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Nomenclature

Roman Symbols

A Flatness parameter, A = 1− 9
8(A2 −A3) in the HJ model; Amplitude in oscillatory flows

A2 2-D stress invariant, A2 = aijaij
A3 3-D stress invariant, A3 = aijajkaki
aij Dimensionless Reynolds stress anisotropy tensor, aij =

uiuj
k −

2
3δij

bij Dimensionless Reynolds stress anisotropy tensor, bij =
uiuj
2k −

1
3δij

Cf Skin-friction coefficient, Cf = τw
0.5ρU2

∞
CP1 Coefficient of the source term in the εP equation
cp11 Constant inside CP1

cp12 Constant inside CP1

C ′P1
Coefficient of the extra source term kP

∂Ul
∂xm

∂Ui
∂xj

εlmkεijk in the εP equation

CP2 Coefficient of the sink term in the εP equation
cp21 Constant inside CP2

cp22 Constant inside CP2

CT1 Coefficient of the source term in the εT equation
ct1 Constant inside CT1

CT2 Coefficient of the sink term in the εT equation
cµ Coefficient in the eddy viscosity expression
cε1 Coefficient of the source term in the ε equation
cε2 Coefficient of the sink term in the ε equation
D Diameter
Dij Diffusion term in the Reynolds stress transport equation
E Near-wall extra dissipation term in the LS and KS models;

Flatness parameter E = 1− 9
8(E2 − E3) in the HJ model

E2 2-D dissipation rate tensor invariant E2 = eijeij
E3 3-D dissipation rate tensor invariant E3 = eijejkeki
eij Dimensionless dissipation rate anisotropy tensor, eij =

εij
ε −

2
3δij

f Frequency of oscillation
fBL extra term proposed in this work to be inserted into CP1

f1 Damping function of the source term in the ε equation;
Extra term proposed in this work to be inserted into fBL

f2 Damping function of the sink term in the ε equation;
Extra term proposed in this work to be inserted into fBL

fµ Damping function of the eddy viscosity expression

H Shape factor in boundary layers, H = δ∗

θ ; Step height in BFS flows
J Jacobian matrix
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k Total turbulent kinetic energy
kP Turbulent kinetic energy stored by the large scales of motion
kT Turbulent kinetic energy stored by the small scales of motion

K Acceleration parameter in FPGBL cases, K = ν
U2
∞

dU∞
dx

P̂ Instantaneous pressure
P Mean pressure
p Fluctuating pressure

Pk Turbulent kinetic energy production rate, Pk = −uiuj ∂Ui∂xj

Pij Reynolds stresses production rate, Pij = −
(
uiuk

∂Uj
∂xk

+ ujuk
∂Ui
∂xk

)
q twice the turbulent kinetic energy, q = 2k
Q Jet velocity in unsteady backward facing step cases
r Radial distance
R Radius
Re Reynolds number

Ret Turbulent Reynolds number, Ret = k2

νε

Reλ Reynolds Taylor number, Reλ =
(

20
3 Ret

)1/2
Reδ∗ Reynolds number based on the displacement thickness, Reδ∗ = δ∗U∞

ν

Reθ Reynolds number based on the momentum thickness, Reθ = θU∞
ν

sij Mean strain rate tensor, sij = 1
2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
Sij Mean strain rate tensor, Sij = ∂Ui

∂xj
+

∂Uj
∂xi

St Strouhal number, St = f`
Ub

SW Term used in f2 in the NT1 and NT2 models, SW =
SijSij−WijWij

SijSij+WijWij

Sφ General source term in Chapter 4
t Time
T Period, T = 1

f

U , V , W Mean velocity components
u, v, w Fluctuating velocity components
ui, uj Fluctuating velocity components

u′, v′, w′ rms of the fluctuating velocity, u′ =
√
u2; in periodic flows: u′ =

√
< u2 >

Ub, Um Bulk velocity
Uc Centreline velocity

Û Instantaneous velocity
uiuj Reynolds stress tensor
uiujuk Triple velocity correlation
V Volume

wij Vorticity tensor, wij = 1
2

(
∂Ui
∂xj
− ∂Uj

∂xi

)
Wij Vorticity tensor, Wij = ∂Ui

∂xj
− ∂Uj

∂xi

x, y, w Coordinate directions
xi, xj Coordinate directions
XR Time-averaged reattachment point in BFS flows
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Greek Symbols

δ Boundary layer thickness
δij Kronecker delta

δ∗ Displacement thickness, δ∗ =
∫∞

0

(
1− U(y)

U∞

)
dy

ε Turbulent kinetic energy dissipation rate
ε̃ Isotropic eddy dissipation rate of the turbulent kinetic energy
εij Viscous dissipation term in the Reynolds stress transport equation
εP Energy transfer rate between the large and small scales of motion
εT Energy transfer rate between the small scales of motion and the dissipation zone,

thus treated as the turbulent kinetic energy dissipation rate, εT = ε
φ Generic turbulent quantity in Chapter 4; Phase shift in oscillatory flows.
φij pressure-strain correlation term in Reynolds stress transport equation
Γ Diffusivity in Chapter 4

η Dimensionless shear, η = max

[
k
ε

√
1
2SijSij ,

k
ε

√
1
2WijWij

]
;

Kolmogorov length scale, η = (ν3/ε)1/4; General curvilinear coordinate in Chapter 4
κ von Karmam constant, κ = 0.41; wavenumber in the turbulent kinetic energy spectrum
µ Molecular viscosity
µt Eddy viscosity
ϑ Velocity scale
ρ Density
ν Kinematic viscosity
νt Kinematic eddy viscosity

θ Momentum thickness, θ =
∫∞

0
U(y)
U∞

(
1− U(y)

U∞

)
dy

σ Turbulent Prandtl number
τ Time scale
τw Wall shear stress
ω Specific eddy dissipation rate in the FM and WM models;

angular frequency elsewhere, ω = 2πf
ω+ Dimensionless forcing frequency in oscillatory pipe flows, ω+ = ων

uτ 2

ω∗ Turbulent Stokes number proposed by Tu and Ramaprian (1983b), ω∗ = ωD
uτ

ξ General curvilinear coordinate in Chapter 4
ζ General curvilinear coordinate in Chapter 4

Other Symbols

` Length scale
`m Mixing length
uu Time average
<> Phase average

Superscripts

+ Non-dimensionalized with inner velocity Uτ =
√

τw
ρ

* Corrected quantity in SIMPLE scheme
′ Correction value in SIMPLE scheme
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Subscripts

B/b Bottom node/face
BL Asymptotic state in local equilibrium boundary layers
DF Asymptotic state in decaying grid turbulence
E/e East node/face
N/n North node/face
P Current node in numerical analyses
SF Asymptotic state in homogeneous shear flows
S/s South node/face
T/t Top node/face in numerical analyses
W/w West node/face
∞ Value at the free-stream
0 Initial condition

Acronyms

APGBL Adverse Pressure Gradient Boundary Layer
ARS Algebraic Reynolds Stress
BFS Backward Facing Step
BFS-St0 Steady state backward facing step case (St=0)
BFS-St0127 Backward Facing Step case with St=0.275
BFS-st1 Backward Facing Step case with St=1
CFD Computational Fluid Dynamics
CG Chen and Guo’s LEV MTS model
CV Control Volume
DNS Direct Numerical Simulation
EXP Experimental data
EV Eddy Viscosity
FM Menter’s SST model
FPGBL Favourable Pressure Gradient Boundary Layer
GL Gibson and Launder’s RST model
G&M0 Normally strained case of Gence and Mathieu (1979) - pure straining
G&M05 Normally strained case of Gence and Mathieu (1979) - two consecutive

opposite in sign plane strains
HJ Hanjalic et al.’s LRN RST model
HM1 Homogeneous moderate shear case of Matsumoto et al. (1991)
HM2 Homogeneous highest shear case of Matsumoto et al. (1991)
HR Launder and Spalding’s standard k − ε model
HRN High Reynolds Number
HSF Homogeneous Shear Flow
JSF Oscillatory boundary layer case of Jensen et al. (1989)
K150 FPGBL case of Spalart (1986) with K = 1.5× 10−6

K250 FPGBL case of Spalart (1986) with K = 2.5× 10−6

K275 FPGBL case of Spalart (1986) with K = 2.75× 10−6

KC Kim and Chen’s LEV MTS model
KS Modified Craft et al.’s 1999 Cubic NLEV k − ε̃ model
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LEV Linear Eddy Viscosity (model)
LRN Low Reynolds Number
LS Launder and Sharma’s LRN k − ε̃ model
M&P10 Low Reynolds number APGBL case of Marusic and Perry (1995)
M&P30 High Reynolds number APGBL case of Marusic and Perry (1995)
MTS Multiple Time Scale
NG Nagano et al.’s LRN LEV MTS model
NLEV Non Linear Eddy Viscosity

NL1 Two-time-scale non-linear-eddy-viscosity-model developed using νt = cµ
kkP
εP

NL2 Two-time-scale non-linear-eddy-viscosity-model developed using νt = cµ
k2

εT

NSF Normally Strained Flow

NT1 Two-time-scale linear-eddy-viscosity-model developed using νt = cµ
kkP
εP

NT2 Two-time-scale linear-eddy-viscosity-model developed using νt = cµ
k2

εT

RANS Reynolds Averaged Navier Stokes
RST Reynolds Stress Transport
SG Speziale et al.’s SSG RST model
SHC Homogeneous high shear case of Lee et al. (1990)
STREAM Simulation of Turbulent Reynolds averaged Equations for All Mach numbers -

CFD code used
S&J APGBL case of Samuel and Joubert (1974)
STS Single Time Scale
TC Craft’s TCL LRN RST model
TCL Two Component Limit
TED Turbulent Eddy Dissipation
TKE Turbulent Kinetic Energy
T&R Laterally distorting case of Tucker and Reynolds (1968) -

normally strained case with pure straining
TS Hanjalic et al.’s LEV MTS model
Tu&R05 Oscillatory pipe flow of Tu and Ramaprian (1983a)

with f=0.5Hz (low frequency case)
Tu&R36 Oscillatory pipe flow of Tu and Ramaprian (1983a)

with f=3.6Hz (high frequency case)
T3RE10A20 Oscillatory pipe flow of He and Jackson (2009)

with T=3s, Re=10000 and A=20%
T3RE14A20 Oscillatory pipe flow of He and Jackson (2009)

with T=3.14s, Re=14000 and A=20%
T10RE7A20 Oscillatory pipe flow of He and Jackson (2009)

with T=10, Re=7000 and A=20%
U2 Homogeneous low shear case of Rogers and Moin (1987)
WM Wilcox’s LRN RST MTS model
W2 Homogeneous low shear case of Rogers and Moin (1987)
X2 Homogeneous lowest shear case of Rogers and Moin (1987)
ZPGBL Zero Pressure Gradient Boundary Layer
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Abstract

The reliable prediction of turbulent non-equilibrium flows is of high academic and industrial
interest in several engineering fields. Most turbulent flows are often predicted using single-
time-scale Reynolds-Averaged-Navier-Stokes (RANS) turbulence models which assume the
flows can be modelled through a single time or length scale which is an admittedly incorrect
assumption. Therefore they are not expected to capture the lag in the response of the
turbulence in non-equilibrium flows. In attempts to improve prediction of these flows, by
taking into consideration some features of the turbulent kinetic energy spectrum, the multiple-
time-scale models arose. A number of two-scale models have been proposed, but so far their
use has been rather limited.

This work thus focusses on the development of two-time-scale approaches. Two two-time-
scale linear-eddy-viscosity models, referred to as NT1 and NT2 models, have been developed
and the initial stages of the development of two-time-scale non-linear-eddy-viscosity models
are also reported. The models’ coefficients have been determined through asymptotic analysis
of decaying grid turbulence, homogeneous shear flows and the flow in a boundary layer in
local equilibrium. Three other important features of these models are that there is consistent
partition of the large and the small scales for all above limiting cases, model sensitivity to
the partition and production rate ratios and sensitivity of the eddy viscosity sensitive to the
mean strain rates.

The models developed have been tested through computations of a wide range of flows
such as homogeneous shear and normally strained flows, fully developed channel flows,
zero-pressure-gradient, adverse-pressure-gradient, favourable-pressure-gradient and oscilla-
tory boundary layer flows, fully developed oscillatory and ramp up pipe flows and steady
and pulsated backward-facing-step flows.

The proposed NT1 and NT2 two-scale models have been shown to perform well in all test
cases, being, among the benchmarked models tested, the models which best performed in the
wide range of dimensionless shear values of homogeneous shear flows, the only linear-eddy-
viscosity models which predicted well the turbulent kinetic energy in the normally strained
cases and the only models which showed satisfactory sensitivity in predicting correctly the
reattachment point in the unsteady backward facing step cases with different forcing frequen-
cies. Although the development of the two-time-scale non-linear-eddy-viscosity models is still
in progress, the interim versions proposed here have resulted in predictions of the Reynolds
normal stresses similar to those of much more complex models in all test cases studied and in
predictions of the turbulent kinetic energy in normally strained flows which are better than
those of the other models tested in this study.
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Chapter 1

Introduction

The major objective of this work is to develop modelling strategies suitable for a wide range

of non-equilibrium flows using two-time-scale approaches.

Non-equilibrium flows consist of flows which are subjected to rapid changes such as an

abrupt expansion or contraction, rapid variation in time and imposed pressure gradients,

among many other conditions which can remove the flow from its equilibrium. These kinds of

flows are commonly found in industry since they happen in valves, pumps, heat exchangers

and other types of equipment as well as in the aerospace field where the curvature of the

surfaces may cause such non-equilibrium states. Therefore, it is of engineering interest to

have the ability to accurately predict non-equilibrium flows.

The motivation of using multiple-time-scale schemes thus lies in the fact that most of

the available turbulence models, which are single-time-scale schemes, are not capable of

reproducing the effects of turbulence in such flows, specially with regard to the lag in the

response of the turbulence. It is believed that this inability is due to the fact that single-time-

scale models assume spectral equilibrium and use a single time or length scale to characterize

the behaviour of the whole flow which is, admittedly, a coarse approximation of the real

physics of the flows and which is known to be unrealistic. On the other hand, two-time-scale

models attempt to take into account some features of the turbulent kinetic energy spectrum

by characterizing the flows with two time or length scales. One could therefore expect that

such models will be more likely to be able to predict non-equilibrium flows where lags in the

response of the turbulence to changes in the mean flow, caused by the energy transfer process

across the spectrum, are more noticeable.

In this introduction chapter, the turbulence phenomenon itself and its main features will

be described and discussed and aspects of the established turbulence modelling art will be

briefly presented. An outline of this thesis will be then also presented where the main work

developed in each chapter will be delineated.
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1.1. Turbulence and Its Modelling

1.1 Turbulence and Its Modelling

The concept of turbulence in the way it is used and studied at the present time was perhaps

first introduced by Osborne Reynolds (Reynolds, 1883) after his famous experiment on the

transition from laminar to turbulent flow. This experiment was performed at the University

of Manchester in 1883 and consisted of investigating the behaviour of a dye when injected

into a water pipe submitted to increasing flow rates. Reynolds’ apparatus can be seen in

Figure 1.1. For low flow rates, it was possible to completely follow the dye stream as a single

line along the pipe. As the flow rate was increased, it became more and more difficult to

distinguish the line of dye in the flow until the moment (and from this point on) when a single

line of dye could no longer be visualized and the entire pipe was apparently coloured by the

dye. As a result of this experiment, Reynolds identified a dimensionless factor, currently

known as the Reynolds number, which could indicate whether a flow was laminar, turbulent

or in transition from laminar to turbulent states: at low flow rates the flow is laminar and at

high rates it becomes turbulent. For turbulent flows Reynolds proposed the decomposition of

the instantaneous velocity to the average and fluctuating components and then produced the

time-averaged Navier-Stokes equations which form the foundation of the RANS (Reynolds-

Averaged Navier-Stokes) computations and turbulence modelling which will be discussed

further in the thesis.

Figure 1.1: Reynolds’ tank for the experiment about transition from laminar to turbulent
flow

The turbulent flow is thus characterized by a random, unsteady, chaotic and three di-

mensional behaviour which is hard to describe and predict. Rotational flow structures, called

eddies or vortices, are often visualized. Hence turbulence can be identified by its eddying

motion with a wide spectrum of eddy sizes, implying a wide range of length scales. The

largest eddy sizes have the same order of magnitude as the flow domain while the smallest

are limited by the viscous forces and the kinetic energy of the fluctuating motion. When
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1.1. Turbulence and Its Modelling

the flow Reynolds number becomes higher and therefore the kinetic energy of the turbulent

motion increases, the size of the smallest eddies needed to dissipate this energy is reduced.

Therefore the higher the flow Reynolds number, the wider its eddy spectrum. The largest

eddies are dominated by inertial forces and present a highly anisotropic arrangement. The

smallest eddies exhibit high velocity gradients and as a result viscous effects are dominant,

implying a tendency towards an isotropic structure. The process in which the energy con-

tained in the main flow is transferred to the largest eddies is called vortex stretching, while

the transfer of energy from these largest eddies to the smaller ones up to the point the viscous

effects dissipate it is called the energy cascade. These concepts are widely used in the tur-

bulence field as an attempt to comprehend and explain the turbulent motion. Hinze (1976);

Rodi (1993); Versteeg and Malalasekera (1995) have written more extensively on this topic.

The turbulent kinetic energy spectrum thus illustrates the vortex stretching and cascade

processes described above. Changes in the mean flow generate turbulent kinetic energy which

is transferred to and stored by the large eddies of motion. These eddies break into smaller

eddies which break into even smaller eddies and so on and thereby the turbulent kinetic

energy is transferred across the different eddy sizes until they are so small that when broken,

the turbulence kinetic energy is simply dissipated into heat by viscous forces.

With regard to industrial flows, one may either want to stimulate or avoid turbulence. In

general, when the focus is on transfer processes, turbulence is desired. Indeed, momentum,

heat and/or mass transfer can be optimized in a turbulent system due to its strong diffusive

nature. This optimization is generally required in order to provide homogeneity (in mixtures,

for example) and economy (when designing equipment, for example). On the other hand,

when it is important to reduce frictional drag, as in the aerospace field, one may want to

avoid or postpone the occurrence of turbulence. Whichever is the case, it is important to be

able to understand and predict the turbulent effects.

The theoretical equations which describe any flow motion, including turbulent flows with

all their complexities, are known as the Navier-Stokes equations when considering incom-

pressible and Newtonian flows (which are the types of flows that will be considered in this

work). To solve a single turbulent flow, a closed set of the time-dependent Navier-Stokes

equations and the continuity equation must be solved for the three velocity components and

the pressure. The main problem in predicting turbulence arises when one realizes that even

the simplest flows do not have an analytical solution, and to solve numerically a turbulent

flow, even the simplest ones require a huge computational effort. Such effort is due to the level

of mesh refinement required to capture the eddies, from the largest to the smallest present

in a turbulent flow. The method of solving numerically the full Navier-Stokes equations is

called Direct Numerical Simulation (DNS). This technique has only become available in the

last few decades when advances in computer technology provided enough storage capacity

and speed to afford this kind of simulation. However, it is still not possible to carry out

DNS for complex flows, and is restricted to simple geometries and low to moderate Reynolds

numbers flows. Nevertheless DNS is considered an important tool for turbulence study devel-

opment, as discussed by Moin and Mahesh (1998), and provides relevant databases which are
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1.2. Outline of Thesis

regularly used as reference data, especially for near wall effects as noted by Friedrich et al.

(2001).

In general, engineers are interested in average behaviours, not in the full details of the

turbulence structure. Fortunately, as Hinze (1976) points out, it is possible to identify average

values of the main quantities (as velocity, pressure, temperature, etc) among the irregularities

characteristic of the turbulent flows. As mentioned above, Osborne Reynolds was the first to

propose the decomposition of the flow variables into their mean and fluctuating parts. It was

this idea that gave rise to the so-called and widely used Reynolds-Averaged Navier-Stokes

(RANS) turbulence models. The latter are usually applied in Computational Fluid Dynamics

(CFD) in order to predict the mean quantities of the flows, but also the turbulent effects.

Computational Fluid Dynamics is the name given for a class of numerical tools which solve

numerically the differential equations that govern fluid flows. As a general rule, the domain is

discretized and boundary and/or inlet conditions are specified. The type of simulation which

is intended to be solved defines the numerical methods as well as the mesh refinement that

should be used. For example, when simulating with a Reynolds-Averaged modelling, one is

not interested in capturing all the eddy size range and the mesh required is thus significantly

coarser than the one needed to process a DNS. When one mentions a CFD simulation, one

usually refers to Reynolds-Averaged processes and it was through this type of simulation that

CFD became a popular tool in both the academic and industrial fields, allowing its users to

predict more complex flows in a reasonable time. Nevertheless, CFD is still a strong research

topic where researchers try to improve its numerical features. This is also true of the so called

turbulence models.

Besides the RANS turbulence models already mentioned, there are other turbulence mod-

els available in the literature, such as large-eddy simulation, multiple point correlation tur-

bulence models, PDF models, etc, which are, however, substantially more expensive in terms

of computational resources and are consequently beyond the scope of this work and thus will

not be described. Through a literature survey about RANS turbulence models, which will

be presented in Chapter 2, it will be shown that numerous models of varying degree of com-

plexity, but mostly single-scale, can be found in the scientific literature, which can reliably

predict many flows. Nevertheless, for many kinds of flows, especially complex non equilibrium

flows, there is still a requirement for turbulence model improvements. This work thus aims

to develop two-time-scale models within the RANS framework suitable for non-equilibrium

flows.

1.2 Outline of Thesis

The structure of this thesis will now be described and the main work developed in each

chapter will be indicated as a guidance for its reading.

In this first chapter an overall background about turbulence and its modelling has been

presented. This creates the scenario for the development of the present work which focused

on turbulence modelling.
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1.2. Outline of Thesis

In Chapter 2 a literature survey about different kinds of turbulence models within the

RANS framework has been carried out, presenting the main classes of turbulence models and

showing their advantages and disadvantages as well as the physical processes they intend to

model. Attention has been focussed on multiple-time-scale models since these are the object

of study in this work.

In Chapter 3 the existing turbulence models which were used to simulate different test

cases with non-equilibrium features are presented. The transport equations as well as the

extra source terms and coefficients of each model are defined. In total, 13 turbulence models

were used: 3 linear-eddy-viscosity models, 1 non-linear-eddy-viscosity model, 4 Reynolds-

stress-transport models, 4 linear-eddy-viscosity two-time-scale models and 1 Reynolds-stress-

transport two-time-scale model. Besides the intrinsic difference between each class of model,

different features such as low-Reynolds-number approximations against the use of wall func-

tions were also explored.

In Chapter 4 the Finite Volume method is discussed. The CFD code used in this work,

the STREAM code, uses the Finite Volume method and is also described in this chapter.

The fourth chapter thus aims to develop understanding of the numerical implementation of

turbulence models into CFD codes and to make the STREAM code and its features familiar

for future use.

In Chapter 5 the test cases simulated in this work are described, their inlet and boundary

conditions as well as any other simulations set up are presented and the performance of

the turbulence models, described in Chapter 3, in predicting them is discussed. A wide

range of flows were assessed, including simple flows, such as fully developed channel flows

and zero pressure gradient boundary layers, and non-equilibrium flows such as homogeneous

shear flows, adverse-pressure gradient, favourable-pressure gradient and oscillatory boundary

layers, normally strained flows, fully developed oscillatory and ramp up pipe flows and steady

and unsteady backward facing step flows. This set of flows includes a wide range of different

non-equilibrium features which are regularly used to assess the performance of new turbulence

models and therefore are appropriate for the purposes of this work. This chapter is quite

extensive due to the number of test cases used and the number of turbulence models tested.

In Chapter 6 the main outcome of this work is presented: the development of two two-

time-scale linear-eddy-viscosity models, namely the NT1 and NT2 models. All stages which

led to the final versions of these models are described in details and their performance in

all test cases presented in Chapter 5 is assessed. It is shown that the new models developed

perform well in all test cases and particularly improve predictions of homogeneous shear flows,

normally strained flows and backward facing step cases.

In Chapter 7 the initial work carried out towards the development of two-time-scale non-

linear-eddy-viscosity models is also described in detail. The performance of the two interim

models developed, namely the NL1 and NL2 models, is also assessed in the test cases presented

in Chapter 5.

Finally, in Chapter 8 the main conclusions about the complete work as a whole are

presented and future work proposals will be also presented and discussed.
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Chapter 2

Literature Survey

The purpose of this chapter is to present a literature survey on turbulence models and their

applications and limitations up to the present time. The literature survey will focus on

dynamic field models for incompressible single-phase Newtonian flows.

In order to discuss turbulence models, it is useful to start from the very beginning, where

one can appreciate the reason why turbulence models are needed. As already mentioned, the

momentum governing equations of incompressible single-phase Newtonian turbulent flows are

the instantaneous Continuity (2.1) and Navier-Stokes (2.2) equations:

∂Ûi
∂xi

= 0 (2.1)

∂Ûi
∂t

+ Ûj
∂Ûi
∂xj

= −1

ρ

∂P̂

∂xi
+ ν

∂2Ûi
∂xj∂xj

(2.2)

In the above equations, summation applies in the repeated indexes and the circumflex accent

indicates instantaneous quantities. Equations (2.1) and (2.2) constitute a closed set where

the unknowns are P̂ , Û1 = Û , Û2 = V̂ and Û3 = Ŵ . These variables can be expressed as in

equation (2.3) by applying Reynolds’ proposal of splitting each instantaneous variable into

its mean and fluctuating parts:

Ûi = Ui + ui P̂ = P + p (2.3)

With regard to the averaging process, it is worth noting how the mean and fluctuating parts

in equation 2.3 can be defined. For flows where the mean is steady (ie. where all the time-

dependence is due only to turbulent fluctuations), a simple time-averaging may be used to

define the mean quantities. In other cases the mean may be time-dependent (in flows with

unsteady forcing, for example). In such cases a phase-averaging may be used if the flow is

periodic, or ensemble-averaging if not. In the flows to be considered later all three forms of

averaging will be implicitly employed, although for the modelling analysis below it does not
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matter which is being considered.

The so called Reynolds Averaged Navier Stokes (RANS) equations are obtained by sub-

stituting equations (2.3) into equations (2.2) and (2.1) and averaging in order to obtain a set

of equations for the mean quantities. The result of these algebraic manipulation is:

∂Ui
∂xi

= 0 (2.4)

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1

ρ

∂P

∂xi
+

∂

∂xj

(
ν
∂Ui
∂xj
− uiuj

)
(2.5)

One should notice that equations (2.1) and (2.4) are the same, except for the fact that the

divergence is being applied to the instantaneous velocity in the first equation and to the

mean velocity in the second equation. This result is extremely convenient since it means

that no additional term is required to calculate the mean quantities; that is, in principle, no

information is lost due to this “change” of variables.

On the other hand, when comparing equations (2.2) and (2.5) one notices a new term,

−uiuj appearing in the Reynolds-averaged form. This new term arises from the averaging

process since the averaged product of two turbulent quantities is not necessarily zero. In

fact, the autocorrelation of a velocity component with itself (u2, v2, w2) is never zero, unless

that particular fluctuating velocity is always zero. When the product is not over the same

two turbulent quantities it would only be zero if they were statistically independent, as noted

by Versteeg and Malalasekera (1995). Indeed, the turbulent velocity fluctuations are usually

not independent and account for important turbulent effects becoming much more significant

than viscous terms in turbulent flow regions. When equation (2.5) is multiplied by the density

ρ, the new term assumes the form −ρuiuj which is known as the Reynolds stress.

One may notice that the new set of equations constituted by equations (2.4) and (2.5)

now contains four equations (continuity equation and one for each velocity component from

the RANS equation) and ten unknowns: P , U , V , W , u2, v2, w2, uv, uw and vw. Thus the

six new introduced terms, the Reynolds stresses, characterize the so called closure problem.

In order to close this equation system, it is necessary to introduce turbulence models, either

in the form of algebraic expressions or additional transport equations to model the Reynolds

stresses.

The first attempt to model the Reynolds stresses was proposed by Boussinesq in analogy to

Newton’s law of viscosity (where the shear stress is linearly proportional to the mean velocity

gradient and the viscosity gives the slope), suggesting an analogy between the viscous and

turbulent stresses, giving rise to the concept of a turbulent viscosity. Taking into account the

turbulent kinetic energy definition, equation (2.7), Boussinesq’s hypothesis is expressed as in

equation (2.6):

uiuj = −νt
(
∂Ui
∂xj

+
∂Uj
∂xi

)
+

2

3
kδij (2.6)
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2.1. Zero Equation Models

where 2k = u2 + v2 + w2 (2.7)

One may notice that this proposal suggests an algebraic way to calculate the Reynolds stresses

and transfers the modelling challenge from the Reynolds stresses to the turbulent viscosity,

νt. Turbulence models which apply the Boussinesq turbulent viscosity concept will thus

attempt to model the turbulent viscosity. It is also important to call attention to the isotropic

character of equation (2.6). In shear flows where ∂U
∂x = ∂V

∂y = ∂W
∂z = 0, all the normal Reynolds

stresses will assume the same value ( u2 = v2 = w2 = 2
3k). This identity is known to be

erroneous. However, in spite of this, equation (2.6) constitutes the base for many widely used

and validated turbulence models.

In the literature, the turbulence models are most commonly classified into four groups:

Zero Equation models, One Equation models, Two Equation models and Stress Transport

models. Other classes of RANS turbulence models have also been investigated in the last few

decades, such as the Algebraic Reynolds Stress models and the Multiple Time Scale models

which may span across some of the above groups. Most of these types of turbulence models

will be discussed in the following subsections, as part of a literature survey, and special

attention will be given to the Multiple Time Scale models since it is believed they are more

likely to be able to predict non equilibrium flows which will be the main focus of this study.

2.1 Zero Equation Models

The Zero Equation models are denoted as such because they do not solve any additional

transport equations other than the Continuity and RANS equations. Therefore, they simply

use an algebraic expression to model the turbulent viscosity. The pioneer on this work

was Prandtl (1925) who initially observed that the turbulent viscosity could be modelled

(following a dimensional analysis) as a product of a turbulent velocity scale (ϑ) and a length

scale (`), multiplied by a general dimensionless constant, as expressed in equation (2.8):

µt = ρCϑ` (2.8)

Prandtl was investigating a simple 2D shear flow, where the only relevant mean velocity gra-

dient is ∂U
∂y and the only important Reynolds stress is ρuv, and proposed a relation between

the velocity scale and the mean shear rate as being ϑ ∝ `m|∂U∂y |, resulting in the following:

− uv = `2m

∣∣∣∣∂U∂y
∣∣∣∣∂U∂y (2.9)

`m is known as the mixing length and the above equation is recognized as Prandtl’s Mixing

Length model. To fully close the system, the mixing length `m needs to be modelled. As
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2.2. One Equation Models

this new parameter represents a length scale, it is expected that it would vary as a function

of the type of the flow. In practice, `m is usually expressed in the form of a ramp function

whose linear part is proportional to the distance to the wall, as κy, κ being the von Karman

constant evaluated as 0.41, and whose constant part assumes different values according to

the kind of flow. Indeed, one may find tables (Rodi, 1993; Versteeg and Malalasekera, 1995)

with different values (or expressions as functions of geometry and/or distance from the wall)

for the constant part of `m for various flows, all of them having been determined by empirical

observations. It is also valid to mention that the value of `m is usually reduced somewhat

from the above value very near the wall, where viscous forces dominate. In this context, van

Driest’s (1956) damping near-wall function is the most widely used.

Equation (2.9) can be generalized to a form that could be applied in arbitrary strain

fields. However, Zero Equation models do not generally give accurate prediction in other

than rather simple flows due to the necessity of an expression for the mixing length which is

hard to define for complex flows. They perform satisfactorily for simple 2D shear flows such

as jets, mixing layers and zero pressure gradient boundary layers. However, for flows whose

turbulence properties are not proportional to the mean flow length scale, they fail, not being,

for example, capable of predicting separation and recirculation (Versteeg and Malalasekera,

1995) accurately as well as processes where convection and/or diffusion of turbulence are

important (Rodi, 1993).

Prandtl’s Mixing Length model is maybe the most popular and applied turbulence model

among the Zero Equation models, however one can find in the literature a number of other

algebraic turbulence models such as Smagorinsky (1963), Baldwin and Lomax and Cebeci

and Smith (1974) mentioned by Speziale (1995).

2.2 One Equation Models

One Equation models overcome some of the limitations experienced by the Zero Equation

models. They constitute a class of turbulence models which provide an additional transport

equation to be solved. However they still also need an algebraic expression to close the system

formed by the Continuity and the RANS equations.

The most famous One Equation model is known as the Kolmogorov-Prandtl model be-

cause the two workers arrived at the same proposal by independent ways (Rodi, 1993). Their

proposals were based on defining the turbulent velocity scale as k
1
2 . Since this turbulent

quantity is associated with large eddies, this provides a velocity scale for the large scale

turbulent eddies that is not purely dependent on the local mean flow, as is the case in the

Zero Equation models. Following the general turbulent viscosity formulation - equation (2.8)

- the turbulent viscosity can now be expressed as in equation 2.10 below where C ′µ is a

dimensionless constant.

νt = C ′µk
1
2 ` (2.10)
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2.2. One Equation Models

The turbulent kinetic energy transport equation can be analytically derived from its defini-

tion stated in equation (2.7) which can also be written as k = 0.5u2
i . From this, one can

derive Dk
Dt = D

Dt

(u2
i

2

)
= ui

Dui
Dt . A transport equation for the fluctuating velocity ui can be eas-

ily obtained by subtracting the RANS equation (2.5) from the instantaneous Navier Stokes

equation (2.2), taking into account the decomposition of equation (2.3). Multiplying this

equation by ui and averaging, one can arrive at the exact turbulent kinetic energy transport

equation:

∂k

∂t
+ Uj

∂k

∂xj
= −uiuj

∂Ui
∂xj
− ν ∂ui

∂xj

∂ui
∂xj

+
∂

∂xj

(
−
u2
iuj
2
− uip

ρ
δij + ν

∂k

∂xj

)
(2.11)

However, the above equation cannot, at this stage, be solved directly due to the last two

terms on its right hand side. Evaluating the right hand side terms, one must call attention

to the first term which is identified as turbulence production, Pk = −uiuj ∂Ui∂xj
. This name

arises from the fact that this same term is also present in the mean kinetic energy equation,

but with the opposite sign, indicating that this is the process which transfers kinetic energy

from the mean flow to the turbulent scales.

The second term on the right hand side of equation (2.11) also plays an important role

in determining the turbulence behaviour. It is identified as the turbulent kinetic energy

dissipation rate, ε = ν ∂ui∂xj
∂ui
∂xj

(which is also called viscous eddy dissipation since it dissipates

the turbulence effects by viscous action). This quantity is always positive since it consists

of averaged squared turbulent velocity gradients. In One Equation models, ε is a modelled

quantity, usually assuming the form ε = C k3/2

` , where C is an empirical constant and ` a

prescribed length scale.

The third term on the right hand side of equation (2.11) is identified as a diffusive process.

All except the viscous diffusion need to be modelled. Its modelling is usually based on the

presumption that the diffusive flux is proportional to the turbulent kinetic energy gradient.

Therefore equation (2.11) is transformed into equation (2.12):

Dk

Dt
= Pk − ε+

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
(2.12)

This is the most common turbulent kinetic energy transport equation form, where Dk/Dt

stands for the substantive derivative, defined as Dk
Dt = ∂k

∂t + Uj
∂k
∂xj

and σk is the turbulent

Prandtl number, usually assigned to unity, linking the diffusivity of k with the turbulent

viscosity.

One may notice that the One Equation models still need an algebraic equation to model

the turbulent length scale which is used in the turbulent viscosity and eddy dissipation

expressions. The turbulent length scale is usually estimated by essentially the same empirical

formulas used in the Zero Equation models.
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2.3. Two Equation Models

An interesting observation pointed out by Rodi (1993) is that for local equilibrium, where

convection and diffusivity can be neglected and then production is equal to dissipation, the

One Equation model reduces to the Zero Equation model, making clear that Zero Equation

models are more likely to be applicable only in local equilibrium flows.

There are other One Equation models available in the literature, not all of which propose

an additional transport equation for the turbulent kinetic energy. Baldwin and Barth (1990)

and Spalart and Allmaras (1992), for example, developed a transport equation for the turbu-

lent viscosity (Speziale, 1995) while Bradshaw and co-workers (Bradshaw and Ferriss, 1967,

1973) proposed a transport equation for the shear stress (Rodi, 1993). However none of these

escape from the necessity of empirical formulas such as length scale prescriptions which can

then make the model difficult to apply in complex geometrical flows.

2.3 Two Equation Models

Following the logic for the last two turbulence models’ nomenclature, it is quite intuitive that

Two Equation models are those which provide two additional transport equations for the

system composed by the Continuity and RANS equations. The reason they were developed

is also sensible: to avoid the empirical and semi-empirical algebraic formulations for the tur-

bulent velocity and length scales, since those experimental correlations restrict the turbulence

model application to simple shear flows. The idea is to calculate two turbulence quantities

through transport equations and use those turbulence quantities to infer turbulence velocity

and length scales to be applied in the turbulent viscosity concept, constituting the minimum

physically acceptable level of closure (Speziale, 1995).

The most famous turbulence model in this class is the k − ε model which, as its name

suggests, provides transport equations for the turbulent kinetic energy k and the turbulent

eddy dissipation rate ε. The standard k− ε model, referring to Jones and Launder’s (1972b)

work, proposes the k equation in the same form as presented in equation (2.12) and the ε

equation as follows:

Dε

Dt
= cε1

ε

k
Pk − cε2

ε2

k
+

∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

]
(2.13)

There is an exact analytical transport equation for the quantity ε which can be obtained by

manipulating the turbulent velocity transport equations in order to match the turbulent eddy

dissipation definition. However, virtually all the terms appearing in this require modelling,

and so the more empirically derived form of equation (2.13) is usually adopted.

Prandtl’s general proposal for the turbulent viscosity, equation (2.8), is retained, but now

no further correlations are necessary to express the turbulent velocity and length scales. The

velocity scale is taken as ϑ = k
1
2 as in the One Equation models and the turbulent length

scale is now expressed as ` = k
3
2

ε . Therefore, the turbulent viscosity assumes the form:
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2.3. Two Equation Models

νt = cµ
k2

ε
(2.14)

One may notice the presence of five constants to be determined. They are: σk (which normally

assumes a value of unity) from the k equation, cµ from the turbulent viscosity expression

and cε1, cε2 and σε from the ε equation. Briefly commenting on how these constants were

determined, it is possible to say that the most common way of achieving values for these

constants is to apply the turbulence model in a number of simplified and asymptotic flow

states in order to guarantee some expected results. This way, cµ can be determined by a local

equilibrium analysis, cε2 derived from decaying grid turbulence and cε1 and σε chosen from

computer optimization and a relation between them (and cε2) for the fully developed region

of an equilibrium boundary layer.

The standard k − ε model, usually used with the constants defined by Launder and

Spalding (1974), thus consists of a linear eddy viscosity model with no low Reynolds number

modifications, that is, no special treatment for near-wall regions. In spite of these drawbacks,

the k − ε model is widely used in the academic and industrial environments and is one of

the turbulence models which has been most widely validated in terms of distinct simulated

flows. It is believed to often give accurate prediction for relatively simple confined flows, but

its performance is not reliable in general complex flows such as swirling flows and those with

rapidly varying or high strain rates (Versteeg and Malalasekera, 1995).

There are many other Two Equation models available in the literature. Most of them

consist of basically some improvements to the standard k− ε model when applied to specific

kinds of flows, aiming to expand the range of applicability of the model. Some of them propose

different turbulent quantities to be solved by transport equations, usually replacing ε and

keeping k. The following subsections will be dedicated to discuss briefly some alternative

forms of Two Equation models.

2.3.1 Low-Reynolds-Number k − ε Models

A number of researchers have worked on modifying the standard k − ε model, aiming to be

able to predict near-wall and viscous influenced behaviours. In a general way, their focus was

directed to apply damping functions to the already used constants in order to allow them

to still reproduce the log law profile and correctly predict the variables’ values in the near-

wall vicinity. In order to discuss these Low-Reynolds-Number models, from now on referred

to as LRN models, the standard k − ε model equations can be rewritten as in equations

(2.15)-(2.18) below.

νt = cµfµϑ` or νt = cµfµϑ
2τ (2.15)

Dk

Dt
= Pk − ε+

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
(2.16)
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2.3. Two Equation Models

Dε̃

Dt
= (cε1f1Pk − cε2f2ε̃+ E)τ−1 +

∂

∂xj

[(
ν +

νt
σε

)
∂ε̃

∂xj

]
+ Πε (2.17)

ε̃ = ε−D (2.18)

Some models also introduce a new variable: ε̃. This variable is related to ε by equation (2.18)

and is referred to as the isotropic eddy dissipation rate of the turbulent kinetic energy. One

should notice that if the term D is zero, ε̃ = ε. This concept was first introduced by Jones

and Launder (1972b) who observed that it would be convenient to let ε̃ go to zero at a wall in

equation (2.17). However, ε itself is not zero at a wall, so they introduced a form for D (Table

2.1(a)) that would ensure ε would take the correct wall value when ε̃ was set to zero at the wall.

The term E was introduced in some models to provide additional near-wall dissipation. One

should observe from their expressions in Tables 2.1(a) and 2.1(b) that in the bulk flow, where

the local Reynolds number is high, the terms D and E are negligible. Jones and Launder

(1972b) also proposed the constants cµ and cε2 to vary as functions of the local turbulent

Reynolds number, which in the above models is taken as Ret = k2

νε̃ . They validated their

model only for shear flows and that explains why in Tables 2.1(a) and 2.1(b) the derivatives

of terms D and E are expressed only in terms of y, as presented in their paper, but of

course a general form can be obtained. Jones and Launder (1972b) applied their turbulence

model proposal to a few flows including zero and favourable pressure gradient boundary

layers. In further work, (Jones and Launder, 1973) they expanded the model application,

where, among the shear flows examined, one can mention: a fully developed flow in a pipe

at high and low Reynolds numbers, a sink flow which is actually a boundary layer flow with

a favourable pressure gradient, an asymptotic suction boundary layer, a plane channel flow

at low Reynolds number and flows submitted to step changes in the levels of surface blowing

and streamwise pressure gradients. In a general way, one can say that their model provided

good predictions when compared to experimental data, except for transition regions.

Launder and Sharma (1974) developed an extension to Jones and Launder’s (1972b;

1973) work, proposing new damping functions to cµ and cε2, still dependent on the turbulent

Reynolds number. This was then validated for a spinning disk flow. According to Rodi and

Mansour (1993) that was rated one of the best LRN models until 1984 in an review article.

Rodi and Mansour (1993) also proposed a LRN model, but focusing on modelling each

term of the ε equation with the aid of available DNS data for a fully developed channel flow.

The damping function for cµ was determined as a function of the dimensionless distance

to the wall y+ and the damping function for cε2 was made to vary with a new parameter

Rp = Pk/k

0.3
√
ε/ν

, defined after an order of magnitude analysis of the ε-budget, which could

be interpreted as a ratio between the dissipating motion and the production of turbulence

timescales. The coefficients cε1, cε2, σk and σε were kept as constants and their values were

taken from Launder et al. (1975). Finally, the E term was modified, becoming an extended

form of that of Jones and Launder (1972b). Its final form can be seen in Table 2.1(b). This

model was all based on channel flow DNS databases which does not necessarily make it widely
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2.3. Two Equation Models

applicable, unless also validated for other kinds of flow, as stated by the authors.

Cheng and Yang (2008) proposed a new LRN model by combining two damping functions

from different authors (Park and Sung (1995) and Nomura et al. (2002)) into one. The idea

was to account for viscous and near-wall effects by one of the damping functions and for

non-equilibrium influences by the other. The resultant fµ expression can be seen in Table

2.1(a). This model was validated in a 3D backward facing step flow, where the reattachment

length was said to be in good agreement with experimental data.

The LRN models presented so far all considered the turbulent timescale in νt to be k/ε.

Goldberg and Apsley (1997) proposed this timescale to be multiplied by max(1, ξ−1), where

ξ =
√
Ret
Cτ

, Ret is the already cited turbulence Reynolds number and Cτ was taken as
√

2

after an analysis for the viscous sublayer. This idea implies the timescale to be k/ε for high

Reynolds numbers and to become the Kolmogorov scale for low Ret. A damping function

for the constant cµ was determined by first analysing the turbulent viscosity in the near-wall

region and subsequently extending it to the fully turbulent region, where fµ should assume a

value of unity, and applying some known relations involving the dimensionless distance to the

wall. Lastly a new E term was also proposed based on canceling the corresponding non-zero

destruction term near the wall. This term can be seen in Table 2.1(b) where S stands for

the mean strain invariant S =
√

2sijsij , sij = 1
2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
and Q stands for the total

kinetic energy. This model was validated for a flat plate near-wall flow, a fully developed

pipe flow, a channel flow over a 2D hump, a flow over a slanted backward-facing step and a

high lift aerofoil, all presenting good agreement with experimental data and performing as

well as Lien and Leschziner’s (1993) model which employed wall distance in its formulation.

Other authors have also proposed LRN models which do not depend upon the distance to

the wall. Rahman and Siikonen (2005), for example, represented the time scale as shown in

Table 2.1(a) which is never smaller than the Kolmogorov time scale, and this approach has

also been applied by other authors. They proposed a damping function in the form of that

stated in Table 2.1(a), where fλ = tanhCλRλ(1 +Rλ) and Rλ =
√

cµQ
νmax(S,W ) and Q and

S stand respectively for the total kinetic energy and the mean strain invariant, as already

defined, and W is the mean vorticity invariant W =
√

2wijwij , with wij = 1
2

(
∂Ui
∂xj
− ∂Uj

∂xi

)
.

The resulting damping function was stated as being valid for the whole flow field. The

constant Cλ was evaluated as Cλ = βccε2µ , with β = 0.5τmax(S,W )

1+τ
√
S2+W 2

. This parameter was also

used to define the constant cε1, and cε2 was defined as a function of the latter as in Rahman

and Siikonen (2003). The quantities σk and σε were not kept as constants, being modelled

with the aid of DNS data as can be seen in Table 2.1(b), where fσ =
fµ√
β+f3

µ
. Besides this,

an extra source term was suggested as a pressure diffusion term, to balance the ε equation in

the limit of the near-wall region. This LRN model was evaluated for fully developed channel

flows, a flat plate boundary layer with zero pressure gradients and a backward facing step

flow where it performed well, giving good agreement with experimental data.

The constants, terms and damping functions generally represented in equations (2.15),

(2.16), (2.17) and (2.18) for each one of the LRN models briefly commented on above can be
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seen in Tables 2.1(a) and 2.1(b). For all turbulence models considered above, the constant cµ

assumed its classical value of 0.09 and the damping function f1 was assigned as unity, hence

these are not given separately in the tables. There are many other LRN k−ε models available

in the literature, but it is believed that the above sample of LRN models is enough to provide

a broad and representative view of this class of turbulence model and its capabilities.

2.3.2 Non-Linear Eddy Viscosity Models

As already stated above, the standard eddy viscosity models based on Boussinesq’s proposal

for the turbulent viscosity imply an isotropic prediction of the normal Reynolds stresses in

simple shear flows, where u2 = v2 = w2 = 2
3k. That may not be a problem for many shear-

dominated flows where the only important Reynolds stresses are the shear ones, since they are

the only ones that play an active role in the transport equations for these flows. However, for

flows where the normal stresses play a role those turbulence models fail. In order to improve

predictions without increasing drastically the computational effort, researchers developed the

Non-Linear Eddy Viscosity models, from now on referred to as NLEV models, which can, in

principle, give a better representation of the normal Reynolds stresses.

Speziale (1987) presented a NLEV model which incorporated a number of physical re-

strictions required for applicability. He stated these physical constraints as being three: di-

mensional and tensorial invariance, realizability (which accounts for k being always positive)

and material frame indifference. Following these statements, a general non-linear proposal

for the Reynolds stresses containing up to the cubic terms in mean strains can be written as

by Craft et al. (1996b):

uiuj =
2

3
δijk − νtSij

+ c1
k

ε̃
νt

(
SikSjk −

1

3
SklSklδij

)
+ c2

k

ε̃
νt

(
WikSjk +WjkSik

)
+ c3

k

ε̃
νt

(
WikWjk −

1

3
WklWklδij

)
+ c4

k2

ε̃2
νt

(
SkiWlj + SkjWli

)
Skl + c5

k2

ε̃2
νt

(
WilWlmSmj + SilWlmWmj −

2

3
SlmWmnWnlδij

)
+ c6

k2

ε̃2
νtSijSklSkl + c7

k2

ε̃2
νtSijWklWkl (2.19)

where Sij =
(
∂Ui
∂xj

+
∂Uj
∂xi

)
and Wij =

(
∂Ui
∂xj
− ∂Uj

∂xi

)
.

The main feature of a NLEV model is thus this non-linear way of expressing the Reynolds

stresses by an algebraic formulation. One may notice that the first line of equation (2.19)

is the standard linear eddy viscosity model, the second contains the quadratic terms and

the last two lines the cubic ones. It is of value to add that a formulation for the turbulent

viscosity νt is still required to close the system.
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2.3. Two Equation Models

Table 2.1: Comparing LRN models

(a) Terms in νt expression and k equation

Model fµ ϑ2 ` τ D σk

Jones and Launder
(1972b)

e
−2.5

1+Ret/50 k k3/2

ε̃
k
ε̃ 2ν

(
∂
√
k

∂y

)2

1.0

Launder and
Sharma (1974)

e
−3.4

(1+Ret/50)2 k k3/2

ε̃
k
ε̃ 2ν

(
∂
√
k

∂y

)2

1.0

Rodi and Mansour
(1993)

1− e−0.0002y+

e0.00065y+2 k k3/2

ε̃
k
ε̃ 0 1.0

Goldberg and
Apsley (1997)

1−e−0.01Ret

1−e−
√
Ret

max(1, ξ−1) k k3/2

ε̃
k
ε̃max(1, ξ−1) 0 1.367

Rahman and
Siikonen (2005)

fλ + Cν(1− fλ) k − k
ε̃

√
1 +

C2
T

Ret
0 σε

1−Cνfσ

Cheng and Yang
(2008)

(1− e−y+/87)(1−
e−y

+/50.5)2.621.2+0.646Pk/ε̃
(1.2+Pk/ε̃)2

k k3/2

ε̃
k
ε̃ 0 1.0

(b) Terms in ε equation

Model cε1 cε2 f2 E σε Πε

Jones and Launder
(1972b)

1.45 2.0 1−
0.3e−Re

2
t

k
ε̃2ννt

(
∂2U
∂y2

)2

1.3 0

Launder and
Sharma (1974)

1.44 1.92 1−
0.3e−Re

2
t

k
ε̃2ννt

(
∂2U
∂y2

)2

1.3 0

Rodi and Mansour
(1993)

1.44 1.90 e2R3
p 0.5kε̃2ννt

(
∂2U
∂y2

)2

+

0.006ν k
2

ε̃2
∂k
∂y

∂U
∂y

∂2U
∂y2

1.3 0

Goldberg and
Apsley (1997)

1.42 1.83 1 0.1cε2
0.01
√

2
νfµS

2e
−0.231

√
Q
νS 1.367 0

Rahman and
Siikonen (2005)

1 +
β

1.33cε1 1 2νtτ max

(
∂(k/ε̃)
∂xj

∂k
∂xj

, 0

)
CT

4Cν+fσ
−1

2
∂
∂xj

(
ν ε̃k

∂k
∂xj

)
Cheng and Yang
(2008)

1.44 1.92 1 0 1.3 0
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Equation (2.19) is written in terms of ε̃, the variable proposed by Jones and Launder

(1972b). However, an equivalent non-linear expression for the Reynolds stresses may be

written to suit any two-equation model, as Speziale (1987) did for a k-` turbulence model.

Speziale’s (1987) work concerned a quadratic NLEV model, therefore the above constants

c4, c5, c6 and c7 were taken as zero. In his particular model, the constants c2 and c3 were

also zero and he introduced a new term which he referred to as the frame-indifferent Oldroyd

derivative of S (the strain invariant tensor). He proposed a NLEV model to be applied in

k−` and k−ε turbulence models, writing equation (2.19) in terms of the length scale ` instead

of ε and associating eddy dissipation to the length scale as ε = k3/2

` . For the k− ` turbulence

model, Speziale employed Mellor and Herring’s (1973) transport equations and for the k − ε
form, Hanjalic and Launder’s (1972) ε transport equation. For both, the turbulent viscosity

was expressed as in equation (2.8), with the velocity scale ϑ = k1/2. His model was applied

to a fully developed channel flow, a square duct and a backward-facing step flow. He verified

the improvement achieved by the NLEV models in comparison to the standard linear k − ε
model, including a fair prediction of the normal stresses in the channel flow (except for the

near-wall region), the correct physical form of the secondary flows in initial calculations of the

square duct (which the linear model cannot capture) and much closer to experimental value

for the reattachment length in the backward-facing step flow. Despite these good preliminary

results, the model needed more testing for wider validation.

Craft et al. (1996b) noted a number of other quadratic NLEV models. Among them,

one can mention Rubinstein and Barton’s (1990) work, who applied the renormalization

group theory developed by Yakhot and Orszag (1986) to arrive at values for the quadratic

constants c1, c2 and c3. However, based on the very different values for the constants c1,

c2 and c3 obtained by optimization for distinct flows by individual authors, Craft et al.

(1996b) concluded that these quadratic NLEV models were only capable of slightly improving

predictions compared to a linear eddy viscosity model. Hence, they proposed a cubic NLEV

model, intended to return a more general applicability. In their work, the constants were

determined by optimization over a wide range of flows, but special attention was given to

simple shear flows to determine some parameters. The model was designed to be applied

to low-Reynolds-number flow regimes, thus its turbulent viscosity formulation was in the

form of equation (2.15) with cµ varying with the strain invariants in the form max(S̃, W̃ ),

where S̃ and W̃ are the dimensionless strain and vorticity invariants (S̃ = k
ε̃

√
1
2SijSij and

W̃ = k
ε̃

√
1
2WijWij) and fµ varied with the turbulent Reynolds number. They adopted the

D term suggested by Jones and Launder (1972b) in the k equation, but changed the E term

expression in the ε̃ equation in order to reduce its dependence on the Reynolds number. An

additional source term was also included in the ε equation: the so called Yap correction

(Yap, 1987) which is a length scale correction, based on the normal distance to the wall.

The model’s performance was compared to that of Launder and Sharma’s (1974) linear eddy

viscosity model for a channel flow, a circular pipe flow, a pipe rotating about its own axis, a

fully developed curved channel flow and a turbulent jet impinging normally onto a heated flat
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2.3. Two Equation Models

plate. Craft et al.’s (1996b) model showed the better performance, especially in the latter

flows, where non-linear effects were more important. However both models failed to predict

the correct magnitude of the turbulent kinetic energy peak near the wall in the channel flow.

Two further developments in NLEV models arose from Craft et al.’s (1996b) turbulence

model: one from the same authors, Craft et al. (1997), and the other by Craft et al. (1999).

Craft et al. (1997) adopted the same general cubic stress strain model as indicated in equation

(2.19), but proposed different expressions for the constants which now became functions of the

turbulent Reynolds number, the mean strain invariants and the stress invariant A2, defined as

A2 = aijaij , where aij =
uiuj
k −

2
3δij is the dimensionless Reynolds stress anisotropy tensor.

The expressions for each constant were again obtained by optimization against DNS and

experimental data of homogeneous shear flows over a range of the dimensionless strain rate,

ensuring that the normal stresses should never be negative, irrespective of the dimensionless

strain rate’s magnitude, as well as swirling pipe and 2D straining curvature flows. In order to

calculate the stress invariant A2, a transport equation was solved for this quantity based on

one derived from a full stress transport model. The k and ε equations were also not adopted

in their standard formulation. The diffusive term in the k equation was modelled as in Daly

and Harlow (1970), but with a new correlation for the constant within the model. The E term

in the ε equation was adopted as in Rodi and Mansour (1993), but with different constants,

and an extra source term was proposed in order to avoid the Yap (1987) correction, due

to its dependence on the normal distance to the wall. The turbulence model was validated

by being applied in a channel flow, in an axisymmetric flow through a pipe that rotates

about its own axis, in a fully developed flow in a curved channel, for bypass transition in

zero pressure boundary layers, in a turbulent impinging jet and in a flow around a turbine

blade, where some adaptations and modifications were applied to the new model. In general,

the new proposal provided better predictions, but did show some overprediction of the wall

shear stress on the convex surface of the curved channel and did not capture the turbulence

intensity far from the impinging point in the turbulent impinging jet flow particularly well.

The authors concluded that the transport equation for the stress invariant was responsible

for the better prediction of the normal stresses near the wall and that there was a deficiency

for convex surface calculations.

In a refinement of the two equation NLEV model, Craft et al. (1999) evaluated Craft

et al.’s (1996b) scheme for two particular non equilibrium cases: abrupt pipe expansion and

an axisymmetric jet impinging onto a heated flat plate. They found that the dependence

of the constant cµ on the strain rate could lead to instabilities in the pipe expansion case,

which was solved by suggesting a modified expression for cµ. In order to avoid dependence

on the normal distance to the wall, the Yap correction originally proposed was replaced by a

length scale correction based on that proposed by Iacovides and Raisee (1997) whose constant

was also modified into an expression depending on the turbulent Reynolds number and the

mean stress invariants, in order to improve heat transfer prediction and not allow the time

scale to be smaller than the Kolmogorov scale. When the modified turbulence model was

applied to the axisymmetric jet impinging onto a heated flat plate case, it was found that
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the Nusselt number was overpredicted, due to an overprediction of the wall-normal Reynolds

stress v2. This observation led to a further reformulation of cµ, which now also became a

function of the dimensionless third invariant of the strain rate tensor Sl =
SijSjkSki

(SnlSnl/2)3/2 . This

term was convenient because it solved the prediction problem and reduces to zero in simple

shear flows, not altering the previous results already obtained for the abrupt expansion pipe

case. This work was considered an extension in terms of applicability of the initial Craft

et al. (1996b) turbulence model, improving prediction for sharp corner flows and increasing

numerical stability.

Some NLEV models have been presented above, which serve to illustrate the general

idea behind this class of turbulence models. In fact, any turbulence model which applies the

turbulent viscosity concept and provides non-linear terms in the Reynolds stresses calculation

could be classified as a NLEV model. That is the case, for example, of the Algebraic Reynolds

Stress (ARS) models, which will be discussed further in a later section of this chapter.

2.3.3 Other Two Equation Models

Up to now, the turbulence models discussed were mainly of a k − ε type. This section,

though, will be dedicated to present some other popular turbulence models which are not of

this kind. The first one which will be briefly described is the k−ω model, usually recognized

as appropriate for near-wall flows. Subsequently, the Shear Stress Transport (SST) model

will be presented as a combination of the k − ε and k − ω models. Finally, the k − ε − v2

model will be discussed, in spite of not being strictly a Two Equation Model. It will be

discussed here since it is often cited in different turbulence model formulations, in particular

Two Equation Models.

The k − ω Turbulence Model

One of the more recent formulations of a k−ω model was developed by Wilcox (1988a). His

intention was to propose a more appropriate scale-determining equation in order to improve

prediction of two equation models. He thus proposed a transport equation for ω which is

usually called the specific dissipation rate and is related to ε by ω = ε
β∗k , where β∗ is one of

the model’s dimensionless coefficients. According to Wilcox, one can also interpret ω as the

rate of dissipation of turbulence per unit energy, with dimensions of time−1. The k and ω

equations were presented as:

Dk

Dt
= Pk − β∗ωk +

∂

∂xj

[
(ν + σ∗νt)

∂k

∂xj

]
(2.20)

Dω

Dt
= γ

ω

k
Pk − βω2 +

∂

∂xj

[
(ν + σνt)

∂ω

∂xj

]
(2.21)

This is still an eddy viscosity model, based on Boussinesq’s turbulent viscosity concept,

thus implying the isotropic Reynolds stress prediction in purely shear flows. The turbulent

viscosity and the Reynolds stresses are then calculated as:

49



2.3. Two Equation Models

νt = γ∗
k

ω
(2.22)

− uiuj = 2νt

(
sij −

1

3

∂uk
∂xk

δij

)
− 2

3
kδij (2.23)

Regarding the model’s constants, the constant γ∗ was taken as unity after a rescaling

of ω through the governing and turbulent transport equations. A relation between β∗

β was

achieved by analysing the turbulence model’s behaviour in decaying homogeneous isotropic

turbulence flow. An incompressible zero pressure gradient boundary layer flow was then used

to determine β∗ = 9
100 , which implied β = 3

40 , and a relation between γ and β∗, β and σ. σ∗

and σ were set as σ∗ = σ = 0.5 after numerical computations of boundary layers with zero

and adverse pressure gradients and defect-layer analysis, leading to γ = 5
9 .

Wilcox (1988a) also proposed wall boundary condition treatments for ω for no-slip and

rough surfaces as well as surface mass injection. Simulations were performed for incompress-

ible boundary layers with zero and adverse pressure gradients as well as with mass injection,

compressible flat plate boundary layers and incompressible shear flows. The results were

compared with experiments and predictions calculated with Jones and Launder’s (1972b)

model. Wilcox recommended that, in order to guarantee the desired ω behaviour near the

smooth wall, the transport equations should only be solved for cells where the dimensionless

distance to the wall y+ was greater than 2.5, below which the expression for ω in the limit

of the wall, which was defined as a function of y (the distance to the wall), was applied.

It was concluded that the k−ω model performed very well in all tested cases, presenting

significant improvements over the other turbulence models. Although no near-wall damping

functions and/or wall functions were presented, in further work (Wilcox, 1991) damping func-

tions depending on the turbulent Reynolds number were introduced to correct the turbulent

kinetic energy behaviour near the wall.

The SST Turbulence Model

The SST model arose as an attempt of Menter (1994) to combine the k−ε and k−ω turbulence

models in order to improve prediction of adverse pressure gradient boundary layers. Menter

argued that the k − ω model would better fit the near-wall sublayer of the boundary layer,

since it dispenses with damping functions, provides simple boundary conditions and remains

numerically stable. On the other hand, the k − ε model is more appropriate for the wake

region of the boundary layer, since it more reliably predicts the eddy viscosity level, which is

assumed to be important for strong adverse pressure gradient flow predictions, besides also

being so for free shear flows.

The “simple” integration of the two turbulence models, keeping the eddy viscosity formu-

lation of both models, gave rise to the baseline model (BSL model) which Menter identified

as giving similar results to the k−ω model, except for the freestream instability of the latter.

Menter (1994) then proposed a modification on the eddy viscosity formulation in order to

50



2.3. Two Equation Models

account for the transport of the principal turbulent shear stress, giving rise to the Shear

Stress Transport (SST) model.

To implement the integration between the k−ε and k−ω models, the former was rewritten

in the same format of the latter (ie. solving transport equations for k and ω) by using the

relation between the two turbulent variables ε = β∗ωk. The resulting k equation became

exactly the same as in the k − ω model, but the constant σk would have to assume a new

value. The resulting “ε” equation resembled the ω equation, except for the constants and

one additional source term which arises from the transformation of the original ε equation.

Then, Menter (1994) proposed a blending function F1 which should take a value of unity

in the near-wall region and zero far from it. The term (1 − F1) was used to multiply the

additional term arising from the original ε equation and each constant of the model was set

as φ = F1φ1 + (1 − F1)φ2, where φ1 and φ2 are the corresponding original k − ω and k − ε
model’s constants, respectively. This way, it is possible to see that the model switches from

one model to the other depending on distance to the wall since F1 is defined in terms of this.

The SST model differs from the above BSL model by also including a modification of the

turbulent viscosity formulation, as already noted above. By evaluating Johnson and King’s

(1985) turbulence model and the standard Boussinesq expression for the shear stress and

taking into account experimental data of strong adverse pressure gradient flows, the eddy

viscosity was proposed as νt = a1k
max(a1ω,SF2) , where S is the strain rate and F2 a function

designed to take a value of one for boundary layer flows and zero for free shear flows, where

the eddy viscosity should become the same as in the k−ω model. The idea is to account for

strong strain rates near the wall by decreasing the eddy viscosity, F2 acting like a damping

function in this region.

The model was considered versatile by making it easy to change the argument of the

blending function F1 in order to adjust the switching from the k − ε to the k − ω model

for any kind of flow. It was also pointed out that the general time of computation was not

significantly affected, only the programming effort which must be done only once.

The BSL and SST models were applied in a range of different flow cases: zero and

adverse pressure gradient boundary layer, free shear layer, backward facing step, airfoil and a

transonic bump. Its performance was compared to the original k−ω model of Wilcox (1988a)

and to Jones and Launder’s (1972b) model. In a general way, the SST provided the best

agreement with the experimental data used for comparison, the BSL and the original k − ω
performed quite similarly, as already mentioned above, and the LRN k−ε model presented the

biggest discrepancies. None of the models were capable of correctly predicting the relaxation

downstream of the reattachment point in the backward facing step flow. Nevertheless, the

model was considered accurate as a whole, but was not validated for 3D flows.

The k − ε− v2 Model

The k− ε− v2 model was suggested by Durbin (1991). Its importance is more related to the

many articles it inspired rather than its application as a turbulence model and that is the
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reason why it is going to be commented upon here.

Durbin criticized the turbulence models which were applying damping functions to pre-

dict near-wall behaviour because of their empirical nature, although they may be useful for

engineering purposes. Analysing the k− ε eddy viscosity model formulation, its isotropy was

identified as the main problem, since the near-wall region is quite anisotropic. To solve this

problem, he suggested the turbulent viscosity to be expressed as νt = cµv2τ , where τ is the

time scale τ = max
(
k
ε , CT

√
ν
ε

)
, where the constant CT was defined by a near-wall limiting

analysis. v2 was identified to be the proper velocity scale and the time scale formulation

above avoids this reaching a smaller value than the Kolmogorov scale. A transport equation

was suggested for v2 and its pressure-velocity term was calculated by an elliptic equation

which incorporated part of the LRR model of Launder et al. (1975). The constants of the

model were generally determined by evaluating the log law region together with DNS and

experimental data of channel flows.

It is not the objective here to present all equations used to close the proposed system,

therefore it is considered that the above brief description is enough to characterize the k−ε−v2

model developed by Durbin (1991). What is perhaps more important to add is that, this

model would better suit a Three Equation model class, since it presents a third transport

equation to be solved, but it was chosen to be included here due to its strong relation to the

standard k − ε model.

The Two Equation model subsection ends here. Generally reviewing what has been gone

through, one should mention the standard k − ε model, certainly the most representative

turbulence model of this group, the LRN models, the NLEV model, the k − ω model and

the SST model. Many of the main features of the Two Equation models have been presented

and they provide a quite rich sample of turbulence model variations in order to illustrate how

research has been developed. It should be noticed that the flows successfully predicted by

this class of turbulence models were mainly 2D shear flows. That is related to weaknesses

in predicting more complex flow systems. The next section will discuss the Reynolds Stress

Transport models which emerge partly as a response to these deficiencies.

2.4 Reynolds Stress Transport Models

Although most of the turbulent flows mentioned so far have been shear dominated flows,

complex and 3D turbulent flows are very often encountered in industry. While the former

can often be acceptably predicted by Two Equation Models, as reported in the last section,

engineers still need to be able to predict the latter accurately. It was in this context that the

Reynolds Stress Transport models, from now on referred to as RST models, arose.

The RST models differ from the Two Equation Models by not calculating the Reynolds

stresses by algebraic expressions, but by a transport equation for each one of the six compo-

nents. Because of that, the RST models are also known as second order, or second moment

closure, models. It will be shown further that the RST models still need a transport equation

for the eddy dissipation ε. As a result, the RST models can have up to seven extra transport
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equations to be solved together with the Navier-Stokes and Continuity equations. Needless

to say, such a system will demand much more computational effort as well as required time

of simulation than Two Equation models. However, one expects them to allow complex and

3D flow predictions to be obtained with an acceptable degree of confidence.

The exact transport equation for each Reynolds stress may be obtained by observing that
Duiuj
Dt = uj

Dui
Dt + ui

Duj
Dt . Hence, having derived the transport equation for the fluctuating

velocity components ui and uj , by subtracting the average Navier-Stokes equation from its

instantaneous form, then multiplying the first by uj and the second by ui and averaging;

and finally making all necessary algebraic manipulations, one arrives at the exact form of the

Reynolds stress transport equations which will be written here as in Launder and Sandham

(2002):

Duiuj
Dt

=−
(
uiuk

∂Uj
∂xk

+ ujuk
∂Ui
∂xk

) }
Pij

+
p

ρ

(
∂ui
∂xj

+
∂uj
∂xi

) }
φij

− ∂

∂xk

(
uiujuk +

puj
ρ
δik +

pui
ρ
δjk − ν

∂uiuj
∂xk

) }
Dij

− 2ν
∂ui
∂xk

∂uj
∂xk

}
εij (2.24)

Many important points must be discussed about the above equation. First, the physical

meaning of each right hand side term will be defined: the first term, Pij , is already known,

being the production rate which acts to produce an increase in the Reynolds stress levels.

The second term, φij , stands for the pressure-strain correlation which acts as an energy redis-

tributor, while the third term, Dij , accounts for diffusion and acts as a spatial redistributor

(Launder et al., 1984). The fourth term, εij , represents dissipation by viscous influence, the

first term of which is simply twice the eddy dissipation ε introduced earlier.

After describing each term in equation (2.24), they must be evaluated from a modelling

point of view. The production term, as already commented, does not need any kind of

modelling since it involves only the main variables to be calculated by the closed set of

equations. On the other hand, the pressure-strain correlation, diffusion and dissipation terms

will require modelling owing to the presence of terms which cannot be directly calculated.

The pressure-strain correlation has an important characteristic that should be respected by

any modelling attempt, which is that it has zero trace. This is often the most crucial term

to be modelled as will be shown. With regard to the diffusion term, Launder et al. (1984)

argued that the last three subterms which represent viscous diffusion could be neglected for

high-Reynolds-number flows. Finally, and perhaps already starting some modelling, if the

dissipation term is considered under high-Reynolds-number conditions, where isotropy of the

small scales applies, Launder et al. (1984) demonstrated that the last two subterms of the
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dissipation term are zero and the eddy dissipation should be expressed as εij = 2
3εδij . Taking

into account the above considerations, equation (2.24) can be rewritten as:

Duiuj
Dt

=−
(
uiuk

∂Uj
∂xk

+ ujuk
∂Ui
∂xk

)
+
p

ρ

(
∂ui
∂xj

+
∂uj
∂xi

)
− ∂

∂xk

(
uiujuk +

puj
ρ
δik +

pui
ρ
δjk

)
− 2

3
εδij (2.25)

From the above equation, it is possible to notice that a transport equation for the eddy

dissipation, ε, will also be needed. Usually, its diffusion term is remodelled from that used

in the k − ε model and some additional terms may be included, but the main differences

between existing RST models are still the different approaches for approximating each term

in equation (2.25).

Some RST models will be discussed here, where the main differences and assumptions

between them will be emphasized, as well as their performance over a range of flows to which

they were applied. Starting with Hanjalic and Launder (1972), who adopted equation (2.25)

as a starting point for modelling, one can identify two more terms which were dropped. The

authors argued that based on some experimental results and lack of any other evidence, the

pressure-velocity correlation within the diffusion term could be ignored, leaving only the triple

velocity correlation to be modelled for the diffusion phenomenon. By evaluating transport

equations for the triple velocity correlations, and based on some experimental results, the

following expression was proposed for the triple correlation:

uiujuk = cs
k

ε

(
uiul

∂ujuk
∂xl

+ ujul
∂ukui
∂xl

+ ukul
∂uiuj
∂xl

)
(2.26)

In order to model the pressure strain correlation, one may find an exact expression for it

by manipulating the instantaneous Navier-Stokes equation and solving the resulting Poisson

equation for the instantaneous pressure. This exact expression cannot be used directly for

solving the stress transport equation either, however it does make it possible to identify

two interactions that contribute to the pressure strain correlation: the first between the

fluctuating velocity components themselves and the second between these and the main flow,

via the mean velocity gradients. As a result, the redistribution term was modelled as a sum

of these two physical processes, φij = φij,1 + φij,2. The first term, φij,1, was modelled by

considering the decay of a non-isotropic homogeneous flow, where the mean strain rate was

negligible, to its isotropic state where the shear stress should vanish. This suggested taking

φij,1 = −cφ1
ε
k

(
uiuj− 2

3kδij
)
, as previously proposed by Rotta (1951) and adopted by Hanjalic

and Launder (1972). The second pressure-strain correlation term, φij,2, was proposed based

on its exact expression for homogeneous flows where it is equal to the product of the mean

strain rate and a fourth order tensor which then needs to be modelled. The fourth order

tensor modelling was based on some symmetry and mass conservation constraints which led

to a linear combination of the Reynolds stresses. The production and destruction terms in

the ε equation were kept as in the Two Equation model, multiplied by their constants cε1 and
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cε2 respectively, and the diffusion term was set to cε
∂
∂xk

(
k
εukul

∂ε
∂xl

)
by analysing the exact

transport equation for the diffusion of dissipation in the vicinity of a wall and in boundary

layer flows.

Hanjalic and Launder (1972) simplified their model by applying it in a boundary layer

flow, where only one transport equation was solved for the Reynolds shear stress, u1u2, and

a second transport equation solved for half of the normal stresses summation which is the

turbulent kinetic energy. The constants of the model were determined by considering homo-

geneous shear flows, grid decaying turbulence, the constant stress layer adjacent to a wall

and computer optimization. The simplified version of the model was applied to several flows,

including a fully developed asymmetrically ribbed flow in a plane channel, a symmetric an-

nulus with internal diameter much smaller than the external tube diameter, a fully developed

flow in an asymmetric annulus with a roughened core tube, a boundary layer developing in a

uniform free stream, a plane wall jet, a plane jet in stagnant surroundings and a plane mixing

layer, all of them at high Reynolds numbers, to fit the model’s assumptions. As a whole, the

model provided good velocity, kinetic energy and stresses predictions, but failed to capture

the correct shear stress level and peak for the jet flows.

Launder et al. (1975) extended Hanjalic and Launder’s (1972) work in order to im-

prove the shear stress predictions. Initially, the authors kept the same expressions for the

pressure-strain, diffusion and dissipation terms, but changed the original constants’ val-

ues by reference to a homogeneous shear flow. A simplified model for φij,2, the second

pressure-strain term, was also deduced from isotropic turbulence for comparison purposes.

Near-wall flows were then considered and these indicated the necessity of an additional

near-wall term to be accounted for in the pressure strain correlation. As a result, this

term now became a combination of three parts: the two already considered, standing for

turbulent-turbulent and turbulent-mean strain rate interactions, and a third for wall reflec-

tion: φij = φij,1 +φij,2 +φij,w. The constants of the latter part were determined by applying

the turbulence model in a near-wall turbulent flow and comparing the results with experi-

mental data. The eddy dissipation transport equation was also kept in the form proposed

by Hanjalic and Launder (1972), but the constants were re-evaluated, by considering more

experimental results. The remaining constants were determined by computer optimization.

Both this simpler form of the model and the earlier form of Hanjalic and Launder (1972)

were tested for a nearly homogeneous shear flow, a plane-strain distortion, an axisymmetric

contraction, a plane mixing layer, a plane jet in stagnant surroundings, a plane jet in moving

stream, a wake behind a thin flat plate, a symmetric plane channel flow, an asymmetric

channel flow and a high-Reynolds-number flat plate boundary layer. In general, the complete

version of the model performed well and better than the simplified one, although agreement

with experimental data was not perfect. Despite this, the resulting turbulence model, which

is usually referred to as the LRR model, has become one of the most widely used RST model.

Gibson and Launder (1978) started from Launder et al.’s (1975) simplified version and

a previous work of both authors (Gibson and Launder, 1976) regarding buoyant effects in

gravitational affected flows, in order to improve prediction of both atmospheric boundary
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layers, which are ground affected, and free shear flows. The only term which was remodelled

was the pressure-strain correlation, whose starting point was Launder et al.’s (1975) simplified

version as already mentioned. In order to take into account wall proximity effects, the authors

borrowed from Shir (1973) a proposed correction, φ′ij,1, to be added to φij,1, the first pressure-

strain correlation term, and an analogous expression was derived, φ′ij,2, to be added as a

correction to the second pressure-strain correlation term, φij,2. These two modelled correction

terms, φ′ij,1 and φ′ij,2, depend on the unit vector and distance normal to the wall. Making

an analogy to the LRR model, one could say that the new pressure-strain wall reflection

part became: φij,w = φ′ij,1 + φ′ij,2. The four constants associated with each one of the four

pressure correction modelling terms (φij,1, φij,2, φ′ij,1 and φ′ij,2) were determined by applying

the model to some simplified flows such as isotropic turbulence, free shear flows and near-

wall turbulence. As one might expect, this turbulence model was also designed to take

into account heat transfer and buoyancy. However, as this literature survey focuses only on

momentum balance for incompressible Newtonian flows, those parts will not be discussed.

The two target flows (atmospheric boundary layers and free shear flows) were used to validate

the model which performed satisfactorily well for both flows.

Speziale et al. (1991) developed an RST model also for homogeneous high-Reynolds-

number flows, considering local isotropy, and then only needing to model the pressure-strain

correlation. The main difference between this model and the previous ones lies in a non-

linear (more specifically quadratic) expression for the second term in the pressure-strain

correlation, argued by the authors to not be much more complex than the previous RST

models. Speziale et al. (1991) presented the pressure strain correlation no longer as the

sum of two parts (φij,1 and φij,2), but as the most general expression this term could have

in order to satisfy invariance when subjected to coordinate transformations. In order to

satisfy this physical constraint, the Reynolds stress transport equation had Coriolis terms

added. The Reynolds stress and eddy dissipation transport equations were derived for a

plane homogeneous turbulence where the non trivial equilibrium solutions were found and

used to reduce (from the general expression proposed) the pressure-strain correlation so that

it fitted the same equilibrium state. The constants of the model were determined by computer

optimization under return to isotropy, homogeneously strained turbulent flows starting from

an isotropic state obeying the rapid distortion theory, homogeneous shear flows, rotating

shear flows and decay of isotropic turbulence consistency problems.

Speziale et al. (1991) pointed out that their turbulence model does not satisfy certain ex-

treme physical constraints. However, they argued that those constraints require higher orders

(higher than quadratic) for the pressure-strain correlation, implying much higher computa-

tional efforts and leading sometimes to bad predictions. The model was named SSG and

validated for four homogeneous turbulent flows (homogeneous turbulent flow, rotating shear

flow, homogeneous plane strain turbulence and axisymmetric contraction and expansion in

homogeneous turbulence) by comparing its results with experiments and the LRR model of

Launder et al. (1975). In general, the SSG model performed better than the LRR, however

deficiencies in capturing the correct time evolution of the turbulent kinetic energy in the
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rotating and axisymmetric contraction and expansion flows remained. Analysing the range

of solutions for the equilibrium state of rotating shear flows, the authors came to the con-

clusion that expressing the pressure-strain correlation from the Poisson equation solution for

the fluctuating pressure p necessarily led to the above incorrect prediction. Despite this, the

SSG model has also become a very popular RST model, often providing reasonable results,

particularly for shear flows.

In contrast to the above RST models, Hanjalic et al. (1997) developed a Reynolds stress

model for low-Reynolds-number flows, trying to avoid the use of wall functions which would be

required with the previous described RST models which were designed only for high-Reynolds-

number flows. As a result, their modelling of the redistribution, diffusion and dissipation

terms in equation (2.24) assumed new features. To account for near-wall effects, the authors

identified what they called the “flatness” parameters, A and E, representing the large and

small scale behaviours, respectively, where A = 1 − 9
8(A2 − A3) and E = 1 − 9

8(E2 − E3).

A2 = aijaij and A3 = aijajkaki are the turbulent stress tensor invariants, E2 = eijeij and

E3 = eijejkeki are the dissipation rate tensor invariants, aij =
uiuj
k −

2
3δij is the dimensionless

Reynolds stress anisotropy tensor, already mentioned, and eij =
εij
ε −

2
3δij is the dimensionless

dissipation rate anisotropy tensor. Hanjalic et al. (1997) pointed out that A and E are

appropriate parameters to be used to model proximity to the wall effects, since they behave

differently through the flow domain. Besides that, these parameters could also represent the

transition from 2 to 3 component turbulence, since for the former they are zero (and for the

latter they are not) and they take the value of unity in isotropic turbulence.

With regard to the Reynolds stress transport equations, Hanjalic et al. (1997) proposed

for the diffusion term a simple form of that proposed by Launder et al. (1975). The dissipation

term was not treated as εij = 2
3εδij since that form is only accurate in high-Reynolds-number

regions. The dissipation term was thus expressed depending upon a “blending” function that

switches εij from the above isotropic high-Reynolds-number form to another proposed by

Hanjalic and Jakirlic (1993) in the near-wall region which depends on the unit vector normal

to the wall, the turbulent Reynolds number and the Reynolds stresses themselves. Finally,

the pressure-strain correlation was modelled by assuming φij = φij,1 + φij,2 + φwij,1 + φwij,2, a

general form adopted by Gibson and Launder (1978). Indeed, the form of the terms were

actually the same as in the latter’s work, but damping functions were introduced to the wall

reflection terms and the constants of all terms were changed, being expressed in terms of the

flatness parameters. The eddy dissipation transport equation was adopted as in Launder and

Hanjalic (1976) (which is the same form of that proposed by Hanjalic and Launder (1972)

with different constants and an extra term to account for the mean-field generation process

in the exact eddy dissipation transport equation) with different constants and two new added

terms. The first of these added terms, which for numerical convenience the authors did not

activate in their own calculation, claiming it would be negligible in near-wall equilibrium

flows, was intended to predict rotational flows effects; and the second stood for a length scale

correction which does not depend on the distance to the wall as the Yap-correction does.

Hanjalic et al. (1997) applied their low-Reynolds-number RST model to several flows
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(channel flows, oscillating and zero, adverse and favorable pressure gradient boundary layers,

by-pass transition, 3D boundary layer under streamwise acceleration and transverse shear,

developed and developing Couette flows at various pressure gradients in plane and wavy fixed

wall, backward facing step flow, pipe expansion and flow over a surface mounted fence and

rib) and concluded that, despite some imperfections in the prediction of transversal shear

boundary layer and flow over a mounted fence, they could reach an overall good agreement

with experimental and DNS data.

Concluding this section about RST models, one can note that the main features of this

group of turbulence models were described and some representative models were discussed.

As a whole, more high-Reynolds-number RST models than low-Reynolds-number approaches

are found in the literature. With RST models, some complex turbulent flows which are poorly

predicted by two equation models can be better represented, but they are significantly more

computationally expensive than Two Equation models, which may be a barrier to their wider

implementation.

2.5 Algebraic Reynolds Stress Models

The Algebraic Reynolds Stress models, which will be abbreviated as ARS models, emerged as

an attempt to keep the RST models’ features, but with less computational efforts involved.

In order to do that, the differential transport equations for each of the Reynolds stresses were

transformed into algebraic equations by either neglecting or approximating their transport

and convective parts. Hence, for flows where these terms can actually be approximated like

that, the ARS models should provide similar predictions to those from the full RST models,

but economizing on time and computational cost. The following paragraphs will provide

some examples of ARS models and their main ideas.

Pope (1975) was one of the pioneers to introduce an ARS model. Firstly, he proposed a

general expression for the dimensionless Reynolds stress anisotropy tensor, aij =
uiuj
k −

2
3δij

as a function of the dimensionless strain rate and vorticity tensors, s̃ij = 1
2
k
ε

(
∂Ui
∂xj

+
∂Uj
∂xi

)
and

w̃ij = 1
2
k
ε

(
∂Ui
∂xj
− ∂Uj

∂xi

)
, in the form of an infinite tensor polynomial which was transformed

into a finite polynomial by the Cayley-Hamilton theorem and reduced by the fact that aij is

symmetric and has zero trace. The general expression became:

a =
∑
λ

GλT λ ⇒ uiuj =
2

3
kδij + k

∑
λ

GλT λ
ij (2.27)

where T λ are the linearly, independent, symmetric zero trace tensors and Gλ are the function

coefficients. For 2D flows, λ varies from 0 to 2, with the tensors expressed as:

T 0 =
1

3
I3 −

1

2
I2 T 1 = s T 2 = sw −ws (2.28)

For 3D flows, λ varies from 1 to 10, with the base tensors being the following:
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T 1 = s T 2 = sw −ws T 3 = s2 − 1

3
I{s2} T 4 = w2 − 1

3
I{w2}

T 5 = ws2 − s2w T 6 = w2s + sw2 − 2

3
I{sw2} T 7 = wsw2 −w2sw

T 8 = sws2 − s2ws T 9 = w2s2 + s2w2 − 2

3
I{s2w2} T 10 = ws2w2 −w2s2w

(2.29)

In both equations (2.28) and (2.29) a simplified notation is used, where s2 = s̃iks̃kj , sw =

s̃ikw̃kj , swws = s̃ikw̃kls̃lms̃mj , etc, {·} stands for the non zero independent invariants and

In stands for the Kronecker delta of order n.

Commenting that the 3D system would be intractable, Pope (1975) determined the G

coefficients only for 2D flows. To do so, he approximated the transport terms of the Reynolds

stress transport equations of Launder et al. (1975), rewriting them in his same notation and

by analogy arrived at an expression for the coefficients G0, G1 and G2. As a result, the

turbulent viscosity constant cµ became a function of the strain rate and vorticity invariants

which was noted as an important feature of the model. The model was only validated for a

shear flow where U = U(y) in order to highlight the difference between the proposed model

and a linear eddy viscosity model in predicting the normal Reynolds stresses.

Gatski and Speziale (1993) were one of those who tried to extend Pope’s (1975) work to

3D flows. They simplified the Navier-Stokes equations to a homogeneous turbulent flow in

equilibrium, splitting the dissipation rate tensor into its isotropic and deviatoric parts. The

latter was included in the pressure-strain correlation whose general form was represented as

in Speziale et al. (1991). Algebraic manipulations were carried out to express the resultant

governing equation in a dimensionless form whose solution was exactly the same as the

form proposed by Pope (1975), equation (2.27), but with the dimensionless rate strain and

vorticity tensors, s and w, rescaled as functions of the coefficients of the pressure-strain

general correlation. The linearly independent symmetric zero trace tensors, T λ
ij , had been

already defined by Pope (1975), but the coefficients Gλ remained undetermined for λ higher

than 3. With the aid of symbolic computational software, Gatski and Speziale (1993) obtained

general expressions for all Gλ, hence extending the ARS model for a 3D flow. In order to check

the result, the model was simplified to a 2D form, exactly matching Pope’s (1975) work. The

3D version was evaluated for complex non equilibrium flows where a possibility was identified

for a singular behaviour, explaining the instability and non convergence reported by others

using these types of algebraic model. To solve this problem, Gatski and Speziale (1993)

regularized the 2D simplified version of their model by a Padé approximation, since the 3D

regularization would lead to intractable expressions. The constants of the regularized 2D

model were determined based on the SSG model of Speziale et al. (1991) for homogeneous

turbulent flows. The algebraic system was coupled to transport equations for the turbulent

kinetic energy and eddy dissipation rate, in their standard high-Reynolds-number k−ε model
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forms, and the closed system including the Navier Stokes and Continuity equations was

applied to some non trivial cases, including a homogeneous shear flow in a rotating frame

and fully developed turbulent channel flow subjected to a spanwise rotation with constant

angular velocity. The results were compared to experiments and/or DNS data, the SSG

model and the standard k − ε model. The outcome was that the ARS model performed

similarly to the SSG RST model and both presented far better predictions than the k − ε
model. As a result, a new 2D ARS model was developed, but promising more stability for

non equilibrium flows.

Taulbee (1992) proposed a rather different ARS model which was actually questioned by

Gatski and Speziale (1993). Taulbee (1992) proposed an ARS model by writing a transport

equation for the quantity D
Dt

(aij
τσ

)
, where aij is the dimensionless stress anisotropy tensor,

τ = k
ε is the turbulent time scale and σ =

√
SklSlk, and setting D

Dt

(aij
τσ

)
to zero. Taulbee’s

objective was to account for convective effects and try to reproduce a general RST model’s

predictions for uniform shear flow. This proposed ARS model was written in a way to fit

Pope’s (1975) general 2D flow solution and after some simplifications, a system for 3D flows

was determined. Besides the uniform shear flow, an uniform irrotational strain flow was also

simulated and the results compared with those of an RST model. The improved ARS model

fairly well reproduced the predictions of the latter. However, it might be commented that no

applications for 3D flows were presented.

With regard to the ARS models presented, one can notice that a classical work (Pope,

1975) was described and two more recent works were discussed. As expected, both mentioned

the former’s work which became a reference for ARS models. Since the ARS models specify

algebraic expressions for the Reynolds stresses to be solved together with the Navier-Stokes

and Continuity equations, and usually one/two more transport equations, this group of tur-

bulence models could be included as NLEV models. Indeed, the ARS models are NLEV

models and the choice of presenting them separately from the latter’s section was to focus on

the different processes which lead them to be obtained, attempting to obey a logical order.

This section marks the end of the most common RANS turbulence model groups that

one may find in the literature. The next section will be dedicated to the Multiple Time Scale

models which, despite not being that modern, have been receiving more attention in the last

few decades and may be the future for improving prediction of complex non equilibrium flows.

2.6 Multiple Time Scale Models

Despite the modelling improvements noted above, further refinements are still required to

predict correctly a wide range of complex non equilibrium flows. In particular, flows submitted

to rapid changes remain very difficult to simulate accurately with existing models. Such

flows include those submitted to sudden expansions or contractions, flows where turbulence

generation is suddenly interrupted (Hanjalic et al., 1980) or, the opposite, when turbulence

is generated all of a sudden (Launder et al., 1984). Many of these flows feature a transition

period or region in which it may not be appropriate to characterize the turbulence by a single
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Figure 2.1: Turbulent Kinetic Energy Spectrum

length or time scale.

The total turbulent kinetic energy may be interpreted as the sum of the turbulent kinetic

energy associated with each length scale characteristic of a flow, mathematically represented

as the integral of the kinetic energy over the wavenumber range. The graphical representation

of this process is called the energy spectrum which is illustrated in Figure 2.1. The wavenum-

ber may be interpreted as the inverse of the length scale (Ferziger and Peric, 2002) and thus

one may identify a wavenumber below which the mean strain plays a role and therefore pro-

vides turbulence production, and a wavenumber above which viscous effects dominate and

the small eddies are immediately dissipated into heat. The former characterizes the energy

containing range and the latter, the dissipation range. An intermediate range may or may not

exist, depending upon the Reynolds number (Gatski et al., 1996; Mathieu and Scott, 2000).

If it exists, it is called the inertial range and is characterized by a power law also indicated

in Figure 2.1, and the higher the Reynolds number, the longer its domain. The wavenum-

ber which limits the upper end of the energy containing range is of the order of magnitude

of the inverse of the flow geometry (L in Figure 2.1) and the wavenumber associated with

the onset of dissipation range is of the order of magnitude of the inverse of the Kolmogorov

length scale (η in Figure 2.1). From this description, one may notice that distinct parts of

the energy spectrum are responsible for different processes and a single time scale may not

be representative enough to fully characterize the turbulence.

In order to account in a more realistic way for the physics behind the turbulent kinetic

energy spectrum, and improve prediction of flows which would be strongly affected by it,

the Multiple-Time-Scale turbulence models (MTS models) were developed. These, perhaps

introduced by Hanjalic et al. (1980), usually divide the energy spectrum into three parts:

production, transfer and dissipation regions. For each part, there would be a representative

“slice” of the turbulent kinetic energy whose summation would then be the total kinetic

energy. Considering that the turbulent kinetic energy is immediately dissipated when it

enters the dissipation zone, there would be effectively only two turbulent kinetic energy

partitions: the production, kP , and transfer, kT , ranges, where k = kP + kT . The transfer

rate from production to transfer range is then εP and εT is the transfer rate from transfer to
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Figure 2.2: Turbulent Kinetic Energy Spectrum as proposed by Hanjalic et al. (1980)

dissipation range. Since the assumption has already been made that energy is immediately

dissipated in the dissipation range, it follows that εT = ε, which thus represents spectral

equilibrium between the transfer and dissipation zones. A generic such MTS model can then

be expected to solve transport equations for kP , kT , εP and εT . The spectrum sketch for the

framework just described is presented in Figure 2.2.

The main features, assumptions and results of the MTS models will be discussed in the

following paragraphs through a literature review. The equations below are written in a way to

match most MTS models which will be described, not comprising any particular turbulence

model as a whole.

DkP
Dt

= Pk − εP +DkP (2.30)

DkT
Dt

= εP − εT +DkT + Πk (2.31)

DεP
Dt

= CP1fP1Pk
εP
kP
− CP2fP2

ε2
P

kP
+ CP3

P 2
k

kP
+ CP4WεP +DεP + C ′P1PεP (2.32)

DεT
Dt

= CT1fT1
εP εT
kT
− CT2fT2

ε2
T

kT
+ CT3

ε2
P

kT
+ CT4WεT +DεT + Πε (2.33)

In Hanjalic et al.’s (1980) work, the transport equations for the turbulent kinetic energy

contributions were defined as in equations (2.30) and (2.31) and the transfer and dissipation

rates were modelled as in equations (2.32) and (2.33). No damping functions were considered

in order to account for low-Reynolds-number flows or near-wall effects. Regarding diffusion,

DkP , DkT , DεP and DεT were initially modelled as in the RST models with k and ε replaced
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by kP and εP , respectively, however further simplifications suggested the simpler gradient

diffusion usually used in eddy-viscosity models. The pressure diffusion terms, Πk and Πε,

were neglected. Hanjalic et al. (1980) thus proposed a simple and basic type of MTS model

where CP3 = CP4 = CT3 = CT4 = 0. However, they did make the generation of εP sensitive

to different types of mean straining via the PεP = kP
∂Ul
∂xm

∂Ui
∂xj

εlmkεijk term. The transport

equations’ coefficients were determined after analysing grid decaying turbulence in the limit

of its equilibrium and optimizing their values for certain test flow cases, taking into account

that both CP1 and CP2 and CT1 and CT2 of the εP and εT equations should not be constants

at the same time otherwise it would not be possible to account for the interaction between

large and small eddies.

