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Abstract

Chaotic systems have properties such as ergodicity, sensitvityitial conditions/parameter
mismatches, mixing property, deterministic dynamics, struciomgplexity, to mention a few, that
map nicely with cryptographic requirements such as confusiciusidin, deterministic pseudo-
randomness, algorithm complexity. Furthermore, the poggibilichaotic synchronization, where
the master system (transmitter) is driving the slave systeraiyeg) by its output signal, made it
probable for the possible utilization of chaotic systemsnfdément security in the communication
systems. Many methods like chaotic masking, chaotic modujaticlusion, chaotic shift keying
(CSK) had been proposed however, many attack methodsslavered them to be insecure.
Different modifications of these methods also exist in thediure to improve the security, but
almost all suffer from the same drawback. Therefore, theeim@htation of chaotic systems in
security still remains a challenge. In this work, diffengossibilities on how it might be possible to
improve the security of the existing methods are explored. The pnablem with the existing
methods is that the message imprint could be found in the dygarhthe transmitted signal,
therefore by some signal processing or pattern classifidaidmiques, etc, allow the exposition of
the hidden message. Therefore, the challenge is to remove amy pattéange in dynamics that
the message might bring in the transmitted signal.

Along with secure methods, the investigation of channel noideeichiaotic synchronization and
message extraction needs investigated. A comparative study on the proportional (P) and
proportional integral (PI) observer method of observer basadtic synchronization is performed
for a proposed combinational scheme (masking + inclusion)stias/n that Pl observer provides
flexibility to the system to handle noise by offering betynchronization in the presence of noise
than P-observer. It is also shown that the P-observer impes&sction on the transmitting
message, however the Pl observer does not have any such restestibadds degree of freedom
to the system by the inclusion of integrator in the desige.i@lea of digitization of chaotic signal
is used for only adding security layer while using the existingtaligiommunication for the
transmission. The simulation results show that message istextia different bit error rates with
possibility at signate-noise ratio (SNR) as low as 14 dB wheistidea is used. SNR can further
be reduced by already available error correction andiggtiah techniques in the digital domain.

When two equal power chaotic sighals are combined together andugkdnto modulate the
transmitting message signal, then it might be difficultifbruders to use the conventional attack
methods since there is added complexity in the chaotic caigeal. Based on this we have
proposed a cascaded chaotic masking scheme to improve theysetumisking method. Even
though the cascaded masking approach adds complexities in then dygtenaking then-
dimensional system tanr more dimensional system, more possibilities also heedsexplared.

Next, a new chaotic synchronization method called indirect couplembtah synchronization
(ICCS) is presented and proven mathematically for bothraomtis and discrete time system. ICCS
allows two independent chaotic oscillators to synchronize withh ether consequently can be
used to generate same keystream at the transmitter aireigge which is utilized to encrypt the
message signal using an encryption algorithm, and then moduldteth&ichaotic transmitter. At
the receiver, same keystream available due to ICCS is usedryptdihe message back. Security
analysis illustrates that the proposed method does not suffertiimhortcomings of the earlier
methods. The ICCS is further implemented to modify and imptmeeécurity of the CSK method
by removing the pattern from the transmitted when switching is toeileeen either 0 or 1. Two
different possible implementations are proposed and sironlatsults verify the successful
message extraction at the receiver and security andlysisates the improvement.

Finally, the proposed secure communication scheme using I€E@&dtically realized in digital
signal processing (DSP) board. The message is shown to be aulbcessfacted and the output
from the DSP board is compared with the computer simulationdocaindl that the difference is
very insignificant thus proving the effective hardware reabpatising the DSP board.
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Chapter 1 Introductions

In the current digital age, there has been a lot ®fr@st on secure communication links
due to the dramatic rise of online shopping, banking and trégingaction and this trend
Is set to increase exponentially in future. In effectiaes not take much effort to realise
that there will be a significant development and usageigifatl communication and
technology in the next decade and further. Consequéhtye is a need to increase the

security of data being transmitted in order to avoid hackingformation and fraud.

Secure communication between two parties (or systen®ris in such a way that the
identity of the communicating party is confirmed and tbefidentiality as well as the
integrity of the message is maintained. Hence, confidégfiauthentication and message
integrity are three key points for secure communicat@onfidentiality means that only
the sender and receiver are able to understand the coafehe transmitted message. The
idea is to encrypt the message by the sender with sogpeography algorithms. The
message can only be decrypted back by the intended receaseharby using a special
key. Authentication means that if sender A and receBs@re communicating then the
identity of both should be confirmed. Message integrigans that whenever sender and
receiver are communicating, then it must be ensuradiie message content has not been
altered. The notion of “secure communication” is most commonly perceived as
confidentiality but as explained earlier it is not thesecaHowever, authentication and

message integrity can be achieved by the cryptography techniques

Modern software cryptography has witnessed a continuous gevefd over the past 30

years [2]. The software encryption technique can either lsedban theso-called



symmetric or asymmetric key. A number of encryption/decoyptechniques have been
developed including Data Encryption Standard (DES), Triple-0ESA (Rivest, Shamir,
and Adelman, the inventors of the technique), Rabin Schéftlegms scheme, etf3-10].
Although, many of these techniques are currently being usedfoard the heart of
security, none of these can be regarded as 100% secure cee awatlability of high-

speed computers and fast algorithms [10-12]

Recently, chaotic signals, due to the properties like danpredictability, aperiodicity,
broad spectrum, and high sensitivity to parametric midmiattial conditions, has brought
forward the idea of implementing them for secure commtinicaand as an alternative to
classical cryptography. Chaotic signals can be implésdeto achieve security directly at
the physical level. Researchers have pointed out that ¢éxests a very close relationship
between chaos and cryptography [13, 14]. Various characteasiicproperties of chaotic
signals such as ergodicity, mixing, randomness, complexityredictably and the
sensitivity to initial conditions, can be connectad the well-known confusion and
diffusion properties in the classical cryptography. Accordmghannon [15], confusion
refers to making the relationship between the key andcigteertext as complex and
involved as possible; diffusion refers to the property thatredundancy in the statistics of
the plaintext is "dissipated” in the statistics of thghertext. In other words, the non-
uniformity in the distribution of the individual letters (apdirs of neighbouring letters) in
the plaintext should be redistributed into the nonarniity in the distribution of much
larger structures of the ciphertext, which is much hataleetect. Diffusion means that the
output signal (ciphertext) should depend on the input mes@agetext) in a very
complex way. In a cipher with good diffusion, if one ditthe plaintext is changed, then

the ciphertext should change completely, in an unpradle manner [15]. Since, chaotic



signals have properties that are very close to whadqsired for cryptography attention

has been recently shiftezh implementing secure communication using chaotic signals.

The basic block diagram of a chaotic communication sysseshown in Figure 1.1. Eh
modulation technique and the synchronization method emglbypld the importance for
good performance and security. Also, the performance cfystem under the influence of

noise and channel model is very important as well.

‘ i e | Receiver |
! ‘Modulated lese e —
.___>: InPut | Modulation Chaotic 'Chaotic .| channel Chaotic Receiver
' signal Technique Oscillator | icarrier (Synchronization)

\ 4
Demodulator

l

Received signe

Figure 1.1: Elementary block diagram of chaotic communionagystem.

As it can be observed in Figure 1.1, the chaotic commuaitatlstem consists of three
main aspects, transmitter, receiver and the channel JmmEs®rmance. In the transmitter,
the modulation techniques being used to mix the messagd algng with the chaotic
carrier are of essence for the overall securityhefgystem. There are various modulation
techniques currently available in the literature such as tichanasking, chaotic
modulation, chaotic inclusion and chaotic shift keying (ESKowever, all of these
methods have been proven to be insecure. Although chaotialssipave nice inherent
properties to be used in security and cryptography, the ingpltion is not straight

forward. Because a signal has to be transmitted frorheaeceiver, the signal will be



available to the intruders. Therefore, even if the intrsid® not know the structure or
parameters of the chaotic systems, they can perfome signal processing analysis or
apply some more sophisticated algorithms to get the impfitite message out from the
transmitter signal. In the case of chaotic masking stgnal is directly added to the chaotic
signal, therefore the variation can be detected by soomelinear dynamic forecasting
methods, or if the message amplitude/frequency are highgénthen power spectral
analysis will reveal the message. In CSK method the baignal 0 or 1 being transmitted
brings pattern in the transmitted signal. Therefore patt&assification problem can be
utilized to find out the binary message with having any kndgdeabout the transmitter.
Methods of modulation and inclusion are also vulnerablesadous attack methods.
Therefore, the mixing of message should be in such a hatythere is no pattern or
information of the message signal present in the trateingignal. Once the carrier
chaotic signal is transmitted into the channel, thewilitget corrupted with channel nas
before it reaches to the receiver. In the receiid®, £haotic synchronization is necessary
for successful message recovery. Therefore the deatamtuprocess is another challenge
in the implementation of the chaotic communicationteays. There are many ways to
achieve synchronization, but observer method is one gbribmising methods. There are
many types of observers such as proportional observagromianal integral (P1) observer
etc, therefore the performance of these observerdsn® be investigated in the presence
of noise. Chaotic communication provides security t® tommunication systems but
digital communication on its own has developed massittedyefore it will be wise to
come up with a technique such that chaotic schemes onlyaaldg®r for security while

utilizing existing digital communication setup for messagagmission.

In this research, we propose new transmission schemegptovie the existing methods

whereby eliminating their shortcomings. Therefore, the vatiin of this research is to

4



come up with improved chaotic communication techniques ttetr@bust to various

known attack methods and also look upon few other aspects asudinannel noise

performance and complementation with existing communicat&tup. Following is the

list of original contributions from this research work.

1.1

Original Contributions

The original contributions produced from this research atkined below.

Performance analysis of classical proportiqi®lobserver and Pl observer is done
for the proposed combinational (masking + inclusion) dbaocbmmunication
system. It is shown that Pl-observer provides bettectspmization performance
and therefore message recovery when the driving signedrrupted by channel
noise plus the message. The detail analysis and thdasonuresults are also
published in papers [16, 17] and outlined in Chapter 3.

A new chaotic communication technique called Cascaded Chitasking has
been developed. This has been published in [18] and descriGéader 4.

A new type of chaotic synchronization technique has been geglavhich have
been called indirectly coupled chaotic synchronization @8LC This
synchronization method is mathematically proven foraasbf chaotic systems for
both continuous and discrete time case. This has beenlok in detail in Chapter
5.

Using the new type of synchronization, ICCS, a new débhaotmmunication
method is developed. This technique implemented the keystgeaerated via

ICCS and used for achieving higher security. The methatkssribed both for



continuous and discrete time case, along with cryptasalys Chapter 6. These
methods are also published in [19-21].

v. Hardware realization of the proposed chaotic communitdised on ICCS is also
done using the digital signal processing (DSP) board anésepted in Chapter 6
and published in [25]. This is a verification of the modeklasn ICCS.

vi. A new type of chaotic secure communication method for tnéheg digital bits
has been developed. This is an improved form of theeearmethod called CSK.
This again used the earlier proposed ICCS method for gewgratentical
keystream at the transmitter and the receiver side. |[Befalanation of the method,
simulation results and cryptanalysis are presentedeirCtiapter 7. These result
are also published in [22, 23].

vii. A chaotic communication based on digitization of the thagignal is proposed
and the performance of the system on noisy channelfatatif level of bit error
rate (BER) was shown. This technique had been proposedefdirghtime in this
PhD work. This technique was based on digitization of thetzhaignals and
transmitting it with existing digital communication ingtaucture in the noisy

channel. The results are published in [24] and outlined in Ch@pter

1.2 List of Publications

Following are the list of publications that had been deneaat of this PhD research work.

Journal Paper

1. R. Kharel, K. Busawon, and Z. Ghassemlooy, "A chaosthammunication
scheme using proportional and proportional-integral obsetMdiBEE, vol. 4, pp.

127-139, 2008.



Conference Papers

2. R. Kharel, K. Busawon, W. Aggoune, and Z. Ghassemlooy, "Ingiamion of a
secure digital chaotic communication scheme on a DSRiaa 7th IEEE, IET
International Symposium on Communication Systenetwlhrks and Digital Signal
Processing (CSNDSP'10)Newcastle Upon Tyne, UK, 2010.

3. R. Kharel, K. Buswon, “Indirectly coupled synchronization of chaotic systems:
Application to secure digital communications”, 28th International Colloquium on
Group - Theoretical Methods in Physics, Group R@wcastle Upon Tyne, UK,
2010.

4. R. Kharel, K. Busawon, and Z. Ghassemlooy, "Modified chasitift keying using
indirect coupled chaotic synchronization for secure digibanmunication,'in 3rd
Chaotic Modelling and Simulation International Cergnce (Chaos2010Lhania,
Greece, 2010.

5. R. Kharel, K. Busawon, and Z. Ghassemlooy, "Secure diggtaimunication using
discrete-time chaotic systems via indirect coupling sysbation " inAmerican
Control Conference (ACC'1pBaltimore, Maryland, USA, 2010.

6. R. Kharel, K. Busawon, and Z. Ghassemlooy, "Indirect cmlmscillators for
keystream generation in secure chaotic CommunicationProceedings of the
48th IEEE conference on Decision and Control andh28hinese Control
Conference 20020009.

7. R. Kharel, K. Busawon, and Z. Ghassemlooy, "A novel tibaencryption
technique for secure communicatiom" 2nd IFAC conference on analysis and

control of chaotic systems (Chaos QBpndon, 2009.



8. W. Aggoune, K. Busawon, and R. Kharel, "On feedback stabdizatf nonlinear
discrete-time state-delayed systemig,'European Control Conference (ECC'09)
Budapest, Hungary, 2009.

9. R. Kharel, S. Rajbhandari, K. Busawon, and Z. Ghassemltgjtization of
chaotic signal for reliable communication in non-ideal cledéshin Proceeding of
International Conference on Transparent OgtiQdetworks 'Mediterranean
Winter’’ (ICTON-MW08), Marrakech, Morocco, 2008 pp. Sal.2 (1-@nvited
Plenary Paper.

10.R. Kharel, K. Busawon, and Z. Ghassemlooy, "Novel cascelgotic masking for
secure communicationsjh The 9th annual Postgraduate Symposium on the
convergence of Telecommunications , Networking &od&dcasting (PGNET)
Liverpool, UK, 2008, pp. 295-298.

11.K. Busawon, R. Kharel, and Z. Ghassemlooy, "A new sHaased communication
scheme using observers;' Proceeding of the 6th Symposium on Communication
Systems, Networks and Digital Signal Processing82Q00SNDSP 2008) Graz,

Austria, 2008, pp. 16-20.

1.3 Organization of the Thesis

The thesis is divided into ten main chapters. In Chapteve provide a comprehensive
overview of chaos. Different properties of chaotic sy®t are discussed and few examples
of chaos are mentioned. Also different routes from rehehaos can occur are also
discussed. Then an overview of chaotic synchronizatiogivisn and different types of
synchronization are discussed. The use of chaoticlsigreammunication for achieving
security is then discussed. This chapter also descri@gidnal chaotic communication

methods along with their problems and also differentclattaethods are also outlined.
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Finally, various other modified methods available in thexditure are discussed along with

their problem and shortcomings.

The study of two types of observers (P and PI) forptimposed combinational method is
presented in Chapter 3. The performance of P and Plva@sarnder the noisy channel is
compared and shown. This chapter focussed on the perfaznadnl-observer in the

noisy channels for better synchronization and messageagcwithout much emphasis on

the security.

Chapter 4 explains an approach of casdadbaotic masking for realizing secure
communication link. Detalil of the method is explained and kitimn results are presented
here. However, it is also pointed out that this methaghtmot be secure enough but is a
stride towards finding out other methods. Chapter 3 and Chéagieavide an illustration
of the approach to this research for finding out securenigobs. Therefore, even though
the techniques mentioned in chapter 3 and 4 may@&eoery secure, they show the step

towards more sophisticated and secure methods, which wileberséater chapters.

In Chapter 5, we propose a new idea of chaotic synchramzesdlled ICCS. This type of
synchronization has first been developed in this researchhisnchapter, the detail
description of ICCS along with examples and mathemapicadf (for both continuous and

discrete time case) is provided.

In Chapter 6, the ICCS that had been proposed in thereahkpter is utilized for realizing
a secure communication based on cryptography. The detate enethod are presented
and implementedn the both continuous and discrete time systems. Tdwwiseanalysis

of the proposed method is also done in this chapter. Téeretk type method is
implemented on hardware using a DSP board. Rapid pratgty the model is done in

TMS320C6713 DSK DSP bhoard. First of all, the Simulink model is coedemnto



assembly code for the TMS320C6713 using Simulink and the code canmgios®
(CCS). The real-time data exchange (RTDX) link is usetlaiosfer data from the DSP to
the computer and vice-versa. The results obtained wieemdldel is implemented on the
DSP board and when is implemented in simulation using Matilt@mnpared and it is
found that there is striking similarity between the twomeans that our proposed model
could be realized in hardware for practical implementatilhthese details have been

mentioned in this chapter.

In Chapter 7, a new chaotic communication technique fosimating digital messages
proposed which also utilized ICCS. This technique is moddied improved form of the
traditional CSK scheme. Two different implementatiaressproposed and security analysis

are also performed and discussed.

Chapter 8 presents an idea of digitization of chaotinadgyto be used in practical
environment where the chaotic carrier is converted to tligita and transmitted using
existing digital communication techniques. The method gitidation is very interesting

since it allows the use of chaotic communication fddiag a layer of security in the
already existing digital communication system. Perfommoe of the method in different
BERs is shown and is pointed out that the method works e tmoderate signal to noise

ratio (SNR) of level of 14 dB.

Finally concluding remarks and future works are outlined in Ch&pter
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Chapter 2 An Overview of Chaosand its
| mportance in Communication
Systems

2.1 | ntr oductions

Chaos is a word derived from the ancient Greek, which magredictable behaviour and
opposite of the cosmos or order. Howeverchaos theorythe term “Chaos” is not an
antithesis of cosmos or absence of order but in faee la very subtle order in itself not
guite obvious as ordered systems. The history of chassiemtific community has to be
stretched back to the time when Newton solved the two paxhfem in universe using his
newly invented differential equation. He had disregarded tleetedf gravitational effect
of one planet on another in his calculations. It watsuntil late 1800 that Poincare came
up with the qualitative method where he showed that it isnéisdly impossible to solve
the 3-body problem. He showed that orbits are aperiodic butnareasing infinitely
(meaning deterministic) and not approaching any fixed pointsndrcycles. He pointed
out that difficulty in solving the three body problem whge the sensitivity to the initial
conditions making long term prediction impossible. ThamefPoincare can be considered

to be the first person to envision “Chaos” [26, 27].

Later in 1963, Edward Lorenz of the Massachusetts Instifufechnology came up with
a set of three differential equations popularly knowntles Lorenz equation [28], for
forecasting the weather behaviour using computer simulati@mmenz was using a 6-digit
precision computer for calculation but was usar@ydigit precision printer to print the data

being entered to the computer again for simulation. It tumé that the rounding off of

11



the data that was used as the initial condition caasgdnificant difference in the long

term results making long term prediction an impossikd&.t&he solution never settled to
any fixed point or periodic orbits and oscillated irregulaHgpwever, Lorenz also pointed
out that there is an order in chaos as well where e egp with a 3-dimensional plot of
the solutions. He showed that the trajectory of the sy$i®ng evolving with time in a

complex and non-repeating pattern but in an interestinterfiyt shaped set of points
known today as thé&Strange Attractor”. Lorenz concluded that the earth’s weather is a

chaotic system and therefoeepng-range prediction is an impossible task.

Before going too further in the realm of chaos, let ukaran attempt to define it. No
definition has been universally accepted yet but the viadig definition confines the
fundamental three nature of chaos, which everyone giteaas mentioned by Strogatz

[26].

2.2 Chaos: Definition

Chaosis a “aperiodic long-term behaviour in a deterministic system that leithisensitive

dependence on initial conditions” [26)].

The three properties of chaos mentioned in the definiamrbe explained as follows:

i.  Aperiodic long term behaviour: This means that the system trajectories do not
settle down to any fixed points, periodic orbits or quasiperiodbits ast — oo.
Thus, the trajectory that follows will have a limited predltity.

ii. Deterministic system: This means that the system is not random or do not have
any stochastic input parameters. The irregular behaviowrshg chaotic systems

Is due to the systewmintrinsic non-linearity rather than the noise.

12



li.  Sendtivity toinitial conditions. This means that the trajectories even if they start
from very close initial conditions will separate expatially fast, i.e. the system
hasa positive Lyapunov exponent. This mean®ng term predictability becomes

impossible.

In order to explain these properties of chaos and it lidesa, let us recall the Lorenz
equation mentioned earlier. Lorenz system is a sdireétcoupled first-order differential

equations given as:

x=0a(y—x) (2.1)
y=x(r—z)-y
Z =xy— bz,

where o is called the Prandtl number and r is called the Rayleigh number. Lorenz chose
these parameters to have the following values 8f10,b = 8/3 andr = 28. When such
values are chosen, the Lorenz system defined in (2.1)iesxbiaotic behaviour. Now, we
shall attempt to verify the three properties mentionem/@abn the definition for chaotic

systems for Lorenz equations.

To demonstrate the first property of chaos, aperiodicity a numerical simulation was
done using Matlab. Arbitrary initial conditions were cho$a the simulation. The profile
of the output variable& is shown in Figure 2:1 where the state is evolving with time
aperiodically. To be sure that the variakles indeed aperiodic, an autocorrelatiorxaé
carried out, see Figure 2.2. Note that the time scaleowrs as normalized time in these

and subsequent figures and this is explained in section 2&r2ta
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Figure 2.2 The normalized autocorrelation functionxoforenz variable.

The variablex at any time instant is not similar to itself regardlekany amount of time

shift. Therefore, its autocorrelation function only hasragle spike at zero time shift. This

14



clearly demonstrates that tlkevariable is aperiodic in nature. The irregular behavisur i
also true for other variables and z. The second property in the definition for Lorenz
system is trivial. The parameters used in the system ar€0,b = 8/3 and = 28, i.e. none

of the parameters are stochastic. The irregularvi@inain the Lorenz system is arising

because of the intrinsic non-linearity of the systeself rather than the noisy parameters.

Finally, to exhibit the sensitive dependence of systemnibialiconditions, the simulation
is performed again. Two identical Lorenz system& (b) are taken with same parameters
but starting from different initial conditions (nearly idieal however). The difference in
initial condition taken between two Lorenz variabtgandx, was chosen to be POFigure
2.3 depicts the time series of variablesand x, for two Lorenz systems. After some
period, the two variables quickly diverge from each othan though they started from
identical initial conditions. Figure 2.4 illustrates theotwariables diverging exponentially
fast (straight line with positive slope on a log pldthis meansa long term prediction of
chaotic systems is not possible since the slightest gr the initial condition will result in
an exponential increase in the error. This effect wadaeed by Lorenz in his weather
forecasting model where he suspected that the long terrhevgatdiction is improbable

(butterfly effect).
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Figure 2.3: Time series plot of variablesandx, of two similar Lorenz systems starting

from anearly identical initial condition.
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Figure 2.4: Log scale plot ofyJ- x| to show exponential divergence of trajectories when

started fromanearly identical initial condition in a Lorenz syste
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Another nice property of chaos can be seen by plotting dhablez versusx of Lorenz
system, see Figure 2.Bhe figure shape is called the strange attrastowwing howx and

z evolve against timeas well as demonstrating how a simple looking determirggstem
could have extremely erratic dynamics where solutions ateiitregularly, never exactly
repeating but always remaining in a bounded region of @s®. The strange attractor is
not a point or a curve or even a surfacs a fractal with a fractional dimension between 2

and 3 [26].
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Figure 2.5: Strange attractor of the Lorenz system whenngatigainsix.

One property of chaotic systems not included in the abd@taen but worth mentioning
here is the sensitivity to parametric mismatches. Agam itlentical Lorenz systems (
andb) are taken starting with same initial condition buthwnearly identical parametric
values. For this, the difference in parametein the two Lorenz systems is taken to be
10°. Figure 2.6 depicts the time series of variabfer two Lorenz systems, which clearly

shows the two time series diverging from each other aftme time. Figure 2.7 illustrates
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the exponential divergence of trajectories of two systehe increase in log scale being

linear and the slope of which will give the Lyapunov exponent

201 7

10y 7

-15¢

_20 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50

Normalized time (t)

Figure 2.6: Time series plot of variablesandx, of two different Lorenz systems for

parameter valuesf o, =10ando, — o, =10° starting from the same initial condition.

10

X, =%

10 + .

