
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/45158

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap


 
 

Metabolism of methane and propane 
and the role of the glyoxylate bypass 

enzymes in Methylocella silvestris BL2 
 
 
 

Andrew Crombie 
 
 
 

A thesis submitted to the School of Life Sciences in fulfilment of the 
requirements for the degree of Doctor of Philosophy 

 
 
 
 
 

September 2011 
 
 
 
 
 

University of Warwick 
Coventry, UK 

  



ii 
 

Contents 

List of figures ............................................................................................................. ix 

List of tables ............................................................................................................. xvi 

Declaration ............................................................................................................. xviii 

Acknowlegements .................................................................................................... xix 

Abbreviations ........................................................................................................... xx 

Abstract .................................................................................................................. xxiii 

Chapter 1  Introduction ........................................................................................ 1 
1.1  The methane budget and the significance of methane in the atmosphere ........................ 2 

1.2  Factors influencing methane oxidation ............................................................................ 4 

1.3  Sources of short-chain alkanes ......................................................................................... 5 

1.4  Methane oxidising bacteria .............................................................................................. 6 

1.5  Facultative methanotrophs ............................................................................................... 8 

1.6  Methylocella spp. ............................................................................................................. 9 
1.6.1  The genome sequence of M. silvestris ................................................................ 9 

1.7  Methane monooxygenase ............................................................................................... 10 
1.7.1  The particulate methane monooxygenase ......................................................... 11 
1.7.2  The soluble methane monooxygenase ............................................................... 11 

1.8  Methanol dehydrogenase ................................................................................................ 13 

1.9  Pathways of C1 metabolism ............................................................................................ 15 

1.10  Two-carbon metabolism ................................................................................................. 20 

1.11  Expression of glyoxylate cycle enzymes in bacteria using the serine cycle .................. 23 

1.12  The wider family of soluble di-iron monooxygenases ................................................... 24 

1.13  Bacterial growth on short chain alkanes ......................................................................... 26 

1.14  Bacterial growth on propane .......................................................................................... 26 

1.15  Organisms containing multiple SDIMOs or alkane-oxidising enzymes ........................ 27 

1.16  Metabolic pathways of alkane assimilation .................................................................... 27 

1.17  Regulation of alkane oxidation ...................................................................................... 29 

1.18  Applications of SDIMO enzymes in biotechnology ...................................................... 31 

1.19  Project aims .................................................................................................................... 32 

1.20  Note on the proteomic analyses ..................................................................................... 33 

Chapter 2  Materials and methods .................................................................... 34 
2.1  Materials ......................................................................................................................... 35 

2.2  Cultivation and maintenance of bacterial strains ........................................................... 35 
2.2.1  Antibiotics ........................................................................................................ 35 
2.2.2  Escherichia coli ................................................................................................. 38 
2.2.3  Preparation and transformation of chemically competent E. coli ..................... 38 
2.2.4  Preparation and transformation of electrocompetent E. coli ........................ 39 
2.2.5  Methylocella silvestris ....................................................................................... 39 



iii 
 

2.2.6  Growth of Methylosinus trichosporium OB3b .................................................. 42 

2.3  Conjugation of M. silvestris ........................................................................................... 42 

2.4  Counter-selection with sucrose ...................................................................................... 43 

2.5  Preparation and transformation of electrocompetent M. silvestris ................................. 43 

2.6  Extraction of nucleic acids ............................................................................................. 44 
2.6.1  Genomic DNA from M. silvestris and Methylosinus trichosporium OB3b ...... 44 
2.6.2  Extraction of small quantities of genomic DNA ............................................... 45 
2.6.3  DNA extraction for clone library analysis ........................................................ 46 
2.6.4  RNA extraction from M. silvestris .................................................................... 46 
2.6.5  Small-scale plasmid extraction from E. coli (mini-prep) .................................. 46 

2.7  Nucleic acid manipulation techniques ............................................................................ 46 
2.7.1  Quantification of DNA/RNA ............................................................................ 46 
2.7.2  Polymerase chain reaction (PCR) ................................................................... 47 
2.7.3  DNA restriction digests ..................................................................................... 47 
2.7.4  DNA purification .............................................................................................. 47 
2.7.5  Preparation of linear DNA for electroporation.................................................. 48 
2.7.6  Dephosphorylation ............................................................................................ 48 
2.7.7  DNA ligations ................................................................................................... 48 
2.7.8  Blunting of DNA ............................................................................................... 48 
2.7.9  Cloning of PCR products .................................................................................. 48 
2.7.10  Clone library construction ................................................................................. 49 
2.7.11  Sequencing of DNA .......................................................................................... 49 
2.7.12  Reverse transcriptase PCR (RT-PCR) ............................................................ 49 
2.7.13  5’ Rapid amplification of cDNA ends (RACE) ............................................. 50 
2.7.14  Agarose gel electrophoresis .............................................................................. 50 

2.8  Harvesting of cells .......................................................................................................... 50 
2.8.1  Bacterial purity checks and microscopy ............................................................ 50 
2.8.2  Calculation of specific growth rate, lag time and increase in biomass ............. 51 

2.9  Preparation of cell extract .............................................................................................. 51 

2.10  Protein methods .............................................................................................................. 52 
2.10.1  Quantification .................................................................................................... 52 
2.10.2  Precipitation of proteins .................................................................................... 52 

2.11  SDS-PAGE ..................................................................................................................... 52 
2.11.1  Native gels ......................................................................................................... 53 
2.11.2  MS/MS analysis of polypeptides ....................................................................... 53 
2.11.3  Proteomic analysis by liquid-chromatography-based label-free quantitative 

mass spectrometry ............................................................................................. 54 

2.12  Oxygen electrode............................................................................................................ 54 

2.13  Enzyme assays ............................................................................................................... 55 
2.13.1  Naphthalene assay for sMMO ........................................................................... 55 
2.13.2  Nitrogenase ....................................................................................................... 55 
2.13.3  Isocitrate lyase ................................................................................................... 56 
2.13.4  Malate synthase ................................................................................................. 57 
2.13.5  Aldehyde dehydrogenase .................................................................................. 57 
2.13.6  Acyl-CoA synthetase ........................................................................................ 58 
2.13.7  NAD(P)-independent alcohol dehydrogenase ................................................... 58 
2.13.8  NAD(P)-dependent alcohol dehydrogenase ...................................................... 59 
2.13.9  Reduction of ferricyanide - acetol dehydrogenase ............................................ 59 
2.13.10  Methylmalonyl-CoA mutase ............................................................................. 60 



iv 
 

2.14  Measurement of substrates and metabolites ................................................................... 61 
2.14.1  Quantification of headspace gases .................................................................... 61 
2.14.2  Quantification of total nitrate and nitrite in cell culture medium ...................... 61 
2.14.3  Quantification of ammonium in cell culture medium ....................................... 62 
2.14.4  Quantification of succinate in cell culture medium ........................................... 62 
2.14.5  Quantification of acetate in cell culture medium .............................................. 62 
2.14.6  Quantification of propane in cell culture medium ............................................. 63 
2.14.7  Quantification of 2-propanol and acetone in cell culture medium .................... 63 
2.14.8  Quantification of 1-propanol, 2-propanol, acetone and acetol in cell culture 

medium .............................................................................................................. 64 

Chapter 3  Physiology and growth ..................................................................... 65 
3.1  Introduction .................................................................................................................... 66 

3.2  Growth of M. silvestris ................................................................................................... 66 

3.3  Culture purity ................................................................................................................. 67 

3.4  The effect of medium composition on growth ............................................................... 68 
3.4.1  Medium previously used for M. silvestris ......................................................... 68 
3.4.2  Nitrate mineral salts and nitrate concentration .................................................. 69 
3.4.3  Nitrate versus ammonium ................................................................................. 69 
3.4.4  Salt concentration .............................................................................................. 70 
3.4.5  Trace metals ...................................................................................................... 71 
3.4.6  Medium buffering capacity ............................................................................... 73 

3.5  Effect of carbon dioxide on growth ................................................................................ 75 

3.6  Substrate utilisation by M. silvestris .............................................................................. 76 

3.7  Substrate-oxidising capability – oxygen electrode studies ............................................. 76 

3.8  Growth in fermenter culture ........................................................................................... 78 

3.9  Nitrogen (N2) fixation .................................................................................................... 80 

3.10  Growth in continuous culture ......................................................................................... 82 

3.11  Antibiotic sensitivity of M. silvestris ............................................................................. 82 

3.12  Proteomic analysis.......................................................................................................... 84 

3.13  Transcription of hydroxypyruvate reductase, RubisCO and phosphoribulokinase ........ 88 

3.14  Discussion ...................................................................................................................... 88 

Chapter 4  Development of a genetic system for M. silvestris .......................... 91 
4.1  Introduction .................................................................................................................... 92 

4.2  Marker exchange mutagenesis using a pK18mobsacB-based vector introduced by 
conjugation ..................................................................................................................... 93 

4.3  DNA introduction by electroporation in M. silvestris .................................................... 98 

4.4  Gene deletion by electroporation with linear DNA ........................................................ 98 

4.5  Application and optimisation of gene deletion ............................................................. 102 

4.6  Apparent recombination between loxP sites ................................................................ 105 

4.7  Construction of M. silvestris strain AC706 .................................................................. 107 

4.8  Conclusions and future perspectives ............................................................................ 109 

Chapter 5  The glyoxylate cycle and the role of isocitrate lyase in the serine 
cycle ................................................................................................. 113 



v 
 

5.1  Introduction .................................................................................................................. 114 
5.1.1  The glyoxylate cycle and the ethylmalonyl-CoA (EMC) pathway ................. 114 
5.1.2  The serine cycle ............................................................................................... 116 
5.1.3  The distribution of the EMC pathway ............................................................. 116 

5.2  M. silvestris homologues to genes of the EMC pathway ............................................. 117 

5.3  Arrangement and annotation of genes encoding glyoxylate bypass enzymes – draft 
genome ......................................................................................................................... 118 

5.3.1  RT-PCR ........................................................................................................... 119 

5.4  Arrangement of glyoxylate bypass genes – finished genome ...................................... 120 
5.4.1  Phylogenetic relationships of M. silvestris glyoxylate bypass genes .............. 121 

5.5  5’ RACE ....................................................................................................................... 123 

5.6  Operation of the glyoxylate bypass in M. silvestris during growth on 2-carbon 
compounds ................................................................................................................... 125 

5.6.1  Assay of isocitrate lyase and malate synthase ................................................. 125 
5.6.2  Deletion of isocitrate lyase .............................................................................. 126 
5.6.3  Deletion of malate synthase ............................................................................ 128 

5.7  Operation of an isocitrate lyase positive serine cycle in M. silvestris during 1-carbon 
growth .......................................................................................................................... 130 

5.7.1  Carbon assimilation via alternatives to the serine cycle .................................. 130 
5.7.2  Deletion of serine-glyoxylate aminotransferase .............................................. 131 
5.7.3  Assay of isocitrate lyase .................................................................................. 132 
5.7.4  Growth of strain ΔICL on 1-carbon compounds ............................................. 133 
5.7.5  Rescue of C1 growth of strain ΔICL by glyoxylate ........................................ 134 

5.8  Complementation of strain ΔICL ................................................................................. 134 

5.9  Metabolism of methanol in strain ΔICL ....................................................................... 137 
5.9.1  Analysis of substrate-stimulated oxygen uptake in strain ΔICL ..................... 138 
5.9.2  Methanol dehydrogenase activity and expression in strain ΔICL ................... 139 
5.9.3  Transcription of isocitrate lyase and mxaF ..................................................... 141 
5.9.4  Comparison of MDH expression in flask-grown wild-type and strain ΔICL . 142 
5.9.5  Effect of glyoxylate and hydroxypyruvate on MDH expression..................... 143 
5.9.6  Expression of MDH in strain ΔICL under different growth conditions .......... 144 

5.10  Growth of strain ΔMS on methanol ............................................................................. 144 

5.11  Expression of MDH in wild-type M. silvestris BL2 .................................................... 145 

5.12  Growth phenotype of strain ΔSGAT ............................................................................ 146 
5.12.1  Expression of MDH in strain ΔMS and strain ΔSGAT during growth on 

succinate .......................................................................................................... 148 

5.13  Construction of an isocitrate lyase – malate synthase double mutant .......................... 148 

5.14  Discussion .................................................................................................................... 148 
5.14.1  Operation of the glyoxylate cycle in M. silvestris ........................................... 148 
5.14.2  The operation of an ICL+ variant of the serine cycle in M. silvestris .............. 149 
5.14.3  Alcohol-growth phenotype of strains ΔMS and ΔSGAT ................................ 150 
5.14.4  Malate synthase activity in methane-grown cells ............................................ 151 
5.14.5  An alternative to malate synthase in M. silvestris ........................................... 152 

5.15  Conclusions .................................................................................................................. 152 

Chapter 6  Oxidation of methane and propane .............................................. 154 
6.1  Introduction .................................................................................................................. 155 

6.2  Soluble di-iron monooxygenase (SDIMO) enzymes in M. silvestris ........................... 156 



vi 
 

6.2.1  Phylogenetic relationships of the M. silvestris SDIMOs ................................ 156 
6.2.2  Gene layout of the propane monooxygenase .................................................. 159 
6.2.3  The PrMO promoter and determination of the transcription start site ............ 160 
6.2.4  Promoters located internally in the PrMO gene cluster .................................. 161 
6.2.5  Inter-gene RT-PCR ......................................................................................... 162 
6.2.6  Transcription of the propane monooxygenase ................................................ 168 

6.3  Growth on methane and propane ................................................................................. 169 
6.3.1  Gas purity ........................................................................................................ 169 
6.3.2  Growth of M. silvestris on methane and propane ............................................ 170 

6.4  Expression of the sMMO and PrMO during growth on methane and propane ............ 170 
6.4.1  SDS-PAGE ...................................................................................................... 170 
6.4.2  Naphthalene assay ........................................................................................... 174 

6.5  Substrate utilisation during growth on methane and propane ...................................... 174 
6.5.1  Wild type growth on 2.5% methane and propane ........................................... 174 
6.5.2  Deletion of the α-subunit of the propane monooxygenase hydroxylase ......... 175 
6.5.3  Growth of strain ΔPrMO on 20% v/v methane or propane ............................. 176 
6.5.4  Growth of strain ΔPrMO on 2.5% (v/v) methane and propane ....................... 177 
6.5.5  Conversion of substrate carbon into biomass .................................................. 179 
6.5.6  Growth on 20% v/v methane and 10% v/v methane plus propane .................. 180 
6.5.7  Summary of the growth phenotype of strain ΔPrMO ..................................... 181 

6.6  Analysis of transcription and expression of PrMO subunits ........................................ 182 

6.7  Deletion of the α-subunit of the sMMO hydroxylase................................................... 184 
6.7.1  Growth on 20% and 2.5% (v/v) methane or propane ...................................... 185 
6.7.2  The capacity of strain ΔMmoX to oxidise methane ........................................ 186 

6.8  Substrate oxidation range of M. silvestris .................................................................... 187 
6.8.1  Methane- and propane-oxidising ability of cells grown on these substrates ... 187 
6.8.2  Affinity of M. silvestris for propane ................................................................ 187 
6.8.3  Potential ability to metabolise or co-metabolise alternative substrates ........... 188 
6.8.4  Relative substrate specificities of the sMMO and PrMO ................................ 190 

6.9  Inhibition of the M. silvestris SDIMOs ........................................................................ 191 

6.10  Oxidation of low levels of methane ............................................................................. 191 

6.11  Discussion .................................................................................................................... 193 
6.11.1  The PrMO promoter and gene cluster ............................................................. 193 
6.11.2  Transcription and expression of the M. silvestris SDIMOs ............................ 194 
6.11.3  Construction of mutant strains lacking the sMMO and PrMO........................ 194 
6.11.4  Oxidation of methane and propane ................................................................. 195 
6.11.5  Cometabolism by the sMMO and PrMO ........................................................ 196 

6.12  Conclusions .................................................................................................................. 196 
6.12.1  Discrimination between alkanes in SDIMO-containing organisms ................ 196 
6.12.2  Suggestions for future work ............................................................................ 197 

Chapter 7  Metabolism of propane .................................................................. 199 
7.1  Introduction .................................................................................................................. 200 

7.1.1  The initial oxidation of propane ...................................................................... 200 
7.1.2  Alcohol dehydrogenase ................................................................................... 200 
7.1.3  Terminal oxidation and metabolism via 1-propanol ....................................... 201 
7.1.4  Subterminal oxidation and metabolism via 2-propanol .................................. 202 
7.1.5  Aims ................................................................................................................ 203 

7.2  Identification of genes potentially involved in propane metabolism ........................... 203 
7.2.1  Alcohol dehydrogenase ................................................................................... 203 



vii 
 

7.2.2  Propionate metabolism .................................................................................... 204 
7.2.3  Acetone metabolism ........................................................................................ 205 
7.2.4  Genetic potential for terminal or sub-terminal propane oxidation .................. 205 

7.3  Direct measurement of the products of propane oxidation .......................................... 205 

7.4  Growth on possible products of propane metabolism .................................................. 207 
7.4.1  Growth on 1-propanol and 2-propanol ............................................................ 207 
7.4.2  Growth on 1,2-propanediol ............................................................................. 210 
7.4.3  Growth on terminal oxidation intermediates propanal and propionate ........... 210 
7.4.4  Growth on sub-terminal oxidation intermediates ............................................ 211 

7.5  SDS-PAGE ................................................................................................................... 211 

7.6  Measurement of intermediates in cell cultures ............................................................. 216 

7.7  Oxygen uptake of whole cells grown on methane, propane or succinate..................... 219 
7.7.1  Stoichiometry of substrate-induced oxygen consumption .............................. 220 
7.7.2  1,2-propanediol-related activity ...................................................................... 221 

7.8  Alcohol dehydrogenase assay ...................................................................................... 221 

7.9  Non-denaturing PAGE ................................................................................................. 223 

7.10  Metabolism of the products of propane oxidation ........................................................ 226 

7.11  Growth of strain ΔPrMO  and strain ΔMmoX on sub-terminal intermediates ............. 226 

7.12  Growth of strain ΔICL on propane, propionate, 2-propanol and acetone .................... 228 

7.13  Growth of strain ΔSGAT on propane ........................................................................... 229 

7.14  Identification of polypeptides of the methylmalonyl-CoA pathway enzymes ............. 230 

7.15  Enzyme activities – terminal pathway .......................................................................... 231 
7.15.1  Aldehyde dehydrogenase ................................................................................ 231 
7.15.2  Acyl-CoA synthetase ...................................................................................... 232 
7.15.3  Methylmalonyl CoA mutase ........................................................................... 233 

7.16  Reduction of ferricyanide by cell extracts – acetol dehydrogenase assay .................... 234 

7.17  Msil1641 ...................................................................................................................... 235 
7.17.1  Predicted function of Msil1641 ....................................................................... 235 
7.17.2  Deletion of Msil1641 ...................................................................................... 239 
7.17.3  Growth phenotype of strain Δ1641 ................................................................. 239 
7.17.4  Products of propane oxidation during growth of strain Δ1641 ....................... 241 
7.17.5  Growth of M. silvestris wild-type and strain Δ1641 on acetol ........................ 244 

7.18  Discussion .................................................................................................................... 245 
7.18.1  The products of propane oxidation in M. silvestris ......................................... 245 
7.18.2  1,2-propanediol as an intermediate in propane oxidation ............................... 247 
7.18.3  The enzymes of propane metabolism .............................................................. 248 
7.18.4  The phenotype of strain ΔICL and strain ΔSGAT .......................................... 249 
7.18.5  Growth of strain ΔPrMO on sub-terminal intermediates ................................ 250 
7.18.6  The role of Msil1641 ....................................................................................... 251 
7.18.7  The sub-terminal oxidation pathway ............................................................... 251 
7.18.8  Regulation of propane and methane oxidation ................................................ 252 
7.18.9  Conclusions ..................................................................................................... 253 

Chapter 8  Summary and future prospects .................................................... 254 
8.1  Physiology and growth ................................................................................................. 255 

8.2  Development of a genetic system ................................................................................. 255 



viii 
 

8.3  The role of the glyoxylate bypass enzymes .................................................................. 255 

8.4  Oxidation of methane and propane .............................................................................. 256 

8.5  Metabolism of propane ................................................................................................. 257 

8.6  Prospects for future research ........................................................................................ 257 

References ............................................................................................................... 260 
 
  



ix 
 

List of figures 

 
Figure 1.1. Sources of methane to the atmosphere ...................................................... 3 

Figure 1.2. Phylogenetic relationship between Methylocella spp., other 

methanotrophs and other representative α-Proteobacteria ........................................ 10 

Figure 1.3. The sMMO hydroxylase from Methylococcus capsulatus Bath .............. 12 

Figure 1.4. The arrangement of sMMO genes in Methylococcus capsulatus Bath,  

Methylosinus trichosporium OB3b and Methylocella silvestris BL2. ....................... 13 

Figure 1.5. The pathway of methane oxidation .......................................................... 15 

Figure 1.6. H4F- and H4MPT-dependent pathways of formaldehyde oxidation in 

Methylobacterium extorquens AM1 .......................................................................... 17 

Figure 1.7. The RuMP cycle ...................................................................................... 18 

Figure 1.8. The serine cycle ....................................................................................... 19 

Figure 1.9. The TCA and glyoxylate cycles. ............................................................. 22 

Figure 1.10. Activity of malate synthase in conjunction with serine cycle enzymes 

malate thiokinase and malyl-CoA lyase would result in a futile cycle. ..................... 23 

Figure 1.11. The sMMO active site in oxidised and reduced form, showing the diiron 

centre and coordinating residues. ............................................................................... 24 

Figure 1.12. The possible pathways for the initial stages of propane oxidation ........ 29 

Figure 2.1. M. trichosporium OB3b DNA in comparison to λ/HindIII standards ..... 45 

Figure 2.2. The influence of buffer pH on NAD(P)-dependent aldehyde 

dehydrogenase activity. .............................................................................................. 57 

Figure 3.1. Clone library analysis of 16S rRNA genes from M. silvestris  

fermenter-grown cells ................................................................................................ 68 

Figure 3.2. Growth of M. silvestris, a) with different concentrations of NMS salts  

or, b) with different concentrations of nitrate in DNMS medium ............................. 69 

Figure 3.3. Comparison of growth with nitrate or ammonium. ................................. 70 

Figure 3.4. Influence of supplementation of DNMS medium with between  

0 – 500 mM NaCl during growth of M. silvestris on 0.1% (v/v) methanol ............... 71 

Figure 3.5. The effect of trace elements on growth of M. silvestris on  

0.1% (v/v) methanol ................................................................................................... 73 



x 
 

Figure 3.6. Effect of increasing the concentration of phosphate buffer during  

growth on methanol with ammonium or nitrate as nitrogen source ........................... 74 

Figure 3.7. Using ammonium as nitrogen source, M. silvestris was grown on 

succinate alone or succinate plus methanol  .............................................................. 74 

Figure 3.8. Oxygen uptake rate of M. silvestris whole cells as a function of methane  

or methanol concentration .......................................................................................... 79 

Figure 3.9.  M. silvestris  fermenter growth on methane (run 10) in nitrogen-fixing 

mode. .......................................................................................................................... 80 

Figure 3.10. Nitrogenase assay .................................................................................. 81 

Figure 3.11. Growth in continuous culture on succinate ........................................... 82 

Figure 3.12. Growth of M. silvestris in the presence of a) kanamycin and  b) 

chloramphenicol ......................................................................................................... 83 

Figure 3.13. SDS-PAGE analysis of cell-free extract from M. silvestris cells  

grown on methane, succinate or acetate ..................................................................... 84 

Figure 3.14. cDNA was used as template in PCR reactions to verify transcription  

of hpr and cbbP .......................................................................................................... 88 

Figure 4.1. Arrangement of genes surrounding malate synthase (Msil1325) ............ 94 

Figure 4.2. Construction of pAC1003 ........................................................................ 95 

Figure 4.3. Homologous recombination between the M. silvestris chromosome and 

vector pAC1003 ......................................................................................................... 96 

Figure 4.4. PCR using primers MSABf and MSABr ................................................. 97 

Figure 4.5. Cloning of regions upstream and downstream of M. silvestris  

isocitrate lyase for marker exchange mutagenesis ................................................... 100 

Figure 4.6. Recombination with linear DNA ........................................................... 101 

Figure 4.7. Primers 3157Tf and 3157Tr were used to monitor replacement and 

deletion of isocitrate lyase in M. silvestris ............................................................... 101 

Figure 4.8. The sequence inserted between chromosomal positions 3470071 and 

3471766 .................................................................................................................... 102 

Figure 4.9. A mmoX deletion strain growing in liquid was diluted 1/106 and 100 µl 

spread on DAMS plates and incubated with methanol. ........................................... 104 

Figure 4.10. Efficiency of gene replacement by electroporation with linear DNA,  

as a function of DNA mass per reaction. ................................................................. 105 

Figure 4.11. Primers PrmTf and PrmTr were used to amplify the mutated DNA 

region from colonies and liquid culture of strain ΔPrMO and the wild-type .......... 106 



xi 
 

Figure 4.12. Bands shown arrowed in Figure 4.11 were re-amplified in a second 

round of PCR using the same primers ..................................................................... 106 

Figure 4.13. Construction of M. silvestris strain AC706 ......................................... 108 

Figure 4.14. The sequence at position 598970 of the M. silvestris chromosome 

compared with the consensus dif sequence .............................................................. 110 

Figure 5.1. The glyoxylate cycle .............................................................................. 114 

Figure 5.2. The ethylmalonyl-CoA pathway ........................................................... 115 

Figure 5.3. The serine cycle ..................................................................................... 117 

Figure 5.4. RT-PCR was used to identify transcription of  isocitrate lyase,  malate 

synthase and both isocitrate lyase genes as one mRNA molecule ........................... 119 

Figure 5.5. Gene layout of malate synthase and isocitrate lyase ............................. 120 

Figure 5.6. Unrooted phylogenetic tree showing the relationship of the M. silvestris 

isocitrate lyase with homologous enzymes from other organisms .......................... 122 

Figure 5.7. First-round and nested second round PCR amplification of cDNA 

synthesised from RACE primer IclRa1.................................................................... 124 

Figure 5.8. Isocitrate lyase upstream sequence ........................................................ 124 

Figure 5.9. Growth of M. silvestris wild-type and strain ΔICL on acetate, ethanol, 

pyruvate, or succinate............................................................................................... 127 

Figure 5.10. Specific growth rate and increase in biomass of strain ΔICL.............. 128 

Figure 5.11. Growth of wild-type M. silvestris and strain ΔMS on succinate or 

acetate ....................................................................................................................... 129 

Figure 5.12. RT-PCR using cDNA synthesised from cells grown on methanol or 

succinate and primers located in cbbP ..................................................................... 130 

Figure 5.13. The M. silvestris gene cluster including Msil1714, annotated as  

serine-glyoxylate aminotransferase. ......................................................................... 131 

Figure 5.14. Growth of M. silvestris strain ΔSGAT on one-, two- and four-carbon 

compounds. .............................................................................................................. 132 

Figure 5.15. Growth of M. silvestris wild-type and strain ΔICL on methane,  

MMA, or methanol .................................................................................................. 133 

Figure 5.16. Vector pAC105 for complementation of strain ΔICL ......................... 135 

Figure 5.17. PCR  used to verify strain ΔICL complemented with pAC105 ........... 136 

Figure 5.18. Growth of M. silvestris wild type and strain ΔICL on succinate or 

succinate plus methanol ........................................................................................... 138 

Figure 5.19. Oxygen-uptake rates of M. silvestris wild-type and strain ΔICL ........ 139 



xii 
 

Figure 5.20. SDS-PAGE demonstrated lack of expression of MDH in  

M. silvestris strain ΔICL .......................................................................................... 140 

Figure 5.21. RT-PCR using cDNA synthesised from RNA extracted from wild-type, 

strain ΔICL and strain ΔICL-pAC105 grown on succinate or methanol ................. 141 

Figure 5.22. Strain ΔICL exhibited reduced MDH expression and activity in 

comparison to the wild-type when grown on succinate in flasks ............................ 142 

Figure 5.23. Strain ΔICL was grown on succinate (5 mM) with glyxoxylate or 

hydroxypyruvate ...................................................................................................... 143 

Figure 5.24. Growth of strain ΔMS on methanol ..................................................... 145 

Figure 5.25. Expression of MDH was evaluated in cells grown on  

different substrates ................................................................................................... 146 

Figure 5.26. Growth of strain ΔSGAT on ethanol, succinate, or succinate plus 

methanol ................................................................................................................... 147 

Figure 5.27. SDS-PAGE demonstrating that MDH was expressed in strains  

ΔMS and ΔSGAT during growth on succinate ........................................................ 148 

Figure 6.1. Partial sequence alignment of deduced amino acid sequence of the 

hydroxylase α-subunits from SDIMOs of different groups ..................................... 157 

Figure 6.2. Phylogenetic relationships between the two M. silvestris SDIMOs  

and other representative enzymes ............................................................................ 158 

Figure 6.3. The sMMO and PrMO gene clusters ..................................................... 159 

Figure 6.4. σ54 promoters identified upstream of the sMMO and PrMO ................. 160 

Figure 6.5. PCR amplicons generated using RACE and nested PCR ...................... 161 

Figure 6.6. PCR spanning the inter-gene regions of the PrMO gene cluster ........... 163 

Figure 6.7. The PrMO gene cluster .......................................................................... 163 

Figure 6.8. PCR spanning PrMO-cluster inter-gene regions ................................... 165 

Figure 6.9. PCR spanning PrMO-cluster inter-gene regions ................................... 166 

Figure 6.10. As Figure 6.9, except gene-specific primer GSP46 used for cDNA 

synthesis ................................................................................................................... 166 

Figure 6.11. Construction of promoter probe vector pAC304 ................................. 168 

Figure 6.12. M. silvestris cells containing plasmid pMHA203 or plasmid pAC304 

were grown on methane, propane or methanol ........................................................ 169 

Figure 6.13. SDS-PAGE gels loaded with soluble extract of cells grown on  

succinate, propane, methane, or a mixture of methane and propane ....................... 171 

Figure 6.14. SDS-PAGE gel bands submitted for analysis. ..................................... 172 



xiii 
 

Figure 6.15. Growth and gas consumption of M. silvestris during growth on a 

mixture of methane and propane (2.5% v/v each). .................................................. 175 

Figure 6.16. Growth of M. silvestris strain ΔPrMO on methanol, ethanol,  

or acetate. ................................................................................................................. 176 

Figure 6.17. Growth of M. silvestris wild-type and strain ΔPrMO on methane  

or propane (20% v/v) ............................................................................................... 177 

Figure 6.18. Growth of strain ΔPrMO on a mixture of methane and propane  

(2.5% v/v each). ....................................................................................................... 178 

Figure 6.19. Growth of M. silvestris wild-type and strain ΔPrMO on 2.5% v/v 

methane or propane .................................................................................................. 179 

Figure 6.20. Growth of M. silvestris strain ΔPrMO on a mixture of methane and 

propane (2.5% v/v each) .......................................................................................... 179 

Figure 6.21. Growth and substrate consumption of M. silvestris wild-type and  

strain ΔPrMO were used to compare the conversion of carbon into biomass. ........ 180 

Figure 6.22. Growth of M. silvestris wild-type and strain ΔPrMO on methane 

compared with growth on methane and propane ..................................................... 181 

Figure 6.23. Transcription of the PrMO hydroxylase α- and β-subunits and the  

final gene of the cluster ............................................................................................ 182 

Figure 6.24. SDS-PAGE analysis of cell-free extract of wild-type and strain ΔPrMO 

grown on a mixture of methane and propane ........................................................... 183 

Figure 6.25. Growth of M. silvestris strain ΔMmoX on methanol, propane or 

methane .................................................................................................................... 185 

Figure 6.26. Growth of M. silvestris strain ΔMmoX on methane, methane plus 

propane, or propane .................................................................................................. 186 

Figure 6.27. Consumption of methane and propane in M. silvestris wild-type and 

strain ΔMmoX .......................................................................................................... 186 

Figure 6.28. Activity of propane-grown cells in response to addition of various 

amounts of propane in the oxygen electrode ............................................................ 188 

Figure 6.29. Acetylene inhibited both growth and substrate gas oxidation ............. 191 

Figure 6.30. Growth and gas concentrations of wild-type M. silvestris supplied  

with a mixture of methane and propane at dissimilar concentrations ...................... 192 

Figure 6.31. The relative rates of methane and propane consumption relative to their 

headspace concentrations during growth on methane and propane ......................... 193 

Figure 7.1. Pathways of propionate metabolism ...................................................... 201 



xiv 
 

Figure 7.2. Sub-terminal oxidation of propane and metabolism via acetone........... 202 

Figure 7.3. Consumption of 1-propanol in vials containing methane- or propane-

grown cells incubated with 1 mM 1-propanol ......................................................... 206 

Figure 7.4. Propane consumption by cells incubated with substrate and  

air-saturated buffer. .................................................................................................. 207 

Figure 7.5. Growth of M. silvestris on 1-propanol or 2-propanol. ........................... 208 

Figure 7.6. 1-propanol completely inhibited growth on propane when the  

inoculum was methanol-grown cells ........................................................................ 208 

Figure 7.7. Cultures using succinate-grown inoculum were inhibited by the presence 

of 1-propanol ............................................................................................................ 209 

Figure 7.8. 1-propanol was able to support growth when propane-grown cells were 

used as inoculum ...................................................................................................... 210 

Figure 7.9. Growth on propionate (5 mM) ............................................................... 211 

Figure 7.10. 15% and 10% gels loaded with protein from cells grown on acetone,  

2-propanol, succinate, propane, or methane. ........................................................... 213 

Figure 7.11. SDS-PAGE gel band submitted for analysis by mass-spectrometry ... 213 

Figure 7.12. SDS-PAGE gels loaded with protein from cells grown on acetone,  

2-propanol, propane, methane, or succinate ............................................................. 214 

Figure 7.13. SDS-PAGE gel loaded with protein from cells grown on acetone,  

2-propanol, succinate, propane, or methane, or acetate. .......................................... 214 

Figure 7.14. Growth of M. silvestris on propane in 2 l fermenter culture, and 

accumulation of 2-propanol and acetone ................................................................. 217 

Figure 7.15. 2-propanol produced by cultures growing on 4% (v/v) propane ......... 218 

Figure 7.16. 2-propanol present as a percentage of the propane consumed. ........... 219 

Figure 7.17. Oxygen uptake of M. silvestris cells grown on methane, propane or 

succinate ................................................................................................................... 220 

Figure 7.18. Stoichiometry of oxygen uptake .......................................................... 221 

Figure 7.19. Non-denaturing gels stained by incubation with 1-propanol or 2-

propanol in the presence of PMS and NBT ............................................................. 224 

Figure 7.20. SDS-PAGE gel band submitted for analysis by mass-spectrometry ... 225 

Figure 7.21. Growth of M. silvestris wild-type and strain ΔPrMO on acetone or 

acetol ........................................................................................................................ 227 

Figure 7.22. Growth of strain ΔPrMO on 2-propanol compared with the  

wild-type  ................................................................................................................. 228 



xv 
 

Figure 7.23. Growth of M. silvestris wild-type and strain ΔICL on propane  or  

2-propanol ................................................................................................................ 229 

Figure 7.24. Growth of strain ΔSGAT on propane or succinate .............................. 230 

Figure 7.25. NAD+-dependent aldehyde dehydrogenase activity ............................ 232 

Figure 7.26. Acyl-CoA synthetase activity .............................................................. 233 

Figure 7.27. Acetol dehydrogenase activity ............................................................. 234 

Figure 7.28. The location of ORFs Msil1645 – Msil1641, downstream of the PrMO 

structural genes. ....................................................................................................... 235 

Figure 7.29. The N-terminal region of the translation of Msil1642......................... 237 

Figure 7.30. Alignment of Msil1641 with homologous sequences from other 

organisms. ................................................................................................................ 239 

Figure 7.31. Growth of M. silvestris wild-type and strain Δ1641 on methanol,  

D-gluconate or methane ........................................................................................... 240 

Figure 7.32. Growth of M. silvestris wild-type and strain Δ1641 on propane or  

2-propanol ................................................................................................................ 240 

Figure 7.33. Quantification of 2-propanol, acetone and acetol in cultures of  

M. silvestris wild-type and strain Δ1641 grown on propane. .................................. 242 

Figure 7.34. Data from Figure 7.33 were used to plot the total of metabolites  

(2-propanol, acetone and acetol) against the production of biomass. ...................... 243 

Figure 7.35. Growth of M. silvestris wild-type and strain Δ1641 on acetone  

or acetol .................................................................................................................... 244 

Figure 7.36. Growth of strain Δ1641 on acetone ..................................................... 245 

  



xvi 
 

List of tables 

Table 1.1. Characteristics of known methanotroph genera .......................................... 7 

Table 1.2. The SDIMO groups ................................................................................... 25 

Table 2.1. Bacterial strains and plasmids used in this study ...................................... 36 

Table 2.2. 16S rRNA gene, sequencing and M13 primers......................................... 37 

Table 3.1. Trace elements present in DNMS medium ............................................... 72 

Table 3.2. Substrate utilisation by M. silvestris ......................................................... 77 

Table 3.3. Oxygen consumption rate of methane-grown whole cells in response to 

addition of the substrates shown ................................................................................ 78 

Table 3.4. M. silvestris growth in fermenter culture during this project .................... 81 

Table 3.5. Core metabolic gene products identified by SDS-PAGE ......................... 86 

Table 4.1. Electroporation of M. silvestris with pMHA203 plasmid DNA ............... 98 

Table 4.2. Summary of mutant strains constructed .................................................. 103 

Table 4.3. Primers used in the work described in this chapter ................................. 111 

Table 5.1. M. silvestris genome BLAST hits to ECM pathway genes from 

Rhodobacter sphaeroides ......................................................................................... 118 

Table 5.2. Top BLAST hits to SWISS-PROT/TrEMBL database and protein 

annotation of translated sequences of malate synthase and isocitrate lyase ............ 123 

Table 5.3. Activity of isocitrate lyase and malate synthase ..................................... 126 

Table 5.4. Growth of M. silvestris BL2 wild type and strain ΔICL on one-, two-, 

three- and four-carbon compounds .......................................................................... 128 

Table 5.5. Growth of M. silvestris strain ΔMS on one-, two- and four-carbon 

compounds ............................................................................................................... 129 

Table 5.6. Top BLAST hits to the SWISS-PROT/TrEMBL database and protein 

annotations of translated sequences of serine-glyoxylate aminotransferase ............ 131 

Table 5.7. Growth of M. silvestris strain ΔSGAT on one-, two- and four-carbon 

compounds ............................................................................................................... 132 

Table 5.8. Growth of strain ΔICL on glyoxylate, methanol, or methanol plus 

glyoxylate ................................................................................................................. 134 

Table 5.9. Primer pairs used in PCR reactions shown in figure Figure 5.17.  ......... 136 



xvii 
 

Table 5.10. Growth of complemented strain ΔICL-pAC105  .................................. 137 

Table 5.11. Assay for PQQ-containing dehydrogenase ........................................... 140 

Table 5.12. Growth of strain ΔSGAT on ethanol, succinate or succinate plus 

methanol ................................................................................................................... 147 

Table 5.13. Primer sequences used in this chapter................................................... 153 

Table 6.1. Top BLAST hits to the SWISS-PROT/TrEMBL database and protein 

annotations of translated sequences of the PrMO gene cluster ................................ 159 

Table 6.2. Polypeptide identifications of the gel bands shown in Figure 6.14 ........ 173 

Table 6.3. Growth of M. silvestris wild-type and strain ΔPrMO on methane or 

propane (20% v/v) .................................................................................................... 176 

Table 6.4. Specific growth rate, lag time and increase in biomass of M. silvestris 

wild-type and strain ΔPrMO during growth on methane, propane, or a mixture .... 178 

Table 6.5. Polypeptide identifications of bands shown in Figure 6.24 .................... 184 

Table 6.6. Methane- and propane-induced specific oxygen consumption rate ........ 187 

Table 6.7. Oxidation of non-growth substrates by M. silvestris .............................. 190 

Table 6.8. Primer sequences used in this chapter. .................................................... 198 

Table 7.1. Similarities of predicted M. silvestris amino acid sequences with those  

of characterised methylmalonyl-CoA pathway enzymes. ........................................ 204 

Table 7.2. Polypeptide identifications from gels. .................................................... 215 

Table 7.3. Quinoprotein ADH activity ..................................................................... 222 

Table 7.4. NAD(P)+- dependent ADH activity ........................................................ 222 

Table 7.5. Polypeptide identifications for the band shown in Figure 7.20. ............. 226 

Table 7.6. Growth of M. silvestris wild-type and strain ΔPrMO on 2-propanol ..... 227 

Table 7.7. Growth of M. silvestris wild-type and strain ΔICL on propane. ............. 229 

Table 7.8. Methylmalonyl-CoA pathway polypeptides detected. ............................ 231 

Table 7.9. PrMO gene cluster BLAST hits .............................................................. 236 

Table 7.10. Growth of the wild-type and strain Δ1641.. .......................................... 241 

 
  



xviii 
 

Declaration 

 

I declare that the work presented in this thesis was conducted by me under the direct 
supervision of Professor J. Colin Murrell, with the exception of those instances 
where the contribution of others has been specifically acknowledged. None of the 
work presented has been previously submitted for any other degree. Some of the data 
presented in Chapters 3 and 4 have been published as part of manuscripts (Chen, Y. 
et al. Complete genome sequence of the aerobic facultative methanotroph 
Methylocella silvestris BL2. J. Bacteriol. 192, 3840-3841, (2010), and Crombie, A., 
and Murrell, J.C. (2011) Development of a system for genetic manipulation of the 
facultative methanotroph Methylocella silvestris BL2. Methods Enzymol 495: 119-
133). 
 

 

 
        Andrew Crombie 

 

 



xix 
 

Acknowlegements 

I would like to acknowledge the expert guidance and generous support of my 

supervisor, Professor Colin Murrell. I would like to thank past and present members 

of the Murrell Lab, members of other research groups and the departmental support 

staff at the University of Warwick, for help and advice during my PhD. I am indebted 

to Professors Dave Hodgson (University of Warwick) and Chris Anthony (University 

of Southampton) for expert advice and useful discussions. I thank Vibhuti Patel, 

Nisha Patel, Sue Slade and the Biological Mass Spectrometry and Proteomics Group 

at the University of Warwick for proteomic analysis. 

 

  



xx 
 

Abbreviations 

 

ADH  alcohol dehydrogenase 
AmpR  ampicillin (resistance) 
ANOVA analysis of variance 
ADP  adenosine diphosphate 
AMP  adenosime monophosphate 
ATP  adenosine triphosphate 
BHR  broad-host range 
BIS  N,N'-methylenebisacrylamide 
BIS TRIS 2-[Bis-(2-hydroxyethyl)-amino]-2-hydroxymethyl-propane-1,3-diol 
BLAST basic local alignment search tool 
bp  base pairs 
BSA  bovine serum albumin 
CBB  Calvin Benson Bassham cycle 
CHES  2-(cyclohexylamino)ethanesulfonic acid 
CTAB  cetyl trimethylammonium bromide 
DAMS  dilute ammonium mineral salts 
Da  Dalton 
DCPIP 2,6-dichlorophenolindophenol 
DH  dehydrogenase 
DMF  dimethylformamide 
DMSO dimethylsulfoxide 
DNA  deoxyribonucleic acid 
DNase  deoxyribonuclease 
DNMS  dilute nitrate mineral salts 
dNTP  deoxynucleotide triphosphate 
dO2  dissolved oxygen 
DTT  dithiothreitol 
dw  dry weight 
EDTA  ethylendiaminetetraacetic acid 
EMC  ethylmalonyl-CoA 
ESI  electrospray ionisation 
FID  flame ionisation detector 
FAD  flavin-adenine dinucleotide 
g  gram / acceleration due to gravity 
GC  gas chromatography 
GFP  green fluorescent protein 
Gm(R)  gentamicin (resistance) 
h  hour 
H4F  tetrahydrofolate 
H4MPT tetrahydromethanopterin 
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
ICDH  isocitrate dehydrogenase 



xxi 
 

ICL  isocitrate lyase 
KDPG  2-keto-3deoxy-6-phosphogluconate 
Km(R)  kanamycin (resistance) 
l  litre  
LacZ  β-galactosidase 
LC/ESI liquid chromatography electrospray ionisation 
LDH  lactate dehydrogenase 
M  molar 
MCS  multiple cloning site 
MDH  methanol dehydrogenase 
MES  2-(N-morpholino)ethanesulfonic acid 
MIC  minimum inhibitory concentration 
mg  milligram 
min  minute 
MK  myokinase 
ml  millilitre 
mM  millimolar 
mol  mole 
MOPS  3-(N-morpholino)propanesulfonic acid 
mRNA messenger RNA 
MS  malate synthase  
MSA  malate synthase (acetate assimilation) 
MSG  malate synthase (glycolate assimilation) 
MS/MS tandem mass spectrometry 
MTBE  methyl tert-butyl ether 
NAD+

  nicotinamide adenine dinucleotide (oxidised form) 
NADH  nicotinamide adenine dinucleotide (reduced form) 
NADP+ nicotinamide adenine dinucleotide phosphate (oxidised form) 
NADPH nicotinamide adenine dinucleotide phosphate (reduced form) 
NCBI  National Centre for Biotechnology Information 
ng  nanogram 
NMS  nitrate mineral salts 
NTC  no-template control 
OD540  optical density at 540 nm 
orf  open reading frame 
ori  origin of replication 
oriT  origin of transfer 
PAGE  polyacrylamide gel electrophoresis 
PCR  polymerase chain reaction 
PEP  phosphoenolpyruvate 
PIPES  1,4-piperazinediethanesulfonic acid 
PK  pyruvate kinase 
PMS  phenazine methosulfate 
PQQ  pyrroloquinoline quinone 
PRK  phosphoribulokinase 
pMMO particulate methane monooxygenase 
PrMO  propane monooxygenase 
RBS  ribosomal binding site 
RFLP  restriction fragment length polymorphism 
RNA  ribonucleic acid 



xxii 
 

RNase  ribonuclease 
rRNA  ribosomal ribonucleic acid 
RT-PCR reverse transcriptase PCR 
RubisCO ribulose 1,5-bisphosphate carboxylase-oxygenase 
RuMP  ribulose monophosphate 
s  seconds 
SD  Shine-Dalgarno 
SDIMO soluble diiron monooxygenase 
SDS  sodium dodecyl sulphate 
SGAT  serine-glyoxylate aminotransferase 
sMMO soluble methane monooxygenase 
TAE  tris acetate EDTA 
TBE  tris borate EDTA 
TCA  trichloroacetic acid / tricarboxylic acid 
TCE  trichloroethylene 
TE  tris EDTA 
TEMED N,N,N',N'-tetramethyl-ethane-1,2-diamine 
TMSCHN2 trimethylsilyldiazomethane 
Tricine N-(2-Hydroxy-1,1-bis(hydroxymethyl)ethyl)glycine 
Tris  tris(hydroxymethyl)aminomethane 
v/v  volume to volume 
w/v  weight to volume 
X-gal  5-bromo-4-chloro-3-indoyl-β-D-galactoside 
  



xxiii 
 

Abstract 

Methylocella silvestris BL2 is a moderately acidophilic facultative methanotroph 
isolated from forest soil in 2003. Uniquely, it has the ability to grow on a wide range 
of multi-carbon compounds in addition to methane. An analysis of growth conditions 
identified the requirements for robust and predictable growth on a wide range of 
substrates. A simple and effective method of targeted mutagenesis was developed, 
which relies on electroporation with a linear DNA fragment, and several strains with 
deletions of key enzymes were constructed using this method. Deletion of isocitrate 
lyase demonstrated that this enzyme is required for growth on both one-carbon and 
two-carbon compounds. The second enzyme of the glyoxylate cycle, malate synthase, 
was shown to be essential for growth on two-carbon compounds. However, 
surprisingly, deletion of glyoxylate cycle enzymes had a dramatic effect on 
expression of methanol dehydrogenase. Possible causes of this effect are discussed. 
Surprisingly, M. silvestris was able to grow on propane and the presence and 
expression of a gene cluster encoding a putative propane monooxygenase was 
confirmed. This enzyme was found to be a second soluble diiron monooxygenase 
(SDIMO) with homology to the propane monooxygenase from Gordonia TY5, 
identifying M. silvestris as the first known methanotroph to contain SDIMOs from 
more than one group. Deletion of these enzymes in turn was used to determine the 
requirement for each during growth on methane or propane. The soluble methane 
monooxygenase (sMMO) was found to be capable of oxidising propane, whereas the 
propane monooxygenase (PrMO) was unable to oxidise methane. However, although 
a strain lacking the PrMO was capable of growth on 2.5% (v/v) propane, it was 
unable to grow on this gas at 20% (v/v), and at 2.5%, assimilation into biomass was 
less efficient in comparison to the wild-type. Evidence is presented that products of 
oxidation of propane by the sMMO may be toxic to the cell or inhibitory to growth in 
the absence of the PrMO. Both the sMMO and the PrMO were found to be capable of 
oxidation of a wide range of aliphatic and aromatic compounds, including 
xenobiotics, suggesting a possible role in bioremediation. M. silvestris BL2 was 
found to oxidise propane at both terminal and sub-terminal positions, resulting in 1-
propanol and 2-propanol respectively, and biochemical methods were used to assay 
the enzymes of terminal and sub-terminal pathways. Assimilation of 1-propanol was 
found to be by the methylmalonyl-CoA pathway, and the data suggested that 2-
propanol was oxidised to acetone and acetol. The final gene of the PrMO gene-
cluster, predicted to encode a flavin adenine dinucleotide (FAD)-containing enzyme 
with homology to characterised membrane-bound D-gluconate dehydrogenase from 
Gluconobacter spp., was found to be essential for growth on 2-propanol and acetone 
and may be involved in the oxidation of acetol during propane metabolism by the 
sub-terminal pathway. 
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Chapter 1  
 

Introduction 
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1.1 The methane budget and the significance of methane in the atmosphere 

Methane occurs in the atmosphere in the highest concentration of any of the organic 

trace gases, and increased from about 715 ppb in pre-industrial times to 1,774 ppb in 

2005. The recent values are more than double the highest of the past 650,000 years, 

according to ice core records (IPCC, 2007). Since methane is a much more effective 

greenhouse gas than carbon dioxide, (approximately 24 times mol for mol (Wuebbles 

and Hayhoe, 2002)), the resultant radiative forcing is about 0.48 compared to 1.66 

Wm-2 for CO2 (IPCC, 2007). Inclusion of indirect forcings due to formation of 

methane-derived stratospheric water vapour and ozone in the troposphere increases 

the forcing due to methane to 0.8 Wm-2, approximately half the value due to CO2 

(Hansen et al., 2007).  The growth rate of atmospheric methane decreased from the 

early 1980s until the end of the century and then remained close to zero until 2006, 

before resuming recently (Bousquet et al., 2006; Rigby et al., 2008; Dlugokencky et 

al., 2011). The short atmospheric lifetime (approximately 8 yr (Lelieveld et al., 1998)) 

and relatively minor imbalance between sources and sinks suggests that reduction in 

methane emissions would have rapid and cost-effective benefits for climate (Hansen 

et al., 2000). Clearly, effective mitigation strategies require a thorough understanding 

of the global- and regional-scale budget and knowledge of the response of source and 

sink elements to changing conditions. Estimates of anthropogenic and natural 

methane emissions total approximately 574 Tg CH4 yr-1, (Reay et al., 2010), and are 

shown in Figure 1.1. The major sources are biological, in particular the anaerobic 

conversion of substrates such as H2, CO2 and acetate, arising from the degradation of 

organic matter, by methanogenic Archaea, although methane is also emitted from 

natural gas and coal deposits, mainly during extraction processes. However, 

considerable uncertainties exist in respect of methane sources. Recently, a significant 

source term (> 60 Tg yr-1) from plants was proposed (Keppler et al., 2006). Although 

controversial (Nisbet et al., 2009), recent research suggests that plants may emit 

methane either as a product of pectin degradation, by transpiration of anaerobically-

produced methane in soils, or by colonisation of above-ground  plant structures by 

methanogens (Keppler et al., 2008; Martinson et al., 2010; Rice et al., 2010). 

Geological sources such as macro- and micro-seeps, mud volcanoes and geothermal 

areas have recently been estimated at 45 - 64 Tg y-1, (Kvenvolden and Rogers, 2005; 



3 
 

Etiope et al., 2008), whereas they had previously been ignored or identified as much 

less significant. 

 

 

Figure 1.1. Sources of methane to the atmosphere. Compiled using data from Reay et al., 
(2010). 

 

 

Global sinks of methane total 536 Tg CH4 yr-1, of which over 90% is atmospheric 

photochemical oxidation by hydroxyl radicals, predominately in the troposphere but 

also in the stratosphere (Lelieveld et al., 1998), and the remainder (30 Tg CH4 yr-1) is 

oxidation by soils. Methane produced by methanogenic bacteria during the 

decomposition of organic material in anaerobic conditions is oxidised in aerobic 

zones by methane oxidising bacteria (methanotrophs). This can result in soils 

constituting either a source or a sink for methane. Water-saturated or submerged soils 

(wetlands), ricefields and landfill sites generally comprise methane sources, whereas 

upland soils consume atmospheric methane and constitute around 10% of the global 

methane sink (Le Mer and Roger, 2001). Of course, methanotrophs are not only 

active in soils which constitute a net methane sink, and these soils may often be 

distinguished from soils which emit methane by their low levels of methane 

production. It has been estimated that, overall, consumption in soils is greater than 

total net emissions from all sources (Reeburgh, 2007). Therefore, most methane, 

whether of geological origin or produced in anoxic zones by methanogens, is 

oxidised nearer the soil surface where oxygen is present, before it reaches the 

atmosphere, and the soil sink term (30 Tg CH4 yr-1) represents less than 10% of total 
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biologically oxidised methane. The low-affinity methanotrophs responsible are well-

characterised compared to their high-affinity relatives associated with methane-

consuming soils (Kolb et al., 2005). 

 

1.2 Factors influencing methane oxidation 

As well as being an important greenhouse gas, methane is also subject to feedback 

mechanisms resulting from climate change. Anaerobic methanogenesis is highly 

sensitive to temperature change (Conrad, 1996), such that the sulfate aerosol 

produced by the 1991 eruption of Mt Pinatubo, which caused a temporary 0.5° C 

average global fall in temperature, is estimated to have lessened 1992 methane 

emissions from wetlands by 2 Tg (Lelieveld et al., 1998). Alternatively, drying of 

wetlands and a lowering of the water table might extend the aerobic zone in which 

methanotrophs operate, thereby reducing emissions to the atmosphere. 

Land-use change can alter methane uptake or emission from soils (Knief et al., 2005). 

Addition of fertiliser often reduces uptake of atmospheric methane (Conrad, 1996), 

since ammonium competitively inhibits methane oxidation by methanotrophs and 

nitrifying bacteria (Steudler et al., 1989). Methanotroph community structure has 

been investigated in many environments and key active organisms identified by 

cultivation-independent techniques such as DNA- or RNA- stable isotope probing 

(SIP) (Chen and Murrell, 2010). Numerous strains have been identified and isolated 

since the groundbreaking work of Whittenbury and colleagues in the 1970s. However, 

the response of these organisms in situ to changing environmental conditions is hard 

to predict. The largest natural source of methane is wetlands. Large amounts of 

carbon (approximately 1000 Gt) are contained in permafrost-underlain Arctic 

wetlands in northern latitudes (Zimov et al., 2006), and these ecosystems are 

predicted to change in response to climate warming, as thawing of permafrost will 

release organic matter and alter water levels. Here, carbon uptake and emission are 

approximately balanced, but 5% of carbon is emitted in the form of methane 

(Anisimov, 2007). Change in the relative amounts of carbon released as carbon 

dioxide or methane may have very significant long-term effects on the global climate, 

yet the precise way in which the organisms involved (methanogens, methanotrophs, 

heterotrophs) will respond to moisture content, temperature, soil diffusion 
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characteristics, availability of alternative carbon sources and other environmental 

factors is not known.  

1.3 Sources of short-chain alkanes  

Gas emanating from the mid-ocean ridge hydrothermal systems derives from 

sediment-free environments and the methane from these sources may be considered 

abiogenic. This source is quantitatively insignificant (Schoell, 1988), and the vast 

majority of natural gas derives principally through either the thermal or microbial 

degradation of organic material. Thermogenic gas, which comprises 80% of 

commercial natural gas, contains, in addition to methane, C2-C4 alkanes, which can 

comprise 10% or more by volume (Whiticar, 1994), depending on the thermal 

maturity of the source rock. Microbially-produced gas is more predominantly 

methane, although microbial formation of ethane and propane has also been 

conclusively demonstrated (Fukuda et al., 1984; Oremland et al., 1987; Devai and 

Delaune, 1996; Marrin and Adriany, 1999; Taylor et al., 2000; Hinrichs et al., 2006). 

Ethane and propane flux to the atmosphere is estimated at approximately 10 Tg y-1 

each (reported in Etiope and Ciccioli  (2009), although these authors suggest this is 

likely to be an underestimate) but previous reports have estimated the propane flux as 

up to five times higher (Boissard et al., 1996). The oceans were reported to contribute 

2.1 Tg y-1 to the flux of C2 – C4 hydrocarbons (Plass-Dülmer et al., 1995). Slightly 

over half of global emissions are of anthropogenic origin, and geologic (thermogenic) 

fluxes for ethane and propane are approximately 2 – 4 and 1 – 2.4 Tg y-1 respectively 

(Etiope and Ciccioli, 2009). The major sink, as for methane, is atmospheric oxidation 

by OH radicals. However, the residence times for ethane and propane are much lower 

than for methane, (days rather than years) leading to atmospheric mixing ratios 

orders of magnitude less (Clarkson et al., 1997). 

As mentioned in Section 1.1, thermogenic gas emanating from the Earth’s crust, 

mainly from macro seeps, has been largely ignored historically, but may contribute a 

significant proportion of the methane flux. Although terrestrial macroseeps comprise 

a large and sometimes dramatic source of hydrocarbons to the atmosphere, a more 

ubiquitous yet unnoticed source may be microseeps, which are estimated to cover up 

to 15% of global drylands and contribute 10 Tg y-1 to the methane budget (Etiope and 

Klusman, 2010). This gas also contains the expected non-methane low molecular 

mass hydrocarbons. Although some researchers have investigated microseepage in 
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petroleum reserves, (for example Klusman (2006)), the global extent of 

microseepage is subject to large uncertainties. Klusman detected high methane and 

other hydrocarbon concentrations in 10 m deep bore holes (up to 17% methane and 

0.5% propane), and the isotopic and depth profiles indicated high rates of oxidation 

in the near-surface zone. Aerobic oxidation of light alkanes has also been detected in 

marine environments (Kinnaman et al., 2007; Valentine et al., 2010). In summary, 

the major sources of short chain alkanes are probably thermogenic, with an additional 

microbially-produced element, and, as is the case for methane (Reeburgh, 2007), no 

doubt the flux to the atmosphere is small compared to the amount oxidised in soils, 

sediments and the water column. 

1.4 Methane oxidising bacteria 

Methanotrophs are bacteria able to grow on methane as their sole source of carbon 

and energy and are a subset of methylotrophs, organisms capable of growth on one-

carbon compounds such as methanol and methylated amines. These ubiquitous 

microorganisms are widespread in freshwater, marine and terrestrial environments 

(Dedysh et al., 1998). Methane oxidation is possible in both oxic and anoxic 

environments, but only aerobic oxidation is dealt with here. All methanotrophs use 

methane monooxygenase (MMO) enzymes to oxidise methane to methanol, which is 

further oxidised to formaldehyde (Hanson and Hanson, 1996). Methanotrophs can be 

broadly categorised into two groups, type I or type II, on the basis of phylogenetic, 

physiological and biochemical characteristics. A common feature is the presence of 

intracytoplasmic membranes (ICM), arranged either in bundles perpendicular to the 

cell envelope (type I) or around the periphery of the cell (type II). In many genera the 

membrane type (type I or type II) correlates with phylogeny (γ-Proteobacteria or α-

Proteobacteria), GC content of DNA (43 – 60% or 60 – 67%) carbon assimilation 

pathway (RuMP or serine) and major phospholipid fatty acid type, although the high 

GC-content of species of Methylococcus and Methylocaldum led to their assignment 

in an intermediate group, type X. Recently, additional species have been discovered 

which do not fit exactly into these categories and have characteristics, including a 

novel arrangement of  ICM comprising a single membrane stack parallel to the long 

axis of the cell, characteristic of the genus Methylocapsa, prompting the proposal of 

an additional type III (Dedysh et al., 2002). Recently identified thermoacidophilic 

methanotrophs of the genus Verrucomicrobia contain carboxysome-like vesicular 



7 
 

membranes (Op den Camp et al., 2009). Table 1.1 lists features of extant 

methanotrophs.  

