a result, the exact relevance of the SBH has been missed. To understand the

formation of the heterojunction interface one must define the SBH in energetic terms and

disassociate it from the conduction band offset when referring to heterojunction devices.

Having painstakingly defined the exact value and nature of the SBH in this Chapter,

it does appear backwards to only now be defining its meaning within a heterojunction.

However, it is only now that its exact relevance is seen. In a metal-semiconductor contact
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the very obvious definition of the SBH is the potential between the metal work function

and the semiconductor’s conduction band. Electrons sitting in an energy state equal to

the metal Fermi level must gain so many eV of energy before it can pass into the SiC.

When transposing this to the semiconductor-semiconductor contact, it is easy to assume

that the SBH is equal to the conduction band offset because we most often consider

free electrons, those that already occupy an energy equal to that of the conduction band

already. However, the conduction band electrons are not the ‘average’ electrons, most

often these are the exception rather than the rule (though not in our degenerate n-type

case). Therefore, the SBH can be described as the amount of energy that the average

electron requires to be promoted from the narrow-bandgap semiconductor into the wide-

bandgap semiconductor. We can therefore define the heterojunction SBH as follows:

Φ0
B,n = EC,WB − EF,NB, (7.14)

where EC,WB is the conduction band energy of the wide bandgap material prior to equi-

librium, the SiC in our case. EF,NB is the Fermi level of the narrow-bandgap material, our

Ge. This definition is shown in Figure 7.12c and d, distinguishing it from the conduction

band offset (∆EC) and the built-in potential (ψbi).

7.4.2 The Pinning Model

A model referred to here as the “Pinning Model” is proposed to explain the experimental

results seen in Section 6.3.2.2, using the Fermi pinning theory introduced in Section 7.3

and the rigorous SBH definition.

Given the low doping of the SiC and the presence of surface states it is likely that the

SiC surface is pinned prior to alignment as in Figure 7.10. Due to its degenerate doping,
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Figure 7.11 suggested that the Ge would not be pinned unless the density of surface states

was extremely high, hence the first presumption of the Pinning Model is that the SiC is

pinned to a point in its bandgap prior to intimate contact, whilst the Ge is not. This is

shown in Figure 7.12a and b.

Figure 7.12: Band diagrams representing the n-type and p-type Ge layers prior to (a)
and c)) and after (b) and d)) alignment with the Fermi pinned SiC.

Disregarding the Schottky-Mott principle of band alignment due to the overwhelming

evidence of surface states at the interface, the second presumption in this Model is that

the Ge and SiC Fermi levels will line up, as shown in Figure 7.12c and d, such that the Ge
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valence and conduction bands can be in such vastly different positions. This is something

of a leap of faith as one naturally thinks the reverse to be true, that the huge degenerate

doping of the Ge should render its position fixed, leaving the lightly doped SiC to move

its bands into alignment with the Ge. However, that traditional model does not work for

these diodes, leading to vast mismatches in the built-in potential. No statement is made

here about whether the Ge bands bend to get into this energetic position within the SiC

bandgap, as this does not effect the model - if Ge band bending does occur, then the

huge doping will render the barriers invisible to the carriers as they are easily tunneled

through.

The result of the Pinning Model is shown in Figure 7.12c and d labelled with all the

important characteristics. The Fermi level of each Ge structure aligns at the same point

in the SiC bandgap, which leads to identical SBHs and ψbis, explaining their near identical

forward characteristics. However, it would be impossible for all the parameters to remain

the same, and it is clear from Figure 7.12 that the one parameter in the Pinning Model

that alters is the conduction band offset (δEC). δEC is the barrier that controls leakage

current, so an opportunity arises to prove whether this model holds true, by comparing

the n-N and p-N diode leakage currents.

Figure 7.13 provides the evidence needed. The current-voltage-temperature (IVT)

tests used of Figure 7.2 were carried out on the 500oC p-type and n-type Ge/SiC het-

erojunction diodes, and the reverse leakage results are presented in Figure 7.13. For any

one temperature the leakage from the p-type diode was approximately double that of the

n-type diode. Given the exact situation in Figure 7.12c and d, δEC could be expected to

be approximately 1.1 eV in the n-N case and 0.35 eV in the p-N case.

The leakage results of Figure 7.13 are an encouraging result backing up the Pinning

Model theory, which can now be use to explain three of the defining characteristics of the
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Figure 7.13: I-V-T reverse leakage results for the 500oC p-type and n-type Ge/SiC
heterojunction diodes.

contacts, the SBH, the ψbi and the leakage.

7.5 Summary

This Chapter represents a fundamental overview of the heterojunction interface; intro-

ducing new characterisation methods for heterojunction diodes that culminate in a better

understanding of the nature of these structures. This work was essential, providing an

explanation for the first time as to why semiconductors align as they do and further ex-

plaining discrepancies in the experimental results. The common link running through

this Chapter, linking SBH fluctuation analysis and Fermi Pinning is inhomogeneity at the

interface, which causes surface states to occur between the semiconductors. Reduction of
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these could produce smaller standard deviation distributions of the SBH and effective and

experimental SBH’s that are much closer to the average value. Surface state reduction

may also reduce Fermi level pinning, thus allowing the semiconductors to align in a way

more similar to the Schottky-Mott principle. This would accentuate the differences be-

tween p-type and n-type layers, creating dopant dependent turn-on voltages, but reducing

the difference in the reverse direction. Cleaner processing, pre- and post-deposition pol-

ishing steps and even alternative deposition methods such as CVD might help to achieve

this greater uniformity and homogeneity.

7.6 Conclusions

1. The variation in Ge/SiC Schottky barrier heights between measurement methods

suggested that the inhomogeneous interface had a large distribution of barriers. In

a direct I-V regime, the majority of carriers take the path of least resistance over

the lowest (approximately 3%) of barriers. In a C-V measurement, this distribution

of barriers is simply averaged.

2. Fermi level pinning explains why the barrier height is consistently 1.1 eV, much

higher than the Schottky-Mott theory would predict. Prior to alignment with the

Ge, the Fermi level of the lightly doped SiC layer is pinned mid bandgap at its

surface, thanks to a large number of surface states.

3. The consistent Ge/SiC barrier height of 1.1 eV across dopant types suggests an un-

usual alignment of the Ge to the SiC, one where the conduction band offset between

the two materials appears variable, an idea seemingly confirmed by experimental

leakage results.
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Chapter

8
Silicon Carbide Heterojunction MOS

Characterisation

8.1 Introduction

Over the past three Chapters, the novel Ge/SiC and Si/SiC heterojunctions have been

introduced, with much emphasis on understanding their complex interfaces and their

physical and electrical characteristics. The use of these structures as heterojunction diodes

has been proposed and the initial results were promising, with good turn-on characteristics

and a forward resistance that could rival most diodes with improved processing techniques.

Using this body of knowledge as a basis, this Chapter is an exploration into the feasibility

of forming more advanced devices, specifically MOS transistors. The production of full

heterojunction transistors is an iterative process that would require a PhD thesis and

more to itself. However, the success of such a device depends largely on the quality of

its oxide-semiconductor interface and specifically, the quality of the channel that forms

in the region nanometers from this interface. The formation of the channel, known more

formally as the depletion region due to the exodus of majority carriers from the interface,

is characterised using the powerful capacitance-voltage (C-V) technique. When combined

179



8.2 Metal-Insulator-Semiconductor Theory

with some parameter extraction and simulation techniques, parameters such as the density

of interface traps (Dit), depletion region doping and voltage offset become apparent. As we

will see in Section 8.5.1, these parameters become interesting when the depletion region

expands beyond the heterojunction interface, into the second semiconductor. At this

point, the shape of the C-V curves deviate from the conventional, leading to a scenario

in which some novel and exploratory modelling is used to qualify the results.

The use of a heterojunction beneath an oxide is unusual and we will see in this Chap-

ter that it enables the use of high-K dielectrics on SiC, by adding a layer that boosts

the otherwise meagre conduction band offset between the layers. Layers of Ge and Si

are used as the heterojunction material here, deposited respectively by MBE and wafer

bonding. The crystallinity and smoothness of a wafer bonded layer will be shown to pro-

duce an excellent blocking capability, whilst the MBE formed layers will show a superior

accumulation/depletion transition.

However, in the proceeding Section, the theory behind the MOS structure and its

progression from accumulation to depletion and inversion will be introduced. Following

this, Section 8.3 will describe the MOS C-V technique and the simulation processes.

8.2 Metal-Insulator-Semiconductor Theory

The metal-oxide-semiconductor (MOS) interface is the key element of a lot of power

switches, particularly the MOSFET and the IGBT. To simplify matters, we are here only

interested in the MOS capacitor, the semiconductor and metal sandwiching the insulator.

Such a structure is pictured in Figure 8.1, with the band structure of each material. As

in the metal-semiconductor and semiconductor-semiconductor interfaces seen in Chapter

3, the Fermi level of each material will align when they are in intimate contact and under
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Figure 8.1: MIS structures with the band diagrams of the component parts in a)
separation, and b) intimate contact.

equilibrium conditions. Any insulator used within the MOS structure will have a band

structure with an associated bandgap, similar to an undoped semiconductor. The only

difference is the size of the bandgap, for example 8.9 eV for SiO2. This is the reason that

these materials prevent current flow, as the barrier that forms is too large for the majority

of carriers to mount. Similarly, the leakage current through the oxide is determined by

the amount of carriers that manage to overcome the large barrier.

Two potentials are marked in Figure 8.1. The Fermi potential (φF ) represents the

energetic difference between the Fermi level and the Intrinsic Fermi level, and is attained

by rearranging Equations A.2. φ(x) represents the potential between any given depth x

from the surface and the bulk level as represented by the band bending. At x = 0, the

potential represents the entire potential difference between the semiconductor surface and

its bulk. This is known as the surface potential, and is represented by φS, though this is

synonymous with φ(0).

The application of bias to a MOS device forces the semiconductor bands to bend
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Figure 8.2: The band diagrams of a n-type MOS device under different biasing
conditions.

into one of four distinct states, namely accumulation, flat band, depletion and inversion.

The energy band diagrams of each of these are depicted in Figure 8.2. The example

that follows relates each of these states to an applied voltage referring specifically to

the example already seen in Figure 8.1b, where the semiconductor is n-type and where,

in equilibrium, the bands have shifted into depletion. Beginning with Figure 8.2a, the

application of a large positive voltage to the gate (the metal, in MOSFET terminology)

causes the electron majority carriers within the semiconductor to accumulate at the oxide

interface. This accumulation state, is used in MOSFET terms to turn the device hard off,

as the channel, located beneath this oxide will be flooded with majority carriers.

Reducing the voltage leads to the flat band voltage of Figure 8.2b, whereby the po-

tential is sufficient to overcome the intrinsic band bending of this structure. In this state,

neither majority nor minority carriers are compelled towards the oxide, and the surface
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of the semiconductor is in its neutral, bulk state.

This structure’s unbiased state is in depletion, though this would often be the result

of the application of a small negative voltage. The negative potential depletes the surface

states of their majority carriers whilst beginning to attract minority carriers. Whilst

φS < φF , the number of minority carriers attracted is very small, less than the intrinsic

carrier concentration (ni). Similarly, the number of minority carriers does not exceed the

intentionally doped majority carriers until φS = 2φF , known as the depletion/inversion

transition. As the negative voltage increases and φS exceeds 2φF , the number of minority

carriers exceeds the majority carriers and the semiconductor surface could be said to have

been inverted, having switched from n-type to p-type.

8.2.1 Electrostatics

Each of the states of Figure 8.2 has its own electrostatic situation that determines the

profile of carriers and potential over the materials. Building up a model of these distri-

butions allows an understanding of the application of a bias to the MOS structure for

any given semiconductor/insulator combination. Such a model is the basis of another

that will be used in Section 8.3 to build up an ideal capacitance-voltage plot of a MOS

structure. This in turn is used as a benchmark to extract the density of interface traps at

the semiconductor/insulator interface, a value that influences how much Coulomb scat-

tering will occur in the channel of a MOS based device. Coulomb scattering is one of four

mechanisms with an associated mobility that can cause the degradation of device perfor-

mance. The other major mechanisms are bulk mobility, surface roughness, and phonon

(or lattice) scattering; and the lowest dominates.

To simplify the process of extracting the potential distribution, the normalised poten-
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tials, U US and UF are employed, whereby

U(x) =
φ(x)

kT/q
, (8.1)

US =
φS

kT/q
. (8.2)

and

UF =
φF

kT/q
. (8.3)

These potentials are then related to their semiconductor depth using the following equa-

tion, the derivation of which may be found in Appendix B of Pierret’s Semiconductor

Device Fundamentals [35]:

ÛS

∫ US

U

dU ′

F (U ′, UF )
=

x

LD

, (8.4)

where,

ÛS = +1 if US > 0 (8.5a)

ÛS = −1 if US < 0 (8.5b)

F (U,UF ) =
[
eUF

(
e−U + U − 1

)
+ e−UF

(
eU − U − 1

)]1/2
(8.6)

and

LD =

√
KSe0kT

2q2ni

. (8.7)

LD is the Debye Length, the distance over which carriers screen out electric fields. Im-

plementing Equation 8.4 in Matlab allows the potential distribution extraction for a full

range of surface potentials, as can be seen in Figure 8.3(c). Having established a U(x)
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distribution, the electric field and charge density profile may be found using respectively,

E(x) = ÛS
kT

q

F (U(x), UF )

LD

(8.8)

and

ρ(x) = qni

(
eUF−U(x) − eU(x)−UF + e−UF − eUF

)
. (8.9)

Again, these equations have been implemented in Matlab for a range of surface potentials

can be seen in Figure 8.3.

The profiles of Figure 8.3 demonstrate the effects of biasing on a MOS device. This

profile was based on a Ge/HfO2 interface that will be physically tested in Section 8.5.1.

The doping of the semiconductor was low at 5 × 1015 cm−3 and an insulator thickness

of 50 nm. Presuming an intrinsic flatband scenario, where the bands remain unbent

with no applied voltage, the application of even a very small positive voltage sent the

semiconductor into accumulation. Under these conditions, the bands bend, trapping the

majority carriers, electrons, right at the semiconductor surface. This can be seen in the

inset to Figure 8.3(a), where a very narrow depletion region is formed with little spreading

from the surface.

The application of a small negative voltage begins the depletion of the majority car-

riers, and the start of a depletion region that extends well into the semiconductor. It

may be seen that the minority charge density distributions for φS < 2φF , the minority

charge density profiles get no larger than the equivalent n-doping, spreading deeper into

the semiconductor rather than building up at the interface. Beyond this critical value, the

depletion width stops expanding and the minority carriers form as the majority carriers

did in accumulation, at the interface, thus justifying the name inversion. This happens

due to the large band-bending at the semiconductor surface, that effectively turns the
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(a) Charge density profile.