10'10 | | |
0 10 20 30 40 50

Normalized time (t)
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2.3 Route to Chaos

When the parameters of a system are changed, chadiaviber may appear and
disappear for a dynamical system. The idea of chaos amdt lb@curs in a system can be
visualized by means d bifurcation diagram. Bifurcation means splitting into two parts
and is used extensively in the study of non-linear dynataidkistrate any sudden change
in the behaviour of the system when some parametergaaierl. Therefore, bifurcation
diagram shows qualitative changes in the system dynamiibsa variation of certain
system parameter values. For this purpose, let us takbeaneample used to model
population growth over time, known as the Logistic equatithe model is given in the

form of a difference equation as [29]:

Xnt1 = kxn(l - xn)- (22)

where x,,,4 IS the current population that depends on the previous pamilati, and the
growth rate is dependent on the paramkitddepending on the value of paramekethe
behaviour of the system will be different. This is showrthie Figure 2.8, which is the
bifurcation diagram for the Logistic equation. In thisgiém, a plot is done fdt in x-axis
and different possible long term valuesxain y-axis taking initial condition ag, = 0.5. It
can be seen that whérns between 0 and 1, the orbit converges to zero. Vheetween
1 and 3, the trajectory converges to some fixed point. At o= 3, both the bifurcation
and the trajectory enter an attracting periodic orbpafod 2. Ask increases the period
continues doubling with the bifurcation diagram splitting frpeniod 2, 4, 8 onwards and
with the trajectory being attracted to these periodmit®r This will continues untik >
3.57, beyond which chaos become visible. It can be seeigune 2.8 that for value &f>

3.57, the trajectory of, is not settling down to any fixed points or periodic orbits.

19



o
0.2F /
e HH{
O&ar F/ﬂ,.-f"’ ' !
Hz / \/
0.4 /
/!
.f‘lrjl:
0.2+ /
/
/
D "-r 1 1
o 1 2 3 4

Figure 2.8: Bifurcation diagram for the logistic equatiathwaryingk for initial condition

Xo = 0.5.

Now, let us consider the continuous 3-dimensional castheofRossler equation [30]
Rossler equation is a set of 3 differential equations gagen

X=-y-—z (2.3)

y=x+ay

z=b+ z(x —c).
For the value oft = b = 0.1 andc = 14, the system will exhibit a chaotic behaviour. The
bifurcation diagram for the system (2.3) is shown in Figu®ef@ a range of parameter
The diagram was plotted in Matlab by taking the locakima of x for each varying
parameterc value. Initial transients of the system were neglectesdshown, for lower
values ofc, system (2.3) has a periodic solution.& 6, period doubling is taking place

and this will continue with increasing valuefintil the system reaches a state of chaos. It
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is now clear how bifurcation diagrams give the visual intecaof potential chaotic

behaviour on a system.
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Figure 2.9: Bifurcation diagram for the Rossler equation.

The above examples demonstrated one particular routkatatic behaviour. This is the
most common route. We saw that there was splittinp@peeriod, i.e. from period 1 to 2,
then to 4 and so on until chaos emerged. This route is dheredilled the period doubling
route. Although there might be other routes to chaos dha not discovered yet, three

routes are outlined in the literature which are:

i. Period doubling route: This is the simplest route and is the most extensively
studied type of transition. As we have seen previously, eksngve the Logistic
and Rossler equations where the period increases from 2nd, & on until chaos

emerged.
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ii.  Intermittency route: In this route, a periodic signal (with no period doublihgp
disturbances at random intervals from bursts of chas&®ndVhen a chaotic
parameter is increased, the frequency bursts increasdasgrthe oscillation totally
chaotic [31, 32]. Intermittency appears in electronicerigschemical reactions,

hydrodynamics etc [33, 34]. Intermittency can also occuonenz equation [26].

li.  Quasperiodicity route: This route to chaos is caused by two or more
simultaneous periodicities whose different frequeneies out of phase with one
another such that the oscillations can never reipsst exactly. However, it might
seem (only) to repeat itself, thus the name Quasiperiodigitgimple time plot
camot reveal the chaoticity but will require sophisticateathematical tools for
analysis. This route to chaos has been seen in elécioductivity in crystals and

heart cells of chickens [32].

24 Current Chaotic Systems

So we have looked at the Lorenz system and Rossler systaah are continuous time
cases, and the Logistic map, which is a discrete tiase.cIn this section other chaotic
systems, which are quite popular and extensively studiedb&ifliscussed. We shall see

the systems both in continuous and discrete time domains

241 Continuous Time Case

A) Chua’s circuit — This is a simple electronic circuit that exhibits slaschaos theory
behaviour, and was introduced by Leon O. Chua in 1983. It ischdtder, reciprocal

and has only one nonlinear element; a 3-segment piecémaseresistor and exhibits
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a double scroll attractor [35, 36The Chua’s circuit in the normalised form can be
written as:
i=aly—x—f(x)
y=x—-y+z (2.4)
z=-By—vz,
wheref(x) is the piece-wise linear function with consta@tsandGy, given as:
f(x) = Gyx +0.5(G, — Gp)(|x + 1| — [x — 1]). (2.5)
a,f andy are the parameters of the system that governshidatic property, with a
typical values otx = 10,8 = —14.87,y = 0,G, = —1.27 andG, = 0.68. Figure 2.11

shows the circuit diagram of the Chua’s oscillator consisting of two capacitors, one

linear resistor, one inductor and one non-linear diode.

MW =

L Bt
HH -
L E| v"n

my

{a) {b)

Figure 2.10(a) Chua’s circuit with two capacitors (C1 and G), one linear resistor (R), one
inductor (L) and once non-linear diodeg)N(b) Characteristic curve of the non-linear
diode.

B) Duffing oscillator — This is an example of a periodically forced oscillatgth a
nonlinear elasticity [37]. The following is the set offédiential equation for which it
exhibits chaotic property:

561 = X3
. (2.6)
== x3 + 11cost.
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242 Discrete Time Case

A) Henon map - Is a discrete-time dynamical system [38], and is orntbefnost studied
examples of dynamical systems that exhélwhaotic behaviour. It is represented by a

set of difference equation given as:

x(n+1)=yn)+1-—ax?n)
y(n+ 1) = bx(n),

(2.7)

where the parametessandb determines the chaotic property of the map. Typically
the value ot andb are taken as 1.4 and 0.3, respectively. The map was inawdhyc
Michel Henon as a simplified model of the Poincareigecif the Lorenz model [38].

B) Henon 3D map — This is a hyperchaotic system and is given as:

x;(n+ 1) = —bx,(n)
x;(n+1) =1+ x3(n) — ax?(n)
x3(n+ 1) = x;(n) + bx,(n),

(2.8)

where a and b are the control parameters and e 1.07 and b = 0.3, the system

exhibits a hyperchaotic behaviour [39, 40].

C) Lorenzdiscrete map — This is the discrete case of the Lorenz system aga/és in

the following difference equation [41]:

x1(n+1) = x;(n)x,(n) — x3(n)
x,(n+1) =x;(n) (2.9)
x3(n+1) =x,(n)

Figure 2.11 shows the attractor for different chaotic systetiined above and also of the

Rossler system that was encountered earlier.
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y(n)

Figure 2.11: Chaotic attractors for different chaotic systém&hua’s circuit, (b) Duffing
oscillator, (c) Rossler systenand (d) Henon ap.

2.5 Synchronization in Chaotic Systems

It might seem that chaotic synchronization is impossibl@chieve in chaotic systems
since they are very sensitive to initial conditionsl atightest difference in the initial
conditions will ultimately lead to totally different trageries. But after the seminal work
done by Pecora and Carroll [42] where they showed that fiowever possible to
synchronize two chaotic systems starting from differiaittal conditions under certain

condition. They wrote;

“Chaotic systems would seem to be dynamical systaaisdefy synchronization.

Two identical autonomous chaotic systems startedeatly the same initial points
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in phase space have trajectories which quickly becancorrelated, even though
each maps out the same attractor in phase spaisethids practical impossibility

to construct, identical, chaotic, synchronized eystn laboratory

However, they showed subsequently that if two chaotic systae linked together by a
common signal, it is possible to obtain chaotic syooization regardless of the initial
conditions [42-44]. The word synchronization should nottddesn in the sense of the
periodic systems. In periodic systems, for example pemdulums are said to be
synchronized when they are in phase, i.e. when their fregudrascillation matched. But
in a chaotic system, because chaotic signals are broadbandture with no apparent
frequency (aperiodic), synchronization has to be visualizedai different way.
Synchronization in chaotic systems takes place whentrdjectories of two or more
systems converge to the same value, i.e. same tnégsctand will remain in step with
each other [42]. For example,xfandy are two chaotic systems then they are saideto b
synchronized itim,_,.(x(t) — y(t)) — 0, i.e. all states of andy are equal respectively as

they evolve in time.

To describe the synchronization method developed by Pecora and Carroll, let’s define an

autonomous-dimensional system as:

o= Fw). (2.10)

Now, the system in (2.10) is divided into two subsystéms (v, w)] with dimensionsn

andk such than = m + k.

v =gw,w),w = h(v,w), (2.11)

wherev = (uq, ..., Uy, ), g = (f1 W), o, frm (u)),w = (Uppgts s Up),
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9= frr1 @, ... f(w).
Now, one of the subsystems is used as a drive syst@mthis case. Therefore, the
response of subsystem is identical tow with v' being replaced by as:

W' = h(v,w). (2.12)

Note, thew' being driven by of drive systemw andw’ will synchronize only ifw —

w = Aw - 0 ast — «. Now we have:

E=w—w' =h(,w)—hl,w)
=D, h(v,w)é foré = Aw - 0,

(2.13)

whereD,, h is the Jacobian df with respect tav only.

The behaviour of the system (2.13) will depend on the eid@esaf the Jacobian matrix.
Since the system ia chaotic there will be complication. If systems werebeo periodic,
then the eigenvalues of the appropriate Jacobain matrixXdwaave determined the
stability. But in this case, the eigenvalues are changingubedhe variableg andw are
chaotically evolving with time. Therefore, average of th&envalues (transverse
Lyapunov exponent) at each time instant should be takeorder to determine the
Lyapunov exponent over the entire attractor vofsubsystem. This average of the
eigenvalues (transverse Lyapunov exponent) is calledahéitional Lyapunov exponent
(conditional because it depends on the chaotic variapd@}) Pecora and Carroll have
mentioned that systems will synchronize only if real paftthe Lyapunov exponents are
negative [42]. However, the method does not mention abautnitial conditions for
which the systems will achieve synchronization. But sinoth Ibhe systems have same

attractors, with time, the states of the systems wiinéually come close enough in the
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state space such that the condition put in (2.13) hold Trherefore, the conditional
Lyapunov exponent havingnegative real part is only a necessary condition ¢breaing

synchronization but not sufficient.

Let us now verify the synchronization method of Pecorm @arroll using the Lorenz

system defined in (2.1). The drive system is given by:

X =0y —ox
y=TX-Yy-XZ (2.14)
Z=xy— bz,

where the constants are taken as earlier.
The system (2.14) is decomposed suchyhsitthe coupling signal for the response system

and is equivalent to in the proof shown earlier. Therefore, now the respmystem

driven byy can be written as:

X =o0y—o0X (2.15)
Z=Xy—bz

Here we can see that the variaplaas completely been replacedybylhe error dynamics

can be written as:

éx —0 0 €x
()= 5)e) e
éZ y _b ez
The eigenvalue for the error matrix fortunately is dependent on the drive variahle

Therefore, the eigen value or the Lyapunov exponenthefsubsystem can easily be

calculated to b, = —a,4, = —b. This means both are negative at all times. Therefore,
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the error variable, & e, —» 0 ast — oo, thus achieving full synchronizing of two systems

despite the initial conditions.

Simulation is performed for (2.14) and (2.15) in Matlab. Figlige shows the variables
andXx synchronizing quite fast to the same trajectory desgtérgg fromadifferent initial
condition. Figure 2.13 depicts the log plot of the erar Variablesx and X showing

exponential convergence.

20
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Figure 2.12: Convergence of two Lorenz systems starting dlifferent initial conditions

when coupled together showing synchronization using ther&aool Carroll method.
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Figure 2.13: Log plot ofx— X showing exponential convergence of two systems.

There are many types of synchronization being explaineceifiténatures. These different

types can be grouped into the following categories.

1. Complete synchronization (CS): The trajectories of the master and the slave
systems converge to be exactly the same. This is thest@nd the simplest form
of synchronization [42, 44, 45]. This occurs in coupled idahtgstems and is also
referred as a conventional synchronization or an id@nsgnchronization. Two
continuous-time chaotic systems:

x(t) = F(x(t)) (2.17)
and
x(t) = F(2(1)) (2.18)
are said to obtain CS if:
lim [1£(6) - x(®)]| = 0 (2.19)

for any combination of initial conditiong0) andx(0).
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The nature of the coupling can have two possibilities. Whemvolution of one of
the coupled system is unaffected by the coupling mechanisem this is
unidirectional coupling or a drive-response coupling. Howevdrernwboth the
systems are connected to each other such that the emoddtiooth affects each
other, then this type of coupling is called bi-directiomaliging mechanism. CS
can be achieved by various types of schemes such the Remoodl method [42,
44, 46] as explained above, the negative feedback [47§piwadic driving [48]
the active-passive decomposition [49, 50], diffusive couplingitiyimethods [51]
and observer based methods [52-57].

. Generalized synchronization (GS): The trajectories of the slave system to the
master’s trajectories are oneto-one mapping of the functiog [45, 58, 59]. GS is
used for synchronization for completely different sysevhere the output of one
system is the function of the output of another syq&in 61]. System (2.17) and

(2.18) are said to exhibit GS if:

lim[|2(8) — ¢ (x@)ll = 0, (2.20)

where the properties of the transformatign are independent of the initial
conditionsx(0) andx(0). CS is a special case of GS where the mapping fungtion
IS unity.

. Projective synchronization: This is a special case of GS where tmene
mapping function is a simple linear functigiix) = ax [62, 63].

. Phase synchronization: The slave system phase converges to the mastenseiut t
amplitude may not be the same [64], thus can be formeda®ak coupling and is

mostly achieved in coupled non identical systems.
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5. Lag synchronization: The output of the slave system and the master sylstekm
their phase and amplitude with a presence of a time dglayhis isa special case
of CSand phase synchronization [45, 65].

6. Impulsive Synchronization: In this case, the driving signal from master system is
not sent continuously but sent as impulses determined Ixea dr time varying
interval t [66].

7. Adaptive Synchronization: Here some adaptive methods are applied fo

synchronizing the master and slave systems [67, 68].

It is seen that the synchronization of two chaotic systadentical or non identical, is
possible even it seems initially that the chaotic systdefy synchronization because of
their inherent properties. There should be a coupling mesrhamiesent between the two

systems that are being synchronized.

2.6 | mportance of Chaotic Signalsin Communication Systems

One might feel that since the signals generated fromotichaystems are irregular in
nature, therefore, these types of signals cannot haveractical applications and should
be avoided. However, the properties of the chaotic bigara in fact be used in different
field of communications engineering particularly spreactspe applications. To achieve
chaotic synchronization, there had to be some socbopling present between the two
chaotic systems. If we consider unidirectional couplingnth signal from one chaotic
oscillator (drive system) is being transmitted to anottleaotic oscillator (response
system). This is analogous to communication systemsendearrier signal is modulated
by a message signal prior to transmission. Therefoesshaotic signals can be used as the

carrier signal.
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A range of chaotic signals properties as well as itvamthges when used in

communication systems are outlined as follow.

1. Broadband spectrum — This property is desirable for applications that require
robustness against interference, jamming and low detqmtayability. Traditional
communication systems address these issues by using spreetdursp and
frequency hopping schemes, which have relatively complgchsonization
between the transmitter and the receiver. For exansplmunication schemes
utilizing frequency hopping entail re-synchronization of theeiver whenever the
carrier frequency is altered. With chaotic systems, lmymization is easy to obtain
while allowing the transmission of the broadband signal. Al nclusion of the

message does not change the properties of transmitted sign

2. Aperiodic waveforms — The chaotic signals are aperiodic in nature theretfoge
long term prediction of the trajectories can prove tanmgossible. The distance
between trajectories that start their evolution in tla¢esspace in close proximity
increases exponentially with the positive Lyapunov exporidms is an attractive
property for secure communications since periodicity tesalundesirable spectral
peaks. Also, it is more difficult to develop forecastingdels for non-periodic

dynamics than it is foa periodic case.

3. Sendtivity to initial conditions and parameters — The chaotic system is
extremely sensitive to small changes in initial cond#ioand parametric
mismatches, i.e. the trajectory will be diverge compleifeeven slightly different
values are used. This increases interest for the coateptotic hardware kefpr

secure communications.
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It is seen that the chaotic signals can be used in mgying secure communication links
where the message spectrum can be hidden in the broad Gpemtrum. Chaotic signals
also provide limited predictability, anti jamming capabilitiesl aeduced multi path effect
[69, 70] as well because of its inherent properties. Howdwere are few disadvantages of
the chaotic signals as compared to traditional commtioicaystems. Studies have shown
that chaotic communication schemes requarkEsger signal to noise ratio (SNR) to obtain
the same bit error rate (BER) performance as traitioommunication schemes therefore
are less efficient [71, 72]. Chaotic communication scleare highly sensitivity to the
noise and would normally require additional 3 dB or mofé&SNR than its traditional

counterpart to deliver the same BER [71].

The focus of this thesis is to explore the diffengmssibilities for chaotic signals to be used
in secure communications and also remove the shortcomfrgmme of the methods that

are available in the literature. Before that, let es the relationships between the chaos
and cryptography. Interestingly, the use of chaos in cryppdgrcan be traced back to the
Shannon’s classic paper on cryptography [15, 73] where he gave a tight relationship

between the two.

“Good mixing transformations are often formed by repeated products of two simple
non-commuting operations. Hopf has shown, for eXapthat pastry dough can be
mixed by such a sequence of operations. The dosidinst rolled out into a thin

slab, then folded over, then rolled, and then fdldgain, e.”

This statement showed that Shannon’s discussed about a typical route to chaos via
stretching and folding [74]Table 2.1 gives an overview of the relationship of thaotic

systems and cryptography.
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Table 2.1: Comparison between chaos and cryptography profédjes

Chaotic Property Cryptographic Property Description

. : The output has the san
Ergodicity Confusion distribution for any input
Sens_lt_lwty to initial Diffusion with a small chang| A small deviation in the inpu
conditions/ cancause a large change at {

control parameter

in the plaintext/secret key

output

Mixing property

Diffusion with a small changy
in one plain-block of thg
whole plaintext

A small deviation in the locg
area can cause a large changy
the whole space

Deterministic dynamics

Deterministic pseudo-
randomness

A deterministic process cg
cause a random-like (pseud
random) behaviour

Structure complexity Algorlthm (attack) A simple process has a ve
complexity high complexity

A small deviation in the syste

System parameters | Key parameter can cause lar

change at the output

There exist two main approaches of designing chaos-baspthsygstems: analogue and
digital. Analogue based chaotic cryptosystems are seamenanication links that are

based on the unidirectional chaotic synchronization.it&@ighaos-based cryptosystems
(also called digital chaotic ciphers), on the othaerchare designed for digital computers,
where one or more chaotic maps are implemented i fi@tmputing precision to encrypt
the plain-message in various ways, see [75-81] and nefesetherein. Digital chaotic

ciphers do not depend on the chaotic synchronization but Hheg initial conditions

and/or control parameters used as the secret key. Analogee tlaaotic cryptosystem can
be implemented on continuous-time chaotic system drsicrete time chaotic maps. This
thesis will deal with the analogue based chaotic crypstesy. In the next section of this
chapter, different methods that are available in ttezaliure for implementing analogue

based chaotic cryptosystem will be discussed.
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2.7 Survey of Chaotic Communication Schemes

It is now known that since chaotic signals are aperioditature and it is fundamentally
broadband then it can be used to hide message signalswidésfrequency spectrum.
Also, the sensitivity to initial conditions can also keploited for multiple access
techniques where different initial conditions might correspdom different codes for

distinguishing between multiple users. But an intergstapplication remains the
application of the chaos in providing security at the playdevel for the message signal to
be transmitted. Indeed, a number of techniques have beenspbf66, 75, 82-84]

Regardless of the method adopted, chaotic synchromza&iaequired for successful

message recovery.

271 Different Chaotic Communication M ethods

Chaotic Masking, Parametric Modulation, Chaotic Shift Keyi@&K) and the Inclusion
techniques are the most popular methods used for chaotic wtoations. Many other

methods have also been proposed but almost all falk wm#eor more of these categories.
2.7.1.1 Chaotic masking

This is one of the earlier methods to use chaotic sgoaltransmitting a message signal
as described in [85-90] and is illustrated in Figure 2.14. In tihisree, a message signal is
added, i.e. masked, to the output of a chaotic oscillatdneatransmitter side prior to

transmission
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Messagem(t) 1)

Chaotic Oscillato Chaotic Receiver +
x(t) = F(x(®)) Channel » 2(t) = F(2(t),s(t))
y(® = Hex@) | YO sV YO =HE©®) |

Extracted messag#i(t)

Transmitter Receiver

Figure 2.14 Chaotic communication scheme based on chaotic masking.

Upon receiving the signal at the receiver side, a chagtichronization is performed and
the estimate of the chaotic componeast subtracted from the received signal, thus
recovering the original message sigméf). The transmitter is given by the following state

space representation as given by:

x(t) = F(x(t))

(2.21)
y() = H(x(?)).

The output signal ig(t) which is the function of the transmitter stafg). This is added to

m(t) to form the transmitted signs(t) which is given by:

s(t) = y(t) + m(t). (2.22)

The common practice to choogg) is to opt for one of the componentsx(), however, in
a general casel(x(t)) can be any function of(t) as long as, at the receiver, chaotic

synchronization is possible with the choice of the dugignal. The receiver dynamic,

which is being driven bg(t), is given by the following state space representation
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x(t) = F(2(t),s(t))

(2.23)
() = H(2(®)).

Now, when the receiver synchronizes with the transmitten:
lim[|2(8) = x(O)ll = 0
Now, the estimate afi(t) can be done simply by subtracting the estimgitgd from s(t):

m(t) = s(6) — 9(6) (2.24)

The addition ofm(t) at the outpuy(t) of the transmitter can cause the degradation of the
qguality of synchronization at the receiver side since dtieing signal is not quite the
output of the transmitter bs(t). Therefore, the amplitude af(t) has to be very small as
compared to the chaotic signal, otherwise, the synchririzanay not be possible and
also the chaotic signal will no longer be able to hide message spectrum. Chaotic
masking has the advantage of simplicity and can be ingriead very easily in electronic
circuits [89]. However, the method of masking has beemwsho be insecure and various
cryptanalysis methods exist [91-96] that makes it possbéstimate the sender dynamics

and decoding of the message signal.

2.7.1.2 Chaotic parametric modulation

In the chaotic modulation technique, the message signakeis to modulate (change) one
or many chaotic system parameters of the transnstieh that its trajectories keep
changing in different chaotic attractors. This method agppsed and described in [88, 89,
97-100] and illustrated in Figure 2.15. The idea is to utilizectimaplex bifurcation space

of the chaotic system such that the change in the paggsjetiue to the modulation of
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message signal will not be known to the intruders eveiney know the structure of the

chaotic system. The output of the chaotic systeneigrinsmitted signal.

Messagem(t) 1(t)

Chaotic Oscillator l Chaotic Receiver +
i(t) = F(x (), B(m(t))) Channel Ha{£(t) = F(2(1), y(1), B(1))]
y(€) = H(x(¢)) y(t) y(t) = HZ()) -
‘ ~
B(®)
Adaptive
Controllero(.) e(t)

y
y

Parameter

A\ 4

Extracted messag#i(t)
Transmitter Receiver

Figure 2.15Chaotic communication scheme based on chaotic paramsidulation.

Now, at the receiver side, chaotic synchronization is paedralong with some adaptive
tuning of the parameter(s) such that the synchronizatiar epproached to zero thus
recovering the message signal. The transmitter is gibyemhe following state space

representation:

x(t) = F(x(t), B(m(1)))

2.25
y() = H(x(?)). (2.29)

Here, the parametét of the system is being changed witft), thus resulting in different
chaotic attractors. The output sigyél) is the function of the transmitter statg) and is

the transmitted signal.

Upon receivingy(t), the receiver dynamics is given by the following staface

representation:
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2(6) = F(2(6), (®))
9(t) = H(2(D))

e(t) =9() —y(©)
B = p(e®)).

(2.26)

whereg(.) is an adaptive function tuning the parameiér) such thai(t) approaches to
zero thus achieving synchronization and recovering the messgephn(t). Although the
method of modulation provides better security than theking method, it is still shown to

be insecure by various cryptanalysis methods [94, 95, 101-103].

