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The main theme of this thesis is the parallel between results in topos theory and
in the theory of additive functor categories.

In chapter 2, we provide a general overview of the topics used in the rest of the
thesis. Locally finitely presentable categories are introduced, and their expression as
essentially algebraic categories is explained. The theory of localization for toposes and
abelian categories is introduced, and it is shown how these localizations correspond
to theories in appropriate logics.

In chapter 3, we look at conditions under which the category of modules for a
ring object R in a topos E is locally finitely presented, or locally coherent. We show
that if E is locally finitely presented, then the category of modules is also; however,
we show that far stronger conditions are required for the category of modules to be
locally coherent.

In chapter 4, we show that the Krull-Gabriel dimension of a locally coherent
abelian category C is equal to the socle length of the lattice of regular localizations
of C. This is used to make an analogous definition of Krull-Gabriel dimension for
regular toposes, and the value of this dimension is calculated for the classifying topos
of the theory of G-sets, where G is a cyclic group admitting no elements of square
order.

In chapter 5, we introduce a notion of strong flatness for algebraic categories
(in the sense studied by Adamek, Rosicky and Vitale in [3]). We show that for a
monoid M of finite geometric type, or more generally a small category C with the
corresponding condition, the category of M -acts, or more generally the category of
set-valued functors on C, has strongly flat covers.
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Chapter 1

Introduction

The main theme of this thesis is to investigate connections between Grothendieck

abelian categories and Grothendieck toposes. Both types of category are examples

of locally presentable categories. The similarity between these two fields has been

known for a long time, with abelian functor categories playing a role analogous to an

‘additive version’ of the classifying topos associated with the theory of modules over

a ring. In particular, taking logical quotients of this theory corresponds to looking at

localizations of the functor category in the abelian case, or the classifying topos in the

non-abelian case. This theory is outlined in the book by Prest [23] and the thesis of

Caramello [11]. In chapter 2 of this thesis we introduce locally presentable categories

and explain how to interpret them as categories of models of an essentially algebraic

theory. This material is from [1]. We then introduce toposes and abelian categories,

and explain the theory of their localizations, before showing that these correspond

to theories in the appropriate geometric logics. This material is drawn together from

the books [20], [23], [17] and [11], and none of the results are new, though the proof

of 2.28 is new. It uses the ideas in the proof of the Duality Theorem in [11], and is

quite different from the argument given in [23].

The main idea in chapter 3 is to see sheaves over a site as models of an essentially

algebraic theory. This can be used to classify those toposes which are locally finitely

presented, generated and coherent (3.2, 3.4, 3.7). These characterizations are all

known, but we believe this method of proving them is new. We then look at a

9



CHAPTER 1. INTRODUCTION 10

question considered in the paper [24], which asked, given a ring object R in a locally

finitely presented topos E , when the category of modules over R is itself locally finitely

presented. It is not difficult to see using the theorems about essentially algebraic

theories from [1] that the category of R-modules is also locally finitely presented

(Theorem 3.11). The remainder of the chapter is spent examining when the category

of R-modules might be locally coherent. Using an argument of Prest and Ralph, we

show that if R is a finitely presented sheaf of rings on a space such that RU is a

coherent ring for every open set U in the space, then the category of modules over R

is locally coherent (Theorem 3.14). On the other hand, we show that for any space

with infinitely many open set, we will be able to choose a sheaf of rings R such that

all the rings RU are coherent, but the category of modules is not locally coherent

(Theorem 3.16).

In chapter 4, we examine the idea of regular localizations and Krull-Gabriel di-

mension. We show that if T is a Cartesian theory, then the regular objects in the

classifying topos for T can be considered as pairs of regular formulas φ/θ, where θ

defines an equivalence relation on φ. This is a ‘regular’ non-additive analogue of

Burke’s result, [23, 10.2.30], which states for a ring R, the finitely presented functors

mod-R→ Ab are given by pairs of pp-formulas φ/ψ, where ψ(M) ⊆ φ(M) for every

R-module M . A ‘coherent’ version of this result was proved in [26], and our proof

is almost identical; it is the simple observation that at each stage of Rajani’s proof

of this result, if all the formulas we start with are regular, than all the formulas

constructed during the proof will be regular also. We give an ‘internal’ definition of

localizations of the classifying topos corresponding to regular theories (that is, one

not mentioning the theory explicitly, but only the objects of the topos) - a localiza-

tion is regular if and only if the inclusion functor preserves epimorphic families of

monomorphisms. Finally, we characterize locally regular toposes using an argument

similar to that used for the coherent case in chapter 3.

In the next part of the chapter, we look for a good definition of Krull-Gabriel

dimension for toposes. Krull-Gabriel dimension is an invariant of locally coherent

abelian categories, which to some extent measures the complexity of the categories’
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structure. It is defined using successive finite-type localizations of the category. Our

objective is to come up with a good analogous definition for toposes. For Grothendieck

abelian categories, regular and finite-type localization coincide, but this is not the case

for toposes. We will find that the notion of dimension we get using regular localiza-

tions is a far better invariant than we would reach using finite-type localizations. We

show that the Krull-Gabriel dimension of a locally coherent abelian category C is

equal to the socle length of the lattice of finite-type/regular localizations of C (Corol-

lary 4.29). This allows us to make the same definition for a locally regular topos E .

Using this definition, we calculate the dimension for the classifying topos for the the-

ory of Zn-sets, for a cyclic group Zn, and show that the dimension will be equal to the

number of distinct prime factors of n (Proposition 4.42). To do this we construct a

‘Ziegler spectrum’ for this category - that is, a set of objects in the category sufficient

to classify regularly definable subcategories (section 4.6). This construction is based

on the one given in the paper [28], but corrects an error made in that paper.

In chapter 5 we consider the Flat Cover Conjecture for toposes. This result,

stating that every object in a Grothendieck abelian category has a flat cover, was

first proved for categories of modules in [6], and more recently for all locally finitely

presented abelian categories [12, Corollary 3.3], [31, Theorem 2]. We extend the

concept of flatness to cover not just toposes but arbitrary algebraic categories, that is,

those categories which can be expressed as the categories of finite product-preserving

functors T → Sets, where T is an arbitrary category with finite products. This

coincides with the property of strong flatness that has previously been investigated by

semigroup theorists, e.g., in [21]. In particular, we show that for a monoid M of finite

geometric type (in fact, for a small category C with the corresponding property) the

category of functors M → Sets (or the category of functors C → Sets if we consider

the categorical version) has strongly flat covers (Theorem 5.21).

We will assume the reader is familiar with the basics of category theory (limits

and colimits, adjoint functors, the Yoneda lemma, etc.) as outlined in, for example,

[7]. The books [1] and [20] will be referred to frequently, and arguments that are given

in full in these books will be outlined only very briefly in this thesis. A familiarity
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with model theory will be useful in reading the thesis, but not essential.

Categories will generally be denoted using calligraphic capital letters (e.g., C, D,

. . .); tuples will generally be denoted with bold-faced lower case letters (e.g., x, y, . . .).

For categories C and D, the category of functors C → D with morphisms the natural

transformations will generally be denoted (C,D). This contrasts to the notation

HomC(C,D), will be used to denote the set of morphisms C → D between two objects

in C. Where the category in question is obvious from the context, the subscript C

will sometimes be omitted. An italicized word or phrase (e.g., free realization) will

indicate that it is being defined, unless given as part of a definition, in which case the

word or phrase being defined will be in normal typeface. Lemmas, definitions and

theorems share the same counter, which is reset at the beginning of each chapter, so

Lemma 4.3 refers to the third result in chapter 4.



Chapter 2

Localizations and geometric logic

2.1 Locally presentable categories

We begin by describing the various presentability conditions on categories. The no-

tions of finite presentability and coherence introduced in this section are from the

books by Adamek and Rosicky [1], Johnstone [17] and Prest [23].

A partially ordered set (I,≤) is said to be directed if it is non-empty and any two

elements of I have a least upper bound. Let C be a category. A directed system in C

is a functor D : D → C where D is a directed partially ordered set, considered as a

category (that is,we consider the elements of the partial order to be objects, and for

x, y ∈ D, there is a unique arrow x→ y if and only if x ≤ y in the order). A directed

colimit in C is a colimit over a directed diagram. We denote the directed colimit over

a diagram D with the notation lim
−→
D. Directed colimits are often called direct limits,

especially by algebraists. An object C in C is said to be finitely presentable if the

functor

Hom(C,−) : C → Sets

commutes with directed colimits. Equivalently, given a directed system

{Di

dij //Dj | i ≤ j ∈ (I,≤)}

13



CHAPTER 2. LOCALIZATIONS AND GEOMETRIC LOGIC 14

where (I,≤) is some directed poset, and given a colimit cocone

{Di
di //L}

we have that any map f : C → L factors through the cocone, that is, f = dif
′ for

some i ∈ I and some f ′ : C → Di, and this factorization is essentially unique, in the

sense that if g : C → Dj is some other map with djg = f , then for some k ≥ i, j, we

have dikf
′ = djkg.

A set of objects G is said to generate C if for any pair of arrows f 6= g : A → B

in C, there is some map x : G → A with G ∈ G and fx 6= gx. Equivalently, if C has

coproducts, for every object C there is an epimorphism

e :
∐
i

Gi → C

where the objects Gi are all in G.

An epimorphism is e : E → C said to be strong if given any commutative square

A

f
��

e // B

g
��

E m
// C

such that m is a monomorphism, there is a map d : B → E such that md = g and

f = de. In categories with pushouts, this is equivalent to stating for e is extremal,

that is, it does not factor through any proper subobject of C.

If C has coproducts, a generating set G is said to strongly generate C if for every

object C there is a strong epimorphism e :
∐

iGi → C as above. This equivalent to

the condition that whenever s : S → A is a proper monomorphism in C, there is a

map x : G→ A with G ∈ G, not admitting a factorization through s.

The category C is locally finitely presentable if it is cocomplete and has a strong

generating set of finitely presentable objects.

Analogous to the above, we say an object C in C is finitely generated if the



CHAPTER 2. LOCALIZATIONS AND GEOMETRIC LOGIC 15

representable functor Hom(C,−) commutes with directed colimits of diagrams where

all the maps dij are monics. Such a diagram is called a directed union. The category C

is called locally finitely generated if it is cocomplete, co-wellpowered and has a strong

generating set of finitely generated objects (note that one can prove locally finitely

presentable categories are co-wellpowered using the definition above (e.g., [1, 1.58,

2.49]); it is an open question whether this condition is necessary in the definition of

a locally finitely generated category).

Finally, an object C in C is coherent if it is finitely generated, and for any pullback

diagram of the form

B ×C B′ //

��

B′

��
B // C

in which B and B′ are finitely generated, we have that B ×C B′ is also finitely gen-

erated. A category is locally coherent if it is cocomplete and has a strong generating

set of coherent objects.

Example. 1. Let S be a set (of sorts). An S-sorted set is a collection of sets (Xs)s∈S

indexed by S; a morphism of S-sorted sets f : X → Y consists of a family of

functions fs : Xs → Ys, indexed by S.

An S-sorted signature of (finitary) algebras Σ consists of a collection of function

symbols σ, together with an arity function assigning to each function symbol σ

an ordered sequence (s1, . . . , sn) from S denoting the domain and an element

s ∈ S denoting the codomain. We write this information as: σ : s1×. . .×sn → s.

An algebra A of the signature Σ consists of an S-sorted set |A| = (As)s∈S

together with functions σA : As1 × . . . × Asn → As for each function symbol

σ : s1× . . .× sn → s. For nullary function symbols (i.e., those for which n = 0)

σA will denote simply an element of As.

A homomorphism of algebras A → B consists of an S-sorted map |A| → |B|,

preserving the operations in Σ, in the sense that for any function symbol σ :

s1× . . .× sn → s, and any set of elements x1 ∈ As1 , . . . , xn ∈ Asn , the equation
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fs(σA(x1, . . . , xn)) = σB(fs1(x1), . . . , fsn(xn) will hold.

The category of algebras over Σ is a locally finitely presentable category.

2. Let Σ be a many-sorted signature of algebras, and let X be an S-sorted set (of

variables). The set of terms over X is defined as follows: each variable x ∈ Xs

is a term of sort S, and, if σ : s1 × . . .× sn → s is an operation symbol, and ti

is a term of sort si for i = 1, . . . , n, then σ(t1, . . . , tn) is a term of sort s. We

write TΣ(X) for the set of all terms over the S-sorted set X. An equation in the

variables X is a pair of terms in TΣ(X), (t1, t2) of the same sort; we write this

as t1 = t2. An algebra A of the signature is said to satisfy the equation t1 = t2

if the equation holds for each interpretation of the variables X in Σ (i.e., for

each S-sorted function X → A, the elements of A corresponding to the terms

t1 and t2 will be equal).

An equational theory (Σ, E) over a set of sorts S consists of an S-sorted signature

of algebras together with a set of equations E (in some ‘standard’ set of variables

X). A model of the theory consists of an algebra A of the signature Σ in which

all the equations in E are satisfied.

Let (Σ, E) be an equational theory over a set of sorts S. The category of models

of (Σ, E) is locally finitely presented [1, 3.7]. The free algebras on the sorts of

S are finitely presentable, and form a strong generating set for the category.

Examples of categories of models of equational theories include groups, rings,

monoids, R-modules (where R is a given ring), Lie algebras over a given field

k, etc. Note that the precise signature we choose for each theory can affect

whether the theory is equational for that signature. For example, the theory of

groups is an equational theory over the single-sorted signature (m, e, i), where

m is binary, i is unary and e is a constant; considered as a special class of

monoid (i.e., a theory over the signature (m, e)), groups are not described by

an equational theory.

3. An S-sorted relational signature is a collection of relation symbols Σ, together
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with an arity function assigning to each relation symbol ρ of Σ an ordered

sequence (s1, . . . , sn) ∈ Sn, denoting the domain of the relation ρ. A relational

structure A of type Σ consists of an S-sorted set |A| together with, for each

ρ ∈ Σ of arity (s1, . . . , sn), a relation ρA ⊆ As1 × . . .× Asn . A homomorphism

of relational structures f : A → B consists of an S-sorted map f : |A| → |B|

preserving the relations, i.e., so that for each relation ρ ∈ Σ of arity (s1, . . . , sn),

we have that (x1, . . . , xn) ∈ σA implies (fs1(x1), . . . , fsn(xn)) ∈ σB. For an S-

sorted relational structure Σ, the category of Σ-structures will be locally finitely

presentable.

4. An S-sorted signature Σ consists of a disjoint union Σfun ∪ Σrel, where Σfun is

an S-sorted signature of algebras, and Σrel is an S-sorted relational signature.

A Σ-structure is an S-sorted set A together with operations and relations that

make A both an algebra of Σfun and a relational structure of type Σrel; a mor-

phism of S-sorted structures is an S-sorted map f : |A| → |B| which is both

a morphism of algebras and a morphism of relational structures. The category

of Σ-structures and their morphisms will again be a locally finitely presentable

category.

Locally finitely presentable categories are interesting from the point of view of

model theory because it is possible to see the objects in them as models of a multi-

sorted theory, with the finitely presentable objects in the category being the sorts,

and the maps to the object from a finitely presentable object as being the elements

of that sort in the model.

Lemma 2.1. ([27, 2.1]) Let C be a locally finitely generated category, with a gener-

ating set G of finitely generated objects. An object C of C is finitely generated if there

is a strong epimorphism ∐n
i=1Gi

e //C

where for each i, Gi ∈ G.

Lemma 2.2. ([27, 2.2]) Let C be a locally finitely presentable category, with a
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generating set G of finitely presentable objects. An object C of C is finitely presentable

if and only if there is a coequaliser diagram

∐m
j=1 Hj

////
∐n

i=1Gi
//C

where for every i and j, Gi, Hj ∈ G.

Remark. In fact, it follows from the proof in [27] that for any strong epimorphism

e :
∐n

i=1Gi → C, we can construct a coequaliser diagram of this form.

We recall the definition of an exact category, in the sense of Barr, which can be

found in, for example [8, ch.2] or [16, A1.3]. There is some inconsistency in these

sources as to whether an exact category is required to have all finite limits, since only

specific limits are required to prove most of the theorems about them; in practice

most of the examples that are studied do have finite limits. In this thesis we will

assume that they do, for simplicity.

A category C is said to be regular if it has finite limits, every kernel pair has a

coequaliser, and the pullback of a strong epimorphism along any morphism is again

a strong epimorphism.

Now let (a, b) : R ////C be a parallel pair of morphisms in a category C with

finite limits.

1. We say (a, b) is a relation on C if (a, b) : R→ C × C is monic.

2. We say (a, b) is reflexive if there exists r : C → R with ar = br = 1C .

3. We say (a, b) is symmetric if there exists s : R→ R with as = b and bs = a.

4. We say (a, b) is transitive if there exists t : P → R, such that at = ap and

bt = bq, where P is the pullback P
q //

p
��

R

a
��

R
b // C

.

5. We say that (a, b) is an equivalence relation if it has all four of the above

properties.
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6. We say that the equivalence relation (a, b) is effective if it has a coequaliser

q : C → Q, and (a, b) is the kernel pair of q.

A category C is said to be exact if it is regular and every equivalence relation in

C is effective.

Remark. This form of exactness is also called ‘exact in the sense of Barr’ to distinguish

it from another notion of categorical exactness concerning additive categories, due to

Quillen. The notion above is the only notion of exactness we will be using in this

thesis.

Corollary 2.3. In an exact locally finitely presentable category, an object C is finitely

presentable if there is a strong epimorphism e : B → C with B finitely presentable,

where the underlying object for the kernel pair of e is finitely generated.

Proof. Let f, f ′ : K → B be the kernel pair. If K is finitely generated there is a

strong epimorphism g : L → K with L finitely presentable. Because g is a strong

epimorphism, the diagram

L
f ′g
//

fg //
B

e //C

is a coequaliser diagram.

Corollary 2.4. Let C be an exact locally finitely presentable category. Then every

coherent object is finitely presentable.

Proof. Let G be a generating set of finitely presentable objects for C.

Let C be a coherent object of C. There is a strong epimorphism e : B → C, with

B finitely presentable. Since C is coherent, the underlying object for the kernel pair

of e is finitely generated. Thus C is finitely presentable.

Lemma 2.5. In any category C, if C is coherent and s : S → C is a finitely generated

subobject of C, then S is coherent also.
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Proof. Suppose we have a pullback diagram of the form

B ×S B′ //

��

B′

b′

��
B

b // S

.

For any pair of maps x : X → B, x : X → B′ we have bx = b′x′ if and only if

sbx = sb′x′. Thus the diagram

B ×S B′ //

��

B′

sb′

��
B

sb // C

is a pullback also, and B ×S B′ is finitely generated.

Remark. In a locally coherent abelian category, coherent objects are characterised

by the condition that their finitely generated subobjects are finitely presented [23,

2.3.15]; however this condition is not equivalent to coherence in general. If it was, then

the next result would show that finitely presentable and coherent objects coincided,

and in locally coherent abelian categories, this is the case [23, E.1.18].

Theorem 2.6. Let C be an exact locally coherent category, in which coherent objects

are closed under finite coproducts. Then any finitely generated subobject of a finitely

presentable object is finitely presentable.

Proof. Let C be a finitely presentable object, with a finitely generated subobject

s : S → C. There is a strong epimorphism a : A→ S, where A is coherent. Since C

is finitely presentable, there is a strong epimorphism b : B → C where B is coherent,

A can be taken to be a subobject of B, and the object underlying the kernel pair of b

is finitely generated (to see that A is a subobject of B, choose an arbitrary coherent

object admitting C as a quotient, and take the coproduct of this with A). Consider

the following diagram:
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K1 f2
//

f1 //
A

a //

s′

��

S

s

��
K2 g2

//
g1 //

B
b // C

Here (f1, f2) is the kernel pair of a, and (g1, g2) is the kernel pair of b. According

to our assumptions, B and A are coherent, and K2 is finitely generated.

Since af1 = af2, we have bs′f1 = saf1 = saf2 = bs′f2, and so there is a unique

map t : K1 → K2 with s′f1 = g1t, s
′f2 = g2t.

We claim that the cone

K1 f2
//

f1 //

t
��

A

K2

is a limit over the diagram

A

s′

��

A

s′����������

K2 g2
//

g1 //
B

To see this, suppose we have an object X and arrows x1, x2 : X → A, x3 : X → K2,

satisfying s′x1 = s′x2 = g1x3 = g2x3.

Since s′x1 = s′x2, we have bs′x1 = bs′x2, and so sax1 = sax2. Since s is monic,

this means ax1 = ax2. Since (f1, f2) is the kernel pair of a, there is a map x : X → K1

with f1x = x1, f2x = x2. It suffices to prove that tx = x3. But this is true because

both of these maps are factorizations of the map s′x1 = s′x2 through the kernel pair

(g1, g2), so they are equal by the uniqueness of this factorization.

Thus K1 is the limit of the diagram described. But this limit can be constructed

by taking three pullbacks, one after the other - that is, K1 is isomorphic to the

composition of pullbacks ((K2 ×(g1,g2) K2) ×B A) ×B A. Since K2 and A are each

finitely generated, and B is coherent, it follows that these pullbacks, and therefore

K1, are finitely generated. Thus S is finitely presentable.

The notions of finite presentability introduced in this section can be generalized

to infinite cardinals. Let λ be a regular cardinal. A partially ordered set (I,≤) is said



CHAPTER 2. LOCALIZATIONS AND GEOMETRIC LOGIC 22

to be λ-directed if every subset S ⊆ I of size less than λ has a least upper bound.

In a category C, a λ-directed diagram is a functor D : D → C where the category

D is a λ-directed partially ordered set. A λ-directed colimit is a colimit over a λ-

directed diagram. An object C in C is said to be λ-presented if the functor Hom(C,−)

commutes with λ-directed colimits, and λ-generated if Hom(C,−) commutes with λ-

directed colimits where all the maps in the colimit cocone are monic; such a diagram

is called a λ-directed union. The category C is said to be locally λ-presented if it is

cocomplete and has a strong generating set of λ-presented objects, and it is said to be

locally λ-generated if it is cocomplete, cowellpowered, and has a strong generating set

of λ-generated objects. We say C is locally presentable if there is a regular cardinal λ

such that C is locally λ-presented.

Let C be a category, and let A be a reflective subcategory, with reflection functor

r : C → A and inclusion functor i : A → C. This reflection is of λ-type if i preserves

λ-directed colimits (equivalently, A is closed under λ-directed colimits). We say the

reflection is of finite type if it is of ℵ0 type.

In this thesis, we will often use the next result, from [1, 1.39], which shows that

λ-type reflections preserve local λ-presentability. We include a proof of this result,

since we will refer back to it a lot during this thesis.

Theorem 2.7. ([1, 1.39]) Let C be a locally λ-presentable category and let r : C → A

be a λ-type reflection functor onto a full subcategory A ⊆ C. Then the subcategory A

is also locally λ-presentable.

If C is locally λ-generated, and r : C → A is a reflection functor such that the

inclusion functor i preserves λ-directed unions, then the subcategory A is also locally

λ-generated.

Proof. First, we show that if an object C in C is λ-presented (respectively λ-generated),

then the object rC is λ-presented (respectively, λ-generated) in A.

To see this, let

{Di
di //L}

be a λ-directed colimit (respectively, a λ-directed union) in A, and suppose we have
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a map f : rC → L. Now the cocone is a colimit in C also (since the inclusion

functor preserves it), so the map fηC : C → rC → L factors through the cocone,

say as fηC = dig for some map g : C → Di. But by the reflection property, g

factors through the map ηC , say as g = g′ηC for some g′ : rC → Di. We have

dig
′ηC = dig = fηC , so by uniqueness of the factorisation, dig

′ = f , and g′ is the

required factorisation.

Now let G = {Gi}i∈I be a strong generating set for C. We claim that rG = {rGi}i∈I

is a strong generating set for A. To see this set has the separating property, suppose

we have a parallel pair of morphisms f 6= g : A→ A′ in A. There is a map x : Gi → A

with fx 6= gx for some Gi ∈ G (since G is a generating set for C). This map factors

uniquely through rGi, to give x′ : rGi → A, with fx′ 6= gx′.

To see that the generator is strong, suppose we have a proper monomorphism

s : S → A in A. This is a proper monomorphism in C also, so there is a map

x : Gi → A such that x does not factor through s. The factorisation x′ : rGi → A

cannot factor through s also. It follows that rG is a strong generating set for A, and

in particular if G is taken to be the set of finitely presentable objects in C, we see

that A is locally λ-presented (respectively, locally λ-generated).

2.2 Essentially algebraic theories

Locally presentable categories can be characterized as categories of models of essen-

tially algebraic theories. This gives a nice way of thinking about the objects in these

categories. In this section, we will introduce essentially algebraic theories, and give

an explicit description of an essentially algebraic theory associated with any given

locally presentable category.

Recall the following from [1, 3.34].

Definition 2.8. 1. An essentially algebraic theory is given by a quadruple

Γ = (Σ, E,Σt,Def )
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Here Σ is a many sorted signature of algebras, over some set of sorts S.

Σt is a subset of Σ, denoting the set of function symbols we intend to view

as total. We write Σp for the set Σ − Σt; these function symbols are to be

interpreted as being partial. As usual, we view constant symbols as function

symbols defined over the empty set of sorts.

The set E consists of equations over Σ between terms in variables xi, where

each xi has a sort si ∈ S.

Finally Def is a function assigning to each partial function symbol σ :
∏

i∈I si →

s a collection of Σt-equations in variables xi ∈ si, (i ∈ I). These equations are

taken to define the domain of definition for σ.

2. We say that Γ is λ-ary for a regular cardinal λ if each function symbol in Σ takes

fewer than λ arguments, and each Def (σ) contains fewer than λ equations.

3. By a model of Γ, we mean a partial Σ-algebra A such that A satisfies all equa-

tions of E, the total functions are everywhere defined, and a partial function

σ ∈ Σp is defined for a tuple a ∈ Aα(σ) if and only if the tuple a satisfies all the

equations in Def (σ).

It is well-known [1, 3.36] that the categories of models of λ-ary essentially algebraic

theories are precisely the locally λ-presentable categories. We will present a proof of

this fact which we hope will make clear a sense in which an essentially algebraic object

can be seen as being generated by a collection of its elements, in a similar manner to

the way an ordinary algebraic object is.

Now assume we are given an essentially algebraic theory Γ = (Σ, E,Σt,Def ) and

a collection of variables x1 ∈ S1, . . ., xn ∈ Sn, we construct terms in Γ over these

variables as follows:

1. each variable xi is a term of sort Si.