(b) Electric field profile.

(c) Potential profile.

Figure 8.3: The charge density, electric field and potential profiles of a moderately
n-doped Ge semiconductor, having a 50 nm HfO2 insulator. The surface potentials are
varied from accumulation (φS = 6kTq), through the central depletion region (φS = φF )

and the depletion/inversion transition (φS = 2φF ) to inversion (φS = 2φF − 6kTq).
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n-type material p-type, due to the shifting of the Fermi level to the opposite half of the

bandgap.

Figure 8.3(a) shows how far the depletion region extends into the semiconductor from

the surface. Under moderate negative bias, φS > φF the semiconductor is completely

depleted of carriers until around 150 nm from the surface, and bulk conditions have not

been re-established 300 nm from the surface.

8.3 C-V Measurements

The C-V technique was introduced in Section 4.3.2 as a tool for extracting barrier height

and doping from a Schottky interface. The downfall of this technique, as explained in Sec-

tion 6.3.1.2, was that the standard equation did not take into account trapped charge at

the interface. Quite on the contrary, the MOS C-V technique can be used to approximate

the amount of trapped charge at the semiconductor-oxide interface, as will be revealed in

Section 8.3.2. However, to begin this Section, the C-V technique pertaining specifically

to MOS structures will be introduced, building up a picture of the capacitance in such a

structure as the semiconductor passes from accumulation through to inversion. As before,

capacitance measurements are taken using the Agilent Technologies B1500A Semiconduc-

tor Device Analyser, using the full range of its frequencies, from 1 kHz to 1 MHz. This

time however, the analyser is used in conjunction with a mercury probe, preventing us

from needing to process metal contacts upon the oxide surface. Instead, a vacuum formed

at the oxide surface allows an 819 µm diameter dot of mercury to form. Being a liquid at

room temperature, mercury forms a reasonable contact with the oxide, forming the metal

in the MOS setup.

A MOS structure may be perceived as two capacitances in series. The first, the oxide
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Figure 8.4: The charge distribution of a n-type MOS device under different biasing
conditions

capacitance, is defined by its thickness (xo) and dielectric constant (KO) as follows:

COx =
KOε0A

xo

, (8.10)

This is is an ever-present capacitance which does not vary with applied voltage. The

second capacitance; however, is formed in the semiconductor region directly beneath the

oxide and is determined by the width of the depletion region (W ) such that,

CS =
KSε0A

W
. (8.11)

The depletion region is devoid of majority carriers, leaving only ionised dopants and hence

the dielectric of this second capacitor, is the dielectric constant (KS) of the semiconductor.

The width of the depletion region, and hence its capacitance is determined by the amount

of bias applied to the gate. This can be described qualitatively by considering the build up

of charge each side of the oxide as shown in Figure 8.4, where the four biasing conditions

correspond accordingly with the four band diagrams of Figure 8.2. It is worth reiterating

here that the C-V technique comprises of a D.C. sweep through the required voltage range,

onto which is imposed a small A.C. signal that slightly alters the charge balance each side

of the capacitor. The arrows in Figure 8.2 show the impact of this charge variation at the
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different biases.

Under strong accumulation conditions, where a positive voltage is placed upon the

gate, the majority carriers (electrons in this case) gather at the oxide-semiconductor

interface, resulting in no depletion region capacitance, hence,

CAcc = COx. (8.12)

Applying an increasingly negative bias begins the formation of a depletion region, where

the ionised donors spreading through the semiconductor balance the negative charge on

the gate. Hence, under negative bias the two capacitances exist and are in series, meaning,

CDepl =
COxCS

COx + CS

. (8.13)

At small biases the capacitance of CS is very large and hence CDepl → COx. As the

depletion width expands, the capacitance of CS decreases, gradually reducing CDepl. This

may be seen in Figure 8.5, where a Si substrate with 200 nm of SiO2 is used to demonstrate

the total capacitance as a proportion of COx. Increasing the reverse bias further pushes

the semiconductor interface into inversion, with the build up of a large amount of minority

carriers. Figure 8.4d shows that in inversion the depletion width stops expanding at its

maximum width WT , whilst any further bias increase adds only to the minority carrier

build up.

In inversion, the depletion region has reached its maximum at WT and it can expand

no further, hence the charge must build up elsewhere. Figure 8.4d, shows two frequency

dependent situations. At lower frequencies (1 kHz), the time varying signal is approxi-

mately a succession of D.C. states and there is sufficient time to generate or annihilate
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Figure 8.5: The C-V response of a p-type Si substrate with 200 nm of SiO2, taken using
a mercury probe connected to the Agilent B1500A. The small signal frequency varies

from 1 kHz to 1 MHz.

minority carriers [35]. Hence, the increase in charge occurs within the inversion region

next to the oxide interface, with minority carriers building up then dissipating with the

alternating frequency. This greatly increases the capacitance within this layer, meaning

that the capacitance once more tends to COx. This capacitance increase is shown in Fig-

ure 8.5. At higher frequencies, there is not enough time for the recombination/generation

process to occur, and hence the charge fluctuations occur around the depletion width

maxima, WT . With WT at its limit, and the charge in the inversion region unable to

respond to the C-V signal, the capacitance appears fixed at its minimum value. Hence,

it follows that [35],

CInv ' COx for ω → 0 (8.14a)

CInv =
COxCS

COx + CS

=
COx

1 +
KOWT

KSxo

for ω →∞ (8.14b)
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Another practical effect of frequency is seen in Figure 8.5, where, at high frequen-

cies, the resistance of the semiconductor bulk comes into play, reducing the observed

capacitance [35].

8.3.1 C-V Modelling

A theoretical C-V plot may be modelled using a set of equations that follow on from the

derivation of the electrostatics in Section 8.2.1, using the same normalised potentials US

and UF to develop an associated gate voltage and capacitance. Further details of the

technique and a full derivation appears in [35,65,128].

The total capacitance of a MOS structure was given in Equation 8.14b, where the total

capacitance in a layer is determined by the depletion width WT . From the discussions of

Section 8.3, we know that this is a complex quantity, the whole nature of which changes

depending on measurement frequency. For low frequency measurements, regardless of

whether the semiconductor is depleted or in accumulation,

Weff = ÛSLD

[
2F (US, UF )

eUF (1− e−US) + e−UF (eUS − 1)

]
(8.15)

This Equation holds true for high frequency measurements also, whilst the semiconductor

is in accumulation. However, when it is depleted,

Weff = ÛSLD

[
2F (US, UF )

eUF (1− e−US) + e−UF (eUS − 1) / (1 + ∆)

]
(8.16)

where,

∆ =

(
eUS − US − 1

)
/F (US, UF )

∫ US

0+

eUF
(
1− eU

) (
eU − U − 1

)

2F 3(U,UF )
dU

(8.17)
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The gate voltage, VG is also calculated as a product of the surface potential, as given

by,

VG =
kT

q

[
US + ÛS

KSxo

KOLD

F (US, UF )

]
. (8.18)

Figure 8.6: The theoretical and experimental curves for a Si/SiO2 MOS interface,
showing the spreading that occurs in the practical situation due to interface traps.

Implementing Equations 8.15 8.16 and 8.18 in MatLab produce the two theoretical

C-VG curves of Figure 8.6, where the low frequency curve can be seen characteristically

returning to the oxide capacitance COx, whilst the high frequency curve continues to

diminish. The MOS structure modelled was the Si/SiO2 layer, the experimental results

of which were previously shown in Figure 8.5. This high frequency experimental curve

is also shown in this plot, and the fit is not encouraging. However, the reason for the

discrepancy is not down to the accuracy of the model. As we will see in the following

Section, the influence of interface states must still be taken into account.
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8.3.2 Trapped Charge and the Modelling of Real MOS devices

The scenario described above to build up the electrostatic picture and the C-V curves may

be viewed as the ideal scenario, with the only charge contributing to the MOS capacitance

coming at either side of the oxide, exclusively due to the application of a potential across

the structure. In reality there exists at least three charge centres within the oxide region

that can have an effect on the conventional C-V curves. Mobile ions, fixed charges and

interface traps will be expanded on below and Figure 8.7 shows their location within an

oxide-semiconductor interface.

Figure 8.7: A MOS interface with three charge centres depicted.

Mobile ions caught within the oxide layer can cause havoc with the capacitance in

a MOS structure, causing apparently random shifts in the D.C. offset of a C-V curve

with temperature and biasing. Normally consisting of positive ions of sodium, lithium

or potassium, these unwanted contaminants left over from processing are free to move

within the oxide layer, building up at either the metal-oxide or the oxide-semiconductor

interface depending on the bias and temperature. The distribution of the ions within the
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oxide affects the amount of voltage shift that will occur, the effect being more pronounced

when the charge is situated at the oxide-semiconductor interface [65]. The mobility of

the ions is proportional to temperature and hence density of these charges is measured

by comparing the flat band shift after the device has been left under the extremes of

biasing for 5-10 minutes at temperatures above 150oC (in Si/SiO2 technologies). Mobile

charge densities are minimised by introducing into the oxide chemicals such as calcium

of phosphorous that neutralise the mobile charge. A mobile charge concentration in the

range of 5× 109 − 1010 cm−2 is considered acceptable in integrated circuits [65].

Fixed charges are a more predictable, and repeatable cause of voltage shift that were

revealed after scientists in the 1960’s managed to isolate and eliminate mobile ions from

their processing [35]. Situated at the oxide-semiconductor interface, these charges produce

a voltage shift that is repeatable for a given material, irrespective of fabrication conditions,

oxide thickness, or the type or concentration of doping. These experimentally conceived

facts suggest that the origin of this fixed charge must be right at the oxide-semiconductor

interface, and indeed tests on Si/SiO2 have shown that a monolayer of SiOx, where x < 2,

exists at the interface [35]. This represents a layer that was left in limbo, being the next

Si monolayer that would have been formed into oxide when the process was halted. The

amount of fixed charge is minimised through annealing the oxide in an inert atmosphere

and via the use of the semiconductor faces that produce the least charges.

Interfacial traps (a.k.a. surface states) are the most troublesome of the charge centres,

degrading channel mobility and stretching out the accumulation/depletion C-V curve,

meaning that a greater voltage is required to turn a MOS-based device hard-on or hard-

off. We have already introduced the source of these traps in Section 7.3, where the

same “Surface States” were causing the semiconductor surface to become pinned at the

material’s Charge Neutrality Level. The list of inhomogeneities that cause these unwanted
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states, or traps, included poor surface preparation leaving a rough or unclean finish and

a non-uniform doping profile. At the MOS interface, another source of inhomogeneity is

dangling bonds, where the oxide molecule does not bond with every semiconductor atom,

leaving charge centres at the interface.

The density of interface traps (Dit) is a value that may be estimated using a number

of different methods, based on the C-V techniques and the ability of charge centres to

respond to a quickly fluctuating A.C. signal. The effect of interface states on a C-V curve

is shown in Figure 8.6, where an experimental Si/SiO2 C-V response is compared to a

theoretical version of the same structure. One can see the spreading of the practical C-V

response as a result of the charge centres at the interface that will make result in a bigger

voltage range between device turn on and turn off.

The larger problem concerned with a large Dit, is the effect that this has on the channel

region directly beneath it. The charge centres sitting directly at the oxide-semiconductor

interface cause a significant decrease in the channel mobility, as they obstruct the path of

the passing electrons or holes. This scattering is the major region why Si/SiO2 channels

must be reduced to the 109 − 1010 cm−2eV−1 range, a feat achieved through a post-

deposition anneal in hydrogen, which terminates some of the unsatisfied dangling bonds

at the interface. This problem is not so easily solved in SiC however. The presence of

the carbon and Si at the interface means that there is a more complicated structure that

is required than in the Si/SiO2 example, where Si atoms could simply give way to its

natural oxide. The result in the SiC/SiO2 example, is one where many dangling carbon

bonds remain unsatisfied, and novel nitric oxide or nitrous oxide anneals fail to bring the

Dit below the state-of-the-art 1011 − 1012 cm−2eV−1 range [129].

For this reason, alternatives have been sought to overcome the SiC/SiO2 problem, and

this is one of the large motivating factors behind the Ge/SiC and especially the Si/SiC

195



8.3 C-V Measurements

heterojunction work. If a good transition from single crystal Si to SiC could be realised,

then established Si/SiO2 techniques could be used to create a low, high mobility Dit Si

channel, with a SiC blocking region.

8.3.3 Dit Modelling

Three methods exist that estimate Dit using C-V methods. The low-frequency method

and the combined high-low frequency capacitance methods are not used in this work. This

is due to the dependence of these techniques on a measurement frequency low enough that

minority carriers and interface traps respond immediately. This involves a measurement

frequency lower than was possible using the Agilent 1500A, whilst experimentation with

quasi-static techniques that estimate capacitance using an I-V sweep, proved unsuccessful.

Information on these techniques may be found in [35,36,65,130].

Instead, the Terman, or high frequency, method uses only a high frequency A.C. signal,

though a large amount of simulation is required. As mentioned previously, the experimen-

tal C-V response is stretched out when compared to an ideal curve due to the presence

of the interface traps. Hence the high-frequency method compares the gradient of the

responses as they pass from accumulation to depletion. The most thorough explanation

of this technique is located in [130]; however, a brief summary of the method is provided

here.

When measured at high frequency, the total capacitance in a MOS layer is modelled,

regardless of bias, by the series combination of COx and CS, as given by Equations 8.13

and 8.14b. CS is a product of the depletion width length and hence by the amount of

band bending, φS. The stretching out of the C-V curves in the presence of interface traps

occurs, because the larger the Dit, the more gate voltage is required to achieve the same
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φS, given that [65],

VG = VFB + φS + VOx = VFB + φS + QG/COx (8.19)

where the gate charge, QG, is given by

QG = − (Qb + Qn + Qit) (8.20)

where Qb, Qn and Qit is respectively the bulk, electron and interface state charge density.

It is therefore through the variation of the experimental φS from the ideal that provides

the information required to extract Dit. Hence, for a given experimental C-V curve, a φS-

VG plot is constructed, using the ideal curves of Equations 8.14b and 8.16 to extract a value

of φS, for every experimental C-V plot. The gradient of the φS-VG plot is proportional to

the density of interface traps given that [130],

Dit =
COx

q

[
dVG

dφS

− 1

]
− CS

q
. (8.21)

8.4 Oxide Deposition

The oxides in this thesis were formed via three different techniques, using either a low-

pressure chemical vapour deposition (LPCVD) oxide furnace or a standard thermal oxide

technique to produce SiO2 and an atomic layer deposition (ALD) furnace to produce

HfO2.

