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Let G be a group, with X a G-conjugacy class of involutions. The local fusion graph
F(G,X) has X as its vertex set, with vertices x, y ∈ X joined by an edge if, and only
if, x 6= y and the order of the product xy is odd. In this thesis we study these, and
other related graphs, for a variety of finite groups, paying particular attention to the
cases where G is a finite simple group. We also present a computational algorithm
regarding centralisers of involutions, which makes use of local fusion graphs.
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Chapter 1

Introduction

When working with a finite group, it can often be of benefit to consider combinatorial

structures on which the group acts. Not only might this shed light on properties of

the group one is studying, but these objects can often be of interest in their own right.

Over the last fifty years or so, there have been a number of successful applications of

this technique where the structure involved has been a graph. These graphs come in

all shapes and sizes; to give a flavour of the theory we cite just a few examples. One of

the more well known graphs associated to a group G is the Cayley graph, defined using

a generating set S = S−1 for G. The vertices of the Cayley graph are the elements

of G, and vertices x and y are joined by an edge if and only if x = ys for some

s ∈ S. Another variety are commuting graphs, which have a subset of a group G as

their vertex set, with vertices adjacent if and only if they commute. When the vertex

set is chosen to be a G-conjugacy class of involutions these commuting graphs have

been of particular interest: in [35], Bernd Fischer used such objects to construct three

previously unknown finite simple groups; while in more recent years extensive research

into the structure of these graphs has been carried out by a number of authors, for

example in [10], [11], [12], [13], [14] and [34]. Yet another type of graph are S3-

involution graphs, as studied by Devillers, Giudici, Li and Praeger. Here we again

have a G-conjugacy class of involutions as the vertex set, but with vertices joined by

an edge if and only if the subgroup they generate lies in a particular G-conjugacy

class of subgroups isomorphic to Sym(3). In [31] it is shown that an interesting tower

9



CHAPTER 1. INTRODUCTION 10

of graphs associated with the subgroup chain Alt(5) ≤ PSL(2, 11) ≤ M11 ≤ M12 can

be described in terms of S3-involution graphs.

Drawing motivation from such examples, in this thesis we introduce a new family

of graphs, which we call coprimality graphs. It is our aim to determine structural

properties of some such graphs, paying particular attention to a subfamily known as

local fusion graphs. In addition, we shall describe how such graphs can be of use in

a computational context.

Let us now give formal definitions of the objects we shall study.

Definition 1.1. Let G be a group, with a G-conjugacy class X of elements of prime

order p. Let π be a nonempty set of integers which are coprime to p. The π-

coprimality graph, denoted Cπ(G,X) has X as its vertex set, with x, y ∈ X joined

by an edge if and only if x 6= y and the order of the product xy lies in π. If π

consists of all integers which are coprime to p, we simply refer to the coprimality

graph, Cp′(G,X).

Notice that G acts vertex transitively on each of its π-coprimality graphs Cπ(G,X).

This follows immediately from the fact that X is a G-conjugacy class. Moreover, π-

coprimality graphs are undirected, since for any product xy where x, y ∈ G, we have

yx = x−1xyx = (xy)x, and so, being conjugate elements, yx and xy have the same

order.

Due to their very broad definition, coprimality graphs encompass many types of

graph which have been previously studied. For example, when their vertex sets are

chosen to be conjugacy classes, then both the S3-involution graphs investigated by

Devillers and Giudici in [30], and the commuting graphs studied by Baumeister and

Stein in [17] are coprimality graphs, where p = 2 and 3 in each case respectively. This

generality comes at a cost however, as it is usually difficult to answer questions about

the full set of coprimality graphs of a given group. Therefore, for the majority of

this thesis our attention is restricted to a particularly interesting type of coprimality

graph.
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Definition 1.2. Let G be a group, with a G-conjugacy class X of involutions. Let

π be a nonempty set of odd integers. The π-local fusion graph, denoted Fπ(G,X)

has X as its vertex set, with x, y ∈ X joined by an edge if and only if x 6= y and the

order of the product xy lies in π. If π consists of all odd integers, we simply refer to

the local fusion graph, F(G,X).

Involutions play a fundamental role in finite group theory, as demonstrated by

their crucial importance to the Classification of Finite Simple Groups. An indication

as to their special nature is the fact that any two involutions x and y in a finite group

generate a dihedral subgroup (see [61]). No analagous result exists for elements of

arbitrary order. It is this property which allows us to explain the motivation behind

our particular focus on local fusion graphs. For suppose that x and y are G-conjugate

involutions lying in a conjugacy class X, and that x and y are adjacent in F(G,X).

Then the product xy has odd order, say 2m + 1, where m ≥ 1. Using the fact that

〈x, y〉 is a dihedral group, we can see that

y = x(yx)m

,

so x and y are in fact conjugate in 〈x, y〉. Thus, if we have a path

x = x1 → x2 → · · · → xm = z

from x to z in F(G,X), then g1g2 · · · gm−1 conjugates x to z, where gi ∈ 〈xi, xi+1〉 for

1 ≤ i ≤ m − 1. This accounts for the naming of our graphs, since we have, in some

sense, local control of fusion between the involutions of X.

The majority of this thesis is concerned with the study of the structure of the local

fusion graphs of finite simple groups. From this viewpoint, our main result is the

following:

Theorem 1.3. Let G be a finite simple group, with X a G-conjugacy class of invo-

lutions. Then F(G,X) is connected.

In light of the Jordan-Holder theorem, finite simple groups can be seen as the

‘building blocks’ of finite groups. Therefore, to have any hope of understanding local
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fusion graphs of finite groups in general, it is necessary to have some understanding

of the local fusion graphs of finite simple groups. Theorem 1.3 is a first step along

this road. There is another nice consequence of Theorem 1.3, which arises through a

connection to a famous result.

Theorem 1.4 (Baer-Suzuki). Let G be a finite group, with X a G-conjugacy class

of p-elements. If every pair of elements x, y ∈ X generates a p-group, then 〈X〉 ≤

Op(G).

An elegant proof of this result, which does not rely on the Classification of Finite

Simple Groups, may be found in [38]. In recent years a variety of generalisations

and analogues of the Baer-Suzuki Theorem have been established. Some such results

can be found in [41], [42] and [59]. The relevance of Theorem 1.3 is to a particular

subcase of the Baer-Suzuki Theorem.

Theorem 1.5. Let G be a nonabelian finite group, with X a G-conjugacy class of

involutions. If every pair of elements x, y ∈ X generates a 2-group, then G is not

simple.

Theorem 1.5 is a direct consequence of Theorem 1.4, and is weaker in two ways:

firstly, it only considers the case where p = 2; and secondly, it does not give specific

information about any nontrivial normal subgroup of G. However, our interest in

Theorem 1.5 lies in the following restatement:

Theorem 1.5′ Let G be a nonabelian finite group, with X a G-conjugacy class of

involutions. If F(G,X) is totally disconnected, then G is not simple.

As we shall now see, the hypotheses of Theorems 1.5 and 1.5′ are equivalent.

Proof of equivalence. Let G be a nonabelian finite group, with X a G-conjugacy

class of involutions. First assume that every pair x, y ∈ X generates a 2-group. Then

certainly every product xy has even order, so F(G,X) can have no edges, and is

therefore totally disconnected. Now assume that F(G,X) is totally disconnected,
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and suppose there exist x, y ∈ X such that xy has order 2km, where m 6= 1 is odd.

Then (xy)k has order m. However,

(xy)k = x(yxy · · ·xy) =: xz,

and since both x and y are involutions, z is a conjugate of either x or y, so must lie

in X. This implies that F(G,X) has at least one edge, contradicting our assumption

that it was totally disconnected.

It is now apparent that by proving Theorem 1.3, we are generalising Theorem 1.5′

by weakening the hypothesis that F(G,X) be totally disconnected, to that it simply

be disconnected.

The proof of Theorem 1.3 relies on the Classification of Finite Simple Groups.

Theorem 1.6 (CFSG). Let G be a finite simple group. Then G is isomorphic to one

of the following:

(i) a cyclic group of prime order p;

(ii) an alternating group Alt(n), where n ≥ 5;

(iii) a classical group:

linear: PSLn(q), n ≥ 2, excluding PSL2(2) and PSL2(3);

symplectic: PSp2n(q), n ≥ 2, excluding PSp4(2);

unitary: PSUn(q), n ≥ 3, excluding PSU3(2);

orthogonal: PΩ2n+1(q), n ≥ 3, q odd;

PΩ+
2n(q), n ≥ 4;

PΩ−
2n(q), n ≥ 4

where q is a power pa of a prime p;

(iv) an exceptional or twisted group of Lie-type:

G2(q), q ≥ 3; F4(q); E6(q);
2E6(q);

3D4(q); E7(q); E8(q)
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where q is a prime power, or

2B2(2
2n+1), n ≥ 1; 2G2(3

2n+1), n ≥ 1; 2F4(2
2n+1), n ≥ 1

or the Tits group 2F4(2)′;

(v) one of 26 sporadic simple groups:

• the five Mathieu group M11, M12, M22, M23, M24;

• the seven Leech lattice groups Co1, Co2, Co3, M cL, HS, Suz, J2;

• the three Fischer groups Fi22, Fi23, Fi′24;

• the five Monstrous groups M, B, Th, HN , He;

• the six pariahs J1, J3, J4, O′N , Ly, Ru.

For each of the groups listed in Theorem 1.6 we verify that Theorem 1.3 holds.

This case by case analysis influences the structure of this thesis, with the main purpose

of a number of chapters being to prove a subcase of Theorem 1.3 for a specific family

of groups. However, in many situtations we are able to go further, and prove more

detailed results regarding the structure of our graphs. Let us now give a brief overview

of the material we present in each chapter.

In Chapter 2 we investigate the local fusion graphs of symmetric (and alternating)

groups. Playing a central role here are ‘x-graphs’, which characterise the orbits of the

local fusion graphs of symmetric groups under the action of an involution centraliser.

This approach allows us to give quite detailed information regarding the structure of

our graphs, with the main result being the following:

Theorem 1.7. If G = Sym(n), where n ≥ 5, and X is a G-conjugacy class of

involutions, then F(G,X) is connected, and Diam(F(G,X)) = 2.

Chapter 3 addresses similar questions for the groups PSL2(q), and we achieve

some comparable results to those for symmetric groups. The key technique here is

to utilise the action of PSL2(q) on the projective line.
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Theorem 1.8. If G = PSL2(q), where q ≥ 4, and X is a G-conjugacy class of

involutions, then F(G,X) is connected, and Diam(F(G,X)) = 2.

In Chapter 5 we study the local fusion graphs of the sporadic simple groups.

Here our approach is rather different. The complex character tables of the sporadic

simple groups are known, and can be found in [26]. They are also stored by the

computational algebra packages Magma [18] and GAP [36]. Given the character

table of a finite group, it is a relatively straightforward calculation to find the number

of neighbours of a given vertex of a local fusion graph. Performing these calculations

for all the sporadic groups allows us to establish the following result:

Theorem 1.9. If G is a sporadic simple group with G-conjugacy class of involutions

X, then F(G,X) is connected.

Chapters 6, 7 and 8 focus on the finite groups of Lie-type. Chapter 6 consists of a

review of some properties of classical groups and other groups of Lie-type, touching

on algebraic groups, BN -pairs, and the various geometries associated to such groups.

This is all in preparation for the analysis of the local fusion graphs of finite, simple

groups of Lie-type which follows in Chapters 7 and 8. A number of techniques are

used in these chapters, but all working towards the same goal:

Theorem 1.10. If G is a finite, simple group of Lie-type, with G-conjugacy class of

involutions X, then F(G,X) is connected.

At this point the proof of Theorem 1.3 will be complete. The remaining chapters

of the thesis are concerned with other matters. In Chapter 4 we analyse some local

fusion graphs of finite Coxeter groups. The most notable result here concerns the

Coxeter groups of type Bn, and in particular shows that local fusion graphs may have

arbitrarily large diameter.

Theorem 1.11. Let G = C(Bn), the Coxeter group of type Bn, where n ≥ 3. Then

G contains a G-conjugacy class of involutions X such that F(G,X) is connected and

Diam(F(G,X)) = n − 2.



CHAPTER 1. INTRODUCTION 16

Our focus shifts in Chapter 9, where we investigate coprimality graphs of sym-

metric groups. This requires an introduction to the representation theory of finite

symmetric groups, which briefly covers Young diagrams, the Hook Formula, and the

Murnaghan-Nakayama rule. We then establish some preparatory results regarding

the multiplication of pairs of permutations in Sym(n). Subsequently we prove our

main results in this area:

Theorem 1.12. Suppose that G = Sym(n) and that x is an element of order p, p

a prime. Let X be the G-conjugacy class of x. Then Cp′(G,X) is connected unless

n = 4 and x has cycle type 22.

Theorem 1.13. Suppose that G = Sym(n) and X is the G-conjugacy class of a

p-cycle, where p is an odd prime. Then Diam(Cp′(G,X)) = 2 unless n = 3 = p when

Diam(Cp′(G,X)) = 1.

Theorem 1.14. Suppose that G = Sym(n) and X is the G-conjugacy class of ele-

ments of cycle type pr, where p is an odd prime. If r <
√

p, then Diam(Cp′(G,X)) ≤ 5.

Theorem 1.15. Suppose that G = Sym(n) and X is the G-conjugacy class of ele-

ments of cycle type pr, where p ≥ 5 is prime. Let k be the least non-negative integer

such that r/2k ≤ ⌊p⌋. Then Diam(Cp′(G,X)) ≤ 5 + k.

We conclude our work in Chapter 10, where we present a computational algorithm

which makes use of local fusion graphs to produce elements of the centraliser of a

given involution. Along with its description, there is experimental data and analysis

of how the algorithm performs in practice.

1.1 Preliminary Results

Before diving headlong into the world of local fusion graphs, we set up some notation,

and prove some elementary results. For the most part our group-theoretic notation

is standard, as found in [38]. At times we shall use Atlas notation [26] to denote

finite simple groups and their conjugacy classes of involutions. When investigating
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a local fusion graph defined on a finite group G, we shall usually denote by X the

G-conjugacy class of involutions which is the vertex set of our graph F(G,X). Often

we shall analyse the structure of our graph relative to some fixed involution t ∈ X,

and we denote by Y the connected component of F(G,X) which contains t. When

working with matrix groups and their associated projective groups, we use H to

denote the matrix group, with G usually reserved for the projective group.

We define the i-th disc of F(G,X) relative to x ∈ X as

∆i(x) = {y ∈ X : d(x, y) = i},

where d(, ) denotes the usual graph metric. Thus ∆0(x) = {x}, while ∆1(x) consists

of all the neighbours of t in F(G,X). The following easy lemma will be of use to us.

Lemma 1.16. Let Γ be a regular graph with V (Γ) = X. Let x ∈ X. If |∆1(x)| >

|X|/2 then Γ is connected and Diam(Γ) ≤ 2.

Proof. Since |∆1(x)| > |X|/2, the regularity of Γ implies connectedness. Suppose

there exists y ∈ X such that d(x, y) = 3. Then ∆1(x) ∩ ∆1(y) = ∅, since otherwise

d(x, y) ≤ 2. Therefore

|∆1(x)| ≤ |X| − |∆1(y)| = |X| − |∆1(x)|

by regularity. Hence |∆1(x)| ≤ |X|/2, a contradiction. Thus the diameter of Γ is at

most 2.

At times we will wish to break down the vertex set of F(G,X) into orbits under

the action of CG(x), where x ∈ X. This is motivated by the following lemma, which

is easy to verify.

Lemma 1.17. Let G be a group with G-conjugacy class of involutions X. Suppose

x, y ∈ X are such that d(x, y) = k in F(G,X). Then for any g ∈ CG(x), d(x, yg) = k.

We shall also need some results regarding local fusion graphs of direct products

and normal subgroups, along with centralisers of involutions.
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Lemma 1.18. Let G = G1 × G2, where G1, G2 ≤ G, and suppose X = X1 × X2 is

a G-conjugacy class of involutions, with Xi a Gi-conjugacy class of involutions for

i = 1, 2. Then F(G,X) is connected if, and only if, both F(G1, X1) and F(G2, X2)

are connected. Moreover if F(G1, X1) and F(G2, X2)) have diameters k1 and k2

respectively, then Diam(F(G,X)) = max{k1, k2}.

Proof. Let t, x ∈ X, and write t = (t1, t2) and x = (x1, x2), where t1, x1 ∈ X1 and

t2, x2 ∈ X2. Suppose F(G1, X1) and F(G2, X2) are connected, so there exists a path

t1 → x
(1)
1 → x

(2)
1 → · · · → x

(r)
1 = x1

from t1 to x1 in F(G1, X1), and a path

t2 → x
(1)
2 → x

(2)
2 → · · · → x

(s)
2 = x2

from t2 to x2 in F(G2, X2). Without loss of generality we assume that s ≥ r. Then

the following is a path between t and x in F(G,X):

(t1, t2) → (x
(1)
1 , x

(1)
2 ) → · · · → (x

(r)
1 , x

(r)
2 ) → (x

(r)
1 , x

(r+1)
2 ) → · · · → (x

(r)
1 , x

(s)
2 ).

Since t and x were chosen arbitrarily, this shows that F(G,X) is connected. The

‘only if’ statement is proved similarly. Now suppose that F(G1, X1) and F(G2, X2)

have diameters k1 and k2 respectively, and without loss assume that k1 ≥ k2. Then

the method above shows that we can construct a path of length at most k1 between

any two vertices of F(G,X). Furthermore, it is clear that that if x = (x1, x2) is

chosen so that d(t1, x1) = k1 in F(G1, X1) then d(t, x) ≥ k1 in F(G,X). Thus we

deduce that Diam(F(G,X)) = k1.

Lemma 1.19. If all the local fusion graphs of a group G are connected, then the local

fusion graphs of its normal subgroups are also connected.

Proof. Let N � G, with X ′ an N -conjugacy class of involutions such that X ′ ⊆ X,

where X is a G-conjugacy class of involutions. Since N is normal in G, it must be

that X is a union of N -conjugacy classes. Suppose that X 6= X ′. Then we may write

X = X ′∪X ′′, where X ′′ is a union of N -conjugacy classes such that X ′∩X ′′ = ∅. By
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assumption F(G,X) is connected, and so there must exist x ∈ X ′, y ∈ X ′′ which are

adjacent in F(G,X), and so have odd order product. But if this is the case, then x

and y are conjugate in 〈x, y〉, and as x, y ∈ N we have 〈x, y〉 ≤ N . This contradicts

the assumption that X ′∩X ′′ = ∅, and so it must be the case that X = X ′. It follows

immediately that F(N,X ′) is connected.

Lemma 1.20. Suppose G is a group with G-conjugacy class of involutions X such

that X 6⊆ O2(G). Let t ∈ X. If CG(t) is a maximal subgroup of G, then F(G,X) is

connected.

Proof. Denote by Y the connected component of F(G,X) which contains t. It is well

known that a group G acts primitively on a set Ω if, and only if, CG(α) is a maximal

subgroup of G for some α ∈ Ω (see [22], for example). It is certainly the case that G

acts on the vertex set of any of its local fusion graphs. Moreover, it is straightforward

to see that if F(G,X) is disconnected, then its connected components form a system

of imprimitivity for G. Thus if t ∈ X and CG(t) is maximal in G, we must either

have Y = F(G,X), whence F(G,X) is connected, or |Y | = 1, so F(G,X) is totally

disconnected. However, in the latter case Theorem 1.4 implies that X ⊆ O2(G), a

contradiction.

We conclude this opening chapter by proving an important lemma regarding sta-

bilisers of connected components of π-local fusion graphs. To do so we require the

following result.

Lemma 1.21. Let φ be an involutary automorphism of H, a group of odd order, and

set I = {h ∈ H|hφ = h−1}. Then H = CH(φ)I.

Proof. See [38], Lemma 10.4.1(i).

Lemma 1.22. Suppose G is a finite group, with X a G-conjugacy class of involutions,

and π some set of non-negative odd integers. Suppose t ∈ X and let Y be the connected

component of Fπ(G,X) which contains t. Set M = StabG(Y ).

(i) For all y ∈ Y , CG(y) ≤ M , and in particular 〈Y 〉 ≤ M .
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(ii) Y = tM .

(iii) Let y ∈ Y . If H is a π-subgroup of G which is normalised by y, then H ≤ M .

Proof. The proof of (i) is clear. Since Y is, by definition, M -invariant under conjuga-

tion, tM ⊆ Y . For y1, y2 ∈ Y which are adjacent, y1 and y2 are conjugate in 〈y1, y2〉.

So, as 〈y1, y2〉 ≤ M by (i), y1 and y2 are M -conjugate. Hence tM = Y , proving (ii).

For the final part, by Lemma 1.21, H = CH(y)I where I = {h ∈ H|hy = h−1}. For

h ∈ I, 〈y, yh〉 is a dihedral group of order 2o(h). Note that yh is G-conjugate to y

and so yh ∈ X. Also y and yh are adjacent in Fπ(G,X) and thus yh ∈ Y . By (i),

〈y, yh〉 ≤ M and hence h ∈ M . Therefore H = CH(y)I ≤ M , proving (iii).



Chapter 2

Symmetric Groups

We begin our study by investigating the local fusion graphs of symmetric groups.

The conjugacy classes of symmetric groups are of course very well understood, being

parametrised by the cycle type of permutations. Also, given two permutations in

a symmetric group, the procedure for calculating the product of the permutations

is elementary. This being the case, one might hope for relatively complete results

on the structure of the local fusion graphs of symmetric groups. These are indeed

achievable; however we do require some notation which encapsulates in a diagram-

matic form the product of two involutions. This comes in the form of the ‘x-graph’,

which is introduced in Section 2.1. Once in place, this forms the backbone of the

proofs of the results in this chapter. In Section 2.2 the diameters of the local fusion

graph of the symmetric groups are established, while in Section 2.3 we study in more

detail the CG(t)-orbit structure of F(G,X). Finally, in Section 2.4 we consider the

connectedness of various restricted local fusion graphs of symmetric groups. Much of

the material in this chapter also appears in [7].

2.1 The x-graph

The concept of the x-graph was first introduced in [10], and the following summary is

derived from this source. For the duration of this chapter we let G = Sym(n), where

G acts on Ω = {1, 2, . . . , n} in the natural way. Let t = (1, 2)(3, 4) · · · (m − 1,m) be

21
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an involution in G, and set X = tG. We set

V = {{1, 2}, {3, 4}, . . . , {2m − 1, 2m}, {2m + 1}, . . . , {n}} .

Thus the elements of V are just the orbits of 〈t〉 upon Ω. For each x ∈ X, we define

the x-graph (relative to t), denoted Gt
x (or simply Gx when t is understood), to be the

graph with V as vertex set, and v1, v2 ∈ V are joined by an edge whenever there exist

α ∈ v1 and β ∈ v2 with α 6= β for which {α, β} is a 〈x〉-orbit. Additionally the vertices

of Gt
x corresponding to 2-cycles of t will be coloured black ( ) and the other vertices

white ( ). Therefore Gt
x has m black vertices and n−2m white vertices. Note that the

edges in Gt
x are in one-to-one correspondence with the 2-cycles of x. So the number of

edges in Gt
x is the same as the number of black vertices. As an example, taking n = 16,

t = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12) and x = (1, 3)(2, 4)(5, 6)(9, 11)(12, 13)(14, 15),

Gx looks like

Notice that each black vertex in an x-graph has valency at most two, while a white

vertex has valency at most one. From this we have the following result.

Lemma 2.1. For x ∈ X, the possible connected components of Gx are

(i) , , , , ;

(ii) , ; and

(iii) , .

Suppose for x ∈ X the connected components of Gx are C1, C2, . . . , Cl, and for

each such component let xi and ti be the corresponding parts of x and t. Observe that

for i 6= j both ti and xi commute with both tj and xj. So in the above example, l = 6

with t1 = (1, 2)(3, 4), t2 = (5, 6), t3 = (7, 8), t4 = (9, 10)(11, 12)(13), t5 = (14)(15),

t6 = (16), and x1 = (1, 3)(2, 4), x2 = (5, 6), x3 = (7)(8), x4 = (9, 11)(12, 13)(10),

x5 = (14, 15), x6 = (16).
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The next lemma captures the properties of the x-graph which will be important

for our purposes.

Lemma 2.2. (i) Every graph with b black vertices of valency at most two, n − 2b

white vertices of valency at most one, and exactly b edges is the x-graph for

some x ∈ X.

(ii) If x, y ∈ X, then x and y are in the same CG(t)-orbit if and only if Gx and Gy

are isomorphic graphs (where isomorphisms preserve the colour of vertices).

(iii) Let C1, C2, . . . , Cl be the connected components of Gx. Assume that xi and ti

are the corresponding parts of x and t, and let bi, wi and ci be, respectively, the

number of black vertices, white vertices and cycles in Ci. Then

(a) the order of tx is the least common multiple of the orders of tixi, i =

1, . . . , l; and

(b) for i = 1, . . . , l, the order of tixi is (2bi + wi)/(ci + 1).

Proof. The proof may be found in [10].

2.2 The diameter of F(G, X)

In this section we prove the following:

Theorem 2.3. Let G = Sym(n), where n ≥ 5, and let X be a G-conjugacy class of

involutions. Then F(G,X) is connected, and Diam(F(G,X)) = 2.

When n = 2, F(G,X) consists of a single vertex, and when n = 3, F(G,X) is

the complete graph on 3 vertices. Finally, when n = 4 and X = (1, 2)G, F(G,X)

is connected with diameter 2, and when X = (1, 2)(3, 4)G, F(G,X) is the totally

disconnected graph on three vertices.

Theorem 2.3 is perhaps not a surprising result. As the conjugacy classes of sym-

metric groups are in some sense as ‘big as possible’, if any family of groups is to have

local fusion graphs of low diameter, the family of symmetric groups is the most likely.
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Proof of Theorem 2.3. For n ≤ 16, Magma [18] makes relatively short work of check-

ing that F(G,X) has diameter two. So we may assume n > 16. Let t be a fixed

element of X. We proceed by induction on n. Let x ∈ X. We aim to show that

d(t, x) ≤ 2. Since there are plainly x ∈ X for which d(t, x) > 1, this would prove

that Diam(F(G,X)) = 2.

(3.1) If Gx is , then d(t, x) ≤ 2.

Assume, without loss of generality, that t = (1, 2)(3, 4), . . . , (2m − 1, 2m). So Gx

has m black vertices. If m is odd, then tx has odd order by Lemma 2.2, and so

d(t, x) ≤ 1. While if m is even, we assume that Gx is labelled like so

and that

x = (1, 2m)(2, 3)(4, 5) . . . (2m − 4, 2m − 3)(2m − 2, 2m − 1).

We select

y = (1, 2)(3, 5)(4, 2m)(6, 2m − 1)(7, 8)(9, 10) . . . (2m − 3, 2m − 2).

Then ty = (3, 2m, 6)(4, 5, 2m − 1), and hence y ∈ ∆1(t). Now Gy
x is seen to be

Since the two connected components of Gy
x have sizes 3 and m− 3, both of which are

odd, Lemma 2.2(iii) implies that yx has odd order. Therefore x ∈ ∆1(y) and so (3.1)

holds.

(3.2) If Gx is , then d(t, x) = 1.
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Since Gx is a connected component with one white vertex, (3.2) follows from Lemma 2.2(iii).

(3.3) If Gx is , then d(t, x) ≤ 2.

Without loss we may label Gx as follows

where

t = (1, 2)(3, 4)(5, 6) . . . (2r − 1, 2r)(2r + 1)(2r + 2, 2r + 3) . . . (2m − 2, 2m − 1)(2m).

We may assume that

x = (2, 3)(4, 5) . . . (2r − 2, 2r − 1)(2r + 1, 2r + 2) . . . (2m − 1, 2m).

Set t0 = (1, 2)t and x0 = x(2m − 1, 2m). Then t0 and x0 are H-conjugate (where

H = Sym(Ω \ {1, 2m})). Observing that Gt0
x0

(thinking of t0, x0 as involutions in H)

has two connected components of type we deduce from Lemma 2.2(iii)

that t0x0 has odd order. Let y = (1, 2m)t0. Then y ∈ X and

ty = (1, 2)t0(1, 2m)t0 = (1, 2)(1, 2m) = (1, 2, 2m),

whence y ∈ ∆1(t). Also, as t0 and x0 fix 1 and 2m,

yx = (1, 2m)t0x0(2m − 1, 2m)

= t0x0(1, 2m)(2m − 1, 2m)

= t0x0(1, 2m − 1, 2m).

Now t0x0 ∈ H is a product of two disjoint odd cycles of lengths, say, m1, m2. If 2m−1

is in say the latter cycle of t0x0, then tx is a disjoint product of an m1-cycle and an

(m2 + 2)-cycle. Thus yx has odd order and so x ∈ ∆1(y). Therefore d(t, x) ≤ 2,

which proves (3.3).

Suppose that Gx contains no connected components of shape . Then by

induction and Lemma 2.1 Gx must be either , or
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(allowing as a possibility in the latter connected component). Hence d(t, x) ≤ 2

by (3.1), (3.2) and (3.3). It therefore remains to analyse Gx when it has connected

components of shape . If there are an even number of connected compo-

nents, then, as the fusion graphs for Sym(8) have diameter two, by pairing them up

and using induction we obtain our result. Thus we may assume Gx contains exactly

one connected component. Let Hx denote the union of all the other connected

components of Gx. Also we may assume t = (1, 2)(3, 4)t0, x = (1, 3)(2, 4)x0 where t0

and x0 are involutions in H = Sym(Ω \ {1, 2, 3, 4}).

Let Cx be a subgraph of Hx, where Cx is one of , , , ,

and . Then t0 = t1t2, x0 = x1x2 where t1, x1 are the parts

in Cx and t2, x2 the parts in Hx \ Cx. Then t2 and x2 are conjugate involutions in

some symmetric subgroup of G and the x2-graph (with respect to t2) is Hx \ Cx.

Since Hx contains no subgraph we can find y2 in this conjugacy class such

that t2y2 and y2x2 have odd order. Since y2 commutes with both (1, 2)(3, 4)t1 and

(1, 3)(2, 4)x1, without loss we may assume Hx = Cx. We now work through the

possibilities for Hx making repeated use of Lemma 2.2(iii) to show d(t, x) ≤ 2. The

first three possibilities listed above do not need attention as n ≥ 16.

If Hx is

then

t = (1, 2)(3, 4)(5, 6)(7, 8) . . . (2m − 1, 2m)(2m + 1)

and, without loss of generality,

x = (1, 3)(2, 4)(5)(6, 7)(8, 9) . . . (2m, 2m + 1).

In the case when m is odd, we select

y = (1, 5)(2, 3)(4, 2m)(6, 7)(8, 9) . . . (2m − 2, 2m − 1)(2m + 1),

and then Gy is
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while Gy
x is

If m were to be even, instead we choose

y = (1, 2m − 1)(2, 6)(3, 4)(5, 2m)(7, 8)(9, 10) . . . (2m − 3, 2m − 2)

which gives Gy as

and Gy
x as

Thus in each case we have d(t, x) = 2, as required.

Now we examine the case when Hx is

So

t = (1, 2)(3, 4)(5, 6) . . . (2r − 1, 2r)(2r + 1)(2r + 2, 2r + 3) . . . (2m − 2, 2m − 1)(2m)

and

x = (1, 3)(2, 4)(5)(6, 7)(8, 9) . . . (2r − 2, 2r − 1)(2r)(2r + 1, 2r + 2) . . . (2m − 1, 2m).

Choosing

y = (1, 2m)(2, 3)(4, 5) . . . (2r − 2, 2r − 1)(2r + 1, 2r + 2) . . . (2m − 3, 2m − 2),

we observe that Gy is
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and Gy
x is

Therefore we again have d(t, x) = 2.

Finally, we consider when Hx is

Thus

t = (1, 2)(3, 4)(5, 6)(7, 8) . . . (2m − 1, 2m)

and, without loss,

x = (1, 3)(2, 4)(6, 7)(8, 9) . . . (2m, 5).

When m is even we select

y = (1, 5)(2, 2m)(3, 4)(6, 2m − 1)(7, 8)(9, 10) . . . (2m − 3, 2m − 2)

and as a result Gy is

and Gy
x is

Before dealing with m odd we recall that we are assuming n(= 2m) ≥ 16. So

2m − 4 > 10 and therefore the choice we now make gives us an element of X. Take

y = (1, 2m − 4)(2, 2m)(3, 4)(5, 7)(6, 9)(8, 2m − 1)(10, 11)(12, 13) . . .

. . . (2m − 6, 2m − 5)(2m − 3, 2m − 2).
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Hence Gy is

and Gy
x is

So once more have d(t, x) = 2.

Having successfully dealt with all the possibilities for Hx, the proof of Theorem 2.3

is complete.

2.3 The CG(t)-orbit structure of F(G, X)

Our aim in this section is to obtain an expression for the size of a given CG(t)-orbit

in ∆1(t). It is relatively straightforward to adapt the methods of [10], where the

corresponding goal was achieved for commuting involution graphs. Again, the x-

graph lies at the heart of the analysis. The next lemma follows immediately from

Lemma 2.2.

Lemma 2.4. Let x ∈ X. Then x ∈ ∆1(t) ∪ {t} if and only if each component of

Gx is one of , , and (where the number of vertices in the

final component must be odd).

Proposition 2.5. Let x ∈ ∆1(t). Suppose that Gx contains p components of type

, labelled 1, . . . , p, and q components of type , labelled p +

1, . . . , p + q. Also assume Gx has l loops and s single white vertices , labelled

p+q+1, . . . , p+q+ l and p+q+ l+1, . . . , p+q+ l+s respectively. For i = 1, . . . , p+q

let mi be the number of black vertices in component i. Set M1 = m, and write

Mi = m − (m1 + · · · + mi−1). Then the number of elements O in the CG(t)-orbit of
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x is

O = abcd,

where

a =

p∏

i=1

(
Mi

mi

)
(2mi − 2)(2mi − 4) · · · 2,

b =

p+q∏

i=p+1

(
Mi

mi

)
(r + p + 1 − i)2mi(2mi − 2) · · · 2,

c =

(
m − (m1 + · · · + mp+q)

l

)

and

d =

(
r − q

s

)
.

Proof. First consider a component of Gx of type , where

t = (1, 2)(3, 4) · · · (2mi − 1, 2mi).

We wish to find an element x with this x-graph. The image of 1 under x cannot be

1 or 2, but anything else is a possible, giving 2mi − 2 choices for 1x. Without loss of

generality we may choose 1x = 3. Now 3x cannot be 1, 2, 3 or 4, but anything else is

possible, giving 2mi − 4 choices for 3x. Continuing in this manner, we see there are

(2mi − 2)(2mi − 4)(2mi − 6) · · · 4 · 2

choices in total for x.

Now consider a component of Gx of type , and suppose

t = (1, 2)(3, 4) · · · (2mi − 1, 2mi)(2mi + 1).

To get an x-graph of the required type, x must fix exactly one point in {1, . . . , 2mi}.

Without loss of generality let this point be 1. Then, arguing as above, there are

2mi − 2 choices for 2x, and so on, which gives

2mi(2mi − 2)(2mi − 4) · · · 4 · 2

choices in total.
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Next, observe that there are
(

m
m1

)
choices for the black vertices in the first com-

ponent, then
(

m−m1

m2

)
=
(

M2

m2

)
choices for the black vertices in the second component,

and so on. When we reach component p + 1 there are
(

Mp+1

mp+1

)
choices for the black

vertices, and r choices for the single white vertex, and so on. When we reach loops

and single white vertex components we are simply choosing one vertex from those

vertices remaining which are, respectively, black and white. Putting all this together

gives the desired expression for |∆1(t)|.

2.4 Connectedness when π is restricted

Here we present a proof of a result, due to Peter Rowley, which shows the relatively

minor role the set π plays in determining whether or not Fπ(G,X) is connected.

Theorem 2.6 (Rowley). Suppose that G = Sym(n), X is a G-conjugacy class of

involutions and π is a set of odd positive integers. Then Fπ(G,X) is either totally

disconnected or connected.

The proof of this theorem makes use of the following classical result due to Jordan

(see [47]):

Theorem 2.7 (Jordan). Let G be a primitive permutation group on a finite set Ω,

and suppose that G has a subgroup H which fixes at least one point of Ω and is

transitive on supp(H). Then G acts 2-transitively on Ω.

Proof of Theorem 2.6. We argue by induction on n, with n = 1 clearly holding.

Assume that Fπ(G,X) is not totally disconnected, and let t ∈ X be such that Y , the

connected component of t in Fπ(G,X), has |Y | > 1. Put K = StabG(Y ). If K = G,

then Y = X and hence Fπ(G,X) is connected. So we now suppose K 6= G, and

argue for a contradiction.

Let x ∈ Y with d(t, x) = 1. Then z = tx has order in the set π, and we have

(5.1) 〈CG(t), CG(x)〉 ≤ K, and
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(5.2) supp(t) ∪ supp(x) = Ω.

If (5.2) is false, then t and x both fix some α ∈ Ω. So t, x ∈ Gα
∼= Sym(n− 1). Since

t and x are Gα-conjugate and the order of tx is in π, by induction Fπ(Gα, X ∩Gα) is

connected. Therefore Gα ≤ K, and so, as K 6= G and Gα is a maximal subgroup of G,

K = Gα. If t fixes a further element of Ω, say β, then, by (5.1), (α, β) ∈ CG(t) ≤ K,

contrary to K = Gα. So t (and hence also x) fixes only α. Thus Gx has only one

white node (namely {α}) with the remaining connected components being either

or . Without loss we assume α = n.

