Appendices for Metabolic Pathway Analysis via Integer Linear Programming

by

Francisco J. Planes

May 2008

Contents

Appendix A: Biochemical Reactions 1
Appendix B: Biochemical compounds 29
Appendix C: Pathway details 48
Pathway 1: Gluconeogenesis. 53
Pathway 2: Glycogen 61
Pathway 3: Glycolysis 69
Pathway 4: Proline biosynthesis 77
Pathway 5: Ketogluconate metabolism 83
Pathway 6: Pentose phosphate 90
Pathway 7: Salvage pathway deoxythymidine phosphate 98
Pathway 8: Tricarboxylic acid (citric acid, citrate, TCA, Krebs) cycle 105
Pathway 9: NAD biosynthesis 113
Pathway 10: Arginine biosynthesis 120
Pathway 11: Sperdimine biosynthesis 128
Pathway 12: Threonine degradation to synthesise glycine 134
Pathway 13: Serine biosynthesis 140
Pathway 14: Histidine biosynthesis 146
Pathway 15: Tirosine biosynthesis 152
Pathway 16: Coenzyme A biosynthesis 158
Pathway 17: Pantothenate biosynthesis 163
Pathway 18: Tetrahydrofolate biosynthesis 169
Pathway 19: Riboflavin and FMN and FAD biosynthesis 174
Pathway 20: Heme biosynthesis 180
Pathway 21: De novo synthesis of pyrimidine ribonucletides 186
Pathway 22: De novo synthesis of pyrimidine deoxyribonucletides 192
Pathway 23: Phenylethylamine degradation 197
Pathway 24: Rhamnose degradation 203
Pathway 25: Fucose degradation 208
Pathway 26: Entner-Doudoroff 213
Pathway 27: Anaerobic respiration 218
Pathway 28: Arginine degradation 224
Pathway 29: Proline degradation 230
Pathway 30: Glycolate degradation 236
Pathway 31: Phospholipid biosynthesis 241
Pathway 32: Biosynthesis of cysteine 246
Pathway 33: Allantoin degradation 252
Pathway 34: Deoxycytidine degradation 257
Pathway 35: Phenylalanine biosynthesis 263
Pathway 36: Glyoxylate cycle 269
Pathway 37: Propionate degradation 275
Pathway 38: Glutamate biosynthesis cycle 280
Pathway 39: Biotin biosynthesis 285
Pathway 40: Glycerol degradation 290

Appendix A: Biochemical Reactions

We give below full details of the set of biochemical reactions used in this dissertation. This set has been taken from the metabolic network of E.Coli presented by Reed et al., 2003, which is available from http://systemsbiology.ucsd.edu/In_Silico_Organisms/E_coli/E_coli_reactions.

Please note that for some reactions listed below the reaction has not been reduced to its lowest form. For example:

R192 (100)h2o + (2) pa_EC --> (2) 12dgr_EC + (100) pi
can clearly be further reduced to

R192 (50)h2o + (1) pa_EC --> (1) 12dgr_EC + (50) pi

We automatically perform such reductions. Therefore any reference to a reaction in any discussion/pathway picture should be taken to refer to the reaction in its most reduced form.

1 R1a akg + ala-L \rightarrow glu- $\mathrm{L}+$ pyr
2 R2a ala-L \rightarrow ala-D
3 R3 asn-L +h2o \rightarrow asp-L + nh4
4 R4 asp-L + atp + nh4 \rightarrow amp + asn- $L+h+$ ppi
5 R5 asp-L + atp + gln- $\mathrm{L}+\mathrm{h} 2 \mathrm{o} \rightarrow \mathrm{amp}+$ asn-L + glu-L $+\mathrm{h}+\mathrm{ppi}$
6 R6 asp-L \rightarrow fum + nh4
7 R7a akg + asp-L \rightarrow glu-L + oaa
8 R8 3mob + ala-L \rightarrow pyr + val-L
9 R9 ala-D + fad + h $2 \mathrm{o} \rightarrow$ fadh $2+\mathrm{nh} 4+\mathrm{pyr}$

```
10 R10 h2o + suc6p -> fru + g6p
11 R11a ru5p-D }->\mathrm{ ara5p
12 R12a mmcoa-R }->\mathrm{ mmcoa-S
13 R13 2mcacn + h2o }->\mathrm{ micit
1 4 ~ R 1 4 a ~ g l y a l d ~ + ~ h ~ + ~ n a d h ~ \rightarrow ~ g l y c ~ + ~ n a d ~
15 R15a tagdp-D }->\mathrm{ dhap + g3p
16 R16a h2o + lald-L + nad -> (2) h + lac-L + nadh
17 R17 acald + h2o + nad -> ac + (2) h + nadh
18 R18a arab-L }->\mathrm{ rbl-L
19 R19 atp + rbl-L }->\mathrm{ adp + h + ru5p-L
20 R20a ru5p-L }->\mathrm{ xu5p-D
21 R21 acac + accoa }->\mathrm{ aacoa + ac
22 R22 accoa + but }->\textrm{ac}+\mathrm{ btcoa
23 R23 arbt6p + h2o }->\textrm{g}6\textrm{p}+\textrm{hqn
24 R24a man1p }->\mathrm{ man6p
25 R25a 2dr1p }->2\textrm{dr5p
26 R26a rlp }->\mathrm{ r5p
27 R27 2dr5p -> acald + g3p
28 R28 galctn-D }->2\mathrm{ dh3dgal + h2o
29 R29a 2dh3dgal6p }->\textrm{g}3\textrm{p}+\textrm{pyr
30 R30 2dh3dgal + atp }->2\mathrm{ dh3dgal6p + adp + h
3 1 \text { R31 dha + pep } \rightarrow \text { dhap + pyr}
32 R32 btcoa + fad + h2o + nad }->\mathrm{ aacoa + fadh2 + h + nadh
3 3 \text { R33 h2o + nad + pacald } \rightarrow \text { (2) h + nadh + pac}
34 R34 atp + flp }->\textrm{adp}+\textrm{fdp}+\textrm{h
35 R35a fc1p }->\mathrm{ dhap + lald-L
36 R36a fuc-L }->\mathrm{ fcl-L
3 7 ~ R 3 7 ~ a t p ~ + ~ f c l - L ~ \rightarrow ~ a d p ~ + ~ f c 1 p ~ + ~ h ~
38 R38a h + lald-L + nadh }->\mathrm{ 12ppd-S + nad
3 9 ~ R 3 9 a ~ u d p g ~ \rightarrow ~ u d p g a l
40 R40a atp + gal }->\mathrm{ adp + gallp + h
4 1 ~ R 4 1 a ~ g a l l p ~ + ~ u d p g ~ \rightarrow g 1 p ~ + ~ u d p g a l ~
42 R42a g1p + h + utp }->\mathrm{ ppi + udpg
43 R43 galct-D }->5\textrm{dh}4\textrm{dglc}+\textrm{h}2\textrm{o
```



```
78 R78 3hcinnm \(+\mathrm{h}+\) nadh \(+\mathrm{o} 2 \rightarrow\) dhcinnm \(+\mathrm{h} 2 \mathrm{o}+\mathrm{nad}\)
79 R79 3hpppn \(+\mathrm{h}+\) nadh \(+\mathrm{o} 2 \rightarrow\) dhpppn \(+\mathrm{h} 2 \mathrm{o}+\mathrm{nad}\)
80 R80 dhcinnm \(+\mathrm{o} 2 \rightarrow\) hkntd
81 R81 dhpppn + o2 \(\rightarrow\) hkndd
82 R82 h2o + hkndd \(\rightarrow(2) h+o p 4 e n+\) succ
83 R83 h2o + hkntd \(\rightarrow\) fum \(+(2) \mathrm{h}+\) op4en
84 R84 h2o + op4en \(\rightarrow 4\) h2opntn
85 R85 4h2opntn \(\rightarrow\) acald + pyr
86 R86 acald + coa + nad \(\rightarrow\) accoa \(+\mathrm{h}+\) nadh
87 R87a mnllp + nad \(\rightarrow \mathrm{f} 6 \mathrm{p}+\mathrm{h}+\) nadh
88 R88 acgam6p \(+\mathrm{h} 2 \mathrm{o} \rightarrow \mathrm{ac}+\) gam6p
89 R89 gam6p \(+\mathrm{h} 2 \mathrm{o} \rightarrow \mathrm{f} 6 \mathrm{p}+\mathrm{nh} 4\)
90 R90 acnam \(\rightarrow\) acmana + pyr
91 R91 g6p + udpg \(\rightarrow \mathrm{h}+\) tre \(6 \mathrm{p}+\mathrm{udp}\)
\(92 \mathrm{R} 92 \mathrm{~h} 2 \mathrm{o}+\) tre \(6 \mathrm{p} \rightarrow \mathrm{pi}+\) tre
93 R93 atp + coa \(+\mathrm{pac} \rightarrow \mathrm{amp}+\) phaccoa +ppi
94 R94 atp + tag6p-D \(\rightarrow\) adp \(+h+\) tagdp-D
95 R95a glp \(\rightarrow\) g6p
96 R96a micit \(\rightarrow\) pyr + succ
97 R97 h2o + oaa + ppcoa \(\rightarrow 2\) mcit + coa \(+h\)
98 R98 2mcit \(\rightarrow 2\) mcacn + h2o
99 R99 atp + coa + ppa \(\rightarrow\) adp + pi + ppcoa
100 R100 pi + ppcoa \(\rightarrow\) coa + ppap
101 R101 atp + rib-D \(\rightarrow \mathrm{adp}+\mathrm{h}+\mathrm{r} 5 \mathrm{p}\)
102 R102a rmn \(\rightarrow \mathrm{rml}\)
103 R103 atp \(+\mathrm{rml} \rightarrow \mathrm{adp}+\mathrm{h}+\mathrm{rml} 1 \mathrm{p}\)
104 R104a rml1p \(\rightarrow\) dhap + lald-L
105 R105 succoa \(\rightarrow\) mmcoa-R
106 R106 3dgulnp \(+\mathrm{h} \rightarrow \mathrm{co} 2+\) xu5p-L
107 R107 xu5p-L \(\rightarrow\) ru5p-L
108 R108a nad + sbt6p \(\rightarrow \mathrm{f} 6 \mathrm{p}+\mathrm{h}+\) nadh
109 R109 akg + o2 + taur \(\rightarrow\) aacald \(+\mathrm{co} 2+\mathrm{h}+\mathrm{so} 3+\) succ
110 R110a adp + ppap \(\rightarrow\) atp + ppa
111 R111 2obut + coa \(\rightarrow\) for + ppcoa
```

$$
\begin{aligned}
& 113 \text { R113 h2o + tre6p } \rightarrow \text { g6p + glc-D } \\
& 114 \text { R114 tartr-L } \rightarrow \text { h2o }+ \text { oaa } \\
& 115 \mathrm{R} 115 \mathrm{~h} 2 \mathrm{o}+\mathrm{o} 2+\text { peamn } \rightarrow \mathrm{h} 2 \mathrm{o} 2+\mathrm{nh} 4+\text { pacald } \\
& 116 \text { R116 altrn } \rightarrow 2 \text { ddglen }+ \text { h2o } \\
& 117 \text { R117a altrn }+ \text { nad } \rightarrow \mathrm{h}+\text { nadh }+ \text { tagur } \\
& 118 \text { R118a glcur } \rightarrow \text { fruur } \\
& 119 \text { R119a galur } \rightarrow \text { tagur } \\
& 120 \text { R120 mana } \rightarrow 2 \text { ddglcn }+\mathrm{h} 2 \mathrm{o} \\
& 121 \text { R121a mana }+ \text { nad } \rightarrow \text { fruur }+\mathrm{h}+\text { nadh } \\
& 122 \text { R122 fru } \rightarrow \text { glc-D } \\
& 123 \text { R123a xyl-D } \rightarrow \text { xylu-D } \\
& 124 \text { R124 atp + xylu-D } \rightarrow \text { adp }+\mathrm{h}+\mathrm{xu} 5 \mathrm{p}-\mathrm{D} \\
& 125 \text { R125 25dkglcn }+\mathrm{h}+\text { nadph } \rightarrow 2 \text { dhguln }+ \text { nadp } \\
& 126 \text { R126 h + hpyr + nadh } \rightarrow \text { glyc-R + nad } \\
& 127 \text { R127 h + hpyr + nadph } \rightarrow \text { glyc-R + nadp } \\
& 128 \text { R128 glcr } \rightarrow 5 \text { dh4dglc }+ \text { h2o } \\
& 129 \text { R129 h + mmcoa-S } \rightarrow \text { co2 + ppcoa } \\
& 130 \text { R130 ppcoa }+ \text { succ } \rightarrow \text { ppa }+ \text { succoa } \\
& 131 \text { R131 25dkglen }+\mathrm{h}+\text { nadph } \rightarrow 5 \text { dglen }+ \text { nadp } \\
& 132 \text { R132 2dhglen }+\mathrm{h}+\text { nadh } \rightarrow \text { glen }+ \text { nad } \\
& 133 \text { R133 2dhglen }+\mathrm{h}+\text { nadph } \rightarrow \text { glen }+ \text { nadp } \\
& 134 \text { R134 25dkglen }+\mathrm{h}+\text { nadh } \rightarrow 5 \text { dglen }+ \text { nad } \\
& 135 \text { R135 2dhguln }+\mathrm{h}+\text { nadh } \rightarrow \text { idon- }+ \text { nad } \\
& 136 \text { R136 2dhguln }+\mathrm{h}+\text { nadph } \rightarrow \text { idon-L + nadp } \\
& 137 \text { R137 23doguln }+\mathrm{h}+\text { nadh } \rightarrow 3 \text { dhguln }+ \text { nad } \\
& 138 \text { R138 icit } \rightarrow \mathrm{glx}+\text { succ } \\
& 139 \text { R139 accoa }+ \text { glx }+\mathrm{h} 2 \mathrm{o} \rightarrow \text { coa }+\mathrm{h}+\text { mal-L } \\
& 140 \text { R140 mal-L + nadp } \rightarrow \text { co } 2+\text { nadph }+ \text { pyr } \\
& 141 \text { R141 atp }+ \text { oaa } \rightarrow \text { adp }+ \text { co } 2+\text { pep } \\
& 142 \mathrm{R} 142 \mathrm{~h} 2 \mathrm{o}+\mathrm{ppi} \rightarrow \mathrm{~h}+(2) \mathrm{pi} \\
& 143 \text { R143 co } 2+\mathrm{h} 2 \mathrm{o}+\text { pep } \rightarrow \mathrm{h}+\text { oaa }+ \text { pi } \\
& 144 \text { R144 mal-L }+ \text { nad } \rightarrow \mathrm{co} 2+\text { nadh }+ \text { pyr } \\
& 145 \text { R145 5mdrulp } \rightarrow \text { dkmpp }+ \text { h2o } \\
& 146 \text { R146 dkmpp + (3) h2o } \rightarrow 2 \mathrm{kmb}+\text { for }+(6) \mathrm{h}+\mathrm{pi}
\end{aligned}
$$

```
147 R147 akg + ptrc \(\rightarrow\) 4abutn + glu-L
148 R148 h2o + nad + sucsal \(\rightarrow(2) \mathrm{h}+\) nadh + succ
149 R149 4abutn + h2o + nad \(\rightarrow\) 4abut \(+(2) \mathrm{h}+\) nadh
150 R150 5mtr + atp \(\rightarrow 5 \mathrm{mdrlp}+\mathrm{adp}+\mathrm{h}\)
151 R151a 5mdrlp \(\rightarrow\) 5mdrulp
\(152 \mathrm{R} 152 \mathrm{dkmpp}+\mathrm{h} 2 \mathrm{o}+\mathrm{o} 2 \rightarrow 2 \mathrm{kmb}+\) for \(+(2) \mathrm{h}+\mathrm{pi}\)
153 R153 glu5sa \(\rightarrow 1\) pyr5c \(+\mathrm{h}+\mathrm{h} 2 \mathrm{o}\)
154 R154 2kmb + glu-L \(\rightarrow\) akg + met-L
155 R155 accoa + glu-L \(\rightarrow\) acglu + coa \(+h\)
156 R156 acglu \(+\operatorname{atp} \rightarrow \operatorname{acg} 5 p+\operatorname{adp}\)
157 R157a acg5sa + nadp \(+\mathrm{pi} \rightarrow \operatorname{acg} 5 \mathrm{p}+\mathrm{h}+\) nadph
158 R158a acorn + akg \(\rightarrow\) acg5sa + glu-L
159 R159 acg5sa \(+\mathrm{h} 2 \mathrm{o} \rightarrow \mathrm{ac}+\) glu5sa
160 R160 acorn \(+\mathrm{h} 2 \mathrm{o} \rightarrow \mathrm{ac}+\) orn
161 R161 asp-L + atp + citr-L \(\rightarrow\) amp \(+\operatorname{argsuc}+h+\) ppi
162 R162a argsuc \(\rightarrow\) arg-L + fum
163 R163a cbp + orn \(\rightarrow\) citr-L + h + pi
164 R164 arg-L + succoa \(\rightarrow\) coa \(+\mathrm{h}+\) sucarg
165 R165 akg + sucorn \(\rightarrow\) glu-L + sucgsa
166 R166 (2) h + (2) h2o + sucarg \(\rightarrow \mathrm{co} 2+(2) \mathrm{nh} 4+\) sucorn
167 R167 h2o + nad + sucgsa \(\rightarrow(2) h+n a d h+\) sucglu
168 R168 h2o + sucglu \(\rightarrow\) glu-L + succ
169 R169 (2) atp + gln-L + h2o + hco \(3 \rightarrow(2)\) adp \(+c b p+g l u-L+(2) h+p i\)
170 R170 h2o + nadp + sucsal \(\rightarrow(2) h+n a d p h+\) succ
171 R171 4abut + akg \(\rightarrow\) glu-L + sucsal
172 R172 gtspmd + h2o \(\rightarrow\) gthrd + spmd
173 R173 atp + gthrd + spmd \(\rightarrow\) adp + gtspmd \(+\mathrm{h}+\mathrm{pi}\)
174 R174 5mta \(+\mathrm{h} 2 \mathrm{o} \rightarrow 5 \mathrm{mtr}+\) ade
175 R175 glu5p \(+\mathrm{h}+\) nadph \(\rightarrow\) glu5sa + nadp +pi
176 R176 atp + glu-L \(\rightarrow\) adp + glu5p
177 R177 1pyr5c \(+(2) h+\) nadph \(\rightarrow\) nadp + pro-L
178 R178 1pyr5c \(+(2) \mathrm{h} 2 \mathrm{o}+\mathrm{nad} \rightarrow\) glu-L \(+\mathrm{h}+\) nadh
179 R179 fad + pro-L \(\rightarrow 1\) pyr5c + fadh \(2+\) h
180 R180 arg-L \(+\mathrm{h} \rightarrow \mathrm{agm}+\mathrm{co} 2\)
```

```
181 R181 agm \(+\mathrm{h} 2 \mathrm{o} \rightarrow\) ptrc + urea
\(182 \mathrm{R} 182 \mathrm{~h}+\) orn \(\rightarrow \mathrm{co} 2+\) ptrc
183 R183a amet \(+\mathrm{h} \rightarrow\) ametam + co2
184 R184 ametam \(+\mathrm{ptrc} \rightarrow 5 \mathrm{mta}+\mathrm{h}+\) spmd
185 R185 accoa + spmd \(\rightarrow\) N1aspmd + coa \(+h\)
186 R186 accoa + spmd \(\rightarrow\) coa \(+\mathrm{h}+\) n8aspmd
187 R187 akg + orn \(\rightarrow\) glu-L + glu5sa
188 R188 uaagmda \(\rightarrow \mathrm{h}+\) peptido_EC + udcpdp
189 R189 h2o + udcpdp \(\rightarrow \mathrm{h}+\mathrm{pi}+\) udcpp
190 R190 h2o + kdo8p \(\rightarrow\) kdo + pi
191 R191a (100) cmp + (100) h + (2) pe_EC \(\rightarrow\) (2) 12dgr_EC + (100) cdpea
192 R192 (100)h2o + (2) pa_EC \(\rightarrow\) (2) 12dgr_EC + (100) pi
193 R193 unagamuf \(\rightarrow\) eca_EC \(+h+\) udcpdp
194 R194 ACP + atp + ttdca \(\rightarrow\) amp + myrsACP + ppi
195 R195 ACP + atp + ttdcea \(\rightarrow \mathrm{amp}+\mathrm{ppi}+\) tdeACP
196 R196 ACP + atp + hdca \(\rightarrow\) amp + palmACP + ppi
197 R197 ACP + atp + hdcea \(\rightarrow\) amp + hdeACP + ppi
198 R198 ACP + atp + ocdcea \(\rightarrow\) amp + octeACP + ppi
199 R199a (2) ala-D + atp \(\rightarrow\) adp + alaala \(+\mathrm{h}+\mathrm{pi}\)
200 R200 (2) 12dgr_EC + (100) atp \(\rightarrow\) (100) adp + (100) h + (2) pa_EC
201 R201 etha \(\rightarrow\) acald + nh4
202 R202 gdpddman \(\rightarrow\) gdpofuc
203 R203 gdpofuc \(+\mathrm{h}+\) nadph \(\rightarrow\) gdpfuc + nadp
204 R204 udpgal \(\rightarrow\) udpgalfur
205 R205 f6p + gln-L \(\rightarrow\) gam6p + glu-L
206 R206 acgam1p \(+\mathrm{h}+\mathrm{utp} \rightarrow \mathrm{ppi}+\) uacgam
207 R207 accoa + gam1p \(\rightarrow\) acgam1p + coa \(+h\)
208 R208 g3pc \(+\mathrm{h} 2 \mathrm{o} \rightarrow \mathrm{chol}+\mathrm{glyc} 3 \mathrm{p}+\mathrm{h}\)
209 R209 g3pe + h2o \(\rightarrow\) etha + glyc \(3 p+h\)
210 R210 g3ps \(+\mathrm{h} 2 \mathrm{o} \rightarrow\) glyc \(3 \mathrm{p}+\mathrm{h}+\) ser-L
211 R211 g3pg \(+\mathrm{h} 2 \mathrm{o} \rightarrow\) glyc + glyc \(3 \mathrm{p}+\mathrm{h}\)
212 R212 g3pi \(+\mathrm{h} 2 \mathrm{o} \rightarrow\) glyc \(3 \mathrm{p}+\mathrm{h}+\) inost
213 R213 gdpmann \(\rightarrow\) gdpddman + h2o
214 R214 s7p \(\rightarrow\) gmhep7p
```

```
215 R215 gmhep \(17 \mathrm{bp}+\mathrm{h} 2 \mathrm{o} \rightarrow\) gmhep \(1 \mathrm{p}+\mathrm{pi}\)
216 R216 ara5p \(+\mathrm{h} 2 \mathrm{o}+\mathrm{pep} \rightarrow \mathrm{kdo} 8 \mathrm{p}+\mathrm{pi}\)
217 R217 ctp + kdo \(\rightarrow\) ckdo + ppi
218 R218 ckdo + lipidA \(\rightarrow \mathrm{cmp}+\mathrm{h}+\) kdolipid4
219 R219 ckdo + kdolipid4 \(\rightarrow \mathrm{cmp}+\mathrm{h}+\mathrm{kdo} 2\) lipid4
220 R220a 3hmrsACP + uacgam \(\rightarrow\) ACP + u3aga
221 R221 lipidX \(+\mathrm{u} 23 \mathrm{ga} \rightarrow \mathrm{h}+\) lipidAds +udp
222 R222 h2o + u3aga \(\rightarrow \mathrm{ac}+\) u3hga
223 R223 3hmrsACP + u3hga \(\rightarrow\) ACP + h + u23ga
224 R224 atp + lipidAds \(\rightarrow\) adp \(+\mathrm{h}+\) lipidA
225 R225 ddcaACP + kdo2lipid4 \(\rightarrow\) ACP + kdo2lipid4L
226 R226 hdeACP + kdo2lipid4 \(\rightarrow\) ACP + kdo2lipid4p
227 R227 gdp \(+\mathrm{h}+\operatorname{man} 1 \mathrm{p} \rightarrow\) gdpmann +pi
228 R228 udcpp + ugmda \(\rightarrow\) uagmda + ump
229 R229a gamlp \(\rightarrow\) gam6p
230 R230 kdo2lipid4p + myrsACP \(\rightarrow\) ACP + lipa_cold
231 R231 kdo2lipid4L + myrsACP \(\rightarrow\) ACP + lipa
232 R232 pep + uacgam \(\rightarrow \mathrm{pi}+\) uaccg
\(233 \mathrm{R} 233 \mathrm{~h}+\) nadph + uaccg \(\rightarrow\) nadp + uamr
234 R234 ala-L + atp + uamr \(\rightarrow\) adp \(+\mathrm{h}+\mathrm{pi}+\) uama
235 R235 atp + glu-D + uama \(\rightarrow\) adp \(+\mathrm{h}+\mathrm{pi}+\) uamag
236 R236 26dap-M + atp + uamag \(\rightarrow\) adp \(+\mathrm{h}+\mathrm{pi}+\) ugmd
237 R237 alaala + atp + ugmd \(\rightarrow\) adp \(+\mathrm{h}+\mathrm{pi}+\) ugmda
238 R238 uacgam + uagmda \(\rightarrow \mathrm{h}+\) uaagmda + udp
239 R239a glu-D \(\rightarrow\) glu-L
240 R240 (100) h2o + (2) pc_EC \(\rightarrow\) (2) agpc_EC + (100) h + (36) hdca + (7)
hdcea \(+(50)\) ocdcea \(+(2)\) ttdca \(+(5)\) ttdcea
\(241 \mathrm{R} 241(100) \mathrm{h} 2 \mathrm{o}+(2) \mathrm{pg}\) EC \(\rightarrow(2)\) agpg_EC \(+(100) \mathrm{h}+(36) \mathrm{hdca}+(7)\)
hdcea \(+(50)\) ocdcea \(+(2)\) ttdca \(+(5)\) ttdcea
242 R242 (100) h2o + (2) pe_EC \(\rightarrow\) (2) agpe_EC + (100) h + (36) hdca + (7)
hdcea \(+(50)\) ocdcea \(+(2)\) ttdca \(+(5)\) ttdcea
243 R243 (2) agpg_EC + (100) h2o \(\rightarrow\) (100) g3pg + (100) h + (36) hdca + (7)
hdcea \(+(50)\) ocdcea \(+(2)\) ttdca \(+(5)\) ttdcea
244 R244 (2) agpe_EC + (100) h2o \(\rightarrow\) (100) g3pe + (100) h + (36) hdca + (7)
hdcea \(+(50)\) ocdcea \(+(2)\) ttdca \(+(5)\) ttdcea
```