The Tetreon Thermco 2410 LPCVD furnace uses tetraethyl orthosilicate (TEOS,

Si(OC2H5)4) as a volatile precursor, which reacts with the substrate surface, forming

SiO2 and the waste products ethylene (C2H4) and water. This reaction takes place at a
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temperature between 650 and 750oC forming a deposited oxide at a rate of 6.5 nm/minute.

When comparing oxides grown on Si substrates, deposited oxides such as this are of re-

duced quality when compared to thermally produced oxides, as they contain a greater

quantity of fixed and interfacial charge.

However, thermal techniques do not ‘deposit’ SiO2, they sacrifice existing Si. Using

standard furnaces at a temperature of around 1100oC, pure oxygen or water vapour (dry

or wet oxidation) passes over the wafer, reacting to form SiO2. When SiC is involved this

reaction also involves the large amount of carbon in the structure. As this process begins,

the reaction is simple, for example, SiC + 2O2 → SiO2 + CO2. However, as the oxide

grows thicker it becomes harder to extract the CO2 through the existing oxide, hence

large amounts of trapped charge build up [131,132].

The Savannah-200 ALD system from Cambridge NanoTech Inc. was used to form

layers of HfO2. An ALD system works in a very similar fashion to a CVD system,

except that the surface is exposed to two precursors sequentially, one after the other

in two half-reactions. The use of the two precursors, kept separate within the system,

allows for precise control of the layer thickness down to sub-atomic (< 0.1Å) thicknesses.

In the formation of HfO2, the oxygen precursor is deionised water or ozone (O3), and

the Hafnium, precursor is tetrakis (dimethylamido)-hafnium. A nitrogen purge between

precursors keeps them separate.

8.5 Analysis of Heterojunction MOS Layers

Having introduced the theory behind MOS structures and the techniques used to char-

acterise and analyse them, presented here are the results of two heterojunction MOS

devices. High and low temperature Ge MBE depositions in a HfO2/Ge/SiC structure
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are compared, whilst a wafer bonded HfO2/Si/SiC structure is compared to HfO2/Si,

HfO2/SiC and a HfO2/SiO2/SiC structure. The thickness of the HfO2 was 40 nm in each

case, formed using ALD system described previously. 12-15 nm thick SiO2/SiC structures

were formed using the standard cleans presented in Section 6.2.1, before thermal oxidation

of the surface was carried out through a standard wet oxidation process lasting 2 hours at

1100 oC. The SiO2/Si structures used as examples throughout this Chapter were formed

using the LPCVD furnace.

8.5.1 MBE HfO2/Ge/SiC MOS Device

Chapter 6 revealed the rectifying properties of the Ge/SiC layers, whilst in Chapter 7

the interfacial properties of the layers were formed. Here, the possibility of forming a

MOS device using these layers as a substrate will be analysed through the addition of an

oxide layer. 40 nm of the high-K dielectric HfO2 was deposited onto the 300 nm thick

amorphous and polycrystalline Ge layers. HfO2 was chosen because of its compatibility

with Ge, a semiconductor whose native oxide GeO is soluble in water, though much recent

progress [133] has been made with GeO2, with Dit values down around 1011 cm−2eV−1.

Recent papers had shown very promising accumulation/depletion curves using HfO2 on

Si, with the oxide able to sustain up to 4 MV/cm [134, 135], though one study had

claimed that the combination of HfO2 on Ge could withstand up to 15 MV/cm with

nitridation [136]. One negative of HfO2 is its ability to sustain large peaks on voltage, as

it might under surge conditions. Recent work [137] has suggested that sandwiching a thin

SiO2 layer between the SiC and the HfO2 may improve its ability to block these voltages.

C-V and I-V analysis has been used to test whether the heterojunction structures

can produce good accumulation/depletion curves and to what extent they can sustain an
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electric field. The C-V and I-V results of this Section were attained using a mercury probe

to form the metal-oxide contact. The C-V results were taken at a frequency of 10 kHz to

minimise series resistance when extracting Dit.

Figure 8.8: C-V results and simulations of the HfO2/Ge/SiC MOS device containing the
amorphous Ge layer.

Figure 8.8 shows the C-V results of the amorphous Ge MOS structure. The experi-

mental data (black squares) contain a very pronounced ‘knee’ - a sudden change in the

gradient - at 0.75 V, where one would usually expect a smooth continuous transition from

depletion to inversion. A model was put together in Matlab to try and simulate this

behaviour. A conventional MOS structure, as seen previously, is the series combination

of the oxide capacitance and the semiconductor’s depletion region capacitance. However,

with two n-type semiconductors, both in close proximity to the oxide, it was predicted

that the n-N heterojunction structure might be modelled by three capacitances in series,
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adding the SiC depletion width capacitance (CSiC) to that of the Ge layer (CGe) and the

oxide, such that,

1

CSeries

=
1

COx

+
1

CGe

+
1

CSiC

. (8.22)

Furthermore, the Ge capacitance will clearly by limited by the thickness of the layer,

meaning CS in Equation 8.11 will be limited by a maximum depletion width, W , of 300 nm.

This lead to the simulation of CGe (red circles) in Figure 8.8, created using the equations

of Section 8.3.1 but with a minima of approximately 155 pF. CSiC (blue triangles) was

a slightly easier modelling parameter, having the full substrate thickness with which to

expand, and hence its contribution is the conventional C-V curve in depletion/inversion.

The contribution of Cox, a constant capacitance of approximately 2.5 nF was included in

the simulation but is not shown in Figure 8.8.

Using a trial and error approach to fitting the variables (doping, voltage shift, exact

layer thickness in the case of the Ge), the model produced a series depletion curve (CSeries,

green triangles) that fits rather tightly with the depletion region of the experimental

results, explaining the knee in these results. A doping of 1 × 1016 cm−3 for the Ge layer

and 1.8×1016 cm−3 for the SiC provides a very accurate fit to the data. The manufacturer

stated that the SiC epitaxial layer was doped to 1.4 × 1015 cm−3, and hence there is a

discrepancy here, though given the simplicity of the model, and the many approximations

it uses, including the constant Ge doping and the flat homogeneous interface, it seems

fair to attribute this discrepancy to experimental error. A voltage shift of +1.85 V in the

model suggests that the experimental layers are depleted prior to any bias being applied.

Figure 8.9 shows the C-V results of the HfO2/Ge/SiC structures formed by high tem-

perature deposition. Again, the Equations of Section 8.3.1, provided the tools needed

to model the slope and extract information. However, the shape of the experimental
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Figure 8.9: The C-V results and simulation of the HfO2/Ge/SiC MOS device containing
the polycrystalline Ge layer.

curve within Figure 8.9, is out of the ordinary, appearing as two mirrored accumula-

tion/depletion curves with no deep depletion/inversion element. Indeed, treating the two

halves of the curve as individual accumulation/depletion curves allows for p-type and

n-type modelling, as shown in the Figure. Two excellent fits result, both employing a

Ge doping in the region of 1 × 1018 cm−3. With doping this high, the depletion region

remains entirely within the Ge layer, never encroaching on the SiC. This is a strange

result, consisting of an unusually high concentration of two dopant species. This may be

explained by the MBE process which was notoriously leaky at the intended low doping

levels. Furthermore, compared to the 200oC results, the dopants in these layers may have

been better incorporated and activated due to the higher deposition temperature.

The Terman, high frequency method of interface trap extraction introduced in Section

8.3.3, was used to compare each half of Figure 8.9 in turn with ideal C-V plots to estimate

the Dit. The results of this process are shown in Figure 8.10, where for each dopant type,
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Figure 8.10: The interface trap density extracted from the polycrystalline HfO2/Ge/SiC
MOS device via the Terman method.

a Dit was extracted of the order of 1012 cm−2eV−1. This is a value only slightly above

that of studies of HfO2 grown on pure Ge [138], despite some obvious flaws with our

approach: compared to a Ge single crystal substrate, the polycrystalline structure is very

rough and contains multiple grain boundaries, whilst the processing was far from perfect,

having being carried out in an MBE system. Hence with process refinement, including

CVD deposition and post-deposition polishing, the Dit figure would likely improve.

Figure 8.11: I-V results of the HfO2/amorphous-Ge/SiC MOS device.
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Typical I-V results for the HfO2/Ge/SiC capacitors are presented in Figure 8.11,

where the results for the amorphous layer are shown. The leakage current, most likely

due to tunneling through the oxide, is quite low (< 1 nA) suggesting that the HfO2/Ge

conduction band-offset is relatively high. The breakdown of the oxide occurs at ±4.5 V.

Using these results in conjunction with the C-V results, a picture of how the layers operate

under different biasing can be painted. In accumulation, a build up of majority electrons

at the Ge surface means that the vast majority of the voltage is dropped over the oxide,

breaking it down when it reaches a critical field. Similar occurs in inversion with the build

up of minority carriers at the interface. This is after the depletion region has expanded

through the Ge region and into the SiC before reaching its maximum width as witnessed

in the C-V results. The critical field, 1.25 MV/cm if the applied voltage is dropped

entirely over the oxide, is low compared to the 3-4MV/cm found regularly in HfO2/Ge

literature [134, 135]. This is not surprising considering the surface roughness and the

presence of a large number of grain boundaries in each deposition type.

Significantly, the C-V and I-V results display a margin for gate control, in which a

potential channel could be operated form accumulation through to inversion. Thicker,

more homogeneous Ge layers would likely increase the breakdown values.

8.5.2 Wafer bonded HfO2/Si/SiC MOS Device

In Sections 5.5.6 and 6.3.5, the wafer bonding of Si to SiC was introduced. Now, this het-

erojunction substrate is formed into a MOS capacitor through the deposition of HfO2 on

the Si surface, forming a HfO2/Si/SiC MOS capacitor. This will be compared with three

other standard SiC MOS structures found throughout the literature, all of which have

been suggested as possible replacements for the SiO2/SiC MOS device. The first of these
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was the simple replacement of SiO2 with HfO2. However, the development of HfO2/SiC

capacitors has been hindered by an inadequate conduction band offset of approximately

0.7 eV between the materials [139] causing a large leakage current and an inadequate

breakdown. To counteract the leakage, the second structure is a HfO2/SiO2/SiC MOS

capacitor, which sees the reintroduction of a thermal oxide [53,140], adding a thin barrier

to the oxide stack that reduces leakage due to thermionic emission. Of course this is

something of a backwards solution, as it reintroduces all the existing problems with SiO2,

decreasing the effective dielectric constant, and leaving carbon-based traps in the channel.

The final structure compared here to the heterojunction structure is the HfO2/Si MOS

capacitor. Hafnium-based oxides have had some significant commercial success, replacing

SiO2/Si in many commercial CMOS processes including in Intel’s new 45 nm technol-

ogy [141]. The switch comes as SiO2 was having to be scaled to such thin dimensions that

leakage due to tunneling and early breakdown becomes too great a problem. The beauty

of the high-K solution is that it allows for thicker oxide layers, whilst retaining the same

capacitance, as KO and xo balance out in equation 8.10. Of course this comes at a price

and the barrier height of HfO2 is two thirds that of SiO2, resulting in greater leakage due

to thermionic emission. Furthermore, the processing, so well defined for silicon’s natural

oxide, is immature and much more complicated in comparison.

Here, the HfO2/Si/SiC MOS capacitor is compared to the HfO2/Si, HfO2/SiC, and

HfO2/SiO2/SiC MOS capacitors. The motivation, as in the last Section, is to assess how

well the heterojunction devices might perform as MOS structures - whether wafer bonded

Si/SiC devices will operate as well as the MBE Ge/SiC samples did.

The blocking characteristics of all the structures are displayed in Figure 8.12a. A large

leakage current and a breakdown of less than 1 MV/cm can be seen for the HfO2/SiC struc-

tures, in line with their meagre band offsets. The HfO2/SiO2/SiC capacitor performed
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Figure 8.12: a) Leakage and breakdown characteristic taken using I-V analysis. b) The
forward and reverse breakdown of the HfO2/Si/SiC structure compared to the HfO2/SiC

structure.

better, the structure breaking down at 2.5 MV/cm, consistent with other studies [140,142].

However, with its large band offset, the wafer bonded HfO2/Si/SiC capacitor exceeded

both of these at 3.5 MV/cm, with a leakage current consistent with the other structures.

This result is similar to that achieved by the HfO2/Si structure and much closer to the

values found in the literature for the upper limit of HfO2 [134, 135]. This is a result that

exceeds the MBE formed HfO2/Ge/SiC samples, which perhaps validates the previous

assertions that a flat, homogeneous surface is the most crucial aspect in forming these

capacitors, something much more easily achieved by wafer bonding than by MBE when

considering these highly lattice mismatched semiconductors.

In Figure 8.12b, the HfO2/Si/SiC structure is further compared with the HfO2/SiC

structure. As the SiC is n-type, the HfO2/SiC capacitor can withstand a very large nega-

tive voltage but breaks down with the application of a very small positive (accumulation)

voltage. The HfO2/Si/SiC capacitor suffers breakdown in both directions most likely due
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to the p-n heterojunction beneath the oxide, and the limited, 400 nm thick, region of Si.

Given a positive voltage the p-N heterojunction is forward biased, and there should be no

obstruction to electron flow. Hence, the voltage is entirely dropped over the oxide, now

effectively a Si/HfO2 structure, perhaps explaining their very similar breakdown values.

In the reverse direction, the bands of the p-n junction bend the other way and a large

depletion region is formed. This is then effectively two capacitors in series, reducing the

overall capacitance of the structure. This acts as a potential divider for the total voltage

dropped over the structure and may also explain the reduced breakdown voltage in the

reverse direction.

Figure 8.13: C-V results from the High-K MOS structures.

High frequency (100 kHz) C-V analysis was carried out on the four HfO2 samples and

the results are presented in Fig. 8.13. The leakage current of the HfO2/SiC capacitor is the

likely reason for the very low, almost immeasurable accumulation/depletion curve seen in

the Figure. The HfO2/SiO2/SiC prevents a large leakage current and the structures can be

seen to produce good C-V inversion-accumulation characteristics, though the stretching

out of the curve suggests that there may be a large amount of trapped charge. The
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HfO2/Si layer, with a conduction band offset [52] of approximately 1.5 eV, can be observed

transitioning from depletion to inversion, as one would expect. If the wafer bonded layer

was thick enough and homogeneous enough, this is the type of behaviour one would also

expect from this structure.

Figure 8.14: C-V results from the HfO2/Si/SiC MOS structure, with fitting.