2. given a total operation f : S1 × . . .× Sn → S, and terms t1 ∈ S1, . . ., tn ∈ Sn,

f(t1, . . . , tn) is a term of sort S.
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3. if σ : S1 × . . . × Sn → S is a partial operation and t1 ∈ S1, . . ., tn ∈ Sn are

terms such that the equations Def (σ)(t1, . . . , tn) hold in every model of (Σ, E),

then σ(t1, . . . , tn) is a term of sort S.

Remark. The stipulation that the equations Def (σ)(t1, . . . , tn) hold in every model

of (Σ, E) in step 3 above could be replaced, via a suitable Completeness Theorem,

with the assertion that the axioms E admit a deduction of each of the equations

in Def (σ)(t1, . . . , tn), either in classical first order logic or via the regular deductive

calculus described in section 2.5.

In a normal algebraic theory (that is, one where all the operations are assumed

to be total), a presentation of an object is given by a collection of generators x and

a conjunction of equations φ(x) which we assert is satisfied by x. When we allow

partial operations we add the complication that the equations which go together

to form φ should include only terms over x which are well-defined. Consequently,

we make the following definition: a presentation consists of a collection of variables

x = {xi ∈ Si}i∈I and a totally ordered collection of equations R(x) = {φi(x) | i ∈ I},

where (I,≤) is some total order, and each φi is an equation in terms over x. This has

the restriction that if the partial operation σ is used to form a term in φi(x), then the

arguments for σ satisfy the equations Def(σ) in every model of E ∪ {φj(x) | j < i}.

We define terms over a presentation as follows:

1. each variable xi is a term of sort Si.

2. given a total operation f : S1 × . . .× Sn → S, and terms t1 ∈ S1, . . ., tn ∈ Sn,

f(t1, . . . , tn) is a term of sort S.

3. if σ : S1 × . . . × Sn → S is a partial operation and t1 ∈ S1, . . ., tn ∈ Sn are

terms such that the equations Def (σ)(t1, . . . , tn) are satisfied in every model of

(Σ, E ∪R(x)), then σ(t1, . . . , tn) is a term of sort S.

The collection of terms over a presentation is itself a model 〈x | R(x)〉 of Γ, with

the obvious operations. This is universal, in the sense that for any other Γ-model

Y , and any tuple y ∈ Y satisfying R(y), there is a unique map ỹ : 〈x | R(x)〉 → Y
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mapping the variables x to y. The definition of ỹ is given on the terms over the

presentation by induction.

Furthermore, any Γ-model C admits such a presentation - we can take x to be all

the elements of C, and R(x) to be all the equations holding between them. We will

of course usually be able to find smaller presentations than this.

Colimits can be determined in terms of these presentations. Let A and B be

models of Γ, with presentations 〈x, R(x)〉, 〈y, S(y)〉. Then the coproduct A
∐
B is

the object with presentation 〈(x,y), R(x)∪S(y)〉. Given a Γ-model C and mappings

f : A → C, g : B → C, we can find corresponding tuples a ∈ R(C) and b ∈ S(C).

The tuple (a,b) ∈ R ∪ S(C) corresponds to the coproduct factorization.

Similarly, given a parallel pair of morphisms f, g : A → B, for every a ∈ A, the

elements f(a) and g(a) can be expressed as terms tfa(y), tga(y) over the generators

y of B. A map h : B → C with hf = hg, corresponds to a tuple c ∈ S(C) with

the additional property that for each a ∈ A, tfa(c) = tga(c) (this is the condition that

hf = hg). In fact it suffices to require this just for the generators x of A. Thus the

coequaliser of f and g admits the presentation 〈y | S(y) ∪ {tfx(y) = tgx(y)}x∈x〉.

In particular, given a Γ-model B and a presentation 〈y | S(y)〉 of B, each equation

τ in S is of the form tτ1(y) = tτ2(y). Furthermore tτ1 and tτ2 have the same sort, Xτ ,

say. Let B1 be the free Γ-model on generators x = {xτ ∈ Xτ}, and B2 the free model

on generators y. There is a pair of maps f, g : B1 → B2 defined by f : xτ 7→ tτ1(y),

g : xτ 7→ tτ2(y). Then B is the coequaliser of the maps f and g.

We summarize this information.

Lemma 2.9. Every model C of an essentially algebraic theory Γ admits a presenta-

tion 〈x | R(x)〉, and C can be expressed as the coequaliser of a diagram

F ////G //C

where F and G are free models of Γ. The number of generators of G is bounded by

the cardinality of x, and the number of generators of F is bounded by the cardinality

of R(x).
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For algebras over a signature Σ, the notions of finitely presented and finitely gen-

erated correspond to the usual notions we can define using generators and relations,

this is proved in [1, 3.10]. We seek now to prove an analogous result for essentially

algebraic objects. Let Γ = (Σ, E,Σt,Def ) be an essentially algebraic theory. Let X

be a model of Γ. We say that a tuple of elements x ∈ X generates X if every element

of X can be written as a term over the elements x, using the term forming operations

as described above.

Lemma 2.10. Let Γ = (Σ, E,Σt,Def ) be a λ-ary essentially algebraic theory. Then

the forgetful functor U : Mod(Γ)→Mod(Σt, Et) preserves λ-directed colimits.

Proof. It is sufficient to show that if (Di,≤) is a λ-directed system of Γ-structures,

then the colimit of the underlying (Σt, Et)-structures is also a Γ-structure. To see

this, let

Di
di //L

be the colimit cocone. Suppose we have some tuple x of elements of L, that satisfy

the equations Def (σ), for some partial operation σ. Then by the definition of a λ-

directed colimit, there is some i ∈ I and some x′ ∈ Di such that Di |= Def (σ)(x′) and

di(x
′) = x. The well-defined term di(σ(x′)) then gives us our definition for σ(x).

Lemma 2.11. (cf [1, 3.11], [27, 3.16(a)]) Let Γ be a λ-ary essentially algebraic

theory. A model X is a λ-generated object in Mod(Γ) if and only if it has a generating

set of size less than λ.

Proof. Suppose X is λ-generated. For each set of elements S ⊆ X with size less than

λ, let S̄ be the substructure of X generated by S (this is the set of all elements which

can be written as terms over the elements of S). X can be written as the union of

all the S̄; therefore X = S̄ for some S.

To prove the converse, suppose X has a generating set {xi}i∈S of size |S| less than

λ, and let X be the λ-directed union of a collection of subobjects X =
⋃
Uj. Then

each xi can be written as a term over the elements of the Uj, and since the terms are

λ-small, this term can only involve elements of less than λ of the objects Uj. Since
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there are fewer than λ elements xi, the set of Uj’s needed to write all the xi as terms

over the elements of the Uj’s is also of cardinality less than λ.

Lemma 2.12. (cf [1, 3.12], [27, 3.16(b)]) The λ-presented objects in Mod (Γ) are

precisely those which have a λ-small presentation.

Proof. We show that a free model F of Γ on a single generator of sortX is λ-presented.

This follows from the fact that λ-directed colimits in Mod (Γ) are calculated as in

(Σt, Et). Thus, given a directed colimit cocone

{Di
di //L | i ∈ I}

over a directed system {dij : Di → Dj | i ≤ j ∈ (I,≤)} for some directed poset

(I,≤), a map F → L corresponds to an element x ∈ L of sort X. But since the

directed colimit is the same as that for the underlying (Σt, Et) structures, there is

some i ∈ I and some x′ ∈ Di with di(x
′) = x. Thus the map F → Di defined by x′

is an appropriate factorization through the cocone.

Having established that a free object on a single generator is λ-presented, the

result now follows from 2.9 and 2.2.

Essentially algebraic theories characterise locally presentable categories; that is,

a category C is locally presentable if and only if it is the category of models for a

essentially algebraic theory. This is proved in [1, 3.36]. We will give a different proof

of this, which will describe explicitly an essentially algebraic theory associated with

a given locally presentable category.

To prove this result, we introduce the following concept, from [1, 1.42]. For a

small category A and a regular cardinal λ, denote by ContλA the category of all

functors A → Sets preserving all λ-small limits in A.

Theorem 2.13. ([1, 1.46]) If C is a locally finitely presentable category, and A is

the subcategory of finitely presentable objects in C, then C is equivalent to ContλAop.

Theorem 2.14. A category C is locally λ-presentable if and only if it is equivalent

to the category of models of a λ-ary essentially algebraic theory (Σ, E,Σt,Def ).
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Furthermore, this is a reflective subcategory of the category of models of the equa-

tional theory (Σt, Et), where Et is the subset of E containing those equations not using

any of the function symbols from Σp and the inclusion functor preserves λ-directed

colimits.

Proof. We have already proved the last part.

Suppose we are given a λ-ary essentially algebraic theory Γ = (Σ, E,Σt,Def ).

Let C be a model of (Σt, Et). The reflection of C is just the Γ-structure given by the

presentation 〈c, R(c)〉, where the variables in c are the elements of C, and R(c) is

the set of in Σt holding for the elements of C (with an arbitrary ordering).

If C is a locally λ-presentable category and A is a reflective subcategory closed

under λ-directed colimits, then A is also locally λ-presentable. The reflections of the

λ-presentable objects in C are λ-presentable in A, and form a strong generating set

[1, 1.3].

To show that every locally λ-presentable category can be represented this way, let

C be a locally λ-presented category, with A the category of λ-presented objects in C.

Define a λ-ary essentially algebraic theory Γ as follows. The total part of Γ is just

the category Aop, with equations those holding in Aop.

For each λ-small diagramD = {Di

fkij //Dj } inA, with colimit cocone {Di
di //L},

the object L will be in A, since λ-presentable objects are closed under λ-small colim-

its. Define partial operations σD :
∏

i∈I Di → L, where Def (σ) is the set of equations

fkij(xj) = xi for each arrow fkij : Di → Dj (note we can have Di = Dj for i 6= j). Add

equations to our theory stating that for any tuple x = {xi ∈ Di}i∈I ∈
∏

i∈I Di, then

diσD(x) = xi, for each i ∈ I.

The category of models for Γ is the category of presheaves on A which preserve

the λ-small limits existing in Aop; that is, the category ContλAop of λ-continuous

set-valued functors on Aop. By Theorem 2.13, this is equivalent to C. This proves

that Γ is an essentially algebraic theory whose category of models is equivalent to

C.

Remark. The Yoneda embedding gives us a way to see the objects of C as models of
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the theory Γ in the obvious way: let C be an object of C. Then for each object A in

A, the set of elements of C of that sort is the collection of maps A→ C; the functions

in A act on this set by precomposition. For each diagram D, the map σD sends a

compatible cocone over the diagram with codomain C to the factorisation through

the colimit.

It is clear from this that the free Γ-models in the given presentation are precisely

the λ-presented objects in C.

Lemma 2.15. Let Γ be an essentially algebraic theory (Σ, E,Σt,Def ) such that every

function symbol in Σ is finitary. Then the category of Γ-models is locally finitely

generated.

Proof. It suffices to show that for an essentially algebraic theory of the above form,

if (I,≤) is a directed poset and {dij : Di → Dj | i ≤ j ∈ I} is a directed union of Γ-

structures, then the colimit of the underlying (Σt, Et)-structures is also a Γ-structure.

Write {di : Di → D | i ∈ I} for the colimit cocone. Note that each di is also

a monic map. In a locally presentable category, the monic maps are precisely the

injective maps, so we can consider the Di’s to be essentially algebraic substructures

of D.

Now let σ be a partial operation, with domain of definition given by Def (σ).

Since σ is a finitary operation, the set of equations Def (σ) uses only finitely many

variables. Let d be a tuple in D such that D |= Def (σ)(d). Since the Di’s cover D,

each element dk from d occurs as an element of Di for some i. Since the Di’s occur

as a directed system, we can find some Dj containing the whole tuple d. Then we

define σ(d) to be dj(σ
Dj(d)).

We conjecture that locally finitely generated categories are characterized by es-

sentially algebraic theories of this form, but we do not have a proof of this.

Definition 2.16. [1, 2.27] Let C be a category.
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• A monomorphism m : A→ B is said to be pure if for each commutative square

A′
f //

u
��

B′

v
��

A m
// B

where A′ and B′ are finitely presentable, u factorizes through f .

• An epimorphism e : A→ B is said to be pure if for each morphism f : C → B

with C finitely presentable, there is a factorization of f through e.

Lemma 2.17. Let C be a locally finitely presentable category, and let r : C → A be a

finite type reflection. Then r preserves pure monics and pure epics.

Proof. By [1, 2.30] and [2, 4], pure monics are directed colimits of split monics and

pure epics are directed colimits of split epics. The claim then follows from the fact

that finite type reflections preserve directed colimits.

2.3 Localization for toposes

In this section, we introduce the ideas of Grothendieck topologies, sheaves and toposes.

The material in this section is covered in [20, III.2,4].

Throughout this section, let C be a small category. A presheaf on C is a functor

P : Cop → Sets.

For an object C in C, a sieve S on C is a subfunctor of the representable functor

Hom(−, C). This is equivalent to a collection of morphisms with codomain C, such

that given morphisms f, g with f ∈ S and cod(g) = dom(f), then fg ∈ S.

If S is a sieve on C and f : D → C is a map in C, then the collection

f ∗(S) = {g : E → D | fg ∈ S}
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is a sieve on D, and the diagram

f ∗(S) //

[g 7→fg]
��

Hom(−, D)

[g 7→fg]
��

S // Hom(−, C)

is a pullback diagram in SetsC
op

.

A Grothendieck topology J on C assigns to each object C in C a collection JC of

sieves on C, called covering sieves, such that:

1. for each C, Hom(−, C) ∈ JC.

2. if S ∈ JC and f : D → C is any map, then f ∗(S) ∈ JD.

3. if S ∈ JC and R is a sieve on C such that h∗(R) ∈ J(dom(h)) for all h ∈ S,

then R ∈ JC.

A site (C, J) consists of a small category C equipped with a Grothendieck topology

J .

To specify a sieve S, it suffices to specify a collection of morphisms S ′ which

generates the sieve, in the sense that for every morphism f : A → C in S, there

is a morphism g : B → C in S ′, such that f = gh for some h : A → B. For

this reason, a collection of morphisms with common codomain is sometimes called a

presieve. Grothendieck topologies can be defined in terms of presieves: a basis for

a Grothendieck topology on C is a function K assigning to each object C a set of

presieves on C, called covering families, such that

1. if f : C ′ → C is an isomorphism, then {f : C ′ → C} ∈ KC.

2. if {fi : Ci → C | i ∈ I} ∈ KC and g : D → C is any morphism then there

exists some covering family {hj : Dj → D | j ∈ J} ∈ KD such that for each

j ∈ J , ghj factors through some map fi.

3. if {fi : Ci → C | i ∈ I} ∈ KC and for each i ∈ I we have a covering family

{gij : Dij → Ci | j ∈ Ji} ∈ KCi,
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then

{figij : Dij → C | i ∈ I, j ∈ Ji} ∈ KC.

Note that if C has pullbacks, then in condition (2) we may require that the mor-

phisms hj are precisely the pullbacks of the morphisms fi along g.

Given a basis K for a Grothendieck topology, we obtain a topology J by stating

that the covering sieves in J are precisely those which contain a presieve in K. Every

topology J has a basis; given a topology J , we define KC for each object C to be

the set of all families of morphisms F = {fi : Ci → C} with codomain C such that

there exists a sieve S ∈ JC for which the family of morphisms F is cofinal, that is,

such that every morphism in S factors through some morphism in F .

Example. Let X be a topological space. Write Op(X) for the lattice of open sets

of X; we regard Op(X) as a small category, with the inclusion maps as morphisms.

There is a Grothendieck topology on Op(X): for an open set U ∈ Op(X) a family of

maps {Ui → U | i ∈ I} is a covering family if U =
⋃
i∈I Ui.

For the rest of this section, assume we have fixed a Grothendieck topology J on

C.

A presheaf F : Cop → Sets is said to be a sheaf for the topology J if whenever

we have a covering sieve S of an object C and a diagram in SetsC
op

of the form

S
x //� _

i
��

F

Hom(−, C)

there is a unique natural transformation x : Hom(−, C)→ F such that xi = x.

If F is a sheaf on the site (C, J), where the category C is the lattice Op(X) for

some topological space X, and J is the Grothendieck topology described above, we

say F is a sheaf on X.

To explain our choice of notation: a natural transformation S → F consists of

identifying, for each f : D → C in S, an element xf ∈ FD, in such a way that

whenever f ∈ S and g is a morphism such that cod(g) = dom(f), then xfg = Fg(xf ).
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We call such a collection of elements x = {xf | f ∈ S} a matching family for S of

elements of F .

An amalgamation for a matching family is an element x ∈ FC such that for each

f ∈ S, xf = Ff(x). Identifying x with the corresponding natural transformation

Hom(−, C) → F via the Yoneda lemma, we see that the sheaf condition is the

precise statement that every matching family has a unique amalgamation.

We write Sh(C, J) for the category of sheaves on the site (C, J), considered as a

full subcategory of SetsC
op

(that is, we take as morphisms the natural transformations

between the functors).

A (Grothendieck) topos is a category equivalent to Sh(C, J) for some (not nec-

essarily unique) site (C, J). In particular, we can define the trivial topology on C to

be the topology J for which the only covering sieve on each object C is the functor

Hom(−, C). We can see straight away that every presheaf is a sheaf for this topology,

and so the presheaf category SetsC
op

is a Grothendieck topos.

There is another notion of topos occuring in the literature, referred to as an

elementary topos. This approach defines a topos to be a category with certain

of the ‘nice’ properties held by a category of sheaves of sets (and in particular, a

Grothendieck topos is an elementary topos also). We will not make use of this con-

cept, and throughout the rest of the thesis the word ‘topos’ shall be used to mean

a Grothendieck topos, but the reader should be aware this usage is not uniform

throughout the literature.

Lemma 2.18. ([20, IV.1.2]) Let E be a topos. Any morphism f : A → B in E

which is both monic and epic is an isomorphism.

A category C with the property that any morphism which is both epic and monic

is an isomorphism is called a balanced category. Toposes and abelian categories are

examples of balanced categories.

The following definition is from [7]:

Definition 2.19. Let C be any category. A localization of C is a reflection functor

l : C → A that preserves finite limits.
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There is a localization functor a : SetsC
op → Sh(C, J). We call the functor a the

associated sheaf functor . We give an outline of the construction of this functor now;

the details of many of the claims made here are omitted, though they may be checked

rather easily. The argument is given in detail in [20, III.5], and we refer the reader

there for a complete version of the construction.

The associated sheaf functor is defined by two applications of the ‘plus-functor’

P 7→ P+. For an arbitrary presheaf P , this is given by

P+C = lim
−→S∈JC

Match(S, P ),

that is, each element of P+C is an equivalence class of matching families for covers

of C where two matching families {xf}f∈S and {yg}g∈T are equivalent if there is a

common refinement of S and T on which they agree, that is, if there exists U ⊆ S∩T

such that for all f ∈ U , xf = yf .

Now suppose h : C ′ → C is a morphism in C. For each dense sieve S on C, we

define a function Match(S, P )→ Match(h∗S, P ) by

{xf | f ∈ S} 7→ {xhf ′ | f ′ ∈ h∗S}.

This induces a map P+C → P+C ′; defining P+h to be this map, it can be shown that

P+ is a presheaf. Each map φ : P → Q of presheaves induces a map φ+ : P+ → Q+ of

presheaves by taking a matching family S //P to the composite S //P
φ //Q .

There is a map of presheaves χ : P → P+ defined by sending each x ∈ PC to the

equivalence class of {Pf(x) | f ∈ Hom(−, C)}.

If F is a sheaf and P is a presheaf, then any map φ : P → F of presheaves factors

uniquely through η; we write φ = φ̃χ, as in the diagram

P
χ //

φ !!BBBBBBBB P+

φ̃
��
F

Moreover, for every presheaf P , (P+)+ is a sheaf. We define aP = P++; this gives
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us a functor a : SetsC
op → Sh(C, J) which is a left adjoint to the inclusion functor

i : Sh(C, J)→ SetsC
op

. We denote the unit of the adjunction by η; for each presheaf

P , the map ηP : P → aP has the property that any map P → F with F a sheaf

factors uniquely through ηP .

We have shown that for a small category C, every Grothendieck topology J on C

gives rise to a localization aJ : SetsC
op → Sh(C, J). In fact, a converse result holds, in

the following sense: every localization a : SetsC
op → E corresponds to a Grothendieck

topology Ja on C. For an object C in C, the Ja-covering sieves on C are those sieves

S where the inclusion morphism S → Hom(−, C) is mapped to an isomorphism by

a. Thus there is a bijective correspondance between the Grothendieck topologies on

C and the localizations of C.

Moreover, the collection of Grothendieck topologies on C forms a complete lattice

- it is clear that Grothendieck topologies are closed under arbitrary intersections; the

join of a collection of Grothendieck topologies {Ji}i∈I on C is the intersection of all

the topologies J that contain every one of the Ji (i.e., Ji ≤ J for all i ∈ I).

For an arbitrary Grothendieck topos Sh(C, J), the localizations correspond to

those Grothendieck topologies on C which contain J . These Grothendieck topologies

are closed under the lattice operations. Thus we see that for any Grothendieck topos

E , the localizations of E form a complete lattice.

We conclude this section by mentioning the following general notion of a morphism

of toposes.

Definition 2.20. Let E and F be toposes. A geometric morphism f : E → F consists

of a pair of functors f ∗ : F → E and f∗ : E → F , such that f ∗ preserves finite limits

and is left adjoint to f∗. The functor f ∗ is called the inverse image of the morphism,

and the functor f∗ is called the direct image of the morphism.

Let (C, J) be some site. The functors a : SetsC
op → Sh(C, J) and i : Sh(C, J)→

SetsC
op

form a geometric morphism, such that the inclusion i is full and faithful. We

call such a geometric morphism an embedding.



CHAPTER 2. LOCALIZATIONS AND GEOMETRIC LOGIC 37

2.4 Localization in abelian categories

In this section, we summarize the theory of localization for Grothendieck abelian

categories. An abelian category is said to be Grothendieck if it cocomplete, has

a generating set of objects, and finite limits commute with directed colimits (see,

e.g. [23, p. 707]). In particular, a locally finitely presentable abelian category is

Grothendieck. A Grothendieck abelian category is analogous to a Grothendieck topos,

and similarly, locally finitely presentable abelian categories can be seen as parallels

to locally finite presentable toposes, and so on. In the case of toposes, we described a

localization of the topos by listing some morphisms which were to be inverted. In the

abelian case, we can instead denote objects, which are to be made equal to zero; this

is equivalent to inverting those morphisms whose kernels and cokernels are amongst

these objects.

Let C be an abelian category. An abelian subcategory B ⊆ C is said to be closed

under extensions if for an exact sequence

0 //A //B //C //0

with A,C objects in B, the object B is in B also.

A Serre subcategory of an abelian category C is a non-empty, full subcategory S

closed under extensions, subobjects and quotients.

For an additive functor F : C → C ′ between abelian categories, the kernel of F is

the full subcategory of C whose objects are precisely those objects C with F (C) ∼= 0

in C ′.

The Serre subcategories of C are the kernels of exact functors with domain C, in

much the same way that ideals in ring theory are the kernels of ring morphisms.

Theorem 2.21. ([22, 4.3.3], [23, 11.1.40]) Given a Serre subcategory S of an

abelian category C, there is a quotient category C/S, which is also abelian, and there

is an exact functor QS : C → C/S, such that ker(QS) = S and QS is universal

with this property, in the sense that for any other exact functor F : C → C ′ with
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S ⊆ ker(F ), there is a unique factorization of F through QS via an exact and faithful

functor.

It is clear from the definition that Serre subcategories are closed under arbitrary

intersections. Given a collection of objects A in C, the Serre subcategory SA is the

intersection of all the Serre subcategories containing A. This is described explicitly

by the next result, which is a slight generalization of [23, 13.1.2]; the proof is almost

identical.

Lemma 2.22. Let A be a collection of objects in C closed under quotients and sub-

objects; then the Serre subcategory SA generated by A consists precisely of objects F

in C such that there is a finite composition series

0 = F0 < F1 . . . < Fn = F

such that for each i ≤ n, the quotient Fi/Fi−1 is in A.

Proof. It is clear that every object F with this property is in SA. It suffices to

show that the collection of such objects is closed under quotients, subobjects and

extensions.

Let F be an object with a composition series as described, and let S be a subobject

of F . Let Sn = S, and for each i = n− 1, n− 2, . . . , 1, 0, define Si to be the pullback

of the maps Si → Fi and Fi−1 → Fi. We get a composition series for S:

0 = S0

��

// S1

��

// . . . // Sn = S

��
0 = F0

// F1
// . . . // Fn = F

Now for each i = 0, 1, . . . , n − 1, we have a canonical map Si+1/Si → Fi+1/Fi.

This map is monic (see for example, [8, 1.10.2]). Since Fi+1/Fi ∈ A, it follows that

Si+1/Si is also in A.

Now suppose we have a quotient map q : F → Q. For each i = 0, . . . , n, we define
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Qi to be the image of the map

Fi //F
q //Q.

This gives us a composition series for Q:

0 = F0
//

��

F1
//

��

. . . // Fn = F

��
0 = Q0

// Q1
// . . . // Qn = Q

.

Again, for each i = 1, . . . , n, we have a canonical map ei : Fi/Fi−1 → Qi/Qi−1,

which we claim is an epimorphism. For each i, the map Fi → Qi → Qi/Qi−1 is an

epimorphism, and factors through ei, so ei must be an epimorphism.

Each Qi/Qi−1 must be in A, since it is a quotient of Fi/Fi−1.

We have shown that the collection of objects with the property described is closed

under subobjects and quotients. It remains to show that it is closed under extensions.

Suppose we have an exact sequence in A of the form

0 //F
f //G

g //H //0

where both F and H admit composition series of the form described.

0 = F0
//F1

// . . . //Fm = F

0 = H0
//H1

// . . . //Hn = H

Define Gn = G. For each i = n− 1, n− 2, . . . , 1, 0, define Gi to be the pullback of

the diagram

Gi+1

��
Hi

// Hi+1

.

We get a composition series for G:
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G0

g0
��

// G1

g1
��

// . . . // Gn = G

gn=g

��
0 = H0

// H1
// . . . // Hn = H

.