Suppose that Gx has as a component. So, without loss of generality,

t = (1, 2)(3, 4) · · · (n − 2, n − 1) = (1, 2)t1

and x = (1, 2)x1, where x1 ∈ Sym({3, 4, . . . , n− 1}).If we set H = Sym({3, 4, . . . , n−

1}), then t1, x1 ∈ H, with t1 and x1 being H-conjugate involutions and the order

of t1x1, being the same as that of tx, lies in π. Using induction again we infer that

Fπ(H,X ′) is connected, where X ′ = tH1 . Hence, in Fπ(H,X ′) there is a path from t1

to

s1 = (3, 4)(5, 6) · · · (n − 4, n − 3)(n − 1, n),

say t1 = y0, y1, . . . , ym = s1 (yi ∈ X ′). Consequently

t = (1, 2), t1 = (1, 2)y0, (1, 2)y1, . . . , (1, 2)ym = (1, 2)s1

is a path in Fπ(G,X) from t to

(1, 2)(3, 4)(5, 6) · · · (n − 4, n − 3)(n − 1, n).

But then (n − 1, n) ∈ K, whereas K = Gα. This rules out as being a connected

component of Gx.

Let t = t1t2 · · · tk and x = x1x2 · · · xk, where

t1 = (1, 2) · · · (l1 − 1, l1),

t2 = (l1 + 1, l1 + 2) · · · (l1 + l2 − 1, l1 + l2),

...
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and

x1 = (2, 3)(4, 5) · · · (l1 − 2, l1 − 1)(1, l1),

x2 = (l1 + 2, l1 + 3) · · · (l1 + l2 − 2, l1 + l2 − 1)(l1 + 1, l1 + l2),

...

So x1, x2, . . . correspond to the connected components of Gx. Set l = l1. A calculation

gives

t1x1 = (1, 3, 5, . . . , l − 1)(l, l − 2, . . . , 2),

and thus t1x1 has order m = (l − 1)/2. Now the order of z = tx is the least common

multiple of the orders of t1x1, t2x2, . . . , tkxk, whence m must be odd. Put

w = (n, l − m + 1, l − m + 3, . . . , l − m + 4, l − m + 2).

Then w is a cycle of length m, and so of order m. Further (by design) wt1 = w−1 and

hence

y1 = t1w = (1, 2)(3, 4) · · · (l − m + 1, n) · · · (l − m + 2, l − m + 3)

is conjugate to t1. Also, of course, t1y1 = w has order m. So y = y1t2 · · · tk ∈ X and

the order of ty is the same as that of tx. Therefore y ∈ Y and hence (l−m+1, n) ∈ K.

This contradicts the earlier deduction that K = Gα, and with this we have proven

(5.2).

(5.3) K acts transitively, but not primitively, on Ω.

Since CG(t) and CG(x) have shape 2kSym(2k)×Sym(n−2k), where k = |supp(t)|/2,

and t and x do not commute, (5.1) and (5.2) imply that K is transitive on Ω. Plainly

CG(t), and hence K, contains transpositions. So, if K were to act primitively, then

Theorem 2.7 would force K = G, contrary to K 6= G. Thus (5.3) holds.

By (5.3) we may choose a nontrivial block Λ for K with α ∈ Λ ∩ supp(t). If

Λ 6⊆ supp(t), then the action of CG(t) on Ω results in Λ = Ω. Thus Λ ⊆ supp(t).

Again, using the action of CG(t) on Ω we deduce that either Λ = supp(t) or Λ = {α, β}
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where β = αt. Since t and x do not commute, we may further assume that α ∈ supp(t)

is such that αx /∈ {α, β}. So α ∈ supp(x) and a similar argument yields that either

Λ = supp(x) or Λ = {α, αx}. In view of (5.2) this then implies that Λ = Ω, contrary

to Λ being a nontrivial block. With this contradiction the proof is complete.

The preceding result shows that no matter how small the set π is chosen to

be, if there are any edges in Fπ(G,X) then the graph is in fact connected. This

prompts the following question: to what extent does this statement hold true when

the connectivity condition is restricted further? For example, does this hold when

we choose to join t, x ∈ X with an edge if and only if the x-graph is of a particular

isomorphism type? The answer, as we shall presently see, is no.

Proposition 2.8. Let G = Sym(n), where n = 2m + 1 and m ≥ 3 is odd. Let X be

the G-conjugacy class of elements with cycle type 2m. Let F{m}(G,X) be the subgraph

of F{m}(G,X) given by joining vertices x and y if and only if Gy
x has type

.

Then F{m}(G,X) is disconnected, with exactly 2m + 1 connected components.

Proof. Without loss of generality suppose that for x ∈ X we have

supp(x) = {1, . . . , 2m}.

Note that if d(x, y) = 1 then Gy
x must have a single white vertex corresponding to the

point 2m + 1, so y must fix 2m + 1. Thus x can be connected only to involutions in

X ∩H, where H = StabG({2m + 1}). This implies that F{m}(G,X) is disconnected,

with at least 2m + 1 connected components. But notice that F{m}(H,H ∩ X) ∼=
F{m}(H,H∩X), and since the latter graph is not totally disconnected, by Theorem 2.6

it must be connected. Thus F{m}(G,X) has exactly 2m + 1 components.



Chapter 3

Linear Groups of Small Dimension

In this chapter we investigate the local fusion graphs of projective special linear groups

of dimension 2. As in the case with symmetric groups, we are able to determine the

diameter of our graphs in these cases. Our ability to do this relies on the action of such

linear groups on the projective line, and the clarity this lends to the group properties

which are relevant to our study. We begin by briefly reviewing the definition and

some elementary facts about the linear groups, before presenting the results.

3.1 A brief review

Let K be any field. The general linear group GLn(K) is defined to be the group of

all invertible n×n matrices over K. Since K is a field, the requirement that a matrix

A ∈ Mn(K) be invertible is equivalent to the determinant det(A) being nonzero. The

special linear group SLn(K) is the subgroup of GLn(K) consisting of all A ∈ GLn(K)

with det(A) = 1. As this subgroup is the kernel of the determinant homomorphism,

SLn(K) is in fact a normal subgroup of GLn(K). It is easily seen that the centre of

GLn(K) is precisely the set of scalar matrices in GLn(K), that is

Z(GLn(K)) = {λIn : λ ∈ K∗}.

35
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Thus the centre of SLn(K) is the subgroup of Z(GLn(K)) consisting of the matrices

with determinant equal to 1, so

Z(SLn(K)) = {λIn : λn = 1}.

Since the centre of a group is a normal subgroup, we may form the factor groups

PGLn(K) := GLn(K)/Z(GLn(K))

and

PSLn(K) := SLn(K)/Z(SLn(K)),

which we call the projective general linear group and projective special linear group

respectively. It turns out that the latter of these is usually a simple group.

Being matrix groups, GLn(K) and SLn(K) act naturally on an n-dimensional

vector space V ∼= Kn. Indeed, given an n-dimensional vector space V over K, the

group of invertible linear transformations GL(V ) of V is isomorphic to GLn(K).

Since the elements of these groups are linear transformations, GLn(K) and SLn(K)

also act on the set of all 1-dimensional subspaces of V . When n = 2 this set is called

the projective line over K. If K is a finite field, say K = Fq where q = pr for a prime

p, the projective line is a finite set which we denote P (q), and consists of the spans

of the following vectors:

(
0

1

)
,

(
1

1

)
,

(
α2

1

)
, . . . ,

(
αp−1

1

)
,

(
1

0

)
,

where {0, 1, α2, . . . , αp−1} is the set of elements of Fq. Hence |P (q)| = q +1. We label

each span by the upper entry of each representative vector, except in the case of
(
1
0

)

which we label ∞. Thus

P (q) = {0, 1, α2, . . . , αp−1,∞}.

In general, the actions of GL2(q) and SL2(q) on the projective line are not faithful.

Certainly any scalar matrix in GL2(q) acts trivially on P (q). Conversely, suppose

A ∈ GL2(q) fixes every element of P (q). Then in particular both 0 and ∞ are fixed,

so A must be a diagonal matrix, say A =



 a 0

0 b



, but now since 1 is also fixed we
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deduce that a = b, so A is a scalar matrix. Thus the kernels of the actions of GLn(q)

and SLn(q) on P (q) are the centres of these respective groups, and consequently we

have faithful actions of both PGL2(q) and PSL2(q) on P (q). Therefore PGL2(q)

and PSL2(q) may be considered as permutation groups on P (q).

3.2 The local fusion graphs of PSL2(q)

Our aim is to prove the following result:

Theorem 3.1. Let G = PSL2(q), where q 6= 3, with X a G-conjugacy class of

involutions. Then F(G,X) is connected, with Diam(F(G,X)) = 2.

Given a finite group G with G-conjugacy class of involutions X, the commuting

involution graph C(G,X) has X as its vertex set, with x, y ∈ X joined by an edge if,

and only if, x 6= y and x commutes with y. Commuting involutions graphs for the

groups PSL2(q) have been investigated in [13]. This work shall be of particular use

to us, as the next result indicates.

Proposition 3.2. Let G be a finite group containing a unique conjugacy class of

involutions X. For t ∈ X denote by ∆i(t) the discs of the local fusion graph F(G,X),

and by ∆C
i (t) the discs of the commuting involution graph C(G,X). Then ∆C

j (t) ⊆

∆1(t) for all j ≥ 3.

Proof. We prove the contrapositive statement. Let x ∈ X, with x 6= t and x /∈ ∆1(t).

Then o(tx) = 2km for some k,m where k ≥ 1 and m is odd. Consequently, the

dihedral group 〈t, x〉 has order divisible by 4, and thus contains a central involution

y. But now t → y → x is a path from t to x in C(G,X) of length 2, which implies

d(t, x) ≤ 2 in C(G,X). Thus either x ∈ ∆C
1(t) or x ∈ ∆C

2(t).

In [13], the disc sizes of the commuting involution graphs for PSL2(q) are calcu-

lated. For convenience we now restate Theorem 1.1 of [13].

Theorem 3.3. Suppose G = PSL2(q), with X a G-conjugacy class of involutions.

(i) If q is even, then C(G,X) consists of q + 1 cliques each with q − 1 vertices.
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(ii) If q ≡ 3 mod 4, with q > 3, then C(G,X) is connected and Diam(C(G,X)) = 3.

Furthermore

|∆C
1(t)| = (q + 1)/2;

|∆C
2(t)| = (q + 1)(q − 3)/4; and

|∆C
3(t)| = (q + 1)(q − 3)/4.

(iii) If q ≡ 1 mod 4, with q > 13, then C(G,X) is connected and Diam(C(G,X)) = 3.

Furthermore

|∆C
1(t)| = (q − 1)/2;

|∆C
2(t)| = (q − 1)(q − 5)/4; and

|∆C
3(t)| = (q − 1)(q + 7)/4.

We can now put this to good use to partially prove Theorem 3.1 with very little

effort.

Proposition 3.4. Let G ∼= PSL2(q), where q ≡ 1 mod 4. Let X be the unique

conjugacy class of involutions of G. Then F(G,X) is connected and has diameter 2.

Proof. For q ≤ 13, we verify using Magma. So assume q > 13, and let t ∈ X.

From [13] we have that |X| = q(q + 1)/2, and there are clearly elements of X which

are not adjacent to t.

By Theorem 3.3(iii) we have that |∆C
3(t)| = (q−1)(q+7)/4, and by Proposition 3.2

∆C
3(t) ⊆ ∆1(t). Therefore, |∆1(t)| ≥ (q − 1)(q + 7)/4. Since q > 13, we deduce that

|∆1(t)| > |X|/2, and so by Lemma 1.16, F(G,X) is connected and has diameter

2.

Proposition 3.5. Let G ∼= PSL2(q), where q ≥ 4 is even. Let X be the unique

conjugacy class of involutions of G. Then F(G,X) is connected and has diameter 2.

Proof. For q even, |X| = q2 − 1, and the only elements of even order in G are

involutions. Hence, for t, x ∈ X, the order of the product tx is either odd, or t and
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x commute. We deduce that the elements of X − ∆1(t) are precisely the involutions

in CG(t).

For PSL2(q) with q even, the centraliser of an involution is a Sylow 2-subgroup,

which contains q − 1 non-identity elements. By our earlier observation, all these

elements must be involutions. But now,

|∆1(t)| = (q2 − 1) − (q − 1)

= q2 − q

> (q2 − 1)/2

= |X|/2

since q ≥ 4.

Thus, by Lemma 1.16, F(G,X) is connected and Diam(F(G,X)) ≤ 2. But there

are clearly vertices in F(G,X) which are not adjacent to t, so the result follows.

Corollary 3.6. For G,X as above, if t ∈ X then

|∆1(t)| = q(q − 1) and |∆2(t)| = q − 2.

Proof. This follows immediately from proof of Proposition 3.5.

When q ≡ 3 mod 4, life is not quite so straightforward. However, we can make

use of the action of PSL2(q) on the projective line P (q).

Lemma 3.7. Let G ∼= PSL2(q), where q ≡ 3 mod 4. Let X be the unique conjugacy

class of involutions of G, with x, y ∈ X. If the product xy fixes points on the projective

line, then xy has odd order in G.

Proof. Since |G| = q(q − 1)(q + 1)/2, and G acts transitively on the q + 1 points of

the projective line, by the Orbit-Stabiliser Theorem we see that a point stabiliser has

order q(q − 1)/2. Since q ≡ 3 mod 4, this order is odd, and hence xy must have odd

order.

Proposition 3.8. Let G ∼= PSL2(q), where q ≡ 3 mod 4, q > 13. Let X be the unique

conjugacy class of involutions of G. Then F(G,X) is connected and has diameter 2.
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Proof. We adapt the proof of Theorem 1.1 (ii) in [13]. Let t, x ∈ X be non-adjacent

in F(G,X). We show there exists y ∈ X such that both ty and yx fix points on the

projective line. Then the result will follow by Lemma 3.7. Consider the elements of

G as elements of SL2(q), acting on V . Without loss of generality let

t =



 0 1

−1 0



 and x =



 a b

c −a



 ,

where a, b, c ∈ Fq and a2 + bc = −1. Let

y =



 0 λ

−1/λ 0



 ,

where λ ∈ Fq. Note that both t and y swap the subspaces of V generated by
(
1
0

)
and

(
0
1

)
, so ty fixes these points on the projective line, and by Lemma 3.7 t and y are

adjacent in F(G,X). Therefore it suffices to show that yx fixes a subspace generated

by some non-zero vector
(

α
β

)
. Note that

yx =



 0 λ

−1/λ 0







 a b

c −a



 =



 λc −λa

−a/λ −b/λ



 .

Thus we are looking for α, β such that

κ



 α

β



 =



 λc −λa

−a/λ −b/λ







 α

β



 =



 λcα − λaβ

−aα/λ − bβ/λ





for some κ ∈ Fq. Thus we require

κα = λcα − λaβ (3.1)

and

κβ = −aα/λ − bβ/λ. (3.2)

From these we get

α

β
=

−λa

κ − λc
=

−(κλ + b)

a
.

We therefore must have that κ 6= λc and κ 6= −b/λ. Rearranging the above yields

the following quadratic equation in κ:

λκ2 + (b − λ2c)κ − λ(bc + a2) = 0.
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This equation has solutions if and only if its discriminant Φ(λ) is non-zero. Note

that Φ(λ) is a quartic equation in λ 6= 0. Since there are q − 1 possible values of λ,

there are at worst (q − 1)/4 different values of Φ(λ). Since we disallow Φ(λ) = 0 and

values resulting from choices of λ which lead to disallowed values of κ, there are at

least (q − 1)/4 − 3 = (q − 13)/4 suitable values of Φ(λ). But q > 13 by assumption,

so there is at least one suitable value of Φ(λ), which yields a suitable value of κ and

hence of α/β. Thus y may be chosen so that yx fixes points on the projective line,

and the result follows.



Chapter 4

Finite Coxeter Groups

Let us move on to investigate the local fusion graphs of finite Coxeter groups. A

Coxeter group of rank n is defined to be a group generated by n involutions, subject

only to relations which give the order of the pairwise products of the generators. For

example, the symmetric group Sym(n) is a Coxeter group of rank n − 1, since

Sym(n) = 〈t1, . . . , tn−1 : (titj)
3 = 1 when |i − j| = 1, (titj)

2 = 1 otherwise〉.

This can be seen by setting ti = (i, i + 1) ∈ Sym(n) for 1 ≤ i ≤ n − 1. In view

of this, studying the finite Coxeter groups is a natural next step after the work of

Chapter 2. Furthermore, two infinite families of finite Coxeter groups will provide us

with examples which show that the diameter of local fusion graphs can be arbitrarily

large.

4.1 Reflection Groups

It can be shown that finite Coxter groups are in fact equivalent to finite real reflection

groups (see [46]). Let V be an n-dimensional Euclidean space, that is the vector

space R
n equipped with an inner product, and let {e1, . . . , en} be an orthonormal

basis for V . If 0 6= x ∈ V , notice that x defines a hyperplane H ⊂ V (a subspace of

codimension 1), where H consists of all vectors in V orthogonal to x. The reflection

ρx is a linear map from V to itself which fixes H but negates every vector in V which

42
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is orthogonal to H. More precisely,

ρx(v) = v − 2
〈x, v〉
〈x, x〉x

for all v ∈ V . A group which is generated by reflections is called a reflection group.

The finite real reflection groups were completely classified by Coxeter in [28]. In

doing so, Coxeter made use of a particular type of diagram, subsequently referred to

as a Coxeter diagram or Coxeter graph. To define the graph, we must first choose

our set of generating reflections in a particular way. Recall that any two reflections

ρx and ρy (indeed, any two involutions) generate a dihedral group of order 2m, where

m is the order of the product ρxρy. It follows that the angle between the defining

vectors x and y is 2kπ/m, where k is coprime to m. It is in fact possible to choose

our defining vectors so that the angle between any x and y is π − π/m, so as close

to parallel as possible. A generating set chosen in this way is called a fundamental

system of reflections.

Given a fundamental system of n reflections, we can now define the Coxeter

graph. It consists of n vertices, each corresponding to a fundamental reflection, with

two vertices joined by an edge if the product of the corresponding reflections has

order m ≥ 3. Furthermore, if m ≥ 4 we label the edge with the integer m. As an

example, here is the Coxeter graph for Sym(n), which has n − 1 vertices.

Notice that if the Coxeter graph is disconnected, then every reflection in one com-

ponent commutes with those in another component, so the reflection group which is

generated is a direct product of smaller reflection groups. Thus we may restrict our

attention to connected Coxeter graphs. Coxeter showed that the only certain such

graphs can occur, which we list in Figure 4.1. The resulting reflection groups consist

of three infinite families C(An), C(Bn) and C(Dn), along with the exceptional groups

C(E6), C(E7), C(E8), C(F4), C(H3), C(H4) and C(In). The structure of these groups

is shown in Table 4.1. For the group C(H4) in Table 4.1, SL2(5) ◦ SL2(5) denotes

the central product of two copies of SL2(5) (see [38], for example).
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Figure 4.1: Finite Irreducible Coxeter Diagrams
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Table 4.1: Structure of the finite irreducible Coxeter groups

C(An) ∼= Sym(n + 1), (n ≥ 1);
C(Bn) ∼= 2n : Sym(n), (n ≥ 2);
C(Dn) ∼= 2n−1 : Sym(n), (n ≥ 4);
C(E6) ∼= GO−

6 (2);
C(E7) ∼= O+

4 (3);
C(E8) ∼= O+

8 (2).2;
C(F4) ∼= 21+4

+ .32.22;
C(H3) ∼= 2 × Alt(5);
C(H4) ∼= (SL2(5) ◦ SL2(5)) : 2;
C(In) ∼= Dih(2n).

4.2 The Classical Coxeter Groups

We can now focus on the local fusion graphs of finite Coxeter groups, beginning with

the classical groups of types An, Bn and Dn. Firstly, we note that the Coxeter groups

C(An) have already been addressed.

Theorem 4.1. Let G = C(An), where n ≥ 4, and let X be a G-conjugacy class of

involutions. Then F(G,X) is connected with Diam(F(G,X)) = 2.

Proof. Since C(An) ∼= Sym(n + 1) this is just Theorem 2.3.

Let us now concentrate on the groups C(Bn) and C(Dn). The Coxeter group

C(Bn) may be considered as the group of signed permutations of n objects (see [12]

or [46]). Let Sym(n) act on the set Ω = {1, . . . , n}, and define the i-th ‘sign change’

to be the element which sends i to −i and fixes all other j ∈ Ω. The set of all such

elements generates an elementary abelian group of order 2n, and C(Bn) is isomorphic

to the semidirect product of this group with Sym(n). If we wish to emphasise the set

upon which C(Bn) acts, we may write C(BΩ). For n ≥ 4, C(Dn) is the subgroup of

index 2 of C(Bn) generated by Sym(n) and the elements of the elementary abelian

subgroup involving an even number of sign changes. A convenient way of expressing

the elements of C(Bn) is to write a permutation in Sym(n), including 1-cycles, along

with a plus or minus sign above each i, and say i is positive or negative respectively,
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for example

z = (
+

1,
−

3,
+

2)(
−

4) ∈ C(B4).

By convention we read the sign first, so z(1) = 3, z(2) = 1, z(3) = −2 and z(4) = −4.

Given a cycle ρ ∈ C(Bn), we say ρ is positive or negative depending on whether the

number of minus signs above its elements are even or odd, respectively. The signed

cycle type of an element of C(Bn) is defined to be the cycle type of the element,

including 1-cycles, with a plus or minus over each cycle, depending on whether the

cycle is positive or negative, respectively.

We can now state the main results we shall prove about the groups C(Bn) and

C(Dn).

Theorem 4.2. Suppose G = C(Bn), n ≥ 2 and X is a G-conjugacy class of involu-

tions. Write G = N : H where N ∼= 2n and H ∼= Sym(n). If X ⊂ N , then F(G,X)

is totally disconnected, while if X 6⊂ N then F(G,X) is connected, unless n = 2m

and X = tG, where

t = (
+

1,
+

2), (
+

3,
+

4) · · · (
+

2m − 1,
+

2m).

In the latter case F(G,X) has exactly two connected components, unless n = 4, in

which case F(G,X) is totally disconnected with 12 vertices.

Theorem 4.3. Suppose G = C(Dn), n ≥ 4 and X is a G-conjugacy class of invo-

lutions. Write G = N : H where N ∼= 2n−1 and H ∼= Sym(n). If X ⊂ N , then

F(G,X) is totally disconnected, while if X 6⊂ N then F(G,X) is connected.

Theorem 4.4. Suppose G = C(Bn), where n ≥ 4.

(i) If n is even, then there exists a G-conjugacy class of involutions X such that

Diam(F(G,X)) = n − 1. Moreover, if X ′ is any other G-conjugacy class of

involutions such that F(G,X ′) is connected, then

Diam(F(G,X ′)) ≤ n − 1.

(ii) If n is odd, then there exists a G-conjugacy class of involutions X such that

Diam(F(G,X)) = n − 2. Moreover, if X ′ is any other G-conjugacy class of



CHAPTER 4. FINITE COXETER GROUPS 47

involutions such that F(G,X ′) is connected, then

Diam(F(G,X ′)) ≤ n − 2.

We shall see from Proposition 4.6 that, with possibly just one exception, the

local fusion graphs of C(Dn) are isomorphic to local fusion graphs of C(Bn). Thus

Theorem 4.4 also provides bounds on the diameters of the local fusion graphs of

C(Dn). As a consequence of our work on C(Bn) we have the following more general

result concerning local fusion graphs of finite groups.

Theorem 4.5. For any given r,m ∈ N, there exists a finite group G with conjugacy

class of involutions X such that F(G,X) has exactly m connected components, each

of which has diameter r.

Theorems 4.4 and 4.5 contrast with many results concerning the diameter of

graphs related to local fusion graphs. For example, in [10] it is shown that for finite

symmetric groups the diameter of commuting involution graphs is at most 4, while

in [12] it is proved that for any other finite irreducible Coxeter group the diameter

of a commuting involution graph is at most 5. Also, in [14], we find analysis of the

commuting involutions graphs of the majority of the sporadic simple groups, and it

is shown that their diameters are at most 4. For the S3-involution graphs studied

in [30], it is shown that their diameter is 3. And of course, the work of Chapter 2 has

shown that for finite symmetric groups almost all local fusion graphs have diameter

2. It is therefore worthwhile to note that Theorem 4.4 demonstrates that no such

absolute bounds exist for the diameters of local fusion graphs of finite Coxeter groups.

The following result, found in [23], characterises the conjugacy classes of C(Bn)

and C(Dn), and will be important in the proofs throughout this chapter.

Proposition 4.6. (i) Elements of C(Bn) are conjugate if and only if they have

the same signed cycle type.

(ii) Conjugacy classes in C(Dn) are parameterised by signed cycle type, with one

class for each signed cycle type except in the case where the signed cycle type
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contains only even length, positive cycles. In the latter case there are two classes

for each signed cycle type, distinguished by the number of minus signs modulo

4.

As we are considering C(Dn) as a subgroup of C(Bn), Proposition 4.6 (ii) tells us

that for x ∈ C(Dn) we have xC(Dn) = xC(Bn), unless x has only even length, positive

cycles. Let us now establish some notation. Recall that for an element σ ∈ Sym(n),

the support of σ is defined to be supp(σ) = Ω \ fix(σ). We now extend this notion to

C(Bn). Given x ∈ C(Bn), we define the S-support of x, suppS(x), to be the support

of the corresponding element of Sym(n). In addition, we define the C-support of

x, suppC(x), to be Ω \ fix(x). Here S and C stand for ‘symmetric’ and ‘Coxeter’

respectively. To illustrate, if we again take

z = (
+

1,
−

3,
+

2)(
−

4),

then suppS(z) = {1, 2, 3}, while suppC(z) = {1, 2, 3, 4} (since z(4) = −4). For

brevity, given two elements x and y of C(Bn) we shall write

∆x,y = suppS(x) ∪ suppS(y).

We define the weight of x, denoted w(x), to be the number of negative signs in x, and

the 1-weight of x, denoted w1(x), is defined to be the number of negative 1-cycles in

x. For example, for the element z given above we have w(z) = 2 and w1(x) = 1.

We now set G = C(Bn) where n ≥ 3, and begin to consider the structure of

the local fusion graphs of G. Clearly a G-conjugacy of involutions which lies in

the elementary abelian normal 2-subgroup of G will yield a totally disconnected local

fusion graph. A more interesting collection of local fusion graphs of G are those which

have as vertex set a G-conjugacy class of signed transpositions, that is, elements of

G which contain exactly one 2-cycle. Let X be such a G-conjugacy class. Our next

lemma tells us precisely when two elements of X are adjacent in F(G,X).

Lemma 4.7. If x, y ∈ X, then x and y are adjacent in F(G,X) if, and only if,

|∆x,y| = 3 and w1(xy) = 0.
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Proof. Suppose that x and y are adjacent in F(G,X). Then since x and y contain

only one 2-cycle each, the product xy must have order 3, and we must certainly have

|∆x,y| = 3. Furthermore, if w1(xy) ≥ 1, then xy must contain negative 1-cycles, and

consequently the product order must be divisible by 2. This contradicts xy having

order 3.

Now suppose that |∆x,y| = 3 and w1(xy) = 0. By the latter assumption, any

1-cycle (i) in the product xy, where i ∈ Ω \ ∆x,y, must be positive, and hence have

order 1. So we need only concern ourselves with the 3-cycle of xy. We may without

loss of generality assume that, without signs, we have x = (1, 2)(3) and y = (1, 3)(2).

Since x and y are G-conjugate (and the 1-cycles outside ∆x,y have the same signs),

we can apply Proposition 4.6 to deduce that the 1-cycles (3) and (2) must have the

same sign.

If the signs of x as in y are identical, we get

xy = (
+

1,
+

2,
+

3),

which clearly has order 3, so x and y are adjacent in F(G,X). On the other hand,

any other valid signing of x and y will a yield a 3-cycle with two negative signs and

one positive, such as xy = (
−

1,
−

2,
+

3). An easy check shows that such elements also

have order 3. Thus x and y are adjacent in any case.

An easy consequence of Lemma 4.7 is that the local fusion graphs of C(Bn)

corresponding to G-conjugacy classes of signed transpositions are also S3-involution

graphs, as defined in [30]. We now prove a lemma which gives us a lower bound on

the distance between two G-conjugate signed transpositions in F(G,X).

Lemma 4.8. Suppose that x, y ∈ X, with x 6= y. If w1(xy) = k, then d(x, y) ≥ k+1.

Proof. We use induction on k. When k = 0 the result is clear, and when k = 1 the

result follows by Lemma 4.7. So assume w1(xy) = k where k ≥ 2, and let γ be a

shortest path from x to y in F(G,X). By Lemma 4.7, there must exist z ∈ γ such

that w1(xz) = k − 1. Now by induction we have d(x, z) ≥ k. Since γ was chosen

arbitrarily, and d(z, y) ≥ 1, we see that d(x, y) ≥ k + 1 as required.
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Given x, y ∈ X, then since |suppS(x)| = |suppS(y)| = 2, it must be the case that

|∆x,y| = 2, 3 or 4. The following two lemmas examine each of these possibilities,

and provide us with straightforward expressions for the distance between x and y in

F(G,X) in terms of the 1-weight of the product xy.

Lemma 4.9. Suppose x, y ∈ X, where x 6= y and |∆x,y| = 2 or 3. Then d(x, y) =

w1(xy) + 1, unless |∆x,y| = 2 and w1(xy) = 0, in which case d(x, y) = 2.

Proof. First suppose that |∆x,y| = 2, and that w1(xy) = k. Note that Proposition 4.6

implies that k must be even, so write k = 2m. If m = 0, then since x 6= y without loss

of generality the 2-cycles of x and y must be (
+

1,
+

2) and (
−

1,
−

2), and using Lemma 4.7 we

may easily find an element which is adjacent to both x and y in F(G,X). So assume

that m ≥ 1, and consequently we must have n ≥ 4. If x and y agree on any signed

1-cycles, then in the product xy these will be positive 1-cycles, which have order 1. It

therefore suffices to ignore these 1-cycles and consider x and y as elements of C(BΣ)

where Σ = ∆x,y ∪ suppC(xy), and prove the result in this context. So, without loss

of generality we assume that n = |∆x,y| + w1(xy). Using the vertex-transitivity of G

on F(G,X), and Proposition 4.6, we may assume that x and y are labelled so that

x = (
+

1,
+

2)(
−

3)(
−

4) . . . (
−

m + 2)(
+

m + 3) . . . (
+

2m + 2)

and

y = (
ǫ

1,
ǫ

2)(
+

3)(
+

4) . . . (
+

m + 2)(
−

m + 3) . . . (
−

2m + 2),

where ǫ ∈ {+,−}. By Lemma 4.8, d(x, y) ≥ 2m + 1. To show that this is in fact an

equality, we construct a path from x to y in F(G,X) as follows, using Lemma 4.7 to
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verify adjacency at each step:

x = (
+

1,
+

2)(
−

3)(
−

4) . . . (
−

m + 2)(
+

m + 3) . . . (
+

2m + 2),

z1 = (
+

1,
+

m + 3)(
+

2)(
−

3)(
−

4) . . . (
−

m + 2)(
+

m + 4) . . . (
+

2m + 2),

z2 = (
+

1,
+

3)(
+

2)(
−

4) . . . (
−

m + 3)(
+

m + 4) . . . (
+

2m + 2),

z3 = (
+

1,
+

m + 4)(
+

2)(
+

3)(
−

4) . . . (
−

m + 3)(
+

m + 5) . . . (
+

2m + 2),

z4 = (
+

1,
+

4)(
+

2)(
+

3)(
−

5) . . . (
−

m + 4)(
+

m + 5) . . . (
+

2m + 2),

...

z2m = (
+

1,
+

m + 2)(
+

2)(
+

3) . . . (
+

m + 1)(
−

m + 3) . . . (
−

2m + 2),

y = (
ǫ

1,
ǫ

2)(
+

3)(
+

4) . . . (
+

m + 2)(
−

m + 3) . . . (
−

2m + 2).

Since this path has length 2m + 1, we deduce that d(x, y) = 2m + 1.

Now assume that |∆x,y| = 3 and w(xy) = k. Here it need not be the case that k

is even. If k = 0 the result follows by Lemma 4.7, so assume that k ≥ 1. Thus n ≥ 4.

Using vertex-transitivity and Proposition 4.6 we see that, up to relabelling, there are

the following possibilities for x and y:

(i) k = 2m,

x = (
+

1,
+

2)(
δ

3)(
−

4) . . . (
−

m + 3)(
+

m + 4) . . . (
+

2m + 3)

and

y = (
ǫ

1,
ǫ

3)(
δ

2)(
+

4) . . . (
+

m + 3)(
−

m + 4) . . . (
−

2m + 3);

(ii) k = 2m + 1,

x = (
+

1,
+

2)(
δ

3)(
−

4) . . . (
−

m + 3)(
−δ

m + 4)(
+

m + 5) . . . (
+

2m + 4)

and

y = (
ǫ

1,
ǫ

3)(
−δ

2 )(
+

4) . . . (
+

m + 3)(
δ

m + 4)(
−

m + 5) . . . (
−

2m + 4),

where ǫ, δ ∈ {+,−}. In case (i), Lemma 4.8 implies that d(x, y) ≥ 2m + 1, while

in case (ii), Lemma 4.8 implies that d(x, y) ≥ 2m + 2. However, we may construct

paths from x to y in F(G,X) of length 2m + 1 and 2m + 2, in each case respectively.
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Since the method used to construct these paths is very similar in each case, we simply

illustrate case (ii) where δ = +. Here a suitable path is

x = (
+

1,
+

2)(
+

3)(
−

4) . . . (
−

m + 4)(
+

m + 5) . . . (
+

2m + 4),

z1 = (
+

1,
+

4)(
−

2)(
+

3)(
−

5) . . . (
−

m + 4)(
+

m + 5) . . . (
+

2m + 4),

z2 = (
+

1,
+

m + 5)(
−

2)(
+

3)(
+

4)(
−

5) . . . (
−

m + 4)(
+

m + 6) . . . (
+

2m + 4),

z3 = (
+

1,
+

5)(
−

2)(
+

3)(
+

4)(
−

6) . . . (
−

m + 5)(
+

m + 6) . . . (
+

2m + 4),

z4 = (
+

1,
+

m + 6)(
−

2)(
+

3)(
+

4)(
+

5)(
−

6) . . . (
−

m + 6)(
+

m + 7) . . . (
+

2m + 4),

...

z2m = (
+

1,
+

2m + 4)(
−

2)(
+

3) . . . (
+

m + 3)(
−

m + 4) . . . (
−

2m + 4),

z2m+1 = (
+

1,
+

m + 4)(
−

2)(
+

3) . . . (
+

m + 3)(
−

m + 5) . . . (
−

2m + 4),

y = (
ǫ

1,
ǫ

3)(
−

2)(
+

4) . . . (
+

m + 4)(
−

m + 5) . . . (
−

2m + 4).

Lemma 4.10. Suppose x, y ∈ X with |∆x,y| = 4. Then d(x, y) = w1(xy) + 2.

Proof. Let w1(xy) = k. We proceed by induction on k. When k = 0 then the result

may be easily verified, either by hand or using Magma [18], so assume that k ≥ 1.

This implies that n ≥ 5. By Lemma 4.8 we have d(x, y) ≥ k + 1. Using Lemma 4.7,

it is clear that y is adjacent to some element y′ ∈ X where |∆x,y′ | = 3, and so by

Lemma 4.9 there exists a path from x to y in F(G,X). So let γ be a shortest path

from x to y in F(G,X), and suppose that z ∈ γ is adjacent to y. Using Lemma 4.7

we see that |∆x,z| = 3 or 4. If |∆x,z| = 3 it must also be that w1(xz) = w1(xy),

and so Lemma 4.9 implies that d(x, z) = w1(xz) + 1 = k + 1. Since γ was chosen

arbitrarily, we have d(x, y) = (k + 1) + 1 = k + 2, as required. Now suppose that

|∆x,z| = 4. If w1(xz) = w1(xy), then z and y will lie in the same CG(x)-orbit, which

provides a contradiction using Lemma 1.17. So it must be that w1(xz) = w1(xy)− 1.

By induction we have d(x, z) = w1(xz) + 2 = k + 1, and so by the arbitary choice of

γ we again have d(x, y) = (k + 1) + 1 = k + 2.

Notice that the constructive nature of Lemmas 4.9 and 4.10 shows that the local

fusion graphs of C(Bn) which arise from conjugacy classes of signed transpositions
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are connected. We can now prove the following result regarding the diameters of

these local fusion graphs.

Theorem 4.11. Let G = C(Bn), where n ≥ 4.

(i) If n is even, then there exist G-conjugacy classes of signed transpositions X1

and X2 such that Diam(F(G,X1)) = n − 1 and Diam(F(G,X2)) = n − 2.

Moreover, if Y is any other G-conjugacy class of signed transpositions, then

Diam(F(G, Y )) ≤ n − 1.

(ii) If n is odd, then there exists a G-conjugacy class of signed transpositions X3

such that Diam(F(G,X3)) = n − 2. Moreover, if Y ′ is any other G-conjugacy

class of signed transpositions, then Diam(F(G, Y ′)) ≤ n − 2.