The test flow cases used to validate Hanjalic et al.’s (1980) model were: decaying grid

turbulence passed through a sudden contraction, axisymmetric and plane turbulent jets in

stagnant surroundings and zero and adverse pressure gradient boundary layer flows. For these

flows, the Reynolds stresses were calculated as uv = −0.10k kPεP
∂U
∂y and (u2−v2) = k

3 , following

the general Boussinesq’s eddy viscosity concept. The results indicated better predictions of

the MTS model when compared to the RS model of Launder et al. (1975) and the standard

k − ε model. The authors also proposed a transport equation for the Reynolds stresses

consistent with the partitioned energy spectrum, basically replacing the ratio ε
k by εP

kP
in

the RST model of Launder et al. (1975), however this model was not tested. The authors

concluded that MTS models possess the potential to account for non equilibrium effects which

the single scale models do not.

Kim and Chen (1989) also developed an MTS model based on Hanjalic et al.’s (1980)

assumptions. The energy spectrum was interpreted in the same way, meaning that transport

equations for kP , kT , εP and εT were required. The transport equations for kP and kT

follow equations (2.30) and (2.31), but with Πk set to zero, and the transport equations

for εP and εT now include the terms multiplied by CP3 and CT3 respectively, which were

defined as variable energy transfer functions. These terms act to increase the production

rates of εP and εT and were designed to have a similar effect to the dependence of Hanjalic

et al.’s coefficients on the ratios kP
kT

and εP
εT

. Consequently, the model coefficients of Kim and

Chen (1989) assumed constant values which were determined by reference to fully developed

channel flow and a plane jet exhausting into a moving stream when equilibrium, asymptotic

growth rate and asymptotic decay rate were reached. The model followed an eddy viscosity

formulation, where cµ was taken as 0.09 εTεP in order to account for its dependence on the

ratio between the turbulent kinetic energy production and dissipation rates. The model was

tested for several cases and the ones presented in the paper were: wall jet issuing into moving

stream, weakly coupled wake-boundary-layer interaction flow, turbulent backward facing step

and confined coaxial swirling jet. All flows were solved by applying a wall function. The

first two flow predictions were compared with experiments and an ARS model, indicating

the MTS model’s performance to be slightly better than the latter, although both reached

good agreement with experimental data. The last two flows predictions were compared to

experiments and the standard k− ε model. As a whole, the MTS model followed the correct
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trends indicated by the experimental data, yielding better performance than the k−ε model,

but still with no perfect match to measurements. Despite this, the authors concluded that

the MTS model improved predictions of complex flows owing to its capability of modelling

the cascade process of the turbulent kinetic energy spectrum.

Kim (1991) expanded Kim and Chen’s (1989) MTS model, amongst other things incor-

porating a near-wall treatment. For this, the transport equations for kP and kT were solved

over the whole domain whereas the transport equations for εP and εT were only solved

for the regions far from the wall. In the near-wall region, εP and εT were calculated as

εP = εT = ε1

1−e−c
3/2
µ Ret/2κ

2
, where ε1 =

c
3/4
µ k3/2

κy and Ret = k2

νε1
. In order to account for the

near-wall region, the standard eddy viscosity expression was applied together with a damping

function. This partial low-Reynolds-number MTS model (as named by the authors) was then

applied to a divergent channel flow with a backward facing step. Predictions were performed

for zero and six degrees of deflection of the channel top wall. Results were compared to

experimental data as well as an ARS model and the standard k − ε model. As a whole, the

MTS model presented the better results, especially for the reattachment locations, however a

perfect match with experiments was not reached. Again, the authors noted the improvement

provided by the MTS model.

Kim and Benson (1992) also expanded the application of Kim and Chen’s (1989) MTS

model to a circular jet impinging in an uniform crossflow where a transport equation for the

concentration was also included. The latter was modelled taking into account only convective

and diffusive effects. The remaining equations were kept exactly as suggested by Kim and

Chen (1989). The authors reached very good agreement with experimental data, reinforcing

the capability of the MTS model in predicting strongly non equilibrium flows.

Chen and Guo (1991) proposed another MTS model for high-Reynolds-number flows.

Based on those of Hanjalic et al. (1980) and Kim and Chen’s (1989) work the authors devel-

oped an MTS model to account for rotational effects, by introducing the mean vorticity in

the transport equations for εP and εT . The model’s constants were determined by reducing

the system of equations to consider the asymptotic decay rate of simple flows such as ho-

mogeneous grid turbulence. The transport equations assumed the general form expressed by

equations (2.30)-(2.33) where CP3 = CT3 = 0 and CP4 and CT4 are different from zero. The

Reynolds stresses were calculated in two different ways: first from the standard isotropic eddy

viscosity formulation and secondly by an algebraic stress formulation in order to account for

stress anisotropy. The latter was devised from an RST model, where the pressure-strain cor-

relation was modelled similarly to Launder et al.’s (1975) simplified version and its constants

were set as functions of a wall correction term which then depended upon the distance to the

wall. The models were validated for grid generated rotating flows, 2D backward facing step

flow and axisymmteric pipe expansion flow. The results were compared with experiments

and an ARS k − ε model as well as with the standard k − ε. The MTS model based on the

ARS model presented an overall better result, as expected. The authors also argued that the

computing time and storage costs were relatively low compared to the standard k− ε model,
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indicating one more positive feature of the MTS models.

Duncan et al. (1993) proposed an MTS model aiming to achieve good predictions in

different flow situations without any extra term in εP and/or εT equations (which means

CP3, CP4, CT3, CT4, C ′P1, Πk and Πε in equations 2.30 to 2.33 to be all zero). In order to

do that, Duncan et al. (1993) made CP1 and CT1 vary with two parameters: α = Pk/εP and

β = εP /εT . The former was assumed to be 2.2 and the latter 1.05, both values based on

homogeneous shear flow experiments which indicate that α/β should be near 2. CP2 was set

as a constant and CT2 was made to vary with kP /kT and CP1, both sink terms’ coefficients

being defined based on homogeneous decaying grid turbulence flows. This model was designed

as a linear-eddy-viscosity model, the eddy viscosity being used as by Kim and Chen (1989),

νt = cµk
2/εP . The model was assessed in planar mixing layers, planar jet and round jet flows

and the results were compared to experiments and predictions of the standard k − ε model

and both models from Hanjalic et al. (1980) and Kim and Chen (1989). Reasonable results

were achieved for all case, being worth mentioning that in the planar mixing layer and planar

jet cases, the proposed model performed similarly to the standard k − ε model, still better

than the other two MTS models and in the round jet case, the proposed model performed

similarly to Kim and Chen’s model.

Nagano et al. (1997) later proposed a low-Reynolds-number MTS model for which all the

damping functions fP1, fP2, fT1 and fT2 in equations (2.30)-(2.33) were applied. The turbu-

lent kinetic energy spectrum partition adopted was the same Hanjalic et al. (1980) proposed.

The authors did not take into consideration the variable transfer functions proposed by Kim

and Chen (1989) nor the vorticity dependence suggested by Chen and Guo (1991), however

pressure-diffusion terms were included in both kT and εT transport equations. The diffusion

terms for all transport equations (2.30)-(2.33) were defined as in the LRN single scale models,

but using the appropriate partitioned variable, and a damping function was introduced to

account for the increase of diffusion near the wall. The model constants were determined by

considering the log law region of near-wall turbulent flow and homogeneous decaying flow.

The main damping functions fP1, fP2, fT1 and fT2 which appear in equations (2.30)-(2.33)

were determined in order to avoid divergence near the wall, and these were formulated as

functions of the non-dimensional distance to the wall, y∗, defined not in terms of the fric-

tion velocity as usual, but in terms of the Kolmogorov velocity scale uε = (νεT )0.25. The

pressure-diffusion terms were determined by analysing kP , kT , εP and εT near the wall after

expressing them as Taylor series expansions around y = 0. The model was validated for the

following flows: homogeneous decaying flow, homogeneous shear flow, fully developed channel

flow and turbulent boundary layers with zero, favorable and adverse pressure gradients. In

general, the Reynolds stresses were calculated using the standard eddy viscosity formulation

with a damping function to satisfy the near-wall behaviour, however for the adverse pressure

gradient boundary layer flow they were calculated by an ARS model due to the activation of

the irrotational straining effect by the PεP term. The model performed in a fairly satisfactory

way compared to experiments and other single scale turbulence models.
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Rubinstein (2000) proposed a MTS approach based on spectrum integration which in-

tended to make inertial range energy transfer different from energy dissipation, and at the

same time to allow the MTS model to reduce to a STS model in self-similar flows such as

decaying grid turbulence flows. In essence, that is already what the above mentioned MTS

models do, since all solve a transport equation for εP , the inertial range energy transfer, and

εT , the energy dissipation and all are intended to satisfy asymptotic states of self-similar

flows. The model of Hanjalic et al. (1980) was indeed evaluated and confirmed to satisfy

the above requirements. The main difference in Rubinstein’s model lies in the equations for

εP and εT which assume totally different forms than those of equations 2.32 and 2.33. All

equations were derived for homogeneous flows where diffusion could be neglected. The εP

and εT equations were derived using the method of moments, the order −1 being indicated

as the more appropriate. In this method both sides of the spectrum equation was divided

by κorder, κ being the wavelength, and then integrated. Although this model was identified

as more appropriate for the derivation of εP and εT equations, it presented deficiencies in

establishing the sink terms of these equations. The proposed model was thus applied in a

grid decaying turbulence flow using two different initial conditions. The results were not

compared to experiments nor other turbulence models, but have shown the capability of pre-

dicting different energy decay rates. The author argued that this difference in the prediction

of the energy decay rates for different initial conditions would not be possible to simulate

with single-time-scale models.

Stawiarski and Hanjalic (2005) proposed a three equation MTS model. Instead of solving

one transport equation for kP and one for kT , they proposed to solve only an equation for k,

the total turbulent kinetic energy, which would depend only on the large-scale quantities, Pk,

the conventional turbulent kinetic energy production being its source term and εP , the energy

transfer flux, being its sink term. A transport equation for εT , the turbulent kinetic energy

dissipation rate, was built, as a result of the spectrum integration method, by including both

source terms from equations 2.32 and 2.33, but replacing kP and kT by k, and the sink term

being the same sink term of equation 2.33, also with kT replaced by k. A third equation

was then derived for a generic variable φ = kmεnP ε
q
T which was supposed to model a large

scale quantity, thus meaning that εT should not appear in its transport equation according

to the authors. Asymptotic analysis were carried out for grid decaying turbulence, near-

wall equilibrium and homogeneous shear flows and expressions were obtained for the model’s

coefficients as functions of the exponents of the generic variable φ. The authors thus presented

the final results for two large scale variables: the spectral transfer flux φ = εP (m=0, n=1,

q=0) and the so-called energy-length product kL (m=5/2, n=-1, q=0), L = k3/2/εP being

an arbitrary length scale. In order to close the system of equations regarding the model’s

coefficients, some tests were carried out in order to find appropriate values for quantities such

as kP /kT for grid decaying turbulence and near-wall equilibrium and α = Pk/εT , β = εP /εT

and γ = εT
k

∂k
∂εT

in homogeneous shear flows. Both versions of the proposed model (the one

solving for εP and the one solving for kL) were then applied in normally strained flows and

the version where kL was the large scale variable was identified as not providing the expected
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behaviour for εP and εT . Besides, further analysis led to conclude that this version presented

unclear source-sink relations and that a single source and sink term as originally proposed

were not enough to characterize the correct energy transfer flux. The authors then concluded

that εP was the most appropriate variable to represent the large scales. A final version of

the model was presented where kP /kT was taken to be 1 in grid decaying turbulence and

4.3 in near-wall equilibrium. The homogeneous shear flow parameters were taken as α = 1.5

(as suggested by Kim and Chen (1989)), β = 1.05 (as proposed by Kim and Chen (1989)

and Duncan et al. (1993)) and γ = 0.82 (in spite of calculations having indicated that the

correct value would be γ = 1, the authors argued that any value between 0.82 and 1 would

be satisfactory). The final version of the model with εP was then applied in other normally

strained cases (where production was provided, not calculated) and homogeneous shear flows

and all were in reasonable agreement with experiments.

All the above mentioned MTS models were based on linear-eddy-viscosity schemes. The

next paragraphs will mention a few attempts to include multiple-time-scale approaches into

Reynolds-stress-transport models.

A slightly different approach in terms of the partition variables was proposed by Wilcox

(1988b), based on his work on the k − ω model (Wilcox, 1988a), although its underlying

physics are similar to those presented above (Kim and Chen, 1989; Kim, 1991). This model

consists of splitting the Reynolds stress tensor into its lower (tij) and upper (Tij) partition

contributions. The lower partition is the one defined to be isotropic, to contain most of the

vorticity and to dissipate quickly into heat, while the upper partition is characterized by

being mostly inviscid. As a result, transport equations for the turbulent kinetic energy, for

the specific dissipation rate and for the upper partition stress tensor are required. The first

two were taken as in equations (2.20) and (2.21) for the k−ω model, but with a term added

to the ω equation to account for vorticity, and the stress tensor equations were represented

as:
∂Tij
∂t

+
∂

∂xk
(ukTij) = −Pij + Eij (2.34)

where Pij and Eij stand for the production and the exchange of energy among the mean, upper

and lower partition energies, respectively. Most of the novel physical modelling assumptions

of the multiscale scheme proposed by Wilcox (1988b) were introduced to Eij , and these will

be briefly described here. In order to define a formulation for Eij , homogeneous decaying

turbulence where mean velocity gradients are negligible and a zero pressure gradient boundary

layer were examined. The main assumption of the model is to consider that the large eddies

decay at the same scale as the overall turbulence (broadly equivalent to assuming spectral

equilibrium for the transfer and dissipation zones in the previous MTS models). This idea

was argued by Wilcox to be supported by large-eddy simulation results. This model was

applied to five homogeneous turbulence cases (decay of isotropic turbulence, system rotation,

return to isotropy, plane strain and uniform shear), to viscous sublayer and three boundary

layer classes (incompressible zero, adverse and favorable pressure gradient boundary layers,
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compressible boundary layers and unsteady boundary layers for zero frequency, low and high

amplitude cases). The model proved to provide good predictions compared to experimental

data, although perfect agreement with the latter was not reached. Overall, its performance

could be considered quite satisfactory.

Stawiarski and Hanjalic (2002) proposed a simplified Reynolds stress transport multiple-

time-scale model, where the transport equations for the Reynolds stresses were kept just

as in single-time-scale models, but with the dissipation rate ε replaced by εP , the spectral

energy flux, in the diffusion and pressure redistribution terms. The authors used a wave-

number-weighted spectrum integration method to derive the transport equations for two

turbulence-scaling variables which were initially chosen as the dissipation rate εT and the

energy-length product kL. The latter’s transport equation was further converted into a εP

transport equation due to previous bad experience of the authors with the kL variable just

as in Stawiarski and Hanjalic (2005). The εT resultant of the weighted spectrum integration

was subjected to a few modifications in order to account for a different time-scale (the high

Reynolds number time scale being considered as k/εP ) as the local Reynolds number of

the flow decreased, just as proposed by Durbin (1991). Besides, an extra production term

arose from the spectrum integration procedure in the εT equation. As a result, the latter

included a source term based on the turbulent kinetic energy production, similar to those

in single-time-scale models, and a similar source term to that of equation 2.33, but with kT

replaced by k. The model’s coefficients were determined by evaluating the asymptotic states

of grid decaying turbulence, homogeneous shear flows and near-wall equilibrium. The model

was then applied in two normally strained cases, where the stresses were not calculated by

the model, but interpolated from experimental data, in a channel flow and in an unsteady

backward facing step case. Good agreement with experiments was achieved for the normally

strained and channel flows, but for the backward facing step flows, the authors themselves

agreed more tunning and refinement were necessary. Besides that, the two source terms in

the εT equation were highlighted as responsible for solving the drawback of other two scale

models which have only one source term in the εT equation and tend to overpredict the

turbulent kinetic energy in backward facing step flows.

Cadiou et al. (2004) extended Stawiarski and Hanjalic’s 2002 work, by applying the wave-

number-weighted spectrum integration method to derive an equation for the Reynolds stresses

too. The integration method is more detailed in this work and the choice of εP instead of kL

as a large-scale variable was kept just as in Stawiarski and Hanjalic (2002) and Stawiarski and

Hanjalic (2005). Similar analysis for the choice of a variable time-scale were made and the

final εT equation was kept just as in Stawiarski and Hanjalic (2002). The model’s coefficients

were determined through asymptotic analysis of decaying grid turbulence, homogeneous shear

flows and near-wall equilibrium, however this time the ratio kP /kT in near wall equilibrium

was taken as 3, slightly different from in other works of the authors (Stawiarski and Hanjalic

(2002), Stawiarski and Hanjalic (2005)). The applicability of the proposed scheme was tested

in normally strained flows, where the stresses were again not calculated, but interpolated
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from experiments, channel flow, unsteady backward facing step and flow around a square-

sectioned cylinder. The authors stated that overall good agreement with the experiments

were achieved for the last two flows, but no comparisons with experimental data were shown.

It might be of value to notice that the works of Stawiarski and Hanjalic (2002), Cadiou

et al. (2004) and Stawiarski and Hanjalic (2005) presented a rather different approach to

that proposed initially by Hanjalic et al. (1980) which was mostly followed by other authors.

Although both classes of work are essentially the same, since they split the spectrum into the

same regions, they present two essential differences: the equation for the turbulent kinetic

energy k and for the dissipation rate εT . If we neglect diffusion for the sake of simplicity here,

the transport equations for kP and kT , as presented in equations 2.30 and 2.31, can be added

to provide the transport equation for k proposed by Hanjalic et al. (1980): Dk
Dt = Pk−εT which

is essentially the same proposed by single-time-scale models. On the other hand, Stawiarski

and Hanjalic (2005) proposes Dk
Dt = Pk−εP and Stawiarski and Hanjalic (2002), Cadiou et al.

(2004) solve the Reynolds stresses based on the large eddies’ time-scale which makes the total

turbulent kinetic energy and the stresses dependent only on the large eddies. It is also worth

mentioning that the large eddies’ length scale in the latter work was taken as k3/2/εP where

the total turbulent kinetic energy is used instead of kP which is the actual turbulent kinetic

energy of the production zone of the spectrum, according to the proposed spectrum split. It

is also noticeable that while in equations 2.32 and 2.33 the terms are dimensionalized with kP

and kT respectively in the denominator, in the works presented by Stawiarski and Hanjalic

(2002), Cadiou et al. (2004) and Stawiarski and Hanjalic (2005), k is always used for this

purpose and that is apparently an effect of the applied spectrum integration method. Now,

regarding the εT equation, its form presented in 2.33 was built in a rather more intuitive way

(Cadiou et al., 2004) while the form presented by Stawiarski and Hanjalic (2002), Cadiou

et al. (2004) and Stawiarski and Hanjalic (2005) derives from a simplified spectral integration

and the main result of that was an extra source term. However, the extra source term, when

compared to equation 2.33 is the term which carries the turbulent kinetic energy production

and which is found in the source term of the single-time-scale εT equation.

This completes the MTS models subsection as well as the general literature survey on

turbulence models. Reviewing the MTS models presented, one can point out their improve-

ments in predicting non equilibrium flows when compared to STS models. The MTS models

better performance is usually related to splitting the turbulent kinetic energy spectrum and

its modelling, making it possible to account for the different time and length scales associ-

ated with the smaller and larger eddies, thus implying a more reasonable representation of

the physical processes involved. When accounting for different slices of the spectrum, param-

eters such as kP /kT and εP /εT arise which enable more flexibility in the modelling process

and allow lags in the turbulence to be better captured. Besides this, the simulation time and

computational effort required are generally intermediate between Two Equation models and

Reynold Stress models. As a result, the Multiple-Time-Scale turbulence models are believed

to be one of the most appropriate (in terms of modelling and computational effort) ways to

predict non-equilibrium flows where lags in the response of the turbulence are expected.
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Chapter 3

Turbulence Models

This chapter aims to present the complete set of equations related to each turbulence model

used during this work to simulate the test cases which will be discussed in chapter 5. The

equations will be presented in the way they are applied in the in-house CFD code, STREAM,

described in chapter 4. In some cases, there may be some differences between the model

implemented in the latter and their respective original papers, which will thus be pointed

out.

Before proceeding with the models’ description, the production terms which will be used

for the following turbulence models will be defined. The production rate of turbulent kinetic

energy Pk, used by both eddy viscosity and RST models, is usually represented as:

Pk = −uiuj
∂Ui
∂xj

(3.1)

The production rate of the stresses uiuj , which appears in the stresses’ transport equation of

the RST models, is usually represented as:

Pij = −
(
uiuk

∂Uj
∂xk

+ ujuk
∂Ui
∂xk

)
(3.2)

As a general rule for all the turbulence models which will be described, δij is the Kronecker

delta which is 1 for i = j and zero otherwise, µ is the molecular viscosity, µt is the turbulent

viscosity, ν is the kinematic viscosity defined by ν = µ
ρ , ρ is the density, σφ is the turbulent

Prandtl number for the quantity φ, Ret is the turbulent Reynolds number and Φij is the

pressure strain correlation term in the RST models.

Three classes of turbulence models were considered in this work: eddy-viscosity models,

Reynolds-stress-transport models and multiple-time-scale models. The following sections

will present the turbulence models in order of simplicity within each class and their main

differences will be highlighted.

A brief discussion about wall-functions for both the STS and MTS high-Reynolds-number

turbulence models will also be presented.
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3.1 Eddy-Viscosity Models

In this section, the eddy-viscosity models used in this work will be presented. As already

commented in the Literature Survey, chapter 2, this is the most used class of turbulence

model due to its simplicity and consequent less computational effort required.

The turbulence models which will be presented here are: Launder and Spalding’s 1974

standard k−ε model, Launder and Sharma’s 1974 low-Reynolds-number k−ε model, Menter’s

1994 SST model and a modified version of the cubic non-linear eddy viscosity model of Craft

et al. (1999).

3.1.1 Standard k − ε Model

The standard k − ε model of Launder and Spalding (1974) is a Two Equation model, as

already mentioned before, and thus requires two transport equations, one for k and the other

for ε, to describe the turbulence. These equations are implemented in the STREAM code

through the following:

∂(ρk)

∂t
+
∂(ρUjk)

∂xj
=

∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
+ ρPk − ρε (3.3)

∂(ρε)

∂t
+
∂(ρUjε)

∂xj
=

∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
+ ρcε1

ε

k
Pk − ρcε2

ε2

k
(3.4)

One may notice that in Launder and Spalding’s paper the viscous part of the diffusion term is

not present since it was written for high-Reynolds-number flows, where viscous effects would

be negligible, except near the wall where a wall function should be applied. Despite this, the

viscous part of equations (3.3) and (3.4) is included in the STREAM code, since it belongs

to the exact k and ε equations, does not affect the calculations and may help stability.

The Reynolds stresses are then calculated by Boussinesq’s eddy viscosity concept, where:

uiuj = −µt
ρ

(
∂Ui
∂xj

+
∂Uj
∂xi

)
+

2

3
kδij (3.5)

and

µt = ρcµ
k2

ε
(3.6)

In the above equations, Pk is the production term given in equation (3.1) and cµ, cε1 and cε2

are constants of the model whose values can be seen in Table 3.1 together with the values

for σk and σε. The values used in the STREAM code are the same as those proposed by

Launder and Spalding (1974).
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Table 3.1: Constants in the standard k − ε model

cµ cε1 cε2 σk σε

0.09 1.44 1.92 1.0 1.3

3.1.2 Launder and Sharma’s LRN k − ε Model

The low-Reynolds-number k − ε model of Launder and Sharma (1974) consists of two main

differences from the standard k − ε model. The first is the presence of damping functions in

order to account for the near-wall region and the second is that the ε equation is solved for ε̃,

where the latter represents the isotropic part of the turbulent eddy dissipation rate, ε. The

k and ε̃ equations are thus:

∂(ρk)

∂t
+
∂(ρUjk)

∂xj
=

∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
+ ρPk − ρε̃− 2µ

(
∂
√
k

∂xj

)2

(3.7)

∂(ρε̃)

∂t
+
∂(ρUj ε̃)

∂xj
=

∂

∂xj

[(
µ+

µt
σε

)
∂ε̃

∂xj

]
+ ρcε1

ε̃

k
Pk − ρcε2f2

ε̃2

k
+ E + Yc (3.8)

Comparing equations (3.7) and (3.3), one may notice a new term in the former besides

the presence of ε̃ instead of ε. Indeed, equations (3.7) and (3.3) are the same since ε =

ε̃+2ν
(
∂
√
k

∂xj

)2
. The latter term accounts for the value ε should assume at the wall (considering

that ε̃ is zero there) and is negligible outside of the viscous sublayer.

Comparing equations (3.8) and (3.4), one may notice three new terms: a damping function

in the sink term, and the two last terms in equation (3.8). The E term accounts for extra

dissipation near the wall in order to improve k prediction in this region. Its expression

suggested by Launder and Sharma and implemented in the STREAM code is:

E = 2µµt

(
∂2Ui
∂xkxj

)2

(3.9)

The Yc term stands for Yap’s 1987 length scale correction. This term was not proposed

initially by Launder and Sharma, but is implemented in the STREAM code for this turbulence

model in order to improve its prediction in non-equilibrium flows. The Yc term acts as a source

term in equation (3.8) and is defined as:

Yc = max

[
0.83

ε̃2

k

(
k1.5

2.5ε̃y
− 1

)(
k1.5

2.5ε̃y

)2

, 0

]
(3.10)

As an eddy viscosity model proposal, the Launder and Sharma’s model also applied Boussi-

nesq’s eddy viscosity formulation. However a damping function is introduced in the turbulent

viscosity expression to account for near-wall effects. The Reynolds stresses and the turbulent

viscosity are thus calculated as:
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uiuj = −µt
ρ

(
∂Ui
∂xj

+
∂Uj
∂xi

)
+

2

3
kδij (3.11)

µt = ρcµfµ
k2

ε̃
(3.12)

In the above equations, Pk is again the production term given in equation (3.1), and the

constants cµ, cε1 and cε2 as well as σk and σε assume the same values of these in the standard

k − ε model, presented in Table 3.1. The damping functions fµ and f2 can be seen in Table

3.2, where the turbulent Reynolds number is defined as Ret = k2

νε̃ .

Table 3.2: Damping Functions in Launder and Sharma’s LRN k − ε model

fµ f2

exp
(

−3.4
(1+Ret/50)2

)
1.0− 0.3 exp (−Re2

t )

3.1.3 Menter’s SST Model

As already mentioned in the literature review, the SST model combines the standard k − ε
model and the k − ω model of Wilcox (1988a) by rewriting both k and ε equations in terms

of ω through the relation ε = β∗ωk and organizing them to appear in a similar format to the

k and ω equations in Wilcox’s model. The resulting k and “ε− ω” equations are:

∂(ρk)

∂t
+
∂(ρUjk)

∂xj
= Pk − β∗ρωk +

∂

∂xj

[
(µ+ µtσk)

∂k

∂xj

]
(3.13)

∂(ρω)

∂t
+
∂(ρUjω)

∂xj
=
γ

νt
Pk − βρω2 +

∂

∂xj

[
(µ+ µtσω)

∂ω

∂xj

]
+ 2ρ(1− F1)σω2

1

ω

∂k

∂xj

∂ω

∂xj
(3.14)

Equation (3.13) is exactly the same for both k − ε and k − ω turbulence models, written in

terms of ω. Equation (3.14) is equivalent to the ω equation of Wilcox (1988a) when F1 = 1

and to the ε equation (written in terms of ω) of Jones and Launder (1972b) and Launder

and Spalding (1974) when F1 = 0. Hence, F1 is the blending function which is used to switch

between the k − ω and k − ε models. Like the equation forms, the constants in the SST

model also switch from the values used in the k−ω to the k− ε values through the blending

function F1. The constants in equations (3.13) and (3.14), generally represented by φ, are

defined as φ = φ1F1 + φ2(1 − F1) where the subscript “1” indicates the constants from the

k−ω model and the subscript “2”, the constants from the k−ε model. Both set of constants

can be seen in Table 3.3, where κ = 0.41 is the von Karman constant.

As both k − ω and k − ε are eddy viscosity models, so is the SST model. Hence the
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Reynolds stresses are calculated as:

uiuj = −µt
ρ

(
∂Ui
∂xj

+
∂Uj
∂xi

)
+

2

3
kδij (3.15)

The SST model proposed a modification to the standard eddy viscosity formulation in order

to differently account for boundary layer flows and free shear flows. The turbulent viscosity

could assume its standard form for the former flow, but for the latter it was designed to

assume the form proposed by Johnson and King (1985). In order to achieve this, another

blending function F2 was applied. When F2 = 1, the turbulent viscosity is suitable for

boundary layer flows and when F2 = 0, for free shear flows. The general proposed form for

the turbulent viscosity is:

µt = ρ
a1k

max(a1ω,ΩF2)
(3.16)

Both blending functions F1 and F2 can be seen in Table 3.4. The other parameters remaining

to be defined can be seen in Table 3.5.

Table 3.3: Constants φ1 and φ2 in the SST model

σk1 σω1 β1 β∗ γ1

0.85 0.5 0.0750 0.09 β1

β∗ −
σω1κ2
√
β∗

σk2 σω2 β2 β∗ γ2

1.0 0.856 0.0828 0.09 β2

β∗ −
σω2κ2
√
β∗

Table 3.4: Blending functions in the SST model

F1 arg1 F2 arg2

tanh arg4
1 min

[
max

( √
k

0.09ωy ,
500ν
y2ω

)
, 4ρσω2k
CDkwy2

]
tanh arg2

2 max

(
2
√
k

0.09ωy ,
500ν
y2ω

)

Table 3.5: Auxiliary parameters in the SST model

Ω a1 CDkw

1
2

√(
∂Ui
∂xj
− ∂Uj

∂xi

)2
0.31 max

(
2ρσω2

1
ω
∂k
∂xj

∂ω
∂xj

, 10−20
)
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3.1.4 Modified Craft et al.’s Cubic NLEV k − ε Model

Craft et al. (1999) proposed a cubic non-linear eddy viscosity k−ε model where the equations

for k and ε are:

∂(ρk)

∂t
+
∂(ρUjk)

∂xj
=

∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
+ ρPk − ρε̃− 2µ

(
∂
√
k

∂xj

)2

(3.17)

∂(ρε̃)

∂t
+
∂(ρUj ε̃)

∂xj
=

∂

∂xj

[(
µ+

µt
σk

)
∂ε̃

∂xj

]
+ ρcε1

ε̃

k
Pk − ρcε2f2

ε̃2

k
+ E + Ydc (3.18)

One may notice some similarities in the above equations when compared to the k and ε

equations of the LS model: the presence of an E term and a length scale correction, Ydc, the

damping function f2 in the sink term of equation (3.18) and the same concept of splitting the

turbulent eddy dissipation rate into its isotropic and near-wall region parts. The ε equation

constants as well as the damping function f2 were adopted as in the LS model, being thus

expressed as in Tables 3.1 and 3.2, respectively. It is also valid to mention that the f2 damping

function is not proposed in Craft et al.’s 1999 work, but is implemented in the STREAM

code as suggested by Momeni (2008).

The E term in equation (3.18) was remodelled by Craft et al. from that in the Launder

and Sharma’s 1974 scheme, assuming the form:

E =

{
0.0022νtS̃k

2

ε̃
∂2Ui
∂xj∂xk

if Ret ≤ 250

0 if Ret > 250
(3.19)

where the turbulent Reynolds number is Ret = k2

νε̃ .

The length scale correction Ydc was also remodelled by Craft et al. (1999) who chose

not to apply Yap’s formulation due to its dependence on the normal distance to the wall.

Instead, they adopted a correction based on local gradients of the turbulent length scale. In an

attempt to improve prediction of separated and reattachment flows, Momeni (2008) proposed

some modifications to Ydc which is then the way the length scale correction is applied in the

STREAM code:

Ydc = max

{
cwmin[(F + 1)2F 0.4, 20]max

(ε2

k
, 0
)
, 0

}
(3.20)

All terms in the above equation can be found in Table 3.6, where the physical meaning of

the term d`e
dy is the length scale gradient in near-wall equilibrium conditions.

The cubic expression proposed by Craft et al. for the Reynolds stresses is:
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uiuj =
2

3
kδij − νtSij

+ c1
k

ε̃
νt

(
SikSjk −

1

3
SklSklδij

)
+ c2

k

ε̃
νt

(
WikSjk +WjkSik

)
+ c3

k

ε̃
νt

(
WikWjk −

1

3
WklWklδij

)
+ c4

k2

ε̃2
νt

(
SkiWlj + SkjWli

)
Skl + c5

k2

ε̃2
νt

(
WilWlmSmj + SilWlmWmj −

2

3
SlmWmnWnlδij

)
+ c6

k2

ε̃2
νtSijSklSkl + c7

k2

ε̃2
νtSijWklWkl (3.21)

where Sij = ∂Ui
∂xj

+
∂Uj
∂xi

and Wij = ∂Ui
∂xj
− ∂Uj

∂xi
and the eddy viscosity is given as:

µt = ρcµfµp
k2

ε̃
(3.22)

The coefficients in the above equations as well as the damping function fµp are presented in

Tables 3.7 and 3.8. The form and values of these terms correspond to Momeni’s 2008 work.

Table 3.6: Parameters related to Ydc
cw F η′

[1.65min(Ret/25,1)]2(1−fFS)+0.3min(Ret/40,1)fFS

0.8+0.7(η′/3.33)4 exp (−Ret/12.5)

[√(
∂`
∂xj

)2

− d`e
dy

]
1
c`

max[max(S̃, W̃ ), 40]

d`e
dy fFS c` Bε

c`[1− exp (−BεRet)] +Bεc`Ret exp (−BεRet) min

[
max(

pk
ε ,exp (−Ret

50 )2,0)

0.75 , 1

]
2.55 0.1069

Table 3.7: Coefficients in the Cubic NLEV model
cµ c1 c2 c3 c4 c5 c6 c7

min

[
0.09, 1.2

1+3.5η+fRS

]
−0.1 0.1 0.26 −10c2

µ 0 −5c2
µ 5c2

µ

Table 3.8: Damping functions and parameters in the Cubic NLEV model

fµp fµ fRS

fµfFS + (1− fFS) 1− exp
[
−
√

Ret
90 −

(
Ret
400

)2]
0.235[max(0, η − 3.333)]2 exp (−Ret

400 )

S̃ W̃ η

k
ε̃

√
1
2SijSij

k
ε̃

√
1
2WijWij max(S̃, W̃ )
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3.2 Reynolds-Stress-Transport Models

In this section, four models will be presented. These are the most complex models which will

be treated in this work. Since they solve transport equations for the Reynolds stresses, they

are expected to provide better prediction of flows, but to demand a much higher computa-

tional effort.

The turbulence models which will be presented are: Gibson and Launder’s 1978 model,

the SSG model of Speziale et al. (1991), the low-Reynolds-number model of Hanjalic et al.

(1997) and the low-Reynolds-number two-component-limit model of Craft (1998).

3.2.1 Gibson and Launder’s RST Model

Gibson and Launder (1978) proposed a high-Reynolds-number RST model whose general

equation for the Reynolds stresses uiuj is:

∂(ρuiuj)

∂t
+
∂(ρUjuiuj)

∂xj
= ρPij − ρ

2

3
εδij + ρΦij +

∂

∂xk

[(
µ+ ρcs

k

ε
ukul

)
∂uiuj
∂xl

]
(3.23)

It is of value to comment on the terms in the above equation. Pij is the production rate of

the Reynolds stresses expressed in equation (3.2). 2
3εδij represents the dissipation terms for

high-Reynolds-number flows where it is assumed that local isotropy holds (Launder et al.,

1984). The diffusion term follows the Generalized Gradient Diffusion Hypothesis (GGDH) of

Daly and Harlow (1970) whose diffusivity takes into consideration the Reynolds stresses in

order to account for its anisotropy. Again, the viscous part of the diffusive term is included in

the STREAM code and that is why it is represented in equation (3.23). Finally, the pressure-

strain correlation term represents the effective contribution of Gibson and Launder’s work.

The pressure strain correlation is expressed as a sum of four terms: an interaction between

the fluctuating velocity components themselves, φij,1, an interaction between these and the

main flow, via a linear relation with the mean velocity gradients, φij,2, and two wall reflection

terms. The latter are those which were actually proposed by Gibson and Launder as a new

contribution since the former, φij,1 and φij,2, had been already proposed by Launder et al.
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(1975). The equation for the modelled pressure-strain correlation is:

Φij = φij,1 + φij,2 + φij,w1 + φij,w2

where:

φij,1 = −C1
ε

k

(
uiuj −

2

3
δijk

)
φij,2 = −C2

(
Pij −

2

3
δijPk

)
φij,w1 = C ′1

ε

k
(ukumnknmδij −

3

2
ukuinknj −

3

2
ukujnkni)F

φij,w2 = C ′2(φkm,2nknmδij −
3

2
φik,2nkni −

3

2
φjk,2nkni)F

and F =
k3/2

2.5yε
(3.24)

In the above equation, Pk stands for the production rate of turbulence energy, given by

equation (3.1), nm is the component of the unit vector normal to the wall in the m direction

and y, in the length scale function F , is the normal distance to the wall.

The RST model also requires an equation for the turbulent eddy dissipation rate ε. The

equation adopted for Gibson and Launder’s model in the STREAM code has a general form

which can be expressed as:

∂(ρε)

∂t
+
∂(ρUjε)

∂xj
=

∂

∂xk

[(
µ+ ρcε

k

ε
ukul

)
∂ε

∂xk

]
− ρcε1

ε

k
Pk − ρcε2

ε2

k
(3.25)

The diffusion term here is also of a GGDH type, again to give an anisotropic diffusivity. The

constants of the model are presented in Table 3.9.

Table 3.9: Constants in Gibson and Launder’s RST model
C1 C2 C ′1 C ′2 cs cε cε1 cε2

1.8 0.6 0.5 0.3 0.22 0.18 1.44 1.92

3.2.2 The SSG RST Model

The SSG Reynolds stress transport model is also a high-Reynolds-number model, developed

by Speziale et al. (1991). Its general equation form for the Reynolds stresses uiuj and the

turbulent eddy dissipation rate ε are the same of those presented for the GL model, equation

(3.23) and (3.25). The main difference between these two models lies in the pressure strain

correlation expression.

Starting from the Poisson equation for the instantaneous pressure field, Speziale et al.

(1991) developed a general solution, subjected to physical constraints, for the pressure strain
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correlation which resulted in a non-linear formulation for the latter, where it varies quadrati-

cally with the anisotropy tensor defined by bij =
uiuj− 2

3
kδij

2k . The resulting expression for the

pressure strain correlation Φij is thus:

Φij =− (C1 + C∗1
P

ε
)bij

+ C2ε(bikbkj −
1

3
bmnbmnδij)

+ (C3 − C∗3
√
A)ksij

+ C4k(biksjk + bjksik −
2

3
bmnsmnδij) + C5k(bikwjk + bjkwik) (3.26)

where A = bijbij is the stress invariant and sij = 1
2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
and wij = 1

2

(
∂Ui
∂xj
− ∂Uj

∂xi

)
are the mean strain and vorticity tensors.

One may notice that the first line in equation (3.26) is equivalent to the interaction

between the fluctuating velocity components themselves, φij,1 used in the GL model. The

second line contains the quadratically non-linear terms in the anisotropy tensor bij . The term

in the third line is linearly dependent on the mean strain rate tensor, although its coefficient

still depends on the anisotropy tensor and the other terms in the fourth line express the

dependence of the pressure strain correlation on the interaction between the anisotropy tensor

and the mean strain and vorticity tensors, respectively. It is also worth noting that there is

no wall reflection term.

The constants of the SSG model can be found in Table 3.10.

Table 3.10: Constants in Speziale et al.’s RST model

C1 C∗1 C2 C3 C∗3 C4 C5 cs cε cε1 cε2

3.4 1.8 4.2 0.8 1.3 1.25 0.4 0.22 0.18 1.44 1.83

3.2.3 Hanjalic et al.’s LRN RST Model

Hanjalic et al. (1997) proposed a low-Reynolds-number Reynolds stress transport model. The

general form of its transport equation for the Reynolds stresses is:

D(ρuiuj)

Dt
= ρPij − ρεij + ρΦij +

∂

∂xk

[(
µ+ ρcs

k

ε
ukul

)
∂uiuj
∂xl

]
(3.27)

Hanjalic et al. proposed a similar expression for the pressure strain correlation to that

proposed by Gibson and Launder (1978), where its coefficients were no longer constants, but

expressed in terms of the denoted flatness parameters (A and E) which can be seen in Table
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3.11. The pressure strain correlation is thus:

Φij = φij,1 + φij,2 + φij,w1 + φij,w2

where

φij,1 = −C1εaij

φij,2 = −C2

(
Pij −

2

3
δijPk

)
φij,w1 = Cw1

ε

k
(ukumnknmδij −

3

2
ukuinknj −

3

2
ukujnkni)fw

φij,w2 = Cw2 (φkm,2nknmδij −
3

2
φik,2nkni −

3

2
φjk,2nkni)fw (3.28)

The other term in equation (3.27) which is different from the RST models presented above is

the dissipation term. Since this is a low-Reynolds-number model, the common form adopted

for it, εij = 2
3εδij , could no longer be used since it would not be valid for the near-wall region.

The proposed form for the dissipation was thus:

εij = fs
ε

k

(uiuj + uiuknjnk + ujuknink + ukulnknlninj)fd

1 + 1.5(
upuq
k )npnqfd

+ (1− fs)
2

3
εδij (3.29)

One may notice that the presence of the function fs enables the expression for εij to assume

its high-Reynolds-number form when fs = 0 which is supposed to happen far from the wall.

The near-wall part was modelled as a function of the Reynolds stresses and the unit vector

normal to the wall.

The ε equation in Hanjalic et al.’s model was not modelled as in the high-Reynolds-number

models either. Instead, its equation was taken as:

∂(ρε)

∂t
+
∂(ρUjε)

∂xj
=

∂

∂xk

[(
µ+ ρcε

k

ε
ukul

)
∂ε

∂xk

]
− ρcε1

ε

k
Pk − ρcε2f2

εε̃

k
+E −Ω + S` (3.30)

The last three terms in the above equation are actually the ones which differentiate it from

the standard ε equation in the previous high-Reynolds-number RST models. The E term is

similar to the one used by Launder and Sharma (1974), but with GGDH influences:

E = ρcε3
k

ε
ujuk

∂2Ui
∂xj∂xl

∂2Ui
∂xk∂xl

(3.31)

The Ω term in equation (3.30) was included in order to account for differences between

rotational and irrotational straining. Its original formulation was Ω = −cε4f4kWkWk, where

Wk is the vorticity tensor, but the authors themselves proposed in the same work a 2D

simplified form for it which is the one applied in the STREAM code. The expression for Ω
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is then:

Ω = c∗ε4(v2 − u2)
∂U

∂x

ε

k
(3.32)

Although the above expression is not tensorially invariant, it is coded as u2 being interpreted

as the normal stress in the streamwise direction and v2 in the cross-stream.

Finally, the last term in (3.30), S`, represents a length scale correction with no dependence

on the distance to the wall which is designed to improve predictions in non equilibrium flows:

S` = max

{[(
1

C`

∂`

∂xn

)2

− 1

](
1

C`

∂`

∂xn

)2

, 0

}
εε̃

k
A (3.33)

All the parameters, functions, coefficients and constants related to Hanjalic et al.’s model are

presented in Tables 3.11, 3.12, 3.13 and 3.14.

Table 3.11: Parameters in Hanjalic et al.’s LRN RST model

A E C F

1− 9
8(A2 −A3) 1− 9

8(E2 − E3) 2.5AF 0.25f min(0.6, A2)

Table 3.12: Damping and auxiliary functions in Hanjalic et al.’s LRN RST model

f2 fw f fs fd

1− cε2−1.4
cε2

exp

[
−
(
Ret

6

)2]
min

[
k3/2

2.5yε , 1.4
]

min

[(
Ret
150

)1.5

, 1

]
1−
√
AE2 (1 + 0.1Ret)

−1

Table 3.13: Invariants in Hanjalic et al.’s LRN RST model

aij eij A2 E2 A3 E3

uiuj
k −

2
3δij

εij
ε −

2
3δij aijaji eijeji aijajkaki eijejkeki

Table 3.14: Main coefficients in Hanjalic et al.’s LRN RST model

C1 Cw1 C2 Cw2 cs cε cε1 cε2 cε3 c∗ε4 C`

C +
√
AE2 max(1− 0.7C, 0.3) 0.8

√
A min(A, 0.3) 0.22 0.18 1.44 1.92 0.25 1.16 2.5

3.2.4 Craft’s 1998 Two-Component-Limit (TCL) LRN RST Model

The model which will be described here is based on the initial work of Craft et al. (1996a)

which was extended by Craft and Launder (1996) and later modified by Craft (1998). The

version effectively used here has also some further modifications already implemented in the
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STREAM code, aimed at improving the stability of the simulations..

One important feature of the two-component-limit (TCL) scheme is that the model el-

ements in the stress transport equations are designed to ensure a realizable stress field, for

example, by ensuring the correct behaviour in two-component turbulence, when one of the

fluctuating velocities is zero, for instance, close to a wall where the fluctuating velocity nor-

mal to it gets reduced much more than the other components. The model here presented

also contains low-Reynolds number and near-wall corrections.

The idea of using this TCL model is to identify the advantages a much more complex

model can bring in terms of prediction when compared to simple Reynolds Stress Transport

turbulence models as the ones presented above.

Before presenting the transport equations, two terms, di and dAi , which are used in the

TCL model’s terms will be discussed. They were named as normalized length scale gradients

and were first introduced by Craft et al. (1996a). Their expressions are:

di =
Ni

0.5 +
√
NkNk

where Ni =
∂(k3/2/ε)

∂xi
(3.34)

dAi =
NA
i

0.5 +
√
NA
k N

A
k

where NA
i =

∂(k3/2A0.5/ε)

∂xi
(3.35)

The authors argued that these terms are capable of sensitizing the model to the presence of

a wall by making it sense the local inhomogeneity. The normalized length scale gradients

would assume a value of 1 in very inhomogeneous areas which are usually in a near wall

region and would be negligible in regions with small inhomogeneity. In the above equations,

and subsequently in the model’s equations and terms, A is the flatness parameter defined as

A = 1− 9/8(A2 −A3), where A2 = aijaij and A3 = aijajkaki are the invariants of the stress

anisotropy tensor aij =
uiuj
k −

2
3δij .

The Reynolds stress equations follow a general form:

Duiuj
Dt

= Pij + Πij − εij + dij (3.36)

where Pij is the Reynolds stresses production term defined as Pij = −(uiuk∂Uj/∂xk +

ujuk∂Ui/∂xk), Πij is the pressure correlation term, εij is the dissipation and dij is the dif-

fusion. As already noted, except for the production term, all terms require modelling. The

modelling proposed by Craft (1998) will be presented below.

Starting from the pressure correlation term, Πij , this is treated as Πij = φij − uiuj
k dpk,

where the first term on the right hand side is the redistributive part and the second, the non-

redistributive one. The only unknown term in the latter is dpk, the turbulent kinetic energy

pressure-diffusion term, which is given by dpk = −(1/ρ)∂(puk)/∂xk, where the correlation

between fluctuating pressure and velocity is modelled by puk = −fpu1
k
εuiuk

∂k
∂xi
− fpu2

k2

ε
∂k
∂xk

.

The coefficients fpu1 and fpu2 are given in Table 3.15. It is of value to note that the expression
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for the puk term is not the one proposed by Craft (1998), but a simpler expression already

implemented in the STREAM code. The two formulations were tested in a plane channel

flow, and no significant difference was seen in the results, therefore the above formulation

already implemented in the STREAM code was kept.

The redistributive part of the pressure correlation term, φij , is a much more complex

term and has a general form of φij = φij1 +φij2 +φinhij1 +φinhij2 , where φij1 represents the slow

pressure strain term, φij2 is the rapid pressure strain term and φinhij1 and φinhij2 are, respectively,

the inhomogeneous parts of the slow and rapid pressure strain terms:

φij1 =− c1ε̃
[
aij + c′1

(
aikakj −

1

3
A2δij

)]
− ε̃f ′Aaij

φij2 =− 0.6Pij −
1

3
Pkkδij + 0.3aijPkk

− 0.2

[
ukujului

k

(
∂Uk
∂xl

+
∂Ul
∂xk

)
− uluk

k

(
uiuk

∂Uj
∂xl

+ ujuk
∂Ui
∂xl

)]
− c2[A2(Pij −Dij) + 3amianj(Pmn −Dmn)]

+ c′2

(
7

15
− A2

4

)
(Pij −

1

3
Pkkδij)

+ 0.1c′2[aij −
1

2
(aikakj −

1

3
δijA2)]Pkk − 0.05c′2aijajkPkl

+ 0.1c′2

[(
uium
k

Pmj +
ujum
k

Pmi

)
− 2

3
δij
ulum
k

Pml

]
+ 0.1c′2

[
uluiukuj

k2
− 1

3
δij
ulumukum

k2

][
6Dlk + 13k

(
∂Ul
∂xk

+ ∂∂Uk∂xl

)]
+ 0.2c′2

uluiukuj
k2

(Dlk − Plk)

φinhij1 =fw1
ε

k

(
ulukd

A
l δij −

3

2
uiukd

A
j −

3

2
ujukd

A
i

)
dAk

+ fw2
ε

k2
ulun

(
unukd

A
k δij −

3

2
uiund

A
j −

3

2
ujund

A
i

)
dAl

+ fw3ν

(
ail
∂
√
k

∂xl

∂
√
k

∂xj
+ ajl

∂
√
k

∂xl

∂
√
k

∂xi
− 2

3
anl

∂
√
k

∂xl

∂
√
k

∂xn
δij −

4

3
aij

∂
√
k

∂xl

∂
√
k

∂xl

)
+ f ′w1

k2

ε

(
ukul

∂
√
A

∂xk

∂
√
A

∂xl
δij −

3

2
uiuk

∂
√
A

∂xk

∂
√
A

∂xj
− 3

2
ujuk

∂
√
A

∂xk

∂
√
A

∂xi

)
φinhij2 =f1k

∂Ul
∂xn

dldn

(
didj −

1

3
dkdkδij

)
(3.37)

It is also of value to comment that the φinhij2 term is not implemented in the STREAM code,

therefore the redistributive part of the pressure correlation term is better represented by

φij = φij1 + φij2 + φinhij1 . However, one should expect no difference in predicting the current

flow cases with the original Craft (1998) model and the one implemented in the STREAM

code because Craft (1998) comments that the inhomogeneous part of the rapid pressure strain

term, φinhij2 which is not implemented in the STREAM code, is only effective in stagnating

flows, like impinging jet flows, which is not the case in any of the five test cases here.

In equation (3.37), Dij is given by Dij = −uiuk ∂Uk∂xj
+ ujuk

∂Uk
∂xi

, ε̃ is defined as ε̃ =
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ε− 2ν
(
∂
√
k

∂xj

)2
and the coefficients (c1, c′1, f ′A, c2, c′2, fw1, fw2, fw3 and f ′w1) are presented in

Table 3.16. Another feature of the TCL model presented here is that the velocity gradients in

the rapid pressure strain term φij2 assume a “corrected” form in order to account for strong

inhomogeneities in the mean velocity gradients (particularly close to a wall). Thus the so

called effective velocity gradient is defined as:

∂Ui
∂xj

∣∣∣∣
eff

=
∂Ui
∂xj

+ clld
A
k

∂2Ui
∂xk∂xj

(3.38)

where the coefficient cl, and the lengthscale l, are defined in Table 3.16.

The dissipation term in the stress equation (3.36) can be generally expressed as εij =

(1− fε)(ε′ij + ε′′ij + ε′′′ij)/D + 2
3fεεδij , where D = (ε′kk + ε′′kk + ε′′′kk)/(2ε) and:

ε′ij =ε
uiuj
k

+ 2ν
ulun
k

∂
√
k

∂xl

∂
√
k

∂xn
δij + 2ν

ului
k

∂
√
k

∂xj

∂
√
k

∂xl
+ 2ν

uluj
k

∂
√
k

∂xi

∂
√
k

∂xl

ε′′ij =ε

(
2
uluk
k

dAl d
A
k δij −

ului
k
dAl d

A
j −

uluj
k
dAl d

A
i

)
ε′′′ij =cεsνk

(
∂
√
k

∂xk

∂
√
k

∂xk
δij + 2

∂
√
A

∂xi

∂
√
A

∂xj

)
(3.39)

The coefficients cεs and fε can be seen in Table 3.17. One may notice that the dissipation

εij reduces to its isotropic form εij = 2
3εδij far from the wall through the fε damping term.

Therefore the terms in equation (3.39) were designed to model dissipation behavior near the

wall.

Finally, the last term in the modelled stress transport equation, the diffusion dij , will

be discussed. Craft (1998) adopted a form for dij based on the gradient of the triple mo-

ment uiujuk, with an algebraic closure of the triple moment transport equations used to

approximate uiujuk. However, when testing this form in a range of channel flow cases some

instabilities were encountered. As a result, in the present work the TCL model was run using

the Generalized Gradient Diffusion Hypothesis (GGDH) form initially proposed by Daly and

Harlow (1970), with the cs coefficient presented in Table 3.17:

dij =
∂

∂xk

[(
ν + cs

k

ε
ukul

)
∂uiuj
∂xl

]
(3.40)

The TCL model includes a transport equation for the homogeneous dissipation rate ε̃, already

defined in the previous section as ε̃ = ε− 2ν
(
∂
√
k

∂xj

)2
. Its general form is then:

Dε̃

Dt
= cε1

ε̃Pkk
2k
−cε2

ε̃2

k
−c′ε2

ε̃(ε− ε̃)
k

+
∂

∂xl

[(
νδlk+cεuluk

k

ε

)
∂ε̃

∂xk

]
+cε3νuiuj

k

ε

∂2Uk
∂xi∂xl

∂2Uk
∂xj∂xl

+YE

(3.41)
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The first, second and fourth terms on the right hand side of the above equation are the com-

mon terms usually found in the dissipation rate equations, being the production, destruction

and diffusion terms of the dissipation rate, respectively. The third term was introduced to

correct the profile of ε̃ near the wall, the fifth term was introduced to increase the dissipation

in the near wall region in order to capture a better profile of the turbulent kinetic energy k,

and finally, the sixth term was introduced as a length scale correction whose expression is:

YE = cεl
ε̃2

k
max[F (F + 1)2, 0] (3.42)

where F = [
√

∂`
∂xj

∂`
∂xj
−c`[1−exp(−BεRet)]−Bεc`Ret exp(−BεRet)]/c` and ` is the turbulent

length scale ` = k3/2

ε . All coefficients in equations (3.41) and (3.42) can be seen in Table 3.18.

Table 3.15: Coefficients related to the non-redistributive part of the pressure correlation term

fpu1 fpu2 Ret
10
√
A2/Ret −0.003 ∗min(1, Ret/50)A1/4 k2/(νε)

Table 3.16: Coefficients related to the redistributive part of the pressure correlation term
c1 c′1 c2 c′2

min[0.55(1− exp(−A
1.5Ret
100

)), min(0.6, A)
3.1fAfRetA

0.5
2 1.1 3.2 A

1+S
] +3.5 S−Ω

3+S+Ω
− 2S`

fA fRet S Ω√
A/14 A < 0.05√

A/0.7 0.05 < A < 0.7 min(Ret/160, 1) k
ε

√
1
2
SijSij

k
ε

√
1
2
ΩijΩij√

A A > 0.7

Sij Ωij S` fw1

∂Ui
∂xj

+
∂Uj

∂xi

∂Ui
∂xj
− ∂Uj

∂xi
SijSjkSki/

√
0.5SlnSln 0.4 + 1.6f ′Ret

fw2 fw3 f ′Ret f ′′Ret
0.1 + 0.8A2f

′′
Ret 2.5

√
A min[1,max(0.1− Ret−55

20
)] min[1,max(0.1− Ret−50

85
)]

f ′A f ′w1 cl l
√
AfRet +A(1− fRet) 0.22 0.7

√
A(1−A) min[k3/2/ε, 40(ν3/ε)1/4]

Table 3.17: Coefficients related to the dissipation and diffusion terms

cεs fε cs
0.2 A1.5 0.22
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Table 3.18: Coefficients related to the dissipation rate equation

cε1 cε2 c′ε2 cε3 cεl cε Bε c`
1.0 1.92

1+0.7max(A,0.25)A0.5
2

1.0 0.875 0.5 0.15 0.1069 2.55

3.3 Multiple-Time-Scale Models

Since the major objective of this work is to develop a multiple-time-scale approach to improve

prediction of non-equilibrium flows, it is sensible to assess the performance of some multiple-

time-scale models available in the literature over a range of equilibrium and non-equilibrium

flows in order to see how these models may be able to capture lags in the response of the

turbulence.

Among the MTS models which will be tested, four are linear eddy viscosity models and

one is a Reynolds stress transport model. All of them could be classified as two-time-scale

models, since all are based on splitting the turbulent kinetic energy spectrum into three parts

as already discussed in the Literature Survey. Figure 2.2 can be used for reference.

The first part of the spectrum is the production zone where turbulence is generated and the

large scales store kP of the total turbulent kinetic energy. According to the cascade process,

the turbulent kinetic energy is transferred from the large to the small scales. Turbulent kinetic

energy is thus transferred at a rate εP to the intermediate scales, which store kT of the total

turbulent kinetic energy. This range of length scales which store kT is the second part of

the spectrum, called the transfer range. The turbulent kinetic energy is then transferred

to the even smaller scales at a rate εT . However, these even smaller scales are so small

that the turbulent kinetic energy which is received is immediately dissipated into heat, thus

characterizing the third part of the spectrum as the dissipation zone.

One may notice that according to the way the turbulent kinetic energy spectrum is mod-

elled, the total turbulent kinetic energy k is given by k = kP + kT and the turbulent eddy

dissipation rate ε, used so far in the single-time-scale models, is simply ε = εT .

The multiple-time-scale models which will be described here use the above concept to

model the turbulence. As one may have noticed, there are basically two scales being consid-

ered: the range of large length scales in the production zone and the range of length scales in

the transfer zone. This is the reason why these models can be considered as two-time-scale

models.

The turbulence models which will be presented are: the linear-eddy-viscosity models of

Hanjalic et al. (1980), Kim and Chen (1989), Chen and Guo (1991), Nagano et al. (1997)

and the Reynolds-stress-transport model of Wilcox (1988b).

3.3.1 TS model of Hanjalic et al. (1980)

The multiple-time-scale model proposed by Hanjalic et al. (1980) can be considered a reference

for this class of turbulence models, since it was perhaps the first MTS model to approximate

the turbulence kinetic energy spectrum as described above and therefore define the model

86



3.3. Multiple-Time-Scale Models

variables, kP , kT , εP and εT .

The model provides transport equations for each of the four variables kP , kT , εP and

εT , presented in equation 3.43 to 3.46, in analogy to the STS LEV models, and uses the

eddy-viscosity approach to calculate the Reynolds stresses as uiuj = 2
3kδij − νt

(
∂Ui
∂xj

+
∂Uj
∂xi

)
,

where νt, the eddy viscosity, is specified in a way to take into account the upper part of the

spectrum: νt = cµ
kkP
εP

.

DkP
Dt

= Pk − εP + cµ
∂

∂xj

(
kkP
εP

∂kP
∂xj

)
(3.43)

DkT
Dt

= εP − εT + cµ
∂

∂xj

(
kkP
εP

∂kT
∂xj

)
(3.44)

DεP
Dt

= CP1Pk
εP
kP
− CP2

ε2
P

kP
+ cµ

∂

∂xj

(
kkP
εP

∂εP
∂xj

)
+ C ′P1kP

∂Ul
∂xm

∂Ui
∂xj

εlmkεijk (3.45)

DεT
Dt

= CT1
εP εT
kT
− CT2

ε2
T

kT
+ cµ

∂

∂xj

(
kkP
εP

∂εT
∂xj

)
(3.46)

The coefficients CP1, CP2, CT1 and CT2 are presented in Table 3.19. The term associated

with the C ′P1 coefficient in equation 3.45 was introduced in order to make the model more

sensitive to normal straining. The value of this coefficient can be seen in Table 3.19 too.

One may have noted that the CP2 and CT1 coefficients were not specified as constants as

is usually done in STS LEV models, but as functions of kP
kT

and εP
εT

. Hanjalic et al. (1980)

argued that since in this MTS model these ratios (which would respectively represent the

shape and the equilibrium imbalance of the spectrum) were available, one should use them

in order to relate the upper and the lower partitions and make them influence each other.

One may notice in equations 3.43 - 3.46 that the diffusion term is basically the same as

usually used in eddy viscosity models, since cµ can be inserted into the brackets and cµ
kkP
εP

can be replaced by νt. The diffusion terms thus become ∂
∂xj

(
νt

∂φ
∂xj

)
, where φ is each of the

four main spectrum variables, which can be rewritten as ∂
∂xj

(
νt
σφ

∂φ
∂xj

)
, σφ being the turbulent

Prandtl number for φ and assuming the value of one. In the STREAM code, though, the

diffusion term is actually implemented as ∂
∂xj

[(
ν+ νt

σφ

) ∂φ
∂xj

]
in order to keep the viscous terms

which would arise in the “exact” transport equations and might improve stability.

Table 3.19: Coefficients of the TS model of Hanjalic et al. (1980)

cµ CP1 CP2 CT1 CT2 C ′P1

0.09 2.2 1.8− 0.3
(
kP
kT
− 1
)
/
(
kP
kT

+ 1
)

1.08 εPεT 1.15 -0.11
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3.3.2 KC model of Kim and Chen (1989)

Kim and Chen (1989) proposed an MTS model based on Hanjalic et al.’s 1980 model, however

they introduced an extra production term into the transfer rate equations. The transport

equations for this model are presented below:

DkP
Dt

= Pk − εP +
∂

∂xj

[(
ν +

νt
σk

)
∂kP
∂xj

]
(3.47)

DkT
Dt

= εP − εT +
∂

∂xj

[(
ν +

νt
σk

)
∂kT
∂xj

]
(3.48)

DεP
Dt

= CP1Pk
εP
kP
− CP2

ε2
P

kP
+ CP3

P 2
k

kP
+

∂

∂xj

[(
ν +

νt
σε

)
∂εP
∂xj

]
(3.49)

DεT
Dt

= CT1
εP εT
kT
− CT2

ε2
T

kT
+ CT3

ε2
P

kT
+

∂

∂xj

[(
ν +

νt
σε

)
∂εT
∂xj

]
(3.50)

Besides the coefficients values, which can be seen in Table 3.20, Kim and Chen (1989) also

changed the expression for νt, taking the same expression usually used in STS LEV models:

νt = cµ
k2

εT
. The authors argued that this expression would locate the partition kP

kT
in a higher

or lower region of the spectrum, compared to its position in an equilibrium state.

Table 3.20: Coefficients of the KC model of Kim and Chen (1989)

cµ CP1 CP2 CP3 CT1 CT2 CT3 σk σε

0.09 1.24 1.84 0.21 1.28 1.66 0.29 0.75 1.15

3.3.3 CG model of Chen and Guo (1991)

Chen and Guo (1991) also proposed an MTS model based on the work of Hanjalic et al.

(1980). The general features are the same, however they changed the constants and the

expressions of the transport equations coefficients and also adopted a different expression for

νt, being νt = cµ
k2

εP
.

The transport equations for this model are presented below, in equation 3.51 to 3.54, and

the coefficients can be seen in Table 3.21.

DkP
Dt

= Pk − εP +
∂

∂xj

[(
ν +

νt
σk

)
∂kP
∂xj

]
(3.51)

DkT
Dt

= εP − εT +
∂

∂xj

[(
ν +

νt
σk

)
∂kT
∂xj

]
(3.52)

DεP
Dt

= CP1Pk
εP
kP
− CP2

ε2
P

kP
+ CP3WεP +

∂

∂xj

[(
ν +

νt
σε

)
∂εP
∂xj

]
(3.53)
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DεT
Dt

= CT1
εP εT
kT
− CT2

ε2
T

kT
+ CT3WεT +

∂

∂xj

[(
ν +

νt
σε

)
∂εT
∂xj

]
(3.54)

The W term in equations 3.53 and 3.54 was described by the authors as the mean vorticity

or angular velocity. The former was adopted to be implemented in the STREAM code.

Table 3.21: Coefficients of the CG model of Chen and Guo (1991)

cµ CP1 CP2 CP3 CT1 CT2 CT3 σk σε

0.09 1.42 1.90
(
1− 0.2 kT

kP
+ 0.2

k2T
k2
P

)
−0.042 0.96

(
1 + 0.01 εT

εP

)
1.12 −0.042

(
1 + 0.08 εT

εP

)
0.75 1.0

3.3.4 NG model of Nagano et al. (1997)

Nagano et al. (1997) proposed a LEV MTS model, also based on the MTS model of Hanjalic

et al. (1980), but with low Reynolds number (LRN) adaptations. To account for these effects

the authors inserted damping functions into the modelled transport equations, presented

below:

DkP
Dt

= Pk − εP +
∂

∂xj

[(
ν + ft

νt
σk

)
∂kP
∂xj

]
(3.55)

DkT
Dt

= εP − εT +
∂

∂xj

[(
ν + ft

νt
σk

)
∂kT
∂xj

]
− 1

2
ν
∂

∂xj

(
k

εT

∂εT
∂xj

fw2

)
(3.56)

DεP
Dt

= CP1Pk
εP
kP
− CP2fP2

ε2
P

kP
+

∂

∂xj

[(
ν + ft

νt
σε

)
∂εP
∂xj

]
+ C ′P1

εP
kP

(u2 − v2)
∂U

∂x
(3.57)

DεT
Dt

= CT1fT1
εP εT
kT
−CT2fT2

ε2
T

kT
+

∂

∂xj

[(
ν + ft

νt
σε

)
∂εT
∂xj

]
+ 0.5ν

∂

∂xj

[
(1− fw2)

εT
k

∂k

∂xj
fw2

]
(3.58)

The eddy viscosity νt was modelled as proposed by Hanjalic et al. (1980), νt = cµ
kkP
εP

.

However, cµ was not assigned to 0.09 as in the STS models and in the MTS models presented

so far, but as a higher value which can be seen together with the other coefficients of this

model in Table 3.22.

One may notice that the general formulation of the transport equations are basically the

same as those presented so far for other MTS models. The main differences are the damping

functions, which can be seen in Table 3.23, the pressure-diffusion terms inserted in equations

3.56 and 3.58 and the last term in equation 3.57 which was intended to act as an irrotational

straining term, similar to the term introduced by Hanjalic et al. (1980) associated with the

same constant. One may notice, though, that in a LEV model, u2 = v2 = w2 in simple shear
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flows and therefore this term would vanish. Nagano et al. (1997) bypassed this problem

by solving an algebraic stress model in flows where one would expect this term to improve

prediction. As the focus of this project is not to test this model, but the MTS models’ general

features, this treatment was not employed in the STREAM code and this term was coded

the way it is written here.

Table 3.22: Coefficients of the NG model of Nagano et al. (1997)

cµ CP1 CP2 CT1 CT2 σk σε

0.14 1.65 1.9 1.5 1.65 1.0 1.4

Table 3.23: Damping functions of the NG model of Nagano et al. (1997)

fP2 fT1 fT2 ft
(1− fw2)(1− 0.3fr2) (1− fw2) (1− fw2)(1− 0.13fr2) (1 + 3.5fr1)

fr1 fr2 fw1 fw2

e−
(
Ret
80

)2

e−
√

Ret
12.5 e−

(
y∗
20

)2

e−
(
y∗
3.3

)2

3.3.5 WM model of Wilcox (1988b)

Wilcox (1988b) proposed a multiscale model based on his previous work on the k − ω LEV

model. It is not exactly based on the model of Hanjalic et al. (1980), but the general treatment

for the spectrum is similar.

This model was conceived as a Reynolds Stress Transport (RST) model so the division of

the spectrum should take into account how to calculate the Reynolds stresses for the different

partitions. The spectrum was split into two parts, the upper and the lower partitions. In the

former, where the large scales dominate, the flow was taken to be inviscid. In the latter, the

flow was taken to be isotropic and turbulent kinetic energy was assumed to be immediately

dissipated into heat. The approach is thus based on the same split spectrum proposed by

Hanjalic et al. (1980), but with additional considerations about the stresses rather than only

the turbulent kinetic energy.

The transport equations then proposed follow below:

Dk

Dt
= uiuj

∂Ui
∂xj
− β∗ωk +

∂

∂xj

[
(ν + σ∗νt)

∂k

∂xj

]
(3.59)

Dω

Dt
=
γω

k
uiuj − βω2 − ξβω

√
2ΩmnΩmn +

∂

∂xj

[
(ν + σνt)

∂ω

∂xj

]
(3.60)

Duiuj
Dt

= −Pij +
2

3
β∗ωkδij +

(
Eij − Eδij

)
+

∂

∂xj

[
(ν + νt)

∂uiuj
∂xj

]
(3.61)
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Dku
Dt

= (1− α̂− β̂)P − β∗ωk
(
ku
k

)3/2

(3.62)

where Ωij = 1
2

(
∂Ui
∂xj
− ∂Uj

∂xi

)
is the vorticity, Pij = −uium ∂Uj

∂xm
− ujum

∂Ui
∂xm

is the Reynolds

stresses production, P = 1
2Pmm and Eij is the energy exchange between the upper and the

lower partition energies given by:

Eij = −C1β
∗ω

(
uiuj +

2

3
kδij

)
+ α̂Pij + β̂Dij + γ̂k

(
sij−

1

3

∂Uk
∂xk

δij

)
+

2

3
ωk

(
ku
k

)3/2

δij (3.63)

where Dij = uium
∂Um
∂xj

+ujum
∂Um
∂xi

, sij = 1
2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
is the mean strain rate tensor and ku,

obtained from solving equation 3.62, is the upper partition turbulent kinetic energy.

The constants of the model can be found in Table 3.24 and νt = k
ω is given as in the k−ω

model.

Table 3.24: Coefficients of the WM model of Wilcox (1988b)

α̂ β̂ β β∗ γ̂ γ σ σ∗ ξ C1

42
55

6
55

3
40

9
100

1
4

4
5

1
2

42
55 1.0 1 + 4

(
ku
k

)3/2

3.4 Wall Function

High-Reynolds-number turbulence models neglect near-wall effects in their modelling and

therefore should not be integrated to the wall as they will fail to give accurate predictions.

In this case it is common to use wall functions to account for the near-wall viscosity-affected

layers of the flow.

Wall functions are then empirical formulations that are designed to model the viscous

sublayer and immediate outer layer adjacent to a wall in order to allow the high-Reynolds-

number turbulence models to represent the flow from this point on. As a result, the first

node, starting from the wall, should be located outside the viscous sublayer, implying the

first node should be at a non-dimensional distance from the wall of y+ ≈ 30 or greater.

One advantage of using wall functions is associated with the time and effort of calculation

that can be saved since the viscous sublayer is not being resolved, which would require a

very fine grid and consequent computational resources. On the other hand, its disadvantage

lies in the fact that the wall functions are empirical formulations, usually based on zero

pressure gradient boundary layers, which may compromise their accuracy when applied to

more complex flow cases.

The wall function which will be briefly described below is based on Chieng and Launder’s

1980 work and will be presented in the way it is applied in the STREAM code.

The wall function applies the log law, but instead of using the friction velocity (Uτ =
√

τw
ρ ,
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where τw is the wall shear) as a velocity scale, it uses c
1/4
µ k1/2, which is equivalent to using

the friction velocity in local equilibrium boundary layers, but avoids the problems associated

with τw going to zero at separation/reattachment or impingement points. Then the log law

is rewritten as:

c
1/4
µ k1/2U

(τw/ρ)
=

1

κ
ln

(
y
Ec

1/4
µ

√
k

ν

)
(3.64)

where κ = 0.41 is the von Karmam constant and E is the log law constant usually taken as

9. The above equation is valid outside the viscous sublayer, within which the simpler linear

law (U+ = y+) applies. Taking yν to be the viscous sublayer height, one can then provide a

value for τw as follows:

µw =

 µ if y ≤ yν
yρκc

1/4
µ

√
k

ln(E(y/ν)c
1/4
µ

√
k)

if y > yν

τw = µw
U

y
(3.65)

where µw is the “eddy viscosity at the wall”, y the distance from the first node to the wall,

and U the velocity at the near-wall node. A value for ε is also provided for the first node as

a function of the distance to wall as follows:

ε =
k3/2

2.55y
(3.66)

The equation for k is still solved for the first near-wall node, however the values of Pk and ε

(for the eddy viscosity models) and the Reynolds stresses uiuj (for the RST models) are also

estimated by the wall function.

The values of Pk and ε are not evaluated at the near-wall node, because they can be

expected to vary rapidly across the near-wall cell, and a better approach is thus to consider

cell-averaged values for them: Pk and ε, respectively. Hence, the wall function approximates:

Pk =


0 if 2y ≤ yν(

τw
ρ

)2

ln

(
2y
yν

)
1

2yκc
1/4
µ

√
k

if 2y > yν
(3.67)

ε =


2νk
y2
ν

if 2y ≤ yν

1
2y

[
2νk
yν

+ ln

(
2y
yν

)
c
1/4
µ k3/2

κ

]
if 2y > yν

(3.68)

For the RST models, the Reynolds stresses are approximated at the wall through an ARS

model applied to boundary layer flows. For these kinds of flow, the general Reynolds stress
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transport equation can be expressed as a function of
uiuj
k and the mean strain rate S:

D
Dt

(
uiuj
k

)
= f(

uiuj
k , S). For boundary layer flows, the value of S is known and D

Dt

(
uiuj
k

)
can be set to zero, thus implying a system where one can find the value of uiuj as a function

of the turbulent kinetic energy k in wall-aligned coordinates:

u2
t = 1.098k

u2
n = 0.247k

u2
b = 2k − u2

t − u2
n = 0.655k

utun = −0.255k

utub = unub = 0 (3.69)

where u2
t , u

2
n and u2

b are the normal Reynolds stresses aligned to the three wall coordinates in

the streamwise, wall-normal and third directions and utun, utub and unub are the Reynolds

shear stresses also aligned to the three wall coordinates. These Reynolds stress components

are then transformed into Cartesian coordinates and assigned as the values the Reynolds

stresses should take at the first node near the wall.

This is then the wall function that was applied in this work together with the standard

k − ε model and the high-Reynolds-number RST models of Gibson and Launder (1978) and

Speziale et al. (1991).

3.4.1 Wall Functions for the MTS models

Three of the MTS models described here are high-Reynolds-number models since they do not

have any treatment for the region near the wall where the local turbulent Reynolds number

becomes very low. That means they need to be used together with wall functions.

The wall function used for standard STS models have just been described above, however

in order to be used together with MTS models, it needs some adaptations.

The velocity treatment remains the same, as do the modifications to evaluate Pk and ε

used in the k (now kP ) equation. Instead of specifying just ε at the near wall node, from

assuming equilibrium conditions (as done in the standard STS wall function), “equilibrium”

values are set for kT , εP and εT .

In a local equilibrium boundary layer, εP = εT . Therefore, the same treatment given to

ε in STS models can also be applied to εP , for example, and then εT is set equal to εP .

It remains then to determine an appropriate value for kT . Some initial calculations

of simple channel flows performed in this study have shown that in the local equilibrium

boundary layer kP
k ≈

2
3 and kT

k ≈
1
3 which implies that kP

kT
≈ 2. That is a rough, but

reasonable, approximation to apply for the wall function. The more correct way to do it

would be to derive an exact expression for kP
kT

for each particular model through a local

equilibrium boundary layer asymptotic analysis. However some tests were performed by

applying this “real” value of kP
kT

for the KC model (because Kim and Chen (1989) provide
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this relation), applying the ratio kP
kT

= 2 as above, and also by solving the transport equation

for kT in the first node and no significant difference was found. Therefore, in the present

work, the three high-Reynolds-number LEV MTS models (TS, KC and CG) were run by

setting in the wall function that kP
kT
≈ 2.

3.5 Concluding Remarks

The turbulence models which will be used in this work were all presented in detail in the

way they are implemented in the STREAM code. One can notice that each model contains

particular features which will be of use to evaluate the performance of the models in the test

cases which will be discussed in chapter 5.

In the following chapters these models will be referred to using the acronyms presented

in Table 3.25 which are the same acronyms used in the STREAM code to identify each one

of the turbulence models.

Table 3.25: Turbulence models’ acronym in STREAM code

Acronym Model

HR Launder and Spalding’s standard k − ε model

LS Launder and Sharma’s LRN k − ε model

FM Menter’s SST model

KS Modified Craft et al.’s Cubic NLEV k − ε model

GL Gibson and Launder’s RST model

SG Speziale et al.’s SSG RST model

HJ Hanjalic et al.’s LRN RST model

TC Craft’s TCL LRN RST model

TS Hanjalic et al.’s LEV MTS model

KC Kim and Chen’s LEV MTS model

CG Chen and Guo’s LEV MTS model

NG Nagano et al.’s LRN LEV MTS model

WM Wilcox’s LRN RST MTS model
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Chapter 4

Numerical Approaches

In order to predict turbulent flows one needs to solve numerically the closed set of equations

comprised by the Navier-Stokes equations, continuity equation and those from the turbulence

models discussed in the previous chapter. As this system consists of differential equations,

it is necessary to discretize them and solve them numerically. Among the discretization

techniques available in the literature, the three main ones are the Finite Difference, the Finite

Volume and the Finite Element methods. The former is the simplest one, but presents some

difficulties, for example in imposing conservation over the domain which is very important

for flow simulations since their governing equations are conservation equations of momentum,

heat and mass. The Finite Element method is the most complex, although it is similar to the

Finite Volume one. Besides being relatively easy to apply, the Finite Volume method assures

conservation, and because of that it became the most widely used discretization method in

CFD codes. This is the method adopted here and will thus be described in this work.

The two main topics which will be covered in this Chapter are then the Finite Volume

method and the main features of the STREAM code which was used in this work and also

applies the Finite Volume method.

4.1 The Finite Volume Method

The Finite Volume method, from now on referred to as FV, consists of dividing the domain

into small control volumes and integrating the set of equations over each one of them. In order

to illustrate this technique, one can consider a general steady governing equation composed

by a convection, a diffusion and a source term:

∂(Ujφ)

∂xj
=

∂

∂xj

(
Γφ

∂φ

∂xj

)
+ Sφ (4.1)

In the above equation, φ stands for any quantity such as velocity, temperature, concen-

tration, Reynolds stress component, etc and Γ is its respective diffusivity. A general control

volume over which equation (4.1) is integrated is illustrated in Figure 4.1, indicated by CV ,

where the capital letters indicate the node position and the lower case letters indicate face
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4.1. The Finite Volume Method

Figure 4.1: 2D Control Volume for the Finite Volume method

position. P is the node at the centre of the current cell over which the equations are to be

integrated and W or w, E or e, N or n and S or s stand for its respective west, east, north

and south node or face. The way the nodes are located in the control volume affects the

numerical accuracy (Ferziger and Peric, 2002). In Figure 4.1 they are centered in the CV

which is perhaps the most common way.

Integrating equation (4.1) over the control volume, one obtains:∫
CV

∂(Ujφ)

∂xj
dV =

∫
CV

∂

∂xj

(
Γφ

∂φ

∂xj

)
dV +

∫
CV

Sφ dV (4.2)

In order to apply the divergence theorem, equation (4.2) can be rewritten as:∫
CV
∇ · (Uφ− Γφ∇φ) dV =

∫
CV

Sφ dV (4.3)

The volume integral on the left hand side of equation (4.3) can be transformed into a surface

integral through the divergence theorem as:∫
∂S

(Uφ− Γφ∇φ) · n dS =

∫
CV

Sφ dV (4.4)

where ∂S and n stand for the control volume boundary and the unit vector normal to the

surface, respectively. The surface integral argument, (Uφ−Γ∇φ) ·n, represents the total net

flux through the control volume surface, the first term, (Uφ) ·n, being the convective flux and

the second term, (Γ∇φ) · n, the diffusive flux. Since the same integration is performed over

each control volume in the domain and there is no overlapping between the control volumes

boundaries, this method ensures conservation over the whole domain.

The volume integral of the source term over the control volume in equation (4.4) is usually

approximated by the product of its average value in the control volume, (Sφ)P (when P is

located in the centre of the CV), and the CV volume, VCV :∫
CV

Sφ dV ≈ (Sφ)PVCV (4.5)

The surface integral in equation (4.4) is usually approximated by the summation of the total
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flux through each one of the control volume faces (f = w, e, n, s, t, b):

∫
∂S

(Uφ− Γφ∇φ) · n dS ≈
∑
f

(Uφ− Γφ∇φ)f (n∆S)f (4.6)

Equations (4.5) and (4.6) are the discretized form of equation (4.1) and both approximations

can be shown to be of second order accuracy. The governing equations are discretized by

integrating over each control volume, giving rise to a system of algebraic equations where

the number of unknowns is equal to the number of control volumes which is the number of

equations in the system.

In order to illustrate this algebraic system and exemplify the discretization process, the

method will be applied on a 2D rectangular grid for the general quantity φ governed by

equation (4.1). Integrating thus equation (4.1) over the control volume illustrated in Figure

4.1, one obtains:

∫∫
CV

[
∂(Uφ)

∂x
+
∂(V φ)

∂y

]
dx dy =

∫∫
CV

[
∂

∂x

(
Γφ
∂φ

∂x

)
+

∂

∂y

(
Γφ
∂φ

∂y

)]
dx dy +

∫∫
CV

Sφ dx dy

(4.7)

The above equation then becomes:

[ ∫
Uφ dy

]e
w

+

[ ∫
V φ dx

]n
s

=

[ ∫
Γφ
∂φ

∂x
dy

]e
w

+

[ ∫
Γφ
∂φ

∂y
dx

]n
s

+ (Sφ)P∆x∆y (4.8)

In the above equation, the left hand side comprises the convective term and the right hand

side, the diffusive and source terms. The latter is already in its final form accordingly to

equation (4.5). So it remains to treat the convective and diffusive parts. Starting with the

latter, it can be approximated as:[ ∫
Γφ
∂φ

∂x
dy

]e
w

+

[ ∫
Γφ
∂φ

∂y
dx

]n
s

≈
[
Γφ
∂φ

∂x
∆y

]e
w

+

[
Γφ
∂φ

∂y
∆x

]n
s

(4.9)

The derivatives in equation (4.9) are usually approximated by a Central Difference Scheme

(CDS) and the whole diffusion term assumes the form:

[
Γφ
∂φ

∂x
∆y

]e
w

+

[
Γφ
∂φ

∂y
∆x

]n
s

= (Γφ∆y)e
φE − φP

∆x
−(Γφ∆y)w

φP − φW
∆x

+(Γφ∆x)n
φN − φP

∆y
−(Γφ∆x)s

φP − φS
∆y

(4.10)

Now the diffusion term has been discretized. Recalling that the convective term in equation

(4.8) is approximated similarly to the diffusive term, one has:
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[ ∫
Uφ dy

]e
w

+

[ ∫
V φ dx

]n
s

≈ [Uφ∆y]ew + [V φ∆x]ns (4.11)

The right hand side in the above equation thus leads to:

[Uφ∆y]ew + [V φ∆x]ns = [U∆y]e︸ ︷︷ ︸
Cxe

φe − [U∆y]w︸ ︷︷ ︸
Cxw

φw + [V∆x]n︸ ︷︷ ︸
Cyn

φn − [V∆x]s︸ ︷︷ ︸
Cys

φs (4.12)

In equation (4.12), the terms underbraced are the volume flow fluxes in the x and y directions

through the east, west, north and south cell faces. One may notice that φ’s value is required

at the face, not at the node where its value is stored. In this case, another approximation will

be necessary. Because of the non-linearity of the convective term, the approximation selected

for the cell-face values of φ has a strong influence on both the accuracy and boundedness

of the resulting numerical solution. In order to proceed with the discretization method, the

interpolation method that will be adopted now is the upwind scheme which is perhaps the

simplest one and usually assures stability, but compromises accuracy since it is only first

order accurate. The upwind scheme consists of:

φe =

{
φP if Cxe > 0

φE if Cxe ≤ 0
(4.13)

Now equation (4.1) is totally discretized. Equations (4.10), (4.12) and (4.13) can be combined,

substituted into equation (4.8) and reorganized in order to put the unknowns in an explicit

way. The result of this algebraic manipulation is:

APφP = AEφE +AWφW +ANφN +ASφS + (Sφ)P∆x∆y (4.14)

where:

AE = (Γφ∆y/∆x)e +max(−Cxe, 0)

AW = (Γφ∆y/∆x)w +max(Cxw, 0)

AN = (Γφ∆x/∆y)n +max(−Cyn, 0)

AS = (Γφ∆x/∆y)s +max(Cys, 0)

AP = AE +AW +AN +AS (4.15)

Equation (4.14) together with equation (4.15) represent the system of algebraic equations to

be solved when the FV method is applied. In equation (4.15), except for AP which is the sum

of the other coefficients, the coefficients are formed by two terms: the first comes from the

discretization of the diffusive term and the second, from the discretization of the convective

one. One may also notice that if the interpolation method for the value of φ at the face in
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the convective term is not the upwind scheme, equation (4.14) will remain the same and the

second term in the coefficients’ expression, equation (4.15), may change. There are many

other interpolation methods available in the literature which usually increase accuracy, but

may compromise stability. A regular practice thus is to firstly begin a simulation with the

upwind scheme, and once the solution is partly converged to switch to a more accurate scheme.

An example of a more accurate interpolation method will be presented in the STREAM code

section.

4.1.1 Pressure Correction Schemes

The above discretization process applies to all governing equations, except for the continuity

equation which represents the conservation of mass and, for incompressible flows where the

density is taken as constant, it is linear in the velocities. Besides that, when one solves the

system formed by the continuity equation and the Navier-Stokes equations for U , V , W and

P , there is one transport equation to each velocity component and no governing equation for

the pressure P , the continuity equation being the fourth equation to close the system. In this

scenario, it is necessary to find a way to ensure the continuity equation is satisfied. The Semi

Implicit Method for Pressure Linked Equations (SIMPLE) Scheme, developed by Patankar

and Spalding (1972), is one of the most widely used schemes and is also the one employed in

the STREAM code. Because of that, it will be used here to illustrate the coupling between

the velocities and the pressure.

Recalling equation (4.1) for φ = U , it becomes the Navier-Stokes equation for the U

velocity component where the source term is thus the pressure gradient −∂P
∂x . Equation

(4.14) can then be rewritten as follows:

APUP =
∑
k

AkUk +

(
− ∂P

∂x

)
P

VCV (4.16)

where k stands for the nodes around the node P (which are E, W, N and S for a 2D grid).

In this case, the source term also needs to be discretized. In a fully collocated grid, where all

quantities are stored in the nodes, as Figure 4.1 suggests, the value of the pressure gradient

at node P could be obtained by using a central difference between cell-face pressure values

as: (
− ∂P

∂x

)
P

VCV ≈ −
Pe − Pw

∆x
∆x∆y = (Pw − Pe)∆y (4.17)

The above result can then be substituted in equation (4.16) and UP isolated by dividing the

whole equation by AP :

UP =
∑
k

AkUk
AP

+
∆y

AP︸︷︷︸
DU

(Pw − Pe) (4.18)
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In a 2D simulation, one would also solve the Navier-Stokes equation for the velocity compo-

nent V . Similarly, its discretized form is obtained as:

VP =
∑
k

AkVk
AP

+
∆x

AP︸︷︷︸
DV

(Ps − Pn) (4.19)

When one solves equations (4.18) and (4.19) starting from initially guessed values for the

pressure, the resulting U and V may not satisfy the continuity equation. A pressure correction

scheme then suggests the insertion of corrections to the velocities U ′, V ′ and pressure P ′ as

follows:

U∗ = U + U ′ V ∗ = V + V ′ P ∗ = P + P ′ (4.20)

where the ∗ indicates the corrected quantities and the ′ indicates the correction. The idea is

that the corrected quantities must satisfy both Navier-Stokes and continuity equations. In

order to satisfy the former, equation (4.20) must be substituted into equations (4.18) and

(4.19). The resulting equation is then subtracted from the original equations (4.18) and (4.19)

for the “uncorrected” velocities and one finds an equation linking the velocity and pressure

corrections:

U ′P =
∑
k

AkU
′
k

AP
+DU (P ′w − P ′e) V ′P =

∑
k

AkV
′
k

AP
+DV (P ′s − P ′n) (4.21)

The SIMPLE scheme then suggests that the summations in the above equations (involving

velocities at nodes other than P) are ignored. As a result, the corrections become linked by:

U ′P = DU (P ′w − P ′e) V ′P = DV (P ′s − P ′n) (4.22)

Now it remains to satisfy the continuity equation. Following the discretization procedure

already described in the previous subsection, the discretized form of the continuity equation

for the corrected velocities is:

[(ρU∗)e − (ρU∗)w]∆y + [(ρV ∗)n − (ρV ∗)s]∆x = 0 (4.23)

One may notice that the values of U∗ and V ∗ are required at the control volume faces. Hence,

one will need the corrections also at the faces. The same procedure as outlined above can be

used to link cell face velocity corrections to pressure corrections, resulting in:
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U ′e = DU (P ′P − P ′E) U ′w = DU (P ′W − P ′P ) V ′n = DV (P ′P − P ′N ) V ′s = DV (P ′S − P ′P )

(4.24)

Now the above expressions for the corrections can be combined with equation (4.20) to be

substituted into the discretized continuity equation, equation (4.23). The result is a system

of algebraic equations to be solved for the pressure correction P ′:

apP
′
P = aeP

′
E + awP

′
W + anP

′
N + asP

′
S − Sm (4.25)

In the above equation, Sm = [(ρU)e − (ρU)w]∆y − [(ρV )n − (ρV )s]∆x which is the mass

imbalance since it is the discretized continuity equation for the “uncorrected” velocities U

and V . One may also note that the pressure corrections are evaluated at the nodes and the

coefficients are being calculated at the faces:

ae = ∆y(ρDU )e

aw = ∆y(ρDU )w

an = ∆x(ρDV )n

as = ∆x(ρDV )s

ap = ae + aw + an + as (4.26)

The above summarizes the SIMPLE scheme and shows how the continuity equation gives rise

to a pressure correction equation which results in discretized equations for all variables in

both Navier-Stokes and continuity equation. There are other pressure and pressure correction

schemes available in the literature which try to reach convergence faster. However it is beyond

the scope here to consider other alternatives.

4.1.2 Algebraic System Solution

Both systems above, namely equations (4.14) for the main variables and (4.25) for the pressure

correction, must be numerically solved, since they may be non-linearly coupled. One should

also notice that, if solving for only one direction - an 1D problem, these systems would be

tridiagonal. One of the most commonly used numerical methods for these kinds of algebraic

systems is called the Tridiagonal Matrix Algorithm (TDMA). The advantage of this method

against many others is that the number of operations that must be done is proportional to the

number of unknowns (m) instead of the number of positions in the full matrix (m3) (Ferziger

and Peric, 2002). Besides that, its implementation in a programming language is considered

easy.

When solving for 2D or 3D problems, one may approximate the systems composed of
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the discretized equations (4.14) and (4.25) as tridiagonal, in order to use the TDMA, by

considering one-direction at a time. Thereby, the systems can be considered as a series of

tridiagonal systems:

APφ
n
P = AEφ

n
E +AWφ

n
W + [ANφN +ASφS +ATφT +ABφB + Sφ]n−1 (4.27)

APφ
n
P = ANφ

n
N +ASφ

n
S + [AEφE +AWφW +ATφT +ABφB + Sφ]n−1 (4.28)

APφ
n
P = ATφ

n
T +ABφ

n
B + [AEφE +AWφW +ANφN +ASφS + Sφ]n−1 (4.29)

where n stands for the current iteration, n−1 for the previous iteration and equation (4.27) is

solved for the east-west direction, equation (4.28) for the north-south direction and equation

(4.29) for the top-bottom direction.

The TDMA is the numerical method used in STREAM code where it is applied as dis-

cussed above. The TDMA is not going to be discussed here since it is not the focus of

the chapter, however the TDMA as well as other numerical methods can be easily found in

numerical methods and CFD related books such as Ferziger and Peric (2002).

4.1.3 Boundary Conditions

When solving differential equations, one must normally provide boundary conditions for the

variables being solved for. Two types of boundary conditions will be discussed here because

they are the most commonly used for flow simulations. The first is known as Dirichlet

Condition and consists of specifying a value for the variable φ at the boundary. The second

is the Neumann Condition where one specifies the value of the gradient of φ at the boundary.

