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Abstract 
Chaotic systems have properties such as  ergodicity, sensitivity to initial conditions/parameter 
mismatches, mixing property, deterministic dynamics, structure complexity, to mention a few, that 
map nicely with cryptographic requirements such as confusion, diffusion, deterministic pseudo-
randomness, algorithm complexity. Furthermore, the possibility of chaotic synchronization, where 
the master system (transmitter) is driving the slave system (receiver) by its output signal, made it 
probable for the possible utilization of chaotic systems to implement security in the communication 
systems. Many methods like chaotic masking, chaotic modulation, inclusion, chaotic shift keying 
(CSK) had been proposed however, many attack methods later showed them to be insecure. 
Different modifications of these methods also exist in the literature to improve the security, but 
almost all suffer from the same drawback. Therefore, the implementation of chaotic systems in 
security still remains a challenge. In this work, different possibilities on how it might be possible to 
improve the security of the existing methods are explored. The main problem with the existing 
methods is that the message imprint could be found in the dynamics of the transmitted signal, 
therefore by some signal processing or pattern classification techniques, etc, allow the exposition of 
the hidden message. Therefore, the challenge is to remove any pattern or change in dynamics that 
the message might bring in the transmitted signal. 

Along with secure methods, the investigation of channel noise in the chaotic synchronization and 
message extraction needs is investigated. A comparative study on the proportional (P) and 
proportional integral (PI) observer method of observer based chaotic synchronization is performed 
for a proposed combinational scheme (masking + inclusion). It is shown that PI observer provides 
flexibility to the system to handle noise by offering better synchronization in the presence of noise 
than P-observer. It is also shown that the P-observer imposes restriction on the transmitting 
message, however the PI observer does not have any such restrictions as it adds degree of freedom 
to the system by the inclusion of integrator in the design. The idea of digitization of chaotic signal 
is used for only adding security layer while using the existing digital communication for the 
transmission. The simulation results show that message is extracted at different bit error rates with 
possibility at signal-to-noise ratio (SNR) as low as 14 dB when this idea is used. SNR can further 
be reduced by already available error correction and equalization techniques in the digital domain. 

When two equal power chaotic signals are combined together and then used to modulate the 
transmitting message signal, then it might be difficult for intruders to use the conventional attack 
methods since there is added complexity in the chaotic carrier signal. Based on this we have 
proposed a cascaded chaotic masking scheme to improve the security of masking method. Even 
though the cascaded masking approach adds complexities in the system by making the n-
dimensional system to 2n or more dimensional system, more possibilities also needs to be explored.  

Next, a new chaotic synchronization method called indirect coupled chaotic synchronization 
(ICCS) is presented and proven mathematically for both continuous and discrete time system. ICCS 
allows two independent chaotic oscillators to synchronize with each other consequently can be 
used to generate same keystream at the transmitter and receiver side which is utilized to encrypt the 
message signal using an encryption algorithm, and then modulated with the chaotic transmitter. At 
the receiver, same keystream available due to ICCS is used to decrypt the message back. Security 
analysis illustrates that the proposed method does not suffer from the shortcomings of the earlier 
methods. The ICCS is further implemented to modify and improve the security of the CSK method 
by removing the pattern from the transmitted when switching is made between either 0 or 1. Two 
different possible implementations are proposed and simulation results verify the successful 
message extraction at the receiver and security analysis illustrates the improvement. 

Finally, the proposed secure communication scheme using ICCS is practically realized in digital 
signal processing (DSP) board. The message is shown to be successfully extracted and the output 
from the DSP board is compared with the computer simulations and found that the difference is 
very insignificant thus proving the effective hardware realization using the DSP board. 
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Chapter 1 Introductions 

 

In the current digital age, there has been a lot of interest on secure communication links 

due to the dramatic rise of online shopping, banking and trading transaction and this trend 

is set to increase exponentially in future. In effect, it does not take much effort to realise 

that there will be a significant development and usage of digital communication and 

technology in the next decade and further. Consequently, there is a need to increase the 

security of data being transmitted in order to avoid hacking of information and fraud. 

Secure communication between two parties (or systems) is done in such a way that the 

identity of the communicating party is confirmed and the confidentiality as well as the 

integrity of the message is maintained. Hence, confidentiality, authentication and message 

integrity are three key points for secure communication. Confidentiality means that only 

the sender and receiver are able to understand the contents of the transmitted message. The 

idea is to encrypt the message by the sender with some cryptography algorithms. The 

message can only be decrypted back by the intended receiver, may be by using a special 

key. Authentication means that if sender A and receiver B are communicating then the 

identity of both should be confirmed. Message integrity means that whenever sender and 

receiver are communicating, then it must be ensured that the message content has not been 

altered. The notion of “secure communication” is most commonly perceived as 

confidentiality but as explained earlier it is not the case. However, authentication and 

message integrity can be achieved by the cryptography techniques.  

Modern software cryptography has witnessed a continuous development over the past 30 

years [2]. The software encryption technique can either be based on the so-called 
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symmetric or asymmetric key. A number of encryption/decryption techniques have been 

developed including Data Encryption Standard (DES), Triple-DES, RSA (Rivest, Shamir, 

and Adelman, the inventors of the technique), Rabin Scheme, Williams scheme, etc [3-10]. 

Although, many of these techniques are currently being used and form the heart of 

security, none of these can be regarded as 100% secure due to the availability of high-

speed computers and fast algorithms [10-12].  