$$
\begin{aligned}
& 281 \text { R281 dhpmp }+\mathrm{h} 2 \mathrm{o} \rightarrow \text { dhnpt }+\mathrm{pi} \\
& 282 \text { R282 h2o + nadp } \rightarrow \text { nad }+ \text { pi } \\
& 283 \text { R283 h2o }+\mathrm{nmn} \rightarrow \mathrm{~h}+\mathrm{ncam}+\mathrm{r} 5 \mathrm{p} \\
& 285 \text { R285 4ppcys }+\mathrm{h} \rightarrow \text { co } 2+\text { pan4p } \\
& 286 \text { R286 atp }+ \text { dpcoa } \rightarrow \mathrm{adp}+\mathrm{coa}+\mathrm{h} \\
& 287 \text { R287 h2o + pyam5p } \rightarrow \text { pi + pydam } \\
& 288 \text { R288 h2o + pydx } 5 \text { p } \rightarrow \text { pi }+ \text { pydx } \\
& 289 \text { R289 h2o + pdx5p } \rightarrow \text { pi }+ \text { pydxn } \\
& 290 \text { R290 h2o }+ \text { nmn } \rightarrow \text { nh4 }+ \text { nicrnt } \\
& 291 \text { R291a atp }+ \text { thm } \rightarrow \text { adp }+\mathrm{h}+\text { thmmp } \\
& 292 \text { R292 4ppan + ctp + cys-L } \rightarrow \text { ppcys }+ \text { cmp }+\mathrm{h}+\mathrm{ppi} \\
& 293 \text { R293 apoACP + coa } \rightarrow \text { ACP + h + pap } \\
& 294 \text { R294a 8aonn + amet } \rightarrow \text { amob + dann } \\
& 295 \text { R295a cys-L }+ \text { dtbt } \rightarrow \text { ala-L }+ \text { btn }+(2) h \\
& 296 \text { R296a atp }+ \text { co2 + dann } \rightarrow \text { adp }+ \text { dtbt }+(3) h+p i \\
& 297 \text { R297a ala-L }+ \text { h }+ \text { pmcoa } \rightarrow 8 \text { aonn }+ \text { co2 }+ \text { coa } \\
& 298 \text { R298 btnso }+\mathrm{h}+\text { nadh } \rightarrow \mathrm{btn}+\mathrm{h} 2 \mathrm{o}+\text { nad } \\
& 299 \text { R299 btnso }+\mathrm{h}+\text { nadph } \rightarrow \mathrm{btn}+\mathrm{h} 2 \mathrm{o}+\text { nadp } \\
& 300 \text { R300a atp }+\mathrm{cbi}+\mathrm{h} 2 \mathrm{o} \rightarrow \text { adocbi }+\mathrm{pi}+\mathrm{ppi} \\
& 301 \text { R301a atp }+\mathrm{cbl} 1+\mathrm{h} 2 \mathrm{o} \rightarrow \mathrm{adocbl}+\mathrm{pi}+\mathrm{ppi} \\
& 302 \text { R302 atp }+ \text { pnto-R } \rightarrow 4 \text { ppan }+ \text { adp }+h \\
& 303 \text { R303 atp }+\mathrm{h}+\text { pan4p } \rightarrow \text { dpcoa }+ \text { ppi } \\
& 304 \text { R304 agdpcbi + rdmbzi } \rightarrow \text { adocbl + gmp }+\mathrm{h} \\
& 305 \text { R305 dmbzid + nicrnt } \rightarrow 5 \text { prdmbz }+\mathrm{h}+\text { nac } \\
& 306 \text { R306 adocbi }+ \text { atp } \rightarrow \text { adocbip }+ \text { adp }+ \text { h } \\
& 307 \text { R307 adocbip }+ \text { gtp }+\mathrm{h} \rightarrow \text { agdpcbi }+ \text { ppi } \\
& 308 \text { R308 frdp }+ \text { h2o }+ \text { pheme } \rightarrow \text { hemeO }+ \text { ppi } \\
& 309 \text { R309 nad }+ \text { shcl } \rightarrow \mathrm{h}+\text { nadh }+ \text { srch } \\
& 310 \text { R310 fe2 }+ \text { srch } \rightarrow(3) h+\text { sheme } \\
& 311 \text { R311 dxyl5p }+ \text { h }+ \text { nadph } \rightarrow 2 \text { me } 4 \text { p }+ \text { nadp } \\
& 312 \text { R312 g3p }+\mathrm{h}+\mathrm{pyr} \rightarrow \mathrm{co} 2+\text { dxyl5p } \\
& 313 \text { R313a 23ddhb }+ \text { nad } \rightarrow 23 \mathrm{dhb}+\mathrm{h}+\text { nadh } \\
& 314 \text { R314 h2o + ichor } \rightarrow 23 \mathrm{ddhb}+\text { pyr } \\
& 315 \text { R315 (3) 23dhba + (3) seramp } \rightarrow \text { (6) amp + enter + (6) h }
\end{aligned}
$$

```
316 R316a \(23 \mathrm{dhb}+\mathrm{atp} \rightarrow 23 \mathrm{dhba}+\mathrm{ppi}\)
317 R317a atp \(+\mathrm{h}+\) ser-L \(\rightarrow \mathrm{ppi}+\) seramp
318 R318a e \(4 \mathrm{p}+\mathrm{h} 2 \mathrm{o}+\mathrm{nad} \rightarrow 4\) per \(+(2) \mathrm{h}+\) nadh
319 R319a dhf + h + nadph \(\rightarrow\) nadp + thf
320 R320 dhnpt \(\rightarrow 6 \mathrm{hmhpt}+\) gcald
321 R321 atp + dhpt + glu \(-L \rightarrow\) adp + dhf + pi
322 R322 gtp \(+\mathrm{h} 2 \mathrm{o} \rightarrow\) ahdt + for
323 R323 6hmhpt + atp \(\rightarrow\) 6hmhptpp + amp + h
324 R324 4abz +6 hmhptpp \(\rightarrow\) dhpt \(+\mathrm{h}+\mathrm{ppi}\)
325 R325 2mecdp \(+\mathrm{h} \rightarrow \mathrm{h} 2 \mathrm{mb} 4 \mathrm{p}+\mathrm{h} 2 \mathrm{o}\)
326 R326 atp + glu-L + trnaglu \(\rightarrow\) amp + glutrna + ppi
327 R327 ala-D + pydx5p \(\rightarrow\) pyam5p + pyr
328 R328 ala-L + pydx5p \(\rightarrow\) pyam5p + pyr
329 R329a gthox \(+\mathrm{h}+\) nadph \(\rightarrow\) (2) gthrd + nadp
330 R330 atp + cys-L + glu-L \(\rightarrow\) adp + glucys \(+\mathrm{h}+\mathrm{pi}\)
331 R331 atp + glucys + gly \(\rightarrow\) adp + gthrd \(+\mathrm{h}+\mathrm{pi}\)
332 R332 glutrna \(+\mathrm{h}+\) nadph \(\rightarrow\) glu1sa + nadp + trnaglu
333 R333 (2) 5aop \(\rightarrow\) h + (2) h2o + ppbng
334 R334 h2o + (4) ppbng \(\rightarrow\) hmbil + (4) nh4
335 R335 hmbil \(\rightarrow\) h2o + uppg3
336 R336 (4) h + uppg \(3 \rightarrow\) (4) co \(2+\) cpppg3
337 R337 cpppg3 \(+(2) \mathrm{h}+\mathrm{o} 2 \rightarrow(2) \mathrm{co} 2+(2) \mathrm{h} 2 \mathrm{o}+\mathrm{pppg} 9\)
338 R338 (3) o2 + (2) pppg9 \(\rightarrow\) (6) h2o + (2) ppp9
339 R339 fe2 + ppp \(9 \rightarrow(2) h+\) pheme
340 R340 glu1sa \(\rightarrow 5\) aop
341 R341 (2) amet + uppg3 \(\rightarrow\) (2) ahcys \(+\mathrm{h}+\) shcl
342 R342 ipdp \(\rightarrow\) dmpp
343 R343 dmpp + ipdp \(\rightarrow\) grdp + ppi
344 R344 grdp + ipdp \(\rightarrow\) frdp + ppi
345 R345 frdp + (5) ipdp \(\rightarrow\) octdp + (5) ppi
346 R346 2me4p \(+\mathrm{ctp}+\mathrm{h} \rightarrow 4 \mathrm{c} 2 \mathrm{me}+\mathrm{ppi}\)
347 R347 4c2me \(+\operatorname{atp} \rightarrow 2 \mathrm{p} 4 \mathrm{c} 2 \mathrm{me}+\mathrm{adp}+\mathrm{h}\)
348 R348 2p4c2me \(\rightarrow 2\) mecdp +cmp
349 R349 h + h2mb4p + nadh \(\rightarrow\) dmpp \(+\mathrm{h} 2 \mathrm{o}+\) nad
```

```
350 R350 h + h2mb4p + nadh \(\rightarrow\) h2o + ipdp + nad
351 R351 dhna + octdp \(\rightarrow 2\) dmmq \(8+\) co \(2+\mathrm{h}+\mathrm{ppi}\)
352 R352 sbzcoa \(\rightarrow\) coa + dhna
353 R353 2shchc \(\rightarrow \mathrm{h} 2 \mathrm{o}+\) sucbz
354 R354 akg + h + thmpp \(\rightarrow\) co2 + ssaltpp
355 R355 ichor + ssaltpp \(\rightarrow 2\) shchc + pyr + thmpp
356 R356 atp + coa + sucbz \(\rightarrow\) amp + ppi + sbzcoa
357 R357 chor \(\rightarrow\) ichor
358 R358 2dmmq8 + amet \(\rightarrow\) ahcys \(+\mathrm{h}+\) mqn8
359 R359 dhap + iasp \(\rightarrow \mathrm{h}+(2) \mathrm{h} 2 \mathrm{o}+\mathrm{pi}+\) quln
360 R360 asp-L + q8 \(\rightarrow\) iasp \(+q 8 h 2\)
361 R361 asp-L + mqn8 \(\rightarrow\) iasp + mq18
362 R362 asp-L + fum \(\rightarrow\) iasp + succ
363 R363 asp-L + o2 \(\rightarrow\) h2o2 + iasp
364 R364 (2) h + prpp + quln \(\rightarrow\) co2 + nicrnt + ppi
365 R365 atp \(+\mathrm{h}+\) nicrnt \(\rightarrow\) dnad + ppi
366 R366 atp \(+\mathrm{h}+\mathrm{nmn} \rightarrow \mathrm{nad}+\mathrm{ppi}\)
367 R367 atp + dnad \(+\mathrm{nh} 4 \rightarrow \mathrm{amp}+\mathrm{h}+\mathrm{nad}+\mathrm{ppi}\)
368 R368 ahdt \(+\mathrm{h} 2 \mathrm{o} \rightarrow\) dhpmp \(+\mathrm{h}+\mathrm{ppi}\)
369 R369 chor + gln-L \(\rightarrow 4\) adcho + glu-L
370 R370 4adcho \(\rightarrow 4 \mathrm{abz}+\mathrm{h}+\mathrm{pyr}\)
371 R371 3mob \(+\mathrm{h} 2 \mathrm{o}+\mathrm{mlthf} \rightarrow 2 \mathrm{dhp}+\) thf
372 R372 ala- \(\mathrm{B}+\mathrm{atp}+\) pant-R \(\rightarrow \mathrm{amp}+\mathrm{h}+\mathrm{pnto}-\mathrm{R}+\mathrm{ppi}\)
373 R373 asp-L \(+\mathrm{h} \rightarrow\) ala- \(\mathrm{B}+\) co2
374 R374 2dhp + h + nadph \(\rightarrow\) nadp + pant-R
375 R375 dxyl5p + nad + phthr \(\rightarrow\) co \(2+\mathrm{h}+(2) \mathrm{h} 2 \mathrm{o}+\) nadh \(+\mathrm{pdx} 5 \mathrm{p}+\mathrm{pi}\)
376 R376a 4per + nad \(\rightarrow \mathrm{h}+\) nadh + ohpb
377 R377a o2 \(+\mathrm{pdx} 5 \mathrm{p} \rightarrow \mathrm{h} 2 \mathrm{o} 2+\) pydx 5 p
378 R378 h2o \(+\mathrm{o} 2+\) pyam \(5 \mathrm{p} \rightarrow \mathrm{h} 2 \mathrm{o} 2+\mathrm{nh} 4+\) pydx5p
379 R379 atp + pydxn \(\rightarrow\) adp \(+\mathrm{h}+\mathrm{pdx} 5 \mathrm{p}\)
380 R380 atp + pydam \(\rightarrow a d p+h+\) pyam5p
381 R381 atp + pydx \(\rightarrow\) adp \(+h+\) pydx \(5 p\)
382 R382 5prdmbz + h2o \(\rightarrow\) pi + rdmbzi
383 R383 h2o + ncam \(\rightarrow\) nac + nh4
```

```
384 R384 atp \(+\mathrm{h} 2 \mathrm{o}+\mathrm{nac}+\mathrm{prpp} \rightarrow \mathrm{adp}+\) nicrnt \(+\mathrm{pi}+\mathrm{ppi}\)
385 R385 gtp \(+(3) \mathrm{h} 2 \mathrm{o} \rightarrow 25 \mathrm{drapp}+\) for \(+(2) \mathrm{h}+\mathrm{ppi}\)
386 R386 ru5p-D \(\rightarrow \mathrm{db} 4 \mathrm{p}+\) for +h
387 R387 5apru + h + nadph \(\rightarrow\) 5aprbu + nadp
388 R388 25drapp \(+\mathrm{h}+\mathrm{h} 2 \mathrm{o} \rightarrow 5 \mathrm{apru}+\mathrm{nh} 4\)
389 R389 4r5au \(+\mathrm{db} 4 \mathrm{p} \rightarrow \mathrm{dmlz}+(2) \mathrm{h} 2 \mathrm{o}+\mathrm{pi}\)
390 R390 atp + ribflv \(\rightarrow \mathrm{adp}+\mathrm{fmn}+\mathrm{h}\)
391 R391 atp \(+\mathrm{fmn}+\mathrm{h} \rightarrow \mathrm{fad}+\mathrm{ppi}\)
392 R392 (2) dmlz \(\rightarrow 4 \mathrm{r} 5 \mathrm{au}+\) ribflv
393 R393a glu-L + ohpb \(\rightarrow\) akg + phthr
394 R394 air \(+\mathrm{h} 2 \mathrm{o} \rightarrow 4 \mathrm{ampm}+(2)\) for \(+(4) \mathrm{h}\)
395 R395 4ampm + atp \(\rightarrow 2\) mahmp + adp
396 R396 4ahmmp + atp \(\rightarrow 4 \mathrm{ampm}+\mathrm{adp}+\mathrm{h}\)
397 R397 2mahmp + 4mpetz \(+\mathrm{h} \rightarrow \mathrm{ppi}+\) thmmp
398 R398a atp + thmmp \(\rightarrow\) adp + thmpp
399 R399 4mhetz + atp \(\rightarrow 4\) mpetz + adp +h
400 R400 atp + cys-L + dxyl5p + tyr-L \(\rightarrow 4 \mathrm{hba}+4 \mathrm{mpetz}+\) ala-L \(+\mathrm{amp}+\) co2
\(+\mathrm{h}+\mathrm{h} 2 \mathrm{o}+\mathrm{ppi}\)
401 R \(401 \mathrm{~h} 2 \mathrm{o}+\mathrm{phthr} \rightarrow 4 \mathrm{hthr}+\mathrm{pi}\)
402 R402 4hbz + octdp \(\rightarrow 3 \mathrm{ophb}+\mathrm{ppi}\)
403 R403 (2) 2oph + (1) o2 \(\rightarrow\) (2) 2ohph
404 R404 chor \(\rightarrow 4 \mathrm{hbz}+\mathrm{pyr}\)
\(405 \mathrm{R} 4053 \mathrm{ophb}+\mathrm{h} \rightarrow 2 \mathrm{oph}+\mathrm{co} 2\)
406 R406 \(2 \mathrm{mbzl}+\) amet \(\rightarrow 20 \mathrm{mmbl}+\) ahcys +h
407 R 407 (2) \(2 \mathrm{mmmbl}+(1) \mathrm{o} 2 \rightarrow\) (2) 2 mhmbl
408 R408 2 ohph + amet \(\rightarrow 20 \mathrm{mph}+\) ahcys +h
409 R409 20mhmbl + amet \(\rightarrow\) ahcys \(+\mathrm{h}+\mathrm{q} 8 \mathrm{~h} 2\)
410 R410 (2) \(2 \mathrm{omph}+(1) \mathrm{o} 2 \rightarrow\) (2) 2 mbzl
411 R411 frdp + (8) ipdp \(\rightarrow\) (8) ppi + udcpdp
412 R412 atp + dxyl \(\rightarrow\) adp + dxyl5p \(+h\)
413 R413 atp + nad \(\rightarrow\) adp + h + nadp
\(414 \mathrm{R} 414 \mathrm{~h} 2 \mathrm{o}+\mathrm{pap} \rightarrow \mathrm{amp}+\mathrm{pi}\)
415 R415 aps + atp \(\rightarrow\) adp \(+\mathrm{h}+\) paps
416 R 416 atp \(+\mathrm{gtp}+\mathrm{h} 2 \mathrm{o}+\mathrm{so} 4 \rightarrow \mathrm{aps}+\mathrm{gdp}+\mathrm{pi}+\mathrm{ppi}\)
```

```
417 R417a accoa + ser-L \(\rightarrow\) acser + coa
418 R418 paps \(+\operatorname{trdrd} \rightarrow(2) \mathrm{h}+\) pap + so3 \(+\operatorname{trdox}\)
419 R419a (3) h2o \(+\mathrm{h} 2 \mathrm{~s}+\) (3) nadp \(\rightarrow\) (5) \(h+(3)\) nadph + so3
420 R420 acser \(+\mathrm{h} 2 \mathrm{~s} \rightarrow \mathrm{ac}+\) cys-L +h
421 R421 cys-L \(+\mathrm{h} 2 \mathrm{o} \rightarrow \mathrm{h} 2 \mathrm{~s}+\mathrm{nh} 4+\mathrm{pyr}\)
422 R 422 gcald \(+\mathrm{h} 2 \mathrm{o}+\) nad \(\rightarrow\) glyclt \(+(2) \mathrm{h}+\) nadh
423 R423a h2o + methf \(\rightarrow 10 \mathrm{fthf}\)
424 R424a mlthf + nadp \(\rightarrow \mathrm{h}+\) methf + nadph
425 R 425 gly + nad + thf \(\rightarrow \mathrm{co} 2+\) mlthf + nadh + nh 4
426 R \(426 \mathrm{~h}+\) mlthf + nadh \(\rightarrow 5 \mathrm{mthf}+\) nad
427 R427 10fthf \(+\mathrm{h} 2 \mathrm{o} \rightarrow\) for \(+\mathrm{h}+\) thf
428 R428 glu-L \(+\mathrm{h} \rightarrow 4\) abut +co 2
429 R429a glu-L \(+\mathrm{h} 2 \mathrm{o}+\) nadp \(\rightarrow \mathrm{akg}+\mathrm{h}+\) nadph +nh 4
430 R430 atp + glu-L + nh4 \(\rightarrow\) adp + gln \(-L+h+p i\)
431 R431 akg + gln-L + h + nadph \(\rightarrow\) (2) glu-L + nadp
432 R432 gln-L + h2o \(\rightarrow\) glu-L + nh 4
433 R433 ser-D \(\rightarrow\) nh4 + pyr
434 R434 ser-L + thf \(\rightarrow\) gly + h \(2 \mathrm{o}+\) mlthf
435 R435 2aobut + coa \(\rightarrow\) accoa + gly
436 R436 3pg + nad \(\rightarrow 3 \mathrm{php}+\mathrm{h}+\) nadh
437 R437 h2o + pser-L \(\rightarrow\) pi + ser-L
438 R438 3php + glu-L \(\rightarrow\) akg + pser-L
439 R439 ser-L \(\rightarrow\) nh4 + pyr
440 R440 nad + thr \(-\mathrm{L} \rightarrow 2\) aobut \(+\mathrm{h}+\) nadh
441 R441 coa + nad + pyr \(\rightarrow\) accoa + co \(2+\) nadh
442 R442 g1p \(+\mathrm{h} 2 \mathrm{o} \rightarrow\) glc-D +pi
443 R443a 2pg \(\rightarrow\) h2o + pep
444 R444a fdp \(\rightarrow\) dhap + g3p
445 R \(445 \mathrm{fdp}+\mathrm{h} 2 \mathrm{o} \rightarrow \mathrm{f} 6 \mathrm{p}+\mathrm{pi}\)
446 R446a f6p \(\rightarrow\) dha + g3p
\(447 \mathrm{R} 447 \mathrm{a} \mathrm{g} 3 \mathrm{p}+\mathrm{nad}+\mathrm{pi} \rightarrow 13 \mathrm{dpg}+\mathrm{h}+\) nadh
448 R448 adpglc \(\rightarrow\) adp + glycogen \(+h\)
449 R449 atp \(+\mathrm{g} 1 \mathrm{p}+\mathrm{h} \rightarrow\) adpglc + ppi
450 R450 glycogen \(+\mathrm{pi} \rightarrow \mathrm{g} 1 \mathrm{p}\)
```

```
451 R451 atp + glc-D \(\rightarrow\) adp + g6p \(+h\)
452 R452a 2pg \(\rightarrow 3 \mathrm{pg}\)
453 R453 atp \(+\mathrm{f} 6 \mathrm{p} \rightarrow \mathrm{adp}+\mathrm{fdp}+\mathrm{h}\)
454 R454a \(\mathrm{g} 6 \mathrm{p} \rightarrow \mathrm{f} 6 \mathrm{p}\)
455 R455a 3pg + atp \(\rightarrow 13 \mathrm{dpg}+\) adp
456 R456 atp \(+\mathrm{h} 2 \mathrm{o}+\mathrm{pyr} \rightarrow \mathrm{amp}+(2) \mathrm{h}+\mathrm{pep}+\mathrm{pi}\)
457 R457 adp + h + pep \(\rightarrow\) atp + pyr
458 R458a dhap \(\rightarrow\) g3p
459 R459 2h3oppan \(+\mathrm{h}+\) nadh \(\rightarrow\) glyc-R + nad
460 R460 (2) glx \(+\mathrm{h} \rightarrow 2 \mathrm{~h} 3\) oppan +co 2
461 R461 atp + glyc-R \(\rightarrow 3\) pg + adp +h
462 R462 glx \(+\mathrm{h}+\) nadph \(\rightarrow\) glyclt + nadp
463 R463 glx \(+\mathrm{h}+\) nadh \(\rightarrow\) glyclt + nad
464 R464 prfp \(\rightarrow\) prlp
465 R465 eig3p \(\rightarrow\) h2o + imacp
466 R466 h2o + hisp \(\rightarrow\) histd + pi
467 R467 glu-L + imacp \(\rightarrow\) akg + hisp
468 R468 h2o + histd + (2) nad \(\rightarrow\) (3) h + his-L + (2) nadh
469 R469 gln-L + prlp \(\rightarrow\) aicar + eig3p + glu-L + h
470 R470 atp + prpp \(\rightarrow\) ppi + prbatp
\(471 \mathrm{R} 471 \mathrm{~h} 2 \mathrm{o}+\) prbatp \(\rightarrow \mathrm{h}+\mathrm{ppi}+\) prbamp
472 R472 h2o + prbamp \(\rightarrow\) prfp
473 R473a atp \(+\mathrm{r} 5 \mathrm{p} \rightarrow \mathrm{amp}+\mathrm{h}+\mathrm{prpp}\)
474 R474a accoa + atp + hco3 \(\rightarrow\) adp \(+\mathrm{h}+\) malcoa +pi
475 R475a (2) accoa \(\rightarrow\) acoa + coa
476 R476 (2) cdpdag1 + (100) h2o \(\rightarrow(100) \mathrm{cmp}+(200) \mathrm{h}+(2)\) pa_EC
477 R477a (100) ctp \(+(100) \mathrm{h}+(2) \mathrm{pa}\) EC \(\rightarrow(2)\) cdpdag \(1+(100) \mathrm{ppi}\)
478 R478a (4) pg_EC \(\rightarrow\) (2) clpn_EC + (100) glyc
479 R 479 actACP \(+(17) \mathrm{h}+(5)\) malACP \(+(12)\) nadph \(\rightarrow(5) \mathrm{ACP}+(5) \mathrm{co} 2+\)
(6) h2o + myrsACP + (12) nadp
480 R 480 actACP \(+(14) \mathrm{h}+(4) \mathrm{malACP}+(10)\) nadph \(\rightarrow(4) \mathrm{ACP}+(4) \mathrm{co} 2+\)
ddcaACP + (5) h2o + (10) nadp
\(481 \mathrm{R} 481 \mathrm{~h}+\mathrm{malACP} \rightarrow \mathrm{acACP}+\mathrm{co} 2\)
\(482 \mathrm{R} 482 \mathrm{acACP}+\mathrm{h}+\operatorname{malACP} \rightarrow \mathrm{ACP}+\operatorname{actACP}+\mathrm{co} 2\)
```

483 R483a ACP + malcoa \rightarrow coa + malACP
484 R 484 actACP $+(20) \mathrm{h}+(6) \mathrm{malACP}+(14)$ nadph $\rightarrow(6) \mathrm{ACP}+(6) \mathrm{co} 2+$ (7) h2o + (14) nadp + palmACP

485 R 485 ddcaACP $+(2) \mathrm{h}+$ malACP + nadph $\rightarrow 3 \mathrm{hmrsACP}+\mathrm{ACP}+\mathrm{co} 2+$ nadp
486 R 486 actACP $+(22) \mathrm{h}+(7)$ malACP $+(15)$ nadph $\rightarrow(7) \mathrm{ACP}+(7) \mathrm{co} 2+$ (8) h2o + (15) nadp + octeACP

487 R 487 actACP $+(16) \mathrm{h}+(5)$ malACP $+(11)$ nadph $\rightarrow(5) \mathrm{ACP}+(5) \mathrm{co} 2+$ (6) h2o + (11) nadp + tdeACP

488 R 488 accoa $+\mathrm{h}+$ malACP $\rightarrow \operatorname{actACP}+\mathrm{co} 2+$ coa
489 R489a ACP + accoa \rightarrow acACP + coa
490 R 490 actACP $+(19) \mathrm{h}+(6) \mathrm{malACP}+(13)$ nadph $\rightarrow(6) \mathrm{ACP}+(6) \mathrm{co} 2+$ (7) h2o + hdeACP + (13) nadp

491 R491 atp $+(8)$ coa $+(7)$ fad $+(7) \mathrm{h} 2 \mathrm{o}+\mathrm{hdca}+(7) \mathrm{nad} \rightarrow(8)$ accoa +amp + (7) fadh2 + (7) $\mathrm{h}+(7)$ nadh +ppi
$492 \mathrm{R} 492 \mathrm{atp}+(7) \mathrm{coa}+(6) \mathrm{fad}+(6) \mathrm{h} 2 \mathrm{o}+(6) \mathrm{nad}+\mathrm{ttdca} \rightarrow(7) \mathrm{accoa}+\mathrm{amp}$ $+(6)$ fadh $2+(6) h+(6)$ nadh +ppi

493 R493 atp $+(9)$ coa $+(8)$ fad $+(8) \mathrm{h} 2 \mathrm{o}+(8) \mathrm{nad}+$ ocdca $\rightarrow(9)$ accoa + $\mathrm{amp}+(8)$ fadh $2+(8) \mathrm{h}+(8)$ nadh +ppi
494 R494 (100) h2o + (2) pgp_EC \rightarrow (2) pg_EC + (100) pi
495 R495a (2) cdpdag1 + (100) glyc3p \rightarrow (100) cmp + (100) h + (2) pgp_EC
496 R496 (100) glyc3p + (14) hdeACP + (4) myrsACP + (100) octeACP + (72)
palmACP + (10) tdeACP \rightarrow (200) ACP + (2) pa_EC
497 R497 (100) h + (2) ps_EC \rightarrow (100) co2 + (2) pe_EC
498 R498a (2) cdpdag $1+(100)$ ser-L $\rightarrow(100) \mathrm{cmp}+(100) \mathrm{h}+(2)$ ps_EC
499 R499a ahcys $+\mathrm{h} 2 \mathrm{o} \rightarrow \mathrm{adn}+$ hcys-L
500 R500 dhptd \rightarrow h2o + hmfurn
501 R501 rhcys \rightarrow dhptd + hcys-L
502 R502 hom-L + succoa \rightarrow coa + suchms
503 R503 cys-L + suchms \rightarrow cyst-L $+\mathrm{h}+$ succ
504 R504 cyst-L + h2o \rightarrow hcys-L + nh4 + pyr
505 R505 5mthf + hcys-L \rightarrow met-L + thf
506 R506 atp $+\mathrm{h} 2 \mathrm{o}+$ met-L \rightarrow amet $+\mathrm{pi}+\mathrm{ppi}$
507 R507 ahcys $+\mathrm{h} 2 \mathrm{o} \rightarrow$ ade + rhcys
508 R508 gthrd + mthgxl \rightarrow lgt-S
509 R509 h2o + lgt-S \rightarrow gthrd + h + lac-D

$$
\begin{aligned}
& 510 \text { R510 dhap } \rightarrow \text { mthgxl }+ \text { pi } \\
& 511 \text { R511 (2) h }+\mathrm{h} 2 \mathrm{o}+\text { urdglyc } \rightarrow \mathrm{co} 2+\mathrm{glx}+(2) \mathrm{nh} 4 \\
& 512 \text { R512 alltn }+\mathrm{h} 2 \mathrm{o} \rightarrow \text { alltt }+\mathrm{h} \\
& 513 \text { R513 alltt }+\mathrm{h} 2 \mathrm{o} \rightarrow \text { urdglyc }+ \text { urea } \\
& 514 \text { R514 cynt }+(3) \mathrm{h}+\mathrm{hco} 3 \rightarrow(2) \mathrm{co} 2+\mathrm{nh} 4 \\
& 515 \mathrm{R} 515 \mathrm{cmp}+\mathrm{h} 2 \mathrm{o} \rightarrow \mathrm{csn}+\mathrm{r} 5 \mathrm{p} \\
& 516 \text { R516 adn }+\mathrm{h}+\mathrm{h} 2 \mathrm{o} \rightarrow \mathrm{ins}+\mathrm{nh} 4 \\
& 517 \text { R517 dad- } 2+\mathrm{h}+\mathrm{h} 2 \mathrm{o} \rightarrow \operatorname{din}+\mathrm{nh} 4 \\
& 518 \text { R518 adn }+ \text { atp } \rightarrow \mathrm{adp}+\mathrm{amp}+\mathrm{h} \\
& 519 \text { R519a amp + atp } \rightarrow \text { (2) adp } \\
& 520 \text { R520a atp + damp } \rightarrow \text { adp + dadp } \\
& 521 \text { R521a amp + itp } \rightarrow \text { adp + idp } \\
& 522 \text { R522a amp + gtp } \rightarrow \text { adp + gdp } \\
& 523 \text { R523 amp }+\mathrm{h} 2 \mathrm{o} \rightarrow \text { ade }+\mathrm{r} 5 \mathrm{p} \\
& 524 \text { R524 ap4a }+\mathrm{h} 2 \mathrm{o} \rightarrow(2) \mathrm{adp}+(2) \mathrm{h} \\
& 525 \text { R525 gp4g +h2o } \rightarrow \text { (2) gdp + (2) h } \\
& 526 \text { R526 ap5a }+\mathrm{h} 2 \mathrm{o} \rightarrow \mathrm{adp}+\mathrm{atp}+(2) \mathrm{h} \\
& 527 \text { R527 ade + prpp } \rightarrow \text { amp + ppi } \\
& 528 \text { R528 cytd }+\mathrm{h}+\mathrm{h} 2 \mathrm{o} \rightarrow \mathrm{nh} 4+\text { uri } \\
& 529 \text { R529 dcyt }+\mathrm{h}+\mathrm{h} 2 \mathrm{o} \rightarrow \text { duri }+\mathrm{nh} 4 \\
& 530 \text { R530a atp }+ \text { dcmp } \rightarrow \text { adp }+ \text { dcdp } \\
& 531 \text { R531a atp }+\mathrm{cmp} \rightarrow \mathrm{adp}+\mathrm{cdp} \\
& 532 \text { R532a atp }+u m p \rightarrow \text { adp }+u d p \\
& 533 \text { R533 csn }+\mathrm{h}+\mathrm{h} 2 \mathrm{o} \rightarrow \mathrm{nh} 4+\text { ura } \\
& 534 \text { R534 atp } \rightarrow \text { camp }+ \text { ppi } \\
& 535 \text { R } 535 \text { dctp }+\mathrm{h}+\mathrm{h} 2 \mathrm{o} \rightarrow \text { dutp }+ \text { nh4 } \\
& 536 \text { R536a pi }+ \text { thymd } \rightarrow 2 \mathrm{dr} 1 \mathrm{p}+\text { thym } \\
& 537 \text { R537a duri }+ \text { pi } \rightarrow 2 \text { drlp }+ \text { ura } \\
& 538 \text { R538 dgtp }+\mathrm{h} 2 \mathrm{o} \rightarrow \text { dgsn }+ \text { pppi } \\
& 539 \text { R539 gtp }+\mathrm{h} 2 \mathrm{o} \rightarrow \text { gsn }+ \text { pppi } \\
& 540 \text { R540 dutp }+\mathrm{h} 2 \mathrm{o} \rightarrow \text { dump }+\mathrm{h}+\mathrm{ppi} \\
& 541 \text { R541a atp }+ \text { gmp } \rightarrow \text { adp }+ \text { gdp } \\
& 542 \text { R } 542 \mathrm{a} \text { atp }+ \text { dgmp } \rightarrow \text { adp }+ \text { dgdp } \\
& 543 \text { R543 prpp }+ \text { xan } \rightarrow \text { ppi }+ \text { xmp }
\end{aligned}
$$