Proof. Suppose that n is even, and write n = 2m. Set X1 = xG
1 , where

x1 = (
+

1,
+

2)(
+

3)(
+

4)(
−

5) · · · (
−

m + 2)(
+

m + 3) · · · (
+

2m).

If we now let

y1 = (
+

1)(
+

2)(
+

3,
+

4)(
+

5) · · · (
+

m + 2)(
−

m + 3) · · · (
−

2m),

then w1(xy) = 2m − 4, so Lemma 4.10 tells us that

d(x1, y1) = 2m − 2 = n − 2.

Since it is impossible to choose y′
1 ∈ X1 where w1(x1y

′
1) > w1(x1y1), Lemmas 4.9

and 4.10 show that this distance is maximal in F(G,X1), whence Diam(F(G,X1)) =

n − 2.

Next, set X2 = xG
2 , where

x2 = (
+

1,
+

2)(
−

3) · · · (
−

m + 1)(
+

m + 2) · · · (
+

2m).

Then

y2 = (
+

1,
+

2)(
+

3) · · · (
+

m + 1)(
−

m + 2) · · · (
−

2m)

is an element at maximal distance from x2 in F(G,X2), and since w1(x2y2) = 2m−2

we have d(x2, y2) = n− 1 by Lemma 4.9. Thus Diam(F(G,X2)) = n− 1. To see the
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final statement of (i), note that if x′ and y′ are signed transpositions in any other G-

conjugacy class of signed transpositions Y , then w1(x
′y′) < 2m−2, so by Lemmas 4.9

and 4.10 we have d(x′, y′) ≤ 2m − 1 = n − 1.

Finally, suppose that n = 2m + 1 and set X3 = xG
3 , where

x3 = (
+

1,
+

2)(
+

3)(
−

4)(
−

5) · · · (
−

m + 2)(
+

m + 3) · · · (
+

2m + 1).

Then

y3 = (
+

1)(
+

2)(
+

3,
+

4)(
+

5) · · · (
+

m + 2)(
−

m + 3) · · · (
−

2m + 1)

is at maximal distance from x3 in F(G,X), and by Lemma 4.10 we have

d(x3, y3) = 2m − 1 = n − 2,

which yields Diam(F(G,X3)) = n − 2. For the final statement of (ii), notice that

for x′ and y′ in any other G-conjugacy class of signed tranpositions Y ′, then either

w1(x
′y′) ≤ n − 4, or w1(x

′y′) = n − 3 and |∆x′,y′ | = 2 or 3. In both cases, by

Lemmas 4.9 and 4.10 we have Diam(F(G, Y ′)) ≤ n − 2.

The case where n = 3 is excluded from Theorem 4.11 since for G = C(B3) and

X = xG, where x = (
+

1,
+

2)(
+

3) or (
+

1,
+

2)(
−

3), we have Diam(F(G,X)) = 2. Note that

Theorem 4.11 partially proves Theorem 4.5, by showing the existence of local fusion

graphs with diameter r for all r ≥ 3. Since the existence of local fusion graphs with

diameters 1 and 2 is clear, to complete the proof of Theorem 4.5, we just need to

show that any number of connected components is possible. This is resolved by our

next result.

Lemma 4.12. Let H be a finite group, with X an H-conjugacy class of involu-

tions, and suppose F(H,X) is connected. Let L = H ≀ Sym(m). Then there exists

an L-conjugacy class of involutions Y such that F(L, Y ) has exactly m connected

components.

Proof. The wreath product L = H ≀ Sym(m) has base group H1 × · · · × Hm, where

Hi
∼= H for 1 ≤ i ≤ m. Let Y be the L-conjugacy class which contains the canonical

image of X in H1. Since Sym(m) acts transitively on the components of the base
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group, Y can be considered as a direct product of m copies of X. Since elements

of Y from distinct components commute, they can never be adjacent in F(L, Y ). It

follows that F(L, Y ) has m connected components, each of which is isomorphic to

F(H,X).

Combining Lemma 4.12 with Theorem 4.11 now yields Theorem 4.5. Having

considered the case of signed transpositions, we now move to the opposite extreme,

those conjugacy classes of involutions which have at most one 1-cycle. First we collect

together some data for cases when the rank n is small, which will be used in proving

the more general results which follow.

Lemma 4.13. Suppose G = C(Bn), where 5 ≤ n ≤ 10.

(i) If n = 2m, set X = tG where

t = (
+

1,
+

2) . . . (
+

2m − 1,
+

2m).

Then F(G,X) has exactly two connected components. When n = 8 these com-

ponents have diameter 3, while if n = 6 or 10 this diameter is 2.

(ii) If n = 2m + 1, set X = tGǫ where

tǫ = (
+

1,
+

2) . . . (
+

2m − 1,
+

2m)(
ǫ

2m + 1)

and ǫ ∈ {+,−}. Then F(G,X) is connected, and Diam(F(G,X)) = 2.

Proof. Since these local fusion graphs have relatively small vertex sets, it is straight-

forward to explicitly construct them using Magma [18].

Lemma 4.14. Let G = C(Bn), and suppose σ ∈ G is a signed cycle. Then σ has

odd order if, and only if,

(i) the length of σ is odd; and

(ii) the weight of σ is even.
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Proof. Without loss of generality suppose that, without signs, σ = (1, 2, . . . , k). It is

clearly the case that σ either has order k or 2k. Thus for σ to have odd order it is

necessary that (i) holds, so suppose that k is odd. If w(σ) = 0 then certainly σ has

odd order k. Suppose that w(σ) = 0, and let σ1 be equal to σ multiplied by a single

negative 1-cycle, say

σ1 = (
−

i)σ,

where i ∈ {1, . . . , k}. Then w(σ1) = 1. Moreover, we have

σk
1 = (

−

1)(
−

2) · · · (
−

k),

and so σ1 has order 2k. If we now multiply σ1 by a negative 1-cycle, say

σ2 = (
−

j)σ1,

where j ∈ {1, . . . , k}, then we have w(σ2) = 0 or 2, and we get

σk
2 = (

−

1)(
−

2) · · · (
−

k)(
−

1)(
−

2) · · · (
−

k) = 1,

so σ2 has order k. More generally, if we multiply σ by an odd number of negative

1-cycles, the resulting product will have odd weight and order 2k, while if we multi-

ply σ by an even number of negative 1-cycles, the resulting product will have even

weight and product order k. Since it is possible to reach any signed k-cycle in G by

multiplying a k-cycle of zero weight by a number of negative 1-cycles, we deduce that

if w(σ) is even the order of σ is k, and if w(σ) is odd the order of σ is 2k.

Lemma 4.15. Suppose H = Sym(2m) acts naturally on Ω, and set X = xH , where

x = (1, 2)(3, 4) · · · (2m − 1, 2m).

If y ∈ X, then y is adjacent to x in F(H,X) if, and only if,

xy = σ1,1σ1,2σ2,1σ2,2 · · ·σs,1σs,2

is a product of disjoint cycles, where for 1 ≤ r ≤ s the cycles σr,1 and σr,2 have the

same odd length. Moreover, if i, j ∈ Ω lie in the same transposition of y, then we can

label the cycles of xy so that i ∈ σ1,1 and j ∈ σ1,2.
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Proof. This follows from Proposition 2.2 of [10].

We now consider C(Bn) for arbitrary rank n ≥ 3, and address the connectedness

and diameter of those local fusion graphs which have as vertices involutions which

contain at most one 1-cycle. In preparation we introduce another piece of notation.

Given g ∈ C(Bn), we denote by g the element of Sym(n) we get by ignoring all signs

of g. For example, if g ∈ C(B6) and

g = (
+

1,
−

2,
+

3)(
−

4,
−

5)(
+

6),

then

g = (1, 2, 3)(4, 5)(6).

Lemma 4.16. Suppose G = C(B2m), where m ≥ 3, and let

t = (
+

1,
+

2)(
+

3,
+

4) . . . (
+

2m − 1,
+

2m),

with X = tG. Then F(G,X) has exactly two connected components, one containing

all x ∈ X with w(x) ≡ 0 mod 4, the other containing all x ∈ X with w(x) ≡ 2 mod

4. Furthemore, the diameter of each component is at most 5.

Proof. Proposition 4.6 implies that all elements of X have even weight. Let G =

Sym(2m), and denote by X the G-conjugacy class which contains the element t

which corresponds to t. By Lemma 4.15, x is adjacent to t in F(G, X) if, and only

if, the product tx consists of a disjoint product of pairs of odd-length cycles. There

is an associated product of pairs of odd-length cycles of tx, and by Lemma 4.14 each

of these cycles must have even weight. But if (
−

i ,
−

j) is a transposition in x, then

using Lemma 4.15 we see that
−

i and
−

j lie in disjoint cycles of tx. We deduce that

w(x) ≡ w(t) mod 4. Since G acts vertex-transitively on F(G,X) we have that every

element of the connected component of F(G,X) which contains t has the same weight

as t modulo 4.

Now suppose that x ∈ X with w(x) ≡ w(t) mod 4. Since Lemma 4.13 completes

the proof for m < 6, we may assume that m ≥ 6. By Theorem 1.1 of [7], F(G, X)
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has diameter 2, so there exists some element z ∈ X where x = z, and d(t, z) ≤ 2. We

may arrange the 2-cycles of x and z so that

x = x(1)x(2) · · ·x(r)

and

z = z(1)z(2) · · · z(r),

and the following conditions are satisfied:

(i) the x(i) are (disjoint) products of three signed 2-cycles, except for possibly x(r)

which may be a (disjoint) product of four or five signed 2-cycles;

(ii) x(i) = z(i) for each i; and

(iii) w(x(i)) ≡ w(z(i)) mod 4, for each i.

Considering each pair x(i), z(i) as elements of C(B6) (or possibly C(B8) or C(B10) for

the final pair), we now apply Lemma 4.13 to see that for each i there exist paths from

z(i) to x(i) of length at most 3, in the relevant local fusion graphs of C(B6), C(B8) or

C(B10). Since both x(i) and z(i) are disjoint from all other x(j), z(j) (where i 6= j), by

taking products of suitable elements from each such path, we may construct a path of

length at most 3 from z to x in F(G,X). Thus we have a path from t to x of length

at most 5. It follows that the elements of X with weight congruent to 0 modulo

4 form a connected component of F(G,X). Since this accounts for exactly half the

elements of X, by the vertex-transitivity of F(G,X) we deduce that there are exactly

two connected components, the second of which must consist of the elements of X

with weight congruent to 2 modulo 4.

Lemma 4.17. Suppose G = C(B2m+1), where m ≥ 2, and let

t = (
+

1,
+

2)(
+

3,
+

4) . . . (
+

2m − 1,
+

2m)(
ǫ

2m + 1),

where ǫ ∈ {+,−}, with X = tGǫ . Then F(G,X) is connected, and

Diam(F(G,X)) ≤ 4.
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Proof. Our argument here is similar to that of the previous proof, and we adopt the

same ‘bar’ notation. Let x ∈ X. By Theorem 2.3, F(G, X) has diameter 2, so there

exists some element z ∈ X where x = z, and d(t, z) ≤ 2. We may arrange the cycles

of x and z so that

x = x(1)x(2) · · ·x(r)

and

z = z(1)z(2) · · · z(r),

and the following conditions are satisfied:

(i) the x(i) are (disjoint) products of three signed 2-cycles, except for x(r) which is

a (disjoint) product of two, three or four signed 2-cycles with a signed 1-cycle;

(ii) x(i) = z(i) for each i; and

(iii) w(x(i)) ≡ w(z(i)) mod 4, for each i < r.

For 1 ≤ i < r, we may now consider each pair x(i), z(i) as elements of C(B6), while

the pair x(r), z(r) may be considered as elements of C(B5), C(B7) or C(B9). Using

Lemma 4.13 we now have d(z, x) ≤ 2, and consequently there exists a path from t to

x in F(G,X) of length at most 4.

We can now say something about the local fusion graphs of the remaining invo-

lution classes of C(Bn).

Theorem 4.18. Let G = C(Bn), where n ≥ 4, and let X be a G-conjugacy class of

involutions where the elements of X contain at least one 1-cycle. Then F(G,X) is

connected, with

Diam(F(G,X)) ≤ n − 1

if n is even, and

Diam(F(G,X)) ≤ n − 2

if n is odd.
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Proof. When n < 10 this can be verified computationally using Magma, so assume

n ≥ 10. Suppose t, x ∈ X, and without loss of generality assume that

x = (
+

1,
+

2) · · · (
+

2r − 1,
+

2r)(
−

2r + 1) · · · (−s)(
+

s + 1) · · · (+
n).

Since we have dealt with signed transpositions in Theorem 4.11, we may assume that

r ≥ 2. By Theorem 1.1 of [7] there exists some y ∈ X such that d(t, y) ≤ 2 and

y = x, which without loss of generality we may label so that

y = (1, 2) · · · (2r − 1, 2r)(
ǫ2r+1

2r + 1) · · · (ǫs

s)(
ǫs+1

s + 1) · · · (ǫn

n),

where ǫi ∈ {+,−} for i ∈ {2r+1, . . . , n}, and we make no assumption on the signs of

the 2-cycles of y. Note that w1(xy) must be even by Proposition 4.6. Suppose that

x and y differ by 2k signed 1-cycles. Since r ≥ 2 it must be that 2k ≤ n − 4.

If k = 0 then, by ignoring all but one 1-cycle of x and y, we may apply Lemma 4.17

to see that d(y, x) ≤ 4, and so d(t, x) ≤ 2+4 = 6, which suffices since we have assumed

n ≥ 10.

Next, suppose that k = 1. If we ignore all 2-cycles of x and y except (1, 2), we

can consider the resulting elements x̃ and ỹ as signed transpositions in K = C(BΣ),

where Σ = Ω \ {3, . . . , 2r}. By Lemma 4.9, there exists a path in F(K, X̃) from ỹ

to x̃ (where X̃ is the K-conjugacy class which contains x̃), which has length 3. This

induces a path of length 3 in F(G,X) from y to an element z ∈ X, where z = x,

and z and x agree on all signed 1-cycles. Now, since elements of X contain at least

one 1-cycle, Lemma 4.17 implies that d(z, x) ≤ 4, and so d(t, x) ≤ 2 + 3 + 4 = 9, and

again the result holds.

Now assume that k ≥ 2. Since r ≥ 2 we may also assume that both x and y

contain the 2-cycles (1, 2) and (3, 4). We may partition suppC(xy) \ ∆x,y into two

subsets A and B, such that the following conditions hold:

(i) |A| = |B| = k, or |A| = k + 1 and |B| = k − 1;

(ii) if we write K1 = C(BΣ1) and K2 = C(BΣ2), where Σ1 = {1, 2} ∪ A and

Σ2 = {3, 4} ∪B, and for i = 1, 2 let x̃i, ỹi ∈ Ki be the elements of Ki we get by
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ignoring all cycles of x and y respectively which fix Σi pointwise, then x̃i and

ỹi are Ki-conjugate.

In view of Proposition 4.6, condition (ii) above is equivalent to requiring w1(x̃i) =

w1(ỹi). By Lemma 4.9, there exist paths in F(Ki, X̃i) from ỹi to x̃i (where X̃i is

the Ki-conjugacy class which contains x̃i, for i = 1, 2). Since for each i we have

w1(x̃iỹi) ≤ k +1, these paths will be of length at most k +2. Since all elements of X̃1

fix Σ2 pointwise, and all elements of X̃2 fix Σ1 pointwise, we may multiply elements

from these paths together to yield a path in F(G,X) of length at most k+2, between

y and an element z ∈ X such that z = x, and z and x agree on all signed 1-cycles.

By Lemma 4.17, d(z, x) ≤ 4, so

d(t, x) ≤ 2 + (k + 2) + 4 = k + 8.

First assume that r ≥ 4. Then 2k ≤ n − 8, and hence k ≤ n/2 − 4. This yields

d(t, x) ≤ n/2 + 4.

Now assume that r = 2 or 3. Here we may apply Lemma 4.13 to show that d(z, x) ≤ 2,

and so in this case we have

d(t, x) ≤ 2 + (k + 2) + 2 = k + 6.

But r ≥ 2, and so 2k ≤ n − 4 which implies k ≤ n/2 − 2. Consequently,

d(t, x) ≤ n/2 + 4

in this case also. Since n ≥ 10, and d(t, x) must be an integer, we have that d(t, x) ≤

n − 1 when n is even, and d(t, x) ≤ n − 2 when n is odd, as required.

Notice that the establishment of Theorem 4.18 completes the proofs of Theo-

rems 4.2 and 4.4. We also have the following corollary, which completes the proof of

Theorem 4.3.

Corollary 4.19. Let G = C(Dn), with X a G-conjugacy class of involutions whose el-

ements contain at least one 2-cycle. Then F(G,X) is connected, with Diam(F(G,X)) ≤

n − 1 if n is even, and Diam(F(G,X)) ≤ n − 2 if n is odd.
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Proof. This follows from Theorems 4.11 and 4.18, along with Lemma 4.16 and Propo-

sition 4.6, which tells us that the conjugacy class X of C(Bn) for which the local fusion

graph has two connected components splits into two classes in G, with local fusion

graphs isomorphic to a connected component of the C(Bn) graph.

4.3 The Exceptional Coxeter Groups

We conclude by examining the local fusion graphs of the finite, exceptional Coxeter

groups. The cases when G = C(In) (the dihedral groups) are covered by the following

easy lemma.

Lemma 4.20. Let G = C(In). If n is odd then there is exactly one conjugacy class

of involutions, and the local fusion graph is the complete graph on n vertices. If n

is even then G has a central involution, and precisely two further conjugacy classes

of involutions. If we write n = 2km, where m is odd, then each of these local fusion

graphs has n/2 vertices, with k connected components, each component being a copy

of the complete graph on m vertices.

When G = C(E6), C(E7), C(E8), C(F4), C(H3) and C(H4), we proceed compu-

tationally. Representations of these groups are stored in Magma [18], and all are

small enough to make explicit calculation of their local fusion graphs straightforward.

Table 4.2 list the disc sizes for each local fusion graph of each group, along with rep-

resentative involutions from each conjugacy class, given as words in the generators

stored by Magma.
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Table 4.2: Disc sizes for exceptional Coxeter groups

Group Representative Class size |∆1(t)| |∆2(t)| |∆3(t)|
C(E6) w1 36 20 15 –
C(E6) w0 45 32 12 –
C(E6) w1w2 270 128 141 –
C(E6) w1w2w6 540 212 327 –

C(E7) w0 1 – – –
C(E7) w1 63 32 30 –
C(E7) w0w1 63 32 30 –
C(E7) w2w5w7 315 128 186 –
C(E7) w0w2w5w7 315 128 186 –
C(E7) w1w2 945 416 528 –
C(E7) w0w1w2 945 416 528 –
C(E7) w0w1w2w5w7 3780 1568 2211 –
C(E7) w1w2w5w7 3780 1568 2211 –

C(E8) w0 1 – – –
C(E8) w1 120 56 63 –
C(E8) w0w1 120 56 63 –
C(E8) (w2w3w4w5)

3 3150 512 2588 49
C(E8) w1w2 3780 1472 2307 –
C(E8) w0w1w2 3780 1472 2307 –
C(E8) w1w2w5 37800 12344 25455 –
C(E8) w0w1w2w5 37800 12344 25455 –
C(E8) w1w2w5w7 113400 25280 88118 1

C(F4) w0 1 – – –
C(F4) w1 12 8 3 –
C(F4) w0w1 12 8 3 –
C(F4) w3 12 8 3 –
C(F4) w0w3 12 8 3 –
C(F4) (w2w3)

2 18 – – –
C(F4) w1w3 72 24 46 1

C(H3) w0 1 – – –
C(H3) w1 15 12 2 –
C(H3) w0w1 15 12 2 –

C(H4) w0 1 – – –
C(H4) w1 60 44 15 –
C(H4) w0w1 60 44 15 –
C(H4) w1w3 450 168 280 1



Chapter 5

Sporadic Simple Groups

In this chapter we investigate the local fusion graphs of the sporadic simple groups.

Recall from the Classification of Finite Simple Groups that these are as follows:

• M11, M12, M22, M23, M24 (the Mathieu groups);

• Co1, Co2, Co3, McL, HS, Suz, J2 (the Leech lattice groups);

• Fi22, Fi23, Fi′24 (the Fischer groups);

• M, B, Th, HN , He (the ‘Monstrous’ groups);

• J1, J3, J4, O′N , Ru, Ly (the ‘pariahs’).

Our naming of the collections of sporadics follows Wilson in [65]. Much of the sum-

mary material in this chapter is also derived from this source.

As touched upon in Chapter 1, our approach to dealing with the sporadic groups

is largely computational. This is made possible by the fact that the complex character

tables of the sporadics are known, and can be found in the Atlas [26], or stored in

Magma [18] or GAP [36]. Let us now explain why this is of use to us. Suppose

G is a finite group, with conjugacy classes K1, . . . ,Kl, and let K1, . . . , Kl be the

corresponding class sums in the group algebra CG. Let aijk be the integers defined

by

KiKj =
l∑

k=1

aijkKk.

64
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These integers are known as the class structure constants. Now let {g1, . . . , gl} be a

complete set of conjugacy class representatives for G. Then we have

aijk =
|Ki||Kj|
|G|

∑

χ∈Irr(G)

χ(gi)χ(gj)χ(gk)

χ(1)
.

The integers aijk are therefore determined by the character table of G. For further

details on class structure constants we refer the reader to [38].

Note that aijk is precisely the number of pairs of elements (x, y), where x ∈ Ki,

y ∈ Kj, such that xy = z, where z is some fixed element of Kk. Thus if t is a fixed

involution in a conjugacy class Ki, then

|∆1(t)| =
∑

j

aiji,

where the sum is over all j such that the conjugacy class Kj contains elements of odd

order (excluding the conjugacy class of the identity element). Therefore, given the

character table of a group, it is a relatively easy calculation to find the sizes of the

first discs of the relevant local fusion graphs.

In fact, these first disc sizes tell us more than at first glance. For suppose a local

fusion graph F(G,X) is disconnected, with m connected components. Then since G

acts on the set of connected components, there is a homomorphism φ : G → Sym(m).

If G is a simple group, then of course φ must be injective. However, a comparison

between conjugacy class and first disc sizes for each local fusion graph of each sporadic

group indicates that, in all cases, m is far too small for φ to possibly be injective.

We deduce the following:

Theorem 5.1. Let G be a sporadic finite simple group, with X a G-conjugacy class

of involutions. Then the local fusion graph F(G,X) is connected.

In fact, for many of the sporadic groups we can make use of additional methods to

deduce further structural properties of their local fusion graphs. For the remainder

of this chapter we give details of the computational techniques involved in each case,

along with tables of the disc sizes of the local fusion graphs, where known.
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5.1 The Mathieu Groups

The first family of sporadic simple groups we encounter are the Mathieu groups, which

were discovered by Emile Mathieu in the 19th century (see [51] and [52]). The largest

Mathieu group M24 may be viewed as the automorphism group of the (extended

binary) Golay code, a certain 12-dimensional subspace V of a 24-dimensional F2-

vector space which M24 acts upon. Further details of how to work with M24 in

practice using the ‘Miracle Octad Generator’ may be found in [29]. The group M23 is

defined to be the stabiliser in M24 of a point, while M22 is defined to be the (pointwise)

stabiliser in M24 of two points. Thus these groups can be realised as permutation

groups on 24, 23 and 22 points respectively. The group M12 is defined as the stabiliser

of a vector of weight 12 in V (a dodecad), and M11 is the stabiliser in M12 of a point.

We now give the disc sizes for the local fusion graphs of the Mathieu groups.

These were calculated using Magma, with the natural permutation representations

for each group, as mentioned above, taken from the online Atlas [1]. As noted

previously, the size of the first disc may be easily calculated using the character table,

or otherwise. The groups M11 and M12 are sufficiently small that, for each conjugacy

class of involutions, the local fusion graph may be constructed explicitly via direct

calculation. However, this method proves impractical for the larger Mathieu groups.

In these cases we construct a complete set of double coset representatives of CG(t) in

G using the Magma command DoubleCosetRepresentatives. We then partition

this set into two parts A and B, with x ∈ A if and only if ttx has odd order. Thus

conjugating t be the elements of A yields precisely representatives of the CG(t)-orbits

of ∆1(t), plus t itself. Now for each x ∈ B we take random CG(t)-conjugates of tx,

using the Magma command Random, until we find txg such that tatxg has odd order

for some a ∈ A. Then t → tag−1 → tx is a path of length 2 from t to tx in F(G,X).

This demonstrates that the local fusion graph has diameter 2, and since we know the

size of the first disc, the size of the second disc follows. These disc sizes are given

in Table 5.1, while Figure 5.1 shows the (unique) local fusion of M11, where each

CG(t)-orbit has been collapsed to a point.
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Table 5.1: Disc sizes for the Mathieu groups

Group Class Class size |∆1(t)| |∆2(t)|
M11 2A 165 80 84
M12 2A 396 180 215
M12 2B 495 176 318
M22 2A 1155 576 578
M23 2A 3795 1344 2450
M24 2A 11385 2816 8568
M24 2B 31878 10880 20997

Figure 5.1: The local fusion graph for M11

5.2 The Leech Lattice Groups

The Leech Lattice is closely connected to the Golay code. It may be defined as the

set Λ of integral vectors (x1, . . . , x24) which satisfy the following conditions:

• xi ≡ m mod 2, for 1 ≤ i ≤ 24;

• ∑24
i=1 xi ≡ 4m mod 8; and

• for each k, the set {i : xi ≡ k mod 4} is in the Golay code.

The automorphism group of Λ may be considered as a group of 24-dimensional matri-

ces. It has a central involution (namely −I24), but after factoring this out we have a

simple group, Co1. The Leech Lattice may be equipped with a norm 1
8

∑24
i=1 x2

i . Then
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the stabilisers in Co1 of vectors of norms 4 and 6 are also simple groups, denoted Co2

and Co3 respectively.

Once more we proceed computationally using Magma, and the double coset

procedure described previously, using matrix representations from the online Atlas.

This is straightforward in the majority of cases; however, for the largest group Co1

Magma’s inbuilt command DoubleCosetRepresentatives fails as the index [G :

CG(t)] is too large. Fortunately, explicit matrix representatives for the CG(t)-orbits

of Co1 have been calculated by Bates and Rowley in [15].

Table 5.2: Disc sizes for the Leech lattice groups

Group Class Class size |∆1(t)| |∆2(t)|
Co3 2A 170775 59264 111510
Co3 2B 2608200 904112 1704087
Co2 2A 56925 14336 42588
Co2 2B 1024650 379904 644745
Co2 2C 28690200 5084672 23605527
Co1 2A 46621575 13451264 33170311
Co1 2B 2065694400 902774912 1162919488
Co1 2C 10680579000 3014586368 7665992632
J2 2A 315 224 90
J2 2B 2520 1212 1307
HS 2A 5775 2304 3470
HS 2B 15400 7152 8247
McL 2A 22275 10304 11970
Suz 2A 135135 69632 65502
Suz 2B 2779920 1454432 1325487

5.3 The Fischer Groups

The groups Fi22, Fi23 and Fi′24 were discovered by Bernd Fischer in the 1970s [35], as

a result of his study of 3-transposition groups. These were defined to be finite groups

G such that G = 〈X〉, where X is a G-conjugacy class of involutions, such that the

product of any two elements of X has order at most 3. Additionally, it was required

that G′ = G′′ and any normal 2- or 3-subgroup of G is central. Fischer’s original

construction of his simple groups effectively made use of the commuting involution
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graph C(G,X), in the sense that he built a graph G with vertices corresponding to

the elements of X, with distinct x, y ∈ X joined by an edge if and only if x and y

commute. He then showed that the derived group G′ of G := Aut(G) was simple.

Notice that since X consists of 3-transpositions, one can equivalently use the local

fusion graph F(G,X) to define the Fischer groups, as in this case F(G,X) is simply

the complementary graph of C(G,X). It should be emphasised that this construction

presented a considerable challenge, since in effect Fischer had to construct C(G,X)

and its automorphism group whilst assuming very little prior knowledge of the group

G.

The size of the Fischer groups presents some difficulty in attempting to determine

the disc sizes of their local fusion graphs computationally. For two involution classes

of Fi22, and one of Fi23 (including the class of 3-transpositions of each group) the

diameter and disc sizes have been calculated using the double coset procedure de-

scribed previously. However, for the remaining graphs we are content to calculate

the size of the first disc in each case, and deduce that the graph is connected.

Table 5.3: Disc sizes for the Fischer groups

Group Class Class size |∆1(t)| |∆2(t)|
Fi22 2A 3510 2816 693
Fi22 2B 1216215 484352 731862
Fi22 2C 36468450 12015872
Fi23 2A 31671 28160 3510
Fi23 2B 55582605 15234560
Fi23 2C 12839581755 3308650496
Fi′24 2A 4860485028 1504701440
Fi′24 2B 7819305288795 3351534645248

5.4 The Monstrous Groups

The Monster group, M, is the largest of the sporadic simple groups, with order

|M| = 808017424794512875886459904961710757005754368000000000.
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Although predicted to exist by Fischer, it was first constructed by Griess in 1981 [40].

We make no attempt to describe this construction here, but simply note that the

smallest real representation of M is in 196883 dimensions. Of the sporadic simple

groups, 20 are ‘involved’ in some way in the Monster. In particular, it contains, as

quotients of subgroups, the other sporadic simple groups we address in this section,

namely the ‘Baby Monster’ B, the Thompson group Th, the Harada-Norton group

HN , and the Held group He.

Despite its enormous size, the complex character table of M is known, and stored

in GAP. It is therefore straightforward to calculate the sizes of the first discs of its

local fusion graphs. This is similarly achievable for B and HN . For He and Th

we can go further, and determine diameters and all disc sizes. This is done using

the standard double coset procedure in the case of He, while for Th we make use of

explicit double coset representatives calculated by Rowley and Taylor in [56].

Table 5.4: Disc sizes for the Monstrous groups

Group Class Class size |∆1(t)| |∆2(t)|
He 2A 24990 4992 19997
He 2B 187425 119552 67872
Th 2A 976841775 377298944 599542830
HN 2A 1539000 391424
HN 2B 74064375 26906624
B 2A 13571955000 2370830336
B 2B 11707448673375 4010408935424
B 2C 156849238149120000 56546114902065210
B 2D 355438141723665100 94228887171498040
M 2A 97239461142009240000 30528114911948600000

M 2B 5791748068511982000000000000 1486325429210110000000000000

5.5 The Pariahs

The six sporadic simple groups we have not encountered so far have been referred to

as the ‘pariahs’, due to the fact that they are not involved in the Monster. These

are the Rudvalis group Ru, the O’Nan group O′N , the Lyons group Ly, and three of
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the Janko groups, J1, J3 and J4. Again, we make no attempt here to describe their

constructions.

The groups J1 and J3 are relatively small, having orders 175560 and 50232960

respectively, and as such we may explicitly calculate their local fusion graphs in

Magma or GAP. For Ru, we can determine the diameter and disc sizes of its local

fusion graphs using the double coset procedure. This data can also be determined for

J4. For its involution class 2A we use explicit double coset representatives calculated

by Rowley and Taylor in [57], while for the class 2B the size of the first disc implies

diameter 2 by Lemma 1.16. This latter situation also occurs for the local fusion graph

of Ly. For the group O′N we have not determined the diameter of the local fusion

graph, but have calculated the size of the first disc using GAP, and deduced that

the graph is connected.

Table 5.5: Disc sizes for the pariahs

Group Class Class size |∆1(t)| |∆2(t)|
J1 2A 1463 1072 390
J3 2A 26163 16832 9330
J4 2A 3980549947 1112555520 2867994426
J4 2B 47766599364 26545360896 21221238467
Ru 2A 593775 149504 444270
Ru 2B 1252800 570752 682047
Ly 2A 1296826875 659509424 637317450

O′N 2A 2857239 1079168



Chapter 6

A Review of Finite Groups of

Lie-Type

The purpose of this chapter is to briefly review the construction, and various well

known properties, of the finite groups of Lie-type. This will stand us in good stead

for the following two chapters, where we study the local fusion graphs of such groups.

Many familiar groups are finite groups of Lie-type, including the classical matrix

groups, and the projective groups associated to these, and can be defined explicitly

in various different ways. However, to fully appreciate the connection between such

groups, and to gain a deeper understanding of their structure, it is necessary to view

them in the framework of a more general theory. One such approach, which we shall

now summarise, is to first study algebraic groups.

6.1 Algebraic Group Theory

Here we shall briefly summarise some of the basic theory of algebraic groups. As our

aim is to quickly familiarise the reader with the objects and results we shall use in

subsequent chapters, we shall often not give detailed definitions or proofs. For an

in-depth introduction to the subject we refer the reader to [37].

Let k be an algebraically closed field, and consider the set of n-tuples kn. If a

subset V ⊆ kn can be defined as the vanishing set of a finite set of polynomials over

72
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k, we say that V is an affine variety. If V also carries the structure of a group, and

the multiplication

µ : V × V → V

and inverse operation

ι : V → V

are morphisms of affine varieties, then we write G = V and say that G is an affine

algebraic group. We can define a topology on G, known as the Zariski topology, by

defining the closed sets in the topology to be the subvarieties of G.

The standard example of an affine algebraic group is the special linear group

SLn(k), which may be described as

SLn(k) = {(aij) ∈ kn2

: det(aij) − 1 = 0}.

The general linear group GLn(k) can also be shown to be an affine algebraic group.

Since any closed subgroup of GLn(k) will itself satisfy the conditions to be an affine

algebraic group, we now have a plentiful supply of examples by considering the closed

subgroups of GLn(k). Such groups are known as linear algebraic groups. In fact, it can

be shown that every affine algebraic group is also linear. In light of this, henceforth

we shall simply use the term ‘algebraic group’ to describe a linear or affine algebraic

group. Additionally, this allows us to use properties of matrices when considering

elements of algebraic groups.

6.2 Subgroups of Algebraic Groups

Let V be a finite dimensional vector space over an algebraically closed field k. An

element x ∈ End(V ) is called semisimple if is diagonalisable, and is called unipotent

if its only eigenvalue is 1. The (multiplicative) Jordan decomposition is a fundamental

result regarding such elements, and runs as follows:

Theorem 6.1. Let V be a vector space over an algebraically closed field, and suppose

x ∈ End(V ). Then x can be expressed uniquely as x = xsxu, where xs is semisimple,

xu is unipotent, and xs and xu commute.
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Since any (linear) algebraic group G is a subgroup of GL(V ) for some V , it

makes sense to talk about semisimple and unipotent elements of G. The radical of

an algebraic group G is defined to be the (unique) subgroup R(G) generated by all

closed, connected, soluble, normal subgroups of G. The subgroup of R(G) consisting

of all its unipotent elements is called the unipotent radical of G, denoted Ru(G). If

Ru(G) = 1 we say G is reductive, while if R(G) = 1 then G is called semisimple. An

algebraic group is said to be simple if it has no proper, closed, connected, normal

subgroups.

A subgroup T ≤ G such that T ∼= k∗×· · ·×k∗ is called a torus of G, and consists

of semisimple elements. Conversely, any semisimple element of G lies in a torus of G.

A Borel subgroup of G is a maximal, closed, connected, soluble subgroup of G. The

following theorem collects together some important results regarding tori and Borel

subgroups:

Theorem 6.2. Let G be an algebraic group defined over an algebraically closed field.

Then the following hold:

(i) All maximal tori in G are G-conjugate;

(ii) Any maximal torus lies in some Borel subgroup of G;

(iii) Any two Borel subgroups of G are G-conjugate;

(iv) If B is a Borel subgroup of G, then NG(B) = B.

Proof. See [37].

6.3 Groups with a BN-pair

The notion of groups with a ‘BN -pair’ was introducted by Tits in [63], and is of

fundamental importance in the study of groups of Lie-type. We first give the abstract

definition, before explaining the relevance to algebraic groups.

Definition 6.3. Let G be a group, with B and N subgroups of G. Then B and N

are said to form a BN-pair in G if the following conditions hold:
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(i) G = 〈B,N〉;

(ii) B ∩ N � N ;

(iii) N/(B ∩ N) = W is a finite group generated by a set S of involutions;

(iv) If ns ∈ N maps canonically to 1 6= s ∈ W , then nsBns 6= B;

(v) nsBn ⊆ BnsnB ∪ BnB for any s ∈ S and n ∈ N .

The group W in the definition above is called the Weyl group of G. Weyl groups

are particular examples of Coxeter groups, as seen in Chapter 4. Now let G be an

algebraic group. We say that G possesses a split BN -pair if the groups B and N

satisfy the following conditions, in addition to those in the definition above:

(i) B and N are closed subgroups of G;

(ii) We may write B = U(B ∩N), a semidirect product of a closed, normal, unipo-

tent group U and a closed, commutative subgroup B∩N consisting of semisim-

ple elements;

(iii)
⋂

n∈N nBn−1 = B ∩ N .

It can be shown (see [37], for example) that a connected reductive group G has a

split BN -pair. If T is a maximal torus of G contained in a Borel subgroup B, then

B ∩ N = T and B = UT , where U = Ru(B).

To illustrate, suppose G = SLn(k). Then a Borel subgroup B of G is the group

of upper triangular matrices. T is then the subgroup of diagonal matrices, U is the

subgroup of upper uni-triangular matrices, and N is the group of monomial matrices.