Recently, chaotic signals, due to the properties like limited predictability, aperiodicity, 

broad spectrum, and high sensitivity to parametric mismatch/initial conditions, has brought 

forward the idea of implementing them for secure communication and as an alternative to 

classical cryptography. Chaotic signals can be implemented to achieve security directly at 

the physical level. Researchers have pointed out that there exists  a very close relationship 

between chaos and cryptography [13, 14]. Various characteristics and properties of chaotic 

signals such as ergodicity, mixing, randomness, complexity, unpredictably and the 

sensitivity to initial conditions, can be connected to the well-known confusion and 

diffusion properties in the classical cryptography. According to Shannon [15], confusion 

refers to making the relationship between the key and the ciphertext as complex and 

involved as possible; diffusion refers to the property that the redundancy in the statistics of 

the plaintext is "dissipated" in the statistics of the ciphertext. In other words, the non-

uniformity in the distribution of the individual letters (and pairs of neighbouring letters) in 

the plaintext should be redistributed into the non-uniformity in the distribution of much 

larger structures of the ciphertext, which is much harder to detect. Diffusion means that the 

output signal (ciphertext) should depend on the input message (plaintext) in a very 

complex way. In a cipher with good diffusion, if one bit of the plaintext is changed, then 

the ciphertext should change completely, in an unpredictable manner [15]. Since, chaotic 



3 
 

signals have properties that are very close to what is required for cryptography attention 

has been recently shifted on implementing secure communication using chaotic signals. 

The basic block diagram of a chaotic communication system is shown in Figure 1.1. The 

modulation technique and the synchronization method employed hold the importance for 

good performance and security. Also, the performance of the system under the influence of 

noise and channel model is very important as well.  

 

As it can be observed in Figure 1.1, the chaotic communication system consists of three 

main aspects, transmitter, receiver and the channel (noise) performance. In the transmitter, 

the modulation techniques being used to mix the message signal along with the chaotic 

carrier are of essence for the overall security of the system. There are various modulation 

techniques currently available in the literature such as chaotic masking, chaotic 

modulation, chaotic inclusion and chaotic shift keying (CSK). However, all of these 

methods have been proven to be insecure. Although chaotic signals have nice inherent 

properties to be used in security and cryptography, the implementation is not straight 

forward. Because a signal has to be transmitted from to the receiver, the signal will be 

Modulated 
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Figure 1.1: Elementary block diagram of chaotic communication system. 
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available to the intruders. Therefore, even if the intruders do not know the structure or 

parameters of the chaotic systems, they can perform some signal processing analysis or 

apply some more sophisticated algorithms to get the imprint of the message out from the 

transmitter signal. In the case of chaotic masking, the signal is directly added to the chaotic 

signal, therefore the variation can be detected by some non-linear dynamic forecasting 

methods, or if the message amplitude/frequency are high enough then power spectral 

analysis will reveal the message. In CSK method the binary signal 0 or 1 being transmitted 

brings pattern in the transmitted signal. Therefore pattern classification problem can be 

utilized to find out the binary message with having any knowledge about the transmitter. 

Methods of modulation and inclusion are also vulnerable to various attack methods. 

Therefore, the mixing of message should be in such a way that there is no pattern or 

information of the message signal present in the transmitted signal. Once the carrier 

chaotic signal is transmitted into the channel, then it will get corrupted with channel noise 

before it reaches to the receiver. In the receiver side, chaotic synchronization is necessary 

for successful message recovery. Therefore the demodulation process is another challenge 

in the implementation of the chaotic communication systems. There are many ways to 

achieve synchronization, but observer method is one of the promising methods. There are 

many types of observers such as proportional observer, proportional integral (PI) observer, 

etc, therefore the performance of these observers needs to be investigated in the presence 

of noise. Chaotic communication provides security to the communication systems but 

digital communication on its own has developed massively therefore it will be wise to 

come up with a technique such that chaotic schemes only adds a layer for security while 

utilizing existing digital communication setup for message transmission. 

In this research, we propose new transmission schemes to improve the existing methods 

whereby eliminating their shortcomings. Therefore, the motivation of this research is to 
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come up with improved chaotic communication techniques that are robust to various 

known attack methods and also look upon few other aspects such as channel noise 

performance and complementation with existing communication setup. Following is the 

list of original contributions from this research work. 

 

1.1 Original Contributions 

The original contributions produced from this research are outlined below. 

i. Performance analysis of classical proportional (P) observer and PI observer is done 

for the proposed combinational (masking + inclusion) chaotic communication 

system. It is shown that PI-observer provides better synchronization performance 

and therefore message recovery when the driving signal is corrupted by channel 

noise plus the message. The detail analysis and the simulation results are also 

published in papers [16, 17] and outlined in Chapter 3. 

ii.  A new chaotic communication technique called Cascaded Chaotic Masking has 

been developed. This has been published in [18] and described in Chapter 4.  

iii.  A new type of chaotic synchronization technique has been developed, which have 

been called indirectly coupled chaotic synchronization (ICCS). This 

synchronization method is mathematically proven for a class of chaotic systems for 

both continuous and discrete time case. This has been described in detail in Chapter 

5. 

iv. Using the new type of synchronization, ICCS, a new chaotic communication 

method is developed. This technique implemented the keystream generated via 

ICCS and used for achieving higher security. The method is described both for 
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continuous and discrete time case, along with cryptanalysis, in Chapter 6. These 

methods are also published in [19-21]. 

v. Hardware realization of the proposed chaotic communication based on ICCS is also 

done using the digital signal processing (DSP) board and is presented in Chapter 6 

and published in [25]. This is a verification of the model based on ICCS. 

vi. A new type of chaotic secure communication method for transmitting digital bits 

has been developed. This is an improved form of the earlier method called CSK. 

This again used the earlier proposed ICCS method for generating identical 

keystream at the transmitter and the receiver side. Detail explanation of the method, 

simulation results and cryptanalysis are presented in the Chapter 7.  These results 

are also published in [22, 23]. 

vii.  A chaotic communication based on digitization of the chaotic signal is proposed 

and the performance of the system on noisy channel at different level of bit error 

rate (BER) was shown. This technique had been proposed for the first time in this 

PhD work. This technique was based on digitization of the chaotic signals and 

transmitting it with existing digital communication infrastructure in the noisy 

channel. The results are published in [24] and outlined in Chapter 8. 

 

1.2 List of Publications 

Following are the list of publications that had been done as part of this PhD research work. 

Journal Paper  

1. R. Kharel, K. Busawon, and Z. Ghassemlooy, "A chaos-based communication 

scheme using proportional and proportional-integral observers," IJEEE, vol. 4, pp. 

