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Abstract

The demand for increased automation of industrial processes generates control prob-

lems that are dynamic, multi-objective and noisy at the same time. The primary

hypothesis underlying this research is that dynamic evolutionary methods could be

used to address dynamic control problems where conflicting control criteria are nec-

essary. The aim of this research is to develop a framework for on-line optimisation

of dynamic problems that is capable of a) representing problems in a quantitative

way, b) identifying optimal solutions using multi-objective evolutionary algorithms,

and c) automatically selecting an optimal solution among alternatives.

A literature review identifies key problems in the area of dynamic multi-objective

optimisation, discusses the on-line decision making aspect, analyses existing Multi-

Objective Evolutionary Algorithms (MOEA) applications and identifies research

gap. Dynamic evolutionary multi-objective search and on-line a posteriori decision

maker are integrated into an evolutionary multi-objective controller that uses an

internal process model to evaluate the fitness of solutions.

Using a benchmark multi-objective optimisation problem, the MOEA ability

to track the moving optima is examined with different parameter values, namely,

length of pre-execution, frequency of change, length of prediction interval and static

mutation rate. A dynamic MOEA with restricted elitism is suggested for noisy

environments.
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To address the on-line decision making aspect of the dynamic multi-objective

optimisation, a novel method for constructing game trees for real-valued multi-

objective problems is presented. A novel decision making algorithm based on game

trees is proposed along with a baseline random decision maker.

The proposed evolutionary multi-objective controller is systematically analysed

using an inverted pendulum problem and its performance is compared to Proportional–

Integral–Derivative (PID) and nonlinear Model Predictive Control (MPC) approaches.

Finally, the proposed control approach is integrated into a multi-agent framework

for coordinated control of multiple entities and validated using a case study of a

traffic scheduling problem.
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Chapter 1

Introduction

An increasing level of automation of various systems poses control engineers with

increasingly complex problems to solve. In particular, the complexity may increase

quantitatively, e.g., more refined, and, therefore, more computationally expensive

process models, increased resolution of sensors and dimensionality of the variable

space. However, quantitative changes often lead to qualitative changes in the control

problem, that make it markedly different to legacy ones. One change that emerged

with the proliferation of intelligent agents [1] is the need of coordinated control of

multiple entities.

The term “coordinated control of multiple entities” refers to a set of intelligent

agents, each having a set of goals, that are able to act in a coordinated manner.

An example of cooperative control of multiple missiles is presented by Hughes [2].

Pereira and De Sousa [3] give an application of coordinated control strategies to

autonomous underwater vehicles. Having multiple entities each with a potentially

different set of goals presents a number of challenges that makes this type of problem

particularly interesting.

• Conflicting objectives. Even a single intelligent agent may have a set of

goals that contradict each other. Within a single entity, these conflicts can

1
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be usually addressed by a bespoke modelling or an aggregation function that

combines the criteria in a way acceptable to the system designer. A procedure

that aims to control multiple entities would have to account for each individ-

ual’s goals. However, dealing with the conflicts between different objectives

becomes more difficult.

• Uncertainty. The environment observed by an agent depends on the actions

of other agents, which makes it uncertain. Explicit handling of multiple objec-

tives increases the dimensionality of the objective space, and, correspondingly,

the computational requirements, that must be met. As a result, the models

used to predict the system performance may be simplified and no longer re-

flect the true state. Additional sources of uncertainty come from measurement

noise and limited sensor range.

• Time constraints. In the aforementioned applications, the interaction be-

tween agents happens in real time. The control procedure must execute on-line

to supply continuous stream of control actions for the agent. The on-line as-

pect puts a maximum response time constraint for the operation of the control

algorithm.

To summarise, the coordinated control of multiple entities presents a complex

control problem, the term ‘complex’ is understood to be interdependent, uncertain

and dynamic. The control procedure is thought to operate in real time, therefore

having a definite interval to respond with a controlling action.

1.1 Research aim, objectives and methodology

The primary hypothesis underlying this research is that dynamic evolutionary meth-

ods could be used to address dynamic control problems where conflicting control
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criteria are necessary.

The aim of this research is to develop a framework for on-line optimisation of

dynamic problems that is capable of a) representing problems in a quantitive way,

b) identifying optimal solutions using multi-objective evolutionary algorithms, and

c) automatically selecting an optimal solution among alternatives.

1.1.1 Research objectives

The research aim stated above indicates the direction of the research. Specific

research objectives are set below to structure the work.

1. Develop dynamic problem specification and provide quantitative representa-

tion suitable for optimisation using evolutionary techniques.

2. Propose solutions to deal with problem dynamics and create a framework for

multi-objective optimisation of dynamic problems.

3. Identify the criteria for decision making and suggest a strategy for making

decisions from a set of Pareto-optimal solutions on-line.

4. Identify and select performance metrics for the dynamic optimisation case,

and systematically evaluate the performance of the dynamic multi-objective

optimisation framework.

5. Validate the proposed framework using a case study.

1.1.2 Research methodology

Methodology documents the process of managing the research project by describ-

ing the techniques used to acquire, categorise, store and analyse the information.

Veryard [4] urges to view a methodology as an Information System (IS), because
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it involves creation, transmission and analysis of information and decisions in the

form of models and specifications. That view of a methodology fits well with a

general definition of information systems. For example, according to UK Academy

For Information Systems, “information systems are the means by which people and

organisations, utilising technologies, gather, process, store, use and disseminate in-

formation” [5].

Having noted a great deal of similarity between a research methodology and an

information system, it can be argued that the methods used to develop an informa-

tion system may be successfully applied to deal with the complexities of a research

project. The challenge in this research is that having multiple intelligent agents,

each of which is observed as a ‘black box’ by the other agents, makes the problem

difficult to analyse. Borrowing from Wasserman, who mentions “Modularization —

the problem-solving notion of “divide-and-conquer” permits one to subdivide a dif-

ficult problem into subproblems and then to divide those problems repeatedly until

the resulting problems become intellectually manageable” [6] as the primary concept

underlying methods and tools for IS development, the problem could be decomposed

into smaller, easier to analyse parts. An obvious solution is to attempt to control a

single entity first, modelling the actions of other agents as external constraints.

The key feature of an intelligent agent is its ability to observe and act rationally

on environment. Applying the concept of abstraction [6], an intelligent agent can

be substituted by any dynamic control problem, as a control method is usually able

to observe the environment (system output) and act towards achieving the control

signal (system input). Consequently, an intermediate target of research is to be able

to handle a dynamic control system with multiple performance criteria and uncer-

tainties. Figure 1.1 presents a conceptual diagram of the project methodology. The

project methodology is comprised of three major stages, namely, Analyse, Develop

and Implement & Validate.
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Figure 1.1: Project methodology conceptual diagram

1.1.2.1 Analyse

An extensive literature review is carried out in the areas of dynamic multi-objective

optimisation, soft computing, control theory and process modelling. The primary

goals of the literature survey are to gain an in-depth understanding of the subject

area and acquire terminology, and establish a solid knowledge base for the research

by exploring the frontier of current knowledge. The literature review is continuously

updated with information about latest developments in the target areas.

The data gathered from current literature is analysed, to identify the key con-

cepts in the subject domain and to identify a research gap. Based on the research

gap the methodology of the research is updated and refined.
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The literature review should help to identify benchmark problems that are used

in the area of control systems and methods used to control them. Also, the current

techniques for dynamic decision making should be analysed.

1.1.2.2 Develop

The phase is concerned with four major tasks. First, a multi-objective dynamic

control problem should be formalised. In particular, the problem representation

and modelling techniques are analysed. Then, the approach of deciding on the

operation point in real time is developed along with methods to improve performance

of Dynamic Multi-Objective Evolutionary Algorithms (DMOEA) in such conditions.

This phase ends with the development of the optimisation framework suitable for

application on a set of multi-objective dynamic optimisation problems.

1.1.2.3 Implement and Validate

A software implementation of the algorithms developed in the previous stage is

performed in Java programming language. Java is a standard for academic com-

puting projects and includes a number of implementations of the current multi-

objective optimisation algorithms [7] that can be used as a “sandbox”. The eX-

treme Programming (XP) [8, 9, 10] software development methodology will be used

to produce the software tool. XP, being an agile software development methodology,

takes conventional best practices in software development to the ‘extreme’, asserting

that if a practice is beneficial, than more of the same would be even better. The

methodology is chosen due to the strong emphasis on unit tests and incremental

changes, which is advantageous for this research. In addition, XP advocates start-

ing development with the simplest solution and adding extra functionality later, if

required. That corresponds to “divide-and-conquer” approach used in this research.
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SystemController

Sensor

Input u(t) Output y(t)+
-

Error e(t)
Control 
effort w(t)

Measured output

Figure 1.2: A control system

A case study is chosen to demonstrate a wide range of applications and charac-

teristic features of the proposed optimisation framework. A validation is performed

using the case study with an analysis of results.

1.2 Introduction to control problems

A control system comprises a device or set of devices (controller) designed to manage

the other devices (the system being controlled, or plant), often with a set of sensors

to measure the outputs of the plant. Referring to Figure 1.2, which depicts a typical

closed-loop control system, the controller supplies the system with a control effort

w(t) that directs the system output y(t) to match the input signal u(t), therefore

eliminating the error e(t). The sensor observes the instantaneous system output,

which is being subtracted from the instantaneous input signal, producing the error

signal. It is important to note that at each time instant the controller produces a

single control action for the plant.

In order to compute the control effort, an ideal controller must solve an opti-

misation problem. Optimisation refers to choosing the best solution from a set of

feasible alternatives. To be able to optimise the multitude of different real-life sys-

tems using a generic optimisation procedure, these problems have to be modelled,

i.e., presented using a simplified formal description. In the simplest case, to optimise

a process one seeks to minimise or maximise some quantity by adjusting a number



8 CHAPTER 1. INTRODUCTION

of variables. The manipulated variables are termed as independent and the quantity

being optimised is termed as a dependent variable. In other words, the dependent

variable is a function of independent variables, such a function is termed as the

objective function. In the remaining of this thesis it is assumed that the objective

function is always being minimised.

The independent variables usually have certain limitations on the values that

can be used. These limitations are expressed as equality and inequality constraints.

Having all the components of an optimisation problem defined, it can be expressed

in mathematical terms as

min
x
f(x)

where x = [x1, x2, ..., xm]T

s.t.

g(x) ≤ 0

h(x) = 0

x ∈ [xmin, xmax], (1.1)

where f(x) is the objective function, x is the vector of independent variables and

g(x) and h(x) are constraints.

Equation (1.1) describes a static optimisation problem, i.e., one that has its

elements constant over time. In the real world, the parameters of the optimisation

problem do not tend to remain constant over time. In steel manufacturing, the

changing quality of source materials requires adjustments to the process in order to

get the same quality steel. A traffic scheduler in an Internet Protocol (IP) network

given a Voice over IP (VoIP) packet has to minimise latency instead of optimisation

for throughput. To plan a viable trajectory for a robotic vehicle, the control module

has to consider a changing environment. Each of these scenarios describes a dynamic

optimisation problem, which has one or more parameters that depend on time. More
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formally, the elements of a dynamic optimisation problem are functions of parameter

t.

min
x
f(x, t)

where x = [x1(t), x2(t), ..., xm(t)]T

s.t.

g(x, t) ≤ 0

h(x, t) = 0

xmin(t) ≤ x(t) ≤ xmax(t), (1.2)

1.3 Model predictive control

The majority of controllers employed today are of a Proportional–Integral–Derivative

(PID) variety. A PID controller calculates the control effort from the error signal

using three separate parameters: the proportional, the integral and derivative coef-

ficients. The proportional parameter, denoted by P, depends on the current value

of the error signal, the integral parameter I depends on the accumulated past errors

and the derivative parameter D depends on the current rate of change of the error

signal. PID is popular because it is easy to implement and does not require a process

model to run, but it experiences difficulties in a complex system with higher order

dynamics, noise and time delays.

Complex dynamic systems require a more advanced control method, such as

Model Predictive Control (MPC). Like the PID, MPC uses the current plant mea-

surements and the process targets as the input data. In addition, it uses the current

dynamic state of the plant and the process models to predict the future changes in

the process outputs. At each time instant, the MPC procedure uses the internal

process model to explore the process trajectories over a finite horizon. To guide the
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process towards the desired state, the MPC uses a cost function that depends on

process targets, history of last control actions and current plant state. The MPC

control sequence is obtained by minimising the cost function over the future control

trajectories. Typically, after the first step of the control sequence is implemented,

the prediction horizon is shifted forward and the MPC procedure repeats itself [11].

For this reason the MPC is often referred as receding horizon control.

The MPC cost function usually yields a scalar value, so the MPC controller is

effectively performing a single-objective optimisation routine. Indeed, the differ-

ent objectives of the underlying problem are aggregated in the cost function. The

aggregation of different objectives implies that the MPC requires information that

describes tradeoffs between them. In addition, the cost function, which is pre-

dominantly a Weighted Sum Model (WSM), should not be used for problems with

non-convex tradeoff surfaces, but the analysis of the tradeoff surface shapes is often

lacking in the MPC applications, with one of the rare examples presented in [12].

1.4 Evolutionary multi-objective optimisation

In recent years, Evolutionary Multi-Objective Optimisation (EMOO) has estab-

lished itself as a reliable tool with a diverse set of applications in the management,

manufacturing, design, defence and other sectors [13]. EMOO is characterised by

comparatively high computational load and development of a set of optimal solu-

tions, which requires a decision making step to select the final one [14]. For these

reasons, the majority of the applications considered the problem to be static over

the course of optimisation. A generic dynamic process is usually simplified using a

static model with certain assumptions about its dynamics.

A Multi-Objective Optimisation (MOO) procedure that is able to operate in

dynamic environments coupled with an on-line decision maker would allow for multi-
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criteria control of dynamic processes. A dynamic process model provides greater

fidelity and flexibility for a majority of real-life processes. Therefore, the benefits of

the dynamic MOO procedure could be classified into two main categories: i) existing

applications can be refined to obtain improved results such as precision or response

time and ii) the scope of MOO can be extended to the cases that are difficult to

represent using single objective or static models [15].

The problems described in Section 1.2 allow for a single universally best solution.

In fact, problems in different fields, such as design, scheduling or transportation net-

work optimisation often have trade-offs between two or more conflicting objectives.

For example, increasing structural strength of a bridge leads to increased weight,

and, consequently, increased costs and build time; minimising fuel consumption of a

vehicle reduces dynamic characteristics and increases development costs. The qual-

ity of a product and associated profit also bear a trade-off. For a multi-objective

problem, there is no single solution that is able to minimise all conflicting perfor-

mance criteria. In mathematical terms, multi-objective optimisation problems differ

from single-objective ones by having a vector of objective values instead of a single

objective function

min
x
f(x)

where x = [x1, x2, ..., xm]T

and f(x) = [f1(x), f2(x), ..., fn(x)]T

s.t.

g(x) ≤ 0

h(x) = 0

x ∈ (xmin, xmax). (1.3)

To be able to minimise f(x) in the multi-objective case, the solution alternatives

must be comparable. The predominant comparison method used by the multi-
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x1
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x3

f(x)2

f(x)1

Pareto set PS  in decision space Pareto front PF  in objective space

Figure 1.3: Decision and objective spaces.

objective community is Pareto ranking named after Italian economist Vilfredo Pareto

[13]. Pareto ranking is based on the concept of Pareto dominance; one alternative

x∗ is said to (strongly) Pareto dominate another alternative x
′

if for all objectives

x∗ is not worse than x
′

and there exists at least one objective where x∗ is better

than x
′

∀i ∈ {1, 2, ..., n}fi(x∗) ≤ fi(x
′
)∧

∃i ∈ {1, 2, ..., n}fi(x∗) < fi(x
′
). (1.4)

It follows from (1.3) and (1.4) that the task of a multi-objective algorithm is to

find a set of Pareto-optimal points in decision space termed as Pareto set PS.

Objective values of the solutions that belong to the Pareto set form a Pareto front

PF in objective space [14]. Figure 1.3 shows an example of Pareto set PS in a

three-dimensional decision space mapped to Pareto front PF in a two-dimensional

objective space. A solution is part of the Pareto set if there are no other solutions

that dominate it.

1.4.1 Importance of multi-objective problem formulation

Multi-objective problems can be modelled as single-objective by using objective or-

dering (also known as lexicographic techniques, goal programming and aggregate

objective functions) [14]. Aggregate functions, in turn, include generic linear ob-
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jective aggregation approaches, such as WSM, Weighted Product Model (WPM)

or Lp norm-based aggregation and utility functions, that are often non-linear and

problem specific. One feature these methods share in common is that the objectives

have to be ‘prioritised’ before the search occurs. For many real life engineering and

research problems it may be difficult to establish the objective priority in advance.

The cost to the decision maker is, therefore, very high, as the aggregating fitness

function directly impacts search, possibly causing it to miss some compromise solu-

tions. In contrast, a multi-objective problem formulation allows the practitioner to

delay the choice until the tradeoff surface is obtained, which is especially important

in dynamic problem optimisation [16].

From a taxonomical point of view, multi-objective and single-objective problems

are connected in a generalisation-specialisation relationship. Typically, a multi-

objective problem describes a more complete and therefore complex version of a

single-objective case. Consequently, results of an optimisation research with multi-

objective problem formulation can be applied to a wider scope of real-life scenarios.

1.4.2 Motivation for evolutionary approach

Multi-Objective Evolutionary Algorithmss (MOEAs) are optimisation algorithms

capable of producing the entire set of solutions to the problem (the Pareto front)

simultaneously, in a single optimisation run. They are based on Darwin’s hypothesis

that that life forms adapt to their environment by a process known as natural

selection [17]. MOEAs evolve a set of alternative solutions to a problem, termed as

population. Because solutions are distributed, the algorithm is inherently robust to

small amounts of noise. Likewise, the population concept allows the algorithm to

be scaled up or down for tasks of different complexity and improve its performance

by means of parallel execution [14, 18].
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MOEAs are problem-agnostic, i.e., they can be applied to a wide range of op-

timisation problems including problems that are difficult to understand and fully

formalise. Because the algorithm develops a Pareto-optimal front instead of a single

solution, a practitioner is not required to rank or compare different objectives [19].

Evolutionary approaches contain a number of properties that are especially useful

in optimisation of dynamic problems. Intermediate solutions can be obtained from

the population at any stage of the optimisation run, therefore enabling continuous

process control. With slight modifications to existing state-of-the-art evolutionary

algorithms, they can adapt to changes in the environment, continuously tracking

moving optima [20]. One particularly interesting feature is that an unfeasible solu-

tion can potentially be evolved into a good one after a number of generations. Storing

previously fit solutions often leads to an increase in performance for problems with

cyclic optima transitions, whereby the position of the moving optimum repeatedly

visits previous locations [21]. The aforementioned advantages of evolutionary algo-

rithms and their relative ease of implementation make MOEA a dominant approach

in the field of multi-objective optimisation, with a multitude of published research

works, algorithms and wide range of applications [22]. In this research, Evolutionary

Algorithms (EA) were selected as an established method of dealing with uncertain

multi-objective problems having a number of applications to dynamic problems.

1.5 Multi-criteria decision making

As noted in Section 1.4, multi-objective problem formulation provides a number of

benefits over the single objective aggregation-based approach employed by current

dynamic control methods such as MPC. One can wonder if an (evolutionary) multi-

objective search algorithm can be integrated into an MPC framework to achieve

these benefits.
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Applying a dynamic MOEA to a control problem requires an additional element:

a dynamic decision maker. At each time instant, the MOEA produces a Pareto

front, i.e., the tradeoff surface between objectives. At the same time, as noted in

Section 1.2, the controller should produce a single control action for the plant. The

decision maker is necessary to select the Pareto-optimal control action from the

tradeoff surface.

Hwang and Masud [23] describe the following taxonomy of Multi-Criteria Deci-

sion Making (MCDM) methods, based on the stage at which the preference infor-

mation about objectives is articulated.

1. No articulation of preference information. Decision maker is not pro-

vided with any ordering or weighting information about the objectives.

2. A priori preference articulation. The decision takes place before the

search phase. Decision maker combines multiple objectives into a scalar-valued

cost function, which can be optimised using a single-objective search method.

3. Progressive preference articulation. Decision and search cycles are in-

terleaved with each other. Decision making at cycle n influences search at

cycle n+1.

4. A posteriori preference articulation. Decision maker has to select a

solution from a set of provided Pareto-optimal solutions.

It can be argued that the Global Criterion Method [24, 25] referred to as belonging

to the first category in [26] is, in fact, an a priori method. Therefore, only the

categories 2, 3 and 4 are to be considered, as in [16].

A priori decision making is widely applied in the domain of dynamic control

because of its lower computational requirements, relative simplicity and inherent

ability to produce a single ‘optimal’ point at each time instant. In contrast, current
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state-of-the-art MOEA develop the full set of Pareto-optimal solutions in a single

pass. Correspondingly, the evolutionary search should be followed with a posteriori

decision making cycle [20]. Because the decision has to be made on-line as soon as

the Pareto-optimal set is found, a decision maker clearly should be an automated

procedure, capable of selecting the control action without human interaction.

A majority of existing MCDM methods [27, 23, 28, 29] seem to be targeted for a

static one-off execution scenario. Nevertheless, they are actively employed in on-line

applications, WPM [28] and WSM [30] in particular enjoying a lot of attention.

A solution using game trees [31, 32] may be better suited for the dynamic selec-

tion of a Pareto-optimal control action. A single player scenario with uncertainty,

exemplified by a typical control problem, is addressed via the ‘move by nature’

method [33]. Using the game tree, a minimax algorithm is used to select the next

move [1]. It should be noted, however, that the game trees are operating on in-

teger games for the most part, i.e., having a finite number of alternatives (tree

branches) at each split [1]. A tradeoff surface of a dynamic optimisation problem in

the general case has real-valued solutions, providing a potentially unlimited number

of alternatives.

1.6 Thesis structure and layout

This thesis consists of 9 chapters. Chapter 2 surveys the current state-of-the-art re-

search in the areas of classic control methods, modern control methods exemplified

by MPC, dynamic single and multi-objective evolutionary optimisation algorithms

and modelling uncertainties. Chapter 3 describes the proposed approach to dynamic

optimisation of control problems using an Evolutionary Multi-objective (EMO)

MPC method. Chapter 4 details the design aspects of MOEA that enable them

to be used in real-time dynamic search. A novel approach to make decisions in
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dynamic environments by using real-valued game trees is presented in Chapter 5.