The HfO2/Si/SiC structure by comparison appears to show little variation in its capac-

itance, compared to the other devices tested. This is unexpected, as simulations suggest

that the capacitance of these structures should vary over a similar scale, given the Si dop-

ing (NA = 1× 1017 cm−3) and an oxide identical to the others. Despite this, Figure 8.14

shows a close up the HfO2/Si/SiC result, with a Si MOS capacitance model that fits this

structure. The zoomed in view of this structure shows that some degree of gate control is

attainable on a similar capacitance scale to that seen in Figure 8.9 for the polycrystalline

Ge device. Unlike these results, and as one would expect, the C-V result of Figure 8.14

is one sided, with only one dopant type having contributed to this curve. However, to
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produce the simulation that fit the gradient of one side of the hysteresis affected curve,

the simulated parameters included a doping that was nearly 3 orders of magnitude greater

(NA = 9× 1019 cm−3) than the actual doping in the wafer bonded Si. If the Si layer were

this highly doped it would explain the difference between the structures in Figure 8.13;

however it is highly unlikely that a wafer would vary to this degree from the manufac-

turers specification, whilst no processing steps carried out will have altered the doping to

this degree. Therefore, other factors must have affected these results.

Comparing these wafer bonded HfO2/Si/SiC structures to the MBE formed HfO2/Ge/SiC,

the first obvious difference is the change of material and doping, from n-N Ge/SiC het-

erojunction structures to p-N Si/SiC heterojunctions. The change of material should

make little difference - the conduction band offset should still suffice between Si and SiC,

as demonstrated by the I-V results, and the difference in dielectric constant will make

minimal difference. However, the change of dopant affects the SiC layer as it will no

longer be depleting as the heterojunction layer does. In fact, as the Si depletion width is

expanding with increasingly positive voltage, the p-N junction will become increasingly

forward biased, reducing its depletion width. This can be visualised in Figure 8.15, where

it is predicted that with enough positive voltage, the whole Si layer would deplete (invert)

and begin to overcome the p-N depletion region. With a negative bias, the p-N junction

depletion region will be expanding as the Si heterojunction region is in accumulation. The

dynamics of the three capacitors in series are therefore very complicated and are most

likely the reason for the results of Figure 8.14. The apparent high doping may well be a

red herring, the slope being a result of the complex series capacitances, rather than the

doping of one layer alone.

One further point of note in comparing the structures. The MBE method, though dirty

and unreliable with regards to dopant concentration, will produce a very homogeneous
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Figure 8.15: A prediction of how the Si and p-N depletion regions interact, as the Si
region passes from a) accumulation to b) flat band, c) depletion and d) deep

depletion/inversion.

contact, laying down the Ge layer atom by atom on the SiC surface. On the other hand

the wafer bonding is very unreliable, producing an interface that has thousands of blisters

caused by trapped air or contaminants. Even between the blisters, the homogeneity of

the contact is doubtful, as only those surface atoms in intimate contact with the other

semiconductor will have formed bonds between the materials. This is another potential

source of stray capacitance that could be contributing to the C-V results, though like the

speculation above about the complex capacitances, it would be very difficult to quantify

the impact of this without much more exhaustive testing.

8.6 Summary

This Chapter has been dedicated to proving the feasibility of MOS devices formed from

SiC heterojunction devices. MOS structures were formed on two different SiC heterojunc-

tion structures deposited via two different methods. The MOS capacitors were analysed

via C-V and I-V techniques. The results from C-V analysis showed that MBE deposited
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layers have the ability to form very good depletion/inversion curves, signifying a degree of

control over the channel. The technique threw up some problems with depositing layers

however, as layers that were intended to be lightly doped appearing to be contaminated

with a large quantity of p-type and n-type dopants. Furthermore, given dopants with a

low deposition temperature, the likelihood is that the intended dopants will not become

activated in the amorphous structure. For the bonded wafers, the C-V results displayed

some transition from accumulation to depletion, though models attempting to predict the

nature of these results proved inconclusive due to the complex nature of these structures,

with multiple sources of capacitance. I-V results showed the ability of the MOS devices

to block a voltage. It was of little surprise to see here the flatter, monocrystalline wafer

bonded structures out-performing the rough deposited layers, with their multiple grain

boundaries. The wafer bonded layers managed to block an electric field of 3.5 MV/cm, a

value that is as large as the best HfO2 layers formed on pure Si or Ge substrates [134,135].

However, the deposited Ge layers managed only one third this value.

Future heterojunction MOS devices could improve on what has been learnt here.

Experimentation with CVD deposition instead of MBE, should remove cleanliness and

accidental doping as a consideration, whilst a variety of post deposition anneals could

be considered to better the semiconductor-semiconductor and semiconductor-oxide inter-

faces. In both cases, experimentation with a post-processing polish, would improve the

homogeneity of the semiconductor-oxide interface.

8.7 Conclusions

1. The use of a narrow bandgap semiconductor between HfO2 and SiC offers increased

band offsets that block significant current. Results also show that significant gate
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control is possible using these structures.

2. A wafer bonding/MBE trade off exists whereby layers with the best blocking ability

appear to come from the crystalline, flat wafer bonded layers. However, the MBE

layers produce the more robust C-V results, showing a smooth transition from de-

pletion to accumulation.
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Chapter

9 Conclusions and Further Work

9.1 Summary

The work that has been described at length in this thesis, all originated from one experi-

ment to compare the growth of Ge on SiC to that of Si to SiC. Having available a flexible

MBE tool capable of fine controlling the growth parameters of Si and Ge layers, it was

a natural step to build upon the large amount of existing Si/SiC research [14, 15, 19, 20]

and see if Ge would interact in the same way with the SiC substrate. A like for like

comparison between Si/SiC and Ge/SiC was designed, creating new Ge/SiC layers such

that they would match existing Si/SiC layers. Therefore the intended thickness, dopant

type and quantity, and relative growth temperatures of the first Ge layers all matched

the Si experiments that preceded it. On beginning the physical analysis, it soon became

apparent that the Ge was not behaving in the same way, seemingly defying its huge lattice

mismatch to SiC to produce a degree of uniformity unobtainable in the Si depositions via

the same methods. When they were formed into heterojunction diodes and electrically

characterised, the layers displayed near ideal turn-on characteristics, low turn-on voltage
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and minimal leakage. Series resistance was a problem that improved with a second gener-

ation of diodes that refined the Ge growth conditions, vastly improving layer uniformity.

However, the devices’ breakdown voltage could never be improved beyond 250 V, a by

product of the poor edge termination and device isolation techniques available.

Experimentation with the many different MBE deposition parameters suggested that

the layers with the biggest polycrystals tended to produce the diodes with the lowest

on-resistance. Layers grown at high temperature, with physically small and light dopants

produced the lowest resistance layers, with the optimum thickness being somewhere be-

tween 300 and 500 nm.

Several questions began to mount up about the way the potential barrier formed be-

tween the two semiconductors. Repeatedly, the same culprit came to the fore in the shape

of inhomogeneities and the charge they cause to be trapped at the interface. SBH values

appeared too large as a result of Fermi level pinning, the trapped charge causing band

bending at the surface. This further explained why the extracted SBH and the built-in

potential values were nearly identical from Ge layers doped degenerate p-type, degener-

ate n-type and those unintentionally doped. The impact of the inhomogeneous interface

was further cited to explain why the ideality factor and SBH values extracted from I-V

analysis were temperature dependant, whilst surface states caused the erroneously large

SBH values extracted from C-V analysis. Parameter modelling methods and analysis

techniques were adapted from the metal-semiconductor literature to justify and explain

all these phenomena, resulting in a sound understanding of the heterojunction interface.

A final test of the heterojunction structures was to see if a good depletion region

could be formed in the epitaxial wafer bonded Si layers or the MBE formed Ge layers.

This would enable a range of different field effect devices to be considered; heterojunction

transistors with narrow bandgap channel regions and wide bandgap blocking regions, or
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ultra fast, high mobility Ge FETs supported by the SiC substrate with its high thermal

conductivity. The results were promising, showing that using HfO2 as the dielectric,

the WB wafer bonded Si layers could support a decent electric field, managing to block

3.5 MV/cm, a value as large HfO2 layers formed Si or Ge wafers [134,135]. Furthermore,

the MBE Ge/SiC layers displayed the huge potential to form a depletion region in these

layers.

9.2 Conclusions

With the Summary in mind, the general conclusions of this work are listed here.

Polycrystalline germanium, deposited onto a SiC substrate via MBE has been shown

to form a more uniform coverage of the SiC substrate than silicon, for which it is more

energetically favourable to ball up into tall narrow islands. At an intended deposition

thicknesses of 100 nm the Ge also forms islands on the SiC, though these by contrast are

much shallower with little bare SiC between the islands. By 300 nm intended thickness,

the gaps have filled in and the layers are reasonably uniform. This difference between

the narrow bandgap materials is most likely thanks to a lattice parameter in the (111)

orientation that is mismatched from a single (0001) SiC parameter by only 0.5 %, though

this is far from a 1:1 match of the different atoms, matching at best 1 in 7 Ge atoms with

1 in 12 of the SiC’s Si atoms. Furthermore, high resolution TEM images of the interface

showed that ordered (111) Ge had formed locally on the SiC substrate in crystals up to

50 nm in diameter.

The key to forming the diodes with the lowest on-resistance was to form layers with the

largest polycrystals, and hence the least number of grain boundaries. The polycrystalline

nature of the Ge, meant that this requirement was in direct conflict with another, that
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the layer should be as flat as possible. In attempting to optimise the layers, a large

matrix of variables were controllable, though a balance was not found that could satisfy

both requirements. High temperature deposition provided the Ge adatoms the energy

they required to find a preferential bonding site, most often next to another Ge adatom

minimising the dangling bonds. Therefore, islanding occurred in the thinnest films and

large polycrystals (up to 200 nm diameter) formed in the thicker layers, both leading

to relatively bumpy surfaces, though a roughness of just 6 nm rms was achieved for a

300 nm n-doped layer deposited at 500oC. Those layers grown at low temperature clearly

had little energy to form into crystalline layers and the result, at any intended deposition

thickness was very flat, smooth layers, showing minimal crystallinity, though helium ion

microscopy images did show some order in the shape of small (¡20 nm) ‘dimples’ on one

surface. Electrical results soon showed that the performance of the low temperature layers

was unacceptable, with the surface quality unable to mitigate for the extreme on-resistance

and less than ideal turn-on characteristics.

The correlation between surface roughness and on-resistance continued when the dif-

ference between dopant types was observed. 300 nm p-type layers that employed the

relatively light and small dopant of boron produced a roughness of 30 nm rms and an

on-resistance lower than the heavily n-doped layer that employed antimony as its dopant,

which is the heavy and large compared to Ge. It seems likely that the antimony caused

extra strain within the layer, resulting in small polycrystals and a roughness of only 6 nm

rms. The thickness of the layer also had an influence, with on-resistance dropping up to

a thickness of 500 nm but then rising beyond this. This was a small data set but the

result is not surprising. Up to a given thickness the separate islands are merging and then

the polycrystals appear to be under reduced strain and able to grow in size. However,

a thickness will be reached where the resistance gain from the increased polycrystal size
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is outweighed by the increased number of grain boundaries that the carriers will have to

navigate through.

Given all these considerations it seems that the optimum layer would be deposited at

high temperature (500oC) to a thickness beyond that required, so that a post-deposition

polish could reduce the thick bumpy layer, back to a smooth layer of optimal thickness,

somewhere between 300 and 500 nm. An anneal prior to the polish is likely to increase

the volume of the deposited layer that forms into a single preferential crystal orientation.

The best dopant would be light and small so an upgrade from antimony to nitrogen or

phosphorous would likely facilitate larger n-type polycrystals. A pre-deposition polish of

the SiC substrate would likely improve uniformity, and would be essential in reducing the

inhomogeneities found at the interface.

The electrical performance of the best diodes compared well to conventional Ni/SiC

diodes. None of the high temperature Ge/SiC layers had an ideality factor that exceeded

1.1 and the on-resistance was similar to those Ni/SiC diodes with the same 10 µ thick

epitaxial layer, between 10 and 20 mΩcm2 for the best diodes. The SBH of 1.1 eV led

to a built-in potential low enough that the diodes’ turn-on voltage was approximately

0.3 V lower than their Ni/SiC counterparts. Under reverse bias, leakage was low for

the n-type layers; however the biggest problem with the diodes was their inadequate

breakdown which never exceeded 250 V. This is a somewhat irrelevant statistic however,

as this was achieved without proper isolation, passivation or edge termination, so the true

blocking capabilities of these layers will remain uncertain until these more complicated

and expensive procedures are carried out, though the literature suggests that very similar

Si/SiC devices blocked 1600 V [19,20].

In attempting to explain the behaviour of the diodes, questions about the Schottky

barrier height were continually raised. The barrier behaved unusually; seemingly too
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large at 1.1 eV, unusually immovable (along with the built-in potential) in the face of

vast dopant changes and yet inconsistent when subjected to temperature change and

different analysis techniques. Explaining these phenomena became the new focus of the

thesis.

The discrepancy between C-V and I-V techniques was the first to be explained, be-

ing similar to that which occurs in a metal-semiconductor regime [70]. It was shown

that the C-V technique of SBH extraction was inconsistent, the results being non-linear

and varying with frequency in the presence of surface states. This adequately explained

the excessive C-V SBH values attained, but despite this, parameters extracted via I-V

techniques were also inconsistent, as the ideality factor and the SBH were shown to be

temperature dependent, whilst the Richardson constant extracted at any temperature

was always at least an order of magnitude lowerthan the calculated value [124] for SiC of

146 Acm−2K−2. The reason for this was found by considering two-dimensional fluctua-

tions of the SBH across the heterojunction interface. The variation in the SBH size over

the interface leads to the idea that carriers approaching that interface will preferentially

find the routes of least resistance - with far more electrons having the energy to cross the

lower barriers.

Two techniques were adapted for use on heterojunctions to quantify the fluctuations

in SBH. The first treated the device contact area as a variable some fraction the size of

the total area, thus representing the small patches across which the majority of current

passes. Using this new variable in conjunction with the SBH and the ideality factor, it

was possible to extract a single SBH that was approximately 90% the size of the mean

SBH found later. Entering this into the diode equation to the experimental results at

any temperature, produced much more realistic Richardson constant values. The second

technique involved a statistical analysis of the interface, building up a mean SBH value
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and a standard deviation value to characterise the distribution of SBH values across the

interface.

The surface states that gathered at the heterojunction interface as a result of these

distinctly inhomogeneous contacts, were responsible for the fundamental way in which

the bands aligned. It was shown to be highly likely that the the Fermi level of the SiC

was pinned at its surface to an energy close to the material’s charge neutrality level. Ge

on the other hand, was hugely unlikely to be pinned due to the huge degenerate doping,

which caused it to behave like a metal. This Fermi level pinning was used to show why the

SBH was so large, when other methodologies predicted it should be very small, the band

bending at the SiC surface influencing where the Ge lined up in its bandgap. It was also

used to justify why the size of the SBH and built-in potential appeared to be independent

of doping type, the Fermi level of the Ge having to align exactly with the Fermi pinned

SiC surface. This ‘Pinning Model’ predicted that the leakage of a p-type device would

be greatly increased over that of an n-type device, something that was proven correct by

previous experimental data.