2.7.1.3 Chaotic shift keying

CSK is basically a special case of the parametric tatida technique devise to transmit
digital message securely over a communication channehisnmethod, depending on
either 0 or 1 to be transmitted, outputs from two ste##iti similar chaotic attractors are
taken. These two attractors are generated by the two claatiems that have slightly
different parameters but having same structure. At trevers the chaotic system is tuned
to the parameter corresponding to either O or 1 andsnehronization will be achieved if
the correct bit is transmitted else there will be nochyonization. Thus, by simply passing
the error signal through a low pass filter and then taulding the error signal, the digital
bits could be recovered. This method was proposed and rmeghlam [104, 105] and

illustrated in Figue 2.16

In CSK, switching between multiple attractors is also ipdess see ref [106] thus
transmitting a symbol in a duration 6f. The number of bit®/, that could be transmitted

during T, is given by N, = log,M where M is the number of switching attractor.
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Therefore, if we need to transmit either ‘0’ or ‘1’ in the symbol duration for binary signal,

the required attractor is 2 as it was explained earlier.

Chaotic Oscillator (

Yo(t) = H(x(t)) Yo(t)

Chaotic Oscillator 1

ya(t)

y1(8) = H(x(1)

Transmitter

#(6) = F(x(0), 8,) F——w

(1) = F(x(6),B,) |—

\
\

<« YO

n(t)

)

Channel

Message
Signalm(t)

\ 4

Chaotic Receiver
2(6) = F(2(), (1), 5,)
y(t) = HE®)

LPF and
Thresholding

Extracted messaggi(t)

Receiver

Figure 2.16: Chaotic communication scheme based on chaotic shifigkey

T, has to be long enough to ensure that the chaotic dynamin®rges to one of the

allowed attractors otherwise synchronization will not be passablthe receiver side in

order to recover the messadg. depends on the largest negative Lyapunov exponent

determining the rate of convergence to the attractor. Thengter is given as:

x(t) = F(x(6), B(m(t)))

y() = H(x(?)).

(2.27)

If the binary signal (0, 1) is to be transmitted then, veeehM = 2, therefore two

parameters need to be defined fothence:

B(m() =

41

Bo whenm(t) =0

B; whenm(t) = 1.

(2.28)



y(t) is the output transmitted signal. At the receiver,sigl®n receiving the signal, chaotic

synchronization is performed. The receiver is given as:

2(t) = F(R(1), Bo)

(2.29)

y(t) = HE®).

The synchronization error signal will now be:
e(®) = Iy -yl (2.30)

such that,

0 when 0 transmitted
e(t) = (2.31)
otherwise when 1 transmitted.

So, from the error signal, the message could easiet@vered because of the obvious
synchronization error that will exist because of theapeatric mismatch. This type of
message recovery is the coherent detection type. Thsage could also be recovered vi
a non-coherent detection scheme where synchronizatiwot iequired. The extraction of
the bits is done by looking at the statistical attribusch as bit energy distribution,
variance, mean, etc) of the transmitted signal to whiehattractor corresponds [107]
However, these statistical properties may allow theuddrs to decode the message
without any knowledge of the transmitter dynamics thusimgak less secure than its
counterpart, the coherent detection. Although CSK methfodiigl to be robust with noise

and parametric mismatcheshis also been found to be insecure [93-95, 101, 108, 109].

2714 Chaotic inclusion method

In this method, instead of changing the chaotic paranstein the modulation, the

message signal is used to change the chaotic attractotlydiredhe phase space. In
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parameter modulations, switching was made between differgjectories in different
chaotic attractors, however, in this technique, switchingnede between different
trajectories of the same attractor. Care should howesé¢aken such that the inclusion of
the message does not take the system away from theabifurcspace and destroy the
chaotic nature of the system. At the transmitter tessage is included at one of states (or
more) of the chaotic system and the output is transitid the receiver, once
synchronization is achieved, the message is recoveredrg swverse operation. This

method is explained in [54, 86, 110-112] and depicted in Figure 2.17.

n(t)

Chaaotic Oscillator Chaotic Receiver
Messagen(t) —»{ x(t) = F(x(t), m(t)) Channel x(t) = F(2(D))
y(t) = Hx(6)) v P(t) = H(Z(1))

VL

Message
Recovery Module

v

Extracted messag#i(t)

Y

A 4

Transmitter Receiver

Figure 2.17 Chaotic communication scheme based on chaotic inclusion.

Since, the inclusion of the message as the inputeirtrdnsmitter dynamics, the message
recovery becomes unknown input problem in case of dotfteory where observers are
used. Therefore, the system further has to satisfghkervability matching condition [54,
113-115] as well as the left invertibility property [115-118] sot tihaguarantees th
possibility of recovering all states and the unknown inpegsage at the receiver frojtt)

and its derivates [55]. The transmitter is given as:

x(t) = F(x(6), m(¢))

2.32
y() = H(x(D)). (2:32)
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Here the messags(t) is included in the states of the chaotic system. Atr¢ceiver, the

receiver dynamics is given as:

x(t) = F(z(1))

(2.33)
P(t) = H(z®)).

Now by applying the inversion as shown in [54, 86], the messageasered under the

left invertibility condition.

The method based on inclusion is also shown to be vuleetalsbme attack methods [95]

and therefore unsatisfactory without further modifications

2.7.2 Some Considerations Regarding the Implementation of Chaotic Secure

Communication

Few things are worth mentioning regarding the implementatidnthe chaotic
communication system which will also be helpful in thger results chapters. One point
worth pointing out is, are the chaotic signals really 8baad? Since, the basic idea was to
hide the narrow band message spectrum within the wide bartatic signals, therefore
the chaotic signals being used as the carrier should dnavide spectrum. However, the
power spectrum of the output signal from the Lorenz osailllustrates that the spectrum
hardly exceeds beyond 4-5 Hz, certainly not a broad bandlsigrany means. Therefore,
a message signal e.g. a sine wave with a frequency of Btétzbaing masked with that
chaotic signal will be easily detected from the obsérspectrum of the masked signal. A
simple high pass filter is all one needs to capture thesage signal. Also, the power of
the message signal should be considerably lower than ther md the chaotic carrier;

otherwise once again the message signal will be cle@igle in the spectrum. This is
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illustrated in Figure 2.18 where a sine wave with amplitude 1V aindgaency 5 Hz is

masked with the output of the Lorenz oscillator.
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Figure 2.18: (a) Power spectrum of the chaotic carrier(l@nohessage extraction using ¢
high pass filter.

This example simply illustrate thatishchaotic signal generated by the Lorenz equation is
not really broadband. The chaotic signals are apetia@iid are more or less noise like
(chaotic signals are deterministic however). Even déocorrelation function of the
chaotic and noise signals are the same where thefas only equal to itself when there is
no time delay, otherwise it’s not related to itself in any time shift. The autocorrelation
function for the output of the Lorenz oscillator i©®m in Figure 2.2. The explanation of
the spectrum of chaotic signals generated by the Lorenzi@guent spanning more than
4-5 Hz is such that, the equation can be thought to be gewesignals with respect to a
normalized time. Therefore the Lorenz equation imdasmalized form will generate a very
slow time varying signal, but with no repeatability. Sah#é time scale is de-normalized,
then the chaotic signals can easily be made a brodd&ignal. Hence, it should be
understood that a chaotic oscillator generates signal inattmealized form i.ex should be
seen asix/dr such that the normalized time= t/T. T is a normalizing time factor and
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therefore, normalized angular frequency mnorm= ®T. In this thesis, we provide all results by

taking T equals to 1.

Therefore, a key point when using chaotic signals as thieerces that the frequency of
message signal should be such that it is completely bingde the spectrum of the
chaotic signal. This means when a chaotic system © fssedemonstrating any of the
above methods, the message signal should have comdydienaer frequency well within
the power spectrum of the chaotic carrier regardlesseqtiéncy being used. The system
can easily be extended to support higher frequencies by delming the chaotic carrier
signal. Therefore, all illustrations later on in thigesis will show a very low frequency
message signal being transmitted i.e. when taking na@edalimeT = 1. Therefore, with
the earlier explanation, it should be clear thatsitnot the limitation of the chaotic

communication and the examples are shown only forieatibn purposes.

273 Chaos-based Attack M ethods

Various attack methods were proposed in the literature &k lire methods of masking,
modulation, inclusion and CSK and decode the message swhaut any information
about the transmitter dynamics. The methods were mbatigd on signal processing. The
cryptanalysis of chaos based communication systems eatoie in either of the three

possibilities [14].

a) Extraction of the chaotic carrier signal from tmansmitted signal to recover the
message signal by removing the estimated carrier sigoal the transmitted
signal.

b) Direct extraction of the message signal from thegmaitted chaotic signal.
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c) Estimation of the secret parameters of the chaostesys from the transmitted

chaotic signal to completely break the system.

Now, let us talk about various well known chaos-based attatthoohe that are available in

the literature.

2731 Chaotic carrier extraction based on non-linear dynamic (NL D) forecasting

This method is one of the first proposed methods to katfae chaotic communication
methods. This method is useful in extracting messagealdigat use chaotic masking and
modulation techniques. In the NLD forecasting method, tifsall, the chaotic carrier
signal is extracted from the transmitted signal whiclmésmtremoved from the transmitted
signal to reveal the message signal. Although well known ane popular technique, this
suffers from not being able to extract the messageraialy and also may not be used in
varied modulation technique. The details of this techniqguaaa#able in these references

[91, 102, 119-121].

2.7.3.2 Power spectral analysis and filtering

As it was pointed out in the earlier section of somesweration regarding the
implementation of the chaotic communication systemnthesage spectrum may peak out
if spectral analysis of the transmitted chaotic signaflage. This is because, popular
chaotic systems like Lorenz, Duffing, Rossler, Chua’s, etc in its standard normalized form

do not produce a really broadband signal but instead produ@reawnband signal.
Consequently, the chaotic signal will not be able te bt message spectrum successfully
if higher frequency for message is chosen for implemientaf\ttackers therefore will be

able to use this information and simply high pass filtertttiesmitted signal to accurately
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extract the message signal as shown in Figure 2.18.afthisk is very powerful because
no prior knowledge of the system structure or configurasorequired. However, if the
consideration in the section 2.7.2 is fulfilled then thiack can be avoided. This technique
is the direct extraction of message signal fromttesmitted chaotic signal and details are

available in these references [93, 96, 103, 122, 123].

2.7.33 Generalized synchronization technique

The GS method that had been discussed earlier can @lssda an attack options to
chaotic communication methods, particularly the CSKhoet The GS attack method is
first proposed on [108]. In this technique, the precise knowledltige chaotic transmitter
is not known. It is also assumed that the chaotic receigsigned using GS will never
synchronize to the unknown chaotic transmitter becausee taxists some significant
difference both in the structure and parameters (whiciegarded as key in the
cryptosystem) between the transmitter and the intrudeiver. However, this technique
will be able to decode the binary message signal as goo@ desgihle receiver that has
same structure and parameters as of the transmitte€SK, the trajectory of the
transmitter is switched between two chaotic attractord,hence GS transformation is also
switched to two different ones. Now, if the differencgtvieen the GS transformation
corresponding to 0 and 1 is big enough, then the hidden messade cletected. The key
thing is to measure the synchronization error over ttimen will be possible to detect the
switching of the two attractors in the transmitter aar@avion in a square error. GS is used
for breaking other type of method as mentioned in [124]. G8ebased attack is depicted
in Figure 2.19. The CSK system is based on Lorenz systédmparameterb switched
between 4 and 4.4 when 0 or 1 is transmitted respectively aheé aitruder receiver the

parameter is set blindly at 4.6.
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Figure 2.19: GS based attack on the CSK method that uskesrdre system: (a) the
transmitted binary message, and (b) the error sigribéantruder receiver.

2.7.34 Artificial neural network (ANN) technique

Neural networks can also be used to attack the chaotic comtioni methods especially
the CSK. In CSK, switching is done between two attractorsndipg on the transmitted
binary value. Although the information is concealed in tihee domain analysis of the
signal, other analysis may not be able to hide the mesda [94], the authors had
proposed a technique to attack CSK method based on NN.distemhof 2 steps. In the
first step, the time series of the transmitted sigmaltransferred in the spectral-temporal
space by using a spectrogram that is a moving window of FRMeofime series. The
spectrogram is used of retrieving the evolution of the splectmaracteristics of the
transmitted signal thus the cryptanalysis problem igsteared in a two-dimensional
pattern classification. In the second step, the pattiagsitication problem is solved by

two single layers NNs. The 2 layers of NNs is firsireed using some sample training sets
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for optimization. Since, the CSK method clearly makeiching between two signals, the
cryptanalysis simply became a pattern classification proband can be cracked by

intruders using ANN.

2.7.35 Return map (RM) technique

RM is one of the popular methods to attack the chaotic comaaiion methods. In [93]
the RM was successfully utilized to break methods basedS#hand in [95], it is further
shown that RM could be used to attack methods based ddangnasiodulation, inclusion
and CSK. The RM looks for the maximum and the minimum nedfithe signal, analyses
them and plot against each other.x l&andX; are the-th minima and maxima for a signal
y, respectively, then RM can be obtained by plottingersusX; in a simple case. Also if
RM is to be obtained as explained in [93], then lets d&fire(X; + x)/2 andB; = (X - X).
The plot of B; with respect toA; will be the return map of the signgl Figure 2.20
illustrates the RM of the transmitted signal using CS&had that implements the Lorenz
system switching between values 4.0 and 4.4 for the paramddestinct two branches are
seen and by checking which strip the poit, B;) falls on, one can easily unmask the
current value of the binary message signal. Since anéohassign either 0-bit or 1-bit to a
strip in each segment, it was claimed in [93] that theeeoaty seven chances to make
wrong assignments, which can be easily detected by observingabeform of the

reconstructed message signal.

50



._.-I'-\.“
Sk e -
\"“H““--._.___“
a4t i
Distinet Branching for
transmitted walue 0 and |
':':iﬂ Ik "\_!I : .
)
| \
] T
-2 -1 0 1 2
A

Figure 2.20: Return map of the transmitted implementing CSK metho

2.7.4 Various Other Modified Techniques

It is seen that various chaos based communicatioeragsare available in the literature
but along with them different attack methods are alsdadta such that intruders are able
to extract the message signal without actually knowingchHatic transmitter structures,
dynamics, parameters, etc. Be it masking, modulatinciusion or CSK methods, all

methods are found to be insecure by one method or tweaRé®rs have moved forward
and proposed various modifications on these methods. Indamuljs other methods have
been proposed, see [40, 63, 66, 70, 84, 90, 125-153] and refereareds. fhhese methods
were based on concepts such as two channel transmissionficaiods of masking or

modulation or inclusion techniques. But, almost all techniqueseated the same
shortcomings as mentioned for previous methods and did nettqaik into considerations

of various attack methods, since researchers conteshtian only proposing newer
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methods. Other proposed methods based on the projecthieéirepization [63], phase
synchronization [99]GS[154] were broken as well [124, 15%esearchers also suggested
to use hyperchaos in order to improve the security of threrzmication system [156-158]
because hyperchaos increased the randomness and unpredictaliié chaotic system.
However, it was shown later that NLD forecasting can bd tsattack hyperchaos based
methods of a six dynamics [120]. Next, it was the use of telay systems. It is known
that even simple time-delay systems exhibit hyperchaotipgoty [159]. Therefore, time-
delay system was used [160] as an alternative for providiogresemethods with low
detectability since chaotic attractors of time-delay sgstecan have much higher
dimension and many more positive Lyapunov exponentstiguime-delay based method
was broken as well [161]. A method based on cryptography wapralposed which used
an additional encryption algorithm to add complexity of slystem [1], however NLD
based forecasting method was later employed to attackygesof system as shown in
[119]. The method based on cryptography has nevertheless gopel t&c improve the
security. Heterogeneous chaos based cryptosystem waspraposed which used a
combination of masking and modulation technique or CSK andulation as shown in
[162, 163] however this was shown to be insecure by method medtio [164]. Another
method based on adaptive chaotic synchronization and at@miduls proposed in [165]
but was soon broken in [103]. The list of different methadd then subsequent attack

methods has kept on growing over the last decade.

Researchers also tried to improve the existing modulagiochniques and CSK techniques
and provided security analysis by showing that methods ssidiL® or RM are not

useful. In [134], a periodic signal is combined with otaesof the transmitter to modulate
the transmitted signal so as to blur the reconstruRMdn order to frustrate the attacker.

However,it was soon broken in the work described in [135, 166, 167] by dighigg
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the phase and angular frequency of the periodic modulagnglsand then removing. A
modified scheme of the original method of [134] was progas¢135] to further improve
its security. However, in the work mentioned in [168] thisdified modulating scheme is
still shown not to be secure enough and that the modulatgmgalscan even now be
effectively removed via parameters estimation. CSK owethas also been modified such
as in [136, 169] etc, but was shown to be not quite secure easyghinted out in [109,
144]. Therefore, it shows that still proposing new techniqoesdécure communication
using chaotic signals is quite a challenging task consigletifferent attack methods and
various challenges. This thesis will therefore talk ab@utous possibilities on how the

challenges can be met and newer and secure methodsssit@gno

2.8 Summary

In this chapter, an introduction to chaos and its po#gibib be used in chaotic
communication for implementing security directly at tbleysical was presented. The
introduction of chaos was provided with its fundamental pragsertt was known that
chaotic systems are highly sensitive to initial cond#io generates fundamentally
broadband signals that are aperiodic. Although, chadjitals seem like random signal,
they have deterministic dynamics. These propertiegfiier are useful for implementing
them in secure communication. Furthermore, differenteréa chaos were discussed and
few examples were mentioned. It was also discussed thattbwegh chaotic systems
shows sensitivity to initial conditions, etc, it isllsgossible to synchronize two chaotic
systems starting from different initial conditionsden some conditions. The possibility of
chaotic synchronization further opened the door to impleinemh in analog based secure

communication. We also in brief showed how synchroninasgpossible mathematically
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and talked about various types of synchronization and various wé obtaining
synchronization. Different methods available in the ditere for implementing chaotic
communication was then discussed, methods such as chaaiang, modulation, CSK
and inclusion methods were discussed in detail since thedels form the foundation of
chaotic communication and are very important to understawagmtechniques. It was also
presented that these methods were not very secure a@ndfldifferent attack methods
existed such as NLD based forecasting, power spectral andid, ANN, etc. Different
variations and techniques were also discussed and it wakideadhat there still exists
the requirement to come up with a better technique suclsébate communication can be
realized where the existing attack methods will not beulisBiow, in the chapters to

follow in this thesis, newer modified methods will be sed and explained.
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Chapter 3 Observer Based Synchronization:

Application to Secure Communication

3.1 | ntr oductions

In the previous chapter, we had talked about chaotic synehatmm and we saw that
different form of synchronization exist such as CS, GS, Ehe use of chaotic systems in
communication systems will mean that it is necessatsattsmit a signal from one system
to another, thus forming a unidirectional coupling, whickssential for synchronization.
The attention of this chapter will be limited to CS on uertional coupled system and
will discuss an idea of observers for achieving CS. Fimmne on wards the term

synchronization for CS will be used throughout the chaptessiskated explicitly.

Many methods have been proposed for achieving synchronizat@mnas Pecora & Caroll
method [42, 43], an active-passive decomposition [170], annBeatk Kalman filtering
approach [171, 172], an observer based approach [52, 53, 57, 178nettgst all these
methods, the observer based synchronization is the pnostising method which is the
focus of this chapter. Before going into details of olEebased synchronization, we start

by recalling some basic concepts on observer designytheor

3.2 Some Recalls on Observers

Roughly speaking an observer is basically a software sehabpérmits to provide an
estimation of the unmeasured states variables of @&mydn more precise terms, an

observer is a dynamical system that uses the availaddgsurements (inputs and outputs)
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to provide an estimation of the state variables thahateavailable to be measured. The

basic block diagram of the observer is shown in Figure 3.1.

u(t) Input Output  ¥(t)
System
x(t)
State
estimate
Observer —A.‘P
x(t)

Figure 3.1: Block diagram of an observer.

321 M athematical Description of Observers

Consider the general nonlinear system described by

Y- b0 (3.1)

{)’(: f (x,u)
where xeR", yeR?, ueR™, f:R"xR" > R" and h:R" — R" are assumed to be
smooth functions.

The observation problem is addressed wipean (we have less sensors than the number

of state variables). This means that we do not know ttialinondition of part of the state

variables. The observer is generally described as:

{2= a(zu,y) (3.2

x=1(2)
where ze R" is the state of the observer afdis the estimate of the state such that

lim|x— %] = 0.

t—o0o

The above is a general definition of observer. Irncfice, it is not easy to design an

observer for a general system. Also, there is n@eByatic method to design the function
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g andl for any given dynamical system given by (3.1).
For this reason, we generally impose a specific structu@fobserver as follows:
{ﬁ f(5%0) +(y—h() 63)
Yobs = X
Such a structure is interesting in the sense thaf(i) — h(x(t)) =0 after some time, saty,
then the two systems (3.1) and (3.2) become identicalkénd- x(t) for all t >t,; due to

the unicity of solution of the above system.

The observer therefore mainly amounts to the desigheofunction - known as the
gain of the observer - such that the estimation efirag_, |x— X| = 0.

Note that the observation problem is basically an inddaddition problem because if we
know x(0) then there is no need for an observer. The integrafitimee above model (3.1)
would suffice to find all state variables provided the modgpesfect and there is no
measurement noise.

Various types of observers exists in the literatures suckthasclassical Luenberger
observer also called proportional observer as will xglagned later, the sliding-mode
observer [55], the proportional-integral (PIl) obseijiét4], adaptive observer [148, 175]

the neural observer [176], etc.

3.2.2 Observability

In order to design an observer for a system, we needalysa the observability of the
system. Observability is the property of a system that determimlesther an observer
design is possible or not.

Definition 1. The system (3.2) is said to be obadde on a time interval [0, T] if for any

two distinct initial conditionsx,, X, there is an inputi(t) defined on[0,T] such that the

57



output y(X,,u,t), ¥(X,,u,t) corresponding to these initial conditions when itigut u(t)

is applied to the system, are also distinct.

Roughly speaking for two different initial conditions we sldoobtain two different
outputs. Note the above definition suggest that the odisdity of a system depends on
the inputs applied to the system.

For linear systems, however, the above definition isfouall inputs and in particular for
the inputu = 0. Because of this special property, the observabilityneili systems of the
form

{)‘(=AX+Bu

J_ox (3.4)

where xeR", yeR", ueR™ amounts to checking whether its corresponding
observability matrix
C
CA
o,=| . (3.5)
CA™

has full rank or not. This is the so-called observabilibnkreondition. Note also that for

linear system®, does not depend an.

3.2.3 Nonlinear Observer Design

As mentioned above the observability of nonlinear systéepends on the inputs. This
means that the same nonlinear system can be observabtarfe set of inputs while being
unobservable for another set of inputs. The sets of inpatgender the nonlinear system
unobservable are calleihgular inputsThe sets of inputs that render the nonlinear system

observable are callathiversal inputs
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The singular inputs, in fact, constitute the main bottlerfeckonlinear observer design

Such a situation does not occur in the linear case aswveeseen previously.

Let us consider an example in order to clarify the issitbe singular inputs. In effect,

consider the following 2imensional system:

d
d_)f[l = X, + UX,
% 4 (3.6)
dt
y=X.

For u(t) =-1, this system is not observable. Therefoi@=-1is a singular input for the

above systems. Every input)=1 are universal.
As a matter of fact, we cannot speak of observability irnadsense as in the linear case.
We can only design observers for classes of nonlineaeragstthat is, we have to

characterise those classes of nonlinear systems fehwil@ can design an observer.

In particular, we can ask the following questiasi:.there a class of nonlinear systems
which is observable for all inputsPhe answer to this question is yes and the class of such
systems is called uniformly observable systems. For thss @f system, the theory of
observer design is well established. For more detailfl3&el179].

One important subclass of uniformly observable systemshase that have linearisable

error dynamics and will be discussed next.

3.24 System with Linearisable Error Dynamics

One important subclass of nonlinear systems of the for@) @e those that can be

transformed via a change of coordinates into the followurtgui injection form as:
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{)‘(=AX+Bf(y) 3.7)

y=Cx
where the pair of matrices (A,C) is rank observable. Ssydtems are also uniformly
observable; that they are observable for all inputs.
A fairly large class of chaotic systems are transésle into the above form as we shall
see in the subsequent chapters.

An observer for the above system (3.8) can be defined as:

%= AR+ Bf (y) + K(y—CX). (3.8)
Settinge = x — X, then the error dynamics is given as

é=(A-KC)e= Ae. (3.9)
The observer gaik can be chosen such that all the eigenvalues of ma&trHxXC) have
negative real part. Then, the error will converge expaaignto zero. Hence, the stake

will converge exponentially to the estimated stategardless of the initial conditiong0)

andx(0).

3.25 Proportional Integral (Pl) Observers

Note that in the above observer (3.9) the correctian €y — CX) is proportional to the
output observation error(y—CX)). For this reason, the above observer is called a
‘proportional observer’. However, nothing prevents one to add an additional term to the

observer that is proportional to the integral of the aubjpgervation error; that is,

%= A%+ BF (y) + K (y—C&) + K, [ (y—CRdt (3.10)

In such a case the observer is called a proportiongraitebserver; in short a Pl observer.