In addition, a stochastic method for decision making is detailed with results pre-

sented in Chapter 6. Building upon the preceding chapters, Chapter 7 outlines a

Multi-Agent System (MAS) that uses coevolution MOEA coupled with a bespoke

dynamic decision maker to simultaneously control multiple agents. A case study of

coordinated control of multiple vehicles is presented in Chapter 8. The thesis con-

cludes with Chapter 9, that summarises key findings, presents conclusions, discusses

limitation of the present work and gives future research directions.

1.7 Statement of original work

• Chapters 3 and 4 detail the theory of a novel application of MOEAs to dynamic

control problems.

• Chapter 5 details novel dynamic decision making approaches based on game

trees.

• Chapter 6 presents an evaluation of the proposed EMO MPC approach using

an inverted pendulum problem.

• Chapter 7 details a novel MAS framework for coordinated control of multiple

entities using the EMO MPC approach.

• Chapter 8 presents a case study of the EMO MPC approach integrated into a

MAS for distributed dynamic traffic scheduling.
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Chapter 2

Literature review

2.1 Motivation

According to [34], a majority of approaches (90%) to solving multi-objective prob-

lems try to approximate the true Pareto front. About 70% of these approaches

use EA as the primary meta-heuristics, compared to simulated annealing 24% and

tabu search 6%. The importance of EA can be attributed to several factors, one

of them being an abundance of algorithms for finding the non-dominated solution

set. The earliest MOEA known to the authors is presented in the works of Schaf-

fer [35]. During the early 1990s, a number of MOEA were developed, including

[36] and [37]. The success of such approaches is supported by the observation that

the population-based nature of an EA naturally provides multiple solutions to an

optimisation problem with multiple criteria.

An off-the-shelf single-objective EA could be readily modified to find a front of

non-dominated solutions in a single run. This is in contrast to earlier generations of

optimisation techniques that usually used a weighted sum approach to fitness evalua-

tion [38] or optimised a single criterion treating other objectives as constraints. EAs

perform simultaneous search in multiple parts of the objective space, producing a

19
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diverse set of results in multi-modal, discontinuous and non-convex objective spaces.

Because EA do not rely on aggregation approaches to assess an individual’s fitness,

the user is not required to weight or rank objectives. Finally, unlike the methods

that obtain the Pareto front by analytical means, EA are able to provide useful

intermediate information for the decision maker in cases, e.g., where the algorithm

was terminated prematurely.

The discrete nature of EA allows them to handle models with both contin-

uous variables and discrete or binary variables. Such versatility guaranteed EA

widespread applications in different areas. A review [34] estimated 79.1% of papers

in this area to be of an application nature (Figure 2.1), meaning that multi-objective

optimisation techniques, the majority of which use EA are used a lot in real-world

scenarios. This view is further supported by analysing data of electronic publication

databases. Referring to Figure 2.2 the majority of papers are in the applied ar-

eas like engineering, environmental sciences and biochemistry testifying to the high

practical value of EA.

In the context of Figures 2.1 and 2.2, several important points have to be noted.

Considering the data is 6 years apart, the figures provide a clear view on how the

situation has evolved in the field of multi-objective meta-heuristics. The spread by

application area has significantly changed and new application areas have appeared.

The most obvious difference is the number of publications, which shows a healthy

growth in multi-objective meta-heuristics applications.

Real-world optimisation problems often contain a degree of uncertainty. Ex-

ample problems include gas turbine combustion rig burner optimisation [39] and

machining of gradient materials [40, 41]. Several types of uncertainties have been

categorised [21], including noise in the fitness function which usually comes in the

form of measurement noise, modelling uncertainty and uncertainty imposed by the

dynamic nature of the problem. Initial research has mainly focussed on single-
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Figure 2.1: Publications in multi-objective optimisation by application area, as

presented in [34]

objective optimisation tasks [42, 43, 44] with a few exceptions [45, 46, 2, 47, 39, 48].

The population-based nature of EA provides some inherent ability to work in

noisy conditions [21]. However, it has been noted that noise impacts on the conver-

gence rate of the EA [50]. Following comparative studies have indicated that EA

enhanced with noise-handling techniques consistently perform better in the presence

of noise [48, 51, 52]. Likewise, an observation that the EA inclination to converge

over time reduces their ability to find emerging optima [42] has spurred a wave of

research in adaptation techniques to dynamic multi-objective optimisation problems

[53, 54, 55, 56].

An interesting tendency can be obtained by analysing the number of publications

per year in an area. Referring to Figures 2.3 and 2.4, which show how the number of



22 CHAPTER 2. LITERATURE REVIEW

0 

50 

100 

150 

200 

250 

300 

A
gr
ic
ul
tu
ra
l a
nd

 B
io
lo
gi
ca
l S
ci
en

ce
s 

Bi
oc
he

m
is
tr
y,
 G
en

e<
cs
 a
nd

 M
ol
ec
ul
ar
 

Bi
ol
og
y 

Bu
si
ne

ss
, M

an
ag
em

en
t a

nd
 A
cc
ou

n<
ng
 

Ch
em

ic
al
 E
ng
in
ee
ri
ng
 

Ch
em

is
tr
y 

Co
m
pu

te
r 
Sc
ie
nc
e 

D
ec
is
io
n 
Sc
ie
nc
es
 

Ea
rt
h 
an
d 
Pl
an
et
ar
y 
Sc
ie
nc
es
 

Ec
on

om
ic
s,
 E
co
no

m
et
ri
cs
 a
nd

 F
in
an
ce
 

En
er
gy
 

En
gi
ne

er
in
g 

En
vi
ro
nm

en
ta
l S
ci
en

ce
 

M
at
er
ia
ls
 S
ci
en

ce
 

M
at
he

m
a<

cs
 

N
eu

ro
sc
ie
nc
e 

Ph
ar
m
ac
ol
og
y,
 T
ox
ic
ol
og
y 
an
d 
Ph

ar
m
ac
eu

<c
s 

Ph
ys
ic
s 
an
d 
A
st
ro
no

m
y 

So
ci
al
 S
ci
en

ce
s 

N
um

be
r 
of
 p
ub

lic
a/

on
s 

Area 

Figure 2.2: Publications in multi-objective optimisation by application area, using

data obtained from [49], compiled in 2008.

publications changes year by year in the area of multi-objective optimisation, it can

be observed that the number of publications steadily increases reaching respectively

31 and 6 papers in dynamic and noisy areas by 2007.

An important limitation of the majority of the preceding research in the area

of uncertainty in multi-objective optimisation, which was first noted in [21], is a

concern for only one of the uncertainty types. In contrast, real-world problems may

exhibit different uncertainty kinds simultaneously, i.e. have moving optima and have

noise in the objective function at the same time. To date, the research in the multi-

criterion optimisation of the problems with multiple uncertainty types is limited,

with certain exceptions [58, 46, 59].



2.2. INTRODUCTION TO THE KEY CONCEPTS 23

Figure 2.3: Publications in evolutionary multi-objective optimisation in dynamic

environments, using data from [57], compiled in 2008.

2.2 Introduction to the key concepts

Over the last two decades, the area of MOO using EA became a well-established

research field with its concepts and terminology becoming well defined. However,

the same could not be said for optimisation in real-time and uncertain environments.

Therefore, the key concepts such as real-time processing or uncertainty are clarified

in this section.

2.2.1 Uncertainty

A majority of real-life optimisation problems are uncertain in some way or the other.

Starting with early attempts to apply EA to uncertain problems, some authors have

tried to coin a definition for uncertainty and make a taxonomy of different uncer-

tainty types. Hughes [60] gives the following classification of uncertainty-related
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Figure 2.4: Publications in evolutionary multi-objective optimisation in noisy envi-

ronments, using data from [57], compiled in 2008.

problems. In noisy problems two successive evaluations of a chromosome return

two different objective vectors. Uncertain problems, do not produce different objec-

tive vectors on successive evaluations of an individual, but a comparison of objective

vectors of two different individuals may give a wrong result because of the approx-

imations and errors in the model. [61] uses the same definition of uncertainty, i.e.,

uncertainty caused by modelling errors. However, studies on optimisation of dy-

namic problems [42, 62, 63, 54, 56] have not referred to dynamic problems as being

uncertain.

Generally, uncertainty means a lack of certainty about the current environmental

state or the future state or the outcome of the process. In other words, the concept

of uncertainty involves a set of states or outcomes each having a definite probability.

A summary of the previous research and a general taxonomy of uncertainties in
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evolutionary optimisation was presented by Jin and Branke [21]. According to Jin,

there are four uncertainty types:

• noise in the fitness function,

• robustness,

• fitness approximation, and

• time-varying fitness functions.

Formally, the difference between robustness and noise as defined in [21] is that in

the former case the additive noise is usually considered to be applied to the design

variables and in the latter case the noise is added to the fitness function. Both

uncertainty types are therefore considered in this thesis.

2.2.2 Noisy fitness function

Noise in the fitness function results in uncertain fitness values. The noise may come

from different sources such as measurement errors, limited sensor range and ran-

domised calculation parameters. Hughes [45] classifies noise in the fitness function

into two distinctive types. Type A noise or process noise or systematic noise [64] is

applied to the design variable vector X.

f ′i = fi(X +N)

This noise type is analogous to the noise used to explore robust solutions as defined

in [21]. Type B noise or measurement noise or additive noise [64] is applied to the

result of the fitness function, i.e., the fitness value itself.

f ′i = fi(X) +N

While it has been noted that search for robust solutions is similar to handling

noise in the fitness function, there are a number of significant differences between
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the two. In the case of noisy fitness function, it is not possible to avoid noise and the

computed fitness values are not exact. In search for robust solutions it is generally

assumed that the fitness function does not contain noise and the noise comes in the

form of slight changes in design or environmental variables after the optimisation

process has finished [21].

An important feature of A-noise is that it can change the topological character-

istics of the problem [65, 66]. For example, the presence of systematic noise could

add additional optima to the fitness landscape.

2.2.3 Approximate fitness function

Despite the fact that EA have enjoyed a great success in applications to the real-

world problems, they have encountered a number of significant challenges. In a

number of problems the fitness evaluation may be difficult and computationally

expensive. To tackle those problems efficient fitness approximation has to be adopted

[67, 13].

Approximated fitness function (or meta-model) allows us to estimate the fitness

of an individual in a more computationally efficient way than the original fitness

function. The fitness value of an individual i obtained using meta-model is:

f ′i = fi + ei

where ei is an approximation error [67].

An important difference between the meta-models and the noise in the fitness

functions is the effect of sampling on the fitness estimation. One of the approaches

to deal with noise in the fitness function is to sample the fitness of an individual

multiple times. However, the meta-model would always produce systematic error

instead of stochastic noise and, therefore, it is impossible to be reduced by sampling.

The approximation error could be addressed by using the original fitness function
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together with the approximated model, as suggested by Jin [67]. The fitness function

would look like:

f ′i =

 fi

fi + ei,

where ei is an approximation error of the model [21].

2.2.4 Dynamic fitness landscape

Problems with dynamic fitness landscape (time-varying fitness) add a new dimension

to the multi-objective optimisation. In this scenario, the fitness function depends

on the time t [68], i.e.:

f ′i = ft,i

The dynamic nature of the problem may be addressed by restarting a regular multi-

objective EA when the change occurs. However, a more efficient approach would

reuse information from optimisation of previous problem states to enable continuous

tracking of moving optima without algorithm re-initialisation [40].

The important aspects of dynamic multi-objective optimisation are requirements

for the availability of the optimisation results, namely the real-time and on-line

performance of the algorithms. The real-time requirement implies fixed deadlines for

the optimisation process to produce results, as in [69, 70]. The on-line optimisation

runs in parallel to the process being optimised, providing direct control [70, 71, 72,

73].

2.2.5 Real-time constraint

The concept of real-time constraints in multi-objective optimisation means the ex-

istence of deadlines for the response of the optimisation algorithm. In this context,

the performance of the multi-objective optimisation algorithm depends not only on

the quality of the obtained non-dominated set, but also on the execution time of
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the algorithm [47]. A fast multi-objective optimisation algorithm or an algorithm

with high quality of the obtained Pareto front is not a real-time algorithm as long

as there is no deadline set, although the qualities of speed and good Pareto front

are usually desirable.

Generally two types of real-time constraints can be defined [74]. Hard real-time

constraints should always be met, i.e., the solution becomes incorrect if the time

required to get the solution extends past the deadline. By contrast, soft real-time

constraints could sometimes be missed which results in degraded solution quality. A

third type of real-time constraint is defined in [74], called weakly hard constraints.

A system with a weakly hard real-time constraint could miss deadlines only if this

happens in a predictable way.

2.2.6 On-line processing

According to [75], on-line refers to “the operation of a functional unit when under

the direct control of the system with which it is associated” with a note that “on-

line units may not be independently operated”. In relation to the multi-objective

optimisation, on-line means that the system being optimised is under the direct

control of the optimisation algorithm and the decision maker, and that the decisions

of the decision maker affect the environmental state of the system and, consequently,

the optimisation algorithm.

2.3 Challenges to the Multi-Objective Evolution-

ary Algorithms

Uncertainties present a serious challenge to Multi-Objective Evolutionary Algorithms

(MOEA). A general impact of noise can be twofold [45, 46]:
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• a better solution is erroneously evaluated to be worse than an other and con-

sequently lost, and

• a worse solution is erroneously evaluated to be better than an other and con-

sequently survives.

It was demonstrated by various researchers that noise in the objective function

significantly degrades the performance of state-of-the-art algorithms such as Non-

dominated Sorting Genetic Algorithm-II (NSGA-II) and Strength Pareto Evolution-

ary algorithm 2 (SPEA2). In [52], it has been shown that conventional algorithms

struggle in the presence of noise and their performance deteriorates as noise levels

increase. An algorithm with noise-handling features exhibits more even performance

across different noise levels. Moreover, both NSGA-II and SPEA2 modified with the

noise-handling features improved performance in the presence of noise.

More specifically, additive noise in the fitness function slows down the conver-

gence rate of an EA [50, 76], impacts elitist algorithms by producing false elite

individuals [39], meaning that the progress obtained in the preceding generations

could be lost and reducing the quality of the resulting non-dominated set [48, 77, 64].

The same could be said for B-noise, though it has additional characteristics of in-

teracting with the topological properties of the objective space.

Evolutionary algorithms usually require a large number of fitness evaluations

to reach an acceptable result. Published comparative studies of different MOEA

usually include examples of tens of thousands and hundreds of thousands of function

evaluations [78, 38, 79, 80]. However, in dealing with real-life problems the fitness

evaluation may become very expensive or exact fitness function may be unknown.

In such cases, a fitness approximation approach is used. An approximate fitness

function is also used if additional fitness evaluations are required, for example when

dealing with a noisy fitness function [67, 21].
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One of the strong points of the evolutionary algorithms is their ability to quickly

converge to a set of non-dominated solutions that are close to the true Pareto front.

However, once the algorithm has converged to a set of optimal solutions, it is likely

to lose its ability to continue searching for the new optima if they would emerge

[56]. In fact, one of the main problems encountered by traditional static evolutionary

algorithms on dynamic optimisation problem is the loss of diversity in the population

[56].

According to [81], to succeed in dynamic problem optimisation, an algorithm

should possess the following features:

• continuous adaptation,

• flexibility, and

• robustness.

Continuous adaptation refers to the ability of the algorithm to track the changing

environment. Static MOEA have a tendency to stick with the current solution

because of the loss of genetic diversity.

Flexibility refers to the ability of a decision maker to make ‘responsible’ deci-

sions given an unknown future. For a dynamic system with an on-line optimisation

algorithm and a decision maker, i.e., when the decisions based on the immediate out-

come of the optimisation affect the future state of the system, such decisions should

anticipate the future requirements of the system [82]. In other words, the optimisa-

tion algorithm should take into account not only the original objective functions of

the problem, but also try to improve the flexibility of the solutions.

A solution to a dynamic optimisation problem usually needs to be robust against

uncertainties, such as adaptation failures or implementation specifics. These uncer-

tainties may be attributed to different reasons, such as a change in the environment

occurred too fast for the algorithm to adapt or various implementation reasons, such
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as feasibility and cost of adaptation, changing quality of materials and manufactur-

ing tolerances [21].

2.4 Noise handling

It has been demonstrated that current state-of-the-art EA designed for handling de-

terministic problems encounter significant challenges when faced with uncertainty.

To address these challenges, different strategies have been proposed in the liter-

ature. The earliest attempts to improve noise handling in EA were confined to

single-objective optimisation [83, 50, 76]. Three main techniques were sizing of

the population or so-called implicit averaging, resampling or explicit averaging and

inheritance of re-scaled mutations.

An approach that uses search history to aid an individual’s fitness estimation

is presented in [84]. Calculated fitness samples are recorded as search history in

memory and later used by a stochastic fitness estimation model to estimate fitness

values of points of interest in the search space. An improvement of the approach

is presented in [85]. These methods assume that noise has the same features in

different regions of the search space.

2.4.1 Modified Pareto-ranking and selection

The methods of increasing population size and re-sampling an individual’s fitness

could be readily extended to multi-objective cases, however, there are some meth-

ods that are specific to MOO. Most MOEA employ a ranking and selection scheme

based on the concept of Pareto dominance. Hughes [46] and Teich [61] modify

the Pareto-ranking procedure to be based on the probability of dominance and re-

place deterministic selection with probabilistic selection. They present two MOEAs:

Multi-Objective Probabilistic Selection Evolutionary Algorithm (MOPSEA) and Ex-
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tended Strength Pareto Evolutionary Algorithm (ESPEA), that implement the pro-

posed enhancements respectively. MOPSEA considers an individual’s rank to be

equal to the sum of probabilities of domination (Equation 2.1).

Ri =
n∑
j=1

P (Fj � Fi) |i 6=j (2.1)

A variant of the ESPEA with a different selection strategy is presented in [39].

To address the issues of unknown and variable noise, Fieldsend and Everson pro-

posed their own variant of probabilistic Pareto-ranking technique [86]. A Bayesian

algorithm was presented for estimating the variance of noise without sampling. An-

other definition of probabilistic dominance concept is presented in [87, 88] with an

implementation based on Fast Pareto Genetic Algorithm (FastPGA) [89].

A modification to the NSGA-II algorithm that targeted to improve the original

algorithm’s performance in noisy conditions was presented in [48]. The proposed

algorithm performs ranking of solutions in two steps. First, the unmodified NSGA-II

ranking procedure is used to obtain rank 1 front of non-dominated individuals. Next,

some adjacent dominated solutions are also included in the rank 1 front according

to Equation 2.2:

Rj = 1 if | fk(i)− fk(j) |< K

√
vk(i) + vk(j)

2
, (2.2)

where i, j ∈ P , vk(i) is the fitness variance of the k-th objective, fk(i) is the average

fitness value of the k-th objective andK is the Neighbourhood Restriction Factor that

controls how much of dominated solutions are included in the Pareto front. K would

be dynamically adjusted to reduce sampling in later generations (Equation 2.3)

K = C × (1− e−
β
g ), (2.3)

where C and β are constants and g is current generation.

An extensive study of the impact of noise on multi-objective optimisation was

performed in [52]. It was noted that the performance of MOEA is significantly
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affected by high levels of noise. To counteract these effects, three non-sampling

measures were introduced, namely, Experiential Learning Directed Perturbation

(ELDP), Gene Adaptation Selection Strategy (GASS) and improved archive update

methodology. The first measure, ELDP improves the traditional mutation opera-

tor by the use of ordered changes and operation in either genotype or phenotype

space. ELDP accelerates convergence and simultaneously improves the algorithm’s

performance in noisy conditions by restricting unorganised changes to the individ-

uals. The second measure, GASS, defines an operation in the phenotype space

that adapts part of an individual’s chromosome based on the model of the ideal

population behaviour. Finally, an improved archive update methodology uses the

probabilistic Pareto-domination concept. A comparative study presented within the

same publication indicates that existing algorithms like SPEA2 [90] and NSGA-II

[91] show better convergence and improved population density near the Pareto-front

if modified with the ELDP and GASS.

2.4.2 Averaging

The approaches based on re-sampling were applied to Multi-Objective Problems

(MOP) as well. Di-Pietro et al. [77] introduced the concept of a noisy landscape

to describe problems with variable noise strength across the search space. Two

original resampling techniques were introduced, namely Standard Error Dynamic

Resampling (SEDR) and m-Level Resampling (mLR). SEDR operates by contin-

uously sampling the fitness of an individual until the standard error of the mean

fitness value is below a predefined threshold. At this point, the noise impact on an

individual is considered to be reduced by the algorithm. Using the same threshold

for all individuals in the population allows us to handle uneven noise levels. mLR

operates on a different principle, using one of the predefined m sampling rates for dif-

ferent intervals of noise strength. The algorithm performs limited initial resampling
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to estimate the noise strength. Afterwards, the algorithm does iterative resampling

of an individual until the number of samples is equal to the predefined rate for the

calculated standard deviation.

2.5 Fitness approximation

EA require high number of fitness evaluations to obtain optimal performance. How-

ever, the exact fitness function might be computationally expensive or unavailable.

In these cases, when the evaluation of the exact fitness function becomes difficult

the solution is to employ an approximate model of the fitness function [67].

Before implementing the fitness approximation in an EA, a number of issues

have to be resolved, such as what model to use, in which part of the algorithm

and how to use the model to obtain valid results [67]. In particular, the problem

of obtaining an approximation of the fitness landscape with sufficient accuracy is

especially important in MOO due to the difficulty of working in higher dimensional

spaces. This problem can be addressed in two ways either by improving the quality of

the model or by using the original fitness together with an approximated one. Most

problems have the original function available, although its evaluation is expensive.

The approximate fitness model can be used in conjunction with the original fitness

function, which is termed as model management [92, 93] or evolution control [94].

2.5.1 Model usage rationale and integration techniques

Approximate models are used in almost every aspect of the evolutionary algorithm.