Table 1.1. Characteristics of known methanotroph genera. ND, not determined; NA, not 
applicable. MMO type is designated as S, soluble or P, particulate. C1 assimilation is 
indicated as S, serine cycle; R, RuMP pathway. The symbols  + and - indicate that the feature 
is present or absent in all species; ± indicates the second feature is also present in some 
species. Some species may also assimilate carbon via the Calvin-Benson-Bassham cycle. 
ICM, intracytoplasmic membranes. Data from Murrell (2010), Iguchi (2010a), Vorob’ev 
(2010b) and Op den Camp (2009). 

 
a Carbon may be assimilated via a variant of the serine cycle. b Contains a vesicular 
membrane system. c Carboxysome-like vesicular ICMs. 
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1.5 Facultative methanotrophs 

Whereas the ability of non-methanotrophic methylotrophs to grow on multi-carbon 

compounds is common, the vast majority of the methanotrophs described in the 

preceding section are obligate organisms, unable to use compounds with carbon-

carbon bonds as sole source of carbon and energy (although it has been shown that 

acetate and other multi-carbon compounds can be assimilated to a certain extent 

during growth on methane (Eccleston and Kelly, 1973; Patel et al., 1977)). From the 

first descriptions of methane-oxidising bacteria by biologists such as Söhngen at the 

start of the twentieth century, many examples have been described which were also 

said to be capable of growth on multi-carbon compounds (described and reviewed by 

Bushnell and Haas (1941), Zobell (1946), Theisen and Murrell (2005) and Semrau et 

al. (2011)). However, as verification technology and techniques improved (detailed 

by Dedysh and Dunfield (2011)), by the end of the twentieth century no organisms 

shown conclusively to be facultative methanotrophs remained in cultivation, leading 

to doubts regarding the verifiable existence of this trait in microorganisms. The same 

improvements in methodology eventually enabled the unequivocal demonstration of 

the facultative nature of Methylocella spp. by Svetlana Dedysh and co-workers 

(2005a), by demonstrating, inter alia, the concomitant increase in mmoX gene copies 

with cell numbers during heterotrophic growth. Subsequently, species of other genera 

have been shown to be capable of comparatively weak growth on acetate or ethanol 

in addition to methane, including species of Methylocapsa (Dunfield et al., 2010) and 

Methylocystis (Im et al., 2010; Belova et al., 2011). Methylocella spp., however, 

remain unique both in being able to grow on two-carbon compounds at similar or 

higher rates in comparison to methane, and also in using more complicated multi-

carbon molecules as sole carbon and energy sources. Multi-carbon compounds, such 

as organic acids including acetate and propionate, are frequently detectable in the 

oxic soil horizons which comprise the habitats of methanotrophs, often reaching low 

millimolar concentrations (Hines et al., 2001; Strobel, 2001; Mörsky et al., 2008). 

The potential impact of changes in the availability of alternative carbon sources on 

methanotrophic activity is largely unknown; some reports have suggested that 

organic acids might inhibit methane oxidation (Rahman et al., 2011; Wieczorek et al., 

2011) while others demonstrated that methane oxidation still occurs in the presence 
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of alternative carbon sources (Yoon et al., 2010; Belova et al., 2011), or that acetate 

may even stimulate the activity of methanotrophs (West and Schmidt, 1999). 

1.6 Methylocella spp. 

Investigation of the methane oxidising microbial communities in Sphagnum peat 

bogs identified a novel group of bacteria (McDonald et al., 1996; Dedysh et al., 

1998). Isolates were obtained by growth on media at similar ionic strength, pH and 

temperature as the natural habitats. Subsequently, three Methylocella species (M. 

palustris, M. silvestris and M. tundrae) were isolated and characterised from peat, 

forest and tundra soils respectively (Dedysh et al., 2000; Dunfield et al., 2003; 

Dedysh et al., 2004), and Methylocella spp. have since been identified in diverse 

habitats ranging from hardwood forest (Lau et al., 2007) to landfill cover soils (Chen 

et al., 2007). Together with Methylocapsa acidiphila, they form a distinct 16S RNA 

gene phylogenetic cluster, most closely related to the heterotroph Beijerinckia indica, 

see Figure 1.2. The Methylocella isolates were shown to grow on acetate, pyruvate, 

succinate, malate and ethanol, in addition to methane, methanol and methylamine, 

and they contain only the sMMO (Dedysh et al., 2005a; Theisen et al., 2005). 

Methylocella are Gram negative, non-motile short rods, 0.6 – 0.8 μm in width and 

1.2-1.5 μm in length. Under some circumstances they form aggregates surrounded by 

polysaccharide capsular material, and do not appear to form spores or other resting 

stages (Dunfield et al., 2003). Major PLFAs are 18:1ω7c acids, and the GC content is 

60-63 mol% (Dedysh et al., 2004). Methylocella spp. may be of major importance in 

methane cycling in some environments, for example northern peatlands, where they 

may comprise the numerically dominant species (Dedysh et al., 2001; Dedysh, 2002). 

1.6.1 The genome sequence of M. silvestris 

During the course of this project, the genome sequence of M. silvestris was released 

by the Joint Genome Institute (Chen et al., 2010). The genome size is 4.3 Mbp with 

GC content 63%, and 3,917 genes and 99 pseudogenes were predicted. The data 

confirmed the presence of a single methane monooxygenase, but unexpectedly 

revealed the presence of a group of homologous genes, later identified as propane 

monooxygenase (discussed later). All genes for methylotrophy were identified, as 

were genes for nitrogen fixation and a complete TCA cycle. 
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Figure 1.2. Phylogenetic relationship between Methylocella spp., other methanotrophs and 
other representative α-Proteobacteria. The five γ-Proteobacterial species at the bottom of 
the tree were used as an outgroup. The tree, constructed using the Maximum Likelihood 
method, is based on an alignment of 16S rRNA nucleotide sequences. Sequences were 
aligned using Clustal, positions containing gaps or missing data were eliminated, and the tree 
constructed with a final data set of 1049 nucleotides using Mega5 (Tamura et al., 2007). 
Bootstrap values (based on 500 replications) greater than 95% are shown as filled circles at 
nodes, and those between 75 – 95% as open circles. 

1.7 Methane monooxygenase 

Two forms of MMO exist. Until recently, all methanotrophs were thought to contain 

a copper dependent, membrane-bound particulate enzyme (pMMO), and some also to 

contain a soluble enzyme (sMMO) containing a di-iron centre at its active site 

(reviewed by Dalton (2005)). However, two genera (Methylocella and Methyloferula) 

are now known to contain only the sMMO (Table 1.1). In methanotrophs which 

contain both the pMMO and the sMMO, the reciprocal expression and activity of the 
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two enzymes is dependent on the copper concentration, with the sMMO only 

expressed at low copper to biomass ratio, controlled by as yet unexplained 

mechanisms (Semrau et al., 2010). 

1.7.1 The particulate methane monooxygenase 

The pMMO consists of three subunits encoded by the operon pmoCAB, encoding the 

γ-, β- and α-subunits respectively, which form an (αβγ)3 structure  located in the 

membranes (Lieberman and Rosenzweig, 2005), including the intracytoplasmic 

membranes characteristic of methanotrophs containing this enzyme. It has proved 

difficult to purify, which has hampered biochemical analysis. The enzyme has been 

shown to contain copper (Balasubramanian et al., 2010), although the exact number 

of copper atoms and their role in the catalytic cycle remains controversial (reviewed 

by Semrau et al. (2010)). The pMMO has a relatively restricted range of substrates, 

comprising mainly straight chain C1 – C5 hydrocarbons (Elliott et al., 1997), but 

oxidises methane with greater efficiency than the sMMO, such that expression of the 

pMMO compared to the sMMO resulted in a one-third increase in the carbon 

conversion into biomass in Methylococcus capsulatus (Leak and Dalton, 1986). 

1.7.2 The soluble methane monooxygenase 

In contrast to the pMMO, the sMMO has been the subject of extensive study, 

principally the enzymes from Methylococcus capsulatus Bath and Methylosinus 

trichosporium, (reviewed by Trotsenko and Murrell (2008)), and comprises three 

components, hydroxylase, reductase and coupling protein. The hydroxylase consists 

of three subunits (MmoX, MmoY, MmoZ), of molecular masses 60, 45 and 19 kDa 

respectively (for the enzyme from Methylosinus trichosporium) with an (αβγ)2 

structure, see Figure 1.3. Each α-subunit contains a di-nuclear iron centre, located in 

a hydrophobic pocket which forms the active site (Elango et al., 1997). The reductase 

MmoC (37 kDa) contains flavin adenine dinucleotide (FAD) and Fe2S2 prosthetic 

groups and transfers electrons from NADH to the hydroxylase. The coupling protein 

MmoB (15 kDa) which binds to the hydroxylase has a profound effect on the 

catalytic cycle and is important for enzyme activity and selectivity (reviewed by 

Dalton (2005)). An additional component, MmoD, encoded by OrfY, was identified 
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and proposed to play a role in the assembly of the complex (Merkx and Lippard, 

2002). 

 

 

Figure 1.3. The sMMO hydroxylase from Methylococcus capsulatus Bath. The image shows 
the Protein Data Bank structure 1MTY (Rosenzweig et al., 1997), with α-subunits shown in 
green and blue, β-subunits in pink and red and γ-subunits in orange and yellow. The iron 
atoms (in black) at the active site are indicated with arrows. 

 

Twenty years ago the genes encoding these enzymes were cloned and sequenced, 

(Stainthorpe et al., 1989; Stainthorpe et al., 1990; Cardy et al., 1991a, b), and later 

shown to be co-transcribed (Nielsen et al., 1996; Nielsen et al., 1997). The 

arrangement of the sMMO structural genes is the same in these two organisms and 

also in Methylocystis sp. strain M (McDonald et al., 1997) and Methylomonas spp. 

(Shigematsu et al., 1999). In these and later studies, it was established that 

transcription originates from a σ54 promoter, and two genes, mmoG and mmoR, 

encoding a GroEL homologue and a putative transcriptional regulator, were 

identified which were shown to be essential for transcription of the operon (Csaki et 

al., 2003; Stafford et al., 2003). However, in Methylococcus capsulatus, these 

regulatory genes are situated downstream of the structural genes (and separated from 

each other by two genes thought to encode two-component signal transduction 

proteins) whereas in Methylosinus trichosporium they are 5’ of the structural genes. 
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Analysis of the sMMO operon of Methylocella silvestris was carried out by Theisen 

et al. (2005), which revealed a similar arrangement of the structural genes 

mmoXYBZDC, followed by mmoR and mmoG (separated by a short open reading 

frame designated Orf2), although in this case the entire cluster was thought to be co-

transcribed. The arrangement of the sMMO genes in these organisms is shown in 

Figure 1.4. Transcription of the structural genes was shown to be regulated by copper 

in Methylococcus capsulatus and Methylosinus trichosporium, but in the case of 

Methylocella silvestris, the presence of copper was shown to have no effect on 

transcription (Csaki et al., 2003; Stafford et al., 2003; Theisen et al., 2005). 

 

Figure 1.4. The arrangement of sMMO genes in Methylococcus capsulatus Bath, 
Methylosinus trichosporium OB3b and Methylocella silvestris BL2. Homologous genes are 
shown in the same colours. P: σ54 promoter. Data from Csaki et al. (2003), Stafford et al. 
(2003) and Theisen et al. (2005). 

1.8 Methanol dehydrogenase 

Methanol dehydrogenase (MDH) catalyses the oxidation of methanol to 

formaldehyde in the periplasm of methylotrophic bacteria, almost all of which 

possess this enzyme (except, for example, Methyloversatilis universalis, which 

possesses an alternative methanol-oxidising enzyme (Kalyuzhnaya et al., 2008)), 

which can constitute 15% of soluble protein (Anthony, 2000). MDH is a soluble 

pyrroloquinoline quinone (PQQ)-containing quinoprotein, which uses a specific 

cytochrome (cytochrome cL) as electron acceptor. The X-ray structures of several 

MDHs have been determined, including the enzyme from Methylobacterium 

extorquens (Anthony, 2004). The enzyme is formed from two subunits 

(approximately 66 and 8.5 kDa respectively) arranged in an (αβ)2 tetrameric 
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configuration. Each α-subunit forms a barrel with eight radially arranged β-sheets 

forming a “propellor” fold. In the tetramer the two αβ subunits are arranged 

approximately perpendicular to each other. Each contains the non-covalently bound 

PQQ prosthetic group sandwiched inside the α-subunit, together with a single Ca2+ 

ion. Affinity of MDH for methanol is very high, with Km often less than 20 µM 

(Sperl et al., 1974), and the substrate specificity is broad, extending to primary 

alcohols up to octanol, but usually with little or no activity towards secondary 

alcohols (Ghosh and Quayle, 1981; Mountfort, 1990), although some of the 

characterised enzymes have 2-propanol activity (Goldberg, 1976; Sahm et al., 1976). 

Interestingly, the existence of a modifier protein has been demonstrated, whose 

function in vivo appears to be the modification of the substrate specificity to prevent 

formaldehyde oxidation, and which also has the effect of extending the substrate 

range of the enzyme to include 1,2-propanediol and 4-hydroxybutyrate (Long and 

Anthony, 1991), although the gene encoding this component has not been identified. 

The in vitro assay for MDH usually uses the artificial electron acceptor phenazine 

methosulfate (PMS) coupled to reduction of the dye 2,6-dichlorophenol indophenol 

(DCPIP). Under these conditions ammonia is required as activator, and the pH 

optimum is high (pH 9) (Anthony and Zatman, 1964). Therefore the assay conditions 

are quite different to those in vivo. 

Synthesis of active MDH in the periplasm is complicated, involving processes 

including polypeptide translation, transport across the membrane, folding, insertion 

of prosthetic group and calcium ion and assembly of the subunits. In 

Methylobacterium extorquens, 25 required genes are encoded by five clusters 

(summarised in Zhang and Lidstrom (2003)). The largest of these, 

mxaFJGIRSACKLDEHB, contains structural genes encoding the α- and β-subunits 

(mxaF and mxaI) and the MDH-specific cytochrome c (mxaG) (Nunn and Lidstrom, 

1986a, b; Nunn et al., 1989), together with four genes required for insertion of the 

calcium ion (Morris et al., 1995) and several essential genes of unknown function. A 

single upstream gene, mxaW, is divergently transcribed from this locus. Two clusters 

contain genes for PQQ synthesis (pqqABC/DE and pqqFG) (Goodwin and Anthony, 

1998) and two clusters contain four genes (mxbDM and mxcQE) which, together with 

mxaB, encode regulatory genes required for transcription of the structural genes 

(Springer et al., 1997; Springer et al., 1998). MDH transcription is up-regulated in M. 

extorquens six-fold during growth on methanol compared to succinate (Morris and 
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Lidstrom, 1992). It was suggested that the MDH and PQQ biosynthesis structural 

genes are transcribed from σ70 promoters (Zhang and Lidstrom, 2003) and that, in 

Methylobacterium species, the mxb and mxc loci encode a pair of two-component 

response regulators that activate transcription in response to an unknown signal, 

possibly methanol or formaldehyde (Xu et al., 1995; Springer et al., 1997). A pair of 

regulators, predicted to detect formaldehyde in the periplasm and cyctoplasm 

respectively, is also implicated in regulation of MDH expression and formaldehyde 

oxidation in Paracoccus denitrificans (Harms et al., 1993; Harms et al., 2001). 

1.9 Pathways of C1 metabolism 

Methylotrophic metabolism has been thoroughly researched, for a review see 

Trotsenko and Murrell (2008). Methane is oxidised via either the pMMO or the 

sMMO to methanol, and thence to formaldehyde, formate and carbon dioxide by the 

appropriate dehydrogenases, see Figure 1.5. Energy, derived in the case of the 

sMMO from the oxidation of NADH, is required for the initial oxidation of methane, 

but subsequent oxidation reactions generate energy either in the form of reducing 

equivalents or by passing electrons directly to the electron transport chain. Therefore 

part of the methane (approximately 50%) is oxidised to CO2 to provide energy, and 

part is assimilated principally via one of two carbon assimilation pathways, the 

ribulose monophosphate (RuMP) cycle or the serine cycle. 

 
 

 

Figure 1.5. The pathway of methane oxidation. NADH is the electron donor for the sMMO, 
but not the pMMO. X represents the unknown electron donor for the pMMO, (recently 
suggested to involve the direct transfer from MDH (Myronova et al., 2006)). Modified from 
Murrell et al. (2000a). 
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Formaldehyde is produced from oxidation of methanol in the periplasm, but 

subsequent metabolism takes place in the cytoplasm. However, formaldehyde is 

extremely toxic to the cell due to its reactivity with proteins and nucleic acids, and 

the efficiency of its metabolism is therefore crucial. Many methylotrophs have 

multiple enzyme systems for its oxidation, including glutathione-, NAD+- and dye-

linked enzymes (Stirling and Dalton, 1978; Attwood, 1990; Zahn et al., 2001), 

reviewed by Vorholt (2002). Many methylotrophs also use pathways in which 

formaldehyde and other more oxidised C1 units are bound to the carrier molecules 

tetrahydrofolate (H4F) or tetrahydromethanopterin (H4MPT), (the former is 

ubiquitous among life-forms as a carrier of C1 units for biosynthetic reactions, the 

latter was until recently thought to be unique to Archaea) (Marison and Attwood, 

1982; Vorholt et al., 1999). Formaldehyde condenses with H4F or H4MPT either 

spontaneously or (in the latter case) catalysed by formaldehyde-activating enzyme 

(Fae), and the resultant methylene-H4F or -H4MPT is oxidised in a series of reaction 

(that are reversible or irreversible in the two pathways respectively), before formate 

is finally released. Serine cycle organisms use the H4F-mediated pathway primarily 

for assimilation of one-carbon units (as methylene H4F ), and the H4MPT-mediated 

pathway for oxidation to carbon dioxide (Vorholt, 2002), although it now appears 

that methylene H4F is formed both by the condensation of H4F with formaldehyde, 

and also from formate following oxidation via the H4MPT pathway in 

Methylobacterium extorquens (Crowther et al., 2008). 
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Figure 1.6. H4F- and H4MPT-dependent pathways of formaldehyde oxidation in 
Methylobacterium extorquens AM1. The enzymes are: MtdA, NADP-dependent methylene-
H4MPT dehydrogenase; Fch, methenyl-H4F cyclohydrolase; Fhs, formyl-H4F synthetase; 
FDH, formate dehydrogenase; Fae, formaldehyde activating enzyme; MtdB NAD(P)-
dependent methylene-H4MPT dehydrogenase; Mch, methenyl-H4MPTcyclohydrolase; Ftr, 
formyltransferase; Fhc, Ftr/hydrolase complex. X is an unknown cofactor. Taken from 
Vorholt (2002). 

 

 

Carbon is assimilated via the RuMP cycle or the serine cycle, although recent 

evidence suggests that the Calvin-Benson-Bassham (CBB) cycle is also wholly or 

partially responsible for carbon assimilation in some methanotrophs (Taylor et al., 

1981; Op den Camp et al., 2009; Khadem et al., 2011) as well as methylotrophs, 

including members of the Beijerinckia (Dedysh et al., 2005b). The RuMP cycle 

(Figure 1.7) is prevalent among type I methanotrophs (Table 1.1), does not operate in 

methylotrophic α-Proteobacteria, and is not considered further here. 
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Figure 1.7. The RuMP cycle (KDPG aldolase/transaldolase variant which occurs most 
frequently in obligate methylotrophs), showing the formation of one phosphoglycerate from 
three formaldehyde molecules. KDPG, 2-keto 3-deoxy 6-phosphogluconate. Enzymes unique 
to the cycle, 3-hexulosephosphate synthase (HPS) and phosphohexuloisomerase (PHI), are 
shown. Redrawn from Anthony (1982). 

 

The serine cycle, used by type II methanotrophs, is shown in Figure 1.8. As can be 

seen from the figure, the cycle as-drawn is sufficient for the biosynthesis of 

polyhydroxybutyrate (PHB) and other cell constituents that can be synthesised from 

acetyl-CoA, such as fatty acids. Removal of other intermediates from the cycle, such 

as 3- or 4-carbon compounds, requires the conversion of acetyl-CoA into glyoxylate, 

a topic discussed in Chapter 5. As mentioned above, methylene-H4F is formed from 

formaldehyde either by the (spontaneous) condensation with H4F or via formate 

(Vorholt et al., 1999; Crowther et al., 2008), and is a substrate for serine 

transhydroxymethylase. Following carboxylation of the resultant three-carbon 

molecule by phosphoenolpyruvate (PEP) carboxylase, acetyl-CoA is released by the 

cleavage of malyl-CoA. Thus, in its simplest form, the serine cycle converts 

formaldehyde to acetyl-CoA at the expense of 2ATP and 2NADH. The key enzymes 

of the serine cycle are serine transhydroxymethyltransferase, serine-glyoxylate 

aminotransferase, hydroxypyruvate reductase and malyl-CoA lyase, of which 

hydroxypyruvate reductase is the most diagnostic (Lawrence and Quayle, 1970). 
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Figure 1.8. The serine cycle, showing the formation of acetyl-CoA from methylene 
tetrahydrofolate. The enzymes are 1, serine transhydroxymethylase; 2, serine-glyoxylate 
aminotransferase; 3, hydroxypyruvate reductase; 4, glycerate kinase; 5, enolase; 6, PEP 
carboxylase; 7, malate dehydrogenase; 8, malate thiokinase; 9, malyl-CoA lyase. PEP, 
phosphoenolpyruvate. From Anthony (2011). 

 

Genes essential for methylotrophy, including those encoding the enzymes of the 

serine cycle, are often arranged in clusters, termed methylotrophy modules by 

Chistoserdova et al. (2003). In Methylobacterium extorquens, activities of serine-

glyoxylate aminotransferase, hydroxypyruvate reductase and glycerate kinase were 

found to be upregulated during growth on methanol compared to succinate (Dunstan 

et al., 1972a) and in this organism activity of these enzymes was repressed by 

succinate (in the presence of methanol) but this was not the case for all facultative 

methylotrophs (McNerney and O'Connor, 1980). It was suggested that a product of 

methanol oxidation, rather than methanol itself, caused the up-regulation of the serine 

cycle enzymes, since mutants lacking methanol dehydrogenase activity exhibited low 

activities of these enzymes when induced with methanol (Anthony, 1975; McNerney 

and O'Connor, 1980). More recently, with the benefit of targeted genetic systems, it 

was shown that in Methylobacterium extorquens, a LysR-type regulator, 

(homologous to CbbR which is involved in CBB cycle regulation), controls serine 

cycle gene transcription and possibly responds to the intracellular level of formyl-

H4F (Kalyuzhnaya and Lidstrom, 2003; Kalyuzhnaya and Lidstrom, 2005). 
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1.10 Two-carbon metabolism 

Aerobic utilization of ethanol requires oxidation to acetaldehyde and acetate. The 

first step can be catalysed by MDH in Methylobacterium extorquens (Dunstan et al., 

1972a), by a different quinoprotein alcohol dehydrogenase in Pseudomonas 

aeruginosa (Görisch and Rupp, 1989) or by an NAD+-dependent enzyme in 

Hyphomicrobium (Attwood and Harder, 1974). Whether exogenously supplied or 

formed from the oxidation of ethanol, acetate requires activation to acetyl-CoA, a 

reaction catalysed either by acetate kinase/phosphotransacetylase or acetyl-CoA 

synthetase, the latter enzyme generally being induced at low acetate concentrations 

(< 10 mM) (reviewed by Starai and Escalante-Semerena (2004)). 

Acetate is oxidised in the tricarboxylic acid (TCA) or Krebs cycle to carbon dioxide 

to generate reducing equivalents, but assimilation of carbon from acetyl-CoA 

requires an additional cycle. The glyoxylate cycle was proposed by Hans Krebs and 

Hans Kornberg in 1957 (Kornberg and Krebs, 1957). This cycle shares several 

enzymes with the TCA cycle (both cycles are shown superimposed in Figure 1.9) and 

is common in prokaryotes, plants, fungi and nematodes and has been found in higher 

animals (Popov et al., 2005). The function is to divert the carbon flow during growth 

on acetate (or compounds resulting in acetyl-CoA) from the two decarboxylation 

reactions of the TCA cycle, (catalysed by isocitrate dehydrogenase (ICDH) and α-

ketoglutarate dehydrogenase), allowing the cleavage of isocitrate into glyoxylate and 

succinate, and the condensation of the resultant glyoxylate with acetyl-CoA to form 

malate. The enzymes responsible for these two reactions are isocitrate lyase (ICL) 

and malate synthase (MS). Since the flux required through ICL and ICDH varies 

depending on carbon source, control over these enzymes is required. In enteric 

bacteria such as E. coli, flux is diverted through ICL by inactivation of ICDH by 

phosphorylation, mediated by isocitrate dehydrogenase kinase/phosphatase (Hurley 

et al., 1990). In these organisms the glyoxylate cycle genes are co-transcribed, 

together with aceK (encoding ICDH kinase/phosphorylase), in the aceBAK operon. 

However, this is not the case in all bacteria which possess these enzymes, including, 

for example, Corynebacterium glutamicum, Hyphomicrobium methylovorum GM2, 

Mycobacterium tuberculosis and Sinorhizobium meliloti (Reinscheid et al., 1994a; 

Tanaka et al., 1997; Smith et al., 2003c; Ramirez-Trujillo et al., 2007) in which the 

genes are either separated on the chromosome or divergently transcribed. 



21 
 

Transcriptional control of the glyoxylate cycle genes has been the subject of 

considerable study in E. coli and is comparatively well understood (reviewed by 

Cozzone (1998)). Regulatory mechanisms in other organisms are less well 

characterised and appear to be different in some cases; ICDH is not phosphorylated 

in C. glutamicum (Eikmanns et al., 1995) or Bradyrhizobium japonicum (Green et al., 

1998), and the control of transcription is different in C. glutamicum (Gerstmeir et al., 

2003). In general, ICL is induced during growth on acetate and sometimes repressed 

by other carbon sources such as glucose or succinate (Kornberg, 1966; Bellion and 

Yu, 1978; Yurkov and Beatty, 1998; Gerstmeir et al., 2003; Kretzschmar et al., 2008). 

There are also some reports of phosphorylation of ICL, for example in E. coli, 

Acinetobacter calcoaceticus and yeast (Hoyt et al., 1994; da Silva Cruz et al., 2011). 

In addition, some bacteria express different isoforms of ICL under different growth 

conditions, including Aminobacter aminovorans, Mycobacterium species and 

Ralstonia eutropha (Bellion and Woodson, 1975; Honer Zu Bentrup et al., 1999; 

Wang et al., 2003; Munoz-Elias and McKinney, 2005). 

Malate synthase exists in two well-characterised isoforms, MSA and MSG, and some 

bacteria, including E. coli, Ralstonia eutropha and Deinococcus radiodurans possess 

both forms (Cozzone, 1998; White et al., 1999; Wang et al., 2003). In E. coli, MSA, 

encoded by aceB, is expressed during growth on acetate, whereas MSG, which is 

expressed during growth on glycolate, is encoded by glcB at a different location 

(Molina et al., 1994) although in mutants, either isozyme can replace the deleted 

function (Pellicer et al., 1999). Although kinetically similar, the two enzymes are 

structurally different, being composed of 533 and 723 amino acids respectively. High 

resolution structures have been published for MSA and MSG from E. coli and 

Mycobacterium tuberculosis (Anstrom et al., 2003; Anstrom and Remington, 2006; 

Lohman et al., 2008). Although sequence identity between the isoforms is low, the 

structural folds are similar and the difference in length is mainly due to an additional 

α/β domain (residues 135-262 and 296-333 in MSG from E. coli). This is conserved 

among the G isoforms and is predicted to contain a binding site with a proposed 

regulatory function (Lohman et al., 2008). Organisms expressing only the MSA form 

of the enzyme include Yersinia pestis, Vibrio cholerae, Saccharomyces cerevisiae 

and higher plants (Hartig et al., 1992; Heidelberg et al., 2000; Parkhill et al., 2001; 

Cornah et al., 2004). 
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Figure 1.9. The TCA and glyoxylate cycles showing the production of one four-carbon 
molecule (malate) from two molecules of acetyl-CoA. During operation of the glyoxylate 
cycle, flux is directed away from the reactions shown in red, avoiding decarboxylation 
reactions.  The enzymes are: 1, citrate synthase; 2, aconitase; 3, isocitrate dehydrogenase; 4, 
α-ketoglutarate dehydrogenase; 5, succinyl-CoA synthetase; 6, succinate dehydrogenase; 7, 
fumarase; 8, malate dehydrogenase; 9, isocitrate lyase; 10, malate synthase. 

 

 

Organisms expressing only the MSG form (exclusive to bacteria) include 

Corynebacterium glutamicum, Mycobacterium tuberculosis and Sinorhizobium 

meliloti (Reinscheid et al., 1994a; Smith et al., 2003b; Ramirez-Trujillo et al., 2007). 

Although in many cases, including E. coli, MS is induced together with ICL, in some 

species of Pseudomonas, Bradyrhizobium japonicum and other rhizobia, MS activity 

is constitutive (Kornberg and Lund, 1959; Johnson et al., 1966; Green et al., 1998).  

In M. tuberculosis, aceA and glcB are also individually regulated. Only aceA 

transcription responds to acetate concentration, whereas msG is dependent on 

glycolate levels, suggesting a role comparable with the E. coli homologue (Smith et 

al., 2003b). Therefore a considerable diversity of expression and regulation of 

glyoxylate cycle enzymes exists in bacteria. 
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1.11 Expression of glyoxylate cycle enzymes in bacteria using the serine cycle  

As mentioned in Section 1.9, synthesis of three- or four-carbon molecules in the 

serine cycle requires the conversion of acetyl-CoA into glyoxylate. As can be seen 

from Figure 1.9, this reaction is catalysed by the enzymes of the glyoxylate cycle 

without MS, and some bacteria possessing the serine cycle use these enzymes. 

However, many serine cycle methylotrophs do not possess ICL (Bellion and Spain, 

1976; Anthony, 1982; Korotkova et al., 2002), and achieve this conversion by 

different means. The ethylmalonyl-CoA (EMC) pathway is the only fully 

characterised alternative (reviewed by Anthony (2011)) and is discussed in Chapter 5. 

Some, at least, of the organisms lacking ICL also lack MS (Cox and Quayle, 1976; 

Meister et al., 2005; Erb et al., 2010), although MS activity can sometimes be 

detected at considerable levels in extract from cells grown on one-, two-, three and 

four-carbon compounds (Dunstan et al., 1972b; Dunstan and Anthony, 1973; Salem 

et al., 1973b; Meister et al., 2005). This was found to be due to the action of the 

serine cycle enzyme malyl-CoA lyase operating in the reverse direction, together 

with a hydrolase catalysing the formation of malate from malyl-CoA (Cox and 

Quayle, 1976). The hydrolase was inhibited by acetyl-CoA, possibly preventing the 

futile cycle resulting from simultaneous activity of these enzymes and malate 

thiokinase.  

 

 

Figure 1.10. Activity of malate synthase (3) in conjunction with serine cycle enzymes malate 
thiokinase (1) and malyl-CoA lyase (2) would result in a futile cycle. 

 

However, expression and activity of malate synthase would be detrimental during 

operation of the serine cycle, suggesting an additional regulatory requirement in 

serine cycle methylotrophs possessing the glyoxylate bypass. In Aminobacter 

aminovorans, malate synthase is severely repressed during growth on methylamine 
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Pseudomonas sp. CF600 (Powlowski and Shingler, 1994), toluene 4-monooxygenase 

from Pseudomonas mendocina KR1 (Pikus et al., 1996), propane monooxygenase 

from Gordonia TY5 (Kotani et al., 2003) and propane monooxygenase from 

Mycobacterium TY6 (Kotani et al., 2006). Based on phylogenetic analysis of the 

hydroxylase components, these enzymes were initially assigned to four, five and 

subsequently six subgroups (Leahy et al., 2003; Notomista et al., 2003; Coleman et 

al., 2006). All enzymes comprise a hydroxylase, an oxidoreductase containing 

NAD(P)- and FAD-binding and ferredoxin domains, and a coupling or effector 

protein, although members of the toluene 4-monooxygenase group (group I) contain 

an additional Rieske-type ferredoxin component which is essential for efficient 

electron transfer (Pikus et al., 1996) and are thus four component enzymes. The 

hydroxylase component of groups I, II and III comprise three subunits, whereas 

groups IV, V and VI comprise two. The three subunit hydroxylases are arranged in 

(αβγ)2 configuration (Newman and Wackett, 1995; Pikus et al., 1996; Dalton, 2005), 

whereas the hydroxylase of alkene monooxygenase from Rhodococcus corallinus B-

276 was reported as a monomeric (αβ) configuration (Miura and Dalton, 1995). The 

arrangement of the genes encoding these enzymes appears to be conserved within the 

different groups, but differs between groups (Holmes and Coleman, 2008), as 

summarised in Table 1.2. 

 
 
 
Table 1.2. The SDIMO groups as defined by Notomista et al. (2003), Leahy et al. (2003) and 
Coleman et al. (2006).  The operon structure is given in terms of the sMMO homologues: α, 
hydroxylase α-subunit; β, hydroxylase β-subunit; γ, hydroxylase γ-subunit; B, coupling 
protein; C, reductase; D, MmoD (unknown function). F, ferredoxin; MO, monooxygenase. 

Group Example Organism Operon Reference 

I Toluene 4-MO Pseudomonas mendocina KR1 αFγBβC Pikus et al. (1996) 

II Phenol hydroxylase Pseudomonas sp. CF600 DβBαγC 
Powlowski and Shingler  
(1994) 

III sMMO Methylosinus trichosporium 
OB3b αβBγDC Cardy et al. (1991a, b) 

IV Alkene MO Rhodococcus corallinus B-276 βBαC Saeki and Furuhashi 
(1994) 

V Propane MO Gordonia TY5 αCβB Kotani et al. (2003) 

VI Propane MO Mycobacterium TY6 αβBC Kotani et al. (2006) 

 

The genes encoding these enzymes are mostly located on the chromosome, although 

examples from groups I, II and IV have been reported as transcribed from linear 
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(Saeki et al., 1999; Krum and Ensign, 2001) or circular plasmids (Shingler et al., 

1989). 

1.13 Bacterial growth on short chain alkanes 

Bacteria capable of growth on gaseous non-methane alkanes (C2-C6) are not 

uncommon and were first described well over half a century ago (reviewed in Fuhs 

(1961), Perry (1980) and Shennan (2006). Most of these are Gram-positive members 

of genera including Actinomyces, Arthrobacter, Brevibacterium, Corynebacterium, 

Gordonia, Mycobacterium, Nocardia, Nocardioides and Rhodococcus, while Gram-

negative organisms are represented by species of Acinetobacter, Burkholderia, 

Pseudomonas and Ralstonia (Shennan, 2006). Enzymes capable of oxidising these 

compounds include the sMMO and pMMO from methanotrophs (Burrows et al., 

1984), other SDIMO enzymes including the butane monooxygenase (BMO) from 

Thauera butanivorans (Arp, 1999) and the propane monooxygenase from Gordonia 

TY5 (Kotani et al., 2003), membrane non-heme alkane hydroxylase (AlkB) from 

Pseudomonas putida  (van Beilen et al., 1994), cytochrome p450-family enzymes 

(Mycobacterium spp.) (van Beilen et al., 2006) and a novel membrane-associated 

copper containing enzyme (pBMO) from Nocardioides sp CF8 with homology to the 

pMMO (Sayavedra-Soto et al., 2011) (reviewed by Van Beilen et al. (2003)). 

1.14 Bacterial growth on propane 

Numerous propane-utilizing organisms have been isolated by Lukins (1963) Perry 

(1980), Hou (1983c), Stephens (1986) and Kotani (2003; 2006) and co-workers, 

among others. Until relatively recently most of the enzymes remained largely 

unidentified and uncharacterised, although in the case of Rhodococcus rhodochrous 

PNKb1 it was demonstrated that NADH and oxygen were required for activity, and 

some analysis of the polypeptides induced during growth on propane was carried out 

(Woods and Murrell, 1989). Kotani et al. (2003; 2006) isolated Gordonia and 

Mycobacterium species that use group V and group VI SDIMOs respectively to grow 

on propane. Recently the AlkB alkane hydroxylase has been shown capable of 

sustaining growth on propane in Pseudomonas putida GPo1 (Johnson and Hyman, 

2006), whereas growth of Nocardioides sp CF8 on propane was shown to be due to 

the activity of the pMMO-like membrane associated pBMO (Hamamura and Arp, 
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2000; Sayavedra-Soto et al., 2011). Therefore growth on propane is possible using at 

least four different enzyme systems, and at least two more (the sMMO and pMMO) 

are capable of propane oxidation.  

1.15 Organisms containing multiple SDIMOs or alkane-oxidising enzymes 

It has recently become apparent that many organisms possess multiple alkane-

oxidising enzyme systems. For example, Gordonia TY5 uses an SDIMO (a propane 

monooxygenase) for growth on propane and a different uncharacterised 

monooxygenase for growth on C13 – C22 alkanes (Kotani et al., 2003). Methylibium 

petroleiphilum contains genes encoding three SDIMOs (Kane et al., 2007), of which 

two are putative toluene monooxygenases (group I) and the third is a suspected 

propane monooxygenase (group V). This organism is capable of growth on MTBE 

and toluene (Nakatsu et al., 2006), and growth on MTBE was found to be dependent 

on an alkane hydroxylase (Schmidt et al., 2008). Mycobacterium NBB4, which 

grows on C2 – C4 alkenes and C2 – C16 alkanes, contains genes encoding four 

SDIMOs (group III, two group IV and group VI), a cytochrome p450 and an alkane 

hydroxylase (Coleman et al., 2011a), however despite extensive analysis, it was not 

possible to associate particular gene products with corresponding metabolic activity. 

Pseudonocardia dioxanivorans CB1190 encodes no less than eight SDIMOs, but the 

activity of potential gene products remains unknown (Sales et al., 2011). 

1.16 Metabolic pathways of alkane assimilation 

Monooxygenase-mediated oxidation of non-methane n-alkanes is initiated by one of 

the enzymes described in the previous sections, at the terminal or sub-terminal 

carbon atom (reviewed by Rojo, (2009)). Terminal oxidation results in a primary 

alcohol, which is oxidised via alcohol and aldehyde dehydrogenases to the 

corresponding fatty acid, which is converted to acetyl-CoA by the β-oxidation 

pathway (Wegener et al., 1968; Kunau et al., 1995). Also possible is the oxidation of 

the terminal methyl group of the fatty acid (ω-oxidation) resulting in a dicarboxylic 

acid (Coon, 2005), which can also be metabolised by β-oxidation. Sub-terminal 

oxidation, resulting in a secondary alcohol (or occasionally an alcohol substituted at a 

subsequent carbon atom (Fredricks, 1967; Klein et al., 1968)), proceeds via the 

corresponding ketone. This is then usually oxidised by a Baeyer Villiger 
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monooxygenase to the ester before cleavage resulting in a primary alcohol and fatty 

acid (Forney and Markovetz, 1970; Van Beilen et al., 2003) which are then 

metabolised as described above. Propane metabolism follows this general pattern 

(reviewed by Perry (1980), Ashraf et al. (1994) and Shennan (2006)). The initial 

pathways of propane oxidation are shown in Figure 1.12. Oxidation by a dioxygenase, 

resulting in 1,2-propanediol, has been proposed (Hou et al., 1983a; Ashraf et al., 

1994) but has not been shown to operate in propane utilising bacteria, and neither has 

the required 1,2-propanediol metabolising capacity been characterised. 1,2-

propanediol dehydratase enzymes so far described exist in carboxysome-like 

structures, mostly in enteric bacteria (reviewed by Bobik, (2006)). 1,2-propanediol 

dehydrogenase was shown to be present in propane-grown cells of Pseudomonas 

fluorescens (Hou et al., 1983a) but it was not clear that 1,2-propanediol was the 

substrate in vivo, nor was it demonstrated that 1,2-propanediol was formed from the 

oxidation of propane. Dioxygenases have been shown to oxidise aliphatic alkenes, 

including chlorinated species such as TCE, where the products were formate and 

glyoxylate (Li and Wackett, 1992; Wackett, 2002). Medium-chain-length alkanes 

have been shown to be attacked by dioxygenases, resulting in an aldehyde via a 

short-live hydroperoxide (Maeng et al., 1996), but there are no reports of 

dioxygenase-mediated oxidation of short chain alkanes, so the involvement of a 

dioxygenase in propane metabolism remains in doubt. Recently additional pathways 

have been described for the metabolism of acetone (Hausinger, 2007), which are 

briefly discussed in Chapter 7, together with the metabolism of acetol.  
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Figure 1.12. The possible pathways for the initial stages of propane oxidation. The enzymes 
are: 1, propane monooxygenase; 2, propane dioxygenase; 3, 1-propanol dehydrogenase; 4, 2-
propanol dehydrogenase; 5, 1,2-propanediol dehydratase; 6, 1,2-propanediol dehydrogenase; 
7, propanal dehydrogenase.  

 

1.17 Regulation of alkane oxidation 

In obligate methanotrophs which possess both the sMMO and the pMMO, their 

relative expression is regulated by copper (Murrell et al., 2000b; Hakemian and 

Rosenzweig, 2007), by mechanisms which are not completely understood, although it 

was demonstrated that mmoR, encoding the σ54 response regulator MmoR, was 

essential for sMMO expression in Methylococcus capsulatus and Methylosinus 

trichosporium (Csaki et al., 2003; Stafford et al., 2003). Previously it was shown that 

methane monooxygenase was expressed during growth of Methylococcus capsulatus 

and Methylosinus trichosporium on methanol (Linton and Vokes, 1978; Hyder et al., 

1979; Best and Higgins, 1981; Yu et al., 2009), suggesting that methane itself is not 

directly involved in regulation in these organisms. 

Similarly to the sMMO of methanotrophs, transcription of the sMMO-like butane 

monooxygenase (BMO) in Thauera butanivorans (capable of growth on C2-C9 n-

alkanes), is initiated from a σ54 promoter (Sluis et al., 2002). Transcription was not 

induced by butane, but by 1-butanol or butanal, products of butane oxidation (or by 

the corresponding products of the oxidation of other alkane growth substrates), and 
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basal transcription of the BMO genes was sufficient to induce the operon in the 

presence of butane (Sayavedra-Soto et al., 2005). Propionate, a product of oxidation 

of odd-chain-length alkanes, strongly repressed BMO transcription in cells which did 

not contain propionate-metabolising capacity, although this capacity could be 

induced by addition of propionate to the growth medium, or by growth on propane or 

pentane (Doughty et al., 2006), which then also relieved the repression of BMO 

transcription. Interestingly, propionate and butyrate also irreversibly inactivated the 

BMO in the absence of the alkane substrates of the enzyme (Doughty et al., 2007). 

BmoR, (a σ54 transcriptional regulator homologous to MmoR) encoded by a gene 

upstream of the BMO operon and required for its maximal transcription, was 

suggested to respond to the primary alcohols capable of inducing BMO expression 

(Kurth et al., 2008). 

Many metabolically versatile bacteria possess mechanisms to maximise use of 

preferred substrates when presented with alternative carbon sources, termed 

catabolite repression. For example, in Pseudomonas putida (which is capable of 

growth on C3 – C13 alkanes), the AlkS transcriptional activator responds to C5 – C10 

alkanes (> 25 nM) and activates transcription of the alkane degradation pathway 

genes alcBFGHJKL from the PalkB promoter (Sticher et al., 1997). In the presence 

of alternative carbon sources such as amino acids, succinate or lactate, the combined 

effects of two regulatory systems reduce expression of AlkS and hence transcription 

from the PalkB promoter (reviewed by Rojo, (2009)).  The first system, mediated by 

expression of the regulatory catabolite repression control protein Crc, is a global 

regulatory system which inhibits expression of enzymes of several metabolic 

pathways, whereas the second, dependent on the terminal oxidase Cyo, responds to 

cellular energy balance. Crc interacts with alkS mRNA preventing translation (and 

hence also transcription since AlkS is responsible for its own transcriptional 

activation), whereas the precise mode of action of Cyo is unknown. 

Working with Methylocella silvestris BL2, Theisen et al, (2005), observed a lack of 

sMMO gene transcription or expression during growth on acetate, pyruvate or 

succinate, and also identified a putative MmoR regulatory protein, encoded by mmoR, 

co-transcribed with the sMMO operon, although the involvement of this gene-

product in regulation of sMMO expression was not demonstrated. 

These examples illustrate that expression of alkane-oxidising enzymes is carefully 

regulated in bacteria capable of growth on these compounds. 
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1.18 Applications of SDIMO enzymes in biotechnology 

The increasing need for a sustainable policy regarding the use of raw materials and 

energy and concerns over pollution has heightened the importance of Green 

Chemistry, defined as the use of products and processes to minimise the production 

of harmful substances in chemical engineering. Biocatalysis, including the use of 

enzyme catalysed oxidation reactions, is an important element of this drive and is 

reviewed by Hollman et al. (2011). Monooxygenases, including SDIMOs, are able to 

catalyse useful reactions including epoxidation (Torres Pazmiño et al., 2010), which 

is valuable in organic synthesis because it introduces chirality. For example, using 

the sMMO, Xin et al. (2003) achieved the continuous co-oxidation of propene to 

epoxypropene by Methylosinus trichosporium growing on methane. The plant 

produced over 100 µmol day-1 epoxypropane from a culture volume of 

approximately 400 ml over a period of 53 days. The ability to engineer altered or 

improved enzymes for specific applications is greatly increasing the potential 

applications of biocatalysis (reviewed by Pollard and Woodley (2007)). An 

alternative approach, bioprospecting for novel enzymes with useful properties from 

natural environments, is also a potentially rewarding avenue for research (Holmes 

and Coleman, 2008).  

The wide substrate specificity of SDIMOs has suggested numerous applications in 

bioremediation. For example, chlorinated aliphatic hydrocarbons are suspected 

carcinogens and common and persistent pollutants of groundwater (Vogel et al., 

1987). The sMMO was shown to be able to degrade trichloroethylene (TCE) 

(Oldenhuis et al., 1989), achieving almost complete dechlorination, thus avoiding the 

toxic intermediates sometimes produced by anaerobic degradation (Lorah and 

Voytek, 2004). This capability is also present in propane-grown bacteria (Wackett et 

al., 1989), although the oxygenases responsible have not always been identified. The 

ability of various SDIMO-containing organisms to degrade chloroethenes has been 

reviewed by Mattes et al. (2010). Microcosms set up using material from a polluted 

aquifer at McClellan Air Force Base (California) were stimulated with methane, 

propane or butane in a long-term trial. Methane- and propane-stimulated (but, 

interestingly, not butane-stimulated) microcosms were able to degrade TCE, and in 

addition the propane-stimulated microcosms also degraded 1,1,1-trichloroethane, 

leading the authors to suggest that propane-utilisers were more suited to 
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cometabolism of the pollutant mix at this site (Tovanabootr and Semprini, 1998). In a 

similar study, Frascari et al. (2006) observed co-metabolic degradation of a range of 

chlorinated hydrocarbons, including 1,1,2,2-tetrachloroethane (not usually 

susceptible to aerobic biodegradation), in propane-supplied microcosms inoculated 

with indigenous microorganisms from a polluted industrial site in Italy. The potential 

benefits of using facultative methanotrophs for bioremediation of chlorinated 

hydrocarbons were illustrated by Im and Semrau (2011). A facultative Methylocystis 

strain was shown to degrade several chlorinated hydrocarbons during growth on 

ethanol, and the problem of the inhibition of the methane monooxygenase by the co-

metabolised non-growth substrate was thus avoided, possibly leading to more rapid 

pollutant degradation. Propane-oxidising bacteria, including species of Nocardia 

(Steffan et al., 1997), Mycobacterium (Smith et al., 2003a), Rhodococcus (Haase et 

al., 2006) and Pseudomonas (Morales et al., 2009), were also able to degrade the 

toxic fuel additive methyl tert-butyl ether (MTBE) (reviewed by Nava et al. (2007)). 

A PrMO-like SDIMO was shown to be encoded by the genome of Rhodococcus sp. 

RR1, and this strain was capable of degrading the persistent environmental pollutant 

N-nitrosodimethylamine (NDMA) when induced on propane (Sharp et al., 2010). 

1,4-dioxane, a probable carcinogen and groundwater contaminent, was degraded by 

several SDIMO-expressing strains (Mahendra and Alvarez-Cohen, 2006) including 

Pseudonocardia dioxanivorans CB1190 (which contains several SDIMOs as noted 

earlier) which is capable of growth on 1,4-dioxane as sole source of carbon and 

energy. 

Other applications of organisms containing SDIMOs include production of single 

cell protein (Bothe et al., 2002), biopolymers (Pieja et al.) or higher value products 

including methanol from methane or natural gas (Lee et al., 2004), and bio-

prospecting for petroleum deposits (Brisbane and Ladd, 1965).  

 

 

1.19 Project aims 

The aims of the work described here were: 

1. To investigate the metabolic range of Methylocella silvestris and the potential 

for optimisation of growth conditions; 

2. To develop a system to facilitate genetic manipulation; 
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3. To determine the presence and requirement for the glyoxylate bypass 

enzymes during growth on one- and two-carbon compounds, since previous 

work had failed to identify these enzymes in M. silvestris; 

4. To investigate the requirement for the methane monooxygenase and the 

propane monooxygenase during growth on methane and propane, and the 

extent to which these two homologous enzymes are functionally redundant in 

the presence of each other; 

5. To determine the products of propane oxidation and the pathways of propane 

metabolism. 

 

1.20 Note on the proteomic analyses 

During this project, use was made of the services provided by the Biological Mass 

Spectrometry and Proteomics Group at the University of Warwick, as described in 

the text. In addition, soluble extracts prepared from M. silvestris cells grown under 

different conditions were submitted for analysis as part of the development of 

advanced quantitative gel-free methods by Vibhuti Patel (Patel et al., 2009) and 

Nisha Patel (Patel et al., 2011). Some of the data generated by these researchers is 

mentioned in the following sections and informed the work described in this project, 

but did not form the basis of any of the major conclusions. 
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Chapter 2  
 

Materials and methods 
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2.1 Materials 

Analytical-grade chemicals were obtained from Sigma-Aldrich Corporation (St 

Louis, MO, USA), Melford Laboratories Ltd (Ipswich, UK) or Fisher Scientific 

UK (Loughborough UK). Gases were obtained from BOC (Manchester UK), Air 

Liquide UK (Birmingham UK) or Sigma-Aldrich. Methane and propane used for 

growth of cultures were 99.5% purity grade. 

In some cases chemicals (including  nicotinamide adenine dinucleotide (NAD) and 

nicotinamide adenine dinucleotide phosphate (NADP)) were purified of residual 

solvents by dissolving in a few millilitres of water and extracting several times 

in diethyl ether (25 – 100 ml) before drying under vacuum. 

General purpose buffers and chemicals were prepared according to Sambrook and 

Russell (2001). 

Custom oligonucleotide primers were obtained from Invitrogen (Paisley, UK). 

2.2 Cultivation and maintenance of bacterial strains 

 

All solutions and growth media were prepared with Milli-Q water and sterilised by 

autoclaving at 15 psi for 15 minutes at 121 oC. Solutions sensitive to autoclaving 

were sterilised using 0.2 μm pore-size disposable sterile filter units (Sartorius 

Minisart, Göttingen, Germany) and were added to cooled autoclaved media. Solid 

media were prepared by the addition of 1.5 % (w/v) Bacto Agar (Difco) prior to 

autoclaving. Bacterial strains and plasmids used in this study are shown in Table 2.1, 

and primers relevant to this section in Table 2.2. 

2.2.1 Antibiotics 

Antibiotics were filter sterilized and added aseptically to cooled, autoclaved growth 

medium, at the following concentrations: ampicillin 100 µg ml-1; kanamycin, 25 

µg ml-1; gentamicin 5 µg ml-1; tetracycline 10 µg ml-1, except where indicated. 
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Table 2.1. Bacterial strains and plasmids used in this study. Abbreviations, GmR, gentamicin resistance; KmR, kanamycin resistance, TcR, tetracycline 
resistance; ApR, ampicillin resistance; BHR, broad host range. 

Strains/Plasmids Description Reference/source 

Strains   

Escherichia coli TOP10 F– mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 
Δ(ara leu) 7697 galU galK rpsL (StrR) endA1 nupG Invitrogen 

Escherichia coli JM109 endA1, recA1, gyrA96, thi, hsdR17 (rk
–, mk

+), relA1, supE44, Δ( lac-proAB), 
[F´ traD36, proAB+, laqIqZΔM15] Promega 

Escherichia coli  S17.1 λpir recA1 thi pro hsdR- RP4-2Tc::Mu Km::Tn7 λpir (Simon et al., 1983) 

Methylosinus trichosporium OB3b Wild-type strain Warwick culture collection 

M. silvestris BL2 Wild-type strain Warwick culture collection 

M. silvestris ΔICL M. silvestris BL2 with deletion of isocitrate lyase This study 

M. silvestris ΔICL pAC105 M. silvestris ΔICL complemented with the wild type gene on plasmid 
pAC105, KmR This study 

M. silvestris ΔMS M. silvestris BL2 with deletion of malate synthase This study 

M. silvestris ΔICL ΔMS M. silvestris BL2 with deletions of both isocitrate lyase and malate synthase This study 

M. silvestris ΔSGAT M. silvestris BL2 with deletion of serine-glyoxylate aminotransferase This study 

M. silvestris ΔMmoX M. silvestris BL2 with deletion of sMMO α-subunit This study 

M. silvestris ΔPrMO M. silvestris BL2 with deletion of propane monooxygenase α-subunit This study 

M. silvestris Δ1641 M. silvestris BL2 with deletion of Msil1641 This study 

M. silvestris AC706 M. silvestris BL2 ΔMmoX::KmR sacB This study 

Plasmids   

pGEM-T ApR TA cloning vector Promega 

pCR2.1-TOPO KmR, ApR, TA cloning vector Invitrogen 
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Table 2.1 (continued). Bacterial strains and plasmids used in this study. 

Strains/Plasmids Description Reference/source 

Plasmids   

pK18mobsacB KmR, RP4-mob, mobilizable cloning vector containing sacB from B.subtilis (Schäfer et al., 1994) 

pAC1003 pK18mobsacB containing upstream and downstream sequences from the M. 
silvestris malate synthase gene This study 

p34S-Gm Source of GmR cassette (Dennis and Zylstra, 1998) 

pCM184 ApR, KmR, TcR allelic exchange vector (Marx and Lidstrom, 2002) 

pCM157 TcR Cre expression vector (Marx and Lidstrom, 2002) 

pCM132 BHR lacZ vector, KmR (Marx and Lidstrom, 2001b) 

pMHA203 BHR vector containing M. silvestris sMMO σ54 promoter and gfp, KmR (Ali and Murrell, 2009) 

pAC105 pCM132 containing isocitrate lyase gene and promoter from M. silvestris 
BL2 in place of lacZ This study 

pAC304 pMHA203 with the sMMO promoter replaced by the PrMO promoter This study 

 

Table 2.2. 16S rRNA gene, sequencing and M13 primers. 

Name Sequence (5’ – 3’) Reference 

27F AGAGTTTGATCMTGGCTCAG (Lane, 1991) 

1492R TACGGYTACCTTGTTACGACTT (Lane, 1991) 

M13F GTAAAACGACGGCCAG Invitrogen 

M13R CAGGAAACAGCTATGAC Invitrogen 

SP6 TATTTAGGTGACACTATAG Promega 

T7 TAATACGACTCACTATAGGG Promega 
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2.2.2 Escherichia coli 

Escherichia coli strains were routinely cultivated on Luria-Bertani (or lysogeny broth) 

(LB) medium (Sambrook and Russell, 2001). Liquid cultures were incubated on an 

orbital shaker (150 - 200 rpm) at 37 oC. LB agar plates were prepared with the 

addition of 1.5 % (w/v) Bacto Agar (Difco) prior to autoclaving. E. coli strains were 

stored at -80 oC in the presence of 10 % (v/v) sterile glycerol.  

2.2.3 Preparation and transformation of chemically competent E. coli 

SOB medium: 

The following were dissolved in 900 ml deionised water: yeast extract, 5 g; tryptone, 

20 g; NaCl, 0.5 g. KCl solution (10 ml of 250 mM) was added, the pH adjusted to 7.0 

with 5 M NaOH, the volume made up to 1 l with water, and the solution sterilised by 

autoclaving. Immediately prior to use sterile MgCl2 solution (2 M) was added to 10 

mM. 

Inoue transformation buffer: 

The following were dissolved in 800 ml deionised water: MnCl2.4H2O, 10.88g; 

CaCl2.2H2O, 2.2 g; KCl, 18.65 g. Piperazine-N,N′-bis(2-ethanesulfonic acid) (PIPES) 

buffer (10 ml of 0.5 M, pH 6.7) was added, the volume made up to 1 l with water and 

the solution sterilised by filtration. 

SOC medium: 

Glucose, sterilised by filtration, was added to SOB medium to a final concentration 

of 20 mM. 

 

Chemically competent E. coli cells were prepared by the method of Inoue et al. 

(1990). A single colony from a fresh plate of E. coli Top10 cells was picked into 25 

ml of LB medium and incubated at 37 °C with shaking. After 8 h, three 500 ml flasks 

containing 125 ml SOB medium each were inoculated with 1, 2 or 5 ml of this starter 

culture, and incubated at 20 °C with shaking overnight. The following morning, a 

flask was harvested as OD600 reached 0.55 and the other two were discarded. Cells 

were cooled on ice, centrifuged (2,500 × g, 10 mins, 4 °C), and the supernatant 

removed. Cells were re-suspended in 40 ml ice-cold Inoue buffer and centrifuged as 

before. Cells were re-suspended in 10 ml ice-cold Inoue buffer, and 750 µl 
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dimethylsulfoxide (DMSO) added gently with swirling. Following 10 min on ice, 50 

µl aliquots of cells were dispensed into cooled microcentrifuge tubes, frozen in liquid 

nitrogen and stored at -80 0C. 

For transformation, cells were thawed on ice and DNA (approximately 1 - 50 ng of 

plasmid DNA or ligation mix) added and gently mixed. Cells were subjected to heat 

shock at 42 °C for 45 s, and cooled on ice for 2 min. SOC medium (0.5 ml) was 

added and cells allowed to recover at 37 °C with shaking for one hour. Aliquots were 

spread on selective LB plates containing X-Gal and IPTG (as appropriate) and 

incubated at 37 °C for 18 – 24 h. 

2.2.4 Preparation and transformation of electrocompetent E. coli 

A 500 ml culture of E. coli was grown to an OD600 of 0.5 – 0.7, placed on ice for 15 

min and then centrifuged at 4,000 x g for 15 min at 4 °C. The supernatant was 

removed and the cells washed, first in 500 ml, then in 250 ml of cold sterile 

deionised water and finally in 10 ml of cold 10% v/v glycerol, with 

centrifugation as above. The cells were re-suspended in 2.5 ml of cold 10 % (v/v) 

glycerol, dispensed in 100 µl aliquots into microcentrifuge tubes, frozen in liquid 

nitrogen and stored at –80 °C.  

Electrocompetent cells were transformed by adding up to 2 µl of plasmid DNA or 

ligation mix and incubating on ice for 1 min. Cells were transferred to a chilled 0.1 

cm electroporation cuvette (Plus BTX, Harvard Apparatus, Holliston, MA, USA) and 

an electric field pulse applied using a GenePulser Electroporation system (Bio-Rad, 

Hemel Hempstead, UK) set at 1.8 kV, 25 µF, 200 Ω. Cells were immediately 

removed into 1 ml SOC medium and allowed to recover with shaking (200 rpm) at 

37 oC for 1 hour. Aliquots (50-100 µl) were spread onto selective LB agar plates.  

2.2.5 Methylocella silvestris 

A dilute nitrate mineral salts (DNMS) medium was used for growth of M. silvestris. 

Initially, medium was prepared according to Theisen (2006) using trace elements 

solution “A” shown below and phosphate buffer at a final concentration of 1 mM. 

Subsequently, a modified trace elements solution “B” and increased buffer 

concentration (2 mM) was used. Medium containing ammonium (DAMS medium) 
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was prepared using 0.1M NH4Cl stock solution in place of solution 3, and with the 

addition of KCl to 1 mM final concentration. 

 

Solution 1: Magnesium solution (100 × stock) 

MgSO4.7H2O  2.5 g 

Solution 2: Calcium solution (100 × stock) 

CaCl2.2H2O  0.5 g  

Solution 3: Nitrate solution (100 mM stock) 

KNO3   2.52 g 

Each dissolved in 200 ml Milli-Q water and diluted to 250 ml. 

 

Solution 4: Iron EDTA solution (10,000 × stock)  

Fe-EDTA  0.38 g 

Dissolved in 80 ml Milli-Q water and diluted to 100 ml. 