60



It is shown in [174PIl-observer shows more resilience to noise. Also,singpler in terms
of its design compared to sliding-mode observers whichlss robust with respect to
measurement noise.

For these reasons, in this work, we are going to use $8radr to propose a new chaos

based communication scheme. This is discussed in dethé inext section.

3.3 Pl-observer Based Communication System

In this section, a new scheme for chaos based comntionicaill be proposed where a
combinational technique of chaotic masking and inclusiothoteis used as shown in
Figure 3.2. As was discussed in previous chapters, the chaatldng method is insecure
while the inclusion method brings left invertibility problem nmakimessage extraction
difficult. Therefore, this method facilitates the nags recovery process and also increases
the security. The performance of P and Pl observerstadied for the proposed method
and the performance of both observers on successévering the message in presence
of channel noise is studied. It will be shown that th@Bderver indeed provides improved
performance and flexibility compared to other observidris chapter is focussed on
showing that Pl observers are best suited for usirgpmmunication systems since they
show high resistant to system noise. The security arasysiot done for the combinational
scheme and is left for new and better schemes in tifrechapters.

We assume that the chaotic oscillator at the tratesnidt described by:

x=Ax+Bf(y) + h(t) (3.11)
y = Cx,

whereh is the forcing function, andl is a continuous nonlinear function satisfying the

following Lipschitz condition:
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Ilf ) — FOIl < xlly =yl (3.12)
where|| - || is the Euclidean norm, and > 0 is the Lipschitz constant. The matrices A, B

and Care of the following form:

o 1 - 0 0
A= R I
1) 0

N - a ° (3.13)

C= (1 01><n—1)-
Note that chaotic systems not defined by the above equai@nsimply be defined by

transformation/change of coordinates

331 Proposed Combinational Scheme

The proposed scheme is shown in Figure 3.2. Here we propogediothe message in the
oscillator as well as adding the message to the outputeobgcillator. The injecting of

message in the derivate of the state changes thetattthectly at the phase space and
therefore will increase the security while the addinghaf message in the output will

facilitate the message recovery process.

Transmitter ln(t) v
m(t) [ Chaotic | y(t) —~V:(t) : Chaotic | 7(t) | Messagg
"| Oscillator Channel _(t)' Receive] | Recover
g Im@
» Amplifier
Receiver

Figure 3.2: A block diagram of the combinational schemeamphting chaotic masking
and inclusion method.
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The system is described as:

x = Ax + Bf (y,) + h(t) + Bm(t)
y: = Cx + dom(t).

(3.14)

Note, the message sigmaft) is included at the derivative of the state variatland at the

outputy,. The received signal with the noig&) is given by:

y =y +n(). (3.15)

3.3.2 Problem with Proportional Observer

A classical proportional observer designed for synchronizavith system (3.14) can be

written as:
X = A% + Bf (¥ K, (7 — C%
X X +Bf(¥) +h() +K,(y — Cx) (3.16)
x=(A-K,C)%+Bf(H +h() +K,¥,

whereK, = (k1 k, -+ k;)Tis the gain chosen such ti{@ — K, C) is stable.

Now lete = x — X be the error between real and estimated states. roem,(3.14) and

(3.16) the error dynamics is given by:

¢ =Ae +B(f(v) — f() +Bm(t) K, (7 — C2)
= Ae + B(f(3,) — f(3) + Bm(t) — K, (Cx + dgm(t) + n(t) — cz) (3:17)
=(A-K,C)e+B(f(») — f(3) + (B — K, dy)m(t) — K, n(t).
In (3.17), it can be seen that one needs to arbitranipse the value df, in order to
make the matriXA — K, C) stable, but since higher the valuekgfthe effect of noise(t)
and m(t) in error dynamics will also be amplified because of tiémens K, n(t) and
B — K, d, in the error dynamics. We need to be able to ch&gse 0 (or at least very

small) for removing the influence of noise on the edgnamics andB — K,,d, = 0 for
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eliminating the influence of the message. This means highee dld, will now affect
the chaotic property of transmitter oscillator. THere, the value ofK,, has to be chosen
judiciously such that the matrgA — K,,C) is stable while at the same time reducing the
influence of message and noise. Hence, it is too mucstreamt on the sole proportional
gain and therefore the P-observer is not the suitalderver to be implemented in this
scenario. The following section will show that thedPserver provides a better solution in

terms of much reduced influence of the message signalaasel on the error dynamics.

3.3.3 Proportional-Integral Observer

Figure 3.3 depicts a channel and receiver block diagram oficltashmunication system
using the Pl-observer. Note that the integrator is lacatehe input of the receiver, thus
eliminating the need for sending two signals from the trétbsr. The transmitter is as

shown in Figure 3.2.

RIC o
ye (1) y(t) f _| Chaotic |¥ (® Message
——+ Channel /= y;(¢) | Receiver "|Recovery
¥ lmr(t)

Figure 3.3A block diagram for Pl-observer based receiver.

To design a Pl-observer, we sgt= fot y(t)dt = y;. In other wordsx, =y = Cx +

dom(t) +n(t). We are using instead ofy; because the integrator is placed at the receiver
side, i.e. once the transmitted signal is corruptedhbynbise. We now have the following

expressions:
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X9 = Cx + dym(t) + n(t)

% = Ax + Bf(,) + h(¢) + Bm(t) (3.18)
y: = Cx + dym(t)
y = Cx + dym(t) + n(t).
An augmented system can be written for (3.18) as follows:
Xaug = AXaug +Bf (1) + h(t) + C§ (dom(t) +n (1)) + Bm(t)
= (3.19)

Ve = Cxaug + dOm(t)

Vi = Coxaug
3_7 = Cxaug + dOm(t) + T](t),

where

Now a Pl-observer for (3.19) can be designed as:

Xaug = By + Bf ) + h(t) + Li(y,—CoRpny ) + K, (¥ = CRpyy ), (3.20)
Wherer =(ko K)T=(ko ki - k)" andL; = LD)"=(Uy 4 - )7

are the proportional and integral gains, respectively.

By defining the error signad,,; = x4,y — Xquy, from (3.19) and (3.20) and following

few calculation stepshe error dynamics is defined as:

éaug = (K - r'ICO - K;o(:)eaug + E(f(yt) - f(:)_/)) (3_21)
+ C (dom(®) + n(®)) + Bm(t) — K,dom(t) — K,n(t)
= Fequg +Bg(ye, 7) + (C5 — Kp)(dom(t) +n(t)) + Bm(2),

whereF = (A — L,C, — K,C) andg(y,, ¥ = (f&) — F()).
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Ideally, one could choos€] — Kp) = 0, to keep the effect of noise and message on the
error dynamics to a minimum. However, by settilg= Cg, the noise term could be
eliminated but at the cost of the overall system (3.18pinéty unobservable, thus
making it unfeasible to choosg to stabilize the overall augmented system. Consequently,

we have chosen the followings conditions:

kO =1-—¢€

k1 = kz = e = kn—l =0 (322)
1

kn =Yy,

Equation (3.21) can be re-written using the special gairs 22) as:

€aug = Fequg + Bg(, ¥) + doe Cgm(t) + (e Cg + 1/d0 B)n(t). (3.23)

Since F is stable, there exist P and Q, symmetric pesi@finite (SPD) matrices, such

that:
FTP + PF = —Q (3.24)

Let V(eqy) = egug Pe,,, be the candidate Lyapunov function. Then using (3.(3324)

and (3.12), we get the followings:
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V =2el,,Péu,
= 2€g,4 PFeqyy + 2eq,, PBg(y;, ) + 2edgeq,, P Com(t)
T, 1 R
+ 2eq, P(e Cp + /do B)n(t)

< —equg Qequy + 2||Peaug g, DI+ 2€d0||P€aug |Im(®)|

1 \
+2||Peay || e + 2| @) 8.25,
0
< _egug Qeaug + 2K”Peaug |||Tl(t)| + 26d0||Peaug ”Im(t)l
1
+2||Peay || e + 2| @)
0
1
<~y Qeuy + 2lPews | (< + ¢ + ) n®)
+ 2||Peaug ||6d0|m(t)|.
We know,
Ain @llell? = =€ Qe = ey (e’
(3.26)

—Amin (P)llell? = —eTPe = =2 (P)llell?,

wherel,,;, andi,,, are minimum and maximum eigen values for the respectivacesmtr

Now from (3.26),

_eTQe < _}\min (Q)”ellz (327)

eTPe

= _}\min (Q) A (P)

—eTQe < —Age"Pe = —1,V,
wherel, is the ratio between minimum eigen value of Q and maximgenesalue of P.

Also, we can write,

llell* < (3.28)

}\min (P)
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W
vV xmin (P)

llell <

Therefore, from (3.27) and (3.28)rovided thatm(t) andn(t) are bounded (3.25) can

now be written as:

The value)r; depends on the minimum eigen value of P aaddd,,.

Hence, by choosing andd, judiciously we can mak#, < A,, in which cas& < 0, thus

proving synchronization is achieved.

Here,L,, € andd,, are chosein such a way to ensure that the matriis Stable and the
effect of noise and message as minimum as possible. Aswatue ofd, can be made
small enough such that masking of message does not dfeecthaotic property of the
transmitter oscillator. By doing the Pl-observer scheadds degree of freedom and
flexibility. The integral and proportional gains can be cele¢ to achieve rapid

synchronization and reduced noise impact, respectively.

Having achieved the desired convergence, the message signdlecagtrieved by

calculating the following difference equation:

§(©) = 9(0) = y(©) = (O + dom (D) + 1(©) (3.30)
= () +n(0).
With lim,_,., |y(t) — y(t)| - 0, the recovered message signal is given by:

m,(t) = %:) + n(t). (3.31)

The noise(t) term can simply be removed using a low pass filter.
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The proposed method will be implemented using the Duffing esmilland P and PI-
observer will be designed. The simulation will be carriedumimng Matlab/Simulink and

the performance for both the observers will be obskavel compared.

3.4 | mplementation of PIO using Duffing Oscillator

The Duffing oscillator is defined as:

5(1 = X7
(3.32)

Xy = _Zl — x3 + 11cosip).

We assume that state variakleis measured, i.e. the output equation is x; so that the

system can be written in a matrix form as:

x =Ax + Bf(y) + h(t)
y = Cx,

(3.33

where

A= (8 (1)),B= (2),(:: (1 0)

y 0
fo) = 4 v’ h(0) = (11cosi?€t))'

Then this system is in the form described by (3.11). Nowptio@osed combinational
system can be expressed as:

J'Cl=x2

Xy = —% —y2 + 11cost + m(t) (3.34,

ye = x1 +dom(t).

Note thatm(t) is present in the derivative of the second state harig and the output of

the systeny,. This combinational system is of the form (3.14)
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34.1 P-Observer Based Scheme

As described earlier in the paper, the classical propaitioloserver for system (3.34) is

given by:

=D
=D

2+ k(Y — %)

1=

(3.35)

<l

, = —>=—y3+11cost + k,(y — %;)

=D
N

where(k; k)T = K, is the proportional gain.

p

3411 Simulation results

A simulation of the above observer (3.35) was carriedusirtg Matlab/Simulink. The
poles of the observer were setpas p, = 0.1 so thak,; = 0.2 andk, = 0.01. The values
of gain have been chosen to be small in order to reduce fdwt ef message and the
channel noise. Thereford, = —k;' = —100. In addition, the initial conditions for the
oscillator at the transmitter and receiver are chosdre arbitrarily different. The message

signalm(t), channel and its specification used in simulation arergin Table 3.1.

Figure 3.4depicts the transmitted signal with a non-chaotic profilds partly is due to
the requirement of having to choose very a high value dprwhere the oscillator is
operating in the normal periodic mode. FigureiBustrates the time waveforms fay (t)
and x;(t), whereas the plot of statg (t) againstx;(t) is shown inFigure 3.6. Both
figures illustrate that the synchronization has not baehieved satisfactorily. The
recovered message (in dotted lines) signal togethemugi)hare shown in Figure 3.7. Both
the synchronization problem and distortedt) can be explained b&B — Kpdo)m(t) and
K,n(t) terms in (3.17), whiclare non-zero with real values. The best scenario Wil
make (B — Kpdo)m(t) = 0, however by doing so the eigenvalue of matrix{A<,C)
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cannot be chosen arbitrarily. This effect can be minimizechbysing a high value fod,

but at the cost of possible loss of chaotic behaviour efoitillator (in fact, the chaotic
property is already lost for current value &f). To regain or reinstate the chaotic
behaviour the amplitude afi(t) should be reduced significantly by more than 100 times.
This constraint on message to be transmitted as welyrashronization susceptibilito

the inherent channel noise, make the use of P-obdsaged receiver less attractive.

Table 3.1: Parameters used in the simulation.

Parameters Values
Message signa(t) sint
Channel Additive white Gaussian

Signalto-noise ratio | 25 dB

Filter type Butterworth LPF
Filter order 8
Filter cut-off 3rad/sec

15

-10 1

-15 ‘ |
0 S 10 15 20

Time (s)

Figure 3.4: Transmitted chaotic sigiyalising the P-observer.
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Figure 3.5: Time waveforms af(t) and X, (t) .
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Figure 3.6: Plot of the state xf(t) versusx, (t) using the P-observer.
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Figure 3.7: Transmitted and recovered message signdlsefé*-observer based system.

34.2 Pl-Observer Based Scheme

Following the Pl-observer methodology described abovesate, = fot y(t)ydt =y;. In
other wordsyx, =y = x; + dym(t) + n(t). We then have the following augmented

system using the Duffing oscillator:

Xo = x1 + dom(t) +n(t)

56'1 =Xy
Xy = —% — y3 + 11cost + m(t) (3.36,
ye = x1 +dom(t)
Yi = Xo-
The Pl-observer for the above system is given by:
Xo =21+ ko(y — 21) + Lo (xp — %p) (3.37
X =2+ k(G — %)+ 15 (xg — %)
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<

X, = —Z—yg + 11cost + k(¥ — %1) + L (xg — %),

where (ko k; k;)" =K, is the proportional gain, andl, I; )" =L, is the

integral gain of Pl-observer.

3421 Simulation results

With the parameters in Table 3.1 and by seledtifngs ¢ = 0.01 so thatk, = 0.99 and
k, =100, and all poles are to 0.1 so thgt=0.3,l; = —-99.7 and [, = —29.99 and
equations (3.36) and (3.37) the Pl-observer based system waatetmuking Matlab.
Although exact comparison between the P and Pl obsasveos possible since the former
and the latter are of the order 2 and 3, respectively. HMemapproximate comparison can
be made provided the poles are fixed at the same locatere. tdo the initial conditions
are chosen to be arbitrarily different for transmithed receiver oscillators. Figure 3.8
shows the transmitted chaotic signal for the Pl-obsellustrating that the chaotic regime
is being maintained. Figure 3.9 depicts the plat,@t) andx;(t) and Figure 3.10 shows
theplot of x, (t) againstt; (). The 48 line shown in Figure 3.10 illustrates almost petrfec
synchronization that has been achieved compared to Figur@i&&G.ecovered message
signal is very similar to the transmitted message a#/sho Figure 3.11. The improved
performance offered by the Pl-observer compared toPHudserver is because of the
proportional and integral gains being selected independeimththe P-observer, the
constraint imposed on the proportional gain affectsstability of the error dynamics as
well the message/noise impact on the error dynamics. ©mttier hand, with the PI-
observer, the integrator gain improves the stability of ¢én@r dynamics while the

proportional gain reduces the effect of noise and messgal on the error dynamics.
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Figure 3.8: Transmitted chaotic sigiyausing the Pl-observer.
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Figure 3.9: Plot of states(t) and X, (t) versus the time.
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Figure 3.10: Plot of stata(t) versusx, (t) using the Pl-observer.

15

o
6]

—
L

Amplitude (V)

o
6]
T

|

_l . 5 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45

Time (s)

Figure 3.11: Message recovery using the Pl-observer.
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3.5 Summary

The P-observer and Pl-observer based chaotic synchtionizsas been studied and the
performance of both observers for the proposed conbiredtchaotic communication

scheme is analysed. It was found that for the proposedisciid-observer showed greater
robustness in synchronization in terms of noise immumihd therefore message
extraction. This was mainly because the degree of freed@nadded in the system due to
the integrator in the Pl-observer. The integral gaiRliobserver was used to stabilize the
error dynamics for better synchronization while the propoal gain was used to reduce
the effect of noise/message in the synchronizatioropeence. In P-observer, however,
there was only proportional gain available imposing too muaftstcaint on it. The

performance of the proposed method using P and Pl-obsem®rsimulated taking

AWGN channel having SNR equal to 25 dB wusing Matlab/Simulink.
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Chapter 4 Cascaded Chaotic Masking for Secure

Communication

4.1 | ntr oductions

As pointed out in the earlier chapters, chaotic systeege potential to be used in
implementing secure communication and significant workleesn done in realizing this
by researchers. However, there are still lots of sbamings present, particularly in the
methods related to security. As mentioned earlier, teris different attack methods to
break the chaotic communication model and schemesefbinerthere is still a requirement
and necessity to come up with a scheme that can betiptifesecure by eliminating

shortcomings of earlier methods such as chaotic maskohgnadulation schemes.

In this and subsequent chapters, few possibilities of enhanbmgsdcurity of the
previously proposed chaotic communication methods will b@gs®ed and discussed. It
will be shown that by employing some techniques, the existirigans could be extended
and modified so as to be potentially secure. This chapt@opes one method based on
cascaded chaotic masking in order to try to remove theexatility of the masking

method by increasing the complexities.

4.2 Cascaded Chaotic Masking

It is now generally agreed that the traditional chaotic mgstechnique is not a secure
method. To brealt, researchers had used methods where they were able ¢astoasmd
predict the carrier behaviour. By subtracting the ptedicvalues of the carrier, the

spectrum of the hidden signal can be known, thus makingviediaeasy to reconstruct the
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message signal by some signal processing operations [9[g1]inhowever, it was also
pointed out that it is possible to increase the secaapabilities if two chaotic signals can
be added together at roughly equal power to create a cagned sif sufficient complexity
such it is not possible to use simple phase geometdotthe forecasting. Hence, to
increase the security of the communication link, a newhatkis proposed in this section
where a cascaded chaotic masking method is implementstioas in Figure 4.1A
cascaded chaotic system has been proposed with imprauadt\ysby adding together two

chaotic signals of almost equal power.

m
Chaotic Y1 [Recovery| my
Chaotic y1 Receiver Al | Module
Oscillator A Y 'y
A ~
Ym
Recovery
Ym » Module B
A
V2
. |Chaotic \7) ‘/" Vi - V't . Chao_uc
”|Oscillator B r\-iy » Channel » Receiver B

Figure 4.1: Block diagram of chaotic communication using chestatructure.

In this technique, the message sign#t) is added to the output(t) of the chaotic
oscillator A to produce a chaotic outpyt (t). The chaotic output is added to the output
v, (t) of chaotic oscillator B to produce an outpuytt). It should be noted that, here a
chaotic signal is modulated with another chaotic sigimal only one of them contains the
information about the message signal. This will hencectffely increase the security of
the communication link and make it difficult for intrudeéospredict the carrier behaviour

and therefore find the spectrum of the hidden message .Sigmahe receiver side, again a
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cascaded model is implemented. The chaotic receives Bsed to estimaté,(t) and

hence to predicg,, (t). The signap,, (t) will now is used to drive a chaotic receiver A and
estimatey; (t). Now, the prediction ofn,(t) can simply be carried out by the inverse
operation. The synchronization between the transmitiértla receiver oscillators can be

achieved by using any existing methods available in the literpd@ret3, 52-54]

4.2.1 Cascaded Chaotic Masking Scheme
The transmitter system is described as a class of clsstem given as:

x=F(y)x+g(y,t)

y=Cx (4.1)

where xe R",y e R. Here the matrix F is a function of the outpyt C is a constant
matrix of appropriate dimension ang(y,t) is a smooth function ofy or the driving
signal. We also assume that the entrie§(@J are smooth and bounded for glke R. In
addition, the pair(F(y),C) is rank observable or detectable for gl R. We will now

define the proposed system. Here the cascaded method wilrzptwo chaotic oscillator

systems A and B as defined in (4.1). The oscillator Alvaldescribed as:

. Xy = FA(yl)XA + gl(ylit)
(A): (4.2)
ym:CAXA+m:yl+m’ )

where x, € R",y, e R. y, is the output of the oscillator A aneh is the message to be

transmitted. Hencey,, is the output due to first step of masking. The oscillatavilBbe

described as:
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(B):{XB =R (Y2)%g +92(Y2s1) (4.3)

Yi :CBXB Y=Yt Ym
where x; € R",y, e Ry, is the output of the oscillator B. Hencg,, is the output due

to second step of masking and is the signal that will bermigired through the channel.

We have used differenk,, F, and C,, C, to show that two different types of chaotic

oscillator can be used for this design.

For the receivers, one has to design cascaded chaotliatoss in order to synchronize
with (B) and (A) respectively. Simple proportional olvees will be defined for designing
these cascaded receivers although simple drive respomssytyphronization as explained
in chapter 2 can also be achieved. The key here is @ #m® potential of cascaded
masking approach rather than dwelling too much on the symzhtmn method to be

used.

Let us first design an observer B that can synchromiie the oscillator B given as (4.3)

first so that we can estimatg, . This value can then be used, as will be shown later, to

retrieve signaly,,,.

%e = Fs (V2)%g + K, (Y =CgXg) + 95 (Va01), (4.4)

where K, is the gain matrix of appropriate dimension. Now, if werdegrror asg, =

Xg — X5, then the error dynamics can again be written as:
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& = FB(yZ)eB + KBp(yt _CB)A(B) (4.5)
= (FB(yZ)_ KBpCB)eA - KBpm'

We can see the presence of message signal on the enaomidg. For the influence of
message on error dynamics, which is affecting the conveegehthe error to zero, the

value of K, m should be zero or at least should be very smalielthooseK ,, as zero,

then it implies an observer with zero gains and in effg€t,) should be stable on its own
and hence we cannot improve the convergence rate obsieever. Therefore, the value of

gain should be chosen sensibly such that the méﬁg'(w)—KBpCB) is stable while at the

same time reducing the influence of masking signal. Aftersgmchronization is achieved

and y,, estimated, observer A can be defined to synchronizeosttiiator A as:

Ka = Fu(¥)Xa + K py (9 = Ca%a) + 91 (Y1), (4.6)

where K, is the gain matrix of appropriate dimension. Now, if wéndeerror as,e, =

X, —X,, then the error dynamics can again be written as:

é, =F.(y)e,+ K,Ap (¥, —C,X,)

= (Fu(y) K 5 Cp)en — K om (4.7)

We have assumed (4.7) that §,, = y,,.

Finally when the convergence is achieved by both observe} qAd (4.4), the driving

signal y,, for (4.6) and messag® is retrieved by performing the following difference:

YO =y, O-y,O=y,O-Y, O+ ¥, =S ). (4.8)
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Since, lim ly,® -9, 1) — 0, we have

Ym(t) = S5 (1) = Y (1) (4.9)

Once, ¥,,(t) is retrieved from (4.4) the message signal can be piechas:

m ) =9, O -y )=y O-Y O+mt) =2, (4.10)

Since, ¥.,(t) = y,,(t) and tIim ‘yl -9, (t)‘ — 0, we now have

m, (t) = &g (t) = m(t). (4.11)

Hence, it is shown that the retrieved message signahmstically convergs to the

transmitted message signal even when a cascaded apprtaanis

4.3 | mplementation of the Cascaded Chactic M asking

Now, the cascaded masking scheme proposed in the eartiensedl be verified using

Lorenz system. The Lorenz system given in (4.12) theform (4.1),

X, =—0X +0X,
X, = =20%X; + X — X, (4.12)
X3 = 5% X, —bXg,

where

-0 O 0
F(y)=| r -1 -20y|,g(y,t)=0andC=@1 0 O0).
0O 5y -b
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We will use the Lorenz system (4.12) for both transmutillators (4.2) and (4.3) i.e.