In the aspect of fitness evaluation, the approximate models are used mainly for four

reasons [67]. Firstly, the approximate models are used if each evaluation of the fitness

function is computationally expensive. This especially applies to computational fluid

dynamics problems [95, 96].
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Second motivation to use fitness approximation is provided by the cases where

an analytical fitness function is not known (and requires an external estimator) or is

provided by means of experiments, i.e., the fitness evaluation may not be available

when required [67, 21]. Approximate models enhance interactive EAs that excel in

capturing the qualitative knowledge of the problem [97] by reducing the strain being

put on the human estimator. In [98, 99], approximate models are used to estimate

decision maker preferences, whereby interactive requests to the actual decision maker

are triggered based on the utility function estimation. In turn, responses from the

decision maker are used to update the model. A similar approach that uses Artificial

Neural Network (ANN) to model designer preference is presented in [100].

Thirdly, fitness approximation is also used if the problem is noisy. In contrast

to methods based on sampling the fitness of an individual multiple times, which is

computationally expensive, the fitness is evaluated by averaging over similar indi-

viduals in the neighbourhood. To make the estimation more efficient, a statistical

model that incorporates the history of search may be employed [84].

Finally, if the fitness landscape is rugged an approximate fitness model is used

to smooth or regularise the solution. Matsui and Kosugi introduced the concept of

regularisation in [101]. Unlike the traditional fitness evaluation, where the fitness of

an individual depends solely on the individual’s phenotype, the proposed approach

takes into account phenotypes of the nearby individuals as well.

Approximate models may be used to guide algorithm initialisation, crossover,

selection and mutation. For example, an algorithm presented in [80] uses ‘informed’

evolutionary operators. Such operators evaluate the results of e.g. mutation using

the approximate model. In [102], a convergence-based criterion is introduced to

choose between the genetical mutation and crossover and modelled offspring gener-

ation.
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The exact model type used varies across implementations. Jin [67] presents four

different model classes, namely polynomial models, kriging models, ANN and Support

Vector Machine (SVM). Examples of different model usage in MOO include the use

of ANN [95, 96] and the use of SVM [103].

2.5.2 Evolution control

The use of approximate models for fitness evaluation significantly reduces computa-

tional requirements of EA. An algorithm with an implementation of an approximate

model can provide solutions that are close to the global optimum and at the same

time reduce the computational strain as much as possible. However, an approxi-

mate model might provide an optimum objective front that differs from the exact

optimum fitness front [104]. Low fidelity of the model may be caused by sparse,

incomplete or poorly distributed training data. A proposed solution to the problem

is to use the approximate model together with the exact fitness data. A set of tech-

niques to combine the exact fitness functions with an approximate model is termed

as evolution control or model management [104, 67, 21].

There are two different types of evolution control, individual-based and generation-

based [94]. Referring to Figure 2.5, individual-based evolution control evaluates a

percentage of the population using the exact fitness functions each generation. An

important consideration when using the individual-based evolution control is which

individuals have to be evaluated using the exact fitness functions. Analysis of the

literature reveals four predominant strategies to select the individuals [21].

• A naive way is to select random individuals for evaluation using the exact

fitness functions [94].

• If the fitness landscape of the approximate model has false optima it is very

likely for the optimisation algorithm to converge to a sub-optimal Pareto front.
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Figure 2.5: Individual-based evolution control

The best individuals in each generation are the most affected by the model

inaccuracies. Therefore, an evolution control strategy might choose to evaluate

the best individuals in each generation using the exact fitness data. It was

found that this strategy performs better than the random strategy [94].

• Another selection strategy is to choose the most uncertain individuals. As

noted in [21], selection of the most uncertain individuals is based on two rea-

sons. Firstly, evaluations of the most uncertain members of the population

using the exact fitness bring a reduction in the overall degree of uncertainty

introduced by the approximate model. Secondly, there is a direct relation

between the uncertainty of the individual and the degree of exploration of

the surrounding space. Thus, the approach of evaluating the most uncertain

individuals encourages exploration.

• Finally, an approach to the problem of evolution control uses so-called prese-

lection [105, 106, 107]. For a regular (µ, λ) EA, exactly λ offspring individuals

are created. Preselection methods create λPre from µ parent individuals, which

have to be subsequently evaluated using the approximate model to produce λ

individuals that will be evaluated using the exact fitness functions.
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Figure 2.6: Generation-based evolution control

To determine which individuals are the best or the most uncertain, individual-

based evolution control methods perform an initial evaluation of individuals using

the approximate model. Afterwards a number m of individuals are re-evaluated

using the exact fitness functions. Usually the number m stays constant throughout

the generations, however, some methods employ an adaptive control of m [21].

Figure 2.6 shows the diagram of generation-based evolution control. Generation-

based evolution control selects a generation and evaluates all individuals in the

generation using the exact fitness data. Generally, each n-th generation is evaluated

and the value of n remains constant during the optimisation run [94, 104]. This

approach is not optimal, as the accuracy of the model may change during evolution.

Improved approaches use adaptive frequency of generation-based evolution control,

in particular, [92] uses model error to estimate the local accuracy of the approximate

model and choose the control frequency.

2.6 Diversity preservation

EA designed for static problems tend to converge over time to some optima. This

behaviour is inappropriate in the situations where the optimum might change its

location or be replaced by another optimum. A substantial part of performance



2.6. DIVERSITY PRESERVATION 39

enhancing techniques that address the convergence issue could be categorised into

two species: i) management methods and ii) memory methods [53, 108, 54].

2.6.1 Management methods

The management methods employ different strategies for managing two primary

tasks of a dynamic EA. Firstly, an EA should converge towards the current global

optimum and, secondly, explore decision space for the location of future optima. The

management involves choosing a right balance between the two competing functions.

A portion of the methods developed in the past prefer to converge on the optimum

solution waiting for the change to arrive. With the introduction of change the bal-

ance swings towards diversity, thus enabling the algorithm to find new optima. A

typical representative example of this technique is the method of hypermutation, de-

scribed in [109, 43]. The downside of these approaches is the inability to determine

the necessary amount of diversity, because large amounts can result in a behaviour

close to the full restart of the algorithm, while small amounts will be insufficient to

detect the new position of the optimum or the new optima. Another disadvantage

of these methods is that hypermutation replaces already found optimal solutions

by random individuals, thus decreasing the value of previous generations and ac-

cordingly reducing the algorithms’ ability to work with changes occurring in cyclic

patterns.

Contrary to the previous set of management algorithms, there are some methods

that choose to maintain diversity throughout the simulation run [110, 62, 42]. By

avoiding convergence there is impact on memory and computational requirements

for this group of methods.

Finally, a set of management algorithms uses a multi-objective approach, where

the task of maintaining population diversity becomes a separate optimisation ob-

jective. An investigation presented in [56], uses NSGAII applied to single-objective



40 CHAPTER 2. LITERATURE REVIEW

optimisation problems. The second objective is artificially constructed to enable

better diversity preservation. Six possibilities to construct the artificial objective

were examined, such as time stamp, whereby all individuals are time stamped using

sequential numbers each time an individual is created. The objective is to minimise

the time stamp value during selection phase, i.e., prefer older individuals. Older

individuals are generally less converged than the newer ones, therefore minimisation

of the timestamp value promotes selection of diverse solutions. The technique is

based on the approaches presented in [111, 112] for maintaining diversity in single-

objective optimisation of non-stationary functions. A time stamp may be substi-

tuted by assigning random numbers to the individuals and minimise these during

selection. This technique enables some unfit individuals to survive environmental

changes. Another approach takes the original fitness function and substitutes the

minimisation task by maximisation and vice versa. Again, this slows down the con-

vergence rate of an algorithm. Finally, an artificial objective could be constructed

using an approach based on Euclidean distance, e.g., distance to the closest neigh-

bour, average distance to all individuals and distance to the best individual in the

population [56].

The last group of management algorithms have important limitations. The best-

performing methods to construct the artificial objective are also the most computa-

tionally expensive. The approach was tested on single-objective optimisation prob-

lems only. It adds additional objectives to the optimisation problem [56]. In the

case of multi-objective optimisation problems, it is desirable to minimise the number

of objectives, as the cases with small number of objectives (typically two or three)

are better studied and state-of-the-art MOEA such as NSGA-II tend to perform

better on these. In addition, the computational effort required for the optimisation

of problems with high number of objectives may be prohibitively high. Some meth-

ods, such as inversion of the fitness function, require adding a separate objective
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for each of the original objectives of the problem, and therefore are not suitable

multi-objective optimisation problems.

2.6.2 Memory methods

Memory methods choose to reuse information from past generations instead of in-

troducing random mutations. These algorithms accumulate past fit solutions in the

hope to use them as the problem changes [113, 114, 115]. Because of the use of past

fit solutions, memory-based methods are particularly useful if the moving optimum

repeatedly returns to previously occurred states. Diploid and polyploid chromosome

structures are another examples of memory-based methods [116, 117, 118, 119].

Multi-population approaches can be considered as separate kind of memory ap-

proaches in the sense that each population represents a single adaptive memory cell.

These approaches separate the population into self-contained groups each with its

own function. A particular example of these approaches is self-organising scouts

presented in [53, 120].

It was noted by [113] that the performance of memory-based algorithms depends

on the diversity, therefore memory-based methods should be used in conjunction

with other methods that preserve diversity. Moreover, it was stated that a diverse

population does not guarantee its ability to adapt to the environment changes [121].

It can be argued that a given algorithm would perform better if it is given knowl-

edge about the nature of the dynamic environment. According to [55, 122], the two

principal characteristics of dynamic environments are the frequency and magnitude

of change. A change with large magnitude could result in an environmental state

that is completely unrelated to the previous one and therefore a complete restart of

the optimisation algorithm might be advantageous over diversity increase. However,

for changes with small and medium magnitudes, a dynamic optimisation algorithm

would arguably yield a better result than a complete restart. A series of small
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changes in environmental state may exhibit patterns in their evolution that may be

predicted with a certain degree of confidence [122]

2.7 Decision making in dynamic Multi-Objective

Optimisation

On-line control problems require a single control action at each time moment, i.e.,

the input vector is a function of time. At the same time, a multi-objective search

develops a set of Pareto-optimal solutions instead of a single optimal point. Con-

sequently, a decision maker is required to select an optimal control action from a

Pareto set on-line [20].

Most existing studies of dynamic MOO do not focus on the problems of on-

line decision making. Some research consider on-line decision making as problem

specific [68]. Others assume a human as a decision maker. For example, Mehnen

and Roy [40] employ a DMOEA for the problem of machining gradient materials,

i.e., where the properties of the material constantly change, with no approach for on-

line decision making. A later study by the same authors uses desirability functions

to perform the multi-objective search in the desirability domain and model-based

forecasting to aid the decision maker [41]. In [123], a dynamic clonal selection

algorithm is proposed and applied to a task of designing a simple gearbox together

with DNSGA-II variants from [20]. Again, the selection of a solution from the Pareto

set is not described.

In the aforementioned cases, the final decision is thought to be performed by

humans having unbounded substantive rationality [124]. The humans are assumed

to have infinite information, aptitude and time to perform a decision, which is clearly

far from reality, especially in very fast changing scenarios.
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Recognising the need to substitute humans in the on-line decision making pro-

cess, some studies have proposed alternative methods to select a solution from a

Pareto set. In [20], a modified NSGA-II algorithm is applied to a problem of hydro-

thermal power plant scheduling. The decision maker uses a utility function, which

is a problem specific aggregation approach, to perform on-line selection of a solu-

tion. A weighted sum aggregation was used by Abe et al. [125] to stabilise a human

model with a quadratic programming search and by Hughes et al. [72] to optimise

a swarm trajectory with differential evolution. It can be argued that the aggrega-

tion approach has been borrowed from the static cases and a priori decision making

approaches, e.g., Farina et al. [68], consider the on-line decision making issue to be

similar to the static case. However, the a posteriori on-line decision making case is

fundamentally different from the static cases in that it has a time dimension, and,

compared to a priori decision making, it has a set of optimal alternatives to choose

from.

Having a set of Pareto-optimal alternatives at the decision time allows the de-

cision maker a great flexibility in the decisions, but simultaneously raises a number

of interesting questions. Suppose the decision maker is comparing two alternatives,

A and B. Would the decision maker’s decision change if there is a Pareto-optimal

alternative C? Some studies that employ heuristics to select a control action from

a Pareto set are available, e.g., Hughes [47] et al. use a set of rules to select a single

trajectory point out of a noisy Pareto set. Having a time dimension would allow us

to create a decision maker based on the predicted system states or a history of past

control actions.

2.8 Applications

A review of the application of MOEA to real-life uncertain MOP provides several

important analysis criteria. In particular, it establishes the current snapshot of
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the multi-objective evolutionary optimisation field, allowing to estimate the amount

of research coverage in this particular area and if combined with the review of

theoretical approaches, the overall ‘age’ of the research field, i.e., the balance between

applications and theoretical studies.

Table 2.1 lists applications of MOEA to uncertain real-life problems. For each

problem, specific uncertainty types are listed together with the uncertainty-handling

measures that are used in the study.

Two different approaches to groundwater remediation problem use sampling [126]

and probabilistic Pareto-ranking and averaging over identical individuals in current

and previous generations [127] to handle B-noise in the objective function. The

probabilistic Pareto-ranking is also used in [72] to handle B-noise. In [39, 128], A-

noise is handled by a modified archiving procedure, ageing of elite individuals and

their subsequent re-evaluation.

Both these approaches for handling the approximate fitness use ANN, however,

the exact method is different between the applications. In [95, 96], the model is

assumed to be of high fidelity, so no evolution control is used, i.e., fitness is evaluated

using the model only. In contrast, the study in [129] uses generation-based evolution

control with a fixed control frequency.

An algorithm that is using a random immigrants approach to handle dynamics

was applied in [20] to the problem of hydro-thermal power scheduling. Two model-

based algorithms that use forecasting [41, 40] and weighted fitness with dynamic

weights assigned by the model [130] were applied to the problems of machining of

materials with changing properties and military force allocation, respectively.

Looking at Table 2.1, it is clear that MOEA have found a diverse range of

applications in uncertain domains. However, the absolute number of applications is

low in comparison to single-objective or deterministic multi-objective cases.
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A prominent way to handle uncertain MOP is to present the problem in a dif-

ferent way that simplifies or eliminates the aspect of uncertainty. In [132], a task

of dynamic optimal trajectory planning of robot manipulators is formulated to al-

low off-line (static) processing. Uncertain (noisy) problems can be transformed to

deterministic MOP using non-linear interval number programming methods [133].

2.9 Research gap

The ability to handle various uncertainties can dramatically expand the area of

EA applications. At the same time, the field of uncertainty handling in MOO has

not yet received sufficient coverage, partially attributed to the fact that accounting

even for a single uncertainty type is algorithmically difficult and requires significant

computational resources.

Most existing publications describe handling of a single uncertainty type. How-

ever, real-life problems often include several uncertainties simultaneously. In partic-

ular, the missile guidance problem defined in [2] is clearly both noisy and dynamic.

Consequently, a very important issue that should be addressed by future research

is the handling of multiple uncertainties simultaneously, e.g., an optimisation al-

gorithm designed to work with noisy data in a dynamic environment. Here, the

algorithm might use an approximate fitness landscape model as well.

Certain applications in military and engineering areas require the optimisation

and the decision making algorithm to be run on-line in real time. This presents two

issues. Firstly, the real-time performance of MOEA should be extensively studied

and new ways to radically improve execution speed have to be found. Secondly, the

mechanisms of decision making in uncertain environments have not been extensively

studied so far. The issue of decision making currently is disconnected from the opti-

misation algorithms themselves in the evolutionary literature. However, a successful



46 CHAPTER 2. LITERATURE REVIEW

application to an on-line control problem requires on-line decision making.

2.10 Summary

This chapter attempts to review the latest achievements in the area of multi-

objective evolutionary optimisation in the presence of uncertainty. Referring to

Section 2.1, it can be said that the existing research in MOO for uncertain envi-

ronments is insufficient. As a prerequisite for this study, the key concepts in the

subject area were identified and described. In particular, it was noted that B-noise is

a close analogue of the search for robust solutions. It was demonstrated that current

state-of-the-art evolutionary multi-objective algorithms face significant challenges in

uncertain environments and consequently require help of special techniques. Exist-

ing approaches to handling noise in the objective function, fitness approximation and

dynamic fitness landscapes in multi-objective optimisation were categorised and re-

viewed. Special attention was paid to the decision making in contemporary dynamic

multi-objective optimisation research. In addition, some of the existing applications

of MOEA to uncertain problems were analysed.

Several possible topics for future research in the area have been suggested. The

research topics cover issues of handling different uncertainty types simultaneously,

and on-line and real-time performance of MOEA in applications of MOEA to uncer-

tain problems with on-line control. A further research topic might be comparative

study of MOEA in dynamic environments, real-time performance studies of MOEA

(specifically handling of deadlines), on-line process control by means of evolutionary

algorithm and decision-maker, and handling of dynamics and noise within a single

algorithm. These research topics can enhance the capacity of MOEA to perform

optimisation in approximate, noisy and dynamic environments, therefore greatly

increasing the number of applications to real-life problems and quality of obtained
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results.
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Chapter 3

Dynamic control problems

A control problem (see Figure 1.2 on page 7) is a problem of keeping an output

of a dynamic system as close to the desired output as possible. Control problems

are studied using control theory, an interdisciplinary branch of science on the bor-

der between engineering and mathematics. The different methods designed to solve

control problems can be categorised into two groups, ‘classic’ approaches and ‘mod-

ern’ approaches. The classic approaches, which use system equations transformed

into the frequency domain, were invented after the modern methods1, which use

state space equations to describe the system. However, the approach names stem

from an increasing number of applications and attention gained by the state-space

approaches, contrasted by the gradual decrease of use in the classic methods [136].

An ideal optimal controller (not to be confused with optimal controller, that is

‘optimal’ only in terms of the model that is used to design it) constantly solves a

dynamic optimisation problem to minimise the error, i.e., the difference between the

actual and desired outputs. For example, Model Predictive Control (MPC), a widely

1Publications in the middle of XIX century used analysis of motion of the dynamical systems

by means of differential equations in time domain, e.g., [134] and [135], although it was not until

early 1960s that Robert Kalman introduced the concept of ‘state’.

49
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employed modern control method, uses a scalar-valued cost function, effectively

running a single-objective optimisation [137, 11]. Since the underlying optimisation

problem is usually multi-objective, MPC employs an a priori decision maker to find

a trade-off between objectives. It will be shown in Chapter 5 that the a priori

approach has a number of shortcomings when compared to a posteriori decision

making. This chapter details a multi-objective MPC framework with a posteriori

decision making to be used for dynamic control problems. The multi-objective search

is performed using a Dynamic Multi-Objective Evolutionary Algorithms (DMOEA).

3.1 Optimisation challenges

One of the major tasks in control engineering is to find an acceptable compro-

mise between the complexity of the problem and its formal model used to design a

controller. This compromise is required because real-life control problems present

a number of challenges, that are difficult to solve using existing controller design

methods, especially if a particular problem has several different challenges.

Some control problems are of the Multiple-Input and Multiple-Output (MIMO)

variety, i.e., have multiple reference signals with corresponding measured outputs.

The performance objectives of such systems may be conflicting and incommensu-

rable. For nonlinear problems, the internal state of the plant changes frequently

in a nonlinear manner. These features are difficult and computationally expensive

to model, therefore the internal process model used by MPC controller is always

different to the real process. The differences between the process model and real

process, coupled with measurement noise and limited sensor range, make dynamic

control problems uncertain.

Another feature of control problems that makes them difficult is the real-time

constraint [47]. For example, an inverted pendulum described in Chapter 6 requires
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the controller to make decisions every 5 milliseconds, otherwise it is very difficult to

keep this particular pendulum stable. The rapid update requirements may explain

why existing MPC methods use single-objective search, as it requires less processing

resources. Also, MOEAs produce a whole set of alternative solutions, which would

require a dedicated decision maker to produce a single Pareto-optimal control action

at each time instant.

3.2 Evolutionary multi-objective model predictive

control

Traditional MPC performs an iterative, finite horizon optimisation of a plant model

using an internal model of the dynamic process, history of past control moves and

an optimisation cost function [11]. A dynamic plant model is in the form described

by Equation 3.1, where xk is the k-th system state, uk is the system input at k and

fk(xk, uk) is the function that maps the system state and input to the next system

state.

xk+1 = fk(xk, uk), xk, uk, fk(xk, uk) ∈ R (3.1)

Referring to Figure 3.1, an open-loop input ū over control horizon Tc is optimised

such that the predicted system state x̄ would reach the set point over prediction hori-

zon Tp. Then, the open-loop input ū is applied for the time δ and the optimisation

procedure repeats itself.

The approach presented in Figure 3.1 makes an important assumption about the

plant, namely, the algorithm optimises a scalar-valued cost function that should be

set in advance. Finding a good cost function is a key element in MPC applications.

A cost function, which is usually an aggregation function, depends on the shape

of the problem’s Pareto front, which makes it difficult to be set in advance. Also,

stability of the obtained solutions may be affected as a result.
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control horizon Tc

prediction horizon Tp

closed-loop 
state x

closed-loop 
input u
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state x̄ open-loop

input ū

past future

t + δt t + Tpt + Tc

set point

Figure 3.1: Model predictive control (adapted from [11])

To address the issues stemming from ‘early’ decision making in traditional MPC,

it is proposed to make the MPC optimisation stage multi-objective and use an a

posteriori decision maker to obtain the Pareto-optimal control action. The iterative

multi-objective search is performed by a DMOEA. Referring to Figure 3.2, the

measured output from the sensor is used by a DMOEA to continuously track the

optimal control surface for the plant. A dynamic decision maker is used at regular

intervals to select a control strategy from the set of Pareto-optimal solutions. The

Pareto-optimal control strategy is used by the control conditioner to generate the

control effort w(t).

EA have been applied to MPC before, e.g., [138, 139]. For example, Yan et al.

[140] use an EA in the MPC loop to optimise battery charging in vehicles. However,

the EA used is static and single objective, and the control effort is encoded in the

chromosome directly.
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Figure 3.2: Evolutionary multi-objective model predictive control

3.3 Control conditioner

One of the problems faced by DMOEA in real life applications is their comparatively

high computational cost caused by a large number of fitness evaluations required

for their larger population and slower convergence than single-objective EA. In

contrast, some plants require very fast response from the controller in order to

remain stable. To address the conflict between long DMOEA iteration times and

required fast response, the proposed approach encodes an entire control strategy

within an individual rather than a single control effort value. A similar approach is

used in [2, 71], where the missile trajectory is encoded in a series of waypoints, acting

as the control strategy for the proportional guidance algorithm and in [73], where

the chromosome describes a complete sequence of moves in the game of checkers.