 

Solution 5: Trace elements solutions (2000 × stock)  

 

Compound solution A (mg l-1) solution B (mg l-1) 

ZnSO4.7H2O 10 0 
ZnCl2 0 70 

MnCl2.4H2O 3 100 
H3BO4 30 6 

CaCl2.6H2O 20 0 
CuCl2.2H2O 1 2 
NiCl2.6H2O 2 24 

Na2MoO4.2H2O 3 100 
CoCl2.2H2O 0 100 
FeCl.4H2O 0 1500 

 

Trace elements solution “A” was made by dissolving the specified compounds in 1 

litre of Milli-Q water. Solution “B” was made by dissolving the FeCl.4H2O in 10 ml 

25% (v/v) HCl, making up to 1 litre with Milli-Q water and then adding the 

remaining components. Trace element solutions were stored in the dark. 
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Solution 6: Phosphate buffer (0.2 M stock) 

Na2HPO4.2H2O 7.12 g 

NaH2PO4.H2O  5.52 g 

Each dissolved separately in 150 ml Milli-Q water, diluted to 200 ml and mixed in 

proportion (approximately 95 ml monobasic solution + 5 ml dibasic solution) to give 

pH 5.5. 

 

DNMS medium was prepared by adding 10 ml each of solutions 1, 2 and 3, 0.1 ml 

solution 4 and 0.5 ml solution 5 to 800 ml Milli-Q water, diluting to 1 litre and 

autoclaving. Following cooling, buffer was added, initially at 5 ml l-1. Subsequently, 

as described later, buffer concentration was increased to 10 ml l-1. To avoid 

precipitation, solutions 1 – 3 were prepared separately and medium was not stored, 

but prepared and autoclaved immediately prior to use. Nitrogen-fixing cultures were 

grown in medium without addition of a fixed nitrogen source. 

M. silvestris was routinely cultivated in 125 ml serum vials containing 25 ml DNMS 

medium. Flasks were sealed with grey butyl rubber seals and gassed with 20 ml (i.e. 

~20 %) methane/carbon dioxide (95 %/5 % (v/v) mix). Other substrates and gas 

concentrations were used as described in the relevant sections. Vials were incubated 

at 25 oC with shaking at 150 rpm. M. silvestris was also grown in conical Quickfit 

flasks (250 ml or 1l) fitted with SubaSeal (Sigma-Aldrich) stoppers, although it was 

noted that growth with gaseous substrates was poor under these conditions, possibly 

due to the increased gas exchange in these flasks. For growth on solid media, agar 

plates were incubated in a gas-tight container under a methane/air atmosphere at 

room temperature, or in a methanol-rich atmosphere (achieved by addition of 1 ml of 

methanol to a paper tissue placed in the airtight container used for incubation of 

plates) or with other growth substrates as indicated. Gas or volatile substrates were 

replenished approximately every week.  

Large scale cultivation was carried out in 4 l (LH Series 210, Stoke Poges UK), or 2 l 

fermenters (Fermac 300, Electrolab, Tewkesbury, UK) supplied with methane, 

propane (50 – 200 ml min-1), or an alternative carbon source. Initially the dissolved 

oxygen level in the fermenter vessel was maintained above 5 % by adjusting the 

agitation speed and air flow rate. Subsequently it was found advantageous to limit 

oxygen to allow nitrogen fixation (as discussed in Chapter 3), and air flow was 

reduced just sufficiently to reduce the dissolved oxygen level to near zero. The pH of 
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the culture was maintained between 5.5 – 5.8 with the automatic addition of 0.5 M 

HCl or 0.5 M NaOH. Additional growth substrate or other medium components were 

added as required when growth slowed or analysis showed they were depleted. 

Growth was monitored by measuring the OD540 using a Beckman DU-70 

spectrophotometer. DNMS medium was inoculated with 5 - 10 % (v/v) inoculum 

grown to mid-late exponential phase. For continuous culture, sterile medium was 

supplied using a previously calibrated peristaltic pump, and cells collected from the 

outflow in a sterile 25 l carboy. 

2.2.6 Growth of Methylosinus trichosporium OB3b 

Methylosinus trichosporium OB3b was grown in 200 ml nitrate mineral salts (NMS) 

medium in 1 l flasks sealed with SubaSeals and supplied with methane (20% v/v) as 

previously described (Oakley and Colin Murrell, 1988). Cells were harvested by 

centrifugation (6,000 × g, 20 min, 15 °C), washed once in growth medium (without 

growth substrate) and resuspended in a minimal volume of PIPES buffer (40 mM, 

pH 7.0). Cells were either used immediately or drop frozen in liquid nitrogen and 

stored at -80 °C. 

2.3 Conjugation of M. silvestris 

The transfer of plasmid DNA from  E. coli to M. silvestris broadly followed the 

method of Martin and Murrell (1995). A 15 ml overnight E. coli S17.1 culture, 

containing the desired plasmid, and a 50 ml culture of M. silvestris (OD540 

approximately 0.4) were separately centrifuged (4,000 × g, 15 min, 15 °C), washed 

in 25 ml DNMS medium, re-suspended in 25 ml DNMS medium, mixed together and 

centrifuged as before. The resultant cell pellet was re-suspended in 2 ml DNMS 

medium. Aliquots of the cell suspension (0.5 ml) were applied to the centre of a 0.2 

µm pore-size nitrocellulose filter (Millipore, Billerica, MA, USA), placed on a 

DNMS agar plate containing 0.02 % (w/v) proteose peptone and incubated for 24 

hours at 30 oC (with appropriate growth substrate, either 5 mM succinate contained 

in the plates, or in a methanol-rich atmosphere). Following incubation, the cells were 

washed with 10 ml DNMS medium, collected by centrifugation (4,000 x g, 15 min, 

15 °C) and re-suspended in 1 ml DNMS medium. Aliquots (50-100 µl) were spread 
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on DNMS plates containing selective antibiotics and incubated at room temperature. 

Colonies formed on the plates after 3-6 weeks. 

2.4 Counter-selection with sucrose 

Counter-selection was applied to cultures of M. silvestris containing the sacB gene 

(Schäfer et al., 1994).  Cells growing in liquid culture with antibiotic selection were 

used as inoculum for non-selective liquid DNMS medium. At mid-late exponential 

phase cells were diluted 1/10 or 1/100 in DNMS medium and 50 µl spread on DNMS 

plates containing 10% (w/v) sucrose (with an appropriate carbon source) and 

incubated at room temperature. 

2.5 Preparation and transformation of electrocompetent M. silvestris 

For electroporation, best results were obtained with cells grown in the fermenter 

using medium without fixed nitrogen, under oxygen limitation (nitrogen-fixing) 

conditions, which allowed growth of cells without polysaccharide slime. When 

necessary, it was also found possible to use flask-grown cells. Two methods for the 

preparation of competent cells were used. Initially, cells were prepared following the 

method of Kim and Wood (1998). Approximately 100 ml M. silvestris culture in mid 

- late exponential phase, OD540 ~ 0.5, or an equivalent amount of fermenter-grown 

cells in exponential phase were cooled on ice and harvested by centrifugation (3000 

x g, 15 min, 4°C). Cells were washed twice in 20 ml cold 0.3 M sucrose (with 

centrifugation as above) followed by re-suspension in 1 ml 0.3M sucrose to which 

was added 75 µl of 30% PEG6000. Cells were transferred to 200 µl aliquots, frozen 

in liquid nitrogen and stored at -80 °C. Subsequently, the method was modified and 

cells were washed in cold sterile water and re-suspended in 10% (v/v) glycerol. 

For transformation, cells were thawed on ice and up to 6 µl of DNA (about 20 ng -1 

µg) was added to 100 µl of cell suspension and mixed gently. Cells and DNA were 

transferred to a chilled 0.1 cm electroporation cuvette (Plus BTX, Harvard Apparatus, 

Holliston, MA, USA) and an electric field pulse applied using a GenePulser 

Electroporation system (Bio-Rad, Hemel Hempstead, UK) set at 2.2 – 2.5 kV, 25 µF, 

400 Ω. Cells were immediately washed from the cuvette with 0.5 ml DAMS medium 

containing a suitable carbon and energy source, transferred to 15  ml tubes and 

allowed to recover for 10 – 12 h at 25 °C with shaking. The cells were then 
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centrifuged (3000 × g, 15 °C, 10 min), washed twice and re-suspended in DAMS 

medium to remove sucrose or glycerol. Aliquots (50-100 µl) were spread onto 

selective DAMS agar plates and incubated at room temperature for 2 – 6 weeks. 

2.6  Extraction of nucleic acids 

2.6.1 Genomic DNA from M. silvestris and Methylosinus trichosporium OB3b 

High-molecular mass genomic DNA was extracted from M. silvestris for use during 

this project, and from Methylosinus trichosporium OB3b for sequencing by the Joint 

Genome Institute (JGI), (Walnut Creek, Ca, USA) (Stein et al., 2010), essentially as 

Oakley and Murrell, (1988). Cells (approximately 1 – 3 g wet weight) were 

resuspended in 6 ml TE buffer (tris(hydroxymethyl)aminomethane (Tris) 10 mM, 

ethylenediaminetetra-acetate (disodium salt) (EDTA) 1 mM, pH 8.0) in 100 ml 

conical flasks, to which was added 1.9 ml 0.5 M EDTA (pH 8.0) and 1 ml lysozyme 

(50 mg ml-1). Following 15 min incubation at 37 °C, 250 µl of proteinase K (20 mg 

ml-1) and 3.1 ml 10% (w/v) sodium dodecyl sulfate (SDS) were added and mixed 

gently. Flasks were incubated 15 min at 37 °C and 10 min at 60 °C, sodium 

perchlorate (4 ml of 5 M) was added, and incubated a further 15 min at 60 °C with 

gentle mixing every few minutes. An equal volume of phenol/chloroform/isoamyl 

alcohol (25:24:1) was added and incubated at room temperature for 30 min with 

gentle mixing. The mixture was transferred to 50 ml centrifuge tubes. Following 

centrifugation (48,000 × g, 30 min, 4 °C), the aqueous phase was carefully removed 

using a wide-bore pipette, and two further 15 min extractions with 

phenol/chloroform/isoamyl alcohol and two with chloroform/isoamyl alcohol (24:1) 

were carried out, each followed by centrifugation (38,000 × g, 15 min, 4 °C). Salt 

content was adjusted by addition of NaCl to 0.1 M, followed by two volumes of cold 

ethanol. DNA was removed by spooling with a Pasteur pipette, dried and re-

suspended in 5 ml TE buffer. In the case of Methylosinus trichosporium OB3b, 

recovery of DNA required centrifugation (48,000 × g, 15 min, 4 °C), following 

which the pellet was dried and resuspended in TE buffer. RNA was digested by 

addition of DNase-free RNase to 100 µg ml-1 and incubation for 30 min at 37 °C. 

The volume was made up to 30 ml with TE buffer and 30 g caesium chloride added 

and gently mixed to dissolve. Ethidium bromide was added (200 µl of 10 mg ml-1) 

and DNA purified by density gradient centrifugation (196,000 × g, 36 h, 20 °C) in a 
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VTi 50 rotor (Beckman Coulter, High Wycombe, UK). DNA was visualised using 

UV light and removed by piercing the tube with a wide-bore syringe needle, 

followed by removal of ethidium bromide by several extractions with TE-saturated 

butanol. DNA was then dialysed (× 3) against 2 l TE buffer and quantified by 

agarose gel electrophoresis by comparison with a HindIII-digested Lambda-DNA 

ladder (Figure 2.1). 

 

 

Figure 2.1. Methylosinus trichosporium OB3b DNA (lane 3) in comparison to HindIII-
digested Lambda-DNA standards. The marker 23 kb bands contain 250, 125, 62.5, 31.2 or 
15.6 ng DNA respectively in lanes 1 – 6. The mass of the >23 kbp band in lane 3 was 
estimated as 416 ng using GeneTools software (Syngene). 

2.6.2 Extraction of small quantities of genomic DNA 

For extraction of small quantities of DNA, an estimated 0.2 mg (dry weight) of cells 

was centrifuged (10,000 × g, 10 min, room temperature) in 1.5 ml microcentrifuge 

tubes. The pellet was re-suspended in 0.75 ml TE buffer, 20 µl  lysozyme (100 mg 

ml-1, Sigma) added, and tubes incubated at room temperature for 5 min. SDS (40 µl 

of 10% w/v) was added and mixed gently, followed by 8 µl of proteinase K (10 mg 

ml-1)  (Melford Laboratories). Tubes were mixed gently and incubated at 37 °C for 1 

h, following which NaCl (100 µl of 5 M) and 100 µl of warm cetyl-

trimethylammonium bromide (CTAB) (10% in 0.7 M NaCl) were added and tubes 

incubated at 65 °C for 10 min.  Proteins and other impurities were extracted once 

with 0.5 ml phenol/chloroform/isoamyl alcohol (25:24:1) and once with 0.5 ml 

chloroform/isoamyl alcohol (24:1). Nucleic acids were precipitated from the aqueous 
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phase by addition of 0.6 volumes of isopropanol and 30 min incubation at room 

temperature. Tubes were centrifuged at maximum speed in a microcentrifuge (4 °C, 

20 min), the pellet washed in 200 µl 70% v/v ethanol, dried and re-suspended in 50 

µl TE buffer.  

2.6.3 DNA extraction for clone library analysis 

For clone library analysis, DNA was extracted from cultures using the bead-beating 

method of Griffiths et al. (2000). 

2.6.4 RNA extraction from M. silvestris 

For RNA work, all glassware, water and solutions were treated with 

diethylpyrocarbonate (DEPC) (or prepared with DEPC-treated water where 

appropriate) by shaking overnight at 37 °C in a 0.1% v/v solution prior to 

autoclaving. All plasticware, tips etc was RNase-free. 

Total RNA was isolated from M. silvestris using the hot acid-phenol method of 

Gilbert et al. (2000). The quality of the RNA was checked by running a small volume 

on a 1% (w/v) TBE-agarose gel. DNA was removed by two treatments using Qiagen 

RNase-free DNase, each followed by purification using an RNeasy spin column 

(Quiagen, Crawley, UK) following the manufacturer’s instructions. Removal of all 

traces of DNA was confirmed by the absence of a 16S rRNA PCR product in 

reactions using 1 µl or 4 µl of RNA template and 35 PCR cycles. 

2.6.5 Small-scale plasmid extraction from E. coli (mini-prep) 

Small scale plasmid preparations were carried out using 1.5 -5 ml overnight E. coli 

cultures using the Qiaprep Miniprep Kit (Qiagen) or GeneJET kit (Fermentas) 

according to the manufacturer’s instructions.  

2.7 Nucleic acid manipulation techniques 

2.7.1 Quantification of DNA/RNA 

DNA and RNA concentrations and purity were estimated by agarose gel 

electrophoresis and comparison with a known quantity of 1 kb ladder (Fermentas), 
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or by using an ND-1000 spectrophotometer (NanoDrop Technologies Inc., 

Wilmington, DE, USA) 

2.7.2 Polymerase chain reaction (PCR) 

Polymerase chain reactions (PCR) were conducted in a 50 µl reaction volume 

using a T3000 (Biometra, Goettingen, Germany) or Tetrad (Bio-Rad) thermal 

cycler, using recombinant Taq or DreamTaq (Fermentas) or, for high fidelity 

applications, Pfu polymerase (Promega). A typical reaction (prepared on ice) 

contained (in 50 µl volume) 1 × buffer, MgCl2 (1.5 mM), dNTPs (0.2 mM of 

each), forward and reverse primer (0.4 µM) and Taq DNA polymerase (2.5 units). 

For direct amplification from colonies or cultures, DMSO (5% v/v) and BSA 

(0.07% w/v) were included in addition. Cycling conditions were typically: initial 

denaturation at 95 °C, 3 min; 25 - 35 cycles of denaturation at 95 °C, 30 s; 

annealing (temperature dependent on primers), 30 s; elongation at 72 °C, 1 

min/kb and final elongation at 72 °C, 7 min. For PCR from colonies, the initial 

denaturation was increased to 10 min. Elongation was generally conducted at 

five degrees less than the primer melting temperature. When using Pfu 

polymerase, enzyme was added to the reaction during the initial denaturation 

stage at 95 °C to avoid nuclease activity (hot start). Reactions without template 

(no-template controls) were included in all cases. 

2.7.3 DNA restriction digests 

Restriction digestion of DNA was carried out with enzymes from Invitrogen or  

Fermentas according to the manufacturers’ recommendations.  

2.7.4 DNA purification 

DNA fragments were routinely excised from TBE agarose gels and the DNA purified 

using QIAquick (Qiagen) or Nucleospin (Macherey-Nagel, Düren, Germany) Gel 

Extraction Kits according to the manufacturers’ instructions. PCR products of well-

defined size were purified using the same protocol but without excision from gels. 

DNA was also purified by extractions with equal volumes of phenol/chloroform and 

chloroform, adjustment of the salt concentration with 0.1 volumes of 3 M sodium 

acetate (pH 5.5), precipitation with two volumes of cold ethanol, incubation at -20 °C 
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overnight (or at -80 °C for 30 min), centrifugation (21,000 × g, 15 min, 4°C), 

washing in 70% cold ethanol, drying and re-suspension in TE buffer. 

2.7.5 Preparation of linear DNA for electroporation 

Linear DNA fragments for electroporation of M. silvestris were excised with the 

relevant enzymes and separated from the vector backbone in a 0.7% agarose gel, 

purified using a kit as described above, and eluted in sufficient TE buffer to give a 

concentration of 50 – 200 ng µl-1. On occasion, the DNA was denatured immediately 

prior to electroporation using the methods of Oh and Chater (1997), but without a 

noticeable improvement in the efficiency of gene replacement. 

2.7.6 Dephosphorylation 

Prior to ligation, restriction-enzyme digested plasmid DNA was dephosphorylated 

using Shrimp Alkaline Phosphatase (SAP) (Fermentas) following the manufacturer’s 

instructions. 

2.7.7 DNA ligations 

Ligations were typically carried out in a volume of 20 µl containing a total of 200 ng 

DNA, comprising vector and insert fragments in equi-molar quantities. T4 DNA 

ligase (Fermentas) was used according to the manufacturer’s instructions.  

2.7.8 Blunting of DNA 

DNA fragments with overhanging 5’ or 3’ ends were blunted when necessary using 

T4 DNA polymerase (Fermentas). Reactions (20 µl final volume) containing 1 × 

buffer, DNA (1 µg) dNTPs (0.1 mM) and T4 polymerase (1 unit) were incubated at 

room temperature for 5 min and inactivated at 70 °C for 10 min.  

2.7.9 Cloning of PCR products 

PCR products were cloned into pCR2.1-TOPO (Invitrogen), or pGEM-T Easy 

(Promega, Madison, WI, USA) according to the manufacturers’ instructions. Where 

Pfu polymerase was used for PCR amplification, addition of a terminal 3’ adenosine  

was accomplished by incubating, (in a volume of 20 µl), purified PCR product, Taq 

polymerase (5 units), dATP (0.2 mM) and 1 × Taq buffer, at 72 °C for 20 min. 



49 
 

Inserts in these vectors were sequenced using primers M13F or M13R and SP6 or T7 

respectively (Table 2.2). 

2.7.10 Clone library construction 

Clone libraries were constructed using 16S rRNA gene sequences PCR-amplified 

using primers 27F/1492R (Table 2.2). PCR products were cloned as described in 

Section 2.7.9, and 16S rRNA sequences amplified directly from colonies by PCR 

using primers M13F/M13R. PCR products were digested with EcoRI and MspI and 

resolved by electrophoresis in 2% (w/v) agarose gel. Clones were grouped based on 

the pattern of restriction fragments and representatives from each group sequenced. 

2.7.11 Sequencing of DNA 

Purified DNA (10 – 80 ng) was combined with 5.5 pmol primer in a volume of 10 µl 

and submitted for Sanger sequencing at the University of Warwick Genomics 

Facility. Sequence data was analysed and exported using Chromas (Technelysium 

Pty Ltd, Brisbane Australia). 

2.7.12 Reverse transcriptase PCR (RT-PCR) 

Reverse transcription was performed using Superscript II or Superscript III 

(Invitrogen), according to the manufacturer’s instructions. Either random 

hexamer or gene-specific primers were used as described in the relevant sections. 

Between 50 ng and 1 µg of RNA was used for first strand cDNA synthesis with 

200 ng random hexamers or 2 pmol gene specific primer. Reactions were included 

in which water was used in place of reverse transcriptase as negative control, and, 

as described in the relevant sections, in some cases reactions were carried out 

without primer. Reverse transcription was carried out at 42 °C or 55 °C for 

Superscript II or Superscript III respectively. As indicated, in some cases RNA 

was digested with 2 units of E. coli RNaseH (Fermentas). cDNA (1 - 2 µl) was 

used as template in PCR reactions, alongside reactions with template in which 

reverse transcriptase had been omitted in cDNA-synthesis reactions and in some 

cases reactions where cDNA-synthesis primer had been omitted. Reactions with a 

DNA template were included and also no-template controls. 
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2.7.13  5’ Rapid amplification of cDNA ends (RACE) 

5’ RACE was performed using the 2nd Generation 5’/3’ RACE kit (Roche), 

following the manufacturer’s instructions. Total RNA (100 ng – 1 µg) was used 

for cDNA synthesis. Following cDNA column-purification and polyA tailing, 

two rounds of nested PCR were employed using gene-specific primers in 

conjunction with the oligo-dT and anchor primers supplied in the kit. In most 

cases, a clearly size-defined PCR product resulted which was either sequenced 

directly, or cloned and a few of the PCR-amplified inserts from clones 

sequenced. Alternatively, the PCR product was excised from an agarose gel, 

purified, cloned and a few of the clones (those containing the largest-sized 

inserts) sequenced. 

2.7.14 Agarose gel electrophoresis  

DNA fragments were separated in 0.5 – 2 % (w/v) agarose gels in 0.5 × TBE or 1 × 

TAE buffer. GeneRuler 1kb DNA ladder (Fermentas) was used to estimate the sizes 

of DNA fragments. Ethidium bromide (0.5 µg ml-1) was added to gels prior to 

casting. Gels were visualised on a Gene Genius transilluminator (Syngene, 

Cambridge, UK). 

2.8 Harvesting of cells 

M. silvestris cells were harvested by centrifugation (6,000 × g, 20 min, 4 °C), washed 

once in growth medium without growth substrate and resuspended in a minimal 

volume of 2-(N-morpholino)ethanesulfonic acid (MES) buffer (40 mM, pH 5.5). 

Cells were either used immediately or drop frozen in liquid nitrogen and stored at -

80 °C. In an attempt to maximise the activity of propane-grown cells in response to 

propane in the oxygen electrode, cells were harvested by minimising exposure to 

atmospheric oxygen and using medium and buffer sparged with oxygen-free nitrogen 

or with propane, but it was not clear if these precautions resulted in significantly 

increased activity. 

2.8.1 Bacterial purity checks and microscopy 

All bacterial strains were handled and cultivated axenically to minimise 

contamination. The purity of cultures was routinely checked using phase contrast 
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microscopy. Purity of cultures was also checked by plating onto R2A or nutrient agar 

plates, which were incubated aerobically at room temperature for several days (since 

M. silvestris does not grow on rich media). In addition, from time to time small (48 

or 96) 16S rRNA gene clone libraries were constructed using DNA extracted from 

cultures. Cultures were also checked by serial dilution and plating on DNMS plates. 

Following incubation with appropriate carbon sources single colonies were used for 

PCR amplification of functional or 16S rRNA genes which were verified by 

sequencing. 

2.8.2 Calculation of specific growth rate, lag time and increase in biomass 

For each culture, the natural logarithm of culture density (OD540) was plotted against 

time, and a straight line (the slope of which equates to the specific growth rate) fitted 

to the exponential phase of growth using Microsoft Excel. Growth rate was 

determined for each culture from a minimum of three data points, or two data points 

separated by at least 48 hours. Lag time was defined as the x value of the intersection 

of the line fitted to the exponential growth phase with the y-value of the start density. 

Increase in biomass was defined as the difference between the initial and maximum 

densities (OD540) reached by the culture. 

2.9 Preparation of cell extract 

Cell extract was prepared by resuspending cells in 50 mM piperazine-N,N′-bis(2-

ethanesulfonic acid) (PIPES) buffer (pH 7.0) containing 1 mM benzamidine and 

breaking cells by three or four passages through a French pressure cell 

(American Instrument Company, Silver Spring, MD) at 110 MPa (on ice). Cell debris 

was removed by centrifugation (10,000 × g, 15 min, 4 oC). The resulting supernatant 

was used as cell-free extract, or fractionated by ultracentrifugation (140,000 × g, 4 °C, 

90 min) using a SW 55Ti rotor (Beckman Coulter, High Wycombe UK). The 

supernatant was used as soluble fraction, and the pellet twice re-suspended and 

washed in 5 ml PIPES buffer (as above) followed by 45 min centrifugation as before. 

The pellet was finally re-suspended in a minimal volume of buffer and used as 

membrane fraction. Small quantities of cells were occasionally disrupted for SDS-

PAGE by sonication, using a Sanyo Soniprep sonicator fitted with a 3 mm probe. Cell 

pellets were re-suspended in 1 ml of buffer (as above) in 1.5 ml microcentrifuge tubes 
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and subjected to 6 cycles, each of 15 s sonication on ice (amplitude 10 µm) followed 

by 20 s cooling. Cell debris was removed by centrifugation as above. Extracts were 

stored in aliquots following rapid freezing in liquid nitrogen. 

2.10 Protein methods 

2.10.1 Quantification 

Total protein concentration was determined using the Bio-Rad Protein Assay 

(Bio-Rad Laboratories Inc., Hercules, CA, USA) according to the manufacturer’s 

instructions, against standards prepared from bovine serum albumin (BSA). 

2.10.2 Precipitation of proteins 

Occasionally proteins were concentrated by precipitation. 100% Trichloracetic acid 

(TCA) (prepared by dissolving 500g TCA in 227 ml H2O) was added to protein 

solutions to 12% final concentration and incubated 30 min on ice. Following 

centrifugation (26,000 × g, 20 min, 4 °C) the pellet was washed in acetone, dried and 

re-suspended in buffer.  

2.11 SDS-PAGE 

Polypeptides were separated by SDS-PAGE using an X-cell II Mini-Cell apparatus 

(Novex). A 4 % (w/v) stacking gel and an 8 - 12.5 % (w/v) resolving gel were used 

and prepared as follows, using premixed 40% (w/v) acrylamide/bis (37.5:1) 

(Amresco, Solon, OH, USA). 

 

 4% Stacking gel 12.5% Separating gel 
Acrylamide/bis 1.0 ml 6.25 ml * 

Tris 0.5 M pH 6.8 2.5 - 
Tris 3.0 M pH 8.8 - 2.5 

10% SDS 0.1 0.2 
10% Ammonium persulfate  0.05 0.15 

TEMED (N,N,N',N'-tetramethyl- 
ethane-1,2-diamine) 0.010 0.010 

Water 6.3 10.9 
* Separating gels of different percentages were prepared by altering the acrylamide/bis and 
H2O volumes appropriately. 
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SDS-PAGE was performed with cell-free extract, soluble or membrane fractions, or 

with whole cells. Cell pellets were re-suspended in SDS-PAGE sample buffer (63 

mM Tris-HCl (pH 6.8), 10 % (v/v) glycerol, 5 % (v/v) β-mercaptoethanol, 2 % (w/v) 

SDS, 0.00125 % (w/v) bromophenol blue) or 1/4 volume of 5 × sample buffer was 

added to extracts. Samples were immediately heated for 8 minutes in a boiling water 

bath and cooled on ice. For whole cells, cell debris was pelleted by centrifugation in 

a microcentrifuge (21,000 × g, 3 min, 4 °C). Approximately 10 – 60 µg protein was 

loaded per lane. Electrophoresis was conducted at 90V through the stacking gel and 

160V during separation, using running buffer containing glycine (72 g l-1), Tris base 

(15 g l-1) and SDS (5 g l-1). PageRuler Plus prestained protein ladder (Fermentas) was 

used as molecular mass marker. 

On occasion, precast gels (Bis-Tris Novex NuPAGE gels (Invitrogen)) were 

used with MOPS buffer following the manufacturer’s instructions. 

Gels were stained with Coomassie brilliant blue staining solution (0.1 % (w/v) 

Coomassie brilliant blue R-250 dissolved in 40 % methanol, 10 % acetic acid and 50 % 

water) and destained in 40 % (v/v) methanol and 10 % (v/v/) acetic acid. 

2.11.1 Native gels 

Native gels (7.5 or 10%) and running buffer were prepared as for denaturing gels, 

except without SDS. Sample buffer contained neither SDS nor β-mercaptoethanol, 

and samples were not heated. Gels were run at 20 mA / 40 mA through the stacking 

and separating gels respectively in the cold room. Gels were stained with Coomassie 

(as above) or in 25 mM Tris buffer pH 8 containing phenazine methosulfate (PMS) 

(0.7 mM), nitroblue tetrazolium (NBT) (0.2 mg ml-1), NAD+ (1 mM) and NH4Cl (4 

mM). In some cases, NAD+ and/or ammonium were omitted, as described in the 

relevant sections. Following 5 min incubation (in the dark) with slow shaking at 

room temperature, alcohol substrates were added to 1 mM, and incubated for 10 – 30 

min with shaking, before the reaction was stopped by rinsing with H2O. 

2.11.2 MS/MS analysis of polypeptides 

Bands of interest from denaturing and native gels were excised from the gel using a 1 

× 6 mm gel-cutting tip, cut into approximately 1.5 mm cubes, mixed with 200 µl de-

ionized water and submitted for analysis by the Biological Mass Spectrometry and 
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Proteomics Group at the University of Warwick. Following digestion with trypsin, 

samples were analysed by nanoLC-ESI-MS/MS using the NanoAcquity/Synapt 

HDMS instrumentation (Waters). A database compiled from the predicted amino 

acid sequences derived from the M. silvestris genome sequence was used for 

polypeptide identifications, which were considered on the basis of at least two tryptic 

peptide matches. 

2.11.3 Proteomic analysis by liquid-chromatography-based label-free 

quantitative mass spectrometry 

Soluble extract was prepared as described above and submitted for proteomic 

analysis by Vibhuti Patel (Patel et al., 2009), Nisha Patel (Patel et al., 2011) and the 

Biological Mass Spectrometry and Proteomics Group at the University of Warwick. 

2.12  Oxygen electrode 

A Clark oxygen electrode (Rank Brothers Ltd, Cambridge, UK) was used to detect 

substrate-induced oxygen consumption by whole cells. Between 1 – 5 mg dw of cell 

suspension (as determined from OD540, assuming that 1 ml of cells at OD540 = 1 is 

equivalent to 0.25 mg dw) was added to 3 ml of oxygenated 40 mM phosphate buffer 

(pH 5.5) in the instrument cell maintained at 25 °C using a circulating water bath 

(Churchill Co. Ltd, Perivale, UK). The instrument was operated and calibrated by 

comparison with air-saturated water as described by Green and Hill (1984). 

Following establishment of a stable endogenous rate of oxygen consumption, 

substrate (7.5 nmol – 15 µmol) was added and substrate-induced rate calculated by 

substracting the endogenous rate from the rate following addition of substrate. 

Gaseous substrates were prepared as saturated aqueous solutions in 120 ml serum 

vials containing 25 ml water flushed with at least ten volumes of the substrate gas, 

and the concentration calculated using the Henry’s Law constant obtained from 

Sander (1999). 

Frozen cells were typically used for the assays. It was found that activities of the M. 

silvestris soluble di-iron monooxygenases (SDIMOs) were extremely sensitive to 

oxygen, and it was necessary to thaw cells and store on ice in tubes flushed with 

oxygen-free nitrogen without re-suspension in buffer. Under these conditions activity 

of methane-grown cells in response to methane remained essentially unchanged for 
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several hours, whereas if cells were re-suspended in an equal volume of air-

equilibrated buffer, activity was approximately halved in less than one hour. The 

activities of other enzymes (for example methanol dehydrogenase) were not 

noticeably affected. 

For screening of relatively insoluble non-growth SDIMO substrates, it was found 

inadvisable to inject the pure compound or an excess of an aqueous solution since 

this was likely to damage the electrode membrane and/or leave a residue which was 

difficult to remove without dismantling the instrument cell. Saturated solutions were 

prepared and between 5 - 100 µl of the aqueous phase injected. 

2.13 Enzyme assays 

Colourimetric enzyme assays were conducted using an Ultrospec 3100pro 

UV/Visible Spectrophotometer (Amersham) fitted with an eight cuvette auto-changer. 

Reactions were conducted using 1cm path-length, 1ml disposable-plastic or 

quartz cuvettes (for < 320 nm) at room temperature, which was recorded. All 

reactions were measured against a blank, and reactions without protein and without 

substrate were included. 

2.13.1 Naphthalene assay for sMMO 

The qualitative assay of Brusseau et al. (1990) was used to detect naphthalene-

oxidising activity (assumed not to be specific for the sMMO). Approximately 1 ml of 

active cells at OD540 of 0.5 was incubated with a few crystals of naphthalene for 30 

min at 30 °C. A few drops of freshly prepared tetrazotized o-dianisidine (10 mg ml-1) 

were added. Immediate development of a purple colour was taken as evidence of 

naphthalene oxidation.  

2.13.2 Nitrogenase 

Nitrogen-fixing cells (20 ml of culture) were removed from the fermenter and placed 

in 120 ml serum vials, sealed with rubber seals, and flushed with at least 10 volumes 

of argon. Oxygen was added (between 0.25 and 20% of headspace volume), and 

methanol to a final concentration of 10 mM. Vials were gently shaken at room 

temperature for 5 min before injection of 0.5 ml (0.5%) acetylene to the headspace. 

Nitrogenase-mediated reduction of acetylene to ethylene was detectable after 
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approximately 10 min following addition of substrate and was linear for at least 2 h. 

Production of headspace ethylene was monitored every 15 minutes for 90 minutes 

using a Pye Unicam 104 gas chromatograph at the following settings: 

 

Column, carrier gas, detector Porapak N, N2 (30 ml min-1),  FID 
Injector temp 120 °C 
Column temp 100 °C (isothermal) 
Detector temp 150 °C 
Injection volume 100 μl 
 

Ethylene and acetylene were quantified by comparison with standards prepared in 

argon at known concentrations. At these settings retention times were acetylene 1.36 

min, ethylene 0.95 min. For inhibition by ammonium, 30 ml vials containing 5 ml 

culture were set up as before with 5% headspace oxygen (i.e. the oxygen 

concentration at which maximum nitrogenase activity was detected). The reaction 

was allowed to proceed for 30 min before injection of ammonium chloride to final 

concentrations of 0, 0.5 1.5 or 5 mM. Inhibition of nitrogenase activity resulted in a 

decrease in the rate of ethylene production. 

2.13.3 Isocitrate lyase 

Isocitrate lyase was assayed following essentially the method of Dixon and Kornberg 

(1959), adapted for a 1 ml volume. Buffer pH was varied between 6.0 and 8.0, and  

pH 7.0 was found to give the highest activity. The reaction mixture contained 

potassium phosphate buffer pH 7.0 (final concentration 100 mM), MgCl2 (6 mM), 

phenylhydrazine HCl (4 mM) L-Cysteine HCl (12 mM) protein (50 - 200 µg) and 

was initiated with DL-isocitrate (trisodium salt) (8 mM). EDTA (0.7 mM) was 

compared with cysteine as an activator as recommended by Kennedy and Dilworth 

(1963) but there was no difference in activity. The increase in absorbance at 324 nm, 

due to the accumulation of glyoxylate phenylhydrazone, was recorded against 

reactions containing water instead of isocitrate. After a lag of approximately 1 – 2 

min, the reaction was linear for at least 10 min. Rates were calculated using ε324 for 

glyoxylate phenylhydrazone = 1.7 × 104 M-1cm-1.  
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2.13.4 Malate synthase 

Malate synthase activity was assayed by following the decrease in absorbance at 232 

nm due to the breakage of the acetyl-CoA thio-ester bond in the presence of 

glyoxylate. Reactions (1 ml) contained Tris buffer pH 8.0 (final concentration 90 

mM), MgCl2 (3.4 mM), acetyl-CoA (sodium salt) (0.05 mM) and protein (100 µg 

total). Absorbance was measured for 5 min before and after addition of glyoxylate 

(final concentration 0.5 mM). Without substrate, change in absorbance was less than 

0.0008 min-1. Rates were calculated using ε232 for acetyl-CoA  = 4.5 × 103 M-1cm-1. 

2.13.5 Aldehyde dehydrogenase 

NAD(P)- dependent aldehyde dehydrogenase was assayed by following the 

accumulation of NADH or NADPH. Tris, tricine, glycine/NaOH and N-cyclohexyl-

2-aminoethanesulfonic acid (CHES) buffers were compared, and the pH optimised 

with CHES buffer at pH 9.25, see Figure 2.2. The reaction (1 ml) contained CHES 

buffer pH 9.25 (50 mM), dithiothreitol (DTT) (1 mM), NAD(P)+ (0.75 mM), protein 

(100 µg) and substrate (10 mM). Where noted, coenzyme A was included (0.1 mM). 

The reaction was initiated by the addition of substrate and followed by measuring 

absorbance at 340 nm. Activity was calculated using ε340  = 6.22 × 103 M-1 cm-1, and 

compared with controls both without substrate and also without protein. 

 

 

Figure 2.2. The influence of buffer pH on NAD(P)-dependent aldehyde dehydrogenase 
activity (left) and (right) a chemical reaction caused an increase in absorbance at 340 nm in 
the absence of protein. This effect was significant in reactions containing propanal and is 
expressed as a percentage of succinate-grown cell extract-catalysed activity in response to 
propanal. 
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There was no significant rate without substrate, but a NAD+-dependent increase in 

absorbance at 340 nm in the presence of propanal (but not acetaldehyde) without 

protein, which increased at higher pH, was observed, see Figure 2.2. Since similar 

assays are frequently conducted at pH 9.5, e.g. Leal et al. (2003), this should be 

noted. This chemical activity was subtracted from enzyme-catalysed activity. 

2.13.6 Acyl-CoA synthetase 

The hydroxamate assay according to Lipman and Tuttle (1945) was used in a slightly 

modified form. The optimised reaction mixture (500 μl) contained potassium 

phosphate buffer pH 7.5 (100 mM), ATP (5 mM), MgCl2 (5 mM), hydroxylamine 

(neutralised to pH 6.5 with KOH) (200 mM), reduced glutathione (neutralised to pH 

4.5 with KOH) (5 mM), CoA-SH (0.33 mM), acetate or propionate (10 mM), and 

protein (100 µg). The mixture was pre-incubated at 37° C for 5 minutes before 

initiation of the reaction by addition of protein. Following 30 min incubation at 37° 

C, the reaction was stopped by addition of 500 μl acid FeCl3 reagent. Production of 

hydroxamate was determined after 10 min, in comparison with blanks prepared 

without CoA-SH, by measuring the absorbance at A520. Standards were prepared 

from known concentrations of succinic anhydride as described by Lipman and Tuttle. 

A continuous coupled assay as described by Horswill and Escalante-Semerena (2002) 

was also attempted. Reactions (1 ml) contained HEPES buffer (50 mM), 

phosphoenolpyruvate (PEP) (3 mM), MgCl2 (5 mM), ATP (2.5 mM), CoA-SH (0.33 

mM), NADH (0.4 mM), myokinase (MK) (10 units), pyruvate kinase (10 units), 

lactate dehydrogenase (12.5 units) protein (150 µg) and substrate (10 mM). The 

oxidation of NADH was followed spectrophotometrically at 340 nm. A high rate 

without substrate, which was not dependent on MK, made this assay unreliable and it 

was not pursued. 

2.13.7 NAD(P)-independent alcohol dehydrogenase 

Quinoprotein alcohol dehydrogenase was assayed using the artificial electron 

acceptor phenazine methosulfate (PMS) coupled to reduction of 

dichlorophenolindophenol (DCPIP) as described by Anthony (1964). Reactions (1 ml) 

contained Tris buffer (pH 9.0) (100 mM), PMS (1 mM), DCPIP (0.08 mM) NH4Cl 

(15 mM), protein (20 µg) and substrate (10 mM). Reactions were initiated with 
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addition of ammonium and followed spectrophotometrically at 600 nm against a 

water blank. Reactions lacking ammonium or substrate were also monitored. As 

described by Anthony (1964), significant transient activity was noted without 

substrate, which was not subtracted from the substrate-induced activity (Day and 

Anthony, 1990). Activity was calculated using ε600  = 1.91 × 104 M-1cm-1 for DCPIP. 

2.13.8 NAD(P)-dependent alcohol dehydrogenase 

Assay reactions contained Tris buffer (25 mM, pH 9.0), NAD+ or NADP+ (1.5 mM), 

protein (66 – 200 µg) and substrate (20 or 40 mM). The reduction of NAD(P)+ was 

monitored spectrophotometrically at 340 nm against a blank without substrate, and 

activity calculated using  ε340  = 6.22 × 103 M-1cm-1 for NAD(P)H. 

2.13.9 Reduction of ferricyanide - acetol dehydrogenase 

Dehydrogenase activity coupled with the reduction of ferricyanide was assayed by 

colorimetric measurement of Prussian blue formed by the reaction of ferrocyanide 

with Dupanol reagent using a discontinuous assay (Wood et al., 1962; Shinagawa et 

al., 1982). The following were combined in a small test tube: 500 µl McIlvaine 

buffer pH 7.4 (made by mixing approximately 9.15 ml citric acid (0.1 M) with 91 ml  

disodium hydrogen phosphate (0.2 M)), 100 µl potassium ferricyanide (0.1M), 50 µl 

Triton X-100 (1% v/v), 200 µg protein, 100 µl substrate (0.2 M) and water to a 

volume of 1 ml. The reaction was incubated at room temperature for 10 min and 

stopped by the addition of 0.5 ml ferric dupanol reagent (0.5 g Fe2(SO4)3.nH2O, 0.3 g 

SDS, 9.5 ml H3PO4 (85%) and water to 100 ml). Water (3.5 ml) was added and the 

mixture incubated at 37 °C for 20 min, following which absorbance was measured at 

600 nm against a blank. For quantification of ferrocyanide production, standards 

were made up similar to the assay reactions (except without protein and substrate), 

but containing, in addition, between 0 – 1 µmol of potassium ferrocyanide (with 

corresponding reductions in ferricyanide). These were treated identically to the assay 

reactions. Control reactions were conducted with no substrate, and without protein. 

One unit was defined as the reduction of 2nmol ferricyanide min-1. The assay pH was 

optimised from pH 4.5 to pH 9.0, (using McIlvaine buffer for pH 4.5 to 7.4, and Tris 

from 7.0 to 9.0) and pH 7.4 gave the optimum activity. 
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2.13.10  Methylmalonyl-CoA mutase 

A modification of the method of Birch et al. (1993) was used, by following the 

formation over time of the dimethyl derivative of succinyl-CoA in cell extracts 

incubated with methylmalonyl-CoA. Reactions were conducted in triplicate at each 

time point for each sample (growth condition). Controls with no substrate were 

included, as were those with no protein, also in triplicate. Reactions contained 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer (50 mM pH 7.5), 

cyanocobalamin (10 µM) and cell-free extract (100 µg protein) in a volume of 180 µl. 

Following pre-incubation for 10 min at 30 °C, 20 µl of 10 mM methylmalonyl-CoA 

(trilithium salt, Sigma-Aldrich) was added and reactions incubated at 30 °C in the 

dark. Reactions were stopped at 0, 10, 20 and 30 min by addition of 100 µl 2M 

NaOH containing 1 mM glutarate as internal standard, and incubated at 55 °C for 10 

min to hydrolyse thioester bonds (Corkey et al., 1981). Vials were acidified with 100 

µl 15% v/v H2SO4 and stored on ice. The reaction mixtures were transferred to 2 ml 

glass vials containing 900 µl ethyl acetate and sufficient NaCl to saturate 

(approximately 0.3 g). Vials were mixed on a tube rotator for 30 min at room 

temperature, and 800 µl of the organic phase transferred to fresh 1.5 ml tubes which 

were evaporated to dryness using a rotary evaporator (GiroVac, North Walsham, 

UK). The residue was dissolved in 200 µl dimethyl formamide (DMF) containing 1/8 

v/v methanol and 10 µl trimethylsilyldiazomethane (TMSCHN2) was added. Tubes 

were mixed by rotation for 30 min at room temperature, excess TMSCHN2 destroyed 

by the addition of 10 µl 2M acetic acid in DMF, the solution transferred to 0.3 ml 

glass autosampler vials and analysed using an Agilent 7890A gas chromatograph 

using the following settings: 

 

Column, carrier gas, detector JW INNOWAX, N2 (1.8 ml min-1),  FID 
Injector temp 250 °C 

Column temp 100 °C 3 min, 100 ° to 150 °C at 10 °C min-1, 150 ° to 
240 °C at 50 °C min-1, hold at 240 °C 3.5 min 

Detector temp 250 °C 
Injection volume Injection 5 μl (50:1 split) (autosampler) 
 

Dimethylmethylmalonate (DMM) and dimethylsuccinate (DMS), formed by the 

methylation of methylmalonate and succinate following hydrolysis of the thioesters, 

were identified by comparison of the retention times with those of the authentic 
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compounds obtained from Sigma-Aldrich. At the setting used, the retention times for 

DMM and DMS were 5.98 and 7.72 min respectively. Methylmalonyl-CoA and 

succinyl-CoA were quantified (assuming complete hydrolysis) by comparison with 

standards prepared as the reaction mixtures, except without methylmalonyl-CoA, but 

containing known quantities of methylmalonate and succinate. When 100 nmol 

succinate was added, approximately 80 nmol could be detected in the dimethylated 

form following extraction. Approximately 2 nmol succinate in a 200 µl reaction (10 

µM) could be detected.  

2.14 Measurement of substrates and metabolites 

2.14.1 Quantification of headspace gases 

Methane, propane, other hydrocarbons and carbon dioxide were quantified by GC 

using an Agilent 6890 instrument at the following settings: 

 

Column, carrier gas, detector Porapak Q, N2 (20 ml min-1),  FID 
Injector temp 150 °C 
Column temp 125 °C (isothermal) 
Detector temp 200 °C 
Injection volume 100 μl 
 

Standards were prepared by dilution (or serial dilution) of the pure gases in air or 

oxygen-free nitrogen in 120 ml serum vials sealed with Teflon coated butyl rubber 

stoppers. Retention times for methane and propane at these settings were 0.64 and 

2.72 min respectively. Methane was detectable to approximately 1 ppmv. 

For quantification of CO2, a Methanizer catalyst (operated at 350° C) was 

incorporated to reduce CO2 to CH4, and the oven temperature reduced to 45° C. 

Retention times for CH4 and CO2 were 1.14 and 2.14 min respectively.   

2.14.2 Quantification of total nitrate and nitrite in cell culture medium 

Aliquots of cell culture (1.5 ml) were centrifuged to pellet cells (16,600 × g, 5 min, 

room temperature) and 1 ml supernatant removed to fresh tubes. Zinc dust (50 mg) 

was added to reduce nitrate to nitrite, and tubes mixed for 1 h on a tube rotator. 

Tubes were centrifuged as before and 0.5 ml supernatant transferred to cuvettes and 
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mixed with 0.5 ml Griess’ reagant (Sigma Aldrich, UK). After 30 min incubation at 

room temperature, absorbance was read at 520 nm, and compared with standards 

prepared using potassium nitrate solution of known concentration. Limit of detection 

was approximately 0.5 µg ml-1. Nitrite was determined in the same way but without 

the reduction step. 

2.14.3 Quantification of ammonium in cell culture medium 

Culture medium was centrifuged (16,600 × g, 5 min, room temperature) and 

supernatant removed and diluted as necessary to give ammonium concentration in 

the range 1 to 50 µM. Ammonium was determined by the method of Solórzano 

(1969), scaled down for a sample volume of 1 ml and measurement in a 1 ml cuvette, 

and using hypochlorite solution supplied by Fisher Scientific (Loughborough, UK). 

Standards were prepared between 0 and 50 µM using a stock solution of ammonium 

chloride. Ammonium was detectable to approximately 1 µM. 

2.14.4 Quantification of succinate in cell culture medium 

Succinate was quantified using a K-SUCC kit from Megazyme (Wicklow, Republic 

of Ireland), using between 100 – 500 µl of cell culture supernatant (diluted as 

necessary) in a coupled enzymatic reaction, following the manufacturer’s 

instructions. The consumption of NADH was measured spectrophotometrically and 

the stoichiometric succinate amount in the reaction calculated using the molar 

extinction coefficient of NADH (ε340 = 6.22 × 103 M-1cm-1). Succinate was 

detectable to approximately 30 µM. 

2.14.5 Quantification of acetate in cell culture medium 

One millilitre aliquots of cell culture were centrifuged (16,600 × g, 5 min, room 

temperature) to pellet cells, and 600 μl of the supernatant removed to fresh tubes and 

acidified with 12 μl of 1M HCl. Acetic acid formed was extracted with an equal 

volume of diethyl ether by mixing on a tube rotator for 30 min. Three hundred 

microlitre aliquots of the organic phase were removed and transferred to 0.3 ml 

crimp-top vials for analysis using a Pye Unicam 104 gas chromatograph at the 

following settings: 
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Column, carrier gas, detector Porapak N, N2 (30 ml min-1),  FID 
Injector temp 225 °C 
Column temp 190 °C (isothermal) 
Detector temp 250 °C 
Injection volume On column injection, 10 μl 
 

Acetate (retention time 6.2 min) was quantified by comparison with standards 

prepared in the same way from dilutions of a known concentration sodium acetate 

stock solution. Acetate could be accurately quantified to approximately 1mM. 

2.14.6 Quantification of propane in cell culture medium 

The propane concentration of liquid medium was measured by manual injection of 

0.5 µl of cell suspension into an Agilent 7890A GC, using a glass-wool containing 

inlet liner, at the following settings: 

 

Column, carrier gas, detector HP1 capillary, N2 (1.8 ml min-1),  FID 
Injector temp 250 °C 
Column temp 45 °C (isothermal) 
Detector temp 250 °C 
Injection volume Injection 0.5 μl (100:1 split) (manual injection) 
 

Retention time for propane was 1.80 min. 

2.14.7 Quantification of 2-propanol and acetone in cell culture medium 

Initially, cell culture supernatant was directly analysed by GC. Two millilitre aliquots 

of cell culture were centrifuged (16,600 × g, 5 min, room temperature) to pellet cells, 

and 1.5 ml of the supernatant removed to 2 ml crimp-top glass vials for analysis 

using an Agilent 7890A gas chromatograph at the following settings: 

 

Column, carrier gas, detector HP1 capillary, N2 (1.8 ml min-1),  FID 
Injector temp 250 °C 
Column temp 45 °C (isothermal) 
Detector temp 250 °C 
Injection volume Injection 1 μl (100:1 split) (autosampler) 
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2-propanol and acetone (retention times 1.99 and 1.97 min) were quantified by 

comparison with standard aqueous solutions of a mixture of the compounds in 

approximately the ratio found in the samples (i.e. a molar ratio of 2-propanol to 

acetone of 5:1), due to the similar retention times of the two compounds. Acetone 

could be accurately quantified to approximately 0.5 mM in the presence of 2.5 mM 

2-propanol. Subsequently, sensitivity was improved by extraction, see Section 2.14.8 

2.14.8 Quantification of 1-propanol, 2-propanol, acetone and acetol in cell 

culture medium 

Aliquots (1.5 ml) of the culture were centrifuged (16,600 × g, 5 min, room 

temperature) to pellet cells. Supernatant (800 μl) was added to 400 μl ethyl acetate 

(containing 500 ppmv 1-butanol as internal standard) and approximately 0.4 g NaCl, 

(sufficient to saturate the aqueous phase), in 1.5 ml tubes. Tubes were mixed for 30 

min on a tube rotator, briefly centrifuged to separate phases, and 300 μl of the 

organic phase removed to 0.3 ml crimp top vials for analysis using an Agilent 7890A 

gas chromatograph at the following settings: 

 

Column, carrier gas, detector JW INNOWAX, N2 (1.8 ml min-1),  FID 
Injector temp 250 °C 

Column temp 45 °C 5 min, 45 to 250 °C at 10 °C min-1, hold at 
250 °C 5 min 

Detector temp 250 °C 
Injection volume Injection 5 μl (100:1 split) (autosampler) 
 

Retention time for acetone was 2.40 min, 1-propanol 3.34 min, 2-propanol 5.40 min, 

1-butanol 7.45 min and acetol 9.70 min. These compounds were quantified using 

aqueous standards extracted using the same method. R2 values of linear standard-

curve line-fitting were greater than 0.998 in all cases. Relative standard deviation of 

peak area measurements of the 1-butanol internal standard over a 19 day experiment 

was less than 1% (n=60). Detection limit was, approximately, acetone, 200 μM; 1-

propanol and 2-propanol, 50 μM; acetol, 400 μM. Comparison with standards 

prepared directly in ethyl acetate indicated that the extraction efficiency of 2-

propanol was approximately 74%. 
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Chapter 3  
 

Physiology and growth 
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3.1 Introduction 

Methylocella silvestris BL2 was isolated on nitrate mineral salts (NMS) medium 

diluted 1/5, and subsequently grown by Andreas Theisen in the Murrell lab on a 1/10 

dilution of the same medium (Dunfield et al., 2003; Theisen, 2006), and these 

authors identified low ionic strength as a requirement for growth. Published reports 

documented the slow and sometimes unpredictable growth of Methylocella, with 

maximum density in flask culture during growth on methane about 0.1 (OD600 or 

OD540) (Dedysh et al., 2005a; Theisen, 2006) or about 0.2 – 0.3 on multi-carbon 

compounds. M. silvestris was subsequently grown to high cell density in batch-fed 

fermenter culture on both methane and acetate (Theisen et al., 2005), albeit with a 

comparatively slow specific growth rate on both substrates (approximately 0.01 hr-1, 

average of several experiments). This author also documents (Theisen, 2006) the 

difficulty of manipulating colonies on agar plates, during growth on which M. 

silvestris, in common with other members of the Beijerinckiaceae, forms tough, 

elastic and extremely viscous colonies. Although these previous workers developed 

valuable methods for the isolation and growth of this organism, and growth on sugars 

was tested, comparatively little work was done to investigate the full growth-

substrate range of this organism, or to optimise the medium composition which had 

so far been used. 

The purpose of the work described in this chapter was to further investigate the 

metabolic versatility of M. silvestris, to understand the factors which influence 

growth in the laboratory, and to optimise growth to enable genetic manipulation and 

biochemical characterisation to be carried out. 

3.2 Growth of M. silvestris 

At the start of this project, M. silvestris was grown in flasks under the conditions 

described by Theisen (2006). Problems encountered included the difficulty of 

harvesting cells by centrifugation, due to the presence of a large amount of slime, 

assumed to be polysaccharide, which made pelleting of cells impossible. Instead, a 

homogeneous jelly-like mass of cells formed in the lower half of the tube, sometimes 

occupying up to ¼ of the total volume, which could not be reduced in volume despite 

centrifugation at maximum speed (48,400 × g). Filtration in these cases also proved 

impossible. In some cases the failure of cultures to grow was probably linked to the 
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alteration of the starting pH (5.5) to approximately 4.0 or 8.0, depending on growth 

substrate. It was noticed that M. silvestris would grow on methane with shaking in 

120 ml serum vials, but not in 1 l flasks, presumably due to the larger area for gas 

exchange.  This was not the case, however, during growth on other substrates 

including methanol. It seemed worthwhile, therefore, to invest some time in 

attempting to optimise the growth of M. silvestris in batch culture. 

3.3 Culture purity 

The purity of both flask and fermenter cultures of M. silvestris was checked regularly 

by phase contrast microscopy, by serial dilutions plated onto dilute nitrate mineral 

salts (DNMS) plates followed by PCR amplification and sequencing of DNA from 

individual colonies, by plating on R2A agar plates (M. silvestris does not grow on 

R2A or similar nutrient-rich media) and from time to time by analysis of small clone 

libraries constructed from 16S rRNA genes PCR-amplified from DNA extracted 

from the cultures, as described in Materials and Methods. A representative agarose 

gel illustrating the RFLP pattern of 16S rRNA amplicons is shown in Figure 3.1. The 

cloned 16S rRNA gene was sequenced from a few examples of each library, and in 

every case showed high similarity to M. silvestris (> 99% over more than 500 bp). 

On one occasion an attempt was also made to amplify archaeal and eukaryotic 

ribosomal gene sequences from DNA extracted from fermenter-grown cells, and 

results were negative. 
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Figure 3.1. Clone library analysis of 16S rRNA genes from M. silvestris fermenter-grown 
cells. The agarose gel shows the RFLP pattern following digestion of PCR-amplified 16S 
rRNA genes with MspI. 96 clones are shown, in two rows. A few PCR products were 
sequenced including all those exhibiting a RFLP profile different from the consensus. All 
sequences (> 500 bp) were > 99% identical to the 16S rRNA gene from M. silvestris. 

3.4 The effect of medium composition on growth 

3.4.1 Medium previously used for M. silvestris 

It was shown previously that M. silvestris required a dilute medium for growth 

(Dunfield et al., 2003), and the medium employed previously in the Murrell lab for 

this organism (Theisen, 2006), and at the start of this project, was a 1/10 dilution of 

NMS medium (DNMS medium). However, it had not been determined if this 

requirement was due to overall ionic strength, or the concentration of one of the 

components of the medium, for example nitrate. DNMS medium contains 1 mM 

nitrate, therefore, without additional fixed nitrogen, would be expected to support 

growth to approximately 117 mg l-1, assuming cellular N is 12% w/w (Madigan and 

Martinko, 2006). Since this corresponds to a density of only approximately OD540 = 

0.5, an increase in the nitrogen content of the medium might be beneficial. Since the 

trace elements and buffer are also diluted in DNMS medium, cultures may also be 

limited by trace metal availability, or adversely affected by low buffering capacity.  

The purpose of this work was to increase understanding of the relationship between 

medium composition and growth, and, if possible, to alter medium composition to 

allow increased growth rate and culture density. Growth tests were conducted in 20 

ml liquid cultures in 120 ml serum vials, with methanol (0.1% v/v) as carbon and 
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energy source, except where indicated. Assuming a carbon conversion efficiency for 

a serine cycle methanotroph growing on methanol of 53 – 56% (Anthony, 1982), this 

amount of methanol (0.3 g carbon l-1) should support growth of approximately 0.16 g 

carbon l-1, corresponding to an OD540 of 1.3 (assuming OD540 = 1.0 corresponds to 

125 mg l-1 carbon). 

3.4.2 Nitrate mineral salts and nitrate concentration 

To evaluate the influence of mineral salts and nitrate concentration, NMS salts were 

varied from 0.5 to 10 times the standard DNMS concentration, and subsequently the 

nitrate concentration varied from 1 – 20 mM with the other components of DNMS 

medium unchanged, see Figure 3.2. There was little difference in the growth of the 

cultures, although in both cases the standard medium recipe resulted in the highest 

sustained growth rate and highest culture density. However, increased concentrations 

of either total salts or nitrate did not greatly inhibit the growth of M. silvestris.  

 

 

 

Figure 3.2. Growth of M. silvestris, a) with different concentrations of NMS salts or, b) with 
different concentrations of nitrate in DNMS medium. In both graphs the condition 
corresponding to the standard DNMS recipe is shown in red. 

 

3.4.3 Nitrate versus ammonium 

The effect of substituting ammonium for nitrate was investigated in three 

independent experiments, each consisting of replicated vials with ammonium or 

nitrate (1 mM or 2 mM) in DNMS medium made up without nitrate,  
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as shown in Figure 3.3. In all cases nitrate resulted in higher growth rate and culture 

density, but there was no significant difference between 1 and 2 mM nitrate.  

M. silvestris was able to grow well on methanol (0.1% v/v (25 mM)) or succinate (5 

mM) with urea (1 mM or 5 mM) as nitrogen source, or on methylamine (5 mM) with 

no additional nitrogen source (data not shown). However, production of slime was 

not eliminated in any of these cases, demonstrating that availability of excess fixed 

nitrogen does not prevent polysaccharide production. Therefore the routine use of 

fixed nitrogen sources other than nitrate or ammonium was not investigated further. 

 

Figure 3.3. Growth with nitrate or ammonium (1 mM or 2 mM) was compared in triplicate 
vials. Line type (solid, dashed, dotted) distinguishes three independent experiments, and 
nitrate is shown in red and ammonium in black. Error bars show the standard deviation.  
 

3.4.4 Salt concentration 

The influence of ionic strength was investigated by supplementing DNMS medium 

with different concentrations of NaCl. Ten 20 ml cultures were grown with NaCl 

concentrations between 0 and 500 mM, and OD540 measured at five timepoints up to 

240 h. Vials with up to 125 mM NaCl all grew with specific growth rate in the range 

0.021 - 0.027 h-1 (mean 0.024, standard deviation 0.002) and reached a final density 

of OD540  between 0.41 and 0.59 (mean 0.48, standard deviation 0.06) and there was 

little correlation between growth rate or density and NaCl concentration (R2 = 0.012 

and 0.148 respectively), see Figure 3.4. However, at 500 mM NaCl, growth was 
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almost completely inhibited. These data demonstrate that M. silvestris is perhaps not 

as sensitive to ionic strength as initially thought, but might also explain the absence 

of M. silvestris-related sequences reported from marine environments (~ 0.6 M 

NaCl). 