6.4 Classification of Simple Algebraic Groups

The simple algebraic groups have been classified. To each connected, reductive al-

gebraic group G there is an associated Dynkin diagram. Such diagrams describe the

root lattice which G acts upon, and are closely related to the Coxeter diagrams de-

scribed in Chapter 4. For G to be a simple algebraic group, its Dynkin diagram
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Figure 6.1: Connected Dynkin diagrams

must be connected, and of one of the types listed in Figure 6.1. While G uniquely

determines its Dynkin diagram, it is not necessarily the case that the Dynkin dia-

gram uniquely determines G. For example, the Dynkin diagram of type An gives rise

to both SLn+1(k) and PGLn+1(k). However, it can be shown that there are only

finitely many simple algebraic groups with a given Dynkin diagram, and additional

information regarding the action of of the Weyl group W on the root lattice uniquely

determines the group. Further details on this process may be found in [25].
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6.5 Finite Groups of Lie-Type

Thus far we have only considered algebraic groups over an algebraically closed field.

However, we shall be primarily concerned with finite groups of Lie-type, so must

explain how these arise.

Let p > 0 be a prime, and assume that k is an algebraic closure of the finite field

Fp. Let G be an algebraic group over k, and consider G as a closed subgroup of

GLn(k). Let q = pr for some r ≥ 1, and define a map Fq : GLn(k) → GLn(k) by

Fq : (aij) 7→ (aq
ij).

A homomorphism F : G → G is called a standard Frobenius map if there exists an

injective homomorphism i : G → GLn(k) for some n, such that

i(F (g)) = Fq(i(g))

for some q = pr and all g ∈ G. A homomorphism F : G → G is called a Frobenius

map if some power of F is a standard Frobenius map.

Given a Frobenius map F : G → G, the fixed point set

GF = {g ∈ G : gF = g}

is a finite subgroup of G. When G is a connected reductive algebraic group, then

the groups GF which arise are called finite groups of Lie-type. The classification of

simple algebraic groups leads to a classification of the finite, simple groups of Lie-

type. However, when the field is finite, additional simple groups arise through graph

automorphisms of Dynkin diagrams. In this way, all the finite, simple groups of

Lie-type listed in Theorem 1.6 can be realised.

The finite groups of Lie-type inherit many structural properties from the algebraic

overgroup. In particular it can be shown that every group GF has a split BN -pair. A

Borel subgroup of GF is defined to be a subgroup of the form BF , where B is a Borel

subgroup of G which is stable under the action of F . Similarly, a maximal torus of

GF is defined to be T F , where T is an F -stable maximal torus of G which lies in an



CHAPTER 6. A REVIEW OF FINITE GROUPS OF LIE-TYPE 78

F -stable Borel subgroup BF . For such a torus T F , N = NG(T F ) can also be shown

to be F -stable, and then BF and NF form a split BN -pair for GF .

Despite these nice properties, we must exercise caution when dealing with finite

groups of Lie-type, since many results which hold in G may not necessarily hold

in GF . We first note that in a finite group of Lie-type GF , an element x ∈ GF is

defined to be semisimple if its order is coprime to the defining charactersitic p, and

unipotent if its order is a power of p. Another point to note is that it is not always

true that an F -stable maximal torus of G lies inside an F -stable Borel subgroup of

G, and hence not every maximal torus of GF lies inside a Borel subgroup of GF . An

F -stable maximal torus of G which does lie in an F -stable Borel subgroup of G is

called maximally split, while a maximal split torus of GF is defined to be a torus of

the form T F , where T is a maximal split torus of G.

The following result collects together some properties of Borel subgroups and

maximal tori of finite groups of Lie-type:

Theorem 6.4. Let GF be a finite group of Lie-type. Then the following hold:

(i) Any two Borel subgroups of GF are GF -conjugate;

(ii) Any two maximal tori which lie in BF are BF -conjugate;

(iii) Any two maximal split tori of GF are GF -conjugate.

Proof. See [37].

6.6 Classical Groups

As previously mentioned, the classical groups are groups of Lie-type, and as such

arise through the constructions summarised so far in this chapter. However, they

can also be defined in a more familiar way, via their action on vector spaces. We

have already seen this when we defined the linear groups in Chapter 3. This natural

geometric structure is a powerful tool in their study.
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Let V be a vector space over a field k, and assume that dimV ≥ 3. The projective

geometry P(V ) is the set of all subspaces of V , partially ordered by inclusion. A

correlation of P(V ) is a bijection from P(V ) to P(V ) which reverses inclusion. A

polarity of P(V ) is a correlation of order 2, and the pair (P(V ), π) is called a polar

geometry.

Theorem 6.5 (Birkhoff-von Neumann). If π is a polarity of P(V ), then π arises

from a non-degenerate, reflexive form β of one of the following types:

(i) Alternating, so β(v, v) = 0 for all v ∈ V ;

(ii) Symmetric, so β(u, v) = β(v, u) for all u, v ∈ V ;

(iii) Hermitian, so β(u, v) = τ(v, u) for all u, v ∈ V , where τ is an involutary

automorphism of the field k.

Proof. See Theorem 7.1 of [62].

We refer to the polar geometry as symplectic, orthogonal or unitary when (i), (ii)

and (iii) hold and β is bilinear in cases (i) and (ii), and τ -sesquilinear in case (iii),

respectively. Using these forms we may define the majority of the classical groups.

However, to get the complete set there is a fourth type of form we must introduce,

namely a quadratic form, Q : V → k. For Q to be a quadratic form, by definition we

must must have that

Q(av) = a2Q(v)

for all a ∈ k, and that β : V × V → k defined by

β(u, v) := Q(u + v) − Q(u) − Q(v)

for all u, v ∈ V , is a bilinear form.

We may now define the classical groups. The symplectic group Sp(V, β) is the

subgroup of GL(V ) whose elements preserve a non-degenerate, reflexive, alternating

form β on V , that is

Sp(V, β) = {g ∈ GL(V ) : β(ug, vg) = β(u, v) for all u, v ∈ V }.
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It is only possible to define such a form on V if the dimension of V is even. Also, it

can be shown that, up to change of basis, there is only one non-degenerate, reflexive,

alternating form on a vector space of dimension 2n, so we shall often just write Sp(V ).

If the field k is finite of order q, we may also write Sp2n(q). It is straightfoward to

show that all elements of Sp2n(q) have determinant 1, so in fact Sp2n(q) ≤ SL2n(q).

The general unitary group GU(V, β) is defined in the same way as the symplectic

group above, but here β is a non-degenerate, reflexive, hermitian form. Again, up

to change of basis there is only one such form on a vector space of dimension n, so

we usually just write GU(V ). If k is finite, then since we require k to possess an

involutary automorphism, it must be the case that k has order q2 for some q, a power

of a prime p. Then τ acts by raising the elements of k to the power q. As in the

symplectic case, we may also write GUn(q), but by convention this means our matrix

entries are taken from the field Fq2 . The subgroup of GUn(q) consisting of matrices

with determinant 1 is the special unitary group, denoted SUn(q).

Before defining the orthogonal groups, we require some more terminology concern-

ing vector spaces equipped with forms. Recall that if V is a vector space equipped

with a form β of a type listed in Theorem 6.5, and if U is a subset of V , then

U⊥ = {v ∈ V : β(u, v) = 0 for all u ∈ U}.

Definition 6.6. Let V be a vector space equipped with one of the forms in Theo-

rem 6.5.

(i) We say a non-zero vector u ∈ V is isotropic if β(u, u) = 0.

(ii) A subspace W ⊆ V is called totally isotropic if W ⊆ W⊥.

(iii) A pair of vectors (u, v) such that u and v are isotropic and β(u, v) = 1 is called

a hyperbolic pair. The line 〈u, v〉 in P(V ) is called a hyperbolic line.

(iv) A subspace W ⊆ V is non-degenerate if W ∩ W⊥ = 0.

(v) If V = U ⊕ W and β(u,w) = 0 for all u ∈ U and w ∈ W , we say that V is the

orthogonal direct sum of U and W , and write V = U ⊥ W .
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Now suppose that V is equipped with a quadratic form Q.

(i) A non-zero vector v ∈ V is called singular if Q(u) = 0.

(ii) A subspace W ⊆ V is called totally singular if Q(w) = 0 for all w ∈ W .

Now let V be a vector space equipped with a non-singular quadratic form Q. The

subgroup of GL(V ) consisting of elements which preserve Q is called the orthogonal

group O(V,Q). The derived subgroup O(V,Q)′ is denoted Ω(V,Q). Additionally,

when the characteristic of k is odd, we define the special orthogonal group SO(V,Q)

to be the subgroup of O(V,Q) consisting of matrices with determinant 1. Notice

that if the characteristic of the field k is odd, then given a non-degenerate, relexive,

symmetric bilinear form β on V , it is possible to define a quadratic form Q using the

identity

β(u, v) := Q(u + v) − Q(u) − Q(v).

Indeed, we can let

2Q(u) = Q(u + u) − Q(u) − Q(u) = β(u, u),

for all u ∈ V , and so Q(u) = β(u, u)/2. However, this is not possible when the

characteristic of k is even. Thus the introduction of quadratic forms is necessary to

define orthogonal groups in even characteristic.

It can be shown that any two maximally totally isotropic (respectively totally sin-

gular) subspaces of a vector space V have the same dimension (see [62], for example).

This common dimension is called the Witt index of the form β (respectively Q). If

the form on a vector space V is understood we may instead refer to the Witt index of

V . Now suppose that k = Fq, and that V is equipped with a nonsingular quadratic

form Q. If the dimension of V is 2m, it can be shown that the Witt index of Q is

either m or m − 1, while if the dimension of V is 2m + 1, then the Witt index of

Q must be m. Moreover, V is determined up to isomorphism by its dimension and

the Witt index of Q. In the even dimension case, if the Witt index of Q is m then

V is said to be of plus-type, and we write O+
2m(q) and Ω+

2m(q) for the groups O(V,Q)

and Ω(V,Q), while if Q has Witt index m− 1 then V is of minus-type, and we write
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O−
2m(q) and Ω−

2m(q) respectively. For odd dimension we may unambiguously write

O2m+1(q) and Ω2m+1(q).

The following lemma allows us in many situations to choose a ‘nice’ basis for our

vector space V .

Lemma 6.7. If U and W are totally isotropic (respectively totally singular) sub-

spaces of V such that U⊥ ∩ W = {0}, then there is a totally isotropic (respectively

totally singular) subspace U ′ containing W such that V = U⊥ ⊕ U ′. Moreover, for

each basis u1, u2, . . . , uk of U , there is a unique basis u′
1, u

′
2, . . . , u

′
k of U ′ such that

〈u1, u
′
1〉, 〈u2, u

′
2〉, . . . , 〈uk, u

′
k〉 are mutually orthogonal hyperbolic pairs.

Proof. This may be found in [62], Lemma 7.5.

A flag of a projective geometry P(V ) is a chain of distinct subspaces

V1 ⊂ V2 ⊂ · · · ⊂ VK ,

and a flag is called proper if neither 0 nor V occurs in the chain. The type of such

a flag is the set {d1, . . . , dk}, where di = dim(Vi) for i = 1, . . . , k. If dim(V ) = m, a

maximal flag is one of type {1, 2, . . . ,m − 1}. In a polar geometry (P , π), the flags

are defined to be those flags of P(V ) which are fixed by π. These can be identified

with the flags of totally isotropic subspaces.

We can now state the following important result, which gives a geometric charac-

terisation of the Borel subgroups of the majority of finite classical groups.

Theorem 6.8. Suppose G is a classical group which acts on an Fq-vector space V .

If G is an orthogonal group assume that q is odd and G is not of plus-type. Then the

Borel subgroups of G are precisely the stabilisers of maximal flags in a suitable polar

geometry (P(V ), π).

The Borel subgroups of some of the orthogonal groups not included in Theorem 6.8

will be described when required in Chapter 7.
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6.7 Maximal Subgroups

When investigating the local fusion graphs of finite groups of Lie-type, we shall require

some knowledge of the maximal subgroup structure of such groups. We first have the

following result concerning the centralisers of field automorphisms.

Theorem 6.9. Let G = G(q) be a finite, simple group of Lie-type, defined over the

field Fq. Suppose we may write q = qr
0 where r is prime. Then G(q0) is a maximal

subgroup of G, where G(q0) denotes the finite group of the same type defined over the

field Fq0.

Proof. This is an immediate consequence of Theorem 1 in [21].

When dealing with classical groups, more detailed information regarding maximal

subgroups will be required. In [50], Kleidman and Liebeck determine much of the

maximal subgroup structure of the finite classical groups with dimension at least 13,

while the lower dimensional cases are covered in [48]. We shall need but a fraction

of the information contained in these sources, and include only the relevant results

here.

Theorem 6.10. Let H = Spn(q) where n ≥ 6. Suppose M = StabH(W ), where

W ⊆ V is a non-degenerate subspace of even dimension m, with 2 ≤ m < n/2. Then

M and M are maximal subgroups of H and H respectively. Moreover,

M ∼= Spm(q) × Spn−m(q)

and

M ∼= Spm(q) ◦ Spn−m(q).

Proof. See Proposition 4.1.3 of [50].

Theorem 6.11. Let H = SUn(q), where n ≥ 3. Suppose M = StabH(W ), where

W ⊆ V is a non-degenerate subspace of dimension 0 < m < n/2. Then M and M

are maximal subgroups of H and H respectively. Moreover,

SUm × SUn−m(q) ≤ M ≤ GUm × GUn−m(q).
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Proof. See Proposition 4.1.4 of [50].

Theorem 6.12. Let H = SUn(q), where n ≥ 3 and q is odd. Suppose that M is the

stabiliser of a decomposition

V = W1 ⊥ W2 ⊥ . . . ⊥ Wk

where dimWi = m < n, for 1 ≤ i ≤ k. Then M and M are maximal subgroups of H

and H respectively, and

SUm(q) ≀ Sym(k) ≤ M ≤ GUm(q) ≀ Sym(k).

Proof. See Proposition 4.2.9 of [50].

Theorem 6.13. Let H = SOǫ
n(q), where q is odd, n ≥ 6 and ǫ = ±. Suppose

M = StabH(W ), where W ⊆ V is a totally singular subspace of dimension 0 < m <

n/2−1. Then M and M are maximal subgroups of H and H respectively. Moreover,

M ∼= [qa] : (GLm(q) × SOǫ
n−2m(q))

and

M ∼= [qa] : (GLm(q) ◦ SOǫ
n−2m(q)),

where a = mn − m
2
(3m + 1).

Proof. See Proposition 4.1.20 of [50].

Theorem 6.14. Let H = Ω+
n (q), where q is even and n ≡ 0 mod 4. Suppose

M = StabH(W⊕W ′), where V = W⊕W ′ is a decomposition of V into totally singular

subspaces of dimension n/2. Then M is a maximal subgroup of H. Moreover,

M ∼= GLn/2(q).2,

where the outer automorphism of GLn/2(q) is an involution which has the effect of

swapping W with W ′.

Proof. See Proposition 4.1.20 of [50].
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Theorem 6.15. Let H = SOǫ
n(q), where n ≥ 6 and ǫ = ±. Suppose M = StabH(W ),

where W ⊆ V is a non-degenerate subspace of dimension m and type η = ±. In

addition, assume that 0 < m < n/2 and that when q ≤ 3 we have (η,m) 6= (+, 2).

Then M and M are maximal subgroups of H and H respectively. Moreover,

• when ǫ = + we have

SOη
m(q) × SOη

n−m(q) ≤ M ≤ Oη
m(q) × Oη

n−m(q);

• when ǫ = − we have

SOη
m(q) × SO−η

n−m(q) ≤ M ≤ Oη
m(q) × O−η

n−m(q).

Proof. See Proposition 4.1.6 of [50].

6.8 Generation of Classical Groups

We conclude this chapter by collecting together some results regarding generating

sets for classical groups with respect to certain bases. These will be of use to us in

Chapters 7 and 8.

Proposition 6.16. If G = SLn(q) ∼= SL(V ) and n ≥ 4, then G is generated by the

set

A = {I + λeij : i 6= j},

where the {eij} are elementary matrices. Moreover, when i is odd and j = i + 1, and

when i is even and j = i− 1, we may exclude the corresponding matrices from A and

the resulting set A′ still generates G.

Proof. It is well known that the set A generates G (see [61], for example). Now let

I + λeij ∈ A be such that i is odd and j = i + 1. Then a matrix calculation shows

that

I + λeij = (I + eik)(I + λekj)(I − eik)(I − λekj),

and due to the restrictions on i, j, and our assumption that n ≥ 4, it is possible to

choose k such that all the matrices on the right hand side of this equation lie in A′.

A similar equality holds when i is even and j = i − 1.
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Proposition 6.17. Let G = Sp2n(q) ∼= Sp(V ), where the symplectic form β on V

has Gram matrix

J =



 In

−In



 .

Then G is generated by the matrices



 In λeii

In



 ,



 In

λeii In



 ,



 In λ(eij + eji)

In



 ,



 In

λ(eij + eji) In



 .

Proof. Looking in Section 2.2 of [53], we see that G is certainly generated by the

matrices given above along with those of the form



 In + λeij

In − λeji



 .

However, a straightforward matrix calculation shows that



 In + λeij

In − λeji



 =



 In

eij + eji In





gh

where

g =



 In −λeii

In





and

h =



 In

λ−1eii In



 ,

where i < j. A similar relation holds when i > j.

Proposition 6.18. Let G = SU2n(q) ∼= SU(V ) where q is even, and the unitary

form β on V has Gram matrix

J =



 In

In



 .
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Denote by τ the involutary automorphism of Fq2 associated to β. Then G is generated

by the matrices 

 In µeii

In



 ,



 In

µeii In



 ,



 In λeij + λτeji

In



 ,



 In

λeij + λτeji In



 ,

where µ, λ ∈ Fq2, and µ + µτ = 0.

Proof. Write G0 for the subgroup of G which is generated by the matrices in the

statement of the result, along with those of the form


 In + λeij

In + λτeji



 .

We first show that G = G0. Let B = {e1, e2, . . . , en, f1, f2, . . . , fn} be the unitary

basis for V . From 10.10 of [62], G is generated by unitary transvections. These

unitary transvections correspond to the isotropic vectors in V . Given an isotropic

vector u ∈ V , the unitary transvection tu is the linear transformation given by

tu(v) = v + aβ(v, u)u

for all v ∈ V , where a ∈ Fq2 satisfies a + aτ = 0. If we can show that G0 contains all

unitary transvections, the result will follow. In turn, this will follow if we can show

G0 acts transitively on the isotropic vectors in V .

Certainly G0 contains the transvection which corresponds to the isotropic vector

e1. Let

v = a1e1 + · · · + anen + b1fn + · · · + bnfn

be isotropic, where ai, bi ∈ Fq2 are not all zero. We need to find a matrix in G0 which

sends e1 to v. Certainly a matrix with first column equal to

(a1, . . . , an, b1, . . . , bn)

will suffice. Firstly, note that G0 contains elements


 A

A∗



 ,



CHAPTER 6. A REVIEW OF FINITE GROUPS OF LIE-TYPE 88

where A runs over all elements of SLn(q2), and A∗ depends on our choice of A.

Suppose all the ai = 0 in our expression for v. Then pick A with first column equal

to

(b1, . . . , bn),

and note that 

 0 A∗

A 0



 =



 0 In

In 0







 A 0

0 A∗



 .

Since 

 0 In

In 0



 =



 In In

0 In







 In 0

In In







 In In

0 In





it now follows that 

 0 A∗

A 0



 ∈ G0.

Now suppose we have ai 6= 0 for some i. Let A be chosen with first column equal to

(a1, . . . , an).

Let B be the n × n matrix with i-th row and column as follows:




b1a
−1
i

...

(b1a
−1
i )τ · · · x · · · (bna

−1
i )τ

...

bna
−1
i





,

where x is given by

(b1a
−1
i )τa1 + · · · + xai + · · · + (bna

−1
i )τan = bi.

We require that x + xτ = 0, to yield



 In 0

B In



 ∈ G0.

But a straightforward check shows that

x = a−1
i (a−1

i )τ
[
aib

τ
i + aτ

1b1 + · · · + aτ
i−1bi−1 + aτ

i+1bi+1 + · · · + aτ
nbn

]
,
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and since v is isotropic, we have

a1b
τ
1 + · · · anb

τ
n + aτ

1b1 + · · · + aτ
nbn = 0,

from whence a rearrangement of terms demonstrates x + xτ = 0 as desired. Now the

first column of 

 In 0

B In







 A

A∗



 ∈ G0

is equal to

(a1, . . . , an, b1, . . . , bn).

This proves that G0 = G. To complete the proof, we note that a matrix calculation

shows that



 In + λeij

In + λτeji



 =



 In

λeij + λτeji In





gh

,

where

g =



 In eii

In





and

h =



 In

eii In



 ,

so matrices of this form are not required for our generating set.



Chapter 7

Groups of Lie-Type over Fields of

Odd Characteristic

We are now ready to tackle the local fusion graphs of finite groups of Lie-type when

the defining characteristic is odd. Here is the main result we shall prove in this

chapter.

Theorem 7.1. Let G be a finite, simple group of Lie-type defined over a field of odd

characteristic. If X is a G-conjugacy class of involution, then F(G,X) is connected.

7.1 Strategy

To begin, we state a result which will be a major tool in dealing with the odd

characteristic case.

Theorem 7.2 (Rowley). Suppose G is a group with a split BN-pair and G-conjugacy

class of involutions X, and suppose B = UT where U is the unipotent radical of B

and T is a maximal split torus. If X ∩ T 6= ∅, then the definining characteristic p

must be odd, and F{p}(G,X) is connected. Consequently F(G,X) is connected.

In view of this result, our motivation for treating the odd and even characteristic

cases separately becomes clear. For suppose G is a finite group of Lie-type defined over

a field of even characteristic. Then the involutions of G are not semisimple elements.

90
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However, the torus T consists only of semisimple elements, so the requirement that

X∩T 6= ∅ is never satisfied. Thus the theorem is of no use to us in even characteristic.

In odd characteristic, the immediate question is: when does X ∩ T 6= ∅? By

Theorem 6.4, the maximal split tori of a finite group of Lie-type are G-conjugate.

Moreover, for a classical subgroup of GL(V ), the subgroup of diagonal matrices forms

a maximal split torus T . Thus for finite classical groups the question reduces to

determining when an involution can be diagonalised (within G) with respect to a

certain basis. This also enables us to infer information about the corresponding

projective groups, by observing that if T is maximal split torus of a classical group,

then T (the image of T upon factoring out the centre of the matrix group) will be a

maximal split torus of the projective group.

First, however, let us prove Theorem 7.2.

Proof of Theorem 7.2. By [24], for example, we may consider the Borel subgroup

opposite to B, which can be written B− = HU−. Since X ∩ H 6= ∅, the defining

characteristic p must be odd, and hence U and U− are p-groups of odd order. Without

loss of generality, as X ∩ H 6= ∅, we may suppose t ∈ H. Thus t normalises both U

and U−, so 〈U,U−〉 ≤ M by Lemma 1.22(iii). But 〈U,U−〉 = G (see, for example, [24]

once again), so M = G and hence F{p}(G,X) and F(G,X) are connected.

We now move on to study the various families of groups of Lie-type in detail.

7.2 Linear Groups

For this section we suppose H = SLn(q), where q is odd, and let H act on V in the

natural way. We may take for a Borel subgroup B the group of upper unitriangular

matrices. Then U is the group of upper uni-triangular matrices, while T is the

diagonal subgroup. If t ∈ H is an involution, then its only eigenvalues must be ±1.

Since q is odd, −1 ∈ Fq, and so all eigenvalues of t are contained in Fq. Therefore t

can be diagonalised in H, and so X ∩ T 6= ∅ holds for all H-conjugacy classes X of

involutions. This argument also holds for the involution classes of GLn(q). Thus we
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may immediately apply Theorem 7.2 to deduce the following:

Proposition 7.3. If H = SLn(q) or GLn(q), where q is odd, and X is an H-

conjugacy class of involutions, then F(H,X) is connected.

Since Theorem 7.1 concerns simple groups, we must consider the projective groups

PSLn(q). We first consider the case were n is odd.

Proposition 7.4. If G = PSL2m+1(q), where q is odd, and X is a G-conjugacy class

of involutions, then F(G,X) is connected.

Proof. Since the centre of SL2m+1(q) has odd order, the local fusion graphs of G

are in one-to-one correspondence with those of SL2m+1(q), and the result follows

immediately from Proposition 7.3.

We now deal with the groups PSLn(q) where n is even.

Proposition 7.5. If G ∼= PSL2m(q), and X is a G-conjugacy class of involutions.

Then F(G,X) is connected, unless m = 1 and q = 3, in which case F(G,X) is totally

disconnected.

Proof. When m = 1 and q = 3 we have PSL2(3) ∼= Alt(4), which has a totally

disconnected local fusion graph. When m = 1 and q ≥ 5, then the result follows from

Lemma 3.1. So let us proceed under the assumption that m ≥ 2. We use the notation

from the proof of Proposition 7.4. If t has any eigenvalues, then we may argue as in

the proof of Proposition 7.4 to see that t may be diagonalised in H. Therefore we

may assume that

t =





0 α1

α2 0

0 α3

α4 0

. . .

0 α2m−1

α2m 0





,
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where for each 1 ≤ i ≤ k we have α2i−1α2i = ω 6= 1. Denote by L the inverse image

of StabG(Y ). Our aim is to show that a ∈ L for all a ∈ A′, where A′ is the generating

set for H given in Proposition 6.16.

Notice that for any a = I + λeij ∈ A′, the entry (i, j) does not coincide with the

position of any of the αi in t. We can easily check that ta = t + s, where s is an

upper triangular nilpotent matrix with nonzero entries which do not coincide with

the positions of any αi in t. As a consequence, tat = ωI2mr, where r is unipotent,

and hence has odd order. Thus tat has odd order, from which we deduce that a ∈ L.

Since the image of A′ generates G, the result follows.

We conclude this section with a result regarding 2-dimensional linear groups,

which will be used in subsequent sections of this chapter. The following well-known

result is required for its proof.

Theorem 7.6. Let G = PSL2(q) where q ≥ 11 is odd. If M is a maximal subgroup

of G, then M is isomorphic to one of the following groups:

(i) the dihedral group Dih(q + 1), which is the centraliser of an involution of G;

(ii) the dihedral group Dih(q − 1);

(iii) a group of order q(q − 1);

(iv) Alt(4), Sym(4) or Alt(5);

(v) PSL2(r) or PGL2(r), where rm = q.

Proof. See Theorem 6.25 of [61].

Now we make a definition. Let H be a finite group, and suppose X is an H-

conjugacy class of elements which square to z ∈ Z(H), where z 6= 1. We define the

graph D(H,X) to have X as its vertex set, with x, y ∈ X adjacent in D(H,X) if,

and only if, x 6= y and xy = zw, where w is some element of odd order.

Lemma 7.7. Suppose H = GL2(q) where q 6= 3, and that X is an H-conjugacy class

of elements which square to λI2.
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(i) If λ = −1, then D(H,X) is connected.

(ii) If q ≡ 3 mod 4, then D(H,X) is connected.

Proof. When q ≤ 11 we may verify the result using Magma, so assume q > 11. Let

t ∈ H be such that t2 = λI2, and without loss of generality take

t =



 0 1

λ 0



 .

We write Z = Z(H), C = CH(t), N = NH(〈t〉), and L for the subgroup of H which

is naturally isomorphic to SL2(q). Notice that

C =








 a b

λb a



 : a, b ∈ Fq




 .

Our first claim is that N is a maximal subgroup of H. Indeed, it is certainly the case

that N ∩ L = CL(t), which is a maximal subgroup of L isomorphic to Dih(q + 1),

by Theorem 7.6. Since [H : L] = 2, any maximal subgroup of H must be one of the

subgroups listed in Theorem 7.6, an extension of one of these subgroups by a group of

order 2, or L itself. Using the description of C given above, we see there exist elements

of C (and so N) which lie outside NL(〈t〉)Z, and so CL(t) is a proper subgroup of

CH(t). Therefore we must have N = CL(t).2 and N is a maximal subgroup of H.

Since Z ≤ N , this implies that N is a maximal subgroup of H.

Next, we show that N is the unique maximal subgroup of H which contains C.

Since t2 ∈ Z, we have [N : C] = 2, and consequently |C| = q + 1. Suppose M is such

that C < M < H. Then M is a maximal subgroup of H with order divisible by q+1.

We have already noted the impossibility of M ∼= SL2(q), and now an examination of

the orders of the groups in Theorem 7.6 shows that the only possibility is M = N ,

whence M = N .

Now suppose that λ = −1, and notice that in this case t ∈ SL2(q), so X ⊆ SL2(q).

If there exists h ∈ H such that t and th are adjacent in D(H,X), then h ∈ StabH(Y ),

where Y is the connected component of D(H,X) which contains t. Moreover, since

h /∈ N , 〈C, h〉 = H. Hence it suffices to show the existence of such an h. For
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contradiction, suppose D(H,X) is totally disconnected. If for all x, y ∈ X it is

the case that 〈x, y〉 is a 2-group, then Theorem 1.4 implies that X ⊆ O2(H), a

contradiction. So there must exist x ∈ X such that tx has order 2km, where m > 1

has odd order. If k = 1, then (tx)m has order 2, which is sufficient since the only

involution in SL2(q) is −I2. If k = 0, then t(−x) has order 2m, and since x and −x

are conjugate in SL2(q) we see that −x is adjacent to t in D(H,X). Finally, suppose

that k ≥ 2. Then (tx)2k−1m has order 2. However,

(tx)2k−1m = txtx · · · tx = (−t)(−x)(−t) · · · (−x)txt · · · tx = (−t)txt···x

since −t = t−1, and similarly for x. Thus we again have an edge in D(H,X), as

required, completing the proof of (i).

To prove (ii), suppose that q ≡ 3 mod 4, and let ω ∈ Fq be an element of maximal

(multiplicative) odd order. Since q ≡ 3 mod 4, this order must be greater than 1.

Now define

y =



 ω 0

0 ω−1



 .

Then we may easily check that ty is adjacent to t in D(H,X), and so y ∈ StabH(Y ),

where Y is the connected component of D(H,X) which contains t. But clearly we

also have C ≤ StabH(Y ). Furthermore, y /∈ N , and since N is the unique maximal

subgroup of H which contains C, it must be that 〈C, y〉 = H. Thus H = StabH(Y ),

and the proof is complete.

7.3 Symplectic Groups

Let H = Sp2m(q) act on V . Recall that H preserves a non-degenerate, alternating

bilinear form β on V , as defined in Theorem 6.5.

Lemma 7.8. Let H = Sp2m(q), where q is odd, and let X be a H-conjugacy class of

involutions. If T is a maximal split torus of H, then X ∩ T 6= ∅.

Proof. In view of Theorem 6.4 it suffices to prove that an involution x of any H-

conjugacy class X lies in a Borel subgroup B. Theorem 6.8 tells us that the Borel
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subgroups of G are precisely the stabilisers of maximal isotropic flags of V . Thus we

must show that x stabilises such a flag. Let v ∈ V be an arbitrary vector. Then we

may write

v =
1

2
(v + vx) +

1

2
(v − vx),

which implies that V = V+1 ⊕ V−1, where x acts trivially on V+1 and as −1 on V−1.

Suppose that u ∈ V+1 and v ∈ V−1 are nonzero vectors. Then

β(u, v) = β(ux, vx) = β(u,−v) = −β(u, v).

Thus β(u, v) = 0 and we have V = V+1 ⊥ V−1. Note that this implies both V+1 and

V−1 are non-degenerate. Also, as det(x) = 1 and x acts as −1 on V−1, we must have

that the dimension of V−1 is even, say dimV−1 = 2k.

By considering maximal totally isotropic subspaces of V+1 and V−1, and using

Lemma 6.7, we may write

V+1 = L1 ⊥ L2 ⊥ · · · ⊥ Lk

and

V−1 = Lk+1 ⊥ Lk+2 ⊥ · · · ⊥ Lm,

where the Li are hyperbolic lines. For i = 1, . . . ,m let ei be an isotropic vector in Li.

Then the following is an isotropic flag in V :

F = 〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, e2, . . . , em〉.

Moreover, since F has type {1, . . . ,m} this is a maximal isotropic flag. Since x acts

trivially on V+1 and as −1 on V−1, x stabilises F , as required.

Corollary 7.9. If H = Sp2n(q), where q is odd, and X is an H-conjugacy class of

involutions, then F(H,X) is connected.

Proof. Apply Lemma 7.8 along with Theorem 7.2.

We now consider the local fusion graphs of the (usually) simple groups PSp2m(q).

In view of Corollary 7.9, when proving Theorem 7.12 we need only be concerned with

involution classes of PSp2m(q) which arise from elements of Sp2m(q) which square to

−1. Fortunately, there is only ever one such class.
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Lemma 7.10. Let H = Sp2m(q), where q is odd. Then there is a unique H-conjugacy

class of elements which square to −1 ∈ Z(H).

Proof. This is contained in the proof of Lemma 11.52 in [62].

Lemma 7.11. Suppose H = Sp2m(q), where q is odd, and that x ∈ H is an element

which squares to −1. Then x ∈ L, where L ≤ H and L ∼= Sp2(q
m).

Proof. Without loss of generality suppose that V has symplectic basis

{e1, . . . , em, f1, . . . , fm}

so that the sympletic form β on V has Gram matrix

J =



 In

−In



 ,

and suppose that

x =



 Am

−Am





where Am is the m × m matrix with 1 in positions (1,m), (2,m − 1), . . . , (m, 1) and

zeroes elsewhere. Notice that there exists an Fq-vector space isomorphism φ between

V and V ′, where V ′ is a 2-dimensional Fqm-vector space. For example, if V ′ has basis

{e′1, . . . , e′m, f ′
1, . . . , f

′
m} as an Fq-vector space, we can set eiφ = e′i and fiφ = f ′

i for

1 ≤ i ≤ m, and extend Fq-linearly. We can also endow V ′ with a symplectic form β′,

where β′ has Gram matrix

J ′ =



 0 1

−1 0



 .

Clearly H acts on V ′ via the isomorphism φ, and one can show (see page 111 of [50],

for example) that the subgroup of H consisting of elements which preserve β′ is

in fact isomorphic to Sp2(q
m). Moreover, it is straightforward to check by explicit

calculation that x also preserves β′, so lies in this subgroup.

Proposition 7.12. Let G = PSp2m(q), where q is odd, and let X be a G-conjugacy

class of involutions. Then F(G,X) is connected, unless m = 1 and q = 3, where

F(G,X) is totally disconnected.
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Proof. We prove the result by induction on m. First note that if q ≥ 5 then PSp2(q) ∼=
PSL2(q), and the result holds by Theorem 3.1. If q = 3, then PSp2(q) ∼= Alt(4),

which has a totally disconnected local fusion graph. However, we may easily check

using Magma that PSp4(3) and PSp6(3) have connected local fusion graphs.

Let G = H, and suppose V has basis {e1, . . . , em, f1, . . . , fm} so that the sympletic

form β on V has Gram matrix

J =



 In

−In



 .

Set

t =



 Am

−Am





where Am is the m × m matrix with 1 in positions (1,m), (2,m − 1), . . . , (m, 1) and

zeroes elsewhere. Then t ∈ H, and t2 = −1 ∈ Z(H), so using Lemma 7.10 we may

take t as our representative for the relevant involution class of G. We may write

t = t1t2, where

t1 =





Im−k

Ak

−Ak

Im−k





and

t2 =





Am−k

Ik

Ik

−Am−k





,

where 1 ≤ k ≤ m − 1. It is clear that t1 and t2 commute. Notice that t stabilises a

non-degenerate subspace of V of dimension 2k, namely

W = 〈e2m−k+1, . . . , e2m, f2m, . . . , f2m−k+1〉,

and so by Theorem 6.10 lies in a subgroup M ≤ H, where

M = M1 × M2
∼= Sp2k(q) × Sp2m−2k(q).
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Furthermore, if k 6= m, then M is a maximal subgroup of H and M is a maximal

subgroup of G. Our aim is to show that M ≤ StabG(Y ), where Y is the connected

component of F(G,X) which contains t.

Denote by Xi the Mi-conjugacy class of involutions which contains ti, for i = 1, 2.

If q ≥ 5, then by induction F(M1, X1) and F(M2, X2) are connected. If q = 3 then

since we have checked cases when m = 2 and m = 3, we may assume that m ≥ 4. We

can now choose k /∈ {2, 2m−2} so that neither M1 nor M2 is isomorphic to PSp2(3).

This allows us to use induction in this case also.

Let x ∈ X ′ have preimage x ∈ M , where X ′ denotes the M -conjugacy class of t,

and write x = x1x2, where x1 ∈ M1 and x2 ∈ M2. By induction there exists a path

t1 = x
(0)
1 → x

(1)
1 → x

(2)
1 → · · · → x

(m)
1 = x1

of elements in xM1
1 such that x

(i)
1 x

(i+1)
1 = y

(i)
1 z

(i)
1 , where y

(i)
1 has odd order and z

(i)
1 ∈

Z(M1), for 0 ≤ i ≤ m − 1. This path induces in a natural way a path in F(G,X)

from t1t2 to either x1t2 or x1(−1M2t2). For suppose first that z
(i)
1 = −1M1 ∈ Z(M1)

for some i. Then

(x
(i)
1 t2)(x

(i+1)
1 t2) = (x

(i)
1 x

(i+1)
1 )t22 = y

(i)
1 (−1M1)(−1M2).