A control strategy is decoded by the control conditioner and used to generate

intermediate control efforts. Figure 3.3 shows timing diagrams of EMO MPC evolv-

ing control effort values directly (I) and using a control conditioner to produce the

intermediate control effort values (II). The algorithm (I) is able to change the con-

trol effort in δ intervals, where δ is limited by the computational requirements of

the DMOEA and dynamic decision maker. In contrast, the algorithm (II) is able

to make changes to the control effort independently of the processing time required

by the DMOEA. Starting from the initial state, a new Pareto-optimal solution is

selected every control interval δC , i.e., the control strategy is changed in δC incre-
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ments. The changes in the control effort happen every adjustment interval δA ≤ δC .

Two different control conditioners are proposed in this thesis. A PID control

conditioner uses a three-parameter control strategy for proportional, integral and

derivative gains. The EMO MPC algorithm evolves and dynamically adjusts the

PID controller gains. Another example could be a control conditioner that uses

B-splines to calculate actual control effort from a control strategy encoded by spline

control points. The proposed implementation uses a B-spline of third order n = 3

to generate a control strategy for a control interval. The chromosome encoding uses

three genes to encode the Y coordinates of the control points. The X coordinates

are evenly spaced to cover the whole control interval.

3.4 Variable prediction horizon

MPC performs open-loop input optimisation over a finite horizon Tc, which is shifted

forward after each iteration of the algorithm. For this reason, MPC is also called

receding horizon control. The length of the prediction horizon is an important

parameter of the algorithm [141]. Ideally, the prediction horizon should be equal to

the system’s lifetime. However, for practical reasons this is generally not possible, so

various approaches exist to shorten the prediction horizon without affecting stability

and optimality of the system [137].

In the context of uncertainty that is characteristic to the real-life control prob-

lems, the choice of the prediction horizon length becomes an important issue. A

longer prediction horizon makes the system more optimal by avoiding the local ex-

trema on the Pareto surface and ensuring better closed-loop stability. At the same

time, making the prediction horizon longer increases uncertainty in the objective

functions used to estimate the performance of solutions. To address this issue, a
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modification to MPC and a corresponding MOEA chromosome structure is sug-

gested to enable a variable-length prediction horizon.

The proposed modification applies to the way a control strategy is encoded within

a chromosome. As used in [73], the control horizon Tc is split into homogeneous

intervals Tci, i ∈ [1, n], each containing a portion of the overall control strategy (see

Figure 3.5). The intervals Tci are sequentially encoded in the chromosome with

the leftmost gene corresponding to Tc1 and the rightmost gene corresponding to

Tcn. In Tci time intervals, the EMO MPC shifts the genes in the chromosome to

the left by one, thus, for example, Tc2 becomes Tc1, etc. The rightmost gene that

corresponds to Tcn is initialised with a random value. Figure 3.4 shows an example

of the proposed chromosome structure and cyclic gene shift within a chromosome,

assuming a three-parameter control strategy, i.e., each control interval Tci is encoded

with three genes. With this encoding, the uncertainty in gene values increases

from left to right. Each control horizon interval is separately evaluated using an

objective function vector ~fi. The new approach modifies the existing method by

incorporating a factor that captures the increasing uncertainty in the right-hand-

side of the chromosome structure. The overall fitness function vector is now obtained

by piecewise aggregation using Equation 3.2.

~f =
n∑
i=1

~fie
−λi, (3.2)

where ~fi is a fitness vector corresponding to the control horizon interval Tci and

λ is the uncertainty increase constant, specific to a particular problem. The effect

of such a chromosome structure is twofold. Firstly, the gene ordering by their

uncertainty enables the more certain (left) sections of the control horizon to have

greater impact on the overall fitness than the more uncertain (right) sections. In

essence, this gives a variable prediction horizon that is automatically limited by

the level of uncertainty in the chromosome (controlled by λ). Secondly, the gene
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shifting supplies the fitness functions that have the most impact on the overall

fitness with partially pre-converged genes, which improves the convergence speed of

the algorithm.

3.5 Summary

This chapter proposes to modify a traditional MPC by incorporating an evolution-

ary multi-objective search and a posteriori decision maker. Potential on-line perfor-

mance issues are addressed by evolving a control strategy rather then control effort

values directly. The control strategy is decoded by a control conditioner for fast on-

line adjustments of the control effort. Two control conditioners, namely, PID and

B-spline based control conditioner are proposed. A method to avoid horizon issues

characteristic to MPC is suggested, which also captures the effect of uncertainty

in future control actions. It is important to note that the process will sill have a

maximum prediction horizon length dictated by the maximum chromosome length.

However, the effective length of the prediction horizon is dynamically adjusted by

the amount of uncertainty in the gene values. An effective length of the prediction

horizon can be estimated by comparing the performance of EMO MPC controllers

with different values of λ.
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Figure 3.3: Timing diagram of EMO MPC. I – control effort is evolved directly by

the DMOEA. II – control effort is provided by a control conditioner that decodes a

control strategy evolved by the DMOEA.



58 CHAPTER 3. DYNAMIC CONTROL PROBLEMS

...  ...  ... Pn
3Pn

2Pn
1P 1

1 P 2
1 P 2

2P 1
2 P 1

3 P 2
3

...  ...  ...P 2
1 P 2

2 P 2
3 P 3

3P 3
2P 3

1 Pn+1
1 Pn+1

2 Pn+1
3

...  ...  ...P 3
3P 3

2P 3
1 Pn+2

3Pn+1
2Pn+1

1P 4
1 P 4

2 P 4
3

t0

time

t0 + Tci

t0 + 2Tci

Tc2

Tc1

Figure 3.4: Chromosome structure for a three-parameter control strategy. P n+1
j and

P n+2
j are initialised with random values, before the optimisation process is re-applied
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Figure 3.5: Model predictive control with variable length prediction horizon



Chapter 4

Multi-objective evolutionary

algorithms for dynamic control

problems

A typical control problem presents the evolutionary optimiser with a time-varying

search landscape. In particular, the problem could change only in the decision space

(PStrue changes but PFtrue does not) or only in the objective space (PFtrue changes

but PStrue does not) or simultaneously in the decision and objective spaces (both

PStrue and PFtrue change) [68] (see Figure 1.3 for the definition of decision and

objective spaces). From the optimiser’s point of view, two important characteristics

of a change are its frequency and magnitude [20, 122].

The frequency of change µ describes how often the change happens and, there-

fore, how much time the optimiser has got to converge to a new set point [122].

The frequency of change is expressed in 1/generations. The magnitude of change A

describes the distance between the previous set point and the current one. It is

related to the ‘effort’ required from a DMOEA to find the new optima. The product

of frequency of change with the magnitude is the rate of change ρ = Aµ. The rate of

59
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change has direct impact on an evolutionary algorithm’s ability to track the moving

optima. The higher the rate of change, the more difficult it is to track the PFtrue.

From Section 2.6, it is evident that MOEAs’ ability to adapt to changes is con-

sidered to be dependent also on its state of convergence. The implicit assumption

is that the convergence level is inversely proportional to the algorithm’s ability to

adapt to changes. The argument that the special diversity preservation measures

are necessary for the dynamic evolutionary algorithm requires verification, as usually

those measures require additional processing time, which is limited in the dynamic

applications.

Historically, MOEA were applied first to the problems formulated as static over

time. Consequently, static MOEA enjoyed the most attention from the scientific

community. Adapting regular MOEA to dynamic problems presents a number of

issues, most important of them being elitism. Elitism was designed to improve per-

formance of evolutionary algorithms by ensuring that the fittest individuals survive

into the future generations without any modifications [38]. In the dynamic case,

the fitness information of the elite individuals would degrade over time if no special

measures are taken. Current solutions that use elitism either recalculate their fitness

in each generation or employ recalculate-on-change approach [20]. The former being

computationally expensive, recalculate-on-change is the preferred approach to deal

with the elitism issue, but the detection of change could become difficult, especially

if the fitness value of an individual is uncertain.

Another challenge to the MOEA in the on-line control applications is the reliabil-

ity of the obtained results. Evolutionary techniques are stochastic, i.e., the outcome

of an optimisation run can not be precisely predicted. The variations in the EA

performance over multiple optimisation runs needs to be analysed. To summarise,

the following issues must be addressed for a successful application of a MOEA in a

dynamic search.
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• The balance between convergence and population diversity in dynamic cases.

Are special diversity preservation measures necessary?

• Fitness degradation of elite individuals over time.

• Variability of results obtained by the evolutionary search.

4.1 Proposed modifications to NSGA-II

To enable handling of dynamic optimisation problems, several changes are intro-

duced in the NSGA-II algorithm. One way of addressing the fitness degradation of

elite individuals is to make a test to identify when a change happens. A test of a ran-

dom sample from the population similar to that described in [20] is performed each

generation. If any of the objective values or the constraints are changed, a change in

the problem is assumed. In contrast to [20], all parent solutions are reevaluated be-

fore the selection procedure. This approach allows us to generate offspring solutions

from the population according to the current state of the problem. The algorithm

with this modification is denoted as dNSGAII-A.

The second variant of the algorithm, dNSGAII-B, employs temporary population

size increase when a change is detected. The additional individuals are generated

using hypermutation from the parent population. A larger population of more di-

verse solutions can help to overcome the sudden loss of fitness in the event of fast

change.

One common problem shared by dNSGAII-A and dNSGAII-B algorithms is the

vulnerability of the change detection test to noise found in most of the real life

problems. A third variant of the dynamic MOEA, dNSGAII-C is designed to work

in noisy environments. dNSGAII-C does not contain any tests to check for changes

in the problem. Instead, a sample of the population is reevaluated in each gener-

ation and merged with the offspring instead of the whole parent population. This
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approach reduces the number of potentially expensive fitness evaluations and simul-

taneously lowers the degree of elitism in the algorithm. One drawback of dNSGAII-C

is potentially slower convergence time compared to the variants with higher degree

of elitism.

4.2 Test problem

In [68], Farina et al. proposed a set of test problems for dynamic multi-objective

optimisers. A Type II problem (both PStrue and PFtrue change), which is based

on FDA2 problem from [68], is detailed in Equation 4.1. The problem is selected

because it represents a typical control problem where both decision variables and

performance vector change over time. In this problem, the Pareto front changes from

concave to convex with time. A true Pareto front can be obtained with ∀x ∈ XII =

0, ∀x ∈ XIII = H(t). Figure 4.1 shows all possible PFtrue for nτ = 5, τT = 10,

i.e., each 10 generations the problem changes into one of nτ + 1 states, making the

full period of the problem equal to 100 generations.



f1(XI) = x1

g(XII) = 1 +
∑

xi∈XII
x2i

h(XIII , f1, g) = 1− (f1
g

)
4(H(t)+

∑
xi∈XIII

(xi−H(t)
2

)2)

H(t) = 0.75 + 0.7 cos (πt), t = 1
nt
b τ
τT
c

f2 = g · h

XI ∈ [0, 1] , XII , XIII ∈ [−1, 1]

(4.1)

In this study, this problem is initialised with the following default parameters:

|XII | = 4, |XIII | = 3, τT = 10, nτ = 5.
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Figure 4.1: True Pareto fronts at different time steps. nτ = 5, τT = 10.

4.3 Static pre-execution

MOEA search in a problem that is ‘frozen’ (i.e., does not change during optimisation)

shows how fast an evolutionary algorithm can pick the PFtrue after a sudden large

change in the problem that leads to a complete loss of tracking. Also, it allows us to

estimate the initial convergence time of an evolutionary algorithm. Figure 4.2 shows

example Pareto fronts (diamonds) obtained after 10 generations overlaid on top of

the true Pareto fronts (solid lines) for different problem states (nτ = 5, τT = 10).

Example fronts obtained after 30 and 50 generations are presented in Figure 4.3 and

Figure 4.4, respectively.

For this problem the performance of MOEA depends on the problem state, with

the non-convex Pareto fronts being more difficult to converge to. After 10 gener-

ations the algorithm is in an unconverged state, with poor spread of solutions, in

particular on the non-convex fronts. After 30 generations, the algorithm has gener-
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Figure 4.2: Example Pareto fronts at different time steps after 10 generations.

MOEA results are shown with diamonds, true Pareto fronts are shown with solid

lines.

ally converged close to PFtrue. The major difference between 30 and 50 generations

is a better spread of solutions obtained on the concave fronts.

To analyse the convergence of the evolutionary algorithm, a hypervolume-based

convergence metric cHV is defined in Equation 4.2 as the ratio of hypervolumes of

obtained Pareto front to the true Pareto front. Figure 4.5 shows the mean value

of cHV for time steps 0 and 5 (the outermost concave and the outermost convex

fronts in Figure 4.1), with confidence level of 95%. The results support earlier

observation that for this particular problem the convergence speed of the optimiser

running from start depends on the initial problem state. Considering cHV = 0.81

1The exact value of the cHV threshold is debatable. In [20] 0.94 is used as a threshold for

DMOEA comparison, however, no justification is given why the value is selected. In contrast, the

value used in this work roughly corresponds to the border between initial convergence and steady
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Figure 4.3: Example Pareto fronts at different time steps after 30 generations.

MOEA results are shown with diamonds, true Pareto fronts are shown with solid

lines.

as the threshold performance, it may require up to 20 generations for MOEA to

attain this performance. Note that the length of the confidence interval decreases as

the evolutionary algorithm converges, suggesting that the variability of the results

decreases over time. Therefore a MOEA, given sufficient time to converge would

find the same PF across different runs. In order to obtain more reliable results

from a MOEA-infused controller, one should allow it to converge if the MOEA is

restarted after each change. That makes the controller slow, but reliable.

cHV =
hvPF

hvPFtrue
(4.2)

state performance of the algorithm, marked by a major decrease of relative variability of results

(see Figure 4.8).
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Figure 4.4: Example Pareto fronts at different time steps after 50 generations,

MOEA results are shown with diamonds, true Pareto fronts are shown with solid

lines.
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Figure 4.5: Static pre-execution. Ratio of hypervolumes of PF to PFtrue, 25 runs,

confidence level (cl) = 95%
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population size 100

Crossover

probability 0.9

distribution index 10

Mutation

probability 0.125

distribution index 20

dNSGAII-B hypermutation

probability 0.25

distribution index 4

population increase ratio 0.3

Table 4.1: Default dNSGAII-* parameters

4.4 Dynamic optima tracking

In a tracking scenario, the MOEA continuously adjusts to the moving optima. The

studies were performed with the parameters detailed in Table 4.1. dNSGAII-A was

used unless explicitly stated otherwise. Figure 4.6 shows the mean value of the cHV

parameter for 500 generations. A cyclic pattern can be spotted that corresponds to

the period (100 generations) of the problem. Changes in the MOEA performance

depend on problem dynamics.

Figure 4.7 presents a detailed view of first 150 generations. The variability of

results seem to depend only upon the initial convergence and not on later changes

in the problem. Let us define a relative variability measure vHV (4.3), such that

vHV = |CI2|hvPF
−1
, (4.3)

where CI2 is two-sided confidence interval. Figure 4.8 shows the value of vHV for

the first 150 generations. After initial period of convergence, multiple runs of the
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Figure 4.6: Dynamic tracking. Mean ratio of hypervolumes of PF to PFtrue for 500

generations, 25 runs

optimisation algorithm produce essentially the same results. This means that a

controller employing dynamic MOEA produces consistent results after the initial

period of convergence.

4.4.1 Static and dynamic mutation rates

Noting the sharp drop in cHV indicator when the problem changes, a study was

conducted to see if increasing the level of static mutation and, therefore, increasing

population diversity would have any effect. Figure 4.9 shows the cHV indicator values

with progressively increasing levels of mutation. Comparing with the default settings

shown in Figure 4.7, it can be seen that increasing the mutation level noticeably

slows the initial convergence rate. With the default settings, the algorithm has

largely converged before generation 30, while with mutation probability = 0.9 and
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Figure 4.7: Dynamic tracking. Ratio of hypervolumes of PF to PFtrue for 150

generations, 25 runs, cl = 95%

distribution index = 4 it is still not fully converged at generation 100. However,

once the initial convergence is attained, reasonable increases in mutation levels make

performance drops relative to the current mean smaller.

Another method to decrease performance drops when a change happens is to use

dNSGAII-B, which gives temporary boosts in diversity and population size when

a change occurs. In essence, dNSGAII-B provides dynamic mutation rate man-

agement. Figure 4.10 shows that the effect of dNSGAII-B is twofold. Firstly, it

noticeably speeds the initial convergence in the presence of changes. Secondly, it

demonstrates improved reaction to changes, reducing the convergence drops com-

pared to dNSGAII-A (notice the improved convergence around the 140 generations

mark).
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Figure 4.8: Dynamic tracking. Relative variability of hypervolume for 150 genera-

tions, 25 runs
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Figure 4.9: cHV for different levels of mutation. a) probability = 0.3, distribution

index = 20; b) probability = 0.3, distribution index = 4; c) probability = 0.9,

distribution index = 20; d) probability = 0.9, distribution index = 4. 25 runs,

cl = 95%
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Figure 4.10: cHV , 25 runs, cl = 95%



4.4. DYNAMIC OPTIMA TRACKING 73

4.4.2 Effect of rate of change

In order to explore the behaviour of the MOEA with different rates of change R,

an additional study was performed for τT = 30 and τT = 2. Figure 4.11 shows the

mean value of the convergence metric obtained using dNSGAII-A with τT = 30.

A corresponding graph for dNSGAII-B is shown in Figure 4.12. Compared to the

regular case (see Figure 4.7; vertical grid lines correspond to the changes in H(t)), it

is clear, that additional generations allow the algorithm to closely track the PFtrue at

all times, despite the reduced diversity in the population. Addition of hypermutated

individuals after a change is detected does not give any appreciable benefits, except

in the initial convergence stage, where it may be beneficial because of the temporary

population increase. The difference in long-term performance between default τT =

10 and τT = 30 is much smaller than what could be predicted from the static pre-

execution results. Results shown in Figures 4.13 and 4.14, provide cHV values with

τT = 2. After a prolonged initial convergence period, the evolutionary algorithm

achieves good performance. Again, the addition of hypermutated individuals slightly

increases the initial convergence speed, but does not give any appreciable benefits

afterwards. Considering the additional number of fitness evaluations, the dNSGAII-

B remains inferior to the dNSGAII-A even when the algorithm is allowed to converge

fully between the changes, as shown in Figure 4.15

4.4.3 dNSGAII-C

Two different strategies to select a sample of the parent population to be reevaluated

and merged with the offspring were used. The first strategy randomly selects the

individuals from the parent population until a predetermined ratio ξ is reached.

The second strategy sequentially selects individuals in order of decreasing fitness.

Figure 4.16 shows the two strategies compared with different values of ξ. ξ = 0

means that no solution from the parent population is merged with the offspring,
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Figure 4.11: Mean cHV , dNSGAII-A, τT = 30
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Figure 4.12: Mean cHV , dNSGAII-B, τT = 30
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Figure 4.13: Mean cHV , dNSGAII-A, τT = 2, cl = 95%

ξ = 0.5 reevaluates and merges half of the parent population with the offspring.

The dNSGAII-A algorithm is used as a baseline, i.e., its performance is always

considered equal to 1.

The algorithm with no elitism (ξ = 0) exhibits slow convergence speed and the

resulting front is about two times worse than that of dNSGAII-A. Allowing some

randomly selected individuals to propagate into future generations brings dNSGAII-

C performance to about 0.85 – 0.95 that of dNSGAII-A with ξ = 0.3 to ξ = 0.5.

The dNSGAII-B performs equally or better than the dNSGAII-A, except for the

first 10 generations.

Ordered selection of individuals to be propagated constantly outperforms the

random selection, and in some cases the dNSGAII-A as well. This suggests that with

small times between changes and, consequently, a perpetually unconverged popula-

tion, the dNSGAII-C with ordered selection would prove superior to dNSGAII-A.
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Figure 4.14: Mean cHV , dNSGAII-B, τT = 2, cl = 95%
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Figure 4.15: Mean cHV , dNSGAII-B, τT = 100
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Figure 4.16: Ratio of mean dNSGAII-C and dNSGAII-B cHV to mean dNSGAII-A

cHV , 25 runs.

4.5 Summary

This chapter analyses the dynamic performance of the evolutionary multi-objective

search. Compared with a restart strategy, the key difference of the DMOEA is

the reliability of results, characterised by the length of the confidence interval. In

addition, it is possible to identify two distinctive stages in the DMOEA convergence

process, namely, the initial convergence and dynamic tracking.

The effect of the frequency of change is less pronounced in the case of DMOEA

compared to the restart strategy. Elitism is still very important in the DMOEA,

as evidenced by Figure 4.16. The restricted elitism technique can sometimes out-

perform the baseline dNSGAII-A algorithm. Ordered restricted selection of elite

individuals performs better than random selection.
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Chapter 5

Decision making in dynamic

environments

Decision making is an important aspect of dynamic MOO. MOEA produce a set

of Pareto-optimal solutions, so a decision has to be taken as to which solution to

select for an application [20]. In static cases, this decision is performed by a human

decision maker, possibly with the help of one of the MCDM methods. Solving a

control problem using a non-dominated set approach requires performing selection

from the Pareto-set in real time, which can be difficult or impossible to achieve

with a human decision maker. This chapter analyses the decision making process in

dynamic environments and proposes a novel game tree based decision algorithm.

According to [16], MCDM methods can be categorised into three groups ac-

cording to the stage at which the design and objective preference information is

considered. A priori methods combine multiple design and objective preferences

into a scalar-valued cost function that can be optimised by single-objective search

methods. Progressive methods use decision making to guide search routine to ex-

plore particular areas of the objective space. Finally, a posteriori methods select

a solution from a Pareto-optimal set of feasible alternatives produced by a multi-
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objective optimisation algorithm.

The a posteriori approach, which is the subject of this chapter, has several

features that distinguish it from the other two. Since multiple alternatives and the

general shape of the tradeoff surface are known at the decision time, the decision

maker can arguably make a better decision [142]. At the very least the alternatives

can be compared based on their performance. The ‘cost’ of a making suboptimal

decision is lowered as the alternatives are Pareto-optimal. Also, the decisions of

an a posteriori decision maker do not affect search, which becomes important in

dynamic applications. In contrast, a new set of weights for an aggregation function

can render the population of a single-objective optimiser almost useless.