To illustrate how the boundary conditions are applied in the FV method, one can consider

a 2D problem where equation (4.14) will be applied with a boundary condition for the north

face, as in Figure 4.2. So equation (4.14) can be rewritten as:

AP φi,nj−1︸ ︷︷ ︸
φP

= AE φi+1,nj−1︸ ︷︷ ︸
φE

+AW φi−1,nj−1︸ ︷︷ ︸
φW

+AN φi,nj︸︷︷︸
φN

+AS φi,nj−2︸ ︷︷ ︸
φS

+Sφi,nj−1︸ ︷︷ ︸
SφP

(4.30)

If the boundary condition is of Dirichlet type, one would simply set φi,nj = γ where γ is

the value at the boundary, and equation (4.30) would become:

APφi,nj−1 = AEφi+1,nj−1 +AWφi−1,nj−1 +ANγ +ASφi,nj−2 + Sφi,nj−1 (4.31)

102



4.1. The Finite Volume Method

Figure 4.2: North boundary condition in a 2D problem

One may thus notice that there is no modification needed to the matrix coefficients for the

Dirichlet boundary condition. Now, if the boundary condition is of Neumann type, one has:

∂φi,nj
∂yi,nj

= γ ⇒ φi,nj − φi,nj−1

∆y
= γ ⇒ φi,nj = φi,nj−1 + γ∆y (4.32)

where ∆y = yi,nj−yi,nj−1 and γ is the value of the gradient of φ at the north face. Substituting

the above equation into equation (4.30), one has for the Neumann boundary condition:

(AP −AN )φi,nj−1 = AEφi+1,nj−1 +AWφi−1,nj−1 +ASφi,nj−2 + [Sφi,nj−1 +ANγ∆y] (4.33)

One may notice that the diagonal coefficient AP and the source term are altered for the

Neumann boundary condition:

A′P = (AP −AN )

Sφ
′
i,nj−1 = Sφi,nj−1 +ANγ∆y (4.34)

where the prime indicates the new value of the AP coefficient and the source term.

However, in the particular case where γ = 0 - symmetry conditions, for example, the

Neumann boundary condition reduces to a Dirichlet boundary condition because equation

(4.32) reduces to φi,nj = φi,nj−1. Hence, in this particular case there are no modifications

needed for the matrix coefficients when Neumann boundary conditions are applied.

The procedure carried out above can be easily extended for any face of the domain and

so the boundary conditions are applied together with the FV method.
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4.1.4 General Procedure

This subsection simply aims to organize the steps one should follow to apply the discretization

method described above. Thus, the general procedure to solve a set of discretized equations

is:

1. Initially, to start calculation, one may provide the system with boundary conditions

and initial guesses.

2. The discretized Navier-Stokes equations for all velocity components (U , V , and W )

should be solved accordingly to equations (4.18) and (4.19).

3. Then, equation (4.25) must be solved for the pressure correction.

4. The velocity corrections should thus be calculated through equations (4.22) and (4.24),

depending on where the velocity is being stored accordingly to the type of grid. For

the fully collocated grid illustrated here, one should use equation (4.22) and obtain the

value of the pressure at the faces through an interpolation technique.

5. The velocities must then be updated through equation (4.20).

6. Any other quantity should now be solved through equation (4.14).

7. Step 2 must be repeated until convergence.

Among the steps listed above, it still remains to discuss convergence criteria and relax-

ation. However these topics will be left for the next section where the STREAM code will be

described.

4.2 STREAM Code

The STREAM code was developed following the general procedures of Lien and Leschziner

(1994a). The acronym STREAM stands for Simulation of Turbulent Reynolds-averaged

Equations for All Mach numbers (STREAM) which indicates the code is suitable for in-

compressible and compressible flows for a large range of Mach numbers.

The code is designed to apply the Finite Volume method on a 3D non-orthogonal fully

collocated grid, which means it is written in general curvilinear (ξ, η, ζ) coordinates and

stores all quantities only on the nodes which are defined to be centered in the control volumes.

When using the curvilinear coordinates, one may choose between working with the Cartesian

velocities U , V , and W or its components in the ξ, η, ζ directions. The former form presents

the advantage of writing the governing equations for the Cartesian quantities. That was thus

the form adopted in the STREAM code and its sketch can be seen in Figure (4.3).

The STREAM code can be interpreted as working with a dimensionless form of the

governing equations which means all variables are supposed to be divided by a reference

value. In this case, the resulting dimensionless form of the Navier-Stokes equations has the
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Figure 4.3: Cartesian velocities in a 2D curvilinear coordinate arrangement

same form as its dimensional one, but the viscosity plays the role of 1/Re, with Re being

the Reynolds number, formed by the reference quantities. One can find this implementation

in Gant’s (2002) work. The practical implication of that is that when simulating a case one

may either set the viscosity as 1/Re and set the corresponding values such as velocity and

geometric length scale to unity, or set the Reynolds number (which in this case will only serve

to set the viscosity) as 1
µ , taking the viscosity, velocity and geometric lengths to match those

of the case being studied.

One more important feature of the STREAM code which is actually a common practice

among CFD codes is that the source terms in the discretized governing transport equations

are split into two parts: an always negative, SP , multiplied by φ, and SU :

Sφ = SU + SPφP (4.35)

SU is not necessarily positive, unless φ is a definitely positive quantity such as the turbulent

kinetic energy, the eddy dissipation rate and the normal stresses. The negative part is thus

incorporated in the matrix coefficient AP which becomes AP = AE + AW + AN + AS +

AT + AB − SP and the positive part remains on the right hand side of the system. This

decomposition of the source term improves stability, by increasing the diagonal dominance

of the coefficient matrix.

The following subsections will be dedicated to provide some important features regarding

the convection and diffusion discretization in the curvilinear coordinates as well as conver-

gence, relaxation and time dependence implementation.

4.2.1 Curvilinear Coordinates

Non-orthogonal grids are very useful for application in complex geometry cases, since they

offer a more flexible approach than orthogonal grids. When non-orthogonal grids are imple-

mented, general curvilinear coordinates can be used instead of Cartesian ones. If the physical

variables as velocity, Reynolds stresses, etc remain in the Cartesian reference frame, these are

now, however, treated as functions of the curvilinear coordinates. To transform the governing
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equations it is thus necessary to relate derivatives with respect to the Cartesian coordinates

to those with respect to the curvilinear coordinates.

In this subsection it will be shown how to relate the Cartesian derivatives of a general

quantity ϕ to the curvilinear ones, which becomes necessary when applying the FV method

over each control volume of the domain (also called cells), now in the curvilinear coordinates.

The first step for doing so is to write the chain rule for the curvilinear coordinates derivatives:


∂ϕ
∂ξ
∂ϕ
∂η
∂ϕ
∂ζ

 =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ


︸ ︷︷ ︸

JT


∂ϕ
∂x
∂ϕ
∂y
∂ϕ
∂z

 (4.36)

The above matrix equation should then be inverted, providing the desired Cartesian deriva-

tives, in terms of the derivatives along the non-orthogonal grid directions:


∂ϕ
∂x
∂ϕ
∂y
∂ϕ
∂z

 =
1

|J |


∂y
∂η

∂z
∂ζ −

∂y
∂ζ

∂z
∂η −∂y

∂ξ
∂z
∂ζ + ∂y

∂ζ
∂z
∂ξ

∂y
∂ξ

∂z
∂η −

∂y
∂η

∂z
∂ξ

−∂x
∂η

∂z
∂ζ + ∂x

∂ζ
∂z
∂η

∂x
∂ξ

∂z
∂ζ −

∂x
∂ζ

∂z
∂ξ −∂x

∂ξ
∂z
∂η + ∂x

∂η
∂z
∂ξ

∂x
∂η

∂y
∂ζ −

∂x
∂ζ

∂y
∂η −∂x

∂ξ
∂y
∂ζ + ∂x

∂ζ
∂y
∂ξ

∂x
∂ξ

∂y
∂η −

∂x
∂η

∂y
∂ξ




∂ϕ
∂ξ
∂ϕ
∂η
∂ϕ
∂ζ

 (4.37)

In the above equations, J stands for the Jacobian matrix and |J |, its determinant. Now each

derivative can be rearranged to provide:

∂ϕ

∂x
=

1

|J |

{
∂

∂ξ

[(
∂y

∂η

∂z

∂ζ
−∂y
∂ζ

∂z

∂η

)
ϕ

]
+
∂

∂η

[(
−∂y
∂ξ

∂z

∂ζ
+
∂y

∂ζ

∂z

∂ξ

)
ϕ

]
+
∂

∂ζ

[(
∂y

∂ξ

∂z

∂η
−∂y
∂η

∂z

∂ξ

)
ϕ

]}
(4.38)

∂ϕ

∂y
=

1

|J |

{
∂

∂ξ

[(
− ∂x

∂η

∂z

∂ζ
+
∂x

∂ζ

∂z

∂η

)
ϕ

]
+

∂

∂η

[(
∂x

∂ξ

∂z

∂ζ
− ∂x

∂ζ

∂z

∂ξ

)
ϕ

]
+

∂

∂ζ

[(
− ∂x

∂ξ

∂z

∂η
+
∂x

∂η

∂z

∂ξ

)
ϕ

]}
(4.39)

∂ϕ

∂z
=

1

|J |

{
∂

∂ξ

[(
∂x

∂η

∂y

∂ζ
−∂x
∂ζ

∂y

∂η

)
ϕ

]
+
∂

∂η

[(
−∂x
∂ξ

∂y

∂ζ
+
∂x

∂ζ

∂y

∂ξ

)
ϕ

]
+
∂

∂ζ

[(
∂x

∂ξ

∂y

∂η
−∂x
∂η

∂y

∂ξ

)
ϕ

]}
(4.40)

The above results represent a tool that will be used in the following subsections to illus-

trate how some terms are discretized in the STREAM code.

4.2.2 The Continuity Equation

Starting with the continuity equation, one can write its integration over the control volume

transformed into the curvilinear coordinates as follows:
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∫∫∫ [
∂(ρU)

∂x
+
∂(ρV )

∂y
+
∂(ρW )

∂z

]
dxdy dz =

∫∫∫ [
∂(ρU)

∂x
+
∂(ρV )

∂y
+
∂(ρW )

∂z

]
|J |dξ dη dζ = 0 (4.41)

Setting the general variable ϕ in equations (4.38), (4.39) and (4.40) as ρU , ρV and ρW ,
substituting into the above equation and grouping for each curvilinear derivative, one obtains:

∫∫∫ {
∂

∂ξ

[(
∂y

∂η

∂z

∂ζ
−∂y
∂ζ

∂z

∂η

)
ρU+

(
−∂x
∂η

∂z

∂ζ
+
∂x

∂ζ

∂z

∂η

)
ρV+

(
∂x

∂η

∂y

∂ζ
−∂x
∂ζ

∂y

∂η

)
ρW

]
+
∂

∂η

[
· · ·
]
+
∂

∂ζ

[
· · ·
]}

dξ dη dζ

(4.42)

Considering that ξ, η and ζ are respectively associated with west-east, south-north and

bottom-top directions and applying the FV method, one arrives at:

{∫∫ [(
∂y

∂η

∂z

∂ζ
− ∂y

∂ζ

∂z

∂η

)
ρU +

(
− ∂x

∂η

∂z

∂ζ
+
∂x

∂ζ

∂z

∂η

)
ρV +

(
∂x

∂η

∂y

∂ζ
− ∂x

∂ζ

∂y

∂η

)
ρW

]
dη dζ

}e
w

+{∫∫
· · · dξ dζ

}n
s

+

{∫∫
· · · dξ dη

}t
b

dξ dη = 0 (4.43)

Following the procedure already described in the FV section, the next step now is to approx-

imate the derivatives and eliminate the integrals:

[
yn − ys

∆η

zt − zb
∆ζ

− yt − yb
∆ζ

zn − zs
∆η

]
∆η∆ζ︸ ︷︷ ︸

∆Ae
x

ρeUe −∆Awx ρwUw

+ ∆AeyρeVe −∆Awy ρwVw + ∆AezρeWe −∆Awz ρwWw

+ ∆AnxρnUn −∆AsxρsUs + ∆AnyρnVn −∆AsyρsVs + ∆Anz ρnWn −∆AszρsWs

+ ∆AtxρtUt −∆AbxρbUb + ∆AtyρtVt −∆AbyρbVb + ∆AtzρtWt −∆AbzρbWb = 0 (4.44)

In the above equation, ∆Afd (f = e, w, n, s, t, b and d = x, y, z) is the projection of the f face

area in the d direction, also called face area vectors which can be visualized in Figure 4.4.

Equation (4.44) can be rearranged to be expressed in terms of the mass fluxes through

each face:

ρe(∆A
e
x Ue + ∆Aey Ve + ∆Aez We)︸ ︷︷ ︸

Ce

− ρw(∆Awx Uw + ∆Awy Vw + ∆Awz Ww)︸ ︷︷ ︸
Cw

ρn(∆Anx Un + ∆Any Vn + ∆Anz Wn)︸ ︷︷ ︸
Cn

− ρs(∆Asx Us + ∆Asy Vs + ∆Asz Ws)︸ ︷︷ ︸
Cs

ρt(∆A
t
x Ut + ∆Aty Vt + ∆Atz Wt)︸ ︷︷ ︸

Ct

− ρb(∆Abx Ub + ∆Aby Vb + ∆Abz Wb)︸ ︷︷ ︸
Cb

= 0 (4.45)
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Figure 4.4: Area vectors for the east face in a general control volume

where Cf (f = e, w, n, s, t, b) are the mass fluxes through each face. In the STREAM code,

Cw of the next cell in the x (or ξ) direction is set equal to Ce of the current cell in order

to ensure consistency of the fluxes and increase computational efficiency. The same logic is

applied to the couples Cs−Cn and Cb−Ct. One may notice that equation (4.45) is the mass

imbalance (Sm).

Before proceeding with the SIMPLE Pressure Correction Scheme implementation, the

convective and diffusive terms of a governing equation will first be discussed.

4.2.3 Convection Schemes

Integrating the expanded convective term in equation (4.1) for a general quantity φ over each

control volume, and converting into the curvilinear coordinates, one obtains:

∫∫∫ [
∂(ρUφ)

∂x
+
∂(ρV φ)

∂y
+
∂(ρWφ)

∂z

]
dxdy dz =

∫∫∫ [
∂(ρUφ)

∂x
+
∂(ρV φ)

∂y
+
∂(ρWφ)

∂z

]
|J |dξ dη dζ

(4.46)

From its similarity to the continuity equation, where the argument on the gradient differs

only by the presence of the quantity φ, one may readily obtain its discretized form:

Ceφe − Cwφw + Cnφn − Csφs + Ctφt − Cbφb (4.47)

That is exactly the expected result from the FV method description in the previous section.

The important point to be emphasized here is the interpolation methods available in the

STREAM code to calculate the values of φ at the faces and how they are inserted in the

system’s coefficients. When describing the FV method, the upwind scheme was used which
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provided a convection contribution to the matrix coefficients as max(±Cf , 0). It was com-

mented that this method would provide stability, but not accuracy. Alternative methods

available in the stream code are the QUICK, UMIST and Van Leer Schemes. These methods

are supposed to improve accuracy, but sometimes can compromise stability as already men-

tioned. They are often implemented as deferred corrections, since they can be written as the

upwind scheme plus additional terms. For example, the QUICK scheme for Ce > 0 provides:

φe =
3

4
φP +

3

8
φE −

1

8
φW (4.48)

If the upwind scheme was being used, φe = φP . So, what is usually done is to write the

deferred correction scheme in a way to incorporate the upwind scheme contribution into the

matrix coefficient (thus taking it as max(±Cf , 0)), and including the remainder in the source

term:

φe = φP︸︷︷︸
to AE

+

(
− 1

4
φP +

3

8
φE −

1

8
φW

)
︸ ︷︷ ︸

to source term SU

(4.49)

In most test cases in this work the UMIST interpolation technique was used. This method,

developed by Lien and Leschziner (1994b), was intended to overcome some drawbacks in the

QUICK scheme by limiting dispersive truncation errors. The UMIST scheme represents φe

as:

φe =



φP︸︷︷︸
to AE

+max

[
0,min

(
φE − φP , φP − φW ,

1

4
φP +

1

8
φE −

3

8
φW ,

QUICK︷ ︸︸ ︷
−1

4
φP +

3

8
φE −

1

8
φW

)]
︸ ︷︷ ︸

to source term SU

if Cxe > 0

φE︸︷︷︸
to AE

+max

[
0,min

(
φP − φE , φE − φEE ,

1

8
φP +

1

4
φE −

3

8
φEE ,

QUICK︷ ︸︸ ︷
3

8
φP −

1

4
φE −

1

8
φEE

)]
︸ ︷︷ ︸

to source term SU

if Cxe ≤ 0

(4.50)

In the above equation the new subscript EE indicates the node to the east of the east node

E. The term indicated as going to AE is equivalent to the UPWIND scheme and all the other

terms are incorporated in the positive source term SU . One may notice that the UMIST

scheme can be reduced to the QUICK scheme as indicated by the overbraces in equation

4.50.
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4.2.4 Diffusion Schemes

In this subsection the discretization of diffusion terms in this non-orthogonal system will be

developed. To exemplify its discretization process through the FV method, the U-momentum

Navier Stokes equation will be used.

The Navier-Stokes equation, presented in equation 2.5, can be written as:

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1

ρ

∂P

∂xi
+

∂

∂xj

[
ν

(
∂Ui
∂xj

+
∂Uj
∂xi
− 2

3

∂Um
∂xm

)
− uiuj

]
(4.51)

One may notice that the above equation is the same as equation 2.5, since the only difference

remains in the diffusive term and ∂
∂xj

(∂Uj
∂xi

)
= ∂

∂xi

(∂Uj
∂xj

)
= 0 and ∂Um

∂xm
= 0 according to

the continuity equation. The reason why the Navier-Stokes equation is written as above

in equation 4.51 is that its viscous term becomes similar to the term associated with the

eddy-viscosity when using a linear eddy-viscosity model to represent the Reynolds stresses.

Thus the U-momentum Navier Stokes equation right hand side is:

∂

∂x

[
−P + µ

(
2
∂U

∂x
− 2

3

∂Um
∂xm

)
− ρu2︸ ︷︷ ︸

−FLUXX

]
+

∂

∂y

[
µ

(
∂U

∂y
+
∂V

∂x

)
− ρuv︸ ︷︷ ︸

−FLUXY

]
+

∂

∂z

[
µ

(
∂U

∂z
+
∂W

∂x

)
− ρuw︸ ︷︷ ︸

−FLUXZ

]

(4.52)

where the underbraced terms −FLUXX, −FLUXY and −FLUXZ are denoted as such

for convenience purposes since that is the way these arguments are termed in the STREAM

code. When comparing equation (4.52) with the general governing equation (4.1), one may

notice that in this case, as φ = U , the diffusive term to be discretized should be only:

∂

∂xj

(
Γ
∂φ

∂xj

)
=

∂

∂x

(
Γ︸︷︷︸
D1

∂U

∂x

)
+

∂

∂y

(
Γ︸︷︷︸
D2

∂U

∂y

)
+

∂

∂z

(
Γ︸︷︷︸
D3

∂U

∂z

)
(4.53)

By comparing equations 4.52 and 4.53, one may notice that D1 = 2µ, D2 = µ and D3 = µ.

That is exactly how the STREAM code sees the diffusion part of the U momentum Navier

Stokes equation. The diffusivities D1, D2 and D3 are there termed as DIF11, DIF22 and

DIF33 respectively.

When using linear eddy-viscosity turbulence models, one can take into account that

ρuiuj = −µt
(
∂Ui
∂xj

+
∂Uj
∂xi
− 2

3
∂Um
∂xm

)
+ ρ2

3kδij and write equation 4.52 as:

∂

∂x

[
−P +(µ+µt)

(
2
∂U

∂x
− 2

3

∂Um
∂xm

)
− 2

3
k

]
+
∂

∂y

[
(µ+µt)

(
∂U

∂y
+
∂V

∂x

)]
+
∂

∂z

[
(µ+µt)

(
∂U

∂z
+
∂W

∂x

)]
(4.54)

In this case it is easy to see, by comparing equations 4.53 and 4.54, that D1 = 2(µ + µt),

D2 = µ + µt and D3 = µ + µt. The reason to do that, instead of just using equation 4.53,
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is to improve stability. For this same reason, when using Reynolds stress transport models,

where in principle equation 4.53 should be used, one can use the effective viscosity concept.

The effective viscosity concept consists of expressing the Reynolds stresses as a part that is

similar to that provided by an eddy-viscosity model, plus an additional contribution, so that

the diffusion coefficient in equation 4.53, which is in principle only Γ = µ, can be enhanced

and stability can be improved. In order to obtain an appropriate split of the Reynolds

stress for such a treatment, one can manipulate simplified algebraic versions of the transport

equations. For example, in equations 3.23, one can neglect convective and diffusive terms,

take the pressure-strain correlation as φij = −C1
ε
k

(
uiuj − 2

3δijk
)
− C2

(
Pij − 2

3δijPk

)
and

group together terms involving the product u2 ∂U
∂x , to arrive at a form for u2 such as shown

in equation 4.55. A similar treatment for the shear stress leads to uv as shown in equation

4.55 below:

u2 = − k
ε

(2− 4
3C2)

C1
u2︸ ︷︷ ︸

νteff

∂U

∂x
+ û2

uv = − k
ε

(1− C2)

C1
v2︸ ︷︷ ︸

νteff

∂U

∂y
+ ûv (4.55)

where ûiuj represents all terms in Pij and Pk that were neglected and νteff = µteff /ρ is

taken as the effective viscosity since it plays the same role as the eddy viscosity. One may

notice that the effective viscosity assumes different expressions depending on which Reynolds

stress is being considered. For the normal stresses, the relation between the pressure strain

correlation coefficients is
(2− 4

3
C2)

C1
while for the shear stresses, it is (1−C2)

C1
. The former is

labeled Cnorm and the latter Cshear in the STREAM code.

Thereby, equation 4.52 can be written as in equation 4.56 below, neglecting the ûiuj terms

in equation 4.55, and therefore the diffusivities in equation 4.53 become D1 = 2(µ + µteff ),

D2 = µ+ µteff and D3 = µ+ µteff .

∂

∂x

[
−P +(µ+µteff )

(
2
∂U

∂x
− 2

3

∂Um
∂xm

)
− 2

3
k

]
+
∂

∂y

[
(µ+µteff )

(
∂U

∂y
+
∂V

∂x

)]
+
∂

∂z

[
(µ+µteff )

(
∂U

∂z
+
∂W

∂x

)]
(4.56)

The other terms in equations 4.52, 4.54 or 4.56 which were not used in equation 4.53 are

included in the −FLUXX, −FLUXY and −FLUXZ terms which, as will be discussed

further in the text, will be accounted for within the positive source term SU .

Similarly to the treatment given to the Navier-Stokes equation, it is easy to see that for

the transport equations of the turbulent kinetic energy and the dissipation rate, D1 = D2 =

D3 = µ+ µt
σφ

, where φ can be k, kP , kT , ε, εP , εT or ω. Equally, for the transport equations

of uiuj , the diffusivities will be µ+ρC k
εuiuj if the GGDH form for diffusion is adopted which
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is the case of all RST models used in this work.

Now one can thus integrate the diffusive part used as in equation 4.53 for the sake of

simplicity:

∫∫∫ [
∂

∂x

(
2µ
∂U

∂x

)
+

∂

∂y

(
µ
∂U

∂y

)
+

∂

∂z

(
µ
∂U

∂z

)]
dx dy dz =∫∫∫ [

∂

∂x

(
2µ
∂U

∂x

)
+

∂

∂y

(
µ
∂U

∂y

)
+

∂

∂z

(
µ
∂U

∂z

)]
|J | dξ dη dζ (4.57)

Hence, recalling equations (4.38), (4.39) and (4.40), one obtains:

∫∫∫ {
∂

∂ξ

[(
∂y

∂η

∂z

∂ζ
− ∂y

∂ζ

∂z

∂η

)
2µ
∂U

∂x

]
+

∂

∂η

[(
− ∂y

∂ξ

∂z

∂ζ
+
∂y

∂ζ

∂z

∂ξ

)
2µ
∂U

∂x

]
+

∂

∂ζ

[(
∂y

∂ξ

∂z

∂η
− ∂y

∂η

∂z

∂ξ

)
2µ
∂U

∂x

]
+

∂

∂ξ

[(
− ∂x

∂η

∂z

∂ζ
+
∂x

∂ζ

∂z

∂η

)
µ
∂U

∂y

]
+

∂

∂η

[(
∂x

∂ξ

∂z

∂ζ
− ∂x

∂ζ

∂z

∂ξ

)
µ
∂U

∂y

]
+

∂

∂ζ

[(
− ∂x

∂ξ

∂z

∂η
+
∂x

∂η

∂z

∂ξ

)
µ
∂U

∂y

]
+

∂

∂ξ

[(
∂x

∂η

∂y

∂ζ
− ∂x

∂ζ

∂y

∂η

)
µ
∂U

∂z

]
+

∂

∂η

[(
− ∂x

∂ξ

∂y

∂ζ
+
∂x

∂ζ

∂y

∂ξ

)
µ
∂U

∂z

]
+

∂

∂ζ

[(
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ

)
µ
∂U

∂z

]}
dξ dη dζ

(4.58)

which results in:

{∫∫ [(
∂y

∂η

∂z

∂ζ
− ∂y

∂ζ

∂z

∂η

)
2µ
∂U

∂x

]
dη dζ

}e
w

+

{∫∫ [(
· · ·
)

2µ
∂U

∂x

]
dξ dζ

}n
s

+

{∫∫ [(
· · ·
)

2µ
∂U

∂x

]
dξ dη

}t
b

+{∫∫ [(
− ∂x

∂η

∂z

∂ζ
+
∂x

∂ζ

∂z

∂η

)
µ
∂U

∂y

]
dη dζ

}e
w

+

{∫∫ [(
· · ·
)
µ
∂U

∂y

]
dξ dζ

}n
s

+

{∫∫ [(
· · ·
)
µ
∂U

∂y

]
dξ dη

}t
b

+{∫∫ [(
∂x

∂η

∂y

∂ζ
− ∂x

∂ζ

∂y

∂η

)
µ
∂U

∂z

]
dη dζ

}e
w

+

{∫∫ [(
· · ·
)
µ
∂U

∂z

]
dξ dζ

}n
s

+

{∫∫ [(
· · ·
)
µ
∂U

∂z

]
dξ dη

}t
b

(4.59)

One may notice that equations (4.38), (4.39) and (4.40) must be applied again in the first,

second and third lines in the above equation, respectively. Owing to lack of space and

simplicity, only the discretization of the ξ direction (west-east) for the X derivative will be

shown. Hence, the first terms from the first, second and third lines of equation (4.59) become:

{∫∫ [
1

|J |

(
∂y

∂η

∂z

∂ζ
− ∂y

∂ζ

∂z

∂η

)2

2µ
∂U

∂ξ
+

1

|J |

(
· · ·
)

2µ
∂U

∂η
+

1

|J |

(
· · ·
)

2µ
∂U

∂ζ
+∫∫

1

|J |

(
− ∂x

∂η

∂z

∂ζ
+
∂x

∂ζ

∂z

∂η

)2

µ
∂U

∂ξ
+

1

|J |

(
· · ·
)
µ
∂U

∂η
+

1

|J |

(
· · ·
)
µ
∂U

∂ζ
+∫∫

1

|J |

(
∂x

∂η

∂y

∂ζ
− ∂x

∂ζ

∂y

∂η

)2

µ
∂U

∂ξ
+

1

|J |

(
· · ·
)
µ
∂U

∂η
+

1

|J |

(
· · ·
)
µ
∂U

∂ζ

]
dη dζ

}e
w

(4.60)

Terms that contain the non-orthogonal derivative ∂U
∂ξ at the east and west faces are treated
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implicitly in the discretization process and are absorbed into the diffusive part of the coef-

ficients of the discretized transport equation for U, through which the nodal value of U at

location P is influenced by the nodal values at the surrounding locations, east, west, north,

south, etc. The remaining terms in equation (4.60), which contain non-orthogonal derivatives
∂U
∂η and ∂U

∂ζ at the east-west faces, are treated explicitly. They are transferred to the source

term and are evaluated by using nodal values of U from the previous iterative level. For the

north-south face terms, shown in equation (4.59) but not included in (4.60), it is the terms

that contain the non-orthogonal derivative term ∂U
∂η that are treated implicitly and the rest

explicitly and for the top-bottom faces, also not included in equation (4.60), the ∂U
∂ζ terms

are treated implicitly.

CDS is applied for the face derivatives, and the face area vectors are obtained in the same

way as for the continuity equation:

∫∫ [
1

|J |

(
∂y

∂η

∂z

∂ζ
−∂y
∂ζ

∂z

∂η

)2

2µ
∂U

∂ξ

]
dη dζ =

(2µ)e(∆A
e
x)2

|J |∆ξ∆η∆ζ
(UE−UP )−(2µ)w(∆Awx )2

|J |∆ξ∆η∆ζ
(UP−UW )

(4.61)

In the above equation, |J |∆ξ∆η∆ζ stands for the cell’s volume VCV (Lien and Leschziner,

1994a; Gant, 2002). The same procedure outlined here is done for all terms in equation

(4.59), and one then arrives at expressions for the diffusive term contribution to the matrix

coefficients of:

De =
(2µ)e(∆A

e
x)2

VCV
+

(µ)e(∆A
e
y)

2

VCV
+

(µ)e(∆A
e
z)

2

VCV

Dw =
(2µ)w(∆Awx )2

VCV
+

(µ)w(∆Awy )2

VCV
+

(µ)w(∆Awz )2

VCV

Dn =
(µ)n(∆Anx)2

VCV
+

(2µ)n(∆Any )2

VCV
+

(µ)n(∆Anz )2

VCV

Ds =
(µ)s(∆A

s
x)2

VCV
+

(2µ)s(∆A
s
y)

2

VCV
+

(µ)s(∆A
s
z)

2

VCV

Dt =
(µ)t(∆A

t
x)2

VCV
+

(µ)t(∆A
t
y)

2

VCV
+

(2µ)t(∆A
t
z)

2

VCV

Db =
(µ)b(∆A

b
x)2

VCV
+

(µ)b(∆A
b
y)

2

VCV
+

(2µ)b(∆A
b
z)

2

VCV
(4.62)

One may notice that all terms which are not included in the above implicit contributions, are,

nevertheless, still evaluated in the −FLUXX, −FLUXY and −FLUXZ terms in equation

(4.52). These terms should be integrated over the control volume, since they are the argument

of derivatives in the original equation (4.52). As a result, and as already shown before, they

will be multiplied by their respective area face vectors and their values will be needed at the

cell faces which will then require interpolation:
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∫∫∫ [
∂(FLUXX)

∂x
+
∂(FLUXY )

∂y
+
∂(FLUXZ)

∂z

]
dx dy dz =

∫∫∫ [
∂(FLUXX)

∂x
+
∂(FLUXY )

∂y
+
∂(FLUXZ)

∂z

]
|J | dξ dη dζ

≈ (∆Aex FLUXXe + ∆Aey FLUXYe + ∆Aez FLUXZe)︸ ︷︷ ︸
FLUXe

− (∆Awx FLUXXw + ∆Awy FLUXYw + ∆Awz FLUXZw)︸ ︷︷ ︸
FLUXw

+ · · ·

= FLUXe − FLUXw + FLUXn − FLUXs + FLUXt − FLUXb (4.63)

The fluxes FLUXf (f = e, w, n, s, t, b) are evaluated in a similar manner to the mass fluxes in

the continuity equation. For example, FLUXw of the next cell in the x (or ξ) direction is set

equal to FLUXe of the current cell in order to ensure consistency and save on computational

effort.

The terms −FLUXX, −FLUXY and −FLUXZ also include the diffusive terms that

were used to build the matrix coefficients in equation (4.62), and so the final contribution

that appears in the discretized source term is in fact the flux differences of (4.63) minus the

contributions included implicitly through the coefficient matrix parts.

Summarizing, the STREAM code applies the FV method for the governing equations

written in form of equation (4.1) and all terms which are not convective are included in the

−FLUXX, −FLUXY and −FLUXZ terms, from which are then subtracted the diffusive

contributions included implicitly via the coefficient matrix. The integrated form of the terms

−FLUXX, −FLUXY and −FLUXZ, equation (4.63), are then included in the source term

SU .

The main discretized equation form in the STREAM code is thus given by:

APUP =
∑
k

AkUk + SU

where k = E,W,N, S, T,B

AE = De+max(−Ce, 0)

AW = Dw +max(Cw, 0)

AN = Dn+max(−Cn, 0)

AS = Ds+max(Cs, 0)

AT = Dt+max(−Ct, 0)

AB = Db+max(Cb, 0)

AP = AE +AW +AN +AS +AT +AB − SP (4.64)

Before proceeding with the pressure correction scheme analysis, it is worth mentioning

some realizability constraints on the turbulence quantities that are imposed in the STREAM

code. Amongst other things these ensure that the turbulent and apparent viscosities used in

the above formulations cannot become negative.

The first constraint imposed is to ensure that k and ε, which are physically positive

quantities, should always be calculated as such. This is done via a simple clipping limit on
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the variables. The normal Reynolds stresses should also be positive (and less then 2k), and

the shear stresses should satisfy the Schwarz inequality, so the following limits are imposed

on the Reynolds stresses:

u2 = min[2k,max(0, u2)]

v2 = min[2k,max(0, v2)]

w2 = min[2k,max(0, w2)]

uv = max[−
√
u2v2,min(

√
u2v2, uv)]

uw = max[−
√
u2w2,min(

√
u2w2, uw)]

vw = max[−
√
v2w2,min(

√
v2w2, uv)]

(4.65)

4.2.5 Pressure Correction Scheme

In order to discuss how the SIMPLE scheme is implemented in the STREAM code, it is useful

to separate the pressure gradient contribution from the source term in equation (4.64):

APUP =
∑
k

AkUk + SU +

∫∫∫ (
− ∂P

∂x

)
dx dy dz (4.66)

The development of the integral in equation 4.66 in the curvilinear system will thus lead to

the following representation for the pressure contributions in the U-momentum equation:∫∫∫ (
− ∂P

∂x

)
dxdy dz =

∫∫∫ (
− ∂P

∂x

)
|J |dξ dη dζ ≈

(∆Awx Pw −∆Aex Pe) + (∆Asx Ps −∆Anx Pn) + (∆Abx Pb −∆Atx Pt) (4.67)

Similarly, if the pressure gradient contribution in the V and W momentum Navier-Stokes

equations is integrated over the control volume one obtains analogous forms, but for the face

vector areas in the y and z directions. From the SIMPLE scheme described in the previous

section, one can thus relate velocity and pressure corrections by:

U ′P =
1

AUP︸︷︷︸
DU

[(∆Awx P ′w −∆Aex P
′
e) + (∆Asx P

′
s −∆Anx P

′
n) + (∆Abx P

′
b −∆Atx P

′
t )]

V ′P =
1

AVP︸︷︷︸
DV

[(∆Awy P ′w −∆Aey P
′
e) + (∆Asy P

′
s −∆Any P

′
n) + (∆Aby P

′
b −∆Aty P

′
t )]

W ′P =
1

AWP︸︷︷︸
DW

[(∆Awz P ′w −∆Aez P
′
e) + (∆Asz P

′
s −∆Anz P

′
n) + (∆Abz P

′
b −∆Atz P

′
t )] (4.68)
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where AUP , AVP and AWP are the AP coefficients for the U, V and W momentum Navier-Stokes

equations respectively. However, since face velocities are needed in the discretized continuity

equation, equivalent expressions to the above need to be written for the cell-face velocity

corrections. To simplify these, one also neglects pressure correction differences arising from

other than the perpendicular direction to the cell face, resulting in:

U ′e = ∆Aex DU(P ′P − P ′E) V ′e = ∆Aey DV (P ′P − P ′E) W ′e = ∆Aez DW (P ′P − P ′E)

U ′w = ∆Awx DU(P ′W − P ′P ) V ′w = ∆Awy DV (P ′W − P ′P ) W ′w = ∆Awz DW (P ′W − P ′P )

U ′n = ∆Anx DU(P ′P − P ′N ) V ′n = ∆Any DV (P ′P − P ′N ) W ′n = ∆Anz DW (P ′P − P ′N )

U ′s = ∆Asx DU(P ′S − P ′P ) V ′s = ∆Asy DV (P ′S − P ′P ) W ′s = ∆Asz DW (P ′S − P ′P )

U ′t = ∆Atx DU(P ′P − P ′T ) V ′t = ∆Aty DV (P ′P − P ′T ) W ′t = ∆Atz DW (P ′P − P ′T )

U ′b = ∆Abx DU(P ′B − P ′P ) V ′b = ∆Aby DV (P ′B − P ′P ) W ′b = ∆Abz DW (P ′B − P ′P ) (4.69)

Substituting then the corrected velocities U∗ = U +U ′, V ∗ = V +V ′ and W ∗ = W +W ′ into

the continuity equation (4.45), one obtains:

apP
′
P = aeP

′
E + awP

′
W + anP

′
N + asP

′
S − Sm

where

ae = ρe[(∆A
e
x)2DU + (∆Aey)

2DV + (∆Aez)
2DW ]

aw = ρw[(∆Awx )2DU + (∆Awy )2DV + (∆Awz )2DW ]

an = ρn[(∆Anx)2DU + (∆Any )2DV + (∆Anz )2DW ]

as = ρs[(∆A
s
x)2DU + (∆Asy)

2DV + (∆Asz)
2DW ]

at = ρt[(∆A
t
x)2DU + (∆Aty)

2DV + (∆Atz)
2DW ]

ab = ρb[(∆A
b
x)2DU + (∆Aby)

2DV + (∆Abz)
2DW ]

ap = ae + aw + an + as + at + ab − SP (4.70)

where Sm stands for the mass imbalance, equation (4.45), and is stored in the “positive”

source term SU . SP is the “negative” part of the source term and is the way to implement

any case specific modification.

One important feature of the STREAM code is the interpolation method used to calculate

U , V and W for the mass fluxes through each face (Cf ) in equation (4.45): it uses the Rhie-

Chow interpolation. This method makes it possible to use a fully collocated grid and at

the same time account for the pressure at the nodes and at the faces in order to avoid the

chequerboarding problem. The Rhie-Chow scheme can be interpreted as a linear interpolation

of the velocities at the surrounding nodes added to a pressure smoothing term (Gant, 2002),
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and can be written as:

Ue =
1

2
(UP + UE) +

1

2
[DU

P (Pe − Pw) +DU
E(Pee − Pe) + (DU

P +DU
E)(PP − PE)] (4.71)

That concludes the implementation of the SIMPLE scheme in the STREAM code, since the

general procedure for solution is the same as outlined before.

4.2.6 Time Dependence Schemes

Everything presented so far has been for a steady system where time dependence is neglected.

However, all governing equations have their unsteady parts which should also be discretized

in order to be numerically solved. The time discretization schemes which will be discussed

here will be focused on their implementation within the STREAM code, however the general

guidelines about their theory will be also presented.

Starting with any generic time dependent equation, one has:

∂φ

∂t
= f(t, φ(t)) (4.72)

The simplest discretization method consists of integrating both sides from tn to tn+1, where

∆t = tn+1 − tn:

∫ tn+1

tn

∂φ

∂t
dt =

∫ tn+1

tn
f(t, φ(t)) dt ⇒ φ(tn+1)− φ(tn) =

∫ tn+1

tn
f(t, φ(t)) dt (4.73)

From the above equation, one may notice that the discretization method now will depend on

how the integral on the right hand side of equation (4.73) will be approximated. Two ap-

proximation techniques will be discussed here: the Fully Implicit method and the Trapezoidal

Rule which is the basis for the Crank-Nicolson method. These methods will be presented

because they are the ones applied in the STREAM code. However, other approximation

methods can be found, for example, in Ferziger and Peric (2002).

The Fully Implicit approximation method consists of evaluating the integral using only

the new time level, tn+1:

φ(tn+1)− φ(tn) = f(tn+1, φ(tn+1))∆t (4.74)

On the other hand, the Trapezoidal Rule approximates the right hand side integral in equation

(4.73) using a linear interpolation between tn and tn+1:
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φ(tn+1)− φ(tn) =
1

2
[f(tn+1, φ(tn+1)) + f(tn, φ(tn))]∆t (4.75)

It can be shown through error analysis based on Taylor series expansions that this approxi-

mation method is more accurate than the first, however if the time step ∆t is small enough

both methods may present acceptable results.

Now it will be discussed how these methods are applied in the STREAM code. Starting

from a complete generic governing equation in Cartesian coordinates, one has:

∂(ρφ)

∂t
+
∂(ρUjφ)

∂xj
=

∂

∂xj

(
Γ
∂φ

∂xj

)
+ Sφ (4.76)

Following the general procedure outlined for the FV method, the next step is to integrate

both sides, but now, also in relation to time:

∫∫∫∫
∂(ρφ)

∂t
dtdx dy dz =

∫∫∫∫ [
− ∂(ρUjφ)

∂xj
+

∂

∂xj

(
Γ
∂φ

∂xj

)
+ Sφ

]
dtdx dy dz (4.77)

The above integral equation should now have its coordinates transformed from Cartesian to

curvilinear:

∫∫∫∫
∂(ρφ)

∂t
dt|J | dξ dη dζ =

∫∫∫∫ [
− ∂(ρUjφ)

∂xj
+

∂

∂xj

(
Γ
∂φ

∂xj

)
+ Sφ

]
|J |dξ dη dζ (4.78)

The development of the right hand side of equation (4.78) is already known to be equation

(4.64) for the generic variable φ. Hence, equation (4.78) can be rewritten and approximated

as: [ ∫
∂(ρφ)

∂t
dt

]
|J |∆ξ∆η∆ζ︸ ︷︷ ︸

VCV

= −APφP +
∑
k

Akφk + SU︸ ︷︷ ︸
f(t,φ(t))

(4.79)

Now the above equation is ready to use one of the time discretization methods discussed

above. Starting with the Fully Implicit approximation, one can obtain:

[(ρφP )n+1 − (ρφP )n]VCV = f(t, φP (t))n+1∆t⇒ VCV
∆t

ρn+1︸ ︷︷ ︸
to AP

φn+1
P =

VCV
∆t

ρnφnP︸ ︷︷ ︸
to SU

+f(t, φP (t))n+1

(4.80)
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For the sake of simplicity, the superscripts n and n + 1 are introduced to denote values at

time levels tn and tn+1 respectively. One may notice that the above system can be written in

the same general form as equation (4.64), allowing the TDMA algorithm to still be applied

in order to calculate the values at the new time level tn+1. Hence, the final form for the Fully

Implicit method in STREAM code is:

(Sn+1
U )new = Sn+1

U +
VCV
∆t

ρnφnP

(An+1
P )new = An+1

P +
VCV
∆t

ρn+1

(An+1
P )newφn+1

P =
∑
k

An+1
k φn+1

k + (Sn+1
U )new (4.81)

where An+1
P and Sn+1

U are the matrix coefficient AP and the source term SU calculated for

the steady state through equation (4.64).

In case of applying the Trapezoidal Rule, also known as the Crank-Nicolson method,

equation (4.79) becomes:

[(ρφP )n+1 − (ρφP )n]VCV =
1

2
[f(t, φP (t))n+1 + f(t, φP (t))n]∆t⇒

VCV
∆t

ρn+1︸ ︷︷ ︸
to AP

φn+1
P =

VCV
∆t

ρnφnP︸ ︷︷ ︸
to SU

+
1

2
f(t, φP (t))n+1 +

1

2
f(t, φP (t))n︸ ︷︷ ︸

to SU

(4.82)

Again, the above system must be reorganized in order to assume the form of equation (4.64).

The final form of the Crank-Nicolson method in STREAM code is thus:

(Sn+1
U )new =

1

2
Sn+1
U +

1

2
[−APφP +

∑
k

Akφk + SU ]n +
VCV
∆t

ρnφnP

(An+1
k )new =

1

2
An+1
k , k=E,W,N,S,T,B

(An+1
P )new =

1

2
An+1
P +

VCV
∆t

ρn+1 (4.83)

with An+1
P and Sn+1

U being the steady state matrix coefficient and source term in equation

(4.64).

That concludes the temporal discretization methods applied in the STREAM code.

4.2.7 Cylindrical Coordinates

Cylindrical coordinates are a particular case of curvilinear coordinates which is very often

used in both academia and industry since many times the flow geometry consists of a pipe, or

similar, where it is convenient to take advantage of the axisymmetry inherent in the problem.

The Navier-Stokes equation as well as the transport equations for any turbulent quantity,
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such as the turbulent kinetic energy, the eddy-dissipation rate, the Reynolds stresses and

so on, can be converted from Cartesian coordinates to cylindrical coordinates. In order

to illustrate how the STREAM code treats flows in cylindrical coordinates, the transport

equation for a general variable φ, equation 4.1, will be converted from Cartesian coordinates

to 2-D axisymmetric cylindrical coordinates.

One may notice that equation 4.1 does not include the unsteady term ∂φ
∂t which will be

here considered in order to make the analysis more complete. When the transformation to

cylindrical polars is carried out, the resulting unsteady form of equation 4.1 can then be

written in the form:

r
∂φ

∂t
+

∂

∂x
(rUφ) +

∂

∂r
(rV φ) =

∂

∂x

(
rΓ
∂φ

∂x

)
+

∂

∂r

(
rΓ
∂φ

∂r

)
+ rSφ (4.84)

One may notice then that the both unsteady and source terms are multiplied by the radius

r, that the convective part is formed just by the same regular convection terms (see terms

inside bracket in the left hand side of equation 4.46), but with r inside the parenthesis, and

that the diffusion term is formed just by the same diffusion terms, with the diffusivities Γ

being multiplied by r (see left hand side of equation 4.53). That is, everything remains just

the same, but multiplied by the radius r. When using cylindrical polars, the STREAM code

thus uses the same discretization as described previously, with coefficients multiplied by the

radius r as indicated by equation 4.84.

The procedure described above works for the U-momentum Navier-Stokes equation, the

turbulent scalar quantities transport equations and the Reynolds normal stress u2 transport

equation. However, when transforming the V and W-momentum Navier-Stokes equations

and all other Reynolds stresses transport equations from Cartesian coordinates to cylindrical

coordinates, some additional terms also appear, which are simply treated explicitly and thus

included in the discretized source terms.

4.2.8 Under-Relaxation and Convergence

Under-relaxation and convergence are intrinsically related since the former helps one to reach

the latter. The under-relaxation consists of a slow down procedure in the iteration process

which then makes it more stable. Under-relaxation is necessary because the Navier-Stokes

equations are non-linear. The way of moderating each variable update is thus:

φitP = φP
calcαφ + φit−1

P (1− αφ)⇒ φcalcP =
φitP
αφ
− φit−1

P

(1− αφ)

αφ
(4.85)

where φitP is the updated value of φ to be used in the next iteration, φP
calc is the value that

would be obtained by simply solving the discretized equation forms as described above, φit−1
P

is the previous iteration result and αφ is the under relaxation factor for the variable φ. If the

value of φP
calc is substituted into equation (4.64) for φP , one obtains:
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AP
calc

αφ︸ ︷︷ ︸
AitP

φitP =

[∑
k

AkUk

]calc
+ SU

calc + φit−1
P (1− αφ)

AP
calc

αφ︸ ︷︷ ︸
SitU

(4.86)

Hence, the way the STREAM code applies the under relaxation is by modifying the diagonal

coefficient AP and then the source term SU :

AitP =
AP

calc

αφ

SitU = SU
calc + φit−1

P (1− αφ)Ait−1
P (4.87)

The pressure is under-relaxed by simply adding a fraction of the calculated correction to it

P itP = PP
calc + αPP

′
P (4.88)

Depending on the variable to be calculated one may define different values for the under re-

laxation factor. In the STREAM code, one may define an under relaxation factor to solve the

U, V and W momentum Navier-Stokes equation (URFMOM) and another for the remained

variables (URFTRB), except the pressure. Actually, one may also define an under relaxation

factor for the pressure correction equation (URFP). The procedure of under relaxation is

different with the latter because one solves an equation for its correction rather than for

itself.

Unless where otherwise stated, for all simulations in this work, the typical values used

were: URFMOM=URFTRB=0.35 and URFP=0.25.

The same logic should be applied for the corrected velocities. Since they just need to

be multiplied by the relaxation factor (in this case URFMOM), that is implemented in the

STREAM code by relaxing the coefficients DU , DV and DW , respectively, for the U, V and

W velocities, that is:

Dit
U = αUDU

calc Dit
V = αVDV

calc Dit
W = αWDW

calc (4.89)

With regard to the convergence criteria, the STREAM code calculates the residual as follows:

for each node, a dimensionless flux imbalance of terms in the discretized transport equation,

RESORφ, is computed for each variable. This term is intrinsically dimensionless because all

the equations in STREAM are written in a dimensionless form as already stated before.

RESORφ =

∑
F AFφF + SU −APφP∑

F AF
(4.90)
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The root mean square residual is then calculated by averaging RESOR over the number of

nodes:

RES =

√
1

N

∑
N

RESOR2
φ (4.91)

The advantage of using such a measure is that it gives values that are reasonably independent

of the number of nodes. In the pressure correction equation, the mass imbalance is used to

monitor convergence, and the residual is thus taken as:

RESORP =
SU∑
f Af

(4.92)

4.3 Concluding Remarks

A brief overview of the FV method and the main features of the STREAM code have been

presented. Some topics such as the time dependence treatment, under relaxation and conver-

gence criteria have been described in a manner consistent with their implementation within

the STREAM code. Indeed, the objective of this Chapter has been to show familiarity with

the numerical tool used for the turbulent flow simulations.

122



Chapter 5

Simulated Flows

In this chapter the test cases used to assess the performance of the different turbulence models

will be presented. A wide variety of flows was investigated, from simple and traditional flows

such as fully developed channel flows and zero pressure gradient boundary layers to more

complex flows such as oscillatory backward facing step flows. Apart from the first two simple

flows just mentioned, all other test cases present some non-equilibrium features which is the

main modelling focus of this work.

The purpose of this chapter is thus to present the flow cases simulated and discuss the

performance of the turbulence models described in Chapter 3, which will form a basis for the

model development work to be described in later chapters. The assessment of the performance

of the turbulence models will generally follow a comparison between eddy-viscosity, Reynolds

stress transport and multiple-time-scale models. The simulation results were compared with

DNS and/or experimental data and these will be briefly discussed here as well.

When comparing DNS and experimental data with simulation, it is common to compare

dimensionless variables. The main dimensionless variables employed here are defined as:

y+ =
yuτ
ν

U+ =
U

uτ
(5.1)

k+ =
k

u2
τ

uiuj
+ =

uiuj
u2
τ

ε+ =
εν

u4
τ

(5.2)

In the above, ν = µ
ρ is the kinematic viscosity and uτ is the friction velocity defined as uτ =√

τw
ρ , τw being the shear stress at the wall calculated through the expression τw = µ∂U∂y |w.

The cases which will be presented are: homogeneous shear and normally strained flows;

fully developed channel flow; zero, adverse, favourable and oscillatory pressure gradient

boundary layers; fully developed oscillatory and ramp-up pipe flows, and steady and un-

steady backward facing step flows. The following sections provide a description of the above

flows, defining the relevant parameters in each case. The inlet and boundary conditions used

in the STREAM code will also be explained and finally, the results will be presented and

discussed.
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5.1. Homogeneous Constant Shear Flow

5.1 Homogeneous Constant Shear Flow

The first set of test cases consist of homogeneous shear flows in which the streamwise velocity

U only depends on y, U = U(y), and the shear S = dU
dy is constant. There is then no need

to solve the Navier-Stokes and continuity equations (nor, therefore, the pressure correction

equation) and thus this problem is characterized by solving only for the turbulence. The flows

are free from any wall influences, so the questions of handling wall effects in the modelling

can be ignored here.

Although these flows are homogeneous in space, the turbulence develops in time, leading

to non-equilibrium effects during the development. In fact, although some kind of equilibrium

is reached (where the ratios
uiuj
k become constant), the generation and dissipation rates of

the turbulent kinetic energy are not balanced, with the DNS data suggesting Pk
ε reaches an

asymptotic value of around 1.8, implying a constant growth of k.

It is then reasonable to find out what asymptotic value the turbulence models predict for
Pk
ε . The asymptotic method described below has been used in the past, first for STS models

(Speziale, 1991) and more recently for MTS models (Stawiarski and Hanjalic, 2005). These

approaches were extended here.

For STS models, one can arrive at the equilibrium value for Pk
ε by noting that D

Dt

(
Pk
ε

)
= 0

and, as Pk = −uv dUdy , D
Dt

(
uv
ε
dU
dy

)
= 0, and since dU

dy is constant, then D
Dt

(
uv
ε

)
= 0. Writing

this as D
Dt

(
uv
k
k
ε

)
= 0, and assuming that the ratio uv

k reaches some asymptotic value then

one can look at D
Dt

(
k
ε

)
= 0. Recalling k and ε equations from any STS turbulence model

described in Chapter 3 (note that for this flow they all reduce to the same form), one can

find the value for Pk
ε predicted by the models in the asymptotic state:

D

Dt

(
k

ε

)
= 0 =

1

ε

Dk

Dt
− k

ε2

Dε

Dt
=

1

ε
(Pk − ε)−

k

ε2

(
cε1

ε

k
Pk − cε2

ε2

k

)
=
Pk
ε
− 1− cε1

Pk
ε

+ cε2

⇒ Pk
ε

=
1− cε2
1− cε1

(5.3)

Now, with the values of cε1 and cε2, one can determine, for each turbulence model, what is

the expected value of Pk
ε in the asymptotic state. Indeed, except for the SG model which

uses a different value for cε2, all turbulence models mentioned in the previous Chapter use

the same values for cε1 and cε2. Hence, for the SG model, Pk
ε = 1.89 and for the others,

Pk
ε = 2.09 in the asymptotic state.

For MTS models, one may use the relation D
Dt

(
kP
εp

)
= 0 in order to find an asymptotic

state for Pk
εP

and then D
Dt

(
kT
εT

)
= 0 to find an asymptotic state for εP

εT
. By combining both

asymptotic states, one arrives at an expected asymptotic value for Pk
εP

εP
εT

= Pk
εT

. For an

MTS model such as those presented in Chapter 3, if no extra terms are considered and the

coefficients are constants, which is the case for the NG model, one can find:
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Pk
εP

=
1− CP2

1− CP1

εP
εT

=
1− CT2

1− CT1

Pk
εT

=
(1− CP2)

(1− CP1)

(1− CT2)

(1− CT1)
(5.4)

For the other MTS models considered, CG, KC and TS, the analysis is not so straight-

forward due to the presence of extra terms in the εP and εT equations, however one can also

arrive at asymptotic values for Pk
εT

for these models. This will be discussed in more detail in

Chapter 6.

5.1.1 Simulated Cases

Three different DNS sources were chosen for these comparisons. The first is the DNS data

from Matsumoto et al. (1991), which can be obtained online at http://cfd.mace.manchester.ac.

uk/ercoftac, and provides two different cases (HM1 and HM2). The second consists of Rogers

and Moin’s 1987 DNS results for three different cases (C128U, C128W and C128X), which

can also be found online at ftp://torroja.dmt.upm.es/AGARD/chapter3/HOM23/. The third

source is Lee et al.’s 1990 case (SHC), available online at ftp://torroja.dmt.upm.es/AGARD/

chapter3/HOM25.

Based on Jacobitz et al.’s 1997 work, who discussed the importance of initial conditions

to the evolution of the turbulent kinetic energy in DNS of homogeneous shear flows, Al-Sharif

(2007) pointed out that when performing RANS simulations of Rogers and Moin’s DNS cases

it was preferable to use their reported conditions at the non-dimensional time St = 2 as initial

calculation conditions, rather than those at St = 0, since the DNS was started from arbitrary

divergence-free spectrum initial conditions, therefore not providing fully turbulent initial

conditions appropriate for RANS reproductions. A brief study was carried out confirming

this hypothesis and therefore that is what will be applied here (denoted by cases U2, W2

and X2).

Relevant parameters and initial conditions for the cases considered here are summarized

in Table 5.1, where the subscript 0 denotes the initial value of the variables and η = k
ε
dU
dy is

the dimensionless shear. This parameter is very important and useful to characterize these

homogeneous shear flows. St is the dimensionless time which can be interpreted as being a

measure of the cumulative mean strain of the fluid (Mathieu and Scott, 2000). The names

used to identify the cases reflect those used in the original DNS databases.

Table 5.1: Flow parameters and initial conditions for the homogeneous constant shear flow
cases.

Case DNS Source dU/dy = S η0 k0 ε0 St0 Stmax µ

X2 Rogers and Moin (1987) 10
√

2 1.1950 3.7159 43.9758 2 14 0.0050

U2 Rogers and Moin (1987) 20
√

2 1.6848 6.8336 114.7220 2 16 0.0100

W2 Rogers and Moin (1987) 40
√

2 2.0568 9.0519 248.9552 2 28 0.0200

HM1 Matsumoto et al. (1991) 30.0 4.7140 11.6387 74.0692 0 14 0.0120

SHC Lee et al. (1990) 10.0 16.7624 0.0662 0.0395 0 16 0.0017

HM2 Matsumoto et al. (1991) 20
√

2 30.747 0.2007 0.1846 0 4 0.0120
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5.1.2 Simulations Setup

As already mentioned, in a homogeneous constant shear flow one does not need to solve

transport equations for the velocity field and the pressure correction.

Since the flow is homogeneous in space a simple square domain consisting of a 3x3 grid with

zero gradient conditions on each boundary was employed, characterizing Dirichlet boundary

conditions. The velocity was set as U = Sy, and the strain rate S and molecular viscosity

for each case were set as given in Table 5.1.

The initial conditions were set as given in Table 5.2. When MTS models were used it was

assumed that ε0 = εP0 = εT0 and
kP0
kT0

= 2.

Although spatial grid independence is irrelevant in these cases, since there is no spatial

flow variations, checks should be performed to ensure time accuracy. In the results presented

below, the timestep ∆t was taken as ∆t = 1
10S . Tests showed that reducing this by a factor of

10 had no significant impact on the results, thus demonstrating numerical solution accuracy.

Table 5.2: Initial conditions (St=0) for each homogeneous constant shear flow case

Case k0 u2
0 v2

0 w2
0 uv0 ε0

X2 3.7159 2.7310 2.3944 2.3064 -1.0260 43.9758

U2 6.8336 5.3404 3.9492 4.3775 -2.2044 114.7220

W2 9.0519 7.8435 4.5063 5.7540 -3.3173 248.9552

HM1 11.6387 7.7677 7.8242 7.6854 0.0141 74.0692

SHC 0.0662 0.0435 0.0447 0.0442 -0.0001 0.0395

HM2 0.20070300 0.13471836 0.13560217 0.13108600 -0.00238659 0.18462700

5.1.3 Results and Discussion

All cases listed in Table 5.1 were simulated with all the turbulence models presented in

Chapter 3. One may notice in Table 5.1 that the cases are placed in order of increasing

initial dimensionless shear, η0, and can be divided into low shear cases (X2, U2 and W2),

moderate shear (HM1) and high shear cases (SHC and HM2). In each case the predictions

are grouped into generic model types (eddy-viscosity, stress transport and multi-scale models).

Starting by examining the lowest shear case, X2 (shown in Figures 5.1 to 5.9), one may

notice from Figure 5.1 that the development of k was best predicted by the KC model,

although apart from the CG, LS, TS and WM models, all other schemes also performed

reasonably well. ε, in Figure 5.2, was best predicted by the HJ, NG and SG models, although

the other models provided reasonable results too. The prediction of the Reynolds shear stress

can be observed in both Figures 5.3 and 5.4. The profile of uv itself can be seen in the former

where the HJ, KS, NG and SG models performed best. The profile of the shear component

of the anisotropy tensor, a12 in Figure 5.4, was reasonably well predicted by all models.

The normal components of the stress anisotropy tensor are presented in Figures 5.5, 5.6 and

5.7. As known, the LEV models will predict these as zero, since they predict isotropy for

the Reynolds normal stresses in simple shear flows. The a11 and a22 components were best

predicted by the KS and SG models, while the a33 component was best predicted by the
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HJ, TC and WM models. Pk
ε , in Figure 5.8, was reasonably well predicted by all models

except the CG model which, together with the TS model, did not reach an asymptotic value

in the time simulated. All STS models do seem to tend to the asymptotic value predicted

by equation 5.3. The performance of the models in predicting the dimensionless shear η,

presented in Figure 5.9, is similar to that of Pk
ε .

The next case is U2 with a approximately 40% higher dimensionless shear. The results

for this case are presented in Figures 5.10 to 5.12, showing the profiles of the turbulent kinetic

energy, the eddy dissipation rate and the Reynolds shear stress only, since other comparisons

are similar to those noted in the previous case. One may notice that the KS and SG models

consistently provided the best predictions overall.

The last low shear case considered is the W2 case, with a dimensionless shear about 70%

higher than that in the lowest shear case X2. Again, only profiles of k, ε and uv are being

shown in Figures 5.13 to 5.15, since very similar analyses can be made for this case compared

to those of the previous low shear cases, where the KS and SG models consistently provided

the best predictions. In this case though the other models do not provide such reasonable

results, tending either to underpredict or overpredict too much these turbulent quantities.

The only moderate shear case to be examined, HM1, has a dimensionless shear which is

about four times bigger than that of the lowest shear case X2. The predictions of this case

are presented in Figures 5.16 to 5.24. The turbulent kinetic energy (Figure 5.16), the eddy

dissipation rate (Figure 5.17) and the Reynolds shear stress (Figures 5.18 and 5.19) were best

predicted by the KS, HJ and WM models. One may notice that the other models tended to

completely overpredict the profiles of k, ε and the magnitude of uv. The normal components

a11 and a22 of the stress anisotropy tensor were best predicted by the SG model, while the

a33 component was best predicted by the TC and WM models. The profile of Pk
ε was best

predicted by the EV and RST models, while the MTS models tended to underpredict it,

except for the CG and TS models which did not reach asymptotic values in the simulated

time. The profile of η was best captured by the KS and HJ models.

Among the two high shear cases to be studied here, the lowest, SHC case, has a dimen-

sionless shear which is about fourteen times that of the lowest shear case X2. The results

for the SHC case are presented in Figures 5.25 to 5.33. By looking at Figure 5.25, one may

notice that the KS model best predicts the turbulent kinetic energy profile, followed by the

WM model which already overpredicts it a bit. All the other models clearly overpredict this

quantity. The same happens in the prediction of the eddy dissipation rate in Figure 5.26 and

the Reynolds shear stress uv in Figure 5.27. However, one may notice that the a12 profile

was reasonably well predicted by all models, except the TS model. The normal components

of the stress anisotropy tensor (Figures 5.29, 5.30 and 5.31) were also poorly predicted by

all models, as was the dimensionless shear η in Figure 5.33. The profile of Pk
ε , presented in

Figure 5.32, was reasonably well predicted by all models, except for the CG and TS schemes.

For the last case to be discussed, the highest shear case, HM2, only the profiles of the

turbulent kinetic energy, the eddy dissipation rate and the Reynolds shear stress are presented

in Figures 5.34 to 5.36, since there are few DNS data for comparison. In this case, the RST
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models, including the MTS RST model WM, performed clearly best overall. It is worth noting

that the change in the profile of uv presented by the KC model is due to unrealistically high

values predicted by this model for the magnitude of the Reynolds shear stress until St ≈ 2

which was thus clipped in the code.

Now that each case has been separately analysed, general comments may be made in

order to compare the cases and the performance of the models.

The first and perhaps most important comment is how the models as a whole tend to

perform better in the low shear cases. As the dimensionless shear increases, more of the

models start to overpredict the turbulence quantities such as k and ε. An exception to this

is the WM model, which clearly performed better in the moderate and high shear cases, and

perhaps the SG model which performed reasonably well in most cases. The comparisons

above suggest that most of the models are tuned to perform well over a certain limited range

of dimensionless shear magnitudes, but do not do so well over a wide range of η values.

It is also worth noting that in all these homogeneous shear flow cases the HR and FM

models performed precisely the same as each other. This result is obviously expected since

the FM model should be entirely equivalent to the HR scheme far from walls.

Observing Figures 5.6(b), 5.7(b), 5.21(b), 5.22(b), 5.30(b) and 5.31(b), one may notice

that the GL and HJ models tend to predict similar value for the Reynolds stress anisotropy

components a22 and a33. This is consistent in terms of the models since they use similar

transport equations for free shear flows, where the damping functions of the HJ model should

not be important. However, the fact that these profiles do not generally match the DNS

data indicates an intrinsic deficiency which may be associated with the expression for the

pressure-strain correlation of both models.

Another important comment is with regard to the KS model which also performed com-

paratively well as a whole over the range of η values tested here. The reason why this model

stands out from the other eddy-viscosity model predictions is due to its cµ dependence on

the dimensionless shear η, whilst most of the other schemes which perform poorly in the

moderate or high shear cases employ a constant cµ. In all cases, except for the HM1 case,

the KS model was run with the viscous damping term (fµ in Table 3.8) set to unity, since

initial simulations showed that inclusion of this significantly degraded the predictions due to

it becoming active at the low Reynolds numbers of these flows. At least some of the deficien-

cies seen with the LS model may also be due to its fµ damping function becoming active in

these flows, although this hypothesis was not verified by setting it to unity in this case.

The predictions of Pk
ε mainly confirm the expected asymptotic values of the various mod-

els, except for the CG and TS results which did not appear to reach constant asymptotic

levels. The reason for this will be discussed in Chapter 6 when considering the desired

asymptotic behaviour of models in these flows.

Overall, it is clear that the RST models, which do not rely on algebraic stress-strain

relations, performed best, however they present much more complex formulations than the

EV and LEV MTS models which, given their inherent limitations, did perform reasonably

well in the low shear cases. It is also of value to call attention to the fact that the turbulence
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models which presented generally the best performances were the SG and the KS models,

both of which were designed taking into account at least some such simple shear flows, and

have therefore been at least partly tuned for such cases.
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(a) (b) (c)

Figure 5.1: Prediction of the turbulent kinetic energy k for the homogeneous low shear case
X2 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c) multiple-
time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.2: Prediction of the turbulent kinetic energy dissipation rate ε for the homogeneous
low shear case X2 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models
and (c) multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.3: Prediction of the Reynolds shear stress uv for the homogeneous low shear case
X2 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c) multiple-
time-scale models. Models as in Table 3.25.
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(a) (b) (c)

Figure 5.4: Prediction of the shear component a12 of the Reynolds stress anisotropy tensor
for the homogeneous low shear case X2 by the: (a) eddy-viscosity models, (b) Reynolds stress
transport models and (c) multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.5: Prediction of the normal component a11 of the Reynolds stress anisotropy tensor
for the homogeneous low shear case X2 by the: (a) eddy-viscosity models, (b) Reynolds stress
transport models and (c) multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.6: Prediction of the normal component a22 of the Reynolds stress anisotropy tensor
for the homogeneous low shear case X2 by the: (a) eddy-viscosity models, (b) Reynolds stress
transport models and (c) multiple-time-scale models. Models as in Table 3.25.
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(a) (b) (c)

Figure 5.7: Prediction of the normal component a33 of the Reynolds stress anisotropy tensor
for the homogeneous low shear case X2 by the: (a) eddy-viscosity models, (b) Reynolds stress
transport models and (c) multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.8: Prediction of the production to dissipation ratio, Pk
ε , for the homogeneous low

shear case X2 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and
(c) multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.9: Prediction of the dimensionless shear η = k
ε
dU
dy for the homogeneous low shear

case X2 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models. Models as in Table 3.25.
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(a) (b) (c)

Figure 5.10: Prediction of the turbulent kinetic energy k for the homogeneous low shear
case U2 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.11: Prediction of the turbulent kinetic energy dissipation rate ε for the homogeneous
low shear case U2 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models
and (c) multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.12: Prediction of the Reynolds shear stress uv for the homogeneous low shear case
U2 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c) multiple-
time-scale models. Models as in Table 3.25.

133



5.1. Homogeneous Constant Shear Flow

(a) (b) (c)

Figure 5.13: Prediction of the turbulent kinetic energy k for the homogeneous low shear
case W2 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.14: Prediction of the turbulent kinetic energy dissipation rate ε for the homogeneous
low shear case W2 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models
and (c) multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.15: Prediction of the Reynolds shear stress uv for the homogeneous low shear case
W2 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c) multiple-
time-scale models. Models as in Table 3.25.
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(a) (b) (c)

Figure 5.16: Prediction of the turbulent kinetic energy k for the homogeneous moderate shear
case HM1 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.17: Prediction of the turbulent kinetic energy dissipation rate ε for the homogeneous
moderate shear case HM1 by the: (a) eddy-viscosity models, (b) Reynolds stress transport
models and (c) multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.18: Prediction of the Reynolds shear stress uv for the homogeneous moderate shear
case HM1 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models. Models as in Table 3.25.
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(a) (b) (c)

Figure 5.19: Prediction of the shear component a12 of the Reynolds stress anisotropy ten-
sor for the homogeneous moderate shear case HM1 by the: (a) eddy-viscosity models, (b)
Reynolds stress transport models and (c) multiple-time-scale models. Models as in Table
3.25.

(a) (b) (c)

Figure 5.20: Prediction of the normal component a11 of the Reynolds stress anisotropy ten-
sor for the homogeneous moderate shear case HM1 by the: (a) eddy-viscosity models, (b)
Reynolds stress transport models and (c) multiple-time-scale models. Models as in Table
3.25.

(a) (b) (c)

Figure 5.21: Prediction of the normal component a22 of the Reynolds stress anisotropy ten-
sor for the homogeneous moderate shear case HM1 by the: (a) eddy-viscosity models, (b)
Reynolds stress transport models and (c) multiple-time-scale models. Models as in Table
3.25.
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(a) (b) (c)

Figure 5.22: Prediction of the normal component a33 of the Reynolds stress anisotropy ten-
sor for the homogeneous moderate shear case HM1 by the: (a) eddy-viscosity models, (b)
Reynolds stress transport models and (c) multiple-time-scale models. Models as in Table
3.25.

(a) (b) (c)

Figure 5.23: Prediction of the production to dissipation ratio, Pk
ε , for the homogeneous

moderate shear case HM1 by the: (a) eddy-viscosity models, (b) Reynolds stress transport
models and (c) multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.24: Prediction of the dimensionless shear η = k
ε
dU
dy for the homogeneous moderate

shear case HM1 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and
(c) multiple-time-scale models. Models as in Table 3.25.
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(a) (b) (c)

Figure 5.25: Prediction of the turbulent kinetic energy k for the homogeneous high shear
case SHC by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.26: Prediction of the turbulent kinetic energy dissipation rate ε for the homogeneous
high shear case SHC by the: (a) eddy-viscosity models, (b) Reynolds stress transport models
and (c) multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.27: Prediction of the Reynolds shear stress uv for the homogeneous high shear
case SHC by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models. Models as in Table 3.25.
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(a) (b) (c)

Figure 5.28: Prediction of the shear component a12 of the Reynolds stress anisotropy tensor
for the homogeneous high shear case SHC by the: (a) eddy-viscosity models, (b) Reynolds
stress transport models and (c) multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.29: Prediction of the normal component a11 of the Reynolds stress anisotropy tensor
for the homogeneous high shear case SHC by the: (a) eddy-viscosity models, (b) Reynolds
stress transport models and (c) multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.30: Prediction of the normal component a22 of the Reynolds stress anisotropy tensor
for the homogeneous high shear case SHC by the: (a) eddy-viscosity models, (b) Reynolds
stress transport models and (c) multiple-time-scale models. Models as in Table 3.25.
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(a) (b) (c)

Figure 5.31: Prediction of the normal component a33 of the Reynolds stress anisotropy tensor
for the homogeneous high shear case SHC by the: (a) eddy-viscosity models, (b) Reynolds
stress transport models and (c) multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.32: Prediction of the production to dissipation ratio, Pk
ε , for the homogeneous high

shear case SHC by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and
(c) multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.33: Prediction of the dimensionless shear η = k
ε
dU
dy for the homogeneous high shear

case SHC by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models. Models as in Table 3.25.
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(a) (b) (c)

Figure 5.34: Prediction of the turbulent kinetic energy k for the homogeneous high shear
case HM2 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.35: Prediction of the turbulent kinetic energy dissipation rate ε for the homogeneous
high shear case HM2 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models
and (c) multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.36: Prediction of the Reynolds shear stress uv for the homogeneous high shear
case HM2 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models. Models as in Table 3.25.
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5.2 Normally Strained Flow

This section is about homogeneous flows subjected to symmetric plane strain. The scenario

consists of a constant velocity stream entering a channel in isotropic/quasi-isotropic turbu-

lence conditions and facing a symmetric plane strain deformation of the channel. Here, one

should understand by plane strain a deformation in the plane perpendicular to the main flow

direction, caused only by normal strains. The symmetry comes from the fact that one im-

poses equal, but opposite in sign, strain rates in the two cross-stream directions, for example,

as shown in Figure 5.37. The flow therefore presents an expansion in one direction and a

contraction in the other, thus characterizing a non-equilibrium flow.

Figure 5.37: Representation of a pure plane strain, adapted from Tucker and Reynolds (1968)

One may notice that although this is a 3D flow, if one restricts attention to the central

region of the duct, where immediate wall influences can be neglected, the turbulence may be

considered as homogeneous, and developing only in the streamwise direction. Considering

the centreline development, therefore, only a 1-dimensional simulation need be conducted.

The modelling challenge in this test case is thus the correct prediction of the non-isotropic

normal stress field caused by the normal straining.

5.2.1 Simulated Cases

Three cases were simulated in this work. One from Tucker and Reynolds (1968) and two

from Gence and Mathieu (1979).

The case reproduced here from Tucker and Reynolds (1968) - to be denoted by T&R -

is the “laterally distorting tunnel”. In this, a quasi-isotropic turbulence first developed for

2ft, and was then subjected to a constant symmetric plane strain for 8ft. Following this the

flow was allowed to recover for a further 4ft. As Tucker and Reynolds (1968) performed an

experimental work, they had to design a duct which would provide such plane strain. The

tunnel used is illustrated in Figure 5.37, where the coordinates of the walls in the x2 and x3

directions, x2w and x3w respectively, are given by x2w = x2w0
e
D
U1
x1 and x3w = x3w0

e
− D
U1
x1

respectively (where x2w0
and x3w0

are the wall coordinates at the location where the straining

is started, D is the magnitude of the normal strain rate (D = −∂U2
∂x2

= ∂U3
∂x3

) and U1, the

streamwise velocity, is constant) in order to provide a constant cross-sectional area and a

zero strain in the flow direction, as originally suggested by Townsend (1954).
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Gence and Mathieu (1979) used an 0.8m long elliptical distorting duct, formed in two parts

so they could alter the straining applied along the second half of the duct. They converted

the x2 and x3 geometry curves initially proposed by Townsend (1954) and used by Tucker

and Reynolds (1968) into elliptical coordinates to ensure a homogeneous normal straining.

The authors performed five different cases which can be differentiated by the normal strain

applied for the second half of the duct. A general representation of the normal strain in their

experiment can be given by:

dV

dy
=

{
−D if x ≤ 0.4m

−D cos(2α) if x > 0.4

dW

dz
=

{
D if x ≤ 0.4m

D cos(2α) if x > 0.4
(5.5)

Gence and Mathieu (1979) performed their experiment for five different values of α: 0, π8 , π4 ,
3π
8 and π

2 . One may notice that for the first half of the duct (up to 0.4m), they applied a pure

plane strain. Here only two cases were reproduced: α = 0 (referred to here as G&M0) and

α = π
2 (referred to here as G&M05). The former represents a constant pure plane strain while

the latter represents two consecutive opposite in sign plane strains. These two cases were

chosen because they represent the more extreme cases and thus any lag effects are expected

to be strongest in these two cases.

The main features of the three cases are presented in Table 5.3.

Table 5.3: General features of the normally strained cases

Case Author U1 D = dW
dz (s−1)

T&R Tucker and Reynolds (1968) 20 ft/s 4.45

G&M0 Gence and Mathieu (1979) 18.6 m/s 32.23

32.23 if x < 0.4m
G&M05 Gence and Mathieu (1979) 18.6 m/s

-32.23 if x > 0.4m

5.2.2 Simulations Setup

As mentioned before, in order to reproduce the cases described above, only the centreline of

the flow, where the only non-zero velocity is the streamwise one, U1, and the only non-zero

strains are dU2/dx2 = dV/dy and dU3/dx3 = dW/dz, was simulated since it is a homogeneous

flow.

The simulation was run as a 1D steady flow and allowed to develop in the x direction.

The inlet conditions were set as described in the respective original papers and can be seen

in Table 5.5. As the work of Tucker and Reynolds (1968) and Gence and Mathieu (1979) are

experimental, the inlet value of the turbulent eddy dissipation rate, ε, was not provided and

had to be estimated for the simulations. The inlet value of ε was thus taken as ε0 =
k

3/2
0
`0

, `0
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being the length scale at the starting point of the simulation which was set in order to provide

the same initial decay rate of the turbulent kinetic energy, k, as in the experiments. As will

be discussed later, this parameter does influence the results of these simulations and one can

notice from Table 5.5 that each model needed a different value of `0 in order to provide the

correct decay of k reported in the experiments (see Figures 5.39, 5.44 and 5.46).

Table 5.4: Geometry and mesh of the normally strained cases

Case Length Grid 1 (X points) Grid 2 (X points)

T&R 14 ft 130 200

G&M0 0.8 m 80 150

G&M05 0.8 m 80 150

As a 1D flow in the streamwise direction, only the length and number of points in the x

direction needed to be defined. These details can be found in Table 5.4. Results on the two

grids showed that those on the coarser one were grid independent, and so this was used for

the results shown below.

One can notice from Tables 5.5 and 5.4 that the grids and inlet conditions of cases G&M0

and G&M05 are the same. In fact, the first half of the simulation (until x=0.4m) is the same

for both cases. They differ from each other only in the second half, where the sign of the

normal strains are changed in the G&M05 case.

Table 5.5: Inlet conditions for the normally strained cases
Case k0 uu0 vv0 ww0 `0 Model

0.050 ft all STS and WM
T&R 0.908 ft2/s2 0.728 ft2/s2 0.552 ft2/s2 0.536 ft2/s2 0.055 ft KC,NG and TS

0.060 ft CG

0.0115 m NG
0.0140 m FM,HR
0.0145 m CG,KS
0.0150 m KC

G&M0 0.215 m2/s2 0.092 m2/s2 0.174 m2/s2 0.164 m2/s2 0.0165 m SG
0.0170 m TS
0.0175 m LS
0.0180 m GL
0.0200 m HJ,TC,WM

G&M05 0.215 m2/s2 0.092 m2/s2 0.174 m2/s2 0.164 m2/s2 same as in G&M0 above

5.2.3 Results and Discussion

Before evaluating the performance of the turbulence models, one may make an observation

about the production of the turbulent kinetic energy Pk in eddy viscosity models. Such

analysis has been used in the past, specially to evaluate the performance of LEV models in

impinging jet flows (Craft et al., 1993).

In these 1-D contraction/expansion flows, where the only non-zero velocity component is

U and the only non-zero strains are ∂V
∂y and ∂W

∂z , Pk, given by −uiuj ∂Ui∂xj
, becomes:
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Pk = −v2
∂V

∂y
− w2

∂W

∂z
= v2

∂W

∂z
− w2

∂W

∂z
= (v2 − w2)

∂W

∂z
(5.6)

One may notice from the above that depending on the values of v2 and w2, Pk can assume

either positive or negative values. Besides, a sudden change in sign of the straining will

change the sign of Pk for a while, since it will take the stresses some time to respond to the

new straining.

In linear eddy viscosity turbulence models, where the Reynolds stresses are given by

uiuj = −νt
(
∂Ui
∂xj

+
∂Uj
∂xi

)
+ 2

3kδij , the only non-zero Reynolds stresses used to calculate Pk

are v2 and w2, given by v2 = −2νt
∂V
∂y + 2

3k and w2 = −2νt
∂W
∂z + 2

3k. From the continuity

equation, one knows that ∂V
∂y = −∂W

∂z , thus the normal Reynolds stress v2 can be written as

v2 = 2νt
∂W
∂z + 2

3k and Pk = −uiuj ∂Ui∂xj
becomes:

Pk = (v2 − w2)
∂W

∂z
= (+2νt

∂W

∂z
+

2

3
k + 2νt

∂W

∂z
− 2

3
k)
∂W

∂z
= 4νt

(
∂W

∂z

)2

(5.7)

The above result indicates that the LEV models would always predict Pk as positive in these

normally strained flows, which is not a general physical constraint, and, moreover, it shows

the insensitivity of these models in predicting Pk when the normal strains have their sign

suddenly changed which is an effect of these models not generally representing accurately the

normal stresses. From equations 5.7 one can then infer that LEV models are not recommended

for flows where there is change in sign of the normal strains, since they will provide wrong

relevant results due to its formulation.

One can also evaluate Pk in NLEV models. Taking the general expression for the Reynolds

stresses used in equation 3.21, in normally strained flows such as that considered above, one

has S22 = 2∂V∂y and S33 = 2∂W∂z = −2∂V∂y = −S22. So, the expressions for v2 and w2 become:

v2 =
2

3
k − νtS22 +

c1νt
3

k

ε
(2S2

22 − S2
33) + c6νt

k2

ε2
S22(S2

22 + S2
33) =

2

3
k + νtS33 +

c1νt
3

k

ε
S2

33 − 2c6νt
k2

ε2
S3

33

w2 =
2

3
k − νtS33 +

c1νt
3

k

ε
(2S2

33 − S2
22) + c6νt

k2

ε2
S33(S2

22 + S2
33) =

2

3
k − νtS33 +

c1νt
3

k

ε
S2

33 + 2c6νt
k2

ε2
S3

33

(5.8)

And now it becomes straightforward to calculate Pk:

Pk = (v2 −w2)
∂W

∂z
=

(
2νtS33 − 4c6νt

k2

ε2
S3

33

)
∂W

∂z
= 4νt

(
∂W

∂z

)2

− 32c6νt
k2

ε2

(
∂W

∂z

)4

(5.9)

Again, one can notice that Pk is insensitive to changes in the sign of the straining. It can be
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then concluded that, in normally strained flows, models which calculate the Reynolds stresses

through algebraic expressions based on the eddy-viscosity concept will always be insensitive

to changes in sign of the straining and therefore not recommended for such flows.

It is also worth comparing the dimensionless straining history in the three cases, because,

as it will be seen later, this appear to have an impact on the performance of the models.

The parameter η = k
ε

∣∣∣dVdy ∣∣∣ was then chosen to be plotted against a dimensionless streamwise

distance defined as x∗ = x
UD. Although there is no experimental data for η, the qualitative

behaviour predicted by the different models is similar, and so Figure 5.38 shows the predicted

development of η from the GL model which performed overall generally better than the other

models. By observing Figure 5.38 one may say that the T&R case provides a steeper change

in η than the other two cases of Gence and Mathieu (1979). Besides that, one may also note

that the T&R case was strained over a longer dimensionless streamwise distance than the

pure strained case G&M0. The kink in the profile of η in the G&M05 case is due to the

change of sign of the normal straining.

Figure 5.38: Profiles of η predicted by the GL model for the normally strained cases

The T&R case will be the first to be evaluated. The prediction of the turbulent kinetic

energy can be seen in Figure 5.39. The KS, the GL and the SG models performed best

in predicting this quantity, since they were the only models able to reach the peak of the

turbulent kinetic energy immediately before the straining was interrupted at x = 10ft. For

the same reason, the KS model performed best in predicting u2 in Figure 5.40. Most models

tended to provide a too fast decay of the turbulent kinetic energy after the interruption of

the straining. The Reynolds normal stress v2, in Figure 5.41, was best predicted by the GL

and SG models and the latter best predicted the Reynolds normal stress w2 in Figure 5.42,

although w2 tends to increase after the interruption of the straining whilst all turbulence

models predicted that this Reynolds stress decreased when the straining is stopped.

It is worth noticing that the performance of the NLEV model KS was not so satisfactory in

predicting the normal stresses v2 and w2 after the interruption of the straining and provided

similar behaviour to that of the LEV models. The reason for that can be seen in equation 5.8,

since when the straining is set to zero, the NLEV model reduces to a LEV model, predicting

isotropy of the stresses just as the LEV models. As a consequence, the eddy viscosity models
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show clearly where the straining started and stopped. The RST models produce a smoother

development of the Reynolds stresses at both the start and end of the strained section, as a

result of these models solving a transport equation for each Reynolds stress component.

Figure 5.43 shows the three non-zero components of the stress anisotropy tensor bij =
uiuj
q −

1
3δij . Since the EV models are not expected to provide good results for the stress

anisotropy, the figure shows results from the RST models only. One may notice that the

STS RST models predicted the b33 component better than the other two although the b11

component is indeed less important in this case, since u2 is not used in the production term,

and one can notice its lower order of magnitude. On the other hand, the WM model predicted

the three normal components of the stress anisotropy tensor well until before the straining

stopped. However, in the recovery region, once straining was removed, none of the turbulence

models could follow the experimental data.

Now switching to evaluate the G&M0 case, it is of value to note that this case is essentially

the same as the T&R: a pure normally strained flow. However, in the latter the straining

is activated only in a section of the duct while in the G&M0 case the straining is activated

all along the duct. Besides, the evolution and range of the dimensionless shear parameter η,

shown in Figure 5.38, is steeper in the T&R case.

The prediction of the turbulent kinetic energy, presented in Figure 5.44, shows that the

RST models performed best as a whole, the GL and TC models performing best. The same

can be said about the prediction of the Reynolds normal stresses u2, v2 and w2, in Figure

5.45, where it can be noted that the non-linear-eddy-viscosity scheme is not able to correctly

predict the initial magnitudes of the stresses which affects its whole subsequent performance.

That is due to the stresses being calculated through algebraic expressions thus an inherent

limitation of the EV models. The prediction of the linear-eddy-viscosity models are not

shown, since they are not expected to predict correctly these quantities.

One may notice from the results presented in the T&R and G&M0 cases that the turbu-

lence models were more capable of correctly reproducing the normally strained cases when

the evolution of η was less steep, that is, in the G&M0 case.

Now moving on to the G&M05 case, it is worth recalling that, in this case, the eddy-

viscosity models are expected to be insensitive to the change of sign in the normal strains.

It is only worth then commenting on the performance of the RST models.

One may notice in Figure 5.46 the prediction of the turbulent kinetic energy. The RST

models returned relatively similar predictions for the turbulent quantities, predicting a too

fast return to the original configuration. The Reynolds normal stresses, presented in Fig-

ure 5.47 were perhaps best predicted by the HJ model, however all RST models provided

reasonable results, except the SG model which tended to overpredict these quantities.
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5.2.4 Concluding Remarks

These normally strained flows highlight one inherent limitation of the eddy-viscosity schemes,

since they do not return correct normal stress values, and hence also predict Pk and k incor-

rectly. On the other hand, all RST models tested perfomed reasonably well, including the

MTS WM model.
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(a) (b) (c)

Figure 5.39: Profile of the turbulent kinetic energy in T&R normally strained case predicted
by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c) multiple-time-
scale models and compared with the experiments of Tucker and Reynolds (1968). Models as
in Table 3.25.

(a) (b) (c)

Figure 5.40: Profile of the Reynolds normal stress u2 in T&R normally strained case predicted
by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c) multiple-time-
scale models and compared with the experiments of Tucker and Reynolds (1968). Models as
in Table 3.25.

(a) (b) (c)

Figure 5.41: Profile of the Reynolds normal stress v2 in T&R normally strained case predicted
by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c) multiple-time-
scale models and compared with the experiments of Tucker and Reynolds (1968). Models as
in Table 3.25.
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(a) (b) (c)

Figure 5.42: Profile of the Reynolds normal stress w2 in T&R normally strained case predicted
by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c) multiple-time-
scale models and compared with the experiments of Tucker and Reynolds (1968). Models as
in Table 3.25.

(a) (b) (c)

Figure 5.43: Profile of the normal components of the dimensionless Reynolds stress anisotropy
tensor in T&R normally strained case predicted by the Reynolds stress transport models and
compared with the experiments of Tucker and Reynolds (1968). Models as in Table 3.25.

(a) (b) (c)

Figure 5.44: Profile of the turbulent kinetic energy in the G&M0 normally strained case
predicted by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models and compared with the experiments of Gence and Mathieu (1979).
Models as in Table 3.25.
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(a) u2 (b) v2 (c) w2

Figure 5.45: Profile of the Reynolds normal stresses in the G&M0 normally strained case pre-
dicted by the non-linear-eddy-viscosity and Reynolds stress transport models and compared
with the experiments of Gence and Mathieu (1979). Models as in Table 3.25.

(a) (b) (c)

Figure 5.46: Profile of the turbulent kinetic energy in the G&M05 normally strained case
predicted by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models and compared with the experiments of Gence and Mathieu (1979).
Models as in Table 3.25.

(a) u2 (b) v2 (c) w2

Figure 5.47: Profile of the Reynolds normal stresses in the G&M05 normally strained case
predicted by the non-linear-eddy-viscosity and Reynolds stress transport models and com-
pared with the experiments of Gence and Mathieu (1979). Models as in Table 3.25.
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5.3 Fully Developed Channel Flow

Although the above flows have not involved any wall influences, a number of non-equilibrium

flows to be considered below are wall-bounded, and thus the models’ ability to account for

the presence of a wall, as well as non-equilibrium effects, needs to be considered. As a prelude

to these, two equilibrium wall-bounded flows are considered, namely fully developed plane

channel flow and a zero pressure gradient boundary layer in order to first assess the mod-

els’ performance in relatively simple wall-bounded flows without significant non-equilibrium

effects.

A 2D fully developed channel flow is one of the simplest flows to be simulated. It consists

of two parallel walls, one at the bottom and other at the top, both large enough to enable

the system be considered 2D, between which a Newtonian incompressible fluid flows with a

developed profile and constant pressure gradient which means it does not vary with time or

the streamwise direction. This implies a steady flow where the streamwise velocity depends

only upon the normal distance to the wall, U = U(y). If the flow is laminar, the velocity

profile is a parabola, the velocity being maximum at the half distance to the walls and zero

at them. The more turbulent the flow, the flatter its velocity profile as shown in Figure 5.48.

Figure 5.48: Velocity profile in fully developed channel flow

When simulating a fully developed channel flow, one wishes to reproduce the symmetry of

the problem, besides, of course, to predict the correct velocity profile as well as the turbulent

quantities.

5.3.1 Simulated Cases

The fully developed channel flow cases simulated in this work reproduce DNS results for four

different Reynolds numbers based on the centreline velocity. Two test cases were taken from

the ERCOFTAC database available at http://cfd.mace.manchester.ac.uk/ercoftac/ namely

the DNS of Kim et al. (1987) and the other two test cases carried out by Abe et al. (2004) were

taken from the Kawamura Lab whose DNS database is available at http://murasun.me.noda.

tus.ac.jp/turbulence/index.html. Table 5.6 provides each case specifications, where the Reynolds

number based on the centreline velocity Uc and channel height h is Re = hUcρ
µ and that based

on friction velocity is given by Reτ = (h/2)uτρ
µ .
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Table 5.6: Fully developed channel flow cases simulated

Author Re Reτ

Kim et al. (1987) 6500 180

Kim et al. (1987) 15780 395

Abe et al. (2004) 24428 640

Abe et al. (2004) 41441 1020

5.3.2 Simulations Setup

As already mentioned in Chapter 4, the STREAM code can work with dimensionless variables

where the Reynolds number is defined through the reference variables and then the viscosity

assumes the value of 1
Re . This way, the reference velocity, channel height and fluid density

were set as 1, and the viscosity taken as µ = 1
Re with the Reynolds number varying from case

to case according to Table 5.6.

A simple rectangular domain was employed with no-slip walls at the top and bottom

boundaries, which means the velocity as well as turbulent kinetic energy and Reynolds stresses

are zero at them. In order to avoid a very long domain, necessary for the flow to become

fully developed, a short domain length of one channel height was used, with periodic bound-

ary conditions applied between the inlet (west) and outlet (east) faces and applying a bulk

correction by scaling the velocity profile in the west face to give the desired mass flow rate.

The value of the pressure at the inlet and outlet face nodes was set by linear extrapolation

of the two following and two previous nodes, respectively.

The calculations were initialised with uniform values of most variables

Uinitial = 1.0

kinitial =
3

2
(IUinitial)

2

u2 = kinitial v2 = 0.4kinitial w2 = 0.6kinitial uv = −µt
∂Uinitial
∂y

= 0.0 (5.10)

where I =

√
2/3k

U is the turbulence intensity which was set to 6%. One may notice that

anisotropic values were provided for the Reynolds normal stresses. The value of ε was esti-

mated through Norris and Reynolds’s 1975 one equation model which thus does not give a

uniform profile since it varies in terms of the distance to the wall.

When using MTS models, instead of initializing k and ε, one should provide initial values

for kP , kT , εP and εT . The same initial conditions presented in equation 5.10 were kept by

setting εP = εT and by assuming a ratio kP
kT

= 2.

Since low and high Reynolds number turbulence models are applied, two different meshes

were designed. For low-Reynolds-number turbulence models, the mesh should be refined at

the wall, providing y+ < 1 at the first node, while for the high Reynolds number ones, it
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should be coarse in this region, providing y+ ≈ 30 at the first node. Both grids were designed

as 20x60, but with different distances from the first node to the wall, achieved by altering the

grid expansion ratio. A test for grid independence was performed with a finer grid of 30x90

for each turbulence model, and no significant differences in the predictions were observed.

5.3.3 Results and Discussion

The results are presented in Figures 5.49 to 5.56 for the case with Re = 6500, 5.57 to 5.58

for the case with Re = 15780, 5.59 to 5.60 for the case with Re = 24428 and 5.61 to 5.62 for

the case with Re = 41441.