The final proof of concept was to see if a good depletion region could be formed

in the SiC heterojunction devices. Firstly, two MOS capacitors were tested employing

hafnium oxide as the gate oxide on MBE formed Ge/SiC structures substrates formed

using unintentionally doped 300 nm layers, one of which was deposited at low temperature,

the other at high temperature. C-V curves extracted from both structures showed that

some gate control was possible. The low temperature layer appeared to show a kink in the

depletion/accumulation curve, which was shown to be likely the result of the Ge depletion

region stretching out to its full 300 nm thickness, whilst the SiC was free to expand

unprohibited. This situation was modelled in Matlab and fitted to the experimental data

using a doping of 1 × 1016 cm−3 in the Ge layer. The high temperature layers produced
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the best depletion/accumulation curves; however, there was evidence that the “intrinsic”

layers had indeed been unintentionally doped both p-type and n-type by the MBE process.

Values extracted from the symmetrical p-type and n-type depletion/accumulation curves

suggested that both dopants were present to a level of 1× 1018 cm−3, higher than the low

temperature depositions likely due to the better dopant incorporation and activation. I-V

results showed that these layers were unable to block more than 1 MV/cm; however, this

was predictable given the uneven surfaces and large number of grain boundaries, which

will cause spikes in the electric field.

In contrast to the MBE results, MOS capacitors formed using HfO2 on wafer bonded

Si/SiC, performed well in I-V tests and poorly in C-V testing. The I-V analysis showed

that leakage was low and that they could block an electric field of 3.5 MV/cm, larger

than HfO2/SiC and HfO2/SiO2/SiC structures and equivalent to the best HfO2/Si and

HfO2/Ge layers in the literature. The C-V curves extracted showed that some gate control

was manageable, though the nature of the curves, specifically the perceived excessive

doping was explained by the p-N Si/SiC heterojunction interface, that would form a

complex combination of three capacitors in series, each of which was acting in conflict

with the other.

9.3 Future Work

This work was the first study on the deposition of Ge onto SiC and as such there are

many avenues that future research shall take, especially in the refinement of the deposition

technique and the development of new devices, whilst the analysis techniques developed

should be applied to other heterojunction layers.
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9.3.1 Deposition

The biggest disappointment of this project was that the unique MBE facilities were closed

two years into the project, a lack of funding for the equipment leading the University’s

Nano-Silicon group to focus instead on Chemical vapour deposition (CVD) techniques. At

this stage, there was a third generation of diodes planned that would have answered some

of the remaining questions, and no doubt, many new experiments would have followed

in fourth and fifth generations. CVD was considered as an alternative but the ultra

clean vacuum systems required entirely clean substrates, something that could not be

guaranteed from the laser cut, air exposed SiC chips used in this project.

The following is a comprehensive list of experiments that would help to definitively

characterise the deposition method.

1. This project involved a range of deposition thicknesses but the comparisons are not

always fair, involving a range of different dopants. A comprehensive test is suggested

to show the different stages of growth, i.e. high temperature intrinsic layers grown

at 20 nm intervals up to 200 nm, then at 50 nm intervals up to 600 nm. It appears

likely that in the initial stages the formation of the sprawling islands would be

evident. These should gradually merge and become more uniform, the individual

polycrystals then increasing in size with layer thickness. As well as the materials’

interest to this test, the real practical gain will be in knowing at what thickness the

on-resistance of the layers reaches its minimum. From the preceding results this is

predicted to be around 400 nm.

2. 500oC has been the high temperature growth of choice in this project. However, its

original selection was somewhat arbitrary, its relative success meaning that other

more interesting parameters took precedence. Again, a fair matrix is required that
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will observe the relative pros and cons of a range of growth temperatures, i.e. all

other parameters remaining equal, varying the growth temperature at 25oC steps

from 400 to 600oC.

3. We observed in this thesis the difference in layer morphology between antimony and

boron as a dopant, everything else in the layers being equal. Antimony was heavy

and large compared to Ge, boron small and light. Completing this matrix would

also be interesting to observe if the differences can be confirmed as large vs, small

dopant, or somehow p-type vs. n-type. Hence, joining antimony and boron should

be a range of other dopants. Nitrogen would be difficult to include as the Warwick

MBE took only solid source dopants, but could be used in those with a gas line.

Indium would be the equivalent p-dopant to antimony, whilst the pairs of gallium

and arsenic or aluminium and phosphorous could also be considered.

4. A final useful comparison will be the deposition of equivalent layers via MBE, CVD

and any other technique to compare the differences. It is expected that CVD would

provide a cleaner environment in which to deposit the layers helping to diminish

unwanted doping and improve homogeneity.

9.3.2 Fabrication

It is almost too obvious to say that the quality of the diodes are going to be linked to

the quality of the technology used, the cleanliness of the environment and the knowledge

of the operators using the equipment. Therefore, this Section is a little like saying “If we

have a blank cheque...”. The best way of achieving state of the art fabrication would be a

collaboration with industry leaders and under these conditions, the quality of the diodes

would leap up. However, closer to home, there are a couple of ways the fabrication can
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be improved without going to huge expense.

5. The use of pre- and post-deposition polishes would most likely have been included

in the third generation of diodes. NovaSiC can polish SiC at an affordable rate [86],

while they have confirmed in conversation that Ge polishing is also possible. This

would vastly improve the quality of both top interfaces, reducing inhomogeneities

and hence likely relieving some of the Fermi level pinning and SBH fluctuations.

6. A range of experimentation needs to be carried out on the quality of the layers with

anneal temperature. All the layers considered here were not annealed to maintain

high/low-temperature differences within the Ge layers. However, now that low

temperature layers have been somewhat discredited as an option, a range of anneals

on samples from 200oC up to around 800oC, would likely improve the ohmicity of

the front Ni/Ge contact, and maybe the SiC/Ge interface; however anneals closer

to 1000oC are usually used on SiC, though this is above the melting point of Ge.

7. Some experimentation with techniques that will push up the breakdown voltage

is essential, and the techniques described in Appendix A.6 could all be sought at

varying degrees of complication. Passivation layers, or field plates, could be achieved

reasonably simply with a new two mask process. JTEs and field rings provide extra

expense and complication because of the need for an implantation process.

9.3.3 Heterojunction Devices

The work presented in this thesis has been something of a proof of concept for the rec-

tifying properties of Ge/SiC heterojunction diodes and the SiC heterojunction MOS ca-

pacitors. This work can be extended as far as resources allow.
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8. The basic FET operation could be proven by showing that structures such as the

MOS capacitors already established are capable of moderating a channel current.

This could be performed relatively simply with minimal processing. A more compli-

cated heterojunction MOSFET is also feasible but would require significant funding,

device modelling and process refinement to perfect the multiple mask layer process

including implantation.

9.3.4 Materials

A lot of what has been learnt and developed in this project could be applied to other

materials including those established heterojunctions and other new semiconductors.

9. It would be a fascinating study to apply the techniques developed in Chapter 7

to other established heterojunction interfaces. A good example is strained silicon

where the use of epitaxial strain is exploited to boost carrier mobility. It is therefore

of great interest to know if the strain affects interface homogeneity, promoting either

Fermi level pinning or quantifiable SBH fluctuations. Increasing the content of Ge

in a Si/SiGe layer, the strain is released through the presence of dislocations. Again,

these are likely a cause of surface charge and inhomogeneity, so their increase with Ge

content may well also show an increase in the spread of SBH values at the interface,

measurable by the standard deviation in Section 7.2.4. This same technique could

be applied to other combinations for example, Ge/GaAs or AlAs/GaAs.

10. Another very simple recommendation is that epitaxial layers of Si or Ge be grown

upon other high power, high temperature, wide-bandgap semiconductors such as

GaN and diamond. These other combinations may produce other good structures

upon which heterojunction diodes or transistors could be formed. GaN with Si is
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well established, the difference being however, that the Si is commonly a supporting

substrate for the non-freestanding GaN material.

9.3.5 Analysis Techniques

There are two other analysis techniques that would shed more light onto the nature of

the layers.

11. Secondary Ion Mass Spectroscopy (SIMS). SIMS could be used to give a detailed

dopant profile through the heterojunction layer potentially showing how well the

dopant has integrated. This is of interest because non-uniformity of the dopant is

another source of interface inhomogeneity, especially if the dopant has a tendency

towards the interface, or indeed grain boundaries.

12. Conductive AFM (C-AFM). Performed on an unprocessed Ge/SiC layer, this tech-

nique could be used to perform localised I-V sweeps on the nanometer scale as

another method that might shed light on the localised fluctuations of the SBH.

9.3.6 And Finally...

The development of the heterojunction diodes and MOS capacitors in this thesis were the

result of three years of research. Some of the ideas presented here could encompass two

or three more PhD or post-doctoral positions. However, at the time of writing work had

already begun on proving some FET capability, not yet successfully. The idea in point 9

of extending the heterojunction analysis techniques beyond Ge/SiC into Si/SiGe has also

begun, through a collaboration with Warwick University’s Nano-Silicon group.
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Appendix

A Supporting Background Theory

A.1 Introduction

Presented in this Section are some of the fundamental concepts which were taken as

presumed knowledge within the bulk of the thesis. This begins by building up the band

diagram from basic principles before the interaction of like semiconductors is introduced.

Electrostatics are used to build up some of the key equations, before we move on to

the most relevant topic, metal semiconductor interaction. This being synonymous with

degenerate heterojunction behaviour, band alignment, current transport and the diode

equations are introduced. Ohmic contacts are then mentioned, before moving to the

more advanced topic of breakdown voltage and the prevention of electric field bunching.

A.2 Band Diagram Theory

This Section introduces the fundamental energy diagram that has become so familiar to

the semiconductor world. Starting the discussion with the makeup of the fundamental
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elements, we build up the idea of doping and introduce the semiconductor before discussing

the band diagram itself including the Fermi level.

A.2.1 The Periodic Table and the Structure of an Atom

The periodic table of elements lists all the elements that are known to man. If we exclude

the transitional and rare earth elements, then the classification of the elements in the

periodic table is rather simple. From the top of the table down, every row represents a

new outer shell that surrounds an atom’s nucleus. Each element will have a number of

negatively charged electrons in their shells, balancing the number of protons within the

nucleus. The atom’s horizontal position is determined by the number of electrons that

are orbiting in the outer shell, known as valence electrons. The number of the group, I

through to VIII, represents the number of valence electrons orbiting the outer shell of the

atom.

The first, innermost shell may contain only two electrons. Hence the first row of the

periodic table is made up of only two elements, hydrogen with only one valence electron

and helium with two. Despite the atom’s natural state, it is energetically favourable for

all the elements to complete their outer shells. Hence, helium is considered very stable, as

there is no benefit in it altering its natural state. Hydrogen, on the other hand is found

naturally in its H2 form, whereby two hydrogen atoms share their electrons, completing

the outer shell of both. Having only one electron, hydrogen is the lightest element and

also the most abundant in the universe.

The next six shells that can surround an atom’s nucleus may hold up to eight elec-

trons. Again, the eight valence electrons found in argon and neon make them very stable

elements. The other elements will attempt to complete their outer shells by sharing their
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electrons with like and dissimilar elements. In doing so, they form the crystal structure

that is the basis of all solid materials. The group IV elements are the simplest exam-

ple of this, with carbon, silicon and germanium all forming very stable semiconductor

materials by bonding to their like elements, though SiGe and SiC are both compounds

formed between different group IV elements. Bonding between groups produces stable

compounds, with gallium nitride (GaN) and gallium arsenide (GaAs), aluminium nitride

(AlN) and aluminium arsenide (AlAs) all popular III-V compound semiconductors, whilst

magnesium sulphide (MgS) and zinc oxide (ZnO) are examples of II-VI semiconductor

compounds. These compound materials form regular, repeatable crystal structures, the

same as Si or diamond. Group I and VII contains the most volatile of the elements as

they react with most other elements attempting to lose or gain an electron.

A.2.2 Building the Energy Diagram

In 1926 Erwin Schrödinger gave birth to the equation that bears his name. This described

how the properties (e.g. energy, momentum, position) of a particle (e.g. an electron) may

be obtained by treating it as a wave function, Ψ. In a level of complexity beyond this

text, Felix Bloch translated this theory to the realms of an electron travelling through

a unit cell, such as those in Figure 3.1. He revealed that the momentum-energy picture

is dependent on the orientation of the electron within the cell. Hence, he was able to

derive a set of allowed energy states for an electron within a given lattice, defining for the

first time the band structures that have become so fundamental to modern semiconductor

physics.

The band diagram may be seen as a map of energy states, representing on a macro-

scopic scale, the energies of electrons in a material. Given a simple band diagram, such

228



A.2 Band Diagram Theory

Figure A.1: The band diagram of a generic, undoped (intrinsic) semiconductor.

as that in Figure A.1 which happens to be that of a semiconductor, the vertical scale

represents the energy levels of electrons in a lattice. These can be broadly divided into

two states, those that are associated with an atom, and those that are free, or conducting.

The electrons that are free have much more energy than those within a rigid lattice, and

hence they are represented higher up the diagram. In explaining the layout of the band

diagram in Figure A.1, we will start right at the bottom. The electrons with the least

energy are those that reside in the inner shells. Above these, energetically, are the valence

electrons, residing in the outer shell. Having a greater potential energy, it takes much

less effort to remove these electrons from the lattice. Hence they are closer to what is

known as the valence band edge, EV , the maximum energy an electron may have whilst

maintaining a bond to the atom. The conduction band edge, EC , represents the lowest

possible energy that a free electron may have and is an energy EG, above the valence

band. The intrinsic energy level, Ei, represents a point half way between the bands. This

is usually used to denote that the semiconductor is undoped, and hence at 0 K there will

be no excess of holes or electrons in the lattice. Once over the energy gap, free electrons

may exist at energy levels anywhere within the conduction band. Given a large amount
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of energy, electrons may escape the material. This energy level is represented by the

vacuum level, E0, which is the highest point on a band diagram, though often excluded.

The vacuum level is an energy, χ, above the conduction band edge, known as the electron

affinity.

A.2.2.1 Semiconductors

The energy gap between the conduction and valence bands represents the amount of

energy that is required to free an electron from its lattice. The size of the gaps tells

us how good a conductor the material is. In an insulator such as that in Figure A.2a,

the gap is prohibitive, and no electron given reasonable stimulus can be excited to the

conduction band. In a metal, seen in Figure A.2c, the conduction and valence bands

actually overlap and there is no gap. This means that there will be a large quantity of

free electrons, even at 0 K, and hence they are the best conductors. Between these two

extremes are semiconductors, seen in Figure A.2b. Because of the size of their band gap,

semiconductors will act as insulators at 0 K and conductors at high temperature. At

0 K, no thermal energy exists to break the bonds holding the electrons to the lattice and

hence, the conduction band will be devoid of electrons. At room temperature, the thermal

energy is great enough that a proportion of the valence electrons will have broken away,

crossing the energy gap to the conduction region.