Notwithstanding the differences in the MCDM methods, they all share the same

goal to reduce the dimensionality of the decision space. Making a decision based on

several conflicting criteria means selecting a trade-off strategy, either a ‘conservative’

or an ‘aggressive’ one [143]. Conservative trade-off strategies seek to improve the

under-performing attributes, i.e., the overall preference for an alternative will be

based on the value of the least-performing attribute. Aggressive design strategies

are willing to reduce the values of under-performing attributes slightly to improve

other variables, i.e., they compensate for the lower performing attributes with higher

performing attributes. In practice, many approaches combine elements of both

conservative and aggressive decision strategies.

Trade-off strategies are implemented using sequential objective ordering [16],

aggregation of objective values [144, 143], goal programming [145] or other methods

such as rule-based inference [47]. Out of those, the trade-off strategies that use

aggregation of objectives are the most widespread, due to their relative simplicity,

low computational cost and ease of implementation.
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5.1 Decision making by aggregation

Law and Antonsson [144] provide a formal definition of the aggregation approach.

Suppose a vector ~d of design variables di. All feasible values of ~d constitute a set

X of feasible design parameter values in decision space. All feasible values of an

individual design variable di constitute a set Xi ⊂ X. Performance criteria of an

individual solution ~d for a problem are denoted pj = f(~d). Multiple performance

criteria constitute a vector ~p. Set Y in objective space contains all possible values of

~p, consequently, Yj corresponds to all possible values of pj. The map from X to Y

can be determined by various approaches, including exhaustive search, closed-form

equations, iterative, heuristic or empirical methods. This research uses MOEA to

determine the map. To select a single individual from a set of all possible alter-

natives, a decision maker requires preferences to be defined. According to [144], a

design preference for the design variable di is a function on set X, such that:

µdi(di) : Xi → [0, 1] ⊂ R. (5.1)

Likewise, a preference for the performance variable pj is a function on a set Y , such

that:

µpj(pj) : Yj → [0, 1] ⊂ R. (5.2)

Overall preference µo is defined as a combination of design and performance prefer-

ences,

µo = P(µ(d1), µ(d2), ..., µ(dm), µ(p1), µ(p2), ..., µ(pn)). (5.3)

The task of a decision maker is to find an element ~d∗ that minimises overall preference

µo.

µo(~d
∗) = µ∗o = inf{µo(~d) | ~d ∈ X}. (5.4)
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5.1.1 Criteria for aggregation functions

It is evident from Equations (5.1), (5.2) and (5.3) that in order to make a decision

maker use an aggregation approach, it is necessary to set performance preferences

and define an aggregation function, which are application-specific tasks. However,

there are certain features that are common to any aggregation-based approaches.

An aggregation function implements a trade-off strategy between several criteria.

To reflect the relative importance of conflicting criteria, they are usually assigned

individual importance weights.

wdi ∈ [0, 1]; wpj ∈ [0, 1] (5.5)

For simplicity, the weights are usually normalised

m∑
i=1

wdi +
n∑
i=1

wpj = 1. (5.6)

Otto [146] defines four axioms for the aggregation functions. Suppose a value of

preference function µ is denoted as α. For an aggregation of two preference values

α1 and α1 with relative importance weights w1 and w2, respectively, an aggregation

function P(α1, α2, w1, w2) must satisfy the following conditions:

monotonicity

P(α1, α2, w1, w2) ≤ P(α′1, α2, w1, w2) ∀ α1 ≤ α′1

P(α1, α2, w1, w2) ≤ P(α1, α2, w
′
1, w2) ∀ w1 ≤ w′1; (5.7)

continuity

P(α1, α2, w1, w2) = lim
α′
1→α1

P(α′1, α2, w1, w2)

P(α1, α2, w1, w2) = lim
w′

1→w1

P(α1, α2, w
′
1, w2); (5.8)

annihilation

P(0, α, w1, w2) = 0 ∀ w1 6= 0; (5.9)
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idempotency

P(α, α, w1, w2) = α ∀ w1 + w2 > 0. (5.10)

In addition to the above, three new axioms are defined in [142]:

self-scaling weights

P(α1, α2, w1t, w2t) = P(α1, α2, w1, w2) ∀ t, w1 + w2 > 0; (5.11)

symmetry

P(α1, α2, w1, w2) = P(α2, α1, w2, w1), (5.12)

zero weights

P(α1, α2, 0, w2) = α1 ∀ w2 6= 0. (5.13)

5.1.2 Weighted sum model

The WSM is the most widely used preference aggregation technique, owing to its

simplicity and low computational overhead. In particular, it is widely used to per-

form a priori multiple objective aggregation into a single objective function for use

with single-objective EA [147]. Considering a case with two objectives (more than

two objectives can be aggregated using a hierarchical pairwise approach presented

in [144]), the WSM states that:

P(α1, α2, w1, w2) = α1w1 + α2w2. (5.14)

It is easy to see that WSM does not satisfy the criteria of annihilation and self-

scaling weights. However, the main drawback of the WSM lies in its dependency on

the Pareto front shape.

Consider Figure 5.1 that shows three Pareto fronts of different shapes. In fact,

each front can be decomposed into convex, concave and linear sections. For a Pareto



84 CHAPTER 5. DECISION MAKING IN DYNAMIC ENVIRONMENTS

0.0 0.2 0.4 0.6 0.8 1.0
f1

0.0

0.2

0.4

0.6

0.8

1.0

f 2

(a)

0.0 0.2 0.4 0.6 0.8 1.0
f1

0.0

0.2

0.4

0.6

0.8

1.0

f 2

(b)

0.0 0.2 0.4 0.6 0.8 1.0
f1

0.0

0.2

0.4

0.6

0.8

1.0

f 2

(c)

Figure 5.1: Different Pareto front shapes a) convex, b) concave, c) mixed

front section bounded by two arbitrary points A and B, the objective values of point

C lying between them can be expressed as

fCi = µi +
1

2
siri, (5.15)

where

µi =
fAi + fBi

2
(5.16)

is a component of mean objective vector ~µ,

ri = max(fAi , f
B
i )−min(fAi , f

B
i ) (5.17)

is a component of range vector ~r and si ∈ [−1, 1] is a component of scaling vector ~s.

Now, the Pareto front section is convex, if
∑n

i=1 si < 0. Concave sections correspond

to
∑n

i=1 si > 0. Finally, linear sections have
∑n

i=1 si = 0.

A good trade-off strategy should consider every point on the non-dominated

front. This is not always the case with WSM [148]. To prove this, it is enough

to find a point that would not be considered by WSM. From Equations (5.14)

and (5.15), the WSM metric for point C in two-dimensional objective space is

P(C) =
P(A) + P(B)

2
+

1

2
(w1r1s1 + w2r2s2). (5.18)

It follows that if s1, s2 ≥ 0, P(C) will be greater than either P(A) or P(B) for

any values of w1 and w2, which means that the alternative C will never be selected
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by the trade-off strategy. The corresponding graphical interpretation is provided in

[26].

Various aggregation functions that allow points on the concave sections of the

Pareto front to be captured have been developed [149, 142]. The trend is to use

Lp norm-derived aggregation [150], such as the global criterion method [151, 26].

Varying the p parameter (often called ‘compensation ratio’) changes the curvature

of the aggregating function, tailoring it to the shape of the Pareto front.

The difficulties in setting weights and p parameter are considerable even in the

case of static problems with potentially unlimited time and where human input is

possible. In dynamic control problems, it is questionable for a decision maker to

rely on a predefined set of weights. An interesting strategy inspired by real life is to

select solutions at random. This strategy can only be effective when coupled with

dynamic multi-objective search and an a posteriori decision maker for the following

reasons.

• An a posteriori decision maker does not affect search, so the frequent and sud-

den changes of the Pareto-optimal control strategy would not destroy search

performance.

• Selection is performed from a set of Pareto-optimal individuals. The underly-

ing hypothesis is that all individuals are good to be selected.

• A potentially dangerous consequence of selecting an inferior individual is mit-

igated by the fact that the control strategy selection is iterative.

The random decision maker will be tested in Chapter 6 and compared with

the aggregation approach. The question remains if a strategy can do better than

random selection without explicitly prioritising the alternatives via weights and

compensation ratio.
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5.2 Pareto Decision Tree

An a posteriori decision maker for an EMO MPC procedure should be able to

produce automated decisions in a short time. This makes it similar to the problems

considered by mathematical game theory, such as chess and checkers. At each turn,

a player is faced with multiple alternatives, each of which leads to a different set of

possible moves by the opponent. The sequences of feasible moves from the initial

state form a game tree for the game. An algorithm to find an optimal move at each

branching point is presented in [1].

5.2.1 Minimax algorithm

The minimax algorithm (Appendix A) is a recursive algorithm for choosing the next

move in a n-player game. Each terminal state, i.e., a state where the game has ended,

is assigned a utility value. The minimax algorithm takes the current game state and

computes an optimal move by recursively traversing the game tree and examining

the utility of each node (minimax value). The minimax value of a node equals the

utility for the current player of a particular state occurring. The algorithm assumes

that both players play optimally.

In its default form, the computational cost of the minimax algorithm is pro-

hibitively expensive for most practical applications [1]. Most applications choose

to evaluate the utility of a node by using a heuristic evaluation function. Using a

heuristic evaluation dramatically reduces the depth of the search tree that is needed,

effectively making each node a terminal state.

At this point it is worth remembering that the games discussed earlier are deter-

ministic and allow a fixed number of outcomes. Real control problems have various

uncertainties and possibly an infinite number of states. Also the evaluation of an in-

dividual state is difficult as often there are multiple conflicting performance criteria.
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5.2.2 Proposed tree-based decision algorithm

The minimax algorithm operates by examining the utility values of the game tree

nodes, representing the states of the environment. To compute the utility value for

a state of a control problem, it is proposed to use a metric based on the Pareto front

that corresponds to the state. Using a Pareto front metric allows us to quantify

a state without explicitly ordering or weighting different performance criteria. A

hypervolume indicator [78] is selected in this research as the utility of a state. A

hypervolume is an aggregation function based on a set of points (Pareto set) rather

than a single point.

The basic idea of the proposed Pareto Decision Tree (PDT) algorithm is to

evaluate the implications of selecting a particular Pareto-optimal control action at

time t = m on the EMO MPC ability to make decisions at time t = m+δ. Referring

to Figure 5.2, the PDT algorithm operates by selecting a potential control action p
′

from the Pareto front corresponding to the current problem state S. The point is

selected at random and each point can be selected only once. The algorithm than

uses the point p
′

to control an internal process model for δ interval and generate

a future problem state S
′
. The future state S

′
is assigned a utility value based on

the hypervolume metric of the corresponding Pareto front. If the utility is greater

than the maximum utility found so far, the maximum utility value gets updated.

Then a next potential Pareto-optimal control action p
′
is selected leading to another

future problem state S
′
. The process continues until there is no spare time left for

another iteration of the decision maker. Finally, a control action corresponding to

the maximum obtained utility value is returned.

Figure 5.3 shows an example of PDT operation. At time t = m, PDT is required

to select a single control action from the Pareto front PF0. To achieve this, PDT

selects a random point p
′

from the Pareto front and predicts a future state of the

system S
′
for time t = m+δ, by using p

′
to generate the control effort for time δ. In
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Figure 5.3: Pareto decision tree example, hypervolume (HV )1 > HV2 > HV3. Point

1 will be selected by the PDT algorithm.

the example, three states corresponding to three different points on the Pareto front

are developed. Each state is assigned a utility value using the hypervolume metric.

A point corresponding to the state with the maximum utility, which is point 1 in

the example, gets selected as the control action. Appendix B contains a minimal

PDT implementation in Python.

5.3 Summary

This chapter addresses the on-line decision making aspect of the dynamic MOO.

Analysis of contemporary decision making approaches (aggregation-based) used in

dynamic EMOO shows that the results obtained using aggregation functions de-

pend on the shape of the Pareto front. The most widely used dynamic decision
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making approach, namely, WSM, is not suited to non-convex Pareto frontiers. Tak-

ing into account that an EMO MPC decision maker has to choose from a set of

Pareto-optimal alternatives, a random decision maker is proposed as a baseline for

comparison.

The author identifies a link between game theory and decision making in on-line

multi-objective optimisation, noting that game theory has a number of approaches

for on-line decision making. A game tree based decision making algorithm (known as

MINIMAX) is recognised as being suitable for decision making in dynamic EMOO.

To leverage MINIMAX algorithm, a novel method to build game trees for real-

valued problems based on Pareto front metrics is presented. A novel Pareto tree

based dynamic decision maker is proposed for on-line decision making within EMO

MPC framework.



Chapter 6

Evaluation of single entity control

To evaluate the EMO MPC framework presented in Chapter 3, it was decided to

select an established control problem and apply the proposed approach. The rest of

this chapter is devoted to the application of the EMO MPC approach to the problem

of controlling an inverted pendulum. An inverted pendulum is a well-known control

problem, which is widely used for the design, comparison and analysis of control

algorithms [152]. An inverted pendulum is used for modelling various processes

ranging from walking patterns for robots [153] and crane dynamics [154] to human

balancing [155]. Controlling an inverted pendulum is challenging because of the

nonlinear dynamic behaviour it has. Also, the inverted pendulum is inherently

unstable in its upright position and requires fast response from the controller to

maintain equilibrium [156].

6.1 Inverted pendulum model

Referring to Figure 6.1, the inverted pendulum model consists of a point mass m2

attached to a cart with mass m1 using a massless rod with length l. The pendulum

angle from upright position is defined as α. The pendulum is subjected to tangential

91
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force Fα and the force to the cart Fx. The cart is assumed moving along the x axis

with no friction. The dynamics of an inverted pendulum model can be obtained

α

m1

m2

Fx

Fα

Figure 6.1: Nonlinear inverted pendulum model

using the Lagrangian method. The Lagrange equations for the plant are given by

equations (6.1) and (6.2), where g is standard gravity of 9.8m/s2.

m1ẍ+m2l sinαα̇
2 −m2l cosαα̈ +m2ẍ = Fx (6.1)

−m2lg sinα +m2l
2α̈−m2lẍ cosα = Fα (6.2)

Substituting ẍ with v̇ and α̈ with ω̇ and solving for the v̇ and ω̇, the dynamic model

of the inverted pendulum is obtained in Equation 6.3.

v̇ =
lm2 sinα(g cosα− lω2) + lFx + Fα cosα

l(m1 +m2 sin2 α)

ω̇ =
N

l2m2(m1 +m2 sin2 α)

N =m1(glm2 sinα + Fα)+

m2(lm2 sinα(g − lω2 cosα) + lFx cosα + Fα)

v =ẋ

ω =α̇. (6.3)

The system of equations (6.3) can be solved using the Runge-Kutta method of

fourth order integration [157]. However, this method is rather slow, so this full
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non-linear form is used only to model the environment. To evaluate the fitness of

solutions, a much simpler linear system is used, which is given in Section 6.1.1.

The use of the full model to calculate the environment and the simplified model to

evaluate fitness introduces some modelling uncertainty, which is a characteristic of

real-life applications.

6.1.1 Inverted pendulum state space model

Equation 3.1 defines a canonical form for the MPC models. To obtain a simple

model from the system given by Equation 6.3, it needs to be linearised around the

pendulum’s upright position α < 0.05rad. Assuming that cosα = 1, sinα = α,

(dα
dt

)2 = 0 and Fα = 0, the linearised Lagrange equations are given by (6.4).

ẍ(m1 +m2)−m2lα̈ = Fx

−m2lgα +m2l
2α̈−m2lẍ = 0 (6.4)

A state space representation uses x to denote the state vector of the system, so

the equation (6.4) needs to be modified further. Let y be the output vector of the

system. The inverted pendulum model has two outputs, namely cart position y1

and pendulum angle y2. The input of the system u(t) is the motor force Fx. With

that in mind, the rearranged equation (6.4) takes the following form.

m1ÿ1 − gm2y2 = u(t)

m1lÿ2 − (m1 +m2)gy2 = u(t). (6.5)

The state vector x is given by Equation 6.6. The first derivative of state vector

ẋ obtained from (6.5), is given by Equation 6.7

x =


y1

ẏ1

y2

ẏ2

 (6.6)
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x =


x2

u(t)+m2gx3
m1

x4
u(t)+(m1+m2)gx3

m1l

 (6.7)

From (6.6) and (6.7), the simplified state space model of the inverted pendulum

is

ẋ =


0 1 0 0

0 0 m2g
m1

0

0 0 0 1

0 0 (m1+m2)g
m1l

0

x(t) +


0

1
m1

0

1
m1l

u(t)

y =

1 0 0 0

0 0 1 0

x(t) +

0

0

u(t). (6.8)

The state space model (6.8) can be used to approximate the next state of the plant

from the current state using Euler’s method [158]. Figure 6.2 highlights the dif-

ferences in impulse response of the simplified and full inverted pendulum models.

The simple model diverges rapidly from the upright position with time. The EMO

MPC needs to be able to cope with the uncertainty introduced by the modelling

differences if it is to produce an effective controller.

6.2 Proportional–Integral–Derivative Controller

PID controllers constitute a majority of the controllers being used and therefore

provide a baseline for studying a controller behaviour. A PID controller [159] in a

continuous form is given as:

u(t) =Kpe(t) +Ki

∫ t

0

e(τ) dτ +Kd
d

dt
e(t), (6.9)

where Kp is proportional gain, Ki is integral gain, Kd is derivative gain, e is the

difference between the setpoint and the current value (error) and τ is the integration
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Figure 6.2: Impulse response of simplified linear and full models of inverted pendu-

lum.

variable. In order to use equation (6.9) in an objective function, it needs to be

discretised, yielding

u(tn) =Kpe(tn) +Ki

n∑
i=0

e(ti)∆t+Kd
e(tn)− e(tn−1)

∆t
, (6.10)

where ∆t is the sampling step.

6.3 Empirical results

6.3.1 Configuration

The initial parameters of the inverted pendulum model are summarised in Table 6.1.

The default parameters of the evolutionary algorithm are presented in Table 6.2.
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Parameter Value

Pendulum mass m2 0.5 kg

Cart mass m1 0.5 kg

Rod length l 0.3 m

Cart position y1 0 m

Cart speed v1 0 m/s

Pendulum angle y2 0 rad

Pendulum speed ω 0 rad/s

Time t 0 s

Motor force F 0 N

Integration interval 0.0025 s

Table 6.1: Initial parameters of the inverted pendulum model

6.3.2 Static optimisation of PID controller

This section investigates the Pareto surface of PID controllers stabilising the inverted

pendulum from initial angle θ = 0.25. The objective functions used are rise time

(from θ = 0.25 to θ = 0.0125) and maximum overshoot angle. Figure 6.3 shows

tradeoff surfaces between pendulum rise time and maximum overshoot for controllers

limited by different maximum demand. It can be seen that the optimal solutions

give less than 0.01rad overshoot (or 4 percent) irrespective of the maximum possible

controller demand. Conversely, controllers that produce overshoot greater than

0.01rad are suboptimal in the Pareto sense. The slope of the Pareto front allows us

to see diminishing returns of selecting very low (10N) and very high (85N) limiting

force on the motor drive.

Figures 6.4 and 6.5 show the tradeoff surface for a limiting force of 45N and cor-

responding controller gains in the decision space. There are three different controller
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Parameter Value

Algorithm NSGAII

Population size 50

Number of generations 300

Crossover probability 0.9

Crossover distribution index 20

Mutation probability 0.33

Mutation distribution index 20

Table 6.2: Parameters of the evolutionary algorithm

groups within the optimal subset. Referring to Figure 6.5, a majority of controllers

appear to have Kp ∈ (198, 200) with a near zero integral gain. Another group con-

sists of two controllers (highlighted) in the convex region of the Pareto front that

have smaller proportional gains, which results in a different impulse response com-

pared to the main group. Finally, a group of controllers with very high derivative

and relatively high integral gains correspond to the extreme left part of the Pareto

front with longest rise time and lowest overshoot.

In order to explore possible limits for the force demand from the controller, the

model was analysed using rise time and maximum controller demand objectives.

Referring to Figure 6.6, the minimum force required to make the pendulum stable

is approximately 3N. Meanwhile, increasing the force above 25N does not give any

significant gains in terms of rise time. Looking in the decision space, which is

shown in Figure 6.7, it is important to note that while most of the solutions have

Ki � 0.1, some of them have a considerably higher integral gain (highlighted in

Figures 6.6 and 6.7). Note that there are no solutions with high Kd because they

are inferior to solutions with small Kd evaluated using rise time alone.
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Overshoot is plotted using a logarithmic scale.
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Figure 6.7: Corresponding controller gains for objective values in Figure 6.6
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6.3.3 Dynamic control

An aspect that differentiates dynamic and static optimisation cases are the require-

ments for the objective functions. As discussed in Section 3.4, for practicality rea-

sons, the prediction horizon used in a dynamic optimiser is small compared to the

system’s lifetime. It often means that the setpoint can not be reached inside the

prediction horizon. Consequently, objective functions that use traditional perfor-

mance metrics, such as settling time and overshoot, are not useful in the dynamic

cases, as these metrics can be calculated only when the steady state of the plant has

been obtained. It is suggested to classify fitness functions as a) global and b) local.

Global fitness functions are defined in terms of the steady state performance of a

control system. The fitness functions used in static optimisation cases are global by

definition. Local fitness functions estimate performance inside a prediction horizon.

In dynamic cases, both global and local fitness functions could be used.

The local fitness functions are required to be isotropic. For example, for the

inverted pendulum problem, the fitness values for +α angles should be equal to the

fitness values for −α angles. Another important property of local fitness functions is

statelessness, i.e., individual’s fitness over a prediction horizon should be calculated

in isolation from the system state at the beginning of the prediction horizon.

A series of preparatory experiments indicated that integrating fitness functions

are better suited for dynamic scenarios than functions that use extremum attained

values. Uncertainty in dynamic optimisation may produce outliers, that are ‘smoothed

out’ by the integration process. For the inverted pendulum case, two integrating ob-

jective functions were selected (6.11), where f1 is the integral of pendulum deflection,

f2 is the integral of the control effort and τ is an integration variable.

f1 =

∫ t+Tp

t

|α(τ)|dτ

f2 =

∫ t+Tp

t

|F (τ)|dτ (6.11)
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Figure 6.8: Objective and decision spaces for the inverted pendulum problem. Ob-

jective functions are defined by (6.11). Tp = Tc = 0.4s.