Analysing the results for the channel flow with Re = 6500, one can notice that, overall, the

turbulence models were able to predict to an acceptable level the log law (U+ = 2.44 ln y++5)

in Figure 5.49. It is also of value to call attention to the fact that the DNS data lies slightly

above the log-law at this low Reynolds number and so does the LS model. On the other hand,

the HJ model underpredicted it a bit. At this low Reynolds number the effect of using a wall-

function can be clearly seen in the high-Reynolds-number model results, since the near-wall

node has to be placed at a rather large distance from the wall to ensure a reasonably large

y+ value here. The turbulence models which perhaps best predicted the DNS mean velocity

profile were the FM, KS, TC, NG and WM models, all LRN forms as expected. The same

analysis can be extended to the velocity profile plotted against y
H , Figure 5.50, where the

symmetry of the flow can be seen.

With regard to the Reynolds shear stress uv, Figure 5.51, one can notice that all models

correctly predict it far from the wall, presenting a linear profile which confirms the fully

developed state. The LRN models slightly overpredict the peak shear stress, whereas the

HRN models cannot capture it, since the near-wall node in such low Reynolds number channel

flows is typically beyond the uv peak, as noted above, so that y+ can be reasonably large.

The turbulence models which perhaps best predicted the Reynolds shear stress, including the

near-wall region, were the LS, KS, NG and WM models.

The profile of ε, Figure 5.52, was well predicted in the region far from the wall by all

models which were not applied with a wall function. The turbulence models which were used

with wall functions only gave good agreement very far from the wall, near the centreline,

which is not a great feature since the value of ε in this region is relatively low. None of

the turbulence models were capable of correctly predicting the peak of the eddy dissipation

rate at the wall, however the NG model provided the closest prediction. The LS and KS

models, which solve a transport equation for ε̃, underpredicted the value of ε at the wall

which means the turbulent kinetic energy gradient at the wall was underpredicted, since the

exact expression used to account for the value of ε at the wall when ε̃ = 0 is 2µ
(
∂
√
k

∂xj

)2
. The

TC model was able to avoid this drawback.

The turbulence models as a whole captured the turbulent kinetic energy profile, Figure

5.53, to an acceptable level in the region far from the wall. The near-wall peak was best

predicted by the RST model HJ and the MTS model NG, both LRN formulations. The
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turbulent kinetic energy results are plotted using the same scales as the normal Reynolds

stresses in Figures 5.54 to 5.56 so that one can easily compare their magnitude. Although

the LEV models are not expected to provide the correct prediction of the latter, since they

erroneously predict isotropy for the Reynolds normal stresses, their performance will also be

presented for sake of comparison.

Regarding the Reynolds normal stress u2, Figure 5.54, this was underpredicted near the

wall by all models, but correctly predicted in the bulk region by the RST models and the

cubic NLEV (KS) model. v2, Figure 5.55, was overpredicted by all eddy viscosity models

(since the DNS data show it to be less than 2
3k), while the RST models were able to reproduce

the bulk part of the flow in a more acceptable way. w2, Figure 5.56, was slightly overpredicted

by all turbulence models. The SG model may be considered the one which best predicted

the outer flow region and it is valid to mention that the HJ model was the one which best

predicted the u2 peak near the wall.

The overall comments above on the case with the lowest Reynolds number can be generally

extended to the other cases with higher Reynolds numbers, however some observations must

be made. All the “problems” relative to the near-wall region tend to become less evident

as the Reynolds number of the flow increases, as can be seen in Figures 5.57 to 5.62 where

profiles of the velocity and turbulent kinetic energy are shown for the other three Reynolds

number cases. This is due to the fact that the higher the Reynolds number, the thinner the

viscous sublayer where most of the models fail to give good predictions. The log law profile

(Figures 5.57, 5.59 and 5.61) as well as the turbulent kinetic energy (Figures 5.58, 5.60 and

5.62) tend to be better predicted as the Reynolds number increases.

Comparing the obtained predictions with the turbulence models’ original papers, when-

ever possible, one may say that all models performed as expected, except for the HJ model

which was expected to better predict the Reynolds normal stresses, especially near the wall,

as well as match perfectly the log law. The result obtained here is consistent with the re-

sults obtained in this work for the boundary layer flow cases (which will be shown later in

this Chapter) which perhaps indicates that there might have been some calibration of the

damping functions which were not presented in Hanjalic et al.’s 1997 article and thus not

implemented in the STREAM code.

As a whole, one can say that all models performed reasonably well, as expected, since

this is a very simple and basic flow. It is difficult to discern the best model, however only

the NLEV and RST models are able to correctly predict the Reynolds normal stresses. The

use of a standard wall-function can somewhat degrade the predictions even in such a simple

flow, especially at lower Reynolds numbers.
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(a) (b) (c)

Figure 5.49: Prediction of the log law profile for the fully developed channel flow with
Re=6500 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.50: Prediction of the velocity profile for the fully developed channel flow with
Re=6500 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.51: Prediction of the Reynolds shear stress uv for the fully developed channel flow
with Re=6500 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and
(c) multiple-time-scale models. Models as in Table 3.25.
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(a) (b) (c)

Figure 5.52: Prediction of the turbulent kinetic energy dissipation rate ε for the fully de-
veloped channel flow with Re=6500 by the: (a) eddy-viscosity models, (b) Reynolds stress
transport models and (c) multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.53: Prediction of the turbulent kinetic energy k for the fully developed channel flow
with Re=6500 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and
(c) multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.54: Prediction of the Reynolds normal stress u2 for the fully developed channel flow
with Re=6500 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and
(c) multiple-time-scale models. Models as in Table 3.25.
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(a) (b) (c)

Figure 5.55: Prediction of the Reynolds normal stress v2 for the fully developed channel flow
with Re=6500 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and
(c) multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.56: Prediction of the Reynolds normal stress w2 for the fully developed channel flow
with Re=6500 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and
(c) multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.57: Prediction of the log law profile for the fully developed channel flow with
Re=15780 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models. Models as in Table 3.25.
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(a) (b) (c)

Figure 5.58: Prediction of the turbulent kinetic energy for the fully developed channel flow
with Re=15780 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and
(c) multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.59: Prediction of the log law profile for the fully developed channel flow with
Re=24428 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.60: Prediction of the turbulent kinetic energy for the fully developed channel flow
with Re=24428 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and
(c) multiple-time-scale models. Models as in Table 3.25.
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(a) (b) (c)

Figure 5.61: Prediction of the log law profile for the fully developed channel flow with
Re=41441 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.62: Prediction of the turbulent kinetic energy for the fully developed channel flow
with Re=41441 by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and
(c) multiple-time-scale models. Models as in Table 3.25.
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5.4 Zero Pressure Gradient Boundary Layer

The flow which will be considered in this section is a turbulent 2D zero pressure gradient

boundary layer flow which is illustrated in Figure 5.63. The flow consists of a free stream

approaching a flat plate with a uniform velocity profile of U∞ without any imposed pressure

gradient. At the moment the stream reaches the flat plate, a boundary layer starts to develop

since the velocity at the plate is zero due to the no-slip condition. At the beginning of the

plate the boundary layer is laminar. Further downstream it passes through the transition

process and then becomes turbulent, leading to a profile illustrated in Figure 5.63. It is this

turbulent region which will be considered in this work, in order to assess the performance of

turbulence models in predicting it.

Figure 5.63: Zero pressure gradient boundary layer scheme

One may notice some similarity between the turbulent zero pressure gradient boundary

layer flow and the fully developed channel flow, however there are two main differences. The

first is physical, which is the fact that the boundary layer flow is an open flow, not bounded

at the top as is the channel flow. The second difference lies in the fact that the channel

flow is fully developed and so its velocity profile only depends on the normal distance to

the wall. The turbulent boundary layer is a developing flow where the velocity profile varies

as a function of the streamwise direction, hence U = U(x, y). Needless to say, outside the

boundary layer, where U = U∞, the streamwise velocity no longer varies in the streamwise

direction.

When studying boundary layers it is common to define some parameters such as boundary

layer thickness δ, the displacement thickness δ∗, the momentum thickness θ, the shape factor

H and the skin-friction coefficient Cf .

The boundary layer thickness, as its name indicates, is the height of the boundary layer,

which is a function of the streamwise distance x. It is defined as being the height where the

velocity is 99% of the freestream velocity U∞.

The displacement thickness represents the height an inviscid freestream would be shifted,

which is equivalent to the loss of mass flow caused by the presence of the boundary layer. It

is calculated through:

δ∗ =

∫ ∞
0

(
1− U(y)

U∞

)
dy (5.11)
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The momentum thickness represents the height of the fluid layer with velocity U∞ whose

mass flux is equivalent to the momentum flux loss due to the presence of the boundary layer.

It is calculated as:

θ =

∫ ∞
0

U(y)

U∞

(
1− U(y)

U∞

)
dy (5.12)

One may notice that the displacement and momentum thicknesses are integral parameters

which means they need to be calculated through numerical integration in the y direction.

When using a wall function these results need to be rather carefully interpreted, since the

very near-wall velocity variation is not resolved.

The shape factor then arises as the ratio between the displacement thickness and the

momentum thickness and is a dimensionless parameter which characterizes the flow. For

turbulent zero pressure gradient boundary layers, one expects it to be about 1.4 (Mathieu

and Scott, 2000). The shape factor H can thus be written as:

H =
δ∗

θ
(5.13)

The skin-friction coefficient Cf is a measure of the drag imposed on the plate by the fluid.

Therefore it is of high industrial importance. It is calculated through:

Cf =
τw

0.5ρU2
∞

(5.14)

As the velocity profile in the turbulent boundary layer flow varies with both normal and

streamwise directions, so do the other variables such as the turbulent kinetic energy, the eddy

dissipation rate and the Reynolds stresses. Therefore, in order to compare profiles across the

boundary layer, one should do so at a specific streamwise position. The streamwise position

where the main variable profiles are evaluated is often defined through the dimensionless

parameter Reθ, which is the local Reynolds number expressed in terms of the momentum

thickness θ and the freestream velocity U∞:

Reθ =
θU∞
ν

(5.15)

Similarly, one may define a local Reynolds number as a function of the displacement thickness

δ∗, which is then termed Re∗δ and defined as:

Reδ∗ =
δ∗U∞
ν

(5.16)

This completes the set of parameters relevant for the study of a boundary layer flow. In this

work, the parameter used to define at what streamwise position the simulation results will
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be compared is Reθ, since the cases which were being reproduced also used it.

5.4.1 Simulated Cases

In order to simulate the turbulent boundary layer flow, the DNS of Spalart (1988) and the

experimental data of Smith (1994) were considered. Spalart (1988) provides the velocity

and turbulent quantity profiles at three different Reθ values: 300, 670 and 1410. The DNS

database is available online at http://cfd.mace.manchester. ac.uk/ercoftac/. Smith (1994)

provides the velocity and turbulent quantity profiles at two higher Reθ values: 4981 and

13052. The experimental data is available online at http://www.princeton.edu/ ∼gasdyn/.

5.4.2 Simulations Setup

The domains used were simply rectangular, but of different sizes for the different cases to

accommodate the greater streamwise development needed for the higher Reynolds number

cases, with wall boundary conditions on the bottom, constant pressure at the top, and zero

gradients at the outlet, except for the pressure which was set through linear extrapolation of

the two preceding nodal values at the east face. It is of value to comment that there is no

physical zero gradient at the outlet unless a fully developed state is reached, however, as the

variable profiles will be evaluated at specific streamwise positions, it is usually sufficient to

ensure, through the geometry, that the outlet will be far enough from the last downstream

test position in order to not influence the results at this point. Zero gradient conditions were

also applied at the north boundary for all variables except the pressure.

The inlet velocity and the fluid viscosity were set to match the values reported by each

source of each case to be reproduced. The DNS of Spalart was performed using a scaling pro-

cedure to obtain profiles at a particular Reθ, without simulating the full streamwise develop-

ment. In the present calculations the data from the boundary layer transition test T3B (avail-

able online at http://cfd.mace.manchester.ac.uk/ercoftac/ ), providing hot-wire anemometry

experimental data from the Rolls-Royce Applied Science Laboratory case, was used to provide

inlet conditions. This case has 6% free-stream turbulence intensity, which was used initially,

but resulted in far too high levels of turbulence in the free-stream. Therefore a lower value of

1.5% was actually used in the present work. The simulation run to reproduce Spalart’s DNS

is referred to in this work as Spalart case.

In essence, only one simulation needs to be performed for comparison with all the DNS and

experimental data available, since the results can be compared in a dimensionless basis at fixed

Reθ. However, as the experimental data were provided in a dimensional basis, and all inlet

conditions were clearly specified, it was decided to run a simulation for each experiment of

Smith’s work. Therefore two distinct simulations were run, the first for matching comparisons

at Reθ = 4981, and being denoted in this work as case 4981, and the second extending further

downstream to allow comparisons at Reθ = 13052, being denoted as case 13052.

The inlet conditions set for each simulated case are presented in Table 5.7, from where

the remained variables had their inlet conditions set as:
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kinlet =
3

2
(IUinlet)

2 ε =
k

3/2
inlet

`

u2 = kinlet v2 = 0.4kinlet w2 = 0.6kinlet uv = −µt
∂Uinlet
∂y

= 0.0 (5.17)

The inlet turbulent lenghscale ` was estimated based on Chen’s 1996 simulations of the T3B

case for the Spalart case, and taken to be around 20% of the reported experimental boundary

layer thickness for the 4981 and 13052 cases. Some simulations were performed varying ` in

order to test the sensitivity of the simulations to it. These tests indicated that the values

provided were reasonable, and the results were not particularly sensitive to them. For the

simulations run with MTS models, the partitions εP = εT and kP
kT

= 2 were assumed at the

inlet.

Table 5.7: Inlet conditions for the zero pressure gradient boundary layer flows
Case Inlet Velocity Density Viscosity Turbulence Intensity Estimated ` (mm)

Spalart 9.4 1.2036 1.59× 10−5 0.015 5

4981 31.44 1.0 1.58× 10−5 0.005 10

13052 33.28 1.0 1.54× 10−5 0.005 10

Again, two different meshes were needed: one suitable for the high-Reynolds-number

turbulence models (with the first node at a distance from the wall in order to provide y+ ≈
30), which will be referred to as the Coarse mesh, and the other for the low-Reynolds-

number turbulence models (with the first node at a distance from the wall in order to provide

y+ < 1.0), which will be referred to as Refined mesh. The geometry, as well as the mesh

features for each simulation, are presented in Table 5.8, where NI stands for the number

of grid lines in the x direction and NJ the number of grid lines in the y direction. The

different domain lengths required with the wall-function or low-Reynolds-number approaches

are associated with the performance of the low and high-Reynolds-number turbulence models

in reaching the desired Reθ number.

Again, a grid independence test was performed with the meshes referred to as Grid 1 and

Grid 2 in Table 5.8 and no significant changes in the solutions were identified, thus justifying

the results shown below being obtained on Grid 1.

5.4.3 Results and Discussion

Discussions for the Spalart case will only be carried out at Reθ = 1410, since it was found

that the Reθ = 300 and Reθ = 670 stations were close enough to the flow domain inlet to be

significantly affected by the precise inlet condition values applied. By Reθ = 1410 the flow

had developed to be relatively independent of the inlet conditions.

One may notice that most turbulence models correctly predicted the loglaw at Reθ = 1410

and tended to overpredict the non-dimensional freestream velocity in Figure 5.64 (implying
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Table 5.8: Geometry and mesh features for the zero pressure gradient boundary layer cases
Domain height Domain length Grid 1 Grid 2

Case Mesh
(m) (m) NI NJ NI NJ

Refined 300 121 400 201
Spalart

Coarse
0.2 3.0

300 51 400 91

Refined 5.0 500 201 700 301
4981

Coarse
0.2

3.0 300 51 400 91

Refined 10.0 1000 201 1400 301
13052

Coarse
0.2

6.0 600 51 800 91

an underprediction of the wall shear stress). The TC model is the model which perhaps

provided the best prediction of the velocity profile and the HJ model slightly underpredicts

the log law. In the original paper of Hanjalic et al. (1997), they presented significantly better

agreement with the log law for the zero pressure gradient boundary layer cases. However, this

underprediction of the log law is consistent with the results obtained for the fully developed

channel flow reported in section 5.1.

The turbulent kinetic energy, presented in Figure 5.65, was reasonably well predicted by

all models, specially the FM, SG, KC and TS models. Its near-wall peak was best predicted by

the HJ and NG models, both LRN schemes, which tended to slightly overpredict the turbulent

kinetic energy profile across the boundary layer towards the outer stream. Similar analysis

can be extended to the prediction of the Reynolds shear stress in Figure 5.66, however, all

models correctly predicted its near-wall peak. The eddy dissipation rate was also generally

correctly predicted by all models as shown in Figure 5.67.

The near-wall peak of the Reynolds normal stress u2 (Figure 5.68) was not captured by

any turbulence model, but the HJ model clearly got closest. The freestream region, where

u2 is nearly zero, was captured by all turbulence models, however the predicted reduction in

turbulence levels across the boundary layer towards the outer stream did not follow the DNS

trend for all models. The Reynolds normal stress v2 (Figure 5.69) was well predicted by all

RST models which followed in essence the whole development of the variable. The Reynolds

normal stress w2 (Figure 5.70) was well predicted by all models, including the LEV ones,

indicating that in this case the magnitude of this quantity is approximately 2
3k.

The results of Spalart (1988) regarding the boundary layer integral parameters have also

been compared with the present calculations. Besides his own DNS results, Spalart (1988)

provided data from Coles (1962) and other authors. One may notice that the skin-friction

coefficient Cf (Figure 5.71) was better predicted by the LS, KS, HJ, TC and MTS models.

The shape factor H (Figure 5.72) can be considered well predicted by all turbulence models

since all of them reached the value of 1.4, characteristic of turbulent zero pressure gradients

boundary layers, as already mentioned. The apparent discrepancies between the predicted

curves and Spalart’s data (particularly at lower Reθ values) is believed to be due, as noted

above, to the fact that the low Reθ results are somewhat affected by the inlet conditions

employed here. The boundary layer thickness is presented in order to demonstrate that the

domain height of 0.2m was high enough, not interfering in the results, since the boundary
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layer thickness at the end of the plate was only about 0.04m as can be seen in Figure 5.73.

There were no DNS data available for comparison of δ.

Analysing case 4981, the log law (Figure 5.74) was reasonably well predicted by all models,

although the KS, HJ, TC and NG models tended to slightly underpredict it. The SG and

GL models, run with wall functions, exhibit a kink in in the velocity profile which could be

avoided by using the effective viscosity numerical tool as described in Chapter 4. However,

it was noticed that by using this, these models would clearly overpredict the velocity profile

and it was preferred to have the kinks, but a correct velocity profile. The predictions of

the Reynolds stresses in Figures 5.75, 5.76 and 5.77 are not very accurate, not following

the correct trends. It is believed this is at least partly due to the profiles here still being

affected by the inlet conditions, in the same way that the low Reθ ones were in the Spalart

case (although Reθ is much higher here than in the Spalart case, as a different geometry was

used, the physical development length at this location is still somewhat low). If the Spalart

simulations had been continued further downstream, to Re=4981, the results might have

matched the data much better. However, this test was, unfortunately, not performed.

Regarding the 13052 case, one may notice an improvement in the predictions by the

turbulence models compared to the previous case. By observing Figure 5.78, one may notice

that the log law region itself was well captured by all LRN models, but a little overpredicted

by the HRN models, probably due to the influence of the wall-function used with these. The

Reynolds normal stress u2 (Figure 5.79) was mostly well-predicted by the GL model, although

the near-wall peak level was underestimated. The Reynolds normal stress v2 (Figure 5.80)

was reasonably well captured by the RST models and the Reynolds shear stress uv (Figure

5.81) was well reasonably well predicted by all models, except the CG and NG models.

The profiles of the skin-friction coefficient, boundary layer thickness and shape factor are

presented for both 4981 and 13052 cases together in Figures 5.82,5.83 and 5.84 respectively.

All models predict reasonably well these boundary layer parameters, the KS and HJ models

tending to overpredict the skin-coefficient and the KC and TS models tending to underpredict

it. The CG and KC models overpredicted the boundary layer thickness at Reθ = 13052 and

all models reached the expected value of 1.4 for the shape factor.

As a whole, one may observe that the k, uv and ε were reasonably well predicted by all

turbulence models at high Reθ values, which indicate they tend towards better predictions

the more turbulent the boundary layer is. The weaknesses at lower Reθ values perhaps

indicate more a deficiency of the turbulence models in predicting the transition region, or in

the prescription of exact inlet calculations for these cases, than the model performance in the

turbulent boundary layer itself.

This test case and the channel flow cases were expected to be reasonably well predicted

by all models. It was confirmed that all turbulence models tested here do represent these

flows reasonably well, and the model development work to be described in chapter 6 will also

use these basic flows for some initial model tuning and evaluation.
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(a) (b) (c)

Figure 5.64: Profile of the mean velocity in a zero pressure gradient boundary layer at
Reθ = 1410 compared to the DNS of Spalart (1988) predicted by: (a) eddy-viscosity models,
(b) Reynolds stress transport models and (c) multiple-time-scale models. Models as in Table
3.25.

(a) (b) (c)

Figure 5.65: Profile of the turbulent kinetic energy k in a zero pressure gradient boundary
layer at Reθ = 1410 compared to the DNS of Spalart (1988) predicted by: (a) eddy-viscosity
models, (b) Reynolds stress transport models and (c) multiple-time-scale models. Models as
in Table 3.25.

(a) (b) (c)

Figure 5.66: Profile of the Reynolds shear stress uv in a zero pressure gradient boundary
layer at Reθ = 1410 compared to the DNS of Spalart (1988) predicted by: (a) eddy-viscosity
models, (b) Reynolds stress transport models and (c) multiple-time-scale models. Models as
in Table 3.25.
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(a) (b) (c)

Figure 5.67: Profile of the turbulent kinetic energy dissipation rate e in a zero pressure
gradient boundary layer at Reθ = 1410 compared to the DNS of Spalart (1988) predicted by:
(a) eddy-viscosity models, (b) Reynolds stress transport models and (c) multiple-time-scale
models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.68: Profile of the Reynolds normal stress u2 in a zero pressure gradient boundary
layer at Reθ = 1410 compared to the DNS of Spalart (1988) predicted by: (a) eddy-viscosity
models, (b) Reynolds stress transport models and (c) multiple-time-scale models. Models as
in Table 3.25.

(a) (b) (c)

Figure 5.69: Profile of the Reynolds normal stress v2 in a zero pressure gradient boundary
layer at Reθ = 1410 compared to the DNS of Spalart (1988) predicted by: (a) eddy-viscosity
models, (b) Reynolds stress transport models and (c) multiple-time-scale models. Models as
in Table 3.25.
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(a) (b) (c)

Figure 5.70: Profile of the Reynolds normal stress w2 in a zero pressure gradient boundary
layer at Reθ = 1410 compared to the DNS of Spalart (1988) predicted by: (a) eddy-viscosity
models, (b) Reynolds stress transport models and (c) multiple-time-scale models. Models as
in Table 3.25.

(a) (b) (c)

Figure 5.71: Profile of the skin-friction coefficient in a zero pressure gradient boundary layer
compared to the DNS of Spalart (1988) predicted by: (a) eddy-viscosity models, (b) Reynolds
stress transport models and (c) multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.72: Profile of the shape factor in a zero pressure gradient boundary layer compared
to the DNS of Spalart (1988) predicted by: (a) eddy-viscosity models, (b) Reynolds stress
transport models and (c) multiple-time-scale models. Models as in Table 3.25.
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(a) (b) (c)

Figure 5.73: Profile of the boundary layer thickness in a zero pressure gradient boundary
layer compared to the DNS of Spalart (1988) predicted by: (a) eddy-viscosity models, (b)
Reynolds stress transport models and (c) multiple-time-scale models. Models as in Table
3.25.

(a) (b) (c)

Figure 5.74: Profile of the mean velocity in a zero pressure gradient boundary layer at
Reθ = 4981 compared to the experiments of Smith (1994) predicted by: (a) eddy-viscosity
models, (b) Reynolds stress transport models and (c) multiple-time-scale models. Models as
in Table 3.25.

(a) (b) (c)

Figure 5.75: Profile of the Reynolds shear stress uv in a zero pressure gradient boundary layer
at Reθ = 4981 compared to the experiments of Smith (1994) predicted by: (a) eddy-viscosity
models, (b) Reynolds stress transport models and (c) multiple-time-scale models. Models as
in Table 3.25.
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(a) (b) (c)

Figure 5.76: Profile of the Reynolds normal stress u2 in a zero pressure gradient boundary
layer at Reθ = 4981 compared to the experiments of Smith (1994) predicted by: (a) eddy-
viscosity models, (b) Reynolds stress transport models and (c) multiple-time-scale models.
Models as in Table 3.25.

(a) (b) (c)

Figure 5.77: Profile of the Reynolds normal stress v2 in a zero pressure gradient boundary
layer at Reθ = 4981 compared to the experiments of Smith (1994) predicted by: (a) eddy-
viscosity models, (b) Reynolds stress transport models and (c) multiple-time-scale models.
Models as in Table 3.25.

(a) (b) (c)

Figure 5.78: Profile of the mean velocity in a zero pressure gradient boundary layer at
Reθ = 13052 compared to the experiments of Smith (1994) predicted by: (a) eddy-viscosity
models, (b) Reynolds stress transport models and (c) multiple-time-scale models. Models as
in Table 3.25.
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(a) (b) (c)

Figure 5.79: Profile of the Reynolds normal stress u2 in a zero pressure gradient boundary
layer at Reθ = 13052 compared to the experiments of Smith (1994) predicted by: (a) eddy-
viscosity models, (b) Reynolds stress transport models and (c) multiple-time-scale models.
Models as in Table 3.25.

(a) (b) (c)

Figure 5.80: Profile of the Reynolds normal stress v2 in a zero pressure gradient boundary
layer at Reθ = 13052 compared to the experiments of Smith (1994) predicted by: (a) eddy-
viscosity models, (b) Reynolds stress transport models and (c) multiple-time-scale models.
Models as in Table 3.25.

(a) (b) (c)

Figure 5.81: Profile of the Reynolds shear stress uv in a zero pressure gradient boundary
layer at Reθ = 13052 compared to the experiments of Smith (1994) predicted by: (a) eddy-
viscosity models, (b) Reynolds stress transport models and (c) multiple-time-scale models.
Models as in Table 3.25.
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(a) (b) (c)

Figure 5.82: Profile of the skin-friction coefficient in a zero pressure gradient boundary layer
compared to the experiments of Smith (1994) predicted by: (a) eddy-viscosity models, (b)
Reynolds stress transport models and (c) multiple-time-scale models. Models as in Table
3.25.

(a) (b) (c)

Figure 5.83: Profile of the boundary layer thickness in a zero pressure gradient boundary
layer compared to the experiments of Smith (1994) predicted by: (a) eddy-viscosity models,
(b) Reynolds stress transport models and (c) multiple-time-scale models. Models as in Table
3.25.

(a) (b) (c)

Figure 5.84: Profile of the shape factor in a zero pressure gradient boundary layer compared
to the experiments of Smith (1994) predicted by: (a) eddy-viscosity models, (b) Reynolds
stress transport models and (c) multiple-time-scale models. Models as in Table 3.25.
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5.5 Adverse Pressure Gradient Boundary Layer

The adverse pressure gradient boundary layer consists of a boundary layer similar to that

described in the previous section, but with a positive (adverse) pressure gradient in the

streamwise direction. As the pressure increases along the x direction, the freestream velocity

decreases which is why this kind of flow is also called decelerating flow. An adverse pressure

gradient can be imposed by a variety of means, for example, it arises when the flow faces

a convex surface or a deflected wall as shown in Figure 5.85. Therefore one may imagine

how commonly it can be found in industry, and thus why it is an important kind of flow to

accurately predict. As the pressure increases, the velocity profile tends towards an inflection

point and if the pressure still rises, the flow may reverse, as shown by the development

illustrated in Figure 5.85.

Figure 5.85: Adverse pressure gradient boundary layer

Needless to say, the streamwise velocity U will again vary in both x and y directions, but

now there is no “fully developed” condition to be reached. The boundary layer parameters

(δ, δ∗, θ, H, Reθ, Reδ and Cf ) defined before in equations 5.11 to 5.16 are still used to

characterize the adverse pressure gradient boundary layer flow.

5.5.1 Simulated Cases

Two different experimental works were reproduced here: one from Samuel and Joubert (1974)

and the other from Marusic and Perry (1995). The latter is a more recent work while the

former can be considered a classical work, having been modelled by many different authors:

Menter (1994), Hanjalic et al. (1997), Nagano et al. (1997), etc.

Both Samuel and Joubert (1974) and Marusic and Perry (1995) defined the same di-

mensionless parameter Cp in order to express the pressure gradient they applied in their

experiment:

Cp =
P − P∞
0.5ρU2

∞
(5.18)

where P∞ and U∞ are the freestream pressure and velocity at the inlet.

Samuel and Joubert (1974) reported measurements in a boundary layer with Rebulk =

1.7 × 106 per unit length, in which they applied an adverse pressure gradient beyond x =
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0.8m. Profiles of the mean velocity and turbulence quantities were reported at six locations

downstream of this, labelled T1 to T6, whose x coordinates are given in Table 5.9. The

simulation set up to reproduce Samuel and Joubert’s experiment will be referred to as case

S&J in this work.

Marusic and Perry (1995) started to apply the adverse pressure gradient at x ≈ 1.5m and

provided two cases where the only difference between them is the inlet freestream velocity

U∞. The case where the inlet velocity was U∞ = 10m/s will be referred to as M&P10 in this

work and the case where U∞ = 30m/s, M&P30. Marusic and Perry (1995) also provided

measured profiles at 6 streamwise locations, whose coordinates are given in Table 5.9.

Table 5.9: x coordinates for profile output for each case
Case T1 (m) T2 (m) T3 (m) T4 (m) T5 (m) T6 (m)

S&J 1.04 1.44 1.79 2.38 2.89 3.39

M&P10 1.2 1.8 2.24 2.64 2.88 3.08

M&P30 1.2 1.8 2.24 2.64 2.88 3.08

The experimental data from Samuel and Joubert (1974) was digitized from their ar-

ticle, whilst that of Marusic and Perry (1995) was obtained from the following website:

http://www.mame.mu.oz.au/∼ivan/index.html.

5.5.2 Simulations Setup

Since Samuel and Joubert (1974) provide all results in a dimensionless form, the inlet

freestream velocity was here taken as unity, and the viscosity set to µ = 1/Rebulk, where

Rebulk is the Reynolds number reported above. The raw results from the simulations should

then correspond to the non-dimensional quantities reported by S&J . In the cases of Marusic

and Perry (1995), their reported freestream velocities were used in the simulations.

The inlet conditions applied for each case are summarised in Table 5.10, which were used

in conjunction with equation (5.17) to set the inlet turbulence parameters. The lengthscale,

`, was estimated, and sensitivity tests performed which showed its value did not greatly affect

the results. The only exception to the use of these inlet conditions was the S&J case with

the HJ model, for which use of this uniform inlet would have required a very long domain

for the boundary layer to reach the desired thickness. In this case, an output profile from

a zero pressure gradient boundary layer case simulated with the KS model was provided as

inlet conditions for the simulation with the HJ model.

Table 5.10: Inlet conditions for the adverse pressure gradient cases
Case U∞ ρ µ I ` (mm)

S&J 1.0 1.0 5.88× 10−7 0.015 10

M&P10 10.0 1.0 1.54× 10−5 0.03 10

M&P30 30.0 1.0 1.58× 10−5 0.03 10

The geometry was simply set as a rectangular domain and the boundary conditions were

set similarly to the zero pressure gradient boundary layer cases, with no slip conditions at
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the wall, linear extrapolation for the pressure at the west face, zero gradient for all variables

at the east face (again, taking the domain length long enough so the result would not be

influenced by the east boundary) and zero gradient for all variables except the pressure at

the free surface (north face).

In order to impose the same pressure gradient as Samuel and Joubert (1974) and Marusic

and Perry (1995) did, equation (5.18) was rewritten in the form P (x) = 0.5ρU2
∞Cp(x) + P∞

and the curve provided for Cp was fitted into a polynomial as a function of the streamwise

coordinate x. This polynomial was then used to set the pressure along the upper boundary of

the domain, ensuring the streamwise pressure gradient matched that in the experiment. By

comparing Figures 5.86(a) and 5.86(b), one may notice that the pressure gradient increases

more strongly in the Samuel and Joubert experiment. The locations where experimental data

was made available, also described in Table 5.9, are also indicated in these Figures.

Regarding the imposed freestream pressure gradient, the streamwise location from where

the non-zero values should start being applied in the simulation is another important issue.

Initially, the simulations were set exactly as described in the experimental papers. However,

in analysing the results it was noticed that the predicted boundary layer thickness where the

adverse pressure gradient started was significantly lower than that reported in the measure-

ments. The start of the adverse pressure gradient region was thus moved downstream, to a

location where the boundary layer thickness coincided with that reported in the experimental

cases (see Figures 5.92 and 5.101).

Since these simulations are wall-bounded, different grids are needed for the low and high-

Reynolds number turbulence models in order to set the appropriate y+ value at the first node.

The geometry and grid features are presented in Table 5.11, where the Refined mesh refers

to the one used with the LRN turbulence models and the Coarse one to the high-Reynolds-

number models. Grid independence tests were performed with more refined grids (Grid 2

in Table 5.11) and the meshes presented for Grid 1 were shown to provide grid-independent

results.

Table 5.11: Geometry and mesh features for the adverse pressure gradient boundary layer
cases

Domain height Domain length Grid 1 Grid 2
Case

(m) (m)
Mesh

NI NJ NI NJ

Refined 360 75 400 121
S&J 0.2 4.8

Coarse 360 41 400 71

Refined 400 91 450 147
M&P10 0.2 5.0

Coarse 400 41 450 71

Refined 400 91 450 147
M&P30 0.2 5.0

Coarse 400 41 450 71

5.5.3 Results and Discussion

The results for the simulation of the S&J case are presented from Figure 5.87 to 5.94; the

results for the case M&P10, from Figure 5.95 to 5.103; and for the case M&P30, in Figures
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5.104 to 5.108. The cases will be analysed and discussed in this order, however it may

be of value to first observe the pressure development in the streamwise direction in order

to understand better each case. This can be done by examining Cp in Figures 5.86(a) and

5.86(b) (The Cp curve for the M&P30 case is the same as for the M&P10 case), where one can

also see the measurement stations’ location. The results will be presented only for stations

T5 and T6 for the S&J case and for stations T2, T4, T5 and T6 for the M&P cases for the

sake of simplicity, since these stations do represent the evolution of the imposed pressure

gradient.

Starting with the log law profile of the S&J case, one may observe in Figures 5.87 to

5.88 the evolution of the log law along the stations in the streamwise direction. Until station

T5 (x = 2.89m) all turbulence models provided a similar and reasonable prediction of the

log law, such as shown in Figure 5.87, the HJ model underpredicting it a bit, as already

observed in the other flow cases. Between stations T5 and T6 there is a strong increase

in the freestream pressure, and at station T6 (x = 3.39), none of the models were able to

match the experimental velocity profile well, with the FM, HJ, NG and WM models arriving

closest to it. Since the HJ model was underpredicting the log law at the other stations, it

is not possible to know if its better performance at station T6 is due to its merit or due to

a problem which has been making it underpredict the log law, although it did predict the

log-law moving downward between T5 and T6. It is also worth noticing that those models

which performed best are LRN models, indicating some limitations related to the use of wall

functions.

The Reynolds stresses were output in the same dimensionless form Samuel and Joubert

(1974) provided the results in their paper. With regard to the Reynolds shear stress, Figures

5.89 and 5.90, one may say that it was reasonably well predicted by the SG, GL and KC

models at all stations (just like at station T5 in Figure 5.89), however at station T6 the near

wall region was not so well predicted; this again is probably to do with the strong increase of

the pressure from station T5 to T6. The only Reynolds normal stress whose results could be

digitized from the experimental paper was u2 at station T3, whose prediction by all models

can be found in Figure 5.91, where the HJ and the GL models are shown to perform best.

Evaluating the boundary layer parameters, in Figures 5.92 to 5.94, the boundary layer

thickness, skin-friction and shape factor were reasonably well predicted by all models. Most

models struggled to capture the value of these parameters at the last measurement station,

however the FM, TC, NG and WM models performed well even at this location. One may

notice that the shape factor is about 1.4 during much of the streamwise direction length,

thus indicating the profile in this region was not so different from a turbulent zero pressure

gradient boundary layer.

Now moving to the M&P10 case, one may observe that most models cannot follow the

velocity profile (Figure 5.95) across all stations. The only two models which succeeded in this

matter were the FM and the WM models, both LRN ω-based models, designed to perform

well in adverse pressure gradient boundary layers. At the first stations all models performed

reasonably well and one might notice that, at these stations, the imposed pressure gradient
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is still quite weak and the flow still behaves, under some inertia, similarly to a zero pressure

gradient boundary layer.

With regard to the Reynolds shear stress (Figure 5.96), one can notice that no model

is actually able to follow the development of this stress along the stations. One might say

though that the decay through to the free stream region was better predicted by the FM and

the RST models, while the LEV MTS models perform better than the STS LEV models. The

same analysis can be extended to the performance of the models in predicting the turbulent

kinetic energy profiles in Figure 5.97.

The Reynolds normal stresses, presented in Figure 5.98, were not consistently well pre-

dicted by any RST or NLEV model. The SG model performs well in predicting v2, Figure

5.99, however it fails in predicting the other normal stresses. It is interesting to notice that

the FM model is the only model which always predicts correctly the outer edge of the bound-

ary layer, while all other turbulence models overpredict the thickness of the layer. It is always

worth remembering that, apart from the WM model which performed reasonably well, the

other MTS models which are being tested are LEV formulations which intrinsically limit

their performance.

Analysing the boundary layer parameters in Figures 5.101 to 5.103 one may say that all

turbulence models predicted these reasonably well, specially the boundary layer thickness.

One may notice that only the FM and WM models are able to follow the skin-friction coeffi-

cient trend until the last station, which is consistent with the good mean velocity prediction

of these models. Again, one may notice the value of 1.4 for the shape factor at the begin-

ning of the measurements (where it was still essentially a turbulent zero pressure gradient

boundary layer), which then increased.

The M&P30 case is essentially the same as the M&P10 and thus one would expect to

obtain similar results from the turbulence models. Indeed, the velocity profile analysis de-

scribed for the M&P10 case is still valid for the M&P30 and therefore the velocity profiles at

different stations are not presented here. On the other hand, the Reynolds stresses presented

some different results.

The Reynolds shear stress uv (Figure 5.104) was best predicted by the FM, SG and

KC models which clearly follow the whole development of uv. Most models still tend to

overpredict the thickness of the outer layer. The turbulent kinetic energy (Figure 5.105) and

the Reynolds normal stress u2 (Figure 5.106) are reasonably well captured along the stations

by the GL model, while the other models provide similar behaviours to those of the previous

case. The Reynolds normal stresses v2 (Figure 5.107) and w2 (Figure 5.108) were reasonably

well captured by the WM model along the stations.

The boundary layer parameters were similarly predicted by the models compared to the

M&P10 case (and therefore are not being presented here), that is, as a whole, all models

performed reasonably well, with the FM and WM schemes standing out in capturing the

skin-friction coefficient at the final stations.

Comparing the two cases of Marusic and Perry (1995), one may notice that as the inlet

velocity increased, that is, as the flow Reynolds number increased, most models tended to
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improve prediction. Such a behaviour might certainly be expected from the HRN models,

since as the Reynolds number increases the thickness of the layer represented by the wall-

function decreases.

To conclude this section, one may notice that most of the turbulence models tested here

exhibit difficulties in correctly predicting the development of the mean velocity and turbulent

quantities as the pressure gradient increases. Besides, and yet related to this, they tend to

overpredict the thickness of the outer layer. The FM and WM models, which performed

better in this respect, were calibrated to adverse pressure gradient boundary layer flows.

Some of the RST models did not show clear improvements compared to simpler models such

as EV models and it was noticeable that when comparing STS LEV models and MTS LEV

models, the former was more adversely affected by some of the above weaknesses.
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(a) S&J case (b) M&P cases

Figure 5.86: Pressure gradient coefficient profile for the adverse pressure gradient boundary
layer cases.

(a) (b) (c)

Figure 5.87: Log law profile at station T5 for the S&J case predicted by the: (a) eddy-
viscosity models, (b) Reynolds stress transport models and (c) multiple-time-scale models.
Models as in Table 3.25.

(a) (b) (c)

Figure 5.88: Log law profile at station T6 for the S&J case predicted by the: (a) eddy-
viscosity models, (b) Reynolds stress transport models and (c) multiple-time-scale models.
Models as in Table 3.25.
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(a) (b) (c)

Figure 5.89: Reynolds shear stress profile at station T5 for the S&J case predicted by the:
(a) eddy-viscosity models, (b) Reynolds stress transport models and (c) multiple-time-scale
models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.90: Reynolds shear stress profile at station T6 for the S&J case predicted by the:
(a) eddy-viscosity models, (b) Reynolds stress transport models and (c) multiple-time-scale
models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.91: Reynolds normal stress u2 profile at station T3 for the S&J case predicted by the:
(a) eddy-viscosity models, (b) Reynolds stress transport models and (c) multiple-time-scale
models. Models as in Table 3.25.
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(a) (b) (c)

Figure 5.92: Boundary Layer thickness profile for the S&J case predicted by the: (a) eddy-
viscosity models, (b) Reynolds stress transport models and (c) multiple-time-scale models.
Models as in Table 3.25.

(a) (b) (c)

Figure 5.93: Skin-friction coefficient profile for the S&J case predicted by the: (a) eddy-
viscosity models, (b) Reynolds stress transport models and (c) multiple-time-scale models.
Models as in Table 3.25.

(a) (b) (c)

Figure 5.94: Shape Factor profile for the S&J case predicted by the: (a) eddy-viscosity
models, (b) Reynolds stress transport models and (c) multiple-time-scale models. Models as
in Table 3.25.
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(a) EV models - station T2 (b) RST models - station T2 (c) MTS models - station T2

(d) EV models - station T4 (e) RST models - station T4 (f) MTS models - station T4

(g) EV models - station T5 (h) RST models - station T5 (i) MTS models - station T5

(j) EV models - station T6 (k) RST models - station T6 (l) MTS models - station T6

Figure 5.95: Log law profile at stations T2, T4, T5 and T6 for the M&P10 case predicted by
the eddy-viscosity, Reynolds stress transport and multiple-time-scale models. Models as in
Table 3.25.
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(a) EV models - station T2 (b) RST models - station T2 (c) MTS models - station T2

(d) EV models - station T4 (e) RST models - station T4 (f) MTS models - station T4

(g) EV models - station T5 (h) RST models - station T5 (i) MTS models - station T5

(j) EV models - station T6 (k) RST models - station T6 (l) MTS models - station T6

Figure 5.96: Reynolds shear stress at stations T2, T4, T5 and T6 for the M&P10 case
predicted by the eddy-viscosity, Reynolds stress transport and multiple-time-scale models.
Models as in Table 3.25.
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(a) EV models - station T2 (b) RST models - station T2 (c) MTS models - station T2

(d) EV models - station T4 (e) RST models - station T4 (f) MTS models - station T4

(g) EV models - station T5 (h) RST models - station T5 (i) MTS models - station T5

(j) EV models - station T6 (k) RST models - station T6 (l) MTS models - station T6

Figure 5.97: Turbulent kinetic energy at stations T2, T4, T5 and T6 for the M&P10 case
predicted by the eddy-viscosity, Reynolds stress transport and multiple-time-scale. Models
as in Table 3.25.
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(a) EV models - station T2 (b) RST models - station T2 (c) MTS models - station T2

(d) EV models - station T4 (e) RST models - station T4 (f) MTS models - station T4

(g) EV models - station T5 (h) RST models - station T5 (i) MTS models - station T5

(j) EV models - station T6 (k) RST models - station T6 (l) MTS models - station T6

Figure 5.98: Reynolds normal stress u2 at stations T2, T4, T5 and T6 for the M&P10 case
predicted by the eddy-viscosity, Reynolds stress transport and multiple-time-scale models.
Models as in Table 3.25.

186



5.5. Adverse Pressure Gradient Boundary Layer

(a) EV models - station T2 (b) RST models - station T2 (c) MTS models - station T2

(d) EV models - station T4 (e) RST models - station T4 (f) MTS models - station T4

(g) EV models - station T5 (h) RST models - station T5 (i) MTS models - station T5

(j) EV models - station T6 (k) RST models - station T6 (l) MTS models - station T6

Figure 5.99: Reynolds normal stress v2 at stations T2, T4, T5 and T6 for the M&P10 case
predicted by the eddy-viscosity, Reynolds stress transport and multiple-time-scale models.
Models as in Table 3.25.
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(a) EV models - station T2 (b) RST models - station T2 (c) MTS models - station T2

(d) EV models - station T4 (e) RST models - station T4 (f) MTS models - station T4

(g) EV models - station T5 (h) RST models - station T5 (i) MTS models - station T5

(j) EV models - station T6 (k) RST models - station T6 (l) MTS models - station T6

Figure 5.100: Reynolds normal stress w2 at stations T2, T4, T5 and T6 for the M&P10 case
predicted by the eddy-viscosity, Reynolds stress transport and multiple-time-scale models.
Models as in Table 3.25.
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(a) (b) (c)

Figure 5.101: Boundary Layer thickness profile for the M&P10 case predicted by the: (a)
eddy-viscosity models, (b) Reynolds stress transport models and (c) multiple-time-scale mod-
els. Models as in Table 3.25.

(a) (b) (c)

Figure 5.102: Skin-friction coefficient profile for the M&P10 case predicted by the: (a) eddy-
viscosity models, (b) Reynolds stress transport models and (c) multiple-time-scale models.
Models as in Table 3.25.

(a) (b) (c)

Figure 5.103: Shape Factor profile for the M&P10 case predicted by the: (a) eddy-viscosity
models, (b) Reynolds stress transport models and (c) multiple-time-scale models. Models as
in Table 3.25.
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(a) EV models - station T2 (b) RST models - station T2 (c) MTS models - station T2

(d) EV models - station T4 (e) RST models - station T4 (f) MTS models - station T4

(g) EV models - station T5 (h) RST models - station T5 (i) MTS models - station T5

(j) EV models - station T6 (k) RST models - station T6 (l) MTS models - station T6

Figure 5.104: Reynolds shear stress at stations T2, T4, T5 and T6 for the M&P30 case
predicted by the eddy-viscosity, Reynolds stress transport and multiple-time-scale models.
Models as in Table 3.25.
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(a) EV models - station T2 (b) RST models - station T2 (c) MTS models - station T2

(d) EV models - station T4 (e) RST models - station T4 (f) MTS models - station T4

(g) EV models - station T5 (h) RST models - station T5 (i) MTS models - station T5

(j) EV models - station T6 (k) RST models - station T6 (l) MTS models - station T6

Figure 5.105: Turbulent kinetic energy at stations T2, T4, T5 and T6 for the M&P30 case
predicted by the eddy-viscosity, Reynolds stress transport and multiple-time-scale models.
Models as in Table 3.25.
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(a) EV models - station T2 (b) RST models - station T2 (c) MTS models - station T2

(d) EV models - station T4 (e) RST models - station T4 (f) MTS models - station T4

(g) EV models - station T5 (h) RST models - station T5 (i) MTS models - station T5

(j) EV models - station T6 (k) RST models - station T6 (l) MTS models - station T6

Figure 5.106: Reynolds normal stress u2 at stations T2, T4, T5 and T6 for the M&P30 case
predicted by the eddy-viscosity, Reynolds stress transport and multiple-time-scale models.
Models as in Table 3.25.
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(a) EV models - station T2 (b) RST models - station T2 (c) MTS models - station T2

(d) EV models - station T4 (e) RST models - station T4 (f) MTS models - station T4

(g) EV models - station T5 (h) RST models - station T5 (i) MTS models - station T5

(j) EV models - station T6 (k) RST models - station T6 (l) MTS models - station T6

Figure 5.107: Reynolds normal stress v2 at stations T2, T4, T5 and T6 for the M&P30 case
predicted by the eddy-viscosity, Reynolds stress transport and multiple-time-scale models.
Models as in Table 3.25.
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(a) EV models - station T2 (b) RST models - station T2 (c) MTS models - station T2

(d) EV models - station T4 (e) RST models - station T4 (f) MTS models - station T4

(g) EV models - station T5 (h) RST models - station T5 (i) MTS models - station T5

(j) EV models - station T6 (k) RST models - station T6 (l) MTS models - station T6

Figure 5.108: Reynolds normal stress w2 at stations T2, T4, T5 and T6 for the M&P30 case
predicted by the eddy-viscosity, Reynolds stress transport and multiple-time-scale models.
Models as in Table 3.25.
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5.6 Favourable Pressure Gradient Boundary Layer

In the favourable pressure gradient boundary layer there is a negative pressure gradient

driving the flow. As the pressure decreases along the streamwise direction, the freestream

velocity increases which then justifies another name for this kind of flow which is accelerating

flow.

One of the most particular and interesting characteristics of the favourable pressure gra-

dient boundary layer is that it reaches a self-similar profile, since the velocity increases at

the same rate the boundary layer thickness diminishes. When the self-similar state is then

achieved, the dimensionless boundary layer parameters such as the skin-friction coefficient

Cf , the shape factor H and the Reynolds number based on the displacement thickness, Reδ,

and momentum thickness, Reθ, become constant.

A favourable pressure gradient can happen by being artificially imposed or in converging

channels also called sink flows. When subjected to a favourable pressure gradient, the viscous

sublayer becomes more dominant in the boundary layer (whose height decreases as the free

stream velocity increases) and, among other effects, the flow may end up by laminarizing for

sufficiently strong pressure gradients.

When dealing with favourable pressure gradients boundary layers, one usually defines the

level of acceleration of a flow through the so-called acceleration parameter K which is defined

as:

K =
ν

U2
∞

dU∞
dx

(5.19)

The acceleration parameter definition can then be used to determine how the free-stream

velocity increases with the streamwise direction. Equation (5.19) can be reorganized and

integrated, providing:

U(x) =
1

1
U0
− K

ν x
(5.20)

where U0 is the inlet free stream velocity. In the free stream region, where the flow can be

considered steady and viscous effects can be neglected, Bernoulli’s equation (U
2

2 + gh+ P
ρ =

constant) can be employed in order to determine how the pressure varies as a function of the

streamwise direction:

P0 +
1

2
ρU2

0 = P∞ +
1

2
ρU2
∞ ⇒ P∞(x) = P0 +

ρ

2
[U2

0 − U2
∞(x)] (5.21)

where P0 is the inlet free stream pressure.

5.6.1 Simulated Cases

Jones and Launder (1972a) studied sink-flows in order to identify the maximum value the
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acceleration parameter K could take before the flow laminarized. In their work, Jones and

Launder could not report a single specific value for which the flow laminarized, however they

determined a range of values (K > 3× 10−6) over which laminarization could be expected to

occur.

Spalart (1986) performed a further study about sink flows through DNS and compared

his results with Jones and Launder’s. In his work, Spalart defined K = 2.75 × 10−6 as the

maximum value the acceleration parameter could have before laminarization would occur.

In this work, 2D turbulent favourable pressure gradient boundary layer flows have been

simulated with three different acceleration parameters: K = 1.5× 10−6, K = 2.5× 10−6 and

K = 2.75× 10−6, since the objective is to simulate the turbulent boundary layer rather than

the relaminarization process. The simulation results will be compared with Spalart’s 1986

DNS which can be obtained online at http://cfd.mace.manchester.ac.uk/ercoftac/. The cases

will be named here as K150, K250 and K275, corresponding to acceleration parameters of

1.5× 10−6, 2.5× 10−6 and 2.75× 10−6 respectively.

5.6.2 Simulations Setup

Since the comparisons made with the DNS data of Spalart will only be of dimensionless

quantities, the exact flow properties used do not really matter. The inlet free-stream velocity

and density were therefore set to unity, and the viscosity taken as µ = 1
Rebulk

.

The geometry of the case was again very simple consisting of a rectangle with boundary

conditions set in the same way as in the previous flow cases: no-slip condition at the wall

(south face), linear interpolation for the pressure at the inlet (west face), zero gradient for all

variables at the outlet (east face) and zero gradient for all variables except the pressure for

the free stream boundary (north face) where a pressure gradient was imposed by applying

equation (5.21). The freestream velocity variation of equation (5.20) was not imposed, but

it was checked that the computed profile did match this.

Calculations of a developing boundary layer were carried out, in order to ensure the

domain length was long enough to achieve a self-similar state. It was then found that a

domain length of 5.2m was sufficient for the boundary layer to achieve self-similarity. The

domain height of 0.2m was also confirmed to ensure sufficient resolution of the boundary

layer.

One may notice from equation (5.20) that one needs to ensure that 1
U0
− K

ν x ≥ 0, since

this expression is in the denominator and the velocity should not become infinite. As the

domain length was already determined and the inlet free stream velocity was taken as unity,

one can calculate the maximum bulk Reynolds number (recall that µ = 1
Rebulk

) for each case,

that would ensure the above condition remained true, which is presented in Table 5.12 where

the Reynolds number actually used in each simulation is also indicated.

The inlet conditions were initially set as in the previous boundary layer flows, following

equation (5.17), where the turbulence intensity was set to 1.5% and the turbulent length scale

was estimated as 10mm. The boundary layer was then allowed to develop for a streamwise
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Table 5.12: Bulk Reynolds number for each favourable pressure gradient boundary layer case
Case Maximum Rebulk Adopted Rebulk

K150 128205 87489

K250 76923 63291

K275 69930 63291

distance of 0.8m before the favourable pressure gradient was applied. This worked for the

high Reynolds number turbulence models, however it did not for the LS and KS models

which resulted in a laminar solution for both K250 and K275 cases. This problem happened

because the turbulent boundary layer (developing from a uniform inlet profile) was not totally

developed before the non-zero pressure gradient was imposed, thus making it possible for E

term in these models to induce a laminar profile. The problem was solved by first allowing the

boundary layer to develop somewhat more under zero pressure gradient conditions. In order

to avoid lengthening the domain, the previously computed zero pressure gradient boundary

layer profiles were applied as inlet conditions for the LRN turbulence models. These then

developed for a further 0.8m before the favourable pressure gradient was applied.

As a wall-bounded domain, different grids were necessary for the high and low Reynolds

number turbulence models, being termed the Coarse and the Refined grids respectively. The

geometry as well as the mesh specifications are presented in Table 5.13. Grid independence

tests were performed with a refined grid of 500x201 and a coarse one of 500x151, and the

results from the meshes presented in Table 5.13 can be considered grid independent.

Table 5.13: Geometry and mesh features for the adverse pressure gradient boundary layer
cases

Domain height Domain length
Case

(m) (m)
Mesh NI NJ

Refined 450 121
K150 0.2 6.0

Coarse 450 61

Refined 450 151
K250 0.2 6.0

Coarse 450 71

Refined 450 171
K275 0.2 6.0

Coarse 450 81

5.6.3 Results and Discussion

In order to illustrate the effect the acceleration parameter has on the mean velocity and

turbulent quantities profiles, Figure 5.109 was built with the DNS data of Spalart (1986).

One may observe that the velocity profile lies above the wake part of the log law and the

turbulent quantities tend to have their peaks decreased near the wall as the acceleration

parameter increases, in contrast to what happened in the adverse pressure gradient boundary

layer flows and consistent with the tendency of laminarization of the favourable pressure

gradient boundary layer flows.

Analysing the computed boundary layer parameters in Figures 5.110 to 5.112 for the
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lowest acceleration parameter case, one may comment that the skin-friction coefficient as

well as the shape factor attain reasonably constant values, characterizing the self-similar state

this flow reaches. On the other hand, Reθ values appear to continue changing downstream,

although this was traced to imprecisions in the numerical integration procedure required

to calculate the momentum thickness (any small departure from free-stream velocity in the

outer domain can lead to large contributions in the integral for θ). These same checks for

self-similarity were also performed for the other two higher acceleration parameters cases, and

profiles of velocity and turbulence quantities across the boundary layer for comparison with

the DNS data were taken at x = 4m since the boundary layers had achieved self-similarity

by this location.

Starting by analysing the case with the lowest acceleration parameter, K = 1.5 × 10−6,

one may notice that the velocity profile (Figure 5.113) was reasonably well predicted by all

models, apart from the LS and HJ models, since the former overpredicted it and the latter

underpredicted the velocity profile. It is worth noticing that even the HRN models, run

together with wall functions, presented good agreement with the velocity profile. The reason

for that may be the high Reynolds number of the flow, which then attenuates the influence

of the wall function, or even an effect of the wall function since the latter tends to make

the models overpredict the velocity profile and because of that, the simulations’ results end

up matching the DNS because the latter does lie above the log law in favourable pressure

gradient boundary layer flows. The LS and KS models probably overpredicted the velocity

profile due to the E term (equations (3.8) and (3.9) for the LS model and (3.18) and (3.19) for

the KS model) which tends to laminarize the solution in these acceleration flows. Although

the TC model also has an E term in its modelled ε equation, it is of a more complex form,

and does not appear to laminarize the flow so much at this low acceleration parameter. The

difference seen between the HJ results here, and those published in their original paper are

similar to those already discussed in the zero pressure gradient case.

The turbulent kinetic energy k (Figure 5.114) in the K150 case was overall best predicted

by the KS, TC and NG models, since they best captured its near-wall peak and followed well

the trend towards the outer layer. The near-wall peak of the eddy dissipation rate (Figure

5.115) was well captured by the NG model and its decay across the boundary layer was well

predicted by most models, except the ones which were applied together with wall functions.

With regard to the Reynolds stresses in the K150 case, one may notice that the shear

stress uv (Figure 5.116) was well predicted by the KS, FM and NG models. The near-wall

peak of the Reynolds normal stress u2 (Figure 5.117) was captured by the HJ model, however

the outer boundary layer was predicted better by most other models. Although the normal

Reynolds stress v2 (Figure 5.118) was a bit overpredicted by the RST models, they still

provided best predictions of this quantity, and the Reynolds normal stress w2 (Figure 5.119)

had its near-wall peak overpredicted by all turbulence models while its profile in the outer

part of the boundary layer was well captured by most models.

Now, analysing the K250 results, one may notice that the KS and NG models were the

ones which best predicted the mean velocity profile in Figure 5.120. Most other models
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tended to underpredict the velocity profile, specially the HRN models, used together with

wall functions. Once the velocity departs from the log-law, it is not expected that these wall-

functions would do well, since they put the near-wall velocity on the log-law. The Reynolds

shear stress uv (Figure 5.121) was better predicted by the MTS models, in particular the

NG model which captured the near-wall peak. The normal stresses were better predicted by

the TC model as a whole, however the HJ model was the only RST model to reach the near

wall peak of u2. The turbulent kinetic energy (Figure 5.125) and the eddy dissipation rate

(Figure 5.126) was also better predicted by the NG model.

The analysis done for the K250 case is also totally valid for the K275 case. A sample of the

results can be seen in Figures 5.127 to Figure 5.129. Indeed, the increase in the acceleration

parameter from one case to the other is not that big and one may expect the results to be

similar. It also shows a kind of insensitivity of the turbulence models to this small change in

the flow configuration.

Tables 5.14, 5.15 and 5.16 present the boundary layer parameter results obtained in this

work by the EV, RST and MTS models respectively, where the values for this work were

evaluated at x = 4m, as discussed before. In Table 5.14 the results provided by the DNS of

Spalart (1986) and those obtained by Deevy (2004) using the LS model are also presented.

One may notice that Deevy’s results are in broad agreement with the ones calculated in this

work.

Comparing Tables 5.14, 5.15 and 5.16 in order to evaluate the performance of the turbu-

lence models used here against the DNS data, one may notice that, overall, the NG model

presented the closest prediction for all three boundary layer parameters. The TC model

also performed very well in the K150 case. The skin-friction coefficient was acceptably well

predicted by all models, except the HJ (too high) and the LS (too low) for the K150 case,

while it was mostly overpredicted in the other higher acceleration cases. The values of Reθ

were not overall well predicted the models, except the TC and WM in the K150 case and the

NG in the other two cases. However it must be recalled that the Reθ profile did not reach a

constant value (see Figures 5.112) and as this was associated with the numerical integration

across the domain, it is not particularly useful to judge the turbulence models’ performance

by examining this. Finally, the shape factor was also mostly overpredicted by the turbulence

models, but again the NG predicted quite well this factor.

Overall, one can say that the KS and specially the NG models were the schemes which

performed best in this test case. Both are LRN models which makes sense with the previous

comments about wall functions in favourable pressure gradient boundary layers. One may

also comment that only the turbulence models with an E term in the ε equation are able to

account for the laminarization process. The NG model has extra source terms in kT and εT

equations (equations 3.56 and 3.58) which are meant to improve near-wall prediction. On

the other hand, the NG model is a LEV model and therefore employs a simpler stress-strain

relation than the KS which is a NLEV model.
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Table 5.14: Boundary layer parameters calculated by the EV models
DNS of Deevy’s

Case Parameter
Spalart (1986)

LS FM HR KS
LS

Cf 0.0050 0.0045 0.0053 0.0051 0.0048 0.0044
K150 Reθ 690 569 647 608 593 585

H 1.42 1.49 1.45 1.58 1.47 1.48
Cf 0.0052 0.0047 0.0059 0.0056 0.0050 0.0047

K250 Reθ 415 379 470 446 387 366
H 1.54 1.60 1.48 1.61 1.57 1.62
Cf 0.0053 0.0048 0.0060 0.0057 0.0051 0.0048

K275 Reθ 380 370 464 444 372 336
H 1.54 1.59 1.47 1.63 1.58 1.64

Table 5.15: Boundary layer parameters calculated by each RST model
Case Parameter GL HJ SG TC

Cf 0.0052 0.0061 0.0052 0.0053
K150 Reθ 623 757 621 693

H 1.57 1.41 1.57 1.41
Cf 0.0057 0.0065 0.0057 0.0058

K250 Reθ 456 518 456 487
H 1.60 1.45 1.60 1.44
Cf 0.0058 0.0066 0.0058 0.0059

K275 Reθ 452 499 452 475
H 1.62 1.44 1.62 1.43

Table 5.16: Boundary layer parameters calculated by each MTS model
Case Parameter CG KC NG TS WM

Cf 0.0052 0.0051 0.0049 0.0049 0.0054
K150 Reθ 624 603 636 625 701

H 1.56 1.59 1.44 1.60 1.41
Cf 0.0057 0.0056 0.0052 0.0054 0.0061

K250 Reθ 455 442 417 420 505
H 1.60 1.62 1.54 1.67 1.44
Cf 0.0058 0.0057 0.0052 0.0055 0.0062

K275 Reθ 435 437 400 422 496
H 1.64 1.64 1.55 1.69 1.43
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(a) Log law (b) Turbulent kinetic energy (c) Reynolds shear stress uv

Figure 5.109: Profile of the mean velocity and turbulent quantities as a function of the
acceleration parameter K accordingly to the DNS of Spalart (1986).

(a) (b) (c)

Figure 5.110: Skin-friction coefficient in the favourable pressure gradient boundary layer with
K = 1.5 × 10−6 predicted by the: (a) eddy-viscosity models, (b) Reynolds stress transport
models and (c) multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.111: Shape factor in the favourable pressure gradient boundary layer with K =
1.5× 10−6 predicted by the: (a) eddy-viscosity models, (b) Reynolds stress transport models
and (c) multiple-time-scale models. Models as in Table 3.25.
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(a) (b) (c)

Figure 5.112: Reθ in the favourable pressure gradient boundary layer with K = 1.5 × 10−6

predicted by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.113: Profile of the mean velocity in the favourable pressure gradient boundary
layer with K = 1.5 × 10−6 predicted by the: (a) eddy-viscosity models, (b) Reynolds stress
transport models and (c) multiple-time-scale models and compared with the DNS of Spalart
(1986). Models as in Table 3.25.

(a) (b) (c)

Figure 5.114: Profile of the turbulent kinetic energy in the favourable pressure gradient
boundary layer with K = 1.5×10−6 predicted by the: (a) eddy-viscosity models, (b) Reynolds
stress transport models and (c) multiple-time-scale models and compared with the DNS of
Spalart (1986). Models as in Table 3.25.
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(a) (b) (c)

Figure 5.115: Profile of the turbulent kinetic energy dissipation rate in the favourable pressure
gradient boundary layer with K = 1.5 × 10−6 predicted by the: (a) eddy-viscosity models,
(b) Reynolds stress transport models and (c) multiple-time-scale models and compared with
the DNS of Spalart (1986). Models as in Table 3.25.

(a) (b) (c)

Figure 5.116: Profile of the Reynolds shear stress uv in the favourable pressure gradient
boundary layer with K = 1.5×10−6 predicted by the: (a) eddy-viscosity models, (b) Reynolds
stress transport models and (c) multiple-time-scale models and compared with the DNS of
Spalart (1986). Models as in Table 3.25.

(a) (b) (c)

Figure 5.117: Profile of the Reynolds normal stress u2 in the favourable pressure gradient
boundary layer with K = 1.5×10−6 predicted by the: (a) eddy-viscosity models, (b) Reynolds
stress transport models and (c) multiple-time-scale models and compared with the DNS of
Spalart (1986). Models as in Table 3.25.
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(a) (b) (c)

Figure 5.118: Profile of the Reynolds normal stress v2 in the favourable pressure gradient
boundary layer with K = 1.5×10−6 predicted by the: (a) eddy-viscosity models, (b) Reynolds
stress transport models and (c) multiple-time-scale models and compared with the DNS of
Spalart (1986). Models as in Table 3.25.

(a) (b) (c)

Figure 5.119: Profile of the Reynolds normal stress w2 in the favourable pressure gradient
boundary layer with K = 1.5×10−6 predicted by the: (a) eddy-viscosity models, (b) Reynolds
stress transport models and (c) multiple-time-scale models and compared with the DNS of
Spalart (1986). Models as in Table 3.25.

(a) (b) (c)

Figure 5.120: Profile of the mean velocity in the favourable pressure gradient boundary
layer with K = 2.5 × 10−6 predicted by the: (a) eddy-viscosity models, (b) Reynolds stress
transport models and (c) multiple-time-scale models and compared with the DNS of Spalart
(1986). Models as in Table 3.25.
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(a) (b) (c)

Figure 5.121: Profile of the Reynolds shear stress uv in the favourable pressure gradient
boundary layer with K = 2.5×10−6 predicted by the: (a) eddy-viscosity models, (b) Reynolds
stress transport models and (c) multiple-time-scale models and compared with the DNS of
Spalart (1986). Models as in Table 3.25.

(a) (b) (c)

Figure 5.122: Profile of the Reynolds normal stress u2 in the favourable pressure gradient
boundary layer with K = 2.5×10−6 predicted by the: (a) eddy-viscosity models, (b) Reynolds
stress transport models and (c) multiple-time-scale models and compared with the DNS of
Spalart (1986). Models as in Table 3.25.

(a) (b) (c)

Figure 5.123: Profile of the Reynolds normal stress v2 in the favourable pressure gradient
boundary layer with K = 2.5×10−6 predicted by the: (a) eddy-viscosity models, (b) Reynolds
stress transport models and (c) multiple-time-scale models and compared with the DNS of
Spalart (1986). Models as in Table 3.25.
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(a) (b) (c)

Figure 5.124: Profile of the Reynolds normal stress w2 in the favourable pressure gradient
boundary layer with K = 2.5×10−6 predicted by the: (a) eddy-viscosity models, (b) Reynolds
stress transport models and (c) multiple-time-scale models and compared with the DNS of
Spalart (1986). Models as in Table 3.25.

(a) (b) (c)

Figure 5.125: Profile of the turbulent kinetic energy in the favourable pressure gradient
boundary layer with K = 2.5×10−6 predicted by the: (a) eddy-viscosity models, (b) Reynolds
stress transport models and (c) multiple-time-scale models and compared with the DNS of
Spalart (1986). Models as in Table 3.25.

(a) (b) (c)

Figure 5.126: Profile of the turbulent kinetic energy dissipation rate in the favourable pressure
gradient boundary layer with K = 2.5 × 10−6 predicted by the: (a) eddy-viscosity models,
(b) Reynolds stress transport models and (c) multiple-time-scale models and compared with
the DNS of Spalart (1986). Models as in Table 3.25.
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(a) (b) (c)

Figure 5.127: Profile of the mean velocity in the favourable pressure gradient boundary layer
with K = 2.75 × 10−6 predicted by the: (a) eddy-viscosity models, (b) Reynolds stress
transport models and (c) multiple-time-scale models and compared with the DNS of Spalart
(1986). Models as in Table 3.25.

(a) (b) (c)

Figure 5.128: Profile of the turbulent kinetic energy in the favourable pressure gradient
boundary layer with K = 2.75 × 10−6 predicted by the: (a) eddy-viscosity models, (b)
Reynolds stress transport models and (c) multiple-time-scale models and compared with the
DNS of Spalart (1986). Models as in Table 3.25.

(a) (b) (c)

Figure 5.129: Profile of the Reynolds shear stress uv in the favourable pressure gradient
boundary layer with K = 2.75 × 10−6 predicted by the: (a) eddy-viscosity models, (b)
Reynolds stress transport models and (c) multiple-time-scale models and compared with the
DNS of Spalart (1986). Models as in Table 3.25.
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5.7 Oscillatory Flows

In this section oscillatory boundary layers and oscillatory pipe flows will be studied. In

both cases a periodic sinusoidal oscillation is imposed about a reference velocity (free-stream

velocity for the former and bulk velocity for the latter), however in the former case the

time-mean reference velocity is zero and in the latter case it is not.

The main interest in these flows lies in how the oscillations imposed on the mean flow

propagate to the turbulence and disturb the equilibrium state. When the free-stream or bulk

velocity vary sinusoidally, all other quantities such as pressure gradient, wall-shear stress and

turbulent quantities will also vary, however they might present phase shifts and time lags

when compared to the velocity oscillation. How intense and how quickly the turbulence will

be affected will then strongly depend upon the oscillation frequency. There are thus a range

of frequencies which would promote non-equilibrium features which would then be interesting

for this work.

These flows can also be viewed as providing favourable (velocity being accelerated) and

adverse (velocity being decelerated) pressure gradients in sequence thus presenting the chal-

lenges of the flows examined earlier, as well as the transition from one to the other.

From a practical viewpoint, these periodic oscillatory flows, also referred to as pulsating

flows, are also of great importance in engineering as mentioned by Tu and Ramaprian (1983a),

Menendez and Ramaprian (1984), Shemer et al. (1985), Binder et al. (1995) and Scotti and

Piomelli (2001), among others, who highlighted aerodynamics, turbomachinery and biofluids

as the main fields where these flows take place.

As mentioned in the literature review, phase averaging is used in periodic time dependent

flows. Flow quantities are thus decomposed into a time-mean, periodic, and fluctuating parts,

represented by q(x, t) = q(x) + q̃(x, t) + q′(x, t) where the phase average comprises the sum

of the time-mean and periodic elements. The phase average will here be denoted by angle

brackets, whilst time-averaged quantities will be denoted by an overbar, as in the preceding

cases studied.

Below each of the oscillatory flows to be studied will be described and its results will be

discussed in order to assess the performance of the turbulence models.

5.7.1 Oscillatory Boundary Layer Flow

In this case the freestream oscillation is imposed about a zero-mean velocity, so the flow

totally reverses as illustrated in Figure 5.130.

Simulated Case

The case which will be simulated here is the test number 10 (and 11 which is the same, but

the former was set to measure < u2 >1/2, < v2 >1/2 and < uv > and the latter, < w2 >1/2)

of the experimental work of Jensen et al. (1989) who performed experiments of oscillatory

boundary layers for smooth and rough beds. The reason why this test case was chosen is
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Figure 5.130: Velocity oscillating over its zero time-averaged value

that it represents a smooth bed test case where measurements of the Reynolds stresses were

provided.

The free-stream velocity is imposed to vary as U∞ = Uamp sin(ωt), where Uamp = 2m/s

is the absolute amplitude and ω = 2πf is the angular frequency in radians. Jensen et al.

(1989) did not vary the frequency range of oscillation, and their experiments were performed

for a fixed period where T = 1
f = 9.72s. This test case will be referred to in this work as the

JSF case.

Simulations Setup

In order to simulate this test case, a 1D domain in the y direction was employed, and the x-

directed pressure gradient specified to oscillate periodically (as determined from the reported

free-stream velocity variation). By doing this, it was only necessary to solve the streamwise

direction momentum equation together with the turbulence closure equations.

The simulation was set as unsteady and the pressure gradient was set to vary as dP
dx =

dPamp sin(ωt), where dPamp is the amplitude magnitude of the pressure gradient which would

ensure the free-stream velocity varying with an amplitude magnitude of Uamp = 2m/s. It

must be noticed that there is a phase shift between the pressure gradient and the velocity

oscillation. This phase difference was calculated by Mao and Hanratty (1986) as being −π
2

and was here confirmed. In the presentation of the results below, the time has then been

adjusted to give ωt = 0o being the time at which the freestream velocity is zero.

Zero gradient boundary conditions were applied for all variables at the north free-stream

boundary of the domain, whilst initial conditions were specified by providing the turbulent

boundary layer profile of a previous zero pressure gradient boundary layer simulation.

A 1D grid was used, with 112 non-uniformly distributed points in the y direction for the

LRN models, which ensured near-wall y+ values smaller than one throughout the cycle. For

the HRN schemes, a 56 node grid was used, which gave y+ values of up to 60 during the

cycle.

Since these are unsteady simulations, the time step must also be specified. As Jensen

et al. (1989) provided experimental data every 15o of the cycle, one would like to process

simulation data at these same times. There would be then 24 points in the cycle to be

output. The time step was therefore initially set by dividing the period T in 240 parts
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(∆t = T/240 = 0.0405), thus imposing 10 steps between each output point. In order to check

the time step independence of the results, a refined time step of ∆t = 0.02025 was also used.

The results were basically the same, and the results reported below were obtained using the

latter, since it resulted in better stability of the simulations. During the initial stages of

some simulations it was found necessary to use an even smaller time step for some models,

to ensure stability. In particular, the TC model had its first 100 time steps performed with

∆t = 0.00405 and the NG and WM models had their first 200 time steps carried out with

∆t = 0.002025.

The simulations were set to run over six cyclic periods, to ensure they had reached a

developed state (in fact, periodicity generally was reached after only two). The simulation

output was then taken from the first half of the last period. One may notice that since the

time-averaged velocity is zero, the behaviour of the flow from ωt = 0o to ωt = 180o is totally

symmetric to its behaviour from ωt = 180o to ωt = 360o. Therefore, and accordingly with

the experimental data provided by Jensen et al. (1989), only the first half, from ωt = 0o to

ωt = 180o is presented.

Results and Discussion

The first check is whether the free-stream velocity and pressure gradient were set correctly.

Both profiles can be found in Figure 5.131. Only predictions of the eddy-viscosity models are

being shown since these profiles and their implementation are the same for all models. One

can notice that the pressure gradient does present a −π
2 phase shift from the velocity profile

and that the latter presents the correct amplitude, thus validating the implementation of the

free-stream variation.

In Figure 5.132, one can see the predicted and measured variation of the absolute value

of the wall shear stress τw. One may notice that interestingly, the LRN turbulence models

significantly overpredicted the peak values of this quantity and that the GL, the SG and the

KC models provide the best fit to the experimental data.

To give a more detailed picture of the flow behaviour, mean velocity and Reynolds stress

profiles will be presented at four phase angles during the cycle (ωt = 30o, ωt = 60o, ωt = 105o

and ωt = 135o), chosen to give a good representation of the flow changes which occur during

the cycle. As the streamwise velocity is varied through a sine function, the two first positions

represent stages of the accelerating part and the last two positions represent stages of the

decelerating part.

Looking firstly at the velocity profiles, normalized by the maximum friction velocity, in

Figures 5.133 to 5.135, one can generally say that all models performed similarly and well. If

one looks in more detail, one can notice that the models which are closer to the experimental

data in the accelerating part are further away from them in the decelerating part and vice-

versa. That would be consistent with the already observed phenomena of the turbulence

models not being able to follow the subtle changes presented by the experimental data seen

in the adverse pressure gradient boundary layer, for example.
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The prediction of the Reynolds shear stress < uv >, normalized by the maximum friction

velocity, expressed as < uv+ >, is presented in Figures 5.136 to 5.138. This quantity is

reasonably well predicted by all turbulence models, however one may notice that the HRN

models tend to overpredict the < uv+ > values in the outer region as soon as the flow starts

to be decelerated.

The prediction of the normal Reynolds stresses is presented in Figures 5.139 to 5.147.

Although the linear-eddy-viscosity models are not expected to correctly predict these quan-

tities, their results are being presented for sake of comparison, however the discussion will

be based on the NLEV and RST models. The rms of the streamwise fluctuating velocity

< u2 >1/2, normalized by the maximum friction velocity, expressed as < u+ >, can be seen

in Figures 5.139 to 5.141. This represents essentially the prediction of the Reynolds normal

stress < u2 >. One may notice that all the turbulence models tend to underpredict this

quantity, specially in the decelerating part of the cycle. The wall-normal fluctuating velocity

< v2 >1/2, normalized by the maximum friction velocity, expressed as < v+ >, can be seen

in Figures 5.142 to 5.144. One may notice that this quantity is much better predicted by all

turbulence models as a whole and the same comment can be extended to the prediction of

the fluctuating velocity < w2 >1/2, presented in Figures 5.145 to 5.147.

Overall, regarding the prediction of the Reynolds stresses, one could say that the HJ

model performed best, however its prediction of the velocity profile was not among the best.

Considering only the prediction of the velocity and Reynolds shear stress, one could say that

the MTS models provided very reasonable results thus indicating the potential such models

might have in predicting non-equilibrium flows.

In order to provide some more detail, the time-history of the velocity and the Reynolds

stresses at specific locations across the boundary layer are shown. Figures 5.148 to 5.150 show

profiles at y = 4mm which corresponds to y+ ≈ 350. One may notice that the velocity peak

is located at ωt ≈ 80 which is approximately where < v2 >1/2 and < uv > peak, however

< u2 >1/2 peaks at ωt ≈ 110 and none of the turbulence models are actually able to predict

this phase shift between the velocity and the streamwise fluctuating velocity. However, as

they predict the velocity profile correctly, they provide reasonable prediction for < v2 >1/2

and < uv >. The same qualitative analyses can be extended to the other two locations across

the boundary layer, for instance, at y = 9mm which is about y+ ≈ 750 (Figures 5.151 to

5.153) and y = 26mm which is about y+ ≈ 2200 (Figures 5.154 to 5.156).

One may notice some significant differences in predictions though at the fourth point,

at y = 65mm which is about y+ ≈ 5300, presented in Figures 5.157 to 5.159. While all

turbulence models predicted that the turbulence is already basically frozen, the experimental

data still show some oscillations at this height (particularly in < u2 >1/2). No plots are

presented even further from the wall, since there is no more experimental data available for

comparison. These results show no significant difference between the general behaviours of

the STS and MTS models.

As a general conclusion of this case, one could say that both velocity and Reynolds

shear stress were well predicted by all turbulence models. The rms streamwise normal stress
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(a) velocity profile (b) pressure gradient profile

Figure 5.131: Checking the velocity and pressure gradient profiles for the JSF oscillatory
boundary layer case with the eddy-viscosity models. Models as in Table 3.25.

(a) (b) (c)

Figure 5.132: Prediction of the wall shear stress by the: (a) eddy-viscosity models, (b)
Reynolds stress transport models and (c) multiple-time-scale models in the JSF oscillatory
boundary layer case. Models as in Table 3.25.

component < u2 >1/2 was not captured by any RST model during the cycle and there was

a clear phase shift in the measured data between u′ and the mean velocity which was not

captured by the RST models. The other two components of the fluctuating velocity were

relatively well predicted throughout the cycle and did not show a significant phase shift in

relation to the velocity. That would indicate a “deficiency” in the redistribution mechanism

of the RST models which might then be improved if multiple time scales, such as the large

and small time scales represented in the MTS models, were introduced into the redistribution

process modelling.
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(a) (b) (c) (d)

Figure 5.133: Velocity profile at selected cycle positions in JSF oscillatory boundary layer
case predicted by the eddy-viscosity models and compared with the experiments of Jensen
et al. (1989). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.134: Velocity profile at selected cycle positions in JSF oscillatory boundary layer
case predicted by the Reynolds stress transport models and compared with the experiments
of Jensen et al. (1989). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.135: Velocity profile at selected cycle positions in JSF oscillatory boundary layer case
predicted by the multiple-time-scale models and compared with the experiments of Jensen
et al. (1989). Models as in Table 3.25.
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(a) (b) (c) (d)

Figure 5.136: Reynolds shear stress < uv+ > profile at selected cycle positions in JSF
oscillatory boundary layer case predicted by the eddy-viscosity models and compared with
the experiments of Jensen et al. (1989). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.137: Reynolds shear stress < uv+ > profile at selected cycle positions in JSF oscil-
latory boundary layer case predicted by the Reynolds stress transport models and compared
with the experiments of Jensen et al. (1989). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.138: Reynolds shear stress < uv+ > profile at selected cycle positions in JSF
oscillatory boundary layer case predicted by the multiple-time-scale models and compared
with the experiments of Jensen et al. (1989). Models as in Table 3.25.
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(a) (b) (c) (d)

Figure 5.139: Fluctuating velocity < u+ > at selected cycle positions in JSF oscillatory
boundary layer case predicted by the eddy-viscosity models and compared with the experi-
ments of Jensen et al. (1989). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.140: Fluctuating velocity < u+ > at selected cycle positions in JSF oscillatory
boundary layer case predicted by the Reynolds stress transport models and compared with
the experiments of Jensen et al. (1989). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.141: Fluctuating velocity < u+ > at selected cycle positions in JSF oscillatory
boundary layer case predicted by the multiple-time-scale models and compared with the
experiments of Jensen et al. (1989). Models as in Table 3.25.
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(a) (b) (c) (d)

Figure 5.142: Fluctuating velocity < v+ > at selected cycle positions in JSF oscillatory
boundary layer case predicted by the eddy-viscosity models and compared with the experi-
ments of Jensen et al. (1989). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.143: Fluctuating velocity < v+ > at selected cycle positions in JSF oscillatory
boundary layer case predicted by the Reynolds stress transport models and compared with
the experiments of Jensen et al. (1989). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.144: Fluctuating velocity < v+ > at selected cycle positions in JSF oscillatory
boundary layer case predicted by the multiple-time-scale models and compared with the
experiments of Jensen et al. (1989). Models as in Table 3.25.
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(a) (b) (c) (d)

Figure 5.145: Fluctuating velocity < w+ > at selected cycle positions in JSF oscillatory
boundary layer case predicted by the eddy-viscosity models and compared with the experi-
ments of Jensen et al. (1989). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.146: Fluctuating velocity < w+ > at selected cycle positions in JSF oscillatory
boundary layer case predicted by the Reynolds stress transport models and compared with
the experiments of Jensen et al. (1989). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.147: Fluctuating velocity < w+ > at selected cycle positions in JSF oscillatory
boundary layer case predicted by the multiple-time-scale models and compared with the
experiments of Jensen et al. (1989). Models as in Table 3.25.
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Figure 5.148: Prediction by the eddy-viscosity models of the velocity and Reynolds stresses
at y = 4mm in the JSF oscillatory boundary layer case. Models as in Table 3.25.

Figure 5.149: Prediction by the Reynolds stress transport models of the velocity and Reynolds
stresses at y = 4mm in the JSF oscillatory boundary layer case. Models as in Table 3.25.

Figure 5.150: Prediction by the multiple-time-scale models of the velocity and Reynolds
stresses at y = 4mm in the JSF oscillatory boundary layer case. Models as in Table 3.25.

Figure 5.151: Prediction by the eddy-viscosity models of the velocity and Reynolds stresses
at y = 9mm in the JSF oscillatory boundary layer case. Models as in Table 3.25.
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Figure 5.152: Prediction by the Reynolds stress transport models of the velocity and Reynolds
stresses at y = 9mm in the JSF oscillatory boundary layer case. Models as in Table 3.25.

Figure 5.153: Prediction by the multiple-time-scale models of the velocity and Reynolds
stresses at y = 9mm in the JSF oscillatory boundary layer case. Models as in Table 3.25.

Figure 5.154: Prediction by the eddy-viscosity models of the velocity and Reynolds stresses
at y = 26mm in the JSF oscillatory boundary layer case. Models as in Table 3.25.

Figure 5.155: Prediction by the Reynolds stress transport models of the velocity and Reynolds
stresses at y = 26mm in the JSF oscillatory boundary layer case. Models as in Table 3.25.
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Figure 5.156: Prediction by the multiple-time-scale models of the velocity and Reynolds
stresses at y = 26mm in the JSF oscillatory boundary layer case. Models as in Table 3.25.

Figure 5.157: Prediction by the eddy-viscosity models of the velocity and Reynolds stresses
at y = 65mm in the JSF oscillatory boundary layer case. Models as in Table 3.25.

Figure 5.158: Prediction by the Reynolds stress transport models of the velocity and Reynolds
stresses at y = 65mm in the JSF oscillatory boundary layer case. Models as in Table 3.25.

Figure 5.159: Prediction by the multiple-time-scale models of the velocity and Reynolds
stresses at y = 65mm in the JSF oscillatory boundary layer case. Models as in Table 3.25.
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5.7.2 Oscillatory Pipe Flow

In these cases of oscillatory pipe flows, the time-averaged bulk velocity is non-zero, whilst the

ensemble varies through a periodic function such as sine or cosine around this mean value.

One may look at an example of a bulk velocity variation in Figure 5.160. Depending on the

amplitude, the flow may reverse locally at some points through the cycle.

Figure 5.160: Velocity oscillating over its non-zero time-averaged value

For these oscillatory flows, it has been reported (Scotti and Piomelli, 2001; He and Jack-

son, 2009) that the amplitude does not affect the turbulence response, however the frequency

is known to play an important role regarding the flows’ equilibrium state and therefore its

predictability by turbulence models.

One would expect that at very low or very high frequencies the flow would be closer to

equilibrium. In the former case, the large time-scale, say the period of the flow, should be

higher than the turbulent time-scale, say k
ε , giving the turbulence time to adjust itself to

the mean flow, and thus behave almost as it would in a series of steady state flows as the

cycle progresses. On the other hand, when the frequency is very high, the turbulent time-

scale may be much higher than the large time-scale thus implying a frozen, static turbulence

which would not respond to the oscillations in the main flow. Therefore the most interesting

frequency range to be studied in order to capture non-equilibrium features would be an

intermediate range, where both large and turbulent time-scales interact.

These oscillatory flows are commonly characterized by dimensionless parameters such as

the Strouhal number St and the forcing frequency ω+. The former is defined as St = fL
V

and the latter as ω+ = ων
uτ 2 , where f is the oscillation frequency, L the characteristic length

of the flow, V the time-mean velocity, ω = 2πf the angular frequency of oscillation, ν the

kinematic viscosity and uτ the time-mean friction velocity of the flow. According to Binder

et al. (1995), there is a consensus that ω+ is the most appropriate scaling parameter, since

it is believed that the oscillating shear is confined in the inner layer of the flow.

According to Manna and Vacca (2008), an oscillatory pulsating flow needs three dimen-

sionless parameters to be fully characterized, including the Reynolds number, based on the

bulk velocity, of the flow. The authors also suggest parameters such as Rels =
Uampls

ν ,

Λ =
Uamp
Uref

and η = R
ls

, among other variations of the Strouhal number and the forcing fre-

quency, where ls =
√

2ν
ω is the Stokes layer thickness, Uref is a reference velocity such as the
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bulk velocity or centreline velocity and R is the radius in a pipe flow.

There are several cases of oscillatory pipe flows with non-zero time-averaged bulk velocity

values in the literature and they do present different ranges of frequencies, amplitudes and

Reynolds numbers. The works also use different dimensionless parameters to classify the

flows which sometimes makes them difficult to compare.

Tu and Ramaprian (1983b) argued that the Strouhal number St would not be appropriate

for classifying such oscillating flows and proposed ωD
uτ

as a more appropriate parameter which

they called the turbulent Stokes number and which will be denoted here as ω∗. Indeed, the

Strouhal number seems to be more widely used to rank flows involving separation (Sobey,

1982) and vortex shedding behind cylinders or spheres (Sakamoto and Haniu, 1990). Tu

and Ramaprian (1983b) classified unsteady pipe flows into five frequency regimes, and noted

that their two main experiments, presented in Tu and Ramaprian (1983a), fell into the

intermediate-frequency and high-frequency regimes.

Tardu et al. (1994) indicated the dimensionless parameter l+s = lsuτ
ν as the most appro-

priate which they referred to as Stokes-Reynolds number which is indeed directly correlated

to the forcing frequency since ω+ = 2

l+
2

s

.

Scotti and Piomelli (2001) compared the work of four independent research groups (well

represented by the works of Tu and Ramaprian (1983a), Mao and Hanratty (1986), Tardu

et al. (1994) and Brereton et al. (1990) respectively for the Iowa, Illinois, Grenoble and Stan-

ford groups), listing their forcing frequency ω+, Reynolds number Re and relative amplitude

of the flow Λ. They pointed to the low-frequency (ω+ ≈ 0.001) and the medium frequency

(ω+ ≈ 0.01) ranges as the most interesting regarding non-equilibrium features. The referred

experiments from the mentioned four groups encompassed these ranges, although, according

to Scotti and Piomelli (2001), Tu and Ramaprian (1983a) provided experiments in the low

(ω+ ≈ 0.0057) and very low (ω+ ≈ 0.00079) frequency regimes. However, using the data

reported by Tu and Ramaprian (1983a), their experiments would appear to correspond to

values of ω+ ≈ 0.001 (low-frequency regime) and ω+ ≈ 0.008 (medium-frequency regime),

using the time-mean wall shear stress presented in Figure 9 of their paper to evaluate ω+.

He and Jackson (2009) provided a set of experimental results and also tried to compare the

works of the above mentioned authors. They proposed a dimensionless parameter T ∗ = Tuτ
R

which, in essence, represents the same as the ω∗ parameter proposed by Tu and Ramaprian

(1983b). They concluded that these parameters would be more appropriate to characterize

the outer and core flow while the Stokes-Reynolds number proposed by Tardu et al. (1994) (or

alternatively, the forcing frequency) would be more appropriate for near-wall flows, specially

at high frequencies.

He and Jackson (2009) presented a review of oscillatory flows about a non-zero mean

velocity which, except for some specific issues, unified the previously-reported experiments

and simulations as well as provided an explanation of the mechanisms by which turbulence

is affected by imposed periodic unsteadiness. According to them, the imposed oscillation

generates shear waves at the wall, due to the no-slip condition, which tend to propagate

across the flow, thus affecting the turbulence. At very high frequencies (ω+ > 2), these shear
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waves are confined in the near wall viscous sub-layer (as also stated by Tardu et al. (1994))

and therefore the inner and outer flows are decoupled, and the turbulence in the outer flow is

not affected, and is therefore frozen. As the frequency is reduced and reaches a range where

0.04 ≤ ω+ ≤ 0.2, the outer layer where the turbulence is frozen reduces and turbulence starts

being affected by the pulsation in the mean flow, since the shear waves are no longer confined

in the viscous sub-layer. However the coupling between the inner and outer layers remains

weak. As one keeps reducing the frequency and it reaches a range where 0.01 ≤ ω+ ≤ 0.04,

the outer frozen layer is even smaller, which means the shear waves propagate well beyond the

viscous sublayer, and the coupling between the inner and outer layers becomes stronger. This

corresponds to the intermediate-frequency range in the scale described by He and Jackson

(2009), where a significant response of the turbulence to the mean flow oscillation would be

expected. The frequency can be reduced down to a point where no frozen outer layer exists

any longer, when ωD
uτ
≈ 10. From this frequency down to ωD

uτ
≈ 1, the whole flow feels the

effects of the imposed oscillation and phase lags between production and dissipation as well

as asymmetry between acceleration and deceleration parts of the cycle occur. If the frequency

is even further reduced, the turbulence is then forced to relax to a local time equilibrium,

characterizing the quasi-steady state where the turbulence behaves as in a steady state flow.

This regime would be achieved when ωD
uτ

< 10−1, according to Tu and Ramaprian (1983b).

While Mao and Hanratty (1986), Tardu et al. (1994) and He and Jackson (2009) provided

most of their results in terms of the fluctuating variables amplitude modulations and phase

shifts to the reference velocity oscillation, Brereton et al. (1990) focused on mean quantities

and Tu and Ramaprian (1983a) provided the classical results of velocity and the Reynolds

stresses profiles through the cycle. Therefore, the latter was chosen to be initially reproduced

here. As will be seen in the results and discussion section, the cases of Tu and Ramaprian

(1983a) are apparently either in the too low or too high frequency ranges. Among the ten

test cases performed by He and Jackson (2009), three were then selected to simulate the

intermediate frequency range. In order to allow more detailed comparisons in these cases, S.

He kindly provided more experimental results than those presented in their published work.

Simulated Cases

The cases that have been reproduced here are then the two experimental test cases performed

by Tu and Ramaprian (1983a) and three test cases performed by He and Jackson (2009).