Since (−1M1)(−1M2) = −1 ∈ Z(H), we have that x
(i)
1 t2 and x

(i+1)
1 t2 are adjacent in

F(G,X). Now suppose that z
(j)
1 = 1 for some j. Then

(x
(j)
1 t2)(x

(j+1)t2(−1M2)) = x
(j)
1 x

(j+1)
1 t22(−1M2) = y

(j)
1

has odd order. Moreoever, (−1M2t2)
2 = −1M2 , so by Lemma 7.10 we deduce that

t2 and −1M2t2 are M2-conjugate. Hence we have a path from t1t2 to either x1t2 or

x1(−1M2t2) in F(G,X). A similar argument now allows us to find a path in F(G,X)

from this element to one of x1x2, −(x1x2), (−1M1x1)x2 or x1(−1M2x2). In the former

two cases we are done, since both x1x2 and −(x1x2) have image x in G. So without

loss of generality suppose we are in one of the latter two cases, say with a path

from t1t2 to (−1M1x1)x2. Then the isomorphism Sp2(q) ∼= SL2(q) allows us to use

Lemma 7.7(i) to see that there exists a path in the graph D(M1, x
M1
1 ) from x1 to

−1M1x1, which in turn induces a path from (−1M1x1)x2 to x1x2 in F(G,X).
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As this method allows us to construct a path between t and an arbitrary x in

F(M,X ′), we deduce that M ≤ StabG(Y ).

Denote by M∗ the stabiliser of the decomposition V = W ⊕ W⊥. If k 6= m, then

M = M∗, while if k = m then M is a subgroup of index 2 in M∗. In the former case,

by Theorem 6.10, M∗ is a maximal subgroup of G, while in the latter case reference

to Table 3.5C of [50] tells us that M∗ is again a maximal subgroup of G, and is

the unique maximal subgroup of G which contains M . However, by Lemma 7.11 we

have that t ∈ L, where L ∼= PSp2(q
m). As PSp2(q

m) ∼= PSL2(q
m), and m ≥ 2,

Theorem 3.1 tells us that L ≤ StabG(Y ). Since L 6≤ M∗ (by comparing group orders

from the formulae given in [50], for example), it must be that 〈M,L〉 = G, and so

F(G,X) is connected.

7.4 Unitary Groups

The unitary groups are next on our agenda. Let H = GUn(q) ∼= GU(V ), where q is

odd. Recall that this means the entries of matrices in H are taken from Fq2 . To help

determine H-conjugacy there is the following result:

Theorem 7.13. Elements of GUn(q) are conjugate in GUn(q) if, and only if, they

are conjugate in GLn(q2).

Proof. This is proved by G. E. Wall in [64].

Theorem 7.14. If H = SUn(q) or GUn(q), and X is an H-conjugacy class of invo-

lutions, then F(G,X) is connected.

Proof. By Proposition 2.3.1 of [50] we may suppose that the unitary form β on V

has Gram matrix J = In. Theorem 7.13 implies that H has at most the number of

involution classes as GLn(q2). But we make take diagonal representatives for each

involution class of GLn(q2), with nonzero entries 1 and −1, both of which are fixed

by the involutary automorphism τ of Fq2 associated to β. Hence these representatives

lie in H, and the result follows using Theorem 7.2.
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When dealing with the projective unitary groups, we must consider elements of

GUn(q) which square to non-trivial central elements. We first consider how the vector

space V can decompose under the action of such an element. So for H = GUn(q),

let t ∈ H be such that t2 ∈ Z(H), say t2 = λIn. For v ∈ V the subspace 〈v, vt〉 must

be either 1 or 2-dimensional. Thus, first taking v to be a non-isotropic vector, then

taking a non-isotropic vector in 〈v, vt〉⊥, and so on, we see that t must stabilise a

decomposition

V = W1 ⊥ . . . ⊥ Wk ⊥ Uk+1 ⊥ U2m+1,

where the Wi are non-degenerate 2-spaces and the Ui are non-degenerate 1-spaces.

For each 2-space we may choose a basis so that the restriction of β to Wi has Gram

matrix Ji = I2, and then by taking a suitable basis vector for each Ui we may ensure

that β has Gram matrix J = In. With respect to this basis for V we have

t =





t1
. . .

tk

µIn−2k





,

where ti ∈ GU2(q) and t2i = λI2 for each i, and µ2 = λ.

Proposition 7.15. Let H = GUn(q) where q is odd, and suppose that t ∈ H is such

that t2 ∈ Z(H). If t has a non-zero eigenvalue, then t lies in a maximal split torus

of H.

Proof. Suppose t2 = λIn, and choose the basis for V and representative for t in the

form described above. By assumption t has at least one non-zero eigenvalue µ, and

since t must preserve the unitary form β we deduce that µµτ = 1. Since t2 = λIn, t

has characteristic polynomial

(χ − µ)n−2k(χ2 − λ)k,

and since µ2 = λ this splits into linear factors

(χ − µ)n−k(χ + µ)k.
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Hence t is conjugate in GLn(q2) to a diagonal element. But since µµτ = 1, such a

diagonal element will also preserve β, so will lie in H, and by Theorem 7.13 will be

H-conjugate to t. Thus without loss of generality we may choose t to be diagonal,

and so t lies in a maximal split torus of H.

Lemma 7.16. If G = PSU2m+1(q) and X is a G-conjugacy class of involutions, then

F(G,X) is connected.

Proof. Since the centre of SU2m+1(q) has odd order, this follows immediately from

Theorem 7.14.

We deal with the groups PSU2m(q) in two stages. First, we consider the cases

where q ≡ 1 mod 4.

Theorem 7.17. Let G = PSU2m(q), where m ≥ 2 and q ≡ 1 mod 4. If X is a

G-conjugacy class of involutions, then F(G,X) is connected.

Proof. Let V have Gram matrix

J =



 Im

Im



 .

By consulting Table 4.5.1 of [39], we see that G has ⌊m/2 + 1⌋ conjugacy classes of

involutions. For elements of H which map canonically into ⌊m/2⌋ of these classes,

we may simply take diagonal elements ti, for 1 ≤ i ≤ ⌊m/2⌋, with eigenvalues ±1.

The final G-conjugacy class of involutions comes from elements which square to a

non-trivial central element in H. Since q ≡ 1 mod 4, there exists ω ∈ Fq2 which

squares to −1. Define

t =





ω

. . .

ω

ω−1

. . .

ω−1





.
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Notice that det(t2) = 1. Furthermore, t will preserve the unitary form β if ωq−1 = 1.

But 4 divides q − 1, so this is certainly the case. Hence t ∈ H. Moreover, since ωI2m

does not preserve β (as ωq+1 6= 1), so does not lie in H, we see that t must lie in a

different G-conjugacy class of involutions to ti for 1 ≤ i ≤ ⌊m/2⌋. Nevertheless, t lies

in a maximal split torus of G, so once again the result follows by Theorem 7.2.

To proceed with the case where q ≡ 3 mod 4, we require a corollary to Lemma 7.7.

Corollary 7.18. If H = GU2(q) where q ≡ 3 mod 4 but q 6= 3, and X is an H-

conjugacy class of elements which square to λI2, then D(H,X) is connected.

Proof. Here we make use of the isomorphisms PGU2(q) ∼= PGL2(q) and SU2(q) ∼=
SL2(q). As a result, the proof is almost identical to that of Lemma 7.7.

Lemma 7.19. If H = SU4(3), and X is a conjugacy class of elements which square

to −1, then D(H,X) is connected.

Proof. This can be easily verified using Magma.

We shall see in a moment that our general method for dealing with the groups

PSU2m(q) when q ≡ 3 mod 4 does not cover the case when q = 3. This is due

to the fact that PSU2(3) ∼= PSL2(3), which has a disconnected local fusion graph.

Therefore we deal with this case separately.

Lemma 7.20. If G = PSU2m(3), where m ≥ 2 and X is a G-conjugacy class of

involutions, then F(G,X) is connected.

Proof. We can check using Magma the cases PSU4(3), PSU6(3) and PSU8(3), so

assume that m ≥ 5. Note that |Z(H)| = 2 or 4, depending on whether m is odd or

even, respectively.

If |Z(H)| = 2, then any G-conjugacy class of involutions must either be the

image of an H-conjugacy class of involutions, or the image of an H-conjugacy class

of elements which square to −1. In the former case we may apply Theorem 7.2. In

the latter case, suppose β is such that J = I2m, and let t be the diagonal element
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given in the proof of Theorem 7.17, and set X = t
G
. Note that such an element ω

exists in F9, and t preserves β since ωq+1 = ω4 = 1. Thus t ∈ H, and t2 = −1.

Moreover, since m is odd, ωI2m has determinant −1, so ωI2m /∈ H. Hence t does not

represent the same G-conjugacy as the image of any involution in H, and we may

apply Theorem 7.2 once again to see that F(G,X) is connected.

Now suppose that |Z(H)| = 4, so m is even. Reference to Table 4.5.1 of [39] tells us

that G has either m/2 or m/2+1 conjugacy classes of involutions, and by considering

the representatives t and ti for 1 ≤ i ≤ m/2, as given in the proof of Theorem 7.17,

we see that at most one G-conjugacy class of involutions is not the image of an H-

conjugacy class of involutions. Moreover, we can take as our representative for the

possible remaining class the involution t, where

t =



 Am

−Am





and Am is the m × m matrix with 1 in positions (1,m), (2,m − 1), . . . , (m, 1) and

zeroes elsewhere. Since m ≥ 5 and m is even, we see that t stabilises a non-degenerate

subspace of V of dimension 6, for example

W = 〈e2m−5, . . . , e2m, f2m, . . . , f2m−5〉,

and so lies in a subgroup M ≤ H, where

M = M1 × M2
∼= SU6(q) × SU2m−6(q).

Since 4 does not divide 6 or 2m − 6, |Z(M1)| = |Z(M2)| = 2, and so we may argue

as above to see that M ≤ StabG(Y ). If 6 6= m, then by Theorem 6.11 M � K where

K is a maximal subgroup of H and

K ≤ GU6(q) × GU2m−6(q).

By Theorem 7.13, no M -conjugacy classes fuse in K, so K ≤ StabG(Y ). But t

stabilises a further non-degenerate 6-space of V , say

U = 〈e1, . . . , e6, f6, . . . , f1〉,
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so by the same argument we get K ′ ≤ StabG(Y ), where K ′ is another maximal

subgroup of H. The result now follows by the maximality of K or K ′.

Suppose then that m = 6, so H = SU12(3). Here M lies in a unique maximal

subgroup K∗ of H, the stabiliser of the decomposition

V = W ⊥ W ′

into two non-degenerate 6-spaces. Notice that t also stabilises the decomposition

V = W1 ⊥ W2 ⊥ W3,

where

W1 = 〈e1, e2, f1, f2〉,

W2 = 〈e3, e4, f3, f4〉

and

W3 = 〈e5, e6, f5, f6〉.

Using Lemma 7.19, we have that L ≤ StabG(Y ), where

L ∼= SU4(3) × SU4(3) × SU4(3).

Since L does not lie in K∗, we have that G = StabG(Y ) by the maximality of K∗.

Hence F(G,X) is connected.

We now tackle the cases where q 6= 3.

Theorem 7.21. Let G = PGU2m(q), where m ≥ 2 and q ≡ 3 mod 4. If X is a

G-conjugacy class of involutions, then F(G,X) is connected.

Proof. If t ∈ X has preimage t ∈ H which is an involution, then we may apply

Theorem 7.14, and indeed if t has any non-zero eigenvalues we may argue as in the

proof of Proposition 7.15 to show that t lies in a maximal split torus of G, and

so the result follows by Theorem 7.2. Assume therefore that t2 = λI2m, t has no

eigenvectors, and that t preserves a decomposition

V = W1 ⊥ W2 ⊥ . . . ⊥ Wm
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of V into non-degenerate 2-spaces. For each Wi we may choose a basis Bi so that

the restriction of β to Wi has Gram matrix Ji = I2, so J = I2m. As t2 = λI2m, t is

conjugate in GL2m(q) to an element

t′ =





0 1

λ 0

0 1

λ 0

. . .

0 1

λ 0





.

Since λI2m ∈ Z(H), we must have λλτ = 1, and using this fact we see that t′ also

preserves J , so lies in H. Now Theorem 7.13 implies that t and t′ are H-conjugate,

so without loss of generality let t = t′. We now rearrange our basis vectors for V ,

and write B′ for this new basis. If m is even, we do this so that β has Gram matrix

Jeven =



 Im

Im



 ,

while if m is odd we rearrange so that

Jodd =





Im−1

Im−1

I2




.

Write V ′ for V with respect B′. This change of basis will of course give a new

representation tB′ , but notice that tB given above also preserves both Jeven and Jodd,

so lies in SU(V ′). Since tB′ is conjugate in GL2m(q) to tB, Theorem 7.13 tells us that

these elements are conjugate in SU(V ′). Writing H = SU(V ′), we may therefore

take t = tB ∈ H as our conjugacy class representative.

Since t preserves the decomposition

V = W1 ⊥ W2 ⊥ . . . ⊥ Wm,
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by Theorem 6.12 t lies in a maximal subgroup M ≤ H, where

M = L ≀ K ≤ GU2(q) ≀ Sym(m).

Our aim is to show that M ≤ StabG(Y ). First consider an element of M which lies in

the subgroup K. Such an element permutes the subspaces W1, . . . ,Wm, but within

each Wi acts trivially. Thus, these elements lie in CH(t), and so K ≤ StabG(Y ).

Next, consider

L = L1 × L2 × · · · × Lm,

and write t = t1 · · · tm where ti ∈ Li for each i. Suppose that h ∈ Li for some i, and

without loss of generality let h ∈ L1. Then h commutes with t2, . . . , tm. Moreover,

by Lemma 7.18, th1 is connected to t1 in the graph D(L1, t
L1
1 ). Using any suitable

path in this graph, we may construct a chain of elements

t = x(0) → x(1) → x(2) → · · · → x(l) = th

in X such that x(j)x(j+1) = λy(j+1), where y(j+1) is an element of odd order, for

1 ≤ j ≤ l − 1. Thus x(j) and x(j+1) are adjacent in F(G,X) for each j, and so t is

connected to th in F(G,X). Thus h ∈ StabG(Y ). As h was chosen arbitrarily, we get

that L ≤ StabG(Y ), and consequently M = 〈L,K〉 ≤ StabG(Y ).

Since M is a maximal subgroup of G, it now suffices to show the existence of an

element y ∈ StabG(Y ) \ M . If β has Gram matrix Jeven, then define

y =



 Im µe1,1

Im



 ,

while if β has Gram matrix Jodd let

y =





Im−1 µe1,1

Im−1

I2




,

where µ ∈ Fq2 is such that µ+µτ = 0. Then y ∈ H, and since y does not preserve the

decomposition of V which t preserves, y /∈ M . But as in the proof of Theorem 7.5

we may check that

tty = λI2mr,
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where r is an upper-triangular unipotent matrix, which consequently must have odd

order. Therefore y ∈ StabG(Y ), and the proof is complete.

Corollary 7.22. If G = PSU2m(q), where m ≥ 2 and q ≡ 3 mod 4, and X is a

G-conjugacy class of involutions, then F(G,X) is connected.

Proof. When q = 3 the result follows by Lemma 7.20, while if q 6= 3 we use Theo-

rem 7.21 along with Lemma 1.19.

7.5 Orthogonal Groups

In this section we investigate the local fusion graphs of orthogonal groups. The first

step is to consider the matrix groups. We deal separately with cases of minus-type,

plus-type, and odd dimension. As usual we denote the matrix group by H, which

acts on a vector space V equipped with a symmetric bilinear form β.

Proposition 7.23. Let H = Ω−
2m(q) or SO−

2m(q), where q is odd and m ≥ 2, and let

x ∈ H be an involution. Then x lies in a maximal split torus of H.

Proof. Let v ∈ V be an arbitrary vector. Then we may write

v =
1

2
(v + vx) +

1

2
(v − vx),

which implies that V = V+1 ⊕ V−1, where x acts trivially on V+1 and as −1 on V−1.

Suppose that u ∈ V+1 and v ∈ V−1. Then

β(u, v) = β(ux, vx) = β(u,−v) = −β(u, v).

Thus β(u, v) = 0 and we have V = V+1 ⊥ V−1. Note that this implies both V+1 and

V−1 are non-degenerate. Also, as det(x) = 1 and x acts as −1 on V−1, we must have

that the dimension of V−1 is even, say dimV−1 = 2k.

Since V has minus-type, from [62] we have that V+1 and V−1 have different types.

Suppose first that V−1 has minus-type, so V+1 has plus-type. Then V+1 and V−1

contain maximal isotropic subspaces of dimensions m− k and k − 2 respectively. By

considering these and using Lemma 6.7 we may write

V+1 = L1 ⊥ L2 ⊥ · · · ⊥ Lk
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and

V−1 = Lk+1 ⊥ Lk+2 ⊥ · · · ⊥ Lm−1 ⊥ W,

where the Li are hyperbolic lines, and W is a 2-space which contains no singular

vectors.

For i = 1, . . . ,m − 1 let ei be a singular vector in Li. Then the following is an

isotropic flag in V :

F = 〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, e2, . . . , em−1〉.

Moreover, since the Witt index of V is m− 1, this is a maximal isotropic flag. Since

x acts trivially on V+1 and as −1 on V−1, x stabilises F . Now Theorem 6.8 implies

that x lies in Borel subgroup B of H. Thus by Theorem 6.4, x must lie in a maximal

split torus of H.

Corollary 7.24. Let H = Ω−
2m(q) or SO−

2m(q), where q is odd, and let t ∈ H be an

involution, with X = tH . Then F(H,X) is connected.

Proof. Both Ω−
2 (q) and SO−

2 (q) are cyclic groups (see Proposition 2.9.1 of [50]), so

the result trivially holds here. When m ≥ 2, then by Proposition 7.23, t lies in a

maximal split torus of H. We now apply Theorem 7.2.

We now come to the orthogonal groups of plus-type. Recall that Theorem 6.8,

which characterised Borel subgroups in terms of maximal isotropic flags, excluded

such orthogonal groups. In fact, the Borel subgroups of orthogonal groups of plus-

type arise as stabilisers of maximal flags in the oriflamme geometry. Full details may

be found in [62], but for our purposes, a maximal flag in the oriflamme geometry

consists of a pair (F1,F2) of distinct maximal isotropic flags, where the first m − 1

subspaces of F1 coincide with those of F2.

Proposition 7.25. Let H = Ω+
2m(q) or SO+

2m(q), where q is odd and m ≥ 3. If X is

an H-conjugacy class of involutions, then F(G,X) is connected.

Proof. Let t ∈ X. As in the proof of Proposition 7.23 we may write V = V+1 ⊥ V−1,

where t acts trivially on V+1 and as −1 on V−1. If dimV+1 = 0, then t acts as −1 on
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the whole space V , implying t ∈ Z(H), whence the result clearly holds. So assume

dimV−1 = 2k where k < m. Since V has plus-type, using [62] we see that the spaces

V+1 and V−1 have the same type. We first consider the case when both V+1 and V−1

are of plus-type. By Lemma 6.7 we may write

V+1 = L1 ⊥ L2 ⊥ · · · ⊥ Lk

and

V−1 = Lk+1 ⊥ Lk+2 ⊥ · · · ⊥ Lm.

If we write Li = 〈ei, fi〉 for 1 ≤ i ≤ m, then t stabilises the isotropic flag

F = 〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, e2, . . . , em−1, em〉,

and also stabilises the isotropic flag

F ′ = 〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, e2, . . . , em−1, fm〉.

Since the first m−1 subspace of F and F ′ coincide, t stabilises a maximal flag in the

oriflamme geometry, and so lies in a Borel subgroup B of H. Since t is semisimple,

it must therefore lie in a maximal split torus T of H, and the result follows by

Theorem 7.2.

Now suppose that both V+1 and V−1 are of minus-type. Then by Lemma 6.7 we

may write

V+1 = L1 ⊥ L2 ⊥ · · · ⊥ Lk−1 ⊥ W1

and

V−1 = Lk+1 ⊥ Lk+2 ⊥ · · · ⊥ Lm−1 ⊥ W2,

where the Li are hyperbolic lines and W1 and W2 are 2-spaces which contain no

singular vectors. Since t stabilises the decomposition V+1 ⊥ V−1, by Theorem 6.15

we have that t lies in a subgroup M ≤ H, where

M ≤ O−
2k(q) × O−

2(m−k)(q).

If k 6= m − k, then M is a maximal subgroup of H. Otherwise, note that t also

preserves the decomposition V ′
+1 ⊥ V ′

−1, where

V ′
+1 = L1 ⊥ L2 ⊥ · · · ⊥ Lk−2 ⊥ W1
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and

V ′
−1 = Lk ⊥ Lk+2 ⊥ · · · ⊥ Lm−1 ⊥ W2,

so t lies in a maximal subgroup M ′ of H, where M ′ ≤ O−
2(k−1)(q) × O−

2(m−k+1)(q).

Since t acts trivially on V+1, and as −1 on V−1 which has even dimension, we have

that t lies in a normal subgroup N � M , where

N ≤ SO−
2k(q) × SO−

2(m−k)(q).

Now using Corollary 7.24 and Lemma 1.18, we see that N ≤ StabH(Y ), where Y

is the connected component of F(H,X) which contains x. Since N � M , we have

that M ≤ StabH(Y ). But it is straightforward to show that t also lies in a distinct

maximal subgroup M ′ of H, which has the same type as M . Now using similar

arguments we have that M ′ ≤ StabH(Y ). By the maximality of M (or M ′) it follows

that H = StabH(Y ), whence F(H,X) is connected.

Proposition 7.26. Let H = Ω2m+1(q) or SO2m+1(q), where q is odd and m ≥ 2. If

X is an H-conjugacy class of involutions, then F(H,X) is connected.

Proof. Once again we write V = V+1 ⊥ V−1. Since x must have determinant 1, it

must be that V−1 has even dimension. Suppose that V−1 has plus-type. Then using

Lemma 6.7 we have

V+1 = L1 ⊥ L2 ⊥ · · · ⊥ Lk ⊥ W,

where W is a nonsingular 1-space, and

V−1 = Lk+1 ⊥ Lk+2 ⊥ · · · ⊥ Lm.

Notice that t stabilises the maximal totally isotropic space

〈e1, e2, . . . , em〉,

and so lies in a Borel subgroup, and hence maximal torus of H. We may now apply

Theorem 7.2 to show that F(H,X) is connected.

Now suppose that V−1 has minus-type, so we may write

V−1 = Lk+1 ⊥ Lk+2 ⊥ · · · ⊥ Lk−1 ⊥ W ′
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where W ′ is a 2-space which contains no singular points. By pairing W with any

hyperbolic line Li, or with W ′, we see that t stabilises a non-degenerate 3-space, and

acts with determinant 1 on this space. Hence, using Theorem 6.15, t lies in a maximal

subgroup M ≤ G such that L ≤ M ≤ K, where

L = Ω3(q) × Ω−
2m−2(q)

and

K = SO3(q) × SO−
2m−2(q).

Assume that q 6= 3. We see from [50] for example that SO3(q) ∼= PGL2(q), which

has connected local fusion graphs. Therefore, by Lemma 1.18 and Proposition 7.24,

the local fusion graphs of K are connected. Moreover, since L � K it must be that

M � K, and so by Lemma 1.19 the local fusion graphs of M must be connected.

We deduce that M ≤ StabH(Y ). However, since m ≥ 2, it can be seen from the

decomposition of V that we may choose another non-degenerate 3-space which is

stabilised by t. An identical argument shows that M ′ ≤ StabH(Y ), where M ′ is a

maximal subgroup of H, and M ′ 6= M . Thus by the maximality of M or M ′, F(H,X)

is connected.

When q = 3, we cannot use the method above since PGL2(3) has a disconnected

local fusion graph. But we can easily check using Magma that the local fusion graphs

of SO5(3) are connected, and so we may assume that m ≥ 3. We then observe that

t stabilises a non-degenerate 5-space, and argue as above.

Having dealt with the matrix groups, we now start to work towards proving that

the local fusion graphs of the corresponding projective orthogonal groups are also

connected. As was the case for symplectic groups, the involution classes we must

deal with arise from elements of the matrix groups which square to −1. Also exerting

influence here is the congruence of the field. First we have the case where q ≡ 1 mod

4.

Lemma 7.27. Let H = SOǫ
2m(q), where m ≥ 3, ǫ = ± and q ≡ 1 mod 4. If t ∈ H

is such that t2 = −1, then H must have plus-type, and t lies in a maximal split torus

of H.
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Proof. Since 4 divides q − 1, there exists ω ∈ Fq such that ω2 = −1. For v ∈ V we

may write

v =
1

2
(v + ωvt) +

1

2
(v − ωvt).

As t2 = −1, we have (v + ωvt)t = −ωv + vt and (v − ωvt)t = ωv + vt, and so

V = Vω ⊕ V−ω,

where

Vω = {v ∈ V : vt = ωv}

and

V−ω = {v ∈ V : vt = −ωv}.

Suppose u, v ∈ Vω. Then

β(u, v) = β(ut, vt) = β(ωu, ωv) = −β(u, v),

and so Vω (and V−ω) is a totally singular subspace of dimension m. If H = SO−
2m(q),

then this contradicts the fact that V has Witt index m − 1, so we deduce that

H = SO+
2m(q).

Using Lemma 6.7, choose a basis {e1, . . . , em, f1, . . . , fm} for V so that

Vω = 〈e1, . . . , em〉,

V−ω = 〈f1, . . . , fm〉

and β(ei, fj) = δij. Then t stabilises the maximal isotropic flag

F = 〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, e2, . . . , em〉,

and t also stabilises the flag

F ′ = 〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, . . . , em−1, fm〉.

Since these flags coincide in their first m − 1 subspaces, we have that t stabilises a

maximal flag in the oriflamme geometry, and hence lies in a Borel subgroup, and

consequently maximal split torus, of H.



CHAPTER 7. GROUPS OF LIE-TYPE: ODD CHARACTERISTIC 114

Proposition 7.28. Let G = PSOǫ
2m(q) or PΩ2m(q), where m ≥ 3, ǫ = ±, and q ≡ 1

mod 4, and let X be a G-conjugacy class of involutions. Then F(G,X) is connected.

Proof. This follows from Propositions 7.24, 7.25 and Lemma 7.27.

When q ≡ 3 mod 4 the situtation is slightly more complicated. The next lemma

establishes some details regarding the relevant involution classes.

Lemma 7.29. Let H = SOǫ
2m(q), where m ≥ 3 and q ≡ 3 mod 4. Suppose there

exists t ∈ H such that t2 = −1. Then the following hold:

(i) Either m is even and H has plus-type, or m is odd and H has minus-type;

(ii) If t ∈ H ′ = Ωǫ
2m(q), then there exists exactly one further H ′-conjugacy class of

elements which square to −1. Moreover, these classes do not fuse in H.

Proof. Choose a singular vector v ∈ V , and consider U = 〈v, vt〉. If dim(U) = 1, then

it must be that vt = ωv, where ω2 = −1. Thus ω has multiplicative order 4 in Fq, a

contradiction since q ≡ 3 mod 4. Therefore U must be a 2-dimensional subspace of

V . Since v is singular, it is certainly the case that vt is also singular. We claim that

β(v, vt) = 0. Indeed, suppose that β(v, vt) 6= 0, so that W has plus-type. Then using

Theorem 6.15, t lies in a subgroup M ≤ H, where

M = M1 × M2 ≤ O+
2 (q) × Oǫ

2m−2

Hence we may write t = t1t2, where t1 ∈ M1 and t2 ∈ M2. Theorem 11.4 of [62]

tells us that O+
2 (q) ∼= Dih(2(q − 1)), and since q ≡ 3 mod 4 this group contains no

elements of order 4. But t21 = −1M1 , so t1 must have order 4. This is a contradiction.

Hence β(v, vt) = 0, and U is totally singular.

Now, if possible, choose a singular vector in U⊥\U , and proceed as above. Suppose

that ǫ = + and m is even. Following this method to its conclusion shows that t

stabilises a maximal totally singular subspace of V of dimension m. By Theorem

11.61 of [62], both H and H ′ have exactly two orbits on the set of maximal totally

singular subspaces of V , and consequently have exactly two conjugacy classes of

elements which square to −1. Now suppose that m is odd. If such a t were to exist
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in H, then by breaking off totally singular 2-spaces stabilised by t as above, t would

stabilise a totally singular subspace of dimension m+1, contradicting the Witt index

of V being m.

We now suppose that H has minus-type. If m is even, then the Witt index

m − 1 of V is odd, and if we have t ∈ H such that t2 = −1, then the preceding

argument provides a contradiction. So assume m is odd, so that m− 1 is even. Then

t stabilises a maximal totally singular subspace W ⊆ V , and so by Theorem 6.13, t

lies in a subgroup K ≤ H, where

K ∼= C : (K1 × K2) = [qa] : (GLm−1(q) × SO−
2 (q)).

Note that the elements of C are unipotent, so have determinant 1. Since the elements

of K2 have determinant 1, this implies that the elements of K1 have determinant 1

also. We may write t = t1t2, where t1 ∈ K1 and t2 ∈ K2. By Proposition 2.9.1 of [50],

K2
∼= Cq+1, a cyclic group which contains two elements which square to −1, namely

t2 and (−1M2)t2. We claim that t and t′ = t1(−1M2)t2 are not H-conjugate.

By Lemma 6.7 we can find hyperbolic lines 〈e1, f1〉, . . . , 〈em−1, fm−1〉 so that

W = 〈e1, . . . , em−1〉,

and so K1, and t, stabilise the non-degenerate space

W ⊕ W ′ = 〈e1, . . . , em−1〉 ⊕ 〈f1, . . . , fm−1〉,

which has plus-type. Consequently t must also stabilise the 2-dimensional space (W⊕

W ′)⊥, and since V has minus-type this space must have minus-type. Hence, using

Theorem 6.15, t lies in a subgroup L ≤ H, where L = L1 × L2 ≤ O+
2m−2(q) × O−

2 (q).

Notice that t′ also stabilises the subspaces W and W ′. Therefore any element h ∈ H

such that th = t′ must stabilise the decomposition W ⊕ W ′, and so lie in L. If

W h = W , then h ∈ K, and since t2 and (−1M2)t2 are not conjugate in SO−
2 (q), it

cannot be the case that th = t′. Therefore h must swap the spaces W and W ′. Since

h ∈ L, we may write h = h1h2, where h1 ∈ L1 and h2 ∈ L2. Denote by r the product

of the reflections r1, . . . , rm−1, where ri swaps ei and fi. Then r stabilises W ⊕ W ′,
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so lies in L1, and since r is a product of m − 1 reflections, where m − 1 is even,

det(r) = 1, and so r lies in the subgroup of L1 which is isomorphic to SO+
2m−2(q).

But K1
∼= GLm−1(q), so acts transitively on the (singular) vectors of W , and so we

may write h1 = rk1, where k1 is an appropriate element of K1 ≤ SO2m−2(q), and

hence we may consider h1 ∈ SO2m−2(q). This now forces h2 ∈ SO−
2 (q), but as already

noted, t2 and (−1M2)t2 are not conjugate in SO−
2 (q). This contradiction implies that

t and t′ cannot be H-conjugate. To complete the proof, we note that since H acts

transitively on the set of maximal totally isotropic subspaces of V (see [62]), any

element of H which squares to −1 must be H-conjugate to either t or t′.

We are now in a position to deal with remaining projective orthogonal groups.

Proposition 7.30. Let G = PSOǫ
2m(q), where ǫ = ±, q ≡ 3 mod 4, and m ≥ 3, and

let X be a G-conjugacy class of involutions. Then F(G,X) is connected.

Proof. Let H = SOǫ
2m(q), so that G = H, and let t ∈ G be an involution. By

Propositions 7.24 and 7.25, we need only consider the cases where t ∈ H squares to

−1. We proceed by induction on m, and first verify the cases when m is small.

When q is odd, we have the following isomorphisms (see [62], for example):

PΩ+
4 (q) ∼= PSL2(q) × PSL2(q),

PΩ−
4 (q) ∼= PSL2(q

2),

PΩ+
6 (q) ∼= PSL4(q),

PΩ−
6 (q) ∼= PSU4(q),

from which we deduce that

PSO+
4 (q) � PGL2(q) × PGL2(q),

PSO−
4 (q) � PGL2(q

2),

PSO+
6 (q) � PGL4(q),

PSO−
6 (q) � PGU4(q).

The first four automorphisms, along with Lemma 1.18, Theorems 7.5, 7.17 and Corol-

lary 7.22 show that, with the exception of PΩ+
4 (3) (since PSL2(3) has a disconnected
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local fusion graph), the groups PΩǫ
4(q) and PΩǫ

6(q) have connected local fusion graphs.

Since Lemma 7.29 shows that conjugacy classes of elements which square to −1 in

Ωǫ
4(q) and Ωǫ

6(q) do not fuse in SOǫ
4(q) and SOǫ

6(q) respectively, we infer that the

latter four families also have connected local fusion graphs, with the exception of

PSO+
4 (3). To allow us to include the case where q = 3, we also check using Magma

the case when G = PSO+
8 (3). We assume therefore that m ≥ 4, and when q = 3

additionally assume that m ≥ 5. The proof of Lemma 7.29 shows that t stabilises a

totally singular 2-space W ⊆ V , and so by Theorem 6.13 we have t ∈ M , where M

is a maximal subgroup of H, and

M = C : (M1 ◦ M2) ∼= [qa] : (GL2(q) ◦ SOǫ
2m−4(q)).

We may write t = t1t2, where t1 ∈ M1 and t2 ∈ M2. Since the subgroup C has odd

order and is normalised by t, Lemma 1.22(iii) implies that C ≤ StabG(Y ). Let x be

any element of the M -conjugacy class which contains t, and write x = x1x2 where

x1 ∈ M1 and x2 ∈ M2. By induction there exists a path

t2 → x
(1)
2 → x

(2)
2 → · · · → x

(k)
2 = x2

of elements of X such that x
(i)
2 x

(i+1)
2 = ±y(i), where y(i) has odd order, for each i.

Thus for each i we have that the images of either t1x
(i)
2 t1x

(i+1)
2 or t1x

(i)
2 (−1M1)t1x

(i+1)
2

have odd order in G. Hence there exists a path in F(G,X) from t = t1t2 to either t1x2

or (−1M1)t1x2. Since the local fusion graphs of PGL2(q) are connected (for q 6= 3) we

may extend this path to either x1x2 or (−1M1)x1x2. In the former case we are done,

whereas in the latter we use Lemma 7.7 to get a path from (−1M1)x1x2 to x1x2 = x.

We have therefore shown that M ≤ StabG(Y ). However, it is certainly the case

that t stabilises a totally singular 2-space of V which is distinct from W , and an

identical argument shows that the corresponding maximal subgroup M ′ ≤ StabG(Y ).

The maximality of either M or M ′ now yields the result.

Corollary 7.31. Let G = PΩǫ
2m(q), where ǫ = ±, q ≡ 3 mod 4, and m ≥ 3, and let

X be a G-conjugacy class of involutions. Then F(G,X) is connected.
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Proof. We have that PΩǫ
2m(q) is a subgroup of index at most 2 in PSOǫ

2m(q), so is

a normal subgroup. If t ∈ X, then the cases when t lies in a maximal split torus

of G are covered by Propositions 7.24 and 7.25. The remaining cases follows from

Proposition 7.30.

7.6 Exceptional and Twisted Groups

To conclude this chapter, we consider the local fusion graphs of the exceptional

and twisted groups of Lie-type, when the defining characteristic is odd. We require

information on the number of involution classes in each case. This is detailed in

Table 7.1, the data for which has been taken from Table 4.5.1 of [39].

Table 7.1: Involutions in Exceptional and Twisted Groups - q odd

Group Involution Classes
G2(q) 1
2G2(q) 1
3D4(q) 1
F4(q) 2
E6(q) 2
2E6(q) 2
E7(q) 3
E8(q) 2

Proposition 7.32. Let G = G2(q),
2G2(q),

3D4(q) or F4(q), where q is odd, and let

t ∈ G be an involution. Then CG(t) is a maximal subgroup of G.

Proof. In [65], descriptions of the maximal subgroups of these group are given, and

it is noted which such subgroups are involution centralisers. The relevant pages are

125, 137, 144 and 159, and we use Table 7.1 to verify this accounts for all involution

classes. We may now apply Lemma 1.20 in each case to deduce the result.

Proposition 7.33. Let G = E6(q),
2E6(q), E7(q) or E8(q), where q is odd. If X is

a G-conjugacy class of involutions, then F(G,X) is connected.
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Proof. In Chapter 4 of [65], explicit representations of these groups are given, along

with descriptions of their maximal split tori. Using this information it is straightfor-

ward to construct involutions which lie in the maximal split tori, and to determine

the dimension of their eigenspaces which correspond to the eigenvalue −1. Since this

dimension must be the same for conjugate involutions, with the help of Table 7.1

we can verify that representatives for each G-conjugacy class of involutions lie in a

maximal split torus. This allows us to apply Theorem 7.2 to complete the proof.



Chapter 8

Groups of Lie-Type over Fields of

Even Characteristic

In this chapter, our goal is to show connectedness of the local fusion graphs of finite,

simple groups of Lie-type, defined over fields of even characteristic. As mentioned in

Chapter 7, Theorem 7.2 is of no use to us in even characteristic, since in this situation

involutions are not semisimple elements. We must therefore adopt a different strategy.