Now the diagram

G0
//

��

G

g

��
0 // H

is a pullback diagram. However, the pullback of this diagram will be the kernel

of g, which by assumption was F . Thus G0 is isomorphic to F . In particular, F

is contained in each of the objects Gi, and in fact it is the kernel of each morphism

gi : Gi → Hi. For if x : X → Gi satisfies gix = 0, then there is a (unique) factorisation

of gix through the 0 object, and thus of gi through F .

We have shown that each object Hi is of the form Hi/F . This allows us to

apply the Noether isomorphism theorems (for example see [8, 1.10.6]): each quotient

Gi/Gi−1 is isomorphic to (Gi/F )/(Gi−1/F ), and therefore to Hi/Hi−1. Thus, the

composition series

0 = F0
//F1

// . . . Fm = F = G0
//G1

// . . . Gn = G

is of the required form, and G has the required property. This concludes the proof.

Let C be a Grothendieck abelian category, with generating set G. When consider-

ing Grothendieck abelian categories, we look for functors which preserve the directed

colimits in the category — for exact functors, this is equivalent to demanding that

(possibly infinite) coproducts are preserved. So we will consider those subcategories

of C which are kernels of exact functors preserving directed colimits.

Thus, a hereditary torsion class in C is defined as a subcategory T closed under

extensions, subobjects, quotients and arbitrary direct sums (i.e., coproducts).

Theorem 2.23. ([23, 11.1.5]) Let C be a Grothendieck abelian category, and let T

be a hereditary torsion class on C. There is a Grothendieck abelian subcategory CT



CHAPTER 2. LOCALIZATIONS AND GEOMETRIC LOGIC 41

in C, and a localization functor rT : C → CT such that for each T ∈ T , rT = 0, and

rT is universal with this property, in the sense that for any exact functor F : C → D

admitting a right adjoint, with T ⊆ ker(f), there is a unique factorization of F

through rT .

We will in particular be interested in the theory of localization for locally coherent

abelian categories. We mention some properties of locally coherent abelian categories

now. If C is a locally finitely presentable abelian category, it is locally coherent if and

only if every finitely presentable object in C is coherent [23, E.1.18], or equivalently,

if the full subcategory of coherent objects in C is an abelian subcategory [23, E.1.19].

We describe the localizations that preserve the property of local coherence. A

hereditary torsion class is said to be of finite type if the inclusion functor i : CT → C

preserves directed unions.

Theorem 2.24. ([23, 11.1.34]) If C is a locally coherent abelian category, and T is a

finite-type hereditary torsion class on C, then the category CT is also locally coherent,

and the coherent objects in CT are precisely the images of the coherent objects in C

under the localization.

Let C be a locally coherent category with a finite-type hereditary torsion class

T as described above. Suppose the subcategory of coherent objects in C is denoted

A. Then T ∩ A is a Serre subcategory of A. Moreover, the restriction of QT to A

is the quotient functor QT ∩A : A → A/(T ∩ A) [23, 11.1.42]. Conversely, if S is a

Serre subcategory of A, then if TS is the closure of S in C under directed colimits,

the category TS is a finite-type hereditary torsion class, and the functor QTS is an

extension of the functor QS on A.

This sets up a 1-1 correspondence between Serre subcategories ofA and finite-type

hereditary torsion classes on C [23, 12.4.1].

Analogously to the case with toposes, we note that Serre subcategories of a small

abelian category, or alternatively finite-type hereditary torsion classes in a locally

coherent abelian category, are closed under arbitrary intersections. Thus, they form

a complete lattice.
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2.5 Regular theories in the language of R-modules

Let Σ be a many-sorted signature of algebras. A regular formula (also called a positive

primitive formula) in the language Σ is a formula φ(x) of the form ∃y ∧ni=1 ψi(x,y)

where each formula ψi(x,y) is an atomic formula in the language, i.e., an equation

in variables (x,y).

A regular sequent is a statement of the form

φ(x) ` ψ(x),

where φ and ψ are regular formulas whose free variables are included in the variables

x. The intention is that in the above statement φ and ψ are interpreted as formulas

in the variables x, regardless of whether all of these variables actually occur explicitly

in the formula. Given a Σ-structure X, the sequent φ(x) ` ψ(x) is said to hold in X

if given any choice of the variables x from the elements of X, the formula ψ(x) holds

if the formula φ(x) does.

A regular theory T over a signature Σ is a set of regular sequents over Σ, whose

elements are called the axioms of T.

Regular sequents admit rules of deduction as detailed below. These rules of de-

duction are described in more detail in [17, D1.3] (and we have deliberately labeled

our rules for existential quantification to be consistent with that book). Note though

that in that book, the free variables occurring in a sequent are written as subscripts

to the logic gate; we use the notation described above in order to refer to the variables

x over which a formula is taken without reference to a sequent.

(a) The structural rules consist of the identity axiom

φ(x) ` φ(x),

the substitution rule
φ(x) ` ψ(x)

φ′(y) ` ψ′(y)
,
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where the formulas φ′(y), ψ′(y) are obtained by substituting the variables y for

the variables x in φ(x) and ψ(x), and the cut rule

φ(x) ` ψ(x) ψ(x) ` χ(x)

φ(x) ` χ(x)
.

(b) The equality rules consist of the axioms

> ` (x = x)

and

(x = y) ∧ φ(x) ` φ′(y).

(c) The rules for finite conjunction are the axioms

φ(x) ` >, (φ(x) ∧ ψ(x)) ` φ(x), (φ(x) ∧ ψ(x)) ` ψ(x)

and the rule
φ(x) ` ψ(x) φ(x) ` χ(x)

φ(x) ` (ψ ∧ χ)(x)
.

(f) The rules for existential quantification consists of the double rule (i.e., either

statement may be deduced from the other)

φ(x, y) ` ψ(x, y)
===============
(∃y)φ(x, y) ` ψ(x)

.

Here we assume the variable y does not occur freely in ψ, so it does make sense

to talk of the formula ψ(x).

The following is proved in [17, D1.5.4].

Theorem 2.25 (Classical completeness for regular logic). If T is a regular theory,

and σ is a regular sequent over the signature of T which is satisfied in all T-models

in Sets, then σ is provable in T.
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Given a sequent φ(x) ` ψ(x), we can replace this with the (clearly provably

equivalent) sequent φ(x) ` φ(x) ∧ ψ(x). This allows us to specify axiomatizations of

theories of the form σ ` τ , where τ ` σ is a tautology.

If every axiom in T can be deduced in T′, we say T′ is a quotient of the theory T.

We say two theories T and T′ are equivalent if they are both quotients of one another.

Each equivalence class of theories contains precisely one deductively closed theory.

We order the deductively closed theories by inclusion. That is, for deductively

closed theories T, T′, we set T ≤ T′ if and only if every sequent in T is also in T′;

this is equivalent to saying that T′ is a quotient of T. Deductively closed theories are

closed under arbitrary intersections, and therefore they form a complete lattice.

Let R be a ring. Denote by mod-R the category of finitely presented right R-

modules. The category of additive functors mod-R→ Ab will be denoted (mod-R,Ab).

Any regular formula φ(x) in the language of R-modules defines a functor in this cat-

egory - it can readily be shown that for a given module M , the collection φ(M) of

tuples m ∈ M which satisfy φ is closed under addition and includes the tuple 0,

and so is an abelian group. This category forms an additive analogue of a classifying

topos (classifying toposes are described in the next section). Given any Grothendieck

abelian category A, any additive functor M : R → A can be extended to a functor

J−KM : (mod-R,Ab)→ A preserving limits and colimits, such that M factorizes as:

R
y //mod-R

y //(mod-R,Ab)
J−KM //A

This follows in two steps: from [23, 10.2.37], the category of finitely presentable

objects in (mod-R,Ab), denoted fp(mod-R,Ab), is the free abelian category gener-

ated by R, that is, for any abelian category A, any additive functor R → A factors

through the embedding y2 : R → fp(mod-R,Ab). However, there is a duality be-

tween small abelian categories and locally coherent abelian categories, see [29, 2.2].

Under this duality, the abelian category fp(mod-R,Ab) corresponds to the full cat-

egory (mod-R,Ab), and the property described above follows from this.

We will prove a result associating the finite-type localizations of (mod-R,Ab)
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with the regular quotients of the theory of modules over R. As noted in section 2.4,

the finite-type localizations of a locally coherent abelian category C correspond to the

Serre subcategories of the category of finitely presented objects in C. For the category

(mod-R,Ab), there is a rather nice characterization of the finitely presentable objects,

due to Burke [9].

A positive primitive pair over R, denoted φ/ψ, is a pair of regular formulas φ(x)

and ψ(x) in the language of modules over R, such that the sequent ψ(x) ` φ(x) is

deducible in the theory of modules over R. Given a different selection of variables y,

we regard the regular formulas φ(y) and ψ(y) as defining the same positive primitive

pair. A positive primitive pair φ/ψ defines a functor mod-R → Ab, mapping each

module M to the quotient group φ(M)/ψ(M).

The category of pp-pairs over R, denoted Leq+
R , is a category having the positive

primitive pairs over R as its objects. A morphism φ/ψ (both with free variables x)

to χ/η (both with free variables y) is given a regular formula ρ(x,y) such that the

following three sequents can be proved in the theory of modules over R:

1. ρ(x,y) ∧ φ(x) ` χ(y)

2. ρ(x,y) ∧ ψ(x) ` η(y)

3. φ(x) ` ∃yρ(x,y)

These conditions state precisely that for any R-module M , the definable set ρ(M) will

be the graph of a map between the quotient groups φ(M)/ψ(M) and χ(M)/η(M).

Lemma 2.26. ([23, 3.2.10]) With the above definition, Leq+
R is an abelian category.

Theorem 2.27. ([23, 10.2.30]) For a ring R, the category Leq+
R is equivalent to the

category of finitely presentable objects in the functor category (mod-R,Ab).

Now let S be a Serre subcategory of Leq+
R . We can associate to S a collection of

sequents over the regular theory of modules over R. Each object in Leq+
R is of the form

φ/ψ, where φ and ψ are pp-formulas over R, and for every module M , ψ(M) ⊆ φ(M).

Syntactically, this is equivalent to saying that the sequent ψ(x) ` φ(x) is a tautology
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in the theory (by classical completeness). We associate to each object φ/ψ of Leq+
R

the regular sequent φ(x) ` ψ(x). To each Serre subcategory S of Leq+
R , we associate

the collection T (S) of all the sequents corresponding to objects in S.

Conversely, suppose we are given a quotient T of the regular theory of modules

over R, that is, a collection of sequents of the form φ(x) ` ψ(x), where ψ(x) ` φ(x)

is a tautology in the theory. We can associate to this the subcategory S(T) of Leq+
R

consisting of all those pp-pairs φ/ψ, where φ(x) ` ψ(x) is a sequent in T.

Theorem 2.28. Let R be a ring. For each Serre subcategory S of Leq+
R , T (S) is closed

under deductions. For each deductively closed quotient T of the regular theory of

modules over R, S(T) is a Serre subcategory. This sets up a bijective correspondence

between quotients of the regular logic and Serre subcategories of Leq+
R .

Proof. Let S be a Serre subcategory of Leq+
R . We show that T (S) is deductively

closed. We verify this for each of the rules of regular logic.

Let φ(x) and ψ(x) be any pp-formulas; it follows from Classical Completeness

that the following pp-pairs are isomorphic to 0 in Leq+
R , and therefore are contained

in S: φ/φ, >/(x = x), (x = y) ∧ φ(x)/φ(y).

Furthermore, for the substitution rule, the formula x = y provides a pp-definable

map φ(x)/ψ(x)→ φ(y)/ψ(y).

To verify that the cut rule holds, suppose φ/ψ and ψ/χ are objects in S. There

is an exact sequence

0→ ψ/χ→ φ/χ→ φ/ψ → 0

in Leq+
R ; it follows that φ/χ is in S.

To verify the rule for finite conjunction, suppose φ/ψ and φ/χ are in S. Consider

the map φ → φ/ψ ⊕ φ/χ given on each module M by x 7→ (x + ψ(M), x + χ(M)).

The kernel of this map will always be ψ ∧χ(M), so the kernel in Leq+
R is ψ ∧χ. Thus

the image φ/ψ ∧ χ is a subobject of the product φ/ψ ⊕ φ/χ, and so this image is in

S.

Suppose φ(x, y) and ψ(x) are formulas. The pp-pairs φ(x, y)/ψ(x, y) and (∃y)φ(x, y)/ψ(x)

are isomorphic in Leq+
R via the pp-definable morphism x = x′.
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This proves the first half of the claim.

Let T be a quotient of the regular theory pf R-modules.

Let φ/ψ be an object in S(T); we show that for any pp-pair θ/χ admitting a

(pp-definable) isomorphism ρ : φ/ψ → χ/θ, there is a deduction of θ(y) ` χ(y) from

φ(x) ` ψ(x).

The pp-formula ρ(x,y) defines a surjection φ/ψ → χ/θ. By the completeness

theorem for regular logic [17, D1.5.4] the following sequents, corresponding to the

implications stated on p.92 of [23], can be proven in the regular theory of modules

over R:

1. ρ(x,y) ∧ φ(x) ` χ(y)

2. ρ(x,y) ∧ ψ(x) ` θ(y)

3. φ(x) ` ∃yρ(x,y)

Furthermore, since ρ is stated to be a surjection, the sequent χ(y) ` ∃xρ(x,y) ∧

φ(x) is true in all R-modules, and is therefore provable in the theory.

We use the above sequents to write out the following deduction of χ(y) ` θ(y)

from φ(x) ` ψ(x).

χ(y) ` ∃xρ(x,y) ∧ φ(x)

ρ(x,y) ∧ φ(x) ` ρ(x,y)

ρ(x,y) ∧ φ(x) ` φ(x) φ(x) ` ψ(x)

ρ(x,y) ∧ φ(x) ` ψ(x)

ρ(x,y) ∧ φ(x) ` ρ(x,y) ∧ ψ(x) ρ(x,y) ∧ ψ(x) ` θ(y)

ρ(x,y) ∧ φ(x) ` θ(y)

∃xρ(x,y) ∧ φ(x) ` θ(y)

χ(y) ` θ(x)

The converse follows similarly, using the surjection ρ−1 : χ/θ → φ/ψ.

Now suppose we are given any exact sequence

0 //A
f //B

g //C //0

in Leq+
R . We can represent the object B as some pp-pair φ/χ. Replacing the object A
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with its image under f , we can express it as a pp-pair ψ/χ, with the graph of f being

the diagonal in ψ × ψ. The cokernel C is then given by the pp-pair φ/ψ. Now if we

have a Serre subcategory containing A and C, then the corresponding theory contains

the sequents ψ(x) ` χ(x) and φ(x) ` ψ(x). To obtain the sequent corresponding to

B, φ(x) ` χ(x), one just needs a single application of the cut rule.

Furthermore, if B is in the Serre subcategory, we know that the sequent φ(x) `

χ(x) is in the corresponding theory. Since ψ(x) ` φ(x) and χ(x) ` ψ(x) can both be

deduced in the theory, the sequents φ(x) ` ψ(x) and ψ(x) ` χ(x), corresponding to

A and C respectively, can now be deduced, again using the cut rule.

2.6 Models of a geometric theory

In the previous section, we looked at the regular sequents in the language of a many-

sorted signature of algebras Σ, and defined what their models where in Sets. In this

section, we will introduce broader classes of formulas, and describe their models in

arbitrary Grothendieck toposes.

Let Σ be a many-sorted signature. A regular formula over a many sorted signature

is one of the form ∃y ∧ni=1 ψi(x,y) where again, the formulas ψi are assumed to be

atomic formulas. For a signature that includes relations, atomic formulas are either

equations in the variables, or formulas of the form R(z1, . . . , zn), where R is a relation

symbol in Σ. A coherent formula over Σ is a formula of the form ∨ni=1φi(x) where

each formula φi(x) is a regular formula. A geometric formula is a formula of the form∨
i∈I φi(x), where I can be a set of arbitrary size. Note that allowing I to be empty

enables us to add the formula ⊥ (‘false’) to the language.

As in the additive case, a geometric formula φ(x) over a signature Σ can be

thought of as a functor φ : Str(Σ)→ Sets, where each Σ-structure X is mapped to

φ(X), the set of tuples x from X which satisfy the formula φ(x). If f : X → X ′

is a map of Σ-structures and x ∈ φ(X), then f(x) ∈ φ(X ′), since φ(x) is a positive

formula.

Coherent and geometric formulas admit their own logic, with the additional rules
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of deduction for disjunction. The rules of deduction for coherent logic are the rules

(a), (b), (c), (d) and (f), where (d) consists of the rule for finitary disjunction described

below:

(d)

⊥ ` φ(x), φ(x) ` φ(x) ∨ ψ(x), ψ(x) ` φ(x) ∨ ψ(x)

and the rule
φ(x) ` χ(x) ψ(x) ` χ(x)

φ(x) ∨ ψ(x) ` χ(x)
.

For geometric logic, we add the rule (h) for infinitary disjunction:

(h)
(φi(x) ` χ(x))i∈I∨
i∈I

φi(x) ` χ(x) .

Locally finitely presentable categories can be characterized as categories of models

of finite limit theories, that is, theories whose axioms are all of the form

φ(x) ` (∃!y)ψ(x,y)

where φ and ψ are finite conjunctions of atomic formulas. It is clear why a finitary

essentially algebraic category is of this form - for each partial operation σ, we can

write a formula φσ encoding the definability condition for σ, and then σ(x) will

correspond to the element y whose existence we can assert by this formula.

These limit theories correspond to the cartesian theories presented in [17, D1.3.4],

though the presentation there is slightly different. Johnstone defines a cartesian

formula relative to a (regular) theory T as follows: atomic formulas are cartesian,

cartesian formulas are closed under finite composition and whenever the sequent

φ(x, y) ∧ φ(x, z) ` (y = z) is provable in T, then the formula ∃!y φ(x, y) is cartesian.

It is clear that a cartesian theory can be written as a finite limit theory if we prefer;

to write a finite limit theory as a cartesian theory, we need to write the theory out

without the unique existence quantifier, and add axioms of the form φ(x)∧ψ(x, y)∧
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ψ(x, z) ` (y = z).

Models of a geometric theory T can be defined in any Grothendieck topos E , not

just in the topos Sets. Let T be a geometric theory over an underlying S-sorted

signature Σ. A Σ-structure M in E is specified by the following:

1. for each sort X of S, an object MX of E .

2. for each function symbol f : X1 × . . . × Xn → X, a morphism Mf : MX1 ×

. . .×MXn →MX in E .

3. for each relation symbol R→ X1 × . . .×Xn in Σ, a subobject MR→MX1 ×

. . .×Xn in E .

If M and N are Σ-structures, a Σ-homomorphism h : M → N is specified by a

collection of morphisms hX : MX → NX in E , such that

4. for each function symbol f : X1× . . .×Xn → X, the diagram below commutes:

MX1 × . . .MXn
Mf //

hX1
×...×hXn

��

MX

hX
��

NX1 × . . .×NXn
Nf // NX

5. for each relation symbol R → X1 × . . . Xn, there is a commutative diagram of

the form

MR //

��

MX1 × . . .×MXn

hX1
×...×hXn

��
NR // NX1 × . . .×NXn

In any Σ-structure M in any Grothendieck topos E , we can define interpretations

of terms and formulas. A term t(x1, . . . , xn) of sort X in variables x1 ∈ X1, . . . , xn ∈

Xn is interpreted by a morphism

Jx : tKM : MX1 × . . .×MXn →MX.

• if the term is xi, for some i = 1, . . . , n, then the interpretation of the term is

the ith projection map MX1 × . . .×MXn →MXi.
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• if the term is f(t1, . . . , tm), where each term ti is a variable in (x1, . . . , xn) of

sort Yi, then the interpretation Jx : tKM of the term is the composite

MX1 × . . .×MXn
Jx:t1KM×...×Jx:tmKM //MY1 × . . .×MYm

f //MX.

A geometric formula φ(x1, . . . , xn) in variables x1 ∈ X1, . . . , xn ∈ Xn is interpreted

by a subobject

Jx : φKM ↪→MX1 × . . .×MXn.

• if φ is an atomic formula of the form t1(x) = t2(x) for terms t1 and t2 of sort

X, then the interpretation of φ is the equaliser in E of the maps Jx : t1KM , Jx :

t2KM : MX1 × . . .×MXn →MX.

• if φ is an atomic formula of the form R(t1, . . . , tm) where each ti is a term of

sort Yi, then the interpretation of φ is given by the pullback

Jx : φ(t)KM //

��

MR

��
MX1 × . . .×MXn

Jx:t1KM×...×Jx:tmKM //MY1 × . . .×MYm

• if φ is the formula ⊥, it is interpreted by the map 0 → MX1 × . . . ×MXn;

if it is the formula >, it is interpreted by the identity map 1MX1×...×MXn :

MX1 × . . .×MXn →MX1 × . . .×MXn.

• the logical connectives ∧ and
∨

are just interpreted as the corresponding oper-

ators in the subobject lattice Sub(MX1× . . .×MXn), which in a Grothendieck

topos is a complete Heyting algebra.

• if φ is the formula ∃yψ(x, y) for some variable y of sot Y , then the interpretation

of φ is the image factorization of the map

J(x, y) : ψKM //MX1 × . . .MXn ×MY
π //MX1 × . . .×MXn

where π is the projection map onto the first n coordinates.
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Now let M be a Σ-structure in a Grothendieck topos E . The sequent

φ(x) ` ψ(x) is said to hold in M if Jx : φKM ≤ Jx : ψKM in the subobject lattice

Sub(MX1 × . . .×MXn).

Let T be a geometric theory. A Σ-structure M in a Grothendieck topos E is said

to be a model of T if every sequent in T holds in M .

It can easily be checked that the deductions for geometric logic are valid: that is,

for each of the rules (a), (b), (c), (d), (f), (h), (i), if the premises for that rule hold in

a Σ-structure M , then the conclusion holds as well.

If the signature Σ is algebraic (i.e., contains no relation symbols), and all the

sequents in the theory T are of the form > ` φ(x) where φ(x) is an equation between

terms in the variables x, then the theory T is precisely an equational theory (Σ, E),

as described in section 2.1. In this case, we say that the models of the theory T are

(Σ, E)-objects in E . This terminology is commonly used for widely studied equational

theories such as groups or rings. If for example, (Σ, E) is the equational theory of

groups, we refer to its models in a topos E as group objects in E (and similarly for

rings, monoids, etc.).

2.7 Classifying toposes

In this section, we associate with any geometric theory T a classifying topos Set[T],

which has the property that the models of T in any topos E correspond precisely with

the geometric morphisms E → Set[T]. This works because the objects in Set[T] can

be thought of as (disjoint unions of) formulas in the theory, and so given a topos E

and any model M of T in E , we can send each formula in the classifying topos to the

interpretation of that formula in M , giving us the inverse image part of the geometric

morphism.

There are a number of ways of constructing the classifying topos; these are detailed

in [17, D.3.1]. The approach we use will first construct the classifying topos for a

cartesian theory; if a geometric theory T is a quotient of a geometric theory T0, then

Set[T] can be constructed as a localization of Set[T0]. In particular, any geometric
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theory T over a signature Σ is a quotient of the (cartesian) empty theory over Σ, so

this is enough to construct the classifying topos for all geometric theories T.

Let T be a cartesian theory. We construct a category over T, called the syntactic

site, CT. The objects of CT are equivalence classes of cartesian formulas over the

signature of T, where two formulas φ and ψ are taken to be equivalent if there is a

derivation of ψ from T ∪ {φ} and vice versa. Given a cartesian formula φ over the

signature, we write [φ] for the equivalence class of formulas containing φ.

The arrows in CT are (cartesian-)definable maps between the formulas - that is,

the arrows [φ]→ [ψ] are equivalence classes of cartesian formulas θ such that for any

model M of T, θ defines a map φ(X)→ ψ(X), with two such formulas θ and θ′ being

equivalent if they define the same map in every model.

Theorem 2.29. [17, D1.4.7] Let T be a Cartesian theory. Models of the theory in

E are equivalent to functors CT → E preserving finite limits.

We will use CT as the base category for the underlying site of the classifying

topos. We will need the following result, from [20, VII.9.4]. For a site (C, J) and a

cocomplete category E , call a functor F : C → E J-continuous if every covering sieve

in C is mapped to an epimorphic family in E .

Theorem 2.30. [20, VII.9.4] Let (C, J) be a site where C has finite limits, and let

E be a Grothendieck topos. There is an equivalence of categories between geometric

morphisms E → Sh(C, J) and J-continuous functors C → E preserving finite limits.

We give a brief outline of why this is true, and refer the reader to [20] for details.

For the small category C, the Yoneda embedding y : C → SetsC
op

is a free cocomple-

tion of C; that is, every object in SetsC
op

is a colimit of representable objects. Thus,

given a functor F : C → E with E cocomplete, we can extend this to F̃ : SetsC
op → E

by simply stipulating that F̃ preserve colimits: an object P in SetsC
op

can be pre-

sented as the colimit of a diagram D : D → SetsC
op

whose objects are representable

functors, i.e., D factors through the Yoneda embedding via some functor D′ : D → C.

We define F̃ (P ) to be the colimit in E of the diagram F.D′ : D → E . It can be shown
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that this extension of F is well defined; this construction is the left Kan extension

of F along y, cf [7, 3.7.2]. The extension inherits the property of preserving finite

limits from F . It maps the covering sieves in J to epimorphic families in E ; this

translates into mapping the corresponding inclusions in SetsC
op

to isomorphisms in

E , so the functor F̃ factors through the localization aJ : SetsC
op → Sh(C, J). The

functor F ∗ : Sh(C, J) → E so constructed has a right adjoint F∗, by the special

adjoint functor theorem.

We see from the above two theorems how to construct the classifying topos for a

cartesian theory T. This construction is detailed in [17, D3.1]. For a given topos E ,

T-models in E correspond to functors F : CT → E preserving finite limits, which in

turn correspond to geometric morphisms (F ∗, F∗) : E → (CT,Sets). The classifying

topos of T is given by the functor category (CT,Sets).

If T is an arbitrary geometric theory, set T0 to be the empty theory over the same

signature. Then every axiom in T can be written in the form

φ(x) `
∨
i∈I(∃y)ψi(x,y). Each such axiom corresponds to a family of morphisms in

CT0 :

[ψi]
ψi∧x=x′ //φ[x′/x] .

Moreover, the sequent holds in a model M of the theory precisely when this family of

morphisms is mapped to an epimorphic family by the interpretation functor J−KM .

We denote by JT the Grothendieck topology on CT0 generated by these families of

morphisms (that is, for each axiom φ(x) `
∨
i∈I(∃y)ψi(x,y), we take the associated

family of morphisms to be covering).