A.2.2.2 Doping, the Energy Diagram and the Fermi Level.

Figure A.3a shows a simplified example of a group IV material, Si for example. The valence

electrons are depicted here as orbiting the nucleus as a planet would the sun; however,

the real scenario is of course three dimensional, allowing atoms to form in a crystalline

lattice. The uniform nature of this Si material can be easily disturbed by introducing
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Figure A.2: The band diagrams of an insulator, a semiconductor and a metal.

Figure A.3: Three doping types for a group IV elemental material: a) Undoped, or
Intrinsic, b) n-type doped with a group V element containing an extra electron, c)

p-type doped with a group III element containing one electron less.
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elements from different groups into the lattice. Figure A.3b shows the scenario where a

single atom of a group V element, phosphorous for example, has been introduced amongst

the Si lattice. The addition of this single atom means that only four of its electrons can

bond to its neighbours, leaving one spare electron. The electron being a negative particle,

this is known as n-type doping. It follows that p-type doping is the opposite of this.

Figure A.3c shows a group III element such as aluminium having been introduced into

the Si. With one negative electron less than usual, the lattice is said to have gained a

‘hole’ and is p-type.

The extra electron in n-type doping and conversely, the hole in p-type doping, have

only a very weak association with their host atom. Hence, in the n-type case only a small

amount of energy will be required to remove a dopant electron from the lattice to the

conduction band. The energy required to achieve this has been quantified for Si dopants,

with the electrons in the n-dopant phosphorous requiring only 0.045 eV to free themselves

into the conduction band [35]. This is approximately 25 times less energy than is required

to excite an electron across the 1.12 eV Si bandgap. For this reason, we may visualise

the n-type dopants as sitting just below the conduction band in the energy spectrum

as laid out in Figure A.4a. At absolute zero, the electrons within the material have no

energy, and all the dopant atoms sit in their lattice position at an energy just below the

conduction band. As the temperature begins to rise, the electrons begin to jump into

the conduction band. At room temperature, all the dopants will have passed into the

conduction band.

Though harder to perceive, the opposite case is true for holes. Holes are also fluid

given that with energy, electrons from the next complete atom may move into the gap

left by the dopant atom. This takes more energy than the freeing of an extra electron,

and hence the macroscopic movement, or mobility, of holes through a p-type material
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is slower than the movement of electrons through n-type material. The p-dopants sit,

energetically, in the semiconductor bandgap just above the valence band as seen in Figure

A.4b. Electrons within the valence band require 0.067 eV to jump into holes introduced

by the p-dopant aluminium, the reliance on temperature being the same as it was for the

n-dopants.

Figure A.4: The effects of dopants on the energy diagram, with the introduction of a)
n-type dopants and b) p-type dopants. [35]

In Figure A.4, the Fermi level (EF ) was introduced. Used generally as an indicator of

a semiconductor’s doping, the Fermi level indicates the energy level at which 50% of the

states will be filled with electrons. The number of states in the conduction band (NC)

and the valence band (NV ) are intrinsic properties proportional to the effective mass of

an electron (m∗
n) and a hole (m∗

p), respectively, within that material, such that,

NC = 2

[
m∗

nkT

2π~2

]3/2

(A.1a)

NV = 2

[
m∗

pkT

2π~2

]3/2

(A.1b)
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Given that these two values will be very similar, it is only a minor approximation to

say that in an intrinsic semiconductor, such as that in Figure A.1, the Fermi level will

be halfway between the conduction and valence bands, very close to Ei. In fact, the

exact position of the Fermi level in a moderately doped (non-degenerate) semiconductor

is very precise, taking into account the excitation of carriers across the bandgap due to

temperature and the difference in the effective masses of the carriers. EF is defined for

the non-degenerate case as [35],

EF = Ei +
kT

q
ln

(
ND

ni

)
. . . ND À NA, ND À ni (A.2a)

EF = Ei − kT

q
ln

(
NA

ni

)
. . . NA À ND, NA À ni (A.2b)

where,

Ei =
EC + EV

2
+

3

4

kT

q
ln

(
m∗

p

m∗
n

)
(A.3)

and ni is the intrinsic carrier concentration of a material given by

ni =
√

NCNV exp−EG/2kT . (A.4)

For moderately doped semiconductors, Boltzmann statistics relate the concentration

of carriers to the Fermi level’s offset from the conduction or valence bands, known as φn

and φp respectively, such that

φn =
EC − EF

q
=

kT

q
ln

(
NC

ND

)
for n-type (A.5a)

φp =
EF − EV

q
=

kT

q
ln

(
NV

NA

)
for p-type (A.5b)

The final images in Figure A.4 depict the simplified band diagrams, which represent
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the most common way of presenting semiconductors energetically. The vacuum, dopant

and intrinsic Fermi levels are ignored along with the areas that made up the conduction

and valence bands. Instead only the conduction and valence band edges remain outlining

the bandgap, whilst the Fermi level represents the quantities of holes and electrons that

make up the doping levels.

A.3 Semiconductor-Semiconductor Theory

Having built up the band diagram of a semiconductor, we can now consider what hap-

pens when semiconductors are brought into intimate contact, and what happens when we

apply a voltage to these structures. Section A.3.1 explores the homojunction, two like

semiconductors that are brought in to intimate contact. The case where the semiconduc-

tors are of opposite doping, the p-n junction, is first examined, followed by the isotype

junction, where both semiconductors are of the same doping. The degenerate semicon-

ductor will also be examined showing the effect of a large differential in doping between

semiconductors.

A.3.1 Homojunction Theory

A homojunction is the union of two like semiconductors. The connection may be made

by various means including epitaxial growth and bonding, or simply by doping one region

of a semiconductor differently to the bulk. To start we will give the semiconductors

opposite doping, forming a p-n junction. This is one of two basic diode forms along with

the metal-semiconductor Schottky diode which will be seen in Section 3.5.

Depicted in Figure A.5 are the two semiconductors of opposite doping being brought

into intimate contact. In Figure A.5b, the semiconductors are in intimate contact at t = 0.
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Figure A.5: The flow of majority carriers and the energy situation as two like
semiconductors of opposite doping come into intimate contact.

With charge carriers of opposite polarity now in intimate contact, this is an unstable state

and the recombination of those charges near the interface is inevitable.

Until now we have only really considered the vertical axis of the energy diagram. The

horizontal axis represents the depth into the semiconductor, starting from the surface at a

point 0. As more or less carriers gather at the surface or within the bulk, so the energy is

able to change along the X-axis. We see this beginning to occur in Figure A.5c and fully

in d). The instant after the two semiconductors have been brought into contact, the free

electrons of the n-type material are drawn towards the holes of the p-type material and vice

versa, thus forming a neutral layer at the interface where the carriers have recombined.

This is an area depleted of carriers and hence known as the depletion layer. There is

evidence of these depleted carriers in the energy band diagram of Figure A.5d (the stable

state) where, at the interface the semiconductor appears intrinsic, having a centred Fermi

level. The Fermi levels of the two semiconductors may be seen to have aligned, and this

is the golden rule of the energy diagram; that in a steady state with no applied bias,
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the Fermi levels of materials in intimate contact will align. This holds true across dopant

types forming the basis of p-n junction theory; between different semiconductors, the basis

for heterojunction theory; and even between metals, semiconductors and insulators, the

basis for Schottky and Ohmic contacts as well as MOS structures.

The potential difference between the conduction bands, ∆EC (and indeed the valence

bands ∆EV in a homojunction) is known as the built-in potential (ψbi) under steady

state conditions. This value quantifies the amount of bias that must be applied to a p-n

interface before ‘flat band’ conditions are achieved, and electrons can flow unhindered

between the semiconductors. The built-in potential between two like semiconductors is

simply equal to the potential difference of the Fermi levels ∆EF prior to intimacy, as

seen in Figure A.5b. Hence, subtracting Equation A.2b from A.2a and rearranging, one

obtains the built-in potential for a non-degenerate p-n junction,

ψbi,pn =
kT

q
ln

(
NDNA

n2
i

)
. (A.6)

Considering Equation A.6, the intrinsic carrier concentration ni at the given temperature

will determine the potential barrier to be overcome. Considering again Equation A.4, we

may see how much of an influence the bandgap of the semiconductor has on a device.

Comparing silicon and silicon carbide, the former with its bandgap of only 1.12 eV has a

moderate 8× 109 cm−3 free carriers at room temperature. This leads to built-in potential

of 1 Volt given a p- and n-type semiconductor of doping 2 × 1018 cm−3 each. For SiC,

there are only 9 × 10−9 cm−3 free carriers at room temperature. Given the same p- and

n-doping, the built-in potential is 3.1 Volts, and hence much more energy is required to

turn on this diode.

Whilst much reduced in comparison, the 1 V value for ψbi is still rather large for a
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diode, as a lot of energy will be wasted turning the device on. For this reason bipolar

diodes tend to be reserved for applications where large breakdown voltages (> 2 kV) are

required.

A.3.1.1 The Application of a Bias

Figure A.6: The flow of majority carriers and the energy situation as a bias is applied to
a p-n junction of like semiconductors.

Considering the stable p-n junction of Figure A.5d, we can now see how it is used

as a diode and assess what happens when a voltage is applied, as shown in Figure A.6.

Firstly, in Figure A.6a, the structure lies in its steady state, with no bias applied. With

the application of a reverse bias, the depletion region at a p-n interface will widen, the

majority carriers on each side being drawn back from the interface. As such, the potential

barrier will widen, and

∆EC = ψbi − VA, (A.7)
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where the applied voltage, VA, is a negative value. With the application of the reverse bias,

the only electrical conduction through the structure will be down to minority carriers, with

a barrier too large to surmount for majority carriers. With the application of a forward

bias, this barrier begins to reduce, until a point in Figure A.6c where, with an applied

voltage equal to that of ψbi, the bands flatten. There is now no barrier for carriers to

surmount, and current begins to flow in earnest. Increasing VA so that it is bigger than

ψbi, as in A.6d, causes the bands to bend the opposite way from their origin, further

increasing current flow.

Hence, the actions of a bipolar diode have been explained. A reverse bias causing little

but leakage current, the small potential barrier causing a small turn-on voltage and the

device turning fully on when the applied voltage exceeds the built-in potential. Given a

very large reverse bias the structure will breakdown, causing a large flow of current.

A.4 Electrostatic Relationships

Electrostatic analysis allows us to build up a picture of the electric field, E, and the

electrostatic potential, V , at a p-n junction interface from the starting point of knowing

only the doping and the dielectric constant of the semiconductors. By defining equations

for V we can take this further, defining the edges of the depletion region, xp and xn, and

thus finding the full depletion width W .

A.4.1 The p-n Junction

We use throughout the example of a p-n junction, where both sides of the interface are

moderately doped, but where NA on the p side is three times that of ND on the n side.

In the bulk of these materials charge neutrality prevails [35], as the charge of the free
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carrier is balanced by the ionized dopant atom it came from. Within the depletion region

(also known as the space-charge region) at a p-n junction, the free electrons and holes

have recombined leaving the static ionized dopants, and hence an overall charge density

of opposite polarity each side of the interface. The charge density in these regions, ρ, is

fully defined by considering all the charge within a semiconductor,

ρ = q (p− n + ND −NA) , (A.8)

where n and p are the intrinsic concentrations of electrons and holes respectively. However,

this can be approximated by considering only the intentional doping, reducing Equation

A.8 to

ρ = q (ND −NA) . (A.9)

This is known as the Depletion Approximation, and its characteristically square profile

can be seen in Figure 8.2.1a. The true profile tails off slightly at the depletion region

edges.

Poisson’s equation is used to relate the charge density of the space charge region to

the electric field across the same region. The three dimensional form is defined as

∇E =
ρ

εs

. (A.10)

where εs is the semiconductor permittivity given by εs = ε0KS. However, in one dimen-

sional problems Equation A.10 simplifies to,

dE

dx
=

ρ(x)

εs

. (A.11)
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Combining Equations A.11 and A.9, we come to the differential equations that can be

used to solve for the electric field.

dE

dx
= −qNA

εs

. . .− xp ≤ x ≤ 0 (A.12a)

dE

dx
=

qND

εs

. . . 0 ≤ x ≤ xn (A.12b)

dE

dx
= 0 . . . x ≤ xp and x ≥ xn (A.12c)

Hence, integrating these equations with the interface and the edges of the depletion region

gives the electric field, thus,

E(x) = −qNA

εs

(xp + x) . . .− xp ≤ x ≤ 0 (A.13a)

E(x) = −qND

εs

(xn − x) . . . 0 ≤ x ≤ xn (A.13b)

The electric field within the depletion region of our example semiconductors is shown in

Figure 8.2.1b. The electric field is always negative within the depletion region reaching

its strongest point at the interface. Considering the electric field at the interface, where

x = 0, the two halves of Equation A.13 may be equated, leaving

NAxp = NDxn. (A.14)

This explains the correlation between the doping and the depletion width each side of the

interface.

The electrostatic potential is the integral of the electric field, given by

dV

dx
= −E. (A.15)

241



A.4 Electrostatic Relationships

Hence, substituting Equations A.13 into A.15 leaves the differential equations that can

be solved to reveal the electrostatic potential. The limits are again between the interface

and the depletion width edges, and between 0 volts and the maximum voltage Vbi, leaving

V (x) =
qNA

2εs

(xp + x)2 . . .− xp ≤ x ≤ 0 (A.16a)

V (x) = Vbi − qND

2εs

(xn − x)2 . . . 0 ≤ x ≤ xn (A.16b)

V is seen in Figure 8.2.1c, showing the quadratic curve commonly seen within band

diagrams. Again the two parts of Equation A.16 can be equated at the interface, giving

qNA

2εs

x2
p = Vbi − qND

2εs

x2
n. (A.17)

We have now built the electrostatic picture within the space charge region of the p-n

junction; however all this has been done without defining the width of this region. xp

can now be found by rearranging Equation A.17, and eliminating xn by substituting in

Equation A.14. This can be repeated for finding xn leaving,

xp =

√
2εs

q

ND

NA(ND + NA)
Vbi (A.18a)

xn =

√
2εs

q

NA

ND(ND + NA)
Vbi (A.18b)

Hence the full depletion width is given by adding these two depletion edges,

W = xn + xp =

√
2εs

q

NA + ND

NAND

Vbi (A.19)
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A.4.2 Isotype Homojunctions

The previous electrostatic analysis can be equally applied to an isotype junction with

only a change in the nomenclature. The n-n homojunction of Figure A.7, is considered,

where one side has the greater doping, and hence a Fermi level offset exists, equal as

before to Vbi. However, being a unipolar system, the interface between the two layers

acts slightly differently. On the instant of contact between the materials an imbalance

exists, with the higher doped semiconductor having more free electrons than the other

semiconductor. Hence, as time progresses, the two sides balance out, with the electrons

diffusing to the side of least carriers. As in the case of the p-n homojunction, the highly

n-doped semiconductor is depleted of its carriers, and hence its bands bend up at the

interface. Contrary to this, the lighter doped semiconductor is now in accumulation,

having more electrons than donor sites, hence the bands bend down at the interface. As

you move further from the interface into the bulk of each semiconductor, the bands return

to their pre-contact levels.