The two experimental test cases of Tu and Ramaprian (1983a) differ in the amplitude

and frequency of the imposed oscillation. One case will be here referred to as TuR05 and the

other as TuR36. Both are fully developed pipe flow cases where the ensemble bulk velocity

was set to vary as < Um >= Um(1 + AUm cos(ωt)), where Um = 1m/s is the time-averaged

bulk velocity, AUm the relative amplitude and ω = 2πf , the frequency in radians. The values

of AUm and f for each case are presented in Table 5.17. As the mean velocity, pipe diameter

and the fluid, water, are the same, the Reynolds number based on the pipe diameter and

time mean velocity of both cases is also the same, Re = DUm
ν = 50000.
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The three selected test cases from He and Jackson (2009) differ in the Reynolds number

and the frequency, all of them presenting the same amplitude which was 20% of the bulk

velocity which was set to vary just as above: < Um >= Um(1 +AUm cos(ωt)). The case with

Re = 7000 and period T = 10s is here referred to as T10RE7A20, the case with Re = 10000

and T = 3s is here referred to as T3RE10A20 and the case with Re = 14000 and T = 3.26s is

here referred to as T3RE14A20. These specifications are also presented in Table 5.17 which

also gives the main dimensionless parameters discussed for all five test cases considered here.

One may notice that according to the forcing frequency ω+, both cases from Tu and

Ramaprian (1983a) could be considered as low-medium frequency cases (as they are generally

referred to in the literature). However, by considering ω∗, and according to the frequency

classification proposed by He and Jackson (2009), the TuR05 case would be in the low-

frequency range while TuR36 would be in the high-frequency range, suggesting the former

to be more interesting from the point of view of non-equilibrium features. However, He and

Jackson (2009) reported the TuR05 case to be close to a quasi-steady flow. The three cases

selected from the work of He and Jackson (2009) give both ω+ and ω∗ in an intermediate

frequency range.

Table 5.17: Relative amplitude and frequency of the TuR05 and TuR36 cases

Case Re AUm f (Hz) St = fD

Um
ω+ = ων

uτ 2 ω∗ = ωD
uτ

TuR05 50000 0.64 0.5 0.025 0.001 3

TuR36 50000 0.15 3.6 0.180 0.008 20

T3RE10A20 10000 0.2 0.33 0.086 0.013 8

T3RE14A20 14000 0.2 0.31 0.057 0.007 6

T10RE7A20 7000 0.2 0.1 0.037 0.008 4

Simulations Setup

As the five cases are fully developed pipe flow cases, a number of simplifications can be made

to reduce the computational requirements. The problem is thus solved as axisymmetric, in a

cylindrical-polar coordinate system, the domain extending from y = 0 to y = R, where R is

the pipe’s radius. The flow is fully developed, meaning flow variables do not change in the

streamwise direction, so a relatively short domain can be employed, with periodic boundary

conditions connecting the east and west faces.

Therefore, the geometry was simply a short rectangle (the length in the streamwise di-

rection does not matter since it is a fully developed flow), where the height is the same as

the radius of the pipe in each experiment, being R = 0.0250m for the cases from Tu and

Ramaprian (1983a) and R = 0.0254m for the cases from He and Jackson (2009).

The north face was set as the pipe wall, the bottom face is the axis where V = 0, uv = 0

and zero gradients are applied to all other variables, and periodic boundary conditions were

set between the east and west faces. In imposing the periodic conditions, a bulk mass flux

correction was applied in order to ensure the correct mass flux through the pipe at each time
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step.

The starting/initial conditions were used from a separate simulation of fully developed

steady pipe flow at the Reynolds numbers indicated in Table 5.17 for each test case.

The grid was planned in order to provide the desired y+ values at the near-wall node

(according to the turbulence model type: for the LRN models, y+ < 1 and for the HRN

models y+ ≈ 30) of a fully developed pipe flow, with the same properties and geometrical

conditions specified by each experiment. The number of control volumes in the y direction

for the grids used in each simulation can be seen in Table 5.18. All grids were further refined

and the results were confirmed to be grid independent.

Table 5.18: Grids used for each oscillatory pipe flow case

number of control volumes in the y direction
Case

HRN models LRN models

TuR05 25 40

TuR36 25 40

T3RE10A20 22 90

T3RE14A20 25 100

T10RE7A20 18 70

In contrast to the JSF case, where the first half of the cycle is symmetric to the second

half, since the mean velocity is zero, in the oscillatory pipe flow cases studied here, one must

examine the whole cycle since the first half represents the decelerating part and the second,

the accelerating one. Tu and Ramaprian (1983a) provided mean velocity and Reynolds

stresses profiles every 45o of the cycle, thus four in the decelerating part and four in the

accelerating part. He and Jackson (2009) provided the amplitude and phase shift of the

turbulent quantities and the velocity across the y direction, that is, along the radius of the

pipe. This is done by fitting the variation of a turbulence quantity by its first harmonic:

< q(t, y) >=< q(y) > [1 +Aq cos(ωt− φq)], where Aq and φq stand for the measured (in the

experiments) and calculated (in the simulations) amplitude and phase shift of the turbulent

quantity q.

The time step of the flow in each case was chosen to provide 40 steps every quarter of

the cycle, thus 160 steps for the whole cycle. A refined time step of half this size was also

tested in order to guarantee the former was small enough to provide accurate results. The

total time of the simulation was set as five times the oscillation period for each case, thus

ensuring the fully periodic state was reached.

Results and Discussion

All five test cases were simulated with all turbulence models presented in Chapter 3. The

results will be discussed by case and a general analysis will be carried out at the end. Tu and

Ramaprian (1983a) provided profiles of the oscillating bulk velocity which can be checked in

Figure 5.161 for the eddy-viscosity models ensuring the simulations set up were in agreement

with experiments.
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(a) Tu&R05 case (b) Tu&R36 case

Figure 5.161: Prediction of the velocity throughout the cycle by the eddy-viscosity models
and compared with the experiments of Tu and Ramaprian (1983a). Models as in Table 3.25.

TuR05 Case The predictions of the wall shear stress are presented in Figure 5.162, in the

form of −<τw>
ρU2

m
× 103. One may notice that the models generally either fit the extremes of

the cycle (early decelerating and late accelerating parts) or they fit the mid-part of the cycle.

It is clear that the HRN schemes tend to fit the extremes better and underpredict < τw > in

the middle of the cycle, while the LRN models predict < τw > well in the middle of the cycle,

but overpredict the peak and underpredict the minimum values. The exception for this is

the FM model which performs similarly to the HRN standard k− ε model. It is also of value

to notice that the wall shear stress is in phase with the bulk velocity and this is captured by

all models.

Before looking at the predictions at specific times of the cycle, it is worth looking at

some time-histories through the cycle at specific radial positions. Tu and Ramaprian (1983a)

provided, for the TuR05 case, the histories of the rms streamwise normal Reynolds stress

< u2 >1/2, normalized by the time-mean velocity Um, at three radial positions ( yR = 0.07,
y
R = 0.25 and y

R = 0.95, y being distance from the wall) and the histories of the Reynolds shear

stress < uv >, normalized by the time-mean velocity squared, U2
m, at two radial positions

( yR = 0.07 and y
R = 0.63).

In Figures 5.163 and 5.164, one can see the history of the Reynolds shear stress <uv>
U2
m
×103

at y
R = 0.07 and y

R = 0.63 respectively. Clearly, the models provide better prediction closer to

the wall ( yR = 0.07) than far from it ( yR = 0.63). At y
R = 0.07, all models predict the middle

of the cycle reasonably well. One may notice though that all turbulence models presented

are aligned in phase in predicting the minimum of < uv >. On the other hand, the profile

of the Reynolds shear stress at y
R = 0.63 was not captured by any turbulence model. The

models provide profiles which do not match either the amplitude or the position of the peak.

The phase shift between <uv>
U2
m
× 103 and the bulk velocity also increases as one moves away

from the wall: ≈ 45o at y
R = 0.07 and ≈ 130o at y

R = 0.63.

In Figures 5.165, 5.166 and 5.167, one can see the histories of the rms streamwise normal

Reynolds stress <u2>1/2

Um
at y

R = 0.07, y
R = 0.25 and y

R = 0.95 respectively. One may notice

that the oscillation near the wall is much stronger than far from it and that no turbulence
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model was able to follow the whole behaviour of this quantity. At the furthest position

from the wall, no model was able to follow the experiments’ trend. One may also notice, by

comparing the peaks in the decelerating part, that the experiments show a lag between the

peak <u2>1/2

Um
and bulk velocity values that becomes larger as one moves further away from

the wall: ≈ 45o at y
R = 0.07, ≈ 90o at y

R = 0.25 and ≈ 150o at y
R = 0.95. From these values,

one could also say that <u2>1/2

Um
and <uv>

U2
m

seem to be in phase close to the wall. The models

show the same qualitative trend, but the lag is underpredicted at each location.

Tu and Ramaprian (1983a) provided radial profiles of velocity, rms of the shear stress

and rms of the streamwise fluctuating velocity varying along the y direction every 45o of the

cycle. Comparisons here show the profiles at ωt = 45o, ωt = 135o, ωt = 225o and ωt = 135o;

the first two positions representing the decelerating part of the cycle and the last two, the

accelerating part, since the bulk velocity varied as a cosine function.

Velocity profiles at different times through the cycle, plotted in outer and wall coordinates,

are presented in Figures 5.168 to 5.170. One can see that the velocity profiles are well captured

by all turbulence models.

The prediction of the Reynolds shear stress <uv>
U2
m
× 103 is presented in Figures 5.171 to

5.173. One may notice that none of the models were able to correctly predict the profile of

this quantity at every cycle position, however, apart from the LS, KS, HJ and TC which are

overpredicting too much in the beginning of the decelerating part, the other models can be

considered as providing reasonable results.

The prediction of the rms streamwise normal Reynolds stress <u2>1/2

Um
is presented in

Figures 5.174 to 5.176. One may notice that among the models presented, most of them

provide predictions close to experiments, however not fully following their trend. One can

see that the turbulence intensity decreases while the flow is being decelerated and that the

near wall peak vanishes in the first part of the acceleration phase, where the GL model

performed best.

TuR36 Case With regard to the wall shear stress, presented in Figure 5.177, one may

notice a kink in the measured data at around ωt = 120o which could not be explained by Tu

and Ramaprian (1983a) and that was not present in the TuR05 case. However they argued

that the measurements were repeated, assuring accuracy, and the presence of the kink was

confirmed. One may notice that none of the turbulence models was able to predict this kink;

instead all predictions of the wall shear stress simply followed the bulk velocity cosine curve.

The time-histories of the Reynolds shear stress <uv>
U2
m

at y
R = 0.07 and at y

R = 0.79

are presented in Figures 5.178 and 5.179 respectively. One may notice that none of the

turbulence models are able to follow the experimental data, which shows a significantly

stronger oscillation than the predictions. Further from the wall, at y
R = 0.79, the turbulence

models predict almost no oscillation, while the experiments still show the influence of the

periodicity. One may also notice that at the same position in the cycle where the kink in wall

shear stress occurred, there is a kink in the measured Reynolds shear stress. This was also

noticed by Tu and Ramaprian (1983a) who used this information to argue for the consistency
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of their experiments. Again, none of the turbulence models were able to predict this. It could

be that the kink is a result of the strong oscillations in the shear stress, not captured by the

models. Despite the kink in <uv>
U2
m

at y
R = 0.07, this quantity is clearly shifted from the bulk

velocity by ≈ 45o in this position, which puts it in phase with <u2>1/2

Um
at this same position,

and shows a ≈ 90o shift at y
R = 0.79. It is not possible to determine if the measured <u2>1/2

Um

and <uv>
U2
m

remain in phase as one moves towards the centre of the pipe, since the time-histories

for these quantities are given at different radial positions from the wall. Compared to the

TuR05 case, the phase shift of <uv>
U2
m

from the bulk velocity increased to ≈ 90o at y
R = 0.07

and to ≈ 240o at y
R = 0.22. At y

R = 0.98, <uv>
U2
m

seems not to oscillate any more.

The time-histories of <u2>1/2

Um
at y

R = 0.07, y
R = 0.22 and y

R = 0.98 are presented in

Figures 5.180, 5.181 and 5.182 respectively. One may notice that the HJ model best predicts

this quantity at y
R = 0.07 and y

R = 0.22. At y
R = 0.98, the SG model performed best together

with the NG model which, as a LEV model, is indeed predicting 2
3k. One may notice that

the prediction of the rms streamwise normal Reynolds stress <u2>1/2

Um
by these models seems

to be in phase with the experiments.

The velocity profiles at different phase angles can be seen in Figures 5.183 to 5.185. Again,

the profiles are shown at ωt = 45o, ωt = 135o, ωt = 225o and ωt = 135o. One may notice

that, overall, all turbulence models predicted the velocity profiles quite well.

The profiles of the Reynolds shear stress at different phase angles can be seen in Figures

5.186 to 5.188. One may notice that all turbulence models predicted basically the same profile

for all phase angles, although this is only seen from ωt = 45o to ωt = 135o in the experiments.

This results in a generally poor prediction of <uv>
U2
m

by all models.

Profiles of the streamwise normal Reynolds stress at different phase angles can be seen

in Figures 5.189 to 5.191. The experimental data, as well as the prediction of the turbulence

models, barely change during the decelerating and accelerating parts, although from one part

to the other the intensity does clearly change. In the decelerating part, the NLEV and RST

models are able to predict <u2>1/2

Um
reasonably well, while the LEV models underpredict it,

as expected. In the accelerating part the measured intensity of the normal Reynolds stress

decreases and the RST models are not able to follow it, remaining at the same levels as in

the decelerating part. The same occurs for the LEV models which then fit the experimental

data, although this is purely due to their earlier underprediction.

This frozen behaviour shown for the Reynolds stresses marks a clear and strong difference

between the TuR05 and TuR36 cases. The latter case might, therefore, be classified as a

high-frequency case. However, oscillation in the Reynolds shear stress could still be seen up

to y
R = 0.79 as shown in Figure 5.179. Nevertheless, both STS and MTS models tend to

show a frozen turbulence state through the cycle, except in the near-wall region.

The next cases which will be evaluated are those of He and Jackson (2009) whose exper-

iments were carried out in intermediate frequency ranges.

T3RE10A20 Case According to the values of ω+ and ω∗ presented in Table 5.17, this is

a case with an intermediate frequency, where one would expect more interaction between the

228



5.7. Oscillatory Flows

mean and turbulence scales than in the previous two cases. It would thus be a case where

one would expect more effects on the turbulence caused by the imposed oscillation. Starting

by evaluating the prediction of the amplitudes, presented in Figures 5.192 to 5.195, one can

say that the amplitude of the velocity, in Figure 5.192, is reasonably well predicted by all

models, except by the WM model close to the centre of the pipe. The GL and SG models

seemed to be more affected by the use of a wall function, since their prediction in the near

wall region was underpredicting the experimental data. On the other hand, the LS and KS

models tended to overpredict the amplitude of the velocity in this region. As a whole, the

LEV MTS models provided good predictions of the amplitude of velocity.

The amplitude of the Reynolds shear stress in Figure 5.193 was not so well predicted by

all models. Most models tended to either capture the amplitude near the centre of the pipe

or near the wall. The WM model did not provide a good prediction, but the other LEV MTS

models did return acceptable predictions, the KC and TS models perhaps performing better

than all other models.

The amplitude of the rms streamwise and wall-normal fluctuating velocities, respectively

in Figures 5.194 and 5.195 are not expected to be captured by the LEV models and, as

expected, these models underpredicted the former and were about the correct values for the

latter. The model which best predicted these two quantities was the HJ model, however it

overpredicted the amplitude of the Reynolds shear stress.

The prediction of the phase shift of the velocity is presented in Figure 5.196. One may

notice that no model was able to capture the whole profile, since they would either correctly

predict the centre of the pipe and overpredict the region closer to the wall (r/R ≈ 0.6 - 0.8)

or vice-versa. The KS, LS, HJ and WM models correctly predicted the shift at the centre

while the other models correctly predicted the phase shift in the region closer to the wall.

The phase shift of the Reynolds shear stress, presented in Figure 5.197, was best predicted

by the TS and WM models, although the latter deviated from the experimental data very

close to the centre of the pipe. One can also notice the influence of the wall function in

the HRN models’ predictions, since in the near-wall region they all present the same rather

abrupt decrease in phase shift. The HJ model also performed reasonably well while the other

models failed to provide good predictions.

The phase shift of the rms streamwise and wall-normal fluctuating velocities, presented

in Figures 5.198 and 5.199, was also best predicted by the HJ model. In spite of being a LEV

model, the NG model also captured well the phase shift of u′ which might indicate its good

prediction in terms of phase shift of the turbulent kinetic energy, however no experimental

data for this quantity was provided in the work of He and Jackson (2009).

T3RE14A20 Case This case has an absolute frequency very close to the previous case,

as can be seen in Table 5.17, however, as the Reynolds number is higher, its dimensionless

frequencies ω+ and ω∗ are lower, slightly above those in the Tu&R05 case.

The prediction of the velocity amplitude is presented in Figure 5.200 where clearly the

LS, KS, HJ and TS models provided the best results. However, apart from the FM and WM
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models, all other models provided reasonable results too. On the other hand, the amplitude

of the shear stress, presented in Figure 5.201, was best predicted by the HR, FM, SG, GL

and MTS LEV models.

The amplitude of the rms of the streamwise fluctuating velocity u′, presented in Figure

5.202, was not fully captured by any model, the HJ and TC providing the closest results to

the experiments. The same can be said of the amplitude of the rms wall-normal fluctuating

velocity v′ and it is worth noticing that no model predicted the decay of the v′ amplitude in

the near-wall region.

The velocity phase shift, presented in Figure 5.204, was well predicted by all models,

except the CG model which tended to overpredict this quantity in the centre of the pipe.

The LS, KS, HJ, TS and WM models best predicted the phase shift of the shear stress,

presented in Figure 5.205. Although the other models tended to underpredict this phase

shift, they provided reasonable results.

All STS RST models provided equally reasonable results for the prediction of the phase

shift of the rms of the normal fluctuating velocities u′ and v′, presented in Figures 5.206

and 5.207 respectively. Most LEV models, including the MTS models, also provided good

predictions for the phase shift of the rms Reynolds normal stresses which might indicate their

reasonable prediction of the phase shift of the turbulent kinetic energy.

T10RE7A20 Case This last case has the lowest Reynolds number and absolute frequency.

Its resulting dimensionless frequencies ω+ and ω∗ are the lowest among the test cases selected

from He and Jackson (2009), as can be seen in Table 5.17 being close to those of the Tu&R05

case.

The amplitude of the velocity, presented in Figure 5.208, was best predicted by the TS

model, followed by the HR model. Most models tended to overpredict this quantity in the

region close to the centre of the pipe.

The amplitude of the shear stress, presented in Figure 5.209 was best predicted by the

FM and NG models. The influence of the wall function can be noticed in the near-wall

peak prediction of these quantities by the HRN models. This is expected since the Reynolds

number of this flow is rather low. Consistent with this observation, the two models which

best performed here are LRN models.

The SG and GL models best predicted the amplitude of the normal rms Reynolds stress in

Figures 5.210 and 5.211. Again, one could expect the LEV MTS models to predict reasonably

the amplitude of the turbulent kinetic energy.

The phase shift of the velocity, presented in Figure 5.212, was best predicted by the

TC and NG models, again LRN formulations. The same can be said of the prediction of

the phase shift of the Reynolds shear stress, presented in Figure 5.213, however the WM

model also performed well here. These three models also provided the best prediction of the

rms streamwise and wall-normal fluctuating velocities, presented in Figures 5.214 and 5.215

respectively.

By comparing the three simulated cases of He and Jackson (2009), one may notice that the
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case where the turbulence models perfomed best was the T3RE14A20, where the Reynolds

number of the flow is the highest and the dimensionless frequencies are still in the intermediate

frequency range, but probably towards the lower end of this range. The high Reynolds number

of this flow means the influence of the wall function may be less than in the T10RE7A20

and T3RE10A20 cases where its effect on the near-wall behaviour was rather noticeable. In

this sense, the HRN models might not be appropriate to run the T10RE7A20 case. The

T3RE10A20 case, which represents a truly intermediate-frequency case, also has a rather low

Reynolds number which does not allow one to judge definitively whether the HRN models

do not perform well because of the wall function influence or due to intrinsic modelling

limitations.

By comparing the cases from Tu and Ramaprian (1983a) and He and Jackson (2009), one

could say that, despite the different form of presenting the results used by the authors making

it rather difficult to compare the results, the models seemed to give better results in the latter

cases. In the cases of Tu and Ramaprian (1983a), all models performed very similarly not

allowing one to distinguish their features. That would again confirm the hypothesis of these

cases being in the extremes of the frequency range which characterizes the interaction between

the mean flow and the turbulence. On the other hand, the cases of He and Jackson (2009)

presented a relatively low Reynolds number, possibly clouding any conclusions regarding the

performance of the HRN turbulence models which were used together with wall functions.

By comparing the JSF oscillatory boundary layer case with the oscillatory pipe flow cases,

one may notice that the turbulence models performed clearly better in the former, although

there is still space for improvements. In the oscillatory boundary layer case, one could see the

same phenomena observed in the adverse pressure gradient boundary layer cases in which the

turbulence models, except the FM and WM, could not follow the subtle changes shown in the

experiments. These two models did not follow the subtle changes shown in the experiments

of Jensen et al. (1989) though.

Generally speaking, the RST models performed best in these oscillatory flows, however,

given the limitation of linear-eddy-viscosity schemes, one could say that the MTS models

did perform well too, usually providing better results than the single-time-scale LEV models.

Thereby, these cases also indicate the potential of MTS models in predicting non-equilibrium

flows.
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Figure 5.162: Prediction of the wall shear stress throughout the cycle by the (a) eddy-
viscosity models, (b) Reynolds stress transport models and (c) multiple-time-scale models
and compared with the experiments of Tu and Ramaprian (1983a) in the Tu&R05 oscillatory
pipe flow case. Models as in Table 3.25.

Figure 5.163: Prediction of the Reynolds shear stress at y/R = 0.07 throughout the cycle
by the (a) eddy-viscosity models, (b) Reynolds stress transport models and (c) multiple-
time-scale models and compared with the experiments of Tu and Ramaprian (1983a) in the
Tu&R05 oscillatory pipe flow case. Models as in Table 3.25.

Figure 5.164: Prediction of the Reynolds shear stress at y/R = 0.63 throughout the cycle
by the (a) eddy-viscosity models, (b) Reynolds stress transport models and (c) multiple-
time-scale models and compared with the experiments of Tu and Ramaprian (1983a) in the
Tu&R05 oscillatory pipe flow case. Models as in Table 3.25.
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Figure 5.165: Prediction of the rms streamwise fluctuating velocity at y/R = 0.07 throughout
the cycle by the (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models and compared with the experiments of Tu and Ramaprian (1983a)
in the Tu&R05 oscillatory pipe flow case. Models as in Table 3.25.

Figure 5.166: Prediction of the rms streamwise fluctuating velocity at y/R = 0.25 throughout
the cycle by the (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models and compared with the experiments of Tu and Ramaprian (1983a)
in the Tu&R05 oscillatory pipe flow case. Models as in Table 3.25.

Figure 5.167: Prediction of the rms streamwise fluctuating velocity at y/R = 0.95 throughout
the cycle by the (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models and compared with the experiments of Tu and Ramaprian (1983a)
in the Tu&R05 oscillatory pipe flow case. Models as in Table 3.25.
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(a) (b) (c) (d)

Figure 5.168: Velocity profile at selected cycle positions in the Tu&R05 oscillatory pipe flow
case predicted by the eddy-viscosity models and compared with the experiments of Tu and
Ramaprian (1983a). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.169: Velocity profile at selected cycle positions in the Tu&R05 oscillatory pipe flow
case predicted by the Reynolds stress transport models and compared with the experiments
of Tu and Ramaprian (1983a). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.170: Velocity profile at selected cycle positions in the Tu&R05 oscillatory pipe flow
case predicted by the multiple-time-scale models and compared with the experiments of Tu
and Ramaprian (1983a). Models as in Table 3.25.
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(a) (b) (c) (d)

Figure 5.171: Reynolds shear stress profile at selected cycle positions in the Tu&R05 oscilla-
tory pipe flow case predicted by the eddy-viscosity models and compared with the experiments
of Tu and Ramaprian (1983a). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.172: Reynolds shear stress profile at selected cycle positions in the Tu&R05 oscil-
latory pipe flow case predicted by the Reynolds stress transport models and compared with
the experiments of Tu and Ramaprian (1983a). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.173: Reynolds shear stress profile at selected cycle positions in the Tu&R05 oscil-
latory pipe flow case predicted by the multiple-time-scale models and compared with the
experiments of Tu and Ramaprian (1983a). Models as in Table 3.25.
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(a) (b) (c) (d)

Figure 5.174: Rms streamwise fluctuating velocity profile at selected cycle positions in the
Tu&R05 oscillatory pipe flow case predicted by the eddy-viscosity models and compared with
the experiments of Tu and Ramaprian (1983a). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.175: Rms streamwise fluctuating velocity profile at selected cycle positions in the
Tu&R05 oscillatory pipe flow case predicted by the Reynolds stress transport models and
compared with the experiments of Tu and Ramaprian (1983a). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.176: Rms Streamwise fluctuating velocity profile at selected cycle positions in the
Tu&R05 oscillatory pipe flow case predicted by the multiple-time-scale models and compared
with the experiments of Tu and Ramaprian (1983a). Models as in Table 3.25.

236



5.7. Oscillatory Flows

Figure 5.177: Prediction of the wall shear stress throughout the cycle by the (a) eddy-
viscosity models, (b) Reynolds stress transport models and (c) multiple-time-scale models
and compared with the experiments of Tu and Ramaprian (1983a) in the Tu&R36 oscillatory
pipe flow case. Models as in Table 3.25.

Figure 5.178: Prediction of the Reynolds shear stress at y/R = 0.07 throughout the cycle
by the (a) eddy-viscosity models, (b) Reynolds stress transport models and (c) multiple-
time-scale models and compared with the experiments of Tu and Ramaprian (1983a) in the
Tu&R36 oscillatory pipe flow case. Models as in Table 3.25.

Figure 5.179: Prediction of the Reynolds shear stress at y/R = 0.79 throughout the cycle
by the (a) eddy-viscosity models, (b) Reynolds stress transport models and (c) multiple-
time-scale models and compared with the experiments of Tu and Ramaprian (1983a) in the
Tu&R36 oscillatory pipe flow case. Models as in Table 3.25.
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Figure 5.180: Prediction of the rms streamwise fluctuating velocity at y/R = 0.07 throughout
the cycle by the (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models and compared with the experiments of Tu and Ramaprian (1983a)
in the Tu&R36 oscillatory pipe flow case. Models as in Table 3.25.

Figure 5.181: Prediction of the rms streamwise fluctuating velocity at y/R = 0.22 throughout
the cycle by the (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models and compared with the experiments of Tu and Ramaprian (1983a)
in the Tu&R36 oscillatory pipe flow case. Models as in Table 3.25.

Figure 5.182: Prediction of the rms streamwise fluctuating velocity at y/R = 0.98 throughout
the cycle by the (a) eddy-viscosity models, (b) Reynolds stress transport models and (c)
multiple-time-scale models and compared with the experiments of Tu and Ramaprian (1983a)
in the Tu&R36 oscillatory pipe flow case. Models as in Table 3.25.
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(a) (b) (c) (d)

Figure 5.183: Velocity profile at selected cycle positions in the Tu&R36 oscillatory pipe flow
case predicted by the eddy-viscosity models and compared with the experiments of Tu and
Ramaprian (1983a). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.184: Velocity profile at selected cycle positions in the Tu&R36 oscillatory pipe flow
case predicted by the Reynolds stress transport models and compared with the experiments
of Tu and Ramaprian (1983a). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.185: Velocity profile at selected cycle positions in the Tu&R36 oscillatory pipe flow
case predicted by the multiple-time-scale models and compared with the experiments of Tu
and Ramaprian (1983a). Models as in Table 3.25.
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(a) (b) (c) (d)

Figure 5.186: Reynolds shear stress profile at selected cycle positions in the Tu&R36 oscilla-
tory pipe flow case predicted by the eddy-viscosity models and compared with the experiments
of Tu and Ramaprian (1983a). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.187: Reynolds shear stress profile at selected cycle positions in the Tu&R36 oscil-
latory pipe flow case predicted by the Reynolds stress transport models and compared with
the experiments of Tu and Ramaprian (1983a). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.188: Reynolds shear stress profile at selected cycle positions in the Tu&R36 oscil-
latory pipe flow case predicted by the multiple-time-scale models and compared with the
experiments of Tu and Ramaprian (1983a). Models as in Table 3.25.
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(a) (b) (c) (d)

Figure 5.189: Rms streamwise fluctuating velocity profile at selected cycle positions in the
Tu&R36 oscillatory pipe flow case predicted by the eddy-viscosity models and compared with
the experiments of Tu and Ramaprian (1983a). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.190: Rms streamwise fluctuating velocity profile at selected cycle positions in the
Tu&R36 oscillatory pipe flow case predicted by the Reynolds stress transport models and
compared with the experiments of Tu and Ramaprian (1983a). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.191: Rms streamwise fluctuating velocity profile at selected cycle positions in the
Tu&R36 oscillatory pipe flow case predicted by the multiple-time-scale models and compared
with the experiments of Tu and Ramaprian (1983a). Models as in Table 3.25.
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(a) (b) (c)

Figure 5.192: Prediction of the amplitude of velocity for the T3RE10A20 oscillatory pipe flow
by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c) multiple-time-
scale models and compared with the experiments of He and Jackson (2009). Models as in
Table 3.25.

(a) (b) (c)

Figure 5.193: Prediction of the amplitude of Reynolds shear stress for the T3RE10A20 os-
cillatory pipe flow by the: (a) eddy-viscosity models, (b) Reynolds stress transport models
and (c) multiple-time-scale models and compared with the experiments of He and Jackson
(2009). Models as in Table 3.25.

(a) (b) (c)

Figure 5.194: Prediction of the amplitude of rms streamwise fluctuating velocity for the
T3RE10A20 oscillatory pipe flow by the: (a) eddy-viscosity models, (b) Reynolds stress
transport models and (c) multiple-time-scale models and compared with the experiments of
He and Jackson (2009). Models as in Table 3.25.
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(a) (b) (c)

Figure 5.195: Prediction of the amplitude of rms wall-normal fluctuating velocity for the
T3RE10A20 oscillatory pipe flow by the: (a) eddy-viscosity models, (b) Reynolds stress
transport models and (c) multiple-time-scale models and compared with the experiments of
He and Jackson (2009). Models as in Table 3.25.

(a) (b) (c)

Figure 5.196: Prediction of the phase shift of velocity for the T3RE10A20 oscillatory pipe
flow by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c) multiple-
time-scale models and compared with the experiments of He and Jackson (2009). Models as
in Table 3.25.

(a) (b) (c)

Figure 5.197: Prediction of the phase shift of Reynolds shear stress for the T3RE10A20
oscillatory pipe flow by the: (a) eddy-viscosity models, (b) Reynolds stress transport models
and (c) multiple-time-scale models and compared with the experiments of He and Jackson
(2009). Models as in Table 3.25.
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(a) (b) (c)

Figure 5.198: Prediction of the phase shift of rms streamwise fluctuating velocity for the
T3RE10A20 oscillatory pipe flow by the: (a) eddy-viscosity models, (b) Reynolds stress
transport models and (c) multiple-time-scale models and compared with the experiments of
He and Jackson (2009). Models as in Table 3.25.

(a) (b) (c)

Figure 5.199: Prediction of the phase shift of rms wall-normal fluctuating velocity for the
T3RE10A20 oscillatory pipe flow by the: (a) eddy-viscosity models, (b) Reynolds stress
transport models and (c) multiple-time-scale models and compared with the experiments of
He and Jackson (2009). Models as in Table 3.25.

(a) (b) (c)

Figure 5.200: Prediction of the amplitude of velocity for the T3RE14A20 oscillatory pipe flow
by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c) multiple-time-
scale models and compared with the experiments of He and Jackson (2009). Models as in
Table 3.25.
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(a) (b) (c)

Figure 5.201: Prediction of the amplitude of Reynolds shear stress for the T3RE14A20 os-
cillatory pipe flow by the: (a) eddy-viscosity models, (b) Reynolds stress transport models
and (c) multiple-time-scale models and compared with the experiments of He and Jackson
(2009). Models as in Table 3.25.

(a) (b) (c)

Figure 5.202: Prediction of the amplitude of rms streamwise fluctuating velocity for the
T3RE14A20 oscillatory pipe flow by the: (a) eddy-viscosity models, (b) Reynolds stress
transport models and (c) multiple-time-scale models and compared with the experiments of
He and Jackson (2009). Models as in Table 3.25.

(a) (b) (c)

Figure 5.203: Prediction of the amplitude of rms wall-normal fluctuating velocity for the
T3RE14A20 oscillatory pipe flow by the: (a) eddy-viscosity models, (b) Reynolds stress
transport models and (c) multiple-time-scale models and compared with the experiments of
He and Jackson (2009). Models as in Table 3.25.
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(a) (b) (c)

Figure 5.204: Prediction of the phase shift of velocity for the T3RE14A20 oscillatory pipe
flow by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c) multiple-
time-scale models and compared with the experiments of He and Jackson (2009). Models as
in Table 3.25.

(a) (b) (c)

Figure 5.205: Prediction of the phase shift of Reynolds shear stress for the T3RE14A20
oscillatory pipe flow by the: (a) eddy-viscosity models, (b) Reynolds stress transport models
and (c) multiple-time-scale models and compared with the experiments of He and Jackson
(2009). Models as in Table 3.25.

(a) (b) (c)

Figure 5.206: Prediction of the phase shift of rms streamwise fluctuating velocity for the
T3RE14A20 oscillatory pipe flow by the: (a) eddy-viscosity models, (b) Reynolds stress
transport models and (c) multiple-time-scale models and compared with the experiments of
He and Jackson (2009). Models as in Table 3.25.
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(a) (b) (c)

Figure 5.207: Prediction of the phase shift of rms wall-normal fluctuating velocity for the
T3RE14A20 oscillatory pipe flow by the: (a) eddy-viscosity models, (b) Reynolds stress
transport models and (c) multiple-time-scale models and compared with the experiments of
He and Jackson (2009). Models as in Table 3.25.

(a) (b) (c)

Figure 5.208: Prediction of the amplitude of velocity for the T10RE7A20 oscillatory pipe flow
by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c) multiple-time-
scale models and compared with the experiments of He and Jackson (2009). Models as in
Table 3.25.

(a) (b) (c)

Figure 5.209: Prediction of the amplitude of Reynolds shear stress for the T10RE7A20 os-
cillatory pipe flow by the: (a) eddy-viscosity models, (b) Reynolds stress transport models
and (c) multiple-time-scale models and compared with the experiments of He and Jackson
(2009). Models as in Table 3.25.
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(a) (b) (c)

Figure 5.210: Prediction of the amplitude of rms streamwise fluctuating velocity for the
T10RE7A20 oscillatory pipe flow by the: (a) eddy-viscosity models, (b) Reynolds stress
transport models and (c) multiple-time-scale models and compared with the experiments of
He and Jackson (2009). Models as in Table 3.25.

(a) (b) (c)

Figure 5.211: Prediction of the amplitude of rms wall-normal fluctuating velocity for the
T10RE7A20 oscillatory pipe flow by the: (a) eddy-viscosity models, (b) Reynolds stress
transport models and (c) multiple-time-scale models and compared with the experiments of
He and Jackson (2009). Models as in Table 3.25.

(a) (b) (c)

Figure 5.212: Prediction of the phase shift of velocity for the T10RE7A20 oscillatory pipe
flow by the: (a) eddy-viscosity models, (b) Reynolds stress transport models and (c) multiple-
time-scale models and compared with the experiments of He and Jackson (2009). Models as
in Table 3.25.
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(a) (b) (c)

Figure 5.213: Prediction of the phase shift of Reynolds shear stress for the T10RE7A20
oscillatory pipe flow by the: (a) eddy-viscosity models, (b) Reynolds stress transport models
and (c) multiple-time-scale models and compared with the experiments of He and Jackson
(2009). Models as in Table 3.25.

(a) (b) (c)

Figure 5.214: Prediction of the phase shift of rms streamwise fluctuating velocity for the
T10RE7A20 oscillatory pipe flow by the: (a) eddy-viscosity models, (b) Reynolds stress
transport models and (c) multiple-time-scale models and compared with the experiments of
He and Jackson (2009). Models as in Table 3.25.

(a) (b) (c)

Figure 5.215: Prediction of the phase shift of rms wall-normal fluctuating velocity for the
T10RE7A20 oscillatory pipe flow by the: (a) eddy-viscosity models, (b) Reynolds stress
transport models and (c) multiple-time-scale models and compared with the experiments of
He and Jackson (2009). Models as in Table 3.25.
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5.8 Fully Developed Ramp Up Pipe Flow

This case again consists of an unsteady pipe flow, however the unsteadiness is not oscillatory,

but monotonic. The bulk velocity of a fully developed pipe flow is set to increase or decrease

linearly in time, characterized by a ramp profile. If the bulk velocity is increased in time, it

is a ramp up flow; if the velocity decreases in time, it is a ramp down flow.

It was noted by He and Jackson (2000) that, in contrast to oscillatory pipe flows, non-

periodic transient pipe flows, such as this one, have not been so widely explored experimen-

tally. Nevertheless, this case is interesting as it features non-equilibrium effects which can

be seen by the lag in time the turbulent quantities such as the turbulent kinetic energy and

the Reynolds stresses need to respond to the imposed change in the bulk velocity, specially

in regions further away from the wall. As noted by He and Jackson (2000), similarly to

oscillatory pipe flows, the turbulent quantities start to respond to the imposed unsteadiness

at the wall and then propagate its effects outwards into the flow up to its centre, as one will

be able to see in the results, where the experimental data will be presented together with the

predictions of the turbulent models.

While in oscillatory flows the frequency determines the lag in response and how much effect

the turbulence will experience, in these ramp flows, the rate of acceleration and deceleration

can play this role. However, it was noted that in accelerating flows, the influence of the

acceleration rate becomes active only at very high rates. It was also observed by He and

Jackson (2000) that for the same absolute slope in the ramp function, the turbulence needs

more time to respond to the changing bulk velocity when the flow is accelerating compared to

when it is decelerating. Another parameter which was identified by He and Jackson (2000) in

influencing the lag in response of the turbulent quantities was the initial level of turbulence,

say the initial Reynolds number of the flow. The lower the initial Reynolds number in an

accelerating flow, the longer the turbulent quantities take to respond to the imposed change

in the bulk velocity, thus implying a longer delay.

He and Jackson (2000) also studied the departure of the velocity and turbulent quantities

profiles from the correspondent steady case at each Reynolds number of the flow. It was

noticed that if the rate of acceleration was very slow, the variables profiles at each Reynolds

number would be close to the steady state profile at the same Reynolds number. As the

rate of acceleration increased, the profiles differed more from the corresponding steady state

ones. The low acceleration rate cases could be then compared with the low frequency cases

in oscillatory pipe flows. In order to identify how far from a series of steady states the ramp

case would be, He and Jackson (2000) defined a parameter γ = D
Uτ0

1
Ub0

dUb
dt , where D is the

pipe diameter, Uτ0 is the initial friction velocity, Ub0 is the initial bulk velocity of the flow

and dUb
dt is the acceleration/deceleration rate. If γ is much less than 1, the flow is close to the

steady state. The greater than unity this parameter is, the more different from the steady

state the profiles of the turbulent quantities will be.

Based on the tests mentioned above, He and Jackson (2000) proposed a mechanism

through which the unsteadiness imposed on the bulk velocity would propagate from the
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near-wall region towards the centre of the pipe: due to the no-slip condition at the wall,

the velocity gradients would increase in this region due to the change in the bulk velocity;

that would than generate an increase in the turbulent kinetic energy production which would

increase the axial component of the fluctuating velocity. Then, in a region further away from

the wall, this axial component of the fluctuating velocity breaks up and turbulent kinetic

energy is redistributed through pressure strain to the other components of the fluctuating

velocity. That is when the shear stress starts to respond to the unsteadiness too. As the

first region to be affected by the unsteadiness in the mean flow is the near wall region, where

viscous effects dominates the transfer processes, a lag in the response of the turbulence might

be expected, since the molecular diffusion is rather slow there.

These mechanisms of turbulence propagation are more likely to be reproduced by the

RST models which model the energy redistribution process, however, when discussing the

results, it will be assessed if the STS and MTS eddy-viscosity models are able to show part

of the turbulence response behaviour through the prediction of the turbulent kinetic energy

and shear stress.

5.8.1 Simulated Case

The experimental work of He and Jackson (2000), mentioned above, was used to set up a

test case here. He and Jackson (2000) ran 10 ramp up and 9 ramp down fully developed pipe

flows tests. Their cases explored different acceleration and deceleration rates as well as the

initial Reynolds number of the flow. The main conclusions about these features were noted

above. The case that was chosen to be reproduced here, in order to assess the performance of

the turbulence models is their second ramp-up case where the Reynolds number of the flow,

based on the bulk velocity and pipe diameter, was linearly increased from 7000 to 45200 over

a period of 5 seconds with γ = 6.1. Considering the diameter of pipe and that the flow used

for the experiments was water, that implied an increase in the bulk velocity from 0.138m/s

to 0.891m/s in 5s. This is the only case for which time histories of all turbulence quantities,

except the eddy-dissipation rate, were provided at four radial locations.

5.8.2 Simulations Setup

The set-up was the same as in the previous unsteady fully developed pipe flow simulations,

the domain varying from y = 0 to y = R, where R = 0.0254m is the pipe’s radius.

The grid was planned in order to provide y+ < 1 for the LRN models and y+ ≈ 30 for the

HRN models in the near-wall node. The number of control volumes in the y direction for the

grids used with the HRN models was 25 and with the LRN models, 40. Grid independence

tests were carried out in order to ensure these grids would provide numerically accurate

results.

A separate steady state fully developed flow with Reynolds number of 7000 was first

simulated, and profiles from this taken as initial conditions for the unsteady simulation.
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5.8.3 Results and Discussion

He and Jackson (2000) provided for the test case being reproduced here the profiles of velocity

and turbulent quantities varying with the Reynolds number of the flow (or, equivalently,

time) at four radial locations: at r/R = 0 (centre of the pipe), r/R = 0.47, r/R = 0.83 and

r/R = 0.93, the latter being the positions closest to the wall. The simulations were thus set

to provide equivalent time histories at these four locations. Profiles at r/R = 0.93 will not

be shown for the HRN models, since in the grid used with these models, this position lies

between the wall and the first near-wall node.

One can see in Figures 5.216, 5.217 and 5.218 that the velocity development at the four

radial positions was well captured by all turbulence models. Only in the centre of the pipe,

Figures 5.216(a), 5.217(a) and 5.218(a), is there a small disagreement between the experi-

mental data and the predictions in the last 2 seconds of the acceleration, when the TS model

performed best, providing the closest prediction.

The development of the turbulent kinetic energy can be seen in Figures 5.219, 5.220 and

5.221. From the experimental data one can see the lag in the response of the turbulence,

where it first increases in the near-wall region, and later towards the pipe centre, the delay

here being around 3.5 seconds. Starting by looking at the profiles of the turbulent kinetic

energy at the centre of the pipe, Figures 5.219(a), 5.220(a) and 5.221(a), one may notice that

most models predicted reasonably well the moment where the turbulent kinetic energy starts

to increase, except for the HJ, TC and NG models which tended to underpredict the delay

time and the TS model which overpredicted this delay, only predicting the turbulence kinetic

energy to increase at about 4s. At r/R = 0.47, Figures 5.219(b), 5.220(b) and 5.221(b),

almost the mid-distance from the centre to the wall, more models do not predict correctly

the moment when the turbulent kinetic energy starts to build up, however the HR, FM, SG,

GL, CG, KC and WM models still predict correctly this time delay. It is worth then noticing

that, with regard to the prediction of the level of the turbulent kinetic energy after this delay

time, the models tend to either predict it correctly at the centre of the pipe or at r/R = 0.47.

The WM model is perhaps the model which provides the best prediction, considering both

radial positions. At r/R = 0.83, where the lag in the response of the turbulence is quite small

compared to that at the above radial positions, most models provided a overall profile which

is in agreement with the experimental data, except for the HJ, SG and NG. At the radial

position nearest to the wall, only the HJ and NG models provided results which differed too

much from the experimental data. Most models predicted the turbulent kinetic energy profile

at this position reasonably well, however none of them were able to predict the shift in the

growing profile at about 2.5s. Most models predicted well the level of the turbulent kinetic

energy from this moment on.

The development of the turbulent shear stress can be seen in Figures 5.222, 5.223 and

5.224. In the centre of the pipe, uv = 0 due to the axisymmetric nature of the flow and

therefore this profile is not shown. At r/R = 0.47, Figures 5.222(a), 5.223(a) and 5.224(a), all

models predicted reasonably well the moment when the turbulent shear stress starts to build
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up, approximately 3s, however its level after this time was not so well captured by all models,

the LS, FM, GL, SG and WM performing best. At r/R = 0.83, Figures 5.222(b), 5.223(b)

and 5.224(b), again, most models provide a overall good prediction of the development of

uv, except for the HJ and NG models which provide a too fast growth of this quantity. At

r/R = 0.93, Figures 5.222(c), 5.223(c) and 5.224(c), only the HJ and NG models provided

a too fast growth of uv, as expected from their performance at the previous radial position,

however, again, there is a shift in the growth profile of the Reynolds shear stress which was

not captured by any model.

The development of the rms axial fluctuating velocity u′ is presented in Figures 5.225,

5.226 and 5.227. The linear-eddy-viscosity models are expected to underpredict this quantity

due to their inherent limitations. Among the NLEV and MTS models, one can say that the

SG, GL and WM models performed best, considering all radial positions. It is worth noticing

though, that while the turbulence models predict effectively no change in the profile of u′ up

to the moment it starts to build up, the experimental data predicts a smooth growth from

the beginning of the imposed unsteadiness. Although the turbulence models predict correctly

the starting level of the rms axial fluctuating velocity in the near-wall region, they fail to

predict a step increase in the level of this quantity which the experiments show. As expected,

the shift in the growth profile of u′ at r/R = 0.93 was not predicted by any model. He and

Jackson (2000) also provided profiles of the rms axial fluctuating velocity u′, normalized by

the local bulk velocity Ub. These results are presented in Figures 5.228, 5.229 and 5.230.

The authors used these profiles, which are essentially the turbulence intensity profiles, to say

that this quantity tends to be attenuated during the acceleration. Most models provided the

correct trend from the centre of the pipe to r/R = 0.83, however, among the LRN models,

the trend at r/R = 0.93 was only captured by the HJ model which, as seen before, tends to

overpredict the u′ profile after the shift in its growth profile.

The development of the rms radial fluctuating velocity v′ is presented in Figures 5.231,

5.232 and 5.233 and its profile normalized by the local bulk velocity Ub is presented in Figures

5.234, 5.235 and 5.236. Similar analyses to those done with regard to the axial fluctuating

velocity u′ can be drawn here too, except that the profile of v′

Ub
at r/R = 0.93 was best

predicted by the WM model, not the HJ.

The development of the circumferential fluctuating velocity w′ is qualitative similar to

that of the radial fluctuating velocity v′ and therefore results are not being shown here.

To conclude this section, one can say that this case did present a clear lag in the response

of the turbulence quantities which was not easily captured by the turbulence models. There is

not a single model which could be pointed to as providing the best prediction for all quantities

at all radial positions, however, it is clear the RST models are more appropriate to simulate

these ramp up flows and the WM model perhaps performed best overall. Nevertheless, the

LEV MTS did provide reasonable predictions, compared to STS models, again showing its

potential of improving predictions in non-equilibrium flows.
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(a) (b) (c) (d)

Figure 5.216: Velocity profile at selected radial positions in the fully developed ramp up pipe
flow case predicted by the linear-eddy-viscosity models and compared with the experiments
of He and Jackson (2000). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.217: Velocity profile at selected radial positions in the fully developed ramp up
pipe flow case predicted by the Reynolds stress transport models and compared with the
experiments of He and Jackson (2000). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.218: Velocity profile at selected radial positions in the fully developed ramp up pipe
flow case predicted by the multiple-time-scale models and compared with the experiments of
He and Jackson (2000). Models as in Table 3.25.
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(a) (b) (c) (d)

Figure 5.219: Turbulent kinetic energy profile at selected radial positions in the fully devel-
oped ramp up pipe flow case predicted by the linear-eddy-viscosity models and compared
with the experiments of He and Jackson (2000). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.220: Turbulent kinetic energy profile at selected radial positions in the fully devel-
oped ramp up pipe flow case predicted by the Reynolds stress transport models and compared
with the experiments of He and Jackson (2000). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.221: Turbulent kinetic energy profile at selected radial positions in the fully devel-
oped ramp up pipe flow case predicted by the multiple-time-scale models and compared with
the experiments of He and Jackson (2000). Models as in Table 3.25.
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(a) (b) (c)

Figure 5.222: Reynolds shear stress profile at selected radial positions in the fully developed
ramp up pipe flow case predicted by the linear-eddy-viscosity models and compared with the
experiments of He and Jackson (2000). Models as in Table 3.25.

(a) (b) (c)

Figure 5.223: Reynolds shear stress at selected radial positions in the fully developed ramp
up pipe flow case predicted by the Reynolds stress transport models and compared with the
experiments of He and Jackson (2000). Models as in Table 3.25.

(a) (b) (c)

Figure 5.224: Reynolds shear stress at selected radial positions in the fully developed ramp
up pipe flow case predicted by the multiple-time-scale models and compared with the exper-
iments of He and Jackson (2000). Models as in Table 3.25.
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(a) (b) (c) (d)

Figure 5.225: Rms of fluctuating velocity u′ profile at selected radial positions in the fully
developed ramp up pipe flow case predicted by the linear-eddy-viscosity models and compared
with the experiments of He and Jackson (2000). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.226: Rms of fluctuating velocity u′ profile at selected radial positions in the fully
developed ramp up pipe flow case predicted by the Reynolds stress transport models and
compared with the experiments of He and Jackson (2000). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.227: Rms of fluctuating velocity u′ profile at selected radial positions in the fully
developed ramp up pipe flow case predicted by the multiple-time-scale models and compared
with the experiments of He and Jackson (2000). Models as in Table 3.25.

257



5.8. Fully Developed Ramp Up Pipe Flow

(a) (b) (c) (d)

Figure 5.228: Rms of fluctuating velocity u′ normalized by the bulk velocity at selected radial
positions in the fully developed ramp up pipe flow case predicted by the linear-eddy-viscosity
models and compared with the experiments of He and Jackson (2000). Models as in Table
3.25.

(a) (b) (c) (d)

Figure 5.229: Rms of fluctuating velocity u′ normalized by the bulk velocity at selected radial
positions in the fully developed ramp up pipe flow case predicted by the Reynolds stress
transport models and compared with the experiments of He and Jackson (2000). Models as
in Table 3.25.

(a) (b) (c) (d)

Figure 5.230: Rms of fluctuating velocity u′ normalized by the bulk velocity at selected radial
positions in the fully developed ramp up pipe flow case predicted by the multiple-time-scale
models and compared with the experiments of He and Jackson (2000). Models as in Table
3.25.
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(a) (b) (c) (d)

Figure 5.231: Rms of fluctuating velocity v′ profile at selected radial positions in the fully
developed ramp up pipe flow case predicted by the linear-eddy-viscosity models and compared
with the experiments of He and Jackson (2000). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.232: Rms of fluctuating velocity v′ profile at selected radial positions in the fully
developed ramp up pipe flow case predicted by the Reynolds stress transport models and
compared with the experiments of He and Jackson (2000). Models as in Table 3.25.

(a) (b) (c) (d)

Figure 5.233: Rms of fluctuating velocity v′ profile at selected radial positions in the fully
developed ramp up pipe flow case predicted by the multiple-time-scale models and compared
with the experiments of He and Jackson (2000). Models as in Table 3.25.
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(a) (b) (c) (d)

Figure 5.234: Rms of fluctuating velocity v′ normalized by the bulk velocity at selected radial
positions in the fully developed ramp up pipe flow case predicted by the linear-eddy-viscosity
models and compared with the experiments of He and Jackson (2000). Models as in Table
3.25.

(a) (b) (c) (d)

Figure 5.235: Rms of fluctuating velocity v′ normalized by the bulk velocity at selected radial
positions in the fully developed ramp up pipe flow case predicted by the Reynolds stress
transport models and compared with the experiments of He and Jackson (2000). Models as
in Table 3.25.

(a) (b) (c) (d)

Figure 5.236: Rms of fluctuating velocity v′ normalized by the bulk velocity at selected radial
positions in the fully developed ramp up pipe flow case predicted by the multiple-time-scale
models and compared with the experiments of He and Jackson (2000). Models as in Table
3.25.
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5.9 Backward Facing Step Flow

In a backward facing step flow, the flow originally in a channel faces a sudden expansion

due to a step in the geometry, causing a sudden adverse pressure gradient which will lead

to the reattachment of the flow in a position further downstream of the step. This process

is illustrated in Figure 5.237. The presence of the step generates curved streamlines and

recirculation zones which are confined between the step and the reattachment point, which

thus becomes an important parameter to characterize the flow. From this description of the

process, it becomes clear that non-equilibrium features are present, specially in the region

between the step and the reattachment point. Downstream of the reattachment point, a new

boundary layer develops.

Figure 5.237: Backward facing step flow sketch. Adapted from Simpson (1996).

As commented by (Kasagi and Matsunaga, 1993), backward facing step flows are one

of the simplest geometries to exhibit flow separation/reattachment, however they can still

be considered as complex flows due to the physical phenomena involved in the process, as

mentioned above. Besides that, as they are commonly found in industry and are of interest

to several engineering fields, they are considered important flows to evaluate the performance

of turbulence models. Ra et al. (1990) also highlighted the importance of flows where reat-

tachment is present due to the rapid rise of pressure and heat transfer at the reattachment

zone.

Lien and Leschziner (1994c) highlighted the importance of turbulence stress anisotropy

in the curved and highly turbulent free shear layer formed due to separation. According

to them, although the anisotropy in such a shear layer is smaller than in the boundary

layer preceding separation, it influences the mean flow in the former much more than in

the latter due to the strong interaction between curvature strain and normal stresses and

the influence of the anisotropy of the normal stresses on the turbulent shear stress. As far

as prediction of backward facing step flows by RANS turbulence models is concerned, Lien

and Leschziner (1994c) argued that, although many research groups around the world had

been using Reynolds stress transport models to predict such separating flows due to their

capability of predicting anisotropy of the normal stresses, most of the standard forms of these

models tend to provide excessive levels of anisotropy and low recovery of the flow profile after
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the reattachment, which was being solved by excessively elaborated improvements. As a

result of that, Lien and Leschziner (1994c) turned their attention to the use of non-linear

eddy-viscosity models.

Momeni (2008) also carried out an extensive review of both experimental and computa-

tional works available in the literature regarding backward facing step flows. Although he

did study steady backward facing step flows, his main interest was in exploring the modelling

of flow control via a periodic injection/suction at the step corner, using the measured data

of Chun and Sung (1996) for comparison. In the context of the present study, the resulting

unsteady flow could be expected to exhibit significant non-equilibrium features, particularly

at certain forcing frequencies.

Chun and Sung (1996) and Yoshioka et al. (2001) both studied experimentally the in-

fluence of periodic perturbation in backward facing step flows, by introducing a sinusoidally

oscillatory jet at the step edge. The range of Reynolds number they studied was different,

the former being much higher than the latter, although Yoshioka et al. (2001) concluded that

the effect of the flow forcing was not particularly sensitive to the Reynolds number. Simpson

(1996), who also did an extensive review about separated flows, arrived at similar conclusions

for steady state backward facing steps and states that the reattachment length normalized

by the step height depends mostly on the expansion ratio of the backward facing step case,

for flows characterized by a Reynolds number based on the step height above 104, which is

the case of Chun and Sung’s experiments, but not of Yoshioka et al.’s. Both Chun and Sung

(1996) and Yoshioka et al. (2001) concluded that there is a frequency range of the forcing,

corresponding to a Strouhal number around 0.2, where the reattachment length would be

minimized. Chun and Sung (1996) also studied the influence of the amplitude of perturba-

tion on the reattachment point and minimal frequency range, and concluded that it did not

affect the St range where the minimum reattachment length occurred, although it did affect

the size of the minimum reattachment length which was observed to decrease linearly with

the amplitude when the latter was plotted on a logarithmic scale.

As noted above, backward facing step flows can be considered as challenging flows for both

experiments and turbulence models, with significant non-equilibrium effects expected to be

present, particularly when introducing unsteady flow control via the jet forcing described

above. These cases have thus been selected as the final set of flows to be studied in the

present work.

5.9.1 Simulated Cases

Three cases from Chun and Sung (1996) were selected to be reproduced here. All of them

are at a Reynolds number ReH , based on the step height H and U0, the bulk velocity just

before the step (x/H = −0.02), equal to 33000. Although that is not a very high Reynolds

number, it is among the highest Reynolds number cases found in the literature where relevant

experimental data was provided for both steady and forced cases, as described above. In
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addition, Momeni (2008) also simulated these three test cases and used two of the single-

time-scale models in use in this work, the LS and KS models. So these three cases from Chun

and Sung (1996) seem appropriate to evaluate the performance of existing and new models.

The steady case will be referred to as the BFS-St0 case. The two unsteady cases differ

in the value of the forcing frequency. In both cases the velocity of the oscillatory jet can

be expressed as Q = A0U0 sin(ωt), where Q =
√
U2 + V 2 is the total velocity, A0 is the

amplitude of oscillation at (x, y) = (−0.02H, 0.01H) and ω = 2πf is the angular frequency.

The two cases studied here correspond to f = 77Hz (giving a Strouhal number St = fH
U0

of

0.275) and f = 280Hz, giving St = 1. These will be referred to as cases BFS-St0275 and

BFS-St1 below.

All three cases were tested by Chun and Sung (1996) and verified to be 2-D and the

expansion ratio of the flow was 1.5: it started in a channel with a 2H height and after the

step, the new channel had a 3H height. The step height was H = 0.05m. The inlet bulk

velocity was 14m/s and the fluid used in the experiments was air, thus the density was set as

ρ = 1.2kg/m3 and the viscosity as µ = 2.545× 10−5kg/sm in order to ensure ReH = 33000.

It was reported that at the inlet there was a boundary layer of thickness δ/H = 0.41 with

momentum thickness Reynolds number Reθ = θU0
ν of 1340.

It is of value to mention that Chun and Sung (1996) referred to the reference velocity U0

as the freestream velocity, but here, in line with Momeni (2008), it was taken to be the bulk

velocity, since the inlet corresponds to only a partially developed channel flow.

5.9.2 Simulations Setup

The domain was set just as in Figure 5.237, the length upstream of the step being set as 5H

and the length downstream of the step, 30H. The point (x, y) = (0, 0) was set at the edge of

the step, that is, the channel extended from −5H to 0 in the x direction and from 0 to 2H

in the y direction, and after the step the expanded channel extended from 0 to 30H in the x

direction and from −H to 2H in the y direction.

As for boundary conditions, all walls were set as no-slip and for all variables, except the

pressure, zero gradient was applied at the outlet of the channel. A bulk pressure correction

to ensure mass conservation was applied to set the pressure at the outlet in order to improve

stability and facilitate convergence. The idea is to set the pressure at the outlet face equal

to the cell-centre pressure plus a pressure drop ∆P . So the pressure at the east face is set as

Pe = PP + ∆P . An iterative scheme is then used, in which corrections ∆P ′ are calculated

and added to ∆P , to obtain the desired outlet mass flow. The procedure to find the desired

∆P ′ is described in Mostafa (2007) and is similar to that used for the SIMPLE pressure

correction scheme. It will be briefly described here as well.

To apply the bulk pressure correction at the east face, the discretized form of the 2-D

U-momentum equation, equation 4.18, can be recalled. In this equation, Pe is the pressure

at the east boundary face, and Pw is the pressure at the west face, which is simply obtained

from interpolation between nodal values. The correction ∆P ′ is associated with a velocity
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correction ∆U ′P . So equation 4.18 can be rewritten as:

UP + ∆U ′P =
∑
k

Ak(Uk + ∆U ′k)

AP
+

∆y

AP
(Pw + ∆P ′ − Pe) (5.22)

Subtracting equation 4.18 from the above equation, provides:

∆U ′P =
∑
k

Ak∆U
′
k

AP
+

∆y

AP
∆P ′ (5.23)

As in the SIMPLE scheme, the first term in the right hand side of the above equation can be

neglected which yields:

∆U ′P =
∆y

AP
∆P ′ (5.24)

As one wants to ensure overall mass conservation, the mass flow rate at the inlet, Min, must

be the same as the mass flow rate at the outlet which is
∑
ρ(UP + ∆U ′P )∆y. By substituting

∆U ′P from equation 5.24, one can write:

Min =
∑

ρ(UP +
∆y

AP
∆P ′)∆y =

∑
ρUP∆y + ∆P ′

∑
ρ

∆y2

AP
(5.25)

Considering that
∑
ρUP∆y is the current (at each iteration) mass flow rate at the outlet,

Mout, the above equation can be rearranged to provide an explicit expression to calculate

∆P ′:

∆P ′ =
Min −Mout∑

ρ∆y2

AP

(5.26)

This bulk pressure correction was used in both steady and unsteady cases.

Since the reported inflow conditions consist of a partially developed channel flow, a sepa-

rate developing channel flow simulation was carried out, with a bulk velocity of U0 = 14m/s,

and suitable profiles were extracted from this to provide inlet conditions for the steady state

backward-facing step flow. Inlet profiles using this procedure were generated using the HR,

GL, KC, FM and LS models, and employed for the rest of the calculations. Chun and Sung

(1996) reported the free-stream turbulence intensity level just before the step being less than

0.6%. In the present calculations though a higher level was prescribed at the domain inlet

resulting in something close to 5% at the step edge for the sake of stability of the LRN mod-

els. Indeed, the KS model only converged for this higher inlet turbulence intensity level. In

the work of Momeni (2008), it was not mentioned which initial turbulence intensity level was

used, however from the presented profiles it was probably close to 5% too.

With the above settings, the computed velocity profile at x = −0.02H, just before the
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step, was output in order to check that it matched the reported experimental conditions.

This profile can be seen in Figure 5.238. Although the velocity profile was matching, the

inlet Reθ and δ/H parameters were slightly different, Reθ varying from approximately 1295

to 1500 and δ/H from 0.38 to 0.5, depending on the model.

The jet injection in the unsteady cases was applied in the eight control volumes just before

the step, reproducing the 1mm width of the experimental orifice used for the injection. In

these eight cells, the velocity in the x and y directions, U and V , as U = Q cos(45o) and

V = Q sin(45o), equivalently to the jet being injected at a 45o angle which was the case

in the experiment. Turbulent quantities and the pressure also had to be specified in these

eight cells. The latter was set equal to the next node in the y direction. The turbulent

kinetic energy was set based on a 1% turbulence intensity related to the jet total velocity,

k0 = 1.5(0.01∗Q)2, the normal stresses were set as u2
0 = k0, v2

0 = 0.4∗k0 and w2
0 = 0.6∗k0,

the shear stress was set to zero and the eddy dissipation rate was set by considering the ratio

νt/ν = 5, providing ε0 = 0.09 ∗ k0/(5ν). When MTS models were used, the ratios kP /kT = 2

and εP /εT = 1 were used.

Chun and Sung (1996) specified the amplitude of the pulsed jet, A0, as the difference

between the time-averaged forced velocity, Qforced, and unforced velocity, Qunforced, nor-

malized by the inlet bulk velocity U0, that is, A0 = (Qforced − Qunforced)/U0, measured at

(x/H, y/H) = (−0.02, 0.01). However, when setting up the simulation, the amplitude of oscil-

lation must be defined at the jet inlet, since that is the boundary condition for this part of the

domain. Momeni (2008) established that, in order to set A0 = 0.07, the ratio νrms/U0 should

be 1.4, where νrms =
√

1
T

∫ T
0 [Q(t)]2dt. As the jet velocity varies as Q(t) = BU0 sin(ωt), B

being the amplitude imposed at the jet inlet, and since ωT = 2π, ν2
rms can be developed:

1

T

∫ t=T

t=0
[BU0 sin(ωt)]2dt =

B2U2
0

ωT

∫ x=ωT

x=0
sin2 xdx =

B2U2
0

ωT

1

2

[
x− sin(2x)

2

]ωT
0

=
B2U2

0

2
(5.27)

As νrms/U0 = 1.4 in order to have A0=0.07, according to Momeni (2008), the above result

can be used to calculate B: √
B2U2

0

2
= 1.4U0 ⇒ B = 1.4

√
2 (5.28)

This value for B was then used as an initial guess to find A0 in the present simulations.

A0 depends on the value of B, but also on the imposed frequency and unforced velocity

Qunforced which varies slightly from model to model, specially in the HRN models where a

coarse interpolation must be done in order to find Qunforced at y/H = 0.01, since the first

node provides y/H = 0.0167. In order to calculate the unforced velocity predicted by the

HRN models, a linear interpolation was done using the first and second nodes and that was

extrapolated to find the velocity at y/H = 0.01. The values of Qunforced for each model as

265



5.9. Backward Facing Step Flow

well as the value of B used in each model for each unsteady case are presented in Table 5.19.

Table 5.19: Unforced velocity at (x/H, y/H) = (−0.02, 0.01) and applied forcing jet ampli-
tude.

Jet amplitude B at (x/H, y/H) = (0, 0)
Model Qunforced St = 0.275 St = 1

HR 7.9 1.29
√

2 1.65
√

2

GL 7.0 1.065
√

2 1.45
√

2

SG 7.5 1.1
√

2 1.55
√

2

CG 7.5 0.92
√

2 1.58
√

2

KC 7.7 1.257
√

2 1.565
√

2

LS 7.3 1.3
√

2 2.6
√

2

FM 7.4 1.3
√

2 2.57
√

2

KS 7.5 1.4
√

2 2.7
√

2

In the steady state simulations, the models other than the HR, GL, SG and LS were

started from the converged results of one of these models. The unsteady cases were started

with the results from the steady state simulation run with each respective model.

Separate grids were built for the HRN and LRN models, formed from 3 blocks as shown

in Figures 5.253 to 5.262, the first being the channel upstream of the step, the second being

the continuation of the upstream step, but after the step, and the third being only the lower

part of the channel after the step.

For the HRN grid a total of 180 cells were used in the x-direction. From the inlet to

x = −0.02H a grid contraction ratio of 1.1 was applied, with eight uniform cells between

this and the step corner (these formed the jet injection slot for the forced cases). Beyond the

step an expansion ratio of 1.115 was applied until x = 15H, beyond which the grid spacing

was uniform. In the y-direction, a grid expansion ratio of 1.015 was applied from y = 0 until

y = H and the same, symmetric, distribution was applied until y = 2H. The same procedure

was used beyond the step, from y = −H until y = 0, however the expansion ratio was slightly

smaller, 1.01. In total, 70 control volumes in the y direction were used. So this HRN model

grid can be generically described as a 180x70 grid and can be seen in Figure 5.239.

The LRN grid was built following a similar structure to the HRN one, but with a larger

number of cells, and smaller near-wall cells. The total number of cells in the x direction was

240, with slightly smaller grid expansion ratios than in the HRN grid. The total number of

cells in the y direction was 180, with slightly higher grid expansion ratios than in the HRN

grid. This grid for the LRN models can be described as a 240x180 grid and can be seen in

Figure 5.240.

In Figure 5.241 a zoom is given in the step corner region in order to show the 8 uniform

control volumes just before the step and to compare the distribution of the cells in the y

direction for both HRN and LRN models. One can then clearly see the difference in the

height of the first cell near the wall for each grid in order to allow the desired y+ values in

the first node.
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Grid independence tests were carried out and the HRN models were tested with the above

grid and a more refined grid with specifications 240x90 while the LRN models were tested

with the above grid and a coarser one of 180x160. For illustration, the prediction of the wall

shear stress, wall pressure coefficient and maximum streamwise Reynolds stress with both

grids is shown in Figures 5.242 and 5.243 for predictions with the HR, GL and KC models in

the former and with the LS and NG models in the latter, where one can see that no significant

changes are seen with the much more refined grid and therefore grid independence can then

be confirmed. Although the above tests suggest the grids adopted are sufficient for accuracy,

it should be noted that the TS model failed to converge on the finer HRN grid, as did the KS

and TC models on the coarser LRN grid, suggesting these schemes may be less stable than

the others in this case.

The prediction of y+ in the first near-wall node can be seen in Figures 5.244 and 5.245 for

the HR model representing the HRN models and the LS representing the LRN models. One

can see that, before the step, the HRN calculations give y+ a bit lower than 30 and the LRN

models, a bit higher than 1, as commented on above. After the step, the y+ values decrease

slightly along the top wall, consistent with the decrease in the mean velocity due to the

expansion of the channel. Along the bottom wall, as the reattachment point is approached,

y+ decreases to zero, since the velocity and wall shear stress will also decay to this value.

After the reattachment point, similar values to those on the top wall are reached. Along the

vertical wall of the step the values of y+ are quite low for the HRN models and quite high for

the LRN models, however, that is inevitable since it was deemed more important to have a

smooth expansion, and not too fine streamwise grid, in the main channel region immediately

before and after the step.

The last setup to be described is the time step used in the unsteady cases. Each cycle was

divided into 400 time steps, so in the BFS-St0275 case, which has a period T = 1
77s, the time

step used was ∆t = 3.247 × 10−5s and in the BFS-St1 case, which has a period T = 1
280s,

the time step used was ∆t = 8.929 × 10−6. A time step independence test was carried out

using a more refined time step in which each forcing cycle was divided into 1200 steps. The

results of this test are presented in Figure 5.246 and Figure 5.247 for the BFS-St0275 and

BFS-St1 cases respectively where predictions of the HR, KC, GL and LS models show that

no significant differences can be found in the profiles of the time-averaged wall shear stress,

wall pressure coefficient and maximum streamwise Reynolds stress by refining the time-step.

The number of cycles needed to reach a fully periodic state for each model starting

from their steady state result in each of the unsteady cases are presented in Table 5.20. Most

models achieved a simple periodic solution with the same period as the forcing, one exception

being the GL model which achieved periodicity every 2 cycles, the other being the SG and

KS models which did not show any kind of periodic behaviour. As the results Chun and Sung

(1996) provided are all time-averaged, it was then decided to average the last 10 cycles of all

models. Having achieved a periodic state, a further 40 cycles were run for each model, and

the variation of local reattachment point and wall shear stress at four positions downstream

of the step can be seen in Figures 5.248 to 5.250 for the last 10 cycles of the BFS − St0275
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and BFS − St1 cases.

Table 5.20: Number of cycles necessary to reach a fully periodic state in the unsteady back-
ward facing step cases.

Model St=0.275 St=1

HR 15 40

GL 30 60

SG 65* 75

CG 10 30

KC 20 50

LS 10 30

FM 12 50

KS 60* -

In the low frequency case, the SG and KS models presented some particular features

regarding the fully periodic state, despite having reached convergence. As can be seen in

Figure 5.249, they could not reach a fully periodic state. The star in Table 5.20 for these

models indicate then the number of cycles to reach an apparent irregular periodic state.

For the SG model, more than 150 cycles were tried, but profiles similar to those of Figure

5.249(c) were encountered. The KS model, which takes much more time than the SG model

to run, had more than 70 cycles run and the same occurred: profiles similar to those of Figure

5.249(a) were found. The last 10 cycles of the last simulation tried with these models were

averaged. Their profiles are in Figures 5.249(b) and 5.249(d). The results for the SG model,

seemed reasonable compared to the results provided by the other models, however the results

provided by the KS model were not. As the main scope here is not the results provided by

any particular model, the predictions of the KS model will not be presented in the discussions

for the BFS − St0275 case. In Figure 5.250(f) one can see that the KS model did not reach

a periodic state at all in the high frequency case and again its results will not be used for the

results discussion.

5.9.3 Results and Discussion

As in all other test cases, these backward facing step cases were run with all models presented

in Chapter 3. However, as mentioned before, it was not possible to achieve convergence with

all models, and these will be identified as the results are discussed case-by-case below.

First, the steady backward facing step case will be discussed. In the steady state case,

only the HJ and WM models did not converge so the predictions of these models will not

be presented, and they will be considered less stable than the other models. With regard

to stability, the KS model can also be considered less stable, since it only converged for a

specific grid and initial turbulence intensity level, as commented on above. The FM model

can also be considered less stable than the LS, since among all tests carried out in terms of

different grids and initial turbulence intensity levels, the latter and the HRN models, except

the TS model, proved to be the most stable ones.
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Before discussing the velocity and turbulence quantity profiles, the prediction of the reat-

tachment point by each turbulence models will be assessed, since this is a key parameter of

these flows. The reattachment point in the BFS − St0 case predicted by each model can be

seen in Table 5.21. One may notice that the NG and KS models best predicted the reattach-

ment point in the steady state backward facing step case. The LS and FM schemes provided

a moderate underprediction, while the KC model provided a moderate overprediction of the

reattachment length. The HR, SG and GL models gave a greater than 10% underprediction

of the reattachment length and the CG, TS and TC models provided an extreme underpre-

diction of this parameter, more than 40% less than the experimental value. Tests showed

that the extremely short reattachment length given by the TS and CG models was due to

the extra irrotational production term in the εP equation (equations 3.45 and 3.53). The

underprediction given by the TC model might be associated with its complex redistribution

term, presented in equation 3.37. One noticeable feature from the above is that the best

predictions came from LRN models, whilst those used with wall-functions generally returned

worse results.

Table 5.21: Reattachment point in the steady backward facing step case of Chun and Sung
(1996).

Model/Experiment Reattachment point (x/H) % Error

Experiment 7.8 -
HR 6.42 −17.73
LS 7.21 −7.51
FM 7.35 −5.75
KS 8.03 2.95
GL 6.59 −15.45
SG 6.95 −10.85
TC 4.66 −40.22
CG 4.20 −46.14
KC 8.44 8.17
TS 4.14 −46.89
NG 7.74 −0.76

The prediction of the reattachment point is directly related to the prediction of the wall-

shear stress and wall-pressure coefficient which are presented in Figures 5.251 and 5.252

respectively. One may notice that the wall-pressure coefficient CP , defined by Chun and

Sung (1996) as CP = (P −P0)/(0.5ρU2
0 ), P0 and U0 being the static pressure and streamwise

mean velocity measured at x/H = −2.0 in the steady state respectively, were best predicted

by the KS, SG, NG and KC models, consistent with their good predictions of the reattachment

point. When looking at the profiles of the wall-shear stress, one may notice that some models

show a small secondary recirculation in the step corner and, indeed, Chun and Sung (1996)

reported separation at x/H ≈ 1. Unfortunately, they did not provide measurements of the

wall-shear stress, but one can infer the predicted presence of this small secondary recirculation

by the models from the change in sign of τwall.
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The presence of a separation zone as well as the reattachment zone can also be seen by

evaluating the stream function Φ, defined as Φ =
∫
Udy −

∫
V dx. The contour plot of this

parameter provided by each turbulence model can be seen in Figures 5.253 to 5.263. It can

be noted that among the HRN models, only the RST models were able to predict a small

secondary recirculation in the step corner. Among the LRN models, only the NG model failed

to do so. It can then be inferred that both the presence of LRN approaches and Reynolds

normal stress predictions tend to promote the formation of the secondary corner vortex. For

instance, by comparing the HR and LS models, which are essentially the same model, but the

former used with wall-function and the latter being a LRN scheme, one can see the influence

in the prediction of separation. The FM, KS and GL models provided the separation closer

to x/H ≈ 1, thus being closer to the experiments. It is not possible to compare the size and

shape of the separation and reattachment bubbles, since these were not provided by Chun

and Sung (1996).

With all this now in mind, one can look at Figures 5.264, 5.265 and 5.266 to evaluate

the velocity profile at five positions downstream of the step, at x/H = 1, 3, 5, 7, 9. All other

turbulent quantities will also be presented at these same positions. One can notice that,

apparently, the turbulence models which best predicted the velocity profiles were the HR,

FM and LS models, which, among others, underpredicted the reattachment point. One of

the explanations for this in the downstream recovery region is that most RANS turbulence

models often tend to predict a rather slow recovery of the post-reattachment channel profile,

so the models which predict the reattachment point correctly tend to not provide the correct

velocity profile after the reattachment point, which is then what is observed. Both the KS

and NG models, which best predicted the reattachment point, overpredict the velocity profile

in the shear layer after reattachment, that is at x/H = 9. One can see that, apart from the

CG, TS and TC models, which far underpredicted the reattachment point, all models provide

velocity profiles which are in agreement with the experiments up to x/H = 7, which is the

last measured point before the reattachment point.

Chun and Sung (1996) also provided measured profiles of the streamwise Reynolds normal

stress u2, which are compared with the predicted profiles in Figures 5.267, 5.268 and 5.269.

One may notice that, apart from the CG and TS models at x/H = 1 and x/H = 3, the

linear-eddy-viscosity models tended to provide levels of u2 closer to the experiments than

the NLEV and RST models tested. That is in agreement with the comments of Lien and

Leschziner (1994c), mentioned above, about the tendency of RST models to provide high

levels of anisotropy.

The predictions of the other two Reynolds normal stresses are presented in Figures 5.270

to 5.275. One may notice that, as expected, the profiles provided by the linear-eddy-viscosity

models are not different from those presented for the streamwise Reynolds normal stress

u2, which is expected. The low levels of these other normal stresses agree again with the

comments of Lien and Leschziner (1994c). The behaviour noted for the Reynolds normal

stresses is also generally seen in the turbulent kinetic energy which is presented in Figures

5.276 to 5.278.
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The profiles of the Reynolds shear stress and eddy-dissipation rate predicted by the tur-

bulence models are also presented in Figures 5.279 to 5.281 for the former and in Figures

5.282 to 5.284 for the latter. One may notice that the correct prediction of the reattach-

ment point is related to not so high levels of shear stress in the shear layer. The profile of

eddy-dissipation is higher in the shear layer, as expected due to the higher rates of turbulent

kinetic energy production, however it can be noted that the models which provided a too

early reattachment of the flow, presented higher levels of ε near the bottom wall.

The results for the low frequency case, BFS − St0275, are presented in Figures 5.285 to

5.290. The TS, HJ, NG, TC, WM models did not converge for this case and the KS model,

despite converging, did not reach a periodic state. Hence, the results for these models will

not be presented. A few tests, where terms were deactivated and coefficients were adjusted,

also indicated that the instability of the TS model is again related to its extra source term

in equation 3.45. From the 13 models used in the previous test cases, only 7 are being

considered for this case and therefore, instead of presenting the results divided into the three

main turbulence models classes, as has been done so far, these 7 models were divided into two

classes: the single-time-scale linear-eddy-viscosity models (HR, LS and FM) and the others:

the single-time-scale Reynolds-stress-transport models (GL and SG) and the two-time-scale

linear-eddy-viscosity models (CG and KC).

Before looking at the time-averaged variables profiles, the time-averaged reattachment

point predicted by each model for this case is presented in Table 5.22. As can be seen, the

measured reattachment length at this forcing frequency is much lower than in the steady case.

This frequency, St = 0.275, is actually the frequency which provides the lowest reattachment

point at ReH = 33000 and A0 = 0.07, according to the experiments of Chun and Sung (1996).

One may notice that very few models are actually able to follow this trend.

If one looks only at Table 5.22, one might say that the standard k − ε model, the HR

model, provided the best result. Not only the best result, but exactly the value measured in

the experiments. However, recalling its prediction of the reattachment point in the steady

state, Table 5.21, one may notice that it underpredicted significantly this parameter in that

case. A closer comparison of the two tables indicates that the models which underpredicted

the reattachment point in the steady state case tended to provide the best results in this low

frequency case. The models which provided closer prediction of the reattachment point in the

steady state, tended to overpredict this parameter in the BFS − St0275 case. From this it

can be seen that the models do, generally, give a reduction in the recirculation length in the

forced case, compared to the steady case, but this reduction is significantly underestimated.

One can now look in Figures 5.285 and 5.286 at the time-averaged profiles of the wall

shear stress, wall-pressure coefficient and the forward-flow time fraction. The latter is an

experimentally measured parameter, defined as the fraction of time for which the near-wall

flow was directed in downstream direction, Ra et al. (1990). They reported the reattachment

point to be where this fraction takes the value of 0.5. Consistently with Table 5.22, one may

see that the time-averaged wall shear stress changes sign at the reattachment location x/H

indicated, and γP also takes a value of 0.5. Apart from the CG model, which completely
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Table 5.22: Time-averaged reattachment point in the unsteady backward facing step case of
Chun and Sung (1996) with St = 0.275.

Model/Experiment Reattachment point (x/H) % Error

Experiment 5.0 -
HR 5.01 0.20
LS 5.29 5.77
FM 6.16 23.14
GL 6.14 22.86
SG 5.51 10.21
CG 3.83 −23.38
KC 7.21 44.2

underpredicts the reattachment point, all models provide good agreement with the time-

averaged wall pressure coefficient. There are no experimental data to compare the prediction

of the time-averaged wall shear stress with, but one may notice that, in contrast to the

steady state case, where some models clearly indicated a small secondary recirculation zone,

no model shows such a feature in the time-averaged flow. Chun and Sung (1996) indeed

reports that no secondary corner recirculation was identified in the unsteady cases. For this

reason, together with the fact that there are no experimental data regarding the size and

shape of the reattachment bubble, the stream function contour plots for each model will not

be presented since no additional information can be taken from them.

The profiles of the time-averaged velocity can be seen in Figures 5.287 and 5.288. One may

notice that the CG model provided the best results, matching the experimental data at all

positions downstream of the step. However, as noted above in the steady state case results, the

reason for that is its underprediction of the reattachment point which gives more time for the

model to recover towards the post-reattachment channel flow. After the CG model, the single-

time-scale linear-eddy-viscosity models presented the best agreement with the experiments,

and these also returned best agreement with the reattachment location. Nevertheless, none

of these models were able to match the velocity profile after the reattachment point, this

again being related to a slow predicted recovery after reattachment. The KC model, which

most overpredicted the reattachment point, provides similar velocity profiles to the GL and

SG models which overpredicted less this parameter, confirming the comment of Lien and

Leschziner (1994c) on the slow predicted recovery of RST models.

The profiles of the time-averaged streamwise Reynolds normal stress are presented in

Figures 5.289 and 5.290. One may notice that the GL model provided good agreement

with the experiments up to x/H = 5, however after this point it has high inertia and is

not capable of reducing the turbulence intensity level. That is probably related to its slow

post-reattachment recovery. Most LEV models provide levels of u2 which are in reasonable

agreement with the experimental data, specially after the reattachment point. Again, one

may notice a relation between the level of u2 before the reattachment point and the prediction

of the latter.

The same qualitative analyses carried out for the other turbulent quantities (the Reynolds
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normal stresses v2 and w2, the Reynolds shear stress, the turbulent kinetic energy and the

eddy-dissipation rate) in the steady state case can be extended for both unsteady cases, where

mainly one can notice a relation between the turbulence level in the shear region and the

prediction of the reattachment point, which is totally expected from the physical description

of the backward facing step case. As Chun and Sung (1996) did not provide experimental

data for these quantities, their profiles will not be shown here for the unsteady cases.

The results for the high frequency case are presented in Figure 5.291 to 5.296. The TS,

HJ, NG, TC, WM and KS models did not converge or reach the fully periodic state for

this case either. Hence, as before, the results provided by the 7 models which provided a

converged and fully periodic solution will be divided into the STS LEV models and the other

models which include two STS RST models and two MTS LEV models.

Starting by looking at the time-averaged reattachment point predicted by each turbulence

model, presented in Table 5.23, one may notice that, at this high frequency, the reattachment

point reported in the experiments is slightly higher than that in the steady state and all tur-

bulence models are consistent in this sense, meaning that, qualitatively, the results are similar

to those discussed for the steady state. The model which returned the closest result was the

FM model, followed by the SG and LS models. The CG model consistently underpredicts

excessively the reattachment length, followed by the standard k − ε model, HR model. The

GL and KC models provide acceptable results, the former slightly underpredicting and the

latter slightly overpredicting this parameter.

Table 5.23: Time-averaged reattachment point in the unsteady backward facing step case of
Chun and Sung (1996) with St = 1.

Model/Experiment Reattachment point (x/H) % Error

Experiment 8.1 -
HR 6.67 −17.62
LS 7.56 −6.69
FM 8.30 2.42
GL 7.22 −10.82
SG 7.66 −5.45
CG 4.44 −45.13
KC 9.15 12.92

The time-averaged profiles of the wall shear stress, wall-pressure coefficient and the

forward-flow time fraction are presented in Figures 5.291 and 5.292. The profiles of the

time-averaged wall shear stress are in agreement with the reattachment points presented in

Table 5.23 and so is the distribution of γP . All models, apart from the GL model, do not

predict a secondary recirculation zone and that is in agreement with the findings of Chun

and Sung (1996). For the same reasons discussed in the previous low frequency case, contour

plots for the stream function will not be presented here since they will not contribute to the

analysis. The profile of the wall pressure coefficient was well captured by the HR, KC, GL

and SG models. The LS and FM models provided a too low minimum value which is in

agreement with their wall shear stress prediction. The CG model, as expected from its gross
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underprediction of the reattachment point provides a wrong profile, increasing CP too fast.

The time-averaged velocity profiles are presented in Figures 5.293 and 5.294. One may

notice that all models, except for the CG model, provide good agreement with the experiments

even after the reattachment point, however, all of them fail to follow the shear region at

x/H = 7. The post-reattachment recovery seems not to be so slow in this case and that

might be an effect of the high frequency unsteadiness. Another explanation could be that

the slightly later reattachment point, XR = 8.1 in this case, is fairly close to the final

measurement location, x/H = 9, and so the profiles only show the very initial stages of the

post-reattachment recovery.

The profiles of the time-averaged streamwise Reynolds stress are presented in Figures

5.295 and 5.296. Again, one can say that the LEV models provide reasonable agreement with

the experiments, but this time the GL model provides better agreement with the experimental

data up to x/H = 7 and again seems to keep this level at x/H = 9 by inertia.

5.9.4 Concluding Remarks

To conclude the analysis of the backward facing step cases, one may look at Table 5.24 where

the reattachment points predicted by each model in each case are summarized. One may

notice that no model is actually able to follow completely the experiments. They all follow

the general trend, XRSt=0.275
< XRSt=0

< XRSt=1
, however they fail to capture the magnitude

of the differences. The models which underpredict considerably the reattachment point in

the steady and high frequency cases, predict reasonably well the low frequency case and vice

versa.

Overall, the models which performed best were the FM, LS and SG models. Although

the latter did not actually reach a fully periodic state, since its time-averaged profiles did not

appear to show any significant anomalies they were included in the comparisons above. The

fact that the FM and LS models performed best might make one wonder whether it is the use

of a LRN approach which is the important feature in predicting these flows. Unfortunately,

these two models were the only LRN models which converged for all three cases and RST

and MTS approaches could not be evaluated together with LRN schemes.

RST models did not seem to provide a clear advantage over the LEV models. Although

the latter are not expected to correctly predict the Reynolds normal stresses, they provided

overall the best agreement with the experimental data for the streamwise component u2.

The same can be said of the MTS models. The CG clearly failed, always underpredicting the

reattachment point and the KC model tended to always overpredict this parameter, specially

in the low frequency case.

Among all the test cases evaluated, these backward facing step cases are clearly the

most complex ones with the strongest non-equilibrium features. In contrast to a number

of the other cases where most models performed reasonably well, in these test cases no

model performed very satisfactorily. It was not possible to notice the strong influence of the

anisotropy, as pointed out by Lien and Leschziner (1994c), since the LEV models performed
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overall better than the RST models. It was not possible to identify clear advantages brought

from the MTS schemes either. This case thus become an important test case in the scope

of this work where it is intended to developed MTS models which perform well in non-

equilibrium flows.

Table 5.24: Comparison of the prediction of the reattachment point in the three backward
facing step cases.

Model/Experiment St=0 St=0.275 St=1

Experiment 7.8 5.0 8.1
HR 6.42 5.01 6.67
LS 7.21 5.29 7.56
FM 7.35 6.16 8.30
GL 6.59 6.14 7.22
SG 6.95 5.51 7.66
CG 4.20 3.83 4.44
KC 8.44 7.21 9.15

To avoid repetition, conclusions of the performance of the models over the entire range

of flows considered in this chapter are presented in Chapter 8.
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(a) (b) (c)

Figure 5.238: Prediction of the velocity profile before the step, at x/H = −0.02, by the
(a) eddy-viscosity models, (b) Reynolds-stress-transport models and (c) multiple-time-scale
models in the steady state backward facing step case of Chun and Sung (1996). Models as
in Table 3.25.

Figure 5.239: 180x70 grid used for the HRN models.

Figure 5.240: 240x180 grid used for the LRN models.

(a) (b)

Figure 5.241: Zoom in the step corner region in the (a) HRN models grid and in the (b) LRN
models grid.
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(a) (b) (c)

Figure 5.242: Prediction of (a) wall-shear-stress, (b) wall-pressure coefficient and (c) maxi-
mum u2 by the HR, GL and KC models, representing the HRN models, using the two tested
grids, verifying the grid independence test.

(a) (b) (c)

Figure 5.243: Prediction of (a) wall-shear-stress, (b) wall-pressure coefficient and (c) maxi-
mum u2 by the LS and NG models, representing the LRN models, using the two tested grids,
verifying the grid independence test.

(a) (b) (c)

Figure 5.244: Prediction of y+ in the first near-wall node of the (a) top wall, (b) bottom wall
after step and (c) step vertical wall by the HR, GL and KC models, representing the HRN
models.
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(a) (b) (c)

Figure 5.245: Prediction of y+ in the first near-wall node of the (a) top wall, (b) bottom wall
after step and (c) step vertical wall by the LS, NG and TC models, representing the LRN
models.

(a) (b) (c)

Figure 5.246: Prediction of (a) wall-shear-stress, (b) wall-pressure coefficient and (c) maxi-
mum u2 by the HR, GL and KC models, representing the HRN models, and the LS model,
representing the LRN models, using the two tested time steps in the St=0.275 unsteady case
of Chun and Sung (1996), verifying the time step independence test.

(a) (b) (c)

Figure 5.247: Prediction of (a) wall-shear-stress, (b) wall-pressure coefficient and (c) maxi-
mum u2 by the HR, GL and KC models, representing the HRN models, and the LS model,
representing the LRN models, using the two tested time steps in the St=1 unsteady case of
Chun and Sung (1996), verifying the time step independence test.
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(a) HR model (b) LS model (c) FM model

(d) GL model (e) CG model (f) KC model

Figure 5.248: Prediction of the reattachment point and τw at four positions downstream of the
step at the last 10 cycles where the averaging process was carried out for the six turbulence
models which reached the fully developed state in the BFS − St0275 case. Models as in
Table 3.25.

(a) KS model - 40 cycles (b) KS - last 10 cycles (c) SG model - 40 cycles (d) SG - last 10 cycles

Figure 5.249: Prediction of the reattachment point and τw at four positions downstream
of the step at the last 40 cycles and at the last 10 cycles where the averaging process was
carried out for the two turbulence models which could not reach a fully developed state in
the BFS − St0275 case. Models as in Table 3.25.
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(a) HR model (b) LS model (c) FM model

(d) GL model (e) SG model (f) KS model

(g) CG model (h) KC model

Figure 5.250: Prediction of the reattachment point and τw at four positions downstream of
the step at the last 10 cycles where the averaging process was carried out in the BFS − St1
case. Models as in Table 3.25.
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(a) (b) (c)

Figure 5.251: Prediction of the wall-shear-stress by the (a) eddy-viscosity models, (b)
Reynolds-stress-transport models and (c) multiple-time-scale models in the steady state back-
ward facing step case of Chun and Sung (1996). Models as in Table 3.25.

(a) (b) (c)

Figure 5.252: Prediction of the wall-pressure coefficient by the (a) eddy-viscosity models,
(b) Reynolds-stress-transport models and (c) multiple-time-scale models in the steady state
backward facing step case of Chun and Sung (1996). Models as in Table 3.25.
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Figure 5.253: Prediction of the stream function by the HR model in the steady state backward
facing step case of Chun and Sung (1996). Models as in Table 3.25.

Figure 5.254: Prediction of the stream function by the LS model in the steady state backward
facing step case of Chun and Sung (1996).

Figure 5.255: Prediction of the stream function by the FM model in the steady state backward
facing step case of Chun and Sung (1996).

Figure 5.256: Prediction of the stream function by the KS model in the steady state backward
facing step case of Chun and Sung (1996).
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Figure 5.257: Prediction of the stream function by the SG model in the steady state backward
facing step case of Chun and Sung (1996).

Figure 5.258: Prediction of the stream function by the GL model in the steady state backward
facing step case of Chun and Sung (1996).

Figure 5.259: Prediction of the stream function by the TC model in the steady state backward
facing step case of Chun and Sung (1996).

Figure 5.260: Prediction of the stream function by the CG model in the steady state backward
facing step case of Chun and Sung (1996).
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Figure 5.261: Prediction of the stream function by the KC model in the steady state backward
facing step case of Chun and Sung (1996).

Figure 5.262: Prediction of the stream function by the TS model in the steady state backward
facing step case of Chun and Sung (1996).

Figure 5.263: Prediction of the stream function by the NG model in the steady state backward
facing step case of Chun and Sung (1996).
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Figure 5.264: Prediction of the velocity profile at five positions downstream of the step
x/H = 1, 3, 5, 7, 9 by the eddy-viscosity models in the steady state backward facing step case
of Chun and Sung (1996). Models as in Table 3.25.

Figure 5.265: Prediction of the velocity profile at five positions downstream of the step
x/H = 1, 3, 5, 7, 9 by the Reynolds-stress-transport models in the steady state backward
facing step case of Chun and Sung (1996). Models as in Table 3.25.