Now given a topos E , a model of T is a model of T0 in which all the axioms in

T hold; this is equivalent to demanding that the families of mappings corresponding

to each axiom φ(x) `
∨
i∈I(∃y)ψi(x,y) are jointly epimorphic. So again by Theorem

2.30, the models of the geometric theory T correspond to geometric morphisms E →

Sh(CT0 , JT). Thus the classifying topos for T is given by Sh(CT0 , JT).

It can be shown that closing a collection of axioms with respect to T is the same as

taking the Grothendieck topology generated by the corresponding families of maps,



CHAPTER 2. LOCALIZATIONS AND GEOMETRIC LOGIC 55

leading to the following result.

Theorem 2.31. [10, 3.6] Let T be a geometric theory over a signature Σ. Then

associating a collection of axioms with the associated Grothendieck topology on T0

defines a 1-1 correspondence between the geometric quotients of T and the localizations

of the classifying topos of T.

Remark. We note in particular, from [11, 5.5.8], that if T is regular theory, this

correspondence restricts to a correspondence between the regular quotients of T and

the Grothendieck topologies J on CT such that every covering sieve contains a covering

sieve generated by a single arrow.



Chapter 3

Sheaves as essentially algebraic

objects

3.1 Sheaves as essentially algebraic objects

Let C be a small category. The category (C,Sets) of set valued functors on C is

described by a multi-sorted equational theory, which we will denote ΓC . This theory

is described as follows:

• For each object C of C, we take a corresponding sort C.

• For each morphism f : C → C ′ in C, take a function symbol f : C→ C′.

• For each commutative diagram in C of the form

A
f //

h ��@@@@@@@@ B

g
��
C

add an equation to E in one variable x of sort A stating gf(x) = h(x).

If (C, J) is a site, we can describe the presheaves on C as the set-valued functors

on Cop in the manner just described. Furthermore, we can extend the theory to an

essentially algebraic theory (Σ, E,Σt,Def ) whose models are the sheaves on the site.

56
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• For every covering sieve J of an object C, we take a partial operation

σJ :
∏
f∈J

dom(f)→ C

, in variables x = (xf)f∈J (each variable (xf) is of sort cod(f)).

• The equations in Def (σJ) are those of the form gf(xf) = h(xh) whenever we

have a commutative diagram

A
f //

h ��@@@@@@@@ B

g
��
C

such that g and h are in J .

• We add equations to E stating that for each fσJ(x) = xf for every covering

sieve J and every f ∈ J .

It is easily checked that the models of this essentially algebraic theory are just the

sheaves for the topology. We write Γ(C,J) for this essentially algebraic theory.

In fact it suffices to take a basis for the Grothendieck topology in the above. That

is, given a basis K for J , define an essentially algebraic theory by taking the partial

operations σ{fi} defined for each covering family {fi} of morphisms in K as above.

The models of this algebraic theory are again the sheaves for the topology. We denote

this essentially algebraic theory by Γ(C,K).

Let J be a topology, such that there exists a regular cardinal λ and a basis K for

the topology such that every covering family in K has less than λ elements. Then

every function symbol in Γ(C,K) will take fewer than λ arguments, and by Lemma

2.15, the category Sh(C, J) will be locally λ-generated.

3.2 Locally coherent and finitely presented toposes

By considering sheaves as essentially algebraic objects, we can understand the notions

of finite presentability and coherence in a very concrete way. In this section, we will
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use this to characterize the different local generation conditions for toposes. The

results here are mostly known, see e.g., [4, VI.2], but this approach gives us a different

way of thinking about them.

To provide characterizations of toposes with these various local generation prop-

erties, we start by introducing the following form of the Comparison Lemma.

Lemma 3.1. ([20, p.589]) If C is a full subcategory of the Grothendieck topos,

E whose objects form a generating set, and J is the topology on C in which the

covering sieves on an object C are precisely those containing an epimorphic family of

morphisms, then E is equivalent to Sh(C, J).

We use this result to find sites for a given topos. For instance, if we assume the

topos E is locally finitely generated, we can take C to be the collection of finitely

generated objects in E . However, if J is a sieve on a finitely generated object in

E which contains an epimorphic family of morphisms, than in particular J contains

a finite epimorphic family of morphisms. This observation leads to one half of the

following result.

Proposition 3.2. A topos E is locally finitely generated if and only if it is equivalent

to Sh(C, J), for some site (C, J), where every sieve in the topology J contains a dense

finitely generated sieve.

Proof. It remains to show that a topos of this form is locally finitely generated. By

Theorem 2.7, it suffices to prove that sheaves are closed under directed unions.

Let {dij : Di → Dj | i ≤ j ∈ I} be a directed system in Sh(C, J), where (I,≤)

is a directed poset and each dij is a monomorphism. Then if {di : Di → D} is a

colimit cocone for the system, the object D must be a sheaf for J . For suppose we

have an inclusion s : S → Hom(−, C) where S is a dense sieve on C, and a map

f : S → D. The sieve S contains a finitely generated dense sieve S ′, with inclusion

map s′ : S ′ → S, say. This gives us a map f ′ = fs′ : S ′ → D. Since S ′ is finitely

generated, the map f ′ factors through di : Di → D for some i ∈ I. But since Di is a

sheaf, we have a unique extension of f ′ to a map f̃ : Hom(−, C)→ Di.
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We claim that f̃ s is a factorization of f through the colimit; that is, the dif̃ s = f .

If not, there is a map x : X → S with dif̃ sx 6= fx. The image of X is a strong

quotient of X, and so is finitely generated. The union of S ′ and the im(X), denoted

S ′∨im(X), is the image of the map S ′
∐

im(X)→ S determined by s′ and x, and so is

also finitely generated. Denote the inclusion map S ′∨im(X)→ S by m. The map fm

factors through some map dj in the colimit cocone, say as fm = djg. Since S ′∨im(X)

is dense, the map g can be extended to the whole of Hom(−, C). Now consider the

maps di,i∨j f̃ , dj,i∨jg
′. These maps must be equal, since both are extensions of the map

di,i∨jf
′ to Hom(−, C). But this contradicts the assumption that dif̃ sx 6= fx.

Definition 3.3. If (C, J) is a site where every sieve in the topology J contains a

dense finitely generated sieve, we say the topology J is of finite type. More generally,

if every sieve in the topology J contains a dense λ-generated sieve, we say the topology

J is of λ-type.

A reflection functor r : C → A is said to be of finite type (respectively, of λ-type)

if the inclusion functor i : A → C preserves directed colimits (respectively, λ-directed

unions).

There is some confusion here over whether, for a finite-type localization, the inclu-

sion functor i : A → C is required to preserve directed unions, or all directed colimits.

This confusion is caused partly by the fact that if the small category C has pullbacks,

the two definitions are equivalent. However, the definition of finite type topology

given here is fairly universal, and in general, it is only equivalent to demanding that

the inclusion functor preserve λ-directed unions. We shall call a localization such

that the inclusion functor preserves all directed colimits a coherent type localization.

It is shown in e.g., [27, 3.15] that for a Grothendieck topology J on a small category

C with pullbacks, the topology J is of finite type if and only if the localization functor

a : SetsC
op → Sh(C, J) is.

The next result characterizes locally finitely presented toposes. To make the proof

easier to follow, we make the following definition. Let C be a topos, and let f : A→ C,

g : B → C be a pair of arrows in C with common codomain. A square in C over f
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and g is a commutative diagram of the form

X
x1 //

x2
��

B

g
��

A
f // C

.

We denote this square by (X, x1, x2). Given two squares (X, x1, x2), (Y, y1, y2), we

say a factorisation of X through Y is a map x′ : X → Y with the property that

y1x
′ = x1, y2x

′ = x2.

Theorem 3.4. A topos E is locally finitely presented if and only if it is equivalent to

Sh(C, J), for some site (C, J), where every sieve in the topology contains a dense sieve

S with the property that (1) S is generated by a finite collection of arrows S ′; and (2)

every pair of arrows f, g ∈ S ′ admits a finite collection of squares, Xi = (Xi, x
i
1, x

i
2)

with the property that every other square Y = (Y, y1, y2) factors through one of the

Xi.

Proof. Suppose the site (C, J) is of the form described. Take as a basis for the

topology the finite collections of arrows generating each sieve S ′ as described in the

statement of the theorem. Associate with this basis the essentially algebraic theory

as described in section 3.1. For each sieve S ′, the equations stating that the squares

Xi commute are sufficient to describe the essentially algebraic theory. This theory is

finitary, and the category of its models is therefore locally finitely presented. This

category is of course just Sh(C, J).

It remains to show that if E is locally finitely presented, then it is equivalent to the

category of sheaves on a site of this form. By the previous result, if E is locally finitely

presented, it is equivalent to the category of sheaves on the site (C, J), where C is the

category of finitely generated objects in E , and J is the topology on C generated by

the families of morphisms that are epimorphic families in E . We claim that if J is

not of the above form, then the objects in C are not finitely presented in E .

Suppose there is some object C in C and some finitely generated J-dense sieve

S on C, which is generated by a finite family of morphisms {si : Si → C}1≤i≤n.



CHAPTER 3. SHEAVES AS ESSENTIALLY ALGEBRAIC OBJECTS 61

Suppose there is some pair si, sj, which does not admit a finite family of squares with

the property (2). Consider the collection of all squares (Yk, y
k
1 , y

k
2) over si, sj.

Build up a directed system of functors as follows: each functor F is generated by

a pair of elements xi ∈ Si, for each 1 ≤ i ≤ n. The directed system consists of all

functors with this generating set and containing finitely many of the relations satisfied

by the generating set of elements si in S. Thus these functors form a directed system

(the join of two functors F1, F2 in the system is the functor whose set of relations is

just the union of those for F1 and F2). The colimit of this directed system is clearly S.

However, there is no map from S to any of the functors Fi, since this would force Fi

to satisfy extra relations. Since S is isomorphic to Hom(−, C) in the sheaf category,

this contradicts the assertion that C is finitely presented in E .

The most obvious examples of sites which fulfil the condition given in Proposi-

tion 3.4 are those where the topology is trivial, i.e., for each object C in C, JC =

{Hom(−, C)} (this is the wholly obvious fact that presheaf categories are locally

finitely presented) and those where the category C has pullbacks (this is the equally

obvious fact that locally coherent toposes are locally finitely presented).

If (C, J) is a site as described above, the finitely presented objects in Sh(C, J) are

described by the following result, which appears as [27, 3.16]. This can be seen as

an immediate consequence of Lemma 2.12 applied to the description of sheaves as

essentially algebraic objects given in section 3.1.

Theorem 3.5. Let J be a λ-type Grothendieck topology on a category C.

a If F is a λ-generated sheaf, there is a λ-generated presheaf P such that F ∼= aP .

b If F is a λ-presented sheaf, there is a λ-presented presheaf P such that F ∼= aP .

To look at coherent and locally coherent toposes, we will need the following result.

Lemma 3.6. Let C be any category. Then the full subcategory of C consisting of

coherent objects in C is closed under pullbacks.
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Proof. Suppose we are given a pullback diagram of the form

A
π1 //

π2
��

B

g
��

C
f // D

in which the objects B, C and D are all assumed to be coherent. Since D is coherent

and B and C are finitely generated, we have that A is finitely generated also.

Now suppose we have a further pullback diagram

X
p1 //

p2
��

Y

h
��

Z
f // A

in which Y and Z are finitely generated. Then the diagram

X
p1 //

p2
��

Y

gπ1h
��

Z
fπ2k // D

is a pullback diagram also, and so X is finitely generated by coherence of D.

Thus A is coherent also.

The next result characterizes locally coherent toposes; it will require quite a bit

of work to prove. This characterization was originally shown in [4, VI.2.1]. The proof

we give here uses the idea of a presheaf as a model of an algebraic theory.

Proposition 3.7. A topos E is locally coherent if and only if it is equivalent to

Sh(C, J), for some site (C, J), where C is closed under pullbacks and every sieve in

the topology J is generated by a finite number of arrows.

Such a topos is always cocomplete, so it suffices to prove that the functors

aHom(−, C) are coherent in such a topos (recall that a is the associated sheaf functor

defined on page 35). We will need to look at the notion of separated presheaves. A

presheaf P on a site (C, J) is separated if for any object C in C, and any cover S of
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C, if x, y ∈ PC such that for all f : D → C in S, we have that if Pf(x) = Pf(y),

then x = y. That is, P is separated if elements of P agree on a cover only if they are

the same. A presheaf P if separated if and only if P+ is a sheaf.

The separated presheaves form a reflective subcategory Sep(C) of SetsC
op

, and

the associated sheaf functor factors through this reflection. On any presheaf P , we

define, for each object C of C an equivalence relation R on PC given by

xRy if and only if ∃S ∈ JC such that ∀f ∈ S, Pf(x) = Pf(y).

Given a map f : C → C ′, the corresponding map Pf : PC ′ → PC respects this

equivalence relation, so this defines a functor (−)sep : SetsC
op → Sep(C). We write

Psep for the image of P under this functor. This functor is a localization, so in

particular the associated sheaf functor can be represented as (−)sep followed by one

application of the plus-functor from section 2.3. The details of this can be found in,

for example, [27, p.32].

If F is a presheaf on a site (C, J), we say a subpresheaf s : S → F is dense if as is an

isomorphism. The dense subpresheaves of a presheaf P are closed under intersections,

so they form a directed system, denoted D(P ). If F and G are presheaves then a

map between f : aF → aG may be represented by a map f ′ : F ′ → Gsep such that

af ′ = f . Two maps f : F ′ → Gsep and g : F ′′ → Gsep represent the same map

aF → aG if they agree on some dense subobject of F ′ ∩ F ′′.

Lemma 3.8. ([27, 3.9]) For presheaves F and G on a site (C, J), there is a natural

isomorphism

HomSh(C,J)(aF, aG) ∼= lim
−→ P ′∈D(P )HomSetsC

op (P ′, Qsep).

Lemma 3.9. Let (C, J) be a site where C is closed under pullbacks and every sieve in

the topology J is generated by a finite number of arrows. Let a : SetsC
op → Sh(C, J)

be the localization functor. Then the functors aHom(−, C) are coherent objects in the

sheaf category.
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Proof. The functor aHom(−, C) is finitely generated in the sheaf category by The-

orem 3.5. It remains to prove the pullback property. We will show this by looking

at the separated presheaf Hom(−, C)sep. For each object C ′ in C, the elements of

Hom(−, C)sep(C ′) are equivalence classes of maps f : C ′ → C, where f is equivalent

to f ′ if there is some cover {gi : Gi → C ′}i∈I such that fgi = f ′gi, for all i.

Suppose we are given maps α : A → aHom(−, C), β : B → yC in the sheaf

category, with A and B finitely generated. Since A and B are finitely generated in

the sheaf category, they are isomorphic to sheaves aA′, aB′ for some finitely generated

presheaves A′ and B′, by Theorem 3.5. The maps α and β can be represented by

maps α̃ : A∗ → Hom(−, C)sep and β̃ : B∗ → Hom(−, C)sep in SetsC
op

with A∗ and B∗

finitely generated dense subobjects of A′ and B′ respectively (we may assume A∗ and

B∗ are finitely generated because the localization is of finite type). The presheaves

A∗sep and B∗sep are finitely generated objects in the category SetsC
op

, since they are

quotients of the finitely generated objects A∗ and B∗ respectively.

Thus the map α and β are given by maps α∗ : A∗sep → Hom(−, C)sep, β∗ : B∗sep →

Hom(−, C)sep, where A∗sep and B∗sep are finitely generated objects in SetsC
op

, and

a(α∗) = α, a(β∗) = β.

Since A∗sep and B∗sep are objects in the presheaf category, we can assume they

are generated as models of the algebraic theory ΓC by elements ai ∈ A∗sepCi and

bj ∈ B∗sepCj. The map α∗ : A∗sep → Hom(−, C)sep identifies each of the generators

ai with an equivalence class of arrows Ci → C, and we choose a representative

a∗i : Ci → C for each equivalence class. Similarly, we choose representatives b∗j for the

image of each of the generators bj.

For each pair of generators ai of A∗sep and bj of B∗sep, take the pullback square

Ci ×C Cj
π2
i,j //

π1
i,j

��

Cj

b∗j
��

Ci
a∗i // C

Now define P to be the presheaf defined by taking generators (pi, pj) of sort

Ci×C Cj for each pair of generators ai, bj. Every term t(pi, pj) of sort C ′ corresponds
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to a map t : C ′ → Ci ×C Cj, which then corresponds to a pair of maps ti : C ′ → Ci,

tj : C ′ → Cj. The relations on P are defined by taking t(pi1 , pj1) = t′(pi2 , pj2)

when the corresponding terms in A∗sep and B∗sep are equal, i.e., ti1(ai1) = t′i2(ai2) and

tj1(bj1) = t′j2(bj2).

This presheaf P is clearly finitely generated, and we have a diagram

P
π2 //

π1

��

B∗sep

β∗

��
A∗sep

α∗ // Hom(−, C)sep

This diagram is not in general a pullback diagram, but it suffices to show that it is

mapped to one by the localization functor.

Let X be any functor, and suppose we have a commutative diagram

aX
x2 //

x1
��

B

β
��

A α // aHom(−, C)

The map x1 : aX → A is given by a map x′1 : S → A′sep, where S is a dense subobject

of X. The sep-functor preserves monomorphisms, so A∗sep is a subobject of A′sep, and

since both objects are mapped to aB by the associated sheaf functor, it is a dense

subobject. The pullback of A∗sep along x′1 is also a dense subobject of X, so there

is a mapx∗1 : S → A∗sep with a(x∗1) = x1. Similarly, we may assume there is a map

x∗2 : S → B∗sep with a(x∗2) = x2 (we can assume both maps have the same domain by

taking the intersection of the two domains).

Suppose S is generated by elements sk each of sort Sk. The maps x∗1, x∗2 send each

of these generators sk to x∗1(sk) ∈ A∗sepSk, x
∗
2(sk) ∈ B∗sepSk. This pair is represented

by an element (x∗1(sk), x
∗
2(sk)) ∈ PSk. Defining this on each generator gives us a

transformation x̃ : S → P . We observe that this is indeed a transformation since any

relations that are required to hold in P hold in each of its two components, by the

assumption that x∗1 and x∗2 were transformations themselves.
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We still need to show that the factorization is unique. Suppose there is another

transformation x′ : S ′ → P , such that S ′ is dense in X, and a(π1x
′) = x1 and

a(π2x
′) = x2. Then by Lemma 3.8, there is a subobject of T of S and S ′ on which

π1x
′ agrees with x̃1, and π2x

′ agrees with x̃2; it follows by the definition of x̃ that

x̃|T = x′|T . But if this is the case then x′ and x̃ represent the same transformation

aX → aP . This concludes the proof.

Proof of theorem 3.7: The topos of sheaves on a site (C, J) always has the rep-

resentable functors aHom(−, C) as a generating set; we have just shown that these

will be coherent. The converse follows immediately from the Comparison Lemma,

3.1 and Lemma 3.6.

3.3 Modules over a sheaf of rings

Let E be a topos of presheaves, i.e., E = SetsC
op

for some small category C. A ring

object in E is a presheaf of rings on C - this is a presheaf R : Cop → Sets such that

RC has a ring structure for every object C in C, and for each map f : C → C ′ in

C, the map Rf : RC ′ → RC is a morphism of rings. We write Rings(E) for the

category of ring objects in E .

If J is a topology on C, then a ring object in Sh(C, J) is a presheaf of rings such

that the underlying presheaf of sets is a sheaf.

In particular, since the localization functor a : SetsC
op → Sh(C, J) preserves finite

products, we see that the localization of a presheaf of rings is also a sheaf of rings,

and this is a reflection functor from Rings(SetsC
op

) → Rings(Sh(C, J)) (and more

generally, if f : E → F is a geometric morphism of toposes, this defines a ‘geometric

morphism’ Rings(F)→ Rings(E), that is, an adjoint pair of functor between these

two categories with the left adjoint preserving finite limits).

If (R, 0R, 1R,−R,+R,×R) is a ring object in a topos, we define a right R-module

object (M, 0M ,−M ,+M ,×M) in C to be an abelian group object (M, 0M ,−M ,+M)

together with a map ×M : M × R → M satisfying the commutativity conditions

required by modules; for example, to show the multiplication is distributive over
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addition, we stipulate that the following diagram must commute:

M ×R×R (×)M×idR //

idM×(×R)
��

M ×R
×M

��
M ×R ×M //M

.

Morphisms of R-module objects are defined similarly.

If R is a presheaf of rings over some small category C, then an R-module object

M in SetsC
op

is a ‘presheaf of R-modules’ - for each object C in C, MC will be an

RC-module, and for a map f : C → C ′, the map Mf : MC ′ → MC will be an

RC ′-linear map, where MC is considered with the action of RC ′ on it defined by the

map Rf : RC ′ → RC. We denote the category of presheaves of R-modules over a

presheaf of rings by PreMod-R. If R is a sheaf of rings we denote the category of

sheaves of R-modules by Mod-R.

In particular, we see that since the localization functor a : SetsC
op → Sh(C, J)

preserves finite limits, if M is a presheaf of R-modules for some presheaf of rings R

on a small category C, then aM will be a sheaf of aR-modules.

Now let N be a sheaf of aR-modules. The presheaf of rings R has an action on

N , given by

N ×R ηR×idN //N × aR ×N //N

and one can easily show that N is a presheaf of R-modules with this action.

Theorem 3.10. Let (C, J) be a site, with associated sheaf functor a : Sh(C, J) →

SetsC
op

, and inclusion functor i : SetsC
op → Sh(C, J). Suppose R is a presheaf

of rings on C. Then a and i induce functors a′ : PreMod-R → Mod-aR, i′ :

Mod-aR→ PreMod-R, and this expresses Mod-aR as a localization of the category

PreMod-R.

Proof. We have already described the functors a′ and i′, and a′ preserves finite limits

since it commutes with the forgetful functor. It remains to show that a′ is left adjoint

to i′, or equivalently, that given a presheaf of R-modules M and a sheaf of aR modules

N , then a map f : M → N in SetsC
op

is a morphism in PreMod-R if and only if
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the corresponding map af : aM → N in Sh(C, J) is a morphism in Mod-aR. We

show that f commutes with the multiplication by R if and only if af commutes with

the multiplication by aR; the proof that f is an abelian group map if and only if af

is is similar.

Consider the diagram below, where f = af.ηM :

M ×R f×idR //

×M

��

η(M×R)

&&NNNNNNNNNNN N ×R
idN×ηR=η(N×R)

��
aM × aRaf×idaR//

a(×M )
��

N × aR
×N

��
M

ηM // aM
af // N

Our claim is that the inner square commutes if and only if the outer square does.

To see this, notice that the inner square is the image of the outer square under the

functor a; thus if the outer square commutes, the inner square must commute also.

Now suppose the inner square commutes. Then ×N .η(N×R).(f × idR) = ×N .(af ×

idaR).η(M×R) = af.a(×M).ηM×R = af.ηM .×M , and thus the outer square commutes,

as required.

In the paper of Prest and Ralph, [24], the following result was shown: let X be a

topological space with a basis of compact open sets, and let R be a sheaf of rings on

X (we refer to a topological space with a sheaf of rings as a ringed space). Then the

category of R-modules is locally finitely presentable.

In that paper, it was asked under what conditions this result generalizes to an arbi-

trary Grothendieck topos. This question can be answered using the characterizations

given up to this point.

Theorem 3.11. If E is a locally finitely presentable topos (respectively locally finitely

generated) and R is a ring object in E, then Mod-R, the category of R-module objects

in E, is locally finitely presentable (respectively locally finitely generated).

Proof. Let E be a locally finitely presentable topos. Then by Proposition 3.4, E is

equivalent to Sh(C, J), where J is a topology on a small category C with the property
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that every covering sieve on an object C in C contains a finitely presentable covering

sieve.

We use the essentially algebraic theory describing the objects in Sh(C, J) described

in section 3.1. Sheaves of R-modules can be described by adding more functions and

equations to this theory.

To define the category of R-module objects in Sh(C, J), we add total operation

symbols to the above signature. For a given sort C (that is, each object C in C), we

add a function symbol r : C→ C, for each element r ∈ RC. We also add a constant

symbol 0C of sort C, and function symbols +C : C× C→ C and −C : C→ C. We expand

E to include equations stating that with the operations so defined, the collection of

elements of the sort C is an RC-module for each object C, and each function symbol

f : B→ C is an RB-linear map.

This gives us a description of Mod-R as a finitary essentially algebraic category;

it is therefore locally finitely presentable.

To get the corresponding result for locally finitely generated toposes, we use a sim-

ilar argument, but the sets Def (σ) are allowed to contain infinitely many equations.

The rest of the argument is unchanged.

It is well-known that for a topological space X, the category of sheaves on X is

locally finitely presentable if and only if the space has a basis B of compact open

sets, see e.g., [17, D3.3.14]. This can be seen as a consequence of [20, II.2.3], which

states that a sheaf on the lattice Op(X) is equivalent to a sheaf on the sublattice

consisting of the basis elements B. If this basis consists of compact open sets, then

the essentially algebraic theory described in section 3.1 will be finitary.

Remark. It has been pointed out to us that results in section D5 of [17] can be used

to provide a straightforward proof that local λ-presentability of a topos E implies

local λ-presentability of any category of modules in E . Our proof has a much more

model theoretic flavour, and we hope it will be more straightforward to those with

experience in this field.

We now turn our attention to the question of when the category of modules on a
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ringed space is locally coherent. It should be noted at this point that the definition

of coherence we are using is distinct from (and a lot stronger than) the definition of

a coherent sheaf of modules used by algebraic geometers, in for example [15, II.5].

Let X be a topological space, and let R be a presheaf of rings on X. Denote by

Op(X) the lattice of open sets of X. Denote by ΓR the essentially algebraic theory

of presheaves of modules over R.

For each open set U ∈ Op(X), define a presheaf RU : Op(X)op → Sets by

RU(V ) = R(V ) if V ⊆ U ; 0 if V 6⊆ U.

Each presheaf-of-modules RU is the free model of the theory ΓR generated by a single

element of sort U . It follows that the collection {RU | U ∈ Op(X)} is a generating

set of objects for PreMod-R - if α 6= β : F → G are distinct maps in PreMod-R,

then there is some U ∈ Op(X) and some x ∈ FU such that αU(x) 6= βU(x). The

element x represents a map x̃ : RU → F , and the inequality αx̃ 6= βx̃ holds.