Figure A.7: An isotype homojunction a) prior to intimate contact, b) at the the instant
of contact, c) after it has reached its steady state.
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From an electrostatic viewpoint, this scenario plays out in a fashion very similar to

that of the p-n homojunction. As the highly n-doped semiconductor is depleted, the

charge density is still dictated by Equation A.9. On the other hand, the lightly n-doped

layer is in accumulation and hence the charge density is approximated by ρ = −qND,1,

leaving the electric field analysis as,

dE

dx
= −qND,1

εs

. . .− x1 ≤ x ≤ 0 (A.20a)

dE

dx
=

qND,2

εs

. . . 0 ≤ x ≤ x2 (A.20b)

dE

dx
= 0 . . . x ≤ x1 and x ≥ x2 (A.20c)

It follows then that Equations A.13 to A.19 follow exactly as before, with only a change

of nomenclature, ND,1 replacing NA, ND,2 replacing ND, x1 replacing xp and x2 replacing

xn.

A.4.3 Heterojunctions

In considering a p-n heterojunction, one must consider the differing dielectric constants

of the unlike semiconductors. Equations A.13 and A.16 derived for the electric field and

the electrostatic potential still hold true. Equation A.14, equating the electric field at the

interface, still holds true as εs,1E1 = εs,2E2. However, the use of the different dielectrics

(ε1 and ε2) means that Equation A.17, equating the electrostatic potential at the interface,

now becomes,

qNA,1

2εs,1

x2
1 = ψbi − qND,2

2εs,2

x2
2. (A.21)
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Using Equation A.14 to nullify x2 and x1 respectively in A.21, x1 and x2 at the p-n

heterojunction may be found as

x1 =

√
2εs,1εs,2

q

ND,2

NA,1(NA,1εs,1 + ND,2εs,2)
ψbi (A.22a)

x2 =

√
2εs,1εs,2

q

NA,1

ND,2(NA,1εs,1 + ND,2εs,2)
ψbi (A.22b)

A.5 Metal-Semiconductor Theory

From a circuitry point of view, we take for granted that our transistors and diodes, with

their metal contacts, will slot together with other devices in a predictably ohmic, low-

resistance fashion. We need to know no information about how one metal contact may

interact with another, we simply presume that they will conduct almost losslessly. To

facilitate this level of ease, we must ensure that all our devices begin and end with metal

contacts. It is therefore imperative that we understand the interaction between metal and

semiconductor.

The band diagrams of the two contact types, the Schottky and Ohmic contact, are

very similar in appearance. They both involve a potential hill, or Schottky barrier, that

majority carriers have to overcome, though they achieve this in quite different ways. To

understand these concepts, three significant current transport techniques must first be

understood. We will then discuss the rectifying Schottky contact, the key to the Schottky

Barrier Diode, followed by the Ohmic contact, which ideally is a lossless transition between

the materials.
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Figure A.8: A Schottky metal-semiconductor interface a) prior to settling to the steady
state and b) in the steady-state.

A.5.1 The Schottky Barrier

The potential barrier that occurs at the M-S interface is known as a Schottky Barrier

after the German Physicist, Walter H. Schottky who first developed the now common

mathematics surrounding the idea [97]. A simple M-S interface involving a moderately

n-doped semiconductor (ND < 1 × 1015 cm−3) may be seen in Figure A.8. The large

quantity of free carriers within the metal means that a one-sided depletion region forms

synonymous with that of a degenerate p-n junction. One can gather the vital equations

up by visually inspecting the pre- and post-connection band diagrams of Figure A.8.

The built-in potential, ψbi, is clearly the difference between the semiconductor and metal

Fermi-levels prior to contact. The Schottky-Mott principle [97,98] states that the vacuum

levels will align, leaving the electron affinities to dictate the offset. Under these conditions,

the built-in potential is simply,

ψbi = EF,S − EF,M = ΦM − ΦS, (A.23)
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where ΦM and ΦS are the respective energy differences between the metal and semicon-

ductor’s Fermi levels and the vacuum level. The next logical step, is defining the height

of the Schottky Barrier, ΦB, over (or, as we will see, through) which electrons must pass

when travelling from the metal to the semiconductor. To clarify the nomenclature, ΦB,

refers throughout to any M-S offset. The subscript p or n narrows this down to the hole

or electron barrier whilst Φ0
B,n refers specifically to the theoretical maximum M-S barrier

formed before any real-world effects are considered, such as image-force barrier lowering

or tunneling. From Figure A.8 and Equation A.23, it follows that

Φ0
B,n = EC,S − EF,M = ΦM − χ, (A.24)

where χ is the semiconductor electron affinity, the potential difference between the semi-

conductor’s conduction band and the vacuum level equal to ΦS − Φn and where Φn is

the difference between the conduction and Fermi levels. Given this it follows, that the

Schottky barrier height is also defined as

Φ0
B,n = ψbi + Φn. (A.25)

A.5.2 Current Transport Processes

Unlike the p-n junctions discussed in Section A.3.1, metal-semiconductor contacts are

mainly unipolar, with the majority carriers responsible for the majority of current flow.

Figure A.9 shows five of the transport processes that occur under forward bias. Either

thermionic emission (TE), thermionic field emission (TFE), and field emission (FE) will

dominate the current transport process dependent on the level of doping within the semi-

conductor, and we will analyse these techniques in detail. Diffusion is the process by
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which particles move from areas of high concentration to areas of low concentration. In

this case, electrons travel from the bulk to take the place of those others that have been

induced over (or through) the barrier. Also some minority carrier injection takes place

at high forward bias with holes diffusing from the metal towards the bulk. The recom-

bination (or generation) of carriers occurs in the depletion region of a contact whenever

the thermal equilibrium of a semiconductor is disturbed, i.e. when pn > n2
i (or pn < n2

i ).

The amount of minority carriers that diffuse into the depletion region within these con-

tacts is very small due to the large potential barrier, thus the recombination current is

insignificant compared to that induced by thermionic or field emission. In a full analysis,

the minority injection and recombination currents cannot be ignored, and further details

of them can be found elsewhere [36].

Figure A.9: Band diagrams depicting the three current transport mechanisms and their
relationships to semiconductor doping.

The way in which carriers overcome the Schottky barrier depends on the width of

the depletion region, W , which in turn is dependent on the doping of the semiconductor.
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Figures A.9a-c, relate the semiconductor doping and the current transport mechanisms,

from low doping and thermionic emission at one extreme, to high doping and field emission

at the other.

Thermionic emission is the dominant mechanism in Schottky contacts, and is the most

simplistic process to understand. Presented with the barrier seen in Figure A.9a (or in

Figure A.8), the carriers within the semiconductor bulk need to gain enough energy to

mount the Schottky barrier. Though some diffusion may take place over the barrier, the

driving force to current flow is drift following the application of a bias that decreases the

barrier height and raises the energy of the individual carriers to a higher level. However,

in reversing the bias, the barrier that is presented to a majority carrier at the M-S inter-

face is too great to overcome, blocking current flow from all except the minority carrier

leakage. Under forward bias, the current that flows from the semiconductor to the metal

is dominated by the combination of thermionic emission and majority carrier diffusion,

and is expressed as [36,65],

Js→m = A∗∗T 2e−βΦ0
B,n

(
eβV

)
(A.26)

where A∗∗ is the Richardson’s Constant and β is the inverse thermal energy (β = q/kT ).

J is the current density expressed as J = I/A, where A is the contact area. This can be

shortened to,

Js→m = JSeβV (A.27)

where JS is the saturation current defined as

JS = A∗∗T 2e−βΦ0
B,n . (A.28)
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The other extreme is in Figure A.9c, and is the mechanism used most commonly in

Ohmic contacts. With a highly doped semiconductor, the band bending takes place over

a very thin region less than 3 nm thick. This barrier appears invisible to the carriers

and they can quantum mechanically tunnel through the barrier in an effect known as

field emission. In between the two extremes lie thermionic-field emission, whereby the

moderate to high doping means that tunneling may occur once the carriers have reached

a certain energy level above the bulk. In actuality, some tunneling will occur in all

contacts, though deep within the thermionic emission regions, the energy at which this is

possible may be only fractions of milli-electron-volts from the top of the barrier.

We can apply some quantitative analysis to expand the metal-semiconductor model

already built up, classing a given contact into one of the conduction methods. The

effective thermionic barrier height (Em) can then be found, the point at which tunneling

will occur. Here we use as an example the Ni/Ge interface, which we will use in later

chapters as an Ohmic contact to the heterojunction diodes, though this works equally

with any metal/semiconductor combination.

To determine the conduction method, the characteristic tunneling energy E00 of the

semiconductor can be calculated and compared with the thermal energy kT . E00 is given

by Padovani & Stratton [143] as follows:

E00 =
q~
2

√
Nd

m∗
T εs

, (A.29)

where ~ is the reduced Planck’s constant and m∗
T is the tunneling effective mass. m∗

T is

given [144] for n-type Ge as 0.12m0. FE is said to dominate [65] if E00 ≥ 5kT while TE

will dominate at E00 ≤ 0.5kT , and between these margins TFE will dominate. In Figure

A.10, we can see the result of Equation A.29 plotted for a Ni/Ge contact with a range of
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Ge doping values, with the aforementioned boundaries marked.

Figure A.10: The boundaries of the conduction methods for a Ni/Ge contact as laid out
by Padovani & Stratton [143].

From Figure A.10, we can see that any doping above 1 × 1020 cm−3 is firmly in the

Ohmic field emission region, whilst below 1× 1018 cm−3, thermionic emission dominates.

The effective barrier height (Em) at which tunneling occurs is given by [36,143]

Em =
q
(
Φ0

B,n − VN − VA

)

cosh2 (E00/kT )
(A.30)

In Figure A.11, Em is plotted as a function of the doping, with the boundaries of the

conduction methods marked. It can be seen that within the thermionic emission region,

the barrier height rises as Vn decreases. At a critical point at a doping of around 1× 1017

cm−3, the depletion width becomes thin enough to allow significant tunneling and the

curve begins to dip, entering the thermionic-field emission region. As the depletion width

gets thinner, the barrier height tends to zero, entering the field emission region.

To complete the picture, the current due to field emission under forward bias, is given
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Figure A.11: The effective barrier height as a function of the Ge doping within a Ni/Ge
contact. Inset: Em from an energy perspective. In both, VA = 0.

by [36],

JFE =
A∗∗Tπ exp

[−q
(
φ0

B,n − VA

)
/E00

]

c1k sin (πc1kT )
[1− exp (−c1qVA)] , (A.31)

where,

c1 =
1

2E00

log

[
4
(
φ0

B,n − VA

)

−Φn

]
. (A.32)

The current due to thermionic field emission is expressed as [36],

JTFE =
A∗∗T

√
πE00q

(
φ0

B,n − Φn − VA

)

k cosh (E00/kT )
exp

[
−βΦn −

q
(
φ0

B,n − Φn

)

E0

]
exp

[
qVA

E0

]

(A.33)

where,

E0 = E00 coth

(
E00

kT

)
(A.34)
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A.5.3 Ohmic Contacts

Similar to the Schottky contact, the Ohmic contact is a very simple contact made by

depositing a metal on a semiconductor. These contacts are used to connect the semi-

conductor from the outside world with minimal impedance. As the name suggest the

best Ohmic contacts will not be rectifying and will be purely resistive, though with very

low contact resistivities down in the order of 1 × 10−7 Ω cm2 for the best contacts, the

resulting contact resistances will be small, though not entirely negligible. In theory, two

methods can be employed to form an Ohmic contact, though the most common is that

already described in the previous Section.

The simplest ohmic contact conceptually, is formed from a metal with a work function

of a similar energy to the semiconductor’s conduction or valence band, depending on

whether the semiconductor is n- or p-type doped. Hence, any barrier that forms will

be minimal to the majority carriers. In practice this is particularly difficult to do. The

semiconductors Si, Ge, and SiC all have electron affinities of approximately 4 eV. Hence to

form an Ohmic n-type contact, a metal is needed with a similar work function. Aluminium

has one of the lowest at 4.28 eV, so whilst only a very small barrier will exist, without

high doping, some rectifying action will be present. Furthermore, as we will see in Section

7.3, there are sufficient doubts over the validity of the Schottky-Mott principle, which

mean that the materials may not align exactly as their work functions suggest they will.

More reliable is the Schottky barrier that uses high doping and field emission to

form the Ohmic contact as described in the previous Section. With this form of the

contact, the offset of the work functions makes little difference as the band bending over a

very small depletion region helps to form contacts that are easily quantum mechanically

tunneled through. An example of this is shown in Figure A.12, where the doping of the
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A.5 Metal-Semiconductor Theory

semiconductor will typically be 5 × 1018 cm−3 or greater, and as discussed previously,

degenerate. In the example of a degenerate semiconductor in contact with another non-

degenerate semiconductor, all the band bending was presumed to occur in the lower doped

semiconductor. Here, up against the immovable metal, all the band bending occurs in

the degenerate semiconductor over a very narrow distance.

Figure A.12: An Ohmic metal-degenerate semiconductor interface a) prior to settling to
the steady state and b) in the steady-state.

Whilst quantum mechanical tunneling is the key to Ohmic contact operation, the low

resistances come from the annealing process. Exposing the structures to high tempera-

tures enables interdiffusion of the atoms between the layers, forming metal-semiconductor

compounds such as nickel-silicides or aluminium-germanides. These layers enable the

smooth transition from metal to semiconductor, filling the gaps that may be caused by

surface defects and resulting in a clean planar contact.
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A.6 Breakdown Voltage

A.6 Breakdown Voltage

At a moderate reverse bias, minority carriers will be accelerated across the depletion

region causing a small leakage current. As this carrier crosses the depletion region, its

path is interrupted by collisions with the lattice, that lose the particle energy and slows

it down. As the reverse voltage increases further, there becomes a great energetic gap

between the fermi levels on each side of the depletion region, and the carrier undergoes a

greater acceleration between collisions. When this acceleration increase is great enough,

the impact of the carrier on the lattice becomes significant enough to ionise another

semiconductor atom, inducing an electron to be freed from the valence band. The newly

created electron and hole along with the original particle are immediately accelerated

again, each freeing more carriers on their next collision. This process is known as impact

ionisation and leads to an avalanche current that in turn leads to the device’s reverse

breakdown. On the lead up to the breakdown, the impact of the impact ionisation is

simply to increase the leakage current. However, at a critical bias, known as the breakdown

voltage, VBR, the acceleration of this process is too great, and the current runs away.