Figure 5.266: Prediction of the velocity profile at five positions downstream of the step
x/H = 1, 3, 5, 7, 9 by the multiple-time-scale models in the steady state backward facing step
case of Chun and Sung (1996). Models as in Table 3.25.
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Figure 5.267: Prediction of the streamwise Reynolds normal stress profile at five positions
downstream of the step x/H = 1, 3, 5, 7, 9 by the eddy-viscosity models in the steady state
backward facing step case of Chun and Sung (1996). Models as in Table 3.25.

Figure 5.268: Prediction of the streamwise Reynolds normal stress profile at five positions
downstream of the step x/H = 1, 3, 5, 7, 9 by the Reynolds-stress-transport models in the
steady state backward facing step case of Chun and Sung (1996). Models as in Table 3.25.

Figure 5.269: Prediction of the streamwise Reynolds normal stress profile at five positions
downstream of the step x/H = 1, 3, 5, 7, 9 by the multiple-time-scale models in the steady
state backward facing step case of Chun and Sung (1996). Models as in Table 3.25.
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Figure 5.270: Prediction of the wall-normal Reynolds normal stress profile at five positions
downstream of the step x/H = 1, 3, 5, 7, 9 by the eddy-viscosity models in the steady state
backward facing step case of Chun and Sung (1996). Models as in Table 3.25.

Figure 5.271: Prediction of the wall-normal Reynolds normal stress profile at five positions
downstream of the step x/H = 1, 3, 5, 7, 9 by the Reynolds-stress-transport models in the
steady state backward facing step case of Chun and Sung (1996). Models as in Table 3.25.

Figure 5.272: Prediction of the wall-normal Reynolds normal stress profile at five positions
downstream of the step x/H = 1, 3, 5, 7, 9 by the multiple-time-scale models in the steady
state backward facing step case of Chun and Sung (1996). Models as in Table 3.25.
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Figure 5.273: Prediction of the w2 Reynolds normal stress profile at five positions downstream
of the step x/H = 1, 3, 5, 7, 9 by the eddy-viscosity models in the steady state backward facing
step case of Chun and Sung (1996). Models as in Table 3.25.

Figure 5.274: Prediction of the w2 Reynolds normal stress profile at five positions downstream
of the step x/H = 1, 3, 5, 7, 9 by the Reynolds-stress-transport models in the steady state
backward facing step case of Chun and Sung (1996). Models as in Table 3.25.

Figure 5.275: Prediction of the w2 Reynolds normal stress profile at five positions downstream
of the step x/H = 1, 3, 5, 7, 9 by the multiple-time-scale models in the steady state backward
facing step case of Chun and Sung (1996). Models as in Table 3.25.
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Figure 5.276: Prediction of the turbulent kinetic energy profile at five positions downstream
of the step x/H = 1, 3, 5, 7, 9 by the eddy-viscosity models in the steady state backward
facing step case of Chun and Sung (1996). Models as in Table 3.25.

Figure 5.277: Prediction of the turbulent kinetic energy profile at five positions downstream
of the step x/H = 1, 3, 5, 7, 9 by the Reynolds-stress-transport models in the steady state
backward facing step case of Chun and Sung (1996). Models as in Table 3.25.

Figure 5.278: Prediction of the turbulent kinetic energy profile at five positions downstream
of the step x/H = 1, 3, 5, 7, 9 by the multiple-time-scale models in the steady state backward
facing step case of Chun and Sung (1996). Models as in Table 3.25.
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Figure 5.279: Prediction of the Reynolds shear stress profile at five positions downstream of
the step x/H = 1, 3, 5, 7, 9 by the eddy-viscosity models in the steady state backward facing
step case of Chun and Sung (1996). Models as in Table 3.25.

Figure 5.280: Prediction of the Reynolds shear stress profile at five positions downstream
of the step x/H = 1, 3, 5, 7, 9 by the Reynolds-stress-transport models in the steady state
backward facing step case of Chun and Sung (1996). Models as in Table 3.25.

Figure 5.281: Prediction of the Reynolds shear stress profile at five positions downstream of
the step x/H = 1, 3, 5, 7, 9 by the multiple-time-scale models in the steady state backward
facing step case of Chun and Sung (1996). Models as in Table 3.25.
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Figure 5.282: Prediction of the eddy-dissipation rate profile at five positions downstream of
the step x/H = 1, 3, 5, 7, 9 by the eddy-viscosity models in the steady state backward facing
step case of Chun and Sung (1996). Models as in Table 3.25.

Figure 5.283: Prediction of the eddy-dissipation rate profile at five positions downstream
of the step x/H = 1, 3, 5, 7, 9 by the Reynolds-stress-transport models in the steady state
backward facing step case of Chun and Sung (1996). Models as in Table 3.25.

Figure 5.284: Prediction of the eddy-dissipation rate profile at five positions downstream of
the step x/H = 1, 3, 5, 7, 9 by the multiple-time-scale models in the steady state backward
facing step case of Chun and Sung (1996). Models as in Table 3.25.
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(a) (b) (c)

Figure 5.285: Prediction by the singe-time-scale eddy-viscosity models of (a) time-averaged
wall-shear-stress, (b) time-averaged wall-pressure coefficient, (c) forward-flow time fraction
in the unsteady backward facing step BFS − St0275 case. Models as in Table 3.25.

(a) (b) (c)

Figure 5.286: Prediction by the singe-time-scale Reynolds-stress-transport and two-time-
scale linear-eddy-viscosity models of (a) time-averaged wall-shear-stress, (b) time-averaged
wall-pressure coefficient, (c) forward-flow time fraction in the unsteady backward facing step
BFS − St0275 case. Models as in Table 3.25.

Figure 5.287: Prediction of the time-averaged velocity profile at five positions downstream
of the step x/H = 1, 3, 5, 7, 9 by the singe-time-scale eddy-viscosity models in the unsteady
backward facing step BFS − St0275 case. Models as in Table 3.25.
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Figure 5.288: Prediction of the time-averaged velocity profile at five positions downstream of
the step x/H = 1, 3, 5, 7, 9 by the singe-time-scale Reynolds-stress-transport and two-time-
scale linear-eddy-viscosity models in the unsteady backward facing step BFS −St0275 case.
Models as in Table 3.25.

Figure 5.289: Prediction of the time-averaged streamwise Reynolds normal stress profile at
five positions downstream of the step x/H = 1, 3, 5, 7, 9 by the singe-time-scale eddy-viscosity
models in the unsteady backward facing step BFS − St0275 case. Models as in Table 3.25.

Figure 5.290: Prediction of the time-averaged streamwise Reynolds normal stress profile at
five positions downstream of the step x/H = 1, 3, 5, 7, 9 by the singe-time-scale Reynolds-
stress-transport and two-time-scale linear-eddy-viscosity models in the unsteady backward
facing step BFS − St0275 case. Models as in Table 3.25.
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(a) (b) (c)

Figure 5.291: Prediction by the singe-time-scale eddy-viscosity models of (a) time-averaged
wall-shear-stress, (b) time-averaged wall-pressure coefficient, (c) forward-flow time fraction
in the unsteady backward facing step BFS − St1 case. Models as in Table 3.25.

(a) (b) (c)

Figure 5.292: Prediction by the singe-time-scale Reynolds-stress-transport and two-time-
scale linear-eddy-viscosity models of (a) time-averaged wall-shear-stress, (b) time-averaged
wall-pressure coefficient, (c) forward-flow time fraction in the unsteady backward facing step
BFS − St1 case. Models as in Table 3.25.

Figure 5.293: Prediction of the time-averaged velocity profile at five positions downstream
of the step x/H = 1, 3, 5, 7, 9 by the singe-time-scale eddy-viscosity models in the unsteady
backward facing step BFS − St1 case. Models as in Table 3.25.

294



5.9. Backward Facing Step Flow

Figure 5.294: Prediction of the time-averaged velocity profile at five positions downstream of
the step x/H = 1, 3, 5, 7, 9 by the singe-time-scale Reynolds-stress-transport and two-time-
scale linear-eddy-viscosity models in the unsteady backward facing step BFS − St1 case.
Models as in Table 3.25.

Figure 5.295: Prediction of the time-averaged streamwise Reynolds normal stress profile at
five positions downstream of the step x/H = 1, 3, 5, 7, 9 by the singe-time-scale eddy-viscosity
models in the unsteady backward facing step BFS − St1 case. Models as in Table 3.25.

Figure 5.296: Prediction of the time-averaged streamwise Reynolds normal stress profile at
five positions downstream of the step x/H = 1, 3, 5, 7, 9 by the singe-time-scale Reynolds-
stress-transport and two-time-scale linear-eddy-viscosity models in the unsteady backward
facing step BFS − St1 case. Models as in Table 3.25.

295



Chapter 6

Development of Two-Time-Scale

Linear-Eddy-Viscosity Models

This chapter aims to present all the stages which led to the final version of the two two-time-

scale linear-eddy-viscosity models developed in this work, which will be referred to as NT1

and NT2 models. As will be shown later, the main difference between the two models is in

the expression for νt, the eddy viscosity, which results in different terms in the εP and εT

equations and different values and expressions for the coefficients.

The development process for each model can be broken down into a number of discrete

stages, with each subsequent stage resulting in further improved versions. A version was

defined always when the general set of terms, expressions and coefficients were considered

satisfactory in all test cases. This chapter will thus present each stage of development sepa-

rately.

The final version of the models will be then used to simulate all test cases presented and

discussed in the previous chapter and its effectiveness will be assessed through comparisons

with the predictions of a selection of turbulence models used so far and also with DNS and/or

experimental data.

6.1 First Versions of the NT1 and NT2 Models

The first step to identify how to start to develop or improve an MTS model was to evaluate

the performance of existing MTS models, which was presented in the previous chapter. Based

on this, the TS model was chosen as a base model to start off. This model was chosen mainly

because it also served as a base for the developments of the other MTS models investigated in

this work. Besides that, this model could also be chosen by elimination of the others. An LEV

model would be preferable owing to its simplicity, so the WM could be discarded (although

it could also be discarded by being an RST model and not bringing consistent advantages in

predicting the Reynolds stresses in all tested cases). Among the LEV MTS schemes, the NG

presented some stability problems which were associated with its high tuning of the near-wall

region, which did provide good results, but does not represent what one wishes to start from.
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A high-Reynolds-number form of turbulence model version emerges then as more appropriate

since it does not require a specific near-wall treatment, which would need special attention

when the partition variables (kP , kT , εP and εT ) are considered. Besides, most cases tested

are at a reasonably high Reynolds number, where one would then expect wall-functions not

to be a problem. The CG model performed generally worse than the KC and TS models.

These models presented reasonably good results in some flows, but performed poorly in some

other flows. Consequently, as the TS model forms the basis of many of the MTS models, it

was then chosen as a starting point.

The criteria used to chose a base model have just been described and now the procedures

and analyses carried out to developed the first versions of the NT1 and NT2 models will be

presented.

6.1.1 Study of the kP
kT

and εP
εT

ratios

As the MTS models presented and discussed so far are based on a division of the turbulent

kinetic energy spectrum, from this the four main turbulent quantities emerge, kP , kT , εP

and εT . The ratios kP
kT

and εP
εT

, which respectively represent the shape and the equilibrium

imbalance of the spectrum, thus emerge as important parameters to be studied.

The evolution of the kP
kT

and εP
εT

ratios was then assessed in order to enrich the understand-

ing of the performance of the MTS models. This analysis could also clarify how the spectrum

is divided by each turbulence model. By the time the first versions of the NT1 and NT2 mod-

els were developed, six test cases - homogeneous shear flows, normally strained flows, chan-

nel flows, zero-pressure-gradient, adverse-pressure-gradient and favourable-pressure-gradient

boundary layer - had been assessed, so kP
kT

and εP
εT

were first evaluated in these test cases.

The evolution of these ratios is presented in Figures 6.1 to 6.8.

Starting by looking at the homogeneous shear flow cases, one can observe the evolution

of the kP
kT

and εP
εT

in Figures 6.1 and 6.2. Clearly, kPkT in the NG model tends to an asymptotic

value; in the CG and KC models, it seems to tend to a asymptotic value, needing perhaps

more time to reach it, and, in the TS model, it not only does not tend to an asymptotic

value, but increases very fast, especially in the high-shear flow cases, represented by Figure

6.2. In order to understand these behaviours, kP and kT are plotted separately in Figure 6.3

for one low, one moderate and one high shear case. One may notice that the reason why
kP
kT

seems to grow exponentially when predicted by the TS model is that this model predicts

kP to grow too fast, much earlier than kT . This explains the sudden growth followed by a

decay and subsequent increase behaviour of the TS model in predicting Pk
εT

and η = k
εT

dU
dy

in these two high-shear flow cases as noted earlier in Figures 5.32, 5.33. The evolution of
εP
εT

behaves nicely, tending to a value close to unity in the low, moderate and high shear

flow cases represented in Figures 6.1, 6.2(b) and 6.2(d). Nonetheless, one may notice that

although the TS model presents the smallest peak for εP
εT

in Figures 6.2(b) and 6.2(d), it

presents the highest growth in predicting Pk
εT

in Figure 5.32.

Looking now at the evolution of kP
kT

and εP
εT

in the normally strained cases in Figure 6.4
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and starting by assessing the T&R case, one may notice that the CG and TS models which

provided the fastest k decay, for this case, as shown in Figure 5.39(c), also return the highest

values for the ratios kP
kT

and εP
εT

. As the CG model provides a much higher ratio value of kP
kT

than the TS model, and their prediction of the evolution of εP
εT

is similar, it seems that the

latter ratio is the more influential one. Profiles of kP
kT

and εP
εT

are not being presented for the

G&M05 case because they are expected to be just the same as in the GM0 case, since all

MTS models used here are LEV schemes and therefore they have no sensitivity to change in

sign of the normal straining, as discussed in Chapter 5.

Moving on to the evolution of the kP
kT

and εP
εT

ratios in the fully developed channel flow

cases, one may first look at Figures 6.5(a) and 6.5(b). Only results for the lowest and highest

Reynolds number cases will be shown since these are sufficient to provide the features which

will be discussed here. The εP
εT

ratio was predicted by all MTS models as about unity in the

equilibrium part of the flow for all the Reynolds number range. On the other hand, the ratio
kP
kT

increases with the Reynolds number of the flow. For the lowest Reynolds number flow,

6.5(a), most of the models gave the ratio kP
kT

near to 2 in the equilibrium part. This ratio,

however, does increase for the higher Reynolds number flows. One may notice that the TS

model clearly returns the highest values of this ratio, specially in the equilibrium part of the

flow. In order to understand better the reason why that happens, kP and kT were plotted

for the highest Reynolds number flow for all LEV MTS models in Figure 6.5(c). One may

notice that the TS model predicts kP to be higher than the other MTS models and kT to be

slightly smaller than the other MTS models. These small differences are amplified when seen

in the kP
kT

ratio form, but do not represent any unexpected behaviour of the TS model.

The evolution of kP
kT

and εP
εT

in the zero pressure gradient boundary layer cases are pre-

sented in Figure 6.6. Starting by discussing the behaviour of kP
kT

, one may notice a similarity

with the profiles of this ratio in the channel flows presented in Figure 6.5. The evolution of
kP
kT

in the zero pressure gradient boundary layer flow includes the equilibrium part which is

characterized by the peaks which are similar in shape to those of the channel flow results, and

then an asymptotic part for the outer part of the flow. Again, one may notice the different

values of the peaks for the different MTS models. The TS model again returns the highest

peak. In Figure 6.6(d), one may notice the individual profiles of kP and kT for the Spalart

boundary layer case when Reθ = 1410, showing no significant differences between any models

and justifying the different peak values in Figure 6.6 simply by calculating the ratio of these

quantities, as already commented on in the channel flow paragraph above. The profiles of
εP
εT

also show an equilibrium value of around unity (as in the channel flow - Figure 6.5) and

in the outer part of the flow this ratio decreases to about 0.5. The profiles of kP
kT

and εP
εT

are

presented in Figure 6.6 for Reθ = 1410, Reθ = 4981 and Reθ = 13052 so that one can notice

that the ratio kP
kT

in the equilibrium part of the boundary layer becomes higher, the further

the downstream distance.

The evolution of kPkT and εP
εT

in the adverse pressure gradient boundary layer flows will not

be presented here because they are qualitatively the same as in the zero pressure gradient

boundary layer flow just discussed. The TS model always returns the highest peaks for the

298



6.1. First Versions of the NT1 and NT2 Models

equilibrium value of kP
kT

, the level of the peak usually increases with the Reθ value, except for

the NG model where the effect is the opposite due to its LRN treatment. The equilibrium

values of εP
εT

are slightly above unity showing a small departure from the equilibrium, and

in the outer part of the flow they also decrease. The ratio kP
kT

in the equilibrium part of the

boundary layer also becomes higher, the further the downstream distance.

Finally, one can assess the evolution of kP
kT

and εP
εT

in Figure 6.7 for the K150 favourable

pressure gradient boundary layer case. One may notice a different behaviour for the outer

part of the flow. Within the boundary layer, Figures 6.7(b) and 6.7(d), kP
kT

and εP
εT

present

values similar to those in the channel flow, zero and adverse pressure gradient boundary layer

cases. However, in the outer part, these ratios grow significantly for the CG, KC and NG

models. This same behaviour occurs for the other two higher acceleration parameter cases,

K250 and K275, and therefore it was decided not to show the latter’s profiles since they

would not contribute to the analysis. However, by looking at Figure 6.8, also for the K150

case, one may notice that, again, these high levels of kP
kT

are caused by expressing kP and kT

into ratio forms which magnifies their difference. What is more interesting at this moment,

is that one may conclude that there is no unexpected behaviour in any MTS model related

to the behaviours presented in Figure 6.7.

From the above analyses it was possible to understand the behaviour of the ratios kP
kT

and εP
εT

in the different flows. All tested models provided similar trends to the development

of these ratios, however the TS and CG models presented a rather too fast growth of kP

and kT in homogeneous high shear flows, compared to the other models, which might be not

desirable. The next sections will then investigate the possible causes for this and will form

the starting point for the development of the new schemes.

6.1.2 Homogeneous Shear Flow Asymptotic Analysis

After examining the evolutions of kP
kT

and εP
εT

, it can be noted that the only flow where these

ratios performed sometimes oddly was the homogeneous shear flow. As this is a relatively

simple flow, one may try to derive, for each turbulence model, what would be the expected

value for these ratios when the asymptotic state of the flow is reached.

Asymptotic states for homogeneous shear flows have also been studied in MTS models by

Kim and Benson (1992), Nagano et al. (1997), Stawiarski and Hanjalic (2002), Cadiou et al.

(2004) and Stawiarski and Hanjalic (2005), among others. These studies were extended here.

Thus in the next subsections, an asymptotic analysis for a homogeneous shear flow will

be carried out, primarily for the TS model which is the model under investigation, and the

results will be presented for all MTS LEV models considered so far.

In the analysis that follows the transport equations are simplified by neglecting the dif-

fusion terms, because the flow is homogeneous and also by neglecting any model damping

functions, since the flows considered are high-Reynolds-number flows.

The asymptotic analysis thus consists of assuming that the substantial derivatives of the

ratios of the turbulent quantities become zero when the asymptotic state is reached. For
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example, one may say that D
Dt

(
k
εT

)
, D
Dt

(
kT
εT

)
, D
Dt

(
kP
kT

)
, D
Dt

(
kP
εT

)
, D
Dt

(
kP
εP

)
, D
Dt

(
kT
εP

)
and D

Dt

(
εP
εT

)
are all zero in the asymptotic state.

In order to carry out the asymptotic analysis not all these ratios are necessary. So the

ones that will be directly employed here are:

D

Dt

(
kT
εT

)
=

1

εT

DkT
Dt
− kT
ε2
T

DεT
Dt

= 0 (6.1)

D

Dt

(
k

εT

)
=

1

εT

Dk

Dt
− k

ε2
T

DεT
Dt

=
1

εT

(
DkP
Dt

+
DkT
Dt

)
− k

ε2
T

DεT
Dt

= 0 (6.2)

D

Dt

(
kP
εP

)
=

1

εP

DkP
Dt
− kP
ε2
P

DεP
Dt

= 0 (6.3)

6.1.3 TS model

Starting with the TS model, which is the chosen base model and which exhibited some odd

behaviour in the evolutions of kP
kT

and εP
εT

, one may write the transport equations for kP , kT ,

εP and εT when applied in a homogeneous shear flow case:

DkP
Dt

= Pk − εP (6.4)

DkT
Dt

= εP − εT (6.5)

DεP
Dt

= CP1Pk
εP
kP
− CP2

ε2
P

kP
+ C ′P1kP

(
∂U

∂y

)2

= CP1Pk
εP
kP
− CP2

ε2
P

kP
+
C ′P1

cµ

kP
k
Pk
εP
kP

(6.6)

DεT
Dt

= CT1
εP εT
kT
− CT2

ε2
T

kT
(6.7)

One may notice in equation 6.6 that the term C ′P1kP
∂Ul
∂xm

∂Ui
∂xj

εlmkεijk, originally in equation

3.45, reduces here to C ′P1kP
(
∂U
∂y

)2
. Since Pk = νt

(
∂U
∂y

)2
, one may write

(
∂U
∂y

)2
= Pk

νt
. In the

TS model, νt = cµ
kkP
εP

and thus one arrives at the final form presented in equation 6.6. The

reason for this algebraic manipulation was an attempt to write the terms associated with

CP1 and C ′P1 in as similar manner as possible.

Now replacing the derivatives in the asymptotic state equations 6.1, 6.2 and 6.3 by equa-

tions 6.4 to 6.7, one arrives at the equations below where the SF subscript indicates the

asymptotic value of the quantity in a homogeneous shear flow case:
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0 =
1

εT

DkT
Dt
− kT
ε2
T

DεT
Dt

=
1

εT
(εP − εT )− kT

ε2
T

(CT1
εP εT
kT
− CT2

ε2
T

kT
)

=
1

εT
[εP (1− CT1)− εT (1− CT2)]

⇒
(
εP
εT

)
SF

=

(
1− CT2

1− CT1

)
SF

(6.8)

0 =
1

εT

(
DkP
Dt

+
DkT
Dt

)
− k

ε2
T

DεT
Dt

=
1

εT
(Pk − εP + εP − εT )− k

ε2
T

(CT1
εP εT
kT
− CT2

ε2
T

kT
)

=
1

εT

[
Pk − εT − CT1(kP + kT )

εP
kT

+ CT2(kP + kT )
εT
kT

]
=
Pk
εT
− 1 +

(
CT2 − CT1

εP
εT

)(
kP
kT

+ 1

)
⇒kP
kT

=

Pk
εT
− 1

CT1
εP
εT
− CT2

− 1 but from equation 6.8, CT1
εP
εT
− CT2 =

εP
εT
− 1

⇒
(
kP
kT

)
SF

=

( Pk
εT
− εP

εT
εP
εT
− 1

)
SF

(6.9)

0 =
1

εP

DkP
Dt
− kP
ε2
P

DεP
Dt

=
1

εP
(Pk − εP )− kP

ε2
P

[
CP1Pk

εP
kP
− CP2

ε2
P

kP
+
C ′P1

cµ

kP
k
Pk
εP
kP

]
=
Pk
εP
− 1−

[
CP1 +

C ′P1

cµ

kP
k

]
Pk
εP

+ CP2

=

[
1− CP1 −

C ′P1

cµ

]
Pk
εP
− (1− CP2)

⇒
(
Pk
εP

)
SF

=

[
1− CP2

1−
(
CP1 +

C′P1
cµ

kP
k

)]
SF

(6.10)

Now, one should substitute the coefficients values into equations 6.8, 6.9 and 6.10 in order to

arrive at the asymptotic values the TS model predicts for each ratio.

Starting with equation 6.8, one may notice, from Table 3.19, that the coefficient CT2 =

1.15 is a constant while CT1 = 1.08 εPεT is a function of the ratio εP
εT

. Equation 6.8 thus becomes

a second order equation for εP
εT

which provides two solutions: εP
εT

= 1.0573 or εP
εT

= −0.1313.

The latter solution should not be considered since the ratio εP
εT

must be positive. One may
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check in Figures 6.1 and 6.2 that the value of 1.0573 for εP
εT

is reasonably close to that obtained

in the computations.

One may now look at equations 6.9 and 6.10. One may substitute the former into the

latter, considering that kP
k = (1 + kT

kP
)−1, in order to remain with only one unknown, Pk

εT
. By

substituting the coefficients values from Table 3.19, taking into account that the coefficient

CP2 depends on the ratio kP
kT

, and using the previous calculated results for εP
εT

= 1.0573, after

some algebraic manipulation, one arrives again at a second order equation for Pk
εT

which can

be solved to give: Pk
εT

= 1.0698 or Pk
εT

= −20.7076. Again, the latter must be discarded since
Pk
εT

must be positive and the former implies, from equation 6.9, that kP
kT

= 0.2186.

One may notice though, that this asymptotic value for kP
kT

was not observed in Figures 6.1

and 6.2 and neither was the asymptotic value of Pk
εT

observed in Figures 5.8(c), 5.23(c) and

5.32(c). Instead, the ratio of kP
kT

increases exponentially and Pk
εT

provides a sudden growth

profile which ends up not tending to an asymptotic value. Besides that, one may also notice

that the asymptotic value estimated for Pk
εT

, 1.0698, is far lower than the asymptotic value

provided by DNS calculations as shown in Figures 5.8(c), 5.23(c) and 5.32(c).

The reason for this behaviour was attributed to the C ′P1 term in equation 3.45 which

makes the calculation of the asymptotic values of kP
kT

and Pk
εT

in equations 6.9 and 6.10 less

straightforward.

An attempt to verify this hypothesis consisted of incorporating the C ′P1 term into the CP1

term, assuming kP
k to take the value of 2

3 , thus CP1new = CP1original +
C′P1
cµ

kP
k = 2.2− 0.11

0.09
2
3 =

1.3852. Therefore, the C ′P1 term was eliminated and the CP1 term became 1.3852. In this

new configuration, the asymptotic analysis gives the value for kP
kT

to be 8.24 and for Pk
εT

, 1.55.

It is of value to mention though, that the elimination of the C ′P1 term could not avoid a

second order equation in Pk
εT

to find its asymptotic value, since the CP2 term remained as a

function of kP
kT

and again, the negative solution value was discarded.

Figure 6.9 shows computed results of kP
kT

in the homogeneous shear flows using the above

modified CP1 and C ′P1 values for the W2, HM1 and HM2 cases, respectively representing the

low, moderate and high shear flow cases. One may notice that the exponential growth of kP
kT

was eliminated by this modification, kP
kT

now being consistent with the asymptotic value of

8.24. In Figure 6.9 one may also notice that now the modified TS model started to approach

the value predicted by the asymptotic analysis for the Pk
εT

ratio which was not happening

before. These results thus confirm the hypothesis that the C ′P1 term was responsible for the

sudden growth behaviours of the TS model in the homogeneous shear flows.

Other MTS LEV models

The same procedure described above was carried out for the other three MTS LEV models

which are being evaluated in this work, the CG, the KC and the NG models.

It is important to mention that the KC model also resulted in quadratic asymptotic

equations for εP
εT

and Pk
εT

and the negative solutions were discarded.

Asymptotic analysis for the NG model was more straightforward since all coefficients are
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constants and the final asymptotic equations are the same as those presented for the TS

model, but with no C ′P1 term.

On the other hand, the CG model presented a few problems to calculate the asymptotic

values of the ratios εP
εT

, kP
kT

and Pk
εT

. The vorticity terms in equations 3.53 and 3.54 reduce

to a form which has dU
dy which does not allow one to express it as a function of Pk

εT
. That

makes the analysis more complicated since another asymptotic state must be found for an

expression such as k
εP

dU
dy . A system of four equations and four unknowns ( εPεT , Pk

εT
, Pk
εT

and
k
εP

dU
dy ) was derived, but no real solution (with no complex numbers) could be found. That is

indeed in agreement with Figures 5.8(c), 5.23(c) and 5.32(c) where one can see that the ratio
Pk
εT

does not approach an asymptotic value. Nonetheless, εP
εT

and kP
kT

do seem to tend to an

asymptotic value in Figures 6.1 and 6.2. This is consistent with the fact that this model did

not exhibit any stability problems, in contrast to the behaviour of the TS model.

It is actually interesting to note the similarities between the extra terms proposed by the

CG and the TS models. The vorticity term in the CG model is W =
√(

dUi
dxj
− dUj

dxi

)2
and the

term ∂Ul
∂xm

∂Ui
∂xj

εlmkεijk in the TS model can be shown to be 1
2

(
dUi
dxj
− dUj

dxi

)2
. It is interesting

then that the term in the TS model is actually a vorticity term and these terms seem to be

preventing the CG and TS models from reaching an asymptotic state for Pk
εT

in homogeneous

shear flows.

The asymptotic states for each model considered so far (except the CG model due to the

above reasons) are summarized in Table 6.1. One may also note in Figures 6.1, 6.2, 5.8(c),

5.23(c) and 5.32(c) that the predicted values for the KC and NG models are consistent with

the outcomes of the asymptotic analysis.

It is also of interest to draw attention to the predicted asymptotic values of the ratio Pk
εT

,

since DNS data suggests this ratio to be around 2, as presented in Figures 5.8(c), 5.23(c) and

5.32(c). As already commented on before, the original TS model provides a too low value

which is not in agreement with DNS. From these figures and Table 6.1 one may indeed notice

that the NG model provides the most reasonable result which is actually closer to the one

predicted by the STS models, the CG tending to a too high value and the KC to a still rather

low value.

Table 6.1: Asymptotic state predicted by each MTS LEV model for the homogeneous shear
flow.

Model εP
εT

Pk
εT

kP
kT

TS 1.0573 1.0698 0.2186

KC 1.1012 1.5086 4.0258

CG - - -

NG 1.3000 1.8000 1.6667

TS modified 1.0573 1.5454 8.5206
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6.1.4 Decaying Grid Turbulence Flow Asymptotic Analysis

After studying the homogeneous shear flow cases, one may study a decaying grid turbulence

flow. This flow has also been studied in MTS models by Hanjalic et al. (1980), Nagano et al.

(1997), Stawiarski and Hanjalic (2002), Cadiou et al. (2004) and Stawiarski and Hanjalic

(2005).

Decaying grid turbulence is set up by generating turbulence by, for example, making an

equilibrium flow pass through a grid and then letting it develop, which means indeed to let

it decay since no production mechanism will be present in the flow and only dissipation will

act, up to the point the flow reaches a new equilibrium state.

This is perhaps the simplest flow one could consider and it is usually used to define the

Cε2 coefficient in the ε equation in STS models and can be used to determine CP2 in the

εP equation as will be shown below. Besides that, the TS model was developed taking into

account this flow and thus its features will be discussed here.

The asymptotic analysis of this flow involves the assumption that diffusion terms can be

neglected as well as production. This analysis will again be carried out in detail for the TS

model, and the asymptotic results for the other LEV MTS models will then be presented for

the sake of comparison.

TS model

Applying the TS model for the decaying grid turbulence flow case, one can reduce equations

3.43, 3.44, 3.45 and 3.46 to:
DkP
Dt

= −εP (6.11)

DkT
Dt

= εP − εT (6.12)

DεP
Dt

= −CP2
ε2
P

kP
(6.13)

DεT
Dt

= CT1
εP εT
kT
− CT2

ε2
T

kT
(6.14)

From experiments, one knows that the evolution (or decay) of k with time is proportional

to t−n. According to Hanjalic et al. (1980), there are many reported values for n in the

literature, but n = 1.25 would be a reasonable estimate and that is how it will be dealt here

too.

Assuming that the ratio kP
kT

becomes constant during the decay process, as did Hanjalic

et al. (1980), one may say that both kP and kT decay proportionally to t−n. Substituting

this into equations 6.11 and 6.13, one concludes that the CP2 coefficient in the decaying grid

turbulence flow (indicated in subscripts by DF ) should be CP2DF = n+1
n . By considering

n = 1.25, that implies CP2DF = 1.8.
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From the above assumption, one may also conclude that the substantial derivatives of

the ratios kP
kT

and εP
εT

should be zero since these quantities reach constant values. The same

procedure as that carried out in the homogeneous shear flow analysis could then be repeated

here:

0 =
D

Dt

(
εP
εT

)
=

1

εT

DεP
Dt
− εP
ε2
T

DεT
Dt

=
1

εT

[
− CP2

ε2
P

kP

]
− εP
ε2
T

[
CT1

εP εT
kT
− CT2

ε2
T

kT

]
=
εP
kP

[
− CP2

εP
εT
− CT1

εP
εT

kP
kT

+ CT2
kP
kT

]
⇒ εP

εT

(
CP2 + CT1

kP
kT

)
= CT2

kP
kT

⇒
(
εP
εT

)
DF

=
CT2

kP
kT

CP2 + CT1
kP
kT

(6.15)

0 =
D

Dt

(
kP
kT

)
=

1

kT

DkP
Dt
− kP
k2
T

DkT
Dt

= −εT
kT
− kP
k2
T

(εP − εT )

=
εT
kT

[
− εP
εT
− kP
kT

(
εP
εT
− 1

)]
⇒
(
kP
kT

)
DF

=

εP
εT

1− εP
εT

(6.16)

By solving the system formed by equations 6.15 and 6.16, one arrives at expressions for kP
kT

and εP
εT

as a function of the model’s coefficients:(
kP
kT

)
DF

=

(
CP2 − CT2

CT2 − CT1

)
DF

(6.17)

(
εP
εT

)
DF

=

(
CT2 − CP2

CT1 − CP2

)
DF

(6.18)

The latter equations can also be obtained by solving equations 6.12 and 6.14 within the

assumptions already discussed.

Now, by looking at the TS model coefficients in Table 3.19, one may solve the system

formed by equations 6.17 and 6.18 to find the constant values the ratios kP
kT

and εP
εT

are

expected to take when the asymptotic state of the decaying grid turbulence flow is reached.
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The solution of the mentioned system provides:
(
kP
kT

)
DFTS

= 1.08 and
(
εP
εT

)
DFTS

= 0.52.

One may then identify here a slight inconsistency in the TS model. In decaying grid

turbulence CP2 = 1.8 + 0.3(kPkT − 1)/(kPkT + 1) should take the value of 1.8 which is achieved

because
(
kP
kT

)
DFTS

= 1.0. That would then imply
(
εP
εT

)
DFTS

= 0.5, which is slightly different

then the values just calculated. This minor inconsistency will be addressed through further

developments introduced later in this chapter.

Other MTS models

The same procedure described above can be applied to the other three LEV MTS models

and thereby their expected constant values for
(
kP
kT

)
DF

and
(
εP
εT

)
DF

are presented in Table

6.2, together with the results for the TS model in order to make them comparable.

It may be noted from Table 6.2 that
(
εP
εT

)
DF

is a value smaller than one as expected from

equation 6.16. One may also notice that the NG model predicts the same value for kP
kT

in

both homogeneous shear and decaying grid turbulence flows. This is inconsistent because

one would expect
(
kP
kT

)
SF

>
(
kP
kT

)
DF

since in decaying grid turbulence there is no turbulent

kinetic energy production. As these two ratios characterize the turbulent kinetic energy

spectrum, one may notice how different the tested MTS models predict the spectrum to be.

Table 6.2: Asymptotic state predicted by each MTS model for the decaying grid turbulence
flow

Model εP
εT

kP
kT

TS 0.52 1.08

KC 0.407 0.687

CG 0.83 4.84

NG 0.625 1.667

6.1.5 Transport Equations for the First Versions of the NT1 and NT2

models

In this section the main conclusions about the asymptotic analysis of the homogeneous shear

flow cases and the decaying grid turbulence will be presented. They resulted in some modi-

fications to the original TS model which will then be used as a base for the developed NT1

and NT2 models.

From the homogeneous shear flow analysis one could identify that the term associated with

C ′P1 was responsible for some instabilities of the TS model, besides providing unreasonable

asymptotic ratios for Pk
εT

, which is expected to be around 2. Therefore it was decided to

remove this term.

From the decaying grid turbulence, one could identify that the coefficients CP2, CT1

and/or CT2 needed some small adjustments in order to attain correctly the physical con-

straints of this flow and the assumptions of the model. Therefore one should bear in mind

the necessity of further adjustment of these coefficients.
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At this point, working towards the development of an improved MTS model, one may

summarize the transport equations which will be considered for the first version of the models

as:
DkP
Dt

= Pk − εP +
∂

∂xj

[(
ν +

νt
σkP

)
∂kP
∂xj

]
(6.19)

DkT
Dt

= εP − εT +
∂

∂xj

[(
ν +

νt
σkT

)
∂kT
∂xj

]
(6.20)

DεP
Dt

= CP1Pk
εP
kP
− CP2

ε2
P

kP
+

∂

∂xj

[(
ν +

νt
σεP

)
∂εP
∂xj

]
(6.21)

DεT
Dt

= CT1
εP εT
kT
− CT2

ε2
T

kT
+

∂

∂xj

[(
ν +

νt
σεT

)
∂εT
∂xj

]
(6.22)

One may notice in the above equations that the only significant difference between them

and the transport equations in the original TS model is the removal of the C ′P1 term. The

turbulent Prandtl numbers σkP , σkT , σεP and σεT were also introduced in order to use the

conventional LEV approaches for the diffusion terms and improve the flexibility of the model

in terms of modelling the coefficients. One may notice though, that if σkP = σkT = σεP =

σεT = 1 and the νt expression used in the TS model is kept, one remains with the same

diffusion terms as these used in the latter.

6.1.6 Fully Turbulent Local Equilibrium Boundary Layer

The next step in the development of an improved MTS model is to test this version for flow

in a turbulent boundary layer in local equilibrium. This flow consists of a basic case which

turbulence modellers often use as a test to assure the correct behaviour of the velocity (i.e.

to follow the log law of the wall) in simple flows such as channel flows and zero pressure

gradient boundary layers.

Asymptotic analysis for local equilibrium boundary layers have also been studied in MTS

models by Kim and Chen (1989), Nagano et al. (1997), Stawiarski and Hanjalic (2002),

Cadiou et al. (2004) and Stawiarski and Hanjalic (2005), among others. These studies were

also extended here.

Particular features of this flow are that convection can be neglected and the generation

rate of turbulent kinetic energy Pk is equal to the turbulent kinetic energy dissipation rate.

In STS models, one would write Pk = ε; in MTS models, one can write Pk = εP = εT , since

the equilibrium state implies that εP = εT . Therefore, one may write
(
εP
εT

)
BL

= 1, where the

subscript BL indicates the asymptotic state in local equilibrium boundary layers.

The asymptotic analysis of a local equilibrium boundary layer thus consists of applying

the above mentioned considerations in the transport equations of the turbulent quantities

and rewriting them as a function of the wall variables in an attempt to cancel out terms and

arrive at a relation between the model’s coefficients.
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In order to implement the asymptotic analysis of the local equilibrium boundary layer,

one should consider the following relations which are valid for this flow:

dU

dy
=
uτ
κy

and − uv =
τw
ρ

= u2
τ (6.23)

The first follows from the logarithmic velocity profile whilst the second comes from the results

that the shear stress is constant across such a boundary layer. From the above relations, one

may write:

Pk = εP = εT = −uvdU
dy

=
u3
τ

κy
(6.24)

νt =
−uv
dU/dy

= uτκy (6.25)

The asymptotic analysis of the local equilibrium boundary layer will be carried out for the

transport equations presented in the previous section, represented by equations 6.19, 6.20,

6.21 and 6.22, since at this stage one is no longer evaluating the tested LEV MTS models,

but constructing the basis of an improved MTS model. Hence, applying the above relations

(equations 6.23, 6.24 and 6.25) and the simplifications inherent to this flow case, discussed

above, into equations 6.21 and 6.22 provides:

kP =
u2
τσεP
κ2

(CP2 − CP1) (6.26)

kT =
u2
τσεT
κ2

(CT2 − CT1) (6.27)

It is easy to see that dividing equation 6.26 by equation 6.27 provides the asymptotic value

that kP
kT

is expected to reach in local equilibrium boundary layers:(
kP
kT

)
BL

=

[
σεP
σεT

(CP2 − CP1)

(CT2 − CT1)

]
BL

(6.28)

Now, one may observe that in order to arrive at a relation exclusively (without any flow

variable) between the coefficients, one needs to find a way to eliminate uτ , kP and kT in

equations 6.26 and 6.27. Since substituting the relations of equations 6.24 and 6.25 into

equations 6.19 and 6.20 leads nowhere, because the production and sink terms cancel out

and one is simply left with diffusion of kP and kT equal to zero, the alternative is to look

at uv again. Considering the original proposition of the TS model for νt and applying the

relations expressed in equations 6.23 and 6.24, one may find an expression for u2
τ :

− uv = cµ
kkP
εP

dU

dy
= u2

τ ⇒ u4
τ = cµkkP ⇒ u2

τ = c1/2
µ k1/2k

1/2
P (6.29)
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By substituting the above equation into equations 6.26 and 6.27, one may find:

(
kP
k

)
BL

=

[
cµσ

2
εP

κ4
(CP2 − CP1)2

]
BL

(6.30)

(
kT
k

)
BL

=

[
cµσεP σεT

κ4
(CP2 − CP1)(CT2 − CT1)

]
BL

(6.31)

One can thus finally find a relation between the coefficients, since kP
k + kT

k = 1. Hence, by

summing equations 6.26 and 6.27 one arrives at:

{(CP2 − CP1)[σεP (CP2 − CP1) + σεT (CT2 − CT1)]}BL =

(
κ4

cµσεP

)
BL

(6.32)

One may notice though that the CP2 and CT1 coefficients may be functions of kPkT and εP
εT

and

therefore, as indicated in the above equation 6.32, the value of these ratios must be taken at

the local equilibrium state. Moreover, the value of the eddy viscosity coefficient cµ must also

be considered in this state. When one is considering STS models, the value of cµ in the local

equilibrium boundary layer is known to be around 0.09. This value comes from the following

analysis:

Pk = −uvdU
dy

= ε⇒ −uv =

(
uv

k

)2

︸ ︷︷ ︸
cµ

k2

ε

dU

dy
⇒
(
uv

k

)2

︸ ︷︷ ︸
cµ

k

ε

dU

dy︸ ︷︷ ︸
≈3.3

= −uv
k︸ ︷︷ ︸

≈0.3

⇒ cµ ≈ 0.09 (6.33)

One can notice from the above that the equality Pk = ε can be rearranged in order to express

uv in the form −uv = cµ
k2

ε
dU
dy , from where one concludes that cµ =

(
uv
k

)2
. From experimental

results, it is well known that the dimensionless shear η = k
ε
dU
dy reaches a value around 3.3 and

that the ratio −uvk reaches a value around 0.3 which implies that cµ should be given a value

of around 0.09.

From the above result, one may thus develop the expression for uv, considering νt = cµ
kkP
εP

,

in order to identify what should be the value of cµ in the local equilibrium boundary layer

when predicted by this MTS model:

− uv = cµ
kkP
εP

dU

dy
⇒ −uv

k
= cµ

kP
εP︸︷︷︸=εT

dU

dy
⇒ −uv

k︸ ︷︷ ︸
≈0.3

= cµ
kP
k

k

εT

dU

dy︸ ︷︷ ︸
≈3.3

⇒ cµ

(
kP
k

)
BL

≈ 0.09 (6.34)
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One may notice that the value of cµ when νt = cµ
kkP
εP

must be higher than 0.09, the value it

would assume if νt = cµ
k2

εT
, since kP

k is necessarily smaller than one. One may then substitute

equation 6.30 into the above equation and arrive at:[
cµσεP
κ2

(CP2 − CP1)

]
BL

=
√

0.09 (6.35)

That concludes this section where one could say the basis for deriving some of the coefficient

values for the improved MTS model has been established.

6.1.7 cµ as a function of η

Before final adjustment of the coefficients of the proposed model, one may look again at the

homogeneous shear flow cases and observe that the performance of the models does vary as a

function of the dimensionless shear (η = k
ε
dU
dy ). For eddy viscosity formulations, that makes

one think of cµ varying as a function of η. Also considering this flow, Craft et al. (1996b)

proposed cµ = 0.3
1+0.35η1.5 frs where frs = 1− exp

[ −0.36
exp(−0.75η)

]
in order to reduce the predicted

value of uv
k at high shear rates. The frs function will be effective only for very low shear

values which are not encountered in the present homogeneous shear flow cases. Therefore, in

this work, it was decided to start testing a general expression for cµ of the form cµ = a
b+ηc .

It was also questioned, since one is working with MTS models and instead of k and ε one

has kP , kT , εP and εT , if the more appropriate expression to take for η would be k
εT

dU
dy or

kP
εP

dU
dy . However, some tests were performed and indicated that if η = kP

εP
dU
dy , the exponent of

η in the cµ expression, c, would have to be near 2, a relatively high value which could cause

some instabilities for other flow cases as found by Craft et al. (1999).

It was also noticed that in order to obtain good predictions over the entire η range which

has been tested, ≈ 1 < η < 30, one would need two sets of values for the cµ coefficients a,

b and c, one for the low and moderate shear cases and the other for the high shear ones. It

was then identified that a better expression for cµ would be:

cµ = c1 + c2 exp(−c3η) (6.36)

6.1.8 Development of the First Version of the NT1 model

The development of the NT1 model thus consisted of determining the set of coefficients

of the model. As an LEV model, the Reynolds stresses would be calculated as uiuj =

−νt
(
dUi
dxj

+
dUj
dxi

)
+ 2

3kδij , νt was here kept as νt = cµ
kkP
εP

and cµ would be given by equation

6.36 with η = k
εT

dU
dy . The transport equations for kP , kT , εP and εT are those presented in

equations 6.19 to 6.22 and the coefficients’ structure was kept as in the original TS model:

CP1 and CT2 would be constants, CT1 ≡ ct1
εP
εT

and CP2 ≡ cp21 − cp22

(
kP
kT
− 1
)
/
(
kP
kT

+ 1
)
.

It can be noted that ct1, cp21 and cp22 were introduced to make the determination of the
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model’s coefficients easier and do not appear explicitly in the model’s coefficients when their

final forms are eventually presented.

In order to define the model’s coefficients, a system of equations was built based on the

asymptotic analyses carried out in the previous sections, together with some assumptions.

From the decaying grid turbulence flow, one has that CP2 should assume a value of 1.8.

In order to match this, one could either keep
(
kP
kT

)
DF

and
(
εP
εT

)
DF

as unknowns or simply set(
kP
kT

)
DF

= 1 which would imply, from equation 6.16,
(
εP
εT

)
DF

= 0.5 as proposed by Hanjalic

et al. (1980) who argued that in decaying grid turbulence flows, an equal amount of energy

would be stored by the large and small scales, implying
(
kP
kT

)
DF

= 1, and as this flow has no

turbulence production, any other flow would have to predict kP to be higher then kT . This

argument was accepted here and therefore, from equation 6.15, one may write:

1

2
=
CT2 − 1.8
1
2ct1 − 1.8

(6.37)

This equation assumes that cp21 = 1.8,
(
kP
kT

)
DF

= 1 and
(
εP
εT

)
DF

= 0.5. Therefore the above

equation provides a relation between the coefficients ct1 and CT2.

From the homogeneous shear flow analysis, one may notice that equation 6.8 also provides

a relation between the CT1 and CT2 coefficients. By observing the behaviour of the MTS

models when applied to homogeneous shear flows, Figures 6.1 and 6.2, one can infer that(
εP
εT

)
SF

tends to be around unity. However, from equation 6.9, one may notice that it could

not be exactly 1.0 since that would imply a singularity, giving
(
kP
kT

)
SF

infinite. Nonetheless,

one could say a reasonable value for
(
εP
εT

)
SF

would be between 1.01 and 1.4, which would

imply CT2 − ct1 being between 0.01 and 0.33. That would then allow one to arrive at values

for the coefficients CT1 and CT2.

Another relation which can be inferred from the homogeneous shear flow cases is the

asymptotic value of
(
Pk
εT

)
SF

which, from the cases studied and presented in Figures 5.8(c),

5.23(c) and5.32(c), is expected to reach a value of around 1.9 as also predicted by the STS

models.

One may notice though that, since the C ′P1 term no longer exists in the new model,

equation 6.10 becomes: (
Pk
εP

)
SF

=

(
1− CP2

1− CP1

)
SF

(6.38)

The asymptotic value of
(
Pk
εT

)
SF

can thus be easily found by combining equations 6.38 and

6.8 which then provide the following relation between the coefficients:

(
Pk
εT

)
SF

=

(
Pk
εP

)
SF

(
εP
εT

)
SF

= 1.9 =

[
1− cp21 + cp22

(
kP
kT

)
SF
−1(

kP
kT

)
SF

+1

](
1− CT2

)
(
1− CP1

)[
1− ct1

(
εP
εT

)
SF

] (6.39)
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One may notice that in the above equation,
(
εP
εT

)
SF

and
(
kP
kT

)
SF

are known. The former is

first calculated from equation 6.8, since CT1 and CT2 have already been defined as discussed

above, and the latter can then be calculated from equation 6.9. One may notice then that at

this point one has two unknowns, cp22 and CP1, and only one equation, equation 6.39.

One should look now at the asymptotic analysis developed for the local equilibrium bound-

ary layer. A set of relations between the coefficients can then be obtained from equations

6.28, 6.32 and 6.35 which can be written making all variables explicit:

(
kp
kt

)
BL

=
σεp
σεt

(
cp21 − cp22

(
kP
kT

)
BL
−1(

kP
kT

)
BL

+1
− CP1

)
(CT2 − ct1)

(6.40)

(
cp21−cp22

(
kP
kT

)
BL
− 1(

kP
kT

)
BL

+ 1
−CP1

)[
σεp

(
cp21−cp22

(
kP
kT

)
BL
− 1(

kP
kT

)
BL

+ 1
−CP1

)
+σεt(CT2−ct1)

]
=

κ4

cµBLσεp

(6.41)

cµBLσεp
κ2

(
cp21 − cp22

(
kP
kT

)
BL
− 1(

kP
kT

)
BL

+ 1
− CP1

)
=
√

0.09 (6.42)

In the above equations, it is implicit that
(
εP
εT

)
BL

= 1 which implies CT1 = ct1
(
εP
εT

)
SF

= ct1.

Equations 6.39, 6.40, 6.41 and 6.42 thus form a system of four equations and six unknowns

(CP1, cp22,
(kp
kt

)
BL

, cµBL , σεP and σεT ), besides the three coefficients in the cµ expression

presented in equation 6.36.

An optimization procedure was then carried out in order to determine the values of the

coefficients which would provide the best fit of the homogeneous shear flows and satisfy all

the relations related to the three cases whose asymptotic analysis was studied.

Since there are more variables then equations, there are also many ways of treating and

optimizing this system. The way found here to provide the best results is thus described

below.

A program was written in Matlab and a loop to vary D = CT2 − ct1 from 0.01 to 2.0 by

a 0.01 increment was initially built in order to define the value of the coefficients CT1 and

CT2. Inside this loop, a new loop for cp22 was built, making it vary from 0.1 to 1.4, by a 0.01

increment. CP1 would be then directly calculated from equation 6.39. Inside the cp22 loop,

another loop was built to specify the value of σεP which was let to vary from 0.1 to 1.5 by a

0.1 increment and then, from solving the system composed of equations 6.40, 6.41 and 6.42,

the values of
(kp
kt

)
BL

, cµBL and σεT were determined. Inside the σεP loop, a new loop varying

c2 from 0.2 to 0.4 by a 0.001 increment and within this, a new loop varying c3 from 0.2 to

0.4 by a 0.001 increment were also built to determine the cµ coefficients from equation 6.36.

The c1 coefficient was then calculated by c1 = cµBL − c2 exp(−c3 ∗ 3.3) in order to guarantee

that the cµBL would be associated with η ≈ 3.3 according to above discussions.

Inside the last loop the system formed by the transport equations for kP , kT , εP and εT
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was then solved for the homogeneous shear flow cases since this is a rather simple differential

equation system. The rms “error” would be then computed comparing the results provided

by each set of coefficients and the DNS data. The set of coefficients which provided the

smallest rms “error” would be then chosen. It is of value to mention that for some sets of

coefficients the system of differential equations would not converge and then the intervals

mentioned above to vary each of the coefficients had to be manually changed.

When a set of coefficients was then chosen, a channel flow test would be performed with it

in the STREAM code. It was noticed that if σεP and σεT were too different from each other,

the channel flows would not converge which could be explained by noticing that εP and εT

would be diffusing at rather different rates, thus compromising convergence. Therefore, just

after σεT was computed inside the loop, a check was inserted not to allow |σεP − σεT | > 0.5.

It is also of value to comment that σkP and σkT were not used for any asymptotic analysis

and therefore both were set to unity as is usually done in LEV models (σkP = σkP = 1.0).

Another important issue which is worth commenting upon is that one could find a set

of coefficients for cµ in equation 6.36 which would provide very accurate results for the full

range of η values in the homogeneous shear flows, including the lowest shears cases. However

to match the latter, one would need to let cµ assume relatively high values. That would

cause instabilities and odd behaviours in wall-bounded flows, for example in the outer part of

boundary layers, where only diffusion plays a role, and η can reach very low values, making

cµ become too large. In order to avoid this problem, it was decided to clip cµ with the value

it would reach in local equilibrium boundary layers.

The coefficients of the NT1 model are thus summarized in Table 6.3 and the asymptotic

values this model is expected to provide in the three studied cases (homogeneous shear flow,

decaying grid turbulence flow and local equilibrium boundary layer) are presented in Table

6.4 for later comparison with the NT2 and other MTS models.

Table 6.3: Coefficients of the first version of the NT1 model
cµ CP1 CP2 σεP CT1 CT2 σεT

min[0.1324, 0.0223 + 0.343e−0.341η] 1.2391 1.8− 0.5
kP
kT
−1

kP
kT

+1
1.0 1.04 εPεT 1.16 1.4945

Table 6.4: Values expected to be provided by the first version of the NT1 model in the
asymptotic states studied(

Pk
εT

)
SF

(
kP
kT

)
SF

(
εP
εT

)
SF

(
kP
kT

)
DF

(
εP
εT

)
DF

(
kP
kT

)
BL

(
εP
εT

)
BL

cµBL

1.9 7.8897 1.1012 1.0 0.5 2.1243 1.0 0.1324

6.1.9 Development of the First Version of the NT2 model

The NT2 model arose from the idea of testing a different expression for νt than the one

proposed by Hanjalic et al. (1980) and adopted in the NT1 model. It was decided it would
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be worth testing the conventional νt expression employed in single scale models to check if

that could bring any kind of improvement.

The NT2 model thus consists of the same transport equations used for the NT1 model,

equations 6.19, 6.20, 6.21 and 6.22 and the Reynolds stresses will also be calculated by

uiuj = −νt
(
dUi
dxj

+
dUj
dxi

)
+ 2

3kδij , given this is also an LEV model, where νt = cµ
k2

εT
and cµ is

given by the same general expression presented in equation 6.36. The coefficients will again

be kept in the form proposed by Hanjalic et al. (1980) and one only needs to determine the

new coefficients which satisfy all the asymptotic analysis constraints.

The asymptotic analyses carried out for the homogeneous shear flow and the decaying grid

turbulence flow cases are not affected by this change in the νt expression. Therefore the way

to determine cp21, CT1 and CT2 remains the same. Equation 6.39 also remains unchanged.

However, setting νt = cµ
k2

εT
does affect the asymptotic analysis of the local equilibrium

boundary layer flows and therefore one must revise it. Equations 6.26 and 6.27 remain the

same, which implies that equation 6.28 also remains the same, however the expression for u2
τ

will change to:

− uv = cµ
k2

εT

dU

dy
= u2

τ ⇒ u4
τ = cµk

2 ⇒ u2
τ = c1/2

µ k (6.43)

Substituting then the above results into equations 6.26 and 6.27, one has respectively:

kP
k

=
c

1/2
µ σεP
κ2

(CP2 − CP1) (6.44)

kT
k

=
c

1/2
µ σεT
κ2

(CT2 − CT1) (6.45)

By summing the above equations and equating the result to 1, since kP
k + kT

k = 1, one finally

arrives at a relation between the coefficients when νt = cµ
k2

εT
:

σεP (CP2 − CP1) + σεT (CT2 − CT1) =
κ2

c
1/2
µ

(6.46)

One may notice that it is not necessary to calculate a value for cµBL since it falls into the

same analysis usually done for STS LEV models, described in equation 6.33, which then

implies cµBL = 0.09. However, if on one hand this reduces by one the number of equations,

on the other hand, the number of unknowns is also reduced by one since one has no longer

to calculate cµBL .

The system of equations thus necessary to determine the coefficients of the NT2 model is

formed by three equations (6.39, 6.28 and 6.46) and five unknowns (CP1, cp22,
(kp
kt

)
BL

, σεP
and σεT ), and in addition the coefficients of the cµ expression in equation 6.36.

The optimization procedure used to determine the coefficients of the NT2 model was

similar to that used to determine the coefficients in the NT1 model and was also based on
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adjusting the values to provide the best prediction for the homogeneous shear flows and, at

the same time, to satisfy the constraints imposed by the asymptotic analysis.

The same clipping in the cµ expression was necessary and again σkP = σkP = 1.0 was set.

The values of the coefficients determined in the NT2 model are presented in Table 6.5 and

the values this model is expected to provide in the asymptotic states of a homogeneous shear

flow, a decaying grid turbulence flow and a local equilibrium boundary layer are presented in

Table 6.6.

Table 6.5: Coefficients of the first version of the NT2 model
cµ CP1 CP2 σεP CT1 CT2 σεT

min[0.09, 0.012 + 0.225e−0.318η] 1.1052 1.8− 1.1
kP
kT
−1

kP
kT

+1
0.7 0.9333 εPεT 1.1333 1.1258

Table 6.6: Values expected to be provided by the first version of the NT2 model in the
asymptotic states studied(

Pk
εT

)
SF

(
kP
kT

)
SF

(
εP
εT

)
SF

(
kP
kT

)
DF

(
εP
εT

)
DF

(
kP
kT

)
BL

(
εP
εT

)
BL

cµBL

1.9 3.7036 1.1913 1.0 0.5 1.4887 1.0 0.09

One may notice that the NT1 and NT2 models are very similar, however some differences

can be pointed out.

First of all, the expression for νt is, of course, different. It is possible to say that by

comparing the performance of the two proposed MTS models, one may be able to identify

the importance of the timescale kP
εP

(in the NT1 model) against k
εT

(in the NT2 model).

One may also notice that the ratio
(
kP
kT

)
SF

is much lower for the NT2 model than for the

NT1, implying that the latter concentrates more energy in the large scales. Consistent with

this, the ratio
(
kP
kT

)
BL

is also higher in the NT1 model, the value predicted by it being closer

to the 2
3 generally estimated for local equilibrium boundary layers.

6.1.10 Other MTS Models Tested in Local Equilibrium Boundary Layer

Before proceeding with the analysis of the performance of the newly developed NT1 and

NT2 models, it is worth completing the asymptotic analyses of the CG, KC, NG and TS

models. Their asymptotic states in decaying grid turbulence and homogeneous shear flows

were already discussed so it remains to evaluate their asymptotic states in local equilibrium

boundary layers.

As commented upon above, as all models follow the spectrum framework proposed by

Hanjalic et al. (1980), they all adopt
(
εP
εT

)
BL

= 1. In local equilibrium, Pk = εP = εT which

then implies
(
Pk
εT

)
BL

= 1. It remains then to calculate the asymptotic states for
(
kP
kT

)
BL

.

The same procedure outlined above with the NT1 and NT2 models to arrive at the

expression for
(
kP
kT

)
BL

was carried out for the four LEV MTS models in study. Table 6.7

shows the calculated values for this ratio.
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Table 6.7: Asymptotic state predicted by each MTS model for equilibrium boundary layers

Model εP
εT

kP
kT

TS 1.0 6.23

KC 1.0 4.33

CG 1.0 2.52

NG 1.0 1.67

One can evaluate kP
kT

in the different flows studied for asymptotic analysis. In principle,

one would expect
(
kP
kT

)
DF

<
(
kP
kT

)
BL

<
(
kP
kT

)
SF

. The reason for that is, as pointed out by

Hanjalic et al. (1980),
(
kP
kT

)
DF

should represent the minimum ratio kP
kT

would assume since

there is no production in decaying grid turbulence. In homogeneous shear flows, the ratio
Pk
εT
≈ 1.9, according to DNS and experimental data, against

(
Pk
εT

)
BL

= 1 in local equilibrium

boundary layers, hence one would expect kP to store a higher ratio of the total turbulent

kinetic energy in homogeneous shear flows than in local equilibrium boundary layers.

Comparing Tables 6.1, 6.2 and 6.7, one can see that only the KC model satisfies the

expected relation between the kP
kT

ratio in the different flow situations, even though it predicts(
kP
kT

)
BL

only slightly smaller than
(
kP
kT

)
SF

.

Another important comment is that the coefficients of both CG and TS models do not

reproduce the behaviour of the asymptotic state of local equilibrium boundary layers. When

an equation similar to equations 6.32 and 6.46 is constructed for these models, one can check

that it is not in balance. One could then expect these models not to provide an accurate log

law prediction as Figure 5.61(c) suggests.

6.1.11 Performance of the First Versions of the NT1 and NT2 Models

The first versions of the NT1 and NT2 models were then assessed in the following test cases:

homogeneous shear flows, normally strained flows, fully developed channel flows, zero, adverse

and favourable pressure gradient boundary layers. It was decided to compare their results to

those provided by the HR, SG and TS models, since these models represent each class tested

before - one STS linear-eddy-viscosity, one STS Reynolds-stress-transport and one two-time-

scale LEV model. The latter being the model used as the base for the development of the

NT1 and NT2 models. Besides, all these models were used together with wall functions which

makes the comparison between them fairer, although it is known that the wall function can

affect different models in different levels. As the new NT1 and NT2 models use the linear-

eddy-viscosity scheme, predictions of the Reynolds normal stresses will not be discussed here.

A sample of results, showing the main features of the performance of the first versions of the

NT1 and NT2 models, will be then discussed. In the results, the first versions of the NT1

and NT2 models will be presented as NT1 v1 and NT2 v1 respectively.

In order to assess the performance of the first versions of the NT1 and NT2 models in

the homogeneous shear flow cases, one low, one moderate and one high shear case will be

used. In Figure 6.10, the prediction of the evolution in time of the turbulent kinetic energy,
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the eddy dissipation rate and the Reynolds shear stress are presented for the lowest shear

case of Matsumoto et al. (1991) which is also the lowest shear case here tested. One can

see that the new NT1 and NT2 models do not perform as well as the SG model, though

they do present improvements when compared to the HR and TS models. The reason for

this, as also mentioned before, is the clipping in cµ: it was found during the process of

tunning the coefficients for the NT1 and NT2 models that in order to match the DNS data

of homogeneous low shear cases, high values of cµ would be necessary. However, in order

to guarantee stability in wall-bounded flows where the dimensionless shear parameter η can

assume rather low values, cµ was clipped with the value it is supposed to assume in equilibrium

boundary layers, cµBL . The profile of cµ can be seen in Figure 6.11 for the first version of

both NT1 and NT2 models as a function of the dimensionless shear η. When looking at

Figures 6.12 and 6.13 to assess the performance of the NT1 and NT2 models in moderate

and high shear cases, one can see clear improvements provided by the new models, even when

compared to the SG model which is an RST model, thus much more complex.

The performance of the first versions of the NT1 and NT2 models in the normally strained

cases is presented in Figure 6.14. The new models provide clear improvements compared to

the TS model, similar results compared to the HR model and worse results compared to

the SG model. These results are expected since the NT1 and NT2 models are linear-eddy-

viscosity models and therefore they are limited to predict these normally strained flows, as

commented upon on Chapter 5.

The performance of the new models in the fully developed channel flow with Re = 41441

can be seen in Figure 6.15. The models perform reasonably well and satisfy the log law of the

wall, as designed through the asymptotic analyses carried out. The TS model slightly overpre-

dicts the velocity profile which is consistent with its coefficients not satisfying the asymptotic

analyses as comment upon above. Only the results for the highest Reynolds number channel

flow are shown, since the results are qualitatively similar for the lower Reynolds number

cases.

The performance of the first versions of the NT1 and NT2 models in the zero pressure

gradient boundary layer cases was reasonably good as also expected in the fully developed

channel flow cases. It can be seen in Figure 6.16 for the profile of the velocity and turbulent

quantities at Reθ = 1410. Again, this case is useful to confirm the models reproduce the

behaviour of the asymptotic analysis carried out for local equilibrium boundary layers.

In order to evaluate the performance of the models in the adverse pressure gradient

boundary layer cases, only the M&P30 case will be used. It can be considered representative

and provides qualitatively similar results to the other cases. The velocity profiles at four

positions downstream of the imposed pressure gradient can be seen in Figure 6.17. The NT1

and NT2 models are not able to follow the subtle changes in the velocity profile just as the

other STS models. In Chapter 5, it was seen that only the FM and WM models, which were

designed to capture these changes, could follow the experimental data. The prediction of

the turbulent kinetic energy and Reynolds shear stress profiles downstream are presented in

Figures 6.19 and 6.18 respectively. It can be seen that these first versions of the NT1 and NT2
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models provide similar results to the other models presented, providing a slight improvement

in the prediction of the Reynolds shear stress. It can be also noted that the new models as

well as the SG and the TS models predict the diffusion of the turbulent quantities better

than the HR model which tends to produce a slower diffusion rate towards the outer layer.

The lowest acceleration parameter case, K150, will be used to assess the performance of

the first versions of the NT1 and NT2 models in the favourable pressure gradient boundary

layer cases. Again, the reason why only this case will be used is that it represents qualitatively

the results for the other acceleration parameter cases. Results are presented in Figure 6.20. It

can be seen that the new models provide slight improvements compared to the other models

tested: while the TS model tends to provide a too fast decay of the turbulent kinetic energy

and the Reynolds shear stress, the HR and SG models tend to provide a too slow decay of

these turbulent quantities and the NT1 and NT2 models tend to provide results closer to the

DNS data. The velocity and eddy dissipation rate profiles were reasonably well predicted by

all the five models tested.

On the whole, it may be noted that the first versions of the NT1 and NT2 models provided

either improvements or similar results in the first six test cases used to assess the performance

of the turbulence models. Clear improvements could be noticed in the homogeneous moderate

and high shear cases. The new models were then tested in three more cases: oscillatory

boundary layer, fully developed oscillatory and ramp up pipe flows.

Again, only a sample of the results in these cases will be shown in order to discuss

the performance of the first versions of the NT1 and NT2 models. In order to assess the

performance of these models in the JSF oscillatory boundary layer case, the prediction of

the Reynolds shear stress at four stages in the cycle is presented in Figure 6.21. It can be seen

that the models perform just as the other STS models and the TS model. That is consistent

with the results presented in Chapter 5 where most models performed similarly, showing this

was not a very challenging case.

The prediction of the Reynolds shear stress at four stages in the cycle will also be used to

assess the performance of the new models in the TuR05 oscillatory pipe flow case. Looking

at Figure 6.22, one can see that, again, the first versions of the NT1 and NT2 models perform

similarly to the other models, not providing improvements, but not performing in a worse

manner. Results for the TuR36 case will not be shown, since the predictions of the new models

were similar to those of the other models which predicted frozen turbulence as the turbulent

profiles do not change along the cycle. The T3RE14A20 case will be discussed though.

This case, where an intermediate frequency of oscillation is applied, shows more interesting

features to compare the results with. The velocity and Reynolds shear stress amplitudes and

phase shifts are presented in Figure 6.23. One may notice that the TS model performs best

overall. The first versions of the NT1 and NT2 models provide reasonable predictions for the

amplitude and phase shift of the velocity, however they tend to underpredict the phase shift

of the Reynolds shear stress. The Reynolds shear stress amplitude was well predicted by the

NT1 v1, but considerably overpredicted by the first version of the NT2 model. Despite these

pointed drawbacks, it is worth noticing that the predictions of the new models are not worse
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than those of the HR and SG models. The improved performance of the TS model seems

to be related to the fact that it fails to reproduce the equilibrium asymptotic states. It was

decided not to keep testing the T3RE10A20 and T10RE7A20 cases, since the wall function

seemed to be affecting their results due to the rather low Reynolds number of these cases.

In order to examine the performance of the first versions of the NT1 and NT2 models in the

ramp up flow, the prediction of the turbulent kinetic energy at three different positions in the

radial direction are now discussed. The prediction of the velocity and of the Reynolds shear

stress is not being presented since all models tend to behave similarly and provide reasonably

good predictions. Differences in the predictions are more noticeable in the turbulent kinetic

energy profile. One may notice in Figure 6.24 that, overall, both NT1 v1 and NT2 v1 perform

well. The former, however, tends to perform better at r/R = 0.47 and the latter at the centre

of the pipe. Both models present an improvement compared to the TS model in terms of the

prediction of the moment when the turbulent kinetic energy starts to build up, though the

NT1 v1 tends to provide an overpredicted level of k at the last second of the acceleration.

As noted in the previous Chapter, when a model predicts well the profile of the turbulent

kinetic energy at the centre of the pipe, it tends to underpredict the level of this quantity

at r/R = 0.47 and vice versa. That is then what is being observed here again with the first

versions of the NT1 and NT2 models.

One could then conclude that the new versions of the NT1 and NT2 models provide overall

good predictions in all nine test cases evaluated above and provide clear improvements in the

homogeneous moderate and high shear flow cases. Nevertheless, one could expect to improve

the models’ predictions in the intermediate frequency case of the oscillatory pipe flows.

6.1.12 Comparison of the Potential of STS and MTS Models

The comparisons presented so far have established that the first versions of the NT1 and NT2

models have improved the predictions of the homogeneous shear flows. The main reason for

that is that the eddy viscosity is now sensitive to the dimensionless shear η. As discussed

before, LEV models which use a constant cµ cannot follow the changes in the turbulent kinetic

energy and eddy dissipation rate evolution profiles as the dimensionless shear η of the flow

is increased.

The question then arises as to whether the improvements seen in the first versions of the

NT1 and NT2 models were only due to the new expression for cµ or if the two-time-scale

approach did contribute to improve the predictions as well.

In order to answer this question, the same procedure of asymptotic analyses carried out

for the MTS models was performed with the standard k − ε model, but using cµ as in

equation 6.36. As there is no partition of variables in STS models, the number of equations

and unknowns resulting from the asymptotic analyses is rather smaller. Besides, the model’s

coefficients cannot vary with the spectrum-related ratios kP
kT

and εP
εT

which then implies that

these coefficients must remain constants.

Indeed, as commented in the literature review in Chapter 2, Cε2 is straight away calculated
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from the decaying grid turbulence analysis, implying Cε2 = (CP2)DF = 1.8.

From homogeneous shear flows analysis, only one equation arises which is Pk
ε = 1.9 =

(1− Cε2)/(1− Cε1). As Cε2 is already known, Cε1 is easily obtained as 1.4211.

There then remains only one equation from local equilibrium boundary layer, (Cε2−Cε1) =
κ2

c
1/2
µ σε

, where the only variable to be calculated is σε which then ends up as 1.4787.

Comparing the above values for Cε1 , Cε2 and σε with those used by the standard k − ε
model, presented in Table 3.1, one can notice they are similar. The differences arise from

slight different assumptions such as the decay ration of k in grid decaying turbulence (k ∝ t−n)

and the asymptotic value for Pk
ε in homogeneous shear flows.

The only coefficients then remained to be calculated are c2 and c3 from cµ in equation

6.36. Recall that c1 is taken by assuming cµ = 0.09 when η = 3.3. Thereby two loops were

built and both c2 and c3 were allowed to vary from 0.1 to 1.0 by a 0.01 increment. The lowest

rms “error” was returned when c2 = 0.22 and c3 = 0.31 which implied c1 = 0.0117.

One can now compare the lowest rms “error” provided by the standard k− ε model using

cµ as in equation 6.36, which is 2.7670, and the first versions of the NT1 and NT2 models,

which is 2.0460 and 2.2429 respectively. These results show that even using a non-constant

cµ, the standard STS k − ε model cannot return as good predictions of homogeneous shear

flows as the first versions of the NT1 and NT2 models. Indeed, when examining the results, it

turns out that the modified standard STS k− ε model predicts reasonably well the moderate

shear case, but cannot return very good predictions in both low and high shear cases.

This simple test then answers the question above and shows that two-time-scale ap-

proaches do contribute to improve prediction of the homogeneous shear flow cases and the

main reason for that is apparently the presence of the spectrum-related ratios kP
kT

and εP
εT

which arise as important parameters to sensitize the models.

6.1.13 Tests with σkP and σkT

In order to test the sensitivity of the new models in terms of predicting the T3RE14A20

oscillatory pipe flow case, it was decided to carry out a few tests with σkP and σkT . These

parameters were initially assigned to unity since that is the general practice and since they

are not present in any of the resulting equations of the asymptotic analyses. This last fact

indeed allows one to change these parameters without compromising the asymptotic analyses

carried out, that is, by changing these parameters, all equilibrium states previously studied

remain valid. One should bear in mind though that these parameters do play a role in the

diffusion terms and the effects of changing them would have to be studied as well.

The first attempt was to both increase and decrease σkP and σkT to understand which

kind of change they would produce. It was noted that by increasing both σkP and σkT the

NT1 and NT2 models would increase the prediction of both phase shift and amplitude of the

Reynolds shear stress in the T3RE14A20 oscillatory pipe flow case. That would improve the

prediction of the phase shift, but jeopardize the prediction of the amplitude which was either

being well predicted by the NT1 model or already being overpredicted by the NT2 model.
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Decreasing both σkP and σkT would then jeopardize both amplitude and phase shift of the

Reynolds shear stress. Attempts of increasing only either σkP or σkT were also performed

and it was found that increasing only σkP would be more effective than increasing only σkT .

When performing these same tests in the ramp up flow, it was noticed that a rather op-

posite effect would occur: by increasing either both σkP and σkT or only σkP , the prediction

of the turbulent kinetic energy would become worse. Few tests indicated then that improve-

ments could be achieved by varying σkP and/or σkT with the turbulent Reynolds number,

Ret = k2

νε . A function such as that in equation 6.47 was then used in order to provide different

asymptotic values at very low and very high Ret values and a smooth increase from one to

the other, as shown in Figure 6.25 with the parameters of equation 6.47 indicated.

σk =
A1 −A2

1 + exp[(Ret −R1]/R2
+A2 (6.47)

As a general rule, it was observed that the combinations of A1, A2, R1 and R2 values

which worked well for the ramp up flow, would cause a stronger underprediction of phase

shift of the Reynolds shear stress in the intermediate frequency oscillatory pipe flow than the

original NT1 and NT2, meaning that no test was able to improve prediction in both unsteady

cases.

Moreover, preliminary tests changing σkP and/or σkT disturbed the prediction of adverse

pressure gradient boundary layers and low frequency oscillatory pipe flows.

It was then concluded that using both σkP and σkT as unity was a more appropriate

choice.

(a) (b) (c) (d)

Figure 6.1: Study of the ratios kP
kT

and εP
εT

in the homogeneous low and moderate shear flow
cases: (a) lowest shear case X2 (b) low shear case U2, (c) low shear case W2 (d) moderate
shear case HM1. Models as in Table 3.25.
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(a) (b) (c) (d)

Figure 6.2: Study of kP
kT

and εP
εT

in the homogeneous high shear flow cases: (a) kP
kT

in the high

shear case SHC (b) εP
εT

in the high shear case SHC, (c) kP
kT

in the highest shear case HM2
(d) εP

εT
in the highest shear case HM2. Models as in Table 3.25.

(a) (b) (c) (d)

Figure 6.3: kP and kT in the homogeneous shear flow cases: (a) kP and kT in the lowest
shear case X2 (b) kP and kT in the moderate shear case HM1, (c) kP in the highest shear
case HM2 (d) kT in the highest shear case HM2. Models as in Table 3.25.

(a) (b) (c) (d)

Figure 6.4: Study of the ratios kP
kT

and εP
εT

in the pure normally strained cases T&R and

G&M0. (a) kP
kT

in T&R (b) kP
kT

in G&M0 (c) εP
εT

in T&R (d) εP
εT

in G&M0. Models as in
Table 3.25.
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(a) (b) (c)

Figure 6.5: Study of the ratios kP
kT

and εP
εT

in the channel flow cases. (a) Re = 6500. (b)
Re = 41441. (c) Profiles of kP and kT in the case with Re = 41441. Models as in Table 3.25.

(a) (b) (c) (d)

Figure 6.6: Study of the ratios kP
kT

and εP
εT

in the zero pressure gradient boundary layer cases.
Profiles evaluated at: (a) Reθ = 1410 (b) Reθ = 4981 and (c) Reθ = 13052. (d) kP and kT
at kT . Models as in Table 3.25.

(a) (b) (c) (d)

Figure 6.7: Study of the ratios kP
kT

and εP
εT

in the lowest acceleration parameter (K = 1.5 ×
10−6) case of the favourable pressure gradient boundary layer cases. (a) kP

kT
(b) zoom in kP

kT
,

(c) εP
εT

(d) zoom in εP
εT

. Models as in Table 3.25.
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(a) (b) (c) (d)

Figure 6.8: Study of the profiles of kP , kT , εP and εT in the lowest acceleration parameter
(K = 1.5 × 10−6) case of the favourable pressure gradient boundary layer cases. (a) kP (b)
kT (c) εP and (d) εT . Models as in Table 3.25.

(a) X2 case (b) HM1 case (c) HM2 case (d) all cases

Figure 6.9: Evolution of the ratio kP
kT

and Pk
εT

in the homogeneous shear flow cases, testing the
modified TS model where the C ′P1 term was removed and incorporated into the CP1 term.

(a) k Profile (b) ε Profile (c) uv Profile

Figure 6.10: Performance of the first versions of the NT1 and NT2 models compared with
the results provided by the HR, SG and TS models in the homogeneous lowest shear flow
case X2. Models as in Table 3.25.
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Figure 6.11: cµ as in Tables 6.3 and Table 6.5 for the first versions of the NT1 and NT2
models

(a) k Profile (b) ε Profile (c) uv Profile

Figure 6.12: Performance of the first versions of the NT1 and NT2 models compared with
the results provided by the HR, SG and TS models in the homogeneous moderate shear flow
case HM1. Models as in Table 3.25.

(a) k Profile (b) ε Profile (c) uv Profile

Figure 6.13: Performance of the first versions of the NT1 and NT2 models compared with
the results provided by the HR, SG and TS models in the homogeneous high shear flow case
SHC. Models as in Table 3.25.
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(a) T&R case (b) G&M0 case (c) G&M05 case

Figure 6.14: Performance of the first versions of the NT1 and NT2 models compared with
the results provided by the HR, SG and TS models in the normally strained cases. Models
as in Table 3.25.

(a) Velocity Profile (b) k Profile (c) ε Profile

Figure 6.15: Performance of the first versions of the NT1 and NT2 models compared with
the results provided by the HR, SG and TS models in the fully developed channel flow case
with Re = 41441. Models as in Table 3.25.

(a) Velocity Profile (b) k Profile (c) uv Profile (d) ε Profile

Figure 6.16: Performance of the first versions of the NT1 and NT2 models compared with
the results provided by the HR, SG and TS models in the zero pressure gradient boundary
layer at Reθ = 1410. Models as in Table 3.25.
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(a) Station 2 (b) Station 4 (c) Station 5 (d) Station 6

Figure 6.17: Prediction of the velocity profile by the first versions of the NT1 and NT2 models
compared with the results provided by the HR, SG and TS models in the adverse pressure
gradient boundary layer case M&P30. Models as in Table 3.25.

(a) Station 2 (b) Station 4 (c) Station 5 (d) Station 6

Figure 6.18: Prediction of the Reynolds shear stress by the first versions of the NT1 and NT2
models compared with the results provided by the HR, SG and TS models in the adverse
pressure gradient boundary layer case M&P30. Models as in Table 3.25.

(a) Station 2 (b) Station 4 (c) Station 5 (d) Station 6

Figure 6.19: Prediction of the turbulent kinetic energy by the first versions of the NT1 and
NT2 models compared with the results provided by the HR, SG and TS models in the adverse
pressure gradient boundary layer case M&P30. Models as in Table 3.25.
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(a) Velocity Profile (b) uv Profile (c) k Profile (d) ε Profile

Figure 6.20: Performance of the first versions of the NT1 and NT2 models compared with
the results provided by the HR, SG and TS models in the K150 favourable pressure gradient
case. Models as in Table 3.25.

(a) ωt = 30o (b) ωt = 60o (c) ωt = 105o (d) ωt = 135o

Figure 6.21: Prediction of the Reynolds shear stress by the first versions of the NT1 and NT2
models compared with the results provided by the HR, SG and TS models in the oscillatory
boundary layer case JSF . Models as in Table 3.25.

(a) ωt = 45o (b) ωt = 135o (c) ωt = 225o (d) ωt = 315o

Figure 6.22: Prediction of the Reynolds shear stress by the first versions of the NT1 and NT2
models compared with the results provided by the HR, SG and TS models in the oscillatory
pipe flow case Tu&R05. Models as in Table 3.25.
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(a) Velocity Amplitude (b) Velocity Phase Shift (c) Shear Stress Ampli-
tude

(d) Shear Stress Phase
Shift

Figure 6.23: Performance of the first versions of the NT1 and NT2 models compared with the
results provided by the HR, SG and TS models in the oscillatory pipe flow case T3RE14A20.
Models as in Table 3.25.

(a) Pipe centre (r/R = 0) (b) r/R = 0.47 (c) r/R = 0.83

Figure 6.24: Prediction of the turbulent kinetic energy by the first versions of the NT1 and
NT2 models compared with the results provided by the HR, SG and TS models in the ramp
up pipe flow. Models as in Table 3.25.

Figure 6.25: Example of σkP and/or σkT variation as a function of Ret
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6.2 Second versions of the NT1 and NT2 models

The procedures which led to the second versions of the NT1 and NT2 models are described

here.

The first versions of the NT1 and NT2 models were identified to be working generally well

in the range of nine tested flows. It was recognised though that the performance of the models

could be improved in the fully developed oscillatory pipe flows and that their performance

was limited in homogeneous low shear and normally strained cases. A few attempts were

made in order to change σkP and/or σkT , however these parameters seemed to result in more

reliable predictions when assigned the value of unity.

It can be noted that the first versions of the NT1 and NT2 models are very similar to the

original TS model, used as starting point for their development. The extra source term in the

εP equation was removed and the coefficients constants were changed, however all general

expressions such as for CP2 and CT1 were kept.

6.2.1 Study of Time and Length Scales

In order to introduce a possible extra term which could improve the prediction of the oscil-

latory pipe flows, it was decided to calculate the ratio between the time and length scales

associated with the large and small eddies. The time scale of the small eddies is defined as

τT = kT
εT

while the time scale for the large eddies is τP = kP
εP

. Similarly, the length scale for

the small and large eddies are `T =
k

3/2
T
εT

and `P =
k

3/2
P
εP

respectively.

According to the turbulent kinetic energy spectrum and the cascade process, one would

expect the ratio between the small and large time and length scales to be always smaller than

unity, that is τT
τP
< 1 and `T

`P
< 1.

However, when evaluating these ratios in all nine test cases where the first versions of

the NT1 and NT2 models was used, it was found that, except for the homogeneous flows, in

all non-homogeneous wall-bounded flows the NT1 and NT2 models were tending to provide

growing ratios of the time and length scale ratios, resulting in τT
τP

> 1 and `T
`P

> 1 at the

edge of the boundary layer. The first version of the NT2 model would usually produce ratios

significantly higher than unity, while the first version of the NT1 model would result in ratios

very close to unity and eventually slightly higher than that.

An example of the time scale ratio profile in zero pressure gradient boundary layers is

presented in Figure 6.26. One can clearly notice what was just commented on above.

It is interesting to notice that only the first versions of the NT1 and NT2 models provide

time-scale ratios τT
τP

greater than unity. The other LEV MTS models seem to result in

physically acceptable time scale ratios. It is worth commenting though that the CG model

did provide higher values for τT
τP

, even higher than unity, in a few other flows such as the

homogeneous high shear cases. As far as the first versions of the NT1 and NT2 models are

concerned, the high time scale ratios occur basically at the edge of the boundary layer, after

which, all models predict a constant lower τT
τP

.
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In order to investigate the reason for that, the ratios of kP
kT

and εP
εT

were also studied for

the first versions of the NT1 and NT2 models, presented in Figures 6.27 and 6.28 respectively.

The reason why they provide a high time scale ratio seems to be associated with their low
kP
kT

ratio combined with a peak in the εP
εT

profile at the edge of the boundary layer. This led

to the question whether the low turbulent kinetic energy partitions ratio at the equilibrium

boundary layer
(
kP
kT

)
BL

was responsible for that. The fact that
(
kP
kT

)
BL
≈ 2 for the first

version of the NT1 model and
(
kP
kT

)
BL
≈ 1.5 for the first version of the NT2 model together

with the NT2 model providing systematically higher time scale ratios than the NT1 model

also helped to support this hypothesis.

6.2.2 The Second Version of the NT1 Model

Based on the analysis above, it was decided to re-optimize the model’s coefficients and impose(
kP
kT

)
BL

to be higher than 3. Stawiarski and Hanjalic (2005) support that 3 would be a

reasonable value for the ratio kP
kT

in equilibrium boundary layers and states that experiments

would suggest that this ratio could be even higher than 3.

When determining the coefficients of the first versions of the NT1 and NT2 models, no

restrictions were imposed for
(
kP
kT

)
BL

and the best overall set of coefficients provided low

values for this parameter. That would then make one wonder that if
(
kP
kT

)
BL

is imposed to

be higher than 3, the set of coefficients would not perform as well as the original NT1 and

NT2 models.

Because of this, it was decided to consider different assumptions than those made in the

development of the original TS model, regarding the expected ratio of
(
kP
kT

)
DF

in decaying

grid turbulence and the coefficients’ constants and expressions.

The original expression used for the coefficient CP2 was that suggested by Hanjalic et al.

(1980) where CP2 = cp21−cp22

(
kP
kT
−1
)
/
(
kP
kT

+1
)

and cp21 = 1.8 and cp22 = 0.3 and
(
kP
kT

)
DF

= 1

in order to be consistent with the asymptotic analysis behaviour of decaying grid flows. In the

first versions of the NT1 and NT2 models, this general expression was retained and cp22 was

assigned different values, presented in Tables 6.3 and 6.5. The possibility was then studied of

having CP2 as suggested by Chen and Guo (1991): CP2 = 1.90
(
1−0.2 kTkP +0.2

k2
P

k2
T

)
. However,

here, instead of 1.9, the value of 1.8 was used (the value CP2 is supposed here to reach in

decaying grid turbulence). An expression such as that used in equation 6.47 (σk replaced by

CP2 and Ret replaced by kP
kT

) was also tried and is referred to as CP2 test in Figure 6.29(a)

where the three curves considered for CP2 are presented.

The expressions for CP2 different from that used by the TS model did not show any

potential of improving prediction in the homogeneous shear flow cases and therefore were

discarded. For the re-optimization procedure, it was then decided to use CP2 = cp21 −
cp22

(
kP
kT
− 1
)
/
(
kP
kT

+ 1
)
, this time allowing cp22 to be zero as well, that is allowing CP2 to be

a constant, in this case CP2 = 1.8.

The coefficient CP1, originally used as a constant was also allowed to vary with kP
kT

, but

in this case, the coefficient CP1 was allowed to vary as a function of kP
kT

only until its value in
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local equilibrium boundary layers,
(
kP
kT

)
BL

, was reached. The reason for that was to improve

prediction in homogeneous low shear cases, by allowing CP1 to reduce at low kP
kT

values,

and at the same time not disturb the asymptotic analyses carried out for local equilibrium

boundary layers where CP1 would then reduce to a simple constant.

Two different expressions were then tested:

CP1 = cp11 + cp12 min

[
0,
kP
kT
−
(
kP
kT

)
BL

]
/

[
kP
kT

+

(
kP
kT

)
BL

]
(6.48)

CP1 =

{
cp11 − cp11 exp(−cp12

kP
kT

) if kP
kT

<
(
kP
kT

)
BL

cp11 if kP
kT

>
(
kP
kT

)
BL

(6.49)

Equation 6.48 is a similar expression to that of CP2 in the TS model, but to reduce the

coefficient, and is referred to as CP1 TS in Figure 6.29(b) where the curves for CP1 are

presented; and equation 6.49 is referred to as CP1 test, where a rather smoother reduction

in this coefficient is proposed. Again, the CP1 TS proved to be more efficient and was then

chosen for the re-optimization procedure.

Two other differences were introduced in the re-optimization procedure when compared

to the general model form proposed by Hanjalic et al. (1980). First, the CT1 coefficient,

originally used as CT1 = ct1
εP
εT

, was allowed to be a constant and both forms were tested.

Second, the assumption of
(
kP
kT

)
DF

= 1 in decaying grid turbulence was no longer imposed.

This parameter was allowed to vary from 0.5 up to 1
2

(
kP
kT

)
BL

, the idea being to have
(
kP
kT

)
BL

up to twice
(
kP
kT

)
DF

and thereby respect the different levels of magnitude this ratio should

assume in the different flows, the decaying grid turbulence representing the minimum ratio

one should expect to find in any flow, since this is when no production is present.

The asymptotic analysis carried out before for the first version of the NT1 model remains

valid, the system of equations being: equations 6.8, 6.9 and 6.39 for homogeneous shear flows,

equations 6.16 and 6.18 for decaying grid turbulence and equations 6.34, 6.28 and 6.32 for

local equilibrium boundary layers. This time though, one more equation must be added to

the asymptotic analysis of decaying grid turbulence:

CP2DF = 1.8 = cp21 − cp22

[(kP
kT

)
DF
− 1(

kP
kT

)
DF

+ 1

]
(6.50)

This is the same CP2 expression used in the TS model, but not considering
(
kP
kT

)
DF

= 1.

The reoptimization procedure for the second version of the NT1 model consisted then of

9 equations (just mentioned above) and 14 unknowns (
(
kP
kT

)
BL

,
(
kP
kT

)
DF

,
(
kP
kT

)
SF

,
(
εP
εT

)
DF

,(
εP
εT

)
SF

, cp11, cp12, cp21, cp22, CT1, CT2, cµBL , σεP and σεT ). A program was written in

Matlab and in an outer loop, cµBL was varied from 0.109 (which provides
(
kP
kT

)
BL
≈ 4.7

through equation 6.34) to 0.12 (which provides
(
kP
kT

)
BL

= 3 through equation 6.34) by a

0.001 increment. Inside this loop, ct1 and CT2 were varied from 0.6 to 1.7 and 0.65 to 1.75

respectively by a 0.05 increment and
(
εP
εT

)
DF

,
(
kP
kT

)
DF

and
(
εP
εT

)
SF

were calculated from
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equations 6.18, 6.16 and 6.8 respectively, since the condition 0.5 <
(
kP
kT

)
DF

< 1
2

(
kP
kT

)
BL

were

satisfied. As
(
Pk
εT

)
SF

= 1.9,
(
kP
kT

)
SF

could also be calculated from equation 6.9. Inside the CT2

loop, cp22 was set to vary from 0 to 1.5 by a 0.1 increment and cp21 was calculated through

equation 6.50. cp11 was then calculated from equation 6.39, since cp12 was not included in the

asymptotic analysis, since CP1 = cp11 for kP
kT

>
(
kP
kT

)
BL

and
(
kP
kT

)
SF

>
(
kP
kT

)
BL

, as already

discussed. Finally, the system formed by equations 6.28 and 6.32 and by the only two so-far

unknowns, σεP and σεT , was solved, and it was imposed that |σεP − σεT | < 0.5 to avoid

instability in wall-bounded flows as commented on before. Inside the cp22 loop, a loop for c2

and c3 from the cµ expression in equation 6.36 was built where these parameters varied from

0.2 to 0.4 by a 0.05 increment and c1 could then be calculated as c1 = cµBL − c2 exp(−3.3c3)

in order to ensure cµBL would be associated with η = 3.3, as also discussed before. The last

inner loop then was built to vary cp12 from 0 to 2.5 by a 0.1 increment. The same criteria

used for the first version of the NT1 model to chose the best set of coefficients was used in

this second version: for each set of coefficients, homogeneous low, moderate and high shear

cases were calculated and a minimum rms “error” was calculated by comparing these results

with DNS data. The set of coefficients which provided the smallest rms “error” was then

chosen. A simplified diagram representing this procedure can be seen in Figure 6.30.

The second version of the NT1 model, where νt = cµk
kP
εP

, involves the following equations

with the coefficients presented in Table 6.8.