Every presheaf RU is finitely generated, and is a subobject of the presheaf R,

considered as an object in PreMod-R. In particular, we see as a consequence of

Lemma 2.5:

Lemma 3.12. Let R be a presheaf of rings on a space X. The category PreMod-R

is locally coherent if and only if R, considered as a sheaf of modules, is coherent as

an object in the category.

Proof. We have just seen that if R is coherent as a module over itself, the objects

RU form a generating set of coherent objects. Now suppose the category PreMod-R

is locally coherent; then every finitely presentable object is coherent, and since R is

finitely presentable in PreMod-R, it must be coherent.

We look for conditions under which a presheaf of rings R is coherent.

Lemma 3.13. If R is a coherent presheaf of rings on a space X, then for every open

set U in X, RU is a coherent ring.
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Proof. Let R be a presheaf of rings on a space, and let U be an open set in X

such that RU is not a coherent ring. Then there is some finitely generated ideal

〈x1, . . . , xn〉 = I ⊆ RU , such that I is not finitely presentable. But I defines a finitely

generated subobject of R - just take the subobject of R generated by x1, . . . , xn. This

is not finitely presentable; if I had a presentation with only finitely many relations,

then taking the relations which occur between terms of sort U would give a finite

presentation of IU .

A version of the next result appeared as Theorem 2.18 in [25]. In this paper, the

result was proved for an arbitrary presheaf of rings R, as long as RU was coherent for

each open set U ∈ Op(X). As it turns out, the argument in [25] contains a mistake:

if F is a finitely presentable module and G a finitely generated submodule, then

the sheaf-of-rings structure of R can force G to have infinitely many relations. The

argument can be made to work if we insist that the presheaf-of-rings R be finitely

presentable, however.

Theorem 3.14. (cf [25, 2.18]) Let R be a presheaf of rings on the space X. If R

is finitely presentable, and for each open set U ∈ Op(X), RU is a coherent ring, then

the presheaf of rings R is coherent as an object in PreMod-R.

Proof. Let 〈x1, . . . , xn | r1(x), . . . , rm(x)〉 be a presentation of R in the language of

presheaves of rings over C. Each element xi has sort Ui where Ui is some open

set in Op(X). Suppose for some open set Ui, we have an open set U ⊆ Ui; then

denote by xUi the restriction of the element xi to U (i.e., the image of xi under the

restriction map RUi → RU). Each relation rj(x) is an equation between terms in the

variables x = x1, . . . , xn, and each equation is between terms in some sort Vj, where

Vj ∈ Op(X).

On any open set U ∈ Op(X), the ring RU is generated by the set of elements

xUi , for those elements xi where U ⊆ Ui. The relations that hold on these elements

{xUi | U ⊆ Ui} are precisely those induced by those relations rj(x) which have U ⊆ Uj.

In particular, if U and U ′ are two open sets that are contained in precisely the same

open sets Ui and Vj (that is, for every i = 1, . . . , n, U ⊆ Ui if and only if U ′ ⊆ Ui,
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and for every j = 1, . . . ,m, U ⊆ Uj if and only if U ′ ⊆ Uj) then the rings RU and

RV are isomorphic (since they have the same presentation).

To prove that the category PreMod-R is locally coherent, it suffices to prove that

the presheaf-of-modules R is a coherent object of this category. Since PreMod-R is

an abelian category, it suffices to show that any finitely generated subobject of R is

finitely presentable. To see this, suppose that I ⊆ R is a finitely generated subobject

of R; let y1, . . . , yl be a generating set of elements, where each element yk is of sort

Wk. Suppose we have two open sets U ⊆ U ′ that are contained in precisely the same

open sets from the collection U1, . . . , Un, V1, . . . , Vm,W1, . . . ,Wl. Then RU and RU ′

are isomorphic, and this isomorphism restricts to an isomorphism IU ∼= IU ′, since IU

will be the subobject of RU generated by the elements yUk for each k with U ⊆ Wk,

and IU ′ will be the generated by the elements yU
′

k for precisely the same values of k

from 1, . . . , l.

Thus the presheaf-of-rings I is completely described by its presentation on the

open sets which are intersections of subsets of the set {U1, . . . , Un, V1, . . . , Vm,W1, . . . ,Wl}.

There are only finitely many such intersections, and since RU is coherent on every

open set U , IU is finitely presentable on each open set U that is such an intersection.

Combining the finite presentation of I on each intersection from this set, we can write

down a finite presentation for the whole presheaf I.

The next result gives us a condition for categories of sheaves of modules (as

opposed to just presheaves) to be locally coherent.

Theorem 3.15. Let (C, J) be a site such that the inclusion functor i : Sh(C, J) →

SetsC
op

preserves directed colimits, and let R be a presheaf of modules on C such that

PreMod-R is locally coherent. Then the category Mod-aR is locally coherent also.

Proof. Suppose (I,≤) is some directed partial order, and we are given a directed

diagram in Mod-aR,

{Di
dij //Dj | i ≤ j ∈ (I,≤)}.

This is a directed diagram in PreMod-R also, and the directed colimit of this

diagram exists in PreMod-R, and has as its underlying presheaf of sets the colimit
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of the underlying presheaves of sets (see [1, 3.4(4), 3.6(6)]). Let L be the directed

colimit in PreMod-R, so we have an action of R on L denoted ×L : L×R→ L.

Since the inclusion functor i : Sh(C, J) → SetsC
op

preserves directed colimits, L

is a sheaf, and the map a(×L) : L× aR→ L is an action of aR on L, with respect to

which L is the colimit of the diagram in Mod-aR.

It is nevertheless possible to find a ring object R in a locally coherent topos, such

that the category of R-modules is not locally coherent, as demonstrated by the next

result.

Theorem 3.16. Let X be a topological space with infinitely many open sets. Then

there is a sheaf of rings R on X, with the property that RU is a coherent ring for

every open set U in X, but the category Mod-R is not locally coherent.

Proof. If X has infinitely many open sets, then the distributive lattice Op(X) has

infinitely many elements. Recall that such a lattice must contain an infinite chain.

For suppose it does not. Then the lattice has finite height n. Since the lattice has

infinitely many elements, there is a least height i < n such that Op(X) has infinitely

many elements of height i. Note that since the empty set is the unique element of

height 0, i > 0. There are only finitely many elements of height i− 1, so there must

be one element, U say, with infinitely many elements of height i above U . Choose a

countable collection of these, {Ui}i∈N0 .

U0 U1 . . . Un . . .

U

hhPPPPPPPPPPPPPPPP

aaBBBBBBBB

==||||||||

For a given i, consider whether Ui is contained in the union of the other elements∨
j 6=i Uj. Only finitely many of the Ui can have this property - if infinitely many did,

than we could construct an infinite chain from taking their finite unions. So there

exists at least one open set which does not - U0, say. So we may assume U0 ⊆
∨
i≥1 Ui.
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For each i ≥ 1, U0 ∩ Ui = U . So we have the equalities

∨
i≥1

(U0 ∩ Ui) = U

and

U0 ∩
∨
i≥1

Ui = U0.

Together, these equalities contradict the fact that Op(X) is a Heyting algebra. So

Op(X) must have an infinite chain.

Now suppose the lattice Op(X) contains an infinite chain. Then in particular, it

contains a chain isomorphic to ω, or a chain isomorphic to ωop. We deal with these

two cases separately.

First of all, we look at the case when Op(X) contains a sequence of open sets

isomorphic to ω, say

U0
// U1

// . . . Un // . . . // U∞

We may assume that U0 is the empty set, that U∞ =
⋃∞
i=0 Ui, and that every open set

Uα is connected (if Uα is the smallest disconnected set, replace it with the connected

component of Uα that contains Uα−1).

In this case, for each Ui, we define RUi = Z/2iZ. We define RU∞ to be Z2, the

ring of 2-adic integers. For an arbitrary connected open set V ⊆ X, there is a smallest

number iV ∈ N ∪ {∞} such that V ⊆ UiV . Define RV = RUiV . For a disconnected

subset V , define RV to be the product over the connected components.

The presheaf R so described is a sheaf. It suffices to check the sheaf condition on

connected subsets V of X, since R sends disjoint unions to the appropriate product

by definition.

Suppose V is a connected subset of X, and let {Vj}j∈J be a cover of V , and take

a matching family xj ∈ RVj of elements of R. Suppose RV = RUα (that is, Uα

is the smallest set in the chain such that V ⊆ Uα). But then there is some point

p ∈ V with p 6∈ Ui for any i < α. But the point p is in Vj for some j ∈ J , and in
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particular RVj = RUα = RV . Now the amalgamation for the matching family will

be the element xj ∈ RVj = RV .

The sheaf R is finitely presentable as a module over itself. As before, we consider

the subpresheaf M generated by 2 ∈ RX. On each open set V in X, MV consists of

those elements of RV which admit a division by two. The same argument as for R

shows that this is a sheaf.

We need to show that M is not finitely presentable. The argument above shows

that if V is covered by subsets Vj then RVj = RV for some j, and consequently

MVj = MV also. Thus if the presentation includes a relation on some open subset

V , this cannot be used to derive relations on subsets strictly containing V . Now

suppose there is a finite presentation for M . There is some i ∈ N such that the finite

presentation does not induce relations on MUi. But MUi is not free. So there cannot

be any finite presentation for M .

Now we examine the case when Op(X) contains an infinite chain isomorphic to

ωop, say

0 = U∞ // . . . //Un // . . . //U1
//U0 = X.

Let k be a field. Define a sheaf of rings R on X as follows: let RX = k[x0]. For

an open set V that is not contained in any Ui for i ∈ N, set RV = 0, the one element

ring. For any other open set V ⊆ U , let n be the smallest natural number such that

V ⊆ Un (if V is contained in every Un, set n =∞). Then define

RV = k[x0, x1, . . . , xn]/〈x0xi = x0〉1≤i≤n.

The restriction maps are the canonical inclusions of the polynomial rings. Every ring

RV is coherent (since we take a quotient of a finite polynomial ring by a finitely

generated ideal).

We can show that R is a sheaf in a similar way to the first case: if V is covered

by a collection of open sets Vi, there is some Vi with RVi = RV , and this is how we

find an amalgamation whenever we have a matching family of elements of R for the

cover.
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Now let M be the subobject of R in Mod-R generated by the object x0 of sort X.

For each open set V of X with RV = k[x0, . . . , xn]/〈x0xi = x0〉1≤i≤n, MV is given

by the presentation

MV = 〈y|yxi = y〉1≤i≤n.

The same argument as for R shows that M is a sheaf. The object M is finitely

generated in Mod-R (by x0), but a finite presentation for M would only mention

finitely many of the variables xi in M , so there would be some xk that is not mentioned

in the presentation. But then MUk would not to satisfy yxk = y. So M is not finitely

presentable.



Chapter 4

Krull-Gabriel Dimension

4.1 Supercompactness and regularity

In this section we introduce the idea of supercompact and regular objects in a topos.

The idea of a supercompact object is analogous to that of a finitely generated object,

only instead of capturing the idea of an object having a finite set of generators, the

idea of supercompactness is to describe those objects with only a single generator.

This gives rise to a notion of local supercompactness, and morphisms of toposes

which preserve this structure. In particular, localizations of a classifying topos which

preserve this structure correspond to theories in regular logic, just as finite-type

localizations correspond to theories in a coherent logic. Supercompact and regular

objects were introduced in [17, D3.1.12]. We describe these now.

An object C in a topos E is said to be supercompact if whenever there is a epi-

morphic family of morphisms {f : Df → C | f ∈ I}, there is (at least) one morphism

f : Df → C in the family that is itself an epimorphism. We say C is regular if it is

supercompact and for any pullback diagram

B ×C B′ //

��

B′

��
B // C

where B and B′ are supercompact, the object B ×C B′ is supercompact also. The

77



CHAPTER 4. KRULL-GABRIEL DIMENSION 78

topos E is locally supercompact if it is cocomplete and has a strong generating set of

supercompact objects, and it is locally regular if it is cocomplete and has a strong

generating set of regular objects.

The definition of supercompactness can be rephrased in a manner similar to the

definition of finite presentation.

Lemma 4.1. An object C in a topos E is supercompact if and only if whenever there

is a epimorphic family {mi : Bi → B}i∈I of morphisms in E, such that each mi is a

monomorphism, then every map f : C → B factors through one of the maps mi, that

is, there is a map f ′ : C → Bi with f = mif
′.

Proof. Let C be a supercompact object in E . Suppose we have an epimorphic family

{mi : Bi → B}i∈I and a map f : C → B as described. Then the collection of maps

f−1(mi) : f−1(Bi)→ C defined by pulling back the maps mi along f is an epimorphic

family of monics. In particular, since C is supercompact, there is some j ∈ I such

that f−1(mj) is an epimorphism. Since f−1(mj) is monic and epic, and the topos E

is a balanced category, f−1(mi) is an isomorphism, and the map f−1(Bj) → Bi in

the pullback square for mj is the factorization required.

Now suppose C has the property stated. Suppose there is an epimorphic family

{fi : Ci → C}i∈I in E . For each fi, let mi : Im(Ci) → C be the image factorization

of fi (this exists by [20, IV.6.1]). The maps mi form an epimorphic family, and so

the identity map 1C : C → C factors through one of these maps, say 1C = mjp. The

map mj is both monic and epic, and so is an isomorphism. It follows that the map

fj is an epimorphism.

It follows from this characterization that supercompact objects in a topos are

finitely generated, since a directed union is in particular an epimorphic family of

monics.

There is an analogue of Lemmas 2.1 and 2.2 for supercompact objects.

Lemma 4.2. Let E be a locally supercompact topos, and let G be a generating set of

supercompact objects. Then an object C in E is supercompact if and only if there is

an epimorphism G→ C, with G ∈ G.
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Proof. The collection of all mappings {Gi → C | Gi ∈ G} is an epimorphic family, so

if C is supercompact, there must be an epimorphism Gi → C for some Gi ∈ G, by

supercompactness.

Conversely, suppose we have an object C with an epimorphism g : G → C, with

G supercompact, and let {Ci
ci //C } be an epimorphic family. Then pulling back,

we have that {g∗Ci
g∗ci //G} is an epimorphic family, and therefore for some map ci in

the family, g∗ci : g∗Ci → G is an epimorphism. It follows that ci is an epimorphism,

since the epimorphism g.g∗ci factors through it.

Now suppose C is a locally finitely presentable category. Then C is the category of

models for a Cartesian theory T. The classifying topos for T is the functor category

(CT,Sets), where the objects of CT are (equivalence classes of) Cartesian formulas

over T, and the morphisms are (equivalence classes of) functions whose graphs are

definable by coherent formulas.

There is a way of associating the finitely presentable T-models with Cartesian

formulas, and vice versa.

If the formula φ(x) is a finite conjunction of atomic formulas, then there is an

object A ∈ fp(C) and a tuple of generators a ∈ φ(A) with the property that if B is

any object and b ∈ φ(B) then the map a 7→ b extends to a homomorphism A→ B.

We say that the pair (A, a) is a free realization of the formula φ.

If C ∈ fp(C) and c is a tuple of generators for C, then there is a finite conjunction

of atomic formulas φ(x) with c ∈ φ(C) such that (C, c) is a free realization of φ, we

say φ is a presentation formula for C.

Let φ(x) be an arbitrary formula that is Cartesian with respect to T. Suppose

φ(x) has the form ∃yψ(x,y), where ψ is a conjunction of atomic formulas. Then the

formula ρ(x,x′,y) given by:

φ(x) ∧ ψ(x′,y) ∧ (x = x′)

defines an isomorphism [φ] → [ψ] in CT. It follows that for every Cartesian formula

φ over T, [φ] is isomorphic in CT to the equivalence class of a presentation formula.
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Sending each quantifier-free formula φ(x) to a free realization, we can show that

the classifying topos (CT,Sets) is equivalent to the functor category (fp C,Sets).

Recall from section 2.6 that a geometric formula φ(x) over the signature of T gives

rise to a functor Mod(T)→ Sets, also denoted φ. If C is a finitely presented object

in C with presentation formula φ(x), we have just seen that for any other object B in

C, maps C → B correspond to tuples in φ(B). This sets up an isomorphism between

the representable functor Hom(C,−) and the functor φ : Mod(T)→ Sets.

Let F be a functor F : fp(C)→ Sets. A functorial equivalence relation on F is a

parallel pair of morphisms (r1, r2) : E ////F that defines an equivalence relation on

F in the functor category (C,Sets).

It follows from the Yoneda lemma that all the representable presheaves in (fp(C),Sets)

are supercompact - if Hom(−, C) is a representable functor and there is a strong epi-

morphic family {Fi → Hom(−, C) | i ∈ I} in (fp C,Sets), then in particular the

identity map 1C : C → C must lie in the image of Fj for some j ∈ I. But then the

map Fj → Hom(−, C) is epimorphic. The representable presheaves form a strong

generating set.

In particular, we get the following result, which follows from observing the proofs

of 3.2.2, 3.2.3 and 3.2.5 in [26].

Proposition 4.3. An object F in (fp C,Sets) is supercompact if and only if it is

isomorphic to the functor φ/E, where φ is a quantifier free regular formula, and E

is a functorial equivalence relation.

Proof. Let (A, a) be a free realization of φ(x); then the functor φ is representable,

and therefore supercompact. Since φ/E is a quotient of φ, it is supercompact also,

by Lemma 4.2.

The representable functors form a strong generating set for (fp C,Sets), so by

Lemma 4.2, there must be an epimorphism e : Hom(C,−) → F for some finitely

presented object C in C. Let φ be a presentation formula for C, so Hom(C,−) ∼= φ.
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Let R ⊆ φ× φ be the functor given by

M 7→ {(x,y) ∈ φ(M)2 : eM(x) = eM(y)}

and let E(x,y) be the equivalence relation generated by R. Then F ∼= φ/E as

required.

Similarly, we extract from the proof of [26, 3.2.7]:

Lemma 4.4. For every morphism f : φ/E1 → ψ/E2 between supercompact objects

in this category, there is a regular formula ρ such that for each model M , ρ(M) is

the graph of the map fM : φ/E1(M)→ ψ/E2(M).

Proof. Let α : φ/E1 → ψ/E2 be such a natural transformation. Let (A, a) be a free

realisation of the formula φ(x). Choose a representative a′ for the E2-equivalence

class αA[a]E1 . Since the tuple a generates A, there will be a tuple t of terms such

that t(a) = a′. Let ρ(x,y) be the formula

φ(x) ∧ t(x) = y.

Suppose that c, c′ are tuples from an object C and that ρ(c, c′) holds. Then there

is a map f : A → C defined by a 7→ c. Since α is a natural transformation, the

following diagram commutes, where f∗ denotes the obvious induced map.

φ
E1

(A)
αA //

f∗
��

ψ
E2

(A)

f∗
��

φ
E1

(C) αC

// ψ
E2

(C)

Clearly c ∈ φ(C) so there is an equivalence class [c]E1 for which the following

equations hold:

αC [c]E1 = αC [f(a)]E1 = αCf∗[a]E1 = f∗αA[a]E1 = f∗[a
′]E2

= f∗[t(a)]E2 = [f(t(a)]E2 = [t(f(a))]E2 = [t(c)]E2 = [c′]E2 .
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So we see that if ρ(c, c′) holds in C, then αC [c]E1 = [c′]E2 . We now check that ρ

defines the natural transformation α.

Let a ∈ φ(A). Clearly ρ(a, t(a)) holds. This implies that αA[a]E1 = [t(a)]E2 , so

we must have t(a) ∈ ψ(A). Now suppose that E1(a, a′), ρ(a, c), and ρ(a′, c′) hold.

Then [c]E2 = αA[a]E1 = αA[a′]E1 = [c′]E2 . So we have c, c′ ∈ ψ(A) and E2(c, c′).

Hence ρ determines the natural transformation α : φ/E1 → ψ/E2.

Proposition 4.5. Let F be a presheaf in (fp C,Sets). F is regular if and only if it

is of the form φ/θ, where φ and θ are regular formulas and θ defines an equivalence

relation on φ.

Proof. Suppose F is regular; then F ∼= φ/E, where φ is a regular formula and E

is a functorial equivalence relation on φ. We can construct the following pullback

diagram in (fp(C),Sets).

φ×F φ //

��

φ

��
φ // φ/E

Pullbacks in functor categories are defined pointwise, so for each object C in fp(C),

the diagram

(φ×F φ)(C) //

��

φ(C)

��
φ(C) // φ/E(C)

is a pullback in Sets. Therefore,

(φ×F φ(C) = {(x,y) ∈ φ(C)× φ(C) | (x, y) ∈ E(C)}.

That is, (φ ×F φ)(C) ∼= E(C). The isomorphism is natural in C, so we get an

isomorphism φ ×F φ ∼= E. Thus E is a supercompact object in (fp(C),Sets) and

it is a subobject of the functor φ × φ. The functor φ × φ is given by the formula

φ(x) ∧ φ(y) in variables (x,y). By Lemmas 4.3 and 4.4, the functor E has the form

ψ/E ′ for some regular formula ψ and some functorial equivalence relation E ′ on ψ,
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and the inclusion E → φ× φ is of the form

ψ/E ′
ρ //φ ∧ φ

for some regular formula ρ. The functor ψ/E ′ is then equivalent to the functor θ

defined by the formula (∃y,y′)ψ(x) ∧ ρ(x,y,y′). This is a regular formula, and F is

isomorphic to φ/θ.

Now suppose that F ∼= φ/θ, where φ and θ are regular formulas. Let G be

supercompact and f : G→ F a map. We can write this as

ψ/E
ρ //φ/θ

for some regular formulas ψ and ρ, and some functorial equivalence relation E on ψ.

Let R be the equivalence relation on φ× φ defined by

(x, y)R(x′, y′) if and only if E(x, y) and E(x′, y′).

Now let γ(x, y) be the (positive primitive) formula

∃w, z(ψ(x) ∧ ψ(y) ∧ ρ(x,w) ∧ ρ(y, z) ∧ θ(w, z)).

Then G×F G ∼= γ/R, which is supercompact.

The next result makes the connection between epimorphic families and directed

colimits more explicit.

Proposition 4.6. Let C be a balanced locally finitely presented category. Then any

epimorphic family {Ai
ai //A}i∈I in C is contained in a directed colimit cocone.

Proof. Suppose we are given an epimorphic family as above. For a finite tuple from

I, say i = (i1, . . . , in), let Xi be the limit of the following diagram:
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Ai1

((QQQQQQQQQQQQQQQQ Ai2

!!CCCCCCCC
. . . Ain

}}{{{{{{{{

A

.

We now define Ai to be the colimit of the diagram

Xi

vvmmmmmmmmmmmmmmmm

}}||||||||

!!CCCCCCCC

Ai1 Ai2 . . . Ain

and the map ai : Ai → A is then the factorization of the maps aij through the colimit.

Similarly, if j is a tuple all of whose elements are contained in i, we can define a map

Aj → Ai. This now gives us a filtered system; let {Aj

cj //C } be the colimit for this

system. We note that the ordering on the tuples here is not important, though the

number of times each element of I appears is.

Let ã : C → A be the factorization of the maps aj through the cocone. Then ã is

clearly an epimorphism, since the original epimorphic family {ai}i∈I factors through

it.

It is now sufficient to show that ã is monic; if this is true then it will be an

isomorphism. To show this, it suffices to show that given any pair of maps G y
//

x //
C

with ãx = ãy, where G is finitely presented, it must be the case that x = y. So

suppose we have two such maps. Then since G is finitely presented, there must be

some finite tuple i from I such that x and y both factor through ci, say x = cix
′,

y = ciy
′. Now

aix
′ = ãcix

′ = ãx = ãy = ãciy
′ = aiy

′.

This means there is a map G
[x′,y′]//X(i,i) such that the factorizations through Xi are

x′ and y′. Now the maps

G x′ //Ai
//A(i,i)

G
y′ //Ai

//A(i,i)
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must be equal, since both are given by

G
[x′,y′]//X(i,i)

//A(i,i).

It now follows by composition with A(i,i)

c(i,i) //C that x = y.

Remark. In a topos, monomorphisms are preserved by pushouts [20, IV.10.4]. Thus,

if C is a topos, and all the maps Ai
ai //A are monic, then the maps in the directed

colimit cocone defined in the proof of Theorem 4.6 are all monic too. In particular,

a similar argument to that above shows that in a locally supercompact topos, every

epimorphic family of monics is contained in a directed union.

Definition 4.7. Let C be a small category. A Grothendieck topology J on C is of

regular type if every covering sieve on an object C in C contains a supercompact

sieve.

Representable presheaves are supercompact in SetsC
op

: given an epimorphic fam-

ily {fi : Pi → Hom(−, C)}i∈I there must be some i such that the map 1C : C → C

is contained in the image of fi; this map fi is then an epimorphism. It follows by

Lemma 4.1, a sieve on an object in C is supercompact if and only if it is generated

by a single arrow.

Proposition 4.8. Let (C, J) be a site such that the Grothendieck topology J is of

regular type. Let {Fi
mi //F } be an epimorphic family of monomorphisms in SetsC

op

,

where each Fi is a sheaf. Then if F is separated, it is a sheaf.

Proof. Let S s//Hom(−, C) be a covering sieve of an object C in C, and suppose

we have a map S
f //F . We need to show that there is a unique extension of f to

Hom(−, C), that is, a unique map Hom(−, C)
f̃ //F such that f̃a = f .

By assumption, there is a supercompact covering sieve S ′
s′//Hom(−, C) con-

tained in S, and since {mi}i∈I is a epimorphic family of monics, the map fs′ factors

through mi for some i, say fs′ = mjf
′. Since Fi is a sheaf, and S ′ is a covering

sieve on C, we can extend f ′ to the whole of Hom(−, C), say f ′ = gs′, for some

g : Hom(−, C)→ Fj.
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Now since F is separated, there is some monic F m //G with G a sheaf. We have

that mmjgs and mf are both extensions of mmjf
′ to the whole of S; since such an

extension must be unique, it follows that mmjgs = mf , and since m is monic, we get

mjgs = f . Thus fjg is an extension of f to Hom(−, C).

To show uniqueness, suppose Hom(−, C)
f̃ //F is any other map with f̃ s = f .

Then mf̃s = mf = mcjgs, and since G is a sheaf, we have that mmjg = mf̃ , by

uniqueness of extensions, and again since m is monic, we have mjg = f̃ .

Proposition 4.9. If J is a regular type topology on a small category C, then the

inclusion i : Sh(C, J)→ SetsC
op

functor preserves epimorphic families of monics.

Proof. Suppose we are given an epimorphic family of monomorphisms {Fi
mi //F } in

Sh(C, J).