$$
\begin{aligned}
& 544 \text { R544 hxan + prpp } \rightarrow \text { imp + ppi } \\
& 545 \text { R545 gua }+ \text { prpp } \rightarrow \text { gmp }+ \text { ppi } \\
& 546 \text { R546 atp }+ \text { ins } \rightarrow \text { adp }+\mathrm{h}+\mathrm{imp} \\
& 547 \text { R547 atp }+ \text { gsn } \rightarrow \text { adp }+ \text { gmp }+\mathrm{h} \\
& 548 \text { R548 dctp }+\mathrm{h} 2 \mathrm{o} \rightarrow \mathrm{dcmp}+\mathrm{h}+\mathrm{ppi} \\
& 549 \text { R549 ctp }+\mathrm{h} 2 \mathrm{o} \rightarrow \mathrm{cmp}+\mathrm{h}+\mathrm{ppi} \\
& 550 \text { R550 datp }+\mathrm{h} 2 \mathrm{o} \rightarrow \text { damp }+\mathrm{h}+\mathrm{ppi} \\
& 551 \text { R551 atp }+\mathrm{h} 2 \mathrm{o} \rightarrow \mathrm{amp}+\mathrm{h}+\mathrm{ppi} \\
& 552 \text { R552 dttp }+\mathrm{h} 2 \mathrm{o} \rightarrow \mathrm{dtmp}+\mathrm{h}+\mathrm{ppi} \\
& 553 \text { R553 h2o + utp } \rightarrow \mathrm{h}+\mathrm{ppi}+\mathrm{ump} \\
& 554 \text { R554 dgtp }+\mathrm{h} 2 \mathrm{o} \rightarrow \text { dgmp }+\mathrm{h}+\mathrm{ppi} \\
& 555 \text { R } 555 \mathrm{gtp}+\mathrm{h} 2 \mathrm{o} \rightarrow \mathrm{gmp}+\mathrm{h}+\mathrm{ppi} \\
& 556 \text { R556a atp }+ \text { gdp } \rightarrow \text { adp }+ \text { gtp } \\
& 557 \text { R557a atp }+u d p \rightarrow \text { adp }+ \text { utp } \\
& 558 \text { R558a atp }+c d p \rightarrow \text { adp }+ \text { ctp } \\
& 559 \text { R559a atp }+ \text { dgdp } \rightarrow \text { adp }+ \text { dgtp } \\
& 560 \text { R560a atp + dudp } \rightarrow \text { adp + dutp } \\
& 561 \text { R561a atp }+ \text { dcdp } \rightarrow \text { adp }+ \text { dctp } \\
& 562 \text { R562a atp + dadp } \rightarrow \text { adp + datp } \\
& 563 \text { R563a atp }+ \text { dtdp } \rightarrow \text { adp }+ \text { dttp } \\
& 564 \text { R564 adp }+\operatorname{trdrd} \rightarrow \text { dadp }+\mathrm{h} 2 \mathrm{o}+\text { trdox } \\
& 565 \text { R565 gdp }+ \text { trdrd } \rightarrow \text { dgdp }+\mathrm{h} 2 \mathrm{o}+\text { trdox } \\
& 566 \text { R566 trdrd }+ \text { udp } \rightarrow \text { dudp }+ \text { h2o }+ \text { trdox } \\
& 567 \text { R } 567 \mathrm{cdp}+\operatorname{trdrd} \rightarrow \mathrm{dcdp}+\mathrm{h} 2 \mathrm{o}+\text { trdox } \\
& 568 \text { R568 atp }+\operatorname{trdrd} \rightarrow \text { datp }+\mathrm{h} 2 \mathrm{o}+\text { trdox } \\
& 569 \text { R } 569 \mathrm{gtp}+\operatorname{trdrd} \rightarrow \operatorname{dgtp}+\mathrm{h} 2 \mathrm{o}+\operatorname{trdox} \\
& 570 \text { R570 ctp }+\operatorname{trdrd} \rightarrow \operatorname{dctp}+\mathrm{h} 2 \mathrm{o}+\operatorname{trdox} \\
& 571 \text { R571 trdrd + utp } \rightarrow \text { dutp }+\mathrm{h} 2 \mathrm{o}+\text { trdox } \\
& 572 \text { R572a atp + dump } \rightarrow \text { adp + dudp } \\
& 573 \text { R573 atp + duri } \rightarrow \text { adp }+ \text { dump }+ \text { h } \\
& 574 \text { R574 atp }+ \text { thymd } \rightarrow \text { adp }+ \text { dtmp }+ \text { h } \\
& 575 \text { R575 dump }+ \text { mlthf } \rightarrow \text { dhf }+ \text { dtmp } \\
& 576 \text { R576a atp }+\mathrm{dtmp} \rightarrow \mathrm{adp}+\mathrm{dtdp}
\end{aligned}
$$

$$
\begin{aligned}
& 577 \text { R577 gtp }+ \text { uri } \rightarrow \text { gdp }+\mathrm{h}+\text { ump } \\
& 578 \text { R578 cytd }+ \text { gtp } \rightarrow \mathrm{cmp}+\text { gdp }+\mathrm{h} \\
& 579 \text { R579a pi }+ \text { uri } \rightarrow \text { rlp }+ \text { ura } \\
& 580 \text { R580 prpp + ura } \rightarrow \text { ppi + ump } \\
& 581 \text { R581 dump }+ \text { h2o } \rightarrow \text { duri }+ \text { pi } \\
& 582 \mathrm{R} 582 \mathrm{dtmp}+\mathrm{h} 2 \mathrm{o} \rightarrow \mathrm{pi}+\text { thymd } \\
& 583 \text { R583 damp }+ \text { h2o } \rightarrow \text { dad- } 2+\text { pi } \\
& 584 \text { R584 dgmp }+\mathrm{h} 2 \mathrm{o} \rightarrow \text { dgsn }+\mathrm{pi} \\
& 585 \text { R } 585 \mathrm{dcmp}+\mathrm{h} 2 \mathrm{o} \rightarrow \text { dcyt }+\mathrm{pi} \\
& 586 \text { R } 586 \mathrm{cmp}+\mathrm{h} 2 \mathrm{o} \rightarrow \text { cytd }+ \text { pi } \\
& 587 \text { R587 amp }+\mathrm{h} 2 \mathrm{o} \rightarrow \mathrm{adn}+\mathrm{pi} \\
& 588 \text { R588 gmp }+\mathrm{h} 2 \mathrm{o} \rightarrow \text { gsn }+\mathrm{pi} \\
& 589 \text { R589 h2o }+\mathrm{imp} \rightarrow \mathrm{ins}+\mathrm{pi} \\
& 590 \text { R590 h2o }+\mathrm{xmp} \rightarrow \mathrm{pi}+\mathrm{xtsn} \\
& 591 \text { R591 h2o }+ \text { ump } \rightarrow \mathrm{pi}+\text { uri } \\
& 592 \text { R592a din }+\mathrm{pi} \rightarrow 2 \mathrm{dr} 1 \mathrm{p}+\mathrm{hxan} \\
& 593 \text { R593a ins }+\mathrm{pi} \rightarrow \mathrm{hxan}+\mathrm{rlp} \\
& 594 \text { R594a dad-2 + pi } \rightarrow 2 \text { dr1p }+ \text { ade } \\
& 595 \text { R595a dgsn }+\mathrm{pi} \rightarrow 2 \mathrm{dr} 1 \mathrm{p}+\text { gua } \\
& 596 \text { R596a adn }+\mathrm{pi} \rightarrow \text { ade }+\mathrm{rlp} \\
& 597 \text { R597a gsn }+\mathrm{pi} \rightarrow \text { gua }+ \text { rlp } \\
& 598 \text { R598a pi }+ \text { xtsn } \rightarrow \mathrm{rlp}+\text { xan } \\
& 599 \text { R599 gua }+\mathrm{h}+\mathrm{h} 2 \mathrm{o} \rightarrow \mathrm{nh} 4+\text { xan } \\
& 600 \text { R } 600 \text { ade }+h+h 2 o \rightarrow h x a n+n h 4 \\
& 601 \text { R601 lac-L + q8 } \rightarrow \text { pyr }+ \text { q8h2 } \\
& 602 \text { R602 lac-L }+ \text { mqn8 } \rightarrow \text { mql8 }+ \text { pyr } \\
& 604 \text { R604a bbtcoa }+ \text { crn } \rightarrow \text { crncoa }+ \text { gbbtn } \\
& 605 \text { R605a crn }+ \text { ctbtcoa } \rightarrow \text { crncoa }+ \text { ctbt } \\
& 606 \text { R606a crncoa } \rightarrow \text { ctbtcoa }+ \text { h2o } \\
& 609 \text { R609 lac-D + q8 } \rightarrow \text { pyr + q8h2 } \\
& 617 \text { R617 2dmmq8 + glyc3p } \rightarrow 2 \mathrm{dmmq} 18+\text { dhap } \\
& 618 \text { R618 glyc3p }+ \text { mqn } 8 \rightarrow \text { dhap }+ \text { mq18 } \\
& 619 \text { R619 glyc3p }+ \text { q8 } \rightarrow \text { dhap }+ \text { q8h2 } \\
& 625 \text { R } 625 \mathrm{~h}+\text { nadh }+\mathrm{q} 8 \rightarrow \mathrm{nad}+\mathrm{q} 8 \mathrm{~h} 2
\end{aligned}
$$

```
626 R626 2dmmq8 \(+\mathrm{h}+\) nadh \(\rightarrow 2 \mathrm{dmmq18}+\mathrm{nad}\)
627 R627 h + mqn8 + nadh \(\rightarrow\) mq18 + nad
628 R628 (5) h + (3) nadh + no2 \(\rightarrow\) (2) h2o + (3) nad + nh4
633 R633 h2o \(+\mathrm{pyr}+\mathrm{q} 8 \rightarrow \mathrm{ac}+\mathrm{co} 2+\mathrm{q} 8 \mathrm{~h} 2\)
634 R634a fadh \(2+\mathrm{q} 8 \rightarrow \mathrm{fad}+\mathrm{q} 8 \mathrm{~h} 2\)
635 R635 nad + nadph \(\rightarrow\) nadh + nadp
636 R636 h + nadph + trdox \(\rightarrow\) nadp + trdrd
637 R637 6pgl \(+\mathrm{h} 2 \mathrm{o} \rightarrow 6 \mathrm{pgc}+\mathrm{h}\)
638 R638 2ddg6p \(\rightarrow \mathrm{g} 3 \mathrm{p}+\mathrm{pyr}\)
639 R639 6pgc \(\rightarrow 2\) ddg \(6 \mathrm{p}+\mathrm{h} 2 \mathrm{o}\)
640 R640 6pgc + nadp \(\rightarrow\) co2 + nadph + ru 5 p-D
641 R641a ru5p-D \(\rightarrow\) xu5p-D
642 R642a r5p \(\rightarrow\) ru5p-D
643 R643a g3p \(+\mathrm{s} 7 \mathrm{p} \rightarrow \mathrm{e} 4 \mathrm{p}+\mathrm{f} 6 \mathrm{p}\)
644 R644a r5p + xu5p-D \(\rightarrow\) g3p + s7p
645 R645a e4p + xu5p-D \(\rightarrow f 6 p+g 3 p\)
646 R646a g6p + nadp \(\rightarrow 6 \mathrm{pgl}+\mathrm{h}+\) nadph
647 R647 atp + gln-L \(+h 2 o+x m p \rightarrow a m p+g l u-L+g m p+(2) h+p p i\)
648 R648 h2o \(+\mathrm{imp}+\mathrm{nad} \rightarrow \mathrm{h}+\) nadh +xmp
649 R649 gmp \(+(2) \mathrm{h}+\) nadph \(\rightarrow \mathrm{imp}+\) nadp +nh 4
650 R650 asp-L + gtp \(+\mathrm{imp} \rightarrow\) dcamp + gdp \(+(2) \mathrm{h}+\mathrm{pi}\)
651 R651a 25aics \(\rightarrow\) aicar + fum
652 R652a dcamp \(\rightarrow \mathrm{amp}+\) fum
653 R653a 5aizc + asp-L + atp \(\rightarrow 25\) aics + adp \(+\mathrm{h}+\mathrm{pi}\)
654 R654a atp + gly + pram \(\rightarrow\) adp + gar \(+\mathrm{h}+\mathrm{pi}\)
655 R655a 5aizc \(\rightarrow 5\) caiz
656 R656 gln-L + h2o + prpp \(\rightarrow\) glu-L + ppi + pram
657 R657a 10fthf + aicar \(\rightarrow\) fprica + thf
658 R658a h2o \(+\mathrm{imp} \rightarrow\) fprica
659 R659 air + atp + hco3 \(\rightarrow 5\) caiz \(+\mathrm{adp}+\mathrm{h}+\mathrm{pi}\)
660 R660 atp + fgam + gln- \(L+h 2 o \rightarrow\) adp + fpram + glu-L \(+h+\) pi
661 R661 atp + fpram \(\rightarrow\) adp + air \(+(2) \mathrm{h}+\mathrm{pi}\)
662 R662a 10fthf + gar \(\rightarrow\) fgam \(+\mathrm{h}+\) thf
663 R663 atp + for + gar \(\rightarrow\) adp + fgam \(+h+\) pi
```

```
664 R664 asp-L + cbp -> cbasp + h + pi
665 R665a dhor-S + h2o -> cbasp + h
6 6 6 ~ R 6 6 6 ~ d h o r - S ~ + ~ q 8 ~ \rightarrow ~ o r o t ~ + ~ q 8 h 2 ~
6 6 7 \text { R667 dhor-S + mqn8 } \rightarrow \text { mql8 + orot}
668 R668a orot5p + ppi }->\mathrm{ orot + prpp
669 R669 h + orot5p -> co2 + ump
670 R670 atp + gln-L + h2o + utp }->\mathrm{ adp + ctp + glu-L + (2) h + pi
671 R671 atp + co2 + nh4 -> adp + cbp + (2) h
672 R672 acmanap }->\mathrm{ acgam6p
6 7 3 ~ R 6 7 3 ~ a c m a n a ~ + ~ a t p ~ \rightarrow ~ a c m a n a p ~ + ~ a d p ~ + ~ h ~
674 R674a ac + atp }->\mathrm{ actp + adp
675 R675 ac + atp + coa }->\mathrm{ accoa + amp + ppi
676 R676a accoa + (2) h + (2) nadh }->\mathrm{ coa + etoh + (2) nad
677 R677a lac-D + nad }->\textrm{h}+\mathrm{ nadh + pyr
678 R678 for +h }->\textrm{co2 + h2
679 R679a accoa + pi }->\mathrm{ actp + coa
680 R680 coa + pyr }->\mathrm{ accoa + for
681 R681a akg + sl26da }->\mathrm{ glu-L + sl2a6o
682 R682a aspsa + nadp + pi }->4\mathrm{ pasp + h + nadph
683 R683 aspsa + pyr }->23\textrm{dhdp}+\textrm{h}+(2)\textrm{h}2\textrm{o
6 8 4 ~ R 6 8 4 ~ 2 3 d h d p ~ + ~ h ~ + ~ n a d p h ~ \rightarrow ~ n a d p ~ + ~ t h d p
65 R685 h2o + succoa + thdp -> coa + sl2a6o
686 R686 h2o + sl26da -> 26dap-LL + succ
6 8 7 \text { R687a 26dap-LL } \rightarrow \text { 26dap-M}
688 R688 h + lys-L }->\mathrm{ 15dap + co2
689 R689a thr-L }->\mathrm{ acald + gly
690 R690 26dap-M + h }->\mathrm{ co2 + lys-L
691 R691a hom-L + nadp }->\mathrm{ aspsa + h + nadph
692 R692a asp-L + atp }->4\mathrm{ 4pasp + adp
6 9 3 ~ R 6 9 3 ~ a t p ~ + ~ h o m - L ~ \rightarrow ~ a d p ~ + ~ h ~ + ~ p h o m ~
64 R694 h2o + phom }->\mathrm{ pi + thr-L
695 R695 2dda7p }->3\mathrm{ 3dqq+ pi
696 R696 3psme }->\mathrm{ chor + pi
697 R697a 3dhq }->3\mathrm{ dhsk + h2o
```

```
698 R698a 3dhsk + h + nadph }->\mathrm{ nadp + skm
699 R699 e4p + h2o + pep ->2dda7p + pi
700 R700 atp + skm }->\mathrm{ adp + h + skm5p
701 R701 h + pphn }->\mathrm{ co2 + h2o + phpyr
7 0 2 ~ R 7 0 2 ~ c h o r ~ \rightarrow ~ p p h n ~
703 R703a h2o + trp-L }->\mathrm{ indole + nh4 + pyr
7 0 4 ~ R 7 0 4 ~ i n d o l e ~ + ~ s e r - L ~ \rightarrow ~ h 2 o ~ + ~ t r p - L
705 R705 3ig3p -> g3p + indole
706 R706 3ig3p + ser-L -> g3p + h2o + trp-L
707 R707 pran }->2\textrm{cpr5p
708 R708 2cpr5p + h }->3\mathrm{ ig3p + co2 + h2o
709 R709 chor + gln-L }->\mathrm{ anth + glu-L + h + pyr
710 R710 anth + prpp }->\mathrm{ ppi + pran
711 R711 nad + pphn }->34\textrm{hpp}+\textrm{co2}+\mathrm{ nadh
712 R712a akg + tyr-L }->34\textrm{hpp}+\mathrm{ glu-L
73 R713a akg + phe-L }->\mathrm{ glu-L + phpyr
714 R714 atp + h2o }->\mathrm{ adp + h + pi
715 R715 betald + h2o + nad -> glyb + (2) h + nadh
716 R716 betald + h2o + nadp }->\mathrm{ glyb + (2) h + nadph
717 R717a co2 + h2o }->\textrm{h}+\textrm{hco3
718 R718 cyan + tsul }->\textrm{h}+\mathrm{ so3 + tcynt
719 R719 (2) h2o2 -> (2) h2o + o2
720 R720 atp + h2o + seln }->\textrm{amp}+\textrm{pi}+\mathrm{ selnp
721 R721 (2) h + (2) o2- ->h2o2 +o2
722 R722 acon-T + amet }->\mathrm{ aconm + ahcys
7 2 3 ~ R 7 2 3 ~ t h r - L ~ \rightarrow ~ 2 o b u t ~ + ~ n h 4
724 R724 2obut + h + pyr }->\mathrm{ 2ahbut + co2
725 R725 h + (2) pyr }->\mathrm{ alac-S + co2
726 R726 2ahbut + h + nadph }->23\textrm{dhmp}+\mathrm{ nadp
727 R727 alac-S + h + nadph }->23\textrm{dhmb}+\mathrm{ nadp
728 R728 23dhmp }->3\mathrm{ mop + h2o
729 R729 23dhmb }->3\textrm{mob}+\textrm{h}2\textrm{o
7 3 0 ~ R 7 3 0 a ~ a k g ~ + ~ i l e - L ~ \rightarrow ~ 3 m o p ~ + ~ g l u - L ~
7 3 1 ~ R 7 3 1 a ~ a k g ~ + ~ v a l - L ~ \rightarrow ~ 3 m o b ~ + ~ g l u - L ~
```

```
732 R732 4mop + glu-L \(\rightarrow\) akg + leu-L
733 R733 3mob + accoa \(+\mathrm{h} 2 \mathrm{o} \rightarrow 3 \mathrm{c} 3 \mathrm{hmp}+\mathrm{coa}+\mathrm{h}\)
734 R734 3c2hmp + nad \(\rightarrow 3 \mathrm{c} 4 \mathrm{mop}+\mathrm{h}+\) nadh
735 R 735 3c4mop \(+\mathrm{h} \rightarrow 4 \mathrm{mop}+\mathrm{co} 2\)
736 R736a 3c2hmp \(\rightarrow 2 \mathrm{ippm}+\mathrm{h} 2 \mathrm{o}\)
737 R737a 2ippm \(+\mathrm{h} 2 \mathrm{o} \rightarrow 3 \mathrm{c} 3 \mathrm{hmp}\)
738 R1b glu-L + pyr \(\rightarrow\) akg + ala-L
739 R2b ala-D \(\rightarrow\) ala-L
740 R7b glu-L + oaa \(\rightarrow\) akg + asp-L
741 R11b ara5p \(\rightarrow\) ru5p-D
742 R12b mmcoa-S \(\rightarrow\) mmcoa-R
743 R14b glyc + nad \(\rightarrow\) glyald \(+\mathrm{h}+\) nadh
744 R15b dhap + g3p \(\rightarrow\) tagdp-D
745 R16b (2) h + lac-L + nadh \(\rightarrow\) h2o + lald-L + nad
746 R18b rbl-L \(\rightarrow\) arab-L
747 R20b xu5p-D \(\rightarrow\) ru5p-L
748 R24b man6p \(\rightarrow\) man1p
749 R25b 2dr5p \(\rightarrow 2\) dr1p
750 R26b r5p \(\rightarrow\) r1p
751 R29b g3p + pyr \(\rightarrow\) 2dh3dgal6p
752 R35b dhap + lald \(-L \rightarrow \mathrm{fc} 1 \mathrm{p}\)
753 R36b fcl-L \(\rightarrow\) fuc-L
754 R38b 12ppd-S + nad \(\rightarrow \mathrm{h}+\) lald- \(\mathrm{L}+\) nadh
755 R39b udpgal \(\rightarrow\) udpg
756 R40b adp + gallp \(+\mathrm{h} \rightarrow\) atp + gal
757 R41b g1p + udpgal \(\rightarrow\) gallp + udpg
758 R42b ppi + udpg \(\rightarrow\) g1p \(+\mathrm{h}+\) utp
759 R44b h + nadh + tag6p-D \(\rightarrow\) galt \(1 \mathrm{p}+\) nad
760 R51b dhap \(+\mathrm{h}+\) nadph \(\rightarrow\) glyc3p + nadp
761 R57b 2h3oppan \(\rightarrow\) hpyr
762 R58b idon-L + nad \(\rightarrow 5\) dglcn \(+\mathrm{h}+\) nadh
763 R61b glen + nadp \(\rightarrow 5\) dglen \(+h+\) nadph
764 R64b glp + maltttr \(\rightarrow\) maltpt + pi
765 R65b g1p + maltpt \(\rightarrow\) malthx + pi
```

```
766 R66b glp + malthx \(\rightarrow\) malthp + pi
767 R76b f6p \(\rightarrow\) man6p
768 R87b f6p \(+\mathrm{h}+\) nadh \(\rightarrow\) mnllp + nad
769 R95b g6p \(\rightarrow\) g1p
770 R96b pyr + succ \(\rightarrow\) micit
771 R102b rml \(\rightarrow \mathrm{rmn}\)
772 R104b dhap + lald \(-L \rightarrow\) rmllp
773 R108b f6p + h + nadh \(\rightarrow\) nad + sbt6p
774 R110b atp + ppa \(\rightarrow\) adp + ppap
775 R117b h + nadh + tagur \(\rightarrow\) altrn + nad
776 R118b fruur \(\rightarrow\) glcur
777 R119b tagur \(\rightarrow\) galur
778 R121b fruur \(+\mathrm{h}+\) nadh \(\rightarrow\) mana + nad
779 R123b xylu-D \(\rightarrow\) xyl-D
780 R151b 5mdrulp \(\rightarrow 5 \mathrm{mdr} 1 \mathrm{p}\)
781 R157b acg5p \(+\mathrm{h}+\) nadph \(\rightarrow\) acg5sa + nadp +pi
782 R158b acg5sa + glu-L \(\rightarrow\) acorn + akg
783 R162b arg-L + fum \(\rightarrow\) argsuc
784 R163b citr-L + h + pi \(\rightarrow\) cbp + orn
785 R183b ametam + co2 \(\rightarrow\) amet +h
786 R191b (2) 12dgr_EC \(+(100)\) cdpea \(\rightarrow(100) \mathrm{cmp}+(100) \mathrm{h}+(2)\) pe_EC
787 R199b adp + alaala \(+\mathrm{h}+\mathrm{pi} \rightarrow(2)\) ala-D + atp
788 R220b ACP + u3aga \(\rightarrow 3 \mathrm{hmrsACP}+\) uacgam
789 R229b gam6p \(\rightarrow\) gam1p
790 R239b glu-L \(\rightarrow\) glu-D
791 R267b icit \(\rightarrow\) cit
792 R271b mal-L \(\rightarrow\) fum +h 2 o
793 R273b akg + co2 + nadph \(\rightarrow\) icit + nadp
794 R275b h + nadh + oaa \(\rightarrow\) mal-L + nad
795 R279b adp + pi + succoa \(\rightarrow\) atp + coa + succ
796 R291b adp + h + thmmp \(\rightarrow\) atp + thm
797 R294b amob + dann \(\rightarrow 8\) aonn + amet
798 R295b ala-L + btn \(+(2) \mathrm{h} \rightarrow\) cys-L + dtbt
799 R296b adp + dtbt \(+(3) \mathrm{h}+\mathrm{pi} \rightarrow\) atp + co2 + dann
```

```
800 R297b 8aonn + co2 + coa }->\mathrm{ ala-L + h + pmcoa
801 R300b adocbi + pi + ppi -> atp + cbi + h2o
8 0 2 ~ R 3 0 1 b ~ a d o c b l ~ + ~ p i ~ + ~ p p i ~ \rightarrow ~ a t p ~ + ~ c b l 1 ~ + ~ h 2 o ~
803 R313b 23dhb + h + nadh }->23ddhb + nad
804 R316b 23dhba + ppi }->23\textrm{dhb}+\textrm{atp
8 0 5 ~ R 3 1 7 b ~ p p i ~ + ~ s e r a m p ~ \rightarrow ~ a t p ~ + ~ h ~ + ~ s e r - L ~
806 R318b 4per + (2) h + nadh }->\textrm{e}4\textrm{p}+\textrm{h}2\textrm{o}+\textrm{nad
8 0 7 \text { R319b nadp + thf } \rightarrow \text { dhf + h + nadph}
808 R329b (2) gthrd + nadp }->\mathrm{ gthox + h + nadph
809 R376b h + nadh + ohpb }->4\mathrm{ per + nad
810 R377b h2o2 + pydx5p ->o2 + pdx5p
8 1 1 ~ R 3 9 3 b ~ a k g ~ + ~ p h t h r ~ \rightarrow ~ g l u - L ~ + ~ o h p b ~
8 1 2 ~ R 3 9 8 b ~ a d p ~ + ~ t h m p p ~ \rightarrow ~ a t p ~ + ~ t h m m p ~
8 1 3 ~ R 4 1 7 b ~ a c s e r ~ + ~ c o a ~ \rightarrow ~ a c c o a ~ + ~ s e r - L ~
814 R419b (5) h + (3) nadph + so3 -> (3) h2o + h2s + (3) nadp
815 R423b 10fthf }->\textrm{h}2\textrm{o}+\mathrm{ methf
816 R424b h + methf + nadph }->\mathrm{ mlthf + nadp
8 1 7 ~ R 4 2 9 b ~ a k g ~ + ~ h ~ + ~ n a d p h ~ + ~ n h 4 ~ \rightarrow ~ g l u - L ~ + ~ h 2 o ~ + ~ n a d p ~
818 R443b h2o + pep }->2\mathrm{ pg
8 1 9 ~ R 4 4 4 b ~ d h a p ~ + ~ g 3 p ~ \rightarrow ~ f d p
820 R446b dha + g3p }->\mathrm{ f6p
82 R447b 13dpg + h + nadh }->\textrm{g}3\textrm{p}+\textrm{nad}+\textrm{pi
82 R452b 3pg }->2\mathrm{ pg
83 R454b f6p }->\mathrm{ g6p
824 R455b 13dpg + adp }->3\mathrm{ pg + atp
8 2 5 ~ R 4 5 8 b ~ g 3 p ~ \rightarrow ~ d h a p ~
826 R473b amp + h + prpp -> atp + r5p
8 2 7 ~ R 4 7 4 b ~ a d p ~ + ~ h ~ + ~ m a l c o a ~ + ~ p i ~ \rightarrow ~ a c c o a ~ + ~ a t p ~ + ~ h c o 3
828 R475b aacoa + coa }->\mathrm{ (2) accoa
8 2 9 ~ R 4 7 7 b ~ ( 2 ) ~ c d p d a g 1 ~ + ~ ( 1 0 0 ) ~ p p i ~ \rightarrow ~ ( 1 0 0 ) ~ c t p ~ + ~ ( 1 0 0 ) ~ h ~ + ~ ( 2 ) ~ p a \_ E C ~
830 R478b (2) clpn_EC + (100) glyc -> (4) pg_EC
8 3 1 \mathrm { R } 4 8 3 \mathrm { b } \text { coa + malACP } \rightarrow \mathrm { ACP } + \text { malcoa}
82 R489b acACP + coa }->\mathrm{ ACP + accoa
8 3 3 ~ R 4 9 5 b ~ ( 1 0 0 ) ~ c m p ~ + ~ ( 1 0 0 ) ~ h ~ + ~ ( 2 ) ~ p g p \_ E C ~ \rightarrow ~ ( 2 ) ~ c d p d a g 1 ~ + ~ ( 1 0 0 ) ~ g l y c 3 p
```

834 R498b (100) cmp + (100) h + (2) ps_EC \rightarrow (2) cdpdag $1+(100)$ ser-L
835 R499b adn + hcys-L \rightarrow ahcys + h2o
836 R519b (2) adp \rightarrow amp + atp
837 R520b adp + dadp \rightarrow atp + damp
838 R521b adp + idp \rightarrow amp + itp
839 R522b adp + gdp \rightarrow amp + gtp
840 R530b adp + dcdp \rightarrow atp + dcmp
841 R531b adp + cdp \rightarrow atp +cmp
842 R532b adp + udp \rightarrow atp $+u m p$
843 R536b 2 drlp + thym $\rightarrow \mathrm{pi}+$ thymd
844 R537b 2drlp + ura \rightarrow duri + pi
845 R541b adp + gdp \rightarrow atp + gmp
846 R 542 b adp + dgdp \rightarrow atp + dgmp
847 R556b adp + gtp \rightarrow atp + gdp
848 R557b adp + utp \rightarrow atp + udp
849 R558b adp + ctp \rightarrow atp + cdp
850 R559b adp + dgtp \rightarrow atp + dgdp
851 R560b adp + dutp \rightarrow atp + dudp
852 R561b adp + dctp \rightarrow atp + dcdp
853 R562b adp + datp \rightarrow atp + dadp
854 R563b adp + dttp \rightarrow atp + dtdp
855 R572b adp + dudp \rightarrow atp + dump
856 R576b adp + dtdp \rightarrow atp + dtmp
857 R579b rlp + ura \rightarrow pi + uri
858 R592b 2drlp + hxan \rightarrow din + pi
859 R593b hxan $+\mathrm{rlp} \rightarrow \mathrm{ins}+\mathrm{pi}$
860 R594b 2 drlp + ade \rightarrow dad- $2+$ pi
861 R595b 2 drlp + gua \rightarrow dgsn + pi
862 R596b ade $+\mathrm{rlp} \rightarrow \mathrm{adn}+\mathrm{pi}$
863 R597b gua $+\mathrm{rlp} \rightarrow$ gsn +pi
864 R598b rlp + xan $\rightarrow \mathrm{pi}+\mathrm{xtsn}$
866 R604b crncoa + gbbtn \rightarrow bbtcoa + crn
867 R605b crncoa + ctbt \rightarrow crn + ctbtcoa
868 R606b ctbtcoa + h2o \rightarrow crncoa

```
869 R634b fad \(+\mathrm{q} 8 \mathrm{~h} 2 \rightarrow\) fadh \(2+\mathrm{q} 8\)
870 R641b xu5p-D \(\rightarrow\) ru5p-D
871 R642b ru5p-D \(\rightarrow\) r5p
872 R643b e4p + f6p \(\rightarrow g 3 p+s 7 p\)
873 R644b g3p + s7p \(\rightarrow r 5 p+x u 5 p-D\)
874 R645b f6p + g3p \(\rightarrow e 4 p+x u 5 p-D\)
875 R646b 6pgl + h + nadph \(\rightarrow \mathrm{g} 6 \mathrm{p}+\) nadp
876 R651b aicar + fum \(\rightarrow 25\) aics
877 R652b amp + fum \(\rightarrow\) dcamp
878 R653b 25aics + adp \(+\mathrm{h}+\mathrm{pi} \rightarrow 5\) aizc + asp-L + atp
879 R654b adp + gar \(+\mathrm{h}+\mathrm{pi} \rightarrow\) atp + gly + pram
880 R655b 5caiz \(\rightarrow 5\) aizc
881 R657b fprica + thf \(\rightarrow 10 \mathrm{fthf}+\) aicar
882 R658b fprica \(\rightarrow \mathrm{h} 2 \mathrm{o}+\mathrm{imp}\)
883 R662b fgam \(+\mathrm{h}+\) thf \(\rightarrow 10 \mathrm{fthf}+\) gar
884 R665b cbasp \(+\mathrm{h} \rightarrow\) dhor-S +h 2 o
885 R668b orot + prpp \(\rightarrow\) orot5p + ppi
886 R674b actp \(+\mathrm{adp} \rightarrow \mathrm{ac}+\) atp
887 R676b coa + etoh \(+(2)\) nad \(\rightarrow\) accoa \(+(2) h+(2)\) nadh
888 R677b h + nadh + pyr \(\rightarrow\) lac-D + nad
889 R679b actp + coa \(\rightarrow\) accoa + pi
890 R681b glu-L + sl2a6o \(\rightarrow\) akg + sl26da
891 R682b 4pasp \(+\mathrm{h}+\) nadph \(\rightarrow\) aspsa + nadp + pi
892 R687b 26dap-M \(\rightarrow\) 26dap-LL
893 R689b acald + gly \(\rightarrow\) thr-L
894 R691b aspsa \(+\mathrm{h}+\) nadph \(\rightarrow\) hom-L + nadp
895 R692b 4pasp + adp \(\rightarrow\) asp-L + atp
896 R697b 3dhsk + h2o \(\rightarrow 3 \mathrm{dhq}\)
897 R698b nadp + skm \(\rightarrow 3\) dhsk \(+h+\) nadph
898 R703b indole \(+\mathrm{nh} 4+\mathrm{pyr} \rightarrow \mathrm{h} 2 \mathrm{o}+\operatorname{trp}-\mathrm{L}\)
899 R712b 34hpp + glu-L \(\rightarrow\) akg + tyr-L
900 R713b glu-L + phpyr \(\rightarrow\) akg + phe-L
901 R 717 b h \(+\mathrm{hco} 3 \rightarrow \mathrm{co} 2+\mathrm{h} 2 \mathrm{o}\)
902 R730b 3mop + glu-L \(\rightarrow\) akg + ile-L
```

903 R731b 3mob + glu-L \rightarrow akg + val-L
904 R736b 2ippm $+\mathrm{h} 2 \mathrm{o} \rightarrow 3 \mathrm{c} 2 \mathrm{hmp}$
905 R737b $3 \mathrm{c} 3 \mathrm{hmp} \rightarrow 2 \mathrm{ippm}+\mathrm{h} 2 \mathrm{o}$

Appendix B: Biochemical compounds

We give below full details of the set of biochemical compounds used in this dissertation. As noted above, this set has been taken from the metabolic network of E.Coli presented by Reed et al., 2003, which is available from
http://systemsbiology.ucsd.edu/In_Silico_Organisms/E_coli/E_coli_reactions.