127-139, 2008. 
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Conference Papers 

2. R. Kharel, K. Busawon, W. Aggoune, and Z. Ghassemlooy, "Implementation of a 

secure digital chaotic communication scheme on a DSP board " in 7th IEEE, IET 

International Symposium on Communication Systems, Networks and Digital Signal 

Processing (CSNDSP'10), Newcastle Upon Tyne, UK, 2010. 

3. R. Kharel, K. Busawon, “Indirectly coupled synchronization of chaotic systems: 

Application to secure digital communications”, 28th International Colloquium on 

Group - Theoretical Methods in Physics, Group 28, Newcastle Upon Tyne, UK, 

2010. 

4. R. Kharel, K. Busawon, and Z. Ghassemlooy, "Modified chaotic shift keying using 

indirect coupled chaotic synchronization for secure digital communication," in 3rd 

Chaotic Modelling and Simulation International Conference (Chaos2010), Chania, 

Greece, 2010. 

5. R. Kharel, K. Busawon, and Z. Ghassemlooy, "Secure digital communication using 

discrete-time chaotic systems via indirect coupling synchronization " in American 

Control Conference (ACC'10), Baltimore, Maryland, USA, 2010. 

6. R. Kharel, K. Busawon, and Z. Ghassemlooy, "Indirect coupled oscillators for 

keystream generation in secure chaotic Communication," in Proceedings of the 

48th IEEE conference on Decision and Control and 28th Chinese Control 

Conference 2009, 2009. 

7. R. Kharel, K. Busawon, and Z. Ghassemlooy, "A novel chaotic encryption 

technique for secure communication," in 2nd IFAC conference on analysis and 

control of chaotic systems (Chaos 09), London, 2009. 
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8. W. Aggoune, K. Busawon, and R. Kharel, "On feedback stabilization of nonlinear 

discrete-time state-delayed systems," in European Control Conference (ECC'09), 

Budapest, Hungary, 2009. 

9. R. Kharel, S. Rajbhandari, K. Busawon, and Z. Ghassemlooy, "Digitization of 

chaotic signal for reliable communication in non-ideal channels," in Proceeding of 

International Conference on Transparent Optical σetworks ’Mediterranean 

Winter’’ (ICTτσ-MW'08), Marrakech, Morocco, 2008 pp. Sa1.2 (1-6) - Invited 

Plenary Paper. 

10. R. Kharel, K. Busawon, and Z. Ghassemlooy, "Novel cascaded chaotic masking for 

secure communications," in The 9th annual Postgraduate Symposium on the 

convergence of Telecommunications , Networking & Broadcasting (PGNET), 

Liverpool, UK, 2008, pp. 295-298. 

11. K. Busawon, R. Kharel, and Z. Ghassemlooy, "A new chaos-based communication 

scheme using observers," in Proceeding of the 6th Symposium on Communication 

Systems, Networks and Digital Signal Processing 2008 (CSNDSP 2008), Graz, 

Austria, 2008, pp. 16-20. 

 

1.3 Organization of the Thesis 

The thesis is divided into ten main chapters. In Chapter 1, we provide a comprehensive 

overview of chaos. Different properties of chaotic systems are discussed and few examples 

of chaos are mentioned. Also different routes from where chaos can occur are also 

discussed. Then an overview of chaotic synchronization is given and different types of 

synchronization are discussed. The use of chaotic signal in communication for achieving 

security is then discussed. This chapter also describes traditional chaotic communication 

methods along with their problems and also different attack methods are also outlined. 
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Finally, various other modified methods available in the literature are discussed along with 

their problem and shortcomings. 

The study of two types of observers (P and PI) for the proposed combinational method is 

presented in Chapter 3. The performance of P and PI-observers under the noisy channel is 

compared and shown. This chapter focussed on the performance of PI-observer in the 

noisy channels for better synchronization and message recovery without much emphasis on 

the security. 

Chapter 4 explains an approach of cascaded chaotic masking for realizing secure 

communication link. Detail of the method is explained and simulation results are presented 

here. However, it is also pointed out that this method might not be secure enough but is a 

stride towards finding out other methods. Chapter 3 and Chapter 4 provide an illustration 

of the approach to this research for finding out secure techniques. Therefore, even though 

the techniques mentioned in chapter 3 and 4 may not be very secure, they show the step 

towards more sophisticated and secure methods, which will be seen in later chapters. 

In Chapter 5, we propose a new idea of chaotic synchronization called ICCS. This type of 

synchronization has first been developed in this research. In this chapter, the detail 

description of ICCS along with examples and mathematical proof (for both continuous and 

discrete time case) is provided. 

In Chapter 6, the ICCS that had been proposed in the earlier chapter is utilized for realizing 

a secure communication based on cryptography. The details of the method are presented 

and implemented on the both continuous and discrete time systems. The security analysis 

of the proposed method is also done in this chapter. The discrete type method is 

implemented on hardware using a DSP board. Rapid prototyping of the model is done in 

TMS320C6713 DSK DSP board. First of all, the Simulink model is converted into 
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assembly code for the TMS320C6713 using Simulink and the code composer studio 

(CCS). The real-time data exchange (RTDX) link is used to transfer data from the DSP to 

the computer and vice-versa. The results obtained when the model is implemented on the 

DSP board and when is implemented in simulation using Matlab are compared and it is 

found that there is striking similarity between the two. It means that our proposed model 

could be realized in hardware for practical implementation. All these details have been 

mentioned in this chapter. 

In Chapter 7, a new chaotic communication technique for transmitting digital message is 

proposed which also utilized ICCS. This technique is modified and improved form of the 

traditional CSK scheme. Two different implementations are proposed and security analysis 

are also performed and discussed.  

Chapter 8 presents an idea of digitization of chaotic signals to be used in practical 

environment where the chaotic carrier is converted to digital bits and transmitted using 

existing digital communication techniques. The method of digitization is very interesting 

since it allows the use of chaotic communication for adding a layer of security in the 

already existing digital communication system. Performance of the method in different 

BERs is shown and is pointed out that the method works up to the moderate signal to noise 

ratio (SNR) of level of 14 dB.  