As a first step, we wish to gather together some information regarding the conjugacy

classes of involutions in classical groups in even characteristic.

8.1 Involutions

The material in this section comes almost exclusively from the paper by Aschbacher

and Seitz [5]. Let V be an n-dimensional vector space over Fq, where q is even.

Suppose we have an involution t ∈ SL(V ). The rank of t is defined to be the

dimension of the commutator space [V, t] of t. The following result is well known.

Lemma 8.1. Let x, y ∈ SL(V ) be involutions. Then x and y are conjugate in SL(V )

if and only if they have the same rank.

Now fix an ordered basis for V . Given an integer l such that 1 ≤ l ≤ n/2, we

120
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define the involution jl of SL(V ) to be

jl =





Il

In−2l

Il Il




,

where Im is the m × m identity matrix, and I0 is defined to be the ‘empty’ matrix.

Then jl has rank l, and is referred to as the Suzuki form of its invoution class.

Lemma 8.2. The involutions jl, where 1 ≤ l ≤ n/2, form a complete set of repre-

sentatives for the conjugacy classes of involutions of SL(V ).

Proof. This follows as there are exactly ⌊n/2⌋ possibilities for the rank of an involu-

tion in SL(V ).

We shall also require a further set of representatives for involution classes.

Lemma 8.3. Let H = SL(V ), and for 1 ≤ i ≤ ⌊n/2⌋ define

xi =



 Bi

In−2i



 ,

where Bi is the 2i × 2i matrix with 2 × 2 blocks



 1 1

0 1





along its main diagonal, and zeroes elsewhere. Then

I = {xi : 1 ≤ i ≤ ⌊n/2⌋}

is a complete set of representatives of the conjugacy classes of involutions in H.

Proof. Since the elements of I have distinct ranks, the result follows from Lemma 8.1.

Now suppose that V is a symplectic space, with symplectic form β. If t is an

involution in Sp(V ), we define

V (t) = {v ∈ V : β(v, vt) = 0}.
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Also define E2m to the the 2m× 2m matrix with 1 in the (2i, 2i− 1) and (2i− 1, 2i)

positions, for 1 ≤ i ≤ m, and zeroes elsewhere. We shall make extensive use of the

next result later in this chapter.

Proposition 8.4. Let t be an involution in Sp(V ) with rank l. Then there exists a

basis of V so that β has Gram matrix

J =





F

En−2l

F





in which t = jl and exactly one of the following holds:

(i) l is even, V = V (t) and F = El;

(ii) l is odd, V (t) = 〈ei : i 6= n − l + 1〉, V (t)⊥ = 〈e1〉,

[V (t), t]⊥ = 〈ei : 1 ≤ i ≤ n − l + 1〉,

[V (t), t] = 〈ei : 1 ≤ i ≤ l〉,

F =



 1

El−1



 .

(iii) l is even, V (t) = 〈ei : 1 ≤ i < n〉, V (t)⊥ = 〈e1〉,

[V (t), t]⊥ = 〈ei : 1 ≤ i ≤ n − l + 1〉,

[V (t), t] = 〈ei : 1 ≤ i < l〉,

F =





1

El−2

1 1




.

Proof. See 7.6 of [5].

An involution t ∈ Sp(V ) is said to be in symplectic Suzuki form if the basis for V

is chosen as in Proposition 8.4. We also denote by al, bl and cl the Suzuki forms in

parts (i), (ii) and (iii) of Proposition 8.4.
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Proposition 8.5. Let t and s be involutions in Sp(V ). Then the following are

equivalent:

(i) t is conjugate to s in Sp(V );

(ii) t and s have the same symplectic Suzuki form;

(iii) t and s have the same rank l, and if l is even then V (t) and V (s) have the same

dimension.

Proof. This follows from Proposition 8.4 and the fact that Sp(V ) is transitive on the

set of ordered symplectic bases of V (see [62]).

8.2 Linear Groups

We are now in a position to examine the local fusion graphs of linear groups. Let

H = SLn(q) ∼= SL(V ), where q is even. First we have a lemma concerning our set of

involution representatives I from Lemma 8.3.

Lemma 8.6. Let xi ∈ I be a representative of an H-conjugacy class X, and let x′
i

be equal to xi but with at least one 2×2 block on the diagonal of Bi transposed. Then

xi and x′
i are adjacent in F(H,X).

Proof. Since 

 0 1

1 0







 1 1

0 1







 0 1

1 0



 =



 1 0

1 1



 ,

it is easy to see that there exists an element of H, built up of suitable blocks, which

conjugates xi to x′
i. Furthermore, we have



 1 1

0 1







 1 0

1 1



 =



 0 1

1 1



 ,

which has order 3, and it follows that xix
′
i also has order 3. Hence xi and x′

i are

adjacent in F(H,X).

Theorem 8.7. If H = SLn(q) or GLn(q), and X is an H-conjugacy class of involu-

tions, then F(H,X) is connected.
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Proof. When q is even, any involution of GLn(q) has determinant 1, so lies in SLn(q).

Moreover, it is clear that no involution classes of SLn(q) fuse in GLn(q). Hence it

suffices to prove the result for H = SLn(q). By Lemma 8.3 we have xk ∈ X for some

k. Denote by Y the connected component of F(H,X) which contains xk. Note that

for any y ∈ Y , CH(y) ≤ StabH(Y ). By Proposition 6.16, the set

A = {In + λeij : i 6= j, λ ∈ Fq}

generates H (where the eij are elementary n × n matrices). We claim that if a ∈ A,

then a ∈ CH(y) for some y ∈ Y . Indeed, let a = In + λeij. We may check that a

centralises xk if and only if the i-th column and j-th row of xk contain exactly one

non-zero entry each. If this is not the case, by transposing a suitable 2 × 2 block of

Bi, we obtain an element x′
k which is centralised by a. Moreover, by Lemma 8.6, x′

k

is adjacent to xk in F(H,X), so is certainly in Y . Hence

A ⊆ 〈CH(y) : y ∈ Y 〉 ≤ StabH(Y ).

Since A generates H, we have that H = StabH(Y ). But H acts transitively on X,

implying that Y = X, so F(H,X) is connected.

In preparation for dealing with the simple groups PSLn(q), we require a lemma

regarding GL2(q).

Lemma 8.8. Let K = GL2(q) ∼= GL(V ), and suppose g ∈ K is an element of even

order such that g2 ∈ Z(K). Then g is K-conjugate to an element y such that the

product yyT has odd order.

Proof. Observe that

Z = Z(K) =








 λ 0

0 λ



 : λ ∈ F
∗
q




 ,

and hence |Z| = q−1, which is odd. Let SL2(q) ∼= H ≤ G, and note that Z ∩H = 1.

We therefore have G = ZH. Furthermore, we know that any element of even order
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in H must be an involution. Hence if x ∈ K has even order, then x = zy for some

z ∈ Z and y ∈ H an involution. Thus x2 ∈ Z, so

x2 =



 λ 0

0 λ





for some λ ∈ F
∗
q. Thus the minimal polynomial of x is χ2 + λ.

Now suppose g ∈ K is such that g2 ∈ Z. Then by the above argument g has

minimal polynomial χ2 + α for some α ∈ F
∗
q. Choose v ∈ V such that vg = µw,

where w /∈ 〈v〉 and µ2 = α (this is possible since otherwise g would be diagonalisable,

contradicting our assumption that g has even order). Suppose the scalar µ has

multiplicative order k in Fq. Then by choosing basis B = {v + w, µk−1v} for V , we

see that g has representation

gB =



 µ 1

0 µ



 .

But now

gBgT
B =



 ω2 + 1 ω

ω ω2



 ,

which has minimal polynomial χ2+χ+ω4. Hence gBgT
B cannot have even order. Since

H acts transitively on ordered bases of V , g and y = gB must be H-conjugate.

Lemma 8.9. Let H = SLn(q) ∼= SL(V ), suppose g ∈ H is such that g2 ∈ Z(H).

Then g is H-conjugate to an element

y =



 A2k

λIn−k



 ,

where A is the 2k × 2k matrix with 2 × 2 blocks



 λ 1

0 λ





along its main diagonal and zeroes elsewhere, and λ ∈ F
∗
q.

Furthermore, if y∗ is equal to y but with at least one 2 × 2 block on the diagonal

of A transposed, then y and y∗ are H-conjugate, and yy∗ has odd order.
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Proof. Write Z = Z(G) and note that |Z| = q − 1, which is odd. As g2 ∈ Z, g must

have minimal polynomial χ2 + α for some α ∈ F
∗
q. By choosing a basis for V in a

similar manner to that in the proof of Lemma 8.8, we see that g is GLn(q)-conjugate,

and consequently H-conjugate, to an element y as in the statement of the lemma,

where λ2 = α. Now let y∗ equal y but with one or more blocks of A transposed. Since



 0 1

1 0







 λ 1

0 λ







 0 1

1 0



 =



 λ 0

1 λ



 ,

it follows that y and y∗ are H-conjugate. Furthermore, using Lemma 8.8 and the

fact that |Z| is odd, we see that yy∗ is essentially a direct sum of 2 × 2 blocks, each

of which has odd order. Hence yy∗ also has odd order.

Theorem 8.10. If G = PSLn(q) and X is a G-conjugacy class of involutions, then

F(G,X) is connected.

Proof. Write G = H. Let t ∈ X have preimage t ∈ H. As t is an involution, we must

have t2 ∈ Z. So by the first part of Lemma 8.9, t is H-conjugate to an element

y =



 Ak

λIn−k



 .

Therefore t and y are G-conjugate, so without loss of generality let t = y.

Let

A = {In + λeij : i 6= j, λ ∈ Fq}

be the generating set for H as in Proposition 6.16. As in the proof of Theorem 8.7,

if a ∈ A then a centralises either t or t∗, where t∗ is equal to t but with a suitable

block of A transposed. Hence for each a ∈ A, a centralises either t or t∗. But by

Lemma 8.9, t and t∗ are H-conjugate, so must be their images must be G-conjugate.

Also tt∗ has odd order, so tt∗ must have odd order. Thus t and t∗ are adjacent in

F(G,X).

Therefore 〈A〉 = StabG(Y ), where Y is the connected component of F(G,X)

which contains t. It follows that F(G,X) is connected.
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8.3 Symplectic Groups

Next we address the case of symplectic groups. Let H = Sp2m(q) ∼= Sp(V ). We have

seen previously that Z(H) = {±1}, and so when q is even the centre of H is trivial. It

follows that PSp2m(q) ∼= Sp2m(q) when q is even, and so we can write G = Sp2m(q),

which is a simple group except for the case Sp4(2). This simplifies considerably our

treatment of the local fusion graphs.

Theorem 8.11. If G = Sp2n(q) where q is even, with X a G-conjugacy class of

involutions, then F(G,X) is connected.

Proof. Let V have basis so that β has Gram matrix

J =



 In

In



 .

By Proposition 6.17, G is generated by the set E consisting of matrices of the forms



 In λeii

In



 ,



 In

λeii In



 ,



 In λ(eij + eji)

In



 ,



 In

λ(eij + eji) In



 .

Let t ∈ X, with Y the relevant connected component of F(G,X). By 2.1.16 of [62],

t is G-conjugate to an element

x =



 In A

In



 ,

where

A =



 A′

0





and A′ is either invertible and diagonal, or has blocks



 0 1

1 0




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along its main diagonal. In particular, note every row (and column) of A′ contains

one nonzero entry. Without loss of generality let t = x. Note that tT ∈ G, and that

tT ∈ X since tT has the same symplectic Suzuki form as x, as in Proposition 8.5.

We claim that t and tT are adjacent in F(G,X). Define elements ai ∈ Fq, 1 ≤

i ≤ n, by setting ai to be the nonzero entry in the i-th row of A′ if it exists, and zero

otherwise. Note that at least one of the ai must be nonzero. Now define an element

tJ of GL2n(q) as follows:

tJ =





B1

B2

. . .

Bn





,

where

Bi =



 1 ai

0 1



 .

Consider the product tJtTJ as a direct sum of elements in GL2(q). Each 2 × 2 block

is either I2, or has minimal polynomial χ2 + a2
i χ + 1 where ai 6= 0. We may therefore

apply the argument of Lemma 8.8 to see that tJtTJ has odd order.

Suppose we interchange two rows of t, and then interchange the corresponding

columns. This can be achieved by conjugating t by an invertible matrix r, where r−1 =

rT (indeed, r can be identified with an element of the symmetric group Sym(2n)).

Furthermore, note that t can be transformed into tJ by a series of these operations.

Hence there exists an invertible matrix s, with s−1 = sT , such that sT ts = tJ . Now

consider the product ttT . We have

o(ttT ) = o(s−1ttT s) = o(s−1tss−1tT s)

= o(sT tssT tT s) = o(sT ts(sT ts)T )

= o(tJtTJ ).

Thus ttT has odd order.

Now suppose e ∈ E . By observing the configuration of any element of E , and of

t, it is easily seen that either e ∈ CG(t), or e ∈ CG(tT ). Since both t and tT lie in Y ,
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we have that e ∈ StabG(Y ) for all e ∈ E . But 〈E〉 = G, so G = StabG(Y ). Hence

X = Y , and F(G,X) is connected.

As an immediate corollary, we have the following result concerning orthogonal

groups of odd dimension.

Corollary 8.12. If G = On(q), where n ≥ 5 is odd, q is even, and X is a G-conjugacy

class of involutions. The F(G,X) is connected.

Proof. Write n = 2m + 1. Then since q is even, On(q) ∼= Sp2m(q) (see, for example,

11.9 of [62]), and the result follows from Theorem 8.11.

8.4 Unitary Groups

We now move on to address the case of unitary groups. To begin with, we concentrate

on the case when the dimension is even. Let H = SU2m(q) ∼= SU(V ), where the

unitary form β on V has Gram matrix

J =



 Im

Im



 .

Denote by τ the involutary automorphism of Fq2 associated to β.

Theorem 8.13. If H = SU2m(q) ∼= SU(V ) where q is even, and X is an H-conjugacy

class of involutions, then F(H,X) is connected.

Proof. By Lemma 8.1 and Theorem 7.13, involutions x, y ∈ H are H-conjugate if and

only if they have the same rank. Therefore we may index the H-conjugacy classes

of involutions {Xi}, 1 ≤ i ≤ m, where i is the rank, and for the class Xi choose

representative

xi =



 Im Bi

0 Im





where

Bi =



 Ii

0



 .
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Denote by A the set of matrices of the form



 Im µeii

Im



 ,



 Im

µeii Im



 ,



 Im λeij + λτeji

Im



 ,



 Im

λeij + λτeji Im



 ,

where µ, λ ∈ Fq2 , and µ+µα = 0. By Proposition 6.18 we have H = 〈A〉. Notice that

for every a ∈ A, either a ∈ CH(xi) or a ∈ CH(xT
i ). Since xi, xT

i are H-conjugate, and

xix
T
i has odd order (as in the proof of Theorem 8.11), the result follows.

Now suppose H = SU2m+1(q) where n is odd, and choose basis so that the unitary

form has Gram matrix

J =





Im

Im

1




.

Theorem 8.14. If G = SU2n+1(q), and X is an H-conjugacy class of involutions,

then F(H,X) is connected.

Proof. Let A′ be our set of generators from the even dimension case, considered as

elements of H in the obvious way. Then A′ generates a subgroup K ≤ H, where

K ∼= SU2m(q). Notice that K stabilises a non-degenerate 2m-space W of V . By

Theorem 6.11, K lies in a unique maximal subgroup M ≤ H, where M = StabH(W ),

and

SU2m(q) × SU1(q) ≤ M ≤ GU2m(q) × GU1(q).

Let α ∈ Fq2 be such that α + ατ = 1, and define

y =





In αe11 e11

In

e11 1




∈ SU2n+1(q),

where e11 is the elementary n×n matrix with 1 in position (1, 1). This element does

not stabilise W , so by the maximality of M we have H = 〈H, y〉.
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As in the 2m-dimensional case there are n conjugacy classes of involutions which

we may index by rank. For the class Xi choose representative

xi =





Im Bi

Im

1





where

B =



 Ii

0



 .

We have that xi ∈ K for all i, and so if Y is the connected component of F(H,Xi)

which contains xi, the by Theorem 8.13 we have K ≤ StabH(Y ). But also note that

y ∈ CH(xi) for all i. Hence H = 〈K, y〉 ≤ StabH(Y ), as required.

The case of the projective unitary groups now follows very quickly, using a result

of Dye.

Theorem 8.15. If G = PSUn(q) and X is a G-conjugacy class of involutions, then

F(G,X) is connected.

Proof. By Theorem 3 of [33] the conjugacy classes of involutions of G are in one to

one correspondence with those of H. The result now follows from Theorems 8.13

and 8.14.

8.5 Orthogonal Groups

Recall from Chapter 6 that an orthogonal group O(V ) preserves a non-singular

quadratic form Q : V → Fq, and that Q defines a non-degenerate, symmetric, bi-

linear form β on V which O(V ) also preserves. Suppose now that q is even. By

Corollary 8.12 we need only consider the case where n = 2m. Let v ∈ V be any

vector. Then

β(v, v) = 2Q(v) = 0,



CHAPTER 8. GROUPS OF LIE-TYPE: EVEN CHARACTERISTIC 132

and so β must be an alternating form. Hence, when q is even, we have O2m(q) ≤

Sp2m(q). In particular, every orthogonal group in even characteristic must have trivial

centre (when m ≥ 3), and its elements must have determinant 1.

Theorem 8.16. If G = Ω−
2m(q) ∼= Ω−(V ), where m ≥ 3, and X is a G-conjugacy

class of involutions, then F(G,X) is connected.

Proof. Let t ∈ X be an involution, with Y the connected component of F(G,X)

which contains t, and let r be the dimension of the fixed space W of t in V . From [32]

we have that m ≤ r ≤ 2m− 1. As the Witt index of G is equal to m− 1, there must

exist w ∈ W such that Q(w) 6= 0. Therefore t fixes a non-singular 1-space of V .

Let M = StabG(w). By Theorem 6.15 we have that M is a maximal subgroup of

G, and

Ω2m−1(q) × Ω1(q) ≤ M ≤ O2m−1(q) × O1(q).

Since the elements of our orthogonal groups have determinant 1, and Corollary 8.12

yields O2m−1(q) ∼= Sp2m−2(q), we deduce that M ∼= Sp2m−2(q). Now Theorem 8.11

tells us that M ≤ StabG(Y ). We wish to show that t fixes another non-singular 1-

space of V . If r ≥ m+1, then this is clear, so suppose r = m. Then there must exist

u ∈ W such that Q(u) = 0. Now t fixes λu+w, where λ ∈ Fq, and since Q(λu+w) =

λ2Q(u) + λβ(u,w) + Q(w) we can choose λ so that λu + w is non-singular. Hence

t does indeed fix another non-singular vector of V , and t therefore lies in another

maximal subgroup, M ′ say, also isomorphic to Sp2m−2(q). Thus M ′ ≤ StabG(Y ).

But M is maximal, so 〈M,M ′〉 = G, and we have G = StabG(Y ). It follows that

F(G,X) is connected.

Theorem 8.17. Let G = Ω+
2m(q), where m ≥ 3 is odd, and let X be a G-conjugacy

class of involutions. Then F(G,X) is connected.

Proof. We use the notation from the previous proof. In this case the Witt Index of

G is equal to m. However, using [32] we have m + 1 ≤ r ≤ 2m− 1. By arguing as in

the proof of Theorem 8.16, we see that t fixes two distinct non-singular 1-spaces of V ,

and thus lies in distinct maximal subgroups M and M ′, both of which are isomorphic

to Sp2m−2(q). As previously, the result follows.
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Theorem 8.18. Let G = Ω+
2m(q), where m ≥ 4 is even, and let X be a G-conjugacy

class of involutions. Then F(G,X) is connected.

Proof. Let t ∈ X. If Rank(t) < m, then t stabilises a non-singular 1-space of V , and

we may argue as in the proof of Theorem 8.16. However, we must be careful when

Rank(t) = m. Since G ≤ Sp2m(q), we make use of Proposition 8.4. Adopting its

notation, we see that in this case t is either of type am or cm. Firstly, let t = am, and

let V have basis {x1, . . . , x2m}. Then

t =



 Im 0

Im Im





and the symplectic form on V has Gram matrix

J =



 0 F

F 0





where F is the m×m matrix with 1 in the (2i, 2i− 1) and (2i− 1, 2i) positions and

0 elsewhere. Furthermore, by 8.2 of [5] we have that Q(xi) = 0 for 1 ≤ i ≤ 2m.

Let O = {1 ≤ i ≤ 2m : i odd}, and E = {1 ≤ j ≤ 2m : j even}. Let

W = 〈xi : i ∈ O〉, and W ′ = 〈xj : j ∈ E〉. Certainly it is the case that V = W ⊕ W ′,

and both W and W ′ are totally singular. Furthermore, t fixes both W and W ′.

Thus t ∈ StabG(W ⊕ W ′) = M1. By Theorem 6.14 we have that M1
∼= H : 2,

where H ∼= GLm(q), and the outer automorphism is an involution σ which has the

effect of swapping W and W ′. As t fixes both W and W ′, we deduce that t ∈ H.

Now Theorem 8.7 implies that H ≤ StabG(Y ). Also, since σ swaps W and W ′, the

dimension of the fixed spaces of t and tσ are the same. Proposition 8.4 now tells us

that t and tσ are H-conjugate, which yields σ ∈ StabG(Y ), and so M1 ≤ StabG(Y ).

We now partition {1, . . . , 2m} into four subsets, by defining

I1 = {1, . . . ,m/2},

I2 = {m/2 + 1, . . . ,m},

I3 = {m + 1, . . . , 3m/2},

I4 = {3m/2 + 1, . . . , 2m}.
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Note that this is possible since m is even. Now define

U = 〈xi, xj, xk, xl : i ∈ I1 ∩ O, j ∈ I3 ∩ O, k ∈ I2 ∩ E, l ∈ I4 ∩ E〉

and

U ′ = 〈xi, xj, xk, xl : i ∈ I1 ∩ E, j ∈ I3 ∩ E, k ∈ I2 ∩ O, l ∈ I4 ∩ O〉.

Once more we have that V = U ⊕ U ′, both U and U ′ are totally singular, U t = U

and (U ′)t = U ′. Hence t ∈ M2, where M2
∼= M1 and M2 6= M1. Arguing as above we

see that M2 ≤ StabG(Y ), and so 〈M1,M2〉 ≤ StabG(Y ). But M1 is maximal (as is

M2), so the result follows.

The other possibility is that t = cm. Then

t =



 Im 0

Im Im





and the symplectic form on V has Gram matrix

J =



 0 F

F 0



 ,

where

F =





1

Em−2

1 1





and Em−2 is the (m − 2) × (m − 2) matrix with 1 in the (2i, 2i − 1) and (2i − 1, 2i)

positions and 0 elsewhere. We can see from this description that t stabilises a non-

degenerate 4-space, namely

U = 〈x1, xm, xm+1, x2m〉.

Thus, using Theorem 6.15 with further details gleaned from [50], t lies in a maximal

subgroup

M1
∼= (L1 × L2) : 2 = (Ω+

4 (q) × Ω+
2m−4(q)) : 2,

where the outer automorphism is r = r1r2, a product of reflections in non-singular

vectors in U and U⊥, respectively. We wish to show that without loss of generality t

can be chosen to lie in the base group L = L1 × L2.



CHAPTER 8. GROUPS OF LIE-TYPE: EVEN CHARACTERISTIC 135

Let h1 ∈ L1, h2 ∈ L2 be involutions of type c2 and cm−2 repectively, and let

s = h1h2. Then s is an involution of G of rank 2 + (m− 2) = m. However, we do not

yet know the type of s. Recall from Section 8.1 that

V (s) = {v ∈ V : β(v, vs) = 0}.

This is a subspace of V of codimension 0 or 1. Since, for example, h2 is of type cm−2,

we see from Proposition 8.4 that V (h2) has codimension 1. Now, since V = U⊕U⊥, it

is easy to see that V (s) must also have codimension 1. But now using Proposition 8.4

once more we see that this implies that s is G-conjugate to an involution of type cm,

so is therefore conjugate to t. Thus without loss we may take t = s.

From Proposition 2.9.1 of [50] we have that

Ω+
4 (q) ∼= PSL2(q) × PSL2(q),

which has connected local fusion graphs by Theorem 3.1 and Lemma 1.18. Using

Lemma 1.18 again, and induction, we now have that L ≤ StabG(Y ). We next show

that r ∈ StabG(Y ), whence M1 ≤ StabG(Y ). It suffices to show that r does not fuse

tL with another class of H. As r fixes U and U⊥, the problem reduces to showing

non-fusion in the relevant classes of L1 and L2.

Suppose r2 is the reflection in some non-singular vector v ∈ U⊥. Then by definition

we have

xr2 = x − β(x, v)

Q(v)
v,

for all x ∈ U⊥, which in even characteristic simplifies to

xr2 = x + β(x, v)v.

We observe from this that r2 fixes U pointwise. Similarly, r1 will fix U⊥ pointwise.

Thus when considering L2, say, we need only consider the effect of conjugation by r2.

Consider h2 ∈ L2. As the rank is invariant under conjugation, the only possibility

for fusion is that hr2
2 = h′

2 where h′
2 has type am−2. Then h′

2 stabilises a decomposition

U⊥ = W ⊕ W ′, where both W and W ′ are totally singular subspaces of dimension

m − 2, and so h2 must stabilise the decomposition W r2 ⊕ (W ′)r2 . Since elements G
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preserves Q, W r2 and (W ′)r2 must also be totally singular. But this shows that h2

has type am−2, a contradiction. Applying the same reasoning to the subgroup L1, we

have that r does not fuse the relevant classes of L. Thus M1 ≤ StabG(Y ).

Now note that t stabilises another non-degenerate 4-space, for example

U ′ = 〈x1, xm, xm+1, x2m−1〉,

and thus lies in a maximal subgroup M2 such that M2 6= M1. We may apply the same

argument as above to show that M2 ≤ StabG(Y ), and so G = 〈M1,M2〉 ≤ StabG(Y ).

Hence F(G,X) is connected.

8.6 Exceptional and Twisted Groups

To conclude our investigations into the local fusion graphs of finite groups of Lie-type,

we must consider the exceptional and twisted groups of Lie-type in even characteristic.

The Suzuki groups are straightfoward to deal with.

Proposition 8.19. If G = Sz(q) ∼= 2B2(2
2n+1), with X a G-conjugacy class of

involutions, then F(G,X) is connected, and Diam(F(G,X)) = 2.

Proof. This succinct proof is due to Ben Fairbairn. From [60] we have that G contains

just a single class of involutions, and that if x, y ∈ X then either x and y commute,

or the product xy has odd order. Furthermore, if x ∈ P where P ∈ Syl2(G), then

CG(x) ≤ P . Also, the number of involutions which lie in P is q−1. We therefore have

that |X \∆1(x)| = q−1. Since |X| > 2(q−1), the result follows by Lemma 1.16.

Table 8.1 lists the number of involution classes of the remaining exceptional and

twisted groups. This data is taken from [5].

Recall from Theorem 6.9 that in the majority of cases, if G(qr) is a finite group of

Lie-type defined over the field Fqr where r is prime, then G(q), the group of the same

type defined over Fq, is a maximal subgroup of G(qr). We shall need the following

two lemmas regarding involutions and their centralisers.
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Table 8.1: Involutions in Exceptional and Twisted Groups - q even

Group Involution Classes
G2(q) 2
3D4(q) 2
F4(q) 4

2F4(2)′ 2
2F4(q) 2
E6(q) 3
2E6(q) 3
E7(q) 5
E8(q) 4

Lemma 8.20. Let G = G(2r) be an exceptional or twisted group of Lie-type, with X

a G-conjugacy class of involutions. Then there exists t ∈ X such that t ∈ H, where

H is the subgroup of G naturally isomorphic to G(2).

Proof. In [5], representatives for every involution class in each exceptional or twisted

group are given, in terms of products of involutions from commuting root groups.

Since each of these involutions is defined using only the base field F2, these represen-

tatives lie in H.

Lemma 8.21. Let G = G(qr) be an exceptional or twisted group of Lie-type where

q is even, and suppose that r is prime. Write H for the subgroup of G which is

isomorphic to G(q). If t ∈ G is an involution, then CG(t) 6≤ H.

Proof. Again we refer the representatives given in [5] in terms of root groups. Each

of these root groups is isomorphic to the additive group of the field Fqr , and contains

elements which do not lie in H. Since the root groups are abelian, and commute,

such elements lie in CG(t).

Theorem 8.22. Let G be a finite, simple, exceptional or twisted group of Lie-type,

defined over a field of even characteristic. If X is a G-conjugacy class of involutions,

then F(G,X) is connected.

Proof. First suppose that q = 2. In this case we can verify the result computation-

ally, using Magma. For G2(2)′, 3D4(2), F4(2), 2F4(2)′, 2F4(q), E6(2) and 2E6(2)
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the complex character tables are known, so we may apply the method described in

Chapter 5 for the sporadic simple groups. We can also check the case G2(2) using

this method, in preparation for what follows.

For E7(2) and E8(2) we do not have access to the character tables. However,

representations of both groups are stored on the online Atlas [1], where we are given

matrices a, b such that G = 〈a, b〉. By using the command Random to find elements

of G with even order, and then taking an appropriate power, we can find involutions

from each conjugacy class of G, distinguishing them using fixed space dimension and

Table 8.1. Now, for each representative involution t ∈ G, we use random conjugation

to find elements x1, x2, x3, x4 ∈ X = tG such that txi has odd order for i = 1, . . . , 4,

xa
1 = x3 and xb

2 = x4. Hence a, b ∈ StabG(Y ), and since G = 〈a, b〉 we have that

F(G,X) is connected. Representatives for suitable elements to use in this process

are available from the author on request.

Now suppose G = G(2r) where r ≥ 2, and write r = r1r2 · · · rk as a product of

primes. We proceed by induction on k. If k = 1 then by Lemma 8.20 we may choose

t ∈ X ∩ H, where H ∼= G(2). By the treatment of the cases above we have that

H ≤ StabG(Y ). Clearly we also have CG(t) ≤ StabG(Y ). But Lemma 8.21 implies

that CG(t) 6≤ H, and since r1 is prime, by Theorem 6.9 H is a maximal subgroup of

G, we deduce that 〈H,CG(t)〉 = G, and so F(G,X) is connected.

If k ≥ 2, then let H ≤ G be such that H ∼= G(2r1···rk−1). Using induction,

Lemmas 8.20 and 8.21 we again have that 〈H,CG(t)〉 ≤ StabG(Y ), and since rk is

prime the maximality of H yields G = StabG(Y ), as required.



Chapter 9

Coprimality Graphs of Symmetric

Groups

Thus far we have concentrated our study exclusively on local fusion graphs, where our

vertex set consists of a conjugacy class of involutions. We now broaden our horizons,

and consider coprimality graphs Cp′(G,X), where G is a symmetric group and X is

a conjugacy class of elements of prime order p. Our aim is to find bounds on the

diameter of Cp′(G,X). This turns out to be considerably more challenging than in

the local fusion graph case. To determine whether or not Cp′(G,X) is connected,

there is the following result.

Theorem 9.1 (Rowley). Suppose that G = Sym(n) and that x is an element of order

p, p a prime. Let X be the G-conjugacy class of x. Then Cp′(G,X) is connected unless

n = 4 and x has cycle type 22.

Further to this are our results concerning the diameters of our coprimality graphs.

Theorem 9.2. Suppose that G = Sym(n) and X is the G-conjugacy class of a p-

cycle where p is an odd prime. Then Diam(Cp′(G,X)) = 2 unless n = 3 = p when

Diam(Cp′(G,X)) = 1.

Theorem 9.3. Suppose that G = Sym(n) and X is the G-conjugacy class of elements

of cycle type pr, where p is an odd prime. If r <
√

p, then Diam(Cp′(G,X)) ≤ 5.

139
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Theorem 9.4. Suppose that G = Sym(n) and X is the G-conjugacy class of elements

of cycle type pr, where p ≥ 5 is prime. Let k be the least non-negative integer such

that r/2k ≤ ⌊√p⌋. Then Diam(Cp′(G,X)) ≤ 5 + k.

We begin by proving Theorem 9.2, as the proofs of Theorem 9.3 and Theorem 9.4

rely upon this result. As was the case when dealing with sporadic groups in Chapter 5,

the class structure constants are of use to us. Suppose that G = Sym(n), where n ≥ 5,

and let X be the G-conjugacy class of t, an element of prime order p. Furthermore,

suppose that p = n, n − 1 or n − 2. From our assumption on n, if x ∈ X and

x 6= t, then x lies outside ∆1(t) if and only if o(tx) = p, so if and only if tx ∈ X

(note that tx must be an even permutation, so cannot be a product of a p-cycle

and a transposition). If we can count the number of such elements, and show that

it is not greater than |X|/2, then by Lemma 1.16 Cp′(G,X) will be connected, and

Diam(Cp′(G,X)) ≤ 2. By applying the formula for the class structure constants, we

have an expression for this number, namely

|X − ∆1(t)| =
|X|2
|G|

∑

χ∈Irr(G)

χ(t)χ(t)χ(t)/χ(1)

=
|G|

|CG(t)|2
∑

χ∈Irr(G)

χ(t)

χ(1)
|χ(t)|2.

The study of these cases therefore reduce to the study of the character table of the

symmetric group. Fortunately, an extensive theory exists on this topic. We briefly

summarise the results which we require, and for a detailed treatment refer the reader

to [58].

9.1 Representation Theory of the Symmetric Group

Let n ∈ N. A partition of n is a sequence

λ = (λ1, λ2, . . . , λk)

where the λi are weakly decreasing and
∑k

i=1 λi = n. The partitions of n are in one

to one correspondence with the complex irreducible representations of the symmetric
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group Sym(n). To each partition λ we associate a Young diagram Dλ, consisting of n

cells and k rows, left justified, with the length of row i equal to λi. For example, for

the partition (5, 4, 4, 2, 1) of 16, the corresponding Young diagram is shown below.

If (i, j) is a cell in the diagram Dλ of a partition λ, the hook Hi,j is defined as

Hi,j = {(i, j′) : j′ ≥ j} ∪ {(i′, j) : i′ ≥ i}.

We define the corresponding hook length as hi,j = |Hi,j|. To illustrate, for our previous

example, the hook H1,1 is shaded, which has hook length h1,1 = 9.

We may now state the first of our required results, known as the ‘hook formula’.

Theorem 9.5 (Frame, Robinson, Thrall). Let λ be a partition of a natural number

n, with χλ the character afforded by the corresponding irreducible representation of

Sym(n). Then

χλ(1) =
n!∏

(i,j)∈Dλ
hi,j

.

Again, we illustrate using our previous example. The length of each hook is

displayed below.
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Now, the hook formula yields

χλ(1) =
16!

9 · 72 · 6 · 52 · 42 · 32 · 22 · 14
= 549120.

Let Hi,j be a hook in the Young diagram associated with some partition λ. Then

the rim hook Ri,j is obtained by projecting Hi,j along diagonals onto the lower-right

boundary of our diagram. Note that |Ri,j| = |Hi,j| = hi,j. The leg length of Ri,j is

defined as

ll(Ri,j) = (number of rows of Ri,j) − 1.

For our example, the rim hook R1,1 is shown, for which ll(R1,1) = 4.

Observe that if hi,j < n, and we remove the rim hook Ri,j from the diagram Dλ, what

remains is a Young diagram associated with some partition of n − hi,j. We denote

this new diagram by Dλ \ Ri,j.

For a conjugacy class K of Sym(n), we can naturally associate a partition of n

with K via the cycle type of elements of K. We are now in a position to state the

second of our required results, a combinatorial rule for calculating the values of irre-

ducible characters of the symmetric group.

The Murnaghan-Nakayama Rule

Let λ be a partition of n, with corresponding irreducible character χλ of Sym(n).

Let σ ∈ Sym(n) have cycle type with associated partition µ = (µ1, µ2, . . . , µr) of n.

We generate a branch B, and a corresponding value cB ∈ {−1, 0, 1}, by using the

following iterative procedure.

Initially, set c0 = 1 and Dλ0 = Dλ. For k ≥ 1, the k-th step is as follows:

1. If Dλk−1
consists of zero cells, set cB = ck−1, and stop.
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2. If possible, remove a rim hook Rk of length µk from Dλk−1
, such that Dλk−1

\Rk

is a Young diagram, or consists of zero cells. If this is not possible, set cB = 0,

and stop.

3. Set ck = (−1)ll(Rk) · ck−1, and Dλk
= Dλk−1

\ Rk.

When applying this rule, at each step, different choices of rim hook removal yield

distinct branches. The totality of these branches (those generated by all possible valid

combinations of rim hook removals) can be considered to form a tree T associated

with the pair (λ, µ). We have the following result.

Theorem 9.6 (Murnaghan-Nakayama). With the set-up as above, we have

χλ(σ) =
∑

B

cB,

where the sum runs over all distinct branches B of T .

We illustrate the Murnaghan-Nakayama rule with an example. Let n = 10, with

partition λ = (5, 3, 1, 1), and let σ ∈ Sym(n) have cycle type 5.2.2.1. The tree we

generate is as follows:
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So for this example we have two branches to sum over, yielding χλ(σ) = 1 + 0 = 1.