10fthf 10-Formyltetrahydrofolate
12dgr_EC 1,2-Diacylglycerol
12ppd-S (S)-Propane-1,2-diol
13dpg 3-Phospho-D-glyceroyl phosphate
15dap 1,5-Diaminopentane
1pyr5c 1-Pyrroline-5-carboxylate
23ddhb 2,3-Dihydro-2,3-dihydroxybenzoate
23dhb 2,3-Dihydroxybenzoate
23dhba (2,3-Dihydroxybenzoyl)adenylate
23dhdp 2,3-Dihydrodipicolinate
23dhmb (R)-2,3-Dihydroxy-3-methylbutanoate
23dhmp (R)-2,3-Dihydroxy-3-methylpentanoate
23doguln 2,3-Dioxo-L-gulonate
25aics (S)-2-[5-Amino-1-(5-phospho-D-ribosyl)imidazole-4carboxamido]succinate

25dkglcn 2,5-diketo-D-gluconate
25drapp 2,5-Diamino-6-(ribosylamino)-4-(3H)-pyrimidinone 5'-phosphate
26dap-LL LL-2,6-Diaminoheptanedioate
26dap-M meso-2,6-Diaminoheptanedioate
2ahbut (S)-2-Aceto-2-hydroxybutanoate
2aobut L-2-Amino-3-oxobutanoate
2cpr5p 1-(2-Carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate
2dda7p 2-Dehydro-3-deoxy-D-arabino-heptonate 7-phosphate
2ddg6p 2-Dehydro-3-deoxy-D-gluconate 6-phosphate

2ddglen 2-Dehydro-3-deoxy-D-gluconate
2dh3dgal 2-Dehydro-3-deoxy-D-galactonate
2dh3dgal6p 2-Dehydro-3-deoxy-D-galactonate 6-phosphate
2dhglen 2-Dehydro-D-gluconate
2dhguln 2-Dehydro-L-gulonate
2dhp 2-Dehydropantoate
2dmmq8 2-Demethylmenaquinone 8
2dmmq18 2-Demethylmenaquinol 8
2drlp 2-Deoxy-D-ribose 1-phosphate
2dr5p 2-Deoxy-D-ribose 5-phosphate
2h3oppan 2-Hydroxy-3-oxopropanoate
2ippm 2-Isopropylmaleate
2kmb 2-keto-4-methylthiobutyrate
2mahmp 2-Methyl-4-amino-5-hydroxymethylpyrimidine diphosphate
2mcacn cis-2-Methylaconitate
2mcit 2-Methylcitrate
2me4p 2-C-methyl-D-erythritol 4-phosphate
2mecdp 2-C-methyl-D-erythritol "2,4-cyclodiphosphate"
2obut 2-Oxobutanoate
2ohph 2-Octaprenyl-6-hydroxyphenol
2ombzl "2-Octaprenyl-6-methoxy-1,4-benzoquinol"
20 mhmbl "2-Octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinol"
2ommbl 2-Octaprenyl-3-methyl-6-methoxy- "1,4-benzoquinol"
2omph 2-Octaprenyl-6-methoxyphenol
2oph 2-Octaprenylphenol
2p4c2me 2-phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol
2pg D-Glycerate 2-phosphate
2pglyc 2-Phosphoglycolate
2shchc 2-Succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate
34hpp 3-(4-Hydroxyphenyl)pyruvate
3c2hmp 3-Carboxy-2-hydroxy-4-methylpentanoate
3c3hmp 3-Carboxy-3-hydroxy-4-methylpentanoate
3c4mop 3-Carboxy-4-methyl-2-oxopentanoate
3dgulnp 3-keto-L-gulonate-6-phosphate

3dhguln 3-Dehydro-L-gulonate
3dhq 3-Dehydroquinate
3dhsk 3-Dehydroshikimate
3hcinnm 3-hydroxycinnamic acid
3hmrsACP R-3-hydroxy-myristoyl-ACP
3hpppn 3-(3-hydroxy-phenyl)propionate
3ig3p C'-(3-Indolyl)-glycerol 3-phosphate
3mob 3-Methyl-2-oxobutanoate
3mop (S)-3-Methyl-2-oxopentanoate
3ophb 3-Octaprenyl-4-hydroxybenzoate
3pg 3-Phospho-D-glycerate
3php 3-Phosphohydroxypyruvate
3psme 5-O-(1-Carboxyvinyl)-3-phosphoshikimate
4abut 4-Aminobutanoate
4abutn 4-Aminobutanal
4abz 4-Aminobenzoate
4adcho 4-amino-4-deoxychorismate
4ahmmp 4-Amino-5-hydroxymethyl-2-methylpyrimidine
4ampm 4-Amino-2-methyl-5-phosphomethylpyrimidine
4c2me 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol
4h2opntn 4-Hydroxy-2-oxopentanoate
4hba 4-Hydroxy-benzyl alcohol
4hbz 4-Hydroxybenzoate
4hthr 4-Hydroxy-L-threonine
4mhetz 4-Methyl-5-(2-hydroxyethyl)-thiazole
4mop 4-Methyl-2-oxopentanoate
4mpetz 4-Methyl-5-(2-phosphoethyl)-thiazole
4pasp 4-Phospho-L-aspartate
4per 4-Phospho-D-erythronate
4ppan D-4'-Phosphopantothenate
4ppcys N-((R)-4-Phosphopantothenoyl)-L-cysteine
4r5au 4-(1-D-Ribitylamino)-5-aminouracil
5aizc 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate
5aop 5-Amino-4-oxopentanoate

5aprbu 5-Amino-6-(5'-phosphoribitylamino)uracil
5apru 5-Amino-6-(5'-phosphoribosylamino)uracil
5caiz 5-phosphoribosyl-5-carboxyaminoimidazole
5dglen 5-Dehydro-D-gluconate
5dh4dglc 5-Dehydro-4-deoxy-D-glucarate
5mdrlp 5-Methylthio-5-deoxy-D-ribose 1-phosphate
5mdrulp 5-Methylthio-5-deoxy-D-ribulose 1-phosphate
5mta 5-Methylthioadenosine
5mthf 5-Methyltetrahydrofolate
5mtr 5-Methylthio-D-ribose
5prdmbz "N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole"
6hmhpt 6-hydroxymethyl dihydropterin
6hmhptpp 6-hydroxymethyl-dihydropterin pyrophosphate
6pgc 6-Phospho-D-gluconate
6pgl "6-phospho-D-glucono-1,5-lactone"
8aonn 8-Amino-7-oxononanoate
aacald Aminoacetaldehyde
aacoa Acetoacetyl-CoA
ac Acetate
acac Acetoacetate
acACP Acetyl-ACP
acald Acetaldehyde
accoa Acetyl-CoA
acg5p N-Acetyl-L-glutamyl 5-phosphate
acg5sa N-Acetyl-L-glutamate 5-semialdehyde
acgam1p N-Acetyl-D-glucosamine 1-phosphate
acgam6p N-Acetyl-D-glucosamine 6-phosphate
acglu N -Acetyl-L-glutamate
acmana N-Acetyl-D-mannosamine
acmanap N-Acetyl-D-mannosamine 6-phosphate
acnam N-Acetylneuraminate
aconm E-3-carboxy-2-pentenedioate 6-methyl ester
acon-T trans-Aconitate
acorn N2-Acetyl-L-ornithine

ACP acyl carrier protein
acser O-Acetyl-L-serine
actACP Acetoacetyl-ACP
actp Acetyl phosphate
ade Adenine
adn Adenosine
adocbi Adenosyl cobinamide
adocbip Adenosyl cobinamide phosphate
adocbl Adenosylcobalamin
adp ADP
adpgle ADPglucose
agdpcbi Adenosine-GDP-cobinamide
agm Agmatine
agpc_EC acyl-glycerophosphocholine
agpe_EC acyl-glycerophosphoethanolamine
agpg_EC acyl-glycerophosphoglycerol
ahcys S-Adenosyl-L-homocysteine
ahdt "2-Amino-4-hydroxy-6-(erythro-1,2,3-trihydroxypropyl)dihydropteridine"
triphosphate
aicar 5-Amino-1-(5-Phospho-D-ribosyl)imidazole-4-carboxamide
air 5-amino-1-(5-phospho-D-ribosyl)imidazole
akg 2-Oxoglutarate
alaala D-Alanyl-D-alanine
ala-B beta-Alanine
alac-S (S)-2-Acetolactate
ala-D D-Alanine
ala-L L-Alanine
altrn D-Altronate
alltn Allantoin
alltt Allantoate
amet S-Adenosyl-L-methionine
ametam S-Adenosylmethioninamine
amob S-Adenosyl-4-methylthio-2-oxobutanoate
amp AMP
anth Anthranilate
ap4a P1,P4-Bis(5'-adenosyl) tetraphosphate
ap5a P1,P5-Bis(5'-adenosyl) pentaphosphate
apg_EC acyl phosphatidylglycerol
apoACP apoprotein [acyl carrier protein]
aps Adenosine 5'-phosphosulfate
ara5p D-Arabinose 5-phosphate
arab-L L-Arabinose
arbt6p Arbutin 6-phosphate
arg-L L-Arginine
argsuc N (omega)-(L-Arginino)succinate
asn-L L-Asparagine
asp-L L-Aspartate
aspsa L-Aspartate 4-semialdehyde
atp ATP
bbtcoa gamma-butyrobetainyl-CoA
betald Betaine aldehyde
btcoa Butanoyl-CoA
btn Biotin
btnso d-biotin d-sulfoxide
but Butyrate ($\mathrm{n}-\mathrm{C} 4: 0$)
camp cAMP
cbasp N-Carbamoyl-L-aspartate
cbi Cobinamide
cbll Cob(I)alamin
cbp Carbamoyl phosphate
cdp CDP
cdpdag1 CDPdiacylglycerol
cdpea CDPethanolamine
cechddd cis-3-(3-carboxyethyl)-3,5-cyclohexadiene-1,2-diol
cenchddd cis-3-(3-carboxyethenyl)-3,5-cyclohexadiene-1,2-diol
cinnm trans-Cinnamate
cit Citrate
citr-L L-Citrulline

```
ckdo CMP-3-deoxy-D-manno-octulosonate
clpn_EC Cardiolipin
cmp CMP
co2 CO2
coa Coenzyme A
cpppg3 Coproporphyrinogen III
crn L-Carnitine
crncoa Carnitinyl-CoA
csn Cytosine
ctbt crotonobetaine
ctbtcoa crotonobetainyl-CoA
ctp CTP
cyan Cyanide
cynt Cyanate
cys-L L-Cysteine
cyst-L L-Cystathionine
cytd Cytidine
chol Choline
chor Chorismate
dad-2 Deoxyadenosine
dadp dADP
damp dAMP
dann 7,8-Diaminononanoate
datp dATP
db4p 3,4-dihydroxy-2-butanone 4-phosphate
dcamp N6-(1,2-Dicarboxyethyl)-AMP
dcdp dCDP
dcmp dCMP
dctp dCTP
dcyt Deoxycytidine
ddcaACP Dodecanoyl-ACP (n-C12:0ACP)
dgdp dGDP
dgmp dGMP
dgsn Deoxyguanosine
```

dgtp dGTP
dha Dihydroxyacetone
dhap Dihydroxyacetone phosphate
dhcinnm 2,3-dihydroxicinnamic acid
dhf 7,8-Dihydrofolate
dhna 1,4-Dihydroxy-2-naphthoate
dhnpt 2-Amino-4-hydroxy-6-(D-erythro-1,2,3-trihydroxypropyl)-7,8dihydropteridine
dhor-S (S)-Dihydroorotate
dhpmp Dihydroneopterin monophosphate
dhpppn 3-(2,3-Dihydroxyphenyl)propanoate
dhpt Dihydropteroate
dhptd 4,5-dihydroxy-2,3-pentanedione
din Deoxyinosine
dkmpp 2,3-diketo-5-methylthio-1-phosphopentane
dmbzid 5,6-Dimethylbenzimidazole
dmlz 6,7-Dimethyl-8-(1-D-ribityl)lumazine
dmpp Dimethylallyl diphosphate
dms Dimethyl sulfide
dmso Dimethyl sulfoxide
dnad Deamino-NAD+
dpcoa Dephospho-CoA
dtbt Dethiobiotin
dtdp dTDP
dtdp4aaddg dTDP-4-acetamido-4,6-dideoxy-D-galactose
dtdp4addg dTDP-4-amino-4,6-dideoxy-D-glucose
dtdp4d6dg dTDP-4-dehydro-6-deoxy-D-glucose
dtdp4d6dm dTDP-4-dehydro-6-deoxy-L-mannose
dtdpglu dTDPglucose
dtdprmn dTDP-L-rhamnose
dtmp dTMP
dttp dTTP
dudp dUDP
dump dUMP
duri Deoxyuridine
dutp dUTP
dxyl 1-deoxy-D-xylulose
dxyl5p 1-deoxy-D-xylulose 5-phosphate
e4p D-Erythrose 4-phosphate
eca_EC Enterobacterial common antigen polysaccharide
eig3p D-erythro-1-(Imidazol-4-yl)glycerol 3-phosphate
enter Enterochelin
etha Ethanolamine
etoh Ethanol
flp D-Fructose 1-phosphate
f6p D-Fructose 6-phosphate
fad FAD
fadh2 FADH2
fc1p L-Fuculose 1-phosphate
fcl-L L-fuculose
fdp D-Fructose 1,6-bisphosphate
fe2 $\mathrm{Fe} 2+$
fgam N2-Formyl-N1-(5-phospho-D-ribosyl)glycinamide
fmn FMN
for Formate
fpram 2-(Formamido)-N1-(5-phospho-D-ribosyl)acetamidine
fprica 5-Formamido-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide
frdp Farnesyl diphosphate
fru D-Fructose
fruur D-Fructuronate
fuc-L L-Fucose
fum Fumarate
g1p D-Glucose 1-phosphate
g3p Glyceraldehyde 3-phosphate
g3pc sn-Glycero-3-phosphocholine
g3pe sn-Glycero-3-phosphoethanolamine
g3pg Glycerophosphoglycerol
g3pi sn-Glycero-3-phospho-1-inositol

```
g3ps Glycerophosphoserine
g6p D-Glucose 6-phosphate
gal D-Galactose
gal1p alpha-D-Galactose 1-phosphate
galct-D D-Galactarate
galctn-D D-Galactonate
galt1p Galactitol 1-phosphate
galur D-Galacturonate
gam1p D-Glucosamine 1-phosphate
gam6p D-Glucosamine 6-phosphate
gar N1-(5-Phospho-D-ribosyl)glycinamide
gbbtn gamma-butyrobetaine
gcald Glycolaldehyde
gdp GDP
gdpddman GDP-4-dehydro-6-deoxy-D-mannose
gdpfuc GDP-L-fucose
gdpmann GDP-D-mannose
gdpofuc GDP-4-oxo-L-fucose
glc-D D-Glucose
glen D-Gluconate
gler D-Glucarate
glcur D-Glucuronate
gln-L L-Glutamine
glu1sa L-Glutamate 1 -semialdehyde
glu5p L-Glutamate 5-phosphate
glu5sa L-Glutamate 5 -semialdehyde
glucys gamma-L-Glutamyl-L-cysteine
glu-D D-Glutamate
glu-L L-Glutamate
glutrna L-Glutamyl-tRNA(Glu)
glx Glyoxylate
gly Glycine
glyald D-Glyceraldehyde
glyb Glycine betaine
```

```
glyc Glycerol
glyc3p Glycerol 3-phosphate
glyclt Glycolate
glycogen glycogen
glyc-R (R)-Glycerate
gmhep17bp D-Glycero-D-manno-heptose 1,7-bisphosphate
gmhep1p D-Glycero-D-manno-heptose 1-phosphate
gmhep7p D-Glycero-D-manno-heptose 7-phosphate
gmp GMP
gp4g P1,P4-Bis(5'-guanosyl) tetraphosphate
grdp Geranyl diphosphate
gsn Guanosine
gthox Oxidized glutathione
gthrd Reduced glutathione
gtp GTP
gtspmd Glutathionylspermidine
gua Guanine
h H+
h2 H2
h2mb4p 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate
h2o H2O
h2o2 Hydrogen peroxide
h2s Hydrogen sulfide
hco3 Bicarbonate
hcys-L L-Homocysteine
hdca Hexadecanoate (n-C16:0)
hdcea hexadecenoate (n-C16:1)
hdeACP Hexadecenoyl-ACP (n-C16:1ACP)
hemeO Heme O
his-L L-Histidine
hisp L-Histidinol phosphate
histd L-Histidinol
hkndd 2-Hydroxy-6-oxonona-2,4-diene-1,9-dioate
hkntd 2-hydroxy-6-ketononatrienedioate
```

hmbil Hydroxymethylbilane
hmfurn 4-hydroxy-5-methyl-3(2H)-furanone
hom-L L-Homoserine
hpyr Hydroxypyruvate
hqn Hydroquinone
hxan Hypoxanthine
iasp Iminoaspartate
icit Isocitrate
ichor Isochorismate
idon-L L-Idonate
idp IDP
ile-L L-Isoleucine
imacp 3-(Imidazol-4-yl)-2-oxopropyl phosphate
imp IMP
indole Indole
inost myo-Inositol
ins Inosine
ipdp Isopentenyl diphosphate
itp ITP
kdo 3-Deoxy-D-manno-2-octulosonate
kdo2lipid4 KDO(2)-lipid IV(A)
kdo2lipid4L $\mathrm{KDO}(2)$-lipid IV(A) with laurate
kdo2lipid4p KDO(2)-lipid IV(A) with palmitoleoyl
kdo8p 3-Deoxy-D-manno-octulosonate 8-phosphate
kdolipid4 KDO-lipid IV(A)
lac-D D-Lactate
lac-L L-Lactate
lald-L L-Lactaldehyde
lcts Lactose
leu-L L-Leucine
lgt-S (R)-S-Lactoylglutathione
lipa $\mathrm{KDO}(2)$-lipid (A)
lipa_cold cold adapted $\mathrm{KDO}(2)$-lipid (A)
lipidA 2,3,2'3'-Tetrakis(beta-hydroxymyristoyl)-D-glucosaminyl-1,6-beta-Dglucosamine 1,4 '-bisphosphate
lipidAds Lipid A Disaccharide
lipidX 2,3-Bis(3-hydroxytetradecanoyl)-beta-D-glucosaminyl 1-phosphate lps EC lipopolysaccharide
lys-L L-Lysine
malACP Malonyl-[acyl-carrier protein]
malcoa Malonyl-CoA
mal-L L-Malate
malt Maltose
malthp Maltoheptaose
malthx Maltohexaose
maltpt Maltopentaose
malttr Maltotriose
malttr Maltotetraose
man1p D-Mannose 1-phosphate
man6p D-Mannose 6-phosphate
mana D-Mannonate
melib Melibiose
methf 5,10-Methenyltetrahydrofolate
met-L L-Methionine
milp-D 1D-myo-Inositol 1-phosphate
micit methylisocitrate
mlthf 5,10-Methylenetetrahydrofolate
mmcoa-R (R)-Methylmalonyl-CoA
mmcoa-S (S)-Methylmalonyl-CoA
mnllp D-Mannitol 1-phosphate
mql8 Menaquinol 8
mqn8 Menaquinone 8
mthgxl Methylglyoxal
myrsACP Myristoyl-ACP (n-C14:0ACP)
N1aspmd N1-Acetylspermidine
n8aspmd N8-Acetylspermidine
nac Nicotinate
nad Nicotinamide adenine dinucleotide
nadh Nicotinamide adenine dinucleotide - reduced
nadp Nicotinamide adenine dinucleotide phosphate
nadph Nicotinamide adenine dinucleotide phosphate - reduced
ncam Nicotinamide
nh4 ammonium
nicrnt Nicotinate D-ribonucleotide
nmn NMN
no2 Nitrite
no3 Nitrate
o2 O2
o2- Superoxide anion
oaa Oxaloacetate
ocdca octadecanoate ($\mathrm{n}-\mathrm{C} 18: 0$)
ocdcea octadecenoate ($\mathrm{n}-\mathrm{C} 18: 1$)
octdp all-trans-Octaprenyl diphosphate
octeACP Octadecenoyl-ACP (n-C18:1ACP)
ohpb 2-Oxo-3-hydroxy-4-phosphobutanoate
op4en 2-Oxopent-4-enoate
orn Ornithine
orot Orotate
orot5p Orotidine 5'-phosphate
pa_EC phosphatidate
pac Phenylacetic acid
pacald Phenylacetaldehyde
palmACP Palmitoyl-ACP ($n-C 16: 0 \mathrm{ACP}$)
pan 4 p Pantetheine 4 '-phosphate
pant-R (R)-Pantoate
pap Adenosine $3^{\prime}, 5$ '-bisphosphate
paps 3'-Phosphoadenylyl sulfate
pc_EC Phosphatidylcholine
pdx5p Pyridoxine 5'-phosphate
pe_EC Phosphatidylethanolamine
peamn Phenethylamine
pep Phosphoenolpyruvate
peptido_EC Peptidoglycan subunit of Escherichia coli
pg_EC Phosphatidylglycerol
pgp_EC Phosphatidylglycerophosphate
phaccoa Phenylacetyl-CoA
phe-L L-Phenylalanine
pheme Protoheme
phom O-Phospho-L-homoserine
phpyr Phenylpyruvate
phthr O-Phospho-4-hydroxy-L-threonine
pi Phosphate
pmcoa Pimeloyl-CoA
pnto-R (R)-Pantothenate
ppa Propionate
ppap Propanoyl phosphate
ppbng Porphobilinogen
ppcoa Propanoyl-CoA
pphn Prephenate
ppi Diphosphate
ppp9 Protoporphyrin
pppg9 Protoporphyrinogen IX
pppi Inorganic triphosphate
pppn Phenylpropanoate
pram 5-Phospho-beta-D-ribosylamine
pran N-(5-Phospho-D-ribosyl)anthranilate
prbamp 1-(5-Phosphoribosyl)-AMP
prbatp 1-(5-Phosphoribosyl)-ATP
prfp 1-(5-Phosphoribosyl)-5-[(5-
phosphoribosylamino)methylideneamino]imidazole-4-carboxamide
prlp 5-[(5-phospho-1-deoxyribulos-1-ylamino)methylideneamino]-1-(5-phosphoribosyl)imidazole-4-carboxamide
pro-L L-Proline
prpp 5-Phospho-alpha-D-ribose 1-diphosphate
ps_EC phosphatidylserine
pser-L O-Phospho-L-serine
ptrc Putrescine
pyam5p Pyridoxamine 5'-phosphate
pydam Pyridoxamine
pydx Pyridoxal
pydx5p Pyridoxal 5'-phosphate
pydxn Pyridoxine
pyr Pyruvate
q8 Ubiquinone-8
q8h2 Ubiquinol-8
quin Quinolinate
rlp alpha-D-Ribose 1-phosphate
r5p alpha-D-Ribose 5-phosphate
rbl-L L-Ribulose
rdmbzi N1-(alpha-D-ribosyl)-5,6-dimethylbenzimidazole
rhcys S-Ribosyl-L-homocysteine
rib-D D-Ribose
ribflv Riboflavin
rml L-Rhamnulose
rml1p L-Rhamnulose 1-phosphate
rmn L-Rhamnose
ru5p-D D-Ribulose 5-phosphate
ru5p-L L-Ribulose 5-phosphate
s7p Sedoheptulose 7-phosphate
sbt6p D-Sorbitol 6-phosphate
sbzcoa O-Succinylbenzoyl-CoA
seln Selenide
selnp Selenophosphate
seramp L-seryl-AMP
ser-D D-Serine
ser-L L-Serine
shcl Sirohydrochlorin
sheme Siroheme
skm Shikimate
skm5p Shikimate 5-phosphate
sl26da N-Succinyl-LL-2,6-diaminoheptanedioate
sl2a6o N-Succinyl-2-L-amino-6-oxoheptanedioate
so3 Sulfite
so4 Sulfate
spmd Spermidine
srch Sirochlorin
ssaltpp Succinate semialdehyde-thiamin diphosphate anion
suc6p Sucrose 6-phosphate
sucarg N2-Succinyl-L-arginine
sucbz o-Succinylbenzoate
succ Succinate
succoa Succinyl-CoA
sucglu N2-Succinyl-L-glutamate
sucgsa N2-Succinyl-L-glutamate 5-semialdehyde
sucorn N2-Succinyl-L-ornithine
sucsal Succinic semialdehyde
suchms O-Succinyl-L-homoserine
tag6p-D D-Tagatose 6-phosphate
tagdp-D D-Tagatose 1,6-biphosphate
tagur D-Tagaturonate
tartr-L L-tartrate
taur Taurine
tcynt Thiocyanate
tdeACP Tetradecenoyl-ACP (n-C14:1ACP)
thdp 2,3,4,5-Tetrahydrodipicolinate
thf 5,6,7,8-Tetrahydrofolate
thm Thiamin
thmmp Thiamin monophosphate
thmpp Thiamine diphosphate
thr-L L-Threonine
thym Thymine
thymd Thymidine
tma Trimethylamine
tmao Trimethylamine N -oxide
trdox Oxidized thioredoxin
trdrd Reduced thioredoxin
tre Trehalose
tre6p alpha,alpha'-Trehalose 6-phosphate
trnaglu tRNA (Glu)
trp-L L-Tryptophan
tsul Thiosulfate
ttdca tetradecanoate (n -C14:0)
ttdcea tetradecenoate ($\mathrm{n}-\mathrm{C} 14: 1$)
tyr-L L-Tyrosine
u23ga UDP-2,3-bis(3-hydroxytetradecanoyl)glucosamine
u3aga UDP-3-O-(3-hydroxytetradecanoyl)-N-acetylglucosamine
u3hga UDP-3-O-(3-hydroxytetradecanoyl)-D-glucosamine
uaagmda Undecaprenyl-diphospho-N-acetylmuramoyl-(N-acetylglucosamine)-
L-ala-D-glu-meso-2,6-diaminopimeloyl-D-ala-D-ala
uaccg UDP-N-acetyl-3-O-(1-carboxyvinyl)-D-glucosamine
uacgam UDP-N-acetyl-D-glucosamine
uacmam UDP-N-acetyl-D-mannosamine
uacmamu UDP-N-acetyl-D-mannosaminouronate
uagmda Undecaprenyl-diphospho-N-acetylmuramoyl-L-alanyl-D-glutamyl-
meso-2,6-diaminopimeloyl-D-alanyl-D-alanine
uama UDP-N-acetylmuramoyl-L-alanine
uamag UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
uamr UDP-N-acetylmuramate
udcpdp Undecaprenyl diphosphate
udcpp Undecaprenyl phosphate
udp UDP
udpg UDPglucose
udpgal UDPgalactose
udpgalfur UDP-D-galacto-1,4-furanose
udpglcur UDP-D-glucuronate
ugmd UDP-N-acetylmuramoyl-L-alanyl-D-gamma-glutamyl-meso-2,6-
diaminopimelate
ugmda UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminopimeloyl-D-alanyl-D-alanine
ump UMP
unaga Undecaprenyl diphospho N -acetyl-glucosamine
unagamu Undecaprenyl-diphospho-N-acetylglucosamine-Nacetylmannosaminuronate
unagamuf Undecaprenyl-diphospho N -acetylglucosamine- N -
acetylmannosaminuronate-N-acetamido-4,6-dideoxy-D-galactose
uppg3 Uroporphyrinogen III
ura Uracil
urdglyc (-)-Ureidoglycolate
urea Urea
uri Uridine
utp UTP
val-L L-Valine
xan Xanthine
xmp Xanthosine 5'-phosphate
xtsn Xanthosine
xu5p-D D-Xylulose 5-phosphate
xu5p-L L-Xylulose 5-phosphate
xyl-D D-Xylose
xylu-D D-Xylulose

Appendix C: Pathway details

For each of the metabolic pathways considered we give below a picture of the experimentally determined pathway that we used in this thesis. These pathways were drawn from the sources indicated below. The compound and reaction labelling/numbering is as listed in the data also provided in Appendices A and B.