Then extend the family of monics, as in Proposition 4.6 (we carry out this exten-

sion in SetsC
op

, not Sh(C, J)). For each tuple i from I, the subobject Fi is the union

of all the subobjects Fi mentioned in i. There is then a monic map Fi
mi //F , and

since F is a sheaf, it follows that Fi is separated, and by the previous proposition is

therefore also a sheaf.

Now take the colimit of the diagram (in SetsC
op

). Since this is a directed colimit

of sheaves, and since a is a regular type (and therefore finite type) localization,

the colimit of this diagram is a sheaf, and is the same as the colimit calculated in

Sh(C, J). But by Proposition 4.6, this is precisely the cocone {Fi
mi //F } which we

just constructed.

So given any pair of maps f, g : F → X in SetsC
op

with fmi = gmi for each i, we

have, using the colimit property on each Fi, that fmi = gmi, and therefore, since f

and g are both factorizations of the cocone {fmi}, we must have that f = g. Thus,

the mi form an epimorphic family in SetsC
op

.

To prove the converse, we need the following:

Lemma 4.10. Let (C, J) be a site such that the inclusion functor i : Sh(C, J) →

SetsC
op

preserves epimorphic families of monics. Then the associated sheaf functor

a : SetsC
op → Sh(C, J) preserves supercompact objects.
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Proof. Let P be a supercompact object in SetsC
op

, and suppose we have an epimor-

phic family of monomorphisms in Sh(C, J), say {Fi
mi //F }i∈I , and a map f : aP →

F . Then since the maps mi form an epimorphic family of monics in SetsC
op

, the map

fηP factors through one of them, mj say, so that we have a map f ′ : P → Fj with

mjf
′ = fηP .

P

ηP
��

f ′ // Fj

mj

��
aP

f //

f̄
>>|||||||
F

Now we get map f̄ : aP → Fj, with f̄ηP = f ′, and consequently fηP = mjf
′ =

mj f̄ηP and so mj f̄ = f by the universal property of ηP . Thus f̄ is a factorization of

f through the epimorphic family, and aP is supercompact.

Corollary 4.11. Let (C, J) be a site. The topology J is of regular type if and only if

the inclusion functor i : Sh(C, J)→ SetsC
op

preserves epimorphic families of monics.

Proof. One implication is just Proposition 4.9.

To prove the converse, suppose s : S → Hom(−, C) is a covering sieve of an object

C in C. Since SetsC
op

is locally supercompact, the collection of all maps G→ S with

G supercompact is an epimorphic family and, taking images, this is true if we take

all monics G → S. Now the localization functor a always preserves epimorphic

families of monics, so the collection of all monics aG → aS is an epimorphic family.

But since S is a covering sieve, we have aS = aHom(−, C) and, by the previous

proposition, aHom(−, C) is supercompact in Sh(C, J). Therefore there must be some

monic G → S such that aG → aS is an epimorphism. But since it is both epic and

monic, it must be an isomorphism. So G is a supercompact subobject of S with

aG ∼= aHom(−, C), i. e. G is a covering sieve of C also.

It is now possible to characterize locally supercompact and locally regular toposes

in a manner similar to the characterizations of locally finitely generated and coherent

toposes given in section 3.2.

If J is a regular type topology on C, then for every object C in C, the functor



CHAPTER 4. KRULL-GABRIEL DIMENSION 88

aHom(−, C) is supercompact, by Lemma 4.10. By Lemma 4.2, an object in Sh(C, J)

is locally supercompact if and only if it is a quotient of a representable functor.

Considered as a model of the theory ΓSh(C,J), an object is supercompact if and only

if it admits a presentation with a single generator. The next result follows from a

similar argument to Theorem 3.5.

Theorem 4.12. Let J be a regular type topology on a category C. If F is a super-

compact sheaf, there is a supercompact presheaf F ′ with aF ′ = F .

We can use an argument similar to the proof of Proposition 3.2 to get the following

characterization of locally supercompact toposes.

Lemma 4.13. A topos E is locally supercompact if and only if it is equivalent to the

category Sh(C, J) for some site (C, J) in which every covering sieve in J contains a

covering sieve generated by a single arrow.

Proof. We have already shown that for such a topos, the representable functors

aHom(−, C) form a strong generating set of supercompact objects. To prove the

converse, observe that if E has a generating set of supercompact objects G, the topol-

ogy on G defined in Lemma 3.1 will be of regular type.

The regular objects in a topos will always be closed under pullbacks; the proof of

this is similar to the corresponding argument for coherent objects (see Lemma 3.6).

Theorem 4.14. A topos E is locally regular if and only if it is equivalent to Sh(C, J),

where (C, J) is a site for which C has pullbacks and J is of regular type.

Proof. It remains to show that in this situation, the functors aHom(−, C) will be

regular for every object C in C. The proof of this is similar to the proof of Lemma

3.9.

4.2 Modular lattices and m-dimension

Definition 4.15. A lattice L is modular if for all x, y, z ∈ L with z ≤ x,

x ∧ (y ∨ z) = (x ∧ y) ∨ z.
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This is equivalent to the statement that L does not contain a pentagon [14, IV.1.1],

that is, a sublattice of the form

◦

◦

??~~~~~~~

◦

WW//////////////

◦

OO

◦

GG��������������

__@@@@@@@

In particular, a distributive lattice is modular, so any results we prove about

modular lattices will also apply to distributive ones.

We quote the following result from [14, IV.1.2].

Theorem 4.16 (Diamond Isomorphism Theorem). Let L be a modular lattice, and

let a, b ∈ L. Then the mapping x 7→ x∧b defines an isomorphism between the intervals

[a, a ∨ b] and [a ∧ b, b] in the lattice.

Recall that a congruence on a lattice L is an equivalence relation θ on L such that

whenever a θ b in L, then for any x ∈ L, (x ∧ a)θ(x ∧ b) and (x ∨ a)θ(x ∨ b). This

allows us to define the quotient lattice L/θ to be the set of equivalence classes, with

(well-defined) lattice operations inherited from those on L.

For an interval [a, b] in L, denote by con(a, b) the congruence on L generated by

(a, b) - this is the intersection of all congruences θ on L such that aθb.

Terminology surrounding the congruences on a lattice is described in [14, III.1],

and can be used to describe the congruence generated by an interval [a, b] (for a, b ∈ L,

the interval [a, b] is the set {x ∈ L | a ≤ x ≤ b}). Let L be a lattice. Suppose

we have intervals [a, b], [c, d] in L, such that b = a ∨ d and c = a ∧ d. If this is

the case, we say the intervals [a, b] and [c, d] are perspective to one another. The

Diamond Isomorphism Theorem is the statement that in a modular lattice, intervals

perspective to one another are isomorphic. If [a, b] and [c, d] are perspective to one
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another, and θ is a congruence identifying a and b, then θ identifies c and d also.

Perspectivity defines a reflexive, symmetric relation on the set of intervals in L. We

call the transitive closure of this relation projectivity - that is, two intervals [a, b] and

[c, d] are said to be projective to one another if there is a finite series of intervals

[c, d] = [x0, y0], [x1, y1], . . . , [xn, yn] = [a, b] such that each [xi, yi] is projective to

[xi+1, yi+1]. If two intervals [a, b] and [c, d] are projective then con(a, b) = con(c, d).

For an interval [a, b] in L, the congruence con(a, b) identifies every pair of points

in [a, b]. We expand our notion of projectivity to account for this. An interval [c, d]

is weakly perspective into the interval [a, b] if there is some subinterval [a′, b′] of [a, b]

such that [c, d] is perspective to [a′, b′]. Weak projectivity is the transitive closure of

this property: we say the interval [c, d] is weakly projective into [a, b] if there is a finite

series of intervals [c, d] = [x0, y0], [x1, y1], . . . , [xn, yn] = [a, b] such that each [xi, yi] is

weakly perspective into [xi+1, yi+1]. If [c, d] is weakly projective into [a, b], then any

congruence θ identifying a and b must also identify c and d.

The notion of weak projectivity is enough to describe the congruence generated

by an interval.

Theorem 4.17. ([14, III.1.2]) Let L be a lattice, and let [a, b], [c, d] be intervals in L.

Then (c, d) ∈ con(a, b) if and only if there is a sequence c = x0 ≤ x1 ≤ . . . ≤ xn = d

such that each interval [xi, xi+1] is weakly projective into [a, b].

The development of m-dimension that follows is from [23, 7.1].

Let L be a class of modular lattices closed under sublattices and quotients. For a

given modular lattice L, let θ0 = θ0
L be the smallest congruence on L which collapses

all intervals in L which occur in L (we can consider an interval [a, b] in L to be a

modular lattice with top element b and bottom element a). Now set L0 = L, and

L1 = L0/θ
0, with canonical map π1 : L0 → L1.

Continuing in this way, for each α, assuming Lα has been defined, we define θα to

be the congruence on Lα generated by all the intervals in L, and so on. Associated

with this, we define a congruence θα on L to be the collection of intervals collapsed by

the canonical map L→ Lα+1. We use this to extend the definition to limit ordinals,
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by defining θλ =
⋃
α<λ θα.

Let α be the least ordinal (if there is one) such that Lα is the trivial lattice. We

say α− 1 is the L-dimension of the lattice L (note that α cannot be a limit ordinal,

for if, given a limit ordinal λ, the top and bottom elements of L are identified in θλ,

they must be identified in some θα with α < λ). If there is no such α, we say L has

L-dimension ∞. The map Qα : L→ Lα is called the α-th L-derivative.

We refer to a lattice with only two elements as a gap; such a lattice clearly has

the structure ◦ → ◦.

Definition 4.18. If L consists of just gaps and trivial lattices (equivalently, all finite

length lattices) we refer to the dimension it determines as m-dimension.

For any lattice L, denote by Cong(L) the lattice of congruences on L ordered by

inclusion; this is clearly a complete distributive lattice. We show that the congruences

used to define m-dimension can be identified just by looking at the structure of

Cong(L). An element x of a lattice L is called an atom or a minimal element if the

interval [0, x] in L is a gap.

Lemma 4.19. Let L be a modular lattice with m-dimension < ∞, and let θ be a

congruence relation on L. Then θ is an atom in Cong(L) if and only if it is a

congruence generated by a gap in L.

Proof. (⇐) Let [a, b] be a gap in L, and let x ∈ L, such that a ∧ x 6= b ∧ x. Then

[a ∧ x, b ∧ x] is also a gap, by the diamond isomorphism theorem. For let y = b ∧ x;

then a ∧ y = a ∧ (b ∧ x) = a ∧ x and b ∨ y = b.

That is, the diagram:

b

a

<<zzzzzzzzzz
b ∧ x

ddIIIIIIIIII

a ∧ x

::uuuuuuuuu

bbEEEEEEEEE

is the same as the diagram
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a ∨ y

a

<<zzzzzzzz
y

bbDDDDDDDD

a ∧ y

bbDDDDDDDDD

<<zzzzzzzzz

and taking x = y, we can write any y ∈ L with a∨ y = b in the first form. Moreover,

the interval [a ∧ y, y] is perspective back to [a, b] by taking b ∨ (−).

A similar argument holds when we take [x ∨ a, x ∨ b].

So we have shown that any (non-trivial) interval onto which [a, b] is weakly pro-

jective must be a gap, and moreover, each such gap is weakly projective back to

[a, b].

The result now follows from [14, Thm. 2, p.172]; any interval [x, y] collapsed by

the congruence con(a, b) must contain a subinterval weakly projective to [a, b]; say

[x′, y′], x ≤ x′ ≤ y′ ≤ y; con(x′, y′) then collapses [a, b] (since we can reverse the

projection) and so we must have

con(a, b) ≤ con(x′, y′) ≤ con(x, y) ≤ con(a, b)

(⇒) Let θ be a minimal congruence, and let [a, b] be an interval collapsed by θ.

Suppose [a, b] contains a gap, [x, y] say. Then by minimality, the congruence

generated by collapsing the interval [x, y] is θ.

Therefore we must assume [a, b] does not contain a gap. But if this is the case

then for every x, y ∈ [a, b] with x ≤ y, there must be some z ∈ [a, b] with x < z < y.

Therefore [a, b] is a densely ordered subset of L; by [23, 7.2.3], the m-dimension of L

is ∞.

This lemma tells us that to find the congruence θ0 used in the construction of m-

dimension, it is sufficient to take the join of all the atoms in Cong(L). Furthermore,

note that congruences on L1 = L/θ0 correspond to congruences on L containing

θ0; that is, they correspond to elements in the interval [θ0, 1] in Cong(L). Thus,

repeating the earlier result, we can find θ1 - it is the join of all the atoms in the
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lattice [θ0, 1].

In general let L be a complete modular lattice. By the socle of L, we mean the join

of all the atoms; we write soc(L). Define a series of elements of L: set x0 = soc(L).

Assuming that xα ∈ L has been defined, set xα+1 = soc([xα, 1]). For limit ordinals

λ, set xλ =
∨
α xα. Let α be the least ordinal such that xα = 1, if such an ordinal

exists. Then we say that the socle length of L is α. If no such ordinal exists, we say

that the socle length of L is ∞.

We have shown:

Corollary 4.20. Let L be a modular lattice on which m-dimension is defined. Then

the socle length of Cong(L) is equal to mdim(L).

Lemma 4.21. Let L be a complete modular lattice; let x ∈ L. The socle length of

the lattice [x, 1] is bounded above by the socle length of L.

Proof. Let y0 = 0, x0 = x. For each ordinal α, yα+1 = soc[yα, 1], xα+1 = soc[xα, 1],

and for limit ordinals λ, xλ =
∨
α<λ xα, yλ =

∨
α<λ yα. It suffices to show that for

each ordinal α, yα ≤ xα.

Assume we’ve shown this for α. Let a be an atom in [yα, 1]. Then either a∨xα =

xα, or a ∨ xα is atom in [xα, 1] (since the interval [xα, a ∨ xα] is isomorphic to [yα, a]

in L). It follows that xα∨ soc[yα, 1] ≤ soc[xα, 1] in L, since for each atom a ∈ [yα, 1],

xα ∨ a ≤ soc[xα, 1]. Thus yα+1 ≤ xα+1.

The case for limit ordinals is straightforward.

4.3 Krull-Gabriel dimension for abelian categories

The notions of L-dimension for lattices obtained by taking congruences generated

by the intervals which are in L can be extended to give us a notion of dimension

for abelian categories. We note that for any object A in an abelian category, the

subobject lattice Sub(A) is modular.

Let C be a locally coherent abelian category, and let A be the full subcategory of
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coherent (equivalently, in locally coherent abelian categories, finitely presented) ob-

jects in C. Let L be a class of modular lattices closed under quotients and subobjects.

The Serre subcategory SL of A is that generated by the objects of A whose subobject

lattices (in A) are in L. The corresponding torsion class will be denoted TL.

Bearing in mind Theorem 2.28, the following lemma [23, 13.1.2] looks a bit like

the compactness theorem for regular logic; it is a case of Lemma 2.22.

Lemma 4.22. Let L be a class of modular lattices closed under sublattices and quo-

tient lattices. Let A be an abelian category and let F ∈ A. Then F ∈ SL if and only

if F has a finite chain of finitely generated subfunctors

0 = F0 < F1 < . . . < Fn = F

such that for each i, the lattice Sub(Fi+1/Fi) belongs to L.

Now fix a locally coherent category C; write A for the subcategory of coherent

objects in C, as above. Fix a class of lattices L.

Write S0 for the Serre subcategory of A generated by those objects subobject

lattices are in L. This gives rise to a quotient functor Q1 : A → A1, which in turn

corresponds to a finite type localization C → C1.

In general, assume we have a quotient functor Qα : A → Aα. Let Sα be the Serre

subcategory of Cα determined by L; this gives us a localization Qα+1 : A → Aα+1 =

Aα/SL. Let Sα+1 be the kernel of Qα+1; this is a Serre subcategory of A. For limit

ordinals λ, take Sλ =
⋃
α<λ Sα; this gives us a localization Qλ : A → Aλ.

This gives us a system of quotient functors Qα : A → Aα, or equivalently, a

system of finite type localizations Qα : C → Cα. We call the quotient functor Qα the

αth L-derivative.

Definition 4.23. Let C be an object of C; then the L-dimension of C is the least

ordinal α such that Qα+1(C) = 0, if such an ordinal exists, and ∞ otherwise.

Note that for a limit ordinal λ, if Qλ(C) = 0, then C ∈ Tλ, and consequently

C ∈ Tα for some α < λ, so λ cannot be the least ordinal with Qλ(C) = 0.
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Definition 4.24. The L-dimension of C is the least ordinal α such that Cα+1 is a

groupoid (i.e., equivalent to the one-object category), if such an α exists, and ∞

otherwise.

The following result [23, 13.1.4] explains the connection between the L-dimensions

for abelian categories and the lattice dimensions mentioned earlier.

Theorem 4.25. Let L be a class of modular lattices closed under sublattices and

quotient lattices, let C be a locally coherent abelian category with subcategory A of

coherent objects, and let A be an object of A. Then L-dim(A) = L-dim(SubA(A)).

In the particular case where L consists just of the one- and two-element lattices,

we refer to the dimension we get as Krull-Gabriel dimension.

Definition 4.26. The Krull-Gabriel dimension of a locally coherent abelian category

C is the L-dimension where L consists solely of the one and two object lattices.

If L consists of the one and two object lattices, we refer to the L-derivatives on C

as the Krull-Gabriel derivatives.

We call an object A in A simple if it is non-zero and has no non-trivial finitely

presented subobjects. The next result is another case of Lemma 2.22.

Lemma 4.27. Let A be a simple object of A; then the Serre subcategory SA generated

by A consists precisely of objects F in A such that there is a finite composition series

0 = F0 < F1 . . . < Fn = F

such that for each i ≤ n, the quotient Fi/Fi−1 is isomorphic to A.

Corollary 4.28. Let C be a locally coherent abelian category for which Krull-Gabriel

dimension is defined, and let A be the subcategory of coherent objects in C. A Serre

subcategory of A is an atom in the lattice of Serre subcategories of A if and only if

A is generated by a simple object of A.

Proof. It is clear that the Serre subcategory generated by a simple object is minimal.
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To see that a minimal Serre subcategory must be generated by a simple object,

let S be a minimal Serre subcategory. If S contains a simple object A, it must be

generated by it - for it contains the Serre subcategory generated by A and is minimal.

So assume S contains no simple objects.

Let F ∈ S. Let S and S ′ be subobjects of F such that S < S ′. Since F ∈ S, we

have that S, S ′ ∈ S, and therefore S/S ′ ∈ S. Since S/S ′ is not simple, it must have a

proper subobject, which corresponds to an object X lying properly between S and S ′

in Sub(F ). Consequently, the lattice Sub(F ) is a dense ordered set, and so does not

have m-dimension. But by Theorem 4.25, this means F does not have Krull-Gabriel

dimension, and therefore A does not either.

Corollary 4.29. For a locally coherent abelian category C, the Krull-Gabriel dimen-

sion of C is equal to the socle length of the lattice of finite type localizations of C.

4.4 Krull-Gabriel dimension for toposes

In this section we try to provide a definition of Krull-Gabriel dimension for toposes.

We would like a definition which for classifying toposes, corresponds to some as-

sociated property of the underlying theory, much as the correspondence between

Krull-Gabriel dimension and m-dimension holds in the abelian case. Furthermore,

for additive theories, the Krull-Gabriel dimension of the associated classifying topos

ought to be the same as the Krull-Gabriel dimension of the associated additive functor

category, since both correspond to properties of the underlying theory.

In the abelian case, we took the Serre subcategory of fp(C) generated by the

simple objects in that category. By Theorem 2.27, we know that when C is the

functor category (R-Mod,Ab) for some ring R, these simple objects are the pp-pairs

φ/ψ, where [ψ, φ] is a simple interval in the lattice ppR. Since the coequaliser diagram

ψ → φ→ φ/ψ

is preserved by the localization, the inclusion ψ → φ is mapped to an isomorphism
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by it. Moreover, it is clear that any localization which inverts this map also contains

φ/ψ in its kernel.

The inclusion ψ → φ here has the property that it does not factor through any

other monomorphisms - call such a monomorphism simple. From the previous para-

graph, we see the following result:

Lemma 4.30. Let Q0 : C → C1 be the first Krull-Gabriel derivative for an abelian

category C. Then Q0 is the smallest localization which inverts all the simple monomor-

phisms in fp(C).

From this it seems reasonable to propose a definition for toposes as follows: the

Krull-Gabriel dimension of the topos E is to be the dimension associated with the

derivative, which at each stage α is the Grothendieck topology generated by all the

simple monomorphisms in a certain subcategory, such as the category of finitely

presented, coherent or regular objects in E .

Unfortunately, in the topos case, there is a problem with all of the above ideas.

Consider a theory of algebras with an identity elements, e.g., groups, or R-modules

for some ring R. Then in the classifying topos (fp(T−mod),Sets), the initial object

0 is regular (because it always is) and the terminal object 1 is also (it is represented

by the formula x = 0). The inclusion 0 → 1 is simple - let F be any subobject of

1, and suppose A is some algebra such that FA is non-empty. For any other algebra

B there is a zero map 0 : A → B, and considering F0(FA), we see that FB is

non-empty as well. Therefore FB is non-empty for every algebra B, and so F ∼= 1.

Now let F be any object in the classifying topos. The diagram below is a pullback:

0 //

��

F

��
0 // 1

Any localization of C which inverted the map 0 → 1 would have to invert every

map 0→ F as well. Thus, any definition of Krull-Gabriel dimension similar to that

discussed previously would give all theories of modules Krull-Gabriel dimension 0.
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Corollary 4.29 suggests an alternative approach - we define Krull-Gabriel dimen-

sion for a topos to be the socle length of the lattice of coherent type localizations of

the topos (i.e., for which the inclusion functor preserves directed colimits). From the

Duality Theorem, if E is the classifying topos for a coherent theory T, these will be

precisely the localizations that correspond to coherent quotients of T. In fact, this

too has a problem with it.

Consider the theory of sets. By a coherently definable subcategory of this category

we mean one which is a model of some coherent theory. This is equivalent to being

closed under ultraproducts and pure subobjects [27, 3.3]. In particular, directed

colimits can be expressed as ultraproducts, so coherently definable categories are

closed under directed colimits. It can be easily seen that every monomorphism A→ B

in Sets with A 6= 0 is pure, and every monic 0→ B with B 6= 0 is not.

The whole category Sets is obviously coherently definable within itself, as is

the empty subcategory (specified by the axiom ⊥). For each natural number n the

category Sn consisting of all sets of size less than n, is coherently definable, and

specified by the axiom

∀x1 . . . xn+1

∨
1≤i 6=j≤n+1

(xi = xj).

Adding the axiom ∃x(x = x) specifies the subcategory Sn\{0}. Considering this last

axiom in isolation gives us the coherently definable subcategory Sets\{0}. Finally,

the subcategory {0} containing just the empty set is a definable subcategory, specified

by the axiom ∃x(x = x)→ ⊥.

We claim these are all the coherently definable categories of Sets. Since such

categories are closed under pure monics, it is clear that such categories are closed

under non-zero subobjects, so it is enough to look at what the largest set in such

a category is. Assume we have a coherently definable subcategory D, and assume

D contains a countable set D. Let λ be any cardinal. Then the set X =
∐

i≤λDi,

where each Di is the size of D, may be expressed as the directed colimits of all the

finite coproducts it contains. The finite coproducts are all countable, and therefore
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isomorphic to D, and so are contained in D; thus so too is X. It follows that D

contains sets of arbitrary size.

The lattice of coherently definable subcategories of Sets therefore looks like this:

∅ //

��

S1/{0} //

��

. . . // Sn/{0} //

��

. . . // Sets/{0}

��
{0} // S1

// . . . // Sn // . . . // Sets

The lattice of coherent type localizations of the classifying topos of sets is the

opposite of this lattice. It’s clear that the socle of this is the localization corresponding

to the subcategory Sets/{0}. However the lattice we get in the second step has

no minimal quotient - that is, for the theory of sets, the lattice of coherent type

localizations of the classifying topos has no socle length.

This example shows that there is a problem with trying to define Krull-Gabriel

dimension using coherent type localizations. The problem is essentially that while

regular formulas can allow us to discuss whether a given model of a theory has

elements with certain properties, coherent formulas allow us to talk about how many

elements it might have with this property. To avoid this, we can instead consider

the regular type localizations. Recall that the localizations of a topos can be ordered

by inclusion of the corresponding Grothendieck topologies with some particular site.

Equivalently, if a : E → F and a′ : E → F are two localizations of a topos E , then

a ≤ a′ if the functor a′ factors through a. We make the following definition:

Definition 4.31. Let E be a regular topos (i.e., one which is the classifying topos for

a regular theory). The Krull-Gabriel dimension of E is the socle length of the lattice

of regular type localizations of E.

By the Duality Theorem (Theorem 2.31), if E is the classifying topos for a regular

theory T, this definition corresponds to the dimension defined by the socle length of

the lattice of regular quotients of T.

Lemma 4.32. If E is a locally supercompact topos, and a : E → F is a regular type

localization, then KGdim(F) ≤ KGdim(E).
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Proof. This is immediate from Lemma 4.21.

We can see straight away that for an additive theory, for example the theory of

modules over a ring, the Krull-Gabriel dimension of the classifying topos will equal

the Krull-Gabriel dimension of the ring, since both are the socle length of the opposite

of the lattice of regularly definable subcategories of R-Mod.

We also see from the previous example that the Krull-Gabriel dimension of the

classifying topos of the theory of sets is 0 since, of the coherently definable subcat-

egories we described there, the only ones which were regularly definable were S1,

S1/{0}, Sets and Sets/{0}. This fits with our expectation that the theory of sets

ought to have a very simple dimension.

4.5 The Ziegler frame

Let R be a ring. A regularly definable subcategory of R-Mod is one which can be

axiomatized by regular sequents in the language of R-modules (that is, it can be

defined using only pp-formulas). The Ziegler spectrum of R is a topological space

whose closed sets correspond to the regularly definable subcategories of R-Mod. For

a construction of the Ziegler spectrum for a ring, see [23, ch.5].

We would like to generalise the construction of the Ziegler spectrum for a ring to

non-additive theories. In this section, we look at a way to approach this problem.

Let Σ be a many-sorted signature of algebras. The regular theories over Σ form

a complete lattice. Let {Ti}i∈I be a collection of regular theories over Σ, that is, a

collection of sets of regular sequents over Σ, closed under deduction. The join of these

theories
∨
i∈I Ti is the deductive closure of the union

⋃
i∈I Ti. The meet

∧
i∈I Ti is

the set-wise intersection; this is easily seen to be deductively closed.