9.2 Applying Representation Theory

We now use the representation theory of the symmetric group to prove results about

certain coprimality graphs. In particular, we examine the cases where p = n, n − 1

or n − 2. Firstly, we require some further results on Young diagrams.

Lemma 9.7. Let T be a Young diagram consisting of n cells, and let k > n/2. Then

there is at most one way of removing a rim hook of length k from T .

Proof. Suppose we have a way of removing a rim hook R1 of length k from T . After

removal, a diagram of n − k cells remains, which we denote T1. Let r and r1 be the

lengths of the top rows of T and T1 respectively. Similarly, denote by c and c1 the

lengths of the first columns.

Note that since k > n/2, either r > r1, c > c1, or both. Firstly, suppose both

hold. Then clearly R1 is maximal in the sense that any other rim hook which can be

removed from T is of length less than k. Thus R1 is our only choice.

Suppose now that either r = r1 or c = c1. Since if necessary we may just reflect the

diagram in the main diagonal, without loss of generality we may assume c = c1. Let

H1,j be the hook from which R1 is projected, based at position (1, j) in T . Suppose

there exists another possible choice of rim hook, labelled R2, with corresponding

diagram T2.

Any projection of a hook H1,j−d, where d ≥ 1, will have length greater than k,

so is not suitable. Also, a projection of a hook Hi,j, where i > 1 and j > 1, will
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have length less than n/2 < k, again unsuitable. Thus R2 must project from some

position (i, 1) where i > 1.

Note that R1 and R2 must intersect nontrivially, since otherwise

|T | ≥ |R1| + |R2| = 2k > n,

a contradiction. Since R1 projects from (1, j), and R2 projects from (i, 1), R1 ∩

R2 must intersect in the empty set with both the first row and first column of T .

Consequently we have |T1 ∩ T2| ≥ |R1 ∩ R2|. Thus

|T | = |R1 ∪ R2| + |T1 ∩ T2| ≥ |R1 ∪ R2| + |R1 ∩ R2| = 2k > n,

another contradiction. Therefore R1 is the only suitable choice of rim hook.

Lemma 9.8. Let χS be the complex character of Sym(n) associated to a diagram S,

and let χT be the complex character of Sym(n−k) associated to the diagram T , where

T is obtained by removing a rim hook of length k from S, where k > n/2. Assume

χS and χT are both nonlinear. Then χS(1) ≥ 2χT (1).

Proof. We use the Murnaghan-Nakayama rule to calculate χS(1). Denote by R the

rim hook which we remove from S to obtain T .
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Denote by rT and rS the lengths of the top rows of T and S repectively. Similarly

denote by cT and cS the lengths of the first columns. As k > n/2, note that either

rS > rT , cS > cT , or both. The first step in calculating χS(1) is to remove a single

cell rim hook from S. Clearly it is possible to remove this cell from R.

We now consider the following three cases: either rS 6= rT + 1 or cS 6= cT + 1

and R is not a single row (or column); both rS = rT + 1 and cS = cT + 1; or R

consists of only a single row (or column). First, suppose that either rS 6= rT + 1 or

cS 6= cT + 1, and that R does not consist only of a single row (or column). Then we

have at least two choices of single cell rim hook removal from R. For each choice,

we are able to continue to remove single cells from R until the diagram T remains.

The value we calculate from this point onwards is χT (1). But now, the details of the

Murnaghan-Nakayama rule yield χS(1) ≥ 2χT (1).

Suppose now that rS = rT + 1 and cS = cT + 1 (this situation can only occur

when n ≤ 9).

It is clear from the figure that after our first removal we have two choices of single

cell removal. Arguing as above, we again have χS(1) ≥ 2χT (1).

Finally, suppose that R consists of only a single row (or column). Note that since

χT and χS are both non-linear, T must have at least two rows (or columns).

In this case we use the hook formula, which yields

χT (1) =
(n − k)!∏
(i,j)∈T hT

i,j

and

χS(1) =
n!∏

(i,j)∈S hS
i,j

,
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where hT
i,j denotes the length of the hook based at (i, j) in the diagram T , and hS

i,j

the length of the hook based at (i, j) in the diagram S. By observing the position of

the subdiagram T ′ in both T and S, we see that

χT (1) =
(n − k)(n − k − 1) · · · (|T ′| + 1)∏

(i,j)∈T\T ′ hT
i,j

· B

and

χS(1) =
n(n − 1) · · · (|T ′| + 1)∏

(i,j)∈S\T ′ hS
i,j

· B,

where

B =
|T ′|!∏

(i,j)∈T ′ hT ′

i,j

.

We must therefore show that

n(n − 1) · · · (|T ′| + 1)∏
(i,j)∈S\T ′ hS

i,j

≥ 2 · (n − k)(n − k − 1) · · · (|T ′| + 1)∏
(i,j)∈T\T ′ hT

i,j

.

Note that as k > n/2 and χT is non-linear, rT < k − 1. Hence we have

hT
1,rT

≥ hS
1,rT +k,

hT
1,rT−1 ≥ hS

1,rT +k−1,

...

hT
1,1 ≥ hS

1,k+1.

Also

hS
1,1 ≤ n,

hS
1,2 ≤ n − 2, (as χT is non-linear)

hS
1,3 ≤ n − 3,

hS
1,4 ≤ n − 4,

...

hS
1,k−1 ≤ n − k + 1.

Finally, note that hS
1,k = rT + 1 ≤ (n − 1)/2. Indeed,

n − 1 ≥ rT + k > rT + rT + 1 = 2rT + 1,
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so n − 1 ≥ 2rT + 2. Hence we have

n(n − 1) · · · (|T ′| + 1)∏
(i,j)∈S\T ′ hS

i,j

≥ 2 · (n − k)(n − k − 1) · · · (|T ′| + 1)∏
(i,j)∈T\T ′ hT

i,j

,

as required.

Lemma 9.9. Let G = Sym(n), and let X be a conjugacy class of k-cycles in G,

where k > n/2. Then for a non-linear complex irreducible character χ of G we have

|χ(x)| ≤ χ(1)/2

for all x ∈ X.

Proof. By the Murnaghan-Nakayama rule, the first step in calculating χ(x) is to

remove a rim hook of length k (if possible) from the diagram T associated with χ. If

this is not possible, then χ(x) = 0, and the result clearly holds. Therefore suppose it

is possible. Then by Lemma 9.7, there is only one way to do this.

If k = n, then clearly χ(x) = ±1, and the result follows since χ is non-linear.

So now suppose k < n. After removing our rim hook of length k, the Murnaghan-

Nakayama rule tells us to remove single cell rim hooks from the remaining diagram

T ′ in all possible ways. However, the hook formula also yields this value. Thus

χ(x) = ± (n − k)!∏
(i,j)∈T ′ hT ′

i,j

= ±χT ′(1)

where χT ′ is the character of Sym(n − k) associated with T ′. But T ′ was obtained

from T by removing a rim hook of length k > n/2. Hence Lemma 9.8 implies

χ(1) ≥ 2χT ′(1). Thus |χ(x)| ≤ χ(1)/2.

We are now in a position to apply our results to obtain information about our

graphs in the cases when p = n, n − 1 and n − 2.

Theorem 9.10. Let G = Sym(n), where n ≥ 5, and let X be a conjugacy class

of p-cycles in G, where p = n, n − 1 or n − 2. Then Cp′(G,X) is connected and

Diam(Cp′(G,X)) = 2.
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Proof. When n < 15 we can check directly using Magma [18], so suppose n ≥ 15.

Let t = (1, 2, . . . , p) be our base point. As observed previously, since p = n, n − 1 or

n− 2, x ∈ X lies outside ∆1(t) if and only if o(tx) = p, so if and only if tx ∈ X. The

class structure constants yield the following:

|X − ∆1(t)| =
|X|2
|G|

∑

χ∈Irr(G)

χ(t)χ(t)χ(t)/χ(1)

=
|G|

|CG(t)|2
∑

χ∈Irr(G)

χ(t)

χ(1)
|χ(t)|2.

Since G′ ∼= Alt(n), we have [G : G′] = 2, so G has exactly two linear characters. Also,

since p is odd, χ(t) = 1 for both of these characters. Denote by Irr(G)∗ the set of

non-linear irreducible characters of G. Then

∑

χ∈Irr(G)

χ(t)

χ(1)
|χ(t)|2 = 2 +

∑

χ∈Irr(G)∗

χ(t)

χ(1)
|χ(t)|2.

By Lemma 9.9, for non-linear χ ∈ Irr(G) we have |χ(t)|/χ(1) ≤ 1/2. Furthermore, as

n ≥ 15 we have p ≥ 13, and there are at least 11 non-zero character values on X, and

so at least 4 negative character values on X (this can be easily verified by considering

possible Young diagrams and using the Murnaghan-Nakayama rule). Hence we may

write

∑

χ∈Irr(G)

χ(t)

χ(1)
|χ(t)|2 ≤ 2 +

1

2




∑

χ∈Irr(G)∗

|χ(t)|2 − 4





=
1

2

∑

χ∈Irr(G)∗

|χ(t)|2.

Next, we apply column orthogonality, remembering that G has exactly two linear

characters.

1

2

∑

χ∈Irr(G)∗

|χ(t)|2 =
1

2
(|CG(t)| − 2)

=
|CG(t)|

2
− 1

<
|CG(t)|

2
.

Therefore

|X − ∆1(t)| <
|G|

|CG(t)|2 · |CG(t)|
2

=
|X|
2

.
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By Lemma 1.16, the result follows.

In certain cases we can go further, and obtain an exact expression for the size of

the second disc.

Proposition 9.11. Let G = Sym(p), where p is a prime, p ≥ 7. Write p = 2m + 1.

Let X be the conjugacy class of p-cycles, with t = (1, 2, . . . , p). Then the number of

elements x ∈ X for which tx is a p-cycle is given by the following:

|∆2(t)| =
2D

p
− 1,

where

D = (p − 1)! − (p − 2)! + (−1)22!(p − 3)! + (−1)33!(p − 4)! + · · ·

· · · + (−1)m−1(m − 1)!(p − m)! + (−1)m 1

2
m!(p − m − 1)!.

Proof. Notice that (under the present hypotheses) the number of elements x ∈ X for

which tx is a p-cycle is precisely |∆2(t)| in Cp′(G,X). From Theorem 9.10 we have

that Cp′(G,X) is connected and has diameter 2, and that

|∆2(t)| + 1 =
|G|

|CG(t)|2
∑

χ∈Irr(G)

χ(t)

χ(1)
|χ(t)|2.

Furthermore, after a moment’s consideration we deduce that χ(t) = ±1 for exactly

p irreducible characters (the ‘L-shaped’ diagrams, so those consisting of at most one

row and one column), with the remainder yielding 0 on X. We use the hook formula

to calculate χ(1) for each of these contributing characters.

Starting from the diagram of one single row, and adding one cell to the first

column (and removing one cell from the top row) each time, the hook formula yields

the following character degrees:

1, p − 1,
(p − 1)(p − 2)

2
,
(p − 1)(p − 2)(p − 3)

3 · 2 , . . . ,
(p − 1) · · · (p − r)

r!
, . . . ,

where the sequence is symmetric around the (m + 1)-th term. We also note that

diagrams with an odd number of rows yield a character value of 1, while those with

an even number of rows yield −1. Putting all this information together, along with

the observations that |G| = p! and |CG(t)| = p, gives us the desired expression for

|∆2(t)|.
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9.3 Products of Permutations

Our aim in this section is to analyse in more detail what happens when we multiply

two permutations. In particular, we are interested in the consequences of minor

adjustments in the cycles of the permutations. First, however, we deal with the

simple case of disjoint p-cycles.

Proposition 9.12. Suppose G = Sym(n), and t is a p-cycle where p ≥ 3 is prime.

Let X = tG. If x ∈ X is disjoint from t, then there exists y ∈ X with d(t, y) =

d(y, x) = 1 in Cp′(G,X).

Proof. Without loss of generality we assume

t = (1, 2, . . . , p)

and

x = (p + 1, p + 2, . . . , 2p).

Take

y = (1, 2, . . . , p − 2, p + 1, p + 2) ∈ X.

Then

ty = (1, 3, 5, . . . , p − 2, p − 1, p, 2, 4, 6, . . . , p − 3, p + 1, p + 2)

and

yx = (1, 2, . . . , p − 2, p + 2)(p − 1)(p)(p + 1, p + 3, p + 4, . . . , 2p).

Hence ty has order p + 2 and yx has order p − 1, so proving the result.

Suppose x ∈ Sym(Ω), and that α ∈ Ω. We recall that Ox(α) denotes the 〈x〉-orbit

which contains α. The following lemma is the key to proving Theorems 9.2, 9.3 and

9.4.

Lemma 9.13. Let G = Sym(n), with x, y ∈ G distinct elements of order at least

3. Denote by Ω the set upon which G acts naturally. Suppose there exist distinct

α, β, γ ∈ Ω such that β, γ ∈ Oy(α) but β, γ /∈ Oxy(α).
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(i) If γ /∈ Oxy(β), then there exists z ∈ G, where 〈z〉 has the same orbits on Ω as

〈y〉, such that |Oxz(α)| = |Oxy(α)| + |Oxy(β)| + |Oxy(γ)|.

(ii) If γ ∈ Oxy(β), then there exists z ∈ G, where 〈z〉 has the same orbits on Ω as

〈y〉, such that |Oxz(α)| = |Oxy(α)|+c and |Oxz(γ)| = |Oxy(γ)|−c, where c ≥ 1.

(iii) If |Oy(α) ∩ (Oxy(α) ∪ Oxy(β))| = m, where m ≥ 4, then there exist

M = (m − 1)(m − 2)/2

distinct elements z1, . . . , zM , which can be created by an application of (ii),

where for 1 ≤ i ≤ M each 〈zi〉 has the same orbits on Ω as 〈y〉. Moreover,

there exist natural numbers c1 < c2 < · · · < cm−2, along with c0 := 0, such that

{|Oxzk
(α)| : 1 ≤ k ≤ M} = {ci − cj : 0 ≤ j < i ≤ m − 2},

and this set has cardinality at least m − 2.

Proof. Without loss of generality we may suppose y contains the cycle

σ = (δ1, α, δ3, . . . , δk, β, δk+2, . . . , δl, γ, δl+2, . . .).

Firstly, suppose that β and γ lie in separate orbits of 〈xy〉. Then xy contains the

following cycles:

(δx−1

1 , α, . . .)(δx−1

k , β, . . .)(δx−1

l , γ, . . .),

where δx−1

1 denotes the inverse image of δ1 under x, δx−1

k the inverse image of δk under

x and δx−1

l the inverse image of δl under x. Now let

σ = (δ1, β, δk+2, . . . , δl, α, δ3, . . . , δk, γ, δl+2, . . .),

and let z be equal to y but with the cycle σ replaced by σ. We have changed the

images of precisely three elements in supp(σ), namely δ1, δk and δl, and so in the

product xz only the images of δx−1

1 , δx−1

k and δx−1

l have been changed from those in

xy. Therefore xz contains the cycle

(δx−1

1 , β, . . . , δx−1

k , γ, . . . , δx−1

l , α, . . .),
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and we have |Oxz(α)| = |Oxy(α)| + |Oxy(β)| + |Oxy(γ)|. This proves statement (i).

Now suppose that γ ∈ Oxy(β), so we may assume xy contains the cycles

(δx−1

1 , α, . . .)(δx−1

k , β, . . . , δx−1

l , γ, . . .).

Once more we set

σ = (δ1, β, δk+2, . . . , δl, α, δ3, . . . , δk, γ, δl+2, . . .),

and let z be equal to y but with the cycle σ replaced by σ. As previously, in the

product xz only the images of δx−1

1 , δx−1

k and δx−1

l have been changed from those in

xy. Hence xz contains the cycle

(δx−1

1 , β, . . . , δx−1

l , α, . . .),

and so |Oxz(α)| = |Oxy(α)| + |β · · · δx−1

l |xy, where |β · · · δx−1

l |xy denotes the distance

between β and δx−1

l in the relevant cycle of xy (reading inclusively from left to right).

As a consequence, we have that |Oxz(γ)| = |Oxy(γ)| − |β · · · δx−1

l |xy. This proves

statement (ii).

Now let |Oy(α) ∩ (Oxy(α) ∪ Oxy(β))| = m, where m ≥ 4, and suppose without

loss of generality that β is the first element of Oxy(β) which we encounter when

reading from left to right in the cycle σ, starting at α. If there exists µ1 ∈ Oy(β)

such that µ1 6= α but µ1 ∈ Oxy(α), we may apply (ii) to find an element y1 ∈ G

such that |Oxy1(β)| > |Oxy(β)| and α /∈ Oxy1(β) (here β is playing the role of α

in the application of (ii)). Now, if there exists µ2 ∈ Oy1(β) such that µ2 6= α but

µ2 ∈ Oxy1(α), we may apply (ii) again to find y2 such that |Oxy2(β)| > |Oxy1(β)| and

α /∈ Oxy2(β). Continuing in this way, we eventually find an element ys such that the

only element of Oys−1(β) ∩ (Oxys−1(α) ∪ Oxys−1(β)) which lies outside Oxys
(β) is α.

There are now m − 1 elements of Oxys
(β) which also lie in Oys

(α). We wish to

apply (ii) once more, with different choices for β and γ, which we label β′ and γ′. We

have m− 2 choices of element β′ to play the role of β in the application of (ii). After

choosing a β′, the only requirement for choosing an element γ′ ∈ Oxys
(β′) is that

γ′ lies between β′ and α in the relevant cycle of ys, when we read from left to right
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starting at β′. So for the first possible β′ (reading from left to right in ys starting at

α), there are m− 2 choices for γ′. For the second possible β′ there are m− 3 choices

for γ′, and so on. Therefore the total number of choices M we have is

M = (m − 2) + (m − 3) + · · · + 2 + 1 = (m − 1)(m − 2)/2,

which leads to the elements z1, . . . , zM as in statement (iii). Moreover, after fixing

a β′, each susequent choice of γ′ leads to a different value of c in (ii). As noted, we

had m − 2 choices for γ′ when β′ was our first possible choice. Let c1, . . . , cm−2 be

the values of c arising from these choices, labelled so that cj < ci if j < i. Suppose

xys contains the cycle

(β1, . . . , δ
x−1

γj
, γj, . . . , δ

x−1

γi
, γi, . . .),

and that ci = |β1 · · · δx−1

γi
|xys

and cj = |β1 · · · δx−1

γj
|xys

. Then if we choose β′ = γj and

γ′ = γi when applying (ii), we get

c = |γj · · · δx−1

γi
|xys

= |β1 · · · δx−1

γi
|xys

− |β1 · · · δx−1

γj
|xys

= ci − cj.

As every possible value of c must arise in this way, we see that the penultimate

statement in (iii) holds. The final statement follows since c1, . . . , cm−2 are all distinct.

This completes the proof.

Let us illustrate Lemma 9.13 with a brief example. Suppose G = Sym(16),

x = (1, 9, 8, 14, 15, 4, 5)(2, 3, 6, 7, 10, 11, 16)

and

y = λσ = (1, 2, 3, 4, 5, 6, 7)(8, 9, 10, 11, 12, 13, 14).

Then

xy = (1, 10, 12, 13, 14, 15, 5, 2, 4, 6)(3, 7, 11, 16)(8)(9).

Let α = 8 and β = 10. Then

Oy(8) ∩ (Oxy(8) ∪ Oxy(10)) = {8, 10, 12, 13, 14},
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and (iii) tells us there exist 4 · 3/2 = 6 distinct elements z1, . . . , z6, where for each i

the orbits of 〈zi〉 are the same as those of 〈y〉, and that {|Oxzi
(8)| : 1 ≤ i ≤ 6} has

cardinality at least 5 − 2 = 3. Explicitly, we apply (ii) by adjusting the cycle σ of y

to the following:

σ1 = (10, 11, 8, 9, 12, 13, 14)

σ2 = (10, 11, 12, 8, 9, 13, 14)

σ3 = (10, 11, 12, 13, 8, 9, 14)

σ4 = (12, 8, 9, 10, 11, 13, 14)

σ5 = (12, 13, 8, 9, 10, 11, 14)

σ6 = (13, 8, 9, 10, 11, 12, 14).

Setting zi = λσi, for 1 ≤ i ≤ 6, we have

xz1 = (1, 12, 13, 14, 15, 5, 2, 4, 6)(3, 7, 11, 16)(8, 10)(9)

xz2 = (1, 13, 14, 15, 5, 2, 4, 6)(3, 7, 11, 16)(8, 10, 12)(9)

xz3 = (1, 14, 15, 5, 2, 4, 6)(3, 7, 11, 16)(8, 10, 12, 13)(9)

xz4 = (1, 10, 13, 14, 15, 5, 2, 4, 6)(3, 7, 11, 16)(8, 12)(9)

xz5 = (1, 10, 14, 15, 5, 2, 4, 6)(3, 7, 11, 16)(8, 12, 13)(9)

xz6 = (1, 10, 12, 14, 15, 5, 2, 4, 6)(3, 7, 11, 16)(8, 13)(9),

and we see that {|Oxzi
(8)| : 1 ≤ i ≤ 6} = {1, 2, 3}.

Notice that in Lemma 9.13, the elements x and y need not be G-conjugate. Also,

the proof can be easily modified to give a corresponding result regarding the adjust-

ment of the orbits of 〈x〉. We are now in a position to deal with the case of single

p-cycles.

Proof of Theorem 9.2. When p = 3 the result is clear, so assume p ≥ 5. Let t =

(1, 2, . . . , p) be our base point, and let x ∈ X. Suppose that t and x are disjoint cycles.

Then by Proposition 9.12, d(t, x) ≤ 2. So we may assume |supp(t) ∪ supp(x)| < 2p.

Write y = x−1. Clearly y is adjacent to x in Cp′(G,X), but suppose t and y are
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not adjacent. Then we must have ty = σµ, where σ is a p-cycle disjoint from µ, a

product of cycles of length less than p.

Suppose we have supp(t) = supp(σ). Then we claim that supp(t) = supp(y).

Indeed, suppose not. Then since supp(y) = supp(x−1) = supp(x), and supp(x) ∩

supp(t) 6= ∅, there exists α ∈ supp(y) such that α /∈ supp(t) but αy ∈ supp(t). Then

αty = αy ∈ supp(t) = supp(σ), and since σ and µ are disjoint, this implies that αty

is fixed by µ. We therefore have

α = (αty)y−1t−1

= (αty)µ−1σ−1

= (αty)σ−1

,

and hence α ∈ supp(σ) = supp(t), a contradiction, and the claim holds. Now Theo-

rem 9.10 tells us that d(t, x) ≤ 2.

So let β ∈ supp(y) ∩ supp(σ). Suppose there exist distinct γ, δ ∈ supp(y) such

that γ, δ /∈ supp(σ). Then we may apply Lemma 9.13(i) or (ii) to obtain z ∈ X

such that tz contains a cycle of length greater than p. Hence t and z are adjacent

in Cp′(G,X). But 〈z〉 and 〈x〉 have the same orbits, and at least one element of the

p-cycle of x is fixed by zx (since x = y−1, and z was obtained from y by changing

the images of at most three points). Hence z is also adjacent to x. Thus d(t, x) ≤ 2

in this case.

Now suppose γ ∈ supp(y) is the only such point for which γ /∈ supp(σ). Then

we may apply Lemma 9.13 to obtain z such that |Otz(γ)| > |Oty(γ)|. Furthermore,

by Lemma 9.13(iii) we have enough freedom of choice in choosing z to ensure that

|Otz(γ)| 6= p. Hence t and z are adjacent, as are z and x. Therefore d(t, x) ≤ 2 in

this final case, and the proof is complete.

Corollary 9.14. Let G = Sym(n), where n ≥ 4, with X the conjugacy class of a

p-cycle, where p ≥ 3 is prime. Suppose t, x ∈ X are adjacent in Cp′(G,X). Then

there exists z ∈ X such that d(t, z) = 1 and d(z, x) = 1.

Proof. Set y = x−1. If y is adjacent to t then clearly we may let z = y. Otherwise we

may argue as in the proof of Theorem 9.2 to find a suitable z, by adjusting y using

Lemma 9.13.
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When addressing the case of products of pairwise disjoint p-cycles, we wish to

decompose elements into pieces which are in some sense minimal, and thus easier to

work with. This motivates what follows.

Definition 9.15. Let G = Sym(n), with x, y ∈ G elements of order of prime order

p, not necessarily G-conjugate. Write x = x1x2 · · ·xr and y = y1y2 · · · ys as products

of pairwise disjoint p-cycles, and denote by A the set of non-trivial orbits of 〈x〉 and

〈y〉. We say the pair (x, y) is disentangled if we can write A = B ∪ C, where B and

C are nonempty subsets of A such that

(
⋃

b∈B

b

)
∩
(
⋃

c∈C

c

)
= ∅.

If this is not possible we say (x, y) is tangled.

If we allow the ‘empty permutation’, which we denote by (∅), then for every pair

(x, y) there exists a decomposition x = x(1) · · ·x(k), y = y(1) · · · y(k) such that each

pair (x(i), y(i)) is tangled.

To illustrate the above we give some examples. Suppose that G = Sym(30), and

let

x = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)(11, 12, 13, 14, 15)(16, 17, 18, 19, 20)

and

y = (1, 3, 6, 8, 21)(2, 9, 10, 23, 28)(11, 22, 12, 14, 16)(18, 29, 19, 26, 27).

Then (x, y) is disentangled, with decomposition

i x(i) y(i)

1 (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) (1, 3, 6, 8, 21)(2, 9, 10, 23, 28)

2 (11, 12, 13, 14, 15)(16, 17, 18, 19, 20) (11, 22, 13, 14, 16)(18, 29, 19, 26, 27)

Now let

y = (1, 7, 4, 12, 15)(26, 28, 22, 30, 29).
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Then (x, y) is again disentangled, with decomposition

i x(i) y(i)

1 (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)(11, 12, 13, 14, 15) (1, 7, 4, 12, 15)

2 (16, 17, 18, 19, 20) (∅)

3 (∅) (26, 28, 22, 30, 29)

Lemma 9.16. Let G = Sym(Ω), and let x, y ∈ G be elements of order p ≥ 3 such

that (x, y) is tangled. Let |supp(x) ∪ supp(y)| = m, and suppose that xy is not an

m-cycle. Then for any cycle σ in the product xy, we may find a cycle ρ of either x

or y with α, β ∈ supp(ρ) such that α ∈ supp(σ) but β /∈ supp(σ).

Proof. First we write x and y as products of pairwise disjoint cycles thus x =

x1x2 . . . xs and y = y1y2 . . . yr. For a contradiction suppose the result does not hold

for some cycle σ of xy. Then if O is any orbit of 〈x〉 or 〈y〉, then either O is disjoint

from supp(σ), or O ⊆ supp(σ). Thus if A is the set of orbits of 〈x〉 and 〈y〉, then

we may write A = B ∪ C, where B is the set of orbits which lie in supp(σ) and

C = A \ B. Clearly B is nonempty and, since xy is not an m-cycle, C must also be

nonempty. Since by the above observation we have
(
⋃

b∈B

b

)
∩
(
⋃

c∈C

c

)
= ∅,

this implies the pair (x, y) is disentangled, which is the desired contradiction.

9.4 The proof of Theorems 9.3 and 9.4

We now begin our attack on Theorem 9.3 and Theorem 9.4, and work under the

following hypothesis:

Hyposthesis 9.17. Let G = Sym(n), with x, y ∈ G such that x = x1x2 . . . xr and

y = y1y2 . . . ys are products of pairwise disjoint p-cycles, where p ≥ 7 is an odd prime.

Furthermore, suppose that (x, y) is tangled, and that r, s <
√

p.

Lemma 9.18. Suppose Hypothesis 9.17 holds, and additionally that |supp(x)∪supp(y)| =

kp for some k ∈ N, and that xy is a kp-cycle. Then there exist elements x′ ∈ xG,
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y′ ∈ yG such 〈x〉 and 〈x′〉 have the same orbits on Ω, 〈y〉 and 〈y′〉 have the same

orbits on Ω, and the order of the product x′y′ is coprime to p.

Proof. We first show that since r, s <
√

p, (x, y) is tangled and |supp(x)∪ supp(y)| =

kp, there must exist cycles λx, λy, of x and y respectively, with |supp(λx)∩supp(λy)| ≥

2. For suppose this is not the case. Then

|supp(x) ∪ supp(y)| ≥ rp + sp − sr > (r + s)p −√
p · √p = (r + s − 1)p.

On the other hand, again since (x, y) is tangled, we have that

|supp(x) ∪ supp(y)| < (r + s)p.

However, by assumption, |supp(x) ∪ supp(y)| is a multiple of p, so this is a contra-

diction. Therefore we may choose α, β ∈ supp(λx) ∩ supp(λy) with α 6= β. We may

write

λx = (δ1, α, δ3, . . . , δ, β, δk+2, . . .).

Then we construct an element x′ ∈ xG, containing a cycle λx′ , by adjusting the

position of β in the cycle λx so that β = αλx′ (if this is already the case, we set

x′ = x). So

λx′ = (δ1, α, β, δ3, . . . , δ, δk+2, . . .).

We now show that

(3.1) when considered as an element of Sym(supp(x)∪ supp(y)), x′y is either a single

cycle or a product of exactly three cycles.

Firstly, note that if x = x′, then x′y = xy is already a single kp-cycle, so assume

that this is not the case. Then we have changed the image under λx of exactly three

elements, namely α, β and δ. So all but these three elements in supp(x′y) will have

the same image under x′y as under xy. In view of this, x′y cannot be a product of

more than three cycles. Suppose αxy = γ1, βxy = γ2 and δxy = γ3. We can therefore

write either
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(3.1.1) xy = (α, γ1, . . . , β, γ2, . . . , δ, γ3, . . .), or

(3.1.2) xy = (α, γ1, . . . , δ, γ3, . . . , β, γ2, . . .).

(Note that it might be the case that {α, β, δ} ∩ {γ1, γ2, γ3} 6= ∅).

Since in both (3.1.1) and (3.1.2) we have δx = β and δxy = γ3, it must be that

βy = γ3. Now, as αx′

= β, we deduce that αx′y = γ3. Consequently, we must have

βx′y = γ1 and δx′y = γ2. Hence if (3.1.1) holds we have

x′y = (α, γ3, . . .)(δ, γ2, . . .)(β, γ1, . . .).

On the other hand, if xy is as in (3.1.2), we see that

x′y = (α, γ2, . . . , β, γ1, . . . , δ, γ3, . . .).

Thus (3.1) holds.

Now we construct an element y′ ∈ yG by adjusting the position of β in the cycle

λy so that α = βλy′ . If this is already the case, we set y′ = y (note that if we set

x = x′ above, then it cannot be the case that y = y′, since this would imply that α

and β are fixed points of xy, which contradicts their lying in the kp-cycle of xy). We

may write

λy = (ǫ1, α, ǫ3, . . . , ǫl, β, ǫ, . . .)

and

λy′ = (ǫ1, β, α, ǫ3, . . . , ǫl, ǫ, . . .).

Next, we show that

(3.2) when considered as an element of Sym(supp(x) ∪ supp(y)), x′y′ is a product

of exactly three cycles.

If x′y is a single cycle, then a similar argument to that above shows that x′y′ is

either a single cycle, or a product of exactly three cycles. But α is fixed by x′y′,



CHAPTER 9. COPRIMALITY GRAPHS 161

so x′y′ cannot be a single cycle, and hence the result holds in this case. We may

therefore assume that x′y is a product of exactly three cycles.

In our rearrangement of λy we have changed the preimage under λy of exactly

three elements, which are α, β and ǫ. Suppose that ζx′y
1 = α, ζx′y

2 = β and ζx′y
3 = ǫ.

We may write

x′y = (ζ1, α, γ3, . . .)(δ, γ2, . . .)(ζ2, β, γ1, . . .).

As a consequence of our rearrangement, the images of ζ1, ζ2, and ζ3, are also changed

under x′y′. As ζx′y
3 = ǫ, and βy = ǫ, we must have that ζx′

3 = β. Since βy′

= α we

have that ζx′y′

3 = α, but α is fixed by x′y′, so it must be that ζ3 = α. Consequently,

ǫ = γ3, ζx′y′

1 = β and ζx′y′

2 = ǫ. Since only three elements of supp(x′y) have different

images under x′y′ than under x′y, we deduce that

x′y′ = (α)(ζ1, β, γ1, . . . , ζ2, ǫ, . . .)(δ, γ2, . . .).

This proves (3.2).

Thus, when considered as an element of Sym(supp(x)∪supp(y)), x′y′ is a product

of exactly three cycles, one of which is a 1-cycle. If p does not divide the length of

either of the other cycles, then x′ and y′ satisfy the conclusions of the lemma. So

suppose σwp is a cycle of x′y′ of length wp where 1 ≤ w < k, and let ρ be the

remaining non-trivial cycle of x′y′. Note that since |supp(x) ∪ supp(y)| = kp, this

means that p cannot divide the length of the cycle ρ. Since (x, y), and hence (x′, y′),

is tangled, and x′y′ is not a kp-cycle, we may apply Lemma 9.16 to see that there

exists some cycle λ of either x′ or y′ with µ, ν ∈ supp(λ) such that µ ∈ supp(σwp)

but ν /∈ supp(σwp).

Without loss of generality suppose λ is a cycle of y′, and suppose we may choose

ν so that ν 6= α. Then since Ox′y′(µ)∪Ox′y′(ν) covers all of supp(x)∪ supp(y) except

α, and supp(y′) = supp(y), we have

|Oy′(µ) ∩ (Ox′y′(µ) ∪ Ox′y′(ν))| ≥ p − 1.

Now apply Lemma 9.13(ii) to construct an element y′′ such that |Ox′y′′(µ)| > |Ox′y′(µ)|.

This will ensure coprimality, unless the element y′′ which we construct yields x′y′′ with
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|Ox′y′′(µ)| = up or |Ox′y′′(ν ′)| = vp, where 1 ≤ u, v ≤ k − 1, and ν ′ lies in the other

cycle of x′y′ whose length has been adjusted by applying Lemma 9.13(ii). Since,

by assumption, we are already in the situation where |Ox′y′(µ)| = wp, and applying

Lemma 9.13 adjusts the length of this orbit, we deduce that there are 2k− 3 possible

problem cases.

By Lemma 9.13(iii) we have at least p−3 choices of y′′ which yield distinct values

of c so that |Ox′y′′(µ)| = |Ox′y′(µ)| + c. Since (x, y) is tangled (so x and y are not

disjoint), 2k − 3 ≤ 2(r + s − 1) − 3. When p ≥ 17 then 4 <
√

p, and since r, s <
√

p

we have

2(r + s − 1) − 3 < 4
√

p − 5 < p − 3.

The number of problem cases is therefore fewer than the number of possibilities for c,

so we may choose y′′ to ensure coprimality. When p = 7, 11 or 13, we may explicitly

count the number of problem cases as at most 3, 7 and 7 respectively, which are less

than p − 3 in each case. So again we may choose y′′ to ensure coprimality.

On the other hand, it may be the case that we are forced to take ν = α. However,

we then apply Lemma 9.13(ii) to adjust the lengths of Ox′y′(µ) and O(α), and again

use Lemma 9.13(iii) in a similar way to that above to show we can ensure coprimality.

We now drop our assumptions on the size of supp(x) ∪ supp(y) and cycle type of

xy.

Lemma 9.19. Suppose Hyposthesis 9.17 holds. Then there exists elements x′ ∈ xG,

y′ ∈ yG such that 〈x′〉, respectively 〈y′〉, has the same orbits on Ω as 〈x〉, respectively

〈y〉, and the product x′y′ has order coprime to p.

Proof. If xy has order coprime to p, then clearly setting x′ = x, y′ = y satisfies the

lemma, so assume this is not the case. As in the proof of Lemma 9.18 we consider xy as

an element of Sym(supp(x)∪ supp(y)). Firstly, suppose that xy = σkp

∏l
i=1 ρi, where

σkp is a cycle of length kp, and ρ1, . . . , ρl are cycles of length coprime to p (possibly

1-cycles). If no such ρi exist, then xy is a kp-cycle and |supp(x) ∪ supp(y)| = kp,

so we may apply Lemma 9.18 to obtain suitable elements x′ and y′. Thus we may
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assume there is at least one ρi. By Lemma 9.16 there exists a cycle λ of either x or

y, with α, β ∈ supp(λ) such that α ∈ supp(σkp) and β /∈ supp(σkp). Without loss of

generality we suppose that λ is a cycle of y, and that β ∈ supp(ρ1).

We now apply Lemma 9.13(i) (if possible) to increase the length of σkp by ‘merging’

it with some of the ρi, and we do this as many times as we can until it becomes

impossible to apply (i). We therefore get an element y′ such that either xy′ is a

single cycle, or all elements of λ which do not lie in Oxy′(α) lie in only one other

orbit of 〈xy′〉, which without loss we assume to be Oxy′(β). In the case where xy′

is a single cycle, we either have coprimality, or if p divides this cycle length we

may apply Lemma 9.18 to establish the result. In the latter case we either have

coprimality, or at least one of |Oxy′(α)| and |Oxy′(β)| is divisible by p. Notice that

|Oy′(α) ∩ (Oxy′(α) ∪ Oxy′(β))| = p. We now apply Lemma 9.13(ii) to adjust the

lengths of these two cycles of xy′. Note that no other cycles of xy′ are affected by

this. This will ensure coprimality unless the element y′′ which we construct yields

product xy′′ with |Oxy′′(α)| = up or |Oxy′′(γ)| = vp, where 1 ≤ u, v < (r + s), and

Oxy′′(γ) is the other orbit whose length we affect. By Lemma 9.13(iii) we have at

least (p − 1)(p − 2)/2 choices of element y′′ for which |Oxy′′(α)| = |Oxy′(α)| + c, and

there are at least p − 2 distinct possibilities for c.