To illustrate the notation we use the picture below shows an example metabolic pathway.

The reactions and the compounds (labelled R and C respectively) are the nodes in the above directed graph. The numbers associated with each arc are the number of molecules of each compound. For example reaction R3 takes two molecules of C6 and transforms them into one molecule of $\mathrm{C} 3, \mathrm{C} 7$ and C 8 and two molecules of C 5 . The source and target compounds (C 1 and C 7 respectively) are coloured yellow and two
molecules of C 1 are transformed into one molecule of C 7 . The numbers in brackets after each reaction label are the number of ticks, so for example reaction R1 ticks twice, each time converting one molecule of C 1 and C 3 into one molecule of C 2 and C 4 . Compounds coloured blue are produced to excess (number of molecules needed is less than the number produced) whilst compounds coloured red are freely available (number of molecules needed is greater than the number produced). Compounds shown in white are balanced (number of molecules needed is equal to the number produced).

In our pathway pictures:

- for the compounds the number in brackets after the compound label is the percentage presence of the compound, δ_{c} defined using $\delta_{\mathrm{c}}=100$ (number of reactions in which the compound appears)/(total number of reactions). So above, for example, C6 has a percentage presence of 3.4%.
- reversible reactions are split into two non-reversible reactions and (arbitrarily) labelled using an ' a ' and a ' b ' at the end of the reaction number. If a reaction is not reversible then no ' a ' or ' b ' is associated with it. So above, for example, R1 and R3 are not reversible, but R2b is a reversible reaction with the reverse of R2b being R2a.

The Beasley-Planes (BP) model distinguishes between compounds according to their percentage presence. Compounds for which percentage presence $\leq \Delta$ (where Δ is an input parameter) are called low presence compounds. Compounds for which $\delta_{c}>\Delta$ are called high presence compounds. In the computational results reported below we (as in Chapter 3) use $\Delta=4 \%$. So above, for example, C6 is a low presence compound but C4 is a high presence compound.

In the notation of the BP model Q_{S} is the number of molecules of the source compound and Q_{T} is the number of molecules of the target compound. For those cases in which the BP model recovers the pathway structure (i.e. the reactions involved in the pathway and their appropriate ticks) we give below a table detailing, for each $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}} \leq 6\right)$, the number of reactions and excess ATP associated with the optimisation solution from the BP model. Situations where that optimisation model indicated that no feasible solution exists are indicated by a ' X '. In other words in these cases no values for the decision variables in the BP model exist which satisfy all the constraints of that model for the particular $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ pair examined. The purpose of this $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ analysis is to determine whether, in addition to recovering the pathway, we can also recover the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ pair seen in the experimentally determined pathway. The BP model considers two possible objectives:

- objective (3.13), giving primary weight to minimising the total number of reactions and secondary weight to maximising excess ATP
- objective (3.14), giving primary weight to maximising excess ATP and secondary weight to minimising the total number of reactions.

Below we give details of the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ analysis for those cases among the 40 experimentally determined pathways where the BP model achieved recovery.

With respect to the path finding approach presented in Chapter 5, we provide below the pictures of the metabolic path associated with the first ten experimentally determined metabolic pathways (as noted in Chapter 5) for both the R-R case and the CC case. Given the set of reactions and compounds that comprise a particular metabolic pathway, the associated metabolic path is defined in this thesis as the shortest path (under the distance metric as described in Chapter 5) that links the initial compound
(reaction) and the final compound (reaction) of the pathway via balanced intermediate compounds. As noted above, balanced compounds (shown in white colouring) are those compounds where the number of molecules produced by reactions involved in the pathway is equal to the number of molecules consumed by reactions involved in the pathway. Note that for a given pathway (as discussed in Chapter 5) the metabolic path may not be uniquely defined. In addition, for each metabolic pathway considered the metabolic path ($\mathrm{R}-\mathrm{R}$ and $\mathrm{C}-\mathrm{C}$ case) and the computed shortest paths (for $\mathrm{k}=1,2, \ldots, 10$) are systematically compared according to the correspondence criteria described in Chapter 5.

For the Improved Beasley Planes (IBP) model we, similarly to the BP model, give below details as to the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion. As noted in Chapter 6, the IBP model considers two different objectives:

- objective (6.26), giving primary weight to minimising the specificity (Ψ) and secondary weight to minimising the number of main compounds (W)
- objective (6.27), giving primary weight to minimising the length (L) and secondary weight to minimising the number of main compounds (W).

We have carried out the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion in those cases in which the IBP model achieved recovery of the pathway. We also include the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the cyclic pathways we recovered. In addition, we present the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for Glycolysis (Pathway 3) when constraints related to atp production are included in the IBP model. Note that some cases take excessive computation time. This usually happens when the IBP model cannot find a biologically meaningful solution and outputs solutions containing cycles with an objective value far from the optimal value. In these
cases we applied a time limit of 30 minutes. This situation is indicated by a red colouring in the tables for $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ pairs below.

Pathway 1: Gluconeogenesis

Source compound	Pyruvate (pyr)
Target compound	D-Glucose 6-phosphate $(\mathrm{g} 6 \mathrm{p})$
$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$	$(2,1)$
Low presence compounds that are not forced to be balanced	None
(Number of reactions, excess ATP)	$(9,-4)$
Number of unbalanced main compounds (W)	0
Specificity (Ψ)	8.57

Note that the fourth and fifth rows of the above table relates to the BP model. Specifically, we give the low presence unbalanced compounds and the number of reactions and excess ATP of the pathway under study. The last two items relate to the IBP model, whose objective function involves the number of unbalanced main compounds and the specificity value. Note that the Ψ value shown above is for the maximum number of metabolic paths $\mathrm{K}=2$.

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=GLUCONEO-PWY) and Lehninger (fourth edition) page 544.

In Lehninger the pathway is described as being from two molecules of pyruvate to one of glucose. However in EcoCyc it is described as being from malate to D-glucose-6-phosphate, without giving information about the number of molecules consumed or produced. Since the Lehninger description appears to be the more common one it is that which has informed the pathway picture seen below.

As shown below, the target compound is D-glucose-6-phosphate. According to our reaction database, a reaction to go from D-glucose-6-phosphate to glucose does not exist. This agrees with EcoCyc database. That is why the target compound is D-glucose-6-phosphate and not glucose.

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.13). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules Qs of	1	X	X	X	X	X	X
	2	$(9,-4)^{*}$	X	X	X	X	X
	4	X	X	X	X	X	X
source							
compound	5	X	X	X	X	X	X
	6	X	X	$(9,-12)$	X	X	X

It can be seen that the majority of $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ pairs are infeasible. The three pairs seen are all repeats of each other, doubling and then tripling the number of source and target molecules (and excess ATP), whilst involving the same number of reactions. For this pathway the BP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,1)$ dominates all other cases, since it involves fewer reactions and uses less ATP (and this is indicated by the * superscript on that entry in the above table). Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,1)$ pair observed in the experimentally determined pathway.

Metabolic path for the R - R case: correspondence values

For this pathway the metabolic path, from the first reaction R456 in the pathway, to the last reaction R454b in the pathway, is as shown above.

Metabolic path for the C-C case: correspondence values

$\begin{gathered} \text { pyr } \\ \vdots \\ \text { R456 } \end{gathered}$							
R pep $\boldsymbol{\eta}$ R443b	\qquad	True positives (TP)	False positives (FP)	False negatives (FN)	Sensitivity (Sn)	Positive predictive value (PPV)	Accuracy (Ac)
V	1	2	15	13	0.133	0.118	0.125
2pg	2	7	2	8	0.467	0.778	0.622
V	3	0	21	15	0	0	0
R452a	4	0	27	15	0	0	0
V	5	2	23	13	0.133	0.080	0.107
3 pg	6	2	21	13	0.133	0.087	0.110
V	7	0	18	15	0	0	0
R455a	8	0	23	15	0	0	0
V	9	2	23	13	0.133	0.080	0.107
$13 \mathrm{dpg}$	10	0	20	15	0	0	0
R447b							
V							
g3p							
$\frac{\vdots}{\text { R444b }}$							
〉							
fdp							
V							
R445							
V							
R454b							
〉							
g6p							

For this pathway the metabolic path, from the source compound pyr in the pathway, to the target compound g 6 p in the pathway, is as shown above.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number of molecules	1	$(8.13,1)^{*}$	(9.02,4)	$(8.96,3)$	$(9.02,4)$	$(8.96,3)$	$(9.02,4)$
	2	(8.57,0)	$(8.13,1)$	$(9.02,4)$	$(8.96,3)$	$(9.02,4)$	(9.06,2)
	3	$(9.09,3)$	$(9.19,1)$	$(8.13,1)$	$(9.02,4)$	$(8.96,3)$	$(9.02,4)$
Qs of source compound	4	$(9.09,3)$	(8.57,0)	$(9.19,1)$	$(8.13,1)$	$(9.02,4)$	$(8.96,3)$
	5	$(9.09,3)$	$(9.09,3)$	$(9.19,1)$	$(9.19,1)$	$(8.13,1)$	$(9.02,4)$
	6	$(9.09,3)$	$(9.09,3)$	(8.57,0)	$(9.19,1)$	(9.19,1)	$(8.13,1)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. This is indicated by the ${ }^{*}$ superscript on that entry in the above table. Hence in this case the IBP model does not recover the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(7,1)^{*}$	$(8,8)$	$(9,3)$	$(9,3)$	$(9,3)$	$(9,3)$
of	2	$(9,0)$	$(7,1)$	$(9,3)$	$(8,8)$	$(9,3)$	$(9,3)$
molecules	3	$(10,2)$	$(10,1)$	$(7,1)$	$(9,3)$	$(9,3)$	$(8,8)$
Qs of	4	$(10,2)$	$(9,0)$	$(10,1)$	$(7,1)$	$(9,3)$	$(9,3)$
source	5	$(10,2)$	$(10,2)$	$(10,1)$	$(10,1)$	$(7,1)$	$(9,3)$
compound	6	$(10,2)$	$(10,2)$	$(9,0)$	$(10,1)$	$(10,1)$	$(7,1)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model does not recover the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,1)$ pair observed in the experimentally determined pathway.

Pathway 2: Glycogen

Source compound	D-Glucose 6-phosphate (g6p)
Target compound	Glycogen (glycogen)
$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$	$(1,1)$
Low presence compounds that are not forced to be balanced	None
(Number of reactions, excess ATP)	$(3,-1)$
Number of unbalanced main compounds (W)	0
Specificity (Ψ)	3

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=GLYCOGENSYNTH-PWY) and Lehninger (fourth edition) pages 568 and 596.

In Lehninger the pathway is described as being from one molecule of glucose-6phosphate to elongated glycogen with $\mathrm{n}+1$ residues. However in EcoCyc it is described as being from glucose-1-phosphate to elongated glycogen with $\mathrm{n}+1$ residues. EcoCyc does not include the first reaction in Lehninger: D-Glucose-6-phosphate \rightarrow D-Glucose-1-phosphate.

Since the Lehninger description appears to be the more general one and is consistent with our reaction database, it is that which has informed the pathway picture seen below.

Note here that we have one allowable c-cycle (see Chapter 3) in this pathway. More precisely the 2-cycle adpglc-R448-h-R449-adpglc which contains one high presence balanced compound (h).

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.13). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(3,-1)^{*}$	X	X	X	X	X
of	2	$(15,0)$	$(3,-2)$	X	X	X	X
molecules	3	$(15,0)$	$(13,0)$	$(3,-3)$	X	X	X
Qs of	4	$(15,1)$	$(15,0)$	$(13,0)$	(3,-4)	X	X
source	5	$(15,2)$	$(15,0)$	$(15,0)$	$(13,0)$	$(3,-5)$	X
compound	6	$(15,3)$	$(15,1)$	$(15,0)$	$(13,0)$	$(13,0)$	$(3,-6)$

Applying this procedure to the above table the dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Metabolic path for the R - R case: correspondence values

Metabolic path for the C-C case: correspondence values

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(3,0){ }^{*}$	X	X	X	X	X
of	2	$(8.63,3)$	$(3,0)$	X	X	X	X
molecules	3	$(8.63,3)$	$(8.63,3)$	$(3,0)$	X	X	X
Qs of	4	$(8.63,3)$	$(8.63,3)$	$(8.63,3)$	$(3,0)$	X	X
source	5	$(8.63,3)$	$(8.63,3)$	$(8.63,3)$	$(8.63,3)$	$(3,0)$	X
compound	6	$(8.63,3)$	$(8.63,3)$	$(8.63,3)$	$(8.63,3)$	$(8.63,3)$	$(3,0)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recover the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(3,0){ }^{*}$	X	X	X	X	X
of	2	$(12,5)$	$(3,0)$	X	X	X	X
molecules	3	$(12,5)$	$(12,5)$	$(3,0)$	X	X	X
Qs of	4	$(12,5)$	$(12,5)$	$(12,5)$	$(3,0)$	X	X
source	5	$(12,5)$	$(12,5)$	$(12,5)$	$(12,5)$	$(3,0)$	X
compound	6	$(12,5)$	$(12,5)$	$(12,5)$	$(12,5)$	$(12,5)$	$(3,0)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model also recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 3: Glycolysis

Source compound	D-Glucose (glc-D)
Target compound	Pyruvate (pyr)
$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$	$(1,2)$
Low presence compounds that are not forced to be balanced	None
(Number of reactions, excess ATP)	$(10,2)$
Number of unbalanced main compounds (W)	0
Specificity (世)	9.57

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEWIMAGE?type=PATHWAY\&object=GLYCOLYSIS) and Lehninger (fourth edition) page 524.

In Lehninger the pathway is described as being from one molecule of D-glucose to two molecules of pyruvate. However in EcoCyc it is described as being from one molecule of D-glucose-6-phosphate to two molecules of pyruvate. EcoCyc does not include first reaction in Lehninger: D-Glucose \rightarrow D-Glucose-6-phosphate.

Since the Lehninger description appears to be the more general one and is consistent with our reaction database, it is that which has informed the pathway picture seen below.

$\left(\mathrm{Q}_{\mathbf{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with both objective (3.13) and objective (3.14). Thus, the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (3.13) and objective (3.14). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	X	$(10,2) *$	X	X	X	X
of	2	X	X	X	$(10,4)$	X	X
molecules	3	X	X	X	X	X	$(10,6)$
Qs of	4	X	X	X	X	X	X
source	5	X	X	X	X	X	X
compound	6	X	X	X	X	X	X

It can be seen that the majority of $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ pairs are infeasible. The three pairs seen are all repeats of each other, doubling and then tripling the number of source and target molecules (and excess ATP). Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,2)$ pair observed in the experimentally determined pathway.

The results for objective (3.14) are shown below.

(number of reactions, excess ATP)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	X	$(10,2){ }^{*}$	X	X	X	X
of	2	X	X	X	$(10,4)$	X	X
molecules	3	X	X	X	X	X	$(10,6)$
Qs of	4	X	X	X	X	X	X
source	5	X	X	X	X	X	X
compound	6	X	X	X	X	X	X

We get the same results as objective (3.13). Hence for this objective the BP model also recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,2)$ pair observed in the experimentally determined pathway.

Metabolic path for the R - R case: correspondence values

Metabolic path for the C-C case: correspondence values

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was not recovered with either objective (6.26) or objective (6.27). However, when we include the constraints related to the production of atp as described in Chapter 6, we achieved recovery with objective (6.26). Thus, the ($\mathrm{Q}_{\mathrm{s},}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (6.26) under situation, i.e. atp forced to be produced. The table of pairs for objective (6.26) is shown below. Note here that we used $\mathrm{K}=1$. The Ψ value of the pathway changes when K is modified. As seen below, the Ψ value for $\mathrm{K}=1$ is precisely 10 for this pathway, whilst for $\mathrm{K}=2$ the Ψ value is 9.57 , as can be noted above.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	(10.39,1)	$(10,0)^{*}$	$(11.03,1)$	$(15.17,2)$	$(16.16,1)$	$(15.68,7)$
of	2	(17.46,4)	$(10.5,0)$	$(15.13,2)$	$(10,0)$	$(16,1)$	$(11.03,1)$
molecules	3	$(17.81,4)$	$(16.78,7)$	$(10.39,1)$	$(15.68,7)$	(15.68,7)	$(10,0)$
QS of	4	(18.05,7)	(17.46,4)	$(16.68,8)$	$(10.39,1)$	(15.68,7)	(15.13,2)
source	5	(18.05,7)	$(17.97,5)$	$(16.68,8)$	$(16.68,8)$	(10.39,1)	$(15.68,7)$
compound	6	(18.15,6)	$(17.81,4)$	$(17.46,4)$	$(16.68,8)$	(16.68,8)	$(10.39,1)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,2)$ dominates all other cases. Hence in this case the IBP model recover the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,2)$ pair observed in the experimentally determined pathway.

Pathway 4: Proline biosynthesis

Source compound	2-Oxoglutarate alpha-ketoglutarate (akg)
Target compound	L-Proline (pro-L)
$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$	$(1,1)$
Low presence compounds that are not forced to be balanced	None
(Number of reactions, excess ATP)	$(5,-1)$
Number of unbalanced main compounds (W)	0
Specificity (Ψ)	5

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=PROSYN-PWY\&detail-level=3) and Lehninger (fourth edition) pages 842 and 843 .

In Lehninger the pathway is described as being from one molecule of alphaketoglutarate to one molecule of proline. This pathway is described in the same way in EcoCyc.

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.13). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules	1	$(5,-1)^{*}$	$(7,-2)$	$(7,-3)$	$(7,-4)$	$(7,-5)$	$(7,-6)$
	2	$(7,-1)$	$(5,-2)$	$(7,-3)$	$(7,-4)$	$(7,-5)$	$(7,-6)$
	4	$(7,-1)$	$(7,-2)$	$(5,-3)$	$(7,-4)$	$(7,-5)$	$(7,-6)$
compound	5	$(7,-1)$	$(7,-2)$	$(7,-3)$	$(7,-4)$	$(5,-5)$	$(7,-6)$
	6	$(7,-1)$	$(7,-2)$	$(7,-3)$	$(7,-4)$	$(7,-5)$	$(5,-6)$

For this pathway the dominant pair is $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Metabolic path for the R - R case: correspondence values

Metabolic path for the C-C case: correspondence values

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with objective (6.26). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (6.26). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(5,0)^{*}$	$(5.84,1)$	X	X	X	X
of	2	$(9.6,0)$	$(5,0)$	$(5.42,1)$	$(5.84,1)$	X	X
molecules	3	$(10.95,0)$	(10.02,1)	$(5,0)$	$(5.42,1)$	$(5.42,1)$	$(5.94,0)$
Qs of	4	$(10.95,0)$	$(9.6,0)$	$(11.36,8)$	$(5,0)$	$(5.42,1)$	$(5.42,1)$
source	5	(10.95,0)	(10.87,0)	$(11.36,1)$	(11.44,1)	$(5,0)$	$(5.42,1)$
compound	6	(10.95,0)	(10.95,0)	$(9.6,0)$	(10.02,1)	$(9.95,4)$	$(5,0)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Here the value in red $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(6,5)$ indicates that the result shown is not guaranteed to be optimal. Rather $(9.95,4)$ is the best result obtained with objective (6.26) once our 30 minute time limit had been reached.

Pathway 5: Ketogluconate metabolism

Source compound	$2,5-$-diketo-D-gluconate $(25 \mathrm{dkglcn})$
Target compound	6-Phospho-D-gluconate (6pgc)
$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$	$(1,1)$
Low presence compounds that are not forced to be balanced	None
(Number of reactions, excess ATP)	$(3,-1)$
Number of unbalanced main compounds (W)	0
Specificity (Ч)	3

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=KETOGLUCONMET-PWY).

In EcoCyc the pathway is described as being from 2,5-didehydro-D-gluconate to 6-Phospho-D-gluconate. However in our reaction database 2,5-didehydro-D-gluconate does not exist. Instead, 2,5-diketo-D-gluconate has been found and seems to fulfil the same function.

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.13). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules Qs of	1	$(3,-1)^{*}$	$(14,-5)$	$(14,-9)$	$(14,-13)$	$(14,-7)$	$(14,-21)$
	2	X	$(3,-2)$	$(14,-6)$	$(14,-10)$	$(14,-14)$	$(14,-18)$
	4	X	X	$(3,-3)$	$(14,-7)$	$(14,-11)$	$(14,-15)$
	X	X	X	X	$(3,-4)$	$(14,-8)$	$(14,-12)$
	X	X	X	X	X	$(3,-6)$	

For this pathway the dominant pair is $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Metabolic path for the R - R case: correspondence values

Metabolic path for the C-C case: correspondence values

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(3,0){ }^{*}$	X	X	X	X	X
of	2	X	$(3,0)$	X	X	X	X
molecules	3	X	X	$(3,0)$	X	X	X
Qs of	4	X	X	X	$(3,0)$	X	X
source	5	X	X	X	X	$(3,0)$	X
compound	6	X	X	X	X	X	$(3,0)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(3,0)$	X	X	X	X	X
of	2	X	$(3,0)$	X	X	X	X
molecules	3	X	X	$(3,0)$	X	X	X
QS of	4	X	X	X	$(3,0)$	X	X
source	5	X	X	X	X	$(3,0)$	X
compound	6	X	X	X	X	X	$(3,0)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model also recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 6: Pentose phosphate

Source compound	D-Glucose 6-phosphate (g6p)
Target compound	D-Fructose 6-phosphate (f6p)
$\left(\mathrm{Q}_{\mathrm{s},} \mathrm{Q}_{\mathrm{T}}\right)$	$(3,2)$
Low presence compounds that are not forced to be balanced	Glyceraldehyde 3-phosphate (g3p)
(Number of reactions, excess ATP)	$(8,0)$
Number of unbalanced main compounds (W)	1
Specificity (Ψ)	6.03

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=PENTOSE-P-PWY) and Lehninger (fourth edition) pages 549 to 553 .

Both in Lehninger and EcoCyc, the pathway is described as being from three molecules of D-Glucose-6-phosphate to two molecules of D-Fructose 6-phosphate.

$\left(\mathrm{Q}_{\mathbf{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.13). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules Qs of	1	$(1,0)^{*}$	$(4,0)$	$(4,0)$	$(4,0)$	$(4,0)$	$(4,0)$
	2	$(7,0)$	$(1,0)$	$(4,0)$	$(4,0)$	$(4,0)$	$(4,0)$
	4	$(13,1)$	$(8,0)$	$(1,0)$	$(4,0)$	$(4,0)$	$(4,0)$
	5	$(13,3)$	$(13,2)$	$(8,0)$	$(8,0)$	$(1,0)$	$(4,0)$
	6	$(13,4)$	$(13,3)$	$(7,0)$	$(8,0)$	$(8,0)$	$(1,0)$

Note the presence of a single reaction pathway involving no excess ATP as indicated down the diagonal of the above table. Technically, in the BP model, a single reaction pathway can be found if there exists a reaction converting the source compound into the target compound which also only involves (if at all) high presence compounds. Here there is a single reaction (R454a in our reaction database) associated with glucose-6-phosphate isomerase that directly converts D-Glucose 6-phosphate into D-Fructose 6phosphate (and does not involve any other compounds).

The dominant pair is $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model cannot recover the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(3,2)$ pair associated with the experimentally determined pathway.

Metabolic path for the R - R case: correspondence values

R646a							
$\stackrel{\nabla}{6 \mathrm{pgl}}$	$\begin{gathered} \mathbf{k} \\ \text { shortest } \\ \text { path } \\ \mathbf{k} \\ \hline \end{gathered}$	True positives (TP)	False positives (FP)	False negatives (FN)	Sensitivity (Sn)	Positive predictive value (PPV)	Accuracy (Ac)
\checkmark	1	7	0	0	1	1	1
R637	2	7	4	0	1	0.636	0.818
$\frac{7}{6 \mathrm{pgc}}$	3	5	6	2	0.714	0.455	0.584
	4	3	6	4	0.429	0.333	0.381
	5	4	5	3	0.571	0.444	0.508
	6	7	4	0	1	0.636	0.818
R640	7	5	6	2	0.714	0.455	0.584
	8	6	7	1	0.857	0.462	0.659
	9	4	9	3	0.571	0.308	0.440
	10	5	16	2	0.714	0.238	0.476

Metabolic path for the C-C case: correspondence values

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(5.13,2) *$	$(6.26,2)$	$(6.96,3)$	$(7.02,4)$	$(6.96,3)$	$(7.02,4)$
of	2	$(6.56,0)$	$(5.13,2)$	$(5.63,2)$	$(6.26,2)$	$(7.02,4)$	$(6.96,3)$
molecules	3	$(9.36,4)$	$(6.03,1)$	$(5.13,2)$	$(5.63,2)$	$(5.63,2)$	$(6.26,2)$
Qs of	4	$(9.53,0)$	$(6.56,0)$	$(6.16,0)$	(5.13,2)	$(5.63,2)$	$(5.63,2)$
source	5	(9.77,6)	$(8.95,6)$	(6.03,2)	$(6.13,1)$	$(5.13,2)$	$(5.63,2)$
compound	6	$(9.77,6)$	$(8.95,6)$	$(6.56,0)$	$(6.03,1)$	$(6.06,1)$	$(5.13,2)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model does not recover the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(3,2)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(5,1)^{*}$	$(6,1)$	$(7,3)$	$(7,3)$	$(7,3)$	$(7,3)$
of	2	$(7,0)$	$(5,1)$	$(7,3)$	$(6,1)$	$(7,3)$	$(7,3)$
molecules	3	$(8,7)$	$(8,1)$	$(5,1)$	$(7,3)$	$(7,3)$	$(6,1)$
QS of	4	$(8,7)$	$(7,0)$	$(8,1)$	$(5,1)$	$(7,3)$	$(7,3)$
source	5	$(8,7)$	$(8,7)$	$(8,1)$	$(8,1)$	$(5,1)$	$(7,3)$
compound	6	$(8,7)$	$(8,7)$	$(7,0)$	$(8,1)$	$(8,1)$	$(5,1)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model does not recover the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(3,2)$ pair observed in the experimentally determined pathway.

Pathway 7: Salvage pathway deoxythymidine phosphate

Source compound	Deoxycytidine (dcyt)
Target compound	dTMP (dtmp)
$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$	$(1,1)$
Low presence compounds that are not forced to be balanced	Uracil (ura) Thymine (thym)
(Number of reactions, excess ATP)	$(4,-1)$
Number of unbalanced main compounds (W)	2
Specificity ($\Psi)$	6.95

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=PWY0-181).

In EcoCyc the pathway is described as being from deoxycitidine to dTMP. The same set of reactions is present in our reaction database.

Note here that we have two allowable c-cycles in this pathway. More precisely:

- the 2-cycle 2dr1p-R536b-pi-R537a-2drlp which contains one high presence balanced compound (pi).
- the 4-cycle 2dr1p-R536b-thymd-R574-h-R529-duri-R537a-2dr1p which contains one high presence balanced compound (h).

$\left(\mathrm{Q}_{\mathbf{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.13). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(4,-1)^{*}$	X	X	X	X	X
of	2	X	(4,-2)	X	X	X	X
molecules	3	X	X	$(4,-3)$	X	X	X
Qs of	4	X	X	X	(4,-4)	X	X
source	5	X	X	X	X	(4,-5)	X
compound	6	X	X	X	X	X	(4,-6)

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules (and excess ATP). The dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Metabolic path for the R - R case: correspondence values

Metabolic path for the C-C case: correspondence values

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was not recovered with either objective (6.26) or objective (6.27). For this reason $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ pairs discussion is omitted for this pathway.

Pathway 8: Tricarboxylic acid (citric acid, citrate, TCA, Krebs) cycle

Source compound	Oxaloacetate (oaa)
Target compound	Oxaloacetate (oaa)
$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$	FADH2 (fadh2) Acetyl-CoA (accoa)
Low presence compounds that are not forced to be balanced	FAD (fad) Number of reactions, excess ATP) Number of unbalanced main compounds (W) Specificity (Ч)

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEWIMAGE?type=PATHWAY\&object=TCA) and Lehninger (fourth edition) page 607.

Both in Lehninger and EcoCyc, the pathway is described as being a cycle starting and finishing at oxaloacetate with the same set of reactions involved.

The only difference is that EcoCyc produces ubiquinol and Lehninger produces fadh2 in the reaction in which succinate is converted to fumarate. Since our reaction database contains this reaction with fadh2, we have selected the Lehninger pathway.

Note here that we have a number of allowable c-cycles in this pathway. There is an 8-cycle oaa-R272-cit-R267a-icit-R273a-akg-R274-succoa-R279b-succ-R278-fum-R271a-(mal-L)-R275a-oaa that starts and ends at the source/target compound (oaa). In terms of 2-cycles we have, for example, succoa-R279b-coa-R274-succoa that contains one high presence balanced compound (coa).

$\left(\mathrm{Q}_{\mathbf{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.14). Thus, the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (3.14). The table of pairs for objective (3.14) is shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules Qs of	1	$(8,1)^{*}$	$(9,2)$	$(9,3)$	$(9,4)$	$(9,5)$	$(9,6)$
	2	$(11,1)$	$(8,2)$	$(9,3)$	$(9,4)$	$(9,5)$	$(9,6)$
	4	$(11,1)$	$(11,2)$	$(8,3)$	$(9,4)$	$(9,5)$	$(9,6)$
compound	5	$(11,1)$	$(11,2)$	$(11,3)$	$(11,4)$	$(8,5)$	$(9,6)$
	6	$(11,1)$	$(11,2)$	$(11,3)$	$(11,4)$	$(11,5)$	$(8,6)$

In this pathway the source compound and the target compound are the same, moreover in the experimentally determined pathway the source/target compound is balanced (since $\mathrm{Q}_{\mathrm{S}}=\mathrm{Q}_{\mathrm{T}}=1$). It is therefore possible to interpret this pathway, a cycle, such that the only valid cases in the above $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ table of pairs are the diagonal entries (which are the only cases where the source/target compound is balanced).