 

 

Figure 3.4. Influence of supplementation of DNMS medium with between 0 – 500 mM NaCl 
during growth of M. silvestris on 0.1% (v/v) methanol. Specific growth rates of cultures in 
20 ml vials are shown as triangles and final culture densities at 240 h as open circles. 

 

3.4.5 Trace metals 

Examination of the recipe of the trace elements solution added to the medium (Table 

3.1) suggested that, in the absence of additional input from impurities in other 

components, M. silvestris might be limited by lack of essential trace elements. For 

example, methylmalonyl CoA mutase is a vitamin B12-dependent enzyme, which 

requires cobalt for activity and may be required for propane metabolism (see Chapter 

7), and since nitrogenase is a molybdenum-containing enzyme, nitrogen-fixing 

organisms have a requirement for this metal (Shah et al., 1984), which, in species of 

Beijerinckia ranges between 4 – 35 µg l-1 in the culture medium (Becking, 2006). 

Furthermore, Keifer et.al. (2009) recently demonstrated an increased requirement for 

trace elements, particularly cobalt, during growth of resistant strains of 
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Methylobacterium extorquens in the presence of antibiotics. Therefore, the original 

trace elements formulation may be deficient in both molybdenum and cobalt in some 

situations. Initially, the concentration of the previously used trace elements solution 

(designated Trace Elements “A”) was increased up to 25 fold, while maintaining the 

other medium ingredients unchanged, during growth on 0.1% (v/v) methanol. There 

was no detectable difference between the growth of cultures with × 1, × 10 or × 25 

the standard concentration, see Figure 3.5a.   Since M. silvestris was not sensitive to 

increased concentration of trace metals under these conditions, a modified solution 

(Trace Elements “B”) was formulated more similar to that commonly employed for 

methanotrophs, including increased amounts of molybdenum and cobalt. The 

compositions of trace elements solutions A and B are shown in Table 3.1.  Growth 

was then compared using solution A (at × 1 concentration) and solution B at × 1, × 

10 and × 25 concentration (Figure 3.5b). Specific growth rate was highest at the 

lowest concentration of solution B, but with the exception of the highest 

concentration of solution B, at a 95% confidence level there was no significant 

difference between the conditions tested. Using trace elements solution A, the 

influence of iron (as FeEDTA) was investigated by varying the concentration from × 

0.2 to × 5, without evidence of any clear effect (data not shown). Therefore, trace 

elements solution B was used subsequently, with additional FeEDTA (total iron  

791 µg l-1). 

 

Table 3.1. Trace elements present in DNMS medium when using two alternative recipes. 
Media concentrations (µg l-1) are shown for trace element solutions used at × 1, assuming no 
addition from impurities in other components. Trace Elements “A” is the recipe previously 
employed, and “B” is a modified solution compared with “A” and subsequently used in the 
culture medium. 

Element  Trace  Elements "A"  Trace Elements "B" 
Zn  1.5  16.7 
Mn  0.4  13.9 
B  2.7  0.5 
Cu  0.2  0.5 
Ni  0.2  3.0 
Mo  0.6  19.8 
Co  0.0  12.4 
Fe  0*  211 

*Iron is supplied separately as FeEDTA 
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Figure 3.5. The effect of trace elements on growth of M. silvestris on 0.1% (v/v) methanol. a) 
The trace elements solution previously employed (Trace Elements “A”) was increased to × 
10 or × 25, and b) different concentrations of a modified solution (Trace Elements “B”, in 
black) were compared with Trace Elements “A” (in red). All data points represent the mean 
of three replicates and error bars indicate the standard deviation. 

 

3.4.6 Medium buffering capacity 

The tendency of M. silvestris cultures to depart significantly from the initial pH of 

5.5 was noted, depending on nitrogen source and substrate. For example, cultures 

growing on methanol (0.05%) with ammonium (1 mM) as carbon and nitrogen 

source respectively decreased pH to approximately 4.0 after 3 - 4 days, as did 

cultures growing on acetol with nitrate at the same concentrations, whereas cultures 

growing on acetone with nitrate remained at the initial value (pH 5.5). During growth 

on succinate, pH increased to approximately 8.0. Since the buffering capacity (1 mM 

phosphate) of the original dilute medium employed was small, the effect of 

increasing the concentration of phosphate buffer was investigated (Figure 3.6), 

during growth on methanol with 1 mM nitrate or ammonium. Under these conditions 

a 20-fold increase in buffer concentration did not inhibit growth, and resulted in 

higher biomass during growth with ammonium. pH was measured at 24, 48 and 96 

hours, and remained within the range 5.3 – 6.0 in vials with nitrate at all phosphate 

concentrations, and with ammonium at 20 mM phosphate. At the two lower 

phosphate concentrations, however, pH was in the range 4.0 – 4.4 after 96 hours in 

vials containing ammonium. In no case did ammonium result in increase growth rate 

or higher culture density than nitrate.  
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Figure 3.6. Effect of increasing the concentration of phosphate buffer during growth on 
methanol (0.1% v/v) with either ammonium or nitrate (1 mM) as nitrogen source. Data 
points represent the mean of three replicates and error bars indicate the standard deviation. 
 

 

 

Figure 3.7. a) using ammonium (1 mM) as nitrogen source, M. silvestris was grown on 
succinate alone (0.1 mM and 0.5 mM) or succinate plus methanol. Growth was then tested (b) 
on methanol alone, or again in combination with succinate (0.5 mM or 5 mM). Data points 
represent the mean of three replicates and error bars indicate the standard deviation. 
 

Since between 5 and 20 mM phosphate buffer had been shown necessary to buffer 

the acidification caused by 1 mM ammonium, the effect of the addition of a small 

amount of succinate in combination with methanol was tested. Methanol (0.1% v/v) 

plus 0.5 mM succinate, in medium containing 1 mM ammonium, resulted in rapid 

growth without pH shift to a relatively high density (Figure 3.7), in the presence of 
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the low buffering capacity of 1 mM phosphate. However, polysaccharide production 

was not prevented by these methods, illustrating that polysaccharide is not produced 

solely in response to pH stress. 

 

3.5 Effect of carbon dioxide on growth 

It has previously been reported that some methanotrophs have a requirement for 

carbon dioxide during growth on methane (Acha et al., 2002), and they have 

routinely been grown with the addition of carbon dioxide, see for example, Theisen 

(2006). To investigate this in M. silvestris, 20 ml cultures (in triplicate) were grown 

in 120 ml vials with methane (20% v/v) with the addition of 0, 0.1, 0.3, 1.0 or 3.0 (% 

v/v) CO2 to the headspace. Culture density was monitored over 216 hours, and CO2 

concentrations measured twice by gas chromatography (GC) during this period. 

There was no difference between the specific growth rates under the different 

conditions (means O.022, 0.024, 0.023, 0.022, 0.020 h-1 respectively, single factor 

ANOVA, F(4,10) = 3.05,  p = 0.07, MSE = 6.72 × 10-6), nor noticeably different lag 

phases. However, at 144 h, the vials with no added CO2 had a measured CO2 

headspace concentration of 0.95% ±0.32%, clearly as a result of oxidation of 

substrate. To investigate this effect further, vials were set up as before, but without 

addition of CO2, and containing 1 ml 10M NaOH contained in a small test tube 

inside the vial to remove CO2 produced, alongside controls without CO2 removal. No 

growth occurred in vials with CO2 removal. These data are relevant to growth in 

fermenter culture, where a recently inoculated 4 l culture with a biomass 

concentration of 0.025 mg (dw) ml-1, and with a specific growth rate of 0.01 h-1, 

would be emitting CO2 at a rate of just over 1 ml h-1, a flux of 0.004% of the air 

supply of typically 400 ml min-1 (assuming half of substrate methane is oxidised to 

CO2 and biomass is 50% C w/w). Under these conditions, emission of CO2 by the 

growing cells would not significantly elevate the atmospheric-equilibrium CO2 

concentration in the medium, due to the sparging effect of the air supplied. Therefore 

for growth in fermenter culture, methane supplemented with 5% CO2 was used as 

substrate (i.e. CO2 = 0.5% (v/v) of gas inflow when supplied at 1/10 methane/air). 
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3.6 Substrate utilisation by M. silvestris 

Growth on compounds of interest was investigated in liquid culture and is detailed in 

Table 3.2. Some of this data confirms previously published results (Dunfield et al., 

2003; Dedysh et al., 2005a; Theisen et al., 2005; Theisen, 2006). Liquid-grown M. 

silvestris cells were used as inoculum (at approximately 1/10, resulting in a starting 

cell density of approximately OD540 0.025 – 0.04) for growth in 20 ml cultures in 120 

ml serum vials, supplied with the substrates shown. In the majority of cases, tests 

were carried out in triplicate. 

3.7 Substrate-oxidising capability – oxygen electrode studies 

The capacity of whole cells grown on methane to oxidise potential growth and non-

growth substrates was investigated using a Clark oxygen electrode. Cells (stored 

frozen in pellets at -80 °C) were used in the oxygen electrode as described in 

Materials and Methods and oxygen consumption measured in response to addition of 

substrate. It was found that while a concentrated suspension of methane-grown cells 

retained activity in response to methane for at least 24 h when stored on ice, when 

resuspended in buffer at the working cell density (approximately 5 mg in 3 ml buffer) 

and gently stirred at room temperature for 30 min, methane-related activity was 

completely lost. However, these cells retained a similar level of activity to freshly 

thawed cells in response to methanol, possibly highlighting the instability or oxygen-

sensitivity of the monooxygenase enzyme system. Initially, a range of possible 

substrates were tested for their ability to induce a response in M. silvestris methane-

grown whole cells. Data are presented in Table 3.3, and show a high rate of oxidation 

of primary alcohols, but not secondary alcohols, typical of the substrate specificity of 

methanol dehydrogenase (MDH) (Anthony, 2000).  

Subsequently, reactions were investigated in more detail. Kinetic data for methane 

and methanol are shown in Figure 3.8. Methane-grown whole cells had a km for 

methane of approximately 43 µM, (corresponding to a headspace methane 

concentration of 2.9%, assuming equilibrium between gas and aqueous phases). The 

affinity for methanol was high (km < 10 µM). However, in this case it was not 

possible to take accurate measurements at substrate concentrations approaching the 

km (i.e. < 10 µM), since the deviation (oxygen consumed) in response to addition of a 

few nanomoles of substrate was too small.   
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Table 3.2. Substrate utilisation by M. silvestris. Growth is indicated as  ++ : growth to 
OD540 > 0.25,  + : growth to OD540 ≥ 0.08,  - : growth to OD540 < 0.08. (Concentrations 
in % given as v/v.) 

Substrate Concentration Growth 
Formate 1 mM - 
Formate 5 mM, 40 mM + 
Formate 25 mM ++ 
H2/CO2 20% O2, 0.5 to 10% CO2, balance H2 - 
Methane 2.5% to 20% ++ 
Methanol 0.05% ++ 
Methylamine 5 mM ++ 
Acetate 5 mM ++ 
Ethane 20% + 
Ethene 10% - 
Ethanol 0.05% ++ 
Glycine 5 mM - 
Glycollate 5 mM - 
Glyoxylate 1 mM, 5 mM - 
Oxalate 1 mM, 5 mM - 
Urea 5 mM - 
1,2-propanediol 0.05% ++ 
1-propanol 0.01 to 0.1% -* 
2-propanol 0.05% ++ 
Acetol 0.05% ++ 
Acetone 0.05% ++ 
Glycerol 5 mM ++ 
Methyl acetate 0.05% + 
Propane 2.5% to 20% ++ 
Propene 10% - 
Propionate 5 mM ++ 
Propionate 20 mM - 
Pyruvate 5 mM ++ 
Butane 20% - 
Trans-2-butene 10% - 
Malate 5 mM ++ 
Succinate 5 mM ++ 
Tetrahydrofuran 0.05% + 
Pentane 0.1% - 
Gluconate 10 mM ++ 
Pentadecane 0.1% - 
* Data on growth on 1-propanol are presented and discussed in Chapter 7 
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Table 3.3. Oxygen consumption rate (nmol min-1 (mg dry weight)-1) of methane-grown 
whole cells in response to addition of the substrates shown. Standard deviations are shown in 
parentheses where measurements were conducted in at least triplicate. Substrate 
concentrations 82 µM, except alkanes and alkenes 49 µM. N/D: not detectable. 

Substrate Rate of oxygen 
consumption Substrate Rate of oxygen 

consumption 
methanol 22.9 butyraldehyde 11.5 
ethanol 21.9 (2.4) pentanal 4.0 
1-propanol 15.0 (1.4) benzaldehyde 11.4 
1-butanol 7.4 (2.6) 
1-pentanol 12.5 formate 7.7 
1-hexanol 14.4 acetate 19.6 
1-heptanol 14.6 propionate N/D 
1-octanol 13.3 butyrate N/D 
benzyl alcohol 3.1 succinate 13.1 
2-propanol N/D 
2-butanol N/D methane 10.3 (1.8) 
2-heptanol N/D ethane 4.7 
2-methyl 2-propanol N/D propane 4.2 

butane 2.4 
acetaldehyde 21.2 ethene 2.3 
propionaldehyde 13.4 propene 3.0 

 

3.8 Growth in fermenter culture 

In order to produce sufficient high quality biomass for proteomic and biochemical 

investigations, cells were grown in fermenters in either 4 l or 2 l vessels on a variety 

of substrates. Initially, cells were grown in fed-batch mode, with addition of nutrients 

(and growth substrate when using liquid or solid compounds) as required. 

Concentrations of nitrate, nitrite (which was never detectable), ammonium and non-

gaseous substrates were measured periodically as described in Materials and 

Methods. From time to time, cells were removed for use or for storage frozen and 

replaced with an equivalent volume of fresh medium. 
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Figure 3.8. Oxygen uptake rate of M. silvestris whole cells as a function of methane [a) and 
c)] or methanol [b) and d)] concentration. The data at a) and b) are also shown as Hanes-
Woolf  plots at c) and d). Data points are shown as crosses. The curves shown in a) and b) 
represent theoretical Michaelis-Menten kinetics, are drawn using parameters (km and Vmax) 
derived from c) and d) and are included to illustrate the range of the data in comparison to 
the curve shapes. 

 

Subsequently it was noticed that growth continued in the absence of detectable fixed 

nitrogen under conditions of low dissolved oxygen, and fermenters were then started 

on medium containing 1 mM fixed nitrogen source, and switched to N2-fixing mode 

following depletion of this initial dose. Cells could then be removed and nitrogen-

free medium added without interruption of growth. Operation under these conditions 

had the very significant advantage of allowing growth of biomass without slime, 

enabling harvesting by centrifugation with the formation of a compact pellet without 

difficulty. However, this required careful control of the culture dissolved oxygen 

(dO2) level, which was maintained close to zero by adjustment of the inlet air flow. It 

was found that dO2 could be stably maintained between zero and about 4% of 

saturation, but not between about 4% and 60%. If dO2 was allowed to rise above a 

few percent, the culture oxygen consumption decreased dramatically, and the dO2 

level rose to a high level within minutes, presumably due to the reduction or 
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cessation of nitrogen fixation and corresponding drop in cell metabolic activity and 

respiration. Under these conditions growth and increase of culture density halted. 

Therefore the transition from initial growth with nitrogen-containing medium to 

nitrogen fixation required a little care to manage. The culture needed to be growing 

at a sufficient rate and oxygen requirement, yet at low dO2 level, to manage the 

transition to nitrogen fixation. However, once in nitrogen fixing mode, the culture 

could be maintained, generating considerable biomass, without difficulty. A 

representative growth curve is shown in Figure 3.9. 

 

 

Figure 3.9.  M. silvestris  fermenter growth on methane (run 10) in nitrogen-fixing mode. 

 

In total 12 Fermenter runs were carried out in batch mode. In some cases substrates 

were changed during the run. Data are summarised in Table 3.4.  

3.9 Nitrogen (N2) fixation 

To confirm N2-fixing activity, cells were removed from the fermenter and assayed 

for nitrogenase activity during growth on methane (run 10). The assay was carried 

out at different oxygen concentrations, and maximum activity occurred at 

approximately 5% oxygen. Ethylene production (maximum approximately 275 pmol 

ethylene produced (mg dw min)-1) was linear for at least 120 min (R2 = 0.998). No 

activity was detectable at atmospheric oxygen levels, see Figure 3.10a. 
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Table 3.4. M. silvestris growth in fermenter culture during this project 

Run Volume (l) Substrate N source Sp. growth rate (h-1) 
1 4 methane nitrate 0.016 
2 4 acetate nitrate 0.043 
3 4 methane nitrate 0.022 
4 4 methane nitrate 0.014 

 propane nitrate 0.008 
5 4 methanol nitrate 0.010 
6 2 propane nitrate 0.006 

 1,2-propanediol nitrate 0.007 
 acetol nitrate 0.018 

7 4 acetate nitrate 0.016 
8 4 propane nitrate 0.010 
9 2 propane ammonium 0.011 

 propane N2-fixing 0.006 
10 4 ethanol ammonium 0.012 

 methane N2-fixing 0.010 
 propane N2-fixing 0.004 

11 2 succinate ammonium 0.016 
12 2 succinate N2-fixing 0.008 

 

 

The inhibition of nitrogenase by ammonium was tested by the addition of ammonium 

chloride to a final concentration of between 0.5 and 5 mM in the assay vial. All 

concentrations tested reduced activity to about half the level without addition of 

ammonium, as shown in Figure 3.10b.  

 

 

Figure 3.10. a) Nitrogenase assay during fermenter growth on methane and b) inhibition of 
nitrogenase activity by ammonium chloride. Between 0 and 5 mM (final concentration) 
NH4Cl was added after 30 min. 
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3.10 Growth in continuous culture 

Three attempts were made to grow M. silvestris in continuous culture, using acetate 

or succinate as carbon source, with ammonium as nitrogen source, or with succinate 

and no fixed nitrogen (nitrogen-fixing). However, it proved impossible to maintain a 

stable culture, even at a dilution rate of less than half the specific growth rate 

achieved in batch culture (Figure 3.11). Possibly ammonium was inhibiting growth 

when it was included in the medium, whereas when it was omitted, the culture 

required limitation by oxygen for nitrogen fixation, rather than by growth substrate. 

 

 

Figure 3.11. Growth in continuous culture on succinate. The medium reservoir contained 
dilute mineral salts medium with ammonium (2 mM) and succinate (20 mM). At day 26, 
ammonium was not detectable in the culture and the medium reservoir was replaced with 
nitrogen-free medium. Succinate concentration was measured from day 20. Cells were 
removed and replaced with nitrogen-free medium at day 32. Culture volume was 2.0 l and 
flow of 20 ml h-1 corresponds to a dilution rate of 0.01 h-1. Additions of succinate were made 
to the vessel between days 25 and 34. 

 

3.11 Antibiotic sensitivity of M. silvestris 

M. silvestris wild type cells were tested for sensitivity to several common antibiotics 

during growth in liquid culture. Five millilitre cultures were set up in triplicate with 

methanol (0.1%) as growth substrate. Initial cell density was approximately OD540 = 

0.05, and antibiotics were added to a final concentration of between 2 and 50 μg ml-1. 
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Where M. silvestris was found to be sensitive to the antibiotic at 2 μg ml-1, tests were 

repeated with between 0.25 and 2 μg ml-1 antibiotic. Growth was measured as OD540 

at two time points and representative growth curves (for kanamycin and 

chloramphenicol) are shown in Figure 3.12. The data indicated that the MIC (in μg 

ml-1) is approximately as follows. Kanamycin; < 0.25, chloramphenicol; > 50, 

streptomycin; 2, gentamicin; 1, spectinomycin; 5, tetracycline; 0.5, neomycin; < 2, 

aprimycin; < 2, nalidixic acid; > 50.  

 

 

Figure 3.12. Growth of M. silvestris in the presence of a) kanamycin and  
b) chloramphenicol at the concentrations (µg ml-1) shown. Each data point represents the 
mean of triplicate cultures, and error bars indicate the standard deviation. Most error bars are 
omitted for clarity, but those shown are representative. 

 

M. silvestris was capable of growing to an OD540 of at least 0.15 in the presence of 

all concentrations of every antibiotic tested except tetracycline. It was noted that, in 

the presence of high concentrations of antibiotic, cultures tended to accumulate large 

quantities of polysaccharide slime, possibly as a method of protection for the cells. 

Additionally, in the case of, for example, kanamycin, probably the most suitable 

antibiotic for use with this organism, sensitivity continued down to the minimum 

concentration tested (0.25 μg ml-1) – 1/100 of the concentration usually employed. 

These data demonstrate that it cannot be assumed that considerable growth (two 

doublings) of an engineered strain indicates a higher level of antibiotic resistance 

than that of the wild type, and highlight the necessity for careful washing of cells 

used as inoculum to prevent sufficient antibiotic being carried over to affect growth 

(for example during removal of the kanamycin cassette by electroporation of cre 

recombinase). Since M. silvestris was sensitive to kanamycin and gentamicin, and 
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since these antibiotics are relatively stable, these were considered the most suitable 

for routine use. DNMS agar plates were prepared containing kanamycin (2, 5, 10, 20 

or 40 µg ml-1).  Growth occurred up to 10 µg ml-1, but not at the two highest 

concentrations. Similarly, M. silvestris grew on plates containing gentamicin at up to 

5 µg ml-1. The ability to grow on plates at a higher antibiotic concentration than in 

liquid may also be related to the polysaccharide slime-producing ability of the 

colonies. 

3.12 Proteomic analysis 

Cell-free extract was produced from cells grown on acetate, succinate or methane as 

described in Materials and Methods. Following TCA precipitation and protein 

quantification, 15 µg were loaded on a 12.5% SDS-PAGE gel. Each lane of the 

coomassie-stained gel (Figure 3.13) was cut into approximately 1 mm thick bands 

and analysed by tryptic digest and LC/ESI-MS/MS by the University of Warwick 

Biological Mass Spectrometry and Proteomics Facility. 

 

 

Figure 3.13. SDS-PAGE analysis of cell-free extract from M. silvestris cells grown on 
methane, succinate or acetate. M: PageRuler Plus molecular mass marker (Fermentas). 
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A total of 312 polypeptides were identified, 159 by two or more peptides, of which 

those involved in core metabolic processes are listed in Table 3.5. Single-peptide 

identification of polypeptides should be interpreted with caution (Veenstra et al., 

2004). There is a general correlation between the abundance of a protein in a sample 

and the number of peptides detected (Rappsilber et al., 2002), depending on the 

theoretical number of peptides derived from tryptic digest of a particular polypeptide, 

which mainly depends on its size. Therefore, when comparing samples from different 

growth conditions, peptide number has been taken as an indicator of relative 

polypeptide abundance. Identifications were made from a database compiled from 

the genome sequence, which at that time was unfinished. The final genome sequence 

became available during the course of this project, and included many changes 

compared with the previous draft genome used to assign peptides identified from the 

gel. Re-analysis of the data using the finished genome would undoubtedly alter the 

results slightly, for example, the draft genome identified two isocitrate lyase genes 

(discussed later) to which peptides were assigned separately, but which were later 

shown to belong to a single open reading frame. However, time and resources 

precluded this computationally-intensive process. For this reason, the gene 

identification numbers in the table refer to the draft genome which is different to that 

adopted for the finished genome accessible via NCBI.  

Whereas the subunits of the soluble methane monooxygenase (sMMO) were mostly 

only detected in methane-grown cells, methanol dehydrogenase (MDH) was present 

in all growth conditions. In addition, enzymes of the serine cycle for one-carbon 

assimilation were present during multi-carbon growth, including serine-glyoxylate 

aminotransferase, although hydroxypyruvate reductase was not detected. A 

theoretical possibility would be for M. silvestris to assimilate carbon via the Calvin 

cycle (as, for example, Beijerinckia mobilis during growth on formate, (Dedysh et al., 

2005b)), but the two enzymes unique to this cycle, ribulose 1,5-bisphosphate 

carboxylase-oxygenase (RubisCO) and phosphoribulokinase (PRK), were not 

detected. 
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Table 3.5. Core metabolic gene products identified in the SDS-PAGE gel shown in Figure 
3.13. Cells were grown on the substrates shown, separated by 1D SDS-PAGE and analysed 
by MS/MS. The figures in the columns indicate the number of peptides identified from each 
predicted polypeptide in each growth condition and blanks indicate that the polypeptide was 
not detected in that condition. Ac: acetate, Succ: succinate, MM: molecular mass (kDa).  

Gene a Ac CH4 Succ MM b  Description 
Methane metabolism 
1024 10 20 15 60.1 Methanol dehydrogenase alpha subunit 
3901 1 13   42.5 sMMO beta subunit (MmoY) 
3902   11   24.0 sMMO alpha subunit (MmoX) 
3899   6 2 35.9 sMMO gamma subunit (MmoZ) 
3900   5   22.6 sMMO regulatory subunit (MmoB) 
1021 1   3 10.9 Methanol dehydrogenase beta subunit 
3894   2   59.7 sMMO chaperone (MmoG) 
3897   2   38.5 sMMO reductase (MmoC) 
1025     1 8.8 Methanol dehydrogenase alpha subunit 
1726 2   2 27.3 Formylmethanofuran DH, subunit C 
1741 3 4 3 18.6 Formaldehyde-activating enzyme 
1746 1 1 1 30.9 Methylenetetrahydromethanopterin DH 
Serine cycle 
0609 7 3 3 46.0 Serine hydroxymethyltransferase  
1621 7 3 3 33.4 Malate dehydrogenase, NAD-dependent 
0974 5 5 3 44.9 Enolase  
2256 2 1 5 42.9 Malyl-CoA synthetase, beta subunit  
2258 4 4 3 42.6 Serine-glyoxylate aminotransferase  
3829   2   101.8 Phosphoenolpyruvate carboxylase  
2339   1   22.7 2,3-bisphosphoglycerate mutase 
Central carbon metabolism 
0005 9 2 6 40.2 Acetyl-CoA acetyltransferase (β-ketothiolase) 
3942 6 3 1 38.0 D-fructose 1,6-bisphosphatase 
0974 5 5 3 44.9 Enolase 
2946 5   1 33.4 PEP carboxykinase (ATP) 
3123 4 4   35.5 Glyceraldehyde-3-phosphate dehydrogenase 
3670   4   54.4 Glucose-6-phosphate dehydrogenase 
2508   3   92.8 Glycogen/starch/alpha-glucan phosphorylase 
2947 3   2 24.8 PEP carboxykinase (ATP) 
4055 1 1 3 70.8 Acetate--CoA ligase 
0605 1 1 2 27.9 Acetoacetate decarboxylase 1 
3829   2   101.8 PEP carboxylase 
0036 1 1 1 23.3 Acetyl-CoA:acetoacetyl-CoA transferase 
0969 1   1 38.1 Pyruvate dehydrogenase 
1789 1 1 1 24.8 Phosphoglycolate phosphatase 
2206 1     55.7 D-3-phosphoglycerate dehydrogenase 
2339   1   22.7 Phosphoglycerate mutase 
3936 1   1 12.6 Fructose-bisphosphate aldolase 
3937 1     21.9 Fructose-bisphosphate aldolase 
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Table 3.5 (contd.) 

Gene a Ac CH4 Succ MM b  Description 
TCA cycle 
2169 6 4 9 45.2 Isocitrate dehydrogenase, (NADP) 
1620 8   8 35.0 Succinyl-CoA synthetase, beta subunit  
1621 7 3 3 33.4 Malate dehydrogenase, NAD-dependent 
1619 1 1 4 30.1 Succinyl-CoA ligase alpha subunit  
2296 3 4 3 35.9 Citrate synthase 
3412   4   101.9 Aconitate hydratase 1 
1616 2   2 44.8 Dihydrolipoamide succinyl transferase  
2133     2 21.9 Succinate DH / fumarate reductase 
2132     1 60.7 Succinate dehydrogenase subunit 
2295 1 1 1 12.7 Citrate synthase I 
Glyoxylate bypass 
3298 5   34.4 Isocitrate lyase 
3005 3 1 2 79.1 Malate synthase 
3299 2 1  21.8 Isocitrate lyase 
Nitrogen metabolism 
0721 2 16 2 42.2 Urea/short-chain amide ABC transporter 
0724   8   28.2 Urea ABC transporter, ATP-binding protein 
1075 4 7 3 38.8 L-glutamine synthetase 
1074 4 3 2 52 Glutamine synthetase, type I 
0725   3   25.8 Urea ABC transporter, ATP-binding protein 
2058   3   50.2 Nitrogenase molybdenum-iron cofactor (NifN) 
2059   3   14.8 Nitrogen fixation protein (NifX) 
2377   3   67.7 Nitrite reductase (NAD(P)H), large subunit 
3522 3     12.0 Nitrogen regulatory protein P-II 
1964   2   170.1 Glutamate synthase (Ferredoxin) 
1965   2   51.7 Glutamate synthase (NADH) small subunit  
2040   2   48.7 Nitrogenase cofactor biosynthesis protein (NifB) 
2053   2   15.6 Response regulator 
2054   2   31.5 Nitrogenase reductase (NifH) 
2056   2   58.2 Nitrogenase beta chain (NifK) 
0113     1 20.4 Nitrogen-fixing protein (NifU) 
1073 1   1 12.0 Nitrogen regulatory protein P-II 
2055   1   54.8 Nitrogenase alpha chain (NifD) 
a Gene identification numbers have since been superseded. 
b Note that the accuracy of theoretically calculated molecular masses is dependent on 
correct genome sequence information.  
 

Subunits of all enzymes of the TCA cycle except fumarase were identified, as were 

enzymes possibly active in the Entner Doudoroff pathway. Both enzymes of the 

glyoxylate bypass (isocitrate lyase and malate synthase) were identified, although 

(particularly the former) with low abundance in methane-grown cells. Nitrogen 
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scavenging systems were identified in the form of urea transporters, as well as N2-

fixing enzymes, principally in methane grown cells, possibly indicating a difference 

in nitrate availability between the three cultures. 

3.13 Transcription of hydroxypyruvate reductase, RubisCO and 

phosphoribulokinase 

Operation of the serine cycle requires the enzymatic activity of hydroxypyruvate 

reductase. Since this enzyme was not detected by proteomic analysis, hpr gene 

transcription was verified, together with that of cbbL and cbbP, encoding the 

RubisCO large subunit and phosphoribulokinase respectively. RNA was extracted 

from cells grown on methane, methanol and succinate and 100 ng used for cDNA 

synthesis using random hexamer primers and Superscript II enzyme as described in 

Materials and Methods. cDNA was used as template in PCR reactions using primers 

internal to hpr, cbbL and cbbP, and the 16S rRNA gene as positive control.  

Transcripts were detected, in all growth conditions, for 16S rRNA, hpr and cbbP, 

(Figure 3.14) but not for cbbL (data not shown). 

 

 

Figure 3.14. cDNA was used as template in PCR reactions to verify transcription of hpr 
(centre gel, 377 bp) and cbbP (right, 334 bp). The 16S rRNA-gene positive controls are 
shown on the left (1447 bp). PCR reactions contained, as template, cDNA synthesised by 
reverse transcriptase, or, labelled RT neg, the products of identical reactions where reverse 
transcriptase was omitted. Lanes labelled DNA contained a genomic DNA template. NTC: 
no template control. 
 

3.14 Discussion 

The purpose of the work described in this chapter was to develop effective methods 

of growing M. silvestris, and to gather background information on the growth-

substrate range and corresponding metabolic pathways. This was essential in order to 
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be able to produce sufficient high quality biomass for physiological, biochemical and 

genetic experimentation. Initially, problems associated with large amounts of 

polysaccharide slime production made the harvesting and washing of cells difficult 

or impossible. Changes in the form or concentration of fixed nitrogen sources in the 

culture medium did not provide an answer, and no nitrogen source was found that 

provided increased growth rate or higher final culture density compared to 1 mM 

nitrate. For growth in the fermenter, it became apparent that reduced oxygen tension, 

under which conditions M. silvestris is capable of fixing N2, enabled the growth of 

slime-free biomass, and this was achieved using several different growth substrates. 

It was found that M. silvestris is not as sensitive to ionic strength as had been 

assumed previously, nor were increased concentrations of trace elements toxic, 

allowing the formulation of an improved trace elements solution which may offer 

benefits under certain growth conditions. Phosphate concentrations could be 

considerably increased allowing better buffering and growth under conditions 

tending to alter pH. Whether due to improved culture conditions or gradual 

adaptation of the organism to laboratory conditions, methods were developed which 

greatly increased the ability to predictably grow cultures to comparatively high 

densities. 

Suitable antibiotics for use in later genetic manipulations were identified as 

kanamycin and gentamicin, and the sensitivity of M. silvestris to very low levels of 

kanamycin and tetracycline was noted. 

Oxygen electrode work identified high rates of primary but not secondary alcohol 

oxidation, which reflects the reported substrate specificity of MDH. SDS-PAGE 

demonstrated that MDH is expressed during growth on 2-carbon and 4-carbon 

compounds in addition to during growth on methane. It was shown that M. silvestris 

is capable of growth on ethanol, and it may be that MDH is responsible for oxidation 

of ethanol in M. silvestris, as is the case in Methylobacterium extorquens AM1 

(Taylor and Anthony, 1976). SDS-PAGE also confirmed the expression of many key 

enzymes, including isocitrate lyase and malate synthase, although the low relative 

abundance of isocitrate lyase during growth on methane left open the possibility that 

this enzyme might not be essential for 1-carbon growth. The key serine cycle enzyme 

hydroxypyruvate reductase was not detected in the gel-based proteomic analysis, but 

transcription was verified by RT-PCR. 
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It was found that M. silvestris is capable of growth on propane and many of the 

possible metabolic products of propane oxidation, and this is the subject of a later 

chapter. 
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Chapter 4  
 

Development of a genetic system 

for M. silvestris 
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4.1 Introduction 

As described in Chapter 1, the discovery, isolation, characterisation and, during the 

course of this project, the completion of the genome sequence of M. silvestris 

identified several key questions, some of which are addressed in this work. Data 

acquired prior to and during this project, and the ongoing debate regarding the 

reasons for obligate methanotrophy (reviewed by Wood et al., 2004), suggested 

numerous metabolic and regulatory hypotheses which required confirmation in this 

organism using biochemical and genetic methods. In order to use the methods of 

reverse genetics, it was essential to develop an efficient method of targeted 

mutagenesis, which would also be a prerequisite for any attempt to engineer a strain 

with the aim of maximising this organism’s capacity for effective bioremediation or 

biotransformation.  

The most common method of introducing DNA into methanotrophs and 

methylotrophs has historically been by conjugation (Murrell, 1992), although 

electroporation has also sometimes been used (Kim and Wood, 1998; Toyama et al., 

1998; Baani and Liesack, 2008). For marker exchange mutagenesis using 

homologous recombination, two recombination events are necessary, upstream and 

downstream of the gene of interest, to replace it with a selectable marker, for 

example an antibiotic cassette. When introducing DNA on a circular plasmid, the 

detection of the comparatively rare second recombination event, and consequent loss 

of the vector backbone, typically requires screening for double-crossover colonies 

using sensitivity to an antibiotic, resistance to which is encoded on the vector 

backbone, as indicator. Although the loss of the plasmid backbone may be forced by 

incorporation of a counter-selectable marker, for example the sacB gene from 

Bacillus subtilis (Schäfer et al., 1994), a (possibly large) proportion of single 

crossovers will revert (by recombination) to wild type unless selective pressure exists. 

If the intention is to construct a mutant with a deletion of two or more genes, it is 

convenient if the gene is deleted without incorporation of an antibiotic selectable 

marker. This is also desirable if the organism is destined for release into the 

environment, in order to prevent the possible horizontal transfer of antibiotic 

resistance genes (Davison, 2005). Most of the genetic methods in common use with 

methanotrophs therefore involve time-consuming screening and numerous transfers 

of colonies on plates. 
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The introduction of linear DNA, comprising an antibiotic resistance cassette flanked 

by regions homologous to sequences upstream and downstream of the gene of 

interest, requires two simultaneous recombination events if the organism is to gain 

resistance to the selective antibiotic. Thus, marker-exchange gene replacement is 

achieved in one operation. This approach, although common in yeast (Rothstein, 

1983) has less commonly been used in bacteria, for example in Bordetella pertussis 

(Zealey et al., 1990), E. coli (Jasin and Schimmel, 1984; El Karoui et al., 1999), 

Haemophilus ducreyi (Hansen et al., 1992), Methylobacterium extorquens (Toyama 

et al., 1998), Rickettsia prowazekii (Driskell et al., 2009) and Streptomyces 

coelicolor (Oh and Chater, 1997), but in most cases the frequency of gene 

replacements is low (unless one of a number of methods has been used to modify the 

host cells to be more receptive to incoming DNA (see, for example, Murphy, 1998), 

a strategy usually only available with organisms already engineered for that purpose). 

Incorporation of specific DNA sequences adjacent to the antibiotic resistance 

cassette allows subsequent removal of the cassette by site-specific recombination, 

using, for example, the Flp-FRT or Cre-loxP recombinase systems (Ayres et al., 1993; 

Hoang et al., 1998), resulting in unmarked gene deletions. 

4.2 Marker exchange mutagenesis using a pK18mobsacB-based vector 

introduced by conjugation 

Vectors pK18mob and pK18mobsacB (Schäfer et al., 1994) have previously been 

used with methanotrophs to introduce genetic elements by conjugation (Murrell, 

1992; Barta and Hanson, 1993; Ali and Murrell, 2009). Based on the narrow host 

range plasmid pBR322, these plasmids are only able to replicate in E. coli and 

closely related species. However, they include the broad host range transfer elements 

of plasmid RP4  (Datta et al., 1971), enabling mobilisation from E. coli into other 

bacterial genera. pK18mobsacB also contains the counter-selectable gene sacB, 

which is lethal when expressed in the presence of sucrose (Selbitschka et al., 1993). 

The use of this plasmid to introduce a modified malate synthase gene, inactivated by 

deletion of an internal segment, and the forcing of its incorporation into the 

chromosome in place of the wild type, was adopted in an attempt to engineer a strain 

lacking this enzyme. 
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Figure 4.1. Arrangement of genes surrounding malate synthase (Msil1325) including primer 
sites MSf and MSr and two SphI restriction sites. Open reading frames 1326 and 1327 are 
predicted to overlap by four nucleotides. 

 

 

The genomic layout of the putative malate synthase gene (Msil1325) is shown in 

Figure 4.1. Primers MSf and MSr were used to amplify an internal 2011 bp sequence 

from 86 bp after the start codon to 71 bp before the stop codon. This fragment was 

cloned into vector pCR2.1 TOPO, excised and ligated into pK18mobsacB, followed 

by removal of the 526 bp SphI fragment to give vector pAC1003, as shown in Figure 

4.2. The PCR amplicon was checked by sequencing using primers M13F and M13R, 

each construct checked by restriction digest, and pAC1003 by restriction digest and 

PCR (data not shown). This vector was introduced into E. coli S17.1 λpir (Simon et 

al., 1983) by electroporation, and this strain was used as donor in conjugations with 

M. silvestris as described in Materials and Methods. As positive control, M. silvestris 

was also conjugated with pMHA203 (Theisen et al., 2005) which comprises the 

promoter and upstream region of the sMMO cluster fused to gfp, resulting in 

expression of GFP in methane-grown cultures. Following conjugation, cells were 

spread on DNMS plates containing kanamycin with glycerol or succinate (5 mM) or 

methanol as carbon and energy source. 
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Figure 4.2. Construction of pAC1003 for mutagenesis of malate synthase in M. silvestris. a) 
A 2011 bp sequence was amplified from the M. silvestris chromosome by PCR using  
forward primer MSf and reverse primer MSr which introduced a 5’ HindIII site. This was 
cloned into pCR2.1 TOPO (Invitrogen) (b), before excision with enzymes EcoRI and 
HindIII and ligation with pK18mobsacB cut with the same enzymes (c). Digestion with SphI 
and re-ligation removed a 526 bp fragment, internal to the malate synthase sequence, to give 
vector pAC1003, as shown at d), which contains regions A and B with homology to the M. 
silvestris chromosome. 
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After 18 days colonies were visible on all plates, and were patched onto fresh plates 

and incubated with methanol. Following several transfers on plates, colonies were 

transferred to liquid medium containing 0.1% methanol as carbon and energy source, 

initially with kanamycin and then for two passages without antibiotic. Transfer from 

liquid back to selective plates demonstrated that the kanamycin resistance cassette 

was retained. Colonies and liquid cultures were monitored by PCR using primers 

located either side of the excised portion of the gene (Figure 4.3). 

 

 

 

Figure 4.3. Homologous recombination between the M. silvestris chromosome and vector 
pAC1003 (top) can occur at either sequence A or sequence B, resulting in two different 
single-crossover molecules, only one of which is shown (below). Primers MSABf and 
MSABr result in two different sized amplicons (represented by X and Y) in each possible 
single-crossover, of which Y corresponds with the wild type. 

 

Single crossover-mutant colonies were isolated. These retain the vector sequence 

incorporated into the chromosome, and have two truncated copies of the disrupted 

gene, one of which additionally has the central portion deleted, giving rise to two 

different sized amplicons in PCR reactions using primers located either side of the 

deleted region, see Figure 4.4. However, cells containing the single crossover 

mutation shown in Figure 4.3 may retain malate synthase activity due to the presence 

of a gene lacking only the final 70 nucleotides. 
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Figure 4.4. PCR using primers MSABf and MSABr, using, as template, lanes 1 and 2: cells 
conjugated with pAC1003 growing in liquid culture with kanamycin, lanes 3 – 8: cells 
growing after 2 transfers without antibiotic, lane 9: wild type culture, lane 10: no template 
control (NTC). M: Fermentas GeneRuler 1kb ladder. Expected sizes: single crossover 
mutations, 660 bp and 1186 bp; wild-type, 1186 bp.  

 

Eventually cells were diluted (10-2 or 10-3) and spread on DNMS plates containing 

succinate or malate (5 mM) or methanol and sucrose (10% w/v) in order to force a 

second recombination event. Approximately 200 colonies were tested by PCR for 

recombination at the second locus which would result in a deletion mutant, however 

all colonies were wild type, suggesting that either there is selective pressure to retain 

the malate synthase gene, or possibly that recombination is more common at one of 

the sites, perhaps due to the difference in size of the homologous sequences. Both 

these issues could be addressed by the incorporation of an antibiotic cassette in place 

of the deleted gene fragment, but this would have the disadvantage of leaving the 

selectable marker permanently in the mutated chromosome. However, since no 

single crossover mutants were detected following sucrose selection, this 

demonstrated that the SacB system is effective in M. silvestris. 

Difficulties were experienced with this method; numerous transfers of colonies were 

required, both to remove the donor E. coli cells, and to identify kanamycin-resistant 

transconjugants, but it was exceedingly difficult to remove the colonies from the 

plates. Colonies were tough, sticky and adhered to the agar. Difficulty was 

experienced in successfully transferring cells from solid medium to liquid, and 

cultures frequently did not grow when, eventually, a colony was successfully placed 

in liquid medium. Due to the slow growth of M. silvestris, problems were 
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encountered with contamination by fungi, which the addition of cycloheximide did 

not fully alleviate. Finally, all colonies tested had reverted to wild type. For these 

reasons, progress was slow. Therefore, an alternative method was sought that would 

not involve a donor organism, and that would reduce the transfers between plates. 

4.3 DNA introduction by electroporation in M. silvestris 

Introduction of DNA into M. silvestris by electroporation would offer several 

advantages over conjugation, including avoiding the difficulty of removal of 

contaminating E. coli cells, which at the minimum requires several transfers on 

plates. To test the potential of this method, plasmid pMHA203 (Ali, 2006) was once 

again chosen. Competent cells were prepared following the method of Kim and 

Wood (1998), by washing and resuspending cells in 0.3 M sucrose, as described in 

Materials and Methods. Electroporation was carried out in 1 mm cuvettes, with 

conditions as detailed in Table 4.1. Following recovery overnight in DNMS medium 

containing methanol (0.05% v/v) at 25 °C, cells were spread on selective DNMS 

plates and incubated with methanol.  

Table 4.1. Electroporation of M. silvestris with pMHA203 plasmid DNA 

Vial V  
(kV) 

R  
(Ω) 

C  
(µF) 

DNA 
(µg) 

Time 
constant (ms) Selection Colonies 

1 2.0 200 25 0 4.7 kan25 0 
2 1.5 200 25 5 4.6 kan25 34 
3 2.0 200 25 20 4.4 kan25 68 
4 2.5 400 25 5 8.7 kan25 92 
5 2.0 400 25 30 6.7 kan25 96 
6 - - - 10 - kan25 0 
7 2.0 200 25 0 4.7 None Thick lawn 

 

Colonies appeared after approximately 3 weeks, which, when patched onto fresh 

plates and incubated with methane, fluoresced brightly with excitation at 395 nm, 

demonstrating the uptake of DNA by cells. 

4.4 Gene deletion by electroporation with linear DNA 

Having demonstrated the ability of electroporation to introduce DNA, an attempt was 

made to use this method for chromosomal genetic manipulation of M. silvestris. For 

this experiment, a different approach was adopted than previously, using vector 
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pCM184 (Marx and Lidstrom, 2002). This vector possesses two multiple cloning 

sites on either side of a kanamycin resistance cassette. Therefore, this facilitates the 

amplification of sequences upstream and downstream of the gene of interest and the 

cloning of these fragments separately into the two sites. The vector also incorporates 

loxP sites flanking the kanamycin cassette, enabling later removal of the antibiotic 

resistance marker. 

Isocitrate lyase, encoded at locus Msil3157, was chosen for deletion.  Approximately 

500 bp of chromosomal DNA were amplified by PCR, from regions upstream and 

downstream of the gene, using M. silvestris genomic DNA as template and primers 

3157Af/3157Ar and 3157Bf/3157Br (Table 4.3). In most cases primers were 

designed to incorporate restriction sites. These fragments were cloned separately into 

pCR2.1 TOPO (Invitrogen). Following sequencing using primers M13f and M13r to 

check that the PCR had not introduced unwanted mutations, the upstream and 

downstream fragments were excised from pCR2.1 and ligated separately into 

pCM184 to give pAC104, as shown in Figure 4.5. This plasmid was introduced into 

M. silvestris cells by both conjugation and electroporation. Both transconjugant and 

electro-transformed colonies appeared on selective DNMS plates containing 

succinate (5 mM). However, cells were also electroporated with the linear 

EcoRI/SacI fragment digested from pAC104, prepared as described in Materials and 

Methods. Colonies appeared on selective plates spread with cells transformed with 

linear DNA. Since incorporation of the antibiotic resistance cassette in this case 

should require two simultaneous and independent recombination events leading to 

gene deletion in a single step (Figure 4.6), these colonies were investigated further. 

After several transfers on selective plates, colonies were transferred to liquid culture 

with succinate (5 mM) as carbon and energy source and kanamycin (25 µg ml-1). 

Following two subcultures in liquid containing antibiotic, cells were transferred to 

liquid culture without antibiotic. After two transfers, a 50 ml culture was used to 

prepare competent cells as described previously. 
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Figure 4.5. Cloning of regions upstream and downstream of M. silvestris isocitrate lyase for 
marker exchange mutagenesis. Approximately 500 bp sequences of chromosomal DNA (A 
and B) upstream and downstream of the putative isocitrate lyase coding sequence were 
amplified by PCR (a) and cloned into pCR2.1 TOPO (b). These fragments were excised 
using enzymes EcoRI and KpnI or MluI and SacI respectively, and ligated sequentially into 
pCM184 cut with the same enzymes (c), resulting in pAC104 (d). 
 

These cells were electroporated with pCM157 (Marx and Lidstrom, 2002), and 

spread on DNMS plates containing succinate (5 mM) and tetracycline (10 µg ml-1). 

This plasmid contains the cre gene under the control of the E. coli lac promoter, and 

expression of Cre mediates recombination between loxP sites and consequent loss of 

the kanamycin cassette. 
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Figure 4.6. Recombination with linear DNA. The EcoRI/SacI fragment digested from 
pAC104 was electroporated into competent M. silvestris cells (a). Two recombination events 
resulted in gene deletion, shown at b). Subsequently, Cre recombinase was expressed 
transiently from plasmid pCM157, resulting in the excision of the kanamycin cassette (c). 

 

Colonies appeared after 14 – 20 days, with a transformation efficiency of 

approximately 103 cfu (μg DNA)-1. After one further transfer onto selective plates, 

colonies were picked onto plates without selection to allow the plasmid to be cured. 

 

 

Figure 4.7. Primers 3157Tf and 3157Tr (Figure 4.6) were used to monitor replacement and 
deletion of isocitrate lyase in M. silvestris (left hand gel). Removal of sequences containing 
binding sites for primers KanF and KanR (kanamycin resistance) is shown in the right hand 
gel. Lanes 1 & 5: wild type, 2 & 6: Msil3157::kanR, 3 & 7: Δ3157 following electroporation 
with pCM157, 4 & 9: NTC, 8: pCM184 vector DNA, M: Fermentas GeneRuler 1 kb ladder. 
 

Replacement of the isocitrate lyase gene with the kanamycin resistance cassette, and 

the subsequent loss of the marker following expression of Cre, were monitored by 
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PCR using primers 3157Tf and 3157Tr, which bind to the M. silvestris chromosome 

further upstream and downstream of the regions initially amplified and used for 

cloning, and also with primers internal to the kanamycin cassette, see Figure 4.7. 

Subsequently, colonies were found to be sensitive to both kanamycin and 

tetracycline, additionally confirming the curing of plasmid pCM157. 

Primers 3157Tf and 3157Tr were also used to sequence the intervening chromosomal 

region, revealing the removal of 1,694 bp including the entire isocitrate lyase coding 

region, and the insertion 100bp consisting of small fragments of plasmid DNA 

flanking one loxP site, see Figure 4.8. 

 

 

Figure 4.8. Sequencing using primers 3157Tf and 3157Tr revealed the sequence shown 
inserted between chromosomal positions 3470071 and 3471766, representing a deletion of 
1694 bp. A single loxP site (shaded) is flanked by short sequences of vector pCM184. The 
palindromic sequences are underlined. 

 

4.5 Application and optimisation of gene deletion 

The strain with a deletion of isocitrate lyase described in the previous section was 

designated M. silvestris strain ΔICL. In total, six strains were constructed with single 

gene deletions using this method. In some cases the restriction enzymes employed 

(shown in Table 4.3) were varied to avoid sites in the regions of homology that were 

cloned, and methanol was used as carbon source where the deleted gene was not 

expected to be required for the metabolism of this substrate. In all other respects the 

method employed was identical, and construction of these mutants is therefore not 

described in detail. A double mutant, with a deletion of malate synthase (MS) in 

addition to isocitrate lyase, was constructed by applying the described method to the 

deletion of MS, and electroporating competent cells prepared from strain ΔICL, 

demonstrating the advantage of the removal of the antibiotic resistance cassette. 

These strains are described in the relevant chapters, and summarised in Table 4.2 
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Table 4.2. Summary of mutant strains constructed using the methods described in this 
chapter. Chromosome positions and locus tags refer to GenBank accession number 
CP001280. Headings “A frag” and “B frag” indicate the length of the cloned sequences for 
homologous recombination. Strain ΔICLΔMS was also constructed, with deletions of both 
isocitrate lyase and malate synthase, in which both regions shown were deleted. 

Strain 
Locus 

tag 
(Msil) 

Coding sequence A frag
(bp) 

B frag
(bp) 

Chromosome region 
deleted (bp) 

ΔICL 3157 3470137 – 3471765 (R) 509 573 3470072 - 3471765 (1694) 
ΔMmoX 1262 1357783 – 1359363 (F) 525 544 1357807 - 1359337 (1531) 
ΔMS 1325 1423900 – 1426065 (R) 632 597 1423969 - 1426024 (2056) 
Δ1641 1641 1774764 – 1776332 (R) 548 591 1774759 - 1776408 (1650) 
ΔPrMO 1651 1785113 – 1786771 (R) 681 696 1785072 - 1786838 (1767) 
ΔSGAT 1714 1863161 – 1864351 (R) 564 512 1863316 - 1864340 (1025) 

 

 

In every case, 10 – 20 colonies which appeared on selective plates following 

electroporation were tested, and all were found to be double crossover mutants with a 

deletion of the expected gene, as determined by PCR and sequencing using primers 

outside the manipulated region. In each case, following removal of the kanamycin 

cassette, the inserted sequence corresponded to that shown in Figure 4.8, with minor 

differences in the length of vector sequence on either side of the single loxP site, 

depending on the choice of restriction enzyme employed. 

Following growth in liquid, mutant cultures were diluted in medium and spread on 

DNMS or DAMS plates with a suitable carbon source.  Colonies were counted to 

relate colony forming units to the density of the originating culture, and PCR used to 

check the genotype of approximately 12 colonies. In all cases, 100% of colonies 

tested gave rise to the expected PCR amplicon size. A representative gel is shown in 

Figure 4.9. 

A modified method of preparing competent cells, washing twice in ice cold water 

and re-suspending in 10% (v/v) glycerol, was compared with the previously 

described method of Kim and Wood (1998). Electroporation with circular plasmid 

DNA (repeated in two separate experiments) resulted in more than 10 times as many 

colonies using the new method, which was then used to prepare competent cells to 

assess the frequency of gene replacement, using a construct designed to replace gene 

Msil1641, downstream of the propane monooxygenase gene cluster.   
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Figure 4.9. A mmoX deletion strain growing in liquid was diluted 1/106 and 100 µl spread on 
DAMS plates and incubated with methanol, resulting in an average of 21 cfu plate-1, 
corresponding to a culture density of 2.1 × 108 cfu ml-1. Colony PCR using primers mmoXTf 
and mmoXTr resulted in amplicons of the expected size (1,265 bp) compared to the wild 
type (2,692 bp). Lanes 1 – 12: ΔmmoX colonies, wt: wild type, NTC: no template control, M: 
Fermentas GeneRuler 1 kb ladder. 

 

The rationale and effect of the deletion of Msil1641 are described in Chapter 7. 

Following the scheme described in Section 4.4, upstream and downstream sequences 

of 591 and 548 bp respectively were amplified either side of a 1,650 bp segment 

targeted for deletion. A linear fragment of 2,548 bp was used for electroporation, 

with between 12.5 and 348 ng DNA per reaction. Plates were incubated with 

methanol, and colonies tested by PCR, using, as before, primers outside the 

manipulated region. All colonies tested (21/21) gave the expected amplicon size, one 

of which was sequenced, confirming gene deletion, and all colonies were therefore 

assumed to be the deletion strain. Figure 4.10 shows gene replacements (colonies) 

per ng of DNA included in the electroporation reaction, suggesting that, in this case, 

100 ng of linear DNA would be sufficient to produce 400 colonies, all of which 

would be expected to possess the desired genotype. 
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Figure 4.10. Efficiency of gene replacement by electroporation with linear DNA, as a 
function of DNA mass per reaction. 

 

4.6 Apparent recombination between loxP sites 

It was noticed that in mutant strains, prior to electroporation with pCM157 for Cre 

expression, two bands were often visible in PCR reactions using primers spanning 

the gene-exchange regions. This was noted during the construction of most mutant 

strains, and is illustrated, in the case of strain ΔPrMO, in Figure 4.11. The relative 

amount of this minor band, which was approximately 1 kb smaller than the major 

band, varied somewhat but did not become noticeably more abundant when cultures 

were grown without antibiotic. The three bands shown arrowed in Figure 4.11 were 

cut from the gel, purified and re-amplified by PCR using the same primers, see 

Figure 4.12. Two of these PCR products (corresponding to the major bands from the 

wild-type and ΔPrMO strains) were analysed by restriction digest (Figure 4.12), 

resulting in fragments of the expected sizes for sequences containing the PrMO 

coding sequence and the kanamycin cassette, respectively. The minor band from the 

mutant culture was sequenced using primers PrmTf and PrmTr. Analysis of the 

sequences showed the absence of the kanamycin cassette, with upstream and 

downstream M. silvestris sequences flanking a single loxP site. The presence of this 

amplicon (prior to Cre-mediated removal of the kanamycin cassette) is likely to be 

due to an artefact of the PCR, or possibly indicates the spontaneous removal (and 

replacement) of the region by recombination between loxP sites. 
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Figure 4.11. Primers PrmTf and PrmTr were used to amplify the mutated region from 
colonies (left hand gel) and liquid culture (centre and right hand gels) of strain ΔPrMO and 
the wild-type. A less abundant PCR product was visible in mutant strains with a size 
approximately 1 kb smaller than the major product. Growth without antibiotic (right hand gel, 
lane 19) did not increase the relative amount of the minor band. All colonies from mutant 
strain ΔPrMO show two bands in the gels (lanes 1 – 12, 15, 18 and 19), whereas wild-type 
colonies result in a single band of larger size (lanes 14, 16 and 20). Lanes 13, 17 and 21: no 
template control. M: Fermentas GeneRuler 1 kb ladder. The bands shown arrowed (centre 
gel) were excised from the gel and re-amplified. 
 
 

 

Figure 4.12. Left-hand gel: Bands shown arrowed in Figure 4.11 were re-amplified in a 
second round of PCR using the same primers. Lanes 1 and 2: the two amplicons from strain 
ΔPrMO (two bands cut from lane 15 in Figure 4.11). Lane 3: the wild-type amplicon (band 
cut from lane 16). Lane 4: wild-type DNA template. Lane 5: no template control. M: 
Fermentas GeneRuler1 kb ladder.  
Right hand gel: PCR products from lanes 2 and 3 were analysed by restriction digest. Lanes 
7 – 9: digest of wild-type PCR product (shown in lane 3), lanes 10 – 12: digest of strain 
ΔPrMO PCR product (shown in lane 2). Lanes 7 and 10: uncut, lanes 8 and 11: digested with 
SalI, lanes 9 and 12: digested with KpnI and MluI. A SalI site is located in the PrMO coding 
sequence, while KpnI and MluI sites flank the kanamycin cassette. Expected sizes, lanes 7 
and 9: 3,492 bp, lane 8: 1,722 and 1,770 bp, lanes 10 and 11: 3,118 bp, lane 12: 880, 847 and 
1,391 bp. 
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4.7 Construction of M. silvestris strain AC706 

The method described proved effective at deleting genes of choice from the 

chromosome of M. silvestris. However, it would also be useful to be able to 

introduce novel or mutated genes, and a method was devised to accomplish this, 

making use of the counter-selectable sacB gene already described and shown to 

operate effectively in Section 4.2. Although strain ΔMmoX (with a deletion of the 

the α-subunit of the soluble methane monooxygenase) was constructed using the 

method described in Section 4.5 above, an additional strategy (shown in Figure 4.13) 

was developed to insert the sacB gene and a kanamycin resistance cassette into the M. 

silvestris BL2 chromosome in place of mmoX, encoding MmoX. The presence of 

sacB in this locus should permit the replacement of the inserted elements with any 

gene(s) of interest, by the electroporation of the required sequence flanked by regions 

homologous to the M. silvestris chromosome, and selection on plates containing 

sucrose.  

To construct a strain containing kanR and sacB, approximately 500 bp sequences 

were amplified from the M. silvestris BL2 chromosome using primers 

1262Af/1262Ar (incorporating SacI and MluI sites respectively) and 1262Bf/1262Br 

(incorporating MunI and EcoRI sites respectively) from locations upstream and 

downstream respectively of mmoX. 
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Figure 4.13. Construction of M. silvestris strain AC706. Sequences A and B, PCR-amplified 
from upstream and downstream of mmoX, were cloned (in reverse order) sequentially into 
pCM184 (as shown at 1 and 2). The sacB gene was then ligated into the MunI site (3), 
resulting in pAC706. Following digestion with SacI and EcoRI, the linear fragment 
containing the kanamycin cassette and sacB was used to electroporate M. silvestris BL2 (4), 
resulting in strain AC706. It should now be possible to replace this construct by 
electroporation with a gene or genes of interest, shown here as modified versions mmoX’ and 
mmoY’, by electroporation with the linear fragment containing regions of homology C and D 
(5), followed by counter-selection on plates containing sucrose. 
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These fragments were cloned into pGEM-T Easy (Promega), released by digestion 

with the respective enzymes, and cloned sequentially into pCM184, resulting in 

pAC704. The sacB gene was PCR-amplified from pK18mobsacB using primers 

SacBf2/SacBr2 (both incorporating MunI sites), cloned into pGEM-T Easy, and 

released by digestion with MunI. This fragment was then ligated into pAC704 

digested with the same enzyme, resulting in pAC706. All sequences were checked by 

sequencing and the orientation of the fragments was verified by restriction digest and 

PCR. Vector pAC706 was digested with SacI and EcoRI, purified from an agarose 

gel, and the 4652 bp linear fragment containing KanR and sacB was used to 

electroporate electrocompetent M. silvestris BL2 cells which were spread on DNMS 

plates with kanamycin. After several weeks, colonies appeared which were 

transferred to liquid DNMS/succinate medium containing kanamycin. After several 

transfers, cells were diluted 1/105 and 100 µl spread on DNMS/succinate selective 

plates. A single colony was transferred to liquid culture without selection. DNA from 

this culture was amplified by PCR using primers Kanf/Kanr, SacBf2/SacBr2 and 

1262Tf/1262Tr. It was possible to amplify sequences from both the kanamycin 

cassette and sacB, and sequence data verified the insertion of these elements at the 

expected position in the M. silvestris chromosome. Competent cells were prepared 

from a 200 ml culture and stored at -80 °C. Unfortunately, due to constraints of time, 

it was not possible to complete this experiment and demonstrate the replacement of 

the inserted elements. This would require electroporation of a linear fragment 

containing a gene of interest, (perhaps an mmoX gene from a different 

methanotrophs), flanked by regions homologous to the M. silvestris chromosome, 

followed by counter-selection on plates containing sucrose. It should be possible, of 

course, to replace DNA, of length only restrained by the decrease in the efficiencies 

of recombination and electroporation with longer fragments. 