The amount of voltage a Schottky barrier can support depends largely on the thickness

of a low-doped epitaxial bulk region which supports a significant electric field. Baliga [30]

relates the doping to breakdown voltage and the maximum depletion width, relationships

which for Si and SiC are reproduced in Figure A.13a and A.13b. Given that dopant

concentration is inversely proportional to resistance, the introduction of a very thick low-

doped region will add a large amount of series resistance to the device. Hence, Figure

A.13c shows the minimum possible resistance for a given breakdown voltage. Therefore,

at the most fundamental level, a trade-off exists, and the device designer must choose

between resistivity and blocking voltage. Of course, there are other considerations here
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A.6 Breakdown Voltage

Figure A.13: Relationships between doping concentration (ND), breakdown voltage
(BV), maximum depletion width (W ) and specific on-resistance RON,SP are shown,

reproduced from [30].

which influence this; epitaxial layers are expensive with their cost usually being a per

µm value. This means there is even more reason to deal with layers as thin as possible,

and so other techniques are used to maximise the breakdown voltage so that the thinnest

possible epi-layer can be used.

One such technique is the use of appropriate edge termination. Figure A.14 shows

the situation that occurs in unterminated situations where a metal-semiconductor region

is subject to a reverse bias that forms a depletion region around the contact. Evident is

the situation at the edge of the contacts where the electric field is bunching, providing

an electric field spike at the contact edge. This spike causes the critical electric field

(ECF ) to be breached at a voltage much lower than the theoretical breakdown voltage

and hence the full potential of the materials are not being met. Various methods exist to

reduce the spikes at the contact edges, the simplest of which is mesa etching as shown in
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A.6 Breakdown Voltage

Figure A.14: A reverse biased metal-semiconductor region with no edge termination,
showing the build-up of electric field at the junction edges. Reproduced from [145].

Figure A.15a. This allows a significant drift region to form under the contact where the

electric field will be uniformly spread, before it reaches the main substrate. At this point

bunching will again occur, but the electric field at this depth will be much less that it is

at the surface directly beneath the contact.

Many techniques attempt to spread out the lines of bunched up electric field at the

contact edges. Floating field rings are a popular technique, most commonly implanted p-

type layers [145,146] (in an n-type substrate), though also floating metal rings [92]. These

floating rings are designed to spread the electric field beyond the edges of the contact as

shown in Figure A.15b. They prevent the large build up of electric field at any one point,
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A.6 Breakdown Voltage

Figure A.15: The use of various techniques to reduce electric field spikes.

allowing the breakdown voltage to approach its theoretical value. Another method of

achieving this is through the use of a field plate as shown in Figure A.15c, where the

continuation of the contact over a field oxide causes the spread of the depletion region

beyond the edges of the contact. Other methods including junction terminal extensions

(JTE) and bevelled edges are used in transistor devices to achieve the same uniform

spreading.

A final technique used to optimise the breakdown electric field and reduce leakage is

the use of passivation, an oxide layer deposited onto the semiconductor surface wherever

it would otherwise be exposed to the elements. This prevents the build up of unwanted

charge due to surface recombination or an inhomogeneous surface, whilst also protecting

the surface from any chemical interaction with the air surrounding it.
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B Extended Physical Analysis Theory

The theory behind many of the physical analysis techniques is presented here, providing

some of the detail behind Section 4.2.

B.1 Atomic Force Microscopy (AFM)

The concept behind AFM is quite a simple one. A cantilever with a very sharp tip is

used to probe the surface of the semiconductor one position at a time. The deflection of

the cantilever as it makes contact with the surface is used to control the height of the

sample under test, recording a z-direction value for each 2-dimensional co-ordinate. A

SEM image of an AFM cantilever and tip is shown in Figure B.1. As this was a used tip,

it is rather blunt; the radius of curvature of a new tip is in the order of nanometers. The

deflection of the cantilever is typically measured by using a fixed laser angled onto the

reverse of the cantilever, with an array of photodetectors measuring the reflection angle,

which is dependent on the cantilever’s deflection.

There are three methods by which the surface profile may be built [67]. The static
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B.1 Atomic Force Microscopy (AFM)

Figure B.1: SEM images of a used AFM cantilever and tip [147].

contact mode involves the tip being in constant contact with the surface, at a constant

force. The height of the sample is controlled to maintain a constant force on the tip,

and hence a constant laser deflection angle. For every position in an x by y scan, a

z-direction value may be ascertained from the sample height that maintains the correct

deflection angle. The problem with this method is that the attractive forces can damage

soft samples, and that the tip will degrade relatively quickly.

The dynamic non-contact mode involves the cantilever being oscillated at its resonant

frequency just above the surface of the sample. As the tip comes to the bottom of its

oscillation within 1-10 nm of the sample surface, the van der Waals forces are at their

strongest and act to reduce the frequency of oscillation. The AFM software can therefore

build up the z-profile for every x-y position by altering the sample height, maintaining

a constant amplitude or frequency of oscillation without the tip having come in contact

with the surface. This overcomes the tip and surface degradation problems of the contact

mode. However, the disadvantage is that this mode will not discriminate between the

solid sample surface and any adsorbed fluid on the surface, presenting a potential source

of inaccuracy. Furthermore, the tip can become stuck to the sample surface.

The dynamic contact, or ‘tapping’ mode is very similar to the non contact mode;
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however the amplitude of the oscillations are much larger, typically 100-200 nm, with

the tip allowed to touch the surface at the bottom of its oscillation, once more having

a knock on affect on the amplitude and frequency of oscillation. The maintenance of a

constant amplitude again facilitates the construction of the 3-dimensional image. The

tapping mode is considered the most accurate of the methods with very high resolutions,

whilst the tip and sample damage is minimised due to the gentle tapping [67]. This is the

technique predominantly used throughout this work.

One variation on the standard AFM technique is to pass a small electrical current from

the tip into the sample, known as conductive AFM or c-AFM. This technique combines

physical and electrical characterisation techniques, allowing fluctuations in current density

or SBH to be mapped at the same time as gaining the surface profile.

B.2 Scanning Electron Microscopy (SEM)

Figure B.2: a) The basic configuration of the SEM and b) a diagram showing the
teardrop particle excitation area. Diagrams reproduced from [148].

Figure B.2a shows how the SEM works. The electron beam is generated from an

electron gun and focussed using a condenser lens and an objective lens to form a small
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spot on the sample surface [148]. As the beam impacts the sample surface, the electrons

lose energy through various scattering events and absorbtion, that radiate in a teardrop

fashion into the sample from the impact site. The particles that are emitted from the

sample depends on the depth of the interactions and Figure B.2b shows the source of the

particles from within the teardrop distribution. Right at the top of the teardrop to a

depth of only nanometers, electrons collide with, and ionise atoms, losing all their energy

in the process. This ‘inelastic scattering’ frees secondary electrons from the k-orbitals of

the sample’s atoms and these are emitted in all directions including towards a secondary

electron detector. Known as an Everhart-Thornley detector, the secondary electrons

are first attracted into the detector via a +400 V grid. A +2000 V bias accelerates the

electrons towards a scintillator whereby the energy generated through the electrons impact

causes the scintillator to emit flashes of light. These are amplified via a photomultiplier

and displayed on an analogue video display, or converted for digital storage. The intensity

of the signal is determined by the amount of electrons that reach the scintillator. SEM

images appear three dimensional as the angle of incidence of the electron beam to the

surface is proportional to the number of secondary electrons that are emitted. Hence, flat

perpendicular surfaces appear dull, whilst steeper angles appear bright.

Further into the teardrop, the electrons that have evaded the surface atoms collide

with deeper atoms and are rebounded or deflected out of the sample. The intensity

of these ‘backscattered electrons’ (BSE) is determined by the atoms from which they

are scattered, with heavy atoms generating the greater intensity signals. The BSE are

collected by a BSE detector where the raster scan is again used to create an image, though

the information gathered this time is about the elements present in the sample.

Amongst the other particles excited by the electron bombardment, the emission of

light, or cathodoluminescence, can be monitored and displayed, whilst X-rays are readily

262



B.3 X-Ray Diffraction (XRD)

collected by those SEM fitted with energy dispersive X-ray (EDX) or wavelength dispersive

x-ray detectors. These will be described further in Section 4.2.6.

B.3 X-Ray Diffraction (XRD)

Figure B.3: Bragg’s Law.

X-ray diffraction is based on Bragg’s law, which is best imagined as two parallel beams

of X-rays, approaching a crystalline surface at an angle θ from the horizontal, as in Figure

B.3. The top beam deflects off the top layer of the lattice, the bottom beam carrying

on to the second layer, a material-specific distance d from the first. It can be seen from

Figure B.3 that the bottom beam will have to travel from points A to C on top of what

the top beam travels, a distance that is equivalent to 2AB. AB can be seen to be derived

from simple trigonometry as

AB = d sin θ. (B.1)
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From this it follows that X-rays with a wavelength λ will be in phase when the following

is satisfied,

nλ = 2d sin θ. (B.2)

where n is any integer.

In the practical XRD machine, the sample is mounted beneath a beam of X-rays on a

tilting platform such that the angle of diffraction for every crystal plane will be satisfied.

The diffracted X-ray intensity is then measured and plotted against the angle of incidence.

The results can then be compared against known crystal plane responses for the purposes

of identification. The intensity of the X-ray diffraction pattern can be used to determine

relatively how much of each crystal type there is.

B.4 Energy Dispersive X-Ray (EDX)

When a particle such as an electron from an SEM system is fired at an atom, it will often

displace an otherwise stable, unexcited electron from its place of rest in the atom’s inner

shells. Figure B.4a and B.4b shows an inner most electron being displaced by an external

particle, though an electron from any of the other rings could equally have been displaced.

This leaves a hole where the electron was and Figure B.4c shows how electrons of higher

energy in the outer shells will always come down in energy to fill the gap. In the process

an X-ray is expelled equal in energy to that lost by the demoted electron. Figure B.4c

shows that for three shells electrons can be demoted in one of three ways, giving off an

X-ray of a unique energy, Kα, Kβ, or Lα, depending on whether the electron has come

from the middle or outer shell and if the latter, whether it has jumped one or two shells.

The final result for the atom is shown in Figure B.4d, where it ends up with an electron

hole in the outer shell.
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B.4 Energy Dispersive X-Ray (EDX)

Figure B.4: The stages by which an electron is displaced by an external particle, and
electrons of higher energy are demoted to take their place, giving off an x-ray in the

process.

Considering again the macroscopic scale, the bombardment of electrons onto a sample

leads to the emission of many X-rays, each having an energy relating to an electron

demotion event. The EDX spectrometer gathers in the X-rays and maps their quantity

against their energy. Hence, using the known codes that relate to an elements Kα, Kβ,

or Lα energies, one can determine the elements present within a sample.
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Appendix

C
Derivation of the

Capacitance-Voltage Equations

The original theory of the C-V technique [65, 149] states that, for an abrupt junction,

a linear relationship will exist between an applied voltage and the inverse square of the

capacitance. Here this relationship will be derived.

A small AC signal, approximately 10 mV in amplitude and at a frequency between

10 kHz and 1 MHz, is imposed upon a DC voltage increasing from some reverse bias

towards a positive voltage, typically -3 to 2 V. This varies the amount of charge on the

on the metal (QM) semiconductor (QS) sides of the capacitor, which must be equal and

opposite, and hence,

C = −dQM

dVA

=
dQS

dψbb

, (C.1)

where ψbb refers to the total band bending brought about by the built-in potential (ψbi)

and the applied voltage VA. An incremental increase of the reverse potential over a metal-

semiconductor junction, will have a knock-on increase in the size of the space charge region

width (W ), and hence the charge in this region (QSC). The impact on QSC may be written
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as,

QSC = qA

∫ W

0

(ND −NA + p− n) dx ≈ qA

∫ W

0

NDdx (C.2)

presuming that ND À NA, p, n. Presuming that ND is constant over the space charge

region then Eq. C.2 may be rewritten as,

QSC = qANDdW. (C.3)

Here we presume that QS = QSC ; a presumption that we have to further explore later.

However, we may now combine Eq’s. C.1 and C.3 to produce,

C = qAND
dW

dψbb

. (C.4)

The AC signal constantly changes the width of the depletion region (W ) given that,

W =

√
2KSε0ψbb

qND

. (C.5)

As W varies, so too does the capacitance, given that the capacitance in the space charge

region is analogous to that across the parallel plates of a capacitor,

C =
εA

d
=

KSε0A

W
, (C.6)

though the width of the semiconductor region (W ) replaces the distance between the

plates (d) and the semiconductor permittivity (KSε0) replaces the permittivity of the

dielectric (ε). Differentiating Eq. C.6 with respect to voltage and rearranging gives,

dW

dψbb

=
dCKSε0A

C2dψbb

. (C.7)
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Substituting Eq. C.7 into Eq. C.4 and rearranging gives,

− 2

NDKSε0A2
= −2C−3 dC

dψbb

. (C.8)

Integrating −2C−3dC/dψbb leaves dC−2/dψbb, and this can be substituted into Eq. C.8

and rearranged to give,

dC−2

dψbb

= − 2

KSε0A2ND

. (C.9)

This result shows how the gradient of a C−2−V plot may theoretically be used to extract

the doping of a semiconductor. The above derivation may be worked through for p-type

material also, the result of which being a

dC−2

dψbb

=
2

KSε0A2NA

. (C.10)

Hence, considering C.9 and C.10 an overall expression for the C-V technique may be

arrived at, given that ψbb,n = −(ψbi + VA) − β, ψbi,n < 0, ψbb,p = ψbi + VA − β, and

ψbi,p > 0:

C

A
=

√
±qKsε0 (NA −ND)

2 (±ψbi ± VA − β)
, (C.11)

where the pluses are used given NA > ND, and the minuses if ND > NA. The C−2 against

VA plots should be linear when a reverse voltage is applied to the diodes. Hence, doping

values may be found from the slope of the plot, and the built-in potential may be found

by extrapolating the data points down to where they meet the x-axis, given that this will

be where ψbi − VA ⇒ 0. This may be seen as the point where the conduction or valence

bands have flattened, eradicating the space charge region, and hence C tends to infinity.
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