Adopting this interpretation the diagonal pairs. are all repeats of each other, doubling and then tripling, etc the number of source/target molecules. The dominant pair is $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Metabolic path for the R - R case: correspondence values

Metabolic path for the C-C case: correspondence values

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was not recovered with either objective (6.26) or objective (6.27). However, as noted above, this pathway constitutes a cycle. When equations (6.28) and (6.29) related to cyclic pathways (as described in Chapter 6) were included in the IBP model, we achieved recovery for objective (6.26). The ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion for objective (6.26) under this situation is shown below. As in the BP model, the only valid cases are those in the main diagonal. For this reason we neglected off-diagonal entries.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(8,0)$	-	-	-	-	-
of	2	-	$(8,0)$	-	-	-	-
molecules	3	-	-	$(8,0)$	-	-	-
Qs of	4	-	-	-	$(8,0)$	-	-
source	5	-	-	-	-	$(8,0)$	-
compound	6	-	-	-	-	-	$(8,0)$

The IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 9: NAD biosynthesis

Source compound	L-Aspartate (asp-L)
Target compound	Nicotinamide adenine dinucleotide (nad)
$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$	$(1,1)$
Low presence compounds that are not forced to be balanced	Dihydroxyacetone phosphate (dhap) Oxygen (o2) Hydrogen peroxide (h2o2) $5-P h o s p h o-a l p h a-D-r i b o s e ~ 1-~$
diphosphate (prpp)	

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEWIMAGE? type=PATHWAY\&object=PYRIDNUCSYN-PWY).

In EcoCyc the pathway is described as being from L-Aspartate to NAD. The same set of reactions is found in our database, except that the last step can be carried out by two different reactions in EcoCyc. We only found one of these reactions in our reaction database.

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.13). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules Qs of	1	$(5,-2)^{*}$	$(6,0)$	$(6,0)$	$(6,0)$	$(6,0)$	$(6,0)$
	2	$(6,0)$	$(5,-4)$	$(6,0)$	$(6,0)$	$(6,0)$	$(6,0)$
	4	$(6,0)$	$(6,0)$	$(5,-6)$	$(6,0)$	$(6,0)$	$(6,0)$
compound	5	$(6,0)$	$(6,0)$	$(6,0)$	$(6,0)$	$(5,-10)$	$(6,0)$
	6	$(6,0)$	$(6,0)$	$(6,0)$	$(6,0)$	$(6,0)$	$(5,-12)$

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules (and excess ATP). The dominant pair is $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Metabolic path for the R - R case: correspondence values

Metabolic path for the C-C case: correspondence values

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with objective (6.26). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (6.26). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(5.6,2){ }^{*}$	$(7.82,1)$	$(8.67,1)$	(8.67,1)	$(8.67,1)$	$(8.67,1)$
of	2	$(6.17,3)$	$(5.6,2)$	$(7.67,1)$	(7.67,1)	$(7.67,1)$	$(7.67,1)$
molecules	3	$(7.58,1)$	$(6.09,3)$	(5.6,2)	(7.77,0)	$(7.67,1)$	$(7.67,1)$
Qs of	4	$(7.58,1)$	$(6.26,2)$	$(6.09,3)$	$(5.6,2)$	$(7.67,1)$	$(7.67,1)$
source	5	(7.58,1)	$(7.58,1)$	$(6.09,3)$	$(6.09,3)$	$(5.6,2)$	$(7.67,1)$
compound	6	(7.58,1)	$(7.58,1)$	$(6.17,3)$	$(6.09,3)$	$(6.09,3)$	$(5.6,2)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 10: Arginine biosynthesis

Source compound	L-Glutamate (glu-L)
Target compound	L-Arginine (arg-L)
$\left(\mathrm{Q}_{\mathrm{S},} \mathrm{Q}_{\mathrm{T}}\right)$	$(2,1)$ Low presence compounds that are not forced to be balanced L-Aspartate (asp-L) Fumarate (fum) Acetate (ac) Acetyl-CoA (accoa) Carbamoyl phosphate (cbp)
Number of unbalanced main compounds (W)	$(8,-2)$
Specificity (Y)	4

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=ARGSYN-PWY) and Lehninger (fourth edition) pages 842 and 843 .

In Lehninger the pathway is described as being from two molecules of LGlutamate to one molecule of L-Arginine. This pathway is described in the same way in EcoCyc with the same set of reactions, except that EcoCyc includes one additional reaction to produce carbamoyl phosphate (cbp).

Since the Lehninger description appears to be the clearer one it is that which has informed the pathway picture seen below.

Note that although 2-Oxoglutarate (akg) is shown below as having a percentage presence of 4.0 (which implies that it is a high presence compound) this is the result of rounding. The actual percentage presence value for this compound is 3.98% and so it is classed as a low presence compound.

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.13). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	X	X	X	X	X	X
of	2	$(8,-2)^{*}$	X	X	X	X	X
molecules	3	$(11,-2)$	X	X	X	X	X
Qs of	4	$(12,-4)$	$(8,-4)$	X	X	X	X
source	5	$(12,-5)$	$(11,-6)$	X	X	X	X
compound	6	$(12,-6)$	$(11,-4)$	(8,-6)	X	X	X

The dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,1)$ pair observed in the experimentally determined pathway.

Metabolic path for the $\mathrm{R}-\mathrm{R}$ case: correspondence values

For this pathway we have the source compound being involved in two reactions, R155 and R158b. Hence for the R-R case below we have two metabolic paths, one from R155 to R162a, the other from R158b to R162a.

R158b							
acorn	k shortest path k	True positives (TP)	False positives (FP)	False negatives (FN)	Sensitivity (Sn)	Positive predictive value (PPV)	Accuracy (Ac)
R160	1	7	0	0	,	I	1
	2	5	18	2	0.714	0.217	0.466
	3	7	10	0	1	0.412	0.706
	4	5	16	2	0.714	0.238	0.476
	5	5	20	2	0.714	0.200	0.457
	6	5	16	2	0.714	0.238	0.476
V	7	5	16	2	0.714	0.238	0.476
	8	2	9	5	0.286	0.182	0.234
R163a	9	7	12	0	1	0.368	0.684
	10	5	20	2	0.714	0.200	0.457

Metabolic path for the R - R case: correspondence values

Metabolic path for the C-C case: correspondence values

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with objective (6.26). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (6.26). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(7.17,3)^{*}$	(11.59,3)	(11.59,3)	(11.59,3)	$(11.59,3)$	$(11.59,3)$
of	2	$(8.33,4)$	$(7.17,3)$	(11.06,4)	(11.16,3)	(11.06,4)	(11.06,4)
molecules	3	$(7.75,4)$	$(9.38,3)$	$(7.17,3)$	(11.06,4)	$(11.06,4)$	$(11.06,4)$
Qs of	4	$(9.38,3)$	$(8.33,4)$	$(9.38,3)$	$(7.17,3)$	(11.06,4)	(11.16,3)
source	5	$(9.38,3)$	$(9.38,3)$	$(9.38,3)$	$(9.38,3)$	$(7.17,3)$	$(11.06,4)$
compound	6	$(9.38,3)$	$(7.75,4)$	$(8.33,4)$	$(9.38,3)$	$(9.38,3)$	$(7.17,3)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. This is indicated by the * superscript. Hence in this case the IBP model does not recover the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,1)$ pair observed in the experimentally determined pathway.

Pathway 11: Sperdimine biosynthesis

Source compound	Ornithine (orn)
Target compound	Spermidine (spmd)
$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$	$(1,1)$
Low presence compounds that are not forced to be balanced	5-Methylthioadenosine (5mta) S-Adenosylmethioninamine (ametam)
(Number of reactions, excess ATP)	$(2,0)$
Number of unbalanced main compounds (W)	2
Specificity (Ч)	2.89

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=BSUBPOLYAMSYN-PWY) and Lehninger (fourth edition) pages 860 and 861 .

In Lehninger the pathway is described as being from one molecule of Ornithine to one molecule of Spermidine. On the other hand, EcoCyc presents two different alternative pathways to synthesise sperdimine, one of them being identical to Lehninger. It is that which has informed the pathway picture seen below.

Note here that we have one allowable c-cycle (see Chapter 3) in this pathway. More precisely the 2-cycle ptrc-R184-h-R182-ptrc which contains one high presence balanced compound (h).

$\left(\mathrm{Q}_{\mathbf{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with both objective (3.13) and objective (3.14). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (3.13) and objective (3.14). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(2,0)^{*}$	X	X	X	X	X
of	2	(11,-3)	$(2,0)$	X	X	X	X
molecules	3	(11,-6)	$(11,-3)$	$(2,0)$	X	X	X
Qs of	4	(11,-9)	(11,-6)	$(11,-3)$	$(2,0)$	X	X
source	5	(11,-12)	(11,-9)	$(11,-6)$	$(11,-3)$	$(2,0)$	X
compound	6	(11,-15)	(11,-12)	$(11,-9)$	$(11,-6)$	$(11,-3)$	$(2,0)$

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules. The dominant pair is $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (3.14) are shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules Q	1	$(2,0)^{*}$	X	X	X	X	X
	2	$(12,0)$	$(2,0)$	X	X	X	X
	4	$(12,0)$	$(12,0)$	$(2,0)$	X	X	X
compound	5	$(12,0)$	$(12,0)$	$(12,0)$	$(2,0)$	X	X
	6	$(12,0)$	$(12,0)$	$(12,0)$	$(12,0)$	$(12,0)$	$(2,0)$

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules. The dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	(2.89,2) ${ }^{*}$	(12.22,6)	$(13.63,10)$	(13.89,9)	$(14.72,9)$	(14.72,9)
of	2	$(8.43,6)$	(2.89,2)	$(13.1,10)$	(12.22,6)	$(13.1,10)$	$(13.73,9)$
molecules	3	$(10.83,4)$	$(7.55,5)$	$(2.89,2)$	(12.03,7)	$(13.1,10)$	(12.22,6)
$\mathrm{Q}_{\text {S }}$ of	4	(10.43,8)	$(8.43,6)$	$(10.43,8)$	$(2.89,2)$	$(12.03,7)$	$(12.03,7)$
source	5	(10.43,8)	$(10.53,7)$	$(10.43,8)$	(10.43,8)	$(2.89,2)$	$(12.03,7)$
compound	6	$(10.43,8)$	$(10.83,4)$	$(8.43,6)$	$(7.55,5)$	$(10.43,8)$	$(2.89,2)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(2,2){ }^{*}$	$(9,6)$	$(13,6)$	$(13,9)$	$(14,7)$	$(15,7)$
of	2	$(12,8)$	$(2,2)$	X	$(9,6)$	$(14,8)$	$(14,6)$
molecules	3	$(12,5)$	$(10,5)$	$(2,2)$	$(13,5)$	X	$(9,6)$
Qs of	4	$(11,5)$	$(12,5)$	$(12,5)$	$(2,2)$	$(13,6)$	$(13,5)$
source	5	$(12,6)$	$(12,5)$	$(12,5)$	$(12,5)$	$(2,2)$	$(13,5)$
compound	6	$(12,6)$	$(12,5)$	$(12,3)$	$(10,5)$	$(12,6)$	$(2,2)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 12: Threonine degradation to synthesise glycine

Source compound	L-Threonine (thr-L)
Target compound	Glycine (gly)
$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$	$(1,1)$
Low presence compounds that are not forced to be balanced	Acetyl-Coa (accoa)
(Number of reactions, excess ATP)	$(2,0)$
Number of unbalanced main compounds (W)	0
Specificity (Ψ)	2

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=THREOCAT-PWY) and Lehninger (fourth edition) pages 675, 677 and 682.

In Lehninger the pathway is described as being from one molecule of LThreonine to one molecule of Glycine. On the other hand, EcoCyc presents seven different alternative pathways to degrade L-Threonine, one of them being identical to Lehninger. It is that which has informed the pathway picture seen below.

$\left(\mathrm{Q}_{\mathbf{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with both objective (3.13) and objective (3.14). Thus, the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (3.13) and objective (3.14). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound							
	1	2	3	4	5	6		
Number of molecules Q	1	$(2,0)^{*}$	X	X	X	X	X	
	2	X	$(2,0)$	X	X	X	X	
compound	4	X	X	$(2,0)$	X	X	X	
	5	X	X	X	X	$(2,0)$	X	
	X	X	X	X	X	X	$(2,0)$	

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules. The dominant pair is $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (3.14) are shown below.

(number of reactions, excess ATP)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(2,0){ }^{*}$	X	X	X	X	X
of	2	X	$(2,0)$	X	X	X	X
molecules	3	X	X	$(2,0)$	X	X	X
Qs of	4	X	X	X	$(2,0)$	X	X
source	5	X	X	X	X	$(2,0)$	X
compound	6	X	X	X	X	X	$(2,0)$

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules. The dominant pair is $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules $\mathrm{Q}_{\text {T }}$ of target compound					
		1	2	3	4	5	6
Number	1	$(2,0)^{*}$	$(8.81,4)$	$(8.81,4)$	$(8.81,4)$	$(8.81,4)$	$(8.81,4)$
of	2	$(8.81,4)$	$(2,0)$	$(6.17,4)$	$(6.17,4)$	$(6.17,4)$	$(6.17,4)$
molecules	3	$(8.81,4)$	$(6.17,4)$	$(2,0)$	$(6.17,4)$	$(6.17,4)$	$(6.17,4)$
Qs of	4	$(8.81,4)$	$(6.17,4)$	$(6.17,4)$	$(2,0)$	$(6.17,4)$	$(6.17,4)$
source	5	$(8.81,4)$	$(6.17,4)$	$(6.17,4)$	$(6.17,4)$	$(2,0)$	$(6.17,4)$
compound	6	$(8.81,4)$	$(6.17,4)$	$(6.17,4)$	$(6.17,4)$	$(6.17,4)$	$(2,0)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(2,0){ }^{*}$	$(8,4)$	$(8,4)$	$(8,4)$	$(8,4)$	$(8,4)$
of	2	$(8,4)$	$(2,0)$	$(8,4)$	$(8,4)$	$(8,4)$	$(8,4)$
molecules	3	$(8,4)$	$(8,4)$	$(2,0)$	$(8,4)$	$(8,4)$	$(8,4)$
QS of	4	$(8,4)$	$(8,4)$	$(8,4)$	$(2,0)$	$(8,4)$	$(8,4)$
source	5	$(8,4)$	$(8,4)$	$(8,4)$	$(8,4)$	$(2,0)$	$(8,4)$
compound	6	$(8,4)$	$(8,4)$	$(8,4)$	$(8,4)$	$(8,4)$	$(2,0)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 13: Serine biosynthesis

Source compound	3-Phospho-D-glycerate $(3 \mathrm{pg})$
Target compound	L-Serine (ser-L)
$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$	$(1,1)$
Low presence compounds that are not forced to be balanced	2-Oxoglutarate (akg)
(Number of reactions, excess ATP)	$(3,0)$
Number of unbalanced main compounds (W)	0
Specificity (Ψ)	3

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=SERSYN-PWY) and Lehninger (fourth edition) page 844 .

Both in EcoCyc and Lehninger the pathway is described as being from one molecule of 3-Phospho-D-glycerate to one molecule of L-serine. The set of reactions is also the same in both EcoCyc and Lehninger.

($\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}$) discussion for the BP model

This pathway was recovered with both objective (3.13) and objective (3.14).
Thus, the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (3.13) and objective (3.14). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules Q	1	$(3,0)^{*}$	X	X	X	X	X
	2	$(8,0)$	$(3,0)$	X	X	X	X
	3	$(8,0)$	$(8,0)$	$(3,0)$	X	X	X
source compound	5	$(8,0)$	$(8,0)$	$(8,0)$	$(3,0)$	X	X
	6	$(8,0)$	$(8,0)$	$(8,0)$	$(8,0)$	$(3,0)$	X

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules. The dominant pair is $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (3.14) are shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules Qs of	1	$(3,0)$	X	X	X	X	X
	2	$(8,0)$	$(3,0)$	X	X	X	X
	4	$(13,1)^{*}$	$(8,0)$	$(3,0)$	X	X	X
	5	$(17,1)$	$(8,0)$	$(8,0)$	$(8,0)$	$(3,0)$	X
	6	$(8,0)$	$(13,2)$	$(8,0)$	$(8,0)$	$(8,0)$	$(3,0)$

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules. The dominant pair is $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(3,1)$. Hence in this case the BP model does not recover the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(3,0){ }^{*}$	X	X	X	X	X
of	2	X	$(3,0)$	X	X	X	X
molecules	3	X	X	$(3,0)$	X	X	X
Qs of	4	X	X	X	$(3,0)$	X	X
source	5	X	X	X	X	$(3,0)$	X
compound	6	X	X	X	X	X	$(3,0)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(3,0){ }^{*}$	X	X	X	X	X
of	2	X	$(3,0)$	X	X	X	X
molecules	3	X	X	$(3,0)$	X	X	X
Qs of	4	X	X	X	$(3,0)$	X	X
source	5	X	X	X	X	$(3,0)$	X
compound	6	X	X	X	X	X	$(3,0)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 14: Histidine biosynthesis

Source compound	5-Phospho-alpha-D-ribose 1-diphosphate (prpp)
Target compound	L-Histidine (his-L)
$\left(\mathrm{Q}_{\mathrm{s},} \mathrm{Q}_{\mathrm{T}}\right)$	$(1,1)$
Low presence compounds that are not forced to be balanced	2-Oxoglutarate (akg) 5-Amino-1-(5-Phospho-D-ribosyl)imidazole- 4-carboxamide (aicar) L-Glutamine (gln-L)
(Number of reactions, excess ATP)	(9,-1)
Number of unbalanced main compounds (W)	2
Specificity (世)	9

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=HISTSYN-PWY) and Lehninger (fourth edition) page 852 .

Both in EcoCyc and Lehninger the pathway is described as being from one molecule of 5-Phospho-alpha-D-ribose 1-diphosphate to one molecule of L-histidine. The set of reactions is also the same in both EcoCyc and Lehninger.

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.13). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	(9,-1)*	X	X	X	X	X
of	2	X	$(9,-2)$	X	X	X	X
molecules	3	X	X	(9,-3)	X	X	X
Qs of	4	X	X	X	(9,-4)	X	X
source	5	X	X	X	X	(9,-5)	X
compound	6	X	X	X	X	X	(9,-6)

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules (and ATP excess). The dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(9,2){ }^{*}$	(17.5,7)	(17.6,6)	$(17.5,7)$	$(17.5,7)$	(17.6,6)
of	2	$(13.25,6)$	$(9,2)$	$(17.5,7)$	$(17.5,7)$	$(17.5,7)$	$(17.5,7)$
molecules	3	$(13.25,6)$	(13.25,6)	$(9,2)$	$(17.5,7)$	$(17.6,6)$	$(17.5,7)$
Qs of	4	$(13.25,6)$	(13.25,6)	$(13.25,6)$	$(9,2)$	$(17.5,7)$	$(17.5,7)$
source	5	$(13.25,6)$	(13.25,6)	$(13.25,6)$	$(13.35,5)$	$(9,2)$	$(17.5,7)$
compound	6	$(13.25,6)$	(13.25,6)	$(13.25,6)$	$(13.25,6)$	$(13.25,6)$	$(9,2)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(9,2) *$	$(11,3)$	$(11,3)$	$(11,3)$	$(11,3)$	$(11,3)$
of	2	$(11,3)$	$(9,2)$	$(11,3)$	$(11,3)$	$(11,3)$	$(11,3)$
molecules	3	$(11,3)$	$(11,3)$	$(9,2)$	$(11,3)$	$(11,3)$	$(11,3)$
QS of	4	$(11,3)$	$(11,3)$	$(11,3)$	$(9,2)$	$(11,3)$	$(11,3)$
source	5	$(11,3)$	$(11,3)$	$(11,3)$	$(11,3)$	$(9,2)$	$(11,3)$
compound	6	$(11,3)$	$(11,3)$	$(11,3)$	$(11,3)$	$(11,3)$	$(9,2)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 15: Tirosine biosynthesis

Source compound	Chorismate (chor)
Target compound	L-Tyrosine (tyr-L)
$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$	$(1,1)$
Low presence compounds that are not forced to be balanced	2-Oxoglutarate (akg)
(Number of reactions, excess ATP)	$(3,0)$
Number of unbalanced main compounds (W)	0
Specificity (Ψ)	3

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEWIMAGE?type=PATHWAY\&object=TYRSYN) and Lehninger (fourth edition) page 851.

Both in EcoCyc and Lehninger the pathway is described as being from one molecule of chorismate to one molecule of L-Tyrosine. The set of reactions is also the same in both EcoCyc and Lehninger.

$\left(\mathrm{Q}_{\mathbf{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with both objective (3.13) and objective (3.14). Thus, the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (3.13) and objective (3.14). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound							
	1	2	3	4	5	6		
Number of molecules Q	1	$(3,0)^{*}$	X	X	X	X	X	
	2	X	$(3,0)$	X	X	X	X	
compound	4	X	X	$(3,0)$	X	X	X	
	X	X	X	X	$(3,0)$	X	X	
	X	X	X	X	X	X	$(3,0)$	

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules. The dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (3.14) are presented below.

(number of reactions, excess ATP)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(3,0)^{*}$	X	X	X	X	X
of	2	X	$(3,0)$	X	X	X	X
molecules	3	X	X	$(3,0)$	X	X	X
Qs of	4	X	X	X	$(3,0)$	X	X
source	5	X	X	X	X	$(3,0)$	X
compound	6	X	X	X	X	X	$(3,0)$

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules. The dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(3,0){ }^{*}$	X	X	X	X	X
of	2	X	$(3,0)$	X	X	X	X
molecules	3	X	X	$(3,0)$	X	X	X
Qs of	4	X	X	(12.44,4)	$(3,0)$	X	X
source	5	(15.03,5)	$(12.55,3)$	X	(12.44,4)	$(3,0)$	X
compound	6	X	$(12.55,3)$	$(17.64,10)$	(12.44,4)	$(12.49,3)$	$(3,0)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(3,0){ }^{*}$	X	X	X	X	X
of	2	X	$(3,0)$	X	X	X	X
molecules	3	X	X	$(3,0)$	X	X	X
Qs of	4	X	X	$(17,2)$	$(3,0)$	X	X
source	5	$(15,3)$	$(18,2)$	$(17,2)$	$(17,2)$	$(3,0)$	X
compound	6	X	$(15,3)$	$(16,3)$	$(17,2)$	$(15,3)$	$(3,0)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 16: Coenzyme A biosynthesis

Source compound	(R)-Pantothenate (pnto-R)
Target compound	Coenzyme A (coa)
$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$	$(1,1)$ Low presence compounds that are not forced to be balanced CTP (ctp) (cmp) L-Cysteine (cys-L)
(Number of reactions, excess ATP)	$(5,-3)$
Number of unbalanced main compounds (W)	3
Specificity (世)	5

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=ARGSYN-PWY).

In EcoCyc the pathway is described as being from one molecule of (R)Pantothenate to one molecule of Coenzyme A. The same set of reactions is present in our reaction database.

$\left(\mathrm{Q}_{\mathbf{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.13). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(5,-3) *$	X	X	X	X	X
of	2	X	(5,-6)	X	X	X	X
molecules	3	X	X	$(5,-9)$	X	X	X
Qs of	4	X	X	X	$(5,-12)$	X	X
source	5	X	X	X	X	(5,-15)	X
compound	6	X	X	X	X	X	(5,-18)

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules (and excess ATP). The dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(5,3) *$	$(15.16,5)$	$(24.17,16)$	X	X	$(9.04,4)$
of	2	$(18.39,7)$	$(5,3)$	X	X	$(9.06,4)$	$(9.53,4)$
molecules	3	$(18.39,7)$	(18.39,7)	$(5,3)$	X	(10.46,4)	X
Qs of	4	$(18.39,7)$	$(18.39,7)$	$(18.29,8)$	$(5,3)$	$(8.96,6)$	$(20.39,11)$
source	5	(18.29,8)	(18.29,8)	$(18.39,7)$	$(18.29,8)$	$(5,3)$	X
compound	6	$(18.39,7)$	$(18.39,7)$	$(18.39,7)$	(18.29,8)	$(18.39,7)$	$(5,3)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(5,3) *$	$(8,7)$	$(8,7)$	$(8,7)$	$(8,7)$	$(8,7)$
of	2	$(8,7)$	$(5,3)$	$(8,7)$	$(8,7)$	$(8,7)$	$(8,7)$
molecules	3	$(8,7)$	$(8,7)$	$(5,3)$	$(8,7)$	$(8,7)$	$(8,7)$
QS of	4	$(8,7)$	$(8,7)$	$(8,7)$	$(5,3)$	$(8,7)$	$(8,7)$
source	5	$(8,7)$	$(8,7)$	$(8,7)$	$(8,7)$	$(5,3)$	$(8,7)$
compound	6	$(8,7)$	$(8,7)$	$(8,7)$	$(8,7)$	$(8,7)$	$(5,3)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 17: Pantothenate biosynthesis

Source compound	L-Valine (val-L)
Target compound	(R)-Pantothenate (pnto-R)
$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$	(1,1) Low presence compounds that are not forced to be balanced 5,10 -Oxethylenetetrahydrofolate $($ mlthf $)$ beta-Alanine (ala-B)
(Number of reactions, excess ATP)	$(4,-1)$
Number of unbalanced main compounds (W)	3
Specificity (Ψ)	4

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=PANTO-PWY).

In EcoCyc the pathway is described as being from one molecule of L-Valine to one molecule of (R)-Pantothenate. The same set of reactions is present in our reaction database.

Note here that we have one allowable c-cycle in this pathway. More precisely the 2-cycle (pant-R)-R372-h-R374-(pant-R) which contains one high presence balanced compound (h).

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.13). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules Qs of	1	$(4,-1)^{*}$	$(7,-2)$	$(7,-3)$	$(7,-4)$	$(7,-5)$	$(7,-6)$
	2	X	$(4,-2)$	$(7,-3)$	$(7,-4)$	$(7,-5)$	$(7,-6)$
	4	X	X	$(4,-3)$	$(7,-4)$	$(7,-5)$	$(7,-6)$
	X	X	X	X	$(4,-4)$	$(7,-5)$	$(7,-6)$
	X	X	X	X	X	$(4,-5)$	$(7,-6)$

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules (and excess ATP). The dominant pair is $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)	Number of molecules $\mathrm{Q}_{\text {T }}$ of target compound						
		1	2	3	4	5	6
Number of molecules Qs of	1	$(4,3)^{*}$	$(17.37,11)$	$(16.3,10)$	X	X	X
	2	$(16.25,10)$	$(4,3)$	X	X	$(16.3,10)$	$(17.17,10)$
	4	$(16.52,13)$	$(16.21,11)$	$(4,3)$	X	X	X
	5	$(16.52,13)$	$(16.52,13)$	$(16.42,9)$	$(16.52,8)$	$(4,3)$	X
	6	$(16.62,12)$	$(17.17,10)$	$(16.25,10)$	X	$(16.52,8)$	$(4,3)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(4,3){ }^{*}$	$(15,8)$	$(15,8)$	$(15,8)$	$(15,8)$	$(15,8)$
of	2	$(14,1)$	$(4,3)$	$(12,1)$	$(12,1)$	X	X
molecules	3	$(24,6)$	$(14,1)$	$(4,3)$	$(12,1)$	X	X
Qs of	4	$(14,1)$	$(14,1)$	$(14,1)$	$(4,3)$	$(13,1)$	X
source	5	X	$(14,1)$	X	$(14,1)$	$(4,3)$	$(13,1)$
compound	6	$(14,1)$	X	X	$(15,1)$	$(14,1)$	$(4,3)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 18: Tetrahydrofolate biosynthesis

Source compound	GTP (gtp)
Target compound	$5,6,7,8-$ Tetrahydrofolate (thf)
$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$	$(1,1)$
Low presence compounds that are not forced to be balanced	4-Aminobenzoate (4abz) Formate (for) Glycolaldehyde (gcald)
(Number of reactions, excess ATP)	$(8,-2)$
Number of unbalanced main compounds (W)	3
Specificity ($\Psi)$	8

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=FOLSYN-PWY) and Lehninger (fourth edition) pages 672 and 673.

In EcoCyc the pathway is described as being from one molecule of GTP to one molecule of 5,6,7,8-Tetrahydrofolate. The same set of reactions is present in our reaction database. Precursors of this pathway are explained in Lehninger.

$\left(\mathrm{Q}_{\mathbf{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.13). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(8,-2)^{*}$	X	X	X	X	X
of	2	X	(8,-4)	X	X	X	X
molecules	3	X	X	(8,-6)	X	X	X
Qs of	4	X	X	X	(8,-8)	X	X
source	5	X	X	X	X	(8,-10)	X
compound	6	X	X	X	X	X	$(8,-12)$

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules (and excess ATP). The dominant pair is $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was not recovered with either objective (6.26) or objective (6.27). For this reason $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ pairs discussion is omitted for this pathway.

Pathway 19: Riboflavin and FMN and FAD biosynthesis

Source compound	GTP (gtp)
Target compound	FAD (fad)
$\left(\mathrm{Q}_{\text {S }}, \mathrm{Q}_{\mathrm{T}}\right)$	$(1,1)$
Low presence compounds that are not forced to be balanced	3,4-dihydroxy-2-butanone 4- phosphate (db4p) Formate (for)
(Number of reactions, excess ATP)	$(8,-2)$
Number of unbalanced main compounds (W)	2
Specificity (世)	8.23

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEWIMAGE? type=PATHWAY\&object=RIBOSYN2-PWY).

In EcoCyc the pathway is described as being from one molecule of GTP to one molecule of FAD. The same set of reactions is present in our reaction database.

$\left(Q_{s}, Q_{T}\right)$ discussion for the $B P$ model

This pathway was not recovered with either of the objectives. Since this pathway is not recovered, $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ pairs discussion is omitted.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(8.23,2) *$	(13.83,5)	(13.83,5)	(13.83,5)	$(13.93,4)$	(13.83,5)
of	2	$(10.23,3)$	$(8.23,2)$	(12.03,6)	(12.03,6)	(12.03,6)	(12.03,6)
molecules	3	$(9.23,2)$	$(11.03,4)$	$(8.23,2)$	(12.03,6)	$(12.03,6)$	(12.03,6)
Qs of	4	(11.03,4)	(10.23,3)	$(11.03,4)$	$(8.23,2)$	$(12.03,6)$	(12.03,6)
source	5	$(11.03,4)$	(11.13,3)	$(11.03,4)$	$(11.03,4)$	(8.23,2)	$(12.03,6)$
compoun d	6	$(11.03,4)$	$(9.23,2)$	$(10.23,3)$	$(11.03,4)$	(11.03,4)	$(8.23,2)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(8,2) *$	$(11,5)$	$(11,5)$	$(11,5)$	$(11,5)$	$(11,5)$
of	2	$(8,5)$	$(8,2)$	$(11,5)$	$(11,5)$	$(11,5)$	$(11,5)$
molecules	3	$(11,5)$	$(11,5)$	$(8,2)$	$(11,5)$	$(11,5)$	$(11,5)$
QS of	4	$(11,5)$	$(8,5)$	$(11,5)$	$(8,2)$	$(11,5)$	$(11,5)$
source	5	$(11,5)$	$(11,5)$	$(11,5)$	$(11,5)$	$(8,2)$	$(11,5)$
compound	6	$(11,5)$	$(11,5)$	$(8,5)$	$(11,5)$	$(11,5)$	$(8,2)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 20: Heme biosynthesis

Source compound	Uroporphyrinogen III (uppg3)
Target compound	HemeO (hemeO)
$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$	Fe2 $2, ~(f e 2)$ Farnesyl diphosphate (frdp)
Low presence compounds that are not forced to be balanced	O2 (o2) $(5,0)$
(Number of reactions, excess ATP)	1
Number of unbalanced main compounds (W)	5
Specificity ($\Psi)$	

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/META/NEWIMAGE?type=PATHWAY\&object=HEME+BIOSYNTHESIS+II).