4.8 Conclusions and future perspectives 

The method developed in this chapter uses the Cre-loxP system, the components of 

which are derived from phage P1, for removal of the antibiotic cassette. However, 

bacteria naturally have an analogous system which allows segregation of 

chromosomes during cell division (Rappsilber et al., 2002), raising the possibility of 

removal of the antibiotic cassette without expression of a recombinase in trans, by 



110 
 

using the cells own recombination machinery. This has been demonstrated in E. coli 

and Bacillus subtilis (Bloor and Cranenburgh, 2006) and, in E. coli, relies on the 

XerC and XerD recombinases which mediate recombination between 28 bp dif sites 

naturally present in the chromosome. Engineering these sites either side of an 

antibiotic cassette during marker exchange mutagenesis allows removal of the 

marker when selective pressure is removed, in a similar way to the Cre-loxP system, 

but without the necessity for expression of an exogenous recombinase. A survey of 

the dif/Xer recombinase system in the proteobacteria (Carnoy and Roten, 2009) 

identified a dif consensus sequence, which was used as query in a search of the M. 

silvestris genome. A region of the chromosome located in a non-coding region with 

close similarity to the consensus sequence was identified, see Figure 4.14. 

Homologues of xerC and xerD were identified (Msil1177 and Msil1847, with 36% 

and 43% identity at the amino acid level, to XerC and XerD from E. coli K-12). This 

suggests that incorporation of dif sites instead of loxP sites might enable automatic 

removal of an antibiotic cassette, thus simplifying the gene deletion procedure by 

avoiding the necessity for expression of Cre in trans. 

 

 

Figure 4.14. The sequence at position 598970 of the M. silvestris chromosome compared 
with the consensus dif sequence of Carnoy and Roten (2009), who identified as most 
conserved the nucleotides shown in upper case. Binding sites for XerC and XerD are shown 
in boxes.  

 
The work described in this chapter has established a system for gene deletion in M. 

silvestris, which, although not rapid, is reliable and straightforward. This has 

demonstrated the genetic amenability of M. silvestris and was an essential tool for 

unravelling the metabolic pathways of this unique organism. The methods described 

here were used in the following chapters and make possible the engineering of strains 

with innovative bioengineering potential. 
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Table 4.3. Primers used in the work described in this chapter. Restriction sites are shown 
underlined. 

Name Description Sequence 5’ – 3’ Enzyme 
Deletion of Msil1325 malate synthase (ms) (pK18mobsacB strategy)   
(Unsuccessful)  
MSf Upstream primer TCAAGGCGGACCAGTTCTGGAC  
MSr Downstream primer AAGCTTTCCTCGCGGCCCTTGAAGATG HindIII 

MSABf Detection of 
crossover AGCCACAAGGACGTCATCAG  

MSABr Detection of 
crossover GCGGGATCGTCAGAATATCG  

Deletion of Msil3157 isocitrate lyase (icl)   
Strain ΔICL  
3157Af Upstream region TCACTGTGCGGCGACTATG  
3157Ar Upstream region TATCGGTACCCGTTGAGGACCGCCTCAAG KpnI 
3157Bf Downstream region TATCACGCGTTGCGTCTGCCTTGTTCAGTC MluI 
3157Br Downstream region TATCGAGCTCCCAGCGCCAGCTGTTCTTC SacI 

3157Tf Detection of gene 
deletion/substitution AAGTCTCGGCTTCATGCTAGCG  

3157Tr Detection of gene 
deletion/substitution CGTCGATCTCGTCCGACATTTC  

Deletion of Msil1641 (gluconate dehydrogenase)  
Strain Δ1641  
1641Af Upstream region ATCAGAGCTCAAAGCACGGCCGCTATCG SacI 
1641Ar Upstream region ATCAACGCGTGCGCTTTCGCCCTGATAACC MluI 
1641Bf Downstream region ATCAGGTACCCGTCATTGGGCAACGATAAG KpnI 
1641Br Downstream region GAAACCGCCAATGCATCTC  

1641Tf Detection of gene 
substitution/deletion GCCGATTGGAGCTAAACTTC  

1641Tr Detection of gene 
substitution/deletion GGCGAGATTCTTCTTCGTTC  

Deletion of Msil1651 propane monooxygenase (prmA)  
Strain ΔPrMO  
1651Af Upstream region GATCGAGCTCTAGTCGGCTACGGCTATTATGG SacI 
1651Ar Upstream region GAGAACGCGTGGCGCCTAACGAACTTTCTTTG MluI 
1651Bf Downstream region GATCGGTACCTCATGGGAGGCGATGGATTG KpnI 
1651Br Downstream region GTCCGCTGACGGTGACTTTG  

1651Tf Detection of gene 
substitution/deletion AAGGCCGCGTCCGATACAAG  

1651Tr Detection of gene 
substitution/deletion CAGAACAAATCGGCCTGGGTCC  

Deletion of Msil1714 serine-glyxoxylate aminotransferase (sga)  
Strain ΔSGAT  
1714Af Upstream region ATCAAGATCTGCAGCGGAACCTTGTTGG BglII 
1714Ar Upstream region ATCAGGTACCGCGACCTCAACGAACTGATG KpnI 
1714Bf Downstream region ATCAACGCGTCGGCCCGGCATTATGTATCC MluI 
1714Br Downstream region ATCAGAGCTCATCTCGGGCGGCGAAACCAC SacI 

1714Tf Detection of gene 
substitution/deletion GACACGGTAACGCCATGAGC  

1714Tr Detection of gene 
substitution/deletion CTCGCCAATGACATCGAGGG  
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Table 4.3 (continued). 

Name Description Sequence 5’ – 3’ Enzyme 
Deletion of Msil1325 malate synthase (ms)  
Strain ΔMS  
1325Af Upstream region ATCAGTTAACGCCGTGTCGACGCTTATC HpaI 
1325Ar Upstream region ATCAGAGCTCCAACCCAGACGCCAAATG SacI 
1325Bf Downstream region ATCAAGATCTGCCAAGCTGGCGTTACCC BglII 
1325Br Downstream region ATCAGGTACCCGAACGGCTACACGGAAGG KpnI 

1325Tf Detection of gene 
substitution/deletion TCAGGAGCTGGAGCGTATTC  

1325Tr Detection of gene 
substitution/deletion CGCAACCCAGACGCCAAATG  

Deletion of Msil1262 methane monooxygenase (mmoX)  
Strain ΔMmoX  
1262Af Upstream region GATCGAGCTCCGACACGGAAACAACCTATC SacI 
1262Ar Upstream region GATCACGCGTTTCGTCGCGGTGCTTAATGC MluI 
1262Bf Downstream region GATCCAATTGTCGCCGATCCGCTCGCAG MunI 
1262Br Downstream region GATCGAATTCCGATCGAGCGCACAGCTCC EcoRI 

1262Tf Detection of gene 
substitution/deletion CCCAGTTCCATTCGTAAGAC  

1262Tr Detection of gene 
substitution/deletion GTATTCGCTGAACAGCAAGG  

    

Kanf Kanamycin cassette 
forward GCGATAATGTCGGGCAATCAG  

Kanr Kanamycin cassette 
reverse AAACTCACCGAGGCAGTTCC  

SacBf2 Amplification of sacB GATCCAATTGCAGCGCATCGCCTTCTATCG MunI 

SacBr2 Amplification of sacB GATCCAATTGATGAGCCTGTCGGCCTACC MunI 
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Chapter 5  

 

The glyoxylate cycle and the role of 

isocitrate lyase in the serine cycle 
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5.1 Introduction 

5.1.1 The glyoxylate cycle and the ethylmalonyl-CoA (EMC) pathway 

Organisms able to grow on acetate, or on substrates such as fatty acids which are 

metabolised through acetyl CoA, face a particular problem in generating multi-

carbon biosynthetic precursors, and avoiding the decarboxylation steps of the TCA 

cycle. In most life forms, with the exception of mammals, this is accomplished by the 

glyoxylate cycle, shown in Figure 5.1a. In this pathway, enzymes isocitrate lyase 

(ICL) and malate synthase (MS) provide a route that bypasses the oxidative steps of 

the TCA cycle, catalysed by isocitrate dehydrogenase and α-ketoglutarate 

dehydrogenase (Kornberg, 1966).  

 

 

Figure 5.1. a) The glyoxylate cycle showing the production of one four-carbon molecule 
(oxaloacetate) from two molecules of acetyl-CoA (modified from Erb et al., 2007). Enzymes, 
1: citrate synthase, 2: aconitase, 3: isocitrate lyase, 4: malate synthase, 5: succinate 
dehydrogenase, 6: fumarase, 7: malate dehydrogenase. b) In the isocitrate lyase pathway, the 
same enzymes, without malate synthase, function to convert acetyl-CoA into glyoxylate 
during the serine cycle. 

 

However, it has become apparent that this pathway does not operate in all aerobic 

bacteria able to grow on two-carbon compounds, including many methylotrophs 

(Anthony, 1982), or for example Rhodospirillium rubrum or Rhodobacter 

sphaeroides (Kornberg and Lascelles, 1960). Recent research has uncovered two 

alternative pathways for the prokaryotic assimilation of acetyl-CoA, the 

ethylmalonyl-CoA (EMC) pathway shown or expected to operate in 

Methylobacterium extorquens, Rhodobacter sphaeroides and streptomycetes (Erb et 
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al., 2009; Okubo et al., 2010) and the methylaspartate cycle of Haloarchaea 

(Khomyakova et al., 2011). Both these pathways incorporate a (different) series of 

reactions which convert acetyl-CoA into glyoxylate, which is the reaction 

accomplished (together with enzymes of the TCA cycle) by ICL. The EMC pathway 

is illustrated in Figure 5.2.  The product, glyoxylate, then combines with another 

molecule of acetyl-CoA to give malate, which can be assimilated into biomass 

following well established biosynthetic reactions. The EMC pathway uses enzymes 

from previously characterised pathways, including polyhydroxybutyrate metabolism, 

the 3-hydroxypropionate cycle and propionate assimilation, but includes three 

enzymes, crotonyl-CoA carboxylase/reductase, (2R)-ethylmalonyl-CoA mutase and 

(2S)-methylsuccinyl-CoA dehydrogenase, which are unique to this pathway. 

 

 

Figure 5.2. The ethylmalonyl-CoA pathway, showing the conversion of two molecules of 
acetyl-CoA and one CO2 into glyoxylate and propionyl-CoA (modified from Erb et al., 
2009). Enzymes, 1: β-ketothiolase, 2: acetoacetyl-CoA reductase, 3: crotonyl-CoA 
carboxylase/reductase, 4: ethylmalonyl-CoA/methylmalonyl-CoA epimerase, 5: 
ethylmalonyl-CoA mutase, 6: methylsuccinyl-CoA dehydrogenase, 7: mesaconyl-CoA 
hydratase, 8: β-methylmalyl-CoA/malyl-CoA lyase. 
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5.1.2 The serine cycle 

The serine cycle, which Methylocella silvestris, in common with other type II 

methanotrophs, uses to assimilate carbon, is shown in Figure 5.3. However, an 

intermediate of the serine cycle is acetyl-CoA, which is subsequently converted to 

glyoxylate. Thus a series of reactions, which may be catalysed by ICL and enzymes 

of the TCA cycle (Figure 5.1b, which is described as the isocitrate lyase pathway in 

this work), also occurs in the serine cycle (Figure 5.1b), but many methylotrophs 

growing methylotrophically do not contain ICL, and instead use the enzymes of the 

ethylmalonyl-CoA pathway to accomplish this conversion or “glyoxylate 

regeneration”, as has been demonstrated recently for Methylobacterium extorquens 

during growth on methanol (Peyraud et al., 2009). 

5.1.3 The distribution of the EMC pathway 

As noted above, most methylotrophs do not contain isocitrate lyase, and the 

mechanism by which glyoxylate is formed from acetyl-CoA has been the subject of 

intensive research for more than 30 years (Dunstan et al., 1972a; Korotkova et al., 

2002). In a survey of 1215 fully sequenced bacterial genomes Erb et al. (2009) 

screened for the presence of isocitrate lyase, and for the genes specific to the EMC 

pathway. Isocitrate lyase homologues were found in 28% of species from 34% of 

genera, whereas EMC gene homologues were present in 5% of species from 8% of 

genera, suggesting that this pathway has considerable environmental relevance. 

Interestingly, nine organisms (nearly 1%) appeared to harbour both capabilities, 

raising the possibility that the relevant enzymes may be expressed under different 

conditions. For example, Paracoccus versutus expressed ICL during anaerobic 

denitrifying growth, but this enzyme activity was not detectable during aerobic 

growth on acetate (Claassen and Zehnder, 1986). 

It was notable that Dunfield and co-workers (2003) detected neither isocitrate lyase 

nor malate synthase activity in cell extracts of M. silvestris. It was therefore 

important to establish the pathways of two-carbon assimilation and the mode of 

operation of the serine cycle in the first facultative methanotroph isolated in 

laboratory culture. 
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Figure 5.3. The serine cycle. During the cycle acetyl-CoA molecules need to be oxidised to 
glyoxylate by a series of reactions shown as “glyoxylate regeneration”. This is performed 
either by isocitrate lyase and enzymes of the TCA cycle (Figure 5.1b), or by the EMC 
pathway (Figure 5.2). The figure shows the isocitrate lyase positive version, and the carbon 
balance is slightly different in the two variations. Enzymes, 1: serine transhydroxymethylase, 
2: serine-glyoxylate aminotransferase, 3: hydroxypyruvate reductase, 4: glycerate kinase, 5: 
enolase, 6: phosphoenolpyruvate carboxylase, 7: malate dehydrogenase, 8: malate thiokinase, 
9: malyl-CoA lyase. Modified from Anthony (1982). 

 

5.2 M. silvestris homologues to genes of the EMC pathway 

In order to investigate the genetic potential for the operation of the EMC pathway in 

M. silvestris, genes encoding enzymes of the EMC pathway (Figure 5.2) from 

Rhodobacter sphaeroides, which have been biochemically characterised, were used 

as query sequences in a search of the M. silvestris genome, in order to locate possible 

homologues.  In contrast to genes also involved in other pathways 

(polyhydroxybutyrate metabolism, propionate metabolism), the genes encoding 

enzymes specific to the EMC pathway (ccr, ecm, mcd) had no close homologues, nor 

were the low-similarity candidates clustered together. In particular, the same gene 

was identified in the M. silvestris genome in response to searches for homologues to 

both ecm and mcm, encoding ethylmalonyl-CoA mutase and methylmalonyl-CoA 

mutase respectively. However, the gene identified (Msil3784) has a much higher 
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similarity to mcm, suggesting that methylmalonyl-CoA may be its true substrate. The 

alternative, that this enzyme converts both the methyl- and ethyl-substituted 

compounds, would be contrary to the specificity reported for ethylmalonyl-CoA 

mutase (Erb et al., 2008) (although the respective compounds use the same 

epimerase in Rhodobacter sphaeroides and Methylobacterium extorquens).  It is 

therefore doubtful that M. silvestris contains the genes necessary for the operation of 

this pathway. 

 

Table 5.1. M. silvestris genome BLAST hits to ECM pathway genes from Rhodobacter 
sphaeroides. The ECM pathway genes (column 1) corresponding to the enzymes identified 
by numbers in Figure 5.2 (column 2) were used as query sequences at the amino acid level. 
pccA, pccB and mcmA, which encode propionyl-CoA carboxylase and methylmalonyl-CoA 
mutase (α-subunit), predicted to be also involved in propionate metabolism, and which 
recycle propionyl-CoA to glyoxylate and acetyl-CoA, are not shown in the figure. 

ECM p/w gene Fig. ref. M. silvestris locus tag % identity E value 
phaA 1 Msil_2996 73 7e-170 
phaB 2 Msil_2997 75 5e-104 
ccr 3 Msil_3002 28 2e-17 
epi 4 Msil_2934 76 3e-54 
ecm 5 Msil_3784 39 2e-106 
mcd 6 Msil_1741 27 2e-20 
mch 7 Msil_3435 37 2e-18 

mcl-1 8 Msil_1719 57 2e-99 
pccA - Msil_3786 60 0.0 
pccB - Msil_3787 72 0.0 

mcmA - Msil_3784 65 0.0 
 

5.3 Arrangement and annotation of genes encoding glyoxylate bypass enzymes 

– draft genome 

The draft M. silvestris genome (available prior to 20 June 2008) identified two open 

reading frames with homology to isocitrate lyase genes, or3298 and or3299 located 

on contig 17. (The “or-” gene-identification prefixes have since become “Msil-”, and 

in addition all gene numbers have been changed.) A putative malate synthase gene 

(or3005) was identified on contig 28. Examination of the M. silvestris isocitrate lyase 

homologues showed similarity to different regions of other isocitrate lyase genes. For 

example, the translation of or3298 (311 amino acids) shares 79% identity with 

residues 1 – 300 of isocitrate lyase from Pseudomonas aeruginosa PA1 (532 amino 
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acids) (Díaz-Pérez et al., 2007) and or3299 (197 amino acids) shares 84% identity 

with residues 335 – 531. Therefore it seemed likely that either this was a pseudogene 

with no physiological function, or that a sequencing error had resulted in mis-

annotation.  

5.3.1 RT-PCR 

RNA was extracted from cells grown on methanol using the hot acid-phenol method 

as described in Materials and Methods. cDNA was synthesised from 100 ng RNA 

using Superscript II reverse transcriptase (Invitrogen) and random hexamer primers 

in 100 µl  reactions alongside identical reactions except without the addition of 

reverse transcriptase, and  2 µl used as template in PCR reactions using primers 

located in or3298, or3299 and or3005, and also with a forward primer located in 

or3298 and reverse primer in or3299, see Figure 5.4. This demonstrated transcription 

in all cases, and showed that the two isocitrate lyase open reading frames are 

transcribed as a single molecule, suggesting that a sequencing error may have 

resulted in misannotation of this region.  

 

 

Figure 5.4. RT-PCR was used to identify transcription of a) 16S rRNA gene (1.5 kbp 
fragment), b) isocitrate lyase or3298 (440 bp) and c) or3299 (391 bp), d) malate synthase 
or3005 (~ 420 bp) and e) both isocitrate lyase genes as one mRNA molecule (1660 bp). 
Lanes, 1: cDNA template, 2: reverse transcriptase negative, 3: DNA template, 4: NTC, M: 
GeneRuler 1kb ladder (Fermentas). 
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5.4  Arrangement of glyoxylate bypass genes – finished genome 

The finished genome (released 20  June 2008, GenBank accession number 

CP001280 (Chen et al., 2010)) confirmed the existence of a single open reading 

frame with homology to characterised isocitrate lyase genes from other organisms. 

Malate synthase is located in a different location on the chromosome, see Figure 5.5.  

The SWISS-PROT/TrEMBL database was interrogated with translated sequences of 

these genes and results are shown in Table 5.2.   These data do not reveal any nearby 

genes whose products are expected to be directly involved in the same metabolic 

pathways as malate synthase or isocitrate lyase. 

The 500 bp sequences upstream of the predicted start codons of malate synthase and 

isocitrate lyase were scanned for promoter sequences using the Berkeley Drosophila 

Genome Project Neural Network Promoter Prediction online tool 

(http://www.fruitfly.org/seq_tools/promoter.html). This identified possible promoter 

sequences with transcription start sites 103 bp and 91 bp upstream of the predicted 

start codons respectively (scores 0.94 and 0.91). A promoter was also predicted 

downstream of malate synthase, 53 bp upstream of Msil1324 (score 0.53). These data, 

together with the relative orientation of the surrounding genes, are consistent with 

transcription of malate synthase and isocitrate lyase as monocistronic units. 

 

 

Figure 5.5. Gene layout of malate synthase Msil1325 (upper) and isocitrate lyase Msil3157 
(lower).  For gene identities refer to Table 5.2. Genes Msil1326 / Msil1327 and Msil3153 / 
3154 are predicted to overlap by 4 (phase 2 overlap) and 11 (phase 1 overlap) nucleotides 
respectively. The intergene space 3155 – 3157 contains a pseudogene, consisting of frame-
shifted fragments of a putative transport protein sequence (304/419 amino acid identity to 
YP_001523349.1 from Azorhizobium caulinodans ORS 571). 
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5.4.1 Phylogenetic relationships of M. silvestris glyoxylate bypass genes 

The translated sequence of the M. silvestris putative isocitrate lyase gene was aligned 

against isocitrate lyase sequences from other organisms, including those for which 

structural and biochemical data exist such as E. coli (Britton et al., 2001), 

Mycobacterium tuberculosis (Sharma et al., 2000), Corynebacterium glutamicum 

(Reinscheid et al., 1994b), Hyphomicrobium methylovorum (Tanaka et al., 1997), 

Pseudomonas aeruginosa (Kretzschmar et al., 2008), Cupriavidus necator  (Wang et 

al., 2003) and Colwellia maris (Watanabe and Takada, 2004), as well as plants and 

fungi. The alignment was used to construct the phylogenetic tree shown in Figure 5.6. 

The M. silvestris sequence grouped separately from the sequences of many well 

characterised bacterial enzymes, adding to Subfamily 3 as defined by Watanabe and 

Takada (2004), which contains the sequences of H. methylovorum, P. aeruginosa, 

Cupriavidus necator and Colwellia maris, although the functional significance of this 

is unclear. 

The translated sequence of the putative malate synthase had no extremely high-

similarity sequences in the databases. A search of the non-redundant protein 

sequences (nr) database identified the sequence from Methylobacterium nodulans (64% 

identity) as the closest match. All high-similarity hits were to the MSG isoform and 

compared to well characterised enzymes the M. silvestris sequence displayed 60%, 

58% and 57% identity to MSG from Mycobacterium tuberculosis, Corynebacterium 

glutamicum and E. coli respectively. 
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Figure 5.6. Unrooted phylogenetic tree showing the relationship of the putative M. silvestris isocitrate 
lyase with homologous enzymes from other organisms. The tree, constructed using the Maximum 
Likelihood method, is based on amino acid sequences aligned using Clustal. Positions containing gaps 
or missing data were eliminated, and the tree constructed with a final data set of 380 amino acids 
using Mega5 (Tamura et al., 2007). Bootstrap values (based on 500 replications) greater than 95% are 
shown as filled circles at nodes, and those between 75 – 95% as open circles. Accession numbers: 
Yarrowia lipolytica, P41555.3; Candida tropicalis, P20014.1; Saccharomyces cerevisiae ACEA, 
NP_010987.1; Aspergillus nidulans, XP 663238.1; Gibberella zeae, XP 390072.1; Coprinopsis 
cinerea, O13439.1; Glycine max ACEA1, P45456.1; Ricinus communis, P15479.1; Brassica napus, 
P25248.1; Cucurbita maxima, P93110.1; Gossypium hirsutum, P17069.1; Mycobacterium smegmatis, 
YP 888007.1; Mycobacterium tuberculosis, P46831.2; Mycobacterium avium, NP 960577.1; 
Corynebacterium glutamicum, P42449.2; Rhodococcus fascians, P41554.1; Mycobacterium 
tuberculosis, CAE55284.1; Myxococcus xanthus, AAB97828.1; Chlamydomonas reinhardtii, Q39577; 
Burkholderia pseudomallei, pdb|3I4E; E. coli, P0A9G6.1; Yersinia pestis, NP 667361.1; 
Hyphomicrobium methylovorum, BAA23678.1; Caulobacter crescentus, NP 420572.1; 
Bradyrhizobium BTAi1, YP 001240153.1; Rhodopseudomonas palustris, YP 780327.1; Methylocella 
silvestris, YP_002363427.1; Pseudomonas aeruginosa, NP 251324.1; Azotobacter vinelandii, YP 
002799989.1; Cupriavidus necator, AF499030.1; Colwellia maris, BAB62107.1.                                                         
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Table 5.2. Top BLAST hits to SWISS-PROT/TrEMBL database and protein annotation of 
translated sequences of open reading frames surrounding malate synthase (Msil1325) and 
isocitrate lyase (Msil 3157). 

ORF Annotation Organism aa % id 

1320 Uncharacterised protein Methylobacterium extorquens  DM4 173 47 

1321 Uncharacterised protein Rhodopseudomonas palustris BisB5 361 30 

1322 Uncharacterised protein Rhodopseudomonas palustris BisB5 382 34 

1323 K+ transporter Caulobacter crescentus  346 50 

1324 Uncharacterised protein Beijerinckia indica  123 75 

1325 Malate synthase G Methylobacterium nodulans  721 64 

1326 Fmu (Sun) domain protein Beijerinckia indica  439 65 

1327 Uncharacterised protein Nitrobacter hamburgensis  129 47 

1328 Inosine 5’ monophosphate DH Beijerinckia indica  496 83 

1329 Drug resistance transporter Beijerinckia indica  472 63 

3150 Ton B receptor Beijerinckia indica  807 50 

3151 Histidine kinase sensor Aurantimonas SI85-9A1 453 34 

3152 Uncharacterised protein - 94 - 

3153 Uncharacterised protein - 105 - 

3154 Uncharacterised protein - 64 - 

3155 Trans. reg., MarR family Agrobacterium tumefaciens  132 56 

3157 Isocitrate lyase Beijerinckia indica  542 87 

3158 Trans. reg., XRE fam Sphingomonas sp. SKA58 472 72 

3159 5-carboxymethyl-2-
hydroxymuconate delta-isomerase Methylibium petroleiphilum  255 60 

3160 DNA polymerase IV Aurantimonas SI85-9A1 359 73 

 

5.5 5’ RACE 

Rapid amplification of cDNA ends (RACE) was used in an attempt to empirically 

determine the isocitrate lyase transcription start site, using a 2nd Generation 5’/3’ 

RACE kit (ROCHE, Basel, Switzerland), as described in Materials and Methods. 

RNA was extracted from cells grown on acetate, and cDNA synthesised using 

antisense primer IclRa1 located at +346 relative to the start codon (see Table 5.13 for 

primer sequences). Using a cDNA template, a single-sized PCR amplicon was 

generated using PCR primer IclRa2 (position +310), see Figure 5.7. 
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Figure 5.7. First-round (left) and nested second round (right) PCR amplification of cDNA 
synthesised from RACE primer IclRa1. Lane 1: cDNA template, lane 2: control reaction 
without reverse transcriptase, lane 3: no template control (NTC). M: GeneRuler 1 kb ladder 
(Fermentas). 

 

A second round of PCR using nested primer IclRa3 (position +239) was employed to 

increase specificity. The 71 nt difference in the binding sites of primers IclRa2 and 

IclRa3 resulted in DNA bands on the gels differing in size by the corresponding 

amount. Sequencing of both the PCR product directly and the cloned PCR product 

indicated that the mRNA terminated 32 bp 5’ of the start codon (position -32). PCR 

amplicons corresponding to the predicted transcription start (position -88) would be 

distinguishable on the gel from the visible band, indicating that few or no cDNA 

molecules were synthesised which extended to this point. However, the -10 and -35 

sequences upstream of the experimentally determined transcription start site 

displayed relatively low levels of similarity to the E. coli consensus sequences. 

 

 

Figure 5.8. Isocitrate lyase upstream sequence. The predicted promoter sequence is shown 
boxed, and the predicted and experimentally determined transcription start sites shown 
underlined. Possible -35 and -10 sequences upstream of the experimentally determined 
transcription start site are shown shaded. The start codon is shown in red. The consensus E. 
coli σ70 sequence (Harley and Reynolds, 1987) is shown above, in green, for comparison. 

 

Interestingly, isocitrate lyase is flanked on either side by regulatory genes, 

transcribed in the opposite orientation, both of which have homologues in other 
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organisms known to be involved in response to environmental stimuli such as 

xenobiotic chemicals. Any involvement of these genes in the regulation of isocitrate 

lyase transcription was not investigated. 

5.6 Operation of the glyoxylate bypass in M. silvestris during growth on 2-

carbon compounds 

5.6.1 Assay of isocitrate lyase and malate synthase 

The activities of isocitrate lyase and malate sythase were assayed in soluble cell 

extract prepared from cells grown on acetate, methane, propane or succinate, as 

described in Materials and Methods, including killed controls consisting of extract 

form acetate-grown cells inactivated by boiling for 15 min. The pH optimum was 

determined as 7.0, and EDTA was compared with cysteine as an activator, as 

suggested by Kennedy and Dilworth (1963), as described in Materials and Methods.  

Data are presented in Table 5.3. Minimum activity required to account for the 

observed growth rate (µ) on acetate of the cells used for the assay (0.043 h-1, Table 

3.4), can be calculated considering only the assimilatory pathway, since acetate is 

oxidised to CO2 without the involvement of isocitrate lyase. The specific rate of 

substrate (S) consumption dS/dt = (μ/A).B, where A represents the growth yield 

(approximately 24 g of biomass formed per mol of carbon assimilated), and B 

represents the biomass in g (1 g of protein corresponds to approximately 2 g of cell 

dry weight). Therefore, during growth on acetate, the carbon assimilation rate dS/dt = 

(0.043/24) *2  mol h-1 g-1 = 59.7 nmol min-1 mg-1. 

For every isocitrate molecule split by isocitrate lyase, one four carbon molecule is 

generated in the glyoxylate cycle. Therefore, the minimum activity of this enzyme is 

approximately 15 or 20 nmol min-1 mg-1 depending on whether carbon is assimilated 

as a four carbon molecule or decarboxylated to a three carbon molecule (Anthony, 

1982). Since between approximately 15 – 30% of expressed proteins are membrane 

located (Schneider, 1999), activity in the soluble fraction as assayed should be 

correspondingly higher. Therefore the isocitrate lyase activity assayed is just 

sufficient to support growth on acetate. 

Malate synthase activity was high in all growth conditions, and is comparable with 

reported activities in other organisms able to assimilate acetate using the glyoxylate 
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bypass, for example E. coli (500 nmol min-1 mg-1) (Kornberg, 1966) or Haloferax 

volcanii (230 nmol min-1 mg-1) (Khomyakova et al., 2011). 

 

Table 5.3. Activity of isocitrate lyase and malate synthase in soluble extract of M. silvestris. 
Enzyme specific activity (nmol min-1 (mg protein)-1) is given ± standard deviation of at least 
three replicates. N/A, not assayed. Strain ΔICL is described in Section 5.6.2. 

Strain, growth substrate Isocitrate lyase Malate synthase 
Wild type, acetate 23.2 ± 3.3 424 ± 59 
Wild type, methane 0.52 ± 0.02 277 ± 40 
Wild type, propane 0.3 ± 0.03 367 ± 20 
Wild type, succinate 2.2 ± 0.39 243 ± 78 
Strain ΔICL, succinate 0.40 ± 0.40  N/A 

 

 

 

5.6.2 Deletion of isocitrate lyase 

In order to establish definitively the role of isocitrate lyase, M. silvestris strain ΔICL 

was constructed as described in Chapter 3, involving the deletion of the entire coding 

sequence and 65 bp downstream, and replacement with approximately 100 bp 

containing a single loxP site. Due to the removal of the antibiotic marker and the 

genomic context (Figure 5.5) this was unlikely to have a polar effect on transcription 

of nearby genes. Assay of ICL in succinate-grown cells of strain ΔICL did not detect 

activity above background (Table 5.3). Growth of M. silvestris strain ΔICL was 

evaluated in 20 or 25 ml cultures in 120 ml serum vials in triplicate, and growth on 

acetate, ethanol, pyruvate and succinate is compared with growth of the wild-type in 

Figure 5.9. Growth data are summarised in Table 5.4, and Figure 5.10 shows specific 

growth rate and biomass increase of the mutant strain as a percentage of wild type 

growth on the same substrate.  
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Figure 5.9. M. silvestris wild-type (solid lines) and strain ΔICL (dashed lines) growth on a) 
acetate, b) ethanol, c) pyruvate and d) succinate. Data points show the mean of at least three 
replicates and error bars indicate the standard deviation. 

 

Strain ΔICL was able to grow on succinate and pyruvate similarly to the wild type, 

but growth on acetate and ethanol were severely restricted. These data suggest that 

isocitrate lyase is active during growth on two-carbon compounds during the 

operation of the glyoxylate cycle. (It is also worth noting here that the ability of 

strain ΔICL to grow on pyruvate implies a difference from the situation in 

Methylobacterium extorquens AM1, which has been shown to assimilate pyruvate 

via decarboxylation to acetyl-CoA (Bolbot and Anthony, 1980b).) 
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Table 5.4. Growth of M. silvestris BL2 wild type and strain ΔICL on one-, two-, three- and 
four-carbon compounds. Figures are the mean of at least three replicates ± standard deviation. 
Substrate concentrations: 5 mM, except methane: 20% (v/v), ethanol and methanol: 0.1% 
(v/v). Growth on one-carbon compounds is discussed in Section 5.7. 

Specific growth rate (h-1) Lag time (h) Increase in biomass (OD) 
Growth 
substrate BL2 ΔICL BL2 ΔICL BL2 ΔICL 

Methane 0.016 ± 0.002 0.001 ± 0.001 76 ± 27 - 0.48 ± 0.05 0.02 ± 0.02 
Methanol 0.049 ± 0.003 0.003 ± 0.001 0 ± 0 - 0.58 ± 0.03 0.03 ± 0.01 
MMA 0.037 ± 0.006 0 ± 0 51 ± 5 - 0.35 ± 0.01 0.00 ± 0.00 
Ethanol 0.045 ± 0.001 0.007 ± 0.001 0 ± 1 0 ± 1 0.86 ± 0.03 0.09 ± 0.01 
Acetate 0.050 ± 0.001a 0.022 ± 0.001a 0 ± 1 0 ± 0 0.35 ± 0.02 0.10 ± 0.00 
Pyruvate 0.052 ± 0.001 0.049 ± 0.000 0 ± 1 0 ± 0 0.38 ± 0.01 0.33 ± 0.02 
Succinate 0.025 ± 0.001 0.027 ± 0.001 0 ± 1 0 ± 2 0.48 ± 0.06 0.42 ± 0.04 

a Growth of strain ΔICL occurred at a rate of 0.036 ± 0.0004 h-1 for the first 24 h. The 
tabulated figures refer to growth between 0 – 48 h 
 

 

Figure 5.10. Specific growth rate and increase in biomass (as measured by OD540) of strain 
ΔICL, expressed as a percentage of the wild-type growth rate and biomass increase under the 
same conditions. Calculated from data for at least three replicates, error bars indicate the 
standard deviation. 

 

5.6.3 Deletion of malate synthase 

Strain ΔMS was constructed with a deletion of Msil1325, encoding malate synthase. 

The same procedure was adopted as previously described, resulting in a marker-less 

deletion of 2056 bp, consisting of almost the entire coding sequence, from 40 bp 
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after the start codon to 69 bp before the stop codon, and its replacement with 105 bp 

containing a single loxP site. 

 

 

Figure 5.11. Growth of wild-type M. silvestris (solid lines) and strain ΔMS (dashed lines) on 
succinate (black) and acetate (red). 

 

Strain ΔMS was able to grow on succinate similarly to the wild type, but growth on 

acetate was severely restricted, see Figure 5.11 and Table 5.5. Strain ΔMS was able 

to grow on formate (25 mM, duplicate vials, data not shown). 

 

Table 5.5. Growth of M. silvestris strain ΔMS on one-, two- and four-carbon compounds. 
Figures are the mean of at least six replicates ± standard deviation. Substrate concentrations: 
5 mM, except methanol: 0.1% (v/v). Growth on methanol is discussed in Section 5.10. 

Strain Substrate Sp growth rate (h-1) Lag time (h) Increase in biomass (OD) 
ΔMS Methanol 0.028 ± 0.007 38 ± 23 0.74 ± 0.06 
ΔMS Acetate 0.005 ± 0.001 a - - 
ΔMS Succinate 0.028 ± 0.001 0 ± 6 0.48 ± 0.07 

a Refers to the latter phase of growth after approximately 60 h. 
 

However, interestingly, strain ΔMS was able to grow on acetate to a density of 0.15 

at a rate similar to the wild type, in contrast to strain ΔICL. Eventually, after 

approximately 50 hours, during which no further growth occurred, growth of strain 

ΔMS resumed at a low rate. This experiment was repeated with almost identical 

results (data not shown). The fast initial growth could be explained by the ability of 

strain ΔMS to use a cellular storage compound, the identity of which is unknown, 

which is not available to strain ΔICL. 
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The data presented in Section 5.6 strongly support the hypothesis that M. silvestris 

uses the glyoxylate cycle during growth on two-carbon compounds. 

 

5.7 Operation of an isocitrate lyase positive serine cycle in M. silvestris during 

1-carbon growth 

5.7.1 Carbon assimilation via alternatives to the serine cycle 

Serine cycle enzymes hydroxypyruvate reductase and serine-glyxoylate 

aminotransferase were assayed by Dunfield et al. (2003), and data suggested that M. 

silvestris assimilates carbon during methylotrophic growth using the serine cycle. 

However, M. silvestris also contains a complete set of Calvin cycle genes located in a 

cluster (Msil1191 - Msil1198), including those encoding key enzymes ribulose 1,5-

bisphosphate carboxylase-oxygenase (RubisCO) and phosphoribulokinase (PRK) (87% 

and 76% identity to cbbL and cbbP from Bradyrhizobium japonicum respectively). 

Previous reports have suggested that Beijerinckia mobilis, an organism relatively 

closely related to M. silvestris, may assimilate carbon using both the Calvin and the 

serine cycles (Dedysh et al., 2005b). 

 

 

Figure 5.12. RT-PCR using cDNA synthesised from cells grown on methanol (lanes 1 and 2) 
or succinate (lanes 3 and 4) and primers located in cbbP. Lanes 2 and 4 are controls in which 
cDNA synthesis reactions were conducted without reverse transcriptase enzyme. Lane 5, 
DNA template, lane 6, NTC. M: Generuler 1kb marker (Fermentas). 

 

RNA was extracted from cells grown on methanol and succinate and used for cDNA 

synthesis using Supercript II reverse transcriptase and random hexamer primers, as 

described in Materials and Methods. RT-PCR was carried out using a cDNA 
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template and primers located in the putative cbbL and cbbP coding sequences. 

Whereas a PCR product was obtained for cbbP with cDNA from both conditions 

(Figure 5.12), no cbbL amplicons could be obtained (not shown).  RNA was 

extracted from cells grown on formate, but due to the poor growth on this substrate 

and the synthesis of a large amount of slime, RNA quality (as determine by the 

University of Warwick Molecular Biology Service Agilent Bioanalyser) was low, 

and cDNA sythesis was not attempted.  

 

5.7.2 Deletion of serine-glyoxylate aminotransferase 

Confirmation of the operation of the serine cycle during one-carbon growth of M. 

silvestris was obtained by construction of strain ΔSGAT, involving the deletion of 

serine-glyoxylate aminotransferase, encoded by sgaA, locus tag Msil1714. This gene 

bears 66% identity (at the amino acid level) to sgaA from Methylobacterium 

extorquens, which was shown to be essential for operation of the serine cycle 

(Chistoserdova and Lidstrom, 1994), and in M. silvestris forms part of a cluster of 

five genes including those predicted to encode glycerate kinase, hydroxypyruvate 

reductase and formate-tetrahydrofolate ligase, see Figure 5.13 and Table 5.6. The 

method of deletion is described in Chapter 4. 

 

 

Figure 5.13. The M. silvestris gene cluster including Msil1714, annotated as serine-
glyoxylate aminotransferase. 

 

Table 5.6. Top BLAST hits to the SWISS-PROT/TrEMBL database, and associated 
annotation of translated sequences of open reading frames surrounding serine-glyoxylate 
aminotransferase (Msil1714). 

ORF Annotation Organism aa % id 

1711 Uncharacterised Rhodopseudomonas palustris 
BisA53 363 46 

1712 Formate-tetrahydrofolate ligase Methylibium petroleiphilum PM1 558 78 
1713 2-hydroxyacid dehydrogenase Methylobacterium nodulans 313 73 
1714 Serine-glyoxylate aminotransferase Methylobacterium strain 4-46 396 71 
1715 Glycerate kinase Methylibium petroleiphilum PM1 421 70 
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Strain ΔSGAT was unable to grow on one-carbon compounds, whereas growth on 

acetate and succinate was unaffected, see Figure 5.14 and Table 5.7. 

 

 

Figure 5.14. Growth of M. silvestris strain ΔSGAT on one-, two- and four-carbon 
compounds. Data points are the mean of three replicates, and error bars show the standard 
deviation. 

 

Table 5.7. Growth of M. silvestris strain ΔSGAT on one-, two- and four-carbon compounds. 
Figures are the mean of at least three replicates ± standard deviation, except formate, in 
duplicate. Substrate concentrations: acetate, succinate: 5 mM, formate: 25 mM, methane: 20% 
(v/v) and methanol: 0.1% (v/v). 

Strain Substrate Specific growth rate (h-1) lag time (h) increase in biomass (OD) 
ΔSGAT Formate No growth - - 

 Methane 0.001 ± 0 - 0.03 ± 0 
 Methanol 0.001 ± 0 - 0.03 ± 0 
 Acetate 0.059 ± 0.002 0 ± 0 0.42 ± 0.03 
 Succinate 0.024 ± 0.001 0 ± 8 0.56 ± 0.02 

 

These data confirm that M. silvestris uses the serine cycle for one-carbon 

assimilation. 

5.7.3 Assay of isocitrate lyase 

Low isocitrate lyase activity was detected in methane-grown cells, see Table 5.3. The 

isocitrate lyase positive variant of the serine cycle can generate one three-carbon 

molecule for assimilation into biomass, for the lysis of each isocitrate molecule 

(Anthony, 1982), therefore, using the same assumptions as Section 5.6.1, but the 

specific growth rate for methane-grown cells (0.01-0.022 h-1, Table 3.4), minimum 
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enzyme activity would be expected to be in the range 5 – 10 nmol min-1 mg-1, which 

is ten times the activity detected. In assay reactions where methane-grown extract 

(1145 µg protein) was added to acetate-grown extract (57.5 µg protein) the activity 

detected was approximately the sum of the activities separately, demonstrating that 

methane-grown extract did not contain components that inhibited the assay. 

Therefore methane-grown cell extract did not appear to contain sufficient isocitrate 

lyase activity to support the measured growth rate. 

5.7.4 Growth of strain ΔICL on 1-carbon compounds 

Strain ΔICL was unable to grow on methane, monomethylamine (MMA) or 

methanol, see Figure 5.15, Table 5.4 and Figure 5.10. In duplicate vials, growth was 

also not observed with formate (25 mM, data not shown). 

 

 

Figure 5.15. Growth of M. silvestris wild-type (solid lines) and strain ΔICL (dotted lines) on 
a) methane, b) MMA and c) methanol. Data points show the mean of three replicates and 
error bars indicate the standard deviation. 
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These data demonstrate that isocitrate lyase is essential for one-carbon assimilation 

in M. silvestris, and support the hypothesis that an ICL+ variant of the serine cycle is 

employed. 

5.7.5 Rescue of C1 growth of strain ΔICL by glyoxylate 

M. silvestris is unable to grow on glyoxylate (Table 3.2), but since this is the product 

of the isocitrate lyase reaction in the serine cycle, strain ΔICL was tested for growth 

on methanol (5 mM) plus glyoxylate (2.5 mM). Mutants of Methylobacterium 

extorquens AM1 defective in C1 metabolism are able to grow on methanol 

supplemented with glyoxylate (Dunstan et al., 1972a). There was no detectable 

growth for at least 7 days, but after 4 weeks, vials had become turbid. These cultures 

were therefore used as inoculum for a repeat experiment using 10 mM methanol 

(~0.04% v/v) plus 5 mM glyoxylate. The rationale for these concentrations was 

based on the assumption that one glyoxylate would be required for each one-carbon 

unit assimilated, comprising approximately 50% of the supplied methanol, and that 

higher glyoxylate concentrations might be toxic. Controls were included, supplied 

with methanol alone and glyoxylate alone. Strain ΔICL was able to grow on 

methanol (0.04% v/v) plus glyoxylate at 70% of the wild type growth on methanol 

(0.1% v/v) alone, whereas there was little or no growth on either glyoxylate or 

methanol alone (Table 5.8). These data demonstrate that, in the mutant strain, 

exogenously supplied glyoxylate is able to replace that generated by isocitrate lyase, 

albeit with a lag phase not present in wild type cells during growth on methanol.  

Table 5.8. Growth of strain ΔICL on glyoxylate, methanol, or methanol plus glyoxylate. 
Data are the mean of three replicates ± standard deviation. 

Substrate specific growth rate (h-1) Lag time (h) Increase in biomass (OD) 
Glyoxylate 0.00 ± 0.003 - 0.01 ± 0.00 
Methanol 0.006 ± 0.000 33 ± 16 0.06 ± 0.00 
Methanol + glyoxylate 0.033 ± 0.008 62 ± 14 0.36 ± 0.01 

 

 

5.8 Complementation of strain ΔICL 

M. silvestris strain ΔICL was complemented by expression of the wild type isocitrate 

lyase gene (Msil3157) encoded on vector pAC105. For this construct, broad host 
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range promoter probe vector pCM132 (Marx and Lidstrom, 2001a) was modified by 

removal of lacZ and replacement with the isocitrate lyase gene and promoter from M. 

silvestris. Primers C-Iclf and C-Iclr (Table 5.13) were used to amplify the Msil3157 

coding sequence and 183 bp upstream and 186 bp downstream, using wild-type 

genomic DNA as template and proofreading enzyme pfu (Promega). This fragment 

was cloned into pCR2.1 TOPO, excised with KpnI and SmaI, and purified from an 

agarose gel. Vector pCM132 was cut with SphI, blunted using T4 polymerase, cut 

with KpnI, de-phosphorylated, gel purified, and ligated with the KpnI SmaI fragment 

(Figure 5.16). This vector therefore has sequences of 183 bp and 121 bp homologous 

to the chromosome of strain ΔICL upstream and downstream respectively of 

Msil3157. It was assumed that this level of homology would be unlikely to result in 

spontaneous re-integration of the deleted sequence into the chromosome.  

 

 

Figure 5.16. Vector pAC105 for complementation of strain ΔICL was constructed by 
replacing lacZ in pCM132 with the Msil3157 coding sequence and promoter, PCR-amplified 
from the M. silvestris wild-type chromosome using primers C-Iclf and C-Iclr. Primers 3157f, 
105r, 3157r and Icl_2f were used to screen transformed strain ΔICL-pAC105. 

 

 

Accuracy of vector pAC105 was verified by sequencing, and M. silvestris strain 

ΔICL was transformed by electroporation. Cells containing the vector were selected 

on DAMS plates containing kanamycin. PCR reactions with various combinations of 

primers binding to positions in the wild type chromosome, the deleted coding 

sequence and the vector backbone sequence demonstrated the presence of the 
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complementing vector in cells, and the lack of stable re-integration (see Figure 5.17 

and Table 5.9). 

 

 

Figure 5.17. PCR was used to verify strain ΔICL complemented with pAC105, using four 
primer sets, A, B, C and D, as shown in Table 5.9. Lanes 1: wild-type, 2: strain ΔICL, 3: 
complemented strain ΔICL-pAC105, 4: NTC.  

 

Table 5.9. Primer pairs used in PCR reactions shown in figure Figure 5.17. Primer locations 
are shown in Figure 5.16, except 3157Tf and 3157Tr, which are located upstream and 
downstream of Msil3157, beyond the regions originally cloned during the gene deletion 
procedure, as described in Chapter 4. w-t: wild type, ΔICL: strain ΔICL, C- ΔICL: strain 
ΔICL complemented with vector pAC105. 

 Primer pair Primer location Amplicons (bp) 
  Fwd primer Rev primer w-t ΔICL C-ΔICL 

A Icl_2f/105r Deleted region pAC105 vector - - 1891 
B Icl_2f/3157Tr Deleted region Chromosome 2224 - - 
C 3157Tf/3157Tr Chromosome Chromosome 3259 1660 1660 
D 3157f/3157r Deleted region Deleted region 451 - 451 

 
 

Complementation largely restored the ability of strain ΔICL-pAC105 to grow on 

acetate and methanol, see Table 5.10. When growing with antibiotic, growth was 

reduced in comparison to the wild type, but during growth on methanol without 

antibiotic, growth rate and increase in biomass approached that of the wild type. 

Complemented cultures exhibited a lag phase not present in the wild type cultures. 
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Table 5.10. Growth of complemented strain ΔICL-pAC105 on acetate (5 mM), succinate (5 
mM) or methanol (0.1% v/v) with or without kanamycin (25 µg ml-1). 

Substrate Kanamycin 
 (+/-) 

specific growth 
rate (h-1) 

Lag time 
(h) 

increase in 
biomass (OD) 

Acetate + 0.024 ± 0.0004 2 ± 0 0.22 ± 0.00 
Succinate + 0.018 ± 0.0003 20 ± 6 0.46 ± 0.00 
Methanol + 0.019 ± 0.001 43 ± 5 0.50 ± 0.02 
Methanol - 0.037 ± 0.0004 11 ± 3 0.56 ± 0.03 

 

5.9 Metabolism of methanol in strain ΔICL 

Proteomic analysis demonstrated expression of methanol dehydrogenase during 

wild-type growth on succinate, both by analysis of bands cut from a 1D gel (Chapter 

3, Table 3.5), and also by quantitative analyses of soluble extract performed by 

Vibhuti Patel (Patel et al., 2009) and subsequently by Nisha Patel (Patel et al., 2011) 

and the University of Warwick Biological Mass Spectrometry and Proteomics 

Facility. The latter study quantified MDH as 9.3% of the soluble protein in succinate-

grown soluble extract, (in comparison to 0.18% for isocitrate lyase in the same 

extract). Therefore the ability of M. silvestris to metabolise  methanol during growth 

on succinate was investigated by analysis of growth on a mixture of succinate (5 mM) 

and methanol (0.05% v/v) (Figure 5.18). Whereas the wild-type grew at a faster rate 

and to a higher final density, strain ΔICL was repressed by the presence of methanol. 

Although the mutant is unable to assimilate one-carbon compounds into biomass due 

to a disabled serine cycle, it might be expected that it would be able to oxidise 

methanol to produce energy, thus enabling more succinate to be diverted into 

biomass production. 
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Figure 5.18. Growth of M. silvestris wild type (solid lines) and strain ΔICL (dashed lines) on 
succinate (black, solid or open triangles) or succinate (5 mM) plus methanol (0.05% v/v) 
(red, solid or open circles). Data points represent the mean of triplicate vials and error bars 
indicate the standard deviation. 

 

 

5.9.1 Analysis of substrate-stimulated oxygen uptake in strain ΔICL 

Since there was no benefit to strain ΔICL of the addition of methanol to succinate-

containing growth medium, the ability of this strain grown on succinate in 125 ml 

vials to oxidise methanol was tested in a Clark oxygen electrode. These cells showed 

oxygen uptake in response to the addition of succinate, but no detectable response to 

methanol (data not shown). In order to investigate this more fully, strain ΔICL was 

grown on succinate in a 2 l batch culture in a fermenter, and cells were used for 

comparison with the wild-type. Substrates (2.5 nmol except succinate, 5 nmol and 

formate, 12.5 nmol) were added to whole cells (5 mg, calculated from OD readings 

assuming 1 ml at OD540 = 1.0 is equivalent to 0.25 mg dw) in the oxygen electrode, 

and data are shown in Figure 5.19. Oxygen consumption rate was similar in response 

to succinate, acetate and formate, but there was no detectable response to methanol 

or ethanol by the mutant cells, in contrast to wild-type cells which exhibited high 

activity in response to these alcohols. Formaldehyde-stimulated oxygen consumption 

was also highly down-regulated in strain ΔICL. 
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Figure 5.19. Oxygen-uptake rates of M. silvestris wild-type and strain ΔICL, grown on 
succinate in a fermenter, in response to addition of the substrates shown. Error bars show the 
standard deviation of a minimum of three measurements. 

 

 

5.9.2 Methanol dehydrogenase activity and expression in strain ΔICL 

Since there was no detectable response to methanol or ethanol with succinate-grown 

strain ΔICL in the oxygen electrode, methanol dehydrogenase (MDH) activity was 

assayed in the soluble fraction of cell extract from the same cells, using the standard 

PMS/DCPIP linked assay as described in Materials and Methods. High levels of 

activity were detected in wild type cells in response to methanol, formaldehyde and 

ethanol (Table 5.11), but activities were very low or not detectable in extract from 

strain ΔICL. However, complemented strain ΔICL-pAC105 exhibited over half of 

the wild type activity with methanol, demonstrating that the lack of activity in strain 

ΔICL was not caused by unexpected non-reversible disruption of MDH-expression 

related sequences in the genome. The simultaneous absence of methanol, ethanol and 

formaldehyde activity in strain ΔICL suggests that MDH is responsible for the 

measured activity with all three substrates in wild-type extract. 
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Table 5.11. Assay for PQQ-containing dehydrogenase conducted using soluble fraction of M. 
silvestris cell extract, from fermenter-grown cells. Specific activity (nmol (min mg)-1) is 
shown as the mean of three replicates ± standard deviation, except ethanol (as substrate), 
mean of duplicate reactions. Hyphens indicate that the assay was not carried out. 

Assay substrate 
Strain / growth-substrate Methanol Formaldehyde Ethanol 
Wild type / methane 936 ± 14 - - 
Wild type / succinate 1142 ±  36 1060 ± 23 1197 
ΔICL  / succinate 0 ± 5 7 ± 1 0 
ΔICL-pAC105 / methanol 590 ± 56 488 ± 6 - 

 

These findings were corroborated by SDS-PAGE using the same soluble extracts, see 

Figure 5.20. The size of the arrowed band was estimated as 64 -66 kDa, in agreement 

with the predicted MDH size of 65.7 kDa. A discrete band corresponding to 

isocitrate lyase (predicted size 59.8 kDa) could not be identified in the gel, reflecting 

its relatively low abundance.  A band (from a different gel) corresponding to the 

band shown arrowed was subsequently excised and the identity (MDH) confirmed by 

mass spectrometric analysis (see Figure 6.14, Chapter 6). 

 

Figure 5.20. 12.5% SDS-PAGE demonstrated lack of expression of MDH in M. silvestris 
strain ΔICL (lane 2), whereas complementation restored expression in strain ΔICL-pAC105 
(lane 1). Lane 3: wild type (succinate-grown) and lane 4: methane-grown. M: PageRuler Plus 
prestained marker (Fermentas). The arrow indicates MDH large subunit. 
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5.9.3 Transcription of isocitrate lyase and mxaF 

RNA was extracted from fermenter-grown M. silvestris wild type and strain ΔICL 

grown on succinate and also from complemented strain ΔICL-pAC105 grown in 

volumes of 20 ml in 125 ml vials on succinate (5 mM) or methanol (0.1% v/v), using 

the hot phenol method as described in Materials and Methods. Superscript II reverse 

transcriptase (Invitrogen, UK) was used with 500 ng total RNA and random 

hexamers to synthesise cDNA as described in Materials and Methods. cDNA (1 µl) 

was used as template in PCR reactions together with genomic DNA for comparison. 

Control reactions were also included, identical except that no reverse transcriptase 

enzyme was added during cDNA synthesis. To analyse transcription of Msil3157, 

primers 3157f/3157r were used targeting the gene coding sequence. In addition, 

primers MxaFf/MxaFr and CytCf/CytCr for two genes located in the MDH operon, 

mxaF, encoding the α-subunit, and cytC, encoding the MDH-specific cytochrome C 

(Anthony, 1992) were included, together with primers for hpr (Hpr2f/Hpr2r) 

encoding hydroxypyruvate reductase and 16S rRNA gene primers 27f /1492r. 

 

 

Figure 5.21. RT-PCR reactions using cDNA synthesised from RNA extracted from wild type 
(lanes 1), strain ΔICL (lanes 2) and strain ΔICL-pAC105 grown on succinate (lanes 3) or 
methanol (lanes 4). Lanes 6 – 9 as lanes 1 – 4 except using template prepared without 
reverse transcriptase. Lanes 5, DNA template. 30 PCR cycles, except hpr and 16S, 21 cycles. 
M: GeneRuler 1 kb ladder (Fermentas). For hpr and 16S, negative reactions shown 
correspond to wild-type cDNA synthesis without reverse transcriptase and NTC only. 
Expected sizes: Msil3157: 451bp, mxaF: 430 bp, cytC: 447 bp, hpr: 377 bp, 16S: 1447 bp. 

 

As expected, Msil3157 was not transcribed in strain ΔICL, but transcription was 

restored in complemented strain ΔICL-pAC105. Genes mxaF and cytC, although 

transcribed in all strains, appeared to be transcribed at a lower level in strain ΔICL 

than in the wild type or complemented strains. Transcription of hpr was unaffected 
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by deletion of Msil3157 in strain ΔICL. The similar amplicons generated from 16S 

rRNA cDNA templates (when PCR cycles were reduced to 21) suggests that 

comparison between transcripts in the other reactions is valid.  

5.9.4 Comparison of MDH expression in flask-grown wild-type and strain 

ΔICL 

Since much of the work described in Sections 5.9.2 and 5.9.3 relied on fermenter-

grown cells, M. silvestris wild-type and strain ΔICL were grown in 200 ml volumes 

under identical conditions in 1 l flasks on succinate (5 mM). Cells were harvested at 

late exponential phase and cell-free extract prepared. This was used for SDS-PAGE 

and PMS-linked enzyme assays, see Figure 5.22. Although some MDH activity was 

present in cell-free extract of strain ΔICL, it was less than 15% of the wild type strain, 

and the polypeptide band corresponding to the α-subunit was also much less 

prominent. However, under these conditions MDH expression was not completely 

eliminated in the mutant strain. 

 

 

Figure 5.22. Strain ΔICL exhibited reduced MDH expression and activity in comparison to 
the wild-type when grown on succinate in flasks. a) SDS-PAGE of cell-free extract, lane 1: 
wild type, lane 2: strain ΔICL. The band corresponding to the MDH α-subunit is indicated 
with an arrow. M: PageRuler Plus prestained protein ladder (Fermentas). b) PMS-linked 
methanol dehydrogenase assay of cell-free extract. Error bars indicate the standard deviation 
of three replicate measurements. 
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5.9.5 Effect of glyoxylate and hydroxypyruvate on MDH expression 

It seemed possible that differences in the level of intracellular metabolites caused the 

unexpected change in expression of MDH in strain ΔICL compared to the wild type, 

and that MDH expression might be induced by one of the products of isocitrate lyase. 

During growth on succinate, the glyoxylate bypass is not essential (Table 5.4), but 

the activity of isocitrate lyase might result in significant intracellular levels of 

glyoxylate or one of the products of its metabolism. To test this, cultures of strain 

ΔICL (20 ml, in 120 ml vials) were grown on succinate supplemented with either 

glyoxylate or hydroxypyruvate. The latter is the product of the next enzyme in the 

serine cycle, serine-glyoxylate aminotransferase. Glyxoylate or hydroxypyruvate 

were included at between 0 and 2 mM, together with 5 mM succinate. Growth was 

inhibited in vials with 0.5 and 2 mM glyoxylate and the latter did not produce 

sufficient biomass and was not included in proteomic analysis. Cells were harvested 

after 7 days at late exponential or stationary phase at OD540 between 0.46 and 0.49, 

disrupted by sonication and centrifuged to remove debris as described in Materials 

and Methods.  

 

 

Figure 5.23. Strain ΔICL was grown on succinate (5 mM) with glyxoxylate or 
hydroxypyruvate. Lanes 1-4: glyoxylate at 0, 25, 100, 500 µM, lanes 5 – 9 hydroxypyruvate 
at 0, 25, 100, 500 and 2000 µM respectively. M: PageRuler Plus prestained protein marker 
(Fermentas). The band corresponding to MDH (68.5 kDa) is indicated with an arrow. 
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Protein was quantified and 5 – 10 µg loaded on a 10% SDS-PAGE gel, see Figure 

5.23. Unexpectedly, MDH was expressed at similar levels under all conditions, 

except for the vial with 100 µM glyoxylate (lane 3), where expression seemed 

considerably reduced.  