Finally concluding remarks and future works are outlined in Chapter 9. 
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Chapter 2 An Overview of Chaos and its 

Importance in Communication 

Systems 
 

2.1 Introductions 

Chaos is a word derived from the ancient Greek, which means unpredictable behaviour and 

opposite of the cosmos or order. However, in chaos theory, the term “Chaos” is not an 

antithesis of cosmos or absence of order but in fact have a very subtle order in itself not 

quite obvious as ordered systems. The history of chaos in scientific community has to be 

stretched back to the time when Newton solved the two body problem in universe using his 

newly invented differential equation. He had disregarded the effect of gravitational effect 

of one planet on another in his calculations. It was not until late 1800 that Poincare came 

up with the qualitative method where he showed that it is essentially impossible to solve 

the 3-body problem. He showed that orbits are aperiodic but not increasing infinitely 

(meaning deterministic) and not approaching any fixed points or limit cycles. He pointed 

out that difficulty in solving the three body problem was due the sensitivity to the initial 

conditions making long term prediction impossible. Therefore, Poincare can be considered 

to be the first person to envision “Chaos” [26, 27]. 

Later in 1963, Edward Lorenz of the Massachusetts Institute of Technology came up with 

a set of three differential equations popularly known as the Lorenz equation [28], for 

forecasting the weather behaviour using computer simulations. Lorenz was using a 6-digit 

precision computer for calculation but was using a 3-digit precision printer to print the data 

being entered to the computer again for simulation. It turned out that the rounding off of 
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the data that was used as the initial condition caused a significant difference in the long 

term results making long term prediction an impossible task. The solution never settled to 

any fixed point or periodic orbits and oscillated irregularly. However, Lorenz also pointed 

out that there is an order in chaos as well where he came up with a 3-dimensional plot of 

the solutions. He showed that the trajectory of the system being evolving with time in a 

complex and non-repeating pattern but in an interesting butterfly shaped set of points 

known today as the “Strange Attractor”. Lorenz concluded that the earth‟s weather is a 

chaotic system and therefore, a long-range prediction is an impossible task. 

Before going too further in the realm of chaos, let us make an attempt to define it. No 

definition has been universally accepted yet but the following definition confines the 

fundamental three nature of chaos, which everyone will agree as mentioned by Strogatz 

[26]. 

 

2.2 Chaos: Definition 

Chaos is a “aperiodic long-term behaviour in a deterministic system that exhibits sensitive 

dependence on initial conditions” [26]. 

The three properties of chaos mentioned in the definition can be explained as follows: 

i. Aperiodic long term behaviour: This means that the system trajectories do not 

settle down to any fixed points, periodic orbits or quasiperiodic orbits as t → ∞. 

Thus, the trajectory that follows will have a limited predictability. 

ii.  Deterministic system: This means that the system is not random or do not have 

any stochastic input parameters. The irregular behaviour shown by chaotic systems 

is due to the system‟s intrinsic non-linearity rather than the noise. 
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iii.  Sensitivity to initial conditions: This means that the trajectories even if they start 

from very close initial conditions will separate exponentially fast, i.e. the system 

has a positive Lyapunov exponent. This means a long term predictability becomes 

impossible. 

In order to explain these properties of chaos and its basic idea, let us recall the Lorenz 

equation mentioned earlier. Lorenz system is a set of three coupled first-order differential 

equations given as: 

= ݔ  ݕ � − = ݕ  ݔ ݎ ݔ − − ݖ = ݖ ݕ ݕݔ −  ,ݖܾ

(2.1) 

 

where ı is called the Prandtl number and r is called the Rayleigh number. Lorenz chose 

these parameters to have the following values of σ = 10, b = 8/3 and r = 28. When such 

values are chosen, the Lorenz system defined in (2.1) exhibits chaotic behaviour. Now, we 

shall attempt to verify the three properties mentioned above in the definition for chaotic 

systems for Lorenz equations. 

To demonstrate the first property of chaos, i.e. aperiodicity, a numerical simulation was 

done using Matlab. Arbitrary initial conditions were chosen for the simulation.  The profile 

of the output variable x is shown in Figure 2.1:, where the state x is evolving with time 

aperiodically. To be sure that the variable x is indeed aperiodic, an autocorrelation of x is 

carried out, see Figure 2.2. Note that the time scale is shown as normalized time in these 

and subsequent figures and this is explained in section 2.7.2 later on. 
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Figure 2.1: Representation of the time series for the x Lorenz variable.  

 

Figure 2.2: The normalized autocorrelation function of x Lorenz variable. 

 

The variable x at any time instant is not similar to itself regardless of any amount of time 

shift. Therefore, its autocorrelation function only has a single spike at zero time shift. This 
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clearly demonstrates that the x variable is aperiodic in nature. The irregular behaviour is 

also true for other variables y and z. The second property in the definition for Lorenz 

system is trivial. The parameters used in the system are σ = 10, b = 8/3 and r = 28, i.e. none 

of the parameters are stochastic. The irregular behaviour in the Lorenz system is arising 

because of the intrinsic non-linearity of the system itself rather than the noisy parameters.   

Finally, to exhibit the sensitive dependence of system on initial conditions, the simulation 

is performed again.  Two identical Lorenz systems (a & b) are taken with same parameters 

but starting from different initial conditions (nearly identical however). The difference in 

initial condition taken between two Lorenz variables xa and xb was chosen to be 10-6. Figure 

2.3 depicts the time series of variables xa and xb for two Lorenz systems. After some 

period, the two variables quickly diverge from each other even though they started from 

identical initial conditions. Figure 2.4 illustrates the two variables diverging exponentially 

fast (straight line with positive slope on a log plot). This means a long term prediction of 

chaotic systems is not possible since the slightest error in the initial condition will result in 

an exponential increase in the error. This effect was explained by Lorenz in his weather 

forecasting model where he suspected that the long term weather prediction is improbable 

(butterfly effect). 
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Figure 2.3: Time series plot of variables xa and xb of two similar Lorenz systems starting 

from a nearly identical initial condition. 