In EcoCyc the pathway is described as being from one molecule of Uroporphyrinogen III to one molecule of HemeO. However, were this to be correct, then R338 would need a non-integer number of molecules of o2 (namely 1.5). In order to avoid this difficulty, we regard the pathway as transforming two molecules of Uroporphyrinogen III to two molecules of HemeO.

$\left(\mathrm{Q}_{\mathbf{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with both objective (3.13) and objective (3.14). Thus, the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (3.13) and objective (3.14). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	X	X	X	X	X	X
of	2	X	(5,0)*	X	X	X	X
molecules	3	X	X	X	X	X	X
Qs of	4	X	X	X	$(5,0)$	X	X
source	5	X	X	X	X	X	X
compound	6	X	X	X	X	X	$(5,0)$

The dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,2)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,2)$ pair observed in the experimentally determined pathway.

On the other hand, results for objective (3.14) are shown below.

(number of reactions, excess ATP)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	X	X	X	X	X	X
of	2	X	(5,0)*	X	X	X	X
molecules	3	X	X	X	X	X	X
Qs of	4	X	X	X	$(5,0)$	X	X
source	5	X	X	X	X	X	X
compound	6	X	X	X	X	X	$(5,0)$

The dominant pair is $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,2)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,2)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(19.84,9)$	$(19.57,9)$	$(20.82,10)$	$(20.89,9)$	$(20.67,9)$	$(20.67,9)$
of	2	$(19.65,10)$	$(5,1)^{*}$	$(19.63,11)$	$(19.47,10)$	$(20.7,10)$	(20.72,11)
molecules	3	$(20.07,9)$	$(12.23,9)$	$(19.74,10)$	$(19.63,11)$	(19.63,11)	$(19.47,10)$
Qs of	4	$(21.51,9)$	$(12.5,9)$	$(19.9,11)$	$(5,1)$	$(19.63,11)$	$(19.63,11)$
source	5	$(21.41,10)$	$(12.75,8)$	$(19.65,10)$	$(13.39,9)$	$(19.74,10)$	$(19.63,11)$
compound	6	$(21.51,9)$	$(13.42,8)$	$(19.65,10)$	$(12.23,9)$	$(19.9,11)$	$(5,1)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,2)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,2)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(15,8)$	$(15,0)$	$(14,9)$	$(16,8)$	$(15,8)$	$(16,0)$
of	2	$(16,8)$	$(5,1)^{*}$	$(16,8)$	$(15,0)$	$(16,8)$	$(15,8)$
molecules	3	$(17,1)$	$(16,3)$	$(15,8)$	$(16,8)$	$(15,8)$	$(15,0)$
Qs of	4	$(15,7)$	$(15,8)$	$(13,8)$	$(5,1)$	X	$(15,8)$
source	5	X	$(16,3)$	$(15,8)$	$(16,8)$	$(15,8)$	X
compound	6	$(18,2)$	$(24,2)$	$(16,8)$	$(15,8)$	X	$(5,1)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,2)$ pair observed in the experimentally determined pathway.

Pathway 21: De novo synthesis of pyrimidine ribonucletides
\(\left.$$
\begin{array}{|l|l|}\hline \text { Source compound } & \text { Carbamoyl phosphate (cbp) } \\
\hline \text { Target compound } & \text { CTP (ctp) } \\
\hline\left(\mathrm{Q}_{\text {S }} \mathrm{Q}_{\mathrm{T}}\right) & (1,1) \\
\hline \begin{array}{l}\text { Low presence compounds that are not forced } \\
\text { to be balanced }\end{array} & \begin{array}{l}\text { L-Aspartate (asp-L) } \\
\text { L-Glutamine (gln-L) }\end{array}
$$

\hline Ubiquinone-8 (q8)

Ubiquinol-8 (q8h2)\end{array}\right\}\)| 5-Phospho-alpha-D-ribose 1- |
| :--- |
| diphosphate (prpp) |

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=PWY0-162) and Lehninger (fourth edition) pages 867 and 868.

In Lehninger the pathway is described as being from one molecule of Carbamoyl phosphate to one molecule of CTP. However, this pathway is described in EcoCyc as being from one molecule of CO 2 to one molecule of CDP. Since the Lehninger description appears to be the more common one it is that which has informed the pathway picture seen below.

$\left(Q_{s}, Q_{T}\right)$ discussion for the $B P$ model

This pathway was recovered with objective (3.13). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	(8,-3)*	X	X	X	X	X
of	2	X	(8,-6)	X	X	X	X
molecules	3	X	X	(8,-9)	X	X	X
Qs of	4	X	X	X	(8,-12)	X	X
source	5	X	X	X	X	$(8,-15)$	X
compound	6	X	X	X	X	X	$(8,-18)$

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules (and excess ATP). The dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(8,3){ }^{*}$	(10.56,4)	(10.56,4)	(10.56,4)	(10.56,4)	(10.56,4)
of	2	$(9.85,5)$	$(8,3)$	(10.56,4)	(10.56,4)	(10.56,4)	(10.56,4)
molecules	3	$(9.94,4)$	$(9.85,5)$	$(8,3)$	$(10.56,4)$	$(10.56,4)$	$(10.56,4)$
Qs of	4	$(9.85,5)$	$(9.85,5)$	$(9.85,5)$	$(8,3)$	$(10.56,4)$	(10.56,4)
source	5	$(9.85,5)$	$(9.94,4)$	$(9.94,4)$	$(9.85,5)$	$(8,3)$	$(10.56,4)$
compoun d	6	$(9.85,5)$	$(9.85,5)$	$(9.85,5)$	$(9.85,5)$	$(9.85,5)$	$(8,3)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(8,3){ }^{*}$	$(9,5)$	$(9,5)$	$(9,5)$	$(9,5)$	$(9,5)$
of	2	$(9,5)$	$(8,3)$	$(9,5)$	$(9,5)$	$(9,5)$	$(9,5)$
molecules	3	$(8,4)$	$(9,5)$	$(8,3)$	$(9,5)$	$(9,5)$	$(9,5)$
QS of	4	$(9,5)$	$(9,5)$	$(9,5)$	$(8,3)$	$(9,5)$	$(9,5)$
source	5	$(9,5)$	$(9,5)$	$(9,5)$	$(9,5)$	$(8,3)$	$(9,5)$
compound	6	$(9,5)$	$(8,4)$	$(9,5)$	$(9,5)$	$(9,5)$	$(8,3)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 22: De novo synthesis of pyrimidine deoxyribonucletides

Source compound	UTP (utp)
Target compound	dTTP (dttp)
($\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}$)	$(1,1)$
Low presence compounds that are not forced to be balanced	7,8-Dihydrofolate (dhf) 5,10-Methylenetetrahydrofolate (mlthf) Oxidized thioredoxin (trdox) Reduced thioredoxin (trdrd)
(Number of reactions, excess ATP)	$(5,-2)$
Number of unbalanced main compounds (W)	4
Specificity (Ψ)	5.25

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-
IMAGE?type=PATHWAY\&object=PWY0-166).

In EcoCyC the pathway is described as being from one molecule of UTP to one molecule of dTTP. Our database contains the same set of reactions.

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.13). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(5,-2)^{*}$	X	X	X	X	X
of	2	X	(5,-4)	X	X	X	X
molecules	3	X	X	$(5,-6)$	X	X	X
Qs of	4	X	X	X	(5,-8)	X	X
source	5	X	X	X	X	$(5,-10)$	X
compound	6	X	X	X	X	X	(5,-12)

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules (and excess ATP). The dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(5.25,4) *$	$(6.53,3)$	$(6.53,3)$	$(6.53,3)$	$(6.53,3)$	$(6.53,3)$
of	2	$(7.03,3)$	$(5.25,4)$	$(6.53,3)$	$(6.63,2)$	$(6.63,2)$	$(6.53,3)$
molecules	3	(7.03,3)	(7.13,2)	$(5.25,4)$	$(6.63,2)$	$(6.63,2)$	$(6.53,3)$
QS of	4	$(7.03,3)$	$(7.03,3)$	$(7.03,3)$	$(5.25,4)$	$(6.53,3)$	$(6.53,3)$
source	5	$(7.03,3)$	$(7.03,3)$	$(7.03,3)$	$(7.03,3)$	$(5.25,4)$	$(6.53,3)$
compound	6	$(7.03,3)$	$(7.03,3)$	$(7.03,3)$	$(7.03,3)$	$(7.03,3)$	$(5.25,4)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(5,4)^{*}$	$(7,4)$	$(7,4)$	$(7,4)$	$(7,4)$	$(7,4)$
of	2	$(7,4)$	$(5,4)$	$(7,4)$	$(7,4)$	$(7,4)$	$(7,4)$
molecules	3	$(7,4)$	$(7,4)$	$(5,4)$	$(7,4)$	$(7,4)$	$(7,4)$
QS of	4	$(7,4)$	$(7,4)$	$(7,4)$	$(5,4)$	$(7,4)$	$(7,4)$
source	5	$(7,4)$	$(7,4)$	$(7,4)$	$(7,4)$	$(5,4)$	$(7,4)$
compound	6	$(7,4)$	$(7,4)$	$(7,4)$	$(7,4)$	$(7,4)$	$(5,4)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 23: Phenylethylamine degradation

Source compound	Phenethylamine (peamn)
Target compound	Phenylacetic acid (pac)
$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$	O2 (o2) Hydrogen peroxide (h2o2)
Low presence compounds that are not forced to be balanced	$(2,0)$
(Number of reactions, excess ATP)	0
Number of unbalanced main compounds (W)	2
Specificity (世)	

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-
IMAGE?type=PATHWAY\&object=2PHENDEG-PWY).

In EcoCyC the pathway is described as being from one molecule of Phenethylamine to one molecule of Phenylacetic acid. Our database contains the same set of reactions.

$\left(\mathrm{Q}_{\mathbf{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with both objective (3.13) and objective (3.14). Thus, the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (3.13) and objective (3.14). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound							
	1	2	3	4	5	6		
Number of molecules Q	1	$(2,0)^{*}$	X	X	X	X	X	
	2	X	$(2,0)$	X	X	X	X	
compound	4	X	X	$(2,0)$	X	X	X	
	5	X	X	X	X	$(2,0)$	X	
	X	X	X	X	X	X	$(2,0)$	

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules. The dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

On the other hand, results for objective (3.14) are shown below.

(number of reactions, excess ATP)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	(2,0)*	X	X	X	X	X
of	2	X	$(2,0)$	X	X	X	X
molecules	3	X	X	$(2,0)$	X	X	X
$\mathrm{Q}_{\text {S }}$ of	4	X	X	X	$(2,0)$	X	X
source	5	X	X	X	X	$(2,0)$	X
compound	6	X	X	X	X	X	$(2,0)$

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules. The dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(2,0){ }^{*}$	X	X	X	X	X
of	2	X	$(2,0)$	X	X	X	X
molecules	3	X	X	$(2,0)$	X	X	X
Qs of	4	X	X	X	$(2,0)$	X	X
source	5	X	X	X	X	$(2,0)$	X
compound	6	X	X	X	X	X	$(2,0)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(2,0){ }^{*}$	X	X	X	X	X
of	2	X	$(2,0)$	X	X	X	X
molecules	3	X	X	$(2,0)$	X	X	X
Qs of	4	X	X	X	$(2,0)$	X	X
source	5	X	X	X	X	$(2,0)$	X
compound	6	X	X	X	X	X	$(2,0)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 24: Rhamnose degradation

Source compound	L-Rhamnose (rmn)
Target compound	Pyruvate (pyr)
$\left(\mathrm{Q}_{\left.\mathrm{s}, \mathrm{Q}_{\mathrm{T}}\right)}\right.$	$(1,1)$ Low presence compounds that are not forced to be balanced Ubiquinol-8 (q8h2) (dhap)
Dihydroxyacetone phosphate	
Number of reactions, excess ATP)	$(5,-1)$
Number of unbalanced main compounds (W)	1
Specificity ($\Psi)$	6.25

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-
IMAGE? type=PATHWAY\&object=RHAMCAT-PWY).

In EcoCyC the pathway is described as being from one molecule of L-Rhamnose to one molecule of Pyruvate. Our database contains the same set of reactions.

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.13). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	(5,-1)*	$(11,1)$	$(11,3)$	$(11,5)$	$(11,7)$	$(11,9)$
of	2	X	$(5,-2)$	$(12,-1)$	$(11,2)$	$(11,4)$	$(11,6)$
molecules	3	X	X	$(5,-3)$	$(11,-1)$	$(11,1)$	$(11,3)$
Qs of	4	X	X	X	(5,-4)	$(11,-2)$	$(12,-2)$
source	5	X	X	X	X	$(5,-5)$	$(11,-3)$
compound	6	X	X	X	X	X	(5,-6)

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules (and excess ATP). The dominant pair is $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number of molecules	1	$(6.25,1)^{*}$	(6.93,0)	$(7.95,2)$	$(7.95,2)$	$(7.95,2)$	$(7.95,2)$
	2	$(9.81,4)$	$(6.25,1)$	$(7.95,2)$	$(6.93,0)$	$(8.05,1)$	$(7.95,2)$
	3	$(9.81,4)$	$(9.81,4)$	$(6.25,1)$	$(7.95,2)$	$(7.95,2)$	$(6.93,0)$
Qs of	4	$(9.81,4)$	$(9.81,4)$	$(9.81,4)$	$(6.25,1)$	$(7.95,2)$	$(7.95,2)$
source	5	$(9.81,4)$	$(9.81,4)$	$(9.81,4)$	$(9.81,4)$	$(6.25,1)$	$(7.95,2)$
compound	6	$(9.81,4)$	$(9.81,4)$	$(9.81,4)$	$(9.81,4)$	$(9.81,4)$	$(6.25,1)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(5,1)^{*}$	$(9,0)$	$(10,2)$	$(10,2)$	$(10,2)$	$(10,2)$
of	2	$(12,4)$	$(5,1)$	$(10,2)$	$(9,0)$	$(10,2)$	$(10,2)$
molecules	3	$(12,3)$	$(11,6)$	$(5,1)$	$(10,2)$	$(10,2)$	(9,0)
QS of	4	$(12,3)$	$(12,3)$	$(12,3)$	$(5,1)$	$(10,2)$	$(10,2)$
source	5	$(12,3)$	$(12,3)$	$(12,3)$	$(12,3)$	$(5,1)$	$(10,2)$
compound	6	$(12,3)$	$(13,4)$	$(12,5)$	$(11,6)$	$(13,4)$	$(5,1)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 25: Fucose degradation

Source compound	L-Fucose (fuc-L)
Target compound	Pyruvate (pyr)
$\left(\mathrm{Q}_{\text {s, }}\right.$ T $)$	(1,1) Ubiquinone-8 (q8) Ubiquinol-8 (q8h2)
Low presence compounds that are not forced to be balanced	Dihydroxyacetone phosphate (dhap)
(Number of reactions, excess ATP)	$(5,-1)$
Number of unbalanced main compounds (W)	1
Specificity ($\Psi)$	6.25

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-
IMAGE?type=PATHWAY\&object=FUCCAT-PWY).

In EcoCyC the pathway is described as being from one molecule of L-Fucose to one molecule of Pyruvate. Our database contains the same set of reactions.

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.13). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	(5,-1)*	$(11,1)$	$(11,3)$	$(11,5)$	$(11,7)$	$(11,9)$
of	2	X	$(5,-2)$	$(12,-1)$	$(11,2)$	$(11,4)$	$(11,6)$
molecules	3	X	X	$(5,-3)$	$(11,-1)$	$(11,1)$	$(11,3)$
Qs of	4	X	X	X	(5,-4)	$(11,-2)$	$(12,-2)$
source	5	X	X	X	X	$(5,-5)$	$(11,-3)$
compound	6	X	X	X	X	X	(5,-6)

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules (and excess ATP). The dominant pair is $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number of molecules	1	$(6.25,1)^{*}$	(6.93,0)	$(7.95,2)$	$(7.95,2)$	$(7.95,2)$	$(7.95,2)$
	2	$(9.81,4)$	$(6.25,1)$	$(7.95,2)$	$(6.93,0)$	$(7.95,2)$	$(7.95,2)$
	3	$(9.81,4)$	(9.9,3)	$(6.25,1)$	$(7.95,2)$	$(7.95,2)$	$(6.93,0)$
Qs of	4	$(9.81,4)$	$(9.81,4)$	$(9.81,4)$	$(6.25,1)$	$(7.95,2)$	$(7.95,2)$
source	5	$(9.81,4)$	$(9.81,4)$	$(9.81,4)$	$(9.81,4)$	$(6.25,1)$	$(7.95,2)$
compound	6	$(9.81,4)$	$(9.81,4)$	$(9.81,4)$	$(9.81,4)$	$(9.81,4)$	$(6.25,1)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(5,1)^{*}$	$(9,0)$	$(10,2)$	$(10,2)$	$(10,2)$	$(10,2)$
of	2	$(12,3)$	$(5,1)$	$(10,2)$	$(9,0)$	$(10,2)$	$(10,2)$
molecules	3	$(12,3)$	$(11,6)$	$(5,1)$	$(10,2)$	$(10,2)$	(9,0)
QS of	4	$(12,3)$	$(12,3)$	$(12,3)$	$(5,1)$	$(10,2)$	$(10,2)$
source	5	$(12,3)$	$(11,4)$	$(11,4)$	$(11,4)$	$(5,1)$	$(10,2)$
compound	6	$(11,4)$	$(11,4)$	$(11,4)$	$(11,4)$	$(11,4)$	$(5,1)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 26: Entner-Doudoroff

Source compound	D-Glucose 6-phosphate $(\mathrm{g} 6 \mathrm{p})$
Target compound	Pyruvate (pyr)
$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$	$(1,1)$
Low presence compounds that are not forced to be balanced	None
(Number of reactions, excess ATP)	$(4,0)$
Number of unbalanced main compounds (W)	0
Specificity (Ψ)	4.41

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEWIMAGE? type=PATHWAY\&object=ENTNER-DOUDOROFF-PWY).

In EcoCyC the pathway is described as being from one molecule of D-Glucose 6phosphate to one molecule of Pyruvate. Our database contains the same set of reactions.

Note here that we have one allowable c-cycle in this pathway. More precisely the 2 -cycle 6 pgc-R639-h2o-R637-6pgc which contains one high presence balanced compound (h2o).

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with both objective (3.13) and objective (3.14). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (3.13) and objective (3.14). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules Q	1	$(4,0)^{*}$	$(9,3)$	$(9,4)$	$(9,6)$	$(9,8)$	$(9,10)$
	2	X	$(4,0)$	$(9,2)$	$(9,6)$	$(9,6)$	$(9,8)$
	4	X	X	$(4,0)$	$(9,2)$	$(9,4)$	$(9,9)$
	5	X	X	X	$(4,0)$	$(9,2)$	$(9,4)$
	X	X	X	X	X	X	$(4,0)$

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules. The dominant pair is $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (3.14) are shown below.

(number of reactions, excess ATP)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(4,0)$	$(9,3)$	$(9,4)$	$(9,6)$	$(9,8)$	(9,10)*
of	2	X	$(4,0)$	$(9,2)$	$(9,6)$	$(9,6)$	$(9,8)$
molecules	3	X	X	$(4,0)$	$(9,2)$	$(9,4)$	$(9,9)$
$\mathrm{Q}_{\text {S }}$ of	4	X	X	X	$(4,0)$	$(9,2)$	$(9,4)$
source	5	X	X	X	X	$(4,0)$	$(9,2)$
compound	6	X	X	X	X	X	$(4,0)$

The dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,6)$. Hence in this case the BP model does not recover the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was not recovered with either objective (6.26) or objective (6.27). For this reason $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ pairs discussion is omitted for this pathway.

Pathway 27: Anaerobic respiration

Source compound	Pyruvate (pyr)
Target compound	2-Oxoglutarate (akg)
$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$	$(1,1)$
Low presence compounds that are not forced to be balanced	Oxaloacetate (oaa)
(Number of reactions, excess ATP)	$(4,0)$
Number of unbalanced main compounds (W)	1
Specificity (世)	4.79

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=ANARESP1-PWY) and Lehninger (fourth edition) page 621.

In Lehninger the pathway is described as being from one molecule of Pyruvate to one molecule of 2-Oxoglutarate. However, EcoCyc describes it as being from one molecule of Phosphoenolpyruvate to one molecule of 2-Oxoglutarate, Pyruvate being an intermediate compound.

Since the Lehninger description appears to be the clearer one it is that which has informed the pathway picture seen below.

Note here that we have one allowable c-cycle (see Chapter 3) in this pathway. More precisely the 2-cycle accoa-R272-coa-R441-accoa which contains one high presence balanced compound (coa).

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with both objective (3.13) and objective (3.14). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (3.13) and objective (3.14). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules Qs of	1	$(4,0)^{*}$	$(5,0)$	$(5,0)$	$(5,0)$	$(5,0)$	$(5,0)$
	2	$(6,-1)$	$(4,0)$	$(5,0)$	$(5,0)$	$(5,0)$	$(5,0)$
	4	X	X	$(4,0)$	$(5,0)$	$(5,0)$	$(5,0)$
	5	X	$(6,-2)$	$(7,-2)$	$(4,0)$	$(5,0)$	$(5,0)$
	X	X	X	X	X	$(4,0)$	$(5,0)$

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules. The dominant pair is $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (3.14) are shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules Qs of	1	$(4,0)^{*}$	$(5,0)$	$(5,0)$	$(5,0)$	$(5,0)$	$(5,0)$
	2	$(7,0)$	$(4,0)$	$(5,0)$	$(5,0)$	$(5,0)$	$(5,0)$
	4	X	X	$(4,0)$	$(5,0)$	$(5,0)$	$(5,0)$
	X	X	$(7,0)$	$(8,0)$	$(4,0)$	$(5,0)$	$(5,0)$
	X	X	X	X	X	$(4,0)$	$(5,0)$

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules. The dominant pair is $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recover the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was not recovered with either objective (6.26) or objective (6.27). For this reason $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ pairs discussion is omitted for this pathway.

Pathway 28: Arginine degradation

Source compound	L-Arginine (arg-L)
Target compound	L-Glutamate (glu-L)
$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$	$(1,2)$
Low presence compounds that are not forced to be balanced	2-Oxoglutarate (akg) Succinyl-CoA (succoa) Succinate (succ)
(Number of reactions, excess ATP)	$(5,0)$
Number of unbalanced main compounds (W)	2
Specificity (世)	6.03

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=AST-PWY) and Lehninger (fourth edition) page 681.

Whilst the pathway is described as being from one molecule of L-Arginine to one molecule of α-Ketoglutarate in Lehninger, EcoCyc describes it as being from one molecule of L-Arginine to two molecules of L-Glutamate.

Since our reaction database does not contain the set of reactions seen in Lehninger, but does contain those seen in EcoCyc, it is that which has informed the pathway picture seen below.

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.13). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules Qs of	1	X	$(5,0)^{*}$	$(6,0)$	$(6,0)$	$(6,0)$	$(6,0)$
	2	X	X	X	$(5,0)$	$(6,0)$	$(6,0)$
	4	X	X	X	X	X	$(5,0)$
	x	X	X	X	X	X	X
	X	X	X	X	X	X	X

The dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,2)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,2)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	(12.74,7)	(6.03,2)*	$(9.99,4)$	(10.39,2)	(10.39,2)	(10.39,2)
of	2	$(17.27,11)$	$(12.74,7)$	$(9.48,8)$	$(6.03,2)$	$(10.39,2)$	$(9.99,4)$
molecules	3	$(17.27,11)$	$(14.46,9)$	$(11.18,10)$	$(9.38,9)$	$(9.48,8)$	$(6.03,2)$
Qs of	4	$(17.27,11)$	$(15.87,11)$	$(12.51,12)$	$(11.18,10)$	$(9.38,9)$	$(9.38,9)$
source	5	$(17.27,11)$	$(15.87,11)$	$(12.51,12)$	$(12.51,12)$	$(11.18,10)$	$(9.38,9)$
compound	6	$(17.27,11)$	$(15.87,11)$	$(12.51,12)$	$(12.51,12)$	$(12.51,12)$	$(11.18,10)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,2)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,2)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(3,2) *$	$(5,2)$	$(9,4)$	$(10,3)$	$(10,5)$	$(11,5)$
of	2	$(13,0)$	$(3,2)$	$(8,4)$	$(5,2)$	$(10,5)$	$(9,4)$
molecules	3	$(12,8)$	$(12,8)$	$(3,2)$	$(8,4)$	$(8,4)$	$(5,2)$
Qs of	4	$(12,8)$	$(12,8)$	$(12,8)$	$(3,2)$	$(8,4)$	$(8,4)$
source	5	$(13,0)$	$(12,8)$	$(12,8)$	$(12,8)$	$(3,2)$	$(8,4)$
compound	6	$(12,8)$	$(12,8)$	$(12,8)$	$(12,8)$	$(12,8)$	$(3,2)$

In contrast with objective (6.26), the dominant pair for objective (6.27) is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence for this objective the IBP model does not recover the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,2)$ pair observed in the experimentally determined pathway.

Pathway 29: Proline degradation

Source compound	L-Proline (pro-L)			
Target compound	L-Glutamate (glu-L)			
$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$	$(1,1)$			
Low presence compounds that are not forced to be balanced	FAD (fad)			
FADH2 (fadh2)		$	$	$(2,0)$
:---				
(Number of reactions, excess ATP)				
Number of unbalanced main compounds (W)				
Specificity (Ч)				

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=PROUT-PWY) and Lehninger (fourth edition) page 681.

Whilst the pathway is described as being from one molecule of L-Proline to one molecule of α-Ketoglutarate (2-oxoglutarate in our database) in Lehninger, EcoCyc describes it as being from one molecule of L-Proline to one molecule of L-glutamate. Moreover, Lehninger contains two additional reactions with respect to EcoCyc.

Since our reaction database matches to those reactions seen in EcoCyc, it is that which has informed the pathway picture seen below.

$\left(\mathrm{Q}_{\mathbf{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with both objective (3.13) and objective (3.14). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (3.13) and objective (3.14). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules Qs of	1	$(2,0)^{*}$	$(10,-1)$	$(10,-2)$	$(10,-3)$	$(10,-4)$	$(10,-5)$
	2	X	$(2,0)$	$(10,-1)$	$(10,-2)$	$(10,-3)$	$(10,-4)$
	4	X	X	$(2,0)$	$(10,-1)$	$(10,-2)$	$(10,-3)$
	T	X	X	X	$(2,0)$	$(10,-1)$	$(10,-2)$

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules. The dominant pair is $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (3.14) are shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules Qs of	1	$(2,0)^{*}$	$(11,0)$	$(11,0)$	$(11,0)$	$(11,0)$	$(11,0)$
	2	X	$(2,0)$	$(11,0)$	$(11,0)$	$(11,0)$	$(11,0)$
	4	X	X	$(2,0)$	$(11,0)$	$(11,0)$	$(11,0)$
	X	X	X	X	$(2,0)$	$(11,0)$	$(11,0)$
	X	X	X	X	$(2,0)$	$(11,0)$	

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules. The dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	(2,0)*	$(6.5,5)$	$(6.48,2)$	X	(7.74,5)	X
of	2	X	$(2,0)$	$(7.33,3)$	$(6.33,5)$	$(6.5,5)$	X
molecules	3	X	X	$(2,0)$	X	$(6.43,4)$	X
QS of	4	X	X	X	$(2,0)$	$(9.49,6)$	$(6.33,5)$
source	5	X	X	X	X	$(2,0)$	X
compound	6	X	X	X	X	X	$(2,0)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(2,0){ }^{*}$	$(9,3)$	$(9,3)$	$(9,3)$	$(10,5)$	X
of	2	X	$(2,0)$	$(9,3)$	$(9,3)$	$(9,3)$	$(9,3)$
molecules	3	X	X	$(2,0)$	$(9,3)$	$(9,3)$	$(9,3)$
Qs of	4	X	X	X	$(2,0)$	$(9,3)$	$(9,3)$
source	5	X	X	X	X	$(2,0)$	$(9,3)$
compound	6	X	X	X	X	X	$(2,0)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 30: Glycolate degradation

Source compound	Glycolate (glyclt)
Target compound	3-Phospho-D-glycerate $(3 \mathrm{pg})$
$\left(\mathrm{Q}_{\mathrm{S},} \mathrm{Q}_{\mathrm{T}}\right)$	$(2,1)$
Low presence compounds that are not forced to be balanced	Ubiquinone-8 (q8) Ubiquinol-8 (q8h2)
(Number of reactions, excess ATP)	$(4,-1)$
Number of unbalanced main compounds (W)	0
Specificity (世)	4

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=GLYCOLATEMET-PWY) and Lehninger (fourth edition) page 767 .

Whilst the pathway is described as being from two molecules of Glycolate to one molecule of Glycine in Lehninger, EcoCyc describes it as being from two molecules of Glycolate to one molecule of 3-Phospho-D-glycerate.

Since our reaction database matches to those reactions seen in EcoCyc, it is that which has informed the pathway picture seen below.