Fa = s and G = G, hence the cascaded masked system using Lorenz systebe can

written as:
Xy = —0Xp +0X,,
XAZ = _ZomeA3 FIYm = Xa2 (4 13)
XAS = _5meA2 - bXAs
Y = X +M,
and
XBl = —O0Xg + O0Xp,
XBZ = —20ytx33 Iy, — Xg, (4 14)

XBB = _5thBZ - bXBS

yt = XBl + ym'

Similarly, the observers for the cascaded masked sygtelB)(and (4.14) can be written

as.
Xp1 = _0_)?31 + O_)’ZBZ +K Bl(yt - )’ZBl)
Xz = =20y, Xgz + 1Y, — X, + Ky (¥, — Xgy) (4.15)
Xg3 = _5yt)’ZBZ - b)A(Bs +K BB(yt - )A(Bl)!

and

K1 = —0% g + 0%, + K g (90— R0
)‘A(AZ = _Zoym)’ZAS + rym - )A(Az +K A2(9m - )’ZAl) (4'16)

Raz = —5Y R, bR, + K (9, —&,).
Note that the observer (4.15) and (4.16) are driven by fipealsi y, and ¥,

respectively.
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4.4 Simulation Results

The simulation of the proposed secure communicatiorisy& presented in this section.
The value of o,r,b are taken as 16, 45.6 and 4 respectively for the Loretensy3 he
values of the gain are chosen to be zero becaussasssied earlier this would reduce the
influence of message on the error dynamics and alsb Whis choice of gains,
synchronization was still possible. Initial conditions the oscillators were chosen to be
arbitrarily different. The message signal to be trarishils taken asm(t) = 0.1sin(2xt).

Figure 4.2 shows the output after first level of maskingctiias the message to be
transmitted hidden in it. This output, is further used to mask the output of the oscillator
(4.14) Figure 4.3 depicts the final outipyy which has been obtained after second level of
masking, which is the transmitted signal. The sigpabppears to be chaotic and
successfully hides the message in it. In fact, the autdation function of the signat, as
shown in Figure 4.4, illustrates the function to have opilgesat time shift equals to zero.
Now at the receiver side, synchronization is obtained vi&zazied receivers. First the
signalyn, is estimated. Figure 4.5 demostrates the synchronization while estimating
the signaly, and it can easily be seen that after some time, tobe isrrapidly converging

to zero. Once, is estimated, receiver A will also synchronize witmsmaitter A and then
decrypts the message back. Figure 4.6 depicts the performatice cascaded receivers
for decrypting the message signal where dashed line resebentransmitted message

signal.
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Figure 4.2: Outpuyn, after first level of masking from oscillator (4.13).

Output from second oscillator, y
o
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Figure 4.3: Outpuy; after second level of masking from oscillator (4.14).
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Synchronization error by receiver B
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Figure 4.4: Autocorrelation function of the transmitted digna
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Figure 4.6: Transmitted and received message signal
4.5 Summary

In this chapter, a new method by implementing cascadedichemismitter and receivers
was proposed to increase the security of the traditiovadking. Indeed, since the two
roughly equal powered chaotic signals were added together, ithe&dd complexities to
the attack methods. However, it is still not convincing tha&t mhethod proposed as
cascaded structured oscillators will indeed make the commumcatheme secure enough
for intruders. The fact that the message signal ischttdehe sum of two chaotic signals of
equal power means that rather than using 3-dimensionalictsstem for modulation
purposes, an equivalent higher dimensional, 6 in this, chs®tic system has been used
for modulation of the message. This will indeed make thk t¢d extracting the message

harder but it is uncertain that this method will be higbécure enough for motivated
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intruders considering the fact that systems implemertygerchaotic systems or time-
delay systems are also proven to be insecure. Therefore, secure methods need to be
tried and investigated. In the subsequent chapters in thsssthvee will discuss about

different other possible techniques to improve the sgoofithe different methods.
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Chapter 5 The Conceptsof Indirect Coupled

Chaotic Synchronization

51 | ntr oductions

Chaotic synchronization is the most important conceptchaotic signals to be used in
communication system application. There are differgmes of chaotic synchronization as
discussed earlier such &S, GS, Phase Synchronization, Projective Synchronizatiag, L
Synchronization etc and many ways to achieve these sudhva-response system, active
passive decomposition method, and method based on obderwey, etc. No matter what
types or methods, there is always a coupling between the @atickystems that means
an output chaotic signal from one chaotic system irdyianother chaotic system thus
forming a unidirectional coupling. Synchronization basedidirectional coupling is also
possible but might ndbe relevant for communication system applications. Sinseaal
had to be fed from one system to another, if therdvemechaotic systems separated by a
distance (channel), the unidirectional coupling will be egjeint to the transmission of a
signal from the transmitter to the receiver. Therefor@lmost all chaotic communication

methods proposed until now uses unidirectional coupling fotahsynchronization.

In this chapter, however, a different type of chaotmcronization called Indirect
Coupled Chaotic Synchronization is proposed and on subsegbepters, it will be
utilized for implementinga secure communication link. In this method of synchronization
the oscillator to be synchronized is not being driven dyreloy an output of another
oscillator. This methodf synchronization is being proposed for the first timéhis PhD

work. This method is shown in the block diagram as depiot&ijure 5.1.
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Chaotic Chaotic

e — .
Oscillator (S) o Oscillator (S)
Y2 V2
Chaotic Chaotic ~
_ — k . — >k
Oscillator £1) Oscillator &)

Figure 5.1: Block diagram to show the proposed indirect coupksatich
synchronization.

As it can be seen in the Figure 5.1, there are 4 chaoilatss present. (§ and () are
coupled together such that ;[Sis being driven by the output of oscillator (S
(unidirectional coupling). Now, our motive is to achieve syoolzation between;) and
(%2) even though they are not coupled together directly.idéa follows like this. Since,
oscillator (Q) and () are coupled together, chaotic synchronization can bee\aghi
between them which mean all states of) (@d () will coincide once synchronization
happens. Now, another output is selected from both oscill&tprand ($). These output
y, andy, are used to drive chaotic oscillatoEs)(and &) independently. Sincg, andy,
are going to be equal once synchronization occurs betweean® (%), logically it seems
that two chaotic oscillators are being driven by a comrs@mal making them to
synchronize as well, just like as if they were unidirectigneoupled. Since, the chaotic
oscillators to be synchronized are not directly couplesl $bheme of synchronization is

termed asndirect CoupledChaotic Synchronizatian

The Lorenz and Chua’s system will be used to demonstrate ICCS. Simulation using
Matlab/Simulink will be performed to show that this techniqueindeed useful for
achieving chaotic synchronization between oscillaSfsand ($). However, it should be
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noted that the performance @) and (X,) oscillators to synchronize with each other is the
key for ICCS of(Z;) and (X,). Oscillators(S;) and () are defined as Lorenz equations as
(5.2)

u=ou-+ov

(S1): v=-20uw+ru—v
W = 5u — bw

=i (5.1)
Y2 =V
i=ocll+ 0D
(S)): D=—-20uWw+ru—>o
W = 5u — b
J, =D

The oscillatorg;) and (X,) are deined as Chua’s equations.

p=al@—p—f(2))
(Z): g=y,—q-—s
; (5.2)

(22)1

It can be seen on (5.2) th@ah) and (X)) are being driven by output (&) and (%), i.e.y,
andy, respectively. The signals are fed into the haparity of the Chua’s system in order
to remove the effect of non-linearity on error dynamarsaichieving synchronization. The

parameters used in (5.1) and (5.2) are as follows.

o0=16,r=456,b =42, =10, =-1487,y =0
Figure 5.2 shows the statesandp of Chua’s system (X1) and (£2) when the ICCS is not
implemented. ThereforgX;) and (X;) are independent chaotic oscillators starting from
different initial conditions which means, the trajegtar and p will diverge from each

other as time progresses as seen on Figurd-lgre 5.3 depicts the statesandp when
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ICCS is implemented and Figure 5.4 verifies the functignaf ICCS by illustrating the
linear decrease of the log plot of the synchronizatioor dretweerp andp showing rapid
synchronization. It is clear that when ICCS is impleradnthe two system&;) and ()
synchronize with each other even if they are startiogfdifferent initial conditions. The
log plot of the synchronization error is decreasing lilyeagainst time, which proves the

exponential convergence of syst€Xn) and ().

Simulation results confirm that indirect coupled synaimation for chaotic systems is
indeed possible but in next section it will be matheraliicoroven. The ICCS will be
proven for both the continuous and discrete-time cbaystems. For continuous system
proof will be made for two different forms of the systemmich shall be useful in
subsequent chapters of this thesis when ICCS is utilized afdrieving secure

communication.

93



Amplitude
o

A o] g

_4 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

Time (s)

Figure 5.2 Output of Chua’s system (A) and (B) when there is not ICCS between them.
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Figure 5.3 Output of Chua’s system (A) and (B) when ICCS is implemented.
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Figure 5.4 Synchronization error for Chua’s system (A) and (B) when ICCS is

implemented.

52 M athematical Proof of Indirect Coupled Chaotic

Synchronization

In this section, the stability of the error dynamicghef chaotic system&;) and (X,) will
be analyzed. If the error dynamics of the two systamasstable, then synchronization is
achieved. The ICCS proof will now follow for the continucrsd discrete-time chaotic

systems.

521 Continuous Time Chaotic System Case

Proofs for two different forms of chaotic systems dome in this section. Each of these

form are used later on to propose secure chaotic comnionitachnique.
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5211 Proof 1

Let us consider the chaotic systemsu&l X, of the following general form:

X(t) = f(x(t), y,(1))
SYRRBAVELTCY)

Y20 = (x() 53)

=) {20) = p(z(t), y,(1))
k() = a(z()),

where xe R™, ze R™ andy,,y,,k € R The output function$, (x), h,(x) and q(z) are

assumed to be smooth.

Now, consider the following coupled chaotic systems:

(1) = f (X)), y;(1))
S): { 9.0 = h (X))

¥, (t) = h, (X(t))
(5.4)

(;y{%0=Mﬂm%0»
k() = a(2())

We shall assume that:

Al) There exist a constant symmetric positive definite ima® and a positive constant

a, >0 such that for al e R™, yeR:
PAE.Y)+AT€.yR<-al,, (5.5)

where A = % (§,y) and | is the identity matrix of dimension,.
X

A2) There exist a constant symmetric positive definite ma®i and a positive constant

a, > 0 such that for alk € R®, yeR:
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RFc.Y)+F G.yP<-a,l,, (5.6)

where F= ?(g, y) andl is the identity matrix of dimension,.
z

A3) There exists a constam >0 such tha* <M forall ze R®, yeR

%5 2.y)

A4) There exists a positive constantsuch tha* <vp forall e R™.

oh,
-y
ax( )

Our aim is to show, under the above assumptitims ., |z— 2| =0. More precisely, our

main result is summarised in the following theorem.

Theorem 1. Assume that the pairs of coupled syste(®, X,) and (S,, X,) satisfy

assumption Al) - A4). Therim _,_[x-%|=0 andlim . |z—2|=0. In other words,S,

t—>+o0 t—>+0

synchronises witl5, and X, synchronises wittx,.

Proof: Sete = x— X, then,

e=f (X, yl)_ f()A(, y1)- (5-7)

By mean value theorem, we know that there existselonging to the segment with end

points x and x such that:

e=f1 (X, yl)_ f ()A(i yl)

=T e =AEwe (5:8)
X

Similarly, let e= z— 2, then,
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€= p(z,y,)- p(2,9,)
= p(z,Y,) = (2, Y,)+ p(2,Y,) - (2, Y,)

_% c P s o
==y et . @y, -9,) (5.9)

CFey.) e+§y_p(z,n>(h2<x>—h2(ﬁ))

2

for some¢ belonging to the segment with end poirtsand 2, and  belonging to the
segment with end pointg, and y,,.
Additionally,

. 0 op A .

=2y e +§(z,n)(hz(x) ~h,(%))

_op p ., Oy (5.10)
== Gya) e+ v (2m) = (9)e

= F(.Y,) € +G(2,7)C,(9)s,
where 9 belongs to the segment with end poirtsand x.

Now let V(¢) = ¢"Pe be a candidate Lyapunov function for (5.7). Then,
y TP, 1p Of T
V(e) = 26" =26 R (£ Yi)e = 26 RAGE Yo)e (5.11)
X
By assumption A1) we haves"RA(E, y;)e < —a4(&, v;)eTe = —al¢]”, so that:
V() < —ale|”. (5.12)
Similarly, letW(€) =<' P, € be a candidate Lyapunov function for (5.9). Then,

W(e) < —a,|d” +2€" P,G(2,7)C,(9)e

) . (5.13)
< -a|el” + 3P, €62 mC,(9)el,
By assumption A3) and A4), we have:
- 2
Vi(e) < -a,|d|” + 2Mu|P, &[], (5.14)

Now, Ble|® <€’ P, e< B|€|” where B,, B, > O are respectively the smallest and largest

eigenvalue ofP,. Similarly, 7/0||g||2 <g'Be< }/1”8”2 wherey,,7, >0 are respectively the
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smallest and largest eigenvalue®f Consequently,

W (e S—ﬁWe ZMMU IS 5.15
() 5, (e) + \/FOW—O\/W( )WV (&) (5.15)

and
V() < —%v ) (5.16)

Additionally, W( €) = 2W(e) yW(e) andV(e) = 2Me(Me) so that (5.23) and (5.24)

becomes:

' VA Mo
W) < 22 fw(e) + W)
) 2P ) N ) (5.17)

N < —;711/\7(8).

In other words,

WE | {—7 %}(M@j

W) 0 —m AWWE (5.18)
A
(¢)
Since the matrix F is stable, we havelim,, W()=0 and lm_ . V(¢)=0.

Consequently, lim_,, [x-%|=0 and lim___[z-2=0 which, in turn implies that

llm t—>+o0

k=K/=1lim.,.|a(2) - a(2) = O

This completes the proof of Theorem 1 thus proving the I@&E$he chaotic systems of

the form defined in (5.3) and (5.4).

Remark 1: If system (S) was slightly perturbed so that:
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x=f(x(1), ya(1)) + Af (x(1), Y1 ()
S): {yi=hx (5.19)
Y, = h2X

Then, it can be shown that:

W@ | F{\/V_V(e)}(Af (x, yl)J (5.20)
Ve | W) 0

It is therefore clear thatim _ [x—%|=0 and lim_,|z—2|=0 if A and F are stable

t—>°0| t—>oo|

and provided thatAf (x,y,) =0. This idea will be used in the context of in improving the

CSK method for secure communication in chapter 7.

5212 Proof 2

We assume that the oscillat¢®;) is now described by a dynamical system of the

following form:

x=Fy)x+9(t y,)
S) 9y =h(x)

Y, =h,(X), (5.21)

where the statex e R" with initial condition x(0) = x,. The outputs of the oscillator are

y,€R and y, e R. The matrix F is of appropriate dimension whhg and h, are

analytical vector functions arglis a smooth bounded function of time.

The chaotic oscillatofZ,) is of the similar form:

(5.22)

(21) : {Ii i ﬁz " b(t1y2)
= h(2),
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which is driven by the outpuy, (t) . Here,ze R? (q is not necessarily equal 1), k e R

Is the outputh is an analytical vector function amdis a smooth bounded function of time

and A is a stable matrix of appropriate dimensions.

The receiving chaotic oscillat§®;) is given by:

x=F(y)%+9(t.y,)
S) 9% =h(X) (5.23)
92:h2()2)-

Finally, the key generatoEf) is given by:

2=Az+b(ty
(,):9 . (£52) (5.24)
k = h(2).
We shall make the following assumptions:
Ab5) There exist symmetric positive definite (SPD) matrieeand Q such that
F'P+PRF=-Q,. (5.25)

A6) The functionh,(x) is globally Lipschitzian with respect o

A7) The functionb(t,y) is globally Lipschitzian with respect touniformly int.

The objective is to show that the oscillat@@g) and () synchronize an@x;) and (X,) are
synchronized with each other when ICCS is implementecffect, based on the above
assumptions, we state the following:

Theorem 2. Under the assumption A5), there exist two constafig >0 such that
[x(®) = ()| < e [x(©) - %(©)| for all t>0. In other words, the oscillator(S)
synchronizes exponentially with the oscilla{&).

Proof: Let g(t) = x(t) — x(t), then the error dynamics betwe@&i) and () is given by:
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e=HKy,)e. (5.26)
Owing to assumption A5), a candidate Lyapunov functiothefabove error dynamics can

be chosen as:

V(¢) =¢"Pe. (5.27)

Differentiating V (¢) with respect to time, yields:

V(e)= ¢ Pe+e'Pé

(5.28)
= &T|FT (v, )P+ BF(y,)]e =—" Qe < 0.

Since Q is SPD, there existc,,c,>0such that ce'Pe<e&'Qe<c,s Pe.

Consequently,

V(e)=—V(e).
Integrating the last equation results in:
V((t)) =e ™V ((0).

Again, since P is SPD, there existi,,1, >0 such that L&' ¢<&'Pe<l,¢'e.

Consequently:

@] < A&7 ). (5.29)
In other words:
le®)] < \/%e‘czlt £ ©)] = 7 | Q). (5.30)
That is:
||x(t) — >‘<(t)|| <ne* ||x(0) - >2(O)||. (5.31)

102



This means thak(t) converges tox(t) exponentially. In other words, the oscillai&)

synchronizes exponentially with{)SThis completes the proof of Theorem 2.

Theorem 3. Assume that systemX;) and (X;) satisfies assumption A7), then
lim [ z(t) - 2(t)| =0. That is, the oscillatofZ1) synchronizes asymptotically with the

oscillator(Xy).

Proof: Set(t) = z(t) — 2(t), then the error dynamics between (&g) and (Z,) is given by:

¢ =AS+b(,y,)-b(t, ¥,) (5.32)
Since Ais stable, there exist;Rnd Q SPDsuch thatA™P, + P,A = -Q,. Consequently,

consider the following candidate Lyapunov function:

W=¢TP¢ (5.33)

Differentiating W with respect to time results in:

W=2,TP¢
=20 R(AS +b(t,y,)-b(t, ¥,))
=20 TRAS +20TR,(b(t, y,) -b(t, 7))
<—¢"Q¢ +2¢7R)(b(t, y,) bt 9,))
<—BW + B, [¢le]
<—BW + BoAIW e

(5.34)

for some positive constant, andf, which depends on the Lipschitz constanb ahdh.,.

Now,

W <P+ B e (5.35)
2 2

Therefore,
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t

_ét —& t—-7
W) <-e = WE@) + 22 [ = et

0

(5.36)

From the above inequality, we can see that whes+oo

lct)|— o (5.37)

This completes the proof of Theorem 3 and theref(@ converges with(Zy)

asymptotically.

5.2.2 Discrete Time Chaotic System Case
Consider the following discrete-time dynamical systems:
X(k+1) = Fx(k) + f (y,(k))

) 19 ya (k) = hy (x(k)) (5.38)
Y2(K) = h, (x(k)),

where the statexe R" with initial condition x(0) = x,. The outputs of the oscillator

y, € R and y, € R. The functiond, h; andh, are smooth. The discrete chaotic oscillator

(Z,) is given as:

- {z<k+1> = 9(2(9, (k) .39

u(k) = h(z(k)),

where ze R (q is not necessarily equal 1y, ue R, and h is an analytical function

vector of appropriate dimension.

The chaotic oscillatofS;) to synchronize witl{S,) is given by
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R(k+1) = FX(K) + f (y,(k))
(S): (k) = hy(%(k) (5.40)
¥2(K) = h, (%(k)).

Finally, the chaotic oscillatqZ,) to synchronize withi%;) is given as

(2.): {2(k+1)=g(2(k),92(k)) (5.41)
277 G(K) = h(2(K)).

Note that the oscillato(X;) and (X;) are being driven by signafx(k) and ¥, (k)

respectively for ICCS
We will make the following assumptions:
A8) The matrixF of (T) and (R) is stable.

A9) The function g(z,w) is globally Lipschitzian with respect tz and w.
Additionally,  there exists a positive constantO<v <1 such that

la(z(k), w(k)) — g(2(k), w(K))| < V| z(k) — 2(k)|, for all k>0 and allwe R
A10) llo@y)-9@ 9| <ry-9

Our objective is to show that the oscillai@:) and (X2) synchronize with each other to

prove the ICCS.

In effect, based on the above assumptions, we stafeltbwing:

Theorem 4. Under the Assumptions A8), we halimn,, [x(k) - %(k)| = 0. In other words,

the oscillator(S;) synchronizes exponentially with the oscilla{&).

Proof: Let ¢(k) = x(k) —x(k), then the error dynamics betwe) and ($) is given by:
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$(k+1) =F&(k). (5.42)

SinceF is stable, it is clear thgt(k)| — 0 as k — oo, In other words(S;) synchronizes

with (S;) exponentially. This completes the proof of Theorem 4.

Remark 2: If F is not stable, then a discrete observer can easitiebigned such that the
overall error dynamics is stable. The aim here ishtmnsthe ICCS for a discrete system

therefore the simplest form of coupled synchronizasoemployed fo(S;) and (9).

Theorem 5. Assume that systenty) and (2,) satisfies assumptions A8), A9) & A10), then

lim,,..|z(k) — 2(k)|=0 . That is, the oscillatofZ1) synchronizes asymptotically WittL>).

Sketch of proof: Set £(k) = z(k) — 2(k), then the error dynamics between (B¢ and (%)

is given by:
e(k+1) = g(z(k), (k) = 9(2(K), ¥,(K). (5.43)

Now, consider the following candidate Lyapunov function:

W(k) = (). (549
Then,
W(k +1) = e(k + )|
= 9(2(k). y,()) ~ 9(2(k). 9, ()|
< Jla(2(k). v, (k) ~ 9(2(K), y, ()| (5.45)
+[a(2(k), y, (k) = g(2(k), §,(K))| |

< Bllz(k) — 2(k)] + 7]y (k) — §,(K)|

< Ble()] + 7€ k)|
Finally,
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W(k +1) —W(K) < (B -DW(K) + #|£(K)]. (5.46)

Since from Theorem ,4 |£(k)| >0 as k-, we wil eventually have

W(k +1) —~W(k) < 0.

This completes the proof of Theorem 5.

5.3 Summary

A chaotic synchronization technique where two chaotic osaiflafp and X,) are not
directly coupled with each other is proposed in thigptdra The method, indirect coupled
chaotic synchronization, is unique because there is nowblink between that is there is
no signal being fed from one oscillator to another onekerdvery other synchronization
techniques. However, there has to be some sort of conndmiween these two chaotic
oscillators, starting from different initial conditisnif they are to be synchronized
together. Because, if the oscillators have differetiairgonditions and have no connection
between them, then because of the property of chaotic system, “Sensitivity to initial
conditions”, the trajectory of these two oscillators will diverge rapidly from each other.
These two oscillators are therefore being driven independégtiyhe output of two
synchronized chaotic oscillato¢S; and $) that have similar structure. These two chaotic
oscillators are achieving synchronization from normal im@ational coupling therefore the
output, which are used to drive the former two chaotic lasoik, will be equal. Hence,
equivalently, it will look like two chaotic oscillatorseabeing driven by a common signal.
The mathematical proof was done for both continuous-timeé discrete-time chaotic
systems. For continuous-time case, proof for two speoihd was performed. The
performance of the ICCS betwegh;) and (X;) is dependent on the synchronizing

performance of(S;) and ($) which can be obtained from methods that are already
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available on the literatures, for example, observeetbaynchronization. The ICCS can be
very useful in realize secure communication, becauseotiygut from these indirectly
coupled chaotic oscillators can be used as keystream imath&mitter and receiver side,
without the need for it to get transmitted in the commatiwa channel. This can have a
major advantage, since the intruders will not be ablestonate the keystream being used
for encryption purposes simply by having the transmitted sigvailable. In the coming
chapters, it will be shown how ICCS can be implementedabze secure communication

link by removing the shortcomings of the methods that aaéadole in the literature.
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Chapter 6 Application of Indirect Coupled
Chaotic Synchronization to Secure

Communications

6.1 | ntr oductions

It was discussed in the previous chapter that ICCS isilp@sbetween two chaotic
oscillators. The idea of ICCS can now further be imgleted for realizing a secure
communication system. In recent years, there have k#s of works where chaotic
signals have been utilized for implementing secure congation. Methods like chaotic
masking, chaotic modulation, inclusion method and CS&hods have already been
discussed in the earlier part of this thesis. Cascadéubhevas also proposed earlier, but
it was also pointed out there is still some vulnerabdliire it. Many modifications of the
traditional methods were also discussed earlier and italgaspointed that almost all of
those methods were shown to be breakable by a methodoorHence, there is real
incentive to devise new chaotic communication methodesou order to realize a secure
communication link. Even though chaotic signals have inhepeoperties like being
aperiodic and limited predictability along with broad spectrato, using them for secure
communication have not become a straightforward taskvess thought to be. There had
been significant number of attack methods that could excitne message signals only by

performing signal processing of the transmitted signal.

In this chapter, we will see the possibility of implemegtiCCS for realizing secure
communication such that the attack methods available upwoimthe literature will not

be effective.
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In one of the work proposed by Yang, et. al [1], a method basezhcryption technique
was proposed, where a different output from chaotic tndatex which was transmitted in
the channel was used as a keystream to encrypt thegeesgaal. The encrypted message
signal masked with another output of the chaotic oscillatas employed as the
transmitted signal. It was claimed that since the intrudeuld not get hold of the
keystream, it was impossible for the attackers to exthaciressage. Unfortunately a later
work done by Parker & Shbif119] showed that it was still possible to extract the
keystream from the transmitted chaotic signal sineekdystream carried the information
of the dynamics of the transmitter. In fact, sincehlibe carrier and keystream were the
outputs of same oscillator; the carrier held the dynanot the keystream as well.
Therefore, it was impossible to hide the dynamics of thestkeam from intruders, as a
signal has to be transmitted from the transmitter toréleeiver for synchronization and
message transmission purpose. However, since the printile method proposed in [1]
is nevertheless interesting, there is a real incenfv finding ways for improving the

method by eliminating its shortcomings.