The genotype of the cultures was confirmed by PCR reactions using two primer pairs; 

3157Tf/3157Tr which are located outside the deleted region and give different 

product sizes in the two strains, and 3157f/3157r which are located in the coding 

region and therefore give a product in the wild type but not in strain ΔICL. Results 

(not shown) were as expected. 

5.9.6 Expression of MDH in strain ΔICL under different growth conditions 

Strain ΔICL was grown on succinate in flasks with nitrate or ammonium as nitrogen 

source and harvested at mid- or late-exponential phase in an effort to identify growth 

conditions resulting in differences in MDH expression. SDS-PAGE revealed a 

uniformly low level of MDH expression and did not identify any correlation with the 

growth conditions tested (not shown). 

 

5.10 Growth of strain ΔMS on methanol 

Strain ΔMS grew on methanol at a specific growth rate of 0.28 ± 0.007 h-1 (Table 

5.5), slightly over half the rate of the wild-type. In addition, this strain exhibited a 

considerable and highly variable lag phase (7 – 76 h, mean 38 h, standard deviation 

23 h, n = 9), which was not present in the wild type under these growth conditions. 

This experiment was repeated with the same results, see Figure 5.24. Following 

routine methods employed to check culture purity, cells of a vial of methanol-grown 

strain ΔMS, which exhibited a short lag phase, were used as inoculum for growth on 

succinate, which was then used as inoculum for a repeat of the growth experiment on 

methanol and acetate. The growth phenotype was confirmed on both substrates, 

although with a more uniform (long) lag phase on methanol as shown in the figure. 

Cells were also serially diluted from the succinate culture, spread on DNMS 

succinate plates, and colonies used to check the gene deletion by PCR using primers 

1325Tf and 1325Tr (Table 4.3). All colonies tested (12/12) displayed the mutant 

genotype (not shown). 
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Figure 5.24. Growth of strain ΔMS on methanol. Curves represent growth of nine individual 
vials in three separate experiments (shown in black, red, or purple) including vials (purple) 
using inoculum from a vial exhibiting a short lag phase, as described in the text. 

 

These data demonstrate that deletion of malate synthase had an effect on methanol 

metabolism in strain ΔMS, and are consistent with the hypothesis that altered levels 

of intracellular metabolites influenced regulatory elements controlling methanol 

metabolism. 

5.11 Expression of MDH in wild-type M. silvestris BL2 

Transcription, expression and activity of MDH in wild-type M. silvestris grown on 

succinate was conclusively demonstrated as described in Section 5.9. However, 

production of 3-carbon molecules, required as precursors for synthesis of cellular 

components (for example amino acids cysteine, glycine, phenylalanine, serine, 

tryptophan and tyrosine), would require a decarboxylation reaction (for example the 

activity of PEP carboxykinase, the expression of which was identified in succinate-

grown cells, Table 3.5). Enzymes such as isocitrate lyase or PEP carboxykinase 

which are involved in anaplerotic or catabolic processes would be expected to be 

tightly and co-ordinately regulated (Sauer and Eikmanns, 2005). Therefore, to 

investigate MDH expression during growth that does not require the activity of these 

enzymes, M. silvestris was grown on glycerol and D-gluconate, and analysed by 

SDS-PAGE, in order to test the hypothesis that under these growth conditions MDH 
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might not be expressed. As shown in Figure 5.25, MDH was expressed under all 

conditions tested. 

 

Figure 5.25. Expression of MDH was evaluated in cells grown on different substrates. Lanes 
2, 3, 4, 6: wild type growth on succinate, methane, gluconate and glycerol respectively. Also, 
for comparison, lanes 1 and 5, strain ΔICL, grown on succinate and methanol plus 
glyoxylate respectively. M: PageRuler Plus pre-stained protein marker (Fermentas). The 
band corresponding to MDH is shown arrowed. 

  

5.12 Growth phenotype of strain ΔSGAT 

Data presented in Sections 5.9 and 5.10 demonstrate that deletion of the genes 

encoding the enzymes of the glyoxylate bypass had an effect on MDH expression. 

However, data presented in Sections 5.7.5 and 5.8 show that this was not caused by a 

polar effect of the gene deletion, or unintended disruption of MDH genes. Therefore, 

it seemed possible that an alteration in the intracellular level of metabolites 

moderated by the glyoxylate bypass resulted in the differences in MDH expression 

and activity observed. Since glyoxylate, a product of isocitrate lyase, is a substrate of 

serine-glyoxylate aminotransferase, strain ΔSGAT was investigated in respect of 

methanol metabolism and MDH expression.  
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Figure 5.26. Growth of strain ΔSGAT on ethanol (in red), succinate or succinate plus 
methanol. Data points show the mean of three replicates and error bars indicate the standard 
deviation. 

 

Strain ΔSGAT grew on ethanol with a specific growth rate of 0.019 h-1, (Figure 5.26,  

Table 5.12) in comparison to the wild type rate of 0.045 h-1 (Table 5.4), and 

exhibited a similar variation in lag phase as observed for strain ΔMS during growth 

on methanol. Strain ΔSGAT did not benefit from the addition of methanol during 

growth on succinate and growth was repressed after a short initial period, see Figure 

5.26. However, strain ΔSGAT was able to grow on acetate similarly to the wild type 

(Figure 5.14, Table 5.7), demonstrating that serine-glyoxylate aminotransferase is not 

involved in metabolism of this compound. 

 

Table 5.12. Growth of strain ΔSGAT on ethanol, succinate or succinate plus methanol. Data 
are the mean of three replicates ± standard deviation. Substrate concentrations, ethanol: 0.1% 
(v/v), succinate: 3 mM, succinate plus methanol: 3 mM + 0.05% (v/v). 

Strain Substrate Specific growth rate (h-1) Lag time 
(h) Increase in biomass (OD) 

ΔSGAT Ethanol 0.019 ± 0.003 0 ± 25 0.74 ± 0.01 
 Succinate 0.030 ± 0.001 0 ± 1 0.34 ± 0.00 
 Succinate plus 

Methanol 
0.028 ± 0.000 

(0.003 ± 0.000)a 0 ± 0 0.19 ± 0.01 
a Growth resumed after 92 h at a reduced rate 
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5.12.1 Expression of MDH in strain ΔMS and strain ΔSGAT during growth on 

succinate 

Cells of M. silvestris wild-type, strain ΔMS and strain ΔSGAT were grown in flasks 

on 5 mM succinate, and harvested at mid-exponential and stationary phase. Cell-free 

extract was prepared and analysed by SDS-PAGE. As shown in Figure 5.27, MDH 

was expressed under all conditions tested. 

 

 

Figure 5.27. SDS-PAGE demonstrating that MDH was expressed in strains ΔMS and 
ΔSGAT during growth on succinate at both mid-exponential (Exp) and stationary (St) phases. 
W-t: wild-type. The band corresponding to MDH is indicated with an arrow. 

 

5.13 Construction of an isocitrate lyase – malate synthase double mutant 

Strain ΔICLΔMS was constructed with a deletion of both isocitrate lyase and malate 

synthase. This strain was able to grow on succinate, but not on methanol or acetate, 

as expected, and was not investigated further. 

5.14 Discussion 

5.14.1 Operation of the glyoxylate cycle in M. silvestris 

Enzyme activity detected in soluble extract from cells grown on acetate was 

sufficient to support the observed growth rate. No doubt there is scope for further 
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optimisation of the activity assay, and the true enzyme activity may be somewhat 

higher. Deletion of each of the glyoxylate bypass genes demonstrated highly disabled 

phenotypes during two-carbon growth, whereas growth on succinate was unaffected. 

These data provide good evidence for the operation of the glyoxylate cycle during 

two-carbon growth. 

5.14.2 The operation of an ICL+ variant of the serine cycle in M. silvestris 

Strain ΔSGAT, with a deletion of a key serine cycle enzyme, serine-glyoxylate 

aminotransferase, was unable to grow on one-carbon compounds, demonstrating the 

operation of the serine cycle in M. silvestris. The only fully documented and 

characterised alternative to isocitrate lyase and enzymes of the TCA cycle for the 

conversion of acetyl-CoA to glyoxylate in the serine cycle is the EMC pathway. 

However, M. silvestris does not appear to have the necessary genes for expression of 

the enzymes unique to this pathway. On the other hand, isocitrate lyase activity 

detected in assays of soluble extract of cells grown on methane was extremely low, 

casting doubt on the role of this enzyme during one-carbon growth. 

Deletion of isocitrate lyase abolished growth on methane and methanol in strain 

ΔICL, initially appearing to demonstrate conclusively the role of this enzyme in the 

serine cycle. During growth on succinate, the wild-type strain is able to benefit from 

the addition of methanol. There is no suggestion of biphasic growth, implying that 

methanol is either oxidised for energy, or assimilated into biomass, or both, during 

metabolism of succinate. It seemed logical to imagine that strain ΔICL might also be 

able to benefit from oxidation of methanol to CO2 although it may be unable to 

assimilate methanol-derived carbon into biomass. However, strain ΔICL did not 

grow faster or to a higher OD in the presence of methanol, implying either that this 

strain is unable to oxidise methanol, or that some other factor is inhibiting growth, 

for example the build-up of a toxic intermediate (e.g. formaldehyde), or that there is 

no benefit from generation of additional reducing equivalents. Analysis of strain 

ΔICL during growth on succinate conclusively demonstrated a lack of, or decrease in, 

transcription and expression of MDH in comparison to the wild type under the same 

conditions. Analysis of gene transcription, and complementation with the wild-type 

gene carried on a plasmid, supplied confidence that the observed phenotype was not 

caused by inadvertent disruption of sequences directly required for transcription of 
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the genes responsible for methanol oxidation. This change in MDH expression in 

strain ΔICL may have been caused either by a change in the intracellular level of 

metabolites as a result of removal of flux through isocitrate lyase, for example 

glyoxylate or a product of the metabolism of glyoxylate, or by a change in the redox 

balance of the cell caused by the deletion of this gene, which in turn might control 

MDH expression. The latter implies that isocitrate lyase plays a role in maintaining 

redox status, perhaps by diverting flux away from the energy-generating steps of the 

TCA cycle. The fact that no difference in the succinate growth-phenotype was 

discernable in strain ΔICL suggests that this effect must be subtle if it exists, 

although either hypothesis does imply some flux through isocitrate lyase during 

growth on succinate. 

The realisation that expression of MDH was affected in strain ΔICL suggested that 

the failure to grow on methane and methanol might be due not to inactivation of the 

serine cycle, but simply by the inability to oxidise methanol. However, strain ΔICL 

was also unable to grow on monomethylamine or formate, which are not oxidised via 

MDH, demonstrating that one-carbon growth was disabled by more than the absence 

or reduced expression of MDH. It remains a theoretical possibility that expression of 

methylamine- and formate-oxidising enzymes is affected in strain ΔICL in a similar 

way to MDH, but constraints of time did not permit investigation of this. 

Taken together, these data suggest that the isocitrate lyase-positive variant of the 

serine cycle operates in M. silvestris. There is no satisfactory explanation for the low 

level of enzyme activity detected in methane-grown cells, but proteomic analysis of 

methane-grown cell extract did detect isocitrate lyase, both by mass-spec analysis of 

bands cut from a 1D gel (Table 3.5) and by the quantitative gel-free analyses 

mentioned earlier  (isocitrate lyase, methane-grown cell extract, 0.19% of soluble 

protein, succinate-grown extract, 0.18%), although, of course, the presence of protein 

does not imply active enzyme. 

5.14.3 Alcohol-growth phenotype of strains ΔMS and ΔSGAT 

Strain ΔMS grew at a comparatively low rate on methanol (strain ΔMS 0.028 ± 

0.007 h-1, wild-type 0.049 ± 0.003 h-1, Table 5.4 and Table 5.5), although removal of 

glyoxylate due to flux through MS would be expected to prevent the operation of the 

serine cycle, suggesting that there should be little or no flux through MS during wild-
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type methylotrophic growth. In addition, the normally highly predictable growth was 

disrupted in strain ΔMS growing on methanol and cultures displayed a highly 

variable lag phase. 

A similar situation was recorded in the case of strain ΔSGAT during growth on 

ethanol, which grew at less than half the wild type rate, despite similar growth to the 

wild-type on acetate. Again, ethanol-grown cultures exhibited a variation in lag 

phase. Since ethanol can be assumed to be assimilated via acetyl-CoA, this is a 

surprising finding. 

The reduced growth of strain ΔMS on methanol and strain ΔSGAT on ethanol may 

most easily be explained by postulating reduced expression of MDH in strain 

ΔSGAT, perhaps caused by a similar mechanism to that shown to reduce MDH 

expression in strain ΔICL, since ethanol is probably oxidised by MDH in M. 

silvestris (Section 5.9.2), as is the case in, for example, Methylobacterium extorquens 

(Dunstan et al., 1972b). Once again, the possibility that alteration of redox balance is 

responsible cannot be discounted. It was not possible to investigate these issues 

further in the time available. 

Growth of strain ΔSGAT on succinate was inhibited by the addition of methanol 

(Figure 5.26), which cannot be explained by reduced MDH expression. Glyoxylate is 

inhibitory to M. silvestris as noted in Section 5.9.5, and known to be toxic to M. 

extorquens (Okubo et al., 2010). Possibly, intracellular accumulation of glyoxylate 

caused by the blocking of flux through serine-glyoxylate aminotransferase is 

responsible for this growth reduction. This would imply some flux through MDH 

under these conditions, but does not supply further evidence of the relative levels of 

MDH expression. 

5.14.4 Malate synthase activity in methane-grown cells 

A relatively high level of malate synthase activity was detected in extract from cells 

grown on all substrates tested (Table 5.3). However, during operation of the serine 

cycle, not only would removal of glyoxylate, substrate of malate synthase, prevent 

operation of the cycle, but malate synthase activity would constitute a futile cycle 

(Chapter 1, Figure 1.9). Apparent malate synthase activity has been detected 

previously in organisms that use the serine cycle or the EMC pathway, but do not 

possess malate synthase (Large and Quayle, 1963; Salem et al., 1973a; Meister et al., 
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2005), due to the combined activities of malyl-CoA lyase (in reverse) and a 

hydrolysing enzyme (recently identified as malyl-CoA thioesterase in Rhodobacter 

sphaeroides (Erb et al., 2010)). It was suggested that this reaction is prevented in 

vivo by inhibition of the hydrolase by acetyl-CoA (Cox and Quayle, 1976), and a 

similar mechanism might operate in M. silvestris, although this topic deserves further 

investigation. 

5.14.5 An alternative to malate synthase in M. silvestris 

Recently Okubo and co-workers (2010) have shown that, in Methylobacterium 

extorquens, an additional pathway operates for the consumption of glyoxylate during 

two-carbon growth. Glyoxylate is converted to glycine, decarboxylated by the 

glycine cleavage enzymes into methylene-tetrahydrofolate, and assimilated by 

combination with a second glycine in the usual serine cycle reactions. This pathway 

could theoretically operate in M. silvestris during two-carbon growth. The inability 

of strain ΔMS to grow normally on acetate, and the lack of any phenotype during 

growth on acetate in strain ΔSGAT, suggest that this pathway does not operate to any 

major extent in M. silvestris. 

5.15 Conclusions 

The data presented in this chapter strongly suggest that M. silvestris assimilates 

carbon during two-carbon growth using the glyoxylate cycle, and that the isocitrate 

lyase pathway is an essential component of the serine cycle. No evidence was found 

that suggest that the EMC pathway operates in M. silvestris during either one- or 

two- carbon growth. 

Interesting effects of the deletion of the glyoxylate bypass enzymes on MDH 

expression were observed, possibly caused by an alteration of intracellular levels of 

metabolites, or a change in the redox balance of the cell, but without clear evidence 

for the causes or mechanisms. In the absence of additional data speculation is 

probably inappropriate. 

Glyoxylate is positioned at a metabolic branch point in M. silvestris, with flux 

directed to the serine cycle during methylotrophy and via malate synthase during 

two-carbon growth. The regulation of the enzymes involved, and also of MDH, 
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which has been shown to be affected by the gene deletions described, would provide 

considerable scope for continued research. 

Table 5.13. Primer sequences used in this chapter 

Name Sequence 5’ – 3’ Restriction site 
IclRa1 CCATCCAGCCGGA CAGATAG  
IclRa2 TCGTGCCGAAATGCTTCTTG  
IclRa3 TGGGTGTAAAGGGCCGAATC  
C-Iclf ATCAGGTACCGAGGCTCCGCGCTGTTTC KpnI 
C-Iclr ATCACCCGGGATCTGCCGGCGTTCTTTG SmaI 
3157f GATCATGCGCAAAGACATGG  
3157r TTTCTTGGCGAGGAGATACG  
MxaFf TCGGACAGATCAAGGCCTAC  
MxaFr GCAAACTCGCCGAGATTCAC  
CytCf GGAGCTTTCGCACAAACAAC  
CytCr AAAGTGCGCTTTCTCCTCTG  
Hpr2f TTGGCCTATGACGTCTTTCC  
Hpr2r TTGTCGATCAACTGGTCAGC  
27f AGAGTTTGATCMTGGCTCAG  
1492r TACGGYTACCTTGTTACGACTT  
105r GCCGAACTCAGAAGTGAAACG  
Icl_2f AGAGGCGTGCCGTCATAATCG  
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Chapter 6  
 

Oxidation of methane and 

propane 
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6.1 Introduction 

Soluble di-iron monooxygenase (SDIMO) enzymes, of which the soluble methane 

monooxygenase (sMMO) is an example, have been classified on the basis of their 

phylogeny into six groups, and the substrate utilisation of the microorganisms using  

these enzymes broadly follows this categorisation (Leahy et al., 2003; Coleman et al., 

2006; Holmes and Coleman, 2008). Of these, groups I and II are largely associated 

with aromatic substrates (phenol, toluene), group III contains the methane and butane 

monooxygenases, group IV the alkene monooxygenases, group V propane and 

tetrahydrofuran and group 6, propane monooxygenases. The sMMO has been 

extensively characterised, and has a well-defined and broad substrate specificity 

(Burrows et al., 1984; Green and Dalton, 1989), suggesting that the barrier to growth 

of obligate methanotrophs on short chain alkanes is lack of downstream metabolic 

capability (Wood et al., 2004). The propane monooxygenase (PrMO), in contrast, is 

less well-characterised. Although numerous propane-utilising bacteria have been 

isolated (Foster, 1962; Vestal and Perry, 1969; Ashraf et al., 1994) the enzymes 

responsible have not until recently been identified. The first unequivocal 

demonstration of bacterial propane oxidation by an SDIMO was claimed by Kotani 

et al (2003), and the substrate specificity of propane-oxidising enzymes is less well 

investigated, although propane-utilisers were shown to co-metabolise pollutants such 

as trichloroethylene (TCE) (Wackett et al., 1989) and methyl tert-butyl ether (MTBE) 

(Steffan et al., 1997). 

Soon after the start of this project, inspection of the Methylocella silvestris genome 

sequence identified a second SDIMO enzyme in addition to the sMMO. The 

discovery that M. silvestris was capable of growth on propane prompted exploration 

of the metabolic roles of these two enzyme systems. Since it seemed likely that the M. 

silvestris sMMO can oxidise propane, at least to some extent, and the substrate 

specificity of the PrMO was unknown, the purpose of the work described in this 

chapter was to identify the requirement for and role of these enzymes during growth 

on methane or propane, and the conditions under which they are expressed. 

The relative roles of different SDIMOs have been little studied in the relatively small 

group of organisms known to contain more than one of these enzymes. 

Mycobacterium chubuense, for example, contains four SDIMOs, including a Group 

III enzyme, and can grow on a range of alkenes and alkanes including propane (but 
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not methane) (Coleman et al., 2011b). This sMMO-like enzyme was shown to be 

transcribed during growth on propane, but its function in the oxidation of this gas 

was not demonstrated. 

During this project useful data would have been generated by the successful 

separation and purification of the M. silvestris SDIMOs, and analysis of the kinetic 

properties of the reconstituted functional enzymes. This approach, however, might 

have been less than straightforward. It might well have proved difficult to design an 

assay capable of distinguishing between the enzymes in vitro, causing difficulties 

during their separation. In addition, the instability of SDIMOs during purification, 

and the loss of activity in vitro, has been reported in some cases (Dubbels et al., 

2007). Thiemer et al. (2001), for example, were unable to detect any activity in cell 

free extract when working with the group V enzyme from Pseudonocardia sp. strain 

K1. Furthermore, by working with the enzymes in their intracellular context, which 

includes aspects such as the diffusion or transport of substrate across the cell 

membranes, it should be possible to predict more accurately the organism’s response 

in environmental situations. For these reasons, the approach adopted here was to 

investigate growth and substrate consumption in wild-type and deletion mutant 

strains, together with some analysis of gene transcription and expression. 

6.2 Soluble di-iron monooxygenase (SDIMO) enzymes in M. silvestris 

6.2.1 Phylogenetic relationships of the M. silvestris SDIMOs 

BLAST searches of the M. silvestris genome using, as query sequence, the amino 

acid sequence of the α-subunit of the well-characterised sMMO from Methylosinus 

trichosporium OB3b identified two homologous open reading frames, Msil1262 (86% 

identity over 526 amino acids) and Msil1651 (30% identity over 528 amino acids). 

Alignment of the amino acid sequence of the gene product of Msil1651 with 

representative sequences of hydroxylase α-subunits from SDIMOs from other groups, 

including those for which enzyme structures have been determined (the sMMO and 

toluene 4-monooxygenase from Pseudomonas stutzeri OX1), identified the highly 

conserved SDIMO-characteristic residues (E114, E144, H147 and E209, E243 H246 

in Methylococcus capsulatus Bath) which coordinate the iron atoms (Rosenzweig et 

al., 1993), as shown in Figure 6.1.  Phylogenetic analysis of the translated amino acid 

sequence of the two M. silvestris genes, together with the sequences of characterised 
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methane, short chain alkane and alkene and related monooxygenases, clearly 

assigned Msil1262 to the sMMO subgroup of SDIMOs, whereas Msil1651 aligned 

with prmA genes from propane utilising organisms including Gordonia TY5, 

Rhodococcus jostii RHA1 and Pseudonocardia TY-7, see Figure 6.2. Taken together 

with the gene organisation, (hydroxylase α-subunit, reductase, hydroxylase β-subunit, 

coupling protein), this suggests that the latter gene-cluster encodes a member of the 

propane monooxygenases (SDIMO subgroup V) as defined by Leahy (2003), 

Coleman (2006) and co-workers. 

 

 

Figure 6.1. Partial sequence alignment of deduced amino acid sequence of the hydroxylase 
α-subunits from SDIMOs of different groups. Included are the  putative propane 
monooxygenase from Methylocella silvestris BL2, propane monooxygenase from Gordonia 
TY5 (Kotani et al., 2003), tetrahydrofuran monooxygenase from Pseudonocardia K1 
(Thiemer et al., 2003), alkene monooxygenase from Rhodococcus rhodocrous B276 (Saeki 
and Furuhashi, 1994), sMMO from Methylococcus capsulatus Bath (Rosenzweig et al., 
1993), toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1 (Sazinsky et al., 
2004) and phenol hydroxylase from Pseudomonas CF600 (Nordlund et al., 1990). Residues 
important in the coordination of the iron atoms are shown shaded. Identical residues are 
shown with asterisks, highly conserved with colons, and conserved residues with single dots.  
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Figure 6.2. Phylogenetic relationships between the two M. silvestris SDIMOs (underlined) 
and other representative enzymes. The tree, constructed using the Maximum Likelihood 
method, is based on an alignment of amino acid sequences of the α-subunit of the 
hydroxylases. Sequences were aligned using Clustal, positions containing gaps or missing 
data were eliminated, and the tree constructed with a final data set of 356 amino acids using 
Mega5 (Tamura et al., 2007). Bootstrap values (based on 500 replications) greater than 95% 
are shown as filled circles at nodes, and those between 75 – 95% as open circles. The 
SDIMO subgroups (Leahy et al., 2003; Coleman et al., 2006) are indicated on the right of the 
figure. GenBank accession numbers (in order from top): AAC45289.1, ABD46892.1, 
ZP_06887019.1, ABD46898.1, CAD30366.1, YP_002361593.1, CAD88243.1, BAE86875.1, 
YP_113659.1, BAA84751.1, BAJ17645.1, AAM19727.1, BAF34294.1, ACZ56324.1, 
AAO48576.1, YP_919254.1, BAA07114.1, AAS19484.1, CAC10506.1, YP_700435.1, 
BAF34308.1, BAD03956.2, YP_002361961.1, YP_001834443.1, YP_001020147.1, 
NP_770317.1, YP_352924.1, AAL50373.1, P19732.1, AAT40431.1, YP_001409304.1, 
CAB55825.1. 
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6.2.2 Gene layout of the propane monooxygenase 

Msil1262 encodes the hydroxylase α-subunit of the sMMO investigated previously 

by Theisen et al. (2005). The sMMO gene layout and that of the PrMO cluster are 

shown in Figure 6.3, and the closest relatives to the propane monooxygenase genes 

present in the SWISS-PROT/TrEMBL database are shown in Table 6.1. 

 

 

Figure 6.3. The sMMO and PrMO gene clusters. The genes previously shown, or expected, 
to be essential for expression of the functional monooxygenases are shown in red. Genes 
downstream of the PrMO, transcribed in the same direction, are shown in black. P, σ54 
promoter. 

 

Table 6.1. Top BLAST hits to the SWISS-PROT/TrEMBL database and protein annotations 
of translated sequences of the PrMO gene cluster and adjacent genes shown in Figure 6.3. 

Locus tag 
Msil Annotation Organism aa % id 

1652 Uncharacterised protein Methylocella silvestris 505 50 

1651 Methane monooxygenase Beijerinckia indica 552 90 

1650 Oxidoreductase Beijerinckia indica 351 82 

1649 Methane/phenol/toluene hydroxylase Beijerinckia indica 357 75 

1648 Phenol 2-monooxygenase Beijerinckia indica 118 82 

1647 60 kDa chaperonin Beijerinckia indica 547 71 

1646 σ54 transcriptional regulator Beijerinckia indica 689 66 

1645 Siderephore biosynthesis-like protein Beijerinckia indica 117 70 

1644 Cytochrome C Beijerinckia indica 133 64 

1643 Glyoxylase-like protein Beijerinckia indica 131 77 

1642 Uncharacterised Beijerinckia indica 182 67 

1641 Gluconate 2-dehydrogenase Beijerinckia indica 522 82 

1640 Transcriptional regulator AsnC family Rhizobium loti 154 77 

 

As can be seen from the table, all genes of the PrMO cluster have, as closest relatives, 

genes from Beijerinckia indica, although in this organism the downstream genes 
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(corresponding to Msil1645 – Msil1641) are located in a different area of the 

chromosome and do not cluster with the PrMO genes. 

6.2.3 The PrMO promoter and determination of the transcription start site 

The sMMO σ54 promoter and transcription start site (98 bp upstream of the mmoX 

start codon) were previously identified by Theisen et al. (2005). No σ70 promoters 

were obvious upstream of the PrMO, so presuming that the PrMO may also be under 

the control of a σ54 promoter, the upstream sequences of both monooxygenases were 

scanned using the online σ54 promoter prediction tool Promscan (http://molbiol-

tools.ca/promscan/), which correctly identified the experimentally determined 

sMMO promoter, and also predicted a PrMO promoter and transcription start site 

119 bp upstream of the start codon of Msil1651, as shown in Figure 6.4. 

 

 

Figure 6.4. σ54 promoters identified upstream of the sMMO and PrMO gene clusters using 
the online tool Promscan. The σ54 consensus sequence compiled by Barrios et al. (1999) is 
shown in green, the predicted transcription start sites are underlined, and the conserved -12 
and -24 regions are shown shaded.  

 

Rapid amplification of cDNA ends (RACE) was used to empirically determine the 

PrMO transcription start site, using a 2nd Generation 5’/3’ RACE kit (ROCHE, Basel, 

Switzerland), as described in Materials and Methods. RNA was extracted from cells 

grown on propane, and cDNA synthesised from 100 ng RNA using antisense primer 

51Ra1 located at +643 relative to the predicted transcription start site (see Table 6.8 

for primer sequences). Using a cDNA template, a first round of PCR with reverse 

primer 51Ra2 (position +545), followed by a second round of PCR using nested 

reverse primer 51Ra3 (position +317) (together with the forward primers supplied in 

the ROCHE kit) resulted in an amplicon of the expected size, see Figure 6.5. The 

PCR product was cloned and two clones were sequenced. Both sequences identified 

the transcription start site as 120 nucleotides upstream of the start codon, consistent 

with the predicted promoter sequence shown in Figure 6.4. 
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Figure 6.5. PCR amplicons generated using RACE and nested PCR using reverse primers 
51Ra2 followed by 51Ra3. PCR template was 1 µl of the first round PCR either undiluted 
(lane 1) or using a 1/10 dilution (lane 2). Lane 3: no-template control. M: Generuler 1 kb 
ladder (Fermentas). Band size 355 bp. 

6.2.4 Promoters located internally in the PrMO gene cluster 

In order to locate other promoters from which PrMO-cluster genes may be 

transcribed, the entire cluster (15 kb) was scanned for σ70 promoter sequences using 

the Berkeley Drosophila Genome Project Neural Network Promoter Prediction 

online tool (http://www.fruitfly.org/seq_tools/promoter.html). This identified 18 

possible promoter sequences (scores 0.80 to 0.98, data not shown). Of these, only 

one was not located in a predicted open reading frame, lessening the likelihood of 

transcription being controlled from these sequences. The inter-gene site, with a 

relatively low score of 0.8, was predicted to direct transcription from a site 91 bp 

upstream of the start codon of Msil1646. Since this gene encodes a σ54 

transcriptional regulator, expression of which is assumed to be required for 

transcription of the PrMO cluster, separate transcription of this gene, possibly at a 

low level, would seem likely. 

RACE was used in an attempt to identify transcription from this site. However, 

cDNA synthesised from propane-grown RNA, using primer 46Ra1, was found to 

extend into the preceding open reading frame, further upstream than the predicted 

transcription start site (data not shown). It is possible that Msil1646 is co-transcribed 
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both as part of the entire PrMO gene cluster, induced under the appropriate 

conditions, and also constitutively from its own promoter. Perhaps the existence of 

long transcripts, originating from the promoter upstream of the start of the PrMO 

cluster, prevented detection of low abundance transcripts originating from a promoter 

in this region. In this case, the use of RNA extracted from cells grown on a different 

substrate, under conditions in which the PrMO is not transcribed, might detect low 

level constitutive transcription from this site, but time did not allow further 

investigation of this topic. 

6.2.5 Inter-gene RT-PCR 

A considerable amount of time and effort was expended attempting to determine the 

extent of co-transcription of the PrMO gene cluster, using inter-gene PCR 

amplification of cDNA synthesised from mRNA extracted from propane-grown cells. 

Three slightly different methods were used, but all were ultimately inconclusive. 

Since this work has potential implications for the use of this technique, it is described 

in detail. 

6.2.5.1 cDNA synthesis using random hexamer primers and Superscript II 

enzyme 

Initially, cDNA was synthesised from approximately 60 ng total RNA in 20 µl 

reactions using Superscript II enzyme (Invitrogen) and random hexamer primers, 

using the procedures and quality checks as described in Materials and Methods. 

Using this method, transcripts were detected across all inter-gene spaces from 

Msil1651 to Msil1641 (Figure 6.6 and data not shown). However, an amplicon was 

also obtained in a control reaction employing primers located outside the region 

expected to be co-transcribed (i.e. spanning the region Msil1640 – Msil1641, since 

these genes are predicted to be transcribed in opposing directions), suggested that the 

presence of mRNA corresponding to this region is due either to the continuation of 

transcription for a considerable distance beyond the end of the coding sequence, 

and/or to the presence of an mRNA molecule transcribed from the opposite strand, 

see Figure 6.6, which shows reactions targeting the region downstream of Msil1647. 

It was found that PCR products up to approximately 2 kbp could be successfully 

amplified from cDNA templates, above which size efficiency diminished. 
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Figure 6.6. PCR spanning the inter-gene regions of the PrMO gene cluster using a cDNA 
template, synthesised using random hexamer primers. Lanes are identified by the letters 
corresponding to the PCR primers shown in Figure 6.7, which also shows the expected 
product sizes for these primers. Where other primer combinations have been used the 
expected amplicon size is shown below. Controls using cDNA synthesis reactions omitting 
the reverse transcriptase enzyme are identified as RT-ve, and correspond with the reactions 
to the left. DNA marker lanes (unlabelled) contain GeneRuler 1kb ladder (Fermentas). PCR 
reactions using DNA templates generated amplicons of the same sizes, and are not shown. 

 

 

Figure 6.7. The PrMO gene cluster, showing locations of inter-gene PCR using a cDNA 
template, and primers designed to generate amplicons labelled A – J. The sizes of the PCR 
amplicons are shown above. Position J used one of two alternative reverse primers, resulting 
in products differing in size by 141 bp, of which the larger is indicated with an asterisk. 
cDNA synthesis used either random hexamer primers, or gene-specific primers GSP41, 
GSP46 or GSP47, indicated in red. In some cases PCR reactions were also included using 
combinations of primers, for example forward primer G combined with reverse primer H, 
identified as G/H in gel photographs. P, σ54 promoter; coupl. pr., coupling protein; reg. pr., 
regulatory protein. 
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6.2.5.2 cDNA synthesis using gene-specific primers 

Since discrimination between mRNA molecules transcribed from opposing strands is 

not possible using random hexamer primers, this experiment was repeated using 

gene-specific anti-sense primers for cDNA synthesis. Three primers were used 

(GSP41, GSP46 and GSP47), located as shown in Figure 6.7.  

As before, cDNA was synthesised using approximately 60 ng total RNA in 20 µl 

reactions using Superscript II reverse transcriptase (Invitrogen). Once again, PCR 

products were obtained using primers spanning all inter-gene spaces, although 

primers spanning Msil1646 and Msil1647 generated a very weak product just visible 

on the gels, and only when using cDNA synthesised from the nearby gene-specific 

primer, see Figure 6.8. However, products were also obtained using primers 

downstream of the gene-specific primer used to synthesise cDNA (product J with 

GSP41 and product E with GSP46, see Figure 6.7). Since cDNA is synthesised by 

reverse transcriptase directionally, there should be no cDNA template in these 

reactions. In attempting to identify the cause of these apparent artefacts, non-specific 

binding of the PCR primers was ruled out since well-defined products were obtained 

using both DNA and cDNA templates, both of which corresponded to the predicted 

sizes. Contamination of RNA with DNA was ruled out since not only was no product 

obtained with 16S rRNA PCR reactions using an RNA template, including with 

increased template amount and an increased number of cycles (see Materials and 

Methods), but no product was obtained in any case where reverse transcriptase was 

omitted from otherwise identical cDNA-synthesis reactions. Other sources of 

contamination were ruled out by the use of different batches of reagents, and by the 

use of RNA extracted on different occasions. However, initially, non-specific 

binding of the gene-specific primer during cDNA synthesis was considered a 

possibility, since Superscript II reverse transcriptase operates at the relatively low 

temperature of 42° C, raising the possibility of annealing of the primer to non-target 

sequences. 
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Figure 6.8. PCR spanning PrMO-cluster inter-gene regions using DNA (left-hand gel) or 
cDNA templates (centre and right-hand gels), where cDNA was synthesised using the gene-
specific primers indicated below (in red). Lanes are identified by the primer locations shown 
in Figure 6.7, which also indicates expected PCR amplicon sizes. Corresponding controls 
(using cDNA-synthesis reactions omitting reverse transcriptase) are immediately to the right 
of each labelled lane. Products J and E in the right-hand gel imply cDNA synthesis 
downstream of the gene-specific primer employed. DNA marker lanes (unlabelled) contain 
GeneRuler 1kb ladder (Fermentas). The feint band in lane D (right-hand gel) is shown 
enlarged for clarity. 

 

6.2.5.3 Use of gene-specific primers, Superscript III enzyme, and controls 

without primer during cDNA synthesis 

 

In order to reduce non-target primer binding during cDNA synthesis, reactions were 

carried out using 1 µg total RNA in 20 µl reactions to provide an increased ratio of 

target:primer molecules, and by the use of Superscript III reverse transcriptase at 55° 

C. In addition, RNase H was used to remove traces of RNA following reverse 

transcription. As before, cDNA-synthesis reactions were included, identical except 

without the addition of reverse transcriptase, and additional controls were included in 

which cDNA synthesis reactions did not contain any primer (no primer controls, 

NPC), as recommended by Guacucano et al. (2000) and Zhou and Yang (2006). 

Transcripts were detected for all inter-gene spaces, see Figure 6.9 and Figure 6.10. 



166 
 

Increased sensitivity due to the increased amount of RNA used for cDNA synthesis 

resulted in increased intensity of PCR amplicons spanning Msil1647 to Msil1646.  

 

 

Figure 6.9. PCR spanning PrMO-cluster inter-gene regions. Each group of four lanes used 
PCR primers identified by letters A – J as shown in Figure 6.7, which also indicates expected 
PCR amplicon sizes. Lanes, 1: cDNA template synthesised with gene-specific primer GSP41, 
2: control with no primer in the cDNA synthesis reaction (NPC), 3: DNA template, 4: 
control without reverse transcriptase in cDNA synthesis reaction. DNA marker lanes 
(unlabelled) contain GeneRuler 1kb ladder (Fermentas). 

 

Figure 6.10. As Figure 6.9, except gene-specific primer GSP46 used for cDNA synthesis. 

 

However, the control reactions in which no primer was included during cDNA 

synthesis resulted in transcripts covering most of the inter-gene regions. In only two 

cases, when using PCR primer pairs D and F, was no product obtained in these 

control reactions, although in all cases less PCR product was obtained. This was 

consistent between replicated reactions, and revealed a variation in the level of PCR 

amplification obtained depending on the primer pair used, additionally arguing 

against contamination as the cause. Guacucano et al. (2000) also generated PCR 
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amplicons using cDNA templates synthesised without primers, and suggested that 

this was an artefact caused by self-priming of the mRNA molecules. This has long 

been recognised as a problem in the field of virology, where virus detection 

frequently requires strand differentiation (McGuinness et al., 1994; Tuiskunen et al., 

2010). It is however difficult to account for the variability of PCR product obtained 

from self-primed cDNA synthesis compared to reactions with primer included. 

Therefore it is difficult to draw definite conclusions from these data. It seems highly 

likely that transcripts exist where PCR products were obtained. If this is the case, 

then there are two unanswered questions; how does cDNA synthesis occur without 

inclusion of a primer, and which DNA strand does the transcript originate from? 

Recent studies have highlighted the detection of long (up to 1000s of nucleotides) 

and medium length anti-sense RNA molecules, including those partially or 

completely overlapping protein coding regions (reviewed by Thomason and Storz 

(2010)). Many of these occur in same region as transcriptional regulators, and play a 

role in the control of protein expression. The existence of anti-sense RNA molecules 

in this area of the M. silvestris chromosome, which might contribute towards self-

priming and thus help to explain the results presented, cannot be discounted, but 

clearly, if this is the case and antisense transcription is being detected, this cannot be 

used as evidence of gene co-transcription.  Possible future approaches would include 

the use of a different method, for example Northern blots, or inclusion of a unique 

tag included at the 5’ end of the gene-specific primer used for cDNA synthesis, 

which could subsequently be used as primer binding site for PCR amplification, such 

that only cDNA synthesised from the tagged primer was able to act as PCR template. 

Lack of time prevented further investigation of this topic. 
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6.2.6 Transcription of the propane monooxygenase 

Qualitative assessment of transcription from the propane monooxygenase σ54 

promoter was made by construction of a promoter probe vector. As starting point, 

pMHA203 (Ali, 2006) was selected for modification. This vector contains the 

promoter region of the M. silvestris sMMO fused to gfp, encoding green fluorescent 

protein (GFP), so that cells containing this vector express GFP under conditions that 

lead to transcription of the sMMO gene cluster. Primers PrPf and PrPr, incorporating 

MunI and SacI sites respectively, were used to amplify the 1112 bp promoter-

containing region extending upstream from 44 bp 5’ of the predicted start codon of 

Msil1651, encoding the PrMO hydroxylase α-subunit, see Figure 6.11. The PCR 

product was cloned into pCR2.1 TOPO, and excised by digestion with MunI and 

SacI. The mmoX promoter region of pMHA203 was removed by digestion with 

EcoRI and SacI, followed by its replacement with the compatible MunI / SacI 

fragment containing the PrMO promoter region. This vector, and also pMHA203, 

were introduced into M. silvestris by electroporation and selection on DNMS 

kanamycin plates with methanol as growth substrate. 

 

 

Figure 6.11. Construction of promoter probe vector pAC304 by modification of pMHA203. 
Primers PrPf and PrPr were used to amplify a sequence containing the PrMO promoter, 
which replaced the mmoX promoter-containing EcoRI / SacI region in pMHA203. 

 

Kanamycin-resistant colonies were transferred into liquid culture and grown on 

methanol (0.1% v/v), methane (20% v/v) or propane (20% v/v). At late exponential 

phase, cells were visualised by fluorescence microscopy. Whereas both methane- and 
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propane-grown cells containing pMHA203 were fluorescent, in cells containing 

pAC304, fluorescence was only visible with propane as substrate, see Figure 6.12. 

No fluorescence was visible with methanol-grown cells containing either plasmid. 

This provided evidence that transcription of the sMMO occurs in response to either 

methane or propane, and that transcription of the PrMO is activated by propane but 

not by methane. 

 

 

Figure 6.12. M. silvestris cells containing plasmid pMHA203 or plasmid pAC304 were 
grown on methane, propane or methanol. Fluorescent cells containing pMHA203 were 
present during growth on both methane and propane, but fluorescent cells containing 
pAC304 were exclusive to propane-supplied cultures. No fluorescent cells were observed in 
cells containing pAC304 grown on methane, or on methanol-grown cells containing either 
plasmid. The figure shows pseudocoloured GFP-expressing cells. 

 

 

6.3 Growth on methane and propane 

6.3.1 Gas purity 

Methane and propane used for growth were assessed for purity by gas 

chromatography as described in Materials and Methods. CO2 present in the CH4/CO2 

gas mix used for growth in flasks was determined to be 3% v/v. Impurities were 

identified by comparison of their retention time with standards prepared from the 

authentic compounds. Ethane (approx 67 ppmv) was the only impurity detected in 

methane. Methane was detected at an extremely low level in propane. In the absence 

of standards in this range (below atmospheric concentration), the methane impurity 

in propane (1.28 ± 0.38, n = 6) was compared with atmospheric air (3.88 ± 0.50, n = 

6) and oxygen-free nitrogen (British Oxygen PLC) (1.07 ± 0.65, n = 9) on the basis 

of peak area (± standard deviation). These data show that the methane content of the 
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propane used was less than that of atmospheric air. An unidentified impurity with a 

peak area approximately 0.3% of the propane peak area eluted at approximately 6 

min, (compared with propane at 2.7 min at the settings employed). This was not 

ethane, butane, ethene, propene, acetylene, methanol, 1-propanol, 2-propanol, 

acetone, acetol or methyl acetate and did not diminish as a component of headspace 

gas as cultures grew. 

6.3.2 Growth of M. silvestris on methane and propane 

M. silvestris was able to grow with either methane or propane as sole source of 

carbon and energy in fermenter culture as outlined in Chapter 3. Specific growth rate 

was similar and nitrogen fixation was possible in both cases. M. silvestris was grown 

in 20 ml volumes in 120 ml serum vials in triplicate with 20% (v/v) methane or 20% 

(v/v) propane. Specific growth rate (± standard deviation) was similar in both cases 

(methane 0.013 h-1 ± 0.003, propane 0.015 h-1 ± 0.002).  

6.4 Expression of the sMMO and PrMO during growth on methane and 

propane 

6.4.1 SDS-PAGE 

One-dimension denaturing PAGE was used to examine the expression of the 

methane and propane monooxygenase subunits during growth on methane, propane 

and a mixture of these substrates. Soluble extract was prepared from fermenter-

grown cells and from cells (200 ml) grown in 1 l flasks on propane or a mixture of 

methane and propane (all 10% v/v). Protein was quantified and 12 - 20 µg loaded on 

10% or 15% (w/v) SDS-PAGE or 10% bis-tris NUPAGE gels (Invitrogen), together 

with soluble extract prepared from succinate-grown cells, see Figure 6.13. 
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Figure 6.13. Left-hand gel: 10% SDS-PAGE, centre: 15% SDS-PAGE and right: 10% 
NUPAGE gels loaded with soluble extract of cells grown on succinate (S) propane (P) 
methane (M)  or a mixture of methane and propane (M+P). Prominent bands present in 
extract from growth on methane or propane but absent from the succinate-grown lanes are 
marked with asterisks. Molecular mass marker: PageRuler Plus prestained protein ladder 
(Fermentas). 

 

Four bands (marked with asterisks in the figure) were visible in the lanes 

corresponding to methane-grown cells that were either absent or much less 

prominent in succinate grown cells. The molecular mass of these bands corresponded 

approximately with the known sizes of the sMMO subunits from purified enzymes 

from characterised methanotrophs (54.4, 43.0, 22.7, 39.7 and 15.8 kDa for the α-, β-, 

γ-subunits, reductase and coupling protein, respectively for the enzyme from 

Methylosinus trichosporium OB3b (Fox et al., 1989)). Two prominent bands in the 

propane-grown lanes did not appear in the methane or succinate lanes. This 

suggested that the prominent bands present in methane- and propane- grown cells 

might correspond with the subunits of the respective monooxygenases. The bands 

shown in Figure 6.14 were excised from the gels and submitted to the Proteomics 

and Mass Spectrometry Facility of the University of Warwick for tryptic digest and 

analysis by nanoLC/ESI-MS/MS. It was also apparent that the major bands present in 

the methane growth condition, but not in succinate, also occur in the propane-grown 
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lanes, whereas the bands unique to the propane lanes are not present in methane. 

There are also few, if any, detectable differences between the lanes corresponding to 

propane and propane plus methane. Mass spectrometric results confirmed that the 

expected bands corresponded to four of the subunits of the sMMO and to the two 

subunits of the PrMO hydroxylase. Only sMMO subunits were identified in soluble 

extract from methane-grown cells, whereas in the propane-grown condition, 

components of both monooxygenases were detected. Neither SDIMO was expressed 

in succinate-grown cells. These data confirm that the PrMO is not expressed at high 

level (if at all) during growth on methane, whereas both monooxygenases are 

expressed during growth on propane. The prominent band at approximately 60 kDa 

in lanes from all growth conditions was confirmed to be methanol dehydrogenase 

(MDH). 

 

 

Figure 6.14. Bands from the 10% and 15% SDS-PAGE gels shown in Figure 6.13, and an 
additional 10% gel (right) were selected for analysis. The red rectangles identify bands 
which were excised and identified by tryptic digest and mass-spectrometric analysis. Band-
identifying numbers refer to Table 6.2. Gels were loaded with soluble extract from cells 
grown on succinate (S), propane (P) or methane (M). 
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Table 6.2. Polypeptide identifications of the gel bands shown in Figure 6.14.  For each band, 
the four most abundant polypeptides are shown except where less than four were detected. In 
addition, in the case of lanes loaded with propane or methane extract, all polypeptides 
identified with at least three peptides are included, but including all polypeptides encoded by 
genes of the sMMO and PrMO clusters irrespective of the number of peptides used for 
identification. Other polypeptides identified are not shown. The number of peptides detected 
and used to identify each polypeptide is shown. The total number of peptides detected from 
all polypeptides identified in each band is shown for comparison. MM: theoretical molecular 
mass, DH: dehydrogenase. 

Band Growth 
condition 

Locus tag 
Msil Annotation Peptides 

 
Total 

peptides 
MM 
kDa 

1 Succinate 0795 
3763 
3631 
3630 

Chaperonin 
Hydrogenase 

Nitrogenase s/u 
Nitrogenase s/u 

20 
16 
12 
11 

119 57.6 
59.9 
58.2 
58.2 

       

2 Succinate 2342 
3881 
2301 
1608 

Aldehyde DH 
Aldehyde DH 

Unknown function 
FeS assembly protein 

17 
8 
4 
3 

46 55.6 
53.3 
55.8 
54.3 

       

3 Succinate 2996 
0082 
1354 
0471 

Acetyl CoA acetyltransferase 
GDP mannose 4,6-dehydratase 

Hypothetical protein 
MDH α-subunit 

15 
5 
4 
3 

29 40.2 
39.5 
43.2 
68.5 

       

4 Propane 0471 MDH α-subunit 33 33 68.5 
       

5 Propane 1651 
1641 
0795 
1375 
1647 
2506 
0162 
1262 

PrMO α-subunit 
Gluconate dehydrogenase 

Chaperonin GroEL 
PEP carboxykinase 

Chaperonin (PrMO cluster) 
Dihydrolipoyl dehydrogenase 

Fumarase 
MmoX 

18 
9 
7 
6 
3 
3 
3 
2 

59 64.2 
56.7 
57.6 
58.2 
57.3 
49.4 
58.6 
59.8 

       

6 Propane 1262 
2342 
1651 
0410 
3881 
1263 

MmoX 
Aldehyde dehydrogenase 

PrMO α-subunit 
Beta-lactamase 

Aldehyde dehydrogenase 
MmoY 

20 
12 
5 
5 
3 
3 

48 
 

59.8 
55.6 
64.2 
52.4 
53.3 
44.9 

       

7 Propane 1263 
2007 
3698 
1267 
2996 
1262 

MmoY 
Urea transporter 

NADH flavin oxidase 
MmoC 

Acetyl-CoA acetyl transferase
MmoX 

23 
9 
5 
5 
3 
2 

49 44.9 
43.4 
39.2 
38.5 
40.2 
59.8 

       

8 Propane 1649 
1263 
2400 
1265 

PrMO β-subunit 
MmoY 

Formylmethanofuran DH 
MmoZ 

11 
5 
4 
2 

22 40.2 
44.9 
39.2 
19.5 

       

9 Methane 1262 
1263 
2342 

MmoX 
MmoY 

Aldehyde dehydrogenase 

22 
4 
2 

28 59.8 
44.9 
55.6 
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Table 6.2 (continued). 

Band Growth 
condition 

Locus tag 
Msil Annotation Peptides 

 
Total 

peptides 
MM 
kDa 

10 Methane 1263 
1262 

MmoY 
MmoX 

25 
2 

27 44.9 
59.8 

       

11 Methane 1265 
2360 
1262 

MmoZ 
Type VI secretion protein 

MmoX 

12 
3 
3 

18 19.5 
19.9 
59.8 

       

12 Methane 1264 
3206 
1263 
1265 
1262 

MmoB 
UspA domain protein 

MmoY 
MmoZ 
MmoX 

7 
3 
3 
2 
2 

17 15.3 
16.0 
44.9 
19.5 
59.8 

6.4.2 Naphthalene assay 

Both methane-grown and propane-grown cells gave a positive naphthalene assay 

result. However, since the sMMO and SDIMOs in general are known to possess wide 

substrate specificity (Colby et al., 1977), these data did not provide any evidence as 

to which enzyme was responsible. For the same reason, enzyme assays based on 

measuring, for example, the epoxidation of propene, would not enable the two 

enzymes to be distinguished, and were not attempted. 

6.5 Substrate utilisation during growth on methane and propane 

6.5.1 Wild type growth on 2.5% methane and propane 

M. silvestris was grown in 25 ml volumes in 120 ml serum vials on a mixture of 2.5% 

(v/v) methane and propane. The Henry’s law constants for methane and propane are 

similar (KH = 1.3 × 10-3 and 1.4 × 10-3 M atm-1 respectively (Mackay and Shiu, 1981)) 

so at equilibrium this would result in similar concentrations in the aqueous phase. 

These gas concentrations allowed measurement of substrate uptake by gas 

chromatography. The cultures used the two gases in an extremely co-ordinated 

manner, whether the inoculum was from succinate-grown or methane and propane-

grown cells, see Figure 6.15.  
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Figure 6.15. Growth (black lines) and gas consumption of M. silvestris during growth on a 
mixture of methane (red) and propane (purple) (2.5% v/v each). The experiment illustrated in 
the left-hand graph used succinate-grown inoculum, while that on the right used inoculum 
grown on a mixture of methane and propane. Dashed lines represent killed control vials. All 
data points are the mean of three replicates and error bars indicate the standard deviation. 

 

The equivalent rates of gas consumption, which imply a three fold higher carbon 

consumption originating from propane, and the relatively linear growth rate at 

culture densities over OD540 ~ 0.15, suggest either that substrate oxidation may be 

limited by some factor such as mass transfer from the gas to the liquid phases, and/or 

that the kinetic properties of the enzymes concerned are equivalent for the two 

substrates. Therefore, these data do not shed light on the relative rates of methane 

and propane oxidation by the sMMO and PrMO. 

6.5.2 Deletion of the α-subunit of the propane monooxygenase hydroxylase 

Strain ΔPrMO, with a deletion of Msil1651, encoding the α-subunit of the propane 

monooxygenase hydroxylase, was constructed as described in Chapter 4. The result 

(confirmed by sequencing) was the deletion of the entire Msil1651 coding sequence 

together with 67 bp upstream and 41 bp downstream, and the insertion of 100 bp of 

vector sequence containing a single loxP site. This strain grew on methanol (0.05% 

v/v), ethanol (0.05% v/v) or acetate (5mM) indistinguishably from the wild-type, see 

Figure 6.16. 
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Figure 6.16. Growth of M. silvestris strain ΔPrMO (dashed lines and open symbols) on 
methanol (red), ethanol (black) or acetate (blue lines), in comparison with the wild-type 
strain (solid lines and filled symbols). Data points represent the mean of readings from 
triplicate flasks and error bars indicate the standard deviation. 

 

6.5.3 Growth of strain ΔPrMO on 20% v/v methane or propane 

Strain ΔPrMO grew on methane (20% v/v) similarly to the wild-type, but was 

completely unable to grow on propane (20% v/v), as shown in Figure 6.17 and in 

tabular form in Table 6.3. 

 

Table 6.3. Growth of M. silvestris wild-type and strain ΔPrMO on methane or propane (20% 
v/v). Data show the mean of triplicate cultures ± standard deviation. 

Substrate Strain Specific growth 
rate (h-1) Lag time (h) Increase in  

OD540 

methane 
Wild-type 0.013 ± 0.003 63 ± 11 0.48 ± 0.05 
ΔPrMO 0.019 ± 0.005 60 ± 22 0.48 ± 0.06 

propane 
Wild-type 0.015 ± 0.002 199 ± 30 0.28 ± 0.02 
ΔPrMO 0 - 0 
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Figure 6.17. Growth of M. silvestris wild-type (solid lines and filled symbols) and strain 
ΔPrMO (dashed lines, open symbols) on methane (left) or propane (right) (both 20% v/v). 
Data points represent the mean of readings from triplicate flasks and error bars indicate the 
standard deviation. 

6.5.4 Growth of strain ΔPrMO on 2.5% (v/v) methane and propane 

Surprisingly, despite deletion of the propane monooxygenase hydroxylase α-subunit 

and the inability of strain ΔPrMO to grow on 20% (v/v) propane, during growth on a 

mixture of 2.5% (v/v each) methane and propane, strain ΔPrMO both grew and 

consumed the gases similarly to the wild type, as shown in Figure 6.18, in 

comparison with Figure 6.15. To eliminate the possibility that these cultures were 

contaminated with wild-type cells, serial dilutions were made from the cultures, and 

spread on DNMS plates and incubated with methanol. Colonies grew, indicating a 

culture density of 1.8 × 108 cfu ml-1
 (corresponding approximately with the measured 

OD), of which 12 were tested by PCR using primers 1651Tf/1651Tr, revealing the 

deletion genotype in all cases (data not shown).  
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Figure 6.18. Growth of strain ΔPrMO on a mixture of methane and propane (2.5% v/v each). 
Control vials, containing cells killed by autoclaving, are shown as dashed lines. Data points 
represent the mean of readings from triplicate flasks and error bars indicate the standard 
deviation. 

 

Growth on 2.5% v/v gas was then repeated, using this concentration of each gas 

either alone or as a mixture, in strain ΔPrMO alongside the wild-type. Strain ΔPrMO 

was able to grow not only on 2.5% v/v methane, but also, at a reduced specific 

growth rate, on 2.5% v/v propane, as shown in Figure 6.19 and Table 6.4. Growth on 

the gas mixture replicated data shown in Figure 6.18, but allowed additional 

comparison with the wild-type and with growth on each gas alone. In contrast to 

growth on propane alone, growth rate and biomass increase on the gas mixture 

approached that of the wild-type, although 75% of carbon consumed was in the form 

of propane, see Figure 6.20. 

 

Table 6.4. Specific growth rate, lag time and increase in biomass of M. silvestris wild-type 
and strain ΔPrMO during growth on methane, propane, or a mixture (all at 2.5% v/v). Data 
show the mean of triplicate cultures ± standard deviation. 

 Specific growth rate (h-1) Lag time (h) Biomass increase 
(OD540) 

 Wild-type ΔPrMO Wild-type ΔPrMO Wild-type ΔPrMO 

Methane 0.011 ± 0.001 0.013 ± 0.003 112 ± 23 71 ± 16 0.07 ± 0.01 0.06 ± 0.01 
Methane 

plus 
propane 

0.012 ± 0.000 0.011 ± 0.002 90 ± 3 108 ± 22 0.42 ± 0.01 0.38 ± 0.01 

Propane 0.007 ± 0.000 0.004 ± 0.001 123 ± 15 177 ± 19 0.33 ± 0.01 0.23 ± 0.03 
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Figure 6.19. Growth of M. silvestris wild-type (solid lines and filled symbols) and strain 
ΔPrMO (dashed lines and open symbols) on 2.5% v/v methane (left, in red) or propane (right, 
in purple). Data points represent the mean of readings from triplicate flasks and error bars 
indicate the standard deviation. 

 

 

 

Figure 6.20. Growth of M. silvestris strain ΔPrMO (dashed lines and open symbols) on a 
mixture of methane (red) and propane (purple) (2.5% v/v each) was repeated alongside the 
wild type (solid lines and filled symbols). Data points represent the mean of readings from 
triplicate flasks and error bars indicate the standard deviation. 

6.5.5 Conversion of substrate carbon into biomass 

Measurement of gas consumption allowed comparison of the relative conversion of 

substrate carbon into biomass. Data from experiments using 2.5% v/v substrate 

concentration (shown in Figure 6.15 and Figure 6.18 - Figure 6.20) are presented in 

Figure 6.21 as a percentage of substrate carbon converted into biomass as cellular 

dry weight.  The data are presented in this form by assuming that an OD540 of 1.0 

corresponds to 0.25 mg dw ml-1. Although the true conversion factor may depart 
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somewhat from this estimate, this does not affect comparison between strains, and 

the data could equally well be presented in terms of culture densities rather than 

biomass. Comparison of the wild-type and strain ΔPrMO under each condition using 

Student’s t-test confirmed that while there was no difference during growth on 

methane (t(4) = 0.3, p > 0.05), carbon assimilation was less efficient in strain ΔPrMO 

during growth on methane plus propane (t(13) = 4.4, p < 0.01) and propane alone (t(4) 

= 15.8, p < 0.01). These data highlight the inessential but beneficial role of the PrMO 

during growth on this concentration of propane, and confirm that this enzyme is not 

required for oxidation of methane. 

 

 

 

Figure 6.21. Growth and substrate consumption of M. silvestris wild-type and strain ΔPrMO 
on the gases shown (2.5% v/v) were used to compare the conversion of substrate carbon into 
biomass. Data are the mean of the number of replicates shown and error bars indicate the 
standard deviation. 

 

6.5.6 Growth on 20% v/v methane and 10% v/v methane plus propane 

Growth was compared between 20% v/v methane and a 10% v/v (each) mixture of 

methane and propane in the wild-type and strain ΔPrMO, see Figure 6.22. Whereas 

wild-type growth was similar in the two conditions, strain ΔPrMO exhibited a 

prolonged lag phase on the gas mixture compared to on methane alone (171 ± 12 h 

and 66 ± 3 h respectively (mean of three replicates ± standard deviation)), suggesting 

that at this propane concentration the gene deletion is detrimental to growth of strain 

ΔPrMO.  
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Figure 6.22. Growth on 20% v/v methane (black lines) was compared with growth on 10% 
v/v (each) methane and propane (purple lines) in M. silvestris wild-type (solid lines) and 
strain ΔPrMO (dashed lines). Whereas growth of the wild-type did not differ between 
conditions, strain ΔPrMO exhibited an extended lag phase during growth on the mixture. 
This illustrates a difference (an extended lag phase during growth on the mixture) between 
the two conditions in the mutant strain, which was not detectable in the wild-type. Data 
points represent the mean of readings from triplicate flasks and error bars indicate the 
standard deviation. 