DkP
Dt

= Pk − εP +
∂

∂xj

[(
ν +

νt
σkP

)
∂kP
∂xj

]
(6.51)

DkT
Dt

= εP − εT +
∂

∂xj

[(
ν +

νt
σkT

)
∂kT
∂xj

]
(6.52)

DεP
Dt

= CP1Pk
εP
kP
− CP2

ε2
P

kP
+

∂

∂xj

[(
ν +

νt
σεP

)
∂εP
∂xj

]
(6.53)

DεT
Dt

= CT1
εP εT
kT
− CT2

ε2
T

kT
+

∂

∂xj

[(
ν +

νt
σεT

)
∂εT
∂xj

]
(6.54)

Table 6.8: Coefficients of the second version of the NT1 model
cµ CP1 CP2 σεP CT1 CT2 σεT

min[0.115, 0.023 + 0.25e−0.30η] 1.4921 + 2.5
min(0,

kP
kT
−3.6)

kP
kT

+3.6
1.8 1.4202 1.6 1.7 1.2181

It is instructive to comment on the resulting coefficients and asymptotic states presented

in Tables 6.8 and 6.9 above. One may notice that this second version of the NT1 model is

rather different from the original TS model. Both CP2 and CT1 coefficients are now constants

and the CP1 coefficient varies as a function of kPkT . It is also worth commenting that for values
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Table 6.9: Values expected to be provided by the second version of the NT1 model in the
asymptotic states studied(

Pk
εT

)
SF

(
kP
kT

)
SF

(
εP
εT

)
SF

(
kP
kT

)
DF

(
εP
εT

)
DF

(
kP
kT

)
BL

(
εP
εT

)
BL

cµBL

1.9 4.4 1.1667 1.0 0.5 3.6 1.0 0.115

of kP
kT

> 1, this coefficient is positive, as one would expect, and that kP
kT

is not expected to

assume values lower than 1, since that was the value calculated for
(
kP
kT

)
DF

. This ratio was

also used in the first version of the NT1 model, but in the latter this ratio was not allowed

to be different from unity. The values calculated for kP
kT

in the three simple cases studied

for asymptotic analysis follow the expected relation
(
kP
kT

)
DF

<
(
kP
kT

)
BL

<
(
kP
kT

)
SF

which has

already been discussed before.

It is of value to mention that the procedure described above in detail is the procedure

which led to the actual second version of the NT1 model. As the optimization procedure

is actually a tuning process of the coefficients, since some parameters were discretely varied

through the loops, a few different ways of finding the parameters were tested in order to

increase the set of coefficients tested. Sometimes, an rms “error” lower than that provided

by the actual second version of the NT1 model was found, however, when analysing the

predictions of the set of homogeneous shear flows tested, the performance in the low shear

cases was not very satisfactory. It will be thus shown later, when the performance of the

second versions of the NT1 and NT2 models will be presented and discussed, that the second

version of the NT1 model presented improved significantly the prediction of homogeneous

low shear cases and kept the good predictions of the moderate and high shear cases.

6.2.3 The Second Version of the NT2 Model

The considerations described above for the second version of the NT1 model also led to the

second version of the NT2 model, but taking into account their main difference which is the

eddy viscosity expression, νt = cµ
k2

εT
.

When re-optimizing the coefficients of the NT2 model, it was noticed that when impos-

ing
(
kP
kT

)
BL

to be higher than 3, the NT2 model returned worse predictions of the set of

homogeneous shear flow cases than the first version of the model, even after trying different

expressions for CP1, CP2 and CT1 and also after allowing
(
kP
kT

)
DF

to be different from unity.

It was then concluded that when using the total time scale, τ = k
εT

, in the eddy viscosity,

lower rates for
(
kP
kT

)
BL

were required in order to have an overall good performance of the

model in a wide range of dimensionless shear η in the homogeneous shear flows, which is

consistent with the first version of the NT2 model presenting
(
kP
kT

)
BL
≈ 1.5.

It was then decided to try to re-incorporate the extra term in the εP equation proposed

by Hanjalic et al. (1980), presented in equation 3.45, in order to check if the presence of this

term could help to improve the overall prediction of homogeneous shear flows. Since this

term was initially identified to cause instabilities, the magnitude of the coefficient C ′P1 was
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set to be at most ten times smaller than the value originally used in the TS model.

Owing to the insertion of the term C ′P1kP
∂Ul
∂xm

∂Ui
∂xj

εlmkεijk, which reduces to C ′P1kP
(
dU
dy

)2
in purely shear flows, some equations of the asymptotic analyses previously used had to be

modified.

The equations from the asymptotic analysis of decaying grid turbulence were not altered

since the extra term is zero in this flow. Therefore equations 6.16 and 6.18 could be kept. In

homogeneous shear flows and equilibrium boundary layer, εP equation is no longer the same

as that used in the first version of the NT2 model and therefore equations 6.39, 6.28 and 6.46

had to be replaced by equations 6.55, 6.56 and 6.57 respectively:

(
Pk
εT

)
SF

=

(
Pk
εP

)
SF

(
εP
εT

)
SF

= 1.9 =

[
1− cp21 + cp22

(
kP
kT

)
SF
−1(

kP
kT

)
SF

+1

]
[
1− CP1 −

C′P1
cµ

(
kP
k

)2( εT
εP

)]
SF

(
εP
εT

)
SF

(6.55)

(
kP
kT

)
BL

=

{
σεP
σεT

[CP2 − CP1 −
C′P1
cµBL

(
kP
k

)2
]

(CT2 − CT1)

}
BL

(6.56)

σεP

[
CP2 − CP1 −

C ′P1

cµ

(kP
k

)2]
BL

+ σεT (CT2 − CT1)BL =
κ2

c
1/2
µ

(6.57)

Thereby, the system of equations from the asymptotic analyses it formed by equations 6.16,

6.18 and 6.50 from the decaying grid turbulence, equations 6.8, 6.9 and 6.55 from the homo-

geneous shear flows and equations 6.56 and 6.57 from local equilibrium boundary layers. It

is of value to recall that cµBL = 0.09 in the NT2 model due to its eddy viscosity formulation,

which is the same used in LEV STS models. However, by including the C ′P1 term in the

analyses, it is now necessary to find the value cµ is supposed to assume in homogeneous shear

flows, cµSF = c1 + c2 exp(−c3ηSF ), which actually means that one needs to find the value

η = k
εT

dU
dy assumes in the asymptotic state of these flows. After some algebraic manipulation,

one can arrive at the following expression:

(
k

εT

dU

dy

)
SF

= ηSF =
1

c
1/2
µSF

(
Pk
εT

)1/2

SF

(
k

kP

)
SF

(
εP
εT

)1/2

SF

(6.58)

The re-optimization procedure then consisted of a program in Matlab similar to that used for

the second version of the NT1 model, but considering the particularities of this case. A loop

for CT1 and CT2 made these vary from 0.8 to 1.2 by a 0.02 increment and thereby
(
εP
εT

)
DF

,(
kP
kT

)
DF

and
(
εP
εT

)
SF

could be calculated from equations 6.18, 6.16 and 6.8 respectively. Since
Pk
εT

= 1.9 in homogeneous shear flows,
(
kP
kT

)
SF

could also be calculated using equation 6.9.

Inside these loops, a new loop was built for cp22 and
(
kP
kT

)
BL

, the former varying from 0 to 1.0

by a 0.1 increment and the latter varying from 3.0 to 4.5 by a 0.1 increment. cp21 could now

be calculated through equation 6.50, considering that CP2DF = 1.8. Inside the kP
kT

loop, three
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new loops were built for c2, c3 (from cµ expression) and C ′P1. c2 was set to vary from 0.2 to

0.3 by a 0.1 increment while c3 varied from 0.25 to 0.4 by a 0.01 increment which allowed

c1 to be calculated using c1 = 0.09 − c2 ∗ exp(−3.3c3) so that cµ = 0.09 when η = 3.3. The

value of cµSF was then iteratively calculated using the Newton Raphson method and C ′P1

was varied from -0.01 to 0 by a 0.001 increment. Now cp11 could be calculated using equation

6.55. Finally, σεP and σεT could be calculated by solving the system formed by equations

6.56 and 6.57. A last inner loop was set to vary cp21 from 0 to 3.0 by a 0.1 increment, since

this parameter does not affect any asymptotic analysis as discussed before.

The simplest set of coefficients which provided the smallest rms “error” when comparing

predictions and DNS data of a homogeneous low, moderate and high shear flows was chosen

as the second version of the NT2 model. The transport equations for the NT2 model is then

presented below and its coefficients and asymptotic states are presented in Tables 6.10 and

6.11 respectively.

DkP
Dt

= Pk − εP +
∂

∂xj

[(
ν +

νt
σkP

)
∂kP
∂xj

]
(6.59)

DkT
Dt

= εP − εT +
∂

∂xj

[(
ν +

νt
σkT

)
∂kT
∂xj

]
(6.60)

DεP
Dt

= CP1Pk
εP
kP
− CP2

ε2
P

kP
+ C ′P1kP

∂Ul
∂xm

∂Ui
∂xj

εlmkεijk +
∂

∂xj

[(
ν +

νt
σεP

)
∂εP
∂xj

]
(6.61)

DεT
Dt

= CT1
ε2
P

kT
− CT2

ε2
T

kT
+

∂

∂xj

[(
ν +

νt
σεT

)
∂εT
∂xj

]
(6.62)

Table 6.10: Coefficients of the second version of the NT2 model
cµ CP1 CP2 σεP CT1 CT2 σεT C ′P1

min[0.09, 0.0117 + 0.22e−0.31η] 1.5697 + 2.5
min(0,

kP
kT
−3.7)

kP
kT

+3.7
1.8 1.6664 1.0 1.1 1.1922 -0.005

Table 6.11: Values expected to be provided by the second version of the NT2 model in the
asymptotic states studied(

Pk
εT

)
SF

(
kP
kT

)
SF

(
εP
εT

)
SF

(
kP
kT

)
DF

(
εP
εT

)
DF

(
kP
kT

)
BL

(
εP
εT

)
BL

cµBL cµSF

1.9 8.8245 1.0916 1.3166 0.5683 3.7 1.0 0.09 0.0336

Commenting on the new coefficients and asymptotic states of the second version of the

NT2 model, one may notice that this model is also rather different from the original TS

model, starting with the different expression for the eddy viscosity. As in the second version
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of the NT1 model, now CP2 is a constant and CP1 varies with kP
kT

. CT1 remained as a

function of εP
εT

. However, by incorporating εP
εT

into the source term of the εT equation, the

resulting transport equation for this quantity is equation 6.62 and CT1 can be expressed as a

constant. Here, the asymptotic states also respect the relation
(
kP
kT

)
DF

<
(
kP
kT

)
BL

<
(
kP
kT

)
SF

,

but
(
kP
kT

)
DF

is no longer 1.0, but 1.3166. As a consequence,
(
εP
εT

)
DF

is no longer 0.5, but a

slightly higher value, 0,5683, which is also smaller than one as expected.
(
kP
kT

)
BL

is almost

the same as in the second version of the NT1 model, however
(
kP
kT

)
SF

is almost twice the

value predicted by the second version of the NT1 model. The extra source term, followed by

the C ′P1 coefficient, was found to be important in improving prediction of the homogeneous

low shear cases and due to its new absolute lower magnitude (now -0.005 against -0.11 in the

TS model), this term no longer produces instabilities.

As will be seen when the performance of the second versions of the NT1 and NT2 models

will be discussed, the second version of the NT2 model provided improvements over the first

version of the model, specially regarding the prediction of homogeneous low shear cases.

6.2.4 Attempt of Introducing Extra Source Term in the Second Version of

the NT1 Model

As the second version of the NT2 model showed that the addition of the extra source term

in the εP equation, proposed by Hanjalic et al. (1980), C ′P1kP
∂Ul
∂xm

∂Ui
∂xj

εlmkεijk, improved

prediction of homogeneous shear flows, it was worth testing if the addition of this term into

the NT1 formulation, keeping a low magnitude of the coefficient C ′P1, could improve even

more the predictions of the second version of the NT1 model.

The same procedure already outlined before about the asymptotic states was then carried

out in order to include the new term in the εP equation. The flexibilities used before about

the CP1, CP2 and CT1 coefficients as well as about the value
(
kP
kT

)
DF

should assume were

also applied in these tests.

It was then confirmed that for the NT1 formulation, where νt = cµ
kkP
εP

, the extra source

term initially used in the TS model would not contribute to improve prediction of homoge-

neous shear flows. When the best overall set of coefficients, which provided the minimum

rms “error”, were displayed, C ′P1 would come out as zero.

The reason why only predictions of the homogeneous shear flows are being mentioned

here is that these flows were used in order to tune the coefficients as already commented on

before. Only the set of coefficients which performs well in these flows were further tested in

the other flows.

6.2.5 Turbulent Viscosity Study

Two different turbulent viscosities were tested so far in the MTS models which are being

developed: one considering the time scales associated with the large eddies, νt = cµ
kkP
εP

, used

in the NT1 model and another considering the total time scale, νt = cµ
k2

εT
, used in the NT2

model. So far, no significant difference could be noticed in the predictive capabilities of the
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two eddy viscosity formulations, though the eddy viscosity based on the total time scale, NT2

model, needed an extra term in the εP equation in order to provide as good results as the

NT1 formulations, based on the large eddies’ time scale.

An analysis of other eddy viscosity formulations was then carried out in order to identify

if other expressions should be considered for further development.

The eddy viscosity is usually generally expressed as νt = cµϑ`: the product of a coefficient,

cµ, a velocity scale, ϑ, and a length scale, `. The latter can be expressed as a function of the

time scale ` = ϑτ which then allows one to express the eddy viscosity as:

νt = cµϑ
2τ (6.63)

This way of expressing the eddy viscosity is convenient when dealing with multiple-time-

scale models, because it allows one to make the time scale explicit in the νt expression. In the

current two-time-scale framework, one has three possible velocity scales and three possible

time scales. The velocity scale can refer to the large eddies, k
1/2
P , to the small eddies, k

1/2
T or

to the total spectrum, k1/2, the latter being the one used in STS models. The time scale can

also be related to these three partitions, respectively, kP
εP

, kT
εT

and k
εT

.

There are therefore eight different possible expressions for the eddy viscosity, as summa-

rized in Table 6.12. One may notice that νt1 and νt3 are the eddy viscosities used in the NT1

and NT2 formulations respectively. It remains then to evaluate the other six possibilities.

Table 6.12: Possible expressions for νt in two-time-scale models.

τ = kP
εP

τ = kT
εT

τ = k
εT

ϑ2 = k νt1 = cµ
kkP
εP

νt2 = cµ
kkT
εT

νt3 = cµ
k2

εT

ϑ2 = kP νt4 = cµ
k2
P
εP

νt5 = cµ
kP kT
εT

νt6 = cµ
kP k
εT

ϑ2 = kT νt7 = cµ
kT kP
εP

νt8 = cµ
k2
T
εT

νt9 = νt2

The first criteria to evaluate the eddy viscosity expressions was to calculate what would be

the expected values of cµ in local equilibrium boundary layer, considering that
(
kP
kT

)
BL
≥ 3. A

procedure similar to that carried out in equation 6.34 was implemented for each νt expression

in Table 6.12. The results are summarized in Table 6.13, including those already known for

νt1 and νt3 for the sake of comparison.

Examining Table 6.13, it is possible to eliminate straight away νt2 , νt5 , νt7 and νt8 . The

reason for that is that using any of these expressions, cµBL would have to assume rather high

values which are expected to cause instabilities in wall-bounded flows. Indeed, the maximum

possible value for cµBL when using νt4 is quite high as well, however that is the maximum

expected value and one could study if such high value would be really necessary. So from

the six extra possible eddy viscosity expressions, the analysis of cµBL narrowed down the

possibilities to two: νt4 and νt6 .

The asymptotic analyses carried out before for decaying grid turbulence, homogeneous
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Table 6.13: Expected values of cµBL according to νt expressions in Table 6.12.

νt1 cµBL

(
kP
k

)
BL

= 0.09→ cµBL
≤ 0.12

νt2 cµBL

(
kT
k

)
BL

= 0.09→ cµBL
≥ 0.36

νt3 cµBL
= 0.09

νt4 cµBL

(
kP
k

)2
BL

= 0.09→ cµBL
≤ 0.16

νt5 cµBL

(
kP
k

)
BL

(
kT
k

)
BL

= 0.09→ cµBL
≥ 0.48

νt6 cµBL

(
kP
k

)
BL

= 0.09→ cµBL
≤ 0.12

νt7 cµBL

(
kP
k

)
BL

(
kT
k

)
BL

= 0.09→ cµBL
≥ 0.48

νt8 cµBL

(
kT
k

)2
BL

= 0.09→ cµBL
≥ 1.44

shear flows and local equilibrium boundary layers were also carried out using both νt4 and

νt6 expressions. Tests were carried out considering all the flexibilities allowed before in the

CP1, C ′P1, CP2 and CT1 coefficients and
(
kP
kT

)
DF

was not imposed to be 1. It is worth noting

that if C ′P1 is zero, the asymptotic state equations used in the NT1 model remain exactly

the same for νt6 , since this expression would only be necessary in local equilibrium boundary

layer analysis (equation 6.29) and in this situation, εP = εT , thus making νt1 = νt6 . If C ′P1 is

not zero, the asymptotic state equation of Pk
εT

in homogeneous shear flows would be different

from those used in the NT1 and NT2 models when νt1 and νt3 were used. When using νt4 ,

the asymptotic state equations for local equilibrium boundary layers are different from those

presented for the NT1 and NT2 models independently of C ′P1 being zero or not. However,

if C ′P1 is zero, the asymptotic state equations for decaying grid turbulence and homogeneous

shear flows remain the same presented here before and Pk
εT

in homogeneous shear flows assumes

a different form if C ′P1 is not zero.

The tests carried out with νt4 provided good overall prediction of homogeneous shear

flows, however, to achieve these good results, cµBL had to assume its highest possible imposed

value, cµBL = 0.16, according to Table 6.13. Although these results were good, the overall

rms “error” returned when determining the model’s coefficients by predicting homogeneous

shear flows was still higher than the overall rms “error” returned by the second versions of

the NT1 and NT2 models. For this reason, combined with a relatively higher value of cµBL ,

whose stability would have to be investigated in wall-bounded flows, the νt4 expression was

abandoned.

The tests carried out with νt6 did not provide overall good prediction of homogeneous

shear flows, specially in the low shear cases, even when C ′P1 was allowed to be different from

zero. For this reason, this expression of the eddy viscosity was also abandoned.

After all these analyses, the eddy viscosity expressions used by the NT1 and NT2 models,

νt1 and νt3 respectively, proved to be the most appropriate for two-time-scale models. It

is interesting to notice that the NG and TS models also used the νt1 formulation, the KC

model used the νt3 expression, however the CG model used νt = k2

εP
. This expression was
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not considered here, since it would imply the time scale to be τ = k
εP

which apparently does

not have a clear physical meaning once k is the total turbulent kinetic energy and εP is the

energy transfer rate between the large and small eddies.

6.2.6 Turbulent Kinetic Energy Spectrum Study

As multiple-time-scale models have been the main focus of attention here, more precisely, two-

time-scale models, it was decided to briefly investigate the turbulent kinetic energy spectrum

in order to understand it better and try to find any eventual parameter or correlation which

could be useful in the turbulence modelling process.

The turbulent kinetic energy spectrum will be evaluated through the Kolmogorov hy-

potheses which are considered a good approximation and match several experimental works

(Tennekes and Lumley, 1972).

Kolmogorov examined both the small and the large scales of motions and his three hy-

potheses led to a formal mathematical expression for the turbulent kinetic energy spectrum.

The first two hypotheses are related to the small scales and state that they are statistically

isotropic and have a universal form which depends only on the kinematic viscosity ν and the

eddy dissipation rate ε. Based on this, he defined the small scales’ length, time and velocity

through dimensional analysis. These became known as the Kolmogorov length, time and

velocity scales which can be expressed as η = (ν3/ε)1/4, τη = (ν/ε)1/2 and uη = (εν)1/4

respectively.

The simplified spectrum proposed by Kolmogorov is divided into two main regions: the

energy-containing range and the universal equilibrium range. The latter is further divided

into two subregions: the inertial range and the dissipation range. The sketch is represented

in Figure 6.31 from Pope (2000), where κ = 2π/` is the wavenumber of an eddy of averaged

size `.

Kolmogorov then proposed that, at very high Reynolds numbers, there would be a range

of length, velocity and time scales which are smaller than the main flow’s ones, but still

significantly higher than those from the very smallest eddies. The third hypothesis regards

these intermediate scales of motions and states that they also have a universal form which

depends only on the eddy dissipation rate ε.

Comparing the Kolmogorov spectrum with the spectrum proposed by Hanjalic et al.

(1980), one can say that the latter is rather aligned with the former. The Universal-

equilibrium range would be represented by both the Transfer and Dissipation zones defined

by Hanjalic et al. (1980) which then match the Inertial and Dissipation subranges proposed

by Kolmogorov. The Production zone of Hanjalic et al. (1980) is then obviously the Energy-

containing range of the Kolmogorov spectrum. That means, the Kolmogorov spectrum also

assumes equilibrium between the transfer and dissipation zones (εT = ε) which is exactly

what Hanjalic et al. (1980) proposed.

Pope (2000) also drew attention to the fact that, as a consequence of the third Kolmogorov

hypothesis, which states that the scale motions in the inertial subrange depend only on inertial
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effects, therefore only on the eddy dissipation rate, both velocity and time scales decrease as

the eddy length scale ` increases in the spectrum, or equivalently, as the wave number κ of

this eddy increases in the turbulent kinetic energy spectrum. That is again in agreement with

expecting the ratio between small and large eddies time scales in the two-time-scale models

to be smaller than unity, τT
τP
< 1.

It remains then to understand where in the spectrum kP
kT

is expected to be. The turbulent

kinetic energy associated with eddies confined between two wavenumbers κ1 and κ2 is formally

expressed as a function of the energy density per unit wave number E(κ), also referred to as

the energy-spectrum function:

k(κ1 until κ2) =

∫ κ2

κ1

E(κ)dκ (6.64)

The most important result of the Kolmogorov hypotheses is that they led to an expression

for the energy-spectrum function in the Inertial subrange also known as the Kolmogorov −5
3

spectrum:

E(κ) = Cε2/3κ−5/3 (6.65)

In the above equation, C is considered a universal constant determined through experiments

to be 1.5 (Tennekes and Lumley (1972), Pope (2000)).

In order to calculate k, the E(κ) function is often non-dimensionalized either with the

large or the small length scales. In the former case, kL (k, the total turbulent kinetic energy

and L that length scale associated with the large eddies) is usually used and in the latter,

ηu2
η. In order to proceed with the turbulent kinetic energy spectrum analysis, the latter will

be used:

E(κ)η−5/3 = Cε2/3(κη)−5/3 = E(κ)
ν−5/4

ε−5/12
⇒ E(κ)

ν5/4ε1/4

=
E(κ)

ηu2
η

= C(κη)−5/3 (6.66)

This equation is usually known as the Kolmogorov −5
3 power law.

In order to calculate the total turbulent kinetic energy, by integrating equation 6.64,

it is necessary to know E(κ) in the Energy-containing and Dissipation ranges as well. Both

Tennekes and Lumley (1972) and Pope (2000) present non-dimensional functions which match

experiments satisfactorily. Using the ones presented by Pope (2000), the energy-spectrum

function can be expressed for the whole domain as:

E(κ)

ηu2
η

= C(κη)−5/3fL(κL)fη(κη) (6.67)

Where fL and fη are the functions to model the Energy-containing and Dissipation ranges
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presented in equations 6.68 and 6.69 respectively. Both these functions reduce to unity in

the Inertial subrange where the −5
3 power law rules the spectrum.

fL(κL) =

(
κL

[(κL)2 + 6.78]1/2

)5/3+2

(6.68)

fη(κη) = exp{−5.2([(κη)4 + 0.44]1/4 − 0.4)} (6.69)

Although fL is presented in equation 6.68 as a function of κL, which is the natural large

eddies scaling, L can be easily converted into η, using the turbulent Reynolds number, Ret =
k2

νε = u0L
ν , and the relation ε =

u3
0
L which comes from assuming equilibrium between the three

ranges in the spectrum (Pope, 2000). In these relations, u0 is the velocity scale of the large

eddies.

η = (ν3/ε)1/4 =
ν3/4L1/4

u
3/4
0

⇒ η

L
=

ν3/4

u
3/4
0 L3/4

⇒ η

L
= Re

−3/4
t (6.70)

Using equations 6.67, 6.68, 6.69 and 6.70, the spectrum was reproduced here for two

Reynolds Taylor numbers: Reλ = 50 and Reλ = 2000, presented in Figures 6.32 and 6.33.

The Reynolds Taylor number can be directly obtained by the turbulent Reynolds number

through the relation Reλ =
(

20
3 Ret

)1/2
. Equation 6.64 was integrated in the ranges shown

in these Figures and the total turbulent kinetic energy as well as the energy of each range

were calculated. The ranges are defined through the black vertical lines in Figures 6.32

and 6.33. Additionally, it is also presented the value of κη which provides the different

values of kP
kT

in equations 6.71 and 6.72 and these are marked in orange vertical lines. In the

spectrum of Hanjalic et al. (1980), the turbulent kinetic energy is stored only in the production

and transfer zones, since no turbulent kinetic energy is considered in the dissipation zone.

Thereby, the way kP and kT were calculated is:

kP =

∫ κη

10−5

E(κη)d(κη) (6.71)

kT =

∫ 10

κη
E(κη)d(κη) (6.72)

Tests were carried out in order to test the limits of integration. No significant difference in

the values of the total and partial turbulent kinetic energy were found if integrated from

κη < 10−5 and κη > 101.

In Figures 6.32 and 6.33, the green line is the −5
3 power law and the blue line is the total

turbulent kinetic energy as in equation 6.67. That confirms that both fL and fη functions

are different from unity only out of the Inertial subrange.

The first important observation to make is that 1 < kP
kT

< 10 is within the Inertial
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subrange. This result is desirable, since the NT1 and NT2 models predict kP
kT

to be in this

range and it means the spectrum is being split yet in a region where viscous effects are

negligible, but where the length, velocity and time scales are expected to be smaller than

those of the main flow.

Through the calculation of the turbulent kinetic energy stored in each range of the Kol-

mogorov spectrum, also presented in Figures 6.32 and 6.33, one may notice that the assump-

tion of Hanjalic et al. (1980) that no turbulent kinetic energy is stored in the dissipation

zone is in agreement with the calculations shown in these Figures. The amount of turbulent

kinetic energy stored in this zone is definitely much smaller than that stored in the other two

zones and the higher the Reynolds number, the more negligible it is.

It is of value then to evaluate the range of the Reynolds Taylor number, Reλ, in the

different test cases studied, using the second version of the NT1 and NT2 models. The

Reynolds Taylor number, which is equivalent to the turbulent Reynolds number, might arise

as a useful parameter to improve the performance of the models in the oscillatory pipe flows,

for example. The ranges of Reλ in the different test cases are presented in Table 6.14 for

the region far from the wall, where this parameter goes to zero due to the no-slip conditions.

Values of Reλ in homogeneous shear flows and normally strained flows are not being shown

since these flows are unbounded flows and therefore are expected to have very high Reynolds

numbers.

Table 6.14 thus shows that the Reynolds Taylor numbers of these flows are not very high,

however an Inertial range is still expected to exist. Besides, by analysing Table 6.14, one

can see that most test cases share similar ranges of Reλ which then does not make it an

interesting parameter to improve prediction of only oscillatory pipe flows.

Table 6.14: Ranges of the Reynolds Taylor number in the different test cases studied.
Test Case Reλ

Channel Flows 30 - 80

ZPGBL 50 - 180

APGBL 90 - 250

FPGBL 30 - 40

Oscillatory Boundary Layers 30 - 120

Oscillatory Pipe Flows 80 - 200

Ramp Up Flow 30 - 80

6.2.7 Performance of the Second versions of the NT1 and NT2 models

The second versions of the NT1 and NT2 models were then tested in all test cases used for the

first versions and then they were also tested in steady and pulsated flows in backward facing

steps. A brief discussion of the results will be then carried out by comparing the performance

of the first and second versions of the NT1 and NT2 models.

Firstly though, it is important to check whether the increase in the predicted value for(
kP
kT

)
BL

, the turbulent kinetic energy partitions ratio in the local equilibrium regions of bound-

ary layers, did solve the problem of the ratio between the small and large time scales being
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higher or too close to 1. The prediction of the time scale ratio as well as of kP
kT

and εP
εT

are

presented in Figures 6.34, 6.35 and 6.36 respectively and one can see that now the time scale

ratio is well below unity and kP
kT

is consistent with the predicted values, presented in Tables

6.8 and 6.10 for
(
kP
kT

)
BL

. Besides, the increase in the latter did avoid that peak in εP
εT

at the

edge of the boundary layer previously presented by the first versions of the NT1 and NT2

models in Figure 6.28.

The results for homogeneous shear flows are shown for the lowest shear case X2, the

moderate case HM1 and the high shear case SHC (Table 5.1). The prediction of the turbu-

lent kinetic energy, the eddy dissipation rate and the Reynolds shear stress for each of these

cases are presented in Figures 6.37, 6.38 and 6.39. One can see that the second version of the

models clearly improved prediction of the low shear case and maintained the good prediction

of the moderate and high shear cases.

Another clear improvement provided by the second version of the models can be seen in

the prediction of the turbulent kinetic energy in the normally strained cases, presented in

Figure 6.40. For both T&R and G&M0 cases, the prediction of the second versions of the

NT1 and NT2 models is closer to the experimental data when compared to the predictions

provided by the first version of the models. The prediction for the G&M05 case was not

improved, however that is expected since the second versions of the NT1 and NT2 models

are still linear-eddy-viscosity schemes and therefore insensitive to changes in the sign of the

normal straining.

The prediction of the velocity, turbulent kinetic energy and eddy dissipation rate in the

channel flow with Re = 41441 is presented in Figure 6.41. As one would expect, no significant

difference can be seen in the prediction of these quantities in channel flows. However, that

ensures the second versions of the NT1 and NT2 models do reproduce the expected behaviour

for the asymptotic state of local equilibrium boundary layer.

The prediction of the velocity and Reynolds shear stress profiles in the zero pressure

gradient boundary layer cases are presented at Reθ = 1410 and Reθ = 13052 in Figure 6.42.

One can notice that both versions of the models result in the prediction of identical velocity

profiles, however the second version of the models did improve the decay rate of the Reynolds

shear stress at the outer layer.

The velocity, Reynolds shear stress and turbulent kinetic energy profiles at four mea-

surement stations are respectively presented in Figures 6.43, 6.44 and 6.45 for the M&P30

adverse pressure gradient boundary layer case. One may notice that the second version of the

models perform similarly to the first versions, still not being able to follow the subtle changes

the experiments do. These results are similar to the other two adverse pressure gradient

boundary layer cases and therefore are not being presented here.

Very similar predictions between the two versions of the NT1 and NT2 models can also

be seen in the favourable pressure gradient boundary layer case with the lowest acceleration

parameter case, presented in Figure 6.46. These results are similar for the other acceleration

parameter cases and therefore are not being shown now.

With regard to the prediction of the oscillatory boundary layer and pipe flows, the only
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case where there was a noticeable difference in the prediction of the two versions of the

models was the T3RE14A20 case, where an intermediate frequency of oscillation is used.

That is actually expected, since the oscillatory boundary layer is often well predicted by

all models and the oscillatory pipe flow cases Tu&R05 and Tu&R36 present either too low

or too high frequencies which reduces the cases to either a series of steady state profiles or

frozen turbulence, as seen before, also not presenting much difference in the prediction of the

different models. The prediction of the velocity and Reynolds shear stress amplitude and

phase shift are presented in Figure 6.47. One may notice that the second versions of the NT1

and NT2 models did not improve the prediction of the Reynolds shear stress phase shift,

which was the main focus of attention for improvements in the first version of the models,

however they provide slightly worse predictions which do not compromise the performance

of the models. The prediction of the Reynolds shear stress amplitude is slightly worse for the

second version of the NT1 model and slightly better for the second version of the NT2 models

when compared to their first version counterparts. The prediction of the velocity phase shift

is slightly improved at the centre of the pipe by the second version of the models and the

prediction of the velocity amplitude is equivalent for both versions of the models.

Finally, the performance of the second versions of the NT1 and NT2 models in the ramp

up flow is being assessed by the prediction of the turbulent kinetic energy at different positions

in the radial direction, presented in Figure 6.48. The prediction of the velocity profile and

Reynolds shear stress are usually reasonable for all models and so it is for the second versions

of the NT1 and NT2 models. The second version of the NT1 model clearly improved the

prediction of k at the centre of the pipe, however it tended to provide a low level of this

quantity at r/R = 0.47. The opposite effect occurred with the second version of the NT2

model which improved the prediction of the turbulent kinetic energy at r/R = 0.47 and

overpredicted it at the centre of the pipe. Both models provided good predictions at r/R =

0.83.

The second versions of the NT1 and NT2 models were then used to simulate the three

backward facing step cases considered in this work, presented in Chapter 5. The predic-

tion of the time-averaged location of the reattachment point and the velocity profiles at

x/H = −0.02, 1, 3, 5, 7, 9 are discussed. The time-averaged locations of the reattachment

points predicted by the second versions of the NT1 and NT2 models are presented in Table

6.15, where they are also compared to those predicted by the HR, SG KC and TS models

for each backward facing step case. The KC model are used here because the TS model did

not converge for the unsteady backward facing step cases and it is interesting to compare the

results with other LEV MST model.

In Table 6.15 one can see that the second version of the NT1 model performs similarly to

the KC model, overpredicting the time-averaged reattachment point in the steady and high

frequency cases and is not able to reduce the time-averaged reattachment length enough in

the low frequency case, thus completely overpredicting this parameter. The second version

of the NT2 model provided even more highly over-predicted values, thus not performing well

in any of the three cases.
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Table 6.15: Performance of the second version of the NT1 and NT2 in predicting the time-
averaged reattachment point in the three backward facing step cases.

Model/Experiment St=0 St=0.275 St=1

Experiment 7.8 5.0 8.1
HR 6.42 5.01 6.67
SG 6.95 5.51 7.66
KC 8.44 7.21 9.15
TS 4.14 - -

NT1 V2 8.63 8.16 9.3
NT2 V2 9.5 9.25 10.2

The velocity profiles at different positions downstream of the step clearly reflect the

overpredicted location of the reattachment points. In Figure 6.49, one may notice that the

second versions of the NT1 and NT2 models performed reasonably well in the BFS − St0
case until x/H = 7 and not very well at x/H = 9, which is already after the reattachment

point. The NT1 model provides similar velocity profiles to those of the SG model, which

actually underpredicts the location of the reattachment point at the steady state. That is

due to the low post-channel profile recovery characteristic of RST models discussed before.

The HR model performs apparently best, however, as also discussed before, that is due to its

underprediction of the location of the reattachment point. The TS model which completely

underpredicts the location of the reattachment point in the steady state, does not provide

such reasonably good velocity profiles, as also commented on before.

The time-averaged velocity profile at the five positions downstream of the step in the

BFS−St0275 case is presented in Figure 6.50. One may notice that in this case, only the HR

model performed reasonably well, since it predicted correctly the time-averaged reattachment

point, as can be seen in Table 6.15. The second version of both NT1 and NT2 models perfomed

poorly due to its big overprediction of the location of the reattachment point. Although the

SG model provided reasonable prediction for the reattachment point at this low frequency

case, it still overpredicts the velocity profile. The KC model provided a slightly better profile

of the velocity than the NT1 model and that is probably related to its better prediction of

the time-averaged reattachment point, which is still far above the experimental data.

In the BFS − St1 case the time-averaged velocity profile, presented in Figure 6.51, is

reasonably well predicted up to x/H = 9 by all models. As discussed before, that is probably

due to the long reattachment length (x/H = 8.1) together with the last position where

experimental data is available for comparison being at x/H = 9. In this case, although

the NT1 and NT2 models provide overpredicted values for this parameter, the prediction of

velocity is still reasonably good.

On the whole, one can say that the second versions of the NT1 and NT2 models solved the

problem of high time scale ratios, now fully respecting the turbulent kinetic energy spectrum,

and clearly improved prediction of the homogeneous shear flows and normally strained flows

and performed reasonable well in all tested flows, but the backward facing step cases which

clearly indicated that some more improvements were needed in the NT1 and NT2 models.
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(a) Reθ = 1410 (b) Reθ = 4981 (c) Reθ = 13052

Figure 6.26: Time scale ratio, τT
τP

= kT /εT
kP /εP

, in the zero pressure gradient boundary layer:
assessing the first versions of the NT1 and NT2 models. Models as in Table 3.25.

(a) Reθ = 1410 (b) Reθ = 4981 (c) Reθ = 13052

Figure 6.27: Turbulent kinetic energy partitions ratio, kP
kT

, in the zero pressure gradient
boundary layer: assessing the first versions of the NT1 and NT2 models. Models as in Table
3.25.

(a) Reθ = 1410 (b) Reθ = 4981 (c) Reθ = 13052

Figure 6.28: Turbulent kinetic energy transfer rates ratio, εP
εT

, in the zero pressure gradient
boundary layer: assessing the first versions of the NT1 and NT2 models. Models as in Table
3.25.
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(a) CP2 profiles (b) CP1 profiles

Figure 6.29: Curves for CP1 and CP2 as a function of kP
kT

.

Figure 6.30: Simplified scheme of the optimization procedure to determine the coefficients of
the second version of the NT1 model.
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Figure 6.31: Sketch of the spectrum proposed by Kolmogorov presented in Pope (2000)

Figure 6.32: Study of the turbulent kinetic energy spectrum at Reλ = 50

Figure 6.33: Study of the turbulent kinetic energy spectrum at Reλ = 2000
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(a) Reθ = 1410 (b) Reθ = 4981 (c) Reθ = 13052

Figure 6.34: Time scale ratio, τT
τP

= kT /εT
kP /εP

, in the zero pressure gradient boundary layer:
assessing the second versions of the NT1 and NT2 models. Models as in Table 3.25.

(a) Reθ = 1410 (b) Reθ = 4981 (c) Reθ = 13052

Figure 6.35: Turbulent kinetic energy partitions ratio, kP
kT

, in the zero pressure gradient
boundary layer: assessing the second versions of the NT1 and NT2 models. Models as in
Table 3.25.

(a) Reθ = 1410 (b) Reθ = 4981 (c) Reθ = 13052

Figure 6.36: Turbulent kinetic energy transfer rates ratio, εP
εT

, in the zero pressure gradient
boundary layer: assessing the second versions of the NT1 and NT2 models. Models as in
Table 3.25.
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(a) k Profile (b) ε Profile (c) uv Profile

Figure 6.37: Performance of the second versions of the NT1 and NT2 models compared with
the first version of the models in the homogeneous lowest shear flow case X2.

(a) k Profile (b) ε Profile (c) uv Profile

Figure 6.38: Performance of the second versions of the NT1 and NT2 models compared with
the first version of the models in the homogeneous moderate shear flow case HM1.

(a) k Profile (b) ε Profile (c) uv Profile

Figure 6.39: Performance of the second versions of the NT1 and NT2 models compared with
the first version of the models in the homogeneous high shear flow case SHC.
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(a) T&R case (b) G&M0 case (c) G&M05 case

Figure 6.40: Performance of the second versions of the NT1 and NT2 models compared with
the first version of the models in the normally strained cases.

(a) Velocity Profile (b) k Profile (c) ε Profile

Figure 6.41: Performance of the second versions of the NT1 and NT2 models compared with
the first version of the models in the fully developed channel flow case with Re = 41441.

(a) Velocity Profile at
Reθ = 1410

(b) Shear Stress Profile at
Reθ = 1410

(c) Velocity Profile at
Reθ = 13052

(d) Shear Stress Profile at
Reθ = 13052

Figure 6.42: Performance of the second versions of the NT1 and NT2 models compared with
the first version of the models in zero pressure gradient boundary layer.
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(a) Station 2 (b) Station 4 (c) Station 5 (d) Station 6

Figure 6.43: Prediction of the velocity profile by the second versions of the NT1 and NT2
models compared with the first version of the models in the adverse pressure gradient bound-
ary layer case M&P30.

(a) Station 2 (b) Station 4 (c) Station 5 (d) Station 6

Figure 6.44: Prediction of the Reynolds shear stress by the second versions of the NT1 and
NT2 models compared with the first version of the models in the adverse pressure gradient
boundary layer case M&P30.

(a) Station 2 (b) Station 4 (c) Station 5 (d) Station 6

Figure 6.45: Prediction of the turbulent kinetic energy by the second versions of the NT1 and
NT2 models compared with the first version of the models in the adverse pressure gradient
boundary layer case M&P30.
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(a) Velocity Profile (b) uv Profile (c) k Profile (d) ε Profile

Figure 6.46: Performance of the first versions of the NT1 and NT2 models compared with
the first version of the models in the K150 favourable pressure gradient case.

(a) Velocity Amplitude (b) Velocity Phase Shift (c) Shear Stress Ampli-
tude

(d) Shear Stress Phase
Shift

Figure 6.47: Performance of the second versions of the NT1 and NT2 models compared with
the first version of the models in the oscillatory pipe flow case T3RE14A20.

(a) Pipe centre (r/R = 0) (b) r/R = 0.47 (c) r/R = 0.83

Figure 6.48: Prediction of the turbulent kinetic energy by the second versions of the NT1
and NT2 models compared with the first version of the models in the ramp up pipe flow.
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Figure 6.49: Prediction of the velocity profile before the step x/H = −0.02 and at five
positions downstream of the step x/H = 1, 3, 5, 7, 9 by the second versions of the NT1 and
NT2 models in the steady state backward facing step case of Chun and Sung (1996). Models
as in Table 3.25.

Figure 6.50: Prediction of the time-averaged velocity profile at five positions downstream
of the step x/H = 1, 3, 5, 7, 9 by the second versions of the NT1 and NT2 models in the
unsteady backward facing step case with of St = 0.275 Chun and Sung (1996). Models as in
Table 3.25.

Figure 6.51: Prediction of the time-averaged velocity profile at five positions downstream of
the step x/H = 1, 3, 5, 7, 9 by the second versions of the NT1 and NT2 models in the unsteady
backward facing step case with St = 1 of Chun and Sung (1996). Models as in Table 3.25.
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6.3 Final Versions of the NT1 and NT2 Models

The performance of the second versions of the NT1 and NT2 models indicated that improve-

ments were needed in the backward facing step cases. The final versions of the NT1 and NT2

models thus focused on these improvements without disturbing the prediction of the other

test cases where the second versions of the NT1 and NT2 models are performing well.

By analysing the performance of the LEV MTS models in backward facing step flows, it

was concluded that when the coefficients of the model satisfy reasonably well the asymptotic

states of local equilibrium boundary layers and homogeneous shear flows, the models tend

to overpredict the reattachment point of the steady state and high frequency cases and it

is not able to reduce the reattachment length enough in the low frequency cases. That is

what happened to the KC model and the second versions of the NT1 and NT2 models.

Clearly, when the coefficients are tuned to satisfy the equilibrium states of boundary layers

and homogeneous shear flows, they are not able to perform well in strongly non-equilibrium

flows such as the backward facing step flows. That would then imply the necessity of extra

terms which do not disturb the asymptotic analyses carried out to arrive at the second

versions of the NT1 and NT2 models but which make the models more sensitive to strong

non-equilibrium flows.

As both CG and TS models, whose coefficients do not satisfy the above mentioned asymp-

totic states, provided underprediction of the location of the reattachment point in all steady

and unsteady backward facing step cases, it was worth comparing the profiles of kP
kT

and εP
εT

provided by the second versions of the NT1 and NT2 models and the TS model, for ex-

ample, in order to understand which mechanisms would lead to a decrease of the predicted

reattachment length.

The profiles of εP
εT

provided by the TS and the second versions of the NT1 and NT2

models did not show any particular difference which would allow one to conclude why these

models predicted such different reattachment lengths. However, in Figure 6.52, one can see

the prediction of kP
kT

in the steady state backward facing step case provided by the TS and

the second versions of the NT1 and NT2 models. The profiles of kP
kT

provided by the second

versions of the NT1 and NT2 models only are presented in Figure 6.53. Clearly, the TS

model provided far higher levels of kP
kT

in the shear region than the second version of the NT1

and NT2 models. As these models overpredict the reattachment length and the TS model

underpredicts this parameter, one knows that in order to reduce the predicted reattachment

length, one needs extra terms which increase the ratio of kP
kT

in the shear region.

6.3.1 Tests Towards the Final version of the NT1 Model

Firstly, the tests which led to the final version of the NT1 model will be presented and

discussed.

In order to increase the ratio kP
kT

, one needs either to increase the generation of kP or

decrease the generation of kT . Looking at equations 6.51 to 6.54, εP is directly the sink term

of DkP
Dt and the source term of DkT

Dt . One can then either decrease CP1 or increase CP2 in the
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εP equation (equation 6.53) in order to have the desired effect.

The first attempt was then to rewrite CP1 as:

CP1 = 1.4912 + 2.5
min

[
kP
kT
− fBL, 0

]
kP
kT

+ fBL
(6.73)

where in the second version of the NT1 model fBL =
(
kP
kT

)
BL

= 3.6. Tests in changing fBL

are only reported in Table 6.16. Firstly it was noticed that by increasing fBL, the prediction

of the reattachment point in both steady and high frequency backward facing step cases

would be improved, as can be seen in Test 1 in Table 6.16. The change in this parameter

as a constant would affect the asymptotic states previously carried out since CP1 would no

longer be 1.4912 in local equilibrium boundary layers.

Table 6.16: Tests performed in the backward facing step cases with the NT1 model, exploring
f1 in fBL which is used in CP1 in equation 6.73.

Reattachment Point
Test NT1 f1 fBL

St=0 St=0.275 St=1

1 4.5 f1 7.5 7.5 8.2

2 2 max
(
εP
εT
− 1, 0

) (
kP
kT

)
BL

(1 + f1) 7.8 7.4 8.5

3 1.7
(
kP
kT
− 1
)

min
(
Pk
εT
− 1.9, 0

)
max

(
εP
εT
− 1, 0

) (
kP
kT

)
BL

(1− f1) 7.8 7.9 8.6

EXP - - 7.8 5.0 8.1

Looking at the profiles of εP
εT

in Figure 6.54, one can see that this ratio, which in equi-

librium boundary layers is equal to 1, exceeds the value of 1 within the shear region. Test 2

in Table 6.16 then showed that it was possible to substitute fBL by an expression involving

max( εPεT − 1, 0) and reduce the reattachment length in both steady and high frequency back-

ward facing step cases and keep fBL = 3.6 in local equilibrium boundary layers. The problem

of the form adopted by fBL in Test 2 in Table 6.16 was that when tested in the homogeneous

shear flow cases, it disturbed the prediction of the high shear cases since in these cases, εP
εT

reaches levels significantly higher than unity in spite of
(
εP
εT

)
SF

being so close to unity.

So in order to use max( εPεT − 1, 0) in the desired extra term, it is necessary to propose a

term which would not affect the homogeneous shear flows, but which would still be active in

the shear region in the backward facing step cases. Looking at the profile of PkεT in Figure 6.55,

one may notice that this ratio peaks at about 2 which is very close to
(
Pk
εT

)
SF

= 1.9. So a term

such as min(PkεT − 1.9, 0) would probably cancel any significant effect in homogeneous shear

flows. Test 3 in Table 6.16 shows a term involving both max( εPεT −1, 0) and min(PkεT −1.9, 0) in

fBL which also produces the desired reduction in the reattachment length in both steady and

high frequency backward facing step cases and does not affect the asymptotic states studied.

This term was then adopted in CP1 which now is expressed as in equation 6.73 with:

fBL =

(
kP
kT

)
BL

(1− f1) = 3.6(1− f1) (6.74)
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f1 = 1.7

(
kP
kT
− 1

)
min

(
Pk
εT
− 1.9, 0

)
max

(
εP
εT
− 1, 0

)
(6.75)

In equation 6.75, the term
(
kP
kT
− 1
)

was also included for two reasons: to increase the overall

level of the whole term implying a small coefficient such as 1.7 and to reduce any eventual

effect of the f1 term in local low turbulence level regions, such as the core region of channel

flows and the outer part of boundary layers, where kP
kT

is expected to reach minimum levels

such as
(
kP
kT

)
DF

which are unity in the NT1 model. The general shape of the f1 term predicted

by the second version of the NT1 model can be seen in Figure 6.56. This term is either zero

or negative, since
(
kP
kT
−1
)
≥ 0, max( εPεT −1, 0) ≥ 0 and min(PkεT −1.9, 0) ≤ 0, and that is why

the f1 has a minus sign in fBL which is intended to be increased.

The adopted form for CP1 given by equations 6.73, 6.74 and 6.75 reduced the reattachment

length in all backward facing step cases, as can be seen in Test 3 in Table 6.16, though not

enough sufficiently for the low frequency case where the experiments indicate XR = 5.0.

Another extra term is then needed, but now one looks for a term which has no effect in the

steady state backward facing step case, little effect in the high frequency case and a strong

effect in the low frequency case.

A large number of tests were then performed in order to arrive at a second extra term,

which would provide the expected sensitivity to the prediction of the reattachment point in

different forcing frequencies, and a selection of them will be presented and discussed below.

Still looking at the profiles provided by the second version of the NT1 model, but now

considering the three backward facing step cases, it was found that the term SW , presented

in equation 6.76, is nearly zero in the shear region of the steady state and high frequency

cases and non-zero in the low frequency backward facing step case.

SW =
SijSij −WijWij

SijSij +WijWij
(6.76)

where Sij = ∂Ui
∂xj

+
∂Uj
∂xi

and Wij = ∂Ui
∂xj
− ∂Uj

∂xi
. In 2-D flows, these terms reduce to:

SijSij = S2
11 + S2

22 + 2S2
12 =

(
2
∂U

∂x

)2

+

(
2
∂V

∂y

)2

+ 2

(
∂U

∂y
+
∂V

∂x

)2

(6.77)

WijWij = 2W 2
12 = 2

(
∂U

∂y
− ∂V

∂x

)2

(6.78)

The SW term is quite convenient to be used since it is zero in simple shear flows which means

both local equilibrium boundary layers and homogeneous shear flows asymptotic analyses

would not be affected.

As the shear region in the backward facing step cases is the crucial one for modelling in

the backward facing step cases, it is sensible to think of a term such as max( εPεT − 1, 0)SW to

be included in one of the model’s coefficients. In order to reduce the coefficient needed, the
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term Pk
εP

was initially used. The profile of Pk
εP

max( εPεT − 1, 0)SW for the second version of the

NT1 model is presented in Figure 6.58 for the three backward facing step cases where one

can see it is clearly non-zero in the low frequency case and negligible in the steady state and

high frequency cases. This same profile is also shown in Figure 6.61 for the NT1 model with

CP1 given by equations 6.73, 6.74 and 6.75 where one can see that no significant difference

in this parameter’s profile was noticed when running the updated model.

It was observed that by decreasing CT1, the desired effect of reducing significantly the

reattachment length in the low frequency backward facing step case could be achieved. Test

4 in Table 6.17 shows that, while the term Pk
εP

max( εPεT − 1, 0)SW had negligible effect in the

steady state, as expected from the profiles shown in Figure 6.58 for the second version of the

NT1 model, in the high frequency case, this term had a huge effect reducing the reattachment

length to the same level as in the low frequency case which was not expected nor desired.

It was then decided to shed some light on the results of Test 4 in Table 6.17 in order

to understand the reason for the unexpected behaviours in the high frequency backward

facing step case described above. It was then noticed that CT1 became negative in the shear

region and that the reason for that was the very high peaks in the εP
εT

profiles throughout the

cycle. In order to capture the effects of these strongly shear flows, without compromising the

performance of the model, the first hypothesis was that by either clipping this coefficient and

not allowing it to become negative - max(CT1, 0) - or by clipping εP
εT

such as min[4,max( εPεT −
1, 0)] or by taking the square root of max( εPεT − 1, 0) one could have the desired effect in the

high frequency backward facing step case. Tests 5, 6 and 7 in Table 6.17 thus show that by

using one of these clips the undesired effect in the high frequency case was reduced, but was

still too strong.

The profiles of max( εPεT , 0) and Pk
εP

max( εPεT − 1, 0)SW for the NT1 model with Test 5 are

presented in Figures 6.63 and 6.64 respectively where one can notice that the introduction

of Pk
εP

max( εPεT − 1, 0)SW in CT1 produced much higher levels of this term as well as of εP
εT

throughout the cycle than the second version of the NT1 model (Figures 6.54 and 6.58) and

even when the NT1 is run with CP1 given by equations 6.73, 6.74 and 6.75 (Figures 6.60 and

6.61).

The dynamic of the differential equations clearly changed when the term Pk
εP

max( εPεT −
1, 0)SW was introduced in CT1. It was decided to study which effects it would have if Pk

εP

were exchanged by kP
kT

. The former can reach very high values in strongly non-equilibrium

flows while the latter is expected not to vary that much. Test 8 in Table 6.17 shows that

the term kP
kT

max( εPεT − 1, 0)SW can produce the same effect in the low frequency case, but

still reduces too much the reattachment length in the high frequency case. The profile of
kP
kT

max( εPεT − 1, 0)SW for the second version of the NT1 model and for the NT1 with CP1

given by equations 6.73, 6.74 and 6.75 is presented in Figures 6.59 and 6.62. One can see that

its profile is similar to the profile of Pk
εP

max( εPεT − 1, 0)SW which is expected since Pk
εP

and kP
kT

are being introduced mainly to increase the magnitude of the term max( εPεT − 1, 0)SW and

therefore decrease the value of the coefficient needed.

As CT1 becoming negative is an issue, it was worth evaluating the effect of the term
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Table 6.17: Tests performed in the backward facing step cases with the NT1 model, using
CP1 given by equations 6.73, 6.74 and 6.75, and exploring f2 in CT1.

Reattachment Point
Test NT1 f2 CT1

St=0 St=0.275 St=1

4 0.7Pk
εP

max
(
εP
εT
− 1, 0

)
SW CT1 − f2 7.8 5.0 5.2

5 2.5Pk
εP

max
(
εP
εT
− 1, 0

)
SW max(CT1 − f2, 0) 7.9 5.1 5.8

6 0.8Pk
εP

min
[
4,max

(
εP
εT
− 1, 0

)]
SW CT1 − f2 7.8 5.1 5.6

7 Pk
εP

√
max

(
εP
εT
− 1, 0

)
SW CT1 − f2 7.9 4.9 5.5

8 2 kP
kT

max
(
εP
εT
− 1, 0

)
SW max(CT1 − f2, 0) 7.9 5.2 6.2

EXP - - 7.8 5.0 8.1

kP
kT

max( εPεT − 1, 0)SW when added to CT2. That was done in Test 9, presented in Table 6.18.

As one can see the same result as in Test 8 can be achieved, making CT2 a more interesting

coefficient to be changed. However, even in CT2 the effect of kP
kT

max( εPεT − 1, 0)SW is far

stronger than the expected according to the profiles of this term with the second version of

the NT1 model (Figure 6.59) and the NT1 with CP1 given by equations 6.73, 6.74 and 6.75

(Figure 6.62). The profiles of εP
εT

in Test 9 are similar to those of Test 5 which are presented

in Figure 6.63 where this ratio reaches relatively higher values in the low frequency case than

in the high frequency case. It was then decided to try clipping εP
εT

at values higher than one

in order to try to cancel the effects of the extra term in the high frequency case. Tests 10, 11

and 12 in Table 6.18 shows these results. Again, the extra term in CT2 seems to affect the

high frequency case.

Table 6.18: Tests performed in the backward facing step cases with the NT1 model, using
CP1 given by equations 6.73, 6.74 and 6.75, and exploring f2 in CT2.

Reattachment Point
Test NT1 f2 CT2

St=0 St=0.275 St=1

9 2 kP
kT

max
(
εP
εT
− 1, 0

)
SW CT2 + f2 7.9 5.1 5.7

10 2.5 kP
kT

max
(
εP
εT
− 1.2, 0

)
SW CT2 + f2 7.8 5.1 5.6

11 2.5 kP
kT

max
(
εP
εT
− 1.4, 0

)
SW CT2 + f2 7.8 5.3 5.9

12 4 kP
kT

max
(
εP
εT
− 1.6, 0

)
SW CT2 + f2 7.8 5.0 5.6

EXP - - 7.8 5.0 8.1

As changes in both CT1 and CT2 seemed to change drastically the dynamics of the parti-

tions variables (kP , kT , εP and εT ), it was decided to investigate what effect a second extra

term such as kP
kT

max( εPεT −1, 0)SW in CP1 would cause. Test 13 in Table 6.19 shows that CP1

seems much more appropriate since the effect of the second extra term has very little effect

in the high frequency case when inserted in CT1 and CT2. The term kP
kT

max( εPεT − 1, 0)SW

is mostly positive, particularly when it reaches the high values responsible for reducing suf-

ficiently the reattachment length in the low frequency case, but can be negative since SW is

expected to vary from -1 to 1. Test 14 in Table 6.19 shows that by using only the positive

part of kP
kT

max( εPεT − 1, 0)SW , there are no effects in the unsteady cases and even smaller

effects in the steady state case. That indicated that max
[
kP
kT

max
(
εP
εT
− 1, 0

)
SW, 0

]
seemed

a more appropriate form for the second extra term.
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Test 15 (essentially Test 14, but with a slightly higher coefficient) in Table 6.19 is the

best test so far, though one would expect the reattachment length in the high frequency case

to be slightly higher, since experiments indicate XR = 8.1. When looking at the profile of

max
[
kP
kT

max
(
εP
εT
−1, 0

)
SW, 0

]
provided by the second version of the NT1 model (Figure 6.59)

and the NT1 with CP1 given by equations 6.73, 6.74 and 6.75 (Figure 6.62), it is difficult to

believe that such smaller magnitude of this term in the high frequency case could cause such

a big reduction of the reattachment length in the BFS − St1 case.

It was then decided to investigate if there would be any other location in the flow, apart

from x/H = −0.02, 1, 3, 5, 7, 9, where the term max
[
kP
kT

max
(
εP
εT
−1, 0

)
SW, 0

]
reached higher

values in the high frequency case. In Figure 6.57 one can see a contour plot of this term

at ωt = 180o, which is representative of other positions in the cycle. One may see that

max
[
kP
kT

max
(
εP
εT
− 1, 0

)
SW, 0

]
is mostly near zero, as indicated in Figure 6.62, but very

high values can be observed very close to the step edge. That should explain why the term

max
[
kP
kT

max
(
εP
εT
− 1, 0

)
SW, 0

]
was having such high influence in the high frequency case.

Looking at Figure 6.62, where this term does not exceed unity in the low frequency case,

suggests that if a term such as min
{

1.0,max
[
kP
kT

max
(
εP
εT
−1, 0

)
SW, 0

]}
were used, the desired

effects in all three backward facing step cases should be achieved. However, Tests 16, 17 and

18 (where the maximum limit of the term was varied from 1 to 10) show that no improvements

were achieved by clipping the maximum value of the term max
[
kP
kT

max
(
εP
εT
− 1, 0

)
SW, 0

]
.

Table 6.19: Tests performed in the backward facing step cases with the NT1 model, using
CP1 given by equations 6.73, f1 given by equation 6.75, and exploring f2 in CP1 too through
fBL.

Reattachment Point
Test NT1 f2 fBL

St=0 St=0.275 St=1

13 5 kP
kT

max
(
εP
εT
− 1, 0

)
SW

(
kP
kT

)
BL

(1− f1 + f2) 7.9 5.4 7.2

14 5 max
[
kP
kT

max
(
εP
εT
− 1, 0

)
SW, 0

] (
kP
kT

)
BL

(1− f1 + f2) 7.8 5.4 7.2

15 5.5 max
[
kP
kT

max
(
εP
εT
− 1, 0

)
SW, 0

] (
kP
kT

)
BL

(1− f1 + f2) 7.8 5.2 7.0

16 5.5 min
{

1.0,max
[
kP
kT

max
(
εP
εT
− 1, 0

)
SW, 0

]} (
kP
kT

)
BL

(1− f1 + f2) 7.8 5.1 6.9

17 5.5 min
{

3.0,max
[
kP
kT

max
(
εP
εT
− 1, 0

)
SW, 0

]} (
kP
kT

)
BL

(1− f1 + f2) 7.8 5.1 7.2

18 5.5 min
{

10.0,max
[
kP
kT

max
(
εP
εT
− 1, 0

)
SW, 0

]} (
kP
kT

)
BL

(1− f1 + f2) - - 7.1

EXP - - 7.8 5.0 8.1

A term such as min
{

1.0,max
[
kP
kT

max
(
εP
εT
− 1, 0

)
SW, 0

]}
was then tried in CP2 in order

to test the effects of an extra term in this coefficient. Tests 19 and 20 were then performed,

allowing the maximum value of the term max
[
kP
kT

max
(
εP
εT
− 1, 0

)
SW, 0

]
to be 2 and 3 re-

spectively. These tests confirmed again that the CP1 was the most appropriate term to be

changed through equation 6.73.

When looking at the profiles of εP
εT

in Figure 6.60, where the NT1 model is used with CP1

given by equations 6.73, 6.74 and 6.75 (Test 3 in Table 6.16), one may notice that there is

not such difference in the levels of this ratio in the high and low frequency cases, however,

the levels are higher in the low frequency case. It was then decided to try a term such as

max
[
kP
kT

max
(
εP
εT
− 1.1, 0

)
SW, 0

]
which would not present high values in the step edge when
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Table 6.20: Tests performed in the backward facing step cases with the NT1 model, using
CP1 given by equations 6.73, 6.74 and 6.75, and exploring f2 in CP2.

Reattachment Point
Test NT1 f2 CP2

St=0 St=0.275 St=1

19 2.5 min
{

2.0,max
[
kP
kT

max
(
εP
εT
− 1, 0

)
SW, 0

]}
CP2 + f2 - 5.1 6.4

20 2.5 min
{

3.0,max
[
kP
kT

max
(
εP
εT
− 1, 0

)
SW, 0

]}
CP2 + f2 - 5.1 6.4

EXP - - 7.8 5.0 8.1

evaluating the profile provided by Test 3 in Table 6.16 due to the clip max
(
εP
εT
−1.1, 0

)
which

can be interpreted as a flag to indicate when εP
εT

is at least 10% higher than its expected

value in local equilibrium boundary layers,
(
εP
εT

)
BL

= 1. Test 21 in Table 6.21 was the first

attempt in this sense and although the reattachment length in the low frequency case was

not reduced enough, the location of the reattachment point in the high frequency case was

finally at the desired magnitude, close to XR = 8.1. Tests 22 and 23 in Table 6.21 tuned the

coefficient associated with the term max
[
kP
kT

max
(
εP
εT
− 1.1, 0

)
SW, 0

]
in order to match the

steady state, low and high frequency cases which is eventually achieved with Test 23.

As two extra terms are now being incorporated in CP1 to reduce its value in the shear

region, one could wonder whether CP1 becomes negative. That would not be a problem in

principle, since the source term in εP equation (equation 6.53) is associated with Pk which

can be negative, however one could argue that only Pk should attribute a minus sign to the

source term. As LEV models always predict Pk as positive, it makes perhaps more sense to

have CP1 always positive.

By checking the profiles of CP1, it was noticed that this coefficient was mainly positive,

reaching very low negative values very close to the step edge. Test 24 was then perfomed

to study the influence of the “negative” CP1 by clipping this coefficient and not allowing it

to be negative. The results were slightly better in the high frequency case than when not

clipping CP1 which then made this the best model so far.

Table 6.21: Further tests performed in the backward facing step cases with the NT1 model,
using CP1 given by equations 6.73, f1 given by equation 6.75, and exploring f2 in CP1 too
through fBL.

Reattachment Point
Test NT1 f2 fBL

St=0 St=0.275 St=1

21 10 max
[
kP
kT

max
(
εP
εT
− 1.1, 0

)
SW, 0

] (
kP
kT

)
BL

(1− f1 + f2) 7.8 6.1 8.0

22 15 max
[
kP
kT

max
(
εP
εT
− 1.1, 0

)
SW, 0

] (
kP
kT

)
BL

(1− f1 + f2) 7.8 5.5 8.0

23 20 max
[
kP
kT

max
(
εP
εT
− 1.1, 0

)
SW, 0

] (
kP
kT

)
BL

(1− f1 + f2) 7.8 5.1 7.9(
kP
kT

)
BL

(1− f1 + f2)
24 20 max

[
kP
kT

max
(
εP
εT
− 1.1, 0

)
SW, 0

]
max(CP1, 0)

7.8 5.1 8.0

EXP - - 7.8 5.0 8.1

So now, fBL is given by equation 6.79 below and with f1 as in equation 6.75.

fBL =

(
kP
kT

)
BL

(1− f1 + f2) = 3.6(1− f1 + f2) (6.79)

362



6.3. Final Versions of the NT1 and NT2 Models

f2 = 20 max

[
kP
kT

max

(
εP
εT
− 1.1, 0

)
SW, 0

]
(6.80)

To finish the set of tests with the NT1 model, since a satisfactory final form was already

achieved, it was decided to study the effect of the term max
[
kP
kT

max
(
εP
εT
− 1.1, 0

)
SW, 0

]
if incorporated in the CP2 or CT2 coefficients. One may then look at Tests 25 and 26 in

Table 6.22. It can be noted that, again, when incorporating the extra term in CT2 the

dynamic of the differential equations is changed and the high frequency case presents a too

low reattachment length. When the term max
[
kP
kT

max
(
εP
εT
−1.1, 0

)
SW, 0

]
was added to CP2

reasonable results were also achieved. However, they are not better than the ones provided

by Test 24 in Table 6.21. It is worth knowing though about this behaviour for future tests.

Table 6.22: Tests performed in the backward facing step cases with the NT1 model, using
CP1 given by equations 6.73, 6.74 and 6.75, and exploring f2 similar to equation 6.80 in CP2

or CT2.
Coefficient Reattachment Point

Test NT1 f2
Changed St=0 St=0.275 St=1

25 2 max
[
kP
kT

max
(
εP
εT
− 1.1, 0

)
SW, 0

]
CT2 + f2 - 5.0 5.3

26 10 max
[
kP
kT

max
(
εP
εT
− 1.1, 0

)
SW, 0

]
CP2 + f2 - 4.9 7.6

EXP - - 7.8 5.0 8.1

In Tables 6.16 to 6.22 whenever the reattachment point was indicated by a dashed sign

it meant these test cases were not run, because the models have already been shown to fail

in one of the other cases tested.

It might be worth commenting that the changes in CP1 might have seemed more attractive

due to the way they were being incorporated, through fBL in CP1 instead of being directly

added or subtracted into the other coefficients. However, as could be noted in Test 26, the

direct addition of max
[
kP
kT

max
(
εP
εT
− 1.1, 0

)
SW, 0

]
in CP2 had the expected effect.

6.3.2 The Final Version of the NT1 Model

In this section the full final version of the NT1 model is presented. According to the tests

presented above, the final version of the NT1 model is the second version of the NT1 model

with CP1 given by equations 6.73, 6.79, 6.75 and 6.80 which correspond to Test 24, in Table

6.21.

The transport equations for the final form of the NT1 model are presented in equations

6.51 to 6.54 and are repeated here for the sake of presenting the whole model.

DkP
Dt

= Pk − εP +
∂

∂xj

[(
ν +

νt
σkP

)
∂kP
∂xj

]
(6.81)

DkT
Dt

= εP − εT +
∂

∂xj

[(
ν +

νt
σkT

)
∂kT
∂xj

]
(6.82)
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DεP
Dt

= CP1Pk
εP
kP
− CP2

ε2
P

kP
+

∂

∂xj

[(
ν +

νt
σεP

)
∂εP
∂xj

]
(6.83)

DεT
Dt

= CT1
εP εT
kT
− CT2

ε2
T

kT
+

∂

∂xj

[(
ν +

νt
σεT

)
∂εT
∂xj

]
(6.84)

The Reynolds stresses are calculated through the linear-eddy-viscosity scheme given by:

uiuj = −νt
(
dUi
dxj

+
dUj
dxi

)
+

2

3
kδij (6.85)

where the eddy viscosity νt is defined as:

νt = cµ
kkP
εP

(6.86)

The coefficients of the final version of the NT1 model are presented in Table 6.23 where:

η = max

[
k

εT

√
1

2
SijSij ,

k

εT

√
1

2
WijWij

]
(6.87)

Sij =
∂Ui
∂xj

+
∂Uj
∂xi

(6.88)

Wij =
∂Ui
∂xj
− ∂Uj
∂xi

(6.89)

fBL =

(
kP
kT

)
BL

(1− f1 + f2) = 3.6(1− f1 + f2) (6.90)

f1 = 1.7

(
kP
kT
− 1

)
min

(
Pk
εT
− 1.9, 0

)
max

(
εP
εT
− 1, 0

)
(6.91)

f2 = 20 max

[
kP
kT

max

(
εP
εT
− 1.1, 0

)
SW, 0

]
(6.92)

SW =
SijSij −WijWij

SijSij +WijWij
(6.93)

The expression for the dimensionless shear η presented in equation 6.87 is the general expres-

sion proposed by Craft et al. (1996b) which reduces to k
εT

dU
dy in simple shear flows.

And finally, the asymptotic states predicted by the final version of the NT1 model are

presented in Table 6.24 below for latter comparison with the NT2 model.

Now that the final version of the NT1 model has been presented, a few comments on

the model’s coefficients and asymptotic states are worthwhile. The final version of the NT1
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Table 6.23: Coefficients of the final version of the NT1 model
cµ CP1 CP2 σεP CT1 CT2 σεT

min[0.115, 0.023 + 0.25e−0.30η] max

[
1.4921 + 2.5

min(0,
kP
kT
−fBL)

kP
kT

+fBL

, 0

]
1.8 1.4202 1.6 1.7 1.2181

Table 6.24: Values expected to be provided by the second version of the NT1 model in the
asymptotic states studied(

Pk
εT

)
SF

(
kP
kT

)
SF

(
εP
εT

)
SF

(
kP
kT

)
DF

(
εP
εT

)
DF

(
kP
kT

)
BL

(
εP
εT

)
BL

cµBL

1.9 4.4 1.1667 1.0 0.5 3.6 1.0 0.115

model differs from its second version due to the new CP1 expression only. The f1 and f2

terms, presented in equations 6.91 and 6.92 respectively, incorporated in CP1 (now equation

6.73) through the new parameter fBL, defined in equation 6.90, are not expected to disturb

the asymptotic analyses carried out for the second version of the NT1 model nor to affect

significantly the prediction of the test cases other than the backward facing step ones.

As commented on before where each term in f1 and f2 were discussed, the fBL is designed

to reduce to fBL =
(
kP
kT

)
BL

= 3.6 in the asymptotic states as well as in flows where f1 and

f2 are expected to be negligible. The asymptotic state of decaying grid turbulence was

not mentioned during the development of the f1 and f2 terms since these are straightaway

negligible in this equilibrium state where εP
εT

is necessarily smaller than unity and after all,

as PkDF = 0, any change in CP1 would not affect this flow which is one more advantage of

incorporating the f1 and f2 terms into this coefficient.

The f2 term has a rather high constant, 20, which is not expected to create instabilities

due to the expected low magnitude of max
[
kP
kT

max
(
εP
εT
− 1, 0

)
SW, 0

]
. This hypothesis was

confirmed when running the other test cases.

6.3.3 Tests Towards the Final version of the NT2 Model

The same procedures followed to arrive at the final version of the NT1 model were carried

out to arrive at the final version of the NT2 model. They will be then presented in a briefer

way here, since the main reasons for choosing the extra terms are the same as those discussed

in the NT1 section.

Firstly, CP1 can be expressed as:

CP1 = 1.5697 + 2.5
min

[
kP
kT
− fBL, 0

]
kP
kT

+ fBL
(6.94)

where in the second version of the NT2 model fBL =
(
kP
kT

)
BL

= 3.7. In Table 6.25 are

presented the tests which led to the final form of the f1 term, similar to that in equation

6.75. From Test 3 in Table 6.25 one can write:
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fBL =

(
kP
kT

)
BL

(1− f1) = 3.7(1− f1) (6.95)

f1 = 5.4

(
kP
kT
− 1.3166

)
min

(
Pk
εT
− 1.9, 0

)
max

(
εP
εT
− 1, 0

)
(6.96)

There are two main differences between the f1 term in the final versions of the NT1 and

NT2 models: in the former, the coefficient is rather lower than in the latter (1.7 in equation

6.75 against 5.4 in equation 6.96) and, as in the second version of the NT2 model,
(
kP
kT

)
DF

=

1.3166, that is the value used in f1 instead of unity which is
(
kP
kT

)
DF

in the NT1 model.

The reason for needing such higher constant in f1 is mainly due to the fact that the second

version of the NT2 model strongly over-estimates the reattachment length in the backward

facing step cases and therefore a stronger extra term was needed.

Table 6.25: Tests performed in the backward facing step cases with the NT2 model, exploring
f1 in CP1 in equation 6.94.

Reattachment Point
Test NT2 f1 fBL

St=0 St=0.275 St=1

1 6.0 f1 7.7 8.4 8.7

2 9 max
(
εP
εT
− 1, 0

) (
kP
kT

)
BL

(1 + f1) 7.8 8.0 8.7

3 5.4
(
kP
kT
− 1
)

min
(
Pk
εT
− 1.9, 0

)
max

(
εP
εT
− 1, 0

) (
kP
kT

)
BL

(1− f1) 7.9 8.7 8.9

EXP - - 7.8 5.0 8.1

The same tests performed in the NT1 model with the terms Pk
εP

max
(
εP
εT
− 1, 0

)
SW and

kP
kT

max
(
εP
εT
− 1, 0

)
SW in CT1 were also performed with the NT2 model and are presented in

Table 6.26. It is worth noticing though that if Test 4 Table 6.26 is used without clipping CT1

or εP
εT

convergence is not reached which shows a less stable feature of this model compared

to the NT1 formulation. On the other hand, by comparing Tables 6.17 and 6.26, one may

notice that by applying the clippings shown in Tests 4, 6 and 7 the reattachment length in

the high frequency case is not reduced by as much as when the same clippings were applied

in the NT1 model.

Table 6.26: Tests performed in the backward facing step cases with the NT2 model, using
CP1 given by equations 6.94, 6.95 and 6.96, and exploring f2 in CT1.

Reattachment Point
Test NT2 f2 CT1

St=0 St=0.275 St=1

4 1.7Pk
εP

max
(
εP
εT
− 1, 0

)
SW max(CT1 − f2, 0) 7.9 5.0 6.4

5 1.25Pk
εP

min
[
4,max

(
εP
εT
− 1, 0

)]
SW CT1 − f2 7.9 5.0 5.9

6 1.3Pk
εP

√
max

(
εP
εT
− 1, 0

)
SW CT1 − f2 7.9 5.4 6.7

7 kP
kT

max
(
εP
εT
− 1, 0

)
SW max(CT1 − f2, 0) 7.9 5.5 6.5

EXP - - 7.8 5.0 8.1

As tests in the CT1 did not succeed, just as in the NT1 model, the same tests performed

in CT2 were carried out and are presented in Table 6.27, where it can be seen that, as in the
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NT1 model, incorporating an extra term in CT1 or CT2 is equivalent and in both the dynamic

of the differential equations changes and the reattachment length is excessively reduced.

Table 6.27: Tests performed in the backward facing step cases with the NT2 model, using
CP1 given by equations 6.94, 6.95 and 6.96, and exploring f2 in CT2.

Reattachment Point
Test NT2 f2 CT2

St=0 St=0.275 St=1

8 2.5 kP
kT

max
(
εP
εT
− 1, 0

)
SW CT2 + f2 8.0 5.2 6.6

9 3.5 kP
kT

max
(
εP
εT
− 1.2, 0

)
SW CT2 + f2 7.9 5.0 6.2

10 5 kP
kT

max
(
εP
εT
− 1.4, 0

)
SW CT2 + f2 7.9 4.8 5.8

11 6.6 kP
kT

max
(
εP
εT
− 1.6, 0

)
SW CT2 + f2 7.9 5.1 5.7

EXP - - 7.8 5.0 8.1

The main difference between the behaviour of the NT1 and NT2 models occurred when

tests in incorporating a second extra term in CP1 were carried out. These tests are presented

in Table 6.28. As in the NT1 model, when a term such as max
[
kP
kT

max
(
εP
εT
− 1, 0

)
SW

]
was

included in CP1 without an upper limit, Test 12 in Table 6.28, the reattachment length in

the high frequency case was increased to 7.2, but that was still rather low, since experiments

indicated XR = 8.1. However, when max
[
kP
kT

max
(
εP
εT
− 1, 0

)
SW

]
was imposed an upper

limit, such as in Tests 13 to 16 in Table 6.28, the reattachment length in the high frequency

case was significantly increased and in the low frequency case it remained about 5 which

matched the experimental value. Different upper limits were studied in Tests 13, 14 and 15

in Table 6.28. The NT2 model behaved as expected, differently than the NT1 model where an

upper limit did not increase the reattachment length in the high frequency case. The clipping

with 1.5 or 1.8 (Tests 13 and 14) seemed equivalent while when clipping with 2.0 (Test 15)

the reattachment length at the BFS − St1 case started to decrease, indicating that the f2

term should not increase as high as 2.0. In Test 16, it was studied the influence of clipping

CP1 and not allowing it to become negative. This test performed best and was adopted as

the final version of the NT2 model.

So now fBL can be defined as:

fBL =

(
kP
kT

)
BL

(1− f1 + f2) = 3.7(1− f1 + f2) (6.97)

f2 = 11 min

{
1.8,max

[
kP
kT

max

(
εP
εT
− 1, 0

)
SW, 0

]}
(6.98)

Just as a matter of testing, it would be interesting to check whether the same f2 expression

used in the NT1 model, equation 6.80, would also work in the NT2 model. Test 17 still in

Table 6.28 shows that even using a high constant such as 25, the reattachment length in the

low frequency case could not be reduced enough to match the experiments which provide

XR = 5.0.

Also for the sake of closing the set of tests with the NT2 model, the f2 terms used

for both NT1 and NT2 models were tested in the CP2 and CT2 coefficients as shown in

Table 6.29. When f2 was used as min
{

1.8,max
[
kP
kT

max
(
εP
εT
− 1, 0

)
SW, 0

]}
in CP2 (Test
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Table 6.28: Tests performed in the backward facing step cases with the NT2 model, using
CP1 given by equations 6.94, f1 given by equation 6.96, and exploring f2 in CP1 too through
fBL.

Reattachment Point
Test NT2 f2 fBL

St=0 St=0.275 St=1

12 11 max
[
kP
kT

max
(
εP
εT
− 1, 0

)
SW, 0

] (
kP
kT

)
BL

(1− f1 + f2) - 5.1 7.2

13 11 min
{

1.5,max
[
kP
kT

max
(
εP
εT
− 1, 0

)
SW, 0

]} (
kP
kT

)
BL

(1− f1 + f2) 7.8 5.1 7.7

14 11 min
{

1.8,max
[
kP
kT

max
(
εP
εT
− 1, 0

)
SW, 0

]} (
kP
kT

)
BL

(1− f1 + f2) 7.84 5.12 7.7

15 11 min
{

2.0,max
[
kP
kT

max
(
εP
εT
− 1, 0

)
SW, 0

]} (
kP
kT

)
BL

(1− f1 + f2) 7.84 5.12 7.6(
kP
kT

)
BL

(1− f1 + f2)
16 11 min

{
1.8,max

[
kP
kT

max
(
εP
εT
− 1, 0

)
SW, 0

]}
max(CP1, 0)

7.84 5.05 7.8

17 25 max
[
kP
kT

max
(
εP
εT
− 1.1, 0

)
SW, 0

] (
kP
kT

)
BL

(1− f1 + f2) - 7.95 -

EXP - - 7.8 5.0 8.1

18 in Table 6.29) and in CT2 (Test 20 in Table 6.29), the reattachment length in the low

frequency case was reduced enough, however, in the high frequency case it became too low,

as happened in the previous tests with CT1 and CT2. When f2 was adopted as in the NT1

model, max
[
kP
kT

max
(
εP
εT
− 1.1, 0

)
SW, 0

]
, and applied in CP2, it was noticed that rather high

constants would be necessary, since with 15, the reattachment length in the low frequency case

reduced only to 7.8 against the expected value of 5.0 suggested by the experiments. When

applied in CT2, again the reattachment length in the high frequency case was excessively

reduced.

Table 6.29: Tests performed in the backward facing step cases with the NT2 model, using
CP1 given by equations 6.94, 6.95 and 6.96, and exploring f2 similar to equations 6.80 or 6.98
in CP2 or CT2.

Coefficient Reattachment Point
Test NT2 f2

Changed St=0 St=0.275 St=1

18 4.5 min
{

1.8,max
[
kP
kT

max
(
εP
εT
− 1, 0

)
SW, 0

]}
CP2 + f2 7.8 5.0 6.5

19 15 max
[
kP
kT

max
(
εP
εT
− 1.1, 0

)
SW, 0

]
CP2 + f2 - 7.8 -

20 2.6 min
{

1.8,max
[
kP
kT

max
(
εP
εT
− 1, 0

)
SW, 0

]}
CT2 + f2 7.8 5.4 6.8

21 2.6 max
[
kP
kT

max
(
εP
εT
− 1.1, 0

)
SW, 0

]
CT2 + f2 7.8 5.4 6.8

EXP - - 7.8 5.0 8.1

In Tables 6.25 to 6.29 whenever the reattachment point was indicated by a dashed sign

it meant those test cases were not run, because the models have already been shown to fail

in one of the other cases tested.

6.3.4 The Final Version of the NT2 Model

The full final version of the NT2 model can now be presented.

According to the tests presented above, the final version of the NT2 model is the second

version of the NT2 model with CP1 given by equations 6.94, 6.97, 6.96 and 6.98 which

correspond to Test 16 in Table 6.28.

The transport equations for the final form of the NT2 model is presented in equations
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6.59 to 6.62 and will be repeated here for the sake of presenting the whole model.

DkP
Dt

= Pk − εP +
∂

∂xj

[(
ν +

νt
σkP

)
∂kP
∂xj

]
(6.99)

DkT
Dt

= εP − εT +
∂

∂xj

[(
ν +

νt
σkT

)
∂kT
∂xj

]
(6.100)

DεP
Dt

= CP1Pk
εP
kP
− CP2

ε2
P

kP
+ C ′P1kP

∂Ul
∂xm

∂Ui
∂xj

εlmkεijk +
∂

∂xj

[(
ν +

νt
σεP

)
∂εP
∂xj

]
(6.101)

DεT
Dt

= CT1
ε2
P

kT
− CT2

ε2
T

kT
+

∂

∂xj

[(
ν +

νt
σεT

)
∂εT
∂xj

]
(6.102)

The Reynolds stresses are calculated through the linear-eddy-viscosity scheme given by:

uiuj = −νt
(
dUi
dxj

+
dUj
dxi

)
+

2

3
kδij (6.103)

where the eddy viscosity νt is defined as:

νt = cµ
k2

εT
(6.104)

The coefficients of the final version of the NT2 model are presented in Table 6.30 where:

η = max

[
k

εT

√
1

2
SijSij ,

k

εT

√
1

2
WijWij

]
(6.105)

Sij =
∂Ui
∂xj

+
∂Uj
∂xi

(6.106)

Wij =
∂Ui
∂xj
− ∂Uj
∂xi

(6.107)

fBL =

(
kP
kT

)
BL

(1− f1 + f2) = 3.7(1− f1 + f2) (6.108)

f1 = 5.4

(
kP
kT
− 1.3166

)
min

(
Pk
εT
− 1.9, 0

)
max

(
εP
εT
− 1, 0

)
(6.109)

f2 = 11 min

{
1.8,max

[
kP
kT

max

(
εP
εT
− 1, 0

)
SW, 0

]}
(6.110)

SW =
SijSij −WijWij

SijSij +WijWij
(6.111)
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The expressions for η, Sij , Wij and SW are the same for the NT1 model, however they are

being repeated here in order to present the full final version of the NT2 model.

Table 6.30: Coefficients of the final version of the NT2 model
cµ CP1 CP2 σεP

min[0.09, 0.0117 + 0.22e−0.31η] max
[
1.5697 + 2.5

min(0,
kP
kT
−fBL)

kP
kT

+fBL

, 0
]

1.8 1.6664

CT1 CT2 σεT C′P1

1.0 1.1 1.1922 -0.005

And finally, the asymptotic states predicted by the final version of the NT2 model are

presented in Table 6.31 below. Comparing Tables 6.24 and 6.31, it should be noted that both

NT1 and NT2 models satisfy the asymptotic constraints such as
(
Pk
εT

)
SF
≈ 2,

(
kP
kT

)
DF

<(
kP
kT

)
BL

<
(
kP
kT

)
SF

and
(
εP
εT

)
DF

< 1, thus arising as more consistent than the other LEV

MTS models studied.

Table 6.31: Values expected to be provided by the second version of the NT2 model in the
asymptotic states studied(

Pk
εT

)
SF

(
kP
kT

)
SF

(
εP
εT

)
SF

(
kP
kT

)
DF

(
εP
εT

)
DF

(
kP
kT

)
BL

(
εP
εT

)
BL

cµBL cµSF

1.9 8.8245 1.0916 1.3166 0.5683 3.7 1.0 0.09 0.0336

One may notice that the final version of the NT2 model reduces to its second version

when f1 and f2, presented in equations 6.109 and 6.110, diminish. As a result, as these terms

become zero, the final version of the model also satisfies all asymptotic states used to derive

the coefficients of the second version of the NT2 model.

6.3.5 Performance of The Final Versions of the NT1 and NT2 Models

Although the final versions of the NT1 and NT2 models are not expected to provide signifi-

cantly different results from those of their second versions in all test cases, but the backward

facing step cases, the performance of the final versions of the NT1 and NT2 models is dis-

cussed for all test cases presented in Chapter 5, since this is the final result of this work.

As the NT1 and NT2 models are linear-eddy-viscosity schemes, prediction of the Reynolds

normal stresses will not be considered here. The results provided by the final versions of the

NT1 and NT2 models, from now on simply referred to as the NT1 and NT2 models, will be

compared to those of the HR, SG and TS models and the respective experimental or DNS

data of each case. In the cases where the TS model did not converge - only the unsteady

backward facing step cases - the KC model will be used for comparison, representing an

existing linear-eddy-viscosity two-time-scale model.

The prediction of the turbulent kinetic energy, eddy dissipation rate and Reynolds shear

stress in the homogeneous shear flows are presented for the six cases described in Chapter

370



6.3. Final Versions of the NT1 and NT2 Models

5 in Figures 6.65 to 6.70. One may notice that the NT1 and NT2 models performed best

in the set of cases, validating them in a wide range of dimensionless shear values such as

1 < η = k
ε
dU
dy < 30. The NT1 and NT2 models performed overall even better than the SG

model, which is a much more complex model and designed for homogeneous shear flows, thus

being one of the significant improvements they provided.

The predictions of the turbulent kinetic energy in the three normally strained cases are

presented in Figure 6.71 where one can see the improvements the NT1 and NT2 models

provided compared to the HR and TS models. The NT1, NT2 and SG models perform

equally well in the T&R and G&M0 cases which is again an improvement of the new models

that must be highlighted, and as expected, only the SG model, which does not use the linear-

eddy-viscosity approach, is able to respond to the change in sign of the normal straining in

the G&M05 case.

Evaluating the performance of the NT1 and NT2 models in the channel flow cases, the

prediction of the velocity, turbulent kinetic energy and eddy dissipation rate for the cases with

Reynolds number equal to 6500 and 41441 are presented in Figures 6.72 and 6.73 respectively.

As commented on before, the prediction of channel flows are useful to guarantee the models

behave well in such simple flows and that the velocity profile does satisfy the log law of the

wall. As expected, the NT1 and NT2 models as well as the HR, SG and TS models provide

reasonable results in the channel flow cases. In the relatively low Reynolds number cases such

as with Re = 6500, the profiles are compromised by the use of the wall function, since a far

first near-wall node is required to provide y+ ≈ 30. The important conclusion here about the

channel flow cases though is that the terms introduced in CP1, which differentiate the final

version from the second versions of the NT1 and NT2 models, did not cause any undesired

effect on the prediction of these flows.

The performance of the NT1 and NT2 models in zero pressure gradient boundary layers

can be assessed in Figures 6.74 to 6.76. The profiles of velocity, turbulent kinetic energy,

eddy dissipation rate and Reynolds shear stress across the boundary layer at Reθ = 1410 is

presented in Figure 6.74 and the velocity and Reynolds shear stress profiles at Reθ = 4981 and

at Reθ = 13052 are presented in Figure 6.76. One may notice that the NT1 and NT2 models

perform reasonably well and so do the other models, as expected. As was the case with the

channel flows, the zero pressure gradient boundary layer is a test case used to ensure the

correct behaviour of the models in such basic, but important, flows. The predictions of the

skin-friction coefficient, shape factor and boundary layers thickness are presented in Figure

6.75 for the Spalart boundary layer case which is representative of the other two ZPGBL cases

described in Chapter 5. One may notice that the NT1 and NT2 models provide reasonable

results as well as the other models.

The velocity and Reynolds shear stress profiles at two measurement positions in the S&J

adverse pressure gradient boundary layer case are presented in Figure 6.77. As commented

on before, all models perform well until station 5 and no model is actually able to follow

the change in the velocity profile from this station to station 6 where the pressure gradient

presents the strongest increase, as discussed in Chapter 5. The SG model performs best in
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the prediction of the Reynolds shear stress profile, with the NT1 and NT2 models performing

reasonably well and resulting in slight improvements.

The profiles of the velocity, Reynolds shear stress and turbulent kinetic energy at four

measurement positions in the M&P30 adverse pressure gradient boundary layer case are

presented in Figures 6.78 to 6.80. One may notice that none of the models are able to

capture the subtle changes in the velocity profile presented in in Figure 6.78. The SG model

performs slightly better in predicting the Reynolds shear stress, presented in Figure 6.79,

than the NT1 and NT2 models which perform slightly better than the HR model and better

than the TS model which overpredicts this quantity. None of the models though are able

to capture the level of the turbulent kinetic energy, specially in the last station where again

the pressure gradient is the steepest. Similar analyses can be extended to the M&P10 case

which is then not being presented here. The prediction of the boundary layer parameters is

presented in Figure 6.81 for the M&P30 case representing the other APGBL cases. Again,

these parameters are similarly and well predicted by all models. If one compares the prediction

of the Reynolds shear stress and turbulent kinetic energy provided by the second versions of

the model in this case, presented in Figures 6.44 and 6.45 respectively, one may notice that

the final versions of the NT1 and NT2 models tend to provide a rather lower decay of these

quantities towards the outer layer. That can be then associated with the two extra terms

introduced in CP1, however this does not disturb the overall performance of the NT1 and

NT2 models.

The performance of the NT1 and NT2 models in the favourable pressure gradient bound-

ary layer cases is presented in Figures 6.82 to 6.84. The velocity, Reynolds shear stress,

turbulent kinetic energy and eddy dissipation rate profiles in the three cases described in

Chapter 5 are presented in Figures 6.82, 6.83 and 6.84 for acceleration parameters equal to

1.5× 10−6, 2.5× 10−6 and 2.75× 10−6 respectively. One may notice that the NT1 and NT2

models as well as the HR and SG model perform similarly and better than the TS model

at the lowest acceleration parameter case, where the TS provides a too fast decay of the

turbulent quantities, especially the Reynolds shear stress. On the other hand, for the higher

acceleration parameter cases, the TS model seems to capture better the turbulent quantity

profiles and the NT1 and NT2 models as well as the HR and SG models tend to provide a

rather slow decay of k, uv and ε, thus overpredicting them. That actually shows that none

of the models is able to capture the changes in the profiles as the flow is accelerated, though

the NT1 and NT2 models perform reasonably well in all cases.

The predictions of the NT1 and NT2 models of the velocity and Reynolds shear stress

profiles at selected positions in the cycle and throughout the cycle in the JSF oscillatory

boundary layer cases are presented in Figures 6.85 to 6.88. As commented on before, in this

test case all turbulence models tend to perform similarly and reasonably well and the NT1

and NT2 models are no exception.

More challenging cases though are the fully developed oscillatory pipe flows with different

forcing frequencies. Starting by looking at the results for the low frequency case, one may

confirm the expected bulk velocity profile and assess the prediction of the wall shear stress
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and Reynolds shear stress at y/R = 0.07 and y/R = 0.63 in Figure 6.89. The wall shear stress

is well predicted by all models, the Reynolds shear stress at y/R = 0.07, closer to the wall,

is best predicted by the SG model, the other models tending to overpredict this quantity at

this position when the bulk velocity assumes the highest levels and none of the models were

actually capable of capturing the intensity and position of the Reynolds shear stress peak at

y/R = 0.63. The Reynolds shear stress profiles at four positions in the cycle are presented

in Figure 6.90 where the models perform similarly and predict reasonably well this quantity

at some positions in the cycle and not very well in others. The performance of the NT1

and NT2 models is overall reasonably good and, as noticed in the adverse pressure gradient

boundary layer case, the final versions of the models tended to provide a slower decay of uv

at ωt = 45o. That is again associated with the extra terms introduced in CP1 and again that

does not compromise the performance of the models.

The final versions of the NT1 and NT2 models also predicted frozen turbulence for the

high frequency case Tu&R36 and therefore profiles at selected positions in the cycle are not

shown here.

Among the oscillatory pipe flow cases, the more challenging one is the T3RE14A20 case

which uses an intermediate forcing frequency. The amplitude and phase shift of the velocity

and Reynolds shear stress in the radial direction is presented in Figure 6.91. One may notice

that the velocity amplitude and phase shift are reasonably well predicted by all models, the

TS model perhaps performing best. The Reynolds shear stress amplitude is well predicted

by all models as well. This represents an improvement from the second to the final versions

of the NT1 and NT2 models, since the former were underpredicting the amplitude of uv and

now this quantity is well predicted. On the other hand, the Reynolds shear stress phase

shift is underpredicted by the NT1 and NT2 models. That also happened with the second

version of the models, so in this case it can be said that the extra terms introduced in CP1

contributed positively to the performance of the NT1 and NT2 models, however could not

improve the prediction of the Reynolds shear stress phase shift. The positive effects must

have come from the f1 terms (equations 6.91 and 6.109) since the SW term in f2 (equations

6.92 and 6.110) is expected to be zero in fully developed pipe flows where the only non-zero

velocity gradient is dU
dy .

The performance of the NT1 and NT2 models in the fully developed ramp up pipe flow

case can be assessed in Figures 6.92 and 6.93 for the turbulent kinetic energy and Reynolds

shear stress profiles varying in time at three positions in the radial direction respectively.