Figure 6.1 shows the block diagram of the cryptography basedickgistem for secure
communication that had been proposed at [1]. The tramsneitinsists of the encryption
function ¢(.) and the chaotic system. The key been used in tbeymion function to
encrypt the plain texin(t) is one of the state variable of the chaotic systénother state
variable is used as a masking signal to generate ogtuhat is transmitted in the public
channel which the intruders will also have access tohétréceiver side, the signa(t)
(assuming minimal influence of channel noise) will be useactoeve synchronization to
estimate the key and the encrypted signal. Upon applyindeby/ption functiond(.) on

the recovered encrypted signal, the estimate of pdainig achieved.
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Encryption | S() Decryption
; Rul Ruled
Plain textm(t ulee(.) uled(.) Plain text
A A A m(t)
Intruder - A
k(t) " k() $(t)
Chaotic System |¢ Chaotic System
»( Public Channel >
ye(®) Ye(®) + (D)

Figure 6.1 Yang’s method based on cryptography [1].

For encryption and decryption purposesshift cipher algorithm is used. The encryption

algorithm is given as:

e(m(t)) = f,(..f, (f,(m(t), k(1)) k(1),... k(1)) = s(t),
; n (6.1)

wheref,(*.*) is the following non-linear function:

Xx+k+2h, for —2h<x+k<-h
£,(x,k) =1 x+k, for —h<x+k<h (6.2)
X+k—-2h, for h<x+k<2h,

whereh is the encryption parameter chosen such rifgt andk(t) lies within the interval

(-h, h). The non-linear function given in (6.2) is shown Figuiz 6.

fl X,k)
A
h
< / > x+k
oh -h 0 VZh
-h
v

Figure 6.2: Non-linear function used in continuoeshift cipher.
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The corresponding decryption functid(l) to recover the plaintext at the receiver side is

same as the encryption rule given as:

m(t) = die(m(t)) = f,(...f,(f,(e(m(t),—K(t)),~K(t)),...~K(t)), (6.3)

wherek(t)is recovered at the receiver side and should be appretjneafual tok(t).

6.2 Proposed M ethod Based on Cryptography

In this section of this thesis chapter, we will proposeesy chaotic communication
technique based on indirect coupled chaotic synchronizala.technique is essentially
the improvement of the method that had been proposed by, ¥ al [1] where the
shortcomings of that technique are eliminated. Instead @rgemg the chaotic signal used
as a key from the same chaotic oscillator that is tsegnerate the transmitted signal, we
propose to use a chaotic signal, which is an outputdifferent chaotic oscillator, as the

key. The proposed method is demonstrated in the blockagheginown in Figure 6.3.

Chaotic >f+\ » Channel »| Chaotic | Hh®
Transmitter (T) y1(0) \A y.(t) Receiver (R)
y2(8) s(t) 72(t)
\ 4 i A\ 4
Chaotic Key ,| Encryption Chaotic Key | | Decryption
Generator (A] ) Rulee(.) Generator (B) E(t)' Ruled(.)
A l

Plain textm(t) Plain textm(t)

Figure 6.3: Block diagram of the proposed chaotic commuaitagéichnique based ol
cryptography using ICCS.
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The novelty here lies in the generation of the kegstreThe chaotic transmitter (T) is first
used to generate two output signgigt) andy,(t). The signal;(t) is used for modulation
purpose while output,(t) is used to drive chaotic oscillator (A) whose structure is
different from the transmitter (T). The outplft) of key generator (A) is used as a
keystream to encrypt the plain text messagf using an encryption rule(.). The
resulting encrypted signa(t) is modulated using;(t) yielding the transmitted signg(t).
The outputy(t) is fed back into the transmitter in the form of aripmt injection with the
aim of cancelling the effect of non-linearity while perfong synchronization at the
receiver side. The modulated transmitted sigyfgl is sent through the channel to the

receiver.

At the receiver end, upon receiving the sigiyaft), the chaotic receiver (R) - which is

similar in structure to the transmitter (T) - permits bbain an estimatey, (t) and y,(t) of

the signalsys(t) andy,(t) respectively by synchronization. This can be done by usiyg a

techniques existing in the literature such as observard48f 52, 54, 173]. The signals

¥,(t) and y,(t) are used to generate an estim(t® of the encrypted signal. The estimate
¥,(t) is used to drive the chaotic key generator (B) - whickinsilar in structure to

generator (A)- and which yields the keystream estimate). Consequently, the plain text

messagen(t) can be recovered by using the decryption d(le

Note that since, the chaotic key generators (A) andaf® driven byy,(t) and ¥, (t)
respectively, an indirect coupled synchronization is requiettvden these two chaotic
oscillators. Also,y,(t) and y,(t) are outputs of chaotic transmitter (T) and receiver (R)

respectively and will be equal once synchronization is aetieintuitively, one would
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expect this synchronization to take place and ICCS headyrbeen proven in the earlier

chapter.

The important part of this method is the generation ef kbystream. No information
regarding the keystream is transmitted in the channgl] )it was possible to estimate the
particular state which was used as keystream (as shojti9) since the state that was
transmitted in the public channel had information of the dyos of the keystream as they

were the state variables of same chaotic oscillator.

In contrast, in this method, the keystream is generated & chaotic oscillator with a
totally different structure. It will not be possible taieste the dynamics of the chaotic
key generator from the signal being transmitted in the chaomypalsing the method
mentioned in [119]. Even if the intruder manages to get hiolHdeoencrypted signal from
the transmitted signal, without the knowledge of keystreaaenmessage signal cannot be
decrypted back. Therefore, a secure communication link eaedized by implementing

the proposed method.

The method based on ICCS can however have some disageam its own right. In real

time continuous system, the implementation of enaoypdilgorithm along with the chaotic
keystream can be a major bottleneck. When this is ingriéad in continuous time system,
the implementation of the encryption algorithm can leeyvcomplicated to design

specially with electronic components. However, this diaathge will not exist in discrete
time system since it can easily be implemented usingatigjgnal processing. Also, if the
intruders can reconstruct the keystream generator driviagtic output of the transmitter
T, then with the knowledge of the structure of the k&gsn generator, intruders might try
to perform ICCS on their side to find out the keystre@herefore, further studies on how

the reconstructed driving chaotic output in T will helge timtruders to estimate the
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keystream should be done. Also, another point thatsaigsagain the parameter of the key
generator oscillator acting as another level of key efdtyptosystem. Therefore, the fact
that driving signal could not be perfectly estimated antgalwith the parameters of key

generator acting as another level of key, it canai that estimating the keystream can be

a challenging task for intruders with only the knowledge otrdwesmitted signal.

The method based on cryptography implementing ICCS willniygleimented both on

continuous-time and discrete-time context.

6.2.1 Continuous Time Scenario

Based on the communication scheme illustrated by Figure vée3assume that the

transmitter oscillator (T) described by a dynamicalesysof the following form:

X= F(yt)x+ g(t7yt)

M y, =h(x) (6.9
Y, =h,(x)
Y=Y+ e(m’ k)’

where the statex e R" with initial condition x(0) = x,. The outputs of the oscillator are
y,€R and y, e R. The matrix F is of appropriate dimension while and h, are
analytical vector functions. The signg, € R is the transmitted signal aref.) is the

encryption function using kek(t) and the functiomy is a smooth bounded function of time.

The keystrearni(t) is generated using another chaotic oscillator (A) oflamfidrm:

(A): {2 =Az+b(ty,)

D), (6.5)

which is driven by the outpuy, (t) . Here, ze R? (q is not necessarily equal i), k € R

Is the keystreant) is an analytical vector function aibdis a smooth bounded function of
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time and A is a stable matrix of appropriate dimensittns. assumed that the channel is

perfect and that no distortion of the transmitted sigaalthken place.

The receiving chaotic oscillator (R) is given by:

x=F(y)%+0(t, )
(R) 149 =h(X) (6.6)
92 = hz()z)-

Finally, the key generator (B) is given by:

). {2:A2+b(t,§/2) 6.7

k = h(2).
The proof done in the Chapter 5, section 5.2.¢a2 be recalled for proving that (T) and
(R) synchronize with each other and (A) and (B) syneizewith each other forming the
ICCS, however the assumptions made should be verified wi@amentation is done in

the next section of this chapter.

Once the synchronization is obtained between (A) andtkB) message can be decrypted

by applying the keystream.

6.2.1.1 Implementation using Lorenz and Chua’s system

Now, the proposed system is demonstrated using the Loystearsas the transmitter (T)

and the receiver (R). More specifically, (T) and (R)@resen as:
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U=-ou+ov
V=-20yW+ry, -V
.| W=D5y,v-bw
(T): V. =u (6.8)
Y, =V
Yo = Yo +&(m, k).
(=—ot+o¥
V= —20y,W+ry, —¥
(R) 19\ = 5y, 0 — bw : (6.9)
yp =0
Y, =V.

Again it can easily be seen that (6.8) and (6.9) are ifotime (6.4 and (6.6 with F(y,)

given as:

-0 O 0
Fy)=| 0 -1 -20y, |
0 S5y, -b

Now, we need to show that the assumptions made in Chapteresprubwling the ICCS are
valid for these choice of the systems. First of adlsumption A5) in Chapter 5 holds true

for the following choice of SPD matricéd? and Q; :

, 0 0 20, -d, O
P=/0 1, 0landQ,=|-o, 2, 0 | (6.10
00 I, 0 0 2,

— 1 4
wherel, ), l;,0,b,r >0,l, =—21; andO0<l; <21,.

Remark. Note that, at first sight one would expect the madriee and Q, to be time
dependent sincd(y,) is time dependent. However, interestingly, due to the qodati

form of F(y,) the matrices turn out to be constants.

For the key generating oscillators A and B, the Chua’s system is adopted given as below:
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p=a(q-p-Tf(y,)

qZY2_q_S \
(A) 9, 6.11
S=-pa-rs (

(B): (6.12

The non-linearf () is piecewise linear function given as:
f(¥) =Gy + 05(G, —G,)(y +1—|w -1).
Note that (6.11) and (6.12) are in the form (6.5) and (6.7) casply, with A and

b,(t,y,) given as:

-—a a O —af (y,)
A= 0 -1 -1|b(,y,)= Y,
0 - -y 0

It can also be shown that matrix A is stable sinceetlexist B and Q SPD such that

AP, + P,A = —Q, for the following matrices:

, 0 0 2o, —ad, O
P,=[01, 0|&Q,=|-al, 1, 0 | (6.13]
0 0 I 0 0 2,

wherel ,|,,l;,a>0,8<0,y>0,1,=-/, and0<|, <4l,.

Finally, it is obvious that assumptions A6) and A7) of Chabtare satisfied.

The encryption and decryption function are used same(&slipand (6.3) respectively.
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6.2.1.2 Simulation results

The parameters employed in the equations (663)), (6.11) and (6.12) are as follows:

o =161 =456b= 42,0 =108 =-1487
y=0,G, =-127,G, =-0.68d, = 0.05

The encryption parametér is chosen to b&.3 and the messags(t) is taken as a square
wave modulating digital binary bits. Also in encryption r(8€l), a 30-shift cipher is used.

The initial conditions for each oscillator are chosearbitrarily different.

Figure 6.4 illustrates the autocorrelation function of thgstteam signak(t). It is clear

that the keystream is not similar to itself with anyoamt of time shift so its
autocorrelation function has only a single spike at pdizeoo time shift. This means the
keystream generated is chaotic in nature and therefoltertiesl predictability. Figure 6.5
shows the encrypted message signal using (6.1) and $@Mahs keystream. Figure 6.6

depicts the transmitted chaotic carrier and it can lem $kat message signal is totally
buried inside it. Figure 6.7 illustrates the error in esiimgathe keystream and it can be
seen that although two oscillators are starting frofferéint initial conditions, the error

converges rapidly to zero after some initial period tdkesynchronization.

Figure 6.8 depicts the performance of the proposed methdédrypting the message
signal back and it is readily seen that the transmittegsage signal has been estimated
convincingly. Once it is clear that the message extmadd possible using the proposed

method, security analysis of the method should be dieduss
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Figure 6.4: Autocorrelation of the key stream sig«fgl
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Figure 6.5Encrypted message signal.
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Figure 6.6: Transmitted signak(t) generated from the oscillator T.
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Figure 6.7: Synchronization error in the estimation of the keastn.
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Figure 6.8: Plot of the extracted messagdt) andm(t).

6.2.1.3 Security analysis

The method proposed here is an improved technique froonihenentioned in [1] where
the keystream is utilized from the chaotic oscillatbest thave been indirectly coupled. In
[1], keystream from the same chaotic oscillator, fiehere the transmitted chaotic signal
was generated, was used. The authors in that paper has sulgcebsiwn that attack
methods such as [102] that uses NLD based forecasting iseiful for the chaotic system
based on cryptography. Therefore, the method proposed hdse isnanune to the attack
method proposed in [102]. The problem in [1] was that thetkeam® could successfully
be estimated as mentioned in [119]. Since keystream wasatgohefrom the same
oscillator as the transmitted signal, the dynamicshef keystream could be estimated,
therefore possibility of revealing the transmitted messhagehis method, however, the

keystream is generated via indirect coupled synchronizatidreitransmitter and receiver
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from separate chaotic oscillators which have differéniciure and dynamics from the

transmitter. Therefore, the method in [119] will not befuld® estimate the keystream.

Next, we will see another popular attack base®bhon the proposed method. It turns out
that it destroys the possibility of the phase space raemtion of the sender dynamics by
analyzing the transmitted chaotic signal usiWgl since it blurs the map and no distinct
branching is seen. Figure 6.9 shows i of the transmitted signal generated from the
proposed system that modulates the digital bits. It marseen that the map is totally
blurred with no apparent information in it regarding tfensmitted bits. Even if the local
maxima and minima, i.e. small fluctuations, are filtered foumn the transmitted signal,
andRM is plotted, as shown in Figure 6.10, there is no disbnahching of theRM to
reveal the transmitted bits. Therefore, it can be conduthat the proposed method is

immune to methods based on NLD and RM.

1.6

1.4¢

1.2

0.8

0.6

0.41

Figure 6.9: Return map of the transmitted sigpt).
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Figure 6.10:Return map (small fluctuations filtered out) of thentmaitted signay;(t).

6.2.2 Discrete Time Scenario

In the earlier section, the ICCS was implemented forpgsmg a secure chaotic
communication method based on cryptography in the cbofesontinuous time system.
The same idea can be extended to be implemented inetdigone context.
Implementation of the proposed system in discrete domaathsr interesting because of
its simplicity of the practical implementation. Inedf, discrete-time system can easily be
implemented in digital computers, field programmable gatayammicroprocessors or
digital signal processor chips, etc. In this way, thehneal design/implementation
complexities of analog design of continuous time systambe easily overcome while the
properties of chaotic systems can still be utilizedsiecure communication purpose. In

this section, the method proposed above in continuous-tisters is further implemented
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in discrete-time context. The model is same as showvgure 6.3 but in discrete context

l.e. time,t will be replaced by samplelks,

Consider the following discrete-time dynamical systems:

x(k+12) = Fx(k) + f (y,(k))

M: Y1 (K) = hy (x(k)) (6.14

Y2 (k) = hy (x(k))

Y, (K) =y (k) + e(m(k)),
where the statexe R" with initial condition x(0) = x,. The outputs of the oscillator
y, € R and y, € R. The functiond, h; andh, are smooth andh(k) is the message signal.
The signaly, € R is the transmitted signal wheeé) is an encryption function that uses
u(k) and key and the functidnis a smooth bounded function.

The key signali(k) is generated using another chaotic oscillator which iigedrby the

signaly,(Kk); that is:

" {z(k+1) = 9(2(9, ¥, (k) 615

u(k) = h(z(k)),
where ze R (q is not necessarily equal 19, ue R, and h is an analytical function

vector of appropriate dimension.

The chaotic oscillator (R) to synchronize with (T) igegi by:

R(k+1) = FR(K) + f (v, (k)
(R): 4 ¥u(k) = hy (X(k)) (6.16.
Y2 (k) = h, (%(k)).

Finally, the chaotic oscillator (B) to synchronizelw(f\) is given as:

®: {2(k+1) = 9(2(9, 9, (k) 617

G(k) = h(Z(k)).
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Note the oscillator (A) and (B) being driven by signgk) and y, (k) respectively in order

to form ICCS. The proof for ICCS for the discretegitgontext has already been done in
Chapter 5, section 5.2&hd is valid for the systems (6.146.15) (6.16) and (6.17) since

they are of the same form as (5.38), (5.39), (5.40) and (Gs&b) for the proof.

6.2.2.1 Implementation using 3-D Henon map and discrete Lorenz system

In this section, the performance of the proposed synctation and method as shown in
Figure 6.3 is demonstrated using the 3D-Henon as the transradéivér system and
discrete Lorenz system as the key generating oscilldtbe. 3D-Henon map is defined for

transmitter and receiver as [180]

X, (k+1) = —by, (k)

X, (K +1) = 1+ X, (k) —ay? (k)
X3 (K +1) = x, (k) + by, (k)

Y1 (K) = %, (k)

Y2 (k) = X5(k)

Y, (K) = v, (k) + e(m,key), (6.18)
X, (k+1) = —by, (k)

%, (k +1) =1+ %, (k) — ay? (k)
(R) =% (k +1) = %, (k) + by, (k)
91(k) = )A(z (k)

92 (k) = )A(s(k)'

(T) =

wherea = 1.07 andb = 0.3. The key generating oscillators are representetisanete

Lorenz system as [41]:
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2,(k +1) = 2,(K) 2, (k) - Y,(K)
2,(k +1) = 7,(K)

(A)= j

z,(k+1) = z,(k)

key=dyz,(k),

2,(k +1) = 2,(K)2,(k) — 9,(k) (6.19)
(B)- 2,(k+1=2(k)

2(k+1) = 2,(k)
key= dy2, (k).

Notice that the oscillator (A) and (B) are being drivenybgk) andy, (k) respectively to
form ICCS. Same-shift cipher algorithm used earlier for the encrypi@m decryption is

used here as well.

6.2.2.2 Simulation results

The encryption parametéris taken to be 0.02 and the sigmak) is modulated by the
digital signal simply by makingi(k) = 0.01 when bit 1 is present amgk) = O when bit O
is present. Therefore, the encryption function isidadly changing them(k) in different
levels anywhere between -0.02 and 0.02 using the encryptioriréays The initial
conditions for each oscillator are chosen to be raniliy different. The system is run for

200 samples.

Figure 6.11 shows the digitplmodulated message signal to be transmitted securely and
Figure 6.13 depicts the encrypted message signal after appiygnkeystream in Figure
6.12. The resulting transmitted signal is depicted in Figutd. The keystream being
generated at the receiver side is shown in Figure 6.15 \Hglere 6.16 shows the
synchronization error between the keystream generatiée itransmitter and the receiver
validating the ICCS in discrete-time context. The ewonverges rapidly to zero after

some initial samples due to the time taken for synchrtoizaand finally Figure 6.17
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shows the extracted message and it can clearly be satrafter some samples, the
modulated digital bits are recovered perfectly. The efuar to the initial error in the bits

due to synchronization can be removed by transferrwgirisignificant bits for first few

samples.
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Figure 6.11: Message to be transmitted.
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Figure 6.12Keystream generated at the transmitter side.
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Figure 6.13: Encrypted message after applying the encryptiorithigand the
keystream.
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Figure 6.14: The transmitted chaotic sigyék).
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Figure 6.15: Estimated keystream at the receiver.
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Figure 6.16: Synchronization error in estimating the keystrea
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Figure 6.17: Extracted message signal.

6.2.2.3 Security analysis

ICCS is used here as well for the generation of thetkeay® therefore keystream is not
part of the transmitted signal just like in continuomset case. Therefore, the arguments
made earlier in the case of continuous-time systerntsds\alid for discrete-time system.
Without, the knowledge of the keystream and the key g#ngraoscillator
structures/parameters, the message extraction is impo$sibtbe intruders. Since, the
technique is used to transmit the digital bits it is wattile seeing if the bits 0 and 1 leave
any pattern in the transmitted signal. This is very ingrdrfor the security point of view
because bit extraction can simply amount to the pattassification problem for intruders
if there is any pattern apparent in the transmitted sighalh can easily be seen with the
help of pattern classification algorithms. Therefonest fof all let us see if the encryption
of the binary values is leaving any obvious pattern. Figure 6 d8ssthe different levels
of the encrypted message signal when binary value 0 orranisntitted for the first 200

samples. It can be seen that the encrypted valueeiarethin between the range offi &hd
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2h. This means there is no change in the attractor of #resrnitter chaotic system in a

particular pattern when 0 or 1 is modulated.
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Figure 6.18: Encrypted message versus the binary messag@dodmitted to show the

digital bit is being modulated in multiple levels.

Now let us see if the RM of the transmitted signal provatgsinformation regarding the
transmitted bits. For the sake of comparison, let us stady the RM when CSK is
implemented and when no message is transmitted for the 3BnHgrstem. This will
make the improvement evident of the proposed method. Thermaps are plotted for
10,000 samples. IA, is the vector of maxima anf, is the vector of minima of the
transmitted signay:, here plot ofA, versusB, is giving us the return map of the siggal
Figure 6.19 shows the return map of the transmitted sigimeth no message is transmitted.
When CSK is implemented, however, to transmit digital ®iesnd 1 with parametédr of
Henon-3D switching between either 0.26 or 0.3, obvious branchini/lilsRbserved as

shown in Figure 6.20. Each of these branches corresporeithés O or 1 that is being
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transmitted. But, when the proposed method based on crgptogimplementing ICCS is
used for transmitting digital bits, the information is mevealed in the return map of the
transmitted signal as depicted in Figure 6.21. It can be &t the return map does not
necessarily change when binary message is transmittecelgyrdposed method. RM in
Figure 6.21 is very similar to RM in Figure 6.19, however Figure &2t dirty due to
the presence of fake maxima and minima induced by small chamgés transmitted

signal for the proposed method.

Figure 6.19: Return map of the transmitted signal when no messtag@nsmitted.
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Figure 6.21: Return map of the transmitted signal when messagasmitted using the

proposed method based on cryptography using ICCS.
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6.3 Hardwar e Realization

In this section, the realization of the proposed dissgétem in DSP board is presented.
The DSP is preferred over analogue components because spiate, flexibility and ease
of use. In effect, in analogue circuits, small changenéndesign parameters may result in
the complete rewiring of the hard-wired analogue cirauktile the same change can be
achieved by changing few lines of code in ROM or EPROM ofti8@. Also, chaotic
systems are sensitive to slightest parametric mismateimel when implemented on
analogue electronic components, the temperature fluctgaéind parameter fluctuations
can cause significant system error and therefore eam rhajor issue for the performance
of the system. Furthermore, the practical implementatiothe system on the analogue
components can be hard to realize offering limited flexjbdind ultimately being costly.
Therefore, digital signal processing seems to be aldaitoption that will provide
flexibility in the design logic and with minimum effect eémperature and parameter

discrepancies.

Matlab/Simulink embedded IDE link [187] in combination with Texastdument (TI)
CCS is used for the rapid prototyping of the system. HeeeTMS320C6713 DSK DSP
board is used for the experimental verification of ph@posed method. TMS320C6713 is
capable of the floating point operation with clock spekd2b MHz [188]. Therefore, if
the system can be implemented on this board, it coulty dses realized successfully in
modern DSP board for high speed operations. For the idgiicand validation of the
results, output from the DSP board is imported back tohib& computer and the
performance is analysed. A comparison of the DSP outphtthét simulation output from
Matlab is done. In what follows, the details of thetlmel and implementation with few

outputs are described.
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6.3.1 Implementing ICCS for Secure Communication in DSP

Let us recall the block diagram of the proposed model inishtat be implemented which
Is shown in Figure 6.3. Here the discrete time scenariad&pted in the DSP. The
proposed method was validated using Matlab/Simulink earlier wtrotided the deep
insight on how the method works. For the practical implgaten, the Simulink model of
the proposed model is first converted into the C-languagehwwill in turn be used to

program the DSP board using the CCS.

The model is divided into two parts: the transmitter @artl the receiver part. The
Simulink model of the transmitter is shown in Figure 6.22. ifpait signal is encrypted
first using the encryption block. The keystream used has generated from the ICCS. It
can be seen that the transmitter T generates the drigingl svhich is then in turn fed into
the key generator block. The output from the transmitteckbls the transmitted signal.
The input signal is the messaggk) that has to be transmitted securely. Henk) is a

digital signal wherem(k) = 1 when bit 1 is present angk) = 0 when bit O is present.