 

6.5.7 Summary of the growth phenotype of strain ΔPrMO 

Strain ΔPrMO was able to grow on methane, methanol, ethanol and acetate 

indistinguishably from the wild-type. However, this strain was totally disabled for 

growth on 20% propane. Surprisingly, strain ΔPrMO was able to grow on 2.5% v/v 

propane at slightly over half the specific growth rate of the wild type, and at nearly 

the wild-type rate on a mixture of the gases (2.5% v/v each). The similar rates of gas 

consumption observed in the wild-type were mirrored during growth of strain 

ΔPrMO, suggesting that the ability of this strain to oxidise propane under these 

conditions is little affected. However, analysis of the conversion of substrate into 

biomass suggested that, at these concentrations, the deletion of the PrMO, while not 

fatal, is deleterious to strain ΔPrMO. During growth on a 10% (v/v each) mixture, 

strain ΔPrMO was inhibited in comparison to growth on methane alone. Thus, while 

the propane-oxidising ability of strain ΔPrMO was little affected, deletion of the 

PrMO had an increasingly serious effect on M. silvestris as propane concentration 

was increased. 
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6.6 Analysis of transcription and expression of PrMO subunits 

M. silvestris wild-type and strain ΔPrMO were grown in 30 ml medium in 120 ml 

serum vials with a mixture of approximately 2.5% v/v (each) methane and propane, 

harvested at late exponential phase and RNA extracted as described in Materials and 

Methods. The purified RNA (200 ng) was used for cDNA synthesis using random 

hexamer primers and Superscript III reverse transcriptase (Invitrogen). Transcription 

was detected by PCR using primers internal to the coding sequences of Msil1651 

(1651f/r) and Msil 1649 (1649f/r), encoding the propane monooxygenase α- and β-

subunits, and Msil1641 (1641f/r), the final gene in the propane monooxygenase gene 

cluster (Figure 6.3). As expected, no transcription of Msil1651 could be detected in 

strain ΔPrMO, but the other genes were transcribed at seemingly similar levels in 

both strains, demonstrating (within the limitations of this method) that the gene 

deletion did not exert a polar effect on downstream genes, see Figure 6.23. Other 

studies (for example Pomerantsev et al. (2009)) have also shown that insertion of the 

LoxP sequence into an operon does not prevent transcription of downstream genes. 

 

 

Figure 6.23. Presence or absence of transcription of the PrMO hydroxylase α- and β-subunits 
(Msil1651 and Msil1649) and the final gene of the cluster (Msil1641) was verified in M. 
silvestris wild-type and strain ΔPrMO, together with mxaF (encoding methanol 
dehydrogenase) and the 16S rRNA gene as positive controls. Lane 1: wild-type, cDNA 
template, lane 2: wild-type, negative control without reverse transcriptase, lane 3: strain 
ΔPrMO, cDNA template, lane 4: strain ΔPrMO, negative control without reverse 
transcriptase, lane 5: wild-type DNA template. Band sizes, Msil1651: 543 bp, Msil1649: 587 
bp, Msil1641: 468 bp, mxaF: 430 bp, 16S rRNA: 1447bp. 
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Protein production was analysed by 1D SDS-PAGE. Cells, grown on a mixture of 

methane and propane (2.5% v/v each), were used to prepare cell-free extract, and 15 

µg protein loaded on a 10% SDS-PAGE gel, see Figure 6.24. 

 

 

Figure 6.24. Left-hand gel: SDS-PAGE analysis of cell-free extract of wild-type (lane 1) and 
strain ΔPrMO (lane 2) grown on a mixture of methane and propane (2.5% v/v each). The α- 
and β-subunits of the PrMO hydroxylase are shown arrowed. The same gel is shown on the 
right, after excision of corresponding bands in the two lanes, for analysis by tryptic digest 
and mass spectrometry. 

 

Bands previously identified as corresponding to the α- and β-subunits of the PrMO 

hydroxylase were excised from the lane loaded with wild-type extract, and from the 

corresponding positions from the lane loaded with extract from strain ΔPrMO, and 

analysed by tryptic digest and mass spectrometry by the Proteomics and Mass 

Spectrometry Facility of the University of Warwick. Identities of the polypeptides 

detected are shown in Table 6.5. Both the α- and β-subunits of the PrMO were 

identified in the lane derived from the wild-type extract, but neither was detected in 

the lane from strain ΔPrMO, not only demonstrating that there is, as expected, no 

expression of the deleted α-subunit, but also suggesting that although the β-subunit is 

transcribed, it is either not expressed in the absence of the α-subunit, or that under 

these conditions it is unstable. 
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Table 6.5. Polypeptide identifications of bands excised from the gel shown in Figure 6.24. 
For each band, the most abundant six polypeptides are shown, based on the number of 
peptides detected. Neither of the PrMO hydroxylase subunits was detected in the lane loaded 
with extract of strain ΔPrMO. The number of peptides detected and used to identify each 
polypeptide is shown. The total number of peptides detected from all polypeptides identified 
in each band is shown for comparison. MM: theoretical molecular mass. 

Band Strain Locus tag 
Msil Annotation Peptides 

 
Total 

peptides 
MM 
kDa 

1 w-t 0795 Chaperonin GroEL 16 84 57.6 
  1647 Chaperonin GroEL 13  57.3 
  1262 MmoX 13  59.8 
  1651 PrMO α-subunit 10  64.2 
  1641 Gluconate dehydrogenase 9  56.7 
  2912 Trigger factor 6  50.6 
       

2 w-t 1649 PrMO β-subunit 17 58 40.2 
  1263 MmoY 11  44.9 
  1267 MmoC 6  38.5 
  1714 Serine-glyoxylate aminotransferase 5  42.6 
  2996 Acetyl-CoA acetyl transferase 4  40.2 
  0832 Acetylornithine acetyl transferase 4  41.8 
       

3 ΔPrMO 1262 MmoX 15 79 59.8 
  1641 Gluconate dehydrogenase 10  56.7 
  3763 Hydrogenase α-subunit 9  59.9 
  0795 Chaperonin GroEL 9  57.6 
  2342 Aldehyde dehydrogenase 8  55.6 
  1375 PEP carboxykinase 7  58.2 
       

4 ΔPrMO 1263 MmoY 14 68 44.9 
  2996 Acetyl-CoA acetyl transferase 9  40.1 
  1714 Serine-glyoxylate aminotransferase 7  42.6 
  1262 MmoX 7  59.8 
  0471 MDH 6  68.5 
  1267 MmoC 5  38.5 

 

6.7 Deletion of the α-subunit of the sMMO hydroxylase 

Strain ΔMmoX, with a deletion of Msil1262, encoding the α-subunit of the 

hydroxylase of the methane monooxygenase, was constructed as described in 

Chapter 4. The result (confirmed by sequencing) was the deletion of 1531 bp 

including almost the entire Msil1262 coding sequence, from 24 bp after the start 

codon to 26 bp before the stop codon, and the insertion of 104 bp of vector sequence 

containing a single loxP site. This strain was able to grow on succinate and methanol 

similarly to the wild-type (data not shown and Figure 6.25).  
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6.7.1 Growth on 20% and 2.5% (v/v) methane or propane 

Strain ΔMmoX was able to grow on 20% (v/v) propane similarly to the wild-type, 

but at this concentration there was no growth on methane (Figure 6.25). 

Simultaneously, vials (120 ml, containing 25 ml medium) were set up in triplicate to 

test growth on 2.5% (v/v) methane, propane, or a mixture, as for strain ΔPrMO. The 

cultures did not grow in any of the three conditions, see Figure 6.26. 

 

 

 

Figure 6.25. Growth of M. silvestris strain ΔMmoX on methanol (0.1% v/v) (filled circles), 
propane (open diamonds) or methane (crosses) (both 20% v/v). Data points represent the 
mean of readings from triplicate flasks and error bars indicate the standard deviation. 
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Figure 6.26. Growth of M. silvestris strain ΔMmoX on methane, methane plus propane, or 
propane (all at 2.5% v/v). Data points represent the mean of readings from triplicate flasks 
and error bars indicate the standard deviation. 
 

6.7.2 The capacity of strain ΔMmoX to oxidise methane 

In order to assess the ability of the PrMO to oxidise methane, M. silvestris wild-type 

and strain ΔMmoX were grown on a mixture of 20% (v/v) propane and 2% (v/v) 

methane. Whereas the wild-type consumed methane and propane proportionally to 

their concentrations, methane was not consumed in strain ΔMmoX, see Figure 6.27. 

 

 

Figure 6.27. Consumption of methane and propane in M. silvestris wild-type (left) and strain 
ΔMmoX (right) when supplied with approximately a 1:10 v/v ratio of gases. Methane 
concentrations are shown as % v/v ×10 on the y-axis. 
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6.8 Substrate oxidation range of M. silvestris 

6.8.1 Methane- and propane-oxidising ability of cells grown on these 

substrates 

A Clark Oxygen electrode was used to determine the substrate-oxidising capabilities 

of methane- and propane-grown M. silvestris wild-type whole cells. Cells grown on 

methane exhibited high activity in response to methane, but a relatively low level 

response (approximately 5% of the rate with methane) in response to propane. Cells 

grown on propane, surprisingly, consumed oxygen at a higher rate when stimulated 

with methane than with propane. However, the activity in response to methane was 

less than half that of methane-grown cells, whereas the activity in response to 

propane was more than double, so the ratio of the propane to methane activities 

increased from 5% in methane-grown to 28% in propane-grown cells, as shown in 

Table 6.6. There was no detectable rate with succinate-grown cells in response to 

these substrates. The activity in response to methane of propane-grown cells may be 

due to the expression of the sMMO in these cells, shown to occur during growth on 

propane (see Section 6.4). This hypothesis is supported by the inability of strain 

ΔMmoX to oxidise a significant amount of methane when growing on propane (20% 

v/v) and methane (2 % v/v), in contrast to the wild-type (Figure 6.27). The up-

regulation of propane-oxidising capability in propane-grown cells suggests, however, 

that the propane-related activity is due mostly to the PrMO. 

 

Table 6.6. Methane- and propane-induced specific oxygen consumption rate (nmol min-1 (mg 
dw)-1) of M. silvestris whole cells grown on methane, propane or succinate as determined by 
oxygen electrode studies. Data are the mean of three measurements (± standard deviation). 

Substrate for oxidation Growth substrate 
Methane Propane Succinate 

Methane 49.0 ± 1.2 21.1 ± 2.1 Not detectable 
Propane 2.5 ± 0.5 5.9 ± 0.8 Not detectable 

 

6.8.2 Affinity of M. silvestris for propane 

The affinity of M. silvestris wild-type propane-grown whole cells for propane was 

measured using the oxygen electrode, by determining oxygen uptake rate in response 

to a range of substrate concentrations. The apparent Km of whole cells for propane 
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was 19 µM, as shown in Figure 6.28. This concentration corresponds to a headspace 

propane concentration of approximately 1.4% v/v assuming equilibrium between the 

gas and liquid phases. If, as suggested in the previous section, at saturating 

concentrations of propane the PrMO is largely responsible for propane oxidation, it 

follows that the Km reported above largely refers to the activity of this enzyme 

(assuming Michaelis Menten kinetics). 

 

 

 

Figure 6.28. Activity, defined as oxygen uptake rate, of propane-grown cells in response to 
addition of various amounts of propane in the oxygen electrode, is shown as crosses in the 
left-hand graph, which also shows the theoretical Michaelis-Menten curve generated  using 
parameters (Km, Vmax) derived from the Hanes-Woolf plot (right-hand graph) drawn using 
the same data.  

 

  

 

6.8.3 Potential ability to metabolise or co-metabolise alternative substrates 

Examples of substrates previously described as having the potential for oxidation by 

the sMMO (Colby et al., 1977; Patel et al., 1982; Burrows et al., 1984)  were tested 

for their ability to induce oxygen up-take in the oxygen electrode, using cells grown 

on methane or propane. Investigators such as Oldenhuis et al. (1989) and Stirling and 

Dalton (1979) investigated the co-metabolism of similar compounds using whole 

cells of methanotrophs, and found that the addition of co-substrate (formate or 

formaldehyde) was necessary to provide the reductant (NADH) required by the 

monooxygenase, since most of the compounds tested cannot be further metabolised 



189 
 

to regenerate reducing power. This approach was not possible using the oxygen 

electrode, since the oxidation of additional formaldehyde or other alternative sources 

of reducing power would mask any effect due to the substrate of interest. Therefore, 

only intracellular reserves were available to cells. In contrast to methods which 

measure depletion of substrate or accumulation of product, and which rely on the 

oxidation of significant quantities of substrate, the high sensitivity of the oxygen 

electrode is such that these reserves are sufficient to indicate the potential for 

substrate oxidation. Substrates tested are listed in Table 6.7, together with specific 

rates of oxygen consumption. It was found necessary to add all substrates as aqueous 

solutions, in most cases saturated, and in the case of low-solubility substrates the 

amount added was necessarily extremely low. Two methods were adopted to 

determine if a saturating amount of substrate was added; the addition of further 

substrate and the recording of any consequent increase in rate, and secondly the 

subsequent addition of methane during oxidation of the co-metabolised substrate. 

The absence of increased rate in response to methane indicated saturation or 

inhibition (or inactivation) of the SDIMO responsible for methane oxidation, further 

providing evidence that the co-metabolised substrate was oxidised by these enzymes. 

No additional rate or a much reduced rate in response to methane under these 

conditions was recorded for all substrates except octane, pentadecane, cyclohexane, 

biphenyl, anthracene and phenanthrene. The aqueous solubility of all these 

compounds except cyclohexane is extremely low (between 8 mg L-1 for biphenyl to 

0.05 mg L-1 for anthracene, (Silverman and Shideler, 1958; Sarraute et al., 2004; 

Kuramochi et al., 2006), and the small amount necessarily added to cells in the 

oxygen electrode may have been insufficient to detect a response, or, alternatively, 

these compounds are not oxidised at high rates by the M. silvestris SDIMOs. The 

solubility of cyclohexane is approximately 63 mg L-1 (de Hemptinne et al., 1998), 

suggesting that the affinity for this compound is low or it is not a particularly good 

substrate for these enzymes. 
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Table 6.7. Oxidation of non-growth substrates by M. silvestris grown on methane or propane. 
Specific oxygen consumption rates (nmol min-1 (mg dw)-1 are shown as ± standard deviation 
where measurements were conducted in at least triplicate. n.d.: not determined. 

Substrate for oxidation Growth substrate 
Methane Propane 

pentane 1.1 n.d. 
octane 0.0 n.d. 

pentadecane 0.0 n.d. 
cyclohexane 0.0 n.d. 

1,2-dichloroethane 3.6 4.3 
propene 2.9 ± 0.1 5.8 ± 0.6 
isoprene 3.2 ± 0.1 9.2 

trans-2-butene 4.2 8.0 
trichloroethylene 4.1 5.7 

cyclohexene 0.7 1.0 
benzene 2.5 3.7 
phenol 2.4 4.1 
toluene 2.7 1.2 

p-xylene 1.0 n.d. 
p-cresol 2.3 n.d. 

ethyl benzene 1.2 ± 0.5 0.6 
styrene 4.0 n.d. 

anthracene 0.0 n.d. 
phenanthrene 0.0 n.d. 

biphenyl 0.0 n.d. 
 

6.8.4 Relative substrate specificities of the sMMO and PrMO 

Propane-grown cells displayed higher activity towards propane, propene and other 

alkenes than methane grown cells. Although some or all of the activity towards 

methane of propane-grown cells may be due to expression of the sMMO, which may 

also contribute to co-metabolism of the compounds shown in Table 6.7 by propane-

grown cells, the relatively higher rates recorded suggest that the PrMO may have 

higher activities with alkenes than the sMMO. Lack of time prevented the repeat of 

these experiments with strains ΔMmoX and ΔPrMO. 
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6.9 Inhibition of the M. silvestris SDIMOs 

Wild-type M. silvestris cells were grown in 120 ml serum vials containing 25 ml 

medium supplied with methane and propane (2.5% v/v each). At mid-exponential 

phase acetylene (1.5 ml, equivalent to an aqueous concentration of approximately 0.4 

mM) was added, and growth and gas consumption recorded. Compared to un-

amended control vials, acetylene completely inhibited both growth of the cultures 

and consumption of gases, as shown in Figure 6.29. It should be noted, however, that 

deletion of the sMMO was sufficient to prevent growth on propane and methane at 

this concentration (Section 6.7.1), so these data do not necessarily imply inhibition of 

the PrMO. 

 

 

Figure 6.29. Acetylene was added to culture growing on methane and propane and 
completely inhibited both growth and substrate gas oxidation. Black lines: culture OD540, red: 
methane headspace concentration, purple: propane headspace concentration. Solid lines: 
control cultures without addition of acetylene, dashed lines: cultures inhibited with acetylene, 
dotted lines: killed controls. Error bars show the standard deviation of triplicate vials. 

 

6.10 Oxidation of low levels of methane 

It was noticed during the course of these experiments that M. silvestris growing on a 

mixture of methane and propane was capable of reducing the methane concentration 

to low levels. In particular, the methane concentration in the vials shown in Figure 

6.20 (wild-type and strain ΔPrMO supplied with a mixture of methane and propane) 
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was approaching, or below, atmospheric levels after 980 h (data not shown). To test 

the relative consumption of methane and propane with dissimilar concentrations of 

the two gases, vials (120 ml containing 25 ml medium) were inoculated with wild-

type M. silvestris and supplied with approximately 2.5% v/v propane and 0.3 % v/v 

methane.  Gas concentration was monitored at 14 time-points over 910 h, and 

additional propane (2 ml) added at 350 and 740 h, when the concentration dropped 

below approximately 0.5% v/v, see Figure 6.30. Oxygen (5 ml) was added at 570 h. 

Methane was reduced to 72 ± 20 ppmv over this time period (mean of three vials ± 

standard deviation). Gas consumption rates were approximated by dividing the gas 

consumed between consecutive time-points by the time interval.  Figure 6.31 shows 

the (log transformed) relative rates of consumption of the gases as a function of their 

relative headspace concentrations. A linear relationship was observed over a 40 fold 

difference in their relative concentrations and methane was consumed at 

approximately 1.7 times the relative rate for propane, suggesting that the kinetic 

parameters for methane and propane consumption are fairly similar under these 

conditions. 

 

Figure 6.30. Growth and gas concentrations of wild-type M. silvestris supplied with a 
mixture of methane and propane at dissimilar concentrations. Methane is shown as % v/v 
×10 on the y-axis. 
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Figure 6.31. The relative rates of methane and propane consumption plotted relative to their 
headspace concentrations (both log transformed), during the growth of wild-type M. 
silvestris on methane and propane shown in Figure 6.30. Methane concentration dropped 
from 3000 to 72 ppmv over the course of the experiment, and propane concentration was 
maintained at between 0.5 and 3% v/v. 

 

 

6.11 Discussion 

6.11.1 The PrMO promoter and gene cluster 

5’ RACE was successful at identifying transcription of the PrMO from a σ54 

promoter, with transcription start site located 119 bp upstream of the hydroxylase α-

subunit. Although it is highly likely that the genes of this cluster are co-transcribed as 

an operon, and no experimental evidence was obtained that argues against this, inter-

gene PCR conducted on cDNA synthesised from mRNA extracted from propane-

grown cells was inconclusive, due to the amplification of cDNA synthesised from 

control reactions without primers. This can most readily be explained by self-priming 

of mRNA strands, in which case the presence of PCR amplicons does demonstrate 

the existence of RNA transcripts, although the sense of the transcript cannot be 

determined. Many studies use a similar inter-gene PCR method to determine operon 

extent, for example Borodina et al. (2004), Zhang and Lidstrom (2003), Roback et al. 
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(2007). None of these examples document the use of control reactions without 

cDNA-synthesis primer, but, as advised by Zhou and Yang (2006), this precaution 

would seem to be wise. 

6.11.2 Transcription and expression of the M. silvestris SDIMOs 

Using promoter-probe vectors and proteomic analysis, both transcription and 

expression of the two SDIMOs were analysed during growth on methane and 

propane. It was conclusively demonstrated that during growth on methane, only the 

sMMO is transcribed, whereas during growth on propane, both monooxygenases are 

transcribed and expressed. This finding has implications for the regulation of gene 

expression which are briefly discussed in the following chapter. 

6.11.3 Construction of mutant strains lacking the sMMO and PrMO 

Mutant strains were constructed with deletions of the α-subunits of the hydroxylases 

of the two M. silvestris SDIMOs. The possibility that subunits of the alternative 

enzyme could complement this deletion cannot be discounted. However, several 

lines of evidence argue against this possibility. Firstly, due to the considerable 

differences in enzyme structure (three- versus two-subunit hydroxylases) and 

extensive α-subunit divergence (31% identical and 48% similar residues) between 

the sMMO and the PrMO, interchangeability between subunits seems very unlikely. 

Very few studies have investigated the possibility of reconstituting active enzymes 

using components from different SDIMOs. Champreda et al. (2006) replaced the 

coupling protein (component B) of the SDIMO of Xanthobacter autotrophicus PY2 

with the homologous component derived from SDIMOs of other groups. Activity 

dropped to 5% when the coupling protein was substituted by IsoD from Rhodococcus 

sp. AD45, which has 64.5% of similar residues to the native protein, and all less-

similar proteins did not result in detectable activity. Component B binds to the 

hydroxylase α-subunit and is responsible for a dramatic increase in enzyme activity 

(Froland et al., 1992), suggesting that, even if the hydroxylase α-subunits could 

complement each other, this in itself might not result in an active enzyme, since 

effective interactions with other components are also required. Secondly, both strains 

exhibited clear phenotypes, suggesting that complementation, if it is possible, is not 
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efficient. Thirdly, proteomic analysis of strain ΔPrMO (Section 6.6) demonstrated 

that in addition to the α-subunit, the β-subunit is also not present in cells. 

6.11.4 Oxidation of methane and propane 

The data presented in Sections 6.5.2 and 6.10 show that M. silvestris consumes 

methane and propane at surprisingly similar rates in response to a mixture of these 

substrates, and the data summarised in Section 6.5.7 demonstrate that the PrMO is 

not necessary for the ability to oxidise propane. These data also demonstrate, 

however, that cells lacking the PrMO are disadvantaged in comparison to the wild-

type during growth on methane/propane mixtures, and furthermore that at higher 

propane concentrations, this effect is increased. These data could be explained by the 

hypothesis that propane oxidation by the sMMO results in a toxic product, and that 

expression of the PrMO is necessary for the induction of enzymes to degrade it. 

Possibly, during growth of strain ΔPrMO on a high percentage of propane, these 

enzymes are not induced and the product accumulates to dangerous levels, whereas 

at 2.5%, constitutively-expressed enzymes are sufficient to remove the less rapid flux 

of this toxic intermediate. This hypothesis implies that the products of propane 

oxidation by the sMMO and the PrMO are different. Strain ΔMmoX, on the other 

hand, was unable to grow on methane at either of the concentrations tested, 

suggesting that the PrMO is unable to oxidise methane, a hypothesis confirmed by 

the failure of strain ΔMmoX to consume methane during growth on propane. 

Interestingly, this strain was unable to grow on 2.5% propane, suggesting either that 

the sMMO is primarily responsible for oxidation of propane at this concentration, or 

that, at this concentration, oxidation of propane by the sMMO is required for 

induction of the PrMO. 

The suggestion that the sMMO has a high affinity for propane and the PrMO a low 

affinity does not appear to be supported by the oxygen electrode data presented in 

Section 6.8.2, lending weight to the hypothesis that additional factors are relevant. 

Using an oxygen electrode, the apparent Km of propane-grown cells for propane (19 

µM) was approximately half that of methane-grown cells for methane determined in 

Chapter 3. This value is comparable to reported values for methane determined by 

this method in other organisms (Harrison, 1973; Ferenci et al., 1975; Linton and 

Buckee, 1977), (although considerably higher than values determined using 
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alternative methods (Joergensen, 1985; Green and Dalton, 1986)). Very few kinetic 

data exist for propane monooxygenase, but working with whole cells of 

Rhodococcus sp. RR1 and Mycobacterium vaccae JOB5, Sharp et al. (2010) 

determined the apparent Km for propane to be approximately 136 µM and 18 µM 

respectively. 

6.11.5 Cometabolism by the sMMO and PrMO 

Oxygen electrode data indicated wide substrate specificity for the sMMO, in keeping 

with previously published data. Interestingly, the PrMO also appeared capable of 

oxidising alternative substrates, including an increased activity with alkenes 

compared with the sMMO. 

6.12 Conclusions 

6.12.1 Discrimination between alkanes in SDIMO-containing organisms 

Thauera butanivorans expresses a group III SDIMO which it uses to oxidise butane, 

and which is capable of oxidation of methane with a higher turnover rate than any of 

alkanes C1 – C5 (Cooley et al., 2009b). However, the soluble butane 

monooxygenase has low affinity (Km > 1 mM) for methane and was found to be 

1800-fold more specific for butane, such that during growth on a typical natural gas 

composition mixture comprising 96.5% methane, 2% ethane, 1% propane and 0.5% 

butane, less than 2% of the flux through the enzyme was methane (Cooley et al., 

2009a). Green and Dalton (1986) found the sMMO of Methylococcus capsulatus 

(Bath) to be more efficient with methane as substrate, with Vmax : Km ratio sevenfold 

higher than with propane. Growth of Methylococcus capsulatus on the alkane 

mixture present in natural gas would result in a similarly low flux of non-

metabolisable substrates. These strategies are necessary for both these organisms to 

prevent the accumulation of toxic intermediates and to avoid the inhibition of 

enzyme activity by competing substrates which cannot be used; M. silvestris has 

perhaps evolved an sMMO which treats methane and propane indiscriminately since 

it is not subject to these limitations. 



197 
 

6.12.2 Suggestions for future work 

Time constraints prevented full analysis of the capabilities of strains ΔPrMO and 

ΔMmoX. For example, repeating the oxygen electrode experiments with these strains 

would yield useful data. This would require growth of these strains in fermenter 

culture in order to generate sufficient good quality biomass. The interesting co-

metabolic potential of both SDIMOs should be investigated in more detail by GC 

analysis of substrate depletion and product formation. This would enable the addition 

of reductant-supplying substrates which would enhance the oxidative capability of 

cell suspensions. Full analysis of the kinetic parameters of the two SDIMOs is now 

required by purification and biochemical characterisation. This will be aided by the 

existence of the mutant strains, both in enabling the design of activity assays for the 

two enzymes, and, potentially, as sources of the respective enzymes. 
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Table 6.8. Primer sequences used in this chapter. The second column refers to the inter-gene 
PCR locations identified in Figure 6.7. 

Primer name Figure 6.7 ref. Sequence 5’ – 3’ 
51Ra1  TCGTCGTCGCATAGCACTTG 
51Ra2  ATCGTGGAATGGCGGAACTC 
51Ra3  TCTTCCTGCATCGGAAAGTACG 
46Ra1  CCCACGCCTTCATAATGACG 
5051f A TCAAGGCGCCCATCAAAGTG 
5051r A CAGCGGCTTGCTCGTATCTG 
4950f B CCCGGCGACAAACTAAGAATC 
4950r B ACGGTGACGTCCTCGTAATG 
4749f C CCTCTTCCGCGCTGATATCC 
4749r C CTTCGGCATCTTCGACTCCC 
4647f D TCCGCAATGCGGTTTCCTC 
4647r D GGCGCCCATTCATTCAACTG 
4546f E TTACGCAGCCTCGACAAACAG 
4546r E GAGCGGGTTTGGCATTGATAG 
4445f F CGCGGGATTTCCGTCTTTG 
4445r F GCCGCAGCTCGTATTGAAC 
4344f G AGCGAAGGCTCGTGATCAAC 
4344r G GAAGGCCGCACCATAGAAG 
4243f H TCGTGGAGGTCGTTTGATGG 
4243r H ACACGAATATCGCCGCGGAG 
4142f I GAGATTTGGCCGCTGTTTGG 
4142r I GAGCCGACGATCACGACTAC 
4041f J TGCGAGAATCCGACGTTGAC 
4041r J GTTGCCGCTGCTTTAGATCC 
4041rb J* GCAACGCGACTATCTGTTGC 
PrPf  ACTCAATTGTCCGTTCCGTAACGCCTCTC 
PrPr  CGGCCGGCTGAGCTCCCGCTACGC 
1651f  TCCGCCATTCCACGATTCAG 
1651r  TTTCCAGCGGCAGCATGTAG 
1649f  AGGATCATCTCGGCGCCTAC 
1649r  CTTGTTGACGGGCAAGGACC 
1641f  AGCTGGGCTACAAGGAGGTG 
1641r  CCATGGTGGTTCCGCGATAC 
 

 

 



199 
 

Chapter 7  
 

Metabolism of propane 
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7.1 Introduction 

7.1.1 The initial oxidation of propane 

Monooxygenase-mediated oxidation of propane is possible in two ways; formation 

of 1-propanol by oxidation of the terminal carbon atom, or formation of 2-propanol 

by oxidation of the sub-terminal carbon. In addition, non-specific oxidation would 

result in a mixture of 1- and 2-propanol (Ashraf et al., 1994). Previous investigations 

of short-chain n-alkane oxidation in other organisms have identified both terminal 

and sub-terminal oxidation products. For example, oxidation of butane by Thauera 

butanivorans results mostly in 1-butanol (Arp, 1999), although a small amount of 2-

butanol may also be produced (Vangnai and Arp, 2001), whereas sub-terminal 

propane oxidation was found to predominate in Gordonia TY5 (Kotani et al., 2003). 

Rhodococcus rhodochrous was found to oxidise propane to a mixture of 1-propanol 

and 2-propanol (Ashraf and Murrell, 1992). The presence of the sMMO in M. 

silvestris complicates the situation. As shown in Chapter 6, this enzyme is expressed 

during growth on propane, and is capable of propane oxidation. The product 

distribution following the oxidation of n-alkanes by the sMMO has been investigated 

extensively (Colby et al., 1977; Patel et al., 1982; Burrows et al., 1984; Green and 

Dalton, 1989; Froland et al., 1992), demonstrating that a mixture of primary and 

secondary alcohols results in most cases, with 2-propanol usually being the major 

product of propane oxidation, but protein B was shown to play an important part in 

the regioselectivity of the enzyme (Froland et al., 1992). Therefore it was difficult or 

impossible to predict the product(s) of propane oxidation in M. silvestris. 

7.1.2 Alcohol dehydrogenase 

Among short-chain alkane-utilizing bacteria, both NAD(P)+-dependent and -

independent alcohol dehydrogenases have been shown to oxidise the products of the 

initial alkane oxidation. Methanol dehydrogenase (MDH) is a pyrroloquinoline 

quinone (PQQ) containing enzyme (Anthony and Williams, 2003) which does not 

require nicotinamide cofactors for activity. Similarly, Thauera butanivorans 

expresses two PQQ-dependent alcohol dehydrogenases, BDH and BOH, during 

growth on butane, with maximal activity towards 1-butanol and 2-butanol 

respectively (Vangnai and Arp, 2001; Vangnai et al., 2002). Gordonia TY5 depends 
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on an NAD+-dependent 2-propanol dehydrogenase for growth on propane (Kotani et 

al., 2003), as does Mycobacterium vaccae JOB5 (Coleman and Perry, 1985), whereas 

Rhocococcus rhodochrous, which oxidizes propane to a mixture of 1- and 2-propanol, 

expresses two NAD+-dependent enzymes, with corresponding activities, both of 

which are required for growth on this substrate (Ashraf and Murrell, 1992). 

7.1.3 Terminal oxidation and metabolism via 1-propanol 

 

 

Figure 7.1. Pathways of propionate metabolism. The methylmalonyl-CoA pathway is shown 
in red. The inter-conversion of acryloyl-CoA and lactoyl-CoA, catalysed by lactoyl-CoA 
dehydratase in Clostridium propionicum, is extremely oxygen-sensitive (Hetzel et al., 2003), 
and this reaction is unlikely to operate in M. silvestris. Redrawn from Textor et al. (1997). 

 

The expectation is that terminal propane oxidation (which results in 1-propanol), 

proceeds via propanal and propionate following two dehydrogenation reactions. The 

metabolism of propionate (summarised by Textor et al. (1997), see Figure 7.1) has 

several variations (Wegener et al., 1968), of which the methylcitrate and 

methylmalonyl-CoA pathways are well characterised in heterotrophic bacteria. 
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7.1.4 Subterminal oxidation and metabolism via 2-propanol 

The dehydrogenation of 2-propanol would yield acetone, or 2-propanol could 

conceivably be subject to attack by an oxygenase resulting in acetol. Acetone can be 

used as growth substrate by a variety of aerobic and anaerobic bacteria (Taylor et al., 

1980; Platen and Schink, 1987), and three aerobic mechanisms of the initial reaction 

have been described; carboxylation to acetoacetate, as for example in Xanthobacter 

strain PY2 (Sluis and Ensign, 1997), insertion of an oxygen atom by a Baeyer-

Villiger monooxygenase (Kotani et al., 2007), or terminal hydroxylation forming 

acetol (Lukins and Foster, 1963; Koop and Casazza, 1985). These reactions and the 

subsequent steps required for assimilation into central metabolism are shown in 

Figure 7.2. 

 

 

Figure 7.2. Sub-terminal oxidation of propane and metabolism via acetone. The enzymes 
identified are a) acetone carboxylase, b) Baeyer-Villiger acetone monooxygenase, c) acetone 
monooxygenase, d) acetol cleavage enzyme, e) acetol monooxygenase (which is followed by 
spontaneous cleavage of the resultant hydroxymethyl acetate), f) acetol dehydrogenase, g) 
methylglyoxal dehydrogenase, h) glyoxylase. 
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Metabolism of acetol is likewise possible in various ways, including cleavage to 

acetaldehyde and formaldehyde (Vestal and Perry, 1969), monooxygenase-catalysed 

oxidation to acetate and formaldehyde (Hartmans and de Bont, 1986), or 

dehydrogenation (Taylor et al., 1980) resulting in methylglyoxal. Subsequent 

dehydrogenation of methylglyoxal may result in pyruvate, or methylglyoxal may be 

metabolised via the glutathione-dependent glyoxylase system (Cooper, 1984). 

7.1.5 Aims 

It appeared unlikely, given the relatively low-intensity research into propane-

utilizing organisms in the post-genomic era, that it would be possible to predict with 

any degree of accuracy the product(s) of propane oxidation by M. silvestris. In 

addition, the metabolic pathways for incorporation of terminal and, particularly, sub-

terminal products of propane oxidation are diverse and have received relatively little 

study. The aims of this chapter therefore were to determine the products and 

pathways of propane oxidation in M. silvestris. 

 

7.2 Identification of genes potentially involved in propane metabolism 

To investigate the potential for expression of enzymes shown to be required for 

propane oxidation in other organisms, the M. silvestris genome was searched for 

genes homologous to known examples. 

7.2.1 Alcohol dehydrogenase 

Beside mxaF, the gene encoding methanol dehydrogenase (MDH), the 

pyrroloquinoline quinone (PQQ)-containing quinoprotein alcohol dehydrogenase 

(ADH) primarily responsible for methanol oxidation in methylotrophs (Anthony, 

2004), the M. silvestris genome contains at least six additional genes predicted to 

encode PQQ-containing alcohol dehydrogenases. Of these, two (Msil1587 and 

Msil2260) are similar to the xoxF form recently shown also to be involved in one-

carbon metabolism (Schmidt et al., 2010) (73% and 62% respectively amino acid 

identity to xoxF from Methylobacterium extorquens (YP_002963794.1) ). No genes 

were identified with a high level of similarity to those encoding characterised 

quinoprotein ADHs involved in short chain alkane metabolism, for example the 1- 
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and 2-butanol dehydrogenases from Thauera butanivorans (Vangnai et al., 2002) 

(maximum 37% identity, Msil3387 and T. butanivorans BOH). Similarly, the M. 

silvestris genome contains eight genes predicted to encode NAD(P) dependent ADHs. 

Based on similarity and genome location relative to other genes suspected of 

involvement in propane metabolism, no obvious candidates for short chain alkane 

metabolism stood out, although Msil1827 and Msil2342 have 57% and 73% amino 

acid identity with ADH2 and ADH3 from Gordonia TY5 respectively. Although 

ADH3 from Gordonia has a primary structure homologous with aldehyde 

dehydrogenase, it was found to have activity with 2-propanol and not with any 

aldehyde tested (Kotani et al., 2003). These authors concluded that Gordonia TY5 

contains three secondary ADHs involved in propane metabolism, although it was 

shown that disruption of a single gene (adh1) was sufficient to prevent growth on 

propane. 

7.2.2 Propionate metabolism 

M. silvestris contains genes which may encode enzymes catalysing the conversion of 

propionyl-CoA to succinyl-CoA via the methylmalonyl-CoA pathway, as shown in 

Table 7.1. However, no homologues of the prp operon genes encoding the 

methylisocitrate pathway of propionate catabolism in S. typhimurium were found, 

except low similarity hits to those of the analogous glyoxylate bypass. 

 

 

Table 7.1. Similarities of predicted M. silvestris amino acid (query) sequences with those of 
characterised methylmalonyl-CoA pathway enzymes from Rhodobacter sphaeroides 2.4.1 or 
Methylobacterium extorquens AM1. The accession number and length (amino acids) refers 
to the target sequences. 

Locus tag 
Msil Annotation Organism Accession number Length % 

id 

2934 Methylmalonyl-CoA 
epimerase R. sphaeroides YP_353891.1 134 76 

3784 Methylmalonyl-CoA 
mutase α-subunit M. extorquens YP_002966130.1 721 72 

3785 Methylmalonyl-CoA 
mutase β-subunit M. extorquens YP_002963450.1 605 45 

3786 Propionyl-CoA 
carboxylase β-subunit R. sphaeroides YP_352242.1 510 72 

3787 Propionyl-CoA 
carboxylase α-subunit R. sphaeroides YP_352246.1 668 60 
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7.2.3 Acetone metabolism 

The amino acid sequence of acetone carboxylase from Xanthobacter sp. PY2 was 

used as query sequence for a BLAST search of the M. silvestris genome. No 

sequences with a significant level of homology to either the α-, β- or γ- subunit were 

found. Similarly, the sequences of acetone monooxygenase and methyl acetate 

hydrolase from Gordonia TY5 did not identify full-length homologous sequences. 

Oxidation of acetone to acetol was found to be catalysed by a cytochrome p450 in 

rabbit (Koop and Casazza, 1985), and the M. silvestris genome may encode at least 

two of these enzymes (Msil0731 and Msil1926). 

7.2.4 Genetic potential for terminal or sub-terminal propane oxidation 

It was therefore not possible to determine, on the basis of the identification of genes 

likely to be involved in propane metabolism, if this proceeds by the terminal or sub-

terminal pathway, since the M. silvestris genome may encode enzymes capable of 

metabolising both 1- and 2-propanol. 

7.3 Direct measurement of the products of propane oxidation 

Working with Thauera butanivorans, Dan Arp (1999) determined the product of 

butane oxidation (1-butanol or 2-butanol) by inhibition of the further oxidation of the 

alcohol using an excess of 1-propanol, which resulted in the accumulation of 1-

butanol when cells were incubated with butane. The same approach was later 

adopted by Kotani et al. (2006) to identify the products of propane oxidation in 

Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7. This method was attempted 

with M. silvestris. As proof of principle, cell suspensions (approximately 1 mg dw) 

of propane- and methane-grown cultures were incubated in a 1 ml volume in 10 ml 

vials with approximately 1 µmol (1 mM concentration) 1-propanol, and its 

consumption and build-up of products monitored by gas chromatography. Cells from 

both growth conditions reduced 1-propanol concentrations to below the limit of 

detection within four hours, (see Figure 7.3a), but propanal was not detectable. When 

butanal (5 mM) was included in vials, propanal accumulated in a nearly 

stoichiometric amount compared to the decrease of 1-propanol, demonstrating that 1-

propanol was converted to propanal, and that oxidation of propanal was effectively 

inhibited by butanal (see Figure 7.3b).  



206 
 

 

Figure 7.3. a) Consumption of 1-propanol in vials containing methane- or propane-grown 
cells incubated with 1 mM 1-propanol. When the experiment was repeated (b) using 
propane-grown cells in the presence of butanal (5 mM), propanal accumulated at a similar 
rate to the consumption of 1-propanol. 

 

The rate of propane consumption by whole cells was assayed following the method 

of Arp (1999). Cells growing on propane (exponential phase, specific growth rate 

approximately 0.01 h-1) were removed from a fermenter, concentrated by 

centrifugation (6,000 × g, 15 min, 10° C) re-suspended in buffer, and added to air-

saturated buffer in a 1 ml gas-tight glass syringe without a needle fitted. Addition of 

liquids was made by injection through the resultant small opening, controlling the 

volume with the plunger, without introduction of any gas phase. Mixing was 

facilitated by the presence of a glass bead in the syringe. Propane was introduced as 

propane-saturated water. A final volume of 1 ml contained approximately 5 mg (dw) 

cells, 750 µl air-saturated buffer and 0.3 µmol propane. The syringe was incubated at 

room temperature and samples (0.5 µl) removed and analysed by GC every 15 

minutes. However, propane was consumed at an unexpectedly slow rate, as shown in 

Figure 7.4, which shows representative data from one of three replicates. Assuming a 

growth rate in the fermenter of 0.01 h-1, and the conversion factor for propane into 

biomass determined in the previous chapter, during growth this mass of cells would 

have been consuming propane at approximately 3 µmol h-1. Therefore cells in the 

assay were consuming propane at considerably less than 1/10 of their consumption 

rate prior to harvesting. The experiment was repeated, attempting to harvest the cells 

in the presence of substrate by flushing bottles and tubes with propane and using 

propane-saturated buffer for re-suspension of the cells, but the rate of propane 

consumption was similar. This rate of propane consumption was too slow to generate 
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intermediates in measureable quantities in inhibition experiments, so this approach 

was abandoned. 

 

Figure 7.4. Propane consumption by cells incubated with substrate and air-saturated buffer. 

   

 

7.4 Growth on possible products of propane metabolism 

Possible products of propane oxidation were tested for their ability to support growth, 

since the ability to grow on these intermediates would demonstrate the existence of 

the required catabolic enzymes in M. silvestris. 

7.4.1 Growth on 1-propanol and 2-propanol 

The ability to grow on these products of terminal and sub-terminal propane oxidation 

was found to depend on the growth condition of the inoculum used for cultures. 

Using inoculum from cells grown on methane, M. silvestris grew well on 2-propanol, 

but not on 1-propanol at any of the concentrations tested (0.01 – 0.1% v/v), see 

Figure 7.5. Furthermore, when growth on 2-propanol was repeated, together with 

growth on 2-propanol in the presence of 1-propanol, 1-propanol inhibited growth on 

2-propanol.  
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Figure 7.5. Left: growth of M. silvestris on 1-propanol or 2-propanol at the concentrations 
shown (v/v). Right: growth on 2-propanol (0.05% v/v) alone or in the presence of 1-propanol 
(0.05% v/v). Inoculum for all cultures was grown on methane. Data points are the mean of 
duplicate (1-propanol) or triplicate vials (2-propanol and 1-propanol with 2-propanol), and 
error bars show the standard deviation. 

 

 

Figure 7.6. 1-propanol (0.05% v/v) completely inhibited growth on propane (30% v/v) when 
the inoculum was methanol-grown cells, and cultures were unable to grow on 1-propanol 
alone. Data points are the mean of triplicate vials, and error bars show the standard deviation. 
 

Similarly, growth on propane was completely inhibited by 1-propanol when 

methanol-grown cells were used as inoculum, see Figure 7.6. However, when 

inoculum was grown on succinate, growth on succinate in the presence of 1-propanol 

was possible, although cultures were inhibited in comparison to growth on succinate 

alone, see Figure 7.7. No inhibition occurred in the presence of 2-propanol and 

cultures benefited from its presence in comparison to succinate alone.  
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Figure 7.7. Cultures using succinate-grown inoculum were inhibited by the presence of 1-
propanol (0.05% v/v) during growth on succinate (3 mM) in comparison to growth on 
succinate (3 mM) alone or succinate (3 mM) plus 2-propanol (0.05% v/v). Data points are 
the mean of duplicate vials, and error bars show the standard deviation 

 

Finally, when the inoculum was from cells grown on propane, 1-propanol was less 

inhibitory during growth on succinate and growth on 1-propanol alone was also 

possible, although to a lower density and at a lower growth rate than on 2-propanol, 

see Figure 7.8. These data suggest that 1-propanol (or a product of its metabolism) is 

toxic to cells, and that the ability to detoxify this compound is not present in methane 

or methanol-grown cells, but is present to some extent in succinate grown cells and 

to a greater extent in propane-grown cells. These cells also have the ability to use 1-

propanol as carbon and energy source, suggesting that the enzymes for the 

metabolism of 1-propanol are induced under these growth conditions. 
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Figure 7.8. 1-propanol (0.05% v/v) was able to support growth when propane-grown cells 
were used as inoculum, and growth on succinate (5 mM) was not greatly inhibited by 1-
propanol (0.05% v/v). Vials with 2-propanol (0.1% v/v) were included for comparison. Data 
points are the mean of duplicate vials, and error bars show the standard deviation. 

 

7.4.2 Growth on 1,2-propanediol 

As noted in Chapter 3, M. silvestris grew well on 1,2-propanediol.  

 

7.4.3 Growth on terminal oxidation intermediates propanal and propionate 

Similarly to 1-propanol, propanal (3 mM) both did not support growth and 

completely inhibited growth on 2-propanol when using methanol-grown inoculum 

(data not shown). Alternative sources of inoculum were not tested with this substrate. 

Propionate (5 mM) was used as growth substrate, and there was no difference 

between cultures set up with propane- or succinate-grown inoculum, see Figure 7.9. 
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Figure 7.9. Growth on propionate (5 mM) was unaffected by the source of inoculum. Data 
points are the mean of duplicate vials and error bars show the standard deviation. 

 

7.4.4 Growth on sub-terminal oxidation intermediates 

As noted in Chapter 3, M. silvestris grew well on acetone and acetol in addition to 2-

propanol. 

7.5 SDS-PAGE 

Soluble extract was prepared from cells grown on 2-propanol and acetone and run on 

10% and 15% SDS-PAGE gels together with soluble extract from succinate-, 

propane- and methane-grown cells and the membrane fraction from succinate- and 

propane-grown cells, see Figure 7.10. Inspection of these gels suggested that the 

sMMO subunits were not expressed at a high level in 2-propanol- or acetone-grown 

cells, but that there was expression of the PrMO subunits during these growth 

conditions. Attempts were also made to identify bands (other than the SDIMO 

subunits) differing in expression level between propane-, 2-propanol-, acetone- and 

succinate-grown cells. Candidate bands were cut from the gels or from similar gels 

loaded with an increased amount of protein (Figure 7.11, Figure 7.12 and Figure 7.13) 

and analysed by mass spectrometry by the University of Warwick Proteomics and 

Mass Spectrometry Facility, and as discussed before (Section 3.12), polypeptide 

abundance was assumed to correlate with the number of peptides detected. Data are 
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reported in Table 7.2 and Table 6.2 (Chapter 6) and show that both subunits of the 

PrMO hydroxylase were found in lanes containing extract from both 2-propanol and 

acetone. No peptides from sMMO subunits were found in these lanes, although they 

were present in the lanes containing extract from propane-grown cells. Also detected 

in lanes loaded with extract from propane-, 2-propanol and acetone-grown cells (but 

not succinate- or methane-grown) was the product of Msil1641, the final gene in the 

PrMO gene cluster, annotated as gluconate dehydrogenase. Unfortunately, a band of 

similar size visible in the lane loaded with the membrane fraction from propane-

grown cells (Figure 7.11) was not submitted for analysis. Despite analysis of all 

major bands present in lanes relating to propane-, 2-propanol- or acetone- but not 

succinate-grown cells, no obvious candidates for metabolism of the products of 

propane oxidation were found. A zinc-containing NAD(P)-dependent alcohol 

dehydrogenase was detected in the acetone growth condition, but no quinoprotein 

alcohol dehydrogenases (other than MDH) were detected in any lane. Aldehyde 

dehydrogenases were found in all growth conditions, apparently in less abundance in 

methane-grown cells. The data presented here and in Chapter 6 indicate that the 

sMMO is induced by both methane and propane but not by 2-propanol or acetone, 

whereas the PrMO is induced by these two potential products of sub-terminal 

propane oxidation, in addition to propane, but not by methane. The expression of 

Msil1641, apparently at a comparatively high level, under conditions which also led 

to expression of the PrMO, was noted. 
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Figure 7.10. 15% (left) and 10% gels loaded with soluble fraction (16 µg) per lane, from 
cells grown on acetone (A), 2-propanol (2-P), succinate (S), propane (P) or methane (M), 
together with the membrane fraction from cells grown on succinate or propane. The bands 
identified as constituents of the sMMO (Chapter 6) are shown arrowed in the left-hand gel 
and the two subunits of the PrMO hydroxylase are indicated in the right-hand gel. 

 

Figure 7.11. The bands shown were cut from the gels shown in Figure 7.10 for mass 
spectrometric analysis. Band identifying numbers refer to Table 7.2, and lane identifying 
letters are as Figure 7.10. 
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Figure 7.12. Ten percent SDS-PAGE gels were loaded with 38 µg to 64 µg  protein (soluble 
fraction) per lane, from cells grown on acetone (A), 2-propanol (2-P), propane (P), methane, 
(M), or succinate (S). Band identifying numbers refer to Table 7.2.  

 

 

 

Figure 7.13. A ten percent SDS-PAGE gel was loaded with 16 µg protein (soluble fraction) 
per lane, from cells grown on acetone (A), 2-propanol (2-P), succinate (S), propane (P), or 
methane, (M), or acetate (Ac). Band identifying numbers refer to Table 7.2. 
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Table 7.2. Polypeptide identifications relating to the bands cut from gels shown in Figure 
7.11 to Figure 7.13. The most abundant four polypeptides (on the basis of the number of 
peptides detected) identified in each band are shown. The number of peptides detected and 
used to identify each polypeptide is shown. The total number of peptides detected from all 
polypeptides identified in each band is shown for comparison. MM: theoretical molecular 
mass. 

Band Growth 
condition 

Locus 
tag 

Msil 
Annotation Peptides Total 

peptides 
MM 
kDa 

1 Propane 
 

2345 
0749 
0474 
1861 

Phasin 
Uncharacterised 
MDH β-subunit 

Nitrogen regulatory protein 

8 
8 
2 
2 

22 12.7 
12.2
10.9
12.0 

2 Propane 
 

1268 
2809 
0780 
3786 

mmoR transcriptional regulator 
Uncharacterised 
Metalloprotease 

Carbamoyl phosphate synthase 

19 
6 
5 
4 

39 71.9
88.1
70.2
71.9 

3 Propane 
 

1263 
2007 
0631 
1810 

sMMO β-subunit 
Urea transporter 

Patatin-like protein 
Uncharacterised 

17 
12 
11 
5 

69 44.9
43.5
43.7
40.5 

4 Acetone 
 

2891 
3002 
2283 
0675 

Methionine adenosyltransferase 
Alcohol DH Zn binding 
Phosphoglycerate kinase 

Ribosomal protein 

13 
7 
6 
5 

37 42.4 
35.4
43.2
64.1 

5 2-propanol 
 

1651 
1641 
1647 
1375 

PrMO α-subunit 
Gluconate dehdrogenase 

Chaperonin (PrMO cluster) 
PEP carboxykinase 

29 
16 
12 
8 

86 64.2 
56.7 
57.3
58.2 

6 2-propanol 
 

2342 
1651 
3881 
2810 

Aldehyde DH 
PrMO α-subunit 
Aldehyde DH 

Phosphoglucomutase  

19 
12 
10 
5 

57 55.6 
64.2 
53.3
54.0 

7 2-propanol 
 

1649 
2400 
1194 
2991 

PrMO β-subunit 
Formylmethanofuran DH 

Fructose bisphosphate aldolase 
RNA polymerase α-subunit 

16 
4 
3 
3 

31 40.2
39.2
39.1
37.1 

8 Propane 
 

2246 
3011 
0499 
1693 

ABC transporter 
Ketol acid isomerase 

Cysteine synthase 
Translation elongation factor 

8 
6 
5 
3 

29 37.4 
36.6
35.9
32.0 

9 Acetone 
 

3523 
1360 
2733 
0716 

Alanyl tRNA synthetase 
Pyruvate carboxylase 

Coagulation factor-like protein 
Pyruvate phosphate dikinase 

25 
7 
4 
2 

38 96.4
126.1
87.6
96.1 

10 Acetone 
 

3157 
0471 
3234 
2999 

Isocitrate lyase 
MDH α-subunit 

Dihydroxy acid dehydratase 
Thiamine biosynthesis protein 

12 
10 
6 
6 

42 59.8
68.5
65.2
67.1 

11 Acetone 
 

2891 
2283 
1716 
2110 

Methionine adenosyltransferase 
Phosphoglycerate kinase 
Succinyl CoA synthetase 

Glycine hydroxymethyltransferase 

13 
8 
6 
5 

53 42.4
43.2
42.9
46.0 
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Table 7.2 (contd.) 

Band Growth 
condition 

Locus 
tag 

Msil 
Annotation Peptides Total 

peptides 
MM 
kDa 

12 Propane 
 

1360 
0672 
2860 
1263 

Pyruvate carboxylase 
Carbamoyl P synthase 

Isoleucyl tRNA synthetase 
sMMO β-subunit 

27 
18 
3 
3 

55 126.1 
118.5
119.7
44.9 

13 Propane 
 

3131 
0716 
2733 
1838 

Uncharacterised 
Pyruvate phosphate dikinase 

Coagulation factor-like protein 
Phenylalanyl tRNA synthetase 

24 
6 
4 
3 

41 88.1
96.1
87.6
85.5 

14 Acetone 
 

2342 
1651 
1375 
1641 

Aldehyde dehydrogenase 
PrMO α-subunit 

PEP carboxykinase 
Gluconate dehydrogenase 

12 
11 
9 
6 

46 55.6
64.2
58.2
56.7 

15 Acetone 2891 
2283 
1716 
3002 

Methionine adenosyltransferase 
Phosphoglycerate kinase 
Succinyl CoA synthetase 
Alcohol DH Zn binding 

15 
5 
4 
3 

29 42.4
43.2
42.9
35.4 

16 Acetone 1649 
2996 
0471 
0832 

PrMO β-subunit 
Acetyl CoA acetyltransferase 

MDH α-subunit 
Aminotransferase 

11 
10 
2 
2 

29 40.2
40.2
68.5
41.8 

17 2-propanol 1649 
2996 
1354 
0832 

PrMO β-subunit 
Acetyl CoA acetyltransferase 

Uncharacterised 
Aminotransferase 

12 
11 
3 
3 

31 40.2
40.2
43.2
41.8 

 

7.6 Measurement of intermediates in cell cultures 

M. silvestris was grown on propane (1:5 propane:air ratio) in a fermenter, and 

metabolites present in the culture medium quantified by gas chromatography (GC), 

using direct injection of culture supernatant, as described in Materials and Methods. 

Concentrations of 2-propanol and acetone were monitored between days 63 and 105, 

reaching 15 and 9 mM respectively at day 91. The propane supply was interrupted 

between days 92 and 96, resulting in the decrease of 2-propanol and acetone 

concentrations to near zero, whereas culture density increased by approximately two 

OD units. Following the resumption of the propane supply on day 96, accumulation 

of 2-propanol and acetone was observed once again, see Figure 7.14. These data 

demonstrate that 2-propanol and acetone result (directly or indirectly) from propane 

oxidation and that cells growing on propane in the presence of these intermediates 

can metabolise them without an appreciable lag phase in the absence of propane. 
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Figure 7.14. Growth of M. silvestris on propane in 2 l fermenter culture, and accumulation of 
2-propanol and acetone. The propane supply was shut off on day 92 and resumed on day 96, 
during which period 2-propanol and acetone concentrations declined. Cells were removed 
from the fermenter and replaced with fresh medium on day 99. 2-propanol and acetone 
concentrations are the mean of triplicate measurements and error bars show the standard 
deviation. 

 

This experiment was repeated using cells grown on 4% (v/v) propane in triplicate 

120 ml serum vials containing 25 ml medium. Solvent extraction of metabolites, as 

described in Materials and Methods, enabled more sensitive measurement of 1-

propanol, 2-propanol, acetone and acetol. Under these conditions 2-propanol 

accumulated to approximately 0.5 mM at 210 h before declining to below the limit of 

detection by 300 h, see Figure 7.15. No other intermediates were detected. 
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Figure 7.15. 2-propanol was detected in the culture medium of vials growing on 4% (v/v) 
propane, reaching 0.5 mM after 210 hours. Culture density (OD540) is shown in black, 
propane concentration in purple and 2-propanol in red with solid lines and filled symbols. 
Control vials, containing cells killed by autoclaving, are shown as dotted lines and open 
symbols. The 2-propanol concentration is shown as × 4 on the y-axis. Data points are the 
mean of measurements from triplicate vials, and error bars show the standard deviation. 

 

The molar ratio (2-propanol present in the medium) : (propane consumed) was 

calculated, (including 2-propanol removed during sampling since one millilitre 

aliquots were removed at each sampling point to measure the culture density), for 

each time point from 94 h to the end of the experiment. These data are plotted against 

time in Figure 7.16, and show approximately 25% at 94 h, declining as the 2-

propanol was consumed by the culture. This figure (25%) therefore represents the 

minimum proportion of propane which is converted into 2-propanol (as opposed to 

other products) under these conditions, since no allowance has been made for 

consumption of 2-propanol by the cultures. 
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Figure 7.16. For the cultures growing on propane (4% v/v) shown in Figure 7.15, the molar 
amount of 2-propanol present at each time point (and including the amounts previously 
removed during sampling) is expressed as a percentage of the propane consumed. Each data 
point represents the mean of triplicate vials and error bars show the standard deviation. 

 

7.7 Oxygen uptake of whole cells grown on methane, propane or succinate 

A Clark oxygen electrode was used to assess the substrate-induced oxygen uptake of 

whole cells of M. silvestris. Cells grown in the fermenter on methane, propane or 

succinate were used as described in Materials and Methods, and tested with potential 

intermediates of propane oxidation (at 5 mM final concentration), and substrate-

induced oxygen uptake rates recorded. As shown in  Figure 7.17, whereas the rate in 

response to 1-propanol was similar between methane- and propane-grown cells, 

propane-grown cells showed double the response to 2-propanol, and approximately 

four and seven fold activity in response to acetone and acetol respectively. The 

response of succinate-grown cells to these substrates was similar to that of methane, 

suggesting that enzymes for the metabolism of these compounds are upregulated 

during growth on propane. 
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Figure 7.17. M. silvestris cells grown on methane, propane or succinate were used in a Clark 
oxygen electrode and oxygen uptake recorded, in response to the substrates shown. 
Substrates were used at a final concentration of 5 mM. Values are the mean of at least three 
measurements, and error bars show the standard deviation. 

 

Since it was thought likely that propanal might be toxic to cells, the assay was 

repeated at a lower substrate concentration (82 µM). Under these conditions 

propanal-induced oxygen consumption was five fold higher in both propane- and 

succinate- compared with methane-grown cells (23.8 ± 6.3, 23.5 ± 1, 4.8 ± 0.4 nmol 

(min mg dw)-1 (mean of three replicates ± standard deviation) respectively). 

7.7.1 Stoichiometry of substrate-induced oxygen consumption 

The stoichiometry of oxygen utilisation in cells from the different growth conditions 

was investigated by the addition of between 100 – 250 nmol of methanol, 1-propanol 

or propanal. As shown in Figure 7.18, methanol induced a similar amount of oxygen 

consumption in all cell types. However, propane-grown cells used approximately 

three and five times as much oxygen, when stimulated with 1-propanol and propanal 

respectively, as methane- or succinate-grown cells. 
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Figure 7.18. Stoichiometry of oxygen uptake as a fraction of substrate added. The data are 
the mean of triplicate measurements and error bars show the standard deviation. 

 

The approximately equi-molar consumption of methanol and oxygen is consistent 

with the oxidation of most of the methanol to formate. The oxygen required for the 

oxidation of 1-propanol and propanal was nearly identical for cells grown on 

methane and succinate, but the greatly increased requirement for oxygen, in response 

to these compounds, by propane-grown cells demonstrated that oxidation of 1-

propanol and propanal proceeded further in these cells, presumably due to induction 

of enzymes able to further metabolise the products of the initial oxidation. 

7.7.2 1,2-propanediol-related activity 

Propane-grown cells had no detectable activity with 1,2-propanediol (0.83 mM final 

concentration), nor did 1,2-propanediol-grown cells have detectable activity with 

propane (25 µM), 2-propanol or acetone (0.83 mM). These data suggest that different 

enzymes or mechanisms are responsible for growth on 1,2-propanediol compared to 

propane. 

 

7.8 Alcohol dehydrogenase assay 

Alcohol dehydrogenase (ADH) was assayed in M. silvestris soluble cell extract. 