 

Figure 2.4: Log scale plot of |xa - xb| to show exponential divergence of trajectories when 

started from a nearly identical initial condition in a Lorenz system. 
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Another nice property of chaos can be seen by plotting the variable z versus x of Lorenz 

system, see Figure 2.5. The figure shape is called the strange attractor, showing how x and 

z evolve against time, as well as demonstrating how a simple looking deterministic system 

could have extremely erratic dynamics where solutions oscillate irregularly, never exactly 

repeating but always remaining in a bounded region of phase space. The strange attractor is 

not a point or a curve or even a surface, it‟s a fractal with a fractional dimension between 2 

and 3 [26]. 

 

Figure 2.5: Strange attractor of the Lorenz system when plotting z against x. 
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the exponential divergence of trajectories of two systems, the increase in log scale being 

linear and the slope of which will give the Lyapunov exponent. 

 

Figure 2.6: Time series plot of variables xa and xb of two different Lorenz systems for 

parameter values of 610 and 10  baa   starting from the same initial condition. 

 

Figure 2.7: Log scale plot of |xa - xb| to show exponential divergence of trajectories when a 

parameter mismatch of only 10-6 exists between a  and b . 
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2.3 Route to Chaos 

When the parameters of a system are changed, chaotic behaviour may appear and 

disappear for a dynamical system. The idea of chaos and how it occurs in a system can be 

visualized by means of a bifurcation diagram. Bifurcation means splitting into two parts 

and is used extensively in the study of non-linear dynamics to illustrate any sudden change 

in the behaviour of the system when some parameters are varied. Therefore, bifurcation 

diagram shows qualitative changes in the system dynamics with a variation of certain 

system parameter values. For this purpose, let us take another example used to model 

population growth over time, known as the Logistic equation. The model is given in the 

form of a difference equation as [29]: 

1+݊ݔ  = 1 ݊ݔ݇ −  (2.2) . ݊ݔ

where  1+݊ݔ is the current population that depends on the previous population, ݊ݔ , and the 

growth rate is dependent on the parameter k. Depending on the value of parameter k, the 

behaviour of the system will be different. This is shown in the Figure 2.8, which is the 

bifurcation diagram for the Logistic equation. In this diagram, a plot is done for k in x-axis 

and different possible long term values of x on y-axis taking initial condition as x0 = 0.5. It 

can be seen that when k is between 0 and 1, the orbit converges to zero. When k is between 

1 and 3, the trajectory converges to some fixed point. At point k = 3, both the bifurcation 

and the trajectory enter an attracting periodic orbit of period 2. As k increases the period 

continues doubling with the bifurcation diagram splitting from period 2, 4, 8 onwards and 

with the trajectory being attracted to these periodic orbits. This will continues until k > 

3.57, beyond which chaos become visible. It can be seen in Figure 2.8 that for value of k > 

3.57, the trajectory of xn is not settling down to any fixed points or periodic orbits. 
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Figure 2.8: Bifurcation diagram for the logistic equation with varying k for initial condition 

x0 = 0.5. 

Now, let us consider the continuous 3-dimensional case of the Rossler equation [30]. 

Rossler equation is a set of 3 differential equations given as: 

= ݔ  ݕ− − = ݕ ݖ ݔ + = ݖ ݕܽ ܾ + ݔ ݖ − ܿ . 

(2.3) 

 

For the value of ܽ = ܾ = 0.1 and ܿ = 14, the system will exhibit a chaotic behaviour. The 

bifurcation diagram for the system (2.3) is shown in Figure 2.9 for a range of parameter c. 

The diagram was plotted in Matlab by taking the local maxima of x for each varying 

parameter c value. Initial transients of the system were neglected. As shown, for lower 

values of c, system (2.3) has a periodic solution. At ܿ = 6, period doubling is taking place 

and this will continue with increasing value of c until the system reaches a state of chaos. It 
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is now clear how bifurcation diagrams give the visual indication of potential chaotic 

behaviour on a system. 

 

Figure 2.9: Bifurcation diagram for the Rossler equation. 

The above examples demonstrated one particular route to chaotic behaviour. This is the 

most common route. We saw that there was splitting of the period, i.e. from period 1 to 2, 

then to 4 and so on until chaos emerged. This route is therefore called the period doubling 

route. Although there might be other routes to chaos that are not discovered yet, three 

routes are outlined in the literature which are: 

i. Period doubling route: This is the simplest route and is the most extensively 

studied type of transition. As we have seen previously, examples are the Logistic 

and Rossler equations where the period increases from 2, 4, 8 and so on until chaos 

emerged. 
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ii.  Intermittency route: In this route, a periodic signal (with no period doubling) has 

disturbances at random intervals from bursts of chaos/noise. When a chaotic 

parameter is increased, the frequency bursts increases making the oscillation totally 

chaotic [31, 32]. Intermittency appears in electronics, lasers, chemical reactions, 

hydrodynamics etc [33, 34]. Intermittency can also occur in Lorenz equation [26]. 

iii.  Quasiperiodicity route: This route to chaos is caused by two or more 

simultaneous periodicities whose different frequencies are out of phase with one 

another such that the oscillations can never repeat itself exactly. However, it might 

seem (only) to repeat itself, thus the name Quasiperiodicity. A simple time plot 

cannot reveal the chaoticity but will require sophisticated mathematical tools for 

analysis. This route to chaos has been seen in electrical conductivity in crystals and 

heart cells of chickens [32]. 

 

2.4 Current Chaotic Systems  

So we have looked at the Lorenz system and Rossler system, which are continuous time 

cases, and the Logistic map, which is a discrete time case. In this section other chaotic 

systems, which are quite popular and extensively studied, will be discussed. We shall see 

the systems both in continuous and discrete time domains. 