The velocity profiles are not being shown because they are all well predicted by all models.

The same can be said of the Reynolds shear stress which is presented in Figure 6.92. The

prediction of the turbulent kinetic energy though is more challenging, since it was already

noted that the models tended to perform well either at the centre of the pipe (r/R = 0) or

in the mid distance from the centre to the wall, r/R = 0.47. The NT1 and NT2 models are

thus best predicting this quantity at r/R = 0.47 and overpredicting its profile at r/R = 0.

The second versions of the NT1 and NT2 models tended to predict better the profile of k at

the centre of the pipe. Considering the predictions of the versions of the developed models at
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both r/R = 0 and r/R = 0.47, by comparing Figures 6.48 and 6.93, one might say that the

final versions of the NT1 and NT2 models are performing better than their previous versions.

Finally, the performance of the models in the backward facing step cases is assessed.

As before, the predicted time-averaged location of the reattachment point for each case

is evaluated before looking at the time-averaged velocity profiles, since the former provides a

quicker initial comparison to assess the model predictive effectiveness than the latter.

It can be noted in Table 6.32 that the NT1 and NT2 models are the only models which

predict correctly the time-averaged reattachment point at the three forcing frequencies. That

is again a clear improvement provided by the NT1 and NT2 models when compared to other

existing models, even much more complex ones such as the SG model which is a RST model.

Table 6.32: Performance of the second version of the NT1 and NT2 in predicting the time-
averaged reattachment point in the three backward facing step cases.

Model/Experiment St=0 St=0.275 St=1

Experiment 7.8 5.0 8.1
HR 6.42 5.01 6.67
SG 6.95 5.51 7.66
KC 8.44 7.21 9.15
TS 4.14 - -

NT1 7.82 5.05 7.96
NT2 7.84 5.05 7.81

Looking now at the time-averaged velocity profiles for each case, presented in Figures

6.94, 6.97 and 6.98 for the BFS − St0, BFS − St0275 and BFS − St1 cases respectively,

one can see that the NT1 and NT2 models perform reasonably well in all cases. In the

steady state case, the NT1 and NT2 models still overpredict the velocity in the shear region

at x/H = 9 which means the models are also presenting a rather slow recovery process.

The time-averaged velocity profiles provided by the NT1 and NT2 models in the case where

St = 0.275 are clearly improved compared to the second version of the models which were

strongly overpredicting the reattachment length in this case. By comparing the time-averaged

velocity profiles predicted by the NT1 and NT2 models with those of the HR model for the low

frequency case, where the three models predicted correctly the reattachment point, one may

say that these three models return practically identical predictions at this frequency. This

suggests that the post-reattachment recovery process is similar and rather slow for the three

models. This supports the hypothesis expressed earlier about the HR model providing the

best velocity profile at the steady state case where it underpredicts the reattachment point.

At the high frequency case, where all models tended to provide a reasonable time-averaged

velocity profile, it can be said that the NT1 and NT2 models provide the best prediction.

As commented on before, it is thought that the low recovery characteristic of the models

is not seen in this case because the last position downstream of the step where there are

experimental data available is too close to the reattachment point.

As the stream function contour plots for all models were presented for the steady state in

Chapter 5, these contour plots are also being presented here for the final versions of the NT1

and NT2 models in Figures 6.95 and 6.96 respectively. One may notice that the new models
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could not capture the small recirculation bubble at the corner of the step which circulates

fluid in a direction opposite to that of the main recirculation loop indicated in the experiments

and that might be related to the use of wall functions, as discussed in Chapter 5.

The profiles of the time-averaged wall shear stress and wall-pressure coefficient are pre-

sented in Figures 6.99 and 6.100 for the BFS − St0, BFS − St0275 and BFS − St1 cases

respectively. These results just confirm overall reasonably good performance of the NT1 and

NT2 models.

Finally, in order to further assess the final versions of the NT1 and NT2 models and

test the consistency of the effect of the introduced terms in CP1, only these two models

were used to run a series of different frequency cases. These cases are detailed in Table 6.33

where the specifications needed to set up all unsteady cases are also shown for both NT1 and

NT2 models. Recalling the set up of the unsteady backward facing step cases, the velocity

at y/H = 0.01 in the steady case used as Qunforced to calculate the forcing amplitude as

A0 = 0.07 was 8.4m/s in the NT1 model and 8.5m/s in the NT2 model.

Table 6.33: Specifications for the unsteady backward facing step cases run with the final
versions of the NT1 and NT2 models.

Jet amplitude B at (x/H, y/H) = (0, 0)
St frequency (Hz) time step

NT1 NT2

0.025 7 3.571429E-04 1.1
√

2 1.15
√

2

0.05 14 1.785714E-04 1.18
√

2 1.2
√

2

0.1 28 8.928571E-05 1.24
√

2 1.25
√

2

0.14 39.2 6.377551E-05 1.25
√

2 1.27
√

2

0.2 56 4.464286E-05 1.31
√

2 1.31
√

2

0.275 77 3.246753E-05 1.38
√

2 1.4
√

2

0.4 112 2.232143E-05 1.58
√

2 1.54
√

2

0.6 168 1.488095E-05 1.81
√

2 1.7
√

2

0.8 224 1.116071E-05 1.97
√

2 1.85
√

2

1 280 8.928571E-06 2.02
√

2 1.91
√

2

1.5 420 5.952381E-06 2.0
√

2 1.89
√

2

2 560 4.464286E-06 1.85
√

2 1.78
√

2

Although the final versions of the NT1 and NT2 models were defined using CP1 clipped

so that it could not become negative, the unsteady cases in Table 6.33 were also run with a

version of the models where CP1 was not clipped. The idea of this test was to verify whether

any stability issue would arise or if any significant difference in the predictions would be

noted.

The prediction of the time-averaged reattachment point for each of the backward facing

step cases run with the NT1 and NT2 models are presented in Figure 6.101 for the version

where CP1 was not clipped and in Figure 6.102 for the final version of the models where CP1

is not allowed to become negative.

One may notice that NT1 and NT2 models performed just the same whether CP1 was

clipped or not and no stability issues were identified. The biggest difference being on the

prediction of the time-averaged reattachment point by the NT1 model in the case where
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St = 1.5 where the version with CP1 clipped provided XR = 8.4 and the version where there

was no clip in CP1 provided XR = 7.9.

Looking now at the results themselves, it is possible to say that they are quite promising,

showing that the terms introduced in CP1 do capture the effects of the different forcing

frequencies. Both models followed reasonably well the experimental pattern, confirming the

lowest time-averaged reattachment point at St = 0.275 and providing approximately constant

time-averaged reattachment length for St > 1. However, the NT1 model provided a too fast

recovery of the time-averaged reattachment point while the NT2 model provided a rather slow

one. These differences are nevertheless rather modest. Overall agreement with experimental

data remains close.

In Figure 6.103 prediction of the time-averaged reattachment point by NT1 and NT2

models is compared with the prediction provided by the HR, SG and KC models in the three

cases the single-time-scale models were run with. The graphs clearly show that the tested

single-time-scale models are not able to follow the experimental pattern, as already discussed.

In Figure 6.103(a) the time-averaged reattachment point is not normalized allowing one to

identify the models which underpredict and overpredict this parameter. In Figure 6.103(b)

the time-averaged reattachment point at each case is normalized by the reattachment point

predicted by each model in the steady state so that one can see how flexible the models are

in terms or decreasing or increasing the time-averaged reattachment length according to each

forcing frequency case.

So that concludes the analysis about the performance of the final versions of the NT1

and NT2 models. The new models can be considered to perform well in all test cases and

to particularly improve the prediction of homogeneous shear flows, normally strained flows

and steady and unsteady backward facing step cases. The new models show a wider range of

applicability than other MTS and STS models and, in cases like the pulsated backward facing

step flows and shear flows, they are the only models which predict the correct behaviour.
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Figure 6.52: Profile of kPkT predicted by the TS and second versions of the NT1 and NT2 models
before the step x/H = −0.02 and at five positions downstream of the step x/H = 1, 3, 5, 7, 9
in the steady state backward facing step case of Chun and Sung (1996).

Figure 6.53: Profile of kP
kT

predicted by the second versions of the NT1 and NT2 models
before the step x/H = −0.02 and at five positions downstream of the step x/H = 1, 3, 5, 7, 9
in the steady state backward facing step case of Chun and Sung (1996).

Figure 6.54: Profile of εPεT predicted by the second versions of the NT1 and NT2 models before
the step x/H = −0.02 and at five positions downstream of the step x/H = 1, 3, 5, 7, 9 in the
steady state backward facing step case of Chun and Sung (1996).
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Figure 6.55: Profile of Pk
εT
− 1.9 predicted by the second versions of the NT1 and NT2 models

before the step x/H = −0.02 and at five positions downstream of the step x/H = 1, 3, 5, 7, 9
in the steady state backward facing step case of Chun and Sung (1996).

Figure 6.56: Profile of
(
kP
kT
− 1
)

min
(
Pk
εT
− 1.9, 0

)
max

(
εP
εT
− 1, 0

)
predicted by the second

versions of the NT1 and NT2 models before the step x/H = −0.02 and at five positions
downstream of the step x/H = 1, 3, 5, 7, 9 in the steady state backward facing step case of
Chun and Sung (1996).

Figure 6.57: Contour plot of kP
kT

max
(
εP
εT
− 1, 0

)
SW predicted by the NT1 model with Test

3 in Table 6.16 at ωt = 180o in the unsteady backward facing step case with St = 1 of Chun
and Sung (1996).
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(a) k Profile (b) ε Profile (c) uv Profile

Figure 6.65: Performance of the final versions of the NT1 and NT2 models compared with
the results provided by the HR, SG and TS models in the homogeneous lowest shear flow
case X2. Models as in Table 3.25.

(a) k Profile (b) ε Profile (c) uv Profile

Figure 6.66: Performance of the final versions of the NT1 and NT2 models compared with
the results provided by the HR, SG and TS models in the homogeneous low shear flow case
U2. Models as in Table 3.25.

(a) k Profile (b) ε Profile (c) uv Profile

Figure 6.67: Performance of the final versions of the NT1 and NT2 models compared with
the results provided by the HR, SG and TS models in the homogeneous low shear flow case
W2. Models as in Table 3.25.
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(a) k Profile (b) ε Profile (c) uv Profile

Figure 6.68: Performance of the final versions of the NT1 and NT2 models compared with
the results provided by the HR, SG and TS models in the homogeneous moderate shear flow
case HM1. Models as in Table 3.25.

(a) k Profile (b) ε Profile (c) uv Profile

Figure 6.69: Performance of the final versions of the NT1 and NT2 models compared with
the results provided by the HR, SG and TS models in the homogeneous high shear flow case
SHC. Models as in Table 3.25.

(a) k Profile (b) ε Profile (c) uv Profile

Figure 6.70: Performance of the final versions of the NT1 and NT2 models compared with
the results provided by the HR, SG and TS models in the homogeneous highest shear flow
case HM2. Models as in Table 3.25.
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(a) T&R case (b) G&M0 case (c) G&M05 case

Figure 6.71: Performance of the final versions of the NT1 and NT2 models compared with
the results provided by the HR, SG and TS models in the normally strained cases. Models
as in Table 3.25.

(a) Velocity Profile (b) k Profile (c) ε Profile

Figure 6.72: Performance of the final versions of the NT1 and NT2 models compared with
the results provided by the HR, SG and TS models in the fully developed channel flow case
with Re = 6500. Models as in Table 3.25.

(a) Velocity Profile (b) k Profile (c) ε Profile

Figure 6.73: Performance of the final versions of the NT1 and NT2 models compared with
the results provided by the HR, SG and TS models in the fully developed channel flow case
with Re = 41441. Models as in Table 3.25.
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(a) Velocity Profile (b) k Profile (c) uv Profile (d) ε Profile

Figure 6.74: Performance of the final versions of the NT1 and NT2 models compared with
the results provided by the HR, SG and TS models in the zero pressure gradient boundary
layer at Reθ = 1410. Models as in Table 3.25.

(a) skin-friction coefficient (b) Shape Factor (c) BL Thickness

Figure 6.75: Boundary layer parameters predicted by the final versions of the NT1 and NT2
models and compared with the results provided by the HR, SG and TS models in a zero
pressure gradient boundary layer compared to the DNS of Spalart (1988). Models as in
Table 3.25.

(a) Reθ = 4981 (b) Reθ = 4981 (c) Reθ = 13052 (d) Reθ = 13052

Figure 6.76: Performance of the final versions of the NT1 and NT2 models compared with
the results provided by the HR, SG and TS models in zero pressure gradient boundary layer.
Models as in Table 3.25.
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(a) U at Station 5 (b) U at Station 6 (c) uv at Station 5 (d) uv at Station 6

Figure 6.77: Prediction of the velocity and Reynolds shear stress profiles by the final versions
of the NT1 and NT2 models compared with the results provided by the HR, SG and TS
models in the adverse pressure gradient boundary layer case S&J . Models as in Table 3.25.

(a) Station 2 (b) Station 4 (c) Station 5 (d) Station 6

Figure 6.78: Prediction of the velocity profile by the final versions of the NT1 and NT2
models compared with the results provided by the HR, SG and TS models in the adverse
pressure gradient boundary layer case M&30. Models as in Table 3.25.

(a) Station 2 (b) Station 4 (c) Station 5 (d) Station 6

Figure 6.79: Prediction of the Reynolds shear stress by the final versions of the NT1 and NT2
models compared with the results provided by the HR, SG and TS models in the adverse
pressure gradient boundary layer case M&30. Models as in Table 3.25.
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(a) Station 2 (b) Station 4 (c) Station 5 (d) Station 6

Figure 6.80: Prediction of the turbulent kinetic energy by the final versions of the NT1 and
NT2 models compared with the results provided by the HR, SG and TS models in the adverse
pressure gradient boundary layer case M&30. Models as in Table 3.25.

(a) skin-friction coeffi-
cient

(b) Shape factor (c) BL thickness (d) Momentum Thickness

Figure 6.81: Prediction of the boundary layer parameters by the final versions of the NT1
and NT2 models compared with the results provided by the HR, SG and TS models in the
adverse pressure gradient boundary layer case M&P10. Models as in Table 3.25.

(a) Velocity Profile (b) uv Profile (c) k Profile (d) ε Profile

Figure 6.82: Performance of the final versions of the NT1 and NT2 models compared with
the results provided by the HR, SG and TS models in the K150 favourable pressure gradient
boundary layer case. Models as in Table 3.25.
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(a) Velocity Profile (b) uv Profile (c) k Profile (d) ε Profile

Figure 6.83: Performance of the final versions of the NT1 and NT2 models compared with
the results provided by the HR, SG and TS models in the K250 favourable pressure gradient
boundary layer case. Models as in Table 3.25.

(a) Velocity Profile (b) uv Profile (c) k Profile (d) ε Profile

Figure 6.84: Performance of the final versions of the NT1 and NT2 models compared with
the results provided by the HR, SG and TS models in the K275 favourable pressure gradient
boundary layer case. Models as in Table 3.25.

(a) ωt = 30o (b) ωt = 60o (c) ωt = 105o (d) ωt = 135o

Figure 6.85: Prediction of the velocity profile by the final versions of the NT1 and NT2
models compared with the results provided by the HR, SG and TS models in the oscillatory
boundary layer case JSF . Models as in Table 3.25.
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(a) ωt = 30o (b) ωt = 60o (c) ωt = 105o (d) ωt = 135o

Figure 6.86: Prediction of the Reynolds shear stress by the final versions of the NT1 and NT2
models compared with the results provided by the HR, SG and TS models in the oscillatory
boundary layer case JSF . Models as in Table 3.25.

(a) y = 4mm (b) y = 9mm (c) y = 26mm (d) y = 25mm

Figure 6.87: Prediction of the velocity profile at four positions in the y direction by the final
versions of the NT1 and NT2 models compared with the results provided by the HR, SG and
TS models in the JSF oscillatory boundary layer case. Models as in Table 3.25.

(a) y = 4mm (b) y = 9mm (c) y = 26mm (d) y = 25mm

Figure 6.88: Prediction of the Reynolds shear stress at four positions in the y direction by
the final versions of the NT1 and NT2 models compared with the results provided by the
HR, SG and TS models in the JSF oscillatory boundary layer case. Models as in Table 3.25.

393



6.3. Final Versions of the NT1 and NT2 Models

(a) velocity (b) wall shear stress (c) uv at y/R=0.07 (d) uv at y/R=0.63

Figure 6.89: Prediction of the velocity, wall shear stress and Reynolds shear stress at two
radial positions throughout the cycle by the final versions of the NT1 and NT2 models
compared with the results provided by the HR, SG and TS models in the Tu&R05 oscillatory
pipe flow case of Tu and Ramaprian (1983a). Models as in Table 3.25.

(a) ωt = 45o (b) ωt = 135o (c) ωt = 225o (d) ωt = 315o

Figure 6.90: Prediction of the Reynolds shear stress by the final versions of the NT1 and NT2
models compared with the results provided by the HR, SG and TS models in the oscillatory
pipe flow case Tu&R05. Models as in Table 3.25.

(a) Velocity Amplitude (b) Velocity Phase Shift (c) Shear Stress Ampli-
tude

(d) Shear Stress Phase
Shift

Figure 6.91: Performance of the final versions of the NT1 and NT2 models compared with the
results provided by the HR, SG and TS models in the oscillatory pipe flow case T3RE14A20.
Models as in Table 3.25.
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(a) Pipe centre (r/R = 0) (b) r/R = 0.47 (c) r/R = 0.83

Figure 6.92: Prediction of the Reynolds shear stress by the final versions of the NT1 and
NT2 models compared with the results provided by the HR, SG and TS models in the ramp
up pipe flow. Models as in Table 3.25.

(a) Pipe centre (r/R = 0) (b) r/R = 0.47 (c) r/R = 0.83

Figure 6.93: Prediction of the turbulent kinetic energy by the final versions of the NT1 and
NT2 models compared with the results provided by the HR, SG and TS models in the ramp
up pipe flow. Models as in Table 3.25.

Figure 6.94: Prediction of the velocity profile before the step x/H = −0.02 and at five
positions downstream of the step x/H = 1, 3, 5, 7, 9 by the final versions of the NT1 and NT2
models compared with the results provided by the HR, SG and TS models in the steady state
backward facing step case of Chun and Sung (1996). Models as in Table 3.25.
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Figure 6.95: Prediction of the stream function by the final version of the NT1 model in the
steady state backward facing step case of Chun and Sung (1996).

Figure 6.96: Prediction of the stream function by the final version of the NT2 model in the
steady state backward facing step case of Chun and Sung (1996).

Figure 6.97: Prediction of the time-averaged velocity profile at five positions downstream of
the step x/H = 1, 3, 5, 7, 9 by the final versions of the NT1 and NT2 models compared with
the results provided by the HR, SG and KC models in the unsteady backward facing step
case with St=0.275 of Chun and Sung (1996). Models as in Table 3.25.
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Figure 6.98: Prediction of the time-averaged velocity profile at five positions downstream of
the step x/H = 1, 3, 5, 7, 9 by the final versions of the NT1 and NT2 models compared with
the results provided by the HR, SG and KC models in the unsteady backward facing step
case with St=1 of Chun and Sung (1996). Models as in Table 3.25.

(a) St=0 (b) St=0.275 (c) St=1

Figure 6.99: Prediction of the time-averaged wall-shear-stress by the final versions of the
NT1 and NT2 models compared with the results provided by the HR, SG and TS models in
the backward facing step cases of Chun and Sung (1996). Models as in Table 3.25.

(a) St=0 (b) St=0.275 (c) St=1

Figure 6.100: Prediction of the time-averaged wall-pressure coefficient by the final versions of
the NT1 and NT2 models compared with the results provided by the HR, SG and TS models
in the backward facing step cases of Chun and Sung (1996). Models as in Table 3.25.
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(a) NT1 Model - CP1 not clipped (b) NT2 Model - CP1 not clipped

Figure 6.101: Individual performance of the final versions of the NT1 and NT2 models, but
with CP1 not clipped and allowed to become negative, in predicting the time-averaged reat-
tachment point of unsteady backward facing step cases with different oscillation frequencies.

(a) NT1 Model (b) NT2 Model

Figure 6.102: Individual performance of the final versions of the NT1 and NT2 models in
predicting the time-averaged reattachment point of unsteady backward facing step cases with
different oscillation frequencies.

(a) Time-averaged reattachment point XR (b) XR normalized with XRSt=0

Figure 6.103: Prediction of the time-averaged reattachment point by the final versions of the
NT1 and NT2 models compared with the results provided by the HR, SG and KC models
in unsteady backward facing step cases with different oscillation frequencies. Models as in
Table 3.25.
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6.4 Concluding Remarks

In this chapter the development of the final versions of the NT1 and NT2 models has been

presented.

The new developed models are significantly different to the original TS model, initially

used as the base model for the modelling process.

The models’ coefficients were determined so that they satisfied the asymptotic states for

homogeneous shear flows, decaying grid turbulence and local equilibrium boundary layers

thus ensuring the correct behaviour of the models in these flows and avoiding odd predictions

in other flows.

Different time-scales were studied as possibilities for the expression of the turbulent vis-

cosity and it was concluded that the ones used in the NT1 and NT2 models appeared to be

the most appropriate.

The models also satisfy the physical constraints related to the turbulent kinetic energy

spectrum such as keeping the ratio between the time scale associated with the small and large

eddies smaller than one and splitting the spectrum in the inertial subrange.

The models proved to be stable and to perform well in a wide range of non-equilibrium

flows providing predictions either as good as or even better than benchmarked traditional

models, including simpler models such as the standard k−εmodel and more complex Reynolds

stress transport models.

It has not been possible so far to choose either the NT1 or the NT2 model as the best

model since both perform similarly well in all flows and are similarly stable.

It can be thus stated that the main objective of this work has been achieved since two

two-time-scale linear-eddy-viscosity models have been successfully developed.
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Chapter 7

Development of Two-Time-Scale

Non-Linear-Eddy-Viscosity Models

Two-time-scale linear-eddy-viscosity models were developed in the previous chapter and were

shown to perform well over a range of fairly challenging flows. However, there are a number of

inherent weaknesses in the LEV formulation that are likely to limit the performance of such

schemes in flows with complex strain fields. As STS NLEV models have been shown to often

perform better than linear ones in complex strain fields, the present chapter hence describes

an initial attempt to apply the modelling practices developed in the previous chapter to a

NLEV scheme.

In this work high Reynolds number NLEV schemes have been built based on importing

the two-time-scale equations developed in Chapter 6 into the NLEV scheme of Craft et al.

(1996b). Following the linear schemes developed, the two-time-scale non-linear-eddy-viscosity

models differ in the eddy viscosity expression. The model which uses the same eddy viscosity

formulation as that used in the NT1 model will be referred to as NL1 model. Similarly, the

model using the eddy viscosity expression used by the NT2 model will be referred to as NL2

model.

Most test cases presented in Chapter 5, where good agreement was achieved with the

linear two-time-scale models developed, are shear dominated flows and therefore one only

expects to see improvements with the NLEV models in the normal stresses, although these

will not directly affect the mean field greatly. However, there is potential to see greater

improvements in the normally-strained flows, where the normal stresses are responsible for

turbulent kinetic energy generation.

In this chapter the initial investigation carried out to develop two-time-scale non-linear-

eddy-viscosity models will be described.
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7.1 Non-Linear-Eddy-Viscosity Scheme

As mentioned before, the two two-time-scale non-linear-eddy-viscosity models were developed

in order to identify what advantages they could add on top of the performance of their linear-

eddy-viscosity counterparts. Hence, the NL1 will inherit features from the NT1 model, whilst

the NL2 will be build from elements of the NT2 scheme. Both will incorporate a non-linear

stress-strain formulation to model the Reynolds stresses.

Non-linear-eddy-viscosity models can be thought of as simplified versions of Algebraic

Reynolds Stress (ARS) models. While the latter solve coupled non-linear algebraic equations

for the Reynolds stresses, the former provide explicit algebraic equations. Pope (1975) derived

a general expression for the Reynolds stresses as a function of the dimensionless strain rate

and vorticity tensors up to the fifth order, as shown in equations 2.27, 2.28 and 2.29. Most

non-linear-eddy-viscosity models, such as those proposed by Speziale (1987), Rubinstein and

Barton (1990) and Craft et al. (1996b), among others, thus use linearly independent combi-

nations of these tensors. Most non-linear eddy-viscosity formulations found in the literature

are of quadratic type, such as those of Speziale (1987) and Rubinstein and Barton (1990).

Craft et al. (1996b) proposed a cubic stress-strain relation arguing, amongst other things,

that the cubic terms are important for capturing streamline curvature effects.

The general non-linear-eddy-viscosity expression for the Reynolds stresses thus adopted

here was the cubic one proposed by Craft et al. (1996b), presented in equation 2.19, but

re-written as in equation 7.1 below in order to take into account the spectrum partition

variables, by exploring different time scales. It can be noted that νt used in equation 2.19

can be expressed as νt = cµkτ1 and k
ε can be used as a second time scale τ2.

uiuj =
2

3
δijk − νtSij

+ cµkτ1

[
c1τ2

(
SikSjk −

1

3
SklSklδij

)
+ c2τ2

(
WikSjk +WjkSik

)
+ c3τ2

(
WikWjk −

1

3
WklWklδij

)
+ c4τ

2
2

(
SkiWlj + SkjWli

)
Skl + c5τ

2
2

(
WilWlmSmj + SilWlmWmj −

2

3
SlmWmnWnlδij

)
+ c6τ

2
2SijSklSkl + c7τ

2
2SijWklWkl

]
(7.1)

In the above equation, τ1 and τ2 are time scales and the dimensionless strain rate and vorticity

tensors are Sij =
(
∂Ui
∂xj

+
∂Uj
∂xi

)
and Wij =

(
∂Ui
∂xj
− ∂Uj

∂xi

)
respectively. As can be noted in equation

7.1, the time scales are explicit and that will allow one to explore the use of the two time

scales considered so far in the NT1 and NT2 models: the large eddies time scale, τP = kP
εP

,

and the total time scale, τtot = k
εT

.

The study and full optimization of the coefficients’ form is not the main purpose here,

and therefore the general form adopted by Craft et al. (1996b) will be used. As can be seen

in Table 3.7, Craft et al. (1996b) proposed the coefficient c5 in equation 7.1 to be zero and

so it will be taken as such here. With this simplification, the above form can be expanded
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out for each of the Reynolds stress components, giving:

u2 =
2

3
k − νtS11

+ cµkτ1

{
c1τ2

3

(
2S2

11 + S2
12 + S2

13 − S2
22 − 2S2

23 − S2
33

)
+ 2c2τ2

(
S12W12 + S13W13

)
+
c3τ2

3

(
W 2

12 +W 2
13 − 2W 2

23

)
− 2c4τ

2
2

[
S11

(
S12W12 + S13W13

)
+ S23

(
S12W13 + S13W12

)
+ S22S12W12 + S33S13W13

]
+ c6τ

2
2S11

(
S2

11 + S2
22 + S2

33 + 2S2
12 + 2S2

13 + 2S2
23

)
+ 2c7τ

2
2S11

(
W 2

12 +W 2
13 +W 2

23

)}
(7.2)

v2 =
2

3
k − νtS22

+ cµkτ1

{
c1τ2

3

(
2S2
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12 + S2

23 − S2
11 − 2S2

13 − S2
33

)
+ 2c2τ2

(
S23W23 − S12W12

)
+
c3τ2
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W 2

12 +W 2
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[
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S23W23 − S12W12
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]
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)
+ 2c7τ

2
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23

)}
(7.3)

w2 =
2

3
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(
2S2
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23 + S2
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)
+ S12

(
S13W23 + S23W13

)
+ S11S13W13 + S22S23W23

]
+ c6τ

2
2S33

(
S2

11 + S2
22 + S2

33 + 2S2
12 + 2S2

13 + 2S2
23

)
+ 2c7τ

2
2S33

(
W 2

12 +W 2
13 +W 2

23

)}
(7.4)
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(7.5)
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uw =− νtS13

+ cµkτ1
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(7.6)
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(7.7)

7.2 Asymptotic Analyses

The transport equations for the non-linear schemes are the same as those in the linear versions.

In the present work, as in Craft et al. (1996b), the coefficient c6 is taken as −c7, so the non-

linear terms do not contribute to the shear stress in a simple shear flow, and consequently the

various asymptotic analyses for such flows reported in chapter 6 are still valid for these non-

linear schemes. The NL1 and NL2 models were initially developed based on the second version

of the NT1 and NT2 models, so the NL1 and NL2 models share the same coefficients and

asymptotic states of the second version of the NT1 and NT2 models respectively, presented

in Tables 6.8 and 6.10.

Although the non-linear stress-strain relation used here is based on that of Craft et al.

(1996b), some re-tuning of the coefficients in equation 7.1 is appropriate, since the timescales

used in the present models will be different from those of the single-scale version. This re-

tuning was primarily done through considering the homogeneous shear and normally strained

flows, as described below.

7.2.1 Homogeneous Shear Flows

In homogeneous shear flows the mean velocity gradient dU
dy is constant and the only non-zero

elements of the strain rate and vorticity tensors are S12 and W12 (and, by symmetry, S21 and

W21). One can check that all terms in equations 7.6 and 7.7 are multiplied by either S13, S23

or S33, thus ensuring the model will return uw = vw = 0. From equations 7.2 to 7.5 one can

then derive the expressions for the Reynolds normal and shear stresses in this case:
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u2
SF =

2

3
k +

cµkτ1τ2S
2
12

3
(c1 + 6c2 + c3) (7.8)

v2
SF =

2

3
k +

cµkτ1τ2S
2
12

3
(c1 − 6c2 + c3) (7.9)

w2
SF =

2

3
k − 2cµkτ1τ2S

2
12

3
(c1 + c3) (7.10)

uvSF = −νtS12 + 2cµkτ1τ
2
2S

3
12(c6 + c7) (7.11)

As noted above, the choice c6 = −c7 has the benefit that it leaves uv = −νtS12, and hence

the previously carried out asymptotic analysis for local equilibrium boundary layer and ho-

mogeneous shear flows is still valid for these models.

From the homogeneous shear flows it thus becomes clear that one can look for the best

values of c1 + c3 and c2 to return accurate representations of the normal stresses compared

to the DNS in these flows.

7.2.2 Normally Strained Flows

A second convenient set of test cases for tuning the non-linear coefficients is provided by the

normally strained homogeneous flows. These again are simple geometrical flows, but as noted

earlier linear schemes show some significant weaknesses in them due to misrepresentation of

the normal stresses. Since one improvement expected from the non-linear schemes is better

normal stress prediction, these flows are thus good test cases for tuning of the models.

In these normally strained flows, the only non-zero strains are the S22 and S33 components

(with S22 = −S33) and all vorticity components are zero and the only non-zero Reynolds

stresses are the normal ones. One can check that in equations 7.5, 7.6 and 7.7 all terms are

multiplied by either S12, S13 or S23 confirming uv = uw = vw. The modelled expressions for

the Reynolds stresses then become:

u2
NS =

2

3
(k − c1cµkτ1τ2S

2
22) (7.12)

v2
NS =

2

3
k − νtS22 +

c1cµkτ1τ2S
2
22

3
+ 2c6cµkτ1τ

2
2S

3
22 (7.13)

w2
NS =

2

3
k + νtS22 +

c1cµkτ1τ2S
2
22

3
− 2c6cµkτ1τ

2
2S

3
22 (7.14)

One can therefore tune the coefficients c1 and c6 for this case and, together with equations

7.11 to 7.10 for the homogeneous shear flows, the coefficients c1, c2, c3, c6 and c7 can thus be

determined.
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A closer look at the terms followed by the coefficient c4 in equations 7.2 to 7.7 shows that

these terms are only non-zero in 3-D flows (since S11 +S22 = 0 from continuity in 2-D). As all

test cases studied in this work are 2-D flows, the c4 coefficients will not be determined here,

remaining to be adjusted when the models are tried in 3-D flows. However, as a starting

point, one could use c4 = 2c6, as taken by Craft et al. (1996b).

7.3 The NL1 and NL2 Models

As mentioned before, the NL1 and NL2 models have initially been developed from the second

version of the NT1 and NT2 schemes, whose coefficients are presented in Tables 6.8 and 6.10.

As discussed in the previous chapter, the difference between the final and second versions

of the NT1 and NT2 models are those extra terms inserted into the CP1 coefficient which

are meant to improve the prediction of shear regions in strongly non-equilibrium flows, and

the effect of adding such corrections into the non-linear versions will be looked at separately,

after the initial model development. By starting the development of the NL1 and NL2 models

using the second version of the NT1 and NT2 models, one can have a better idea of the effects

of the non-linear-eddy-viscosity approach.

As also commented on before, the use of different time scale combinations in the two-

time-scale non-linear-eddy-viscosity models were explored. The expression for the Reynolds

stresses is used as presented in equation 7.1. Note that νt must be always used as in the NT1

and NT2 models in the linear term (−νtSij) in equation 7.1 so that the asymptotic analyses

carried out for the linear two-time-scale models remain valid. In Table 7.1 are presented the

three different combinations of time scales tested in the NL1 and NL2 models, together with

the identifiers that will be used to distinguish them below.

Table 7.1: Study of time scale in the two-time-scale non-linear-eddy-viscosity models

Model τ1 τ2

NL1− P − P kP
εP

kP
εP

NL1− T − T k
εT

k
εT

NL1− P − T kP
εP

k
εT

NL2− P − P kP
εP

kP
εP

NL2− T − T k
εT

k
εT

NL2− T − P k
εT

kP
εP

So for both non-linear versions of the NT1 and NT2 models, three different non-linear

approaches for the Reynolds stresses were tried. The idea would be to choose as the NL1 and

NL2 models the ones in Table 7.1 which perform best.

7.3.1 The NL1 Model

Initially, a tuned set of coefficients was obtained for each of the three time scale options for

the NL1 model, presented in Table 7.1. In order to do so, a program in Matlab was written

so that the coefficients’ values could be varied through incrementing loops and the set of
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7.3. The NL1 and NL2 Models

coefficients which best matched the DNS of homogeneous shear flows and the experiments of

normally strained flows could be chosen.

Firstly a loop to vary c1 + c3 from −1 to 1 in increments of 0.01 was build and inside

this loop, another loop was built to vary c2 also from −1 to 1 by 0.01 increments. Three

homogeneous shear flow cases (a low, a moderate and a high shear case) were solved for each

combination of c1 + c3 and c2 values and the rms “error” was computed by comparing the

resultant normal stresses predicted with the DNS data. Thereby, the best sum of c1 and c3

and the coefficient c2 itself were determined using the homogeneous shear flow cases.

After this, another loop was started to vary c1 from −1 to 1 in increments of 0.01 and an

inside loop was built to vary c6 from −5 to 5 in increments of 0.01. For each set of c1 and

c6 values, the G&M0 case was solved and an rms “error” was computed by comparing the

Reynolds normal stresses predicted with those provided by the experiments. Only this case

was used because it is the only completely pure strain case studied. The best c1 and c6 could

then be chosen. c3 could then be easily computed since from the homogeneous shear flows

one knows c1 + c3 and c7 was taken as −c6 for the reasons outlined earlier.

It should be noted that when optimizing the coefficients of the non-linear terms in the

Reynolds stress expression only the prediction of the Reynolds normal stresses were consid-

ered. In the normally strained flows these are the only non-zero stresses, whilst in the ho-

mogeneous shear flows the prediction of the other turbulent quantities such as the Reynolds

shear stress, the turbulent kinetic energy and the eddy dissipation rate depend only on the

coefficients of the transport equations such as CP1, CP2, CT1, CT2 and C ′P1 and the turbulent

viscosity formulation and as these are the same as those used in the linear NT1 model, their

predictions should not be altered.

The best set of coefficients for each of the NL1 formulations in Table 7.1 is presented

in Table 7.2 together with their rms “error” for both homogeneous shear flows (HSF) and

normally strained flows (NSF). As commented on before, the general form of the coefficients is

the one adopted by Craft et al. (1996b) and that is why c1, c2 and c3 were taken as constants

and c6 and c7 as functions of cµ, which also varies with the dimensionless shear η.

Table 7.2: Best set of coefficients for the NL1 formulations in Table 7.1
Model c1 c2 c3 c6 c7 rms “error” in HSF rms “error” in NSF

NL1− P − P 0.22 0.16 −0.12 −0.48c2µ 0.48c2µ 5.1402 0.9891

NL1− T − T 0.13 0.04 −0.11 −0.27c2µ 0.27c2µ 6.9146 1.0048

NL1− P − T 0.17 0.09 −0.09 −0.34c2µ 0.34c2µ 5.7298 0.9934

As one can see from Table 7.2, the different time scales do have an impact on the achievable

accuracy of both the homogeneous shear and normally strained cases, although the greater

differences are seen in the shear flow cases. The NL1−P−P model performed slightly better

than the NL1−P −T model which performed better than the NL1−T −T model. However,

before choosing which timescale combination to use for the NL1 model simulations of the

channel flow cases were carried out to test for accuracy and stability in such wall-bounded

flows as well.

406



7.3. The NL1 and NL2 Models

When running the channel flows, both NL1−P −P and NL1− T − T models exhibited

a few instability problems. Since the NL1 − T − T provided the less good results in the

homogeneous shear and normally strained flows it was thus discarded. The two remaining

forms of the NL1 model were then used to simulate all test cases presented in Chapter 5.

The instability problems found with the NL1 − P − P model in the channel flow were also

found in most of the other flows, and so this version was also discarded and the NL1−P −T
formulation was thus adopted as the NL1 model.

For the sake of completeness, the form of the NL1 model and its coefficients is summarised

below:
DkP
Dt

= Pk − εP +
∂

∂xj

[(
ν +

νt
σkP

)
∂kP
∂xj

]
(7.15)

DkT
Dt

= εP − εT +
∂

∂xj

[(
ν +

νt
σkT

)
∂kT
∂xj

]
(7.16)

DεP
Dt

= CP1Pk
εP
kP
− CP2

ε2
P

kP
+

∂

∂xj

[(
ν +

νt
σεP

)
∂εP
∂xj

]
(7.17)

DεT
Dt

= CT1
εP εT
kT
− CT2

ε2
T

kT
+

∂

∂xj

[(
ν +

νt
σεT

)
∂εT
∂xj

]
(7.18)

The Reynolds stresses are given by:

uiuj =
2

3
δijk − νtSij

+ cµkτ1

[
c1τ2

(
SikSjk −

1

3
SklSklδij

)
+ c2τ2

(
WikSjk +WjkSik

)
+ c3τ2

(
WikWjk −

1

3
WklWklδij

)
+ c4τ

2
2

(
SkiWlj + SkjWli

)
Skl + c5τ

2
2

(
WilWlmSmj + SilWlmWmj −

2

3
SlmWmnWnlδij

)
+ c6τ

2
2SijSklSkl + c7τ

2
2SijWklWkl

]
(7.19)

with the eddy viscosity defined as in the NT1 model:

νt = cµ
kkP
εP

(7.20)

The coefficients and asymptotic states determined for the NL1 model are presented in Tables

7.3 and 7.4 respectively where:

η = max

[
k

εT

√
1

2
SijSij ,

k

εT

√
1

2
WijWij

]
(7.21)

Sij =
∂Ui
∂xj

+
∂Uj
∂xi

(7.22)
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Wij =
∂Ui
∂xj
− ∂Uj
∂xi

(7.23)

Table 7.3: Coefficients of the NL1 model
CP1 CP2 σεP CT1 CT2 σεT

1.4921 + 2.5
min(0,

kP
kT
−3.6)

kP
kT

+3.6
1.8 1.4202 1.6 1.7 1.2181

cµ c1 c2 c3 c4 c6 c7
min[0.115, 0.023 + 0.25e−0.30η] 0.17 0.09 −0.09 −0.68c2µ −0.34c2µ 0.34c2µ

Table 7.4: Values expected to be provided by the NL1 model in the asymptotic states studied.(
Pk
εT

)
SF

(
kP
kT

)
SF

(
εP
εT

)
SF

(
kP
kT

)
DF

(
εP
εT

)
DF

(
kP
kT

)
BL

(
εP
εT

)
BL

cµBL

1.9 4.4 1.1667 1.0 0.5 3.6 1.0 0.115

One may notice that the asymptotic states presented in Table 7.4 are the same as those

presented in Table 6.24 for the NT1 model, thus ensuring the desired consistency with the

asymptotic analyses.

7.3.2 The NL2 Model

The same procedure described above to determine the coefficients of the three NL1 schemes

was used to determine the coefficients of the three NL2 formulations presented in Table 7.1,

and the resulting optimized coefficients can be found in Table 7.5, together with the rms

“error” of each model for both homogeneous shear and normally strained flows, referred to

as HSF and NSF respectively.

Table 7.5: Best set of coefficients for the NL2 formulations in Table 7.1
Model c1 c2 c3 c6 c7 rms “error” in HSF rms “error” in NSF

NL2− P − P 0.30 0.21 −0.10 −1.54c2µ 1.54c2µ 3.5873 0.9698

NL2− T − T 0.18 0.09 −0.10 −0.83c2µ 0.83c2µ 5.6571 0.9785

NL2− T − P 0.23 0.14 −0.10 −1.23c2µ 1.23c2µ 4.3217 0.9775

As one can see in Table 7.5, the different time scales have little effect on the accuracy

achievable in the normally strained flows, although do have a slightly larger impact in the

shear flows. Comparing Tables 7.2 and 7.5 one may see that better results are apparently

achieved with the NL2 formulations. Among these, the NL2−P −P model performs better

than the NL2− T − P model which performs better than the NL2− T − T .

Again, before picking one of the three to be the first version of the NL2 model, the

three schemes were used to run the channel flows. None of the models presented instability

problems and therefore the NL2 − T − T , which performed less well in the homogeneous

shear and normally strained flows, was discarded. The other two versions, NL2−P −P and
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NL2 − T − P were then used to simulate all other test cases presented in Chapter 5. Both

models performed similarly and proved to be stable. As the NL2−P −P performed best in

the homogeneous shear and normally strained flows, it was therefore taken as the NL2 model.

Again, for the sake of completeness, the NL2 model formulation and coefficients are

summarized below:

DkP
Dt

= Pk − εP +
∂

∂xj

[(
ν +

νt
σkP

)
∂kP
∂xj

]
(7.24)

DkT
Dt

= εP − εT +
∂

∂xj

[(
ν +

νt
σkT

)
∂kT
∂xj

]
(7.25)

DεP
Dt

= CP1Pk
εP
kP
− CP2

ε2
P

kP
+ C ′P1kP

∂Ul
∂xm

∂Ui
∂xj

εlmkεijk +
∂

∂xj

[(
ν +

νt
σεP

)
∂εP
∂xj

]
(7.26)

DεT
Dt

= CT1
ε2
P

kT
− CT2

ε2
T

kT
+

∂

∂xj

[(
ν +

νt
σεT

)
∂εT
∂xj

]
(7.27)

The Reynolds stresses are given by:

uiuj =
2

3
δijk − νtSij

+ cµkτ1

[
c1τ2

(
SikSjk −

1

3
SklSklδij

)
+ c2τ2

(
WikSjk +WjkSik

)
+ c3τ2

(
WikWjk −

1

3
WklWklδij

)
+ c4τ

2
2

(
SkiWlj + SkjWli

)
Skl + c5τ

2
2

(
WilWlmSmj + SilWlmWmj −

2

3
SlmWmnWnlδij

)
+ c6τ

2
2SijSklSkl + c7τ

2
2SijWklWkl

]
(7.28)

with the eddy viscosity defined as in the NT2 model:

νt = cµ
k2

εT
(7.29)

The coefficients and asymptotic states determined for the NL2 model are presented in Tables

7.6 and 7.7 respectively where η, Sij and Wij are given by equations 7.21, 7.22 and 7.23

respectively.

7.4 Performance of the NL1 and NL2 Models

The performance of the NL1 and NL2 models as defined above will be assessed in all test

cases presented in Chapter 5. As commented on before, most of these cases are shear domi-

nated flows and therefore differences in the prediction of the velocity, Reynolds shear stress,
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Table 7.6: Coefficients of the NL2 model
CP1 CP2 σεP CT1 CT2 σεT C ′P1

1.5697 + 2.5
min(0,

kP
kT
−3.7)

kP
kT

+3.7
1.8 1.6664 1.0 1.1 1.1922 -0.005

cµ c1 c2 c3 c4 c6 c7
min[0.09, 0.0117 + 0.22e−0.31η] 0.23 0.14 −0.10 −2.46c2µ −1.23c2µ 1.23c2µ

Table 7.7: Values expected to be provided by the second version of the NL2 model in the
asymptotic states studied(

Pk
εT

)
SF

(
kP
kT

)
SF

(
εP
εT

)
SF

(
kP
kT

)
DF

(
εP
εT

)
DF

(
kP
kT

)
BL

(
εP
εT

)
BL

cµBL cµSF

1.9 8.8245 1.0916 1.3166 0.5683 3.7 1.0 0.09 0.0336

turbulent kinetic energy and eddy dissipation rate are not expected between the NL1 and

NT1 and NL2 and NT2 models. This expectation was confirmed when running all test cases

and therefore the discussion of the performance of the NL1 and NL2 models will be mainly

based on the predictions of the Reynolds normal stresses.

The predictions provided by the NL1 and NL2 models will be compared to those provided

by the KS and SG models, besides the final version of the NT1 and NT2 models. The idea is

to compare these two-time-scale non-linear-eddy-viscosity models with the single-time-scale

model they were based on (the KS model), with the two-time-scale linear schemes they were

also based on (the NT1 and NT2 models), and with a stress transport model (the SSG model).

Starting by evaluating the performance of the NL1 and NL2 models in the homogeneous

shear flows, the predictions of the Reynolds normal stresses are presented in Figure 7.1 to

7.11. In Figures 7.1 and 7.2 the prediction of the Reynolds normal stresses and of the

normal components of the Reynolds stress anisotropy tensor aij =
uiuj
k −

2
3δij are respectively

presented for the lowest shear case. One may notice that the NL1 and NL2 models perform

overall better than the KS and SG models. One can also clearly see the improvements of

the NLEV and RST models over the LEV schemes, which predict an isotropic state for the

normal stresses. The predictions in the U2 low shear case are presented in Figure 7.3 where

again, the NL1 and NL2 models can be considered to perform best. In the W2 low shear

case, presented in Figures 7.4 and 7.5, the NL1 and NL2 models again perform well (although

the KS and SG models return slightly better results than them in this case). However, none

of the models entirely capture the development of the aij profiles, particularly a11. Although

the NL1 and NL2 models perform similarly to the KS and SG models in predicting u2 in the

HM1 moderate shear case, presented in Figures 7.6 and 7.7, the SG model performs best in

predicting the normal components of the Reynolds stress anisotropy tensor, specially the a11.

In the SHC high shear case, presented in Figures 7.8 and 7.9, the SG model predicts well u2,

but overpredicts the other normal stresses, while the NL1 and NL2 models appear to predict

v2 and w2 better. A closer examination of the NL1 results for v2 shows that it actually

returned negative values for this stress component up to St ≈ 6. For the sake of plotting,
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these negative values have been clipped to zero. This is clearer from the a22 profile in Figure

7.8(b). Nevertheless, the aij profile is not very well predicted by any of the models. In the

HM2 highest shear case the SG model performed clearly better than the other models and

one can notice that both NL1 and NL2 models results have been clipped where they produced

negative v2 predictions. These negative values of v2 returned by the models indicate that

the non-linear terms are capable of returning non-realizable stress values at quite high strain

rates, and this could be an avenue to explore further in future work.

Among the normally strained flow cases studied, two cases will be assessed: the T&R

and the G&M0 cases. Both cases present pure normal straining, however the former has the

straining started after some initial development of the flow (decay of turbulence), and stopped

before the end of the duct, so there is some relaxation of the flow. The turbulent kinetic

energy development is presented in Figure 7.12. All models predict well the development

of k, the SG model predicting a rather fast decay after the removal of the straining. The

NL1 and NL2 models provided a rather fast decay of u2 and a rather steep growth in the w2

profile before the interruption of the straining. The KS model performed best in predicting

the Reynolds normal stresses, however, as a NLEV model, it fails after the deactivation of the

straining, when only the SG model performs reasonably. The profile of the Reynolds stress

anisotropy tensor, presented in Figure 7.14, was also best predicted by the KS model before

the straining was interrupted.

Moving now to the G&M0 case, the prediction of the turbulent kinetic energy is presented

in Figure 7.15. One may see that the NL1 and NL2 models clearly improve the prediction

of the turbulent kinetic energy. The Reynolds normal stresses, presented in Figure 7.16,

were overall best predicted by the SG model, but the NL1 and NL2 models best predicted

v2. This analysis can be extended to the prediction of the Reynolds stress anisotropy tensor

components in Figure 7.17. The NL1 and NL2 models predict fairly well u2 and w2 in the

second half of the channel, however fail in the first half due to the wrong starting levels of

these quantities which is an inherent limitation of eddy-viscosity models.

The prediction of the turbulent kinetic energy and the Reynolds normal stresses in the

channel flow with Re = 41441 are presented in Figure 7.18. One may confirm that there is no

difference in the prediction of the turbulent kinetic energy between the linear and non-linear

two-time-scale models, but the latter did improve the prediction of the Reynolds normal

stresses which are as good as those provided by the KS and SG models. These results are

representative of the cases at other Reynolds numbers and therefore the other cases will not

be presented here.

The prediction of the turbulent kinetic energy and the Reynolds normal stresses in the

zero pressure gradient boundary layer at Reθ = 1410 are presented in Figure 7.19. As in the

channel flow, the prediction of the turbulent kinetic energy is nearly the same for the linear

and non-linear two-time-scale models. None of the models were actually able to correctly

predict the near wall peak of u2, however, of the models shown, only the KS is a LRN

scheme, and those employing wall-functions might not be expected to fully capture the near-

wall peak of u2. One can say that the NL1 and NL2 models predicted the normal stresses
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better than the KS model and similarly to the SG model. At Reθ = 4981 and Reθ = 13052

there are only experimental data for u2 and v2. These are presented in Figure 7.20 where

one can see that the conclusions drawn from the Reθ = 1410 location remain valid.

In order to assess the performance of the NL1 and NL2 models in the adverse pressure

gradient boundary layer cases, profiles of the turbulent kinetic energy and Reynolds normal

stresses will be discussed for the M&P30 case which is representative of the other two cases.

Looking at the profiles of k in Figure 7.21 it can be noted that the NL1 and NL2 models tend

to return slightly higher peak levels of k than the other models as the flow develops in the x

direction, but these are still lower than the measurements. The profile of u2 is presented in

Figure 7.22 where, again, none of the models are able to follow the experiments. Nonetheless,

it can be noted that the NL1 and NL2 models perform similarly to the KS and SG models.

The profiles of v2 and w2, respectively presented in Figures 7.23 and 7.24, were perhaps best

predicted by the NL1 and NL2 models.

The performance of the NL1 and NL2 models in the favourable pressure gradient bound-

ary layer cases will be discussed only for the lowest acceleration parameter case, since it is

representative of the other cases as well. The profiles of the turbulent kinetic energy and

the Reynolds normal stresses for the K150 case are presented in Figure 7.25. Again, the

turbulent kinetic energy profile shows no difference in the predictions of the LEV and NLEV

two-time-scale models. Although the NL1 and NL2 models are high Reynolds number mod-

els which were used together with wall functions, they provided the best predictions of the

near-wall peak of u2. On the other hand, they overpredicted the near-wall peak of the other

two normal stresses. Overall, they performed as well as the KS and SG models.

Turning now to the JSF oscillatory boundary layer case, the profiles of the Reynolds shear

stress and of the streamwise and wall-normal Reynolds normal stresses through the cycle at

four y locations are presented in Figures 7.26 to 7.28. The profiles of the Reynolds shear

stress show little difference between the LEV and NLEV two-time-scale model predictions.

The predictions of the streamwise and wall-normal Reynolds normal stresses show that the

NL1 and NL2 models perform similarly to the SG and KS models and, as expected, better

than their linear counterparts. A closer look at the Reynolds normal stresses profiles is

presented in Figures 7.29 to 7.31 for four positions in the cycle. Again, it can be seen that

all models perform similarly, overpredicting < u2 >1/2 and predicting well < v2 >1/2 and

< w2 >1/2.

For the low frequency oscillatory pipe flow, predictions of the wall shear stress and stream-

wise fluctuating velocity through the cycle at three radial locations are shown in Figure 7.32.

The prediction of the wall shear stress is slightly improved by the NLEV MTS models, com-

pared to their LEV counterparts. The profiles of u′/Um at three y/R positions are similarly

predicted by the NLEV and RST models. The same analysis can be extended to the pre-

diction of u′/Um across the radial direction at four cycle positions, presented in Figure 7.33,

where again it can be seen the NL1 and NL2 perform well and similarly to the KS and SG

models. In the Tu&R36 high frequency case, the prediction of the wall shear stress is pre-

sented in Figure 7.34 where the NL1 and NL2 models perform similarly to the other models,
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but the KS model returns a slightly higher level for this quantity. None of the models are

able to predict the kink in the < τw > profile. Figure 7.34 also presents profiles of u′/Um

at three y/R positions. Although in this case the models mainly exhibit a frozen turbulence

behaviour, it can be seen that all models predict some oscillation in the rms streamwise fluc-

tuating velocity profile. The KS model seems to be more in phase with the experiments, while

the NL1 and NL2 models perform similarly to the SG model. Particularly at y/R = 0.07

this behaviour might be related to the use of wall functions for the latter models. Closer

to the centre of the pipe, at y/R = 0.98 one can observe frozen turbulence. Looking at the

profiles of u′/Um across the radial direction at four cycle positions in Figure 7.35, one can see

that only very close to the wall is there any difference in the predictions, confirming frozen

turbulence from y/R ≈ 0.25 on. Again, the NL1 and NL2 models performed reasonably well

and similarly to the KS and SG models. For the intermediate frequency case, the prediction

of the amplitude and phase shift of the rms streamwise and wall-normal fluctuating velocities

are presented in Figure 7.36 where perhaps the KS model performs best, although none of

the models perform very accurately. The NL1 and NL2 models performed similarly to the

SG model and as this case has a relatively low Reynolds number, Re = 14000, it makes one

wonder whether the use of a wall function might be adversely affecting these predictions.

For the fully developed ramp up pipe flow case, only Reynolds stress and turbulent kinetic

energy profiles will be presented, since the mean velocity is well predicted by all models, as

shown already in Chapters 5 and 6. The time histories of the Reynolds shear stress at three

radial positions are presented in Figure 7.37 where one can see the NL1 and NL2 models

performing very similarly to the NT1 and NT2 models and also to the SG model, providing

better results than the KS model which shows the increase in shear stress occurring rather

too late. The prediction of the turbulent kinetic energy is presented in Figure 7.38. Whereas

the NL1 and NL2 models perform well, the interesting aspect to be noted is how similar

these models perform compared to their linear counterpart. As commented on before, the

version of the NT1 and NT2 models which is being presented is the final one where the extra

terms in CP1 are present. The NL1 and NL2 models perform similarly to them in spite of

not having any of these terms included. That might point to an underlying benefit of the

NLEV schemes, although it should be noted that the terms were added to the linear models

specifically to address problems in the forced backstep flows, and it still remains to be seen

how the corresponding non-linear schemes behave in those flows. The time histories of the

rms streamwise fluctuating velocity are presented in Figures 7.39 and 7.40. One can notice

that none of the models are able to predict the initial slow increase in u′ levels, especially at

the centre of the pipe, however the NL1 and NL2 models seems to best capture the levels of

this quantity after the building up process. When looking at the profiles of u′ normalized by

the local bulk velocity, it can be seen that all models follow correctly the experimental trend,

the KS model slightly out of phase due to its delay in predicting the building up process.

Similar analysis can be extended to the profiles of v′ and w′. These two normal stresses

present similar profiles so only results for v′ are being shown and can be found in Figures

7.41 and 7.42. In all the fluctuating velocities profiles the SG model tends to predict correctly
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the level of these quantities at the centre of the pipe and underpredict them at r/R = 0.47.

On the other hand, the NL1 and NL2 models tend to correctly predict the profiles at this

position and overpredict them in the centre of the pipe.

Finally, the performance of the NL1 and NL2 models in the backward facing step cases

will be discussed. The prediction of the reattachment point in the steady and unsteady cases

is presented in Table 7.8 where the predictions provided by the second version of the NT1

and NT2 models are also included. It can be noted that the NL1 and NL2 models perfomed

similarly to the second version of the NT1 and NT2 models which shows that the non-linear

approach is not improving prediction, as expected, since the backward facing step flows are

shear dominated flows. The reason why the final version of the NT1 and NT2 models actually

perform best is due to the extra terms inserted into CP1 as already discussed.

The velocity profiles provided by the NL1 and NL2 models are very similar to those of

the second version of the NT1 and NT2 models (Figure 6.49) and therefore are not being

presented here, since no additional comments are worthwhile for the discussion.

Summarizing, the NL1 and NL2 models perform generally well over the range of flows

studied, bringing some of the benefits noted earlier from the introduction of the two-time

scales, and also the benefits of better normal stress predictions from the non-linear stress-

strain relation.

Whilst the backstep flow predictions of reattachment location are close to those of the

underlying NT1 and NT2 models, further modifications were introduced into these linear

models, as described in Section 6.3, to specifically address their weaknesses in this case. The

following section therefore explores the possibility of including such modifications within the

non-linear model versions.

Table 7.8: Performance of the NL1 and NL2 models in predicting the reattachment point in
the three backward facing step cases.

Model/Experiment St=0 St=0.275 St=1

Experiment 7.8 5.0 8.1
SG 6.95 5.51 7.66
KS 8.03 - -

NT1 V2 8.63 8.16 9.30
NT2 V2 9.50 9.25 10.2

NT1 7.82 5.05 7.96
NT2 7.84 5.05 7.81
NL1 8.63 8.02 9.45
NL2 9.49 9.00 10.4
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(a) u2 Profile (b) v2 Profile (c) w2 Profile

Figure 7.1: Performance of the NL1 and NL2 models compared with the results provided
by the KS, SG, NT1 and NT2 models in predicting the Reynolds normal stresses in the
homogeneous lowest shear flow case X2. Models as in Table 3.25.

(a) a11 Profile (b) a22 Profile (c) a33 Profile

Figure 7.2: Performance of the NL1 and NL2 models compared with the results provided
by the KS, SG, NT1 and NT2 models in predicting the normal components of the Reynolds
stress anisotropy tensor in the homogeneous lowest shear flow case X2. Models as in Table
3.25.

(a) u2 Profile (b) v2 Profile (c) w2 Profile

Figure 7.3: Performance of the NL1 and NL2 models compared with the results provided
by the KS, SG, NT1 and NT2 models in predicting the Reynolds normal stresses in the
homogeneous low shear flow case U2. Models as in Table 3.25.
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(a) u2 Profile (b) v2 Profile (c) w2 Profile

Figure 7.4: Performance of the NL1 and NL2 models compared with the results provided
by the KS, SG, NT1 and NT2 models in predicting the Reynolds normal stresses in the
homogeneous low shear flow case W2. Models as in Table 3.25.

(a) a11 Profile (b) a22 Profile (c) a33 Profile

Figure 7.5: Performance of the NL1 and NL2 models compared with the results provided
by the KS, SG, NT1 and NT2 models in predicting the normal components of the Reynolds
stress anisotropy tensor in the homogeneous low shear flow case W2. Models as in Table
3.25.

(a) u2 Profile (b) v2 Profile (c) w2 Profile

Figure 7.6: Performance of the NL1 and NL2 models compared with the results provided
by the KS, SG, NT1 and NT2 models in predicting the Reynolds normal stresses in the
homogeneous moderate shear flow case HM1. Models as in Table 3.25.
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(a) a11 Profile (b) a22 Profile (c) a33 Profile

Figure 7.7: Performance of the NL1 and NL2 models compared with the results provided
by the KS, SG, NT1 and NT2 models in predicting the normal components of the Reynolds
stress anisotropy tensor in the homogeneous moderate shear flow case HM1. Models as in
Table 3.25.

(a) u2 Profile (b) v2 Profile (c) w2 Profile

Figure 7.8: Performance of the NL1 and NL2 models compared with the results provided
by the KS, SG, NT1 and NT2 models in predicting the Reynolds normal stresses in the
homogeneous high shear flow case SHC. Models as in Table 3.25.

(a) a11 Profile (b) a22 Profile (c) a33 Profile

Figure 7.9: Performance of the NL1 and NL2 models compared with the results provided
by the KS, SG, NT1 and NT2 models in predicting the normal components of the Reynolds
stress anisotropy tensor in the homogeneous high shear flow case SHC. Models as in Table
3.25.

417



7.4. Performance of the NL1 and NL2 Models

(a) u2 Profile (b) v2 Profile (c) w2 Profile

Figure 7.10: Performance of the NL1 and NL2 models compared with the results provided
by the KS, SG, NT1 and NT2 models in predicting the Reynolds normal stresses in the
homogeneous highest shear flow case HM2. Models as in Table 3.25.

(a) a11 Profile (b) a22 Profile (c) a33 Profile

Figure 7.11: Performance of the NL1 and NL2 models compared with the results provided
by the KS, SG, NT1 and NT2 models in predicting the normal components of the Reynolds
stress anisotropy tensor in the homogeneous highest shear flow case HM2. Models as in
Table 3.25.

Figure 7.12: Performance of the NL1 and NL2 models compared with the results provided
by the KS, SG, NT1 and NT2 models in predicting the turbulent kinetic energy (q = 2k) in
the T&R normally strained flow case. Models as in Table 3.25.
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(a) u2 profile (b) v2 profile (c) w2 profile

Figure 7.13: Performance of the NL1 and NL2 models compared with the results provided
by the KS, SG, NT1 and NT2 models in predicting the Reynolds normal stresses in the T&R
normally strained flow case. Models as in Table 3.25.

(a) b11 profile (b) b22 profile (c) b33 profile

Figure 7.14: Performance of the NL1 and NL2 models compared with the results provided
by the KS, SG, NT1 and NT2 models in predicting the normal components of the Reynolds
stress anisotropy tensor in the T&R normally strained flow case. Models as in Table 3.25.

Figure 7.15: Performance of the NL1 and NL2 models compared with the results provided by
the KS, SG, NT1 and NT2 models in predicting the turbulent kinetic energy in the G&M0
normally strained flow case. Models as in Table 3.25.
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(a) u2 profile (b) v2 profile (c) w2 profile

Figure 7.16: Performance of the NL1 and NL2 models compared with the results provided by
the KS, SG, NT1 and NT2 models in predicting the Reynolds normal stresses in the G&M0
normally strained flow case. Models as in Table 3.25.

(a) b11 profile (b) b22 profile (c) b33 profile

Figure 7.17: Performance of the NL1 and NL2 models compared with the results provided
by the KS, SG, NT1 and NT2 models in predicting the normal components of the Reynolds
stress anisotropy tensor in the G&M0 normally strained flow case. Models as in Table 3.25.

(a) k Profile (b) u2 Profile (c) v2 Profile (d) w2 Profile

Figure 7.18: Performance of the NL1 and NL2 models compared with the results provided by
the KS, SG, NT1 and NT2 models in the fully developed channel flow case with Re = 41441.
Models as in Table 3.25.
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(a) k Profile (b) u2 Profile (c) v2 Profile (d) w2 Profile

Figure 7.19: Performance of the NL1 and NL2 models compared with the results provided by
the KS, SG, NT1 and NT2 models in the zero pressure gradient boundary layer at Reθ = 1410.
Models as in Table 3.25.

(a) u2 at Reθ = 4981 (b) v2 at Reθ = 4981 (c) u2 at Reθ = 13052 (d) v2 at Reθ = 13052

Figure 7.20: Performance of the NL1 and NL2 models compared with the results provided by
the KS, SG, NT1 and NT2 models in the zero pressure gradient boundary layer at Reθ = 4981
and Reθ = 13052. Models as in Table 3.25.

(a) Station 2 (b) Station 4 (c) Station 5 (d) Station 6

Figure 7.21: Prediction of the turbulent kinetic energy by the NL1 and NL2 models compared
with the results provided by the KS, SG, NT1 and NT2 models in the adverse pressure
gradient boundary layer case M&30. Models as in Table 3.25.
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(a) Station 2 (b) Station 4 (c) Station 5 (d) Station 6

Figure 7.22: Prediction of the Reynolds normal stress u2 by the NL1 and NL2 models com-
pared with the results provided by the KS, SG, NT1 and NT2 models in the adverse pressure
gradient boundary layer case M&30. Models as in Table 3.25.

(a) Station 2 (b) Station 4 (c) Station 5 (d) Station 6

Figure 7.23: Prediction of the Reynolds normal stress v2 by the NL1 and NL2 models com-
pared with the results provided by the KS, SG, NT1 and NT2 models in the adverse pressure
gradient boundary layer case M&30. Models as in Table 3.25.

(a) Station 2 (b) Station 4 (c) Station 5 (d) Station 6

Figure 7.24: Prediction of the Reynolds normal stress w2 by the NL1 and NL2 models
compared with the results provided by the KS, SG, NT1 and NT2 models in the adverse
pressure gradient boundary layer case M&30. Models as in Table 3.25.
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(a) k Profile (b) u2 Profile (c) v2 Profile (d) w2 Profile

Figure 7.25: Performance of the NL1 and NL2 models compared with the results provided
by the KS, SG, NT1 and NT2 models in the K150 favourable pressure gradient boundary
layer case. Models as in Table 3.25.

(a) y = 4mm (b) y = 9mm (c) y = 26mm (d) y = 25mm

Figure 7.26: Prediction of the Reynolds shear stress at four positions in the y direction by
the NL1 and NL2 models compared with the results provided by the KS, SG, NT1 and NT2
models in the JSF oscillatory boundary layer case. Models as in Table 3.25.

(a) y = 4mm (b) y = 9mm (c) y = 26mm (d) y = 25mm

Figure 7.27: Prediction of the normalized rms of the streamwise fluctuating velocity< u2 >1/2

at four positions in the y direction by the NL1 and NL2 models compared with the results
provided by the KS, SG, NT1 and NT2 models in the JSF oscillatory boundary layer case.
Models as in Table 3.25.
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(a) y = 4mm (b) y = 9mm (c) y = 26mm (d) y = 25mm

Figure 7.28: Prediction of the normalized rms of the wall-normal fluctuating velocity <
v2 >1/2 at four positions in the y direction by the NL1 and NL2 models compared with the
results provided by the KS, SG, NT1 and NT2 models in the JSF oscillatory boundary layer
case. Models as in Table 3.25.

(a) ωt = 30o (b) ωt = 60o (c) ωt = 105o (d) ωt = 135o

Figure 7.29: Prediction of the rms fluctuating velocity u′ by the NL1 and NL2 models com-
pared with the results provided by the KS, SG, NT1 and NT2 models in the oscillatory
boundary layer case JSF . Models as in Table 3.25.

(a) ωt = 30o (b) ωt = 60o (c) ωt = 105o (d) ωt = 135o

Figure 7.30: Prediction of the rms fluctuating velocity v′ by the NL1 and NL2 models com-
pared with the results provided by the KS, SG, NT1 and NT2 models in the oscillatory
boundary layer case JSF . Models as in Table 3.25.
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(a) ωt = 30o (b) ωt = 60o (c) ωt = 105o (d) ωt = 135o

Figure 7.31: Prediction of the rms fluctuating velocity w′ by the NL1 and NL2 models
compared with the results provided by the KS, SG, NT1 and NT2 models in the oscillatory
boundary layer case JSF . Models as in Table 3.25.

(a) wall shear stress (b) u′/Um at y/R=0.07 (c) u′/Um at y/R=0.25 (d) u′/Um at y/R=0.95

Figure 7.32: Prediction of the wall shear stress and rms fluctuating velocity u′ normalized
with time-averaged bulk velocity at three radial positions throughout the cycle by the NL1
and NL2 models compared with the results provided by the KS, SG, NT1 and NT2 models
in the Tu&R05 oscillatory pipe flow case of Tu and Ramaprian (1983a). Models as in Table
3.25.

(a) ωt = 45o (b) ωt = 135o (c) ωt = 225o (d) ωt = 315o

Figure 7.33: Prediction of the rms fluctuating velocity u′ normalized with the time-averaged
bulk velocity by the NL1 and NL2 models compared with the results provided by the KS,
SG, NT1 and NT2 models in the oscillatory pipe flow case Tu&R05. Models as in Table 3.25.
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(a) wall shear stress (b) u′/Um at y/R=0.07 (c) u′/Um at y/R=0.22 (d) u′/Um at y/R=0.98

Figure 7.34: Prediction of the wall shear stress and rms fluctuating velocity u′ normalized
with the time-averaged bulk velocity at three radial positions throughout the cycle by the
NL1 and NL2 models compared with the results provided by the KS, SG, NT1 and NT2
models in the Tu&R36 oscillatory pipe flow case of Tu and Ramaprian (1983a). Models as
in Table 3.25.

(a) ωt = 45o (b) ωt = 135o (c) ωt = 225o (d) ωt = 315o

Figure 7.35: Prediction of the rms fluctuating velocity u′ normalized with the time-averaged
bulk velocity by the NL1 and NL2 models compared with the results provided by the KS,
SG, NT1 and NT2 models in the oscillatory pipe flow case Tu&R36. Models as in Table 3.25.

(a) u′ Amplitude (b) u′ Phase Shift (c) v′ Amplitude (d) v′ Phase Shift

Figure 7.36: Performance of the NL1 and NL2 models compared with the results provided
by the KS, SG, NT1 and NT2 models in the oscillatory pipe flow case T3RE14A20. Models
as in Table 3.25.
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(a) Pipe centre (r/R = 0) (b) r/R = 0.47 (c) r/R = 0.83

Figure 7.37: Prediction of the Reynolds shear stress at selected radial positions by the NL1
and NL2 models compared with the results provided by the KS, SG, NT1 and NT2 models
in the ramp up pipe flow. Models as in Table 3.25.

(a) Pipe centre (r/R = 0) (b) r/R = 0.47 (c) r/R = 0.83

Figure 7.38: Prediction of the turbulent kinetic energy at selected radial positions by the NL1
and NL2 models compared with the results provided by the KS, SG, NT1 and NT2 models
in the ramp up pipe flow. Models as in Table 3.25.

(a) Pipe centre (r/R = 0) (b) r/R = 0.47 (c) r/R = 0.83

Figure 7.39: Prediction of the rms fluctuating velocity u′ at selected radial positions by the
NL1 and NL2 models compared with the results provided by the KS, SG, NT1 and NT2
models in the ramp up pipe flow. Models as in Table 3.25.
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(a) Pipe centre (r/R = 0) (b) r/R = 0.47 (c) r/R = 0.83

Figure 7.40: Prediction of the u′ normalized by the bulk velocity at selected radial positions
by the NL1 and NL2 models compared with the results provided by the KS, SG, NT1 and
NT2 models in the ramp up pipe flow. Models as in Table 3.25.

(a) Pipe centre (r/R = 0) (b) r/R = 0.47 (c) r/R = 0.83

Figure 7.41: Prediction of the rms fluctuating velocity v′ at selected radial positions by the
NL1 and NL2 models compared with the results provided by the KS, SG, NT1 and NT2
models in the ramp up pipe flow. Models as in Table 3.25.

(a) Pipe centre (r/R = 0) (b) r/R = 0.47 (c) r/R = 0.83

Figure 7.42: Prediction of the v′ normalized by the bulk velocity at selected radial positions
by the NL1 and NL2 models compared with the results provided by the KS, SG, NT1 and
NT2 models in the ramp up pipe flow. Models as in Table 3.25.
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7.5 Further Investigations in the NL1 and NL2 Models

The predictions provided by the NL1 and NL2 models of the reattachment point in the steady

and unsteady backward facing step cases have indicated that similar adjustments in the MTS

NLEV models as those done in the NT1 and NT2 models might be necessary. As the NL1

and NL2 models performed very similarly to the second version of the NT1 and NT2 models,

the first attempt was to try the same extra terms in CP1 for the NL1 and NL2 models. So

the three backward facing step cases were run with the NL1 model using CP1 as in Table

6.23 (fBL, f1 and f2 given by equations 6.90, 6.91 and 6.92) and with the NL2 model using

CP1 as in Table 6.30 (fBL, f1 and f2 given by equations 6.108, 6.109 and 6.110).

In the steady state backward facing step cases, these tests succeeded and both the NL1 and

NL2 models predicted the reattachment point as 7.9, a significant improvement compared to

the results presented in Table 7.8. However, in the unsteady cases, some instability problems

were encountered in both NL1 and NL2 models. By reducing the under-relaxation factors

(using 0.25 for the velocity and turbulent quantities and using 0.15 for the pressure correction)

it was possible to get a fully converged and periodic solution for the NL1 model, which then

predicted a reattachment length of 6.2 in the low frequency BFS −St0275 case. Whilst this

is less than in the unforced case, it does not show as large a reduction as in the measurements

(nor as large as was achieved with the final NT1 version). With the modified NL2 model a

fully periodic state was not achieved, and so further results with this are not shown.

In order to try reducing further the predicted reattachment length in the forced case with

the NL1 model, the coefficient f2 (equation 6.92) was increased from 20 to 30. However,

this only resulted in a small further decrease of reattachment length to 6.0, and so simply

increasing this coefficient does not sufficiently reduce the reattachment length in the low

frequency case. Moreover, in the high frequency BFS−St1 case, the predicted reattachment

length using the larger f2 coefficient was around x/H = 7.2, which is rather low compared

to the experimental data.

As Test 26 in Table 6.22 indicated some positive results in the NT1 model, it was de-

cided to try the NL1 model with an expression for f2 such as f2 = 15 max
[
kP
kT

max
(
εP
εT
−

1.1, 0
)
SW, 0

]
within CP2 instead. In this case, fBL included only f1 as in equation 6.74.

However, not much difference in behaviour was encountered: the predicted reattachment

point for the BFS−St0275 case was 5.8 and for the BFS−St1 was 7.1. Increases in the f2

coefficient from 15 to 20 and 25 were also tried, however no fully periodic result was achieved.

A number of further tests were also tried for the NL2 model, by varying the coefficient in

f2 and by trying f2 as in the NL1 model, however none of these tests managed to provide a

periodic state result. It was then decided to go back to the NL2− T − P formulation of the

NL2 model, presented in Table 7.1, in order to check if stability could be achieved with this

scheme and with CP1 as in Table 6.30 (fBL, f1 and f2 given by equations 6.108, 6.109 and

6.110), however this test also failed and could not provide a fully periodic result.

Finally, in order to identify which of the f1 or f2 terms were causing the instabilities,

it was decided to run the three backward facing step cases with only the f1 term included,
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since this is the term responsible for adjusting the reattachment point in the steady state

case. So the NL1 model was run with CP1 as in Table 6.23, but with fBL and f1 given by

equations 6.74 and 6.75 respectively, and the NL2 model was run using CP1 as in Table 6.30,

but with fBL and f1 given by equations 6.95 and 6.96 respectively. Using under-relaxation

factors of 0.25 for velocity and turbulent quantities and 0.15 for the pressure correction,

the NL1 model converged and provided a fully periodic result. However, the NL2 model,

again failed to provide a fully periodic result. It was decided to try again the NL2− T − P
formulation of the NL2 model, presented in Table 7.1, but again using only f1, that is, with

CP1 as in Table 6.30 with fBL and f1 given by equations 6.95 and 6.96 respectively. This

case converged and provided a fully periodic result. After some further small adjustments to

the f1 term coefficients the predicted reattachment points returned by these tests with the

NL1 and NL2-T-P models are given in Table 7.9, together with the exact forms used for f1.

Table 7.9: Reattachment point predicted by the NL1 and NL2 models in the BFS cases.
Model/Experiment f1 St=0 St=0.275 St=1

Experiment - 7.8 5.0 8.1

NL1 2
(
kP
kT
− 1
)

min
(
Pk
εT
− 1.9, 0

)
max

(
εP
εT
− 1, 0

)
7.74 7.64 8.66

NL2-T-P 6
(
kP
kT
− 1
)

min
(
Pk
εT
− 1.9, 0

)
max

(
εP
εT
− 1, 0

)
7.78 8.33 8.96

A positive feature of the results in Table 7.9 is that they provide good predictions for the

steady state and high frequency BFS−St1 cases, actually very similar to those provided by

Test 3 in Table 6.16 for the NT1 model and Test 3 in Table 6.25 for the NT2 model. This

further suggests that the f2 term is at least a contributor to the stability problems noted

above, and it seems that further work could be done on finding a form that could improve

predictions of the non-linear schemes in the BFS − St0275 case.

As commented on before, all test cases were also simulated with the NL2 − T − P for-

mulation of the NL2 model, presented in Table 7.1 and the difference in prediction from the

adopted NL2 model, that is, the NL2− P − P formulation in Table 7.1, were minimal.

7.6 Concluding Remarks

The two two-time-scale non-linear-eddy-viscosity models so far developed performed well in

all test cases discussed in Chapter 5, with the exception of the unsteady backward facing step

flow, where some further improvements are needed in the low frequency case.

The predictions of the normal stresses provided by the NL1 and NL2 models are compa-

rable to those of the KS and SG models in most cases, although these improvements did not

significantly affect other predictions in most cases which were shear dominated. The cases

where improvements were clearly noticed were the normally strained flows where the NL1

and NL2 predictions of k returned the closest results to the experiments.

The NL1 and NL2 models can thus be considered to have provided very satisfactory

results and one could expect that in flows where the Reynolds normal stresses play a role

these models would improve predictions when compared to their linear counterpart.
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Chapter 8

Conclusions and Future Work

In this chapter, the main conclusions about the work carried out and described in the other

chapters of this thesis will be presented. The chapter is divided into three main sections:

the performance of the existing turbulence models, the performance of the developed two-

time-scale linear-eddy-viscosity models and the performance of the developed two-time-scale

non-linear-eddy-viscosity models. The last section will finally discuss proposals for further

advancement of the present work.

The next sections thus show that the present work carried out an extensive investigation

of different classes of turbulence models by testing them in a wide variety of non-equilibrium

flows and developed successful multiple-time-scale models which over a wide range of test

cases demonstrate their superiority and consistency, by either matching or improving the

best predictions of the existing models.

8.1 Conclusions About the Existing Turbulence Models

Thirteen existing turbulence models have been used to simulate all test cases presented in

Chapter 5. By comparing their performance in each of these test cases a number of conclusions

have been reached, which are now presented.

All turbulence models perform well in fully developed channel flows and zero pressure

gradient boundary layers and that is expected since the coefficients of all these models were

determined with reference to fully developed flows.

In homogeneous shear flows, which are shear dominated, the RST models performed

clearly better. The KS non-linear-eddy-viscosity model also performed well, because of the

sensitivity of cµ in the turbulent viscosity expression to the dimensionless shear η, rather

than its capacity to return anisotropic Reynolds stresses.

The adverse pressure gradient boundary layer cases were best predicted by the FM and

WM models, both ω based models which were developed to provide accurate prediction in

such flows, specially with regard to the velocity profile which changes significantly as the

freestream pressure is increased. None of the other models were able to follow these subtle

changes in the velocity profiles. Apart from the velocity profile, the turbulence kinetic energy
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levels are also not well captured by any of the turbulence models, specially where the pressure

gradient increases sharply. The Reynolds shear stress is reasonably well captured, specially

by the RST models and some KC MTS LEV models. Despite the mentioned drawbacks,

overall all turbulence models can be considered to perform reasonably well.

The favourable pressure gradient boundary layer cases, which reach a self-similar state,

were best predicted by the KS model. This turbulence model, together with the LS model

are the only ones expected to correctly predict the laminarization process since they are the

only ones which possess an E term (which accounts for the second derivative of the mean

velocities. Besides that, the usage of an equation for ε̃, which goes to zero at the wall and

provides an exact expression for ε at the wall, shows how underpredicted is the turbulent

kinetic energy growth rate at the wall, implying the underprediction of ε itself. Despite that,

the NG MTS LEV model also performed very well which might indicate the importance of

LRN approaches in these accelerating flows.

The normally strained flow cases were also clearly better predicted by the NLEV and

RST models. In these cases, the anisotropy of the Reynolds normal stresses clearly plays a

role. The LEV models could only be expected to perform well in predicting the turbulent

kinetic energy in the pure strain cases, however even in these cases, they fail to provide as

good predictions as the other models.

The oscillatory boundary layer case was similarly predicted by all models as far as the

velocity and Reynolds shear stress variations are concerned. The streamwise Reynolds normal

stress tended to be underpredicted by all models, including the RST ones and the other normal

stresses were well predicted by all models. This case did not represent a challenging case and

anisotropy did not seem to play an important role.

In the oscillatory pipe flow cases studied, the influence of the forcing frequency was

confirmed in affecting the turbulence. The low frequency case, where the turbulence behaved

as in a series of steady states, all models performed similarly, not matching the velocity and

turbulent profiles in every single cycle position. In the high frequency case, frozen turbulence

was predicted by all models, apart from very close to the wall, whereas experiments have not

shown such high level of frozen turbulence. In the intermediate frequency cases the amplitude

and phase shift of the velocity and turbulent quantities were reasonably well predicted by all

models, the MTS models showing perhaps some improvements. It has been observed that

apparently the use of wall functions could be distorting the predictions, since the Reynolds

number of these flows was not very high.

In the fully developed ramp up pipe flows, it has been observed that the models were

either able to predict the profile of the turbulent quantities at the centre of the pipe or at

the mid distance between the centre and the wall. None of the models managed to provide

profiles which would match the experiments at both positions. Most importantly though,

most models predicted correctly the time delay for the turbulent quantities to build up after

the acceleration of the bulk velocity.

Finally, in the backward facing step cases, the turbulence models have shown an inability

to be sensitive enough to the forcing frequency as far as the prediction of the reattachment
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point is concerned. Besides that, it was confirmed that all models, to some extent, recover

rather slowly the post-reattachment channel flow profile. The LS and FM models best pre-

dicted these flows and that again makes one wonder the influence of LRN approaches in

these flows. Again, the anisotropy of the Reynolds normal stresses did not prove to play an

important role in these backward facing step cases which are also shear dominated flows.

Generally speaking about the numerical stability of the models, the HJ, KS, TC, TS and

WM models proved to be the less stable ones. The HJ, TC and WM models also tended

to provide not well behaved profiles of the Reynolds normal stresses in some flows. The KS

model showed instability problems in only the unsteady backward facing step flows. That

was associated with its LRN approach which became too sensitive to the rapid changes in the

eddy dissipation profile at the step height where the grid was still quite refined, but there was

no longer a wall. The TS model was identified as unstable in some cases such as homogeneous

high shear flows and unsteady backward facing step flows and that was associated with its

extra source term in the εP equation.

Among the single-time-scale linear-eddy-viscosity models, the standard k−ε model proved

to behave generally well, either in its HRN form (HR model) or LRN form (LS model). The

FM model also performed reasonable well in most flows. These turbulence models are the

simplest models tested and still provided reasonable results for most flows. They particularly

failed in the homogeneous shear and normally strained flows.

The single-time-scale non-linear-eddy-viscosity models performed well in most flows, how-

ever proved to be unstable in the unsteady backward facing step cases. It was noticed that

the strain-rate-dependent cµ was an important feature in homogeneous shear flows.

Among the Reynolds-stress-transport models, the SG and GL models proved to be the

best models, although they were used together with wall functions. The HJ and WM did

not converge in the backward facing step cases and the TC model proved to be a much more

complex RST scheme which did not bring clear advantages in prediction in the cases here

tested.

Among the multiple-time-scale linear eddy viscosity models, the KC and NG models were

shown to approach asymptotic states of homogeneous shear flows and equilibrium boundary

layers, however their predicted ratios for the partition variables in these asymptotic states

were rather questionable. The CG and TS models were shown not to completely approach

these asymptotic states and that would make them perform badly in some flows, but to

improve prediction in some other flows.

That concludes the analysis of the performance of the existing turbulence models which

were assessed in this work. None of these models, from the simplest to the most complex

ones, performed consistently well in all test cases studied thus indicating the need of a model

which provides consistent good results in a wide range of non-equilibrium flows.
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8.2 Conclusions About the MTS LEV Models Developed

Two two-time-scale linear-eddy-viscosity models have been developed in this work and re-

ferred to as NT1 and NT2 models. Their essential difference is the different time scales used

in their eddy viscosity expression: νt = cµ
kkP
εP

for the NT1 model and νt = cµ
k2

εT
for the NT2

model.

Indeed, a study about the possible time-scales to be used in the turbulent viscosity has

been carried out and the ones used in the NT1 and NT2 models have been shown to be the

most appropriate ones.

The coefficients of the models have been determined by requiring the resulting predictions

to approach the asymptotic analyses of decaying grid turbulence, homogeneous shear flows

and local equilibrium boundary layers. The different expressions for the turbulent viscosity

thus implied different transport equations for the energy transfer rate εP and for the eddy

dissipation rate εT . As a consequence, the final forms of these models are quite different from

the TS model (Hanjalic et al., 1980) which is the model used as a base for their development.

The extra source term in the εP equation in the TS model, followed by the C ′P1 coefficient

and which has been identified to cause instabilities in some flows, has been found to be

unnecessary in the NT1 scheme, but essential in the NT2 scheme for the improvement of

predictions of homogeneous shear flows. In order to avoid stability problems in the NT2

model, the C ′P1 coefficient was assigned a much lower value than that used in the TS model.

A study of the turbulent kinetic energy spectrum has also been carried out and it was

identified that one would expect the two-time-scale models to split the spectrum within the

inertial subrange which was then confirmed to be the case in the NT1 and NT2 models.

The eddy viscosity coefficient, cµ, was sensitized to the dimensionless mean strain rates

which is unusual in linear-eddy-viscosity models, but which proved to be essential for the

correct prediction of homogeneous shear flows.

An important conclusion on turbulence modelling practice was reached regarding the

coefficients ensemble. It was noticed that if the resulting solutions approached the asymptotic

states in homogeneous shear flows and equilibrium boundary layer, the models would need

extra source terms to adjust to strongly non-equilibrium flows. That implied extra terms

which do not affect the asymptotic states studied should be included in order to improve

prediction, for instance, of the backward facing step flows.

Extra terms to be included into the CP1 coefficient in both NT1 and NT2 models were

determined to make them sensitive to the different forcing frequencies in the backward facing

step cases. These terms were designed not to affect shear dominated flows and therefore they

did not disturb the prediction in the other test cases. The CP1 coefficient was identified as

the most appropriate coefficient to insert these extra terms.

Another important turbulence modelling conclusion, also reached from this work is the

potential of multiple-time-scale models in improving prediction of non-equilibrium flows. The

main reason for this, besides solving transport equations for each of the partition variables, is

the availability of terms related to the spectral behaviour, such as kP
kT

and εP
εT

, which cannot
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be employed by single-time-scale models.

The main achievements of the NT1 and NT2 two-time-scale linear-eddy-viscosity models

developed here are that they perform well in all test cases, being the models which best

perfomed in the wide range of dimensionless shear values of homogeneous shear flows, the

only linear-eddy-viscosity models which predicted well the turbulent kinetic energy in the

normally strained cases and the only models which showed enough sensitivity in predicting

correctly the reattachment point in the pulsated backward facing step cases with different

forcing frequencies.

So it can be said that the developed NT1 and NT2 models are two rather simple models

which performed either as well as or even better than the existing single and multiple-time-

scale models, many of them being of much more complex formulations, thus emerging as

promising models for future use in non-equilibrium flows.

8.3 Conclusions About the MTS NLEV Models Developed

The NL1 and NL2 two-time-scale non-linear-eddy-viscosity models have been developed in an

attempt to investigate the influence of better predicting the Reynolds normal stresses. They

were based on the NT1 and NT2 two-time-scale linear-eddy-viscosity models respectively and

on the KS single-time-scale non-linear-eddy-viscosity model.

As noted above, since most of the test cases performed in this work are shear dominated

flows, it was found that in such flows, the non-linear-eddy-viscosity schemes improve predic-

tion of the Reynolds normal stresses, but do not improve significantly the prediction of mean

velocity, Reynolds shear stress and turbulent kinetic energy. That is expected though, since

in shear dominated flows only the Reynolds shear stress plays a role in the turbulent kinetic

energy production term.

In the normally strained flows, where Reynolds normal stresses are influential in the

generation rate of turbulence, Pk, the developed NL1 and NL2 models predicted best the

turbulent kinetic energy in the pure strained cases.

The prediction of the Reynolds normal stresses provided by the NL1 and NL2 models are

comparable to those provided by the KS single-time-scale non-linear-eddy-viscosity model

and the single-time-scale Reynolds-stress-transport models tested, which suggests that these

models are suitable for future use in flows with complex strain fields where the normal stresses

play a role.

In the homogeneous high shear cases the NL1 and NL2 models provided non realizable

solutions as one of the normal stresses became negative and therefore further refinement of

the non-linear stress-strain relationship is needed.

Further adjustments in the NL1 and NL2 models are also required in order to improve

prediction of unsteady backward facing step cases. The terms introduced in CP1 in the NT1

and NT2 models have been identified to cause instability problems in the NL1 and NL2

models and therefore that should become the focus of future work.
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8.4 Future Work

In order to continue this work, the two-time-scale linear-eddy-viscosity NT1 and NT2 models

developed should be assessed in other non-equilibrium flows so that one can further assess and

validate their performance. Flows such as those through diffusers under steady and unsteady

conditions, 3-D backward facing step flows, flows through square ducts and curved ducts and

impinging flows, are examples of flows which can be simulated to evaluate the performance

of the new models.

It would also be interesting to continue to compare the performance of the final versions

of the NT1 and NT2 models and their second versions in order to assess the effects of the

extra terms inserted into the CP1 coefficient. These terms have been designed to have little

or no effect in equilibrium flows, but their effect in flows where kP
kT

, εP
εT

and Pk
εT

reach values

far from equilibrium were only assessed in the pulsated backward facing step cases.

With regard to the two-time-scale non-linear-eddy-viscosity models, NL1 and NL2, two

most urgent investigations are needed: one to ensure realizable predictions in homogeneous

high shear cases and the other in order to improve prediction of the unsteady backward facing

step cases. Evaluation of the profiles of the kP
kT

, εPεT , PkεT and of the Reynolds stresses is needed

in order to better understand the reason for the instability problems and to identify the most

appropriate terms to be included into one of the models’ transport equations coefficients.

Further testing of these MTS NLEV models is also needed in other flows such as those

mentioned above to assess both performance and numerical stability.

As noted in many of the test cases, low-Reynolds-number approaches might improve the

prediction of turbulent flows which do not present a high enough Reynolds number. The

study of LRN schemes to be included in two-time-scale models is also another possible and

worthy objective. As noted in the backward facing step cases, LRN approaches might lead to

numerical instabilities. This feature must also be studied and an approach using the isotropic

part of εT , similarly to the LS and KS models, is also a possible tool to be explored.

Although non-linear-eddy-viscosity models improve prediction of the Reynolds normal

stresses, they still present inherent limitations such as those observed in the normally strained

flows when the straining was either deactivated or had its sign changed. Within the RANS

framework, Reynolds stress transport models could be expected to improve the predictions

of these flows because, as they solve transport equations for the stresses, sudden changes in

the strain field are felt by the stress generation terms (as opposed to EV models where only

the turbulent kinetic energy production rate, Pk, is considered) and so some lag is naturally

built into how the stresses themselves behave. Further improvements in the RST models

might also be achievable by introducing multi-scale modelling ideas into them, to account for

changes in the spectral shape of not only the turbulent kinetic energy, but of the individual

stresses. However, a similar approach as taken in this work (splitting each stress into large

and intermediate scale regions and solving transport equations for both and all transfer

rates) would result in a rather large set of equations. In order to apply multiple-time-scale

approaches into RST models for practical cases, it thus seems more sensible to propose
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transport equations for the Reynolds stresses contributions associated with the large scales

of motion and employ a simpler algebraic form - such as an eddy-viscosity representation - for

the intermediate/small scale contributions. This approach could be justified by arguing that

the smaller scales are likely to be more isotropic than the large scales. The eddy viscosity

used for the small scale contributions could thus be based on kT and εT , and εT could be

solved for similarly as presented in this work. With regard to the energy transfer rate between

the large and the intermediate/small scales, individually solved εP transfer rates for each of

the stresses would not be recommended due again to the large number of equations needed.

So a single εP equation could be solved, and a model developed for the contribution of this to

each stress component. In this case, the often adopted isotropic dissipation representation in

stress transport models (εij = 2
3εδij) should not, of course, be carried over and used for this

process, as the energy transfer from large to intermediate scales is very unlikely to be isotropic.

According to the Kolmogorov spectrum discussed in Chapter 6, the intermediate/small scales

where local isotropy can be considered are contained in the equilibrium range which comprises

the inertial subrange and the dissipation range. Therefore, in order to support the above

assumptions in MTS RST models, one should bear in mind that the ratio kP
kT

should be placed

within the inertial subrange as already discussed. Another modelling advantage offered by

MTS models is the availability of terms related to the spectral behaviour, such as kP
kT

and
εP
εT

, which could be used, for example, to sensitize redistribution and other processes to the

spectral shape. This is the next logical step through which the experience gained in this study

could be directed towards the refinement of second-moment closures. It will be interesting

to explore how this could be exploited within the second-moment modelling framework.

Multiple-time-scale approaches can also be extended to turbulent convective heat transfer

applications. The most straightforward way of doing that is by exploring different time scales

in the eddy diffusivity, similarly to what was done with the eddy viscosity in this work.

Spectral relations could also be studied in order to enhance prediction of turbulent heat

fluxes.

The future work proposals outlined above thus indicate that the present work has devel-

oped successful modelling strategies and has opened several other research branches which

might help the development of widely applicable turbulence models.
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