Figure 6.8 shows the objective values with corresponding decision variable values

for the task of finding static PID coefficients. There are three distinctive groups of

controllers, shown as red ‘.’, orange ‘x’ and green ‘+’. The randomness in the

integral gain can be attributed to the short prediction horizon, which downplays

the role of error integration. The corresponding impulse responses of the plant for

points in each controller group are presented in Figure 6.9. The controllers exhibit

no overshoot, suggesting that for this problem overshooting control strategies are

not optimal.

Figure 6.10 shows an impulse response of the inverted pendulum system with a

dynamic EMO MPC controller and PID control conditioner. The decision maker

used is WSM with {0.5, 0.5} weights. The chromosome consists of three genes en-
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Figure 6.9: Impulse responses for the marked points in Figure 6.8

coding PID coefficients. The experiment was repeated 25 times and 95% confidence

intervals of the response are plotted as bars. It is noteworthy that despite having a

stochastic optimisation algorithm with only 1 generation to converge after a prob-

lem change, the length of the confidence interval is low. Compared to Figure 6.9,

the dynamic controller has faster stabilisation time. The control interval δC of the

dynamic controller is very small at 0.005s. The fitness vector for this particular

problem can be calculated faster than 0.005s using a modern computer, i.e., it can

run in real-time. In other problems with more difficult fitness functions this may not

be the case. The control interval can be increased without sacrificing the system’s

stability. Figure 6.11 compares impulse responses of the inverted pendulum model
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Figure 6.10: Impulse response of a dynamic controller. Tp = 0.4s, τT = 1, Np = 10,

δC = 0.005s, 25 tries, cl = 95%. Note: the scale is compressed with respect to

Figure 6.9.

with different control intervals. The controller with δC = 0.005s can adjust the

control strategy 60 times over the plotted interval, while two others with δC = 0.05s

and δC = 0.1s only 6 and 3 times, respectively. Ultimately, all controllers are able

to return to the upright position in 0.3 s, which is better than the static PID con-

trollers. The controllers with larger δC achieve this by compensating early decisions

with a more aggressive control strategy.

It is interesting to see how the Pareto front moves with time. Referring to

Figure 6.12, which shows the Pareto front evolution with time for two experiments,

the fronts are very close to each other in the beginning, just after the initial unit

impulse has been applied. Correspondingly, the decision maker’s choices lie close

to each other. However, with time the two experiments start to diverge from each
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Figure 6.11: Impulse responses of a dynamic controller. Tp = 0.4s, τT = 1, Np = 10,

25 tries, cl = 95%.

other, with corresponding decision maker’s choices lying further away. The two

experiments in Figure 6.12 produce different control strategies, yet, according to

Figure 6.11, they result in a robust pendulum stabilisation with tight confidence

intervals.

To calculate the fitness vector of the inverted pendulum problem, the MPC uses

numerical integration of the internal model over prediction horizon Tp. The length of

the prediction horizon is, therefore, directly proportional to the computational cost

of the objective vector, so to make the fitness evaluation faster, one should lower the

length of the prediction horizon. However, the smaller the prediction horizon is, the

more divergent is the local fitness from the global one. The responses of the model

with different prediction horizon lengths are compared in Figure 6.13 with matching

motor force impulse responses in Figure 6.14. There is no difference between Tp =
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Figure 6.12: Pareto front movement with time for two experiments. Decision maker’s

choices are marked with ‘X’. Tp = 0.4s, τT = 1, Np = 10, δC = 0.05s. Note the

progressively smaller scale of f1 and f2.

0.4s and Tp = 0.3s, as both have a prediction horizon length that is longer than

the stabilisation time. A controller with Tp = 0.2s does not have to stabilise the

pendulum in the early stages, so it can supply a more aggressive strategy to the

control conditioner, resulting in a faster stabilisation time. Shortening the prediction

horizon further starts to decrease the performance of the controller. In particular,

a controller with very short prediction horizon Tp = 0.05s, despite reaching the

upright position first, overshoots it and then has to apply three times positive force

to compensate.
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Figure 6.13: Effect of prediction horizon length on controller performance. Pendu-

lum angle impulse response. δC = 0.01s, τT = 1, Np = 10, 25 tries, cl = 95%.

The impact of the prediction horizon length Tp (observed in Figures 6.13 and 6.14)

is also affected by the type of the control conditioner. As the PID control conditioner

depends not only on the proportional, derivative and integral gains but also on the

process dynamics, it is not possible to achieve arbitrary response curve. Controllers

that have prediction horizon length longer than the pendulum stabilisation time are

additionally restricted by the control conditioner. To counter the restrictions placed

on the objective space by the PID control conditioner, a prediction horizon and

chromosome partitioning scheme (as described in Section 3.4) can be applied.

Figure 6.15 contains a comparison of impulse responses similar to the one in

Figure 6.13, but with the prediction horizon Tp partitioned into smaller segments

Tpi, i ∈ [1, n]. The length of the segment Tpi is selected to be equal to the control

interval δC , i.e., Tpi = δC . Each segment is encoded with k = 3 gene values, which

correspond to the three gains of the PID control conditioner. Therefore, the overall
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Figure 6.14: Effect of prediction horizon length on controller performance. Motor

force impulse response. δC = 0.01s, τT = 1, Np = 10, 25 tries, cl = 95%.

length of the chromosome is l = kTp/Tpi. The chromosome is shifted by k genes

to the left each Tpi seconds. To compensate for the increased chromosome length,

the number of pre-execution generations Np and the number of fixed generations τT

are increased. The results show that given enough time to converge, the variable

prediction horizon strategy is able to overcome limitations of the PID control con-

ditioner and, consequently, outperform the approach presented in Figure 6.13. The

performance difference between the various prediction horizon lengths is minimal.

The low performance of the algorithm with Tp = 0.4s is because of the very long

chromosome of 120 genes; it requires more time to converge than was allotted. The

unsatisfactory convergence explanation is supported by the increased width of the

confidence interval. The performance of the algorithm with Tp = 0.4s could be

increased by either increasing the number of pre-execution generations Np or the
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number of fixed generations τT , as evidenced by Figure 6.16.
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Figure 6.15: Prediction horizon partitioning into segments. Impulse responses of a

dynamic controller. Tp is divided into n = Tp/δC segments. δC = 0.01s, τT = 10,

Np = 50, 25 tries, cl = 95%.
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Figure 6.16: Effect of MOEA convergence on controller performance. Impulse re-

sponses of a dynamic controller. Tp is divided into n = Tp/δC segments. δC = 0.01s,
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6.3.4 Decision makers

The critical role of the prediction horizon length can be seen when comparing the

WSM decision makers with different sets of weights. Figure 6.17 shows a comparison

of EMO MPC controllers with Tp = 0.4s using WSM decision maker with different

weights. As the controllers are operating with the global fitness, the stability of

the results is not compromised. However, the efficiency of the {0.1, 0.9} control

strategy, which emphasises fast return to the upright position is reduced compared

to the case with shorter prediction horizon Tp = 0.2s, shown in Figure 6.18. At the

same time, some of the impulse responses in Figure 6.18 are unstable, showing that

a control strategy with a strong focus on reducing the motor force coupled with a

short prediction horizon may become unstable without explicit stability constraints.

The situation is no different with a random decision maker. Figure 6.19 displays

the results of a random decision maker with Tp = 0.4s, Tp = 0.2s and Tp = 0.1s. The

number of tries was increased to 100 to get tighter confidence intervals. The results

show that the random controller with Tp = 0.4s behaves similarly to the WSM

{0.6, 0.4} controller. With a shorter Tp = 0.2s prediction horizon, the performance

of random controller degrades and variability between individual attempts rises.

However, the controller remains stable in contrast to some WSM combinations.

Both random and WSM are capable of choosing any point from a convex Pareto

front, but WSM that chooses consistently from one extreme end of Pareto front may

go unstable. The performance degrades more drastically with Tp = 0.1s, especially

regarding the overshoot and consecutive correction phases. Also, the pendulum

continues to make small swings around the upright position once the setpoint is

attained.

A marked improvement over the WSM and random decision makers can be ob-

tained by using the Pareto Decision Tree (PDT) decision maker. A three point



114 CHAPTER 6. EVALUATION OF SINGLE ENTITY CONTROL

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

P
e
n
d
u
lu

m
 a

n
g
le

{
0.9, 0.1

}{
0.8, 0.2

} {
0.7, 0.3

}{
0.6, 0.4

} {
0.5, 0.5

}{
0.1, 0.9

}

Figure 6.17: Mean pendulum angle. Decision making using weighted sum model

with different weights. Tp = 0.4s, τT = 1, Np = 10, δC = 0.01s, 25 tries.

PDT is used, i.e., each generation the decision takes place using tournament selec-

tion with hypervolume as the utility measure. Figure 6.20 shows the difference in

impulse responses for a PDT decision maker with varying prediction horizon lengths.

It can be seen that PDT is more tolerant to the changes in Tp than both WSM and

random decision makers. Also, PDT outperforms the random decision maker for all

Tp lengths.

6.3.5 Control conditioners

PID control conditioner is simple to implement and, because it receives direct feed-

back from the process dynamics, it can tolerate modelling imprecisions and noise.

However, PID reliance on process dynamics restricts it to a subset of possible control

strategies. It can be argued that a B-spline based control conditioner can be more
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Figure 6.18: Mean pendulum angle. Decision making using weighted sum model

with different weights. Tp = 0.2s, τT = 1, Np = 10, δC = 0.01s, 25 tries.

effective than the PID control conditioner. A B-spline based control conditioner

encodes the control effort directly using a set of control points. This gives a spline

based control conditioner another important advantage over PID, namely, the ease

of setting the control effort range. Figure 6.21 shows the impulse response of the

EMO MPC controller with B-spline and PID control conditioners. Compared to

the PID control conditioner, the performance of the spline based control conditioner

might not seem better, but it manages to produce smaller maximum deflection from

the upright position. Without receiving direct feedback from the plant, the perfor-

mance of the spline based control conditioner is limited in the upright position due

to the modelling uncertainty.

The PID control conditioner performs well with small deflections from the upright

position. However, if the initial deflection is larger, this might not be the case.
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Figure 6.19: Mean pendulum angle. Decision making using random selection. τT =

1, Np = 10, δC = 0.01s, 100 tries, cl = 95%.

Figure 6.22 shows the pendulum angle and motor force graphs for the case where

the initial unit impulse duration is 70 times more than in Figure 6.21. As can be

seen, the B-spline based control conditioner raises the pendulum into the upright

position much faster than the PID method.

6.3.6 Additive noise

To evaluate the piecewise aggregation approach detailed by Equation 3.2, the EMO

MPC approach was tested with different values of λ. Figure 6.23 shows the mean

impulse response of the EMO MPC controller for different values of λ parameter.

With no noise, the response curves stay very close to each other, with the strategy

having λ = 1 marginally outperforming the rest.
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Figure 6.20: Mean pendulum angle. Decision making using PDT decision maker.

τT = 1, Np = 10, δC = 0.01s, 25 tries, cl = 95%.

To increase the level of uncertainty, let us introduce additive noise in the ob-

jective vector. Figure 6.24 shows the mean impulse response of the EMO MPC

controller with Gaussian noise (µ, σ) = (0, 0.07) added to the objective vector. In

this scenario, the response curves are clearly differentiated by λ. The strategy with

λ = 2 outperforms the rest, with the strategy having λ = 3 in the second place. The

observed behaviour matches with the theory, i.e., an increase in uncertainty levels

in a problem requires a correspondingly larger value of λ.

6.3.7 Comparison with model predictive control

Model predictive control has been applied to the inverted pendulum problem many

times [160, 152, 161]. It is interesting to see how the EMO MPC algorithm com-
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Figure 6.21: Impulse response. Pendulum angle and motor force. Decision making

using WSM with {0.01, 0.99} weights. τT = 10, Np = 50, δC = 0.01s, Tp = 0.1s.

pares to regular MPC controllers. In [161], nonlinear MPC swing-up and stabilising

controllers for the inverted pendulum problem are proposed. Table 6.3 summarises

the inverted pendulum parameters used in [161]. Initially the pendulum is in the

lower equilibrium (stable) position. The task of the controller is to swing up the

pendulum and stabilise it in the upper equilibrium position.

Figure 6.25 shows the original results from [161] for the best performing scenario

with a 25 step prediction horizon and the input constrained to u(t) ∈ [−15, 15].

The corresponding performance from the EMO MPC controller with a B-spline

control conditioner is shown in Figure 6.26. It can be seen that the performance of

the EMO MPC controller closely matches the nonlinear MPC controller presented

in [161], despite the approach in [161] not having a modelling uncertainty. Despite

very different motor force and cart position profiles, both controllers are able to
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Figure 6.22: Pendulum angle and motor force. Decision making using WSM with

{0.01, 0.99} weights. τT = 10, Np = 50, δC = 0.01s, Tp = 0.1s. Motor force is

limited to 100N.

stabilise the inverted pendulum around the same time. However, the cart force

demand is far less aggressive with EMO MPC than non-linear MPC.

6.4 Summary

This chapter presents an evaluation of the EMO MPC approach using the problem

of stabilising an inverted pendulum. It was observed that for this particular problem

the EMO MPC controller is able to stabilise the inverted pendulum in real-time,

despite the modelling uncertainties. The performance of the proposed approach is

better than a PID controller and comparable to existing nonlinear MPC controllers.
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Figure 6.23: Impulse response with varying λ. Pendulum angle and motor force.

Decision making using WSM with {0.5, 0.5} weights. τT = 10, Np = 50, δC = 0.05s,

Tp = 0.2s, 25 tries.

Open loop and closed loop control conditioners were evaluated. It was found

that the steady state performance of the closed loop PID control conditioner is

better than a spline based one. This can be explained by the inherent benefit of the

feedback provided by the PID control conditioner. However, the spline based control

conditioner reaches the steady state much faster than the PID control conditioner, as

it can explore more of the decision space. Also, the spline based control conditioner

provides an easy way to place limits on the possible values of the selected Pareto-
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Figure 6.24: Impulse response with varying λ and additive Gaussian noise (µ, σ) =

(0, 0.07). Pendulum angle and motor force. Decision making using WSM with {0.5,

0.5} weights. τT = 10, Np = 50, δC = 0.05s, Tp = 0.2s, 25 tries.

optimal control strategy.

By comparing different dynamic a posteriori decision makers, it was found that

the results obtained by the WSM decision maker on the inverted pendulum problem

are always stable if the multi-objective search is using a global fitness vector. With

local fitness, the stability of the inverted pendulum depends on the WSM weights.

In contrast to the static optimisation case, a random decision maker produces stable

Pareto-optimal control strategies for inverted pendulum stabilisation. A PDT con-
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Parameter Value

Pendulum mass m2 0.5 kg

Cart mass m1 3 kg

Rod length l 0.5 m

Cart position y1 0 m

Cart speed v1 0 m/s

Pendulum angle y2 π rad

Pendulum speed ω 0 rad/s

Time t 0 s

Motor force F 0 N

Table 6.3: Inverted pendulum model parameters for the swing-up case [161]

troller outperforms a random decision maker at all prediction horizon lengths. In

addition, the PDT controller is more tolerant to the changes in prediction horizon

length than both WSM and random decision makers. The effect of PDT can be seen

as a stability-enforcing measure, as current decisions causing instability lead to a

deterioration of future Pareto fronts and therefore would not be preferred by PDT.
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Fig. 3. Position of the cart, angle of the pendulum, control inputs  
and  energy of the pendulum for the 3-step prediction for u! [-15,  
15] 
 

 

 
Fig. 4. Position of the cart, angle of the pendulum, control inputs  
and  energy of the pendulum for 25-step prediction for u! [-10,  
10] 

 

 

 
Fig. 5. Position of the cart, angle of the pendulum, control inputs  
and  energy of the pendulum for 25-step prediction for u! [-15,  
15] 
 
We use typical values for the inverted pendulum parameters 

given in Table 1 for the simulations. The cart track length is 
constrained to [-1, 1], and we performed simulations for the 
cases where the input is constrained to   [-10, 10] and [-15, 15] 
intervals. In the figures, the first and second rows show cart 
position and pendulum angle versus time respectively. The 
third row shows input versus time, while the last row shows 
energy versus time. In energy graphics, Ke, Pe, and E denote 
the kinetic energy, potential energy, and the total energy of the 
pendulum respectively. 

  As seen from the figures, the cart stays within the 
prespecified limits. The graphical outputs reveal that the 
approach of this paper works satisfactory even for the horizon 
length of 3. Nonetheless, the swing-up time decreases as the 
horizon length increases. A more detailed analysis of the 
effect of the horizon length on swing-up time is given in next 
subsection. We observe that there is chattering in the control 
input u as the pendulum approaches to the upper equilibrium 
point. This is due to the term that minimizes the speed of the 
pendulum to avoid overshooting the upper equilibrium point. 
One may also notice in Figures 2-5 that the energy graphics 
versus time is very close to a monotone increasing behavior. 
This becomes more significant as the horizon length increases. 
Energy ripples about the upper equilibrium point is due to the 
braking effect resulting from the angular speed minimization 
term in the objective function.  

 

Figure 6.25: Swing-up and stabilisation of the inverted pendulum. Input is con-

strained to u(t) ∈ [−15, 15]. 25 step prediction horizon. Figure from [161].
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Figure 6.26: Swing-up and stabilisation of the inverted pendulum. Input is con-

strained to u(t) ∈ [−15, 15]. τT = 10, Np = 50, δC = 0.5s, Tp = 1s



Chapter 7

Multi-agent systems

The key word in coordinated control of multiple entities is ‘coordination’. The

concept of coordination means that a particular set of intelligent agents has some

interaction ties between them with an appropriate interaction protocol. On a general

level, the agents are forced to interact because of goals and resources. A goal is a

performance objective that an agent or a group of agents is trying to maximise.

The former is an individual goal and the latter is a common goal. Resources can be

individual (i.e., those that are being allotted to a single agent) or common (that are

used by multiple agents cooperatively, e.g., on a time-sharing basis).

The primary application focus for this research is on the shop floor and trans-

portation grid planning tasks, where the agents operate with individual goals using

common resources. This chapter outlines the design of a Multi-Agent System (MAS)

with intelligent agents that use DMOEA and a dynamic a posteriori decision maker

to guide their actions.

7.1 Problem representation

In order to facilitate the applications of MAS, the problem has to be represented

in an appropriate way. A representation of the problem provides means to capture,

refine and communicate the problem-specific knowledge and to express it in a formal
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way suitable for application of the EMO MPC approach. This section presents a

complete hierarchical representation of the problem that conforms to the following

objectives:

• formalise inter-agent communication,

• visualise system structure and data flow, and

• express system design in a formal way suitable to the application of MOEA,

The objectives of the representation task are very diverse and arguably could not

be easily achieved using a single representation technique. Therefore, the proposed

approach includes two different complementary representations, graphical and para-

metric. The primary tasks of the graphical representation are to visualise the system

design and facilitate system decomposition for modelling purposes. The parametric

representation expresses system components through sets of parameters that include

decision variables and performance objectives.

The graphical representation contains two orthogonal views of the system, namely

the composition diagram and process model diagram. The composition diagram

shows the overall structure of the system and its components and the principal ac-

tivity vectors in the system. In the composition diagram, entities are depicted as

boxes and the activity vectors as arrows.

The process model diagram shows a sequence of processes, actions and decisions

within the system and its elements. Both diagram types include several abstraction

levels. Abstraction levels are marked with incremental numbers starting from 0. It

is assumed that a diagram at level n+ 1 provides with a more detailed information

than the one at level n.

At the top level, a MAS consists of a number of agents and the environment.

Referring to Figure 7.1, the system contains a set of agents A = {a1, a2, ..., an} with

two primary operations, act and observe, defined for each agent. The actions of
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Agent1
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Agentn

Environment

Act
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Act

Observe

Act

Observe

. . .

Communicate

Figure 7.1: Level 0: composition diagram of the system.

the agents result in changes in the environment. The environmental changes affect

future actions of the agents by means of observations performed using sensors. This

simple model corresponds to the model presented in [1]. An important difference

in the present work is the addition of another operation, communicate, for the

agent. The communication operation is designed to allow the agents to exchange

the information about projected resource supply and demand, therefore enabling

adaptation and harmonising resource usage (a similar approach is used in [71, 162]

for swarm guidance). Communication between agents happens using topologies

presented in Figure 7.2.

By adding more details to the picture, the agent becomes a complex entity. Fig-

ure 7.3 shows a composition diagram of an agent at level 1. It can be seen that the
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Agent1
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Agent1

Agent2

Agent4

Agent3

(c) Disconnected

Figure 7.2: Different topologies of communication between agents.

agent contains separate functional blocks that correspond to the three main opera-

tions defined for an agent at level 0. The fourth block is what enables the agent to

act rationally and autonomously. In other words, it contains the “intelligence” of

an agent. The following presents a description of the main components of an “intel-

ligence” block. An agent receives information from two primary inputs, namely, the

array of sensors and the communication channel with other agents. This information

is merged by the unification procedure to produce a coherent view of the outside

world. With the help of an internal model, the agent tries to predict the future state

of the environment and a corresponding action by using two distinct algorithms, de-

fault heuristic and an EMO MPC. The EMO MPC is the agent’s primary means

to adapt to the environment and other agents’ actions and act rationally. The role

of the default heuristic is to provide a failsafe baseline solution that can be used if

for some reason the EMO MPC solution proves unsatisfactory, there is no solution

at all or the produced solution is infeasible. The existence of the default heuristic

guarantees that the real-time requirements of the system are met at any time.
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Figure 7.3: Level 1: composition diagram of an agent.

7.1.1 Process model

The preceding discussion introduced the structure of an agent. However, the struc-

ture does not tell a full story about the agent. It remains unclear what steps the

agent follows in order to arrive to an action. Therefore, a process model diagram

of an agent is provided in Figures 7.4 and 7.5. The diagram presents a sequence

of processes occurring inside an agent during an iteration. An agent’s intelligence

consists of two processes running alongside each other, with the main process shown

in Figure 7.4. It can be seen that at the beginning of each cycle the agent collects

information about the environment and also receives incoming transmissions from
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other agents. After that, it merges the information into a coherent view of the out-

side world. Following the merger of the input information, the agent executes the

default heuristic procedure. A strategy is first selected from an internal knowledge

database. Using the strategy the agent conducts experiments with an internal world

model. For each experiment conducted, the agent evaluates constraints. The pro-

cess continues repeatedly until the agent conducts an experiment that satisfies all

constraints. Note that this condition mandates the existence of “fail-safe” solution

in the agent’s knowledge base. Finally, when all constraints are satisfied, the agent

proceeds to evaluate the performance of the solution.