 

2.4.1 Continuous Time Case 

A) Chua’s circuit – This is a simple electronic circuit that exhibits classic chaos theory 

behaviour, and was introduced by Leon O. Chua in 1983. It is a third order, reciprocal 

and has only one nonlinear element; a 3-segment piecewise-linear resistor and exhibits 
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a double scroll attractor [35, 36]. The Chua‟s circuit in the normalised form can be 

written as: ݔ = ݕ ߙ − ݔ − = ݕ   ݔ ݂ ݔ − ݕ + = ݖ ݖ ݕߚ− −  ,ݖߛ

(2.4) 

where f(x) is the piece-wise linear function with constants Ga and Gb given as: ݂ ݔ = ݔܾ� + 0.5 �ܽ − ݔ   ܾ� + 1 − ݔ  −  are the parameters of the system that governs the chaotic property, with a ߛ and ߚ,ߙ (2.5) .  1

typical values of ߙ = ߚ,10 = ߛ,14.87− = 0,�ܽ = −1.27 and �ܾ = 0.68. Figure 2.11 

shows the circuit diagram of the Chua‟s oscillator consisting of two capacitors, one 

linear resistor, one inductor and one non-linear diode. 

 

Figure 2.10: (a) Chua‟s circuit with two capacitors (C1 and C2), one linear resistor (R), one 
inductor (L) and once non-linear diode (NR). (b) Characteristic curve of the non-linear 

diode. 

B) Duffing oscillator – This is an example of a periodically forced oscillator with a 

nonlinear elasticity [37]. The following is the set of differential equation for which it 

exhibits chaotic property: 

1 ݔ  = 2 ݔ 2ݔ = 1ݔ−

4
− 1ݔ

3 +  (2.6) .ݐݏ݋11ܿ
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2.4.2 Discrete Time Case 

A) Henon map – Is a discrete-time dynamical system [38], and is one of the most studied 

examples of dynamical systems that exhibit a chaotic behaviour. It is represented by a 

set of difference equation given as: 

݊ ݔ  + 1 = + ݊ ݕ 1 − ݊ ݕ (݊)2ݔܽ + 1 =  , ݊ ݔܾ
(2.7) 

where the parameters a and b determines the chaotic property of the map. Typically 

the value of a and b are taken as 1.4 and 0.3, respectively. The map was introduced by 

Michel Henon as a simplified model of the Poincare section of the Lorenz model [38]. 

B) Henon 3D map – This is a hyperchaotic system and is given as: 1ݔ ݊ + 1 = ݊ 2ݔ  ݊ 2ݔܾ− + 1 = 1 + − ݊ 3ݔ 2ݔܽ
݊ 3ݔ  ݊ 2 + 1 = + ݊ 1ݔ  (2.8) , ݊ 2ݔܾ

where a and b are the control parameters and for ܽ = 1.07 and ܾ = 0.3, the system 

exhibits a hyperchaotic behaviour [39, 40].  

 

C) Lorenz discrete map – This is the discrete case of the Lorenz system and is given in 

the following difference equation [41]: 

݊ 1ݔ  + 1 = − ݊ 2ݔ ݊ 1ݔ ݊ 2ݔ  ݊ 3ݔ + 1 = ݊ 3ݔ  ݊ 1ݔ + 1 =  (2.9)  ݊ 2ݔ

 

Figure 2.11 shows the attractor for different chaotic system outlined above and also of the 

Rossler system that was encountered earlier. 
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Figure 2.11: Chaotic attractors for different chaotic systems: (a) Chua‟s circuit, (b) Duffing 
oscillator, (c) Rossler system,  and (d) Henon map. 

 
 

2.5 Synchronization in Chaotic Systems 

It might seem that chaotic synchronization is impossible to achieve in chaotic systems 

since they are very sensitive to initial conditions and slightest difference in the initial 

conditions will ultimately lead to totally different trajectories. But after the seminal work 

done by Pecora and Carroll [42] where they showed that it is however possible to 

synchronize two chaotic systems starting from different initial conditions under certain 

condition. They wrote;  

“Chaotic systems would seem to be dynamical systems that defy synchronization. 

Two identical autonomous chaotic systems started at nearly the same initial points 
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in phase space have trajectories which quickly become uncorrelated, even though 

each maps out the same attractor in phase space. It is thus practical impossibility 

to construct, identical, chaotic, synchronized system in laboratory” 

However, they showed subsequently that if two chaotic systems are linked together by a 

common signal, it is possible to obtain chaotic synchronization regardless of the initial 

conditions [42-44]. The word synchronization should not be taken in the sense of the 

periodic systems. In periodic systems, for example two pendulums are said to be 

synchronized when they are in phase, i.e. when their frequency of oscillation matched. But 

in a chaotic system, because chaotic signals are broadband in nature with no apparent 

frequency (aperiodic), synchronization has to be visualized in a different way. 

Synchronization in chaotic systems takes place when the trajectories of two or more 

systems converge to the same value, i.e. same trajectories, and will remain in step with 

each other [42]. For example, if x and y are two chaotic systems then they are said to be 

synchronized if limݐ ݔ)∞→ݐ − ((ݐ)ݕ → 0, i.e. all states of x and y are equal respectively as 

they evolve in time. 

To describe the synchronization method developed by Pecora and Carroll, let‟s define an 

autonomous n-dimensional system as: 

= ݑ  (2.10) . ݑ ݂

Now, the system in (2.10) is divided into two subsystems  ݑ =  with dimensions m  (ݓ,ݒ)

and k such that ݊ =  ݉ +  ݇.  

= ݒ = ݓ, ݓ,ݒ ݃  (2.11) , ݓ,ݒ ݄

where ݒ = …,1ݑ  ݉ݑ,  ,݃ = …, ݑ 1݂  , ݂݉ ݓ,  ݑ  = 1+݉ݑ  ,…  , ݊ݑ,
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݃ =  ݂݉ …, ݑ 1+ , ݂݊  .   ݑ 

Now, one of the subsystems is used as a drive system v in this case.  Therefore, the 

response of subsystem ݓ ′ is identical to w with ݒ′ being replaced by v as: 

′ ݓ = ݓ,ݒ ݄ ′ . (2.12) 

Note, the ݓ ′ being driven by v of drive system. w and ݓ ′ will synchronize only if ݓ ݓ− ′ = Δݓ → 0 as ݐ → ∞. Now we have: 

� = − ݓ ′ ݓ = − ݓ,ݒ ݄ ݓ,ݒ ݄ ′  

= � for  �(ݓ,ݒ)݄ݓ� = Δݓ → 0, 
(2.13) 

where �݄ݓ is the Jacobian of h with respect to w only.  