136



' —
Inpt —pitieszage Transmitted Output
Encrypted = Encrypted

—] Heystream Diriving
Encryption _
Funycqi.;.n Transtitter T

30 Henon

{i] Cirivviniy Ky streaim [r———- Eeystream
Cutput

Key Generator A
30 Discrete Lorenz

Figure 6.22: Simulink model of the Transmitter implementing33&r secure
communicatios.

Figure 6.23 shows the Simulink block diagram of the recelrar simplicity, the received
signal is assumed to be free from any noises and irgades. In the receiver side the
ICCS has been performed also. The decrypted signal exthrected message. This method

has been explained in detail in the earlier section.
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Figure 6.23: Simulink model of the Receiver implementing IC&S&écure
communicatios.

The Simulink model is converted into assembly code for tMS320C6713 using
Simulink and the CCS. The real-time data exchange (RTIDK)is used to transfer data
from the DSP to the computer and vice-versa. The mess&yes fed into the DSP from
the host computer using the RTDX and then transmitted usengadheme given in Figure
6.22. The message is extracted using the model given in F&gRB The extracted
message is again fed back to the host computer where thgaigsom of the transmitted
message with the extracted message is done. The leaystrenerated at the transmitter
and the receiver side are also fed into the host compinere they are compared as well.
Finally, the transmitted signal and the extracted message both the DSP and Matlab
are employed are compared. The running of the model in thelid&fRl and the data
exchange is shown in the Figure 6.24 and Figure 6.25 for thanrtitser and the receiver

respectively.
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It should however be kept in mind that processing in the Madladb the DSP are

independent of each other. Just for the sake of compahstim,are shown in the same

setup. The errog between the transmitted signals generated by the Matththa DSP is

calculated by subtraction and is depicted in Figure 6.2f&ntbe seen that the error signal

Is equal to zero for all samples, therefore makingrtigementation of DSP board and the

Simulink model equivalent.
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Running on DSP

30 Dizcrete Laorenz Discrete
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Enciypted |—m{ Enzrvpted
— ]y Diiving it
Ercryption Tranzmitter T Sirulink_Transmitted_Output
Function 30 Henon
L pe{Driving Kepstream

Figure 6.24The simulink model of the DSP implementation of the tratisr
implementing ICCS.
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Figure 6.25The simulink model of the DSP implementation of the rerei
implementing ICCS.

Figure 6.27 shows the transmitted signahat has been generated using the DSP board.
The signaly; is the input signal for the receiver. At the receiestimate of the keystream

is obtained. The synchronization error sigreal of the keystream generated at the
transmitter and the receiver using the DSP is shown in F@@8& It can be seen that the
error converges rapidly to zero after some initial @as) which is the time taken for

synchronization. Next let us see the message extragtiah is depicted in Figure 6.29, in
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the receiver, after the keystream is obtained. It caseba that the after some samples that
is taken for synchronization, the message is extracteddcpyg. Finally, let us see the
comparison between the messages extracted when implenoeng&chulink and on DSP
board. Figure 6.30 demonstrates the error sigpalhich is calculated by subtracting
Matlab output with the DSP output. It can be seen that emearly equal to zero for all
samples. Therefore, this provides sufficient evidence G&S based secure chaotic
communication can successfully be implemented in the B8P has floating point

operations capabilities.
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Figure 6.26Error signale, between the DSP and the Matlab generated transmitted signal.
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Figure 6.27 Transmitted signaj}; generated from the DSP board.
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Figure 6.28Key stream synchronization error generated at the traesraitt receiver
side using DSP.
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Figure 6.29 Successful extraction of the message signal using thebD&#.
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Figure 6.30Error signale, between the DSP and Matlab outputs against the number of

samples.

6.4 Summary

In this chapter, the ICCS has been utilized to proposeva ghaotic communication
method based on cryptography that is implemented botlotnoous time and discrete
time context. This proposed method was different from prtesvmethods available in the
literature because it used keystream generated from tvaticlescillators at transmitter
and receiver side that are indirectly coupled with eattier. ICCS allowed to generate
same keystream at the transmitter and the receider. Jihe transmitted signal was
generated from a different chaotic oscillator from the ktegsn generating oscillator. The
keystream is not part of the transmitted signal theeetiee dynamics of the keystream and
the keystream generating oscillator is always hidden frbenimtruders. Without the
knowledge of the valid keystream, the intruders will notabke to extract the message
signal ensuring secure transmission of message sigraintmuous time, the method was
implemented using Lorenz and Chua’s system while in discrete time, 3D-Henon map and

discrete Lorenz map is used. Simulation results vdriflee validity of the proposed
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method to successfully extract the transmitted messagal siging the authentic receiver.
Therefore, the use of ICCS successfully allowed us tdeimgnt secure communication
system using chaotic systems. Next, the realizatioth@fproposed ICCS based secure
chaotic communication method is achieved in TMS320C6713 DSK D&fd.dairst of all,
the Simulation model of the proposed technique was desigiediransmitter and the
receiver model were implemented independently. The medsape transmitted was
loaded into the DSP board from the host computer by using RTDK then the
transmitted signal was generated. Furthermore, the traadnsignal was imported into
the host computer. Next, the receiver model was implemevitere the transmitted signal
was loaded and then the message extraction was perfd@megbarison of the transmitted
signal and message output was done when DSP and Matlab were heseésuits showed
that the results obtained when DSP was implemented wersstaidentical to what was
achieved from Matlab implementation. This was due thetfat both Matlab and DSP
operation operated at the same floating point precidibis indicates that the proposed
chaotic communication method can successfully be impledeon the DSP board that

has capability of doing floating point operations.
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Chapter 7 Modified Chaotic Shift Keying
Method Using Indirect Coupled

Chaotic Synchronization

7.1 | ntr oductions

The problem with CSK method is that the value of theapeter had to be switched
between two values when 0 and 1 is to be transmitted. Dinereifere will be an imminent
pattern in the transmitter output signal that hasitifiermation regarding the message
signal. Hence, recovering bits for the intruders can singphpunt to a classification
problem which can easily be done by methods such as RM, &iNtherefore message
signal could be extracted only by analysing the transmngignal without knowing the
dynamics and structure of the transmitter chaotic systaiss. GS can be used to break
the CSK method. The method of CSK and its vulnerabilitedifferent attack methods
were discussed in the Chapter 2 of this thesis. In tlapteh we will use the concept of
ICCS proposed earlier to modify the CSK method to imerthe security of it such that

the attack methods in questions become futile.

In the literatures, different researchers have propesedus countermeasures for resisting
the attack based on RM. In [134], a periodic signal omlined with one state of the
transmitter to modulate the transmitted signal so dduilothe reconstructeBM in order

to frustrate the attacker. Howevérwas soon broken in the work described in [135, 166,
167] by distinguishing the phase and angular frequency gfehedic modulating signal
and then removing. A modified scheme of the original method of [134] was pseploin

[135] to further improve its security. However, the work naared in [168], this modified
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modulating scheme is still not secure enough and thatntthlating signal can still be

effectively removed via parameters estimation.

Few more works to modify the CSK method and increase ttwerigeare proposed in
[136, 169] where the authors have claimed that the informagigarding the bit will not
be present on the RM of the transmitted signal. In [1%@) new countermeasures were
proposed and combined to enhance the security of CSK agdlihsattacks The first

countermeasure is to increase the number of striggeiRM by modulating the parameter

B, between & different values: g,,, f,,,....5,, corresponding to bit value 0 and
Bias Broi--PBy, COrresponding to bit value 1. It was claimed that thenchks to make

wrong assignments becor(®" — 2)®— 1 ~ 2% and that the security agair@M attacks is
dramatically enhanced even whem is not too large [109, 169]. The second
countermeasure is to alternatively use two states ofrémsmitter as output, i.e., as the
driving signal to allow the receiver system to syncteemnith the transmitter, which will
further split the constructed return map into two pastsesponding with each states [169]
However, the cryptanalysis work done later in [109] showetdthigasecurity estimated for
the first countermeasure was over-estimated and the patidn of two countermeasures
can easily be separated. This proved that the work propogdd9nh is still vulnerable

against the known attack methods.

In [136], another variation to the CSK method is proposkdre the parametef, was

not only switched between two values according to the #&ities, but some more
additional random switches are introduced to confuse a p@ssiibuder. However, in
[144], it is shown that when the RM of the transmitted &ignsing this method, is

zoomed, there still existed close but distinct branching.
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In this work, an effort is made to modify the existingkC method to strengthen the
security by removing any pattern that will be imminent in tlamgmitted chaotic signal

due to switching of binary values in CSK method.

7.2 Proposed M odified CSK M ethod for Secure Communication

In this section the ICCS proven in the previous Chaptercton 5.2.1.1 is employed for
proposing a new improved CSK scheme for secure dig@aimunication. Using the
ICCS, same keystream is generated at the transmitddharreceiver side. This keystream
in turn will be used to encrypt the binary message to benwtied. Two methods are

proposed by which CSK can be modified to improve the sgcurit

7.2.1 Modified CSK Method 1

Consider the following system as to be used as a trapsmitt

X: f(X, yl’ﬁm)
(T): Y, = gl(x) (7.1)
Y, = 9,(X),

B.. is the parameter value given as:

5 z{ﬂo = pB+e(Ok)if m=0

B =B +e(p,k)if m=1. (7.2)

whereeg(.) is an encryption algorithmp is a scalar constant amdis the keystream for
performing encryption. The output af(z,k) is such that it falls within interval ; h]

whereh is an encryption parameter. Therefore, we will awagge —h+ < S, <h+ .

With the proper choice df, it can be ensured thgt , always falls within the range such
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that system (7.1) is chaotig, is the transmitted signal for synchronization to #eeiver

(R).
(R)Aii=f(Xypﬁm 7.3
¥, =9,(%),
where
B = By = B+e(0K). (7.4

Here also-h+ < ,Bm <h+ £ . Now according to Remark 1 in section 5.2.1.1, we have a
slightly perturbed systems when 1 is transmitted therefeygchronization is achieved, it

can be concluded that 0 is transmitted otherwise 1 isnittesl. The keystreamis and k

are generated using ICCS and the systems for generatimgatie defined as:

(Ay{u=pan»)

k=q(u)

- p(@.9,) (79
@r{ NG

k =q(0).

The systems defined by Eqgs. (7.4) and (7.5) are drivery,bnnd y, respectively to

perform ICCS. It should be noted thgt and y, are not always equal since the parameter

B, in the transmitter and’}m in the receiver are varying differently depending on the

transmitted bits. In the transmitter, it is changirmgaading to both binary values; but in
the receiver, it is changing only due to the binary valuéedefore will be useful for
message recovery since we will have a slightly perturbsteisy as was pointed in the

remark 1 of the proof in chapter 5.
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The main disadvantage of the CSK method was that ibfeeid switching based on one
parameter, into two values. Therefore, when O was todmsrtritted one parameter was
used and when 1 was to be transmitted, another value sgds Therefore, the change in
parameter could easily be detected by pattern recognitionitafgerand by GS. In this

proposed method, the switching is not happening between two vaddast the parameter
is such thath+p< . <h+pf, ie. it is switching between a range with infinite

possibility. Therefore, it will not leave any patterrityie output transmitted signal.

The proposed method is shown in the Figure 7.1.

Oorl

0 1 >\ /‘
\ 0
v f 1 |
: Chaotic Chaotic Encryption
—> Encryption —| Transmitter (T) » Channel » Receiver (R | Block <
Block y1 Y1 B
B Y ,Bm 'BO A
key R key
Vs V2
v v
Chaotic  Key Chaotic Key
Generator (A) Generator (B

Figure 7.1: Block diagram for the proposed modified CSK method

Note: The form of the systems taken in (7.03.3) and (7.5) that are used to define the
proposed method implementing ICCS are of the saorma fas taken for proving ICCS in

(5.3) and (5.4) in Chapter. 3his means that the ICCS could be employed inptloposed

method.
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7.2.2 Modified CSK Method 2

The CSK method proposed in method 1 can be varied by angrty the parameter of the
system but by directly including the encrypted message inobtiee state such that the
attractor is changed directly at the phase space. This chetimobe written mathematically

as follows:

x=f(xy,,p)+Ben,,k)
(M) y2=0,(¥)

Yo = 9,(X),
(7.6)

A

(R) ;{ = f (%, 8)+Be(0.k)
Y, = 92()2)

Heren,, is O or p depending on either message is 0 or 1 and B is a m&@appoopriate

dimension. The keystreain and k are generated using ICCS as shown in method 1. This

method is depicted in Figure 7.2.

Oor
0 1 \ 7
\ 0
<> T l
: Chaotic Chaotic <«—— | Encryption
Encryption| —p . > ol > .
Block p | Transmitter (M) o Channel " > Receiver (R:ﬁ Block
N e ,k' e(O, E) *
! key (k) K key
Y2 V2
{V \ 4
Chaotic  Key Chaotic Key
Generator (A) Generator (B

Figure 7.2: Block diagram for the proposed modified CSK meghod
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7.3 Implementation using Lorenz and Chua’s system

Now the proposed both methods will be implemented using thenk@nd Chua system.
Lorenz system will be implemented as the transmitigr gnd receiver (R) while the
Chua’s system is implemented as the key generators (A) and (B). The encryption function
e(.) to be used in the proposed design is chosen to-deft cipher algorithm as used
earlier. To recall,

&(z,k) = f,(...f,(f,(z,k),k),..k) (7.7)

n n

where f,(zk) is given as:

(z+k)+2h, -2h<(z+k)<-h
f,(z,k) =< (z+K), -h<(z+k)<h (7.8)
(z+k)—2h, h<(z+k)<2h

andh is the encryption parameter.

731 Implementation Method 1
The Lorenz system acting as transmitter is given as:

X, =—0X +0%,

Xz = _20y1X3 +ry; — X,

(T) 19 %3 =5Yy;X, — B, X, (7.9)
Yi=X
Yo = Xy,

where parametepf},, modulates the binary message signal in the same masgérea in
(7.2).
The keystream is generated using the Chua’s system and is driven by signal y, generated

in (7.9)
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U, = a(u, —u, —o(Y,))

u,=vY,—u,—u
(A): .Z_yz 2 (7.10!
u3——a12—7u3

k=dyu,,

wheredy is a scaling factor such thit) lie within the interval {h, h]. Note that here the

signal y, is injected in the nonlinearity(y,) of the Chua’s system which is given as:

o(y,) = Gay2+0'5(Ga_Gb)qy2+]l_|y2 _]l) (7.11)
The receiver is given as:
% = -0 % + 0%,
);(2 =20y, %3 +1y; — %,

X3 =9y X, — BoXs
Yo = X5,

R): (7.12

The parameteg, is given in (7.4) and is generated using Chua’s system synchronizing

with (7.10) and is given as:

(B): (7.13

Eq. (7.13) is driven byy, such that (A) and (B) synchronize with each other fognan

indirect coupling. The non linearity here will then be

Y, — ]l) (7.14)

o(¥,) =G, ¥, + O'S(Ga _Gb)qyz +]l_

In order to show that the systems (7(3)10) (7.12) and (7.13) synchronize respectively
as described in Section 5.2.1.1 of Chapter 5, the assumm@tip, A2), A3) and A4) made

should be shown to be valid for the systems (7/R)0) (7.12) and (7.13)
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Al): For the transmitter and receiver defined by Lorenzesysh (7.9) and (7.12), the

matrix A can be written as:

-0, O 0
A= 0 -1 -20y,
0 Sy, -8

It can be shown that for the following choice of SPDrioas R and Q

, 0 0 20, -o, O
P=/01, 0|andQ,=|-d, 2, 0 |,
0 0 I, 0 0 24,

with 1,1, l;,0,6,r >0,1, =—%1, and0<I, <Zl,, equation (7.15) holds true.

ATPl + PlA = _Ql < _j’min (Q1)|1' (7'15}

Here 4.,

(Q,) > 0 is the smallest eigenvalue of the matrixa@d 11 is an identity matrix.

Therefore assumption Al) holds true.

A2) For the keystream generating oscillator defined by Chsizm defined in (7.10) and

(7.13), the matrix F can be written as:

-a « 0
F=| 0 -1 -1
0 -6 -y

It can be shown that for the following choice of SPDrivas Band Q

I, 0 0 2o, —a, O
P,=[0 I, O|andQ,=|-a, 1. 0 |
0 0 I, 0 0 2,

with I, l5,lg,a>0,0<0,7>0l; =-d,; and0<I, <2l; , equation (7.16) holds true.
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F P, +PF=-Q, <-4, (Q,)!.. (7.16)
Here 4., (Q,) > 0 is the smallest eigenvalue of the matrixa@d | is an identity matrix.

Therefore assumption A2) holds true.

A3) The Jacobian of the functiom for the system defined in (7.10) and (7.13) can be

written as:
op(y)
opy) _ 1ay
oy 0 (7.17)
op(y) op(z,y) <M

Now since the functionp(y)is of the class € the T is bounded, i.e

thus proving assumptions A3).

A4) In (7.9) and (7.12), the functiol, (x) is a linear function and therefore Lipschitz

continuous, hence the assumption A4) will hold true.

7.3.2 Implementation Method 2

Method 2 is quite similar to method 1, the only differeneindp that the encrypted
message is included in one of the states rather than olgahgi chaotic system parameter.

(T) and (R) can now be written as

X =—0% + 0%,
(T):9%, =20y, %, + 1y, — X,

Xy = 5Y1X, — X, +€(17,,, K),
§1 =—0.% + 0%

(R):{%, = —20y,%;, +1y, — %,
X, = By, %, — %, +€(0,K),

(7.18)

with everything else remaining the same as in method I.
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7.4 Simulation Results

Systems (7.9X7.10) (7.12), (7.13) and (7.18) are simulated using Matlab/Simulink for the
transmission of randomly generated digital bits. The=tgffit values used for the systems
are taken as

o,=16,r=456,8=4.2,p =0.1,h=0.22=10,5=-14.87,y=0, d, = 0.05

andn for cipher shift algorithm is taken as 30.

7411 Method 1 results

Figure 7.3 shows the randomly generated binary message wigmalransmitted. Figure
7.4 shows the scatter plot of the switching paramgterencrypted by the algorithm

mentioned in (7.7) using the keystre&nshown in Figure 7.5. It can be seen that the
switching parameter is varying between the ranges 4 to 4.4witharticular order. Now,
one question that might arise is with this variatibparameter in the system (7.9), will the
system still remain in the chaotic regime. The anssvprovided by the strange attractor of
the system (7.9) depicted in Figure 7.6. It can clearly ba H&at the shape of the attractor
is still preserved and is same as the standard Loreractatt Therefore, even with the
implementation of the proposed method, the inherent chaobperty of the Lorenz
system will not be compromised. Finally, the transmittephad, i.e. output from the
Lorenz oscillator (7.9) is shown in Figure 7.7 which isdigmal transmitted to the receiver

through the public channel.
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Figure 7.3: Randomly generated bits to be transmitted.
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Figure 7.4: The switching paramefgwarying within the range of 4 to 4.4.
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Figure 7.5: Keystream generated at the transmitter.
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Figure 7.6: Strange attractor of the Lorenz system (7.9).
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Transmitted signal
o

'3 C | | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

Time (s)

Figure 7.7: Output from the transmitter (T) i.e. transmittkaotic signal.

Now at the receiver side, upon receiving the transmitted sigyalchronization is
performed. First let us see how the switching parameterkagdtream differ in the
receiver side with their counterpart in the transmitige svhich are shown in Figure 7.8
Figure 7.9. Note, the difference for the time intervaéwibit 1 and 0 is transmitted. When
0 is transmitted, the switching parameter will be samegthiee synchronization between
(T) and (R) is achieved, which means same driving signald@sS, consequently same
keystream, and again same switching parameter. This is smnnef vicious cycle. But in
simple terms, when 0 is transmitted, key generated answtitehing parameter are equal

that means both (T) and (R) synchronize with each other.

But when 1 is transmitted, the scenario changes howewethel transmitter side, the
parameter is being switched due to the encrypted valuesponmding to 1. But in the
receiver side, the value to be encrypted is always tunéd thierefore, the parameter is

being switched due to the encrypted value corresponding to oWt similar arguments
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as before, when 1 is transmitted key generated and switchiaghgiers are different in

the transmitter and receiver side implying the synchronizatioor in (T) and (R).

This means that the binary message signal that has bm®smitted can successfully
recovered by examining the synchronization error that wiiteXdetween (T) and (R). The
successful message extraction is shown in Figure 7.10rewteere exists obvious
synchronization error when 1 is transmitted while the erapidly approaches to zero

when 0 is transmitted.
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0.1 |

Switching parameter error at Tx and Rx
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Figure 7.8: Error between the switching parameter used attigriitter and receiver.
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Figure 7.10: Synchronization error between the transmittereaeiver to recover the
transmitted message.

160



7412 Method 2 results

Figure 7.11 shows the random binary message that has tonbmittad securely. Figure

7.12 shows the scatter plot of the encrypted inclusion peamorresponding to bit value
that uses the encryption algorithm given in (7.7) and keystkeas shown in Figure 7.13

Here again, there is no apparent order in which the inelysarameter value is changing.
Here again, the analysis of the chaoticity of theebar system after implementing the
proposed method 2 is done. For this, the strange attractploited for the Lorenz

transmitter and is shown in Figure 7.14 and is same attifaetor of the standard Lorenz
system. Therefore, with the implementation of thehmét2, even when one time varying
inclusion parameter is added to one of the states dfdrenz system, for implementing
CSK, chaotic property of it is maintained. Finally, Figurg&57shows the resulting output

signal that has to be transmitted.
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Figure 7.11: Randomly generated bits to be transmitted.
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Figure 7.12: The inclusion parametarying within the range of -0.2 to 0.2.
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Figure 7.13: Keystream generated at the transmitter.
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Figure 7.14: Strange attractor of the Lorenz system used aanisenitter.
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Figure 7.15: Output from the transmitter (T) i.e. transmittegbtic signal.
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Now at the receiver side, upon receiving the transmittedakiggnchronization is

performed, keystream is regenerated and inclusion paraisetiso produced. Depending
on which bit value is transmitted, we will get error in thelusion parameter and also in
the keystream generated. Same reasoning mentionedeftiot¥1 is valid in this case as
well. Figure 7.16 shows the error in the inclusion paramebde Figure 7.17 shows the
synchronization error in the generation of the keystrefainally, Figure 7.18 shows the
synchronization error between (T) and (R) which shows sggmfi error when 1 is

transmitted while error converges rapidly to zero when @aisstnitted, thus successfully

recovering the message.
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Figure 7.16: Error between the inclusion parameter used aatismnitter and receiver.
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Figure 7.18: Synchronization error between the transmittereaeiver to recover the
transmitted message.
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7.5 Security Analysis

In this section, security analysis of the both proposetheds using the most common
decryption attack will be done. Not all of the attack methadspassible to be taken into
consideration. HoweveRM being the common and the most powerful decryption method
for attacking CSK, it is used here in this work. RM s#&&s extraction of bits as a
classification problem. In fact, extraction of eitlfieor 1 from the transmitted signal is a
classification problem which is how digital equalizatioraiso performed [181] in digital
communication. Other pattern classification tools cap &k studied; however, if there is
no pattern to classify for one method (RM in this caseyjll generally imply that it will

be valid for the remaining tools.

The method proposed here has improved the security of3Ket€thnique. The use of the

keystream, generated by ICCS at the transmitter and tleveec will generate the
parameter 8, (or inclusion parameter) of different values, in fadinite possibilities

within a boundary. The keystream generated is not paheotfransmitted signal therefore
there is no way that the intruders will be able to geratdrom only the knowledge of the

transmitted carrier signal. Without the knowledge of kbgstream, it will be impossible
for the intruders to find the change in the paramﬁgr(or the inclusion parameter) in the

receiver to perform synchronization/desynchronization ftnaeking the bits.

Figure 7.19 and Figure 7.20 shows the return maps of the tregdrmsignal that is
generated using proposed method 1 and 2. It can clearlybelst RM of the transmitted
signal does not change according to the bit values being Baattherefore will remove
the possibility of seeing extraction of the bits as agifecation problem. Therefore, by
implementing the proposed methods a secure communicationbearealized. For
comparison, the RM of the transmitted signal is plottedm@SK is not implemented, i.e.
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when the transmitted bits does not modulate the paranfdtex tansmitter. It can be seen
in Figure 7.21 that the RM is similar as in Figure 7.19 and Figu2@ concluding that the
proposed method does not necessarily chang&kteof the transmitted carrier chaotic

signal. Even when the return map is zoomed in, the R&4 dot split.