The EMO MPC process runs in parallel to the main agent’s process. The com-

munications between the two are asynchronous, ensuring that the real time response

constraint of an agent is always satisfied. Within the scope of the main agent process,

the agent only fetches the current solution produced by EMO MPC and compares

it with the solution obtained by means of the default heuristic. The dominant so-

lution then proceeds to be implemented using actuators and the projected resource

usage associated with the solution is communicated to other agents. In order to

understand each other, the agents need to share a common ontology, i.e., a complete

formal representation of all possible concepts within the communicated domain. In

this particular case, the ontology contains all possible resource identifiers and means

to express temporal availability of the resources.

As mentioned above, the MOEA runs in a process separate from the main agent

process. Referring to Figure 7.5, the MOEA starts its iteration by fetching the cur-

rent world state from the main process. The algorithm then proceeds to evaluate the

current environmental state and shift the chromosome, if necessary. Section 7.1.3

explains the purpose and mechanics of the state changes and associated chromo-

some shift in detail. Following that, the algorithm executes several breeding cycles

that consist of mutation, crossover, selection and ranking to develop a set of Pareto-
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Figure 7.4: Level 1: process diagram of an agent. Main process.
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Figure 7.5: Level 1: process diagram of an agent. Evolutionary algorithm.

optimal solutions. A single control action has to be selected from the Pareto set

in the next stage. To make a decision, the algorithm may have to rely on optional

preference information (either internal or external preference) supplied to the agent.

Another option is to use a decision maker that does not require preference infor-

mation, such as PDT. Because the EA runs in parallel to the main agent process

and the EA itself does not have a fixed response time, the obtained solution is then

stored as a publicly accessible attribute to enable it to be fetched by the main agent

process.



7.1. PROBLEM REPRESENTATION 133

7.1.2 Coevolution of agents

In the proposed framework, multiple agents co-evolve a set of strategies to compete

for limited resources. Similar co-evolution techniques have been used in [71, 73].

The agents play a MAX game, i.e., they try to maximise their own gain without

minimising the gain of other agents. Consequently, the strategy of an agent has to

be evaluated only against the current best strategy selected by other agents.

In order to evaluate a candidate strategy, an agent has to model the actions of

other agents using the information about their best strategies that is being broad-

cast. Based on predicted actions of other agents, the agent can predict the future

resource usage and use it as a set of constraints for its current strategy.

In practice, the computational load on an agent that uses the aforementioned

approach to evaluate its own strategy grows proportionally to the number of other

agents. The computational cost can be reduced bearing in mind that a) an agent

needs to know the availability of the resources required for its current control strategy

only b) each agent has to model its own strategy and c) the agents are not interested

in minimising the gain of other agents. An improved approach makes the agents

broadcast their projected resource usage as a function of time instead of the actual

action. Therefore, the constraints on evaluation time for a particular control strategy

do not depend on the number of other agents in the environment.

7.1.3 Uncertainty vectors and chromosome shift

The agents are naturally uncertain about a number of things because of the limited

observation range, sensor precision and changing actions of other agents. This sec-

tion introduces uncertainty vectors, i.e., directions in which the degree of uncertainty

changes in a predictable way. Time vector ~T defines a reduction of uncertainty in

time. In other words, the confidence of an agent in its view of the world is inversely

proportional to the time left before a decision is required. The space vector ~S de-
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notes that uncertainty also decreases in space. In relation to the resources required

for an action, the confidence of an agent that a certain resource will be available

is inversely proportional to the number of agents in the supply chain or a demand

queue on the resource.

In on-line processing, the time allotted for the EA to run is comparatively small.

At the same time, the EA as used in the proposed framework is subjected to un-

certainty that reduces the convergence rate of the algorithm. An initial population

that is tuned to the current environment significantly improves the response time

of the EA. Therefore, it is important to exploit possibilities offered by uncertainty

vectors. A technique is proposed whereby an uncertainty vector is partitioned into a

number of so-called “states”. A partitioning scheme is selected to define these states

such that an agent’s action sequence within a state would be similar to the action

sequence within the next state and so on. The possibility of such partitioning follows

from the typical grid or lattice-like structure of the MAS under consideration that

naturally contains repetitive regions resulting in repetitive agents’ actions. After

the uncertainty vector is split, typical decision variables are transformed to a vector

with the size less than or equal to the number of partitions in the uncertainty vector.

Each element of the decision variable vector contains the value of the decision vari-

able that corresponds to a particular state in the uncertainty vector. The proposed

composition of the decision variable vector bears an important property that the

uncertainty in the decision variable vector follows the rules set for the uncertainty

vector.

The uncertainty vectors of a MAS map to the variable prediction horizon scheme

of EMO MPC detailed in Section 3.4. The extended decision variable form is ac-

commodated using an additional operation in the EA process of an agent. Consider

Figure 7.5, where the EA constantly compares the current environmental state with

the state recorded in the uncertainty vector. If the state stays the same, no changes
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to the chromosome are required. However, if a change in the state is detected, the

chromosome is shifted left by the number of genes corresponding to the system’s

state, and the rightmost elements in the decision variables are filled with random

values.

To illustrate the idea of uncertainty vectors, consider an example of a Flexible

Manufacturing System (FMS) in which the capabilities of machines partially overlap

[163]. Referring to Figure 7.6, the system consists of a number of resources (ma-

chines) M = {M1,M2, ...,Mm} that are being fed with jobs J = {J1, J2, ..., Jn}. A

number of operations oj,k need to be performed with each job Jj, consequently, each

job is identified by a set of its operations. Likewise, each resource Mi is identified

by a set of operations oj,k that it can perform. If a resource Mi is able to process

an operation oj,k, it has an associated processing time pi,j,k.

Suppose each machine is an intelligent agent that has to plan its load according

to some performance criteria, e.g., throughput. Provided the machine has a long

First In, First Out (FIFO) queue of jobs, it is certain about the processing targets

of the oldest jobs in the queue, i.e., those that would be processed first. Meanwhile,

the schedule of more recent jobs contains more uncertainty, as the production plans

of other machines may change and, consequently, the schedules would have to be

rearranged. It is easy to see that the uncertainty in the processing target of a job

increases with the number of preceding jobs in a queue. A variant of the partitioning

technique may encode schedules for individual jobs sequentially into a chromosome

and shift the genes after a job has been processed.

7.2 Summary

This chapter presents a novel approach to solving complex shop floor scheduling

and grid planning problems on-line by using MAS with EMO MPC based intelli-
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Figure 7.6: Flexible manufacturing system.

gent agents. The real-time constraint inherent to on-line applications is addressed

through a default heuristic process running in parallel to the EMO MPC controller.

The solutions obtained by the default heuristic are used as a backup if the EMO

MPC solution in unfeasible or unsatisfactory.

The coevolution of the agents implies that each agent must be able to take into

account the actions of other agents. The proposed MAS defines a concept of shared

resources that describe the interaction between agents. Using the shared resource

concept, an agent has to broadcast its intended resource usage. Other agents are

using the information about availability of the shared resources as constraints to the
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DMOEA.

The proposed MAS contains special provisions for handling uncertainty inher-

ent to on-line scenarios in a multi-agent environment. The parameters containing

uncertainty are arranged in uncertainty vectors, which are partitioned according

to system states. The uncertainty vector arrangement provides a mapping to the

variable prediction horizon scheme of EMO MPC.
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Chapter 8

Case study: traffic scheduling

This chapter provides an assessment of capabilities and performance evaluation of

the proposed framework using a case study.

8.1 Description

The case study presented in this chapter belongs to the category of scheduling prob-

lems and describes a problem of traffic optimisation in a rectangular grid-organised

traffic network. The case study is inspired by [164]. Referring to Figure 8.1, which

displays the elements of a traffic grid, the network is composed of junctions and

connection roads. A junction may have between two to four connections. In other

words, cul-de-sacs are not allowed. A road that connects two junctions is divided

into lanes. There are different kinds of obstacles, including traffic lights, roadblocks

and pedestrian crossing points.

It is assumed, that the cars within the grid have their aim and objectives already

defined. In this context, the aim denotes the final destination point on the grid that

the car should arrive to and the objectives are series of junctions on the path to the

destination point. The focus of the optimisation is the movement of a car, i.e., the

139
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Figure 8.1: Elements of the traffic network

parameters that produce the best result according to a number of criteria, such as

overall travel time, efficiency or comfort.

Unlike the traditional traffic optimisation problems, in the given scenario, the

driver does not have direct control over his/her car. The mechanisms of the car

control will be explained later in Section 8.2. Another characteristic feature is that

there are no definite rules as to which car should cross the junction first if there

are no traffic lights. The junction crossing priority is handled by the optimisation

procedure.

8.2 Mapping and modelling

This section presents mapping between the case study and the framework along

with parameter and implementation choices used for modelling. According to the

proposed approach, the system is considered as a MAS, where each car is assigned

the role of an agent.
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Figure 8.2: System element mapping

The environments consists of a 2-dimensional array of junctions J = [ji,j]i=1,...,m;j=1,...,n.

J =


j0,0 ... j0,n

... ... ...

jm,0 ... jm,n


The situation in Figure 8.2 corresponds to the following array J .

J =

1 1 1

1 0 1


The directions are marked with positive integers {0, 1, 2, 3}, where 0 corresponds to

the north and 1 to the east direction. The cars participating in each experiment

constitute an array C = [ci]k.

The environmental parameters are summarised in Table 8.1.
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Parameter Description Value

NLv Number of vertical (north-south) lanes 2

NLh Number of horizontal (east-west) lanes 2

Lv Vertical lane length 281m

Lh Horizontal lane length 61m

Wv Vertical lane width 20m

Wh Horizontal lane width 20m

t System time

∆t Simulation time step 100ms

Table 8.1: Parameters of the environment

The parameters of the car are summarised in Table 8.2. Car trajectory T is

defined as a vector T = [ti ∈ J
′
]i=1,...,len(T ), where J

′
= [j

′
i,j]i=0,...,m+1;j=0,...,n+1. In

addition, each pair (ti, ti+1) forms a consecutive path in J . Trajectory index IT is

defined as the current position of a car on the trajectory, T ∈ [1, len(T )]. Two

special values of IT (1 and len(T )) correspond to the car entering and leaving the

simulation. Car state S can take one of four the values S = 0, 1, 2, 3. State 0 is an

init state; the car has not started its movement yet. State 1 is an approach state;

during this state the car approaches the junction tIT . State 2 indicates that the car

is passing through the junction tIT . Finally, the car that is leaving the simulation

has a state 3. Next three parameters describe the physical movement of the car.

It should be noted that the position s indicates the current relative position of the

car. The relative position is computed depending on the current state. For state

1, the position is measured from the end of the previous junction in the trajectory.

For state 2, the position is measured from the start of the junction. Finally, the

direction takes values from a set {0, 1, 2, 3}, which are north, east, south and west

directions, respectively.
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Parameter Description

id Unique identifier of the car

ts Car start time

T Car trajectory

IT Trajectory index

S Car state

a Acceleration

V Speed

s Position

d Direction

Table 8.2: Car parameters

Parameter Description Value

Pm Mutation probability 0.(3)

Pc Crossover probability 0.9

N Population size 100

Table 8.3: Evolutionary algorithm parameters

The parameters related to the evolutionary algorithm running inside a car are

given in Table 8.3.

8.2.1 Car motion model

This section describes the rules and border conditions that are used to model the

movement of a car.

Table 8.4 describes the constraints used to model the movement of a car. The

car is considered to be a point model that is able to accelerate with the acceleration
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Constraints Description Value

amax maximum acceleration 2.317 m/s2

abmax maximum braking acceleration 2.317 m/s2

Vmax maximum allowed speed 16.667 m/s

Vjmax maximum allowed speed on junction 8.333 m/s

Table 8.4: Car model constraints

less than or equal to amax and decelerate with acceleration less than or equal to

abmax. Vmax defines the maximum allowed traffic speed. Junctions are passed at

constant speed that is less than or equal to Vjmax. The car always moves either with

constant speed or constant nonzero acceleration.

Figure 8.3 depicts three possible speed profiles for car movement between the

junctions, assuming no obstacles are encountered. Each profile could be divided

into three phases, namely, acceleration 1, constant speed motion 2 and deceleration

3 phases. Profile 1 includes all three phases, while profile 2 does not have constant

speed motion phase and profile 3 has only acceleration phase. The following gives

time t, speed V and displacement s equations for a car following these profiles.

Equation (8.1) describes how the instantaneous speed on the first phase of the

first profile V11 changes with time. Equation (8.2) gives displacement from the start

of phase 1 of profile 1. The total time required to reach Vmax from V0 can be

calculated according to equation (8.3).

V11 = V0 + at (8.1)

s11 = V0t+
at2

2
(8.2)

t11 =
Vmax − V0

a
(8.3)
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Figure 8.3: Different speed profiles for movement between junctions. 1) Acceleration

to the maximum speed Vmax followed by motion with constant speed followed by

braking to the maximum allowed speed on junction Vjmax. 2) Acceleration to V <

Vmax followed by braking to Vjmax. 3) Motion with constant acceleration to V ≤

Vjmax.

The second phase of profile 1 corresponds to the motion with constant speed. The

equations for speed (8.4) and displacement (8.5) are given below.

V12 = Vmax (8.4)

s12 = Vmaxt (8.5)

Phase 3 of profile 1 corresponds to braking to the maximum junction speed Vjmax.

The instantaneous speed and displacement are given by equations (8.6) and (8.7),

respectively. The total time required for braking can be calculated using equation
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(8.8).

V13 = Vmax − abmaxt (8.6)

s13 = Vmaxt−
abmaxt

2

2
(8.7)

t13 =
Vmax − Vjmax

abmax
(8.8)

Profile 2 describes a scenario containing acceleration and deceleration phases

following in succession without the intermediate constant speed motion phase. The

time t23 required to brake from V to Vjmax can be calculated using equation (8.9)

t23 =
−(

Vjmaxabmax
a

+ Vjmax) +

√
(
Vjmaxabmax

a
+ Vjmax)2 − abmax(abmax+a)

a
· V

2
jmax−2as

a
,

2ab(ab+a)
a

(8.9)

where s is the length of the road between junctions. The corresponding displacement

s23 and speed attained before deceleration are obtained using equations (8.10) and

(8.11). Speed, time and displacement during phase 1 are calculated using the same

method as for profile 1.

s23 = V t23 −
abmaxt

2
23

2
(8.10)

V = Vjmax + abmaxt23 (8.11)

Profile 3 corresponds to a scenario where a car accelerates to V < Vjmax. Equa-

tions (8.12) and (8.13) allow to calculate travel time t31 and attained speed V31.

t31 =
−V0 +

√
V 2
0 + 2as

a
, (8.12)

where s is the length of the road between junctions.

V = V0 + at31 (8.13)

8.2.2 Car state model

In order to facilitate processing of the environment, the car movement is described

by states. Four states are defined, namely, init, approach, passing and leaving. The
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init state corresponds to a car that has been initialised, but has not started its

movement yet because the simulation time t is less than the start time ts of the

car. When the simulation time reaches the start time, the car enters approach state

and begins its movement towards the first junction on the trajectory. Once the car

enters the junction, the state changes to passing. After the junction is passed, the

state either changes back to approach or is set to leaving (if the junction just passed

is the last junction on the trajectory).

8.2.3 Chromosome representation

Choosing a suitable chromosome representation is a key factor in successful appli-

cation of MOEA. It is especially important in on-line applications, as there are

additional challenges, such as short response time, dynamics and noise. Suitable

implementation of uncertainty vectors (introduced in Section 7.1.3) can help in al-

leviating these challenges. A strategy could be to divide the trajectory of a car into

smaller segments and assign a decision variable to each of these segments. As the

trajectory is naturally subdivided into sections between junctions, these sections are

used to represent vectors ~T and ~S.

Refer to Figure 8.4, which depicts chromosome shift technique for a trajectory

of length m. The trajectory points t1 and tm indicate approach and leave directions

and therefore are not included in the optimisation. The optimisation window is 3

junctions long, i.e., at any point of time the car is optimising its movement for the

current junction and two junctions after that. The length of the prediction horizon

is determined experimentally to provide good performance while not becoming too

computationally expensive, as the additional decision variables tend to slow MOEA

convergence. Decision variables are defined as the acceleration values of a car moving

towards junctions in the optimisation window. For example, when the car is moving

to the first point on the trajectory t2, it is executing an evolutionary algorithm with
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Figure 8.4: Dynamic optimisation window and chromosome shift using trajectory

segmentation

a chromosome of length 3 with three genes a2, a3 and a4, which correspond to the

acceleration on trajectory segments before t2, t3 and t4, respectively. The choice of

acceleration as gene values is motivated by the fact that unlike speed, acceleration

is a direct result of the immediate power output of the car’s engine and brake force.

Immediately after the car has reached t2, the chromosomes of all population members

are shifted to the left by one gene. The rightmost gene is initialised according to the

current initialisation procedure, which is usually a random value in the feasibility

range. By using the described procedure, a car maintains a set of partially optimised

solutions before the start of the optimisation iteration, therefore reducing response

time and yielding a higher quality result.

8.2.4 Objective functions

Objective functions provide a way to evaluate individuals in the population of an

evolutionary algorithm. For this case study, two objective functions are defined.
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• minimise travel time, and

• minimise speed changes.

The objective to minimise travel time is defined by equation (8.14)

f1 =

min(m,n))∑
i=1

tj(i), (8.14)

where m is length of the chromosome, n is length of the remaining trajectory and

tj(i) is time required to approach junction i.

The objective to minimise speed changes is defined by equation (8.15)

f2 =

min(m,n))∑
i=1

tb(i), (8.15)

where m is length of the chromosome, n is length of the remaining trajectory and

tb(i) is time required to brake using abmax before junction i.

The collision between vehicles is avoided by using two constraints, namely, junc-

tion occupancy constraint and minimum distance constraint. The junction occu-

pancy constraint prevents a car from entering a junction already occupied by other

vehicles. The minimum distance constraint is used on the connection roads and

applies to the cars travelling in the same direction. The minimum distance is dy-

namically calculated to allow for emergency braking with acceleration abmax from

the current speed.

8.2.5 Environment - agent relationship

An important issue in modelling the case study is parallel execution of the environ-

ment, default heuristic of the cars and evolutionary algorithms. Figure 8.5 shows

the execution model of the case study. A simulation always has one environment

block and one or more car blocks. All cars are initialised during the initialisation

of the environment and immediately put into init state. A car starts its movement

when the simulation time reaches the car start time.
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Figure 8.5: Execution model of the transportation grid case study. Note that default

heuristic and motion simulation processes run in real time.

The environment block in Figure 8.5 consists of two processes, namely, the mo-

tion simulation and the animation. The motion simulation is the main process in the

simulation; it synchronises movement of all cars in the simulation and advances the

simulation time. In order to do so, the motion simulation process runs in discrete

time, incrementing system time by a small step ∆t and performing recalculation of

speed and displacement for each car. Once the results are obtained, the environ-

mental state of each car is passed to the animation process that runs with a lower

priority to avoid slowing down the simulation. The animation process calculates
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instantaneous absolute position of the car on the traffic grid and performs screen

update.

The agent representing a car also consists of two processes. The default heuristic

process runs in real time and operates in three major steps. Firstly, it generates

border-case acceleration values for a car using a set of built-in rules and the world

model. Then, it fetches the acceleration obtained by an evolutionary algorithm and

compares it to the border-case acceleration values. Finally, the best acceleration

value is selected as the current operational value.

An important topic is the synchronisation between different processes. The basic

principle is that all processes run asynchronously. The synchronisation between

the environment and the car blocks is performed used a shared synchronised data

storage termed as environmental car state. The data storage can be simultaneously

accessed by no more than a single process. In addition, the reads and writes to the

data storage are atomic, i.e., can not be subdivided into more granular operations.

It is also assumed that the reads and writes to the storage take negligibly small

time. The information contained in the data storage is listed in Table 8.2.

The synchronisation within an agent follows the same algorithm as above, ex-

cept that the synchronised storage EA acceleration contains only one field, namely,

the acceleration. The evolutionary algorithm pulls the current environmental car

state from the environmental car state data storage before the start of each gener-

ation, executes the generation and chooses the best solution from non-dominated

set according to the preference. Then, the solution is put into the EA acceleration

store.

The environment follows a different pattern, because the synchronised data store

in the environment block is “active”, i.e., it is able to influence the connected pro-

cesses. It has the same fields as the main environmental car state data store and is

used to update the animation. Once data is pushed into the store, the store pushes
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it forward to the animation process and notifies it that a change in the system has

occurred. The animation process uses the car environmental state data to calculate

the position of the car on the grid and then redraw the car.

8.3 Empirical results

8.3.1 Experiment 1

The objective of the experiment is to verify if the evolutionary algorithm is able to

match default heuristic in border conditions. In particular, it is assumed that there

are no obstacles on the trajectory and Lh = Lv = 281m. All other parameters have

default values. The preference vector is set to [0.95, 0.05], therefore a car chooses

the acceleration values that would guarantee the shortest travel time. Figure 8.6

shows the results of a typical optimisation run. The values obtained using default

heuristic are plotted using thick lines and the values obtained using the MOEA are

plotted using thin lines. The result is shown for two consecutive approach roads. It

can be seen that the evolutionary algorithm is able to adjust fast to the changing

environmental conditions and produces results that are very close to those obtained

using default heuristic.

8.3.2 Experiment 2

The objective of the experiment is to verify that the cars are able to avoid collisions.

It is assumed that there are no obstacles on the trajectory and Lh = Lv = 281m.

Two cars are defined, car 1 has a trajectory [[-1, 0], [0, 0], [1, 0], [1, 1], [1, 2], [2,

2], [3, 2], [3, 3], [3, 4], [4, 4], [5, 4]]. Car 2 has a trajectory [[0, -1], [0, 0], [0, 1], [1,

1], [2, 1], [2, 2], [2, 3], [3, 3], [4, 3], [4, 4], [4, 5]]. Both cars start at simulation time

0. Constraints are defined in such a way that no two cars occupy the same junction
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Figure 8.6: Acceleration values computed by default heuristic (thick line) and

MOEA (thin line).

simultaneously.