Suppose that both |Oxy′(α)| and |Oxy′(β)| are divisible by p. Then if we construct

y′′ so that |Oxy′′(α)| is a mutiple of p, then |Oxy′′(γ)| must also be a multiple of

p. Since we have assumed that we start with |Oxy′(α)| a multiple of p, there are

(r+s−1)−1 = r+s−2 problem cases in this situation. But for p ≥ 7, r+s−2 < p−2,

so we can choose y′′ so that neither |Oxy′′(α)| nor |Oxy′′(γ)| is divisible by p, thus

ensuring coprimality.

Now suppose that only one of |Oxy′(α)| and |Oxy′(β)| is divisible by p. Without

loss we assume that |Oxy′(α)| = wp for some w ∈ N, and that |Oxy′(β)| = l where

l ∈ N is coprime to p. When applying Lemma 9.13(ii), we will ensure coprimality

unless c = ap or c = b(p − l), where there are at most r + s − 1 possibilities each

for a, b ∈ N. There are a possible 2(r + s − 1) − 1 = 2(r + s) − 3 problem cases

here. Let {c1, c2, . . . , cp−2} be the set of p − 2 distinct values of c we can guarantee
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by Lemma 9.13(iii), ordered so that ci > cj when i > j. Since r + s − 1 < p − 2, it

must be the case that {c1, c2, . . . , cp−2} includes both a multiple of p and a multiple

of p− l. But since p and p− l are coprime, and by Lemma 9.13(iii) the set of possible

values for c is

{ci − cj : 0 ≤ j < i ≤ p − 2},

we see there must in fact be at least 2p − 5 distinct choices for c, which ensures

coprimality.

Now suppose that xy = σ1 . . . σm

∏l
i=1 ρi, where σ1, . . . , σm are cycles with lengths

divisible by p, and m ≥ 2. By Lemma 9.16 there exists a cycle λ of either x or y, with

α, β ∈ supp(λ) such that α ∈ supp(σ1) and β /∈ supp(σ1). Without loss of generality

we suppose that λ is a cycle of y. As in the previous case we apply Lemma 9.13(i)

(if possible) to increase the length of σ1. Again, we do this multiple times until it

becomes impossible to apply (i). Then we get an element y′ such that either the

number of cycles with length divisible by p in xy′ is less than the number in xy, or

all elements of λ which do not lie in Oxy′(α) lie in only one other orbit of xy′, which

without loss we assume to be Oxy′(β). In the former case, by induction the lemma

holds for the pair (x, y′). But since 〈y〉 and 〈y′〉 have the same orbits on Ω, this

implies that the lemma also holds for (x, y). In the latter case, then as previously we

may apply Lemma 9.13(ii) to adjust the lengths of Oxy′(α) and a subsequent orbit

Oxy′(γ). Lemma 9.13(iii) tells us that we can construct an element y′′ such that for

xy′′ neither |Oxy′′(α)| nor |Oxy′′(γ)| is divisible by p. Thus the number of cycles of

xy′′ with length divisible by p is less than that of xy. By induction the lemma holds

for (x, y′′), whence it also holds for (x, y).

Lemma 9.20. Let (x, y) be a tangled pair, with x, y 6= (∅), and suppose that x

contains more p-cycles than y. Then there exists a cycle λ of x such that (xλ−1, y)

is still a tangled pair.

Proof. Since (x, y) is tangled, and x contains more cycles than y, there must exist

cycles λ and ρ of x such that for every cycle of y with which λ has a non-empty
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intersection, ρ also has a non-empty intersection. But now if (xλ−1, y) were disen-

tangled, then (x, y) would also be disentangled, a contradiction. Thus (xλ−1, y) is

tangled.

We have reached the point where we can prove Theorem 9.3, which we now restate.

Theorem 9.21. Let G = Sym(n), with X a conjugacy class of elements of cycle type

pr, where p is an odd prime and r <
√

p. Then Diam(Cp′(G,X)) ≤ 5.

Proof. When p = 3 we must have r = 1, so we may apply Theorem 9.2 to see that

Diam(C3′(G,X)) ≤ 2, where X is the unique G-conjugacy class of 3-cycles. Now

suppose that p = 5, so r = 1 or 2. When r = 1 we can again apply Theorem 9.2 to

show the result holds in this case. Assume then that r = 2. Let t ∈ X be our base

point, and let x ∈ X, where X = tG. Clearly we have 10 ≤ |supp(t) ∪ supp(x)| ≤

20. Using Magma [18] and the class structure constants described in Chapter 5,

it is straightforward to verify that for 10 ≤ n ≤ 20, Diam(C5′(Sym(n), X ′) = 2,

where X ′ is the Sym(n)-conjugacy class of elements with cycle type 52. (This is

done by calculating that |∆1(t)| > |X ′|/2 in each case, and applying Lemma 1.16).

Consequently there exists a path of length 2 between t and x in C5′(G,X).

We may therefore proceed on the assumption that p ≥ 7. Assume t = t1 . . . tk,

x = x1 . . . xk is a decomposition of (t, x) into tangled pairs. Note that some of these

pairs may be of the form (ti, (∅)) or ((∅), xi). Suppose there are m1 such pairs (ti, (∅))

and m2 such pairs ((∅), xi), and without loss of generality assume that m2 ≥ m1. By

pairing up such cycles, we can get m1 pairs (ti, xj) of disjoint p-cycles, which leaves us

with m2 −m1 cycles xj which have not yet been paired up. Note that the support of

any one of these cycles intersects in the empty set with the remainder of the support

of t and x. For each such xj, choose a tangled pair (ti, xi) for which ti has more cycles

than xi (such a pair must exist since t and x have the same cycle type), and remove

a cycle σ from ti in such a way that (tiσ
−1, xi) remains tangled (this is possible by

Lemma 9.20). Thus (σ, xj) is a pair of disjoint p-cycles. In this way we get a new

decomposition t = t1 . . . tltl+1 . . . tv, x = x1 . . . xlxl+1 . . . xv of (t, x), where (ti, xi) is

tangled for 1 ≤ i ≤ l and consists of two disjoint p-cycles for l + 1 ≤ i ≤ v.
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By Lemma 9.19, for each tangled pair (t(i), x(i)) there exist elements t′i, x′
i such

that 〈t′i〉, respectively 〈x′
i〉, has the same orbits on Ω as 〈ti〉, respectively 〈xi〉, and for

which the product t′ix
′
i has order coprime to p. By Theorem 9.2 the distance between

such elements ti and t′i in the relevant coprimality graph of Sym(supp(ti)) is at most

2, and using Corollary 9.14 if necessary there is a path of length exactly 2. Also,

for the disjoint pairs (tj, xj), Proposition 9.12 implies the existence of a p-cycle yj

adjacent to both in the relevant coprimality graph of Sym(supp(tj) ∪ supp(xj)). Let

t′ = t′1 . . . t′lxl+1 . . . xv. Since the cycles xl+1, . . . , xv are disjoint from t, this element

has cycle type pr, and so lies in X. Also, by the above observations, d(t, t′) ≤ 2 in

Cp′(G,X). Now let x′ = x′
1 . . . x′

lx
−1
l+1 . . . x−1

v . This is adjacent to t′ in Cp′(G,X), and

now using Corollary 9.14 if necessary we see that d(x′, x) ≤ 2. We therefore have a

path of length at most 5 between t and x. Thus Diam(Cp′(G,X)) ≤ 5.

Now let X be the G-conjugacy class of elements with cycle type pr, where p ≥ 5.

Write r = 2m or r = 2m+1 if r is even or odd respectively. For z ∈ X, after fixing a

left-to-right ordering of the disjoint cycles of z, denote by Λz the support of the first

m cycles, and by Φz the support of the remaining cycles.

Lemma 9.22. Let t, x ∈ X. Then there exists an element y ∈ X such that Λt ∪ Λy

is disjoint from Φt ∪ Φy, and d(x, y) = 1 in Cp′(G,X).

Proof. Let

x = (x1,1, . . . , x1,p)(x2,1, . . . , x2,p) . . . (xr,1, . . . , xr,p).

Then set

y = x−1 = (x1,p, . . . , x1,1)(x2,p, . . . , x2,1) . . . (xr,p, . . . , xr,1).

Fix an ordering of the cycles of t. Choose m cycles of y such that the intersection

of the support of these cycles with Λ = Λt is as large as possible. Without loss of

generality we assume y is labelled so that these cycles are y1, . . . , ym.

We wish to rearrange the elements of supp(y) and the cycles of y to get an element

y′ ∈ X, such that d(x, y′) = 1, and the support of the first m cycles of y′ contains
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only Λ and elements of fix(t). Let

Ψ = supp(y) ∩ fix(t),

and let l = |Λ∩supp(y)|. Reading y from left to right, collect the first mp−l elements

which lie in Ψ into a set Σ′. We now define

Σ = (Λ ∩ supp(y)) ∪ Σ′.

We aim to have the support of the first m cycles of y′ equal to Σ, which will ensure

y′ satisfies the first requirement of the lemma.

(3.3) For each cycle y1, . . . , ym at least one element lies in Σ.

For a contradiction suppose some cycle yi does not contain an element of Σ. If an el-

ement of Λ lies in any cycle ym+1, . . . , yr, then swapping this cycle with yi contradicts

our choice of the first m cycles of y. The only other possibility is that

supp(yi) ∪ supp(ym+1) ∪ . . . ∪ supp(yr) ⊆ supp(tm+1) ∪ . . . ∪ supp(tr)

which is a contradiction since the cycles of y are disjoint. This proves (3.3).

Suppose there is some cycle yj of y, where j > m, and supp(yj) ⊆ Σ. We then

choose a cycle yi, i ≤ m, where supp(yi) 6⊆ Σ (such a cycle certainly exists, since |Σ| =

mp), and swap the positions of these cycles in y. We do similarly for all such cycles.

Therefore by (3.3), after the reordering of cycles, and possible reordering of individual

cycles, we may assume without loss that y1,p, . . . , ym,p ∈ Σ, and ym+1,1, . . . , yr,1 /∈ Σ.

We now fix this expression for y, so we do not allow any further reordering of cycles,

or of elements within cycles.

Set y = y(1). Reading y(1) from left to right, take the first element of Λy(1) which

does not lie in Σ, and the first element of Φy(1) which does lie in Σ, and swap these

to get an element y(2). Now, reading y(2) from left to right, take the first element

of Λy(2) which does not lie in Σ, and the first element of Φy(2) which does lie in Σ,

and swap these to get an element y(3), and so on. Continuing in this fashion, we will

eventually get an element y′ = y(q) where Λy(q) = Σ.
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We must now show that d(x, y′) = 1. We claim that any cycle of xy′ has length

at most 3. Suppose αk is an element of some cycle of z which also lies in the cycle α

of x. Let x be labelled so that it acts in the standard way on the indices {1, . . . , k},

so αix = αi+1 (modulo p). Since y = x−1, we have αiy = αi−1.

Suppose that αk+1 has been swapped (so k 6= p−1) with an element βs+1 of some

cycle β of x. Note our expression for y ensures that s 6= 0. Now βs may also have

been swapped, but since we read from left to right and βs comes after βs+1 in y, this

swap must have been with some element to the right of αk+1 in y. If this element

is αk, then clearly αk is fixed by xy′. So suppose it is a different element γu from a

cycle γ, another of the first m cycles of y (note the possibility that γ = α). By our

expression for y, u 6= p. But now γu+1 cannot have been swapped, since if it were it

would have to be with an element between βs and βs+1, a contradiction. Similarly,

αk also cannot be swapped. We thus have

y′ = . . . (. . . , βs+1, αk, . . .) . . . (. . . , γu+1, βs, . . .) . . . (. . . , αk+1, γu, . . .) . . . ,

(where only the relevant cycles of y′ are shown). So αk is contained in a 3-cycle,

namely (αk, γu, βs).

It is of course possible that not all elements in the above description have been

swapped. However, by similar reasoning to that above, the effect of any non-swapping

either gives another 3-cycle or decreases the length of the cycle containing αk. Thus

the length of any cycle in z is at most 3. Since 3 and p are coprime, this shows that

d(x, y′) = 1, and completes the proof of the lemma.

Finally, with Lemma 9.22 to hand, we may prove Theorem 9.4, which, again for

the reader’s convenience, we restate.

Theorem 9.23. Let G = Sym(n). Suppose p ≥ 5 is prime. Let X be the conjugacy

class of elements with cycle type pr, and let k be the least non-negative integer such

that r/2k ≤ ⌊√p⌋. Then Diam(Cp′(G,X)) ≤ 5 + k.

Proof. When r ≤ ⌊√p⌋ we have k = 0, and the result holds by Theorem 9.3. So

suppose r > ⌊√p⌋, and let t, x ∈ X. Write r = 2m or r = 2m + 1 if r is even or
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odd respectively. By Lemma 9.22 there exists an element y such that d(x, y) = 1,

and we can write t = t1t2, y = y1y2, where t1, y1 have cycle type pm, t2, y2 have

cycle type pm or pm+1, and the support Λ of t1 and y1 is disjoint from the support

Φ of t2 and y2. If r = 2m, then since r/2k ≤ ⌊√p⌋, we have m/2k−1 ≤ ⌊√p⌋.

Furthermore, if r = 2m + 1, it is also the case that (m + 1)/2k−1 ≤ ⌊√p⌋. Indeed,

since (2m + 1)/2k ≤ ⌊√p⌋ we have 2m + 1 ≤ 2k⌊√p⌋. But since 2k⌊√p⌋ is even, this

implies that 2m+2 ≤ 2k⌊√p⌋, whence (m+1)/2k−1 ≤ ⌊√p⌋. Therefore, by induction

there exist paths of length at most 5 + (k − 1) in the relevant coprimality graphs of

Sym(Λ) and Sym(Φ). Since Λ and Φ are disjoint, the products of elements from these

paths are elements of X. We therefore have a path of length at most 5 + (k − 1) + 1

from t to x, as required.

9.5 The proof of Theorem 9.1

For completeness, we conclude this chapter with a proof of Theorem 9.1, due to Peter

Rowley.

Proof of Theorem 9.1. Let t ∈ X be such that t = t1t2 · · · tr, where ti is the p-cycle

((i − 1)p + 1, (i − 1)p + 2, . . . , ip)

for i = 1, . . . , r. Also O1,O2, . . . ,Or will denote the orbits of 〈t〉 on Ω of length p. So

Oi = {(i − 1)p + 1, (i − 1)p + 2, . . . , ip}.

Set Φ =
⋃r

i=1 Oi and Λ = Ω \ Φ. Let Y denote the connected component of t in

Cp′(G,X), and set K = StabG(Y ). By Theorem 2.3 F(G,X) is connected for n ≥ 5,

and by checking the cases n < 5 we see the theorem holds for p = 2. So we may

suppose p is odd. Let x ∈ X. If 〈x〉 has the same orbits on Ω as 〈t〉, then x ∈ Y

by Theorem 9.2. Let H denote the stabilizer in G of the partition of Ω given by the

orbits of 〈t〉. We note that H = J × L, where J ∼= Sym(p) ≀ Sym(r) (with the base

group being Sym(O1)×· · ·×Sym(Or)) and L = Sym(Λ). Thus we have H ≤ K. We

next show that Sym(Φ)× Sym(Λ) ≤ K. If r = 1, then we have this immediately. So
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we may suppose r ≥ 2. Let y = y1y2 · · · yr be the product of pairwise disjoint cycles

yi, where

y1 = (2, 1, p + 1, p + 2, . . . , 2p − 2),

y2 = (2p − 1, 2p, 3, 4, . . . , p)

and yj = t−1
j for j ≥ 3. So y ∈ X and

xy = (1)(2, 4, 6, . . . , p − 1, 2p − 1, 3, 5, . . .

. . . , p, p + 1, p + 3, p + 5, . . . , 2p − 2, 2p, p + 2, p + 4, . . . , 2p − 3)

which has order 2p − 1. As a result x and y are adjacent in Cp′(G,X) and we infer

that y ∈ K. Since y ∈ Sym(Φ) \ J and J is a maximal subgroup of Sym(Φ), we

deduce that Sym(Φ) × Sym(Λ) ≤ K.

If Λ = ∅, then we obtain K = G whence Cp′(G,X) is connected. So we now

suppose Λ 6= ∅ and select α ∈ Λ. Consider z = z1z2 · · · zr ∈ X, where

z1 = (2, 3, . . . , p, α)

and zj = t−1
j for j ≥ 2. Then

tz = (1, 3, 5, . . . , p − 2, p)(2, 4, . . . , p − 1, α)

which has order (p − 1)/2. So t and z are adjacent and thus z ∈ K. But z /∈

Sym(Φ) × Sym(Λ), which is a maximal subgroup of G. Therefore K = G and

Cp′(G,X) is connected, so proving the theorem.



Chapter 10

A Computational Application of

Local Fusion Graphs

In this final chapter our focus returns to local fusion graphs, as we describe a compu-

tational algorithm which makes use of them to produce elements of the centraliser of

a given involution. The material presented here also appears in [9]. The importance

of centralisers of involutions in understanding finite groups of even order was first

indicated by the celebrated paper of Brauer and Fowler [19]. Subsequently, the study

of involution centralisers played a fundamental role in the proof of the Classification

of Finite Simple Groups. In more recent years, the importance of involutions cen-

tralisers has also been seen in computational group theory, with examples to be found

in [2], [43], [44] and [54].

When working with a specific finite group G in a computational algebra package,

such as Magma [18] or GAP [36], it is most common to make use of either a matrix or

permutation representation of G. When G is, say, a symmetric group or linear group,

then G comes hand-in-hand with a natural representation. However, there are often a

large number of representations of a given group to choose from, some of which may be

of particular use in certain situations. Numerous examples of such representations can

be found on the online Atlas [1]. Given an involution t ∈ G, it is often desirable to

construct CG(t) as a subgroup of G. To this end, both Magma and GAP have inbuilt

commands Centraliser(G), which make use of efficient computational algorithms.

171
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However, when the group, or representation used, is very large, these algorithms can

often fail to produce CG(t) due to insufficient computational power. Indeed, it is

often effectively impossible to construct CG(t) as a subgroup of G by any means. In

these situtations, the next best thing is often to produce a ‘useful’ subset of elements

of CG(t).

10.1 Bray’s Algorithm

One of the standard algorithms for producing elements of an involution centraliser

is due to John Bray [20]. Suppose that G is a finite group and X is a G-conjugacy

class of involutions. Let h ∈ G, x ∈ X and k be the order of [x, h]. Bray’s algorithm

involves the elements β0(x, h) and β1(x, h) where

β0(x, h) = [x, h]k/2

if k is even and

β1(x, h) = h[x, h](k−1)/2

if k is odd. Then, as is straightforward to check, β0(x, h), β0(x, h−1) ∈ CG(x) (if k

is even) and β1(x, h) ∈ CG(x) (if k is odd). Thus, given an element h of G, Bray’s

algorithm is guaranteed to output an element of CG(x). This method is widely used,

appearing in [15], [54] and [55] to cite but three examples, and is very efficient in prac-

tice. It is also shown in [20] that the centraliser elements β1(x, h) produced by the

algorithm are uniformly distributed in CG(x), provided the input elements are ran-

domly distributed in G. However, in the standard implementation of Bray’s method,

the ratio of input elements of G to output elements of CG(x) is relatively low. Thus,

in situations where the cost of producing random elements is high (for example when

working with a very large matrix or permutation representation), Bray’s algorithm

loses some of its efficiency. It is therefore desirable to have a method for producing

elements of CG(x) which relies on a smaller set of random elements as input. This is

where local fusion graphs appear on the scene.
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10.2 Finding Centraliser Elements

Recall from Chapter 1 our observation that if

x = x1 → x2 → · · · → xm = z

is a path from x to z in F(G,X), then g1g2 · · · gm−1 conjugates x to z, where gi ∈

〈xi, xi+1〉 for 1 ≤ i ≤ m − 1. If it is the case that z = x, we have a cycle γ in

F(G,X), and g(γ, x) = g1g2 · · · gm−1 conjugates x to x, so lies in CG(x). Also, if

gi = (xixi+1)
(ki−1)/2, then g′

i = xig also conjugates xi to xi+1, so replacing various of

the gj in g by g′
j will potentially yield further elements of CG(x). Thus foraging for

cycles in F(G,X) may produce elements of CG(x).

In practice, our method is as follows. Let t be a fixed involution in X. To find

elements in CG(t) we first choose r random elements h1, . . . , hr of G, and calculate

xi = thi . Then we determine the subgraph G of F(G,X) which has

{t} ∪ {xi : i = 1, . . . , r}

as its vertex set. For each vertex x of G we itemize the cycles in G based at x (and we

may also place a limit on the lengths of these cycles). As already indicated each such

cycle based at x delivers elements of CG(x). If x = t, then we have elements of CG(t),

otherwise for x = xi we conjugate these cycle elements by h−1
i to obtain elements of

CG(t). We can also extract the last drop of blood by creating elements at xi using

Bray’s algorithm, namely β0(xi, hj), β0(xi, h
−1
j ) and β1(xi, hj), and then conjugating

them by h−1
i to yield elements of CG(t). Of course we also have the Bray elements

at t. Finally we observe that, just as for the Bray algorithm, the above procedure

works with black box groups.

Evidently, G having few (or no) cycles will result in slim pickings. Indeed, in our

implementation of this algorithm, after having constructed the relevant piece of the

local fusion graph we count the number of edges, and if this is small we then discard

some of the vertices whose valency is low. We then seek to replace these by vertices

of larger valency, and then move on to calculate the cycle elements. However, there

are many groups in which we can expect the number of edges in our subgraph to
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be relatively high. For example, if G is a group of Lie-type in odd characteristic,

lower bounds on the number of edges in the local fusion graphs of G have been

determined by Parker and Wilson in Theorems 1 and 2 of [54]. These lower bounds

are not sharp, but they conjecture that for an exceptional group of Lie-type in odd

characteristic the number of edges in F(G,X) is at least |X|/8. Also recall from

Chapter 5 that the valencies of the local fusion graphs of the sporadic simple groups

have been calculated. We note that in all but four cases the valency of F(G,X)

is at least |X|/4. The exceptions are (G,X) = (He, 2A), (Co2, 2C), (M24, 2A) and

(B, 2A), with the latter having the smallest valency of approximately |X|/5.72

One benefit of the method described here is that, under favourable circumstances,

a comparatively large number of elements of CG(t) are obtained from a small number

of random elements of G. Hence this procedure is particularly useful when working

with matrix groups or permutation groups of very large dimension/degree, where

the cost of computing random elements is high. In such groups it may be near

impossible to check whether a set of given elements generates the whole centraliser

of an involution. Hence the next best thing is to be able to manufacture a diverse

and large set of elements of the involution centraliser. In truth, it is hard to analyse

the elements which are produced by this algorithm, apart from the Bray elements

β0(t, h) and β1(t, h) (which are uniformly distributed in CG(t) if the input elements

h are randomly distributed in G). For one thing, the algorithm only examines a very

small fragment of the local fusion graph, and so very little can be said. Moreover it is

also not clear how randomly generated are the other kind of Bray elements β0(xi, hj),

β0(xi, h
−1
j ) and β1(xi, hj). However, as we shall see in Section 10.4, it can often be

the case that, given a set of random elements, the cycle elements produced by the

algorithm lie outside the group generated by the Bray elements at t.

10.3 Calculating Cycle Elements

Input: The black box group G, an involution t of G and natural numbers v and k;

(i) Set h1 = 1. Calculate v−1 random elements h2, . . . hv of G and then determine
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xi = thi . Store both the {xi} and {hi} in a matrix.

(ii) Calculate the subgraph G of F(G,X) (where X = tG) with vertex set {x1 =

t, x2, . . . , xv}. This involves finding the order of products xixj, which are stored

in a matrix. From this matrix the adjacency matrix of G can be found.

(iii) Store the set of neighbours for each vertex in G. Note that these are stored as

graph vertices and not as group elements.

(iv) For each vertex x of G, calculate all cycles of G which have length at most k

and are based at x.

(v) For each vertex x and cycle γ obtained in (iv) calculate g(γ, x).

Output: elements of CG(t):

g(γ, xi)
h−1

i , β0(xi, hj)
h−1

i , β0(xi, h
−1
j )h−1

i , β1(xi, hj)
h−1

i and G

It should be emphasized that we view cycles as having a particular start and finish

vertex. Let γ be a cycle in G that contains vertices x and y. So these give rise to the

elements g(γ, x) and g(γ, y) which of course are conjugate elements of G, and at first

sight are not so different. Yet, letting hx, respectively hy, be the random element

giving x = thx , respectively y = thy , it is g(γ, x)h−1
x and g(γ, y)h−1

y which are in CG(t),

and these can be very different. However, we observe that the ‘orientation’ of a cycle

is unimportant. For, if γ̂ denotes the cycle γ with its orientation reversed and x is a

vertex of γ, then g(γ̂, x) = g(γ, x)−1.

Suppose we have a local fusion graph F(G,X) which has valency approximately

|X|/m. Then it is possible to give an estimate of the number of k-cycles (that is,

cycles of length k) in a subgraph G which we construct, and hence estimate the

number of elements of CG(t) which our algorithm will produce. Let v be the number

of vertices of G. Each k-cycle corresponds to an ordered k-tuple of vertices of G, and

there are v(v − 1) · · · (v − k + 1) such k-tuples. Since the probability of two random

elements of X having odd order product is approximately 1/m, and we disregard
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cycles which are reverses of previously considered cycles, the approximate number of

k-cycles in G is

v(v − 1) · · · (v − k + 1)

2mk
.

Note that we are assuming here that v is negligible in comparison to |X|.

Now suppose we wish to generate a certain number of elements of CG(t) using the

algorithm described above. To achieve this, we must make choices for the number of

vertices v, the maximum path length k to consider, and the number of times to run

the algorithm. It is natural to ask which choices will produce the required number

of elements of CG(t) in the shortest time. It is possible to give an indication of the

optimal choice of k. Let r be the least integer such that

r

k∑

i=3

v(v − 1) · · · (v − i + 1)

2mi
≥

k+1∑

i=3

v(v − 1) · · · (v − i + 1)

2mi
.

Let t(G) be the average time taken to construct G. Note that this depends on the

number of vertices v, the cost of calculating random elements in G, and the cost µ of

multiplying elements in G. We also denote by χ the average time taken to calculate

the conjugating element gi which sends xi to to the next element xi+1 in a particular

cycle. This value depends on both µ and the order of the product xixi+1. Then it is

worth increasing the maximum length of path considered to k + 1 if

r

(
t(G) + χ

k∑

i=3

iv(v − 1) · · · (v − i + 1)

2mi

)
> t(G) + χ

k+1∑

i=3

iv(v − 1) · · · (v − i + 1)

2mi
,

which we may rearrange to give the following condition on t(G):

t(G) >
χ(k + 1)v(v − 1) · · · (v − k)

2mk+1(r − 1)
− χ

k∑

i=3

iv(v − 1) · · · (v − i + 1)

2mi
.

10.4 Experimental Data

In this section we give some experimental data to demonstrate how the algorithm

performs in practice. We approach this from two directions: firstly, we analyse the

speed of our algorithm in producing centraliser elements when working with very large

representations; and secondly, we address the likelihood of our algorithm producing

a generating set for the centraliser of a given involution.
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Table 10.1 contains information regarding the speed of our algorithm, with com-

parisons to Bray’s method. In our implementation of the algorithm here, we have

only used the elements g(γ, x). Calculations were performed on a Unix machine with

8GB of memory and a 3.2GHz processor, running Magma version 2.11-15. The rep-

resentations of the groups used in each case were taken from the online Atlas [1],

and are as follows: the sporadic group M cL as a permutation group on 299376 points;

the exceptional group of Lie-type E8(2) as a group of 248-dimensional matrices over

F2; the Tits group 2F4(2)′ as a group of 109-dimensional matrices over F25; the Lyons

group Ly as a group of 111-dimensional matrices over F5; the sporadic group Fi22

as a group of 572-dimensional matrices over F2; the sporadic group J4 as a group of

112-dimensional matrices over F2; the sporadic Baby Monster group B as a group of

4072-dimensional matrices over F2; and the triple cover 3.Fi24 (a maximal subgroup

of the Monster group) as a group of 1566-dimensional matrices over F2.

The first two columns of the table list the group and conjugacy class of involutions

used, in Atlas notation [26], while the third column gives the average time (over ten

tests) to calculate a random element of G. The fourth column lists the number of

vertices of the subgraph of F(G,X) which we generate, with the fifth displaying the

maximum length of cycle we consider. The sixth column lists the average number of

centraliser elements produced by our algorithm over fifty runs (with the exception of

B, which was over ten runs). The penultimate column shows the average time taken

(in seconds) over these runs for the algorithm to complete. Finally, for comparison

we display the average time taken (in seconds, over ten runs) to produce this number

of centraliser elements just using Bray’s algorithm.

In the last line of the table above 2C† denotes the conjugacy class which projects

to the class 2C in Fi24. The representations used have been chosen to demonstrate

the capabilities of our algorithm when dealing with large permutation and matrix

representations. It is worthwhile to note, however, that in the cases of E8(2) and B

the representations used are in fact the minimal dimension matrix representations

over the field F2.

The optimal value of k can be calculated for the cases analysed in Table 10.1
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Table 10.1: Comparative Speeds

G t T(Random) v k No. of elements T(Cycles) T(Bray)
M cL 2A 1.35 8 4 49.64 14.63 65.35
M cL 2A 1.35 8 5 171.38 28.57 234.98
E8(2) 2A 0.07 11 4 318.62 8.26 34.09
E8(2) 2A 0.07 12 4 431.92 12.63 49.79
E8(2) 2A 0.07 13 4 659.48 18.21 70.03

2F4(2)′ 2A 0.31 8 3 12.42 6.08 5.77
2F4(2)′ 2A 0.31 8 4 41.5 12.66 20.11
2F4(2)′ 2A 0.31 8 5 100.60 26.76 58.23

Ly 2A 0.15 9 3 35.00 6.92 11.13
Ly 2A 0.15 9 4 156.52 22.90 52.46
Ly 2A 0.15 9 5 539.02 90.37 154.51

Fi22 2A 0.65 8 3 88.58 16.12 67.66
Fi22 2A 0.65 8 4 428.28 92.49 381.66
J4 2B 0.33 10 3 68.68 1.43 2.84
J4 2B 0.33 10 4 342.26 4.28 8.54
J4 2B 0.33 10 5 1587.82 54.53 66.52
B 2C 165.80 12 3 38.00 5152.91 8076.62

3.Fi24 2C† 15.20 8 4 675.36 1922.57 11737.99

using the method described in Section 10.3. For example, in the case of Ly when

v is chosen to be 9, the optimal value of k is predicted to be 4, which agrees with

the experimental data shown. On the other hand, in the case of M cL where v is 8,

the optimal value of k is 5, despite the number of vertices being lower than in the

Ly case. This is explained by the relatively high cost of computing random elements

in the very large permutation representation of M cL, in comparison to the cost of

multiplying elements.

We now move on to consider the likelihood of our algorithm producing a generating

set for the centraliser of an involution. The data contained in Table 10.2 covers a

number of groups, including some of those studied in Table 10.1. The groups chosen

have relatively small permutation representations, in which it is possible to construct

CG(t) using standard Magma commands. This allows us to check with ease the size

of subgroups generated by sets of elements. The representations used are again taken

from the online Atlas [1].
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The first two columns of Table 10.2 list the group and conjugacy class of involu-

tions used, while the third and fourth show the number of vertices used and maximum

length of cycle considered in the subgraph of F(G,X). The next four columns de-

tail the results of the implementation of four variations on our algorithm and Bray’s

method. For a given group G, each makes use of the same set of random elements

{h1, . . . , hv−1}. The fifth column gives the probability (as a percentage) that the

elements g(γ, x) produced by our algorithm generate the whole of CG(t); the sixth

column gives the probability that the Bray elements at t generate the whole of CG(t);

the seventh column gives the probability that the elements g(γ, x) and the Bray el-

ements at t together generate the whole of CG(t); and the final column gives the

probability that the elements g(γ, x), the Bray elements at t, and the Bray elements

at thi conjugated by h−1
i all together generate the whole of CG(t). For each group, to

obtain these percentages the algorithm was run 1000 times.

Table 10.2: Probability of generating CG(t)

G t v k P(Cycles) P(Bray) P(C+B) P(C+B+)
M cL 2A 5 4 68.9 89.3 93.7 100

2F4(2)′ 2A 6 4 89.7 84.2 96.7 100
Fi22 2A 3 3 34.2 74.0 74.2 99.8
J3 2A 4 4 62.4 79.4 89.9 100

3D4(2) 2A 5 4 94.2 84.4 96.1 100
3D4(2) 2B 6 4 46.3 51.4 85.3 100
G2(4) 2A 5 4 98.8 84.4 99.5 100
G2(4) 2B 6 4 83.4 75.1 97.4 100
Co3 2A 4 4 14.5 59.4 61.0 100
J2 2A 4 4 69.9 59.6 80.3 99.5

Sz(32) 2A 5 4 57.2 0 97.4 100

For each group in Table 10.2, v has been chosen so that there is a reasonable

chance that the Bray elements at t do not generate the whole of CG(t). Note that

in each row of Table 10.2 it is the case that P(C + B) > P(Bray). Therefore for

each of the groups tested it is possible to find cycle elements g(γ, x) which lie outside

the group generated by the Bray elements at t. For a number of the pairs (G, t) we

observe that P(Cycles) > P(Bray). This may be explained by these groups having
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highly connected local fusion graphs, and consequently the algorithm producing a

comparatively large supply of cycle elements of CG(t) from a small source of random

elements. An extreme case is when G = Sz(32), where we have P(Bray) = 0, since

in this situation CG(t) is a Sylow 2-subgroup of order 1024 which requires at least 5

generators.

In contrast we have the cases (Fi22, 2A) and (Co3, 2A), where not only is P(Bray) >

P(Cycles), but P(C + B) is only very slightly greater than P(Bray), implying that in

this case the majority of elements g(γ, x) are in fact already contained in the group

generated by the Bray elements at t.

10.5 Implementation in Magma

To conclude, we give an implementation of the cycles algorithm in Magma.

function Cycles(G,t,v,k)

A:=[]; B:=[];

Append(~A,y); Append(~B,h);

end for;

M:=MatrixRing(Integers(),v);

s1:=<>; s2:=<>;

for j:=1 to v do

a:=A[j];

for k:=1 to v do

b:=A[k];

if not a eq b and IsOdd(Order(a*b)) then

Append(~s1,1); Append(~s2,Order(a*b));

else Append(~s1,0); Append(~s2,Order(a*b));

end if;

end for;
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end for;

m:=M![s1[l] : l in [1 .. v^2]];

n:=M![s2[l] : l in [1 .. v^2]];

GG1:=Graph<v | m>;

V:=VertexSet(GG1);

C:={};

N:=[];

Val:=0;

for i:=1 to v do

Ni:=Neighbours(V.i);

Append(~N,Ni);

Val:=Val + #Ni;

end for;

if Val/v le v/4 then

return {},GG1,{},B;

else

GG2:={};

j2:=0;

repeat

j1:=0;

for k:=2 to v do

if #N[k] le v/5 then

h:=Random(G);y:=t^h;

Remove(~A,k);Insert(~A,k,y);Remove(~B,k);Insert(~B,k,h);

q1:=[];q2:=[];
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for l:=1 to v do

a:=A[l];

if not a eq y and IsOdd(Order(a*y)) then

Append(~q1,1); Append(~q2,Order(a*y));

else Append(~q1,0); Append(~q2,Order(a*y));

end if;

end for;

for p:=1 to v do

m[k,p]:=q1[p];n[k,p]:=q2[p];

end for;

for p:=1 to v do

m[p,k]:=q1[p];n[p,k]:=q2[p];

end for;

else j1:=j1+1;

end if;

end for;

j2:=j2+1;

GG2:=Graph<v | m>;

V:=VertexSet(GG2);

N:=[];

for i:=1 to v do

Ni:=Neighbours(V.i);

Append(~N,Ni);

end for;

until j1 eq v-1 or j2 eq 3;

for k:=2 to v do

if #N[k] le v/5 then

return {}, GG1,GG2,B;

end if;
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end for;

for w in V do

Thread:={ [w] };

U:={};

for r in N[Index(w)] do

y:=Append([w],r);

U:=U join {y};

end for;

Thread:=U;

for i:=2 to k do

U:={};

for s in Thread do

for r in N[Index(s[i])] do

if not r eq s[i-1] then

y:=Append(s,r);

U:=U join {y};

if r eq w then

if not Reverse(y) in U then

el:=Id(G);

for j:=2 to i+1 do

a:=Index(y[j-1]);b:=Index(y[j]);

d:=(n[a,b]-1)/2;

e:=IntegerRing()!d;

f:=(A[b]*A[a])^e;

el:=el*f;
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end for;

g:=el^(B[Index(w)]^-1);

Include(~C,g);

end if;

end if;

end if;

end for;

end for;

Thread:=U;

end for;

end for;

return C,GG1,GG2,B;

end if;

end function;
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