Lemma 4.33. Let Σ be a many-sorted signature of algebras. The regular theories

over Σ form a complete Heyting algebra.

Proof. We have already observed that the regular theories over Σ form a complete

lattice. So let T, Ti be regular theories over Σ, for i ranging over some indexing set
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I. It suffices to verify the distributive law

T ∧ (
∨
i∈I

Ti) =
∨
i∈I

(T ∧ Ti).

Let σ be a sequent in
∨
i∈I(T∧Ti). Then there is a collection of sequents σ1, . . . , σn

admitting a deduction of σ such that for each j = 1, . . . , n there is some ij ∈ I with

σj ∈ T ∩ Tij . It follows that each σj is in
∨
i∈I Ti, and so σ is in

∨
i∈I Ti, since it is

deductively closed. Similarly, σ is in T, so σ ∈ T ∧ (
∨
i∈I Ti).

To prove the converse, suppose σ is a sequent in T ∧ (
∨
i∈I Ti). Then there is a

finite collection of sequents σj ∈ Tij 1 ≤ j ≤ m ∈ N, admitting a deduction of σ.

Suppose σ has the form φ(x) ` ψ(x), and each σj has the form φj(xj) ` ψj(xj).

Write σj ∨ σ for the sequent φj ∧ φ(xj,x) ` ψj ∨ ψ(xj,x).

We note that for each j, σj ∨ σ is in the theory T ∨ Tij . This is true since there

is a deduction of σj ∨ σ from both σj and σ.

Now consider the deduction of σ from the collection of sequents {σj}j=1,...,m. We

claim we can use this to write a deduction of σ from the collection of sequents σj ∨σ.

For each rule of deduction for regular logic, we claim we can replace any of the

assumptions τ with τ ∨ σ, and write down a deduction of τ ′ ∨ σ, where τ ′ was the

consequence in the original deduction.

As an example, suppose we have an instance of the cut rule in the deduction of

σ, that is, a deduction:
χ(y) ` η(y) η(y) ` θ(y)

χ(y) ` θ(y)
.

If we replace the sequent χ(y) ` η(y) with χ ∧ φ(y,x) ` η ∨ ψ(y,x), we can write

down the deduction

χ ∧ φ(y,x) ` η ∨ ψ(y,x)

η(y) ` χ(y)

η ∨ ψ(y,x) ` χ ∨ ψ(y,x)

χ ∧ φ(y,x) ` η ∨ ψ(y,x)

One can easily verify that every instance of a rule of deduction in the derivation of

σ from τ1, . . . , τn can be replaced by a corresponding deduction to obtain a derivation
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of σ ∨ σ from τ1 ∨ σ, . . . , τn ∨ σ; alternatively, we can appeal to the Completeness

Theorem for Regular Logic to argue that there must be such a deduction.

The deduction of σ from the sequents σj ∨ σ proves that σ is in
∨
i∈I(T∧Ti).

This argument can be generalized to show that the distributive law holds for all

geometric theories over the signature; that the geometric theories over signature form

a Heyting algebra is shown explicitly in [10, 5.3]. Indeed, we could alternatively have

proved this by noting that the Heyting operator constructed in [10, 5.7] will still

define a Heyting operator if restricted to the regular sequents.

Definition 4.34. Let T be a regular theory over a many-sorted signature of algebras

Σ. The Ziegler frame ZT is the lattice of regular quotients of the theory T.

The next result is the equivalent of saying that the space associated with the

Ziegler frame has a basis of compact open sets.

Lemma 4.35. Let T be a regular theory over a many-sorted signature of algebras;

then ZT has a generating set of finitely generated objects.

Proof. The quotient theories T′ adding a single sequent φ(x) ` ψ(x) to T form a

generating set for ZT.. This is true since any theory is simply the union of all the

single-sequent theories it contains.

A quotient of T defined by adding a single sequent σ of the form φ(x) ` ψ(x)

is finitely generated as an object in this lattice, because any deduction of σ from a

collection of other quotient theories T′i uses only finitely many sequents, and thus

only a finite number of the theories T′i are required.

For module categories, it can be shown that the pp-definable subcategories are

determined by the pure-injective indecomposable modules they contain [23, 5.1.4]

It is always possible to choose a set of objects Z in an algebraic category such

that the regularly definable subcategories are determined by their intersection with

Z - given any pair of distinct regularly definable subcategories, we can find an object

that is in one but not the other. It is an open problem whether this can be done in

any ‘nice’ sort of way, as is the case with modules over a ring. In the next section,
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we find such a collection of objects for the category of G-sets, where G is an abelian

group. We will use this to calculate the Krull-Gabriel dimension for the classifying

topos of the theory of G-sets.

4.6 A Ziegler spectrum for abelian groups

For the rest of this chapter, we look at how to compute the Krull-Gabriel dimension

defined previously, for the classifying topos of the theory of G-sets where G is some

abelian group. Such a category is the most obvious non-additive analogue of a cate-

gory of modules. To help with the computations, we construct a ‘Ziegler spectrum’ -

a set of objects in the category sufficient to specify regular theories, in the sense that

a regularly definable subcategory is determined by its intersection with the spectrum.

If such a set Z exists, the intersections of Z with the regularly definable subcategories

will form the closed sets of a topology, justifying the use of the term spectrum.

We will use the following notation: since the group G is abelian, we will use

additive notation for its product, and if X is a G-set, we will write x + g for the

image of an element x ∈ X under the action of an element g ∈ G. For a set of

elements g from G, we define

fixX(g) = {x ∈ X | ∀g ∈ g(x+ g = x) }.

The paper [28] contained a construction of such a spectrum; unfortunately, there

is a mistake in Lemma 4.3 of this paper. This result stated that the coherently

definable subcategories of a category of G-sets are characterized by the objects they

contain which have no pairs of isomorphic subobjects.

In the proof in [28] it is stated that if X and X ′ are G-sets for a group G, such that

for every subset S of G, fixX(S) 6= ∅ ↔ fixX′(S) 6= ∅, then X and X ′ satisfy precisely

the same coherent sequents. This is not the case. To see an explicit counterexample,

let G be the trivial group, so the category of G-sets is just the category Sets. A

coherently definable subcategory of Sets is just the category of sets containing less
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than n elements, for some n ∈ N (and of course, the category Sets itself). However,

since there are no proper subgroups of the trivial group, any non-empty set X would

satisfy the above condition.

The approach described in the paper [28] cannot be made to classify coherently

definable subcategories, for this reason. It can however be used to construct a spec-

trum which classifies regularly definable subcategories. We describe this construction

in the rest of this section.

Let G be an abelian group. G encodes an algebraic theory in one sort, consisting

of unary functions corresponding to the elements of the group, and equations stating

that composition of functions agrees with the group multiplication. The models of

this theory are sets with a G-action on the left; we write G-sets for the category of

such models. The classifying topos for this theory is (fp G-sets,Sets), the category

of set-valued functors on the finitely presented G-sets.

We wish to examine the regularly definable subcategories in G-sets. Regularly

definable subcategories are those closed under products, directed colimits and pure

subobjects. To study them we want to understand the structure of products and pure

embeddings in this category.

Every G-set X can be expressed as a disjoint union of orbits. We call a G-set

indecomposable if it consists only of a single orbit. Such a set has the form G/H

where H is some subgroup of G.

Whenever we have two indecomposable G-sets G/H and G/H ′, where H and H ′

are subgroups of G, then each element (x, y) ∈ G/H × G/H ′ has as its stabilizer

H ∩H ′, so G/H ×G/H ′ is a disjoint union of copies of G/H ∩H ′. Similarly we see

that given an arbitrary collection {G/Hi}i∈I of indecomposable G-sets, their product∏
i∈I G/Hi is a disjoint union of copies of G/(

⋂
i∈I Hi).

Now taking products and coproducts in G-sets preserves the underlying set struc-

ture, so given G-sets A, B, X and Y , the elements of (A
∐
B)×(X

∐
Y ) are precisely

the pairs (a, x) with a in A or B, and x in X or Y ; that is, we have the distributive
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law

(A
∐

B)× (X
∐

Y ) = (A×X)
∐

(A× Y )
∐

(B ×X)
∐

(B × Y ).

In particular, if all these are indecomposable G-sets, we have that (G/H1

∐
G/H2)×

(G/H3

∐
G/H4) has indecomposable components given in the following table:

G/H3 G/H4

G/H1 Copies of G/(H1 ∩H3) Copies of G/(H1 ∩H4)

G/H2 Copies of G/(H2 ∩H3) Copies of G/(H2 ∩H4)

We can see from this how the indecomposable components of a product of G-sets

A×B relate to the indecomposable components of A and B.

Pure monomorphisms of G-sets are characterized in [28, 3.1].

Lemma 4.36. An embedding X → Y in G-sets is pure if and only if for every finite

tuple g from G, fixY (g) 6= ∅ implies fixX(g) 6= ∅

In particular, if every indecomposable component occurring in Y occurs in X,

then the inclusion X → Y is pure.

Let X be an indecomposable G-set; thus X consists of only a single orbit, and for

any x, x′ ∈ X, there is some g ∈ G such that x+ g = x′. Now let f : Y → X be any

map of G-sets, with Y non-empty; then there is some x in X that is in the image of Y ,

say x = f(y) for y ∈ Y . For any x′ = x+ g ∈ X, we have that f(y+ g) = x′. Thus f

is a surjection. If f is also an injection, it must be an isomorphism (since toposes are

balanced). Thus there are no non-trivial monomorphisms between indecomposable

G-sets, and we see that every monomorphism of G-sets has the form X → X
∐
Y .

We are now in a position to specify a set of objects sufficient to determine the

regularly definable subcategories of G-sets. However we will not use this as our

definition of a Ziegler spectrum, because as we shall see, we can in fact improve this

result further to requiring only a subset of this set. Let {Hi : i ∈ I} be the set of all

proper subgroups of G up to conjugacy, and set H1 = H2 = G (we assume 1, 2 6∈ I).

Let Y be the collection of G-sets
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Y = {
∐
i∈I′

G/Hi : I ′ ⊆ I ∪ {1, 2}}.

Proposition 4.37. Let G be an abelian group. Every regularly definable subcategory

ξ of G-sets is uniquely determined by its intersection with Y.

Proof. Let ξ be a regularly definable subcategory, and let X be an object in ξ. Let

X ′ be the largest subobject of X contained in Y .

Each indecomposable component in X occurs in X ′. To see this, let X =
∐

j∈J Xj,

where each Xj is an indecomposable summand. These indecomposable summands

can be collected into isomorphism classes, and X ′ is simply a coproduct of one rep-

resentative from each of these classes, with an extra orbit isomorphic to 1 if X has

more than one such orbit. The inclusion of X ′ into X is pure, and so X ′ is in ξ.

We now show that any regularly definable subcategory ξ′ containing X ′ must also

contain X. Set Y = (X ′)|J |. Let Xj 6= 1 be an indecomposable summand in X (and

so in X ′); then Y contains a copy of X
|J |
j , and this G-set in turn contains (at least)

|J | copies of Xj. If X ′ contains 2 as a direct summand, then we can repeat the above

argument to show that Y contains at least one copy of 1 for each indecomposable

summand in X. If X ′ contains 1 but not 2, then Y contains precisely one copy of 1,

but so too does X. Thus, there is an inclusion X → Y ; we have shown that Y has

enough orbits of each type to guarantee that we can choose such an inclusion.

We claim that this inclusion is pure. Let g be a finite tuple from G, and let

x = {xk}k∈J ∈ X ′|J | = Y be such that gx = x for all g from g. The stabilizer of x is

the intersection of the stabilizers of the xk, that is, Stab(x) = ∩k∈JStab(xk). So for

any particular choice of j, we have that g ⊆ Stab(x) ⊆ Stab(xk), so xk ∈ X ′ ⊆ X is

also a fixed point for g. This shows the inclusion is pure.

Now let ξ′ be any regularly definable subcategory containing X ′. Then ξ′ must

contain Y , since it is closed under products. Since X is a pure subobject of Y , ξ′

must contain X also. So any regularly definable subcategory containing X ′ must also

contain X; the result is an immediate consequence of this.

Remark. The assertion that G is abelian is necessary here. For instance, take G to
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be S3, given by the presentation {a, b | a2b = ba, a3 = b2 = 1}. The G-set G/〈b〉 has

three elements, given by a〈b〉, ba〈b〉 and b2a〈b〉, whose stabilizers are 〈a〉, 〈ba〉 and

〈b2a〉 respectively. Since each of these stabilizers has precisely one fixed point, we can

write a regular sequent stating that a given G-set X contains at most one copy of

this orbit:

(a(x) = a(x′)) ` (x = x′)

Consequently, regularly definable subcategories cannot be determined by their

intersection with Y in this case, because this intersection cannot tell us whether

objects are allowed to contain one copy of this orbit, or more than one.

An object X in a category C is pure-injective if whenever there is a pure embedding

m : A→ B in C and a morphism f : A→ X, there is a (not necessarily unique) map

g : B → X with gm = f .

A

f
��

m // B

g~~
X

We write pinj(C) for the collection of all pure-injective objects in C.

A map m : X → Y is pure-essential if it is pure and whenever f : Y → Z is a map

such that fm is a pure morphism, then f is monic. A G-set Y is the pure-injective

hull of X if it is pure-injective and there is a pure-essential map m : X → Y . This

is equivalent to stating that any pure morphism f : X → Y ′ with Y ′ pure-injective

factors through m via a monomorphism Y → Y ′.

The pure-injective hull is unique up to isomorphism. For suppose m : X → Y ,

m′ : X → Y ′ are both pure-injective hulls. Then there are maps f : Y → Y ′,

f ′ : Y ′ → Y such that fm = m′ and f ′m′ = m; the maps f and f ′ are both monic

by the pure-essential property.

The existence of the pure-injective hull in the category G-sets is shown in [5]; this

construction was used in [28] also. We describe the construction now. We will follow

the notation of [28].
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For a G-set X, let FF (X) be the set of all subgroups H of G such that for every

finitely generated subgroup H ′ ≤ H, fixX(H ′) 6= ∅.Let MX be the subset of FF (X)

consisting of those subgroups H that are maximal in FF (X), and have no fixed points

in X. Let IMX be a set of representatives of conjugacy classes of MX .

Proposition 4.38. ([5, 3.4]) The G-set X
∐

(
∐

H∈IMX
G/H) is a pure-injective

hull for X.

The pure-injective hull of X is elementarily equivalent to X [28, 3.6]. Note that

if X is in Y then its pure-injective hull H(X) is in Y too, since we adjoin only

a collection of orbits which are isomorphic neither to each other nor to any orbits

already in X. Furthermore, if ξ is a regularly definable subcategory and X is in

ξ, then H(X) is in ξ too, since it is elementarily equivalent to X. So a regularly

definable subcategory is determined by the pure-injectives it contains that are in Y .

We have now proved:

Lemma 4.39. Let G be an abelian group. Let ξ be a regularly definable subcategory

of G-sets. Then ξ is determined by its intersection with Z = Y ∩ pinj(G-sets).

This allows us to make the following definition:

Definition 4.40. Let G be an abelian group. The Ziegler spectrum of the theory of

G-sets is given by ZG = YG∩pinj(G-sets) (that is, the collection of pure-injective G-

sets with no two isomorphic indecomposable components, save for allowing two copies

of the one-element G-set 1).

4.7 An example with a cyclic group

Let Zn be a cyclic group of finite order. Every subgroup of Zn is of the form Zm,

where m | n. Suppose for simplicity that n has no square divisors, that is, n may be

written as the product of distinct primes.

As in the previous section, the elements of Y can be partially ordered by pure

inclusion. In particular, Y ≤ Y ′ in Y if and only if for every indecomposable com-

ponent G/H in Y , there is an isomorphic indecomposable component in Y ′, and for
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every indecomposable component G/H in Y ′, there is an indecomposable component

G/H ′ in Y with H ⊆ H ′.

In particular, Y has no proper pure subobjects if and only if Y =
∐

i∈I G/Hi

where none of the Hi are contained in any of the others.

If this is the case, then we can see by the above characterisation that Y embeds

purely into Y ′ =
∐

H⊆Hi,i∈I G/H, and that this is the largest element of Y into which

Y does embed. Moreover, any element Z of Y sitting between Y and Y ′ in the

inclusion ordering must also lie between them in the pure-inclusion ordering (i.e., if

we have a monic Y → Z → Y ′, then both maps must be pure). We can see that

the interval [Y, Y ′] is a distributive lattice, with the meet of two objects Z and Z ′

being the disjoint union of all indecomposable components occurring in both Z and

Z ′, and the join being the disjoint union of all indecomposable components occurring

in either of them.

This allows us to decompose the partially ordered set Y into a disjoint union of

lattices. For each Y in Y , we write [Y ] for the lattice containing Y .

Example. Let n = 6. The indecomposable Z6 sets are 1 = Z6/Z6, Z3 = Z6/Z2,

Z2 = Z6/Z3 and Z6 = Z6/{0}. In this case, the partially ordered set Y has the form

2
∐

Z2

∐
Z3

∐
Z6

1
∐

Z2

∐
Z3

∐
Z6

22eeeeeeeeeeeeeeeeeeeeeeeee
2
∐

Z3

∐
Z6

55llllllllllllll
2
∐

Z2

∐
Z6

OO

2
∐

Z2

∐
Z3

iiRRRRRRRRRRRRRR

. . .

2 1
∐

Z2 1
∐

Z3 1
∐

Z6

1

llYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

iiSSSSSSSSSSSSSSSSSS

OO 55kkkkkkkkkkkkkkkkkk

Z2

∐
Z6 Z3

∐
Z6

Z2

OO

Z3

OO

Z6
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An indecomposable Zn-set necessarily has the form Zm. Define the degree of Zm

to be the number of distinct prime factors of m. For a general Zn-set X, let the

degree of X be the largest number d such that X has an indecomposable component

of degree d.

The following lemma allows us to determine which subsets of Y correspond to

maximal regular subcategories.

Lemma 4.41. If an object X in Y has degree m > 1 then it can be expressed as a

pure subobject of a product of objects in Y of lower degree.

Proof. Suppose X has only one indecomposable component of degree d, of the form

Zp1...pd , i.e., X = X ′ qZp1...pd , where X ′ has degree < d. Then X embeds purely into∏d
i=1(X ′ q Zp1...p̂i...pd). For suppose x = (xi)

d
i=1 is an element of this product. Either

xi ∈ X ′ for some i, in which case Stab(x) ⊆ Stab(xi), or xi ∈ Zp1...p̂i...pd for every i,

in which case Stab(x) = n
p1...pd

.

In general, assume X has r such components. Write X as the coproduct

X = X ′ q (
r∐
j=1

Zpj1 ...pjd )

where X ′ has degree < d. Then consider the G-set

X̃ =
∏

1≤k1≤i1,...,1≤kr≤ir

(X ′ q (
n∐
j=1

Zpj1 ... ˆpjkj
...pjd

))

There is an embedding X → X̃, and this embedding will be pure, using a similar

argument to the case where there is only one indecomposable component of degree

d.

For each set of distinct primes p1, . . ., pn, consider the axiom

∃x1, . . . , xn(
n∧
i=1

xi + pi = xi) ` ∃y(y +
n

p1 . . . pn
= y)

This defines a subcategory ζ(Zp1 q . . .q Zpn) of Zn-Sets whose intersection with

Y consists of all the objects in Y save those in the lattice [Zp1 q . . . q Zpn ]. This is
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a maximal regularly definable subcategory, because any strictly larger subcategory

must contain as objects Zp1q . . .qZpn and all the elements in [1]; by taking products

we see that such a category must contain the whole of Y .

Thus every object in Y of the form Zp1 q . . . q Zpn must be excluded from the

intersection of all the maximal regularly definable subcategories.

Any object X of Y that does not contain a copy of 1 not of the above form must be

expressible as a (pure subobject of) a product of objects of Y which are of this form.

So let X ⊆
∏

i∈I Xi be such an expression. Let ζ be any maximal regularly definable

subcategory. If any of the Xi’s do not appear in ζ, then we must have ζ = ζ(Xi), the

regularly definable subcategory whose intersection with Y is the whole of Y save the

lattice [Xi]. In particular, this implies X ∈ ζ. If all of the Xi’s are in ζ, then X must

also be in ζ, since ζ is closed under products.

To summarise the above: a maximal regularly definable subcategory is specified

by taking all but one of the lattices in Y . The excluded lattice is not allowed to be

[1].

Further maximal definable subcategories can be found by taking non-trivial inter-

sections with [1]. For each prime p dividing n, consider the axiom:

(x+ p = x) ∧ (z + 1 = z) ` (x+
n

p
= x).

This defines a subcategory ζ, containing all the elements of Y not in [1] (since if there

is no indecomposable component isomorphic to 1, no witness for z can be found), and

whose intersection with the lattice [1] consists of precisely those G-sets not containing

an isomorphic copy of Zp. This ζ is a maximal regularly definable subcategory - to see

this, suppose we have some G-set in Y/ζ, say 1
∐

Zp
∐
X. Clearly 1

∐
Zp embeds

purely into this. Now let 1
∐

Zp
∐
Y be any other Zn-set in Y/ζ. Then Y contains no

indecomposable component isomorphic to Zp, so 1
∐
Y is in ζ, and moreover there

is a pure embedding of 1
∐

Zp
∐
Y into (1

∐
Y ) × (1

∐
Zp). Thus any regularly

definable subcategory containing both ζ and 1
∐

Zp
∐
X contains the whole of Y ,

and therefore is the whole of the category Zn−sets.
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Therefore the intersection of all the maximal regularly definable subcategories,

χ1, is given by the objects in Y which contain don’t contain any indecomposable

component of prime order.

Now let X be any object of χ1 ∩ Y in which the order of every indecomposable

component has at most two prime factors, e.g., X = Zm1 q . . . q Zmn , with each mi

having at most two prime factors.

Then consider the axiom

∃x1, . . . , xn(
n∧
i=1

xi +mi = xi) ` ∃y(y +
n

lcm(m1 . . .mn)
= y)

This combined with the axioms of χ1 gives a regularly definable subcategory of

Zn-Sets whose intersection with Y is all the objects in χ1 ∩ Y save those appearing

in the lattice [X].

Likewise, for each pair of prime factors p1, p2 of n, the axiom

(x+ p1p2 = x) ∧ (z + 1 = z) ` (x+
n

p1p2

= x)

defines a subcategory of Zn−sets whose intersection with χ1 ∪ Y contains all the

objects except the elements of the lattice [1] containing an indecomposable component

isomorphic to Zp1p2 .

Thus we can show that χ2, the intersection of all the maximal regularly definable

subcategories of Zn-Sets contained in χ1, is the subcategory generated by all those

objects in Y containing an indecomposable component whose order has at least three

distinct prime factors.

Continuing in this way, we eventually show:

Proposition 4.42. Let n ∈ N be such that n has no square divisors. The Krull-

Gabriel dimension of the classifying topos for the theory of Zn-sets is equal to the

number of distinct prime factors of n.



Chapter 5

Flat Covers in Algebraic

Categories

In this chapter, we look at the flat cover conjecture, which claims that every object

in a category has a flat cover. This result was first proposed for categories of modules

in [13], and eventually proven by Bican, El Bashir and Enochs in [6]. This result

has been proven for more general additive categories in, for example, [31], [12], [19].

The approach used for additive categories has to a certain extent been generalized in

[30]. We shall use these ideas to study the notion of a flat cover in a topos. Using

the notion of a coessential epimorphism as the definition for a cover, Renshaw and

Mahmoud studied flat covers in categories of monoid acts, in [21]. In this paper they

asked when such a category has covers in the previous sense; this is the question we

address in this chapter.

5.1 Strongly flat models of a theory

Given an S-sorted equational theory (Σ, E), we can define an associated category T ,

which is closed under finite products. The objects of T are the finite products of

sorts from S. The morphisms

X1 × . . .×Xn → X ′1 × . . .×X ′m

113
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are precisely the m-tuples of terms (t1(x), . . . , tm(x)) over n-tuples of variables x ∈

X1 × . . .×Xn, where for each j = 1, . . . ,m, tj(x) is a term of sort X ′j. We stipulate

that for each equation t(x) = t′(x) in E, the corresponding morphisms in T are equal

(as are morphisms containing these terms as components, and equal in the other

components).

A model of the equational theory (Σ, E) then becomes the same thing as a functor

T → Sets preserving finite products.

This gives rise to a more general way of looking at algebraic theories, which is

studied in detail in [3].

Definition 5.1. An algebraic theory is a small category T with finite products.

An algebra for the theory T is a functor A : T → Sets, preserving finite products.

A homomorphism of algebras is a natural transformation between functors.

The category of algebras associated with a theory T is denoted Alg T .

A category C is called algebraic if it is equivalent to Alg T for some algebraic

theory T .

Lemma 5.2. ([3, 3.18]) Algebraic categories are exact.

In particular, this means that extremal, strong and regular epimorphisms all co-

incide in algebraic categories [8, 2.1.4].

Associated with algebraic theories, we have the following concept.

Definition 5.3. A category D is called sifted if finite products in Sets commute with

colimits over D.

A sifted colimit is a colimit over a sifted diagram.

An object C in a category C is called perfectly presentable if Hom(C,−) preserves

sifted colimits.

Directed colimits are sifted [1, 1.59].

Perfectly presentable objects play a similar role in the study of algebraic categories

as finitely presentable objects in the study of locally finitely presentable categories.

The next definition describes an important property of perfectly presentable ob-

jects in an algebraic category.
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Definition 5.4. An object P in a category C is regular projective if it is projective

with respect to regular epimorphisms; that is, given a diagram

P

f
��

E
e // A

where e is a regular epimorphism, there is a map f ′ : P → E with ef ′ = f .

Lemma 5.5. ([3, 5.16]) In an algebraic category, an object is perfectly presentable

if and only if it is finitely presentable and regular projective.

This allows us to write down a characterization of algebraic categories similar to

that for locally finitely presentable categories.

Theorem 5.6. ([3, 18.4]) A category C is algebraic if and only if it is exact, co-

complete and has a strong generating set G of regular projective finitely presentable

objects.

Corollary 5.7. Every algebraic category is locally finitely presented.

In Lemma 2.1 we characterized finitely generated objects in a locally finitely gen-

erated category as strong quotients of a coproduct of objects from the generating set.