The behaviour of the system (2.13) will depend on the eigenvalues of the Jacobian matrix. 

Since the system is a chaotic there will be complication. If systems were to be periodic, 

then the eigenvalues of the appropriate Jacobain matrix would have determined the 

stability. But in this case, the eigenvalues are changing because the variables v and w are 

chaotically evolving with time. Therefore, average of the eigenvalues (transverse 

Lyapunov exponent) at each time instant should be taken in order to determine the 

Lyapunov exponent over the entire attractor of w subsystem. This average of the 

eigenvalues (transverse Lyapunov exponent) is called the conditional Lyapunov exponent 

(conditional because it depends on the chaotic variables) [43]. Pecora and Carroll have 

mentioned that systems will synchronize only if real parts of the Lyapunov exponents are 

negative [42]. However, the method does not mention about the initial conditions for 

which the systems will achieve synchronization. But since both the systems have same 

attractors, with time, the states of the systems will eventually come close enough in the 
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state space such that the condition put in (2.13) hold true. Therefore, the conditional 

Lyapunov exponent having a negative real part is only a necessary condition for achieving 

synchronization but not sufficient. 

Let us now verify the synchronization method of Pecora and Carroll using the Lorenz 

system defined in (2.1). The drive system is given by: 

= ݔ ݕ� − = ݕ ݔ� ݔݎ − ݕ − = ݖ ݖݔ ݕݔ −  ,ݖܾ

(2.14) 

where the constants are taken as earlier. 

The system (2.14) is decomposed such that y is the coupling signal for the response system 

and is equivalent to v in the proof shown earlier. Therefore, now the response system 

driven by y can be written as: 

=  ݔ ݕ� − =  ݖ  ݔ� ݕ ݔ −  (2.15) . ݖܾ

Here we can see that the variable ݕ  has completely been replaced by y. The error dynamics 

can be written as: 

= ݖ݁ ݔ݁    −� ݕ0  (2.16)  ݖ݁ݔ݁  ܾ−

The eigenvalue for the error matrix fortunately is not dependent on the drive variable y. 

Therefore, the eigen value or the Lyapunov exponent of the subsystem can easily be 

calculated to be 1ߣ = −�, 2ߣ = −ܾ. This means both are negative at all times. Therefore, 
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the error variable ݁ݔ ݖ݁ &  → 0 as ݐ → ∞, thus achieving full synchronizing of two systems 

despite the initial conditions.  

Simulation is performed for (2.14) and (2.15) in Matlab. Figure 2.12 shows the variables x 

and ݔ  synchronizing quite fast to the same trajectory despite starting from a different initial 

condition. Figure 2.13 depicts the log plot of the error for variables x and ݔ  showing 

exponential convergence. 

 

Figure 2.12: Convergence of two Lorenz systems starting from different initial conditions 

when coupled together showing synchronization using the Pecora and Carroll method. 
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Figure 2.13: Log plot of xx ˆ  showing exponential convergence of two systems. 

There are many types of synchronization being explained in the literatures. These different 

types can be grouped into the following categories. 

1. Complete synchronization (CS): The trajectories of the master and the slave 

systems converge to be exactly the same. This is the earliest and the simplest form 

of synchronization [42, 44, 45]. This occurs in coupled identical systems and is also 

referred as a conventional synchronization or an identical synchronization. Two 

continuous-time chaotic systems:  ݐ  ݔ = F((ݐ)ݔ) (2.17) 

and ݐ   ݔ = F((ݐ) ݔ) (2.18) 

are said to obtain CS if: 

limݐ  ݔ ∞→ݐ − =  ݐ ݔ 0 (2.19) 

for any combination of initial conditions x(0) and 0  ݔ . 
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The nature of the coupling can have two possibilities. When the evolution of one of 

the coupled system is unaffected by the coupling mechanism, then this is 

unidirectional coupling or a drive-response coupling. However, when both the 

systems are connected to each other such that the evolution of both affects each 

other, then this type of coupling is called bi-directional coupling mechanism. CS 

can be achieved by various types of schemes such the Pecora-Carroll method [42, 

44, 46] as explained above, the negative feedback [47], the sporadic driving [48], 

the active-passive decomposition [49, 50], diffusive coupling/hybrid methods [51] 

and observer based methods [52-57]. 

2. Generalized synchronization (GS): The trajectories of the slave system to the 

master‟s trajectories are one-to-one mapping of the function � [45, 58, 59]. GS is 

used for synchronization for completely different systems where the output of one 

system is the function of the output of another system [60, 61]. System (2.17) and 

(2.18) are said to exhibit GS if: 

limݐ  ݔ ∞→ݐ − = ( ݐ ݔ)� 0, (2.20) 

where the properties of the transformation � are independent of the initial 

conditions x(0) and 0  ݔ . CS is a special case of GS where the mapping function � 

is unity. 

3. Projective synchronization: This is a special case of GS where one-to-one 

mapping function  is a simple linear function �(x) = ߙx [62, 63]. 

4. Phase synchronization: The slave system phase converges to the masters but their 

amplitude may not be the same [64], thus can be formed by a weak coupling and is 

mostly achieved in coupled non identical systems. 
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5. Lag synchronization: The output of the slave system and the master system lock 

their phase and amplitude with a presence of a time delay Ĳlag. This is a special case 

of CS and phase synchronization [45, 65]. 

6. Impulsive Synchronization: In this case, the driving signal from master system is 

not sent continuously but sent as impulses determined by a fixed or time varying 

interval Ĳ [66]. 