Brute force attacks also will not be valid because of éingel key space to choose from.
Switch detection that detect the discontinuities tef first derivative of the transmitted
signal to reveal the transmitted bits will also not beoavimcing option because the
encryption rule will generate range of values in thenrdl [-h, h] thus bringing about
infinite levels of switching. Exhaustive cryptanalysis swash known plaintext attack,

known ciphertext attack, etc may be done as part of theefutark of this research.
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Figure 7.19Return map of the transmitted carrier signal using method 1.
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7.6 Summary

In this chapter, improved CSK method was proposed to tradsgitial bits securely. This
new method was suggested using the ICCS where the generasteb&eywas used to
encrypt the switching parameter that modulated the digitsl Two different variations of
the methods were proposed. The method proposed was impéeinesing Lorenz and
Chua’s system and the simulation results confirmed the possibility of exirar the
transmitted message signal. Further, the security asay®oth methods was performed
and the RM of the transmitted signal was shown for botthoaks. It was seen that no
information regarding the message was revealed in RM uinlikaditional CSK or other
modified CSK methods, available in the literature, giving pnoposed method distinct

advantage to the existing techniques.
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Chapter 8 Digitization of Chaotic Signals:

Application in Non-ldeal Channels

8.1 | ntr oductions

Chaotic communication has promised a lot in secure conuaiom and there is still a
great scope for it to be implemented for security purpesen though many attack
methods are proposed. The existing methods can be modifiesken in earlier chapters,
and more new methods will be devised gradually eventually. Henwem order to

implement chaotic carriers for security purpose in real enmient, channel noise and
channel model have to be considered as well. Synchronizagtimods for reducing the
effect of noise have been proposed in the literatures dsg [182-184]) but they were
mainly concentrated on either spread spectrum applicatoms CSK methods or only
focussed on synchronization issues. Also, the majoritghef chaotic communication
methods proposed do not complement with the existingatliggmmunication schemes
but requires to be implemented differently thus leadingammllel development of error
correction, equalisation, and dispersion compensatibenses. Therefore, it would be
logical and a step forward move if future developmenthaotic communication systems
can be built on the existing technologies where the @aitichaotic signals will provide

advantages of security while the existing digital commuiminabuilding blocks will be

utilized for all other aspects of communication.

In this chapter, we propose a method where the chaotiercaontaining the message
signals are first digitized and converted into binary dajaesgces. These binary sequences

are transmitted using the conventional digital communiodtiks. At the receiving end,
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the digital sequence is regenerated using existing teahnelbere the error correction,
equalisation and dispersion compensation can readily Heeépphe recovered chaotic
signal can be used for chaotic synchronization and aiireof the actual hidden message
signal. In this method, it is shown that message regasgrossible with a high degreé o
accuracy at moderate SNR of 14 dB even when the BER ishigdty The SNR required to
recover the message can further be reduced by implahingrtor correction codes and
digital signal processing tools which are already wedildshed in digital communication.
The security issues are not taken into consideratiotinighstudy and a simple chaotic
masking is used to demonstrate the concept of digdgizaHowever, other methods can
easily be implemented using the same concept. The ideashtershow the potential of the

method of digitization.

8.2 Digitization of Chaotic Signals
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Figure 8.1: Block diagram of the proposed chaotic commuaitatistem using
digitization.
The schematic block diagram of the proposed systenowsrsin the Figure 8.1. Assuming
a band limited chaotic signal and provided the sampling sdtgher than the Nyquist rate
the continuous chaotic signglk) can be represented in discrete forivay(t) is converted

into a digital format with uniform sampling before beingit@illy encoded. Assuming the
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Discrete Memoryless Source (DMS), the simplest engodaheme of fixed length code
word of n-bits per sample is used for representing the binary diBiféerent coding
techniques (i.e. Pulse Code Modulation (PCM), Diffae¢rieCM (DPCM), adaptive
PCM, delta modulation) could be applied to reduce the québotizarror and hence
improve the performance. In this work, PCM with uniform quatiin level is used.
Investigating the systems performance using other codampispies could be a subject of
further study. Simple baseband modulation technique of Ok&yfhg (OOK) with 100%

duty cycle is used for the digital transmission.

The channeh(t) is assumed to be Additive White Gaussian (AWG). At rieeiver a
matched filter followed by a sampler and a threshold detectoused to regenerated the
binary sequencE. The binary sequence is converted back into analogue ctsigtial
using D/A. A chaotic receiver can be used for chaotic symeration and to recover the
original message signal. Any existing method at chaot&iveccan be used for achieving

synchronization.

Converting the chaos signal into a digital format Has advantages of being able to
transmit it through existing communications links wired dreless (radio or optical)
taking advantage of the existing infrastructure. Problemsudimodg noise, multipath
induced distortion and dispersion, and fading can readily lét dath in the digital
domain. For example, it is rather complicated and ehglhg to design equalizing filters
for chaotic communications since it has a broad spectrioweMer, with digitization of
chaotic signal this is no longer a major problem. One &dyantage of the proposed
system is the perfect reconstruction of the chaotinadiat the receiver having been
propagated through a real channel. The metric for compathagperformance and
measuring the reliability of digital communication systés the bit error rate (BER). In

this chapter, we study the performance of the communicatistem for different BER.
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Once the minimum BER require for message recovertgrseerror control coding, (e.g.
convolutional, turbo and a low parity density codes) carubed to improve the BER

performance and hence increase reliability [185]

It is to be noted that in the analysis of chaoticteys researchers generally tend to
consider the channel to be noise-free and non-disperdimwever, physical channels are
always noisy and may be dispersive. Nevertheless, watllifitization concept proposed,
the dispersion can simply be compensated by means of egsatizkiding like linear
equalizer, decision feedback equalizers and the more hecepbrted WT and ANN

based equalizer [186].

8.3 Simulation Results and Discussions

Simulation of the proposed chaotic communication systsimg digitization is done using
the Matlab/Simulink. We have used the popular Lorenz sys&inas a chaotic oscillator
and the chaotic synchronization obtained is from aasglrive-response principle. The
masking method adopted includes the message ofsin(ot) with ® = 1 rad/sec and the
resulting output signal is sampled and quantized using arcéverter. The quantization
resolutionn is 6. The digital sequence in OOK format is transmittedugh the non-ideal
channel. The SNR is varied in order to achieve BER otmifit order. To accurately
estimate the message signal, the performance of shensys examined for over a range of

BER and a threshold BER is determined.

Figure 8.2 illustrates the synchronization between thergbd stater; and the transmitter
state x; when BER obtained is 10 The 4% line indicates perfect synchronization
illustrating that chaotic synchronization is still possiafter A/D and D/A conversion of

the chaotic carrier signal. One thing that should betpdiout is the signal used to drive
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the chaotic receiver for synchronization is obtained #fte channel noise had its effect on
the carrier. So, this means that without the need of atfyer complex method,

synchronization can easily be obtained if concept ofidaibn is employed.

Observer state 1
o

_4 1 1 1 1 1 1 1
-4 -3 -2 -1 0 1 2 3 4

Transmitter state 1

Figure 8.2: Synchronization between states used for maskiag BER is 16.

Now let us see how accurately the message is recovereal doven BER. Figure 8.3
depicts time waveforms for transmitted and recovered messignalm at a BER of 10.
Since, method of masking is used; the received quantizedicltarrier is subtracted to
obtain the message signal. Therefore, the quantizatiar because of A/D conversion
will have effect on message recovery. So, to reduceftbet @f quantization error an 8th
order low-pass Butterworth filter with a cut off frequgnaf 2 rads/sec is employed to
recover the message signal. For a reliable digitadnaconication link the optimum BER is
considered to be 10 We can see in Figure 8.3 that the perfect recoveryesisage is
possible at BER of 19 Figure 8.4 shows the recovered message time waveform at BER of

10°, 10" and 1. The proposed scheme is still able to extract the agessignal with
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reasonable quality at BER of 10However, there is some distortion for higher values of
BER (i.e.10°). These results demonstrate the potential of this sclien®ER of < 10*
over noisy channel condition. The proposed system cadilyebe implemented using
existing commercial components. To further increase thénpeance of the system,
guantization error can be reduced using DPCM scheme, oradkanced source coding,

which can be subject of further study.
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Figure 8.3: Transmitted and recovered message at BER 10
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Figure 8.4: Recovered message at different BERSs.

8.4 Summary

It is quite a known fact that chaotic signals haeteof potential to be utilized for secure
communication however the real environment and channeld tmigig on the problem of
dispersion and interferences due to noise. Equalisagehniques, error correction
techniques have to be realized for chaotic communicatigrhds to be implemented in
practical applications. However, the development of digitmhmunication and all the
tools that are available can be utilized in chaotic comaatioin without the need of
parallel development. In this chapter, a method basedigitization of chaotic signals
acting as a transmitted carrier signal is proposed. I$ wlaown that the chaotic
synchronization and thus message recovery was possibieefER as low as 10and

moderate SNR of 14 dB. This meant that the idea of dagitin can be implemented.

Simple baseband modulation technique of OOK with 100% duty oyele used to
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transmit the digitally encoded bits; however other teclesgean easily be implemented.
Also, simple masking method was used to mix message sigtimathei chaotic carrier for
simplicity to demonstrate the concept of digitizatibat other form of methods enhancing

the security can easily be implemented as well.
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Chapter 9 Conclusionsand Future Works

9.1 Conclusions

The objective of this research was to explore technitjuegploit the properties of chaotic
signals to implement secure communication. The faelsdireotic signals were aperiodic,
broadband and sensitive to initial conditions/parametessnaiches were important for
them to be utilized in security. Therefore the chaoticapeters acted some sort of
hardware key and hence same dynamical system was necesdhey transmitter and the
receiver with proper chaotic synchronization techniqueBef@nt techniques exist in the
literature to implement secure chaotic analog based coimation such as chaotic
masking, modulation, inclusion or CSK methods. However, falh@se methods suffered
from various disadvantages mainly being vulnerable to difteattack methods to extract
the hidden message even when the intruders where not afvelte dynamics of the
chaotic transmitter system. The attack methods weredbaseNLD methods, power
filtering methods, pattern classification methods sucRMsor ANN, etc. Various other
modifications for these methods and some other nesatiniques could also be found in
the literature, however all suffered again from similaués. Therefore, there is a real
incentive to exploit the chaotic signals in such a Wt it thwarted existing attack
methods. In this research, various different methods wevisited and the possible

improvements in them were pointed out.

In Chapter 3 it was found that the Proportional Integkseover is a better choice for
obtaining chaotic synchronization. When the performamdmth P and Pl observer were

done for the combinational masking + inclusion method, & Yeaind that Pl observer
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showed better resilient to the noise and better messageergcTherefore, Pl observer is

better suited for performing chaotic synchronization.

One of the main aims of this research was to find a methad will allow secure
transmission of the message such that the intruddr&iot be successful to extract the
message without the legible receiver. In Chapter 4,adast chaotic masking technique
was proposed and it was found that when two equal powered cbigotds were added to
each other and message was modulated in it, then itcachdglexity to the transmitted
signal thus making NLD method more or less ineffective. Hewat should be noted that
by using cascaded chaotic structures, the dimension ditfenical system was increased
fromn to 2n, 3 to 6 in case of Lorenz implementation, so for mogidanough users, they
might be able to crack the system from the methodswbed used to attack hyperchaotic
systems. Even though, the no attack methods are repettéol jreak cascaded structures,

more possibilities were still needed to be explored.

In Chapter 5 a new type of chaotic synchronization techraogilled ICCS was proposed.
ICCS is a unique type of synchronization technique where th@sailators were not uni
directionally coupled, i.e. the output of one oscillateas not used for driving another
chaotic oscillator, and instead both were being driven indepéydeom the output that
was originating from two different chaotic oscillators.eTICCS was very useful because
the output from these indirectly coupled chaotic ogoitwere used as keystream in the
transmitter and receiver side, without the need for it gt transmitted in the
communication channel. This has a major advantage, siadatruders will not be able to
estimate the keystream being used for encryption purposqslysiny having the
transmitted signal available. The application of this wasedia Chapter 6 and 7 where

existing communication schemes were modified to proposeeecethods. The security
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analysis performed showed that the methods proposed were isee@d and popular
attack methods were not able to extract the transmittedagessgnal. It was seen that
NLD based forecasting method will not be feasible for th@@sed method implementing
ICCS, since the dynamics of the keystream generatonutase present in the transmitted
signal, hence without knowing the keystream, even if titeuders got hold of the

encrypted message, message extraction was not be poShibleractical realization of the
proposed system done in the DSP board (TMS320C6713 DSK) showebetlmbposed

method is feasible to implement practically in real time

Along with the investigation for increasing the securityndamental aspects of
communication like combating noise and dispersion/fadifertes plays a vital role in the

performance of the method. Already much advancement beasm made in digital

communication with different methods available for eworrection codes and dispersion
compensation. Therefore, it will be wise to use all ehesisting methods while chaotic
signals adding the security layer to the communicatiaméwork. Hence, a concept of
digitization was proposed in Chapter 8. The proposed med#hesd the advantage of using
the existing tools available in digital domain on the digiti chaotic signals to combat the
noise and channel model. The simulation results shoveeddatiormance of the method to
successfully recover the message signal at a mod&kiReof 14 dB. The system was able
to recover the message at BER up td".10he BER could easily be improved by using

error control codes and equalization techniques already blieaifadigital domain.

9.2 Future Works

Though extensive work had been carried out for implementiagte signals for secure

communication, it is very essential to provide a digtfurther works that is necessary to
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make the system more efficient and effective. A nundfeencouraging methods were

proposed however there might be needed to perform sorherfimtzestigation.

One of the key points was in the implementation of tle¢hods that were proposed in the
research. In most of the cases, the message signalals used to be transmitted was very
low frequency signal. Therefore, further investigatiomtodify the proposed method to be
used to support higher bandwidth is necessary. This resealgtocused n developing
newer ideas for implementing chaotic signals for secarentunication, so further works

can be made in this aspect.

The implementation of the method was done igasg using Lorenz and Chua’s system
therefore, the performance of the methods in othestzhaystems, preferably higher order
systems, or time delay systems, can also be done in tord@prove the security further.
Moreover, other sophisticated encryption algorithms inste&djust n-shift cipher

algorithm can be investigated for enhancing the security.

The proposed discrete method in Chapter 6 was implememte®® board as shown in
the same chapter. The implementation was just a protofyfree model and was done to
show that actually the proposed method is realizable in D@RIb®he message signal
and transmitted signal were analysed using RTDX in the computg, therefore, a full

communication setup can be implemented as part of theefwtork to transmit real time

electrical signal.

The system performance and comparison of the digdizabncept proposed in Chapter 8
using other source coding techniques like delta modulation, DP@Maatalso be done.
First implementation of a simple equalizer to showpbiential of digitization concept can

be performed after which more complex equalization metbadslso be looked into.
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All of the methods proposed in the research were contedtran radio frequency
implementation though the methods can also be easily adaptgotical based chaotic
systems. Since the ICCS was proven mathematically fotass of chaotic systems,
implementation of ICCS in optical domain is theoreticalossible. Therefore, the

application of the proposed method in optical domain aWitiy practical applications can

be a subject for further research.
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Appendix A

In this appendix, few definitions and theorems hsted that will be useful to understand

some of the mathematical notion used in the thesis.

Stability of Dynamical Systems

The very first concept considered when studying a dyndsyséem is the stability of its

equilibrium poings).
Definition 1. Equilibrium point: A point X, is said to be an equilibrium point or a fixed

point for the systenx = f(t,x(t)) if x, satisfies

0= f(t,x,)
In other words, if the system is initialised at xxg, the solution will stay there for all

future times.

The stability of a system is concerned with its behawar its equilibrium poitis). This
intuitive idea is actually very complex for non-lineadaime-delay systems in particular.
Consequently, a large variety of definitions have been expowhich differ in very
subtle ways. The main objective of the theory of stahidityo be able to draw conclusions
on the system behaviour without actually calculating itst&m.

Now let us have some of the definitions mentioned in tteealiures most importantly:
Lyapunov stability, asymptotic stability, uniform stability, aaxponential stability.
Consider the general autonomous nonlinear system

x = f(t,x(t)), t>0; x(0)=x, (A1)

where f : R"xR"™ —R" is continuous. Sincef is continuous, we are assuming that

the above system has a unigue solution corresponding tong&dircondition. This is true,

in particular, if f is a global Lipschitz function. Note thdt is global Lipschitz if there

exist finite positive constanfs andk, such that
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| x)-f(t,y)<K|x-y], vx,yeR", vte[0,T]. (A2)

A function satisfying the Lipschitz condition (A2) isid&o be Lipschitz continuous, and is
continuously differentiable.

Recall also that a state, e R" is an equilibrium point for system (A1) if (t,x,)=0,
Vvt >0. In what follows, we shall assumeathx, is an equilibrium point for system (A1)
We also denote by(t,t,,%,), the solution of (Al) at time instamtcorresponding to the

initial condition x, = x(t,,ty, X,)-

Definition 2. Lyapunov stability: The equilibrium poink, of system(Al) is stable or
Lyapunov stable if for alk > 0, there existsd(e,t,) > 0 such that
%0 = X, < 5(e,te) =[xt to, %) — X, < & VE =t

On the other hand, the equilibrium poixt is unstable ifx, is not Lyapunov stable.

Definition 3. Uniform stability: The equilibrium pointx, of system(Al) is uniformly
Lyapunov stable if for alk > 0, there existsd(¢) > 0 such that

% =%, < 5(&) = [x(t,te, %) — %] < & Vt >t
Equivalently, whens depends only om, the equilibrium pointx, is said to beuniformly
stable
Lyapunov stability does not guarantee that the solutnt,,x,) will converge to the
equilibrium pointx,. It simply says that the solution will remain in semegion around the

equilibrium point as time passes, but will not nexarily ever approach it, so long as the
initial condition was within a certain distancé&, of the equilibrium point. A system with a
limit cycle, in particular, is stable in the serdd.yapunov.

As a result of such a bounded-based type of stability tiefinithe notions of attractivity,

asymptotic stability, and exponential stability are defined.

Definition 4. Attractivity: The equilibrium point x, of system(Al) is attractive or

convergent if for eacly, eR", there exists am(t,) > 0 such that

||x0 _Xe” < U(to)=> X(t, +t,t, %,) > %, ast > .
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Definition 5. Uniform attractivity: The equilibrium pointx, of system(Al) is uniformly
attractive if there exists a numbgr> 0 such that
[% = % < 7.t 2 0=> X(ty +1,t5, X%, ) = X.aSt — oo, uniformly in t,andx,.

By combining the above definitions, we obtain the importexion of asymptotic stability

and uniform asymptotic stability.

Definition 6. Asymptotic stability: The equilibrium point X, of system (Al) is
asymptotically stable if it is stable and attraetilt is uniformly asymptotically stable if it
is both uniformly stable and uniformly attractive.

In many practical situations such as in the convergehobservers, exponential stability

is preferred to asymptotic stability.

Definition 7. Exponential stability: The equilibriurk, is exponentially stable if there exist

constantsr, a, b>0 such that

[x(to +t.t0, %)= X[ < allx, — x| exp(=bt), V1, t,2 0, ¥x, € B,
where B, is a ball of radiug.

The above definitions are local in nature in the sehaethey describe the behaviour of
the system solution initialised near the equilibrium poin other words, there is some
region around the equilibrium point in which the initi@ndition vectors will lead to
asymptotically or exponentially stable responses. This reggocalled thezone of
attractionto the equilibrium point.

The following definitions are given in the sense of the dldiehaviour of system

trajectories.

Definition 8. Global uniform asymptotic stability:The equilibrium X, is globally

uniformly asymptotically stable if (i) it is unifomly stable, and (ii) for each pair of positive

numbersM, ¢ with M arbitrarily large ands arbitrarily small, there exists a finite time
T =T(M,¢) such that
[% =% <Mty = 0= [x(t, +1,t, %) — %[ < &, Vt 2 T(M, &),

This definition says that the solution will converge to #uiilibrium point and remain
there as time passes (SinCeM ,g) is finite), in response to any initial condition (sinkke

is arbitrarily large).
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Definition 9. Global exponential stability: The equilibrium, is globally exponentially

stable if there exist constanés b >0 such that

[X(to + 1,0, %o )| < &% — %, €xp(=bt), W1, t, > 0, ¥x, eR".

It is worth noting that these kinds of definitions can dmdysatisfied for systems having a
single equilibrium point at which the system can come tb fi@ss is the case of linear

systems where the origin is the unique equilibrium point.

In practice, the study of stability is done using Lyapunov'sregcar direct, method. This

consists of defining a Lyapunov function with appropripteperties; the existence of
which will imply the type of desired stability. The secondimeé allows the determination

of stability without having to solve the system equatiansfind the eigenvalues in the

linear case). Consequently, it is a useful method for meati and time-varying systems
where the solution of the state equations is very diffito find in general. Recall that

Lyapunov's first method comprises studying the stabilitya afonlinear system in the

vicinity of an equilibrium point by calculating the eigenvedwf a linearised model of the

nonlinear system around the equilibrium point.
Note that we can always consider=0 since we can always bring the equilibrium point

to the origin by a change of coordinates. In what followsshad! effectively assume that

such is the case.

Definition 10. Lyapunov function: A Lyapunov function for the sgst (Al) is a real-

valued functionV (x,t), which possesses the following properties:

i) V(xt) is of classC' such thatV(x,,t) = 0.

i) V(x,t) is positive definite. In other words, there exigteondecreasing real continuous
function & such thata(0) =0 and O<a(|x|) <V(xt), for all t and for all x=0 with
() > as|x| >

iii) V(x,t) is negative definite In other words, there exists a nondecreasing real
continuous functiory such thaty(0) =0 and the time derivativ&(x,t) of V(x,t) along

the trajectories of systerfAl) is such that:V(x,t) <— y(|x|) <0 for all t and for all

x=0.

iv) There exists a nondecreasing real continuoustfan g such thatf(0)=0 and

V(x,t) < B([X) for all t.
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The following theorem shows that the existence of suchyapunov function is a
necessary and sufficient condition for uniform asymptstadility of system (Al).

Theorem 1. The origin of system{Al) is uniformly asymptotically stable if and only if
system(Al) admits a Lyapunov function.

The properties oV (x,t) can be weakened according to the type of stability desired. We

therefore have the following corollary:

Corollary 1. The origin of syste (Al) is:

a) stable if and only if syste(@1) admits a Lyapunov function which satisfies condito
i), ii) and the following condition : iii*)VV (x,t) < 0 for all t and for allx

b) uniformly stable if and only if systefA1l) admit a Lyapunov function which satisfies

conditions i), ii), iii*) and iv)
Corollary 2: For the autonomous system

x= f(x), f(0)=0
the asymptotic stability is guaranteed by the exise of a Lyapunov functioW (x) of

classC?, such that
1) V(0)=0,
2) V(x)>0, vx=0,

3) V(x)—>w as|x| o, andV(x)<0 , wx=0

Stability of Linear Time-Invariant (LTI) Systems

In general, the Lyapunov direct method can also be apgdiénear systems, whether they

are time-varying or time-invariant. However, for time-ingat systems

X=Ax,xeR" (A3)
the concept of positive and negative definite functiores raadily defined in terms of

guadratic functions involving positive and negative definiterices, respectively. More

precisely, the quadratic forM(x) = x" Px , whereP is a SPD matrix, is usually employed
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as a candidate Lyapunov function. Having chosen an SPBxmRt, the derivative of
V(x) with respect to time, along the trajectories of thetesy (A3), is calculated to test
for negative definiteness:

V(x) = X' Px+ X' Px (Ad)

= X' PAX+ x' ATPx= x"Qx
where
PA+A'P=Q. (AS)
The equation (A5) is called agebraic Lyapunov equatioff the matrixQ turns out to
be negative definite with the particular choiceRof then the origin of system (A3) will be
asymptotically stable.
Note that since the origin is the only (trivial) isolasguilibrium point of system (A3) we
generally speak of the asymptosiability of the systemather than the asymptotic stability
of the origin. It is also clear that asymptotic stapibf the LTI system (A3) also means
global asymptotic stability of the latter since theren$y one critical point.
Another interesting feature of the above LTI systemhad its eigenvalues can alpmovide
information regarding the stability of the system. Indgeds known that any matrixA
can be transformed into the Jordan form by a changeofdinates. Letz=Sx be a
transformation such tha&AS™ =J , whereJ is in Jordan form. More precisely,
2=X=SAS'z=Jz

We know that the diagonal elements of are the eigenvalues oA. In addition,

z(t)=e"z(0) =, 3T, pijtj’leﬂ*‘ where r is the number of distinct eigenvalues #f;
Ao A M is the multiplicity of the eigenvaluest, and p, are interpolatig

polynomials. It is clear that(t) -0 ast — o if the eigenvalues oA are all negative.

This is summarised in the following theorem.
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Theorem 2: The autonomous LTI syste(A3) is globally asymptotically stable if and only
if all the eigenvalues oA have negative real parts; that is, all the eigaresof A lie in

the left-half complex plane.
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