Lemma 2.2 proved a similar condition characterizing finitely presented objects in a

locally finitely presentable category. The next result provides an analogous character-

ization of perfectly presentable objects in an algebraic category. It is essentially the

same result as [3, 5.14], which characterizes the perfectly presentable objects as split

subobjects of representable algebras. We do not make clear the connection between

choosing generating sets for the category and choosing an underlying algebraic theory

for it here; this connection is detailed in the proof of [3, 6.9].

Lemma 5.8. Let C be an algebraic category, with a generating set G of perfectly

presentable objects. Then an object C in C is perfectly presentable if and only if there

is a split epimorphism ∐n
i=1 Gi

e //C
m
oo
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where each object Gi is in G.

Proof. (⇒) If such a diagram exists, the epimorphism e is regular, since it is split,

and the kernel pair of e contains the morphisms me, 1∐n
i=1Gi

. Thus C is a finite

colimit of finitely presented objects, so it is finitely presented.

Since it is a coproduct of regular projective objects,
∐n

i=1Gi is regular projective,

and since C is a split subobject of a regular projective object it is regular projective

also.

(⇐) If C is perfectly presentable, there is an extremal epimorphism e :
∐n

i=1Gi →

C, which is regular, since in an exact category with pushouts, regular and extremal

epimorphisms coincide ([8, 2.1.4], [1, 0.5]). Since C is regular projective, e admits a

splitting.

Algebraic categories are a fairly general setting in which we can develop the idea

of a strongly flat object.

Definition 5.9. Let C be any category. An epimorphism e : E → C in C is pure if

every map f : A→ C with A finitely presented admits a factorization through e, that

is, there is some map g : A→ E with eg = f .

Lemma 5.10. Let C be an algebraic category, and let C be an object in C. Then the

following are equivalent:

1. C is a directed colimit of perfectly presentable objects.

2. There is a pure regular epimorphism e : F → C with F a coproduct of perfectly

presentable objects.

3. Every morphism A→ C with A finitely presented factors through some perfectly

presentable object.

4. Every regular epimorphism e : E → C in C is pure.

Proof. (1) ⇒ (3): if C is a directed colimit of perfectly presentable objects, then

every morphism G → C with G finitely presented must factor through one of the

objects in the directed system.
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(3) ⇒ (1): since the category C is locally finitely presented, C is expressible as

a directed colimit of finitely presented objects. The factorization property (3) tells

us that the perfectly presentable objects are cofinal in this system, and so C can be

expressed as a directed colimit of these objects, see [1, 0.11].

(2) ⇒ (3): suppose F is given by a coproduct
∐

i∈I Fi with each Fi perfectly

presentable. Then F is the directed colimit of all the finite coproducts of the Fi,

and each finite coproduct is perfectly presentable. A morphism f : G → C with G

finitely presentable must factor through e by purity, and so through one of the finite

coproducts over the Fi by the finitely presentable property.

(1) ⇒ (2): since the perfectly presentable objects strongly generate the category

C, there is a strong epimorphism e :
∐

h:G→C Gh → C, where for each h : G → C

the object Gh is isomorphic to G and the component of e is given by h. Since e is a

strong epimorphism and the category C is exact, e is regular. Moreover, if C is the

directed colimit of perfectly presentable objects, then every morphism a : A → C

with A finitely presentable factors through some map G→ C with G ∈ G, and hence

through e.

(2)⇒ (4): suppose there is a pure epimorphism f : F → C with F a coproduct of

perfectly presentable objects, and let e : E → C be any regular epimorphism. Then

since F is regular projective, there’s a map f ′ : F → E with ef ′ = f . Given any map

a : A→ C with A finitely presented, there is a factorization a′ : G→ F with fa′ = a,

since f is pure. The map f ′a′ : G → E then gives us the required factorization to

show that e is also pure.

(4)⇒ (2): we have already seen that there is a regular epimorphism F → C with

F a coproduct of perfectly presentable objects; this is pure by assumption.

Remark. If G is a particular strong generating set of perfectly presentable objects,

then all the perfectly presentable objects mentioned in the statement of proof of

Lemma 5.10 can be assumed to be finite coproducts of objects from G.

Definition 5.11. Let C be an algebraic category. An object in C with any of the

above properties is called strongly flat.
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This terminology is based on that used for acts over a monoid.

Remark. For an arbitrary locally finitely presentable category C, it would appear

reasonable to choose any set of finitely presented objects G, and attempt to use these

objects to define a notion of strongly flat object in C (i.e., in each of the above

conditions, we replace ‘perfectly presentable object’ with ‘object from G’). We can

in fact prove the equivalences of definitions (1)-(3). However, exactly which objects

are ‘strongly flat’ according to this definition depends on what generating set G is

chosen - for instance, it is clear from condition (1) that if G is chosen to be all finitely

presentable objects, then every object in C is strongly flat according to this definition.

Theorem 5.12. The strongly flat objects in an algebraic category are closed under

directed colimits, pure subobjects and arbitrary coproducts.

Proof. Let D be an object in C which is a directed colimit of strongly flat objects, and

a : A → D is any map with A finitely presentable. The map a must factor through

some strongly flat object in the directed system, and so must factor through some

perfectly presentable object.

To see that strongly flat objects are closed under pure subobjects, suppose s :

S → C is a pure monomorphism with C strongly flat. Let a : A→ S be a morphism

with A finitely presented. Then sa factors through some perfectly presentable object

G, and we have a diagram

S
s // C

A

a

OO

a′ // G

g

OO

Now since A andG are both finitely presented, and s is pure, there is a map g′ : G→ S

with g′a′ = a. Thus, S satisfies condition (3).

Finally, we show that an arbitrary coproduct of strongly flat objects is strongly

flat. It suffices to prove this for finite coproducts; the result for infinite coproducts

will then follow by considering an infinite coproduct to be the directed colimit of all

the finite coproducts over the same collection of objects.

Suppose F and F ′ are strongly flat objects in an algebraic category C. Then there

are directed diagrams DF : (I,≤) → C, DF ′ : (J,≤) → C, for directed partially
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ordered sets (I,≤) and (J,≤), where for every i ∈ I and j ∈ J , DF i and DF ′j are

perfectly presentable, and these diagrams have colimit F and F ′ respectively. Now

consider the set I × J with the partial order defined by (i, j) ≤ (i′, j′) if and only if

i ≤ i′ and j ≤ j′. This partial order is directed: the join of a pair of elements (i, j)

and (i′, j′) is simply (i∨ i′, j∨j′). We define a functor D : (I×J,≤)→ C by D(i, j) =

DF i
∐
DF ′j; if (i, j) ≤ (i′, j′), the map D(i,j),(i′,j′) : DF i

∐
DF ′j → DF i

′∐DF ′j
′ is

given by (DF )ii′
∐

(DF ′)jj′ .

Each of the objects DF i
∐
DF ′j is a finite coproduct of perfectly presentable

objects, and so is itself perfectly presentable. The colimit of the diagram D is thus a

directed colimit of perfectly presentable objects, and so is strongly flat. This colimit

is easily seen to be isomorphic to F
∐
F ′, and so F

∐
F ′ is strongly flat.

Definition 5.13. ([3, 9.4, 9.7]) A functor G : A → B between two algebraic

categories is algebraic if it has a left adjoint and preserves sifted colimits.

Theorem 5.14. Let G : A → B be an algebraic functor between algebraic categories.

Then the left adjoint F : B → A preserves perfectly presentable and strongly flat

objects.

Proof. Since F is a left adjoint, it preserves colimits. Since strongly flat objects are

directed colimits of perfectly presentable objects, it suffices to show that F preserves

perfectly presentable objects.

Let P be a perfectly presentable object in B, and let D : D → A be a sifted

diagram in A. Write colim(D) for the colimit of this diagram. Then we have natural

isomorphisms

HomA(FP, colim(D)) ∼= HomB(P,Gcolim(D)) ∼= HomB(P, colim(GD))

∼= colimHom(P,−).GD ∼= colimHom(FP,−).D

This shows that the functor Hom(FP,−) preserves sifted colimits, so FP is perfectly

presented.
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5.2 The Flat Cover Conjecture

Let C be any category, and let F be a subcategory.

Definition 5.15. • Let C be an object of C. An F -precover of C is a map

f : F → C with F in F , such that for any morphism f ′ : F ′ → C with F ′ in

F , there is a factorization of f ′ through f .

• An F -cover of C is an F -precover f : F → C with the additional property that

for any endomorphism e : F → F with fe = f , e is an isomorphism.

An F -cover is unique up to isomorphism.

If every object in C has an F -precover, we say F is weakly coreflective in C. If

every object has an F -cover, we say F is stably weakly coreflective. This terminology

is from [30].

It can easily be shown that if C has coproducts, every weakly coreflective subcat-

egory of C is closed under them.

Theorem 5.16. [30, 2.5] Let C be a locally finitely presentable category, and F a

weakly coreflective full subcategory of C which is closed under directed colimits in C.

Then F is stably weakly coreflective in C, i.e., every object in C has an F-cover.

Let C be an algebraic category. We say C satisfies the Flat Cover Conjecture

if every object in C admits a strongly flat cover; that is, if the subcategory SF of

strongly flat objects is stably weakly coreflective in C.

It was shown in [6] that module categories satisfy the Flat Cover Conjecture; this

result is generalized to locally finitely presentable abelian categories in [31, 5.2], and

also in [12].

Since algebraic categories are locally finitely presented, and strongly flat objects in

them are closed under directed colimits, it suffices to show that strongly flat precovers

exist in order to prove the Flat Cover Conjecture for a given algebraic category.
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5.3 Flat covers in presheaf categories

In this section we consider the existence of strongly flat covers for categories of set-

valued functors over a small category. This provides the simplest case of a topos in

which the existence of strongly flat covers can be investigated. One particular case of

this will occur when the category in question has only one object, i.e., it is a monoid.

Let M be a monoid, with identity element 1M . We may consider M to be a

one object category, the functors M → Sets are then precisely the left M-acts : an

M -act is a set X with a multiplication M × X → X satisfying m.n(x) = m(n(x))

and 1M(x) = x, for every x ∈ X and every m,n ∈ M . Morphisms of M -acts are

functions f : X → Y which preserve this structure, i.e., such that for every m ∈ M

and x ∈ X, the equation f(m(x)) = m(f(x)) holds; these are of course the natural

transformation between the M -acts considered as functors. We denote the category

of M -acts and their morphisms with the notation M -acts. This notation differs from

that used earlier for G-sets, but its use is standard in semigroup theory. Strongly flat

objects in categories of M -acts have already been investigated in [21], and in that

paper it was asked what conditions on a monoid M can be used to show that the

category M -acts has strongly flat covers. At the end of this section, we will prove

a condition for a category of set-valued functors to have strongly flat covers; this

condition will include a significant class of monoids.

Let A be a small category and let (A,Sets) be the category of set valued functors

on A. As described in section 3.1, we can associate with A an essentially algebraic

theory (in fact since all the operations will be total, we will get an equational presen-

tation), whose models are the set-valued functors on A. The finitely generated free

objects for this theory will be the coproducts of representable functors. Since the

category (A,Sets) is a topos, it is exact and all the epimorphisms are regular [20,

IV.7.8]. The representable functors are projective (and therefore regular projective)

and finitely presented, so they form a strong generating set of perfectly presented

objects. Thus (A,Sets) is an algebraic category, and the representable functors form

a strong generating set of perfectly presentable objects; in particular, by the remark
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following Lemma 5.10, an object in (A,Sets) is strongly flat if and only if it is a

directed colimit of finitely generated free objects.

Let F be a functor A → Sets. Recall that the category of elements of F ,
∫
F

has as objects pairs (x,A) where A is an object in A and x ∈ FA, and as morphisms

(x,A) → (x′, A′) morphisms f : A → A′ in A with Ff(x) = x′. The category of

elements admits a forgetful functor πF :
∫
F → Sets, given on objects by (x,A) 7→

FA, and on morphisms by [f : (x,A)→ (x′, A′)] 7→ [Ff : FA→ FA′].

Observe that taking the coproduct of functors is the same process as taking the

disjoint union of the categories of elements - given a set of functors {Fi}i∈I , we

have that
∫ ∐

i Fi is equivalent to
∐

i

∫
Fi. Furthermore, a natural transformation of

functors α : F → G gives a functor
∫
α :

∫
F →

∫
G, taking each object (x,A) in∫

F to (αA(x), A) in
∫
G.

A small category C is connected if the directed multigraph underlying C is weakly

connected. This is equivalent to saying that for any two objects of C and C ′ of C, there

is a sequence of objects C = X0, X1, . . . , Xn = C ′ such that for each i = 1, . . . , n,

either there is a morphism fi : Xi−1 → Xi or a morphism fi : Xi → Xi−1. The

existence of such a sequence for a pair of objects defines an equivalence relation R

on the objects of C; the equivalence classes of R are the connected components of C.

We can express C as the coproduct of its connected components in the category Cat

of small categories.

Now let F : A → Sets be any functor. The connected components of
∫
F

correspond to certain subfunctors of F . For a given (x,A) ∈
∫
F , define FxA

′ = {y ∈

FA′ | (y, A′)R(x,A)}. This is a subfunctor of F , and
∫
Fx is a connected component

of
∫
F . Choosing a set S of representatives for the equivalence classes of R on

∫
F ,

we can write F as a coproduct F =
∐

(x,A)∈S Fx, and each Fx will be indecomposable.

The image of an indecomposable functor under a natural transformation is inde-

composable, since the image of the connected category
∫
F

under the corresponding

functor must again be connected. In general, for a natural transformation α : F → G,

we can write F =
∐

i Fi and G =
∐

j Gj with each Fi and Gj indecomposable, and

for each i there is some ji such that α(Fi) ⊆ Gji .
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A finitely generated functor F can have only finitely many components. For every

functor is the directed colimit of its subfunctors which do have only finitely many

components; if F is finitely generated it must be isomorphic to such a subfunctor.

Lemma 5.17. An object F in (A,Sets) is strongly flat if and only if all of its

indecomposable components are strongly flat.

Proof. We have shown that strongly flat objects are closed under arbitrary coproducts

in any category (Theorem 5.12).

Now suppose we have a collection of indecomposable objects Fi in (A,Sets),

indexed by some set I, such that F =
∐

i∈I Fi is strongly flat. Suppose for some i ∈ I

we have a map f : G→ Fi where G is finitely presented. Then the map sif : G→ F

obtained by composition with the inclusion si : Fi → F factors through some free

object H. We have a diagram

G

f
��

f ′ // H

h
��

Fi
si // F

The image of the map h : H → F is contained in Fi (since (C,Sets) is a topos,

the inclusion maps into coproduct are monic, see e.g., [20, IV.10.5]), so we can write

h as sih
′ for some h′ : H → Fi. Now sih

′f ′ = sif , so since si is monic, h′f ′ = f . This

shows that f factors through H as h′f ′, satisfying condition 3 for strong flatness.

Given a small category A and a functor F : A → Sets, we define a ‘Hom-functor’

RF : Sets→ SetsA
op

by

(RFX)(A) = HomSets(FA,X).

This functor has a left adjoint LF : SetsA
op → Sets defined for each presheaf P by

taking LF (P ) to be the colimit of the diagram

∫
P

πP //A F //Sets .

We will write LF (P ) as P ⊗F . It is a set, whose elements are equivalence classes
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of pairs (x, y) ∈ PA× FA, where A is an object in A, with the equivalence relation

R generated by taking (x, y)R(x′, y′) whenever there is map f : A → A′ in A with

Ff(y) = y′ and x′.Pf = x.

Since it is a left adjoint, the tensor product commutes with colimits in SetsA.

We define the following conditions for set-valued functors on A, which are those

used in the study of monoid acts to classify different levels of flatness.

Definition 5.18. Let A be a small category and suppose we have a functor F : A →

Sets.

1. F is said to satisfy condition (P ) if given any x ∈ FA, y ∈ FB and maps

f : A → C, g : B → C in A with Ff(x) = Fg(y), there is some z ∈ D and

maps f ′ : D → A, g′ : D → B in A, such that Ff ′(z) = x, Fg′(z) = y and

ff ′ = gg′.

2. F is said to satisfy condition (E) if given any f, g : A → B in A and x ∈ FA

with Ff(x) = Fg(x), there is some h : C → A in A and some y ∈ FC with

Fh(y) = x and fh = gh.

These conditions allow us to write a further characterization of strong flatness

for set-valued functors on a category. This is the characterization of strong flatness

usually used by semigroup theorists writing about categories of monoid acts, see for

example [18, III.9]. We verify here that the proof does work for arbitrary presheaf

categories.

Lemma 5.19. (cf. [32, 5.3], also [20, VII.6.3]) Let A be a small category. For a

functor F : A → Sets, the following conditions are equivalent to F being a strongly

flat object in the category (A,Sets).

5. F satisfies conditions (P ) and (E).

6. The tensor product functor (−)⊗ F preserves pullbacks and equalizers.

Proof. We recall conditions (1) to (4) from Lemma 5.10.
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(5) ⇒ (3): Suppose G is a finitely presentable functor, and there is a natural

transformation α : G→ F , where F satisfies conditions (P ) and (E).

We want to show that the morphism α factors through some perfectly presentable

object. If suffices to show this for the restriction of α to each irreducible component of

G, since this will allow us to define a factorization for the whole of α using coproducts.

Thus, we can assume that G is irreducible.

Suppose G has the presentation 〈x0, . . . , xn | r1, . . . , rm〉. Here each variable xi is

of sort Ai, and each relation rj is of the form f j1 (xi1) = f j2 (xi2), where f1 and f2 are

appropriate maps in A (since every term in the theory corresponds to a morphism of

A, all relations in this theory must be of this form). Since G is irreducible, there is

a reordering of the variables and relations such that for i = 1, . . . , n, the ith relation

equates a term in the variable xi and some variable xk with k < i. If this were

not the case, we could find two subsets x and x′ of the variables such that every

relation mentioned only terms in x or x′. We would then be able to represent G as

the coproduct of the subobjects generated by x and x′ respectively.

A map G → F , corresponds to some tuple (y1, . . . , yn) in F satisfying all these

relations. Now the relation r1 is of the form f 1
1 (y0) = f 1

2 (y1), so applying the (P )

condition, there is some z1 and arrow f ′1, f ′2 such that f ′1(z1) = y0, f ′2(z1) = y1, and

f ′1f1 = f ′2f2. The relation r2 involving y2 and either y0 or y1 now implies a condition

on z1 and y2, say f 2
1 (z1) = f 2

2 (y2). We apply the (P ) condition again to obtain z2.

A picture at this point will help.

. . .

y0

f11

==zzzzzzzz
y1

f12

aaDDDDDDDD
y2

f22

bbEEEEEEEEE
. . . yn

fn2

bbEEEEEEEEE

z1

h1
>>}}}}}}}}h′1

``AAAAAAAA
z2h2

oo

=={{{{{{{{
. . . znhn
oo

=={{{{{{{{

We can’t fill in the arrows f i1 since we don’t know which of the yi’s is going to

be the source. After n steps, we get an element zn which divides all of the orig-

inal generators y1, . . ., yn. Now the relation rn+1 can be written as an equality
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fn+1
1 (zn+1) = fn+1

2 (zn+1); applying condition (E) to this, we find zn+1 dividing zn+1

by hn+1 with fn+1
1 hn+1 = fn+1

2 hn+1. Continuing, we get zm dividing all the others,

with zm of sort A. Now the map G→ F factors through the map (A,−)→ F defined

by 1A 7→ zm.

(6) ⇒ (5): Suppose we have x ∈ FA, y ∈ FB and maps f : A → C, g : B → C

in A with Ff(x) = Fg(y). We construct a pullback diagram in SetsA
op

P
πg //

πf

��

(−, B)

.g

��
(−, A)

.f // (−, C)

.

On an object D in A, the set PD is the collection of all maps D → C admitting a

factorization through both f and g. Tensoring with F gives a pullback diagram

P ⊗ F
πf //

πg
��

FB

Fg
��

FA
Ff // FC

.

Since Ff(x) = Ff(y), there exists some object D and (h, z) ∈ PD × FD such that

h factorizes through f and g and the image of z ∈ FD under these factorizations is

x and y respectively; that is, z fulfils the condition (P ).

The proof that condition (E) will be satisfied is similar.

(1)⇒ (6): If F is a free functor, say (−)⊗(A,−), then any functor P : Aop → Sets

is mapped to PA by this functor. In particular, since limits are calculated pointwise

in SetsA
op

, this functor preserves all limits, and so in particular is strongly flat.

Now any strongly flat functor F can be constructed from free functors using

finite coproducts and directed colimits. Since finite coproducts and directed colimits

commute with equalizers and pullbacks in Sets, it follows that (−) ⊗ F commutes

with equalizers and pullbacks also.

Theorem 5.20. Let C be a category such that there is only a set of indecomposable

strongly flat functors in (C,Sets). Then the category SF of strongly flat functors is
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stably weakly coreflective in (C,Sets), i.e., (C,Sets) has SF-covers.

Proof. By Lemma 5.12 and Theorem 5.16, it suffices to prove that SF is weakly

coreflective in M -acts.

Suppose {Fi | i ∈ I} is a collection of representatives of all isomorphism classes

of indecomposable strongly flat functors in (C,Sets).

Let X be a functor C → Sets. Define X∗ =
∐

f∈(Fi,X), i∈I(Fi)f , where each (Fi)f

is isomorphic to Fi. Let g : X∗ → X be the morphism defined on each (Fi)f by f .

We claim that g is a precover of X. To see this, let h : H → X be any morphism,

with H strongly flat. H is a coproduct of indecomposable strongly flat M -sets, say

H =
∐

j Hj. For each Hj, we have the map Hi
//H

f //X , which of course factors

through X∗. The factorization of all of these maps through X∗ gives a factorization

of h through X∗.

To make any use of this result, we need to provide some examples of categories C

which have only a set of indecomposable strongly flat functors F : C → Sets.

We acknowledge the help of Alex Bailey in formulating the next theorem.

Theorem 5.21. Let C be a category with the property that for any morphism m :

B → C in C, there is a natural number km ∈ N such that for any other morphism

s : A → C there are at most km distinct morphisms t : A → B satisfying mt = s.

The category (C,Sets) has strongly flat covers.

Proof. It suffices to show that there is a regular cardinal λ such that for every inde-

composable strongly flat functor F , the category
∫
F has size less than λ (that is,∐

C∈ob(C) FC < λ). If this is the case, then F considered as a model of the canonical

theory over C is λ-presented, and in particular there is only a set of such models up

to isomorphism.

So let F be an indecomposable strongly flat functor, and let (x,C) be an object
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in
∫
X. For any other object (y,B) in

∫
X there is a path

(x,A) ◦ . . . ◦ (y,B)

◦
m1

bbEEEEEEEE

m2

@@��������
◦

m3

^^========

m4

??~~~~~~~~~
◦

mn−1

^^========

mn
<<yyyyyyyy

Here each mi is a morphism in C.

Applying the (P ) condition n
2
− 1 times, we can reduce this setup to

(x,A) (y,B)

◦
m

bbEEEEEEEE

m′
<<yyyyyyyy

. (5.1)

Thus for every (y,B) in
∫
F there is some diagram of the above form. However,

we will show that for each (x,A) in X and morphism m : C → A in C, there are at

most km elements y ∈ FC with Fm(z) = x. To see this, suppose there are km + 1

distinct elements y1, . . . , ykm+1 ∈ FC with Fm(yi) = x for each i. Applying the (P )

condition to each pair in turn, we can find some object D in C and some z ∈ FD as

shown

(x,A)

(y1, C)

m

44jjjjjjjjjjjjjjjjjjj
(y2, C)

m

::uuuuuuuuu
. . . (ykm+1, C)

m
ffLLLLLLLLLL

(z,D)

s1

jjTTTTTTTTTTTTTTTTTTT

s2
ddIIIIIIIII skm+1

88rrrrrrrrrr

Now the si ∈mor(C) are all distinct, and for each i = 1, . . . , km + 1, msi = ms1,

contradicting the condition that there are at most km distinct maps with this property.

Now given a choice of (x,A) in
∫
F , every other object in

∫
F occurs in a diagram

of the form (5.1), and there are only finitely many distinct occurrences of each such

diagram. Thus there are at most ℵ0|mor(C)|2 objects in
∫
F . Between each pair

of objects there are at most |mor(C)| morphisms, so
∫
F has at most ℵ0|mor(C)|3

morphisms. Thus it suffices to take λ to be larger than ℵ0|mor(C)|3.
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Examples of monoids with the property described above include left cancellative

monoids (those monoids M such that for s, s′, t ∈ M , ts = ts′ implies s = s′) and

finite monoids.

A finitely generated monoid with the property described above is said to be of

(left) finite geometric type. That is, a finitely generated monoid M is of left finite

geometric type if for any s ∈ M there is a natural number ks ∈ N with the property

that for any t ∈ M , there are at most k distinct elements x1, . . . , xk ∈ M such that

sxi = t for each i = 1, . . . , n. Monoids of finite geometric type have been studied in

the literature of semigroups. We have shown that if a monoid M has finite geometric

type, then the category M -acts satisfies the Flat Cover Conjecture.

Example. Let M = (N,+). To specify the action of (N,+) on a set, it suffices to

specify the action of 1 ∈ N on each element. Thus an (N,+)-act is specified by a

directed graph in which each vertex is the source of precisely one arrow. A strongly

flat (N,+)-act X cannot contain any loops when considered as a directed graph.

A loop would correspond to an element x ∈ X with some n ∈ N \ {0} such that

x + n = x. This would contradict condition (E) - since x + 0 = x + n, we would be

able to find some natural number m such that m + n = m + 0 = m. Similarly, an

element of a strongly flat (N,+) act can have at most one divisor by 1. For suppose

there exists y, y′ with y + 1 = x = y′ + 1. Then there is some z ∈ X and elements

n, n′ ∈ N such that z+n = y, z+n′ = y′, and n+ 1 = n′+ 1. But this would give us

n = n′, and so y = y′. Thus the only indecomposable strongly flat (N,+)-acts are N

and Z with the obvious actions of (N,+).

The map Z→ 1 is an SF -cover, where 1 is the one element (N,+)-act.

In the paper of Mahmoudi and Renshaw [21], a second definition of strongly flat

cover was given. This defined a cover of an object C to be a coessential epimorphism

e : F → C, that is, an epimorphism e such that for any subobject s : S → F , if es

is an epimorphism then s is an isomorphism. Renshaw and Mahmoud asked whether

the existence of a strongly flat cover in our sense implied the existence of such a

coessential epimorphism from a strongly flat object. However, no such coessential

epimorphism exists for 1 considered as an (N,+)-set; to see this, observe that any
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map N → 1 must restrict to a subobject of N on which it is also onto (or use [21,

3.5(1)]).
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