Figure 8.7 shows the positions of the cars at t = 26100ms. It can be seen that

car 2 reached the junction at the same moment when car 1 left it. This happened

because car 2 had to accelerate at a slower rate compared to car 1 to avoid ‘collision’.

Figure 8.8 displays a moment where car 2 arrived to the second conflicting junction.

Because of the longer path it had to take and slowdown before junction [0, 1] it did

not have to reduce its rate of acceleration. Finally, Figure 8.9 shows the positions

of the cars at t = 100000ms, when the simulation ends. Note that because car 1

had to make a right (long) turn, car 2 has decreased its lag with the car 1.
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Figure 8.7: Positions of the cars at t = 26100ms.
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Figure 8.8: Positions of the cars at t = 69700ms.
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Figure 8.9: Positions of the cars at t = 100000ms.
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8.4 Summary

This chapter details a traffic scheduling case study that focuses on a close-to-life im-

plementation of a stochastic transportation planning system with intelligent agents

representing individual vehicles. By using an asynchronous modelling scheme, the

case study emphasises the real-time behaviour of the system and verifies the ability

of the proposed approach to control multiple distributed intelligent agents on-line.

The experiments confirmed that an agent’s behaviour in a complex MAS can be

successfully guided by an EMO MPC controller.
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Chapter 9

Discussion and conclusions

9.1 Key findings

9.1.1 Literature review

The literature review focused on the characteristics of the uncertainties impact-

ing on the dynamic multi-objective optimisation process and the way they are being

addressed by the present-day research. A typical dynamic optimisation problem con-

tains a number of uncertainties, most notably modelling uncertainty caused by the

use of streamlined process models, uncertainty induced by the real time constraint

and measurement and process noise uncertainties. Papers dealing with uncertainty

in multi-objective optimisation typically address a single uncertainty type.

The existing research in dynamic multi-objective evolutionary optimisation is

very limited, despite single-objective dynamic optimisation being a well-established

area. This is a stark contrast to the field of static optimisation, where there is no such

gap between single-objective and multi-objective cases. A large proportion of papers

describing themselves as simultaneously dealing with dynamic and multi-objective

problems, opt to either model the problem as single-objective by using an a priori

159
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decision maker or consider the problem as pseudo-static in the course of optimisation.

Most of the research, which is multi-objective and dynamic, comes from the defence

sector, reflecting the more uncertain and complex nature of problems faced by the

military.

A crucial part of on-line multi-objective optimisation is the ability to repeatedly

make automated decisions in order to select a single control action from an array

of Pareto-optimal alternatives. Existing methods in MCDM are mainly targeted at

off-line situations, where a number of expert opinions are available. Consequently,

current dynamic multi-objective applications mainly use simple aggregation-based

approaches such as the WSM.

9.1.2 Dynamic control problems

The author Looked for a source of established dynamic optimisation problems, and

identified the problems typically considered by control theory as dynamic and multi-

objective. Some methods from control theory, such as MPC, are formulated as re-

peating optimisation problems, albeit single-objective. The focus on single-objective

optimisation may be explained by the requirement of a single control action at each

time instant.

It was found that some dynamic control problems require very fast response

times from the controller in the order of several milliseconds. Such a fast response

is not commonly associated with MOEA, which require a large population to be

evaluated for a number of generations to produce results. Several methods were

found that address the discrepancy between the expected controller response times

and the DMOEA performance. Firstly, splitting the controller into an EMO MPC

part and a control conditioner allows the EA to evolve a control strategy instead

of a momentary control effort value. The control strategy is used for fast and

frequent calculations of the control effort until a new strategy could be supplied by
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the DMOEA. Secondly, by partitioning the control strategy within an algorithm’s

chromosome, it is possible to address horizon issues that are characteristic of a classic

MPC. Moreover, by introducing a timed shift in the chromosome, it is possible to

supply the DMOEA with partially pre-converged solutions during the course of

optimisation.

9.1.3 Multi-objective evolutionary algorithms

The performance evaluation of the DMOEA on a benchmark problem was designed

to answer two important questions, namely, what are the algorithms’ limits in track-

ing the moving optima and how reliable are the results obtained by a stochastic

algorithm. The latter question is important because static EAs have virtually un-

limited time to converge and the results are examined by a human with the outliers

rejected; this is not possible in the context of on-line applications.

The process of DMOEA convergence can be divided into two different stages,

i.e., initial convergence and dynamic tracking. These stages are characterised by the

length of the confidence interval within which the mean of the Pareto front metric

lies. The initial convergence stage is characterised by the large variability between

multiple DMOEA executions, particularly in response to the changes in the prob-

lem. After the population has converged, subsequent changes in the problem cause

markedly similar EA response between multiple tries. The speed of the initial con-

vergence is greatly affected by the problem state, while the dependency of dynamic

tracking on the problem state is less pronounced.

The experiments confirmed that, for the particular benchmark problem, dynamic

tracking responds more efficiently to the changes than restarting an algorithm from

scratch. When dealing with problem changes, increase in static mutation rates

reduces the performance drop relative to the current mean value. In absolute terms,

however, increasing static mutation rate does not give an appreciable benefit, as the
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algorithm convergence after performance drop is slower. The variability between

experiments reducing after the period of initial convergence holds true irrespective

of the static mutation rate.

Comparing the different NSGAII variants, the greatest strength of dNSGAII-B

versus dNSGAII-A lies in its ability to improve the rate of initial convergence. The

additional performance gain in dynamic tracking is insignificant, bearing in mind

the increased number of fitness evaluations.

Overall, the performance of DMOEA is much less affected by the frequency

of change than can be predicted by observing their static counterparts employed

in a restart from scratch strategy. An important role in boosting the DMOEA

performance is attributed to elitism. Algorithms with dynamic elitism are up to

twice as efficient as those without it in terms of the hypervolume metric. A technique

that restricts the degree of elitism was tested in the form of dNSGAII-C, which was

found to compete with and sometimes outperform the baseline dNSGAII-A, despite

the reduced number of fitness evaluations.

9.1.4 Decision making in dynamic environments

By analysing the aggregation approaches (particularly the WSM), which are the

most popular decision making methods in dynamic optimisation, it was found that

the results from them depend on the shape of the Pareto front. Because the decision

has to be made from a set of Pareto-optimal alternatives and the multi-objective

search efficiency is not affected by the decisions of a Decision Maker (DM), a random

decision maker was selected as a baseline dynamic DM.

In an attempt to make a better dynamic DM, it was found by the author that the

methodology of repeatedly making on-line automated decisions has been explored

within the game theory. An algorithm for decision making in integer zero-sum games

(known as MINIMAX) is able to make automated decisions without specifying user
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preference. The algorithm uses game trees with the nodes consisting of game states

to make decisions. However, how to make game trees for real-valued control problems

with potentially unlimited number of states remained unclear.

A Pareto front provides a sample of the tradeoff surface of a dynamic system at

a given point in time. Consequently, a Pareto front metric can be used to evaluate

the state without explicitly ordering or weighting the different performance criteria.

A state tree based on the Pareto front was found to allow the application of decision

making algorithms from game theory to real-valued control problems.

9.1.5 Evaluation of single entity control

The first important finding during the evaluation was that real control problems

are often less difficult than the benchmark dynamic multi-objective optimisation

problems for the evolutionary algorithm to track. In particular, this manifests in

higher frequencies of change still allowing the DMOEA to maintain a good conver-

gence. It was found that the EMO MPC controller is able to stabilise the inverted

pendulum in real-time despite the control response interval of 5ms. In addition, an

EMO MPC controller provides better performance than the PID controller used as

a baseline. The controllers with long control intervals are able to compensate the

seldom changes in behaviour with more aggressive control strategies.

There is a nonlinear relation between the length of the prediction horizon and

the performance of an EMO MPC controller. If the prediction horizon is too long

and the DMOEA is operating with global fitness, the overall performance of the

controller decreases, as only a restricted set of globally stable control strategies

is evaluated. Shorter prediction horizons allow the controller to exploit globally

unstable control strategies and provide better performance as result. However, very

short prediction horizon causes the controller to overshoot (or supply a very large

control effort if the control strategy is not limited by constraints).
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Regarding the stability of the obtained results, it was observed that the con-

trollers that operate with global fitness functions are stable regardless of the pref-

erence vector of the aggregating decision maker. Controllers that evaluate the local

fitness require dedicated stability constraints in the DMOEA and the DM in order

to be stable in all cases. Without stability constraints, they may become unstable

with some preference vectors.

Interesting results were demonstrated by the random decision maker. In contrast

with static decision making, in which making a random decision is not generally a

good idea even if one has to select from a set of Pareto-optimal alternatives, the

random decision maker turned out to be a tough competitor to the WSM. EMO

MPC controllers employing random DM were stable with both local and global

fitnesses. However, the performance of a controller evaluating local fitness with a

random decision maker suffers a lot of degradation as the length of the prediction

horizon decreases.

A controller using PDT DM outperforms the random decision maker for all tested

lengths of the prediction horizon. In general, the PDT controller is more tolerant to

the changes in prediction horizon length than both WSM and random DMs. The

effect of PDT can be seen as a stability-enforcing measure, as current decisions

causing instability lead to deterioration of future Pareto fronts, and therefore would

not be preferred by PDT.

9.1.6 Multi-agent systems

While studying a MAS system that uses EMO MPC controllers to guide agents’

actions, two issues were found to have the most impact on the system behaviour. The

first one was the need for guaranteed real time response that arises in the interaction

between multiple agents. The real time constraint was found to be enforceable

through a problem-specific basic default heuristic running alongside the EMO MPC
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controller, providing a fallback solution in cases where the evolved solution is poor.

In the later stages of the development, is was observed that the EMO MPC controller

was always able to supply a satisfactory solution in a timely manner, so that the

default heuristic was not needed. However, the presence of the default heuristic

was important during the early stages, where it accounted for nearly one third of

decisions. The default heuristic is also very important for the problems where the

time required to calculate the objective vector can not be reliably estimated, such as

when the objectives are calculated using a Discrete Event Simulation (DES) model.

The second issue concerns how an agent could model the actions of other agents, so

as to adapt to changes in their actions. Seemingly, the computational demands of

the entire system rise exponentially with the number of agents. It was found that the

actions of an agent can be communicated to other agents in terms of shared resource

usage. Therefore, an agent does not need to model actions of other agents, but can

directly use the resource availability information as constraints to the DMOEA and

within any spatial global objective functions.

It was also discovered that the uncertainty arising from the interaction of multiple

agents can be arranged into uncertainty vectors. The uncertainty vectors are parti-

tioned according to the systems states on which they are based, e.g., on the resource

usage. The partitioning of the uncertainty vectors provides a natural mapping to

the variable prediction horizon scheme of EMO MPC and allows for chromosome

shifts that improve initial convergence.

9.1.7 Case study: traffic scheduling

The traffic scheduling case study focused on a close-to-life implementation of a

stochastic transportation planning system with intelligent agents representing indi-

vidual vehicles. An asynchronous modelling scheme places emphasis on the system’s

real-time behaviour and ensures that the real-time constraints are always satisfied.
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The experiments confirmed that an agent’s behaviour in a complex MAS can be

successfully guided by an EMO MPC controller.

9.2 Contributions

The aim of this research is to develop a framework for on-line optimisation of dy-

namic problems that is capable of a) representing problems in a quantitative way,

b) identifying optimal solutions using multi-objective evolutionary algorithms, and

c) automatically selecting an optimal solution among alternatives.

The overall contribution of this research is a framework for multi-objective op-

timisation of dynamic problems. The framework comprises problem specification,

dynamic multi-objective search and the a posteriori dynamic decision maker. The

framework is designed to be applied to tasks that require a coordinated control of

multiple entities. This section describes the contributions of this research in detail.

A crucial part of this research is the systematic approach to dynamic MOO and

recognition of the role that decision making plays in dynamic multi-objective opti-

misation. In Chapter 3, dynamic evolutionary multi-objective search and dynamic

a posteriori decision making are considered in the MPC context, which is a well-

established method to control complex processes based on iterative process model

optimisation, albeit single-objective. Particular attention is devoted to performance

improvement techniques that resulted in the concept of a control conditioner and

the technique of control strategy evolution. To counter the effects of uncertainty

and to improve initial convergence, this research proposes to split the prediction

horizon into smaller sections with the corresponding parts of the control strategy

sequentially encoded in the chromosome.

Chapter 4 provides a study on how the different parameters of the EMO MPC

affect the evolutionary algorithm’s ability to track the moving optima. The following
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parameters were considered: length of pre-execution, frequency of change, length of

prediction interval and static mutation rate. In addition, a DMOEA with restricted

elitism is suggested for noisy environments.

To address the decision making aspect of the problem, a novel method for con-

structing game trees for real-valued multi-objective problems is detailed in Chap-

ter 5. Its use allows us to apply the decision making techniques developed in the

area of control theory to control problems. By leveraging the game tree approach,

an algorithm for preference-less on-line decision making is proposed.

Chapter 6 contains an empirical evaluation of EMO MPC parameters and com-

parison of PID and B-spline control conditioners. In addition, the proposed EMO

MPC approach is compared with a classic controller on a well-known benchmark

problem of balancing an inverted pendulum. The different decision making tech-

niques are examined, and a baseline random decision maker is suggested and tested.

Finally, the EMO MPC approach is integrated into a MAS framework for coor-

dinated control of multiple entities in Chapter 7. The framework is targeted on the

applications in shop floor scheduling and traffic planning. A traffic scheduling prob-

lem in a rectangular grid environment is detailed and used to validate the framework

in Chapter 8.

9.3 Limitations

The limitations of this research are categorised into three groups, namely, decision

making, verification and MAS. A major limitation that belongs to the decision mak-

ing category is that there are no problem-independent metrics to compare dynamic

DMs. However, this issue is not specific to the dynamic case, as static decision

makers face the same difficulties in comparison [28]. Another limitation within the

decision making category is that there is only a basic analysis and motivation for
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the selection of a particular control conditioner.

The verification uses a problem with modelling uncertainty, but the incorporation

of measurement noise is not tested thoroughly. Consequently, only Pareto ranking

is used to compare the alternatives by the DMOEA, which might not be the optimal

way in the presence of noise. The evaluation of single entity control is limited to

two objectives, although there are no obvious obstacles for the approach to work

with three or more objectives. The DMOEA tracking ability is examined using a

single benchmark problem, which is a Type II problem in which both the decision

variables and the objective front change over time. The EMO MPC controller is

compared with the PID and nonlinear MPC controllers, but comparison with other

controller types would also be beneficial.

The MAS framework does not detail the handling of intermittent communica-

tions between agents, which might be detrimental to the DMOEA performance, as

the constraints would alternate rapidly. Also, the issue of handling the resource ac-

cess priority for agents, especially ones with preference-less DMs, is not considered.

9.4 Future research

Evaluation of the EMO MPC controller demonstrated dynamic multi-objective op-

timisation as a powerful and versatile tool for solving real-life control problems. At

the same time, owing to the relative lack of attention paid to dynamic EMOO, in

research literature there are numerous research gaps that cannot be addressed by

a single study. These unaddressed research gaps are suggested as possible future

research directions below.

There are two principal research directions in the theory surrounding the EMO

MPC approach. Firstly, a study into new control conditioners, a methodology for

choosing them and a comparison of more control conditioners is required in the
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context of EMO MPC. The benefits provided by open and closed loop control

conditioners are open to a systematical evaluation. An interesting research question

is the complexity split between the dynamic MOEA / DM pair and the control

conditioner, i.e., how complex should be the control conditioner in order to maximise

it’s performance and facilitate the search of the control strategy. Secondly, the use

of other non-Pareto ranking techniques for ordering of solutions should be studied

for DMOEA, as Pareto ranking is susceptible to noise commonly found in dynamic

applications.

A number of future research directions is associated with the dynamic decision

making aspect of the multi-objective control. It is important to know what are the

optimum depth of the PDT tree, its width at a branching point and the Pareto front

metrics that are used to evaluate system states. On the other hand, more research

is required in alternative on-line decision makers.

In addition, there are numerous empirical research directions. The EMO MPC

controller could be compared against other controller types, such as H∞ and fuzzy

controllers. Another topic of interest is how PDT behaves in higher-objective

scenarios. From the performance point of view, the MAS framework should be

benchmarked with different communications patterns. The effects of measurement

and process noise should be evaluated together with the modelling uncertainty for

DMOEA. Additional tests with different control problems are required as well.

Finally, better metrics are needed to allow EMO MPC methods to be compared.

9.5 Conclusions

This research demonstrates that the EMO approach can be used to address the

complexity found in real-time control problems. The proposed EMO MPC con-

troller is able to provide strong competition to classic controllers in simple cases and
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also extend the applications to highly multi-objective, nonlinear and interdepen-

dent problems. The proposed decision making approach establishes a link between

game theory and decision making in DMOEA, suggesting future exchange of ideas

and methods between these areas. Having a Pareto surface available at any point

provides a tool for analysis of classic controllers and valuable insight into the charac-

teristics of the problem. Finally, the EMO MPC approach using modern off-the-shelf

hardware is sufficiently responsive even for control problems with fast paced dynam-

ics. To concluding this research, the achievements are analysed against the research

objectives defined earlier.

1. Develop dynamic problem specification and provide quantitative representation

suitable for optimisation using evolutionary techniques. Chapter 3 established

a link between dynamic control problems and dynamic MOO and provided

quantitative problem representation in a form suitable for DMOEA applica-

tions. The representation contains a number of features designed to improve

the real-time performance of the algorithm in the presence of noise. Chapter 7

describes a MAS that is designed to be integrated with EMO MPC.

2. Propose solutions to deal with problem dynamics and create a framework for

multi-objective optimisation of dynamic problems. Problem dynamics is ad-

dressed by modifications of the state-of-the-art MOEA NSGA-II presented in

Chapter 4. An EMO MPC optimisation framework was proposed for dynamic

problems in Chapter 3.

3. Identify the criteria for decision making and suggest a strategy for making

decisions from a set of Pareto-optimal solutions on-line. Chapter 5 outlines

a baseline random decision making procedure and a novel game-tree based

on-line decision method.
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4. Identify and select performance metrics for the dynamic optimisation case,

and systematically evaluate the performance of the dynamic multi-objective

optimisation framework. Performance of the dynamic optimiser is evaluated

in Chapter 4. The hypervolume and relative variance metrics are used for the

evaluation. The EMO MPC framework is evaluated in Chapter 6.

5. Validate the proposed framework using a case study The EMO MPC optimisa-

tion framework is evaluated using an inverted pendulum problem in Chapter 6

including comparison to PID and nonlinear MPC methods. MAS for coordi-

nated control of multiple entities was evaluated in Chapter 8 using a traffic

scheduling case study.

The aim of this research is to develop a framework for on-line optimisation of

dynamic problems that is capable of a) representing problems in a quantitative

way, b) identifying optimal solutions using multi-objective evolutionary algorithms,

and c) automatically selecting an optimal solution among alternatives. The pro-

posed framework was validated using an inverted pendulum problem and traffic

grid scheduling problem. In addition, the multi-objective evolutionary search was

verified using a benchmark problem. The results show the multi-objective control

approach as a viable alternative to traditional single-objective control methods.
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Appendix A

Minimax algorithm

implementation

Listing A.1: Mimimax algorithm implementation in Python

class State ( ob j e c t ) :

def i n i t ( s e l f , move , ch i ld r en , \

i sTermina lState , t e r m i n a l U t i l i t y = None ) :

s e l f . move = move

s e l f . i sTermina l = i sTermina lState

s e l f . u t i l i t y = t e r m i n a l U t i l i t y

s e l f . c h i l d r e n = c h i l d r e n

def maxValue ( s e l f ) :

i f s e l f . i sTermina l :

rv = s e l f . u t i l i t y

else :

r v = s e l f . c h i l d r e n [ 0 ] . minValue ( )

for s t a t e in s e l f . c h i l d r e n :
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rv = max( rv , s t a t e . minValue ( ) )

return rv

def minValue ( s t a t e ) :

i f s e l f . i sTermina l :

rv = s e l f . u t i l i t y

else :

r v = s e l f . c h i l d r e n [ 0 ] . maxValue ( )

for s t a t e in s e l f . c h i l d r e n :

rv = min ( rv , s t a t e . maxValue ( ) )

return rv

func t i on getMove ( s t a t e ) :

u t i l i t y = s t a t e . maxValue ( )

return s t a t e . ge tCh i ldByUt i l i ty ( u t i l i t y )



Appendix B

Pareto Decision Tree algorithm

implementation

Listing B.1: PDT algorithm implementation in Python

class PDT( ob j e c t ) :

def i n i t ( s e l f , dMOEA, inte rna lProce s sMode l )

s e l f . r e fA lgo r i thm = dMOEA

s e l f . r e fMode l = inte rna lProces sMode l

s e l f . a l go r i thm = deepcopy ( s e l f . r e fA lgor i thm )

def getOperat ingPoint ( s e l f , ParetoFront ) :

s 1 = ParetoFront . popRandomSolution ( )

s 2 = ParetoFront . popRandomSolution ( )

maxUti l i ty , opPoint = \

s e l f . tournament ( s1 , s e l f . u t i l i t y ( s 1 ) , s 2 )
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numberOfExecutions = 1

while numberOfExecutions < maxExecutions :

s = ParetoFront . popRandomSolution ( )

maxUti l i ty , opPoint = \

tournament ( opPoint , maxUti l i ty , s )

return opPoint

def tournament ( s e l f , s o lu t i on1 , u t i l i t y 1 , s o l u t i o n 2 ) :

u t i l i t y 2 = s e l f . u t i l i t y ( s o l u t i o n 2 )

i f u t i l i t y 1 > u t i l i t y 2 :

rv = ( u t i l i t y 1 , s o l u t i o n 1 )

else :

r v = ( u t i l i t y 2 , s o l u t i o n 2 )

return rv

def u t i l i t y ( s e l f , s o l u t i o n ) :

popu la t i on = deepcopy ( a lgor i thm . getPopulat ion ( ) )

s e l f . a l go r i thm . se tPopu lat i on ( popu la t i on )

c o n t r o l = new Contro lCondi t ioner ( s o l u t i o n )

model = ProcessModel ( s e l f . re fModel , c o n t r o l )

s e l f . a l go r i thm . getProblem ( ) . setModel ( model )

s e l f . model . runStep ( )

newParetoFront = s e l f . a l go r i thm . runStep ( )

return hypervolume ( newParetoFront )