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.13). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(7,-1)$	(8,-2)	(8,-3)	$(8,-4)$	$(8,-5)$	$(8,-6)$
of	2	(4,-1)*	(7,-2)	$(7,-3)$	(7,-4)	$(7,-5)$	(7,-6)
molecules	3	$(7,-1)$	$(9,0)$	(7,-3)	$(8,-4)$	$(8,-5)$	$(8,-6)$
QS of	4	$(7,-1)$	(4,-2)	(7,-3)	(7,-4)	$(7,-5)$	$(7,-6)$
source	5	$(7,-1)$	(7,-2)	$(9,0)$	$(9,0)$	(7,-5)	(8,-6)
compound	6	$(7,-1)$	(7,-2)	(4,-3)	(7,-4)	$(7,-5)$	(7,-6)

The dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(6,0)$	$(7.38,1)$	$(7.38,1)$	$(7.38,1)$	$(7.38,1)$	$(7.38,1)$
of	2	$(4,0)^{*}$	$(6,0)$	$(5.92,3)$	$(5.92,3)$	$(5.92,3)$	$(5.92,3)$
molecules	3	$(7.86,4)$	$(5,0)$	$(6,0)$	$(6.92,3)$	$(6.92,3)$	$(6.92,3)$
$\mathrm{Q}_{\text {S }}$ of	4	$(7.86,4)$	$(4,0)$	$(5,0)$	$(6,0)$	$(5.92,3)$	$(5.92,3)$
source	5	(7.96,3)	(7.66,1)	$(5,0)$	$(5,0)$	$(6,0)$	$(6.92,3)$
compound	6	$(7.86,4)$	$(7.66,1)$	$(4,0)$	$(5,0)$	$(5,0)$	$(6,0)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(6,0)$	$(6,4)$	$(6,4)$	$(6,4)$	$(6,4)$	$(6,4)$
of	2	$(4,0){ }^{*}$	$(6,0)$	$(6,4)$	$(6,4)$	$(6,4)$	$(6,4)$
molecules	3	$(6,4)$	$(6,4)$	$(6,0)$	$(6,4)$	$(6,4)$	$(6,4)$
QS of	4	$(6,4)$	$(4,0)$	$(6,4)$	$(6,0)$	$(6,4)$	$(6,4)$
source	5	$(6,4)$	$(6,4)$	$(6,4)$	$(6,4)$	$(6,0)$	$(6,4)$
compound	6	$(6,4)$	$(6,4)$	$(4,0)$	$(6,4)$	$(6,4)$	$(6,0)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,1)$ pair observed in the experimentally determined pathway.

Pathway 31: Phospholipid biosynthesis

Source compound	CDPdiacilglycerol (cdpdag1)
Target compound	Cardiolipin (clpn_EC)
$\left(\mathrm{Q}_{\mathrm{s},} \mathrm{Q}_{\mathrm{T}}\right)$	$(2,1)$ Low presence compounds that are not forced to be balanced Glycerol (glyc) glyc3p)
(Number of reactions, excess ATP)	$(3,0)$
Number of unbalanced main compounds (W)	3
Specificity ($\Psi)$	3

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=PHOSLIPSYN-PWY) and Lehninger (fourth edition) pages 810 .

Both in Lehninger and EcoCyc, the pathway is described as being from two molecules of CDPdiacilglycerol to one molecule of cardiolipin.

Since the Lehninger description appears to be the clearer one it is that which has informed the pathway picture seen below.

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.13). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	X	X	X	X	X	X
of	2	$(3,0)^{*}$	X	X	X	X	X
molecules	3	X	X	X	X	X	X
Qs of	4	X	$(3,0)$	X	X	X	X
source	5	X	X	X	X	X	X
compound	6	X	X	$(3,0)$	X	X	X

The dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	X	X	X	X	X	X
of	2	$(3,3) *$	X	X	X	X	X
molecules	3	X	X	X	X	X	X
Qs of	4	X	$(3,3)$	X	X	X	X
source	5	X	X	X	X	X	X
compound	6	X	X	$(3,3)$	X	X	X

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	X	X	X	X	X	X
of	2	$(3,3){ }^{*}$	X	X	X	X	X
molecules	3	X	X	X	X	X	X
Qs of	4	X	$(3,3)$	X	X	X	X
source	5	X	X	X	X	X	X
compound	6	X	X	$(3,3)$	X	X	X

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,1)$ pair observed in the experimentally determined pathway.

Pathway 32: Biosynthesis of cysteine

Source compound	L-Serine (ser-L)
Target compound	L-Cysteine (cys-L)
$\left(\mathrm{Q}_{\mathrm{s},} \mathrm{Q}_{\mathrm{T}}\right)$	Hydrogen sulfide (h2s) Acetate (ac)
Low presence compounds that are not forced to be balanced	Acetyl-CoA (accoa) (Number of reactions, excess ATP)
Number of unbalanced main compounds (W)	1
Specificity (Y)	2

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-
IMAGE?type=PATHWAY\&object=CYSTSYN-PWY) and Lehninger (fourth edition) pages 845 .

In Lehninger the pathway is described as being from one molecule of L-Serine to one molecule of L-Cysteine. This pathway is described in the same way in EcoCyc with the same set of reactions.

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with both objective (3.13) and objective (3.14). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (3.13) and objective (3.14). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules Q	1	$(2,0)^{*}$	X	X	X	X	X
	2	$(4,0)$	$(2,0)$	X	X	X	X
	3	$(9,0)$	$(5,-1)$	$(2,0)$	X	X	X
source compound	5	$(9,0)$	$(4,0)$	$(5,-2)$	$(2,0)$	X	X
	6	$(9,0)$	$(9,0)$	$(4,0)$	$(5,-2)$	$(5,-4)$	$(2,0)$

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules. The dominant pair is $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (3.14) are shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules Qs of	1	$(2,0)^{*}$	X	X	X	X	X
	2	$(4,0)$	$(2,0)$	X	X	X	X
	4	$(9,0)$	$(6,0)$	$(2,0)$	X	X	X
compound	5	$(9,0)$	$(9,0)$	$(6,0)$	$(6,0)$	$(2,0)$	X
	6	$(9,0)$	$(9,0)$	$(4,0)$	$(6,0)$	$(6,0)$	$(2,0)$

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules. The dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(2,1)^{*}$	$(8.17,5)$	$(8.46,4)$	(10.88,2)	$(8.61,3)$	X
of	2	$(8.42,4)$	$(2,1)$	$(6.15,5)$	$(6.57,6)$	X	$(6.15,5)$
molecules	3	$(9.67,9)$	X	$(2,1)$	X	X	$(6.15,5)$
Qs of	4	$(8.34,7)$	$(9.93,7)$	(10.71,9)	$(2,1)$	$(6.15,5)$	$(6.65,4)$
source	5	$(8.43,4)$	$(7.13,6)$	$(7.71,5)$	$(7.13,6)$	$(2,1)$	$(6.4,5)$
compound	6	$(8.43,4)$	$(7.23,5)$	X	$(7.89,10)$	$(7.81,4)$	$(2,1)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(2,1){ }^{*}$	$(9,5)$	$(11,4)$	$(11,4)$	$(11,6)$	$(11,5)$
of	2	$(11,4)$	$(2,1)$	$(11,6)$	$(9,5)$	$(8,4)$	$(8,4)$
molecules	3	$(7,2)$	$(8,5)$	$(2,1)$	X	$(8,4)$	$(8,4)$
Qs of	4	X	$(9,4)$	$(13,6)$	$(2,1)$	X	$(8,4)$
source	5	X	$(9,4)$	$(7,5)$	$(12,6)$	$(2,1)$	$(8,4)$
compound	6	$(10,7)$	$(7,2)$	$(9,4)$	X	X	$(2,1)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 33: Allantoin degradation

Source compound	Allantoin (alltn)
Target compound	$3-$ Phospho-D-glycerate $(3 \mathrm{pg})$
$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$	$(2,1)$
Low presence compounds that are not forced to be balanced	Urea (urea)
(Number of reactions, excess ATP)	$(6,-1)$
Number of unbalanced main compounds (W)	1
Specificity (Ψ)	6

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-
IMAGE?type=PATHWAY\&object=PWY0-41).

In EcoCyc the pathway is described as being from two molecules of Allantoin to one molecule of 3-Phospho-D-glycerate. Our database contains the same set of reactions.

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.13). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules Qs of	1	$(9,-1)$	$(10,-2)$	$(10,-3)$	$(10,-4)$	$(10,-5)$	$(10,-6)$
	2	$(6,-1)^{*}$	$(9,-2)$	$(9,-3)$	$(9,-4)$	$(9,-5)$	$(9,-6)$
	4	$(9,-1)$	$(11,0)$	$(9,-3)$	$(10,-4)$	$(10,-5)$	$(10,-6)$
$*$ compound	5	$(9,-1)$	$(9,-2)$	$(11,0)$	$(11,0)$	$(9,-5)$	$(10,-6)$
	6	$(9,-1)$	$(9,-2)$	$(6,-3)$	$(9,-4)$	$(9,-5)$	$(9,-6)$

The dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(8.1,0)$	$(9.38,2)$	(9.38,2)	(9.38,2)	$(9.38,2)$	$(9.48,1)$
of	2	$(6,1)^{*}$	$(8,1)$	$(8.93,4)$	$(8.93,4)$	$(8.93,4)$	$(8.93,4)$
molecules	3	$(12.44,3)$	$(7,1)$	$(8,1)$	(9.14,2)	$(9.14,2)$	(9.14,2)
QS of	4	(12.44,3)	$(6,1)$	$(7,1)$	$(8,1)$	$(8.93,4)$	$(9.02,3)$
source	5	$(12.44,3)$	$(9.66,2)$	$(7,1)$	$(7,1)$	$(8,1)$	(9.14,2)
compound	6	$(12.44,3)$	$(9.66,2)$	$(6,1)$	$(7,1)$	$(7,1)$	$(8,1)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(8,1)$	$(11,2)$	(11,2)	$(11,2)$	$(11,2)$	$(11,2)$
of	2	$(6,1)^{*}$	$(8,1)$	$(11,2)$	$(11,2)$	$(11,2)$	$(11,2)$
molecules	3	$(12,3)$	$(11,1)$	$(8,1)$	(11,2)	$(11,2)$	$(11,2)$
QS of	4	$(12,3)$	$(6,1)$	$(11,1)$	$(8,1)$	$(11,2)$	$(11,2)$
source	5	$(12,3)$	$(12,3)$	$(11,1)$	$(11,1)$	$(8,1)$	$(11,2)$
compound	6	$(12,3)$	$(12,3)$	$(6,1)$	$(11,1)$	$(11,1)$	$(8,1)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(2,1)$ pair observed in the experimentally determined pathway.

Pathway 34: Deoxycytidine degradation

Source compound	Deoxycytidine (dcyt)
Target compound	Glyceraldehyde 3-phosphate $(\mathrm{g} 3 \mathrm{p})$
$\left(\mathrm{Q}_{\mathrm{S},} \mathrm{Q}_{\mathrm{T}}\right)$	$(1,1)$
Low presence compounds that are not forced to be balanced	Acetaldehyde (acald) Uracil (ura)
(Number of reactions, excess ATP)	$(4,0)$
Number of unbalanced main compounds (W)	2
Specificity (Ч)	5.63

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=PWY0-163).

In EcoCyc the pathway is described as being from one molecule of Deoxycytidine to one molecule of Glyceraldehyde 3-phosphate. Our database contains the same set of reactions.

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with both objective (3.13) and objective (3.14). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (3.13) and objective (3.14). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules Q	1	$(4,0)^{*}$	$(9,-2)$	$(9,-4)$	$(9,-6)$	$(9,-8)$	$(9,-10)$
	2	X	$(4,0)$	$(9,-2)$	$(9,-4)$	$(9,-6)$	$(9,-8)$
	4	X	X	$(4,0)$	$(9,-2)$	$(9,-4)$	$(9,-6)$
	T	X	X	X	$(4,0)$	$(9,-2)$	$(9,-4)$
	X	X	X	X	X	$(4,0)$	$(9,-2)$

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules. The dominant pair is $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (3.14) are shown below.

(number of reactions, excess ATP)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(4,0) *$	$(10,0)$	$(10,0)$	$(10,0)$	$(10,0)$	$(10,0)$
of	2	X	$(4,0)$	$(10,0)$	$(10,0)$	$(10,0)$	$(10,0)$
molecules	3	X	X	$(4,0)$	$(10,0)$	$(10,0)$	$(10,0)$
Qs of	4	X	X	X	$(4,0)$	$(10,0)$	$(10,0)$
source	5	X	X	X	X	$(4,0)$	$(10,0)$
compound	6	X	X	X	X	X	$(4,0)$

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules. The dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(5.63,2)^{*}$	X	$(9.2,5)$	$(9.22,5)$	X	(9.22,5)
of	2	(12.02,7)	$(5.63,2)$	$(9.97,4)$	$(8.77,7)$	X	$(9.2,5)$
molecules	3	(12.02,7)	$(10.73,8)$	$(5.63,2)$	(9.2,5)	$(9.3,4)$	$(8.87,6)$
Qs of	4	(12.02,7)	$(10.73,8)$	$(10.73,8)$	$(5.63,2)$	$(9.45,6)$	(10.47,3)
source	5	(12.02,7)	$(10.83,7)$	$(10.73,8)$	$(10.73,8)$	$(5.63,2)$	$(8.93,5)$
compound	6	(12.02,7)	$(10.73,8)$	(10.83,7)	$(10.73,8)$	$(10.83,7)$	$(5.63,2)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(4,2) *$	$(8,7)$	$(8,7)$	$(8,7)$	$(8,7)$	$(8,7)$
of	2	$(8,7)$	$(4,2)$	$(8,7)$	$(8,7)$	$(8,7)$	$(8,7)$
molecules	3	$(8,7)$	$(8,7)$	$(4,2)$	$(8,7)$	$(8,7)$	$(8,7)$
QS of	4	$(8,7)$	$(8,7)$	$(8,7)$	$(4,2)$	$(8,7)$	$(8,7)$
source	5	$(8,7)$	$(8,7)$	$(8,7)$	$(8,7)$	$(4,2)$	$(8,7)$
compound	6	$(8,7)$	$(8,7)$	$(8,7)$	$(8,7)$	$(8,7)$	$(4,2)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 35: Phenylalanine biosynthesis

Source compound	Chorismate (chor)
Target compound	L-Phenylalanine (phe-L)
$\left(\mathrm{Q}_{\mathrm{S},} \mathrm{Q}_{\mathrm{T}}\right)$	$(1,1)$
Low presence compounds that are not forced to be balanced	2-Oxoglutarate (akg)
(Number of reactions, excess ATP)	$(3,0)$
Number of unbalanced main compounds (W)	0
Specificity (Ψ)	3

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEWIMAGE?type=PATHWAY\&object=PHESYN) and Lehninger (fourth edition) page 851.

In Lehninger the pathway is described as being from one molecule of Chorismate to one molecule of L-Phenylalanine. This pathway is described in the same way in EcoCyc with the same set of reactions.

$\left(\mathrm{Q}_{\mathbf{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with both objective (3.13) and objective (3.14). Thus, the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (3.13) and objective (3.14). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound							
	1	2	3	4	5	6		
Number of molecules Q	1	$(3,0)^{*}$	X	X	X	X	X	
	2	X	$(3,0)$	X	X	X	X	
compound	4	X	X	$(3,0)$	X	X	X	
	5	X	X	X	X	$(3,0)$	X	
	X	X	X	X	X	X	$(3,0)$	

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules. The dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (3.14) are shown below.

(number of reactions, excess ATP)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	(3,0)*	X	X	X	X	X
of	2	X	$(3,0)$	X	X	X	X
molecules	3	X	X	$(3,0)$	X	X	X
Qs of	4	X	X	X	$(3,0)$	X	X
source	5	X	X	X	X	$(3,0)$	X
compound	6	X	X	X	X	X	$(3,0)$

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules. The dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(3,0){ }^{*}$	X	X	X	X	X
of	2	$(12.44,4)$	$(3,0)$	X	X	X	X
molecules	3	$(12.12,5)$	$(13.12,5)$	$(3,0)$	X	X	X
Qs of	4	$(11.97,3)$	$(11.97,3)$	X	$(3,0)$	X	X
source	5	$(12.55,3)$	X	(12.44,4)	$(12.55,3)$	$(3,0)$	X
compound	6	(13.12,5)	(12.44,4)	X	$(12.55,3)$	$(12.07,3)$	$(3,0)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(3,0){ }^{*}$	X	X	X	X	X
of	2	X	$(3,0)$	X	X	X	X
molecules	3	$(15,7)$	$(15,7)$	$(3,0)$	X	X	X
Qs of	4	$(15,8)$	$(23,6)$	$(17,2)$	$(3,0)$	X	X
source	5	$(15,8)$	$(15,7)$	$(14,8)$	$(15,3)$	$(3,0)$	X
compound	6	$(15,8)$	X	X	X	X	$(3,0)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 36: Glyoxylate cycle

Source compound	Glyoxylate (glx)
Target compound	Glyoxylate (glx)
$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$	$(1,1)$
Low presence compounds that are not forced to be balanced	Succinate (succ) Acetyl-CoA (accoa)
(Number of reactions, excess ATP)	$(5,0)$
Number of unbalanced main compounds (W)	1
Specificity (世)	5

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=GLYOXYLATE-BYPASS) and Lehninger (fourth edition) pages 623 and 625 .

Both in Lehninger and EcoCyc, the pathway is described as being a cycle starting and finishing at glyoxylate. However, Lehninger does not include the intermediary reaction citrate -> cis-aconitate + H20, included in EcoCyc. Since our reaction database does not contain this reaction, we have selected the Lehninger pathway.

$\left(\mathrm{Q}_{\mathbf{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.13). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules Q	1	$(5,0)^{*}$	$(6,0)$	$(6,0)$	$(6,0)$	$(6,0)$	$(6,0)$
	2	$(6,0)$	$(5,0)$	$(6,0)$	$(6,0)$	$(6,0)$	$(6,0)$
	4	$(6,0)$	$(6,0)$	$(5,0)$	$(6,0)$	$(6,0)$	$(6,0)$
compound	5	$(6,0)$	$(6,0)$	$(6,0)$	$(5,0)$	$(6,0)$	$(6,0)$
	6	$(6,0)$	$(6,0)$	$(6,0)$	$(6,0)$	$(6,0)$	$(5,0)$

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules. The dominant pair is $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

In this pathway the source compound and the target compound are the same, moreover in the experimentally determined pathway the source/target compound is balanced (since $\mathrm{Q}_{\mathrm{S}}=\mathrm{Q}_{\mathrm{T}}=1$). It is therefore possible to interpret this pathway, a cycle, such that the only valid cases in the above $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ table of pairs are the diagonal entries (which are the only cases where the source/target compound is balanced). However even if we adopt this interpretation (which we did for the TCA cycle, pathway 8 , above)
the dominant pair is still $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ and the BP model still recovers the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was not recovered with either objective (6.26) or objective (6.27). However, when applied the cyclic constraints presented in Chapter 6, we achieved recovery for objective (6.26). In particular, we found two cases where we achieved recovery, namely adding equation (6.29) or (6.30). The table of pairs for these cases are presented below. As noted above, we only examined pairs in the main diagonal. The table of pairs for (6.26) with (6.29) added is:

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(5,1)^{*}$	-	-	-	-	-
of	2	-	$(5,1)$	-	-	-	-
molecules	3	-	-	$(5,1)$	-	-	-
QS of	4	-	-	-	$(5,1)$	-	-
source	5	-	-	-	-	$(5,1)$	-
compound	6	-	-	-	-	-	$(5,1)$

The table of pairs for (6.26) with (6.30) added is:

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(5,1)^{*}$	-	-	-	-	-
of	2	-	$(5,1)$	-	-	-	-
molecules	3	-	-	$(5,1)$	-	-	-
Qs of	4	-	-	-	$(5,1)$	-	-
source	5	-	-	-	-	$(5,1)$	-
compound	6	-	-	-	-	-	$(5,1)$

For both cases, the dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence for this objective the IBP model (adding constraints related to cyclic pathways) recovers the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 37: Propionate degradation

Source compound	Propionate (ppa)
Target compound	Succinate (succ)
$\left(\mathrm{Q}_{\mathrm{S},}, \mathrm{Q}_{\mathrm{T}}\right)$	$(1,1)$
Low presence compounds that are not forced to be balanced	Oxaloacetate (oaa)
(Number of reactions, excess ATP)	$(5,-1)$
Number of unbalanced main compounds (W)	1
Specificity (世)	5

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=PWY0-42).

In EcoCyc the pathway is described as being from one molecule of Propionate to one molecule of Succinate. Our database contains the same set of reactions, only changing the cofactor utilised in the first reaction of the pathway.

Note here that we have an allowable c-cycles in this pathway. More precisely the 2-cycle coa-R99-ppcoa-R97-coa which contains one high presence balanced compound (coa).

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.13). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules Qs of	1	$(5,-1)^{*}$	$(9,-1)$	$(8,1)$	$(8,2)$	$(8,3)$	$(8,4)$
	2	X	$(5,-2)$	$(8,-1)$	$(9,-2)$	$(8,1)$	$(8,2)$
	4	X	X	$(5,-3)$	$(8,-2)$	$(8,-1)$	$(9,-3)$
compound	5	X	X	X	X	$(5,-4)$	$(8,-3)$
	6	X	X	X	X	X	$(5,-2)$

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules (and excess ATP). The dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(5,1)^{*}$	(7.94,2)	(7.94,2)	$(7.94,2)$	(7.94,2)	(7.94,2)
of	2	X	$(5,1)$	(7.94,2)	$(7.94,2)$	(7.94,2)	(7.94,2)
molecules	3	X	X	$(5,1)$	$(7.94,2)$	$(7.94,2)$	(7.94,2)
$\mathrm{Q}_{\text {S }}$ of	4	X	X	X	$(5,1)$	$(7.94,2)$	(7.94,2)
source	5	X	X	X	X	$(5,1)$	(7.94,2)
compound	6	X	X	X	X	X	$(5,1)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(5,1)^{*}$	$(9,2)$	$(9,2)$	$(9,2)$	$(9,2)$	$(9,2)$
of	2	X	$(5,1)$	$(9,2)$	$(9,2)$	$(9,2)$	$(9,2)$
molecules	3	X	X	$(5,1)$	$(9,2)$	$(9,2)$	$(9,2)$
QS of	4	X	X	X	$(5,1)$	$(9,2)$	$(9,2)$
source	5	X	X	X	X	$(5,1)$	$(9,2)$
compound	6	X	X	X	X	X	$(5,1)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 38: Glutamate biosynthesis cycle

Source compound	L-Glutamate (glu-L)
Target compound	L-Glutamate (glu-L)
$\left(\mathrm{Q}_{\text {S }, ~}\right.$ Q $)$	$(1,2)$
Low presence compounds that are not forced to be balanced	2-Oxoglutarate (akg)
(Number of reactions, excess ATP)	$(2,-1)$
Number of unbalanced main compounds (W)	0
Specificity (Ψ)	2.16

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=AMMASSIM-PWY) and Lehninger (fourth edition) pages 837 and 838 .

In Lehninger the pathway is described as being from one molecule of LGlutamate to two molecules of L-Glutamate. This pathway is described in the same way in EcoCyc with the same set of reactions.

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.13). Thus, the ($\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}$) discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules	1	$(2,-1)$	$(2,-1)^{*}$	$(3,-1)$	$(3,-1)$	$(3,-1)$	$(3,-1)$
	2	$(6,-1)$	$(2,-2)$	$(3,-2)$	$(2,-2)$	$(3,-2)$	$(3,-2)$
	4	$(7,-3)$	$(7,-3)$	$(2,-3)$	$(3,-3)$	$(3,-3)$	$(2,-3)$
	5	$(7,-5)$	$(7,-5)$	$(7,-5)$	$(7,-5)$	$(2,-5)$	$(3,-5)$
	6	$(7,-6)$	$(7,-6)$	$(6,-3)$	$(7,-6)$	$(7,-6)$	$(2,-6)$

In this pathway a tie between the entries $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ and $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,2)$ is observed above as both entries have the same number of reactions and molecules of ATP produced, $(2,-1)$. However, one further target molecule is produced by $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,2)$ with respect to $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence, the dominant pair is $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,2)$ and the BP model recovers the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,2)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number of molecules	1	(2.32,0)	$(2.16,0)^{*}$	$(6.94,4)$	$(7.59,2)$	X	$(9.96,6)$
	2	$(6.06,2)$	$(2.32,0)$	(2.24,0)	$(2.16,0)$	$(16.1,2)$	$(6.57,4)$
	3	$(6.09,2)$	(6.9,2)	$(2.32,0)$	$(2.24,0)$	$(2.24,0)$	$(2.16,0)$
Qs of	4	X	(6.09,2)	X	$(2.32,0)$	$(2.24,0)$	$(2.24,0)$
source	5	$(5.99,1)$	$(6.09,1)$	$(6.19,2)$	X	$(2.32,0)$	$(2.24,0)$
compound	6	$(6.06,2)$	(5.99,2)	$(9.27,4)$	$(5.68,0)$	X	$(2.32,0)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,2)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,2)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(2,0)$	$(2,0){ }^{*}$	$(3,3)$	$(6,4)$	$(6,4)$	$(6,4)$
of	2	$(3,1)$	$(2,0)$	$(3,0)$	$(2,0)$	$(4,3)$	$(3,3)$
molecules	3	$(6,2)$	$(4,2)$	$(2,0)$	$(3,0)$	$(3,0)$	$(2,0)$
Qs of	4	$(6,2)$	$(3,1)$	$(4,2)$	$(2,0)$	$(3,0)$	$(3,0)$
source	5	$(6,4)$	$(8,7)$	$(4,2)$	$(4,2)$	$(2,0)$	$(3,0)$
compound	6	X	$(6,2)$	$(3,1)$	$(4,2)$	$(4,2)$	$(2,0)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,2)$ pair observed in the experimentally determined pathway.

Pathway 39: Biotin biosynthesis

Source compound	Pimeloyl-CoA (pmcoa)
Target compound	Biotin (btn)
$\left(\mathrm{Q}_{\text {s, }}\right.$ T $)$	$(1,1)$
Low presence compounds that are not forced to be balanced	S-Adenosyl-L-methionine (amet) L-Cysteine (cys-L) S-Adenosyl-4-methylthio-2- oxobutanoate (amob)
(Number of reactions, excess ATP)	$(4,-1)$
Number of unbalanced main compounds (W)	3
Specificity ($\Psi)$	4.47

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=BIOTIN-SYNTHESIS-PWY).

In EcoCyC the pathway is described as being from one molecule of PimeloylCoA to one molecule of Biotin. Our database contains the same reactions, aside from the last one in which a different cofactor is used, L-Cysteine instead of S-Adenosyl-Lmethionine.

$\left(\mathrm{Q}_{\mathbf{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was not recovered with either of the objectives. Since this pathway is not recovered, $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ pairs discussion is omitted.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(4.47,3)^{*}$	X	X	X	X	X
of	2	X	$(4.47,3)$	X	X	X	X
molecules	3	X	X	$(4.47,3)$	X	X	X
QS of	4	X	X	X	$(4.47,3)$	X	X
source	5	X	X	X	X	$(4.47,3)$	X
compound	6	X	X	X	X	X	$(4.47,3)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(4,3){ }^{*}$	X	X	X	X	X
of	2	X	$(4,3)$	X	X	X	X
molecules	3	X	X	$(4,3)$	X	X	X
Qs of	4	X	X	X	$(4,3)$	X	X
source	5	X	X	X	X	$(4,3)$	X
compound	6	X	X	X	X	X	$(4,3)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recover the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

Pathway 40: Glycerol degradation

Source compound	Glycerol (glyc)
Target compound	Glyceraldehyde 3-phosphate (g3p)
$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$	$(1,1)$
Low presence compounds that are not forced to be balanced	
(Number of reactions, excess ATP)	$(3,-1)$
Number of unbalanced main compounds (W)	0
Specificity (Ч)	3

Pathway description

This pathway has been taken from EcoCyc (http://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY\&object=PWY0-381) and Lehninger (fourth edition) page 635.

In Lehninger the pathway is described as being from one molecule of glycerol to one molecule of Glyceraldehyde 3-phosphate. This pathway is described in the same way in EcoCyc with the same set of reactions, except that EcoCyc does not include the last reaction, producing one molecule of Dihydroxyacetone phosphate instead of one molecule of Glyceraldehyde 3-phosphate.

Since the Lehninger description appears to be the clearer one it is that which has informed the pathway picture seen below.

$\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the BP model

This pathway was recovered with objective (3.13). Thus, the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (3.13). The table of pairs for objective (3.13) is shown below.

(number of reactions, excess ATP)	Number of molecules Q_{T} of target compound						
	1	2	3	4	5	6	
Number of molecules Q	1	$(3,-1)^{*}$	$(8,-3)$	$(8,-5)$	$(8,-7)$	$(8,-9)$	$(8,-11)$
	2	X	$(3,-2)$	$(8,-4)$	$(8,-6)$	$(8,-8)$	$(8,-10)$
	4	X	X	$(3,-3)$	$(8,-5)$	$(8,-7)$	$(8,-9)$
	5	X	X	X	$(3,-4)$	$(8,-6)$	$(8,-8)$
	X	X	X	X	X	X	$(3,-6)$

The pairs seen down the diagonal are all repeats of each other, doubling and then tripling, etc the number of source and target molecules (and excess ATP). The dominant pair is $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$. Hence in this case the BP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

$\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion for the IBP model

This pathway was recovered with both objective (6.26) and objective (6.27). Thus, the $\left(\mathrm{Q}_{\mathrm{s}}, \mathrm{Q}_{\mathrm{T}}\right)$ discussion is carried out for objective (6.26) and objective (6.27). The table of pairs for objective (6.26) is shown below.

(Ψ, W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(3,0){ }^{*}$	$(7.64,4)$	(7.74,3)	(7.74,3)	(7.64,4)	$(7.64,4)$
of	2	(10.29,4)	$(3,0)$	$(6.64,3)$	$(6.64,3)$	$(6.64,3)$	$(6.74,2)$
molecules	3	$(10.29,4)$	$(8.12,4)$	$(3,0)$	$(6.64,3)$	$(6.74,2)$	$(6.64,3)$
Qs of	4	$(10.29,4)$	$(9.64,5)$	$(8.12,4)$	$(3,0)$	$(6.64,3)$	$(6.64,3)$
source	5	$(10.29,4)$	$(9.74,4)$	$(8.12,4)$	$(8.22,3)$	$(3,0)$	(6.74,2)
compound	6	$(10.29,4)$	$(9.64,5)$	(9.64,5)	$(8.22,3)$	$(8.22,3)$	$(3,0)$

For this pathway the IBP model indicates that the pair $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ dominates all other cases. Hence in this case the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

The results for objective (6.27) are shown below.

(L,W)		Number of molecules Q_{T} of target compound					
		1	2	3	4	5	6
Number	1	$(3,0){ }^{*}$	$(9,4)$	$(9,4)$	$(10,3)$	$(9,4)$	$(9,4)$
of	2	$(9,4)$	$(3,0)$	$(11,5)$	$(9,4)$	$(9,4)$	$(9,4)$
molecules	3	$(9,4)$	$(9,4)$	$(3,0)$	$(9,4)$	$(9,4)$	$(9,4)$
Qs of	4	$(9,4)$	$(9,4)$	$(9,4)$	$(3,0)$	$(10,3)$	$(10,3)$
source	5	$(9,3)$	$(9,4)$	$(9,3)$	$(9,3)$	$(3,0)$	$(9,4)$
compound	6	$(9,4)$	$(9,4)$	$(9,4)$	X	$(11,3)$	$(3,0)$

We obtain the same dominant pair as objective (6.26). Hence for this objective the IBP model recovers the $\left(\mathrm{Q}_{\mathrm{S}}, \mathrm{Q}_{\mathrm{T}}\right)=(1,1)$ pair observed in the experimentally determined pathway.