Quinoprotein (methanol dehydrogenase (MDH) – like) ADH was assayed by 
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spectrophotometric measurement of dichlorophenolindophenol (DCPIP) reduction 

coupled to phenazine methosulfate (PMS) as artificial electron acceptor. As shown in 

Table 7.3, methane-grown extract had 14-fold higher activity with 1-propanol 

compared to 2-propanol, whereas propane-grown extract had 6-fold higher 2-

propanol activity compared to methane-grown extract, and activity  with 1-propanol 

and 2-propanol was similar. As is the case for MDH (Duine et al., 1979), 1- and 2-

propanol activity was dependent on the presence of ammonium in the assay reaction, 

and no activity was detected in its absence. 

 

Table 7.3. Quinoprotein ADH activity (mean of triplicate measurements ± standard 
deviation), assayed as DCPIP reduction (nmol (min mg)-1) in soluble extract from methane- 
or propane-grown cells. 

Growth substrate Assay substrate 
2-propanol 1-propanol 

methane 63 ± 15 871 ± 13 
propane 381 ± 30 363 ± 7 

 

Nicotinamide nucleotide coenzyme-dependent ADH activity was measured by 

following the reduction of NAD+ or NADP+. Activity with the alcohols tested was 

low (Table 7.4) and there was no increased activity in propane-grown extract with 

potential intermediates of propane oxidation. 

Table 7.4. NAD(P)+- dependent ADH activity measured as coenzyme reduction (nmol (min 
mg)-1) in soluble extract from methane- or propane-grown cells. 

Assay substrate Growth substrate / coenzyme 
Methane Propane 

NAD+ NADP+ NAD+ NADP+ 
Ethanol 3.7 1.3 1.3 0 

1-propanol 4.6 8.2 0.6 3.3 
2-propanol 4.7 0 1.5 0 

Acetol 25 11 0 7 
glycerol 0 0 2 0 

 

These data suggest that pyrroloquinoline quinone (PQQ)-containing enzymes are 

responsible for the oxidation of both 1-propanol and 2-propanol. MDH may be 

responsible for the oxidation of 1-propanol, and this enzyme has a known wide 

substrate specificity (Anthony, 2000), but the pronounced difference between the 

relative activities with the propanol isomers in methane- and propane-grown cells 

suggests that the enzyme responsible for 1-propanol oxidation in methane-grown 
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cells is different to the enzyme responsible for 2-propanol oxidation in propane-

grown cells. 

 

7.9 Non-denaturing PAGE 

In order to identify or distinguish the enzymes responsible for 1- and 2-propanol 

oxidation, non-denaturing gels were stained for ADH activity. This method was 

successfully used by Vangnai and Arp (2001) to identify the ADHs responsible for 

butanol oxidation in Thauera butanivorans.  Gels were stained by incubation in 

buffer containing PMS and nitroblue tetrazolium (NBT) with an alcohol substrate, 

with and without NAD+.  Figure 7.19 shows staining of gels loaded with extract from 

cells grown on 2-propanol, propane, succinate or methane, incubated with 1- or 2-

propanol (1 or 2 mM), both with and without NAD+, as described in Materials and 

Methods. A band was visible only in lanes containing extract from propane or 2-

propanol-grown cells, suggesting that proteins capable of PMS-mediated reduction 

of NBT were present in propane or 2-propanol-grown cells but not in the other 

growth conditions. Lanes loaded with acetate-grown extract also did not contain the 

band present in the 2-propanol and propane lanes (data not shown). The prominent 

high molecular mass band is possibly related to MDH activity, shown to be present 

in all growth conditions. An NAD +-dependent band which only appeared in the 

methane growth condition incubated with 2-propanol was not investigated further. 

Methanol-incubated gels also resulted in the appearance of similar bands in lanes 

loaded with extract from propane- or 2-propanol-grown cells, and it was 

subsequently noticed that these bands appeared (to a lesser density) when incubated 

without substrate. It was found that chemicals contained a significant quantity of 

alcohol. For example a 5 mg ml-1 stock solution of NBT contained more than 5 mM 

methanol. Despite purification by ether extraction, it was impossible to eliminate 

appearance of bands without substrate. No bands appeared in the absence of PMS, 

and since significant transient activity has frequently been reported for MDH without 

substrate in enzyme assays (Anthony and Zatman, 1964), it was thought that the 

same cause might also be responsible for this observation. Therefore it was not 

possible to associate the band which appeared only in lanes containing extract from 

propane- or 2-propanol-grown cells with a particular alcohol substrate. However, 
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since the band only occurred in lanes containing extract from these growth 

conditions, the band shown in Figure 7.20 was cut from the gel and submitted for 

mass spectrometric analysis by the University of Warwick Proteomics and Mass 

Spectrometry Service. This gel also included a lane loaded with extract from cells 

grown on acetone, demonstrating that the protein of interest was also expressed 

under these growth conditions. 

 

 

Figure 7.19. Non-denaturing gels were stained by incubation with 1-propanol or 2-propanol 
in the presence of PMS and NBT, either without (left) or with NAD+ (right) (as shown 
above). Lanes were loaded with soluble extract (30 µg) from cells grown on 2-propanol (lane 
1), propane (lane 2), succinate (lane 3), or methane (lane 4). Bands, independent of NAD+, 
appeared in lanes containing extract from cells grown on 2-propanol or propane only (ringed 
in the 2-propanol/PMS gel). An NAD+-dependent band visible in the methane-grown 
condition (arrowed) was not investigated further. 
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Figure 7.20. The band shown was cut from the gel and submitted for analysis by mass-
spectrometry. Lanes were loaded with extract from cells grown on acetone (lane 1), 2-
propanol (lane 2), propane (lane 3), or methane (lane 4). 

 

Polypeptides identified from the gel-cut band are shown in Table 7.5. On the basis of 

the number of peptides, the most abundant polypeptide in the gel band corresponded 

with Msil1641, the final gene of the propane monooxygenase cluster. The adjacent 

gene, Msil1642 was also present in high abundance, together with the two subunits 

of the PrMO hydroxylase. These data suggested that the genes downstream of the 

monooxygenase structural genes might also be involved in propane metabolism. 

However, no polypeptide annotated as PQQ-dependent alcohol dehydrogenase was 

detected, despite evidence for its existence in enzyme assays.  

  



226 
 

Table 7.5. Polypeptides identified in the band cut from the gel shown in Figure 7.20. The 
number of peptides and corresponding percentage coverage used for identification of each 
polypeptide is shown. Polypeptides encoded by the propane monooxygenase gene cluster are 
shown shaded. 

Locus tag Peptides Sequence 
coverage (%) Annotation 

0162 4 10.4 Hydro-lyase, Fe-S type 
0178 4 10.9 Cysteine synthase 
0202 4 15.1 Oxidoreductase, zinc-binding 
0582 5 16.4 Translation elongation factor 
0795 3 6.6 Chaperonin GroEL 
0963 4 5.1 Phosphoribosylformylglycinamidine cyclo-ligase 
1025 2 9.5 Inorganic disphosphatase 
1160 2 8.8 Methyltransferase 
1226 7 9 Acetate - CoA ligase 
1262 2 4.4 sMMO alpha subunit 
1611 3 20.6 Uncharacterised 
1641 13 28.9 Gluconate dehydrogenase 
1642 7 35.2 Uncharacterised 
1649 5 15.4 Hydroxylase small subunit 
1651 9 14.1 Hydroxylase large subunit 
1808 7 22.1 Uncharacterised 
2145 2 8.1 Methylthioadenosine phosphorylase 
2390 3 22.9 Formaldehyde activating enzyme 

 

7.10 Metabolism of the products of propane oxidation 

Since the data indicated an increased ability to metabolise both 1-propanol and 2-

propanol in propane-grown cells, the possible pathways involved were investigated. 

Initially, some data were provided by analysis of the phenotypes of the deletion 

strains discussed in previous chapters. 

 

7.11 Growth of strain ΔPrMO  and strain ΔMmoX on sub-terminal 

intermediates 

Strain ΔPrMO, with a deletion of the PrMO α-subunit (Chapter 6), was tested for 

growth on the sub-terminal products of propane oxidation. There was little difference 

between the wild-type and strain ΔPrMO during growth on acetone or acetol, see 

Figure 7.21. However, in two independent experiments, strain ΔPrMO grew at half 

the rate of the wild-type on 2-propanol, and exhibited a much increased lag phase, 

see Figure 7.22 and Table 7.6. 



227 
 

 

Figure 7.21. Growth of M. silvestris wild-type (solid lines and filled symbols) and strain 
ΔPrMO (dashed lines and open symbols) on acetone (triangles) or acetol (circles) (both 0.05% 
v/v). Error bars show the standard deviation of triplicate vials. 

 

Table 7.6. Growth of M. silvestris wild-type and strain ΔPrMO on 2-propanol. Data are the 
mean of five or six replicates ± standard deviation. 

Strain Specific growth rate (h-1) Lag time (h) 
Wild-type 0.018 ± 0.002 55 ± 10 
ΔPrMO 0.009 ± 0.001 167 ± 23 

 

Strain ΔMmoX was able to grow on 2-propanol and acetone similarly to the wild-

type (data not shown). 
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Figure 7.22. The growth of strain ΔPrMO (dashed lines and open symbols) on 2-propanol 
(0.05% v/v) was compared with the wild-type (solid lines and filled symbols) in two 
independent experiments (triangles or circles). Error bars show the standard deviation of 
triplicate vials (except wild-type, first experiment; duplicate vials). 

 

7.12 Growth of strain ΔICL on propane, propionate, 2-propanol and acetone 

The phenotype of strains ΔICL and ΔSGAT provided evidence as to the eventual 

products of propane metabolism. Strain ΔICL was able to grow on propane and 2-

propanol at a similar rate to the wild type, although with an increased lag phase, as 

shown in Figure 7.23 and Table 7.7. Strain ΔICL was also able to grow on acetone 

(data not shown). Growth on propionate was somewhat reduced, but growth rate and 

density were more than 50% of the wild type. Since this strain was unable to grow on 

one-carbon compounds and growth on acetate or ethanol was severely restricted in 

comparison to the wild-type, (see Chapter 5, Section 5.6.2,) these data suggest that 

the products of propane metabolism were not one- or two carbon compounds. 

Expression of MDH was shown to be affected in strain ΔICL (see Chapter 5, Section 

5.9), which might account for the increased lag phase exhibited by this strain during 

growth on propane or 2-propanol. 



229 
 

 

Figure 7.23. Growth of M. silvestris wild-type (solid lines and filled symbols) and strain 
ΔICL (dashed lines and open symbols) on propane (in black, triangles) (20% v/v) or 2-
propanol (in red, circles) (0.1% v/v). Error bars show the standard deviation of triplicate 
vials. 

 

 

Table 7.7. Growth of M. silvestris wild-type and strain ΔICL on propane and possible products 
of propane metabolism. Figures are the mean of at least three replicates ± standard deviation. 
Substrate concentrations: 5 mM, except propane: 20% (v/v), 2-propanol: 0.1% (v/v). Figures 
showing growth on succinate are included for comparison. 

Specific growth rate (h-1) Lag time (h) Increase in biomass (OD) 
Growth 
substrate BL2 ΔICL BL2 ΔICL BL2 ΔICL 

Propane 0.010 ± 0.001 0.013 ± 0.003 60 ± 23 321 ± 23 0.34 ± 0.11 0.27 ± 0.01 
2-propanol 0.012 ± 0.001 0.011 ± 0.001 75 ± 22 329 ± 18 0.44 ± 0.02 0.37 ± 0.04 
Propionate 0.024 ± 0.002 0.015 ± 0.002 108 ± 13 269 ± 25 0.19 ± 0.01 0.12 ± 0.03 
Succinate 0.025 ± 0.001 0.027 ± 0.001 0 ± 1 0 ± 2 0.48 ± 0.06 0.42 ± 0.04 

 

7.13 Growth of strain ΔSGAT on propane 

Strain ΔSGAT was able to grow on propane with specific growth rate of 0.011 ± 

0.001 h-1 (mean of three replicates ± standard deviation) (Figure 7.24) with a lag time 

of 59 ± 15 h, growth which is comparable to the wild-type, further confirming that 

propane is not metabolised via formaldehyde or other one-carbon compounds in M. 

silvestris.  



230 
 

 

Figure 7.24. Growth of strain ΔSGAT on propane (20% v/v) or succinate (5 mM). Error bars 
show the standard deviation of measurements from triplicate vials. 
 

7.14 Identification of polypeptides of the methylmalonyl-CoA pathway 

enzymes 

Soluble extracts from cells grown on propane or succinate were supplied to the 

Biological Mass Spectrometry and Proteomics group at the University of Warwick, 

as mentioned in Section 2.11.3, and analysed by Nisha Patel using a development of 

a quantitative label-free mass-spectrometry method previously published by Vibhuti 

Patel et al. (2009) (manuscript in preparation). Apart from the polypeptides of the 

PrMO and sMMO and products of adjacent genes already identified by SDS-PAGE 

in Chapter 6, Section 7.5 and Section 7.9, notable findings were the presence of 

significant amounts of the components of the methylmalonyl-CoA pathway enzymes 

propionyl-CoA carboxylase and methylmalonyl-CoA mutase in extract from 

propane-grown cells. The amount of each polypeptide identified is shown in Table 

7.8 as percentage of the total soluble fraction, and in propane-grown cells these two 

enzymes accounted for 1.2% of total soluble protein. 
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Table 7.8. Methylmalonyl-CoA pathway polypeptides detected in soluble extract from cells 
grown on succinate or propane. 

Locus tag  
Msil Gene product Polypeptide abundance as proportion (%) of total 

soluble protein from cells grown on 
  Succinate Propane 

3784 Methylmalonyl-CoA 
mutase α-subunit Not detected 0.242 

3785 Methylmalonyl-CoA 
mutase β-subunit Not detected 0.118 

3786 Propionyl-CoA 
carboxylase β-subunit 0.070 0.665 

3787 Propionyl-CoA 
carboxylase α-subunit Not detected 0.158 

 

7.15 Enzyme activities – terminal pathway 

Incorporation of 1-propanol, the product of terminal propane oxidation, into biomass 

by the hypothesised pathway requires oxidation via propanal to propionate, followed 

by activation to form propionyl-CoA. The activities of the enzymes responsible were 

assayed. 

7.15.1 Aldehyde dehydrogenase 

NAD(P)-dependent aldehyde dehydrogenase was assayed in cell-free extract from 

cells grown on methane, propane or succinate. The pH optimum was found to be 

9.25, and NAD+ as cofactor was approximately 34%  more effective than NADP+ 

(standard deviation 2.6%, n = 3). Coenzyme A (0.3 mM final concentration) did not 

enhance activity. Propanal-associated activity was approximately 25 nmol (min mg)-1 

in extract from both propane- and succinate-grown cells (Figure 7.25), approximately 

four-fold higher than in methane-grown cell extract. To sustain a growth rate of 0.01 

h-1 would require propane consumption of 1.11 µmol (h mg)-1  assuming 50% 

conversion of substrate carbon into biomass (Chapter 6), equivalent to 18.5 nmol 

(min mg)-1, assuming cell biomass is 50% protein, demonstrating that this level of 

activity is sufficient to metabolise all the propane consumed.  
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Figure 7.25. NAD+-dependent aldehyde dehydrogenase activity in cell-free extract from M. 
silvestris grown on methane, propane or succinate. Activity is shown as formation of NADH. 
Error bars show the standard deviation of triplicate measurements. 

7.15.2 Acyl-CoA synthetase 

Acyl-CoA synthetase activity in cell-free extract from cells grown on acetate, 

propane or succinate was assayed using a discontinuous hydroxamate assay by 

measuring the formation of acetylhydroxamate against blanks without coenzyme A. 

Activity was high in extract from each growth condition, (see Figure 7.26), and 

propionate-dependent activity was not up-regulated in extracts from propane- 

compared to succinate-grown cells. Measurement of this enzyme activity was also 

attempted using a continuous coupled assay, by using pyruvate kinase to detect the 

formation of ADP and monitoring the lactate dehydrogenase-catalysed oxidation of 

NADH. However, high endogenous rates in the absence of substrate (largely 

dependent on the presence of coenzyme A), using both cell-free extract and the 

soluble fraction, made measurements unreliable, and this method was not pursued. 
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Figure 7.26. Acyl-CoA synthetase activity was measured as the formation of 
acetylhydroxamate. Error bars show the standard deviation of triplicate measurements. 

7.15.3 Methylmalonyl CoA mutase 

Considerable effort was expended developing a method to measure the formation of 

succinyl-CoA from methylmalonyl-CoA by detection of dimethylated derivatives of 

these compounds (following hydrolysis) by gas chromatography. Cell-free extract 

(100 µg) prepared from cells grown on succinate or propane was incubated with 

methylmalonyl-CoA (200 nmol) and the reaction stopped at 0, 10, 20 and 30 min. 

Dimethylmethyl malonate (formed from methylmalony-CoA which was present in 

excess) was detectable at a level indistinguishable from controls in all reactions. 

Dimethylsuccinate (approximately 3 nmol) was detectable in reactions containing 

cell-free extract from propane-grown cells at 10, 20 and 30 min and was not 

detectable at the zero timepoint nor in any of the reactions containing extract from 

succinate-grown cells. However, the amount detected did not increase between 10 

and 30 min, suggesting that either the succinyl-CoA formed was consumed at a 

corresponding rate, or that its production was short lived, possibly due to inactivation 

of the enzyme, reported to be relatively unstable. Therefore it was impossible to 

calculate a rate from these data. Lack of time prevented further optimisation of this 

assay. 
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7.16 Reduction of ferricyanide by cell extracts – acetol dehydrogenase assay 

The capacity of cell extract to reduce ferricyanide as artificial electron acceptor was 

assayed in extract from cells grown on propane and succinate, using the 

discontinuous assay described in Materials and Methods. No significant increase 

over background activity was detectable following the addition of methanol, ethanol, 

2-propanol, 1,2-propanediol, acetone, or D-gluconate. High acetol dehydrogenase 

activity was present in extract from cells grown on propane. Significant activity was 

also detected with all aldehydes tested (acetaldehyde, propanal and methylglyoxal) in 

extract from both growth conditions. Figure 7.27 shows activity in response to 

propanal or acetol, using extract from cells grown on methane in addition to propane 

and succinate. Acetol dehydrogenase activity was 2.5-fold and 6-fold higher in 

extract from propane-grown compared to succinate- or methane-grown cells 

respectively, whereas propanal dehydrogenase activity was higher in succinate-

grown cell extract. 

 

 

Figure 7.27. Acetol dehydrogenase activity was measured in cell-free extract from cells 
grown on methane, propane or succinate, by measuring the reduction of ferricyanide to 
ferrocyanide. One unit is defined as the reduction of 2 nmol ferricyanide min-1 under the 
assay conditions. Data are the mean of triplicate measurements and error bars indicate the 
standard deviation. 
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In order to determine the intracellular location of this activity, crude extract was 

separated into soluble and membrane fractions as described in Materials and 

Methods, and the assay repeated. Acetol dehydrogenase activity in the membrane 

fraction was 48% of the activity in the soluble fraction, suggesting that both soluble 

and membrane-bound enzymes are involved and/or that the enzyme became partially 

detached from the membranes during purification. These data are consistent with the 

hypothesis that the activity of at least two different enzymes contributed to the 

measured rates; one likely a non-specific aldehyde dehydrogenase perhaps with some 

activity towards acetol, and in addition a more acetol-specific enzyme which is 

induced during growth on propane and which may be a membrane-bound protein. 

7.17 Msil1641 

Msil1641 is the last predicted gene in the propane monooxygenase gene cluster. It 

was not possible to determine categorically if it was co-transcribed with the genes 

immediately upstream (Chapter 6), but neither was evidence found of independent 

transcription. Native gels (Section 7.9) suggested possible involvement in propane 

metabolism, as did the detection of the polypeptide only in cell extract from cells 

expressing the PrMO structural genes cells (Sections 6.4 and 7.5). Therefore, it was 

decided that this gene deserved further investigation.  

7.17.1 Predicted function of Msil1641 

Msil1641 is the last of five predicted genes of the PrMO gene cluster which do not 

have homologues associated with the sMMO. The PrMO gene cluster is shown in 

Figure 7.28. 

 

 

Figure 7.28. The location of ORFs Msil1645 – Msil1641, downstream of the PrMO 
structural genes. 
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NCBI BLAST was used to identify homologues to these putative genes, as shown in 

Table 7.9, and Msil1641 was examined in more detail. The product of this gene is 

annotated as gluconate dehydrogenase (GADH), but most of the high similarity 

sequences appear to have an inferred rather than experimentally determined function, 

and no close hits were identified from manually curated databases (for example 

SwissProt). The highest-similarity sequences found, for which experimental evidence 

of gene function exists, were from Mycobacterium austroafricanum (Lopes Ferreira 

et al., 2006), Gluconobacter dioxyacetonicus (Toyama et al., 2007) and Erwinia 

cypripedii (Yum et al., 1997) which have between 33% and 24% amino acid identity 

to the product of Msil1641. While the second two examples encode gluconate 

dehydrogenases, the substrate and product of the enzyme from M. austroafricanum 

are reported to be 2-methyl 1,2-propanediol and hydroxyisobutyraldehyde 

respectively.  

Table 7.9. Top BLAST hits to the SWISS-PROT/TrEMBL database and protein annotations 
of translated sequences of the PrMO gene cluster downstream genes shown in Figure 7.28. 

Locus tag 
Msil Annotation Organism aa % id 

1645 Siderephore biosynthesis-like protein Beijerinckia indica 117 70 

1644 Cytochrome C Beijerinckia indica 133 64 

1643 Glyoxylase-like protein Beijerinckia indica 131 77 

1642 Uncharacterised Beijerinckia indica 182 67 

1641 Gluconate 2-dehydrogenase Beijerinckia indica 522 82 

 

 
A search of the conserved domain database (CDD) identified the Msil1641 gene 

product as belonging to the family of glucose methanol choline (GMC) 

oxidoreductases. The GMC family comprises a group of homologous flavoenzymes 

catalysing a diverse range of reactions (Cavener, 1992). The amino acid sequences of 

Msil1641 and the enzymes from M. austroafricanum and G. dioxyacetonicus  were 

aligned with some of the representative members of this group identified by Kiess et 

al. (1998), and the alignment is shown in Figure 7.30. The sequences are homologous 

and contain an FAD binding domain, including the well-characterised N-terminal 

ADP-binding GXGXXG motif (Wierenga et al., 1986). 

FAD-containing GADH is a membrane-bound three component enzyme (Adachi et 

al., 2007) which in G. dioxyacetonicus catalyses the oxidation of D-gluconate to 2-

keto-D-gluconate. Examples from many organisms are co-transcribed in gene-
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clusters encoding large and small subunits and a cytochrome c that links to the 

electron transport chain (Pajaniappan et al., 2008), prompting investigation of the 

genes adjacent to Msil1641. Msil1642 encodes a predicted small polypeptide with no 

homology to proteins of known function. However, examination of the amino acid 

sequence revealed a probable twin-arginine translocation (TAT) signal sequence, as 

shown in Figure 7.29. The TAT system transports folded enzymes across the plasma 

membrane (Lee et al., 2006) and the M. silvestris genome contains genes predicted to 

encode the TatABC polypeptides required (data not shown). 

 

 

Figure 7.29. The N-terminal region of the translation of Msil1642, showing a probable TAT 
signal sequence (Palmer et al., 2005). The twin-arginine motif is shown in a rectangle, and 
spans a positively charged N-terminal region (green) followed by a hydrophobic region of 
approximately 20 amino acids (pink). A possible cleavage site is indicated with an arrow. 

 

The online bioinformatics tool Pred-TAT (Bagos et al., 2010) was used to identify 

TAT signal sequences in the small subunits of characterised GADH enzymes from 

Campylobacter jejuni (accession number YP_002343851.1) (Pajaniappan et al., 2008) 

Erwinia cypripedii (AAC45883.1) (Yum et al., 1997), Gluconobacter 

dioxyacetonicus (BAF52626.1) (Toyama et al., 2007) and Pseudomonas aeruginosa 

(NP_250954.1) (Matsushita et al., 1979). High probability sites were predicted in all 

cases, although these polypeptides did not show particularly high similarity to each 

other (identity between 32 and 51% over approximately 220 amino acids, data not 

shown), and did not display a significant level of homology with Msil1642 (highest 

similarity to the sequence from E. cypripedii, 22% identical, 41% similar residues, E-

value 0.19). Since Msil1644 is predicted to encode a class I cytochrome c (40% 

identity to the well-characterised cytochrome c2 from Rhodopila globiformis), the M. 

silvestris cluster encodes elements similar in some respects to the characterised 

GADH enzymes. It was tempting to hypothesise that these genes encode a 

membrane-bound FAD-containing dehydrogenase, with involvement in propane 

metabolism. The presence of Msil1643, predicted to encode glyoxylase I, is 

consistent with metabolism of methylglyoxal (Cooper, 1984), a possible product of 

acetol dehydrogenase. 

 



238 
 

 

 
  



239 
 

Figure 7.30. ClustalX was used to align the gene product of Msil1641 (522 aa) with 
gluconate dehydrogenase from  Methylibium petroleiphilum (YP001020142.1), 2-methyl 
1,2-propanediol dehydrogenase from Mycobacterium austroafricanum (AAZ78237.1), 
alcohol dehydrogenase from Pseudomonas putida (CAB51051.1), choline dehydrogenases 
from Sinorhizobium meliloti (AAC13369.1) and E. coli (CAA37093.1), gluconate 
dehydrogenase from Gluconobacter dioxyacetonicus (AB292729), glucose oxidase from 
Penicillium amagasakiense (P81156.1) and the consensus Conserved Domains Database 
sequence COG2303. The FAD-binding domain is shown as four regions surrounded by 
rectangles (Kiess et al., 1998). Residues 117-139 form the flavin attachment loop. The 
substrate binding region covers residues 366-571. Active site residues 567 (which accepts 
protons from the substrate) and 611 are conserved throughout GMC enzymes. Asterisks 
denote identical residues, two dots highly conserved and one dot conserved residues. 

 

7.17.2 Deletion of Msil1641 

To determine the involvement (if any) of the gene product of Msil1641 in propane 

metabolism, strain Δ1641 was constructed as described in Chapter 4. As confirmed 

by sequencing, this strain has a deletion of 1,650 bp, from 77 bp upstream of the start 

codon of Msil1641 to 4 bp upstream of the end of the coding sequence, and the 

insertion of 100 bp containing a single loxP sequence. Since the downstream gene, 

Msil1640, is predicted to be transcribed in the reverse direction, polar effects of the 

deletion were unlikely. 

7.17.3 Growth phenotype of strain Δ1641 

There was no difference between the growth of M. silvestris wild-type and strain 

Δ1641 on methane, methanol or D-gluconate, see Figure 7.31 and Table 7.10. 

However, this strain grew more slowly and to a lower final density on propane, and 

was unable to grow on 2-propanol, (Figure 7.32) or acetone (Figure 7.35). These data 

suggest that the gene-product of Msil1641 may be involved in propane metabolism 

via the sub-terminal pathway. 
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Figure 7.31. Growth of M. silvestris wild-type (solid lines and filled symbols) and strain 
Δ1641 (dashed lines and open symbols) on methanol (0.1% v/v) (circles), D-gluconate (5 
mM) (triangles), and methane (20% v/v) (diamonds). Error bars show the standard deviation 
of triplicate vials. 

 

 

 

Figure 7.32. Growth of M. silvestris wild-type (solid lines and filled symbols) and strain 
Δ1641 (dashed lines and open symbols) on propane (20% v/v) (left) or 2-propanol (0.05% 
v/v) (right). (Inoculum was grown on methanol.) Error bars show the standard deviation of 
triplicate vials. 
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Table 7.10. Growth of the wild-type and strain Δ1641. Data are the mean of triplicate 
measurements ± standard deviation. Substrate concentrations 0.05% v/v, except methanol: 
0.1% v/v, D-gluconate: 5 mM and propane: 20% v/v. 

Specific growth rate (h-1) Lag time (h) Biomass increase (OD) 
Substrate BL2 Δ1641 BL2 Δ1641 BL2 Δ1641 
Methanol 0.060 ± 0.001 0.059 ± 0.002 1 ± 0 6 ± 1 0.66 ± 0.02 0.63 ± 0.01 
Propane 0.016 ± 0.001 0.009 ± 0.000 206 ± 27 144 ± 16 0.72 ± 0.04 0.51 ± 0.09 

2-propanol 0.020 ± 0.002 0.000 ± 0.000 76 ± 4 - 0.60 ± 0.01 0.00 ± 0.00 
D-gluconate 0.013 ± 0.001 0.013 ± 0.002 36 ± 4 29 ± 17 0.47 ± 0.01 0.50 ± 0.02 

Methane 0.025 ± 0.001 0.022 ± 0.001 146 ± 10 141 ± 12 0.34 ± 0.06 0.35 ± 0.06 
Acetone 0.037 ± 0.001 0.000 ± 0.000 35 ± 4 - 0.48 ± 0.02 0.00 ± 0.00 
Acetol 0.028 ± 0.004 0.032 ± 0.000 3 ± 10 28 ± 2 0.16 ± 0.01 0.45 ± 0.01 

 

7.17.4 Detection of the products of propane oxidation during growth of strain 

Δ1641 

Since it had been noted that M. silvestris growing on propane accumulates 2-

propanol and sometimes acetone in the culture medium (Section 7.6), and strain 

Δ1641 appeared unable to metabolise these intermediates, both wild-type and strain 

Δ1641 were grown in 25 ml medium in 120 ml serum vials and supplied with 

propane (20% v/v). Inoculum was from propane-grown cultures. 1-propanol, 2-

propanol, acetone and acetol were measured in the culture supernatant as shown in 

Figure 7.33. As before, growth of strain Δ1641 was slower than that of the wild type 

(specific growth rates 0.0075 ± 0.0002 h-1, and 0.0174  ± 0.0003 h-1 (mean ± 

standard deviation of three vials) respectively). 1-propanol was not detected in any 

vial at any time. 2-propanol and acetone were detected in the cultures at the start due 

to the transfer of small amounts of these oxidation products with the inoculum. 2-

propanol accumulated in the medium of wild-type and strain Δ1641 vials from the 

start, and acetone after approximately 150 h. Acetol was detected in vials containing 

strain Δ1641 at 92 h and reached approximately 2 mM by the end of the experiment, 

but was not detected at any time in wild-type cultures. 
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Figure 7.33. M. silvestris wild-type (solid lines and filled symbols) and strain Δ1641 (dashed 
lines and open symbols) were grown on propane (20% v/v) in 25 ml medium in 120 ml 
serum vials, and 2-propanol, acetone and acetol quantified in the culture medium. The 
growth of the cultures is shown at a) and the concentrations of 2-propanol (black) and 
acetone (red) (b) or acetol (c) below. Error bars (present for every data point) show the 
standard deviation of triplicate vials. Acetol was not detected in wild type cultures at any 
time during the experiment. 

 

Data shown in Figure 7.33, during the growth phase of the cultures, were used to 

calculate the total of the metabolites released (2-propanol, acetone and acetol) in 
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each vial at each time point. This was plotted as a function of the increase of biomass 

in the vials (calculated from the OD, assuming OD540 = 1.0 represents 0.25 mg dw), 

and is shown in Figure 7.34. The wild type strain accumulated these products of sub-

terminal oxidation at a linear rate of approximately 14 µmol (mg of biomass 

produced)-1 during the exponential phase of growth up to 165 h, after which time the 

rate of accumulation increased. This strain continued to produce 2-propanol and 

acetone during stationary phase, as can be seen from Figure 7.33. At this point 

propane is still available to the cells, which are presumably limited by some other 

factor. 

 

 

Figure 7.34. Data from Figure 7.33 were used to plot the total of metabolites (2-propanol, 
acetone and acetol) detected in each vial against the production of biomass. Vials (each 
strain in triplicate) are depicted as diamonds, triangles or circles, the wild-type strain with 
filled symbols and strain Δ1641 with open symbols. Only data up to the maximum culture 
density reached during the experiment for each strain are included, and the wild-type 
trendline is fitted to the exponential phase of growth up to 165.5 h only. 

 

Strain Δ1641, however, accumulated these metabolites at approximately 5 times the 

wild-type exponential-phase rate (75 µmol (mg of biomass produced)-1) throughout. 

These data are consistent with the hypothesis that the wild-type uses 2-propanol and 

acetone as carbon and/or energy sources during growth on propane, and that strain 

Δ1641 is unable to do so. 



244 
 

7.17.5 Growth of M. silvestris wild-type and strain Δ1641 on acetol 

It was noticed that the wild-type strain did not grow to a high density on acetol (0.05% 

v/v) (Figure 7.21), reaching a final density of only approximately 0.3, despite rapid 

initial growth. In addition, at stationary phase culture density declined rapidly, 

suggesting cell lysis. The pH of the medium was measured at stationary phase and 

found to be approximately 4.0 – 4.5 (nitrate as nitrogen source), in comparison with 

vials supplied with acetone, which did not appreciably alter from the initial value of 

pH 5.5. Strain Δ1641 was grown alongside the wild-type on acetol (0.05% v/v), as 

illustrated in Figure 7.35. 

 

 

Figure 7.35. Growth of M. silvestris wild-type (solid lines and filled symbols) and strain 
Δ1641 (dashed lines and open symbols) on acetone (0.05% v/v) (left) or acetol (0.05% v/v) 
(right). Error bars show the standard deviation of triplicate vials. 

 

Unexpectedly, strain Δ1641 was able to grow on acetol, and indeed grew to a higher 

cell density than the wild-type, reaching more than double the maximum density 

(Table 7.10). Cells from one of the vials of strain Δ1641 growing on acetol shown in 

Figure 7.35 were diluted 1/106 and 100 µl of the diluted suspension spread on DAMS 

plates and incubated in a methanol-rich atmosphere. After two weeks colonies 

appeared (at the rate of 3.8 × 108 cfu ml-1 of the original culture), 10 of which were 

used for colony-PCR using primers 1641Tf/1641Tr, on either side of the area of 

gene-deletion. In every case (10/10), the PCR amplicon size indicated the deletion 

genotype (data not shown). An additional colony was transferred into liquid culture 

and grown on methanol (0.1% v/v). At stationary phase this culture was used as 

inoculum in a repeat test for growth of strain Δ1641 on acetone or acetol, and the 
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previously observed phenotype was repeated, see Figure 7.36. As before, during the 

experiment the pH of all vials remained at the initial value of pH 5.5.  

 

 

Figure 7.36. A repeat experiment to test the growth of strain Δ1641 on acetone (0.05% v/v) 
(triangles) or acetol (0.05% v/v) (circles) using, as inoculum, cells derived from a single 
colony following plating of dilutions of an acetol-grown culture. Error bars show the 
standard deviation of triplicate vials.  

 

These data suggest that the acetol-metabolising enzymes expressed during growth on 

propane and on acetol may be different, since, during growth on propane, 

metabolism of acetol seems prevented or reduced in strain Δ1641, whereas this strain 

was able to grow on acetol when supplied as substrate. The difference in the 

production of acid during growth on this substrate indicates a difference in the 

metabolism of this compound by these two strains. 

7.18 Discussion  

7.18.1 The products of propane oxidation in M. silvestris 

One of the aims of the work described in this chapter was to identify the product(s) 

of propane oxidation. Unfortunately, however, it was not possible to directly detect 

these products in cell suspensions of propane-grown cells using inhibitors of further 



246 
 

metabolism, as described in Section 7.3. Cells, once removed from the growth 

environment, had a low propane oxidation capacity, as previously noted during 

oxygen electrode experiments (Chapter 6), and products were not detected. Therefore, 

alternative methods were used to gather evidence which supported both terminal and 

sub-terminal oxidation pathways. 

7.18.1.1 Evidence supporting terminal oxidation of propane 

Only cultures already expressing propane-metabolising enzymes, set up using 

propane-grown inoculum, were not inhibited by the presence of 1-propanol, and were 

also able to grow on this substrate, in contrast to the severe inhibition of growth 

when using inoculum grown on other substrates (see Section 7.4.1). Inhibition might 

be caused by rapid intracellular accumulation of a product of 1-propanol oxidation, 

possibly propionate. Exogenous supply of propionate, which at the growth pH (pH 

5.5) would be mostly de-protonated (pKa of propionic acid = 4.86) resulting in 

relatively slow diffusion into the cell, would possibly allow time for the induction of 

enzymes required for its metabolism. (The inhibitory effect of propionate in Thauera 

butanivorans was mentioned in Chapter 1, Section 1.17.) In any event, these data 

suggest that propane-grown cells express enzymes capable of 1-propanol metabolism 

or detoxification, which are absent from cells grown on other substrates. 

Experiments using the oxygen electrode revealed a striking difference in the 

stoichiometry of oxygen uptake between cells grown on propane and other substrates 

in response to 1-propanol and propanal. Propane grown cells consumed three times 

as much oxygen as succinate-grown cells when 1-propanol was added (Section 7.7.1), 

demonstrating that the oxidation of these substrates proceeds further in propane-

grown cells. 

Quantitative proteomics data supplied by the Biological Mass Spectrometry and 

Proteomics group at the University of Warwick identified significant amounts of the 

methylmalonyl-CoA pathway enzyme polypeptides in soluble extract from propane- 

but not succinate-grown cells. 

Strain Δ1641, which was unable to grow on 2-propanol or acetone, was able to grow 

on propane at a somewhat reduced rate, demonstrating that this strain is able to grow 

on propane although unable to metabolise the products of sub-terminal oxidation. 
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7.18.1.2 Evidence supporting sub-terminal oxidation of propane 

 The accumulation of 2-propanol and acetone in the culture medium provides 

convincing evidence that propane is also oxidised at the sub-terminal carbon atom. 

Several examples have appeared in the literature of organisms excreting acetone 

during growth on, or when incubated with propane, for example species of 

mycobacteria, Brevibacterium, Nocardia, Pseudomonas and Arthrobacter (Lukins 

and Foster, 1963; Hou et al., 1983b; Stephens and Dalton, 1986). However, in some 

cases acetone was excreted without the ability for further oxidation or incorporation 

into cellular material (Stephens and Dalton, 1986), suggesting that sometimes 2-

propanol is an unused by-product of propane oxidation. Several lines of evidence 

suggest that sub-terminal oxidation is productive in M. silvestris. Both 2-propanol 

and acetone were good substrates for growth, and although these intermediates 

accumulated during growth on propane, they were also consumed when the propane 

supply was interrupted or exhausted (Figure 7.14 and Figure 7.15). Extract from 

propane-grown cells contained six-fold higher PMS-linked 2-propanol 

dehydrogenase activity in comparison to extract from methane-grown cells (Table 

7.3), and in oxygen electrode experiments propane-grown cells had increased ability 

to oxidise sub-terminal intermediates, particularly acetone and acetol (Figure 7.17).  

Additionally, both 2-propanol and acetone, as growth substrates, induced expression 

of the PrMO (Section 7.5). Finally, strain Δ1641, which was unable to grow on 2-

propanol or acetone, both grew more slowly on propane compared to the wild-type 

(Figure 7.33), and also accumulated sub-terminal intermediates at a higher rate 

(Figure 7.34) in comparison to the formation of biomass. 

7.18.2 1,2-propanediol as an intermediate in propane oxidation 

In some bacteria and other organisms it has been shown or suggested that 1,2-

propanediol may be an intermediate of propane or acetone oxidation, and the 

production of acetol from 1,2-propanediol has been demonstrated (Walti, 1934; 

Rudney, 1954; Lukins and Foster, 1963; Hou et al., 1983a). It could also be 

hypothesised that 1- or 2-propanol could be subject to monooxygenase-mediated 

oxidation to 1,2-propanediol, which could be oxidised by a primary alcohol 

dehydrogenase forming lactate, a reaction shown to be catalysed by MDH (Bolbot 

and Anthony, 1980a). The lack of activity of propane-grown cells with 1,2-
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propanediol in the oxygen electrode (Section 7.7.2) argues against involvement of 

this compound, and the accumulation of acetone in the culture medium suggests the 

conversion of 2-propanol into acetone. 

7.18.3 The enzymes of propane metabolism 

The monooxygenases responsible for propane oxidation have been discussed in 

Chapter 6. Enzymes of terminal and sub-terminal pathways were assayed to 

determine if cells contained the capacity for operation of these metabolic pathways.  

7.18.3.1 Alcohol dehydrogenase 

The evidence suggests that propane is oxidised to both 1-propanol and 2-propanol, 

which must then be dehydrogenated to propanal and acetone respectively. Only very 

low levels of NAD(P)-dependent alcohol dehydrogenase could be detected in extract 

from propane-grown cells, but high levels of PMS-linked dehydrogenase activity 

(Table 7.3 and Table 7.4). Methanol dehydrogenase (MDH) was expressed at high 

levels in all growth conditions, as shown by SDS-PAGE gels and enzyme assays 

(Chapter 6, Figure 6.13 and Chapter 5, Section 5.9.2). MDH has a well-characterised 

wide substrate specificity for primary alcohols (Anthony, 1982), and may be 

responsible for 1-propanol dehydrogenase activity in propane-grown cell extract. 

Some MDH enzymes have been shown to have secondary alcohol activity (Goldberg, 

1976; Sahm et al., 1976), but, in M. silvestris, 2-propanol activity was greatly up-

regulated compared to 1-propanol activity in propane-grown cell extract. This 

implies that a different alcohol dehydrogenase is induced during growth on propane 

with activity towards secondary alcohols. The 2-propanol activity detected in the 

soluble fraction from this extract was relatively high (381 nmol (min mg)-1) but no 

prominent bands unique to lanes loaded with extract from propane-grown cells were 

identified in SDS-PAGE gels (Table 7.2) containing putative alcohol dehydrogenase 

polypeptides.  It seems surprising that a secondary alcohol dehydrogenase with 

activity comparable to MDH is expressed in propane-grown cells but is not evident 

in SDS-PAGE gels. An alternative might be that the MDH activity detected in all 

growth conditions is modified in propane-grown cells to include secondary alcohols. 

In the time available it was not possible to identify the enzyme responsible for the 

secondary alcohol activity in propane-grown cells. 
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7.18.3.2 Terminal pathway enzymes 

NAD+-dependent aldehyde dehydrogenase activity was present in extract from cells 

grown on propane or succinate at a level four times that of methane-grown cell 

extract (Section 7.15.1). This activity is sufficient to support the observed growth 

rate on propane. Similarly, a relatively high level of acyl-CoA synthetase was found 

in extract of cells grown on acetate, propane and succinate, but the acetyl-CoA and 

propionyl-CoA activities were similar in extracts from all growth conditions, 

suggesting that a relatively non-specific enzyme may be responsible (Section 7.15.2). 

In the time available it was not possible to assay propionyl-CoA carboxylase, and 

quantitative data regarding methylmalonyl-CoA mutase were not obtained. However, 

succinyl-CoA appeared to be formed from methylmalonyl-CoA in propane-grown 

cell extract only (Section 7.15.3), suggesting that methymalonyl-CoA mutase may be 

induced during growth on propane. It was not possible to optimise this assay due to 

constraints of time. 

7.18.3.3 Sub-terminal pathway enzymes 

Conversion of acetone into acetol would require oxidation of the terminal methyl 

group by a monooxygenase. Polypeptides likely to catalyse this reaction specifically 

were not identified on SDS-PAGE gels. This enzyme was not assayed in cell extract, 

and activity has not always been detected in past studies (Taylor et al., 1980)(Woods 

and Murrell, 1989). However, both acetone- and acetol-stimulated oxygen uptake 

was greatly increased in propane-grown cells as measured in the oxygen electrode 

(Section 7.7). Ferricyanide-linked acetol dehydrogenase activity was upregulated in 

extract from propane-grown cells compared to extract from cells grown on succinate 

or methane (Section 7.16). 

7.18.4 The phenotype of strain ΔICL and strain ΔSGAT 

There was no difference between the growth of strain ΔSGAT and the wild-type on 

propane (Section 7.13), demonstrating that the products of propane metabolism are 

not one-carbon compounds in M. silvestris, since strain ΔSGAT was unable to grow 

on one-carbon compounds (Chapter 5). Similarly, strain ΔICL was able to grow on 

propane at a similar rate and to a similar final density as the wild-type, implying that 

propane is not metabolised to two-carbon compounds, for example acetate or acetyl-
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CoA, since, as shown in Chapter 5, this strain has a pronounced phenotype during 

growth on two-carbon compounds. Therefore these data allow the elimination of 

several of the potential pathways shown in Figure 7.1 and Figure 7.2, since many of 

these result in one- or two-carbon compounds, or require the conversion of acetyl-

CoA to glyoxylate, necessitating, in M. silvestris, the reaction catalysed by isocitrate 

lyase. The methylmalonyl-CoA pathway appears to be the only feasible option for 

metabolism of terminal oxidation products without generating 1- or 2-carbon 

compounds, since M. silvestris does not have homologues of the methylcitrate 

pathway genes as mentioned in Section 7.2.2. Applying the same argument to 

metabolism of sub-terminal products of propane oxidation via acetone (Figure 7.2) 

restricts the possibilities for the breakdown of acetone to reactions resulting in acetol 

and methylglyoxal. These data are in contrast to the situation in Mycobacterium 

JOB5, where isocitrate lyase was shown to be induced during propane metabolism 

(Vestal and Perry, 1969). 

7.18.5 Growth of strain ΔPrMO on sub-terminal intermediates 

Interestingly, the growth rate of strain ΔPrMO on 2-propanol was halved compared 

to the wild-type (Section 7.11), although growth on acetone and acetol was 

unaffected. This implies either a polar effect of the gene deletion exerting an 

influence on genes responsible for 2-propanol metabolism, or involvement of the 

PrMO itself in 2-propanol oxidation, or regulatory changes due to the deletion of the 

PrMO α-subunit. Evidence has been presented (Section 7.17) that down-stream genes 

are involved in metabolism of products of sub-terminal propane oxidation; however 

it is not clear how these might be directly involved in 2-propanol oxidation nor how 

disruption would affect 2-propanol but not acetone metabolism. A similar effect was 

observed for Gordonia TY5 (Kotani et al., 2003), where disruption of the 

hydroxylase subunit of the PrMO reduced growth on 2-propanol. The authors 

demonstrated that transcription of the downstream adh1 gene, encoding alcohol 

dehydrogenase, was prevented, although this gene is in a cluster thought to be 

transcribed independently from the PrMO gene cluster. Recently Furuya et al. (2011) 

noted that deletion of mimA, encoding the PrMO α-subunit in Mycobacterium 

smegmatis, prevented growth on both 2-propanol and acetone, (but not acetol), in 

addition to propane.  Growth on acetone was largely, and on 2-propanol partially, 
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restored by complementation with the mimA gene from the closely related M. goodii. 

The authors concluded that the PrMO was involved in the conversion of acetone into 

acetol. In M. silvestris, both strain ΔPrMO and strain ΔMmoX were able to grow on 

acetone. A double mutant with a deletion of both these genes was not constructed, 

and so it is not possible to categorically state that the PrMO and the sMMO are not 

interchangeably responsible for the oxidation of acetone, although the facts that the 

sMMO was not expressed during growth of the wild-type on acetone (Chapter 6, 

Section 6.6), and that strain ΔPrMO grew on acetone similarly to the wild-type 

(Section 7.11), strongly suggest that this is not the case. Therefore the data suggest 

that the inhibition of growth on 2-propanol in strain ΔPrMO is more likely due to 

regulatory effects in M. silvestris, the mechanisms of which are unknown. 

7.18.6 The role of Msil1641 

Deletion of Msil1641, the final gene of the PrMO gene cluster, annotated as 

encoding gluconate dehydrogenase, abolished growth on 2-propanol and acetone and 

decreased the specific growth rate on propane to a little over half the wild-type figure 

(Section 7.17.3). Together with the detection of acetol in the medium of strain Δ1641 

during growth on propane, these data suggest that this gene-product is involved in 

sub-terminal oxidation of propane, possibly in the conversion of acetol into 

methylglyoxal. Methylglyoxal is produced in many organisms, both as a by-product 

of glycolysis and during the catabolism of amino acids (Cooper, 1984) and pathways 

for its transformation to pyruvate or lactate are usually present. The presence of 

Msil1643, annotated as glyoxylase I, in the same cluster of genes, may be significant. 

Enzyme assay data (Section 7.16) suggest that there may be more than one enzyme 

with acetol dehydrogenase activity, possibly with different intracellular locations, as 

does the ability of strain Δ1641 to grow on acetol (Section 7.17.3). This hypothesis is 

reinforced by the observation that whereas the wild-type strain acidifies the culture 

medium during growth on acetol, growth of strain Δ1641 under the same conditions 

does not have this effect. 

7.18.7 The sub-terminal oxidation pathway 

At low propane concentrations (4% v/v) 2-propanol was detected in the culture 

medium and at higher concentrations (20% v/v) acetone was also detected. 
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Furthermore, although acetol was not detected with the wild-type, this intermediate 

was formed during growth of strain Δ1641 on propane. These data are consistent 

with sub-terminal oxidation of propane, resulting in 2-propanol, which proceeds via 

acetone and acetol, which is metabolised by the gene-product of Msil1641, probably 

resulting in methylglyoxal which is assimilated into central metabolism via pyruvate 

or lactate. The range of substrates capable of supporting growth and enzyme assay 

and oxygen electrode data support this hypothesis. 

7.18.8 Regulation of propane and methane oxidation 

Previous studies did not identify substrates other than methane which induced 

expression of the sMMO (Dedysh et al., 2005a; Theisen et al., 2005), (and sMMO 

expression was found to be repressed by the presence of acetate in addition to 

methane). In this work, transcription of the sMMO genes did not occur during 

growth on methanol (Chapter 6, Section 6.2.6), but these genes were shown to be 

both transcribed and expressed during growth on methane and on propane (Chapter 6, 

Section 6.4). Since methane is metabolised via methanol, and one-carbon compounds 

were shown not to be products of propane metabolism, the most conservative 

interpretation of these data is that the methane molecule provides the signal for 

sMMO gene expression, and that the propane molecule is also effective in this role. 

However, 2-propanol and acetone, while inducing expression of the PrMO, did not 

induce sMMO expression, suggesting that an intermediate of propane metabolism 

regulates expression of the PrMO. The alternative explanation, that transcription of 

the sMMO is constitutive in the absence of a repressor, is not supported since sMMO 

expression is not prevented by the presence of 2-propanol or acetone during growth 

on propane, but does not occur during growth on these intermediates alone. 

Therefore the data suggest that expression of the sMMO requires both induction by 

methane (or propane) and the absence of repression by some (but not all) multi 

carbon compounds. Repression of methane oxidation in the presence of other 3-

carbon compounds was not investigated. 
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7.18.9 Conclusions 

The data presented in this chapter suggest that M. silvestris oxidises propane at both 

terminal and sub-terminal carbons, producing 1-propanol and 2-propanol, and that 

both these products are assimilated. Although at least 25% of propane was oxidised 

to 2-propanol it was not possible to further quantify the relative contribution of each 

pathway. Flux analysis using techniques such as 13C metabolomics might provide 

valuable data (Peyraud et al., 2009), and should be considered for the future. The 

terminal pathway probably proceeds via methylmalonyl-CoA, resulting in succinate. 

Sub-terminal oxidation proceeds via acetone and acetol which is likely converted to 

methylglyoxal perhaps by a membrane-bound FAD-containing enzyme with novel 

substrate specificity. Methylglyoxal may be converted to pyruvate or lactate via 

established mechanisms. The activity of a PMS-linked secondary alcohol 

dehydrogenase was detected in propane-grown cells, although the genes responsible 

for encoding this enzyme and also an acetone oxygenase were not located. 

Suggestions for future work include further investigation of the enzyme activities 

present in the mutant strains already constructed. In addition, the phenotype of a 

mutant with a deletion of MDH would shed light on the role of this enzyme in 

propane metabolism, and might help towards identification of the secondary alcohol 

dehydrogenase. The possibility of a gluconate-dehydrogenase-like enzyme with 

activity towards acetol requires further investigation. Research into the mechanisms 

of methane and propane regulation might reveal findings that could also assist in 

understanding the regulation of methane oxidation in other methanotrophs. 
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Chapter 8  
 

Summary and future prospects 
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8.1 Physiology and growth 

Chapter 3 described attempts to predict and optimise the conditions for the successful 

growth of M. silvestris. Salt concentration was not found to be as critical as 

previously assumed, and the tendency of cultures to vary the medium pH was 

frequently found to be the cause of limited growth. An improved trace elements 

solution was developed, and a better understanding of the optimal growth conditions 

was gained. These preliminary investigations were essential for the successful 

development of genetic methods, which were important tools in this study. The 

realisation that, under oxygen limitation, cells can be grown without accumulating 

large amounts of polysaccharide was essential for the generation of high quality 

biomass for biochemical and proteomic analysis. The ability to grow on propane in 

addition to methane (which is unique among known life forms), highlighted an 

interesting and potentially useful metabolic potential. 

8.2 Development of a genetic system 

Chapter 4 detailed the development of the genetic methods which were to form the 

basis of analysis of metabolic pathways and of the roles of key enzymes. A method 

of targeted mutagenesis, using methods unusual among methanotrophs, was 

developed which, by relying on electroporation with linear DNA fragments, resulted 

in gene replacement with a minimum of colony transfers on plates. This method was 

shown to be simple and effective, and several mutant strains were constructed. A 

second method was developed, although not tested, which should allow the 

replacement of components of the sMMO with heterologous genes, or with 

engineered or mutated versions, using the SacB counter-selectable marker. 

8.3 The role of the glyoxylate bypass enzymes 

Chapter 5 described the role of enzymes of the glyoxylate pathway. Analysis of 

mutant strains demonstrated that isocitrate lyase is essential for one-carbon 

metabolism, despite the measured low-activity of this enzyme in wild-type methane-

grown cells, and that both isocitrate lyase and malate synthase are required for two-

carbon metabolism. Interestingly, methanol dehydrogenase (MDH) regulation was 

found to be influenced by flux through isocitrate lyase, since deletion of isocitrate 

lyase abolished or repressed MDH expression. One-carbon growth was unexpectedly 
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found to be affected by deletion of malate synthase. During operation of the serine 

cycle no flux would be expected through malate synthase, since glyoxylate is 

substrate for serine cycle enzyme serine-glyoxylate aminotransferase, and removal of 

this intermediate would prevent operation of the cycle. Deletion of serine-glyoxylate 

aminotransferase also affected growth on ethanol, but not on acetate. One possible 

explanation for these data is that deletion of these enzymes, which form a metabolic 

branch point, also affected expression of MDH. 

8.4 Oxidation of methane and propane 

Chapter 6 described the identification of the transcriptional start site of the propane 

monooxygenase (PrMO) gene cluster, under the control of a putative σ54 promoter. 

This cluster is likely to be co- transcribed as an operon, but intergene PCR was not 

entirely successful in demonstrating this, highlighting the importance of controls 

which are not always included in this approach. Using the wild-type strain and also 

strains with a deletion of either the soluble methane monooxygenase (sMMO) or the 

PrMO, the ability of each enzyme to oxidise methane and propane was investigated. 

It was shown that the PrMO is not able to oxidise methane significantly, and is 

neither expressed nor transcribed during growth on methane. In contrast, the sMMO, 

expressed during growth on propane, is able to oxidise propane and there was a 

relatively minor difference between the phenotypes of the wild-type and strain 

ΔPrMO during growth on a mixture of 2.5% (v/v) methane and propane. However, 

propane was assimilated less efficiently, such that although growth of strain ΔPrMO 

was possible on 2.5% (v/v) propane, the efficiency of its assimilation into biomass 

was approximately half that of the wild type. Propane also had an inhibitory or toxic 

effect on the strain lacking the PrMO, and growth on 20% (v/v) propane was 

prevented. The ability of the wild-type to oxidise a range of non-growth substrates 

was examined using an oxygen electrode and cells grown on methane or propane. A 

wide range of aliphatic and aromatic compounds were oxidised, and comparison of 

the relative rates between cells grown on the two substrates suggested that the PrMO 

was also able to oxidise many of these compounds, including alkenes and aromatics 

such as benzene and phenol. 
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8.5 Metabolism of propane 

In Chapter 7, attempts to unravel the metabolism of propane were described. Propane 

was shown to be oxidised to a mixture of 1-propanol and 2-propanol. The data 

presented show that 1-propanol was assimilated via pathways comparatively well 

characterised in heterotrophic organisms, and that 2-propanol was oxidised to 

acetone and acetol. Interestingly, deletion of the PrMO affected growth on 2-

propanol, but not on acetone, suggesting that the inhibition of growth of this strain on 

this substrate is due to a regulatory effect. An enzyme, encoded at locus Msil1641 

and annotated as gluconate dehydrogenase, was shown to be essential for 2-propanol 

and acetone metabolism. The data suggested that acetol was the substrate of this 

enzyme, which was possibly membrane-associated, exported via the twin-arginine 

translocation pathway and catalysed reactions in the periplasm. It was noted that 

while only the sMMO is expressed at high level during growth on methane, growth 

on propane induces expression of both the sMMO and the PrMO, and the PrMO is 

also expressed during growth on 2-propanol and acetone, suggesting that two 

substantially different mechanisms regulate expression of these enzymes. 

8.6 Prospects for future research 

The data presented here highlight numerous avenues for productive research in the 

future. Alternative pathways of acetate assimilation and glyoxylate regeneration (the 

ethylmalonyl-CoA (EMC) pathway) have been the subject of intense research 

recently (Erb et al., 2009) and may have interesting biotechnological applications 

(Alber, 2011). The finding that M. silvestris uses the glyoxylate pathway for two-

carbon assimilation and a variant of the serine cycle that depends on isocitrate lyase, 

is significant because this is comparatively uncommon among methylotrophs 

(Anthony, 1982). Coordinated regulation of glyoxylate bypass enzymes is necessary 

in these organisms as mentioned in Chapter 1, but it is not known if these regulatory 

mechanisms have features in common with EMC pathway-possessing organisms. 

The genetic tractability of M. silvestris suggests that this may be a suitable organism 

to investigate these issues. The unexpected changes in MDH expression noted during 

disruption of glyoxylate bypass enzymes also deserve further investigation. 

Comparatively little research has been published on the regulation of MDH in other 

methylotrophs, although regulatory proteins have been identified, possibly 
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responsive to formaldehyde, as outlined in Chapter 1. Since differences in MDH 

expression between M. silvestris strains were noted during growth on succinate, a 

different mechanism may be involved here. A better understanding of these topics 

may be important for a fuller understanding of the regulation of one-carbon 

metabolism both in M. silvestris, and also in other methylotrophs. 

The identification and initial characterisation of a second soluble diiron 

monooxygenase (SDIMO) enzyme in M. silvestris is interesting. It is the first 

example of an additional enzyme from a different group of this family in a 

methanotroph. Enzymes of this type have potential applications in biotechnology and 

bioremediation (van Beilen and Funhoff, 2005) and are being sought for these 

reasons (Holmes and Coleman, 2008), and the PrMO may have interesting 

characteristics and catalytic potential. Further characterisation of the M. silvestris 

SDIMOs is required, including purification and kinetic analysis and this would be 

facilitated by the mutant strains already developed. Investigation of the regulatory 

mechanisms would identify the conditions under which they are expressed in vivo 

and suggest effective mechanisms to engineer strains for particular applications, for 

example constitutive expression of the sMMO or PrMO, for applications in 

bioremediation or biocatalysis. The genetic systems developed here would enable the 

substitution of elements, from individual amino acid residues to entire enzyme 

subunits, of the sMMO or PrMO, for development of enzymes with novel 

characteristics, and the construction of a strain with a counter-selectable element 

should facilitate this. The ability to use alternative substrates for growth, the lack of 

the particulate methane monooxygenase and the potential to engineer control of gene 

expression highlights the suitability of M. silvestris for this application, as an 

alternative to the use of less tractable  hosts (Smith et al., 2002). 

Quantification of the product distribution of propane oxidation is required and would 

be possible using an approach such as 13C metabolic flux analysis (Zamboni and 

Sauer, 2009), which would also help to confirm the metabolic pathways involved. 

There is also scope for additional analysis using traditional biochemical tools 

including enzyme assays, and identification and characterisation of an acetone-

oxidising enzyme is essential. Additional mutant strains might be required to 

demonstrate the role of specific enzymes, including, for example, the role of MDH 

during growth on propane. Finally, the gene product of Msil1641 requires 

characterisation. If this enzyme is responsible for oxidation of acetol, this would be 
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the first reported example of this compound as substrate for an enzyme of this type. 

Examples of this enzyme family, for example D-gluconate dehydrogenase from 

Gluconobacter dioxyacetonicus have been purified and characterised, (most have a 

narrow substrate specificity), suggesting a possible approach for this task (Shinagawa 

et al., 1984). These enzymes are also of biotechnological interest due to their 

biocatalytic potential (Stottmeister et al., 2005). 

In summary, M. silvestris displays many interesting and unique characteristics. The 

work described here builds on that of previous researchers in attempting to 

understand the metabolic versatility of this extraordinary organism and, in common 

with much scientific research, has identified at least as many questions as it has 

answered. 
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