7. Adaptive Synchronization: Here some adaptive methods are applied for 

synchronizing the master and slave systems [67, 68]. 

It is seen that the synchronization of two chaotic systems, identical or non identical, is 

possible even it seems initially that the chaotic systems defy synchronization because of 

their inherent properties. There should be a coupling mechanism present between the two 

systems that are being synchronized. 

 

2.6 Importance of Chaotic Signals in Communication Systems 

One might feel that since the signals generated from chaotic systems are irregular in 

nature, therefore, these types of signals cannot have any practical applications and should 

be avoided. However, the properties of the chaotic signal can in fact be used in different 

field of communications engineering particularly spread spectrum applications. To achieve 

chaotic synchronization, there had to be some sort of coupling present between the two 

chaotic systems. If we consider unidirectional coupling, then a signal from one chaotic 

oscillator (drive system) is being transmitted to another chaotic oscillator (response 

system). This is analogous to communication systems where a carrier signal is modulated 

by a message signal prior to transmission.  Therefore, the chaotic signals can be used as the 

carrier signal. 



33 
 

A range of chaotic signals properties as well as its advantages when used in 

communication systems are outlined as follow. 

1. Broadband spectrum – This property is desirable for applications that require 

robustness against interference, jamming and low detection probability. Traditional 

communication systems address these issues by using spread spectrum and 

frequency hopping schemes, which have relatively complex synchronization 

between the transmitter and the receiver. For example, communication schemes 

utilizing frequency hopping entail re-synchronization of the receiver whenever the 

carrier frequency is altered. With chaotic systems, synchronization is easy to obtain 

while allowing the transmission of the broadband signal. Also, the inclusion of the 

message does not change the properties of transmitted signal. 

 

2. Aperiodic waveforms – The chaotic signals are aperiodic in nature therefore the 

long term prediction of the trajectories can prove to be impossible. The distance 

between trajectories that start their evolution in the state space in close proximity 

increases exponentially with the positive Lyapunov exponent. This is an attractive 

property for secure communications since periodicity results in undesirable spectral 

peaks. Also, it is more difficult to develop forecasting models for non-periodic 

dynamics than it is for a periodic case. 

 

3. Sensitivity to initial conditions and parameters – The chaotic system is 

extremely sensitive to small changes in initial conditions and parametric 

mismatches, i.e. the trajectory will be diverge completely if even slightly different 

values are used. This increases interest for the concept of chaotic hardware key for 

secure communications. 
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It is seen that the chaotic signals can be used in implementing secure communication links 

where the message spectrum can be hidden in the broad chaotic spectrum. Chaotic signals 

also provide limited predictability, anti jamming capabilities and reduced multi path effect 

[69, 70] as well because of its inherent properties. However, there are few disadvantages of 

the chaotic signals as compared to traditional communication systems. Studies have shown 

that chaotic communication schemes requires a larger signal to noise ratio (SNR) to obtain 

the same bit error rate (BER) performance as traditional communication schemes therefore 

are less efficient [71, 72]. Chaotic communication schemes are highly sensitivity to the 

noise and would normally require additional 3 dB or more of SNR than its traditional 

counterpart to deliver the same BER [71]. 

The focus of this thesis is to explore the different possibilities for chaotic signals to be used 

in secure communications and also remove the shortcomings of some of the methods that 

are available in the literature. Before that, let us see the relationships between the chaos 

and cryptography. Interestingly, the use of chaos in cryptography can be traced back to the 

Shannon‟s classic paper on cryptography [15, 73] where he gave a tight relationship 

between the two. 

“Good mixing transformations are often formed by repeated products of two simple 

non-commuting operations. Hopf has shown, for example, that pastry dough can be 

mixed by such a sequence of operations. The dough is first rolled out into a thin 

slab, then folded over, then rolled, and then folded again, etc.” 

This statement showed that Shannon‟s discussed about a typical route to chaos via 

stretching and folding [74]. Table 2.1 gives an overview of the relationship of the chaotic 

systems and cryptography. 
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Table 2.1: Comparison between chaos and cryptography properties [14]. 

Chaotic Property Cryptographic Property Description 

Ergodicity Confusion 
The output has the same 
distribution for any input 

Sensitivity to initial 
conditions/ 
control parameter 

Diffusion with a small change 
in the plaintext/secret key 

A small deviation in the input 
can cause a large change at the 
output 

Mixing property 
Diffusion with a small change 
in one plain-block of the 
whole plaintext 

A small deviation in the local 
area can cause a large change in 
the whole space 

Deterministic dynamics 
Deterministic pseudo-
randomness 

A deterministic process can 
cause a random-like (pseudo-
random) behaviour 

Structure complexity 
Algorithm (attack) 
complexity 

A simple process has a very 
high complexity 

System parameters Key 
A small deviation in the system 
parameter can cause large 
change at the output 

 

There exist two main approaches of designing chaos-based cryptosystems: analogue and 

digital. Analogue based chaotic cryptosystems are secure communication links that are 

based on the unidirectional chaotic synchronization. Digital chaos-based cryptosystems 

(also called digital chaotic ciphers), on the other hand, are designed for digital computers, 

where one or more chaotic maps are implemented in finite computing precision to encrypt 

the plain-message in various ways, see [75-81] and references therein. Digital chaotic 

ciphers do not depend on the chaotic synchronization but they have initial conditions 

and/or control parameters used as the secret key. Analogue based chaotic cryptosystem can 

be implemented on continuous-time chaotic system or in discrete time chaotic maps. This 

thesis will deal with the analogue based chaotic crypto system. In the next section of this 

chapter, different methods that are available in the literature for implementing analogue 

based chaotic cryptosystem will be discussed. 
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2.7 Survey of Chaotic Communication Schemes 

It is now known that since chaotic signals are aperiodic in nature and it is fundamentally 

broadband then it can be used to hide message signals in its wide frequency spectrum. 

Also, the sensitivity to initial conditions can also be exploited for multiple access 

techniques where different initial conditions might correspond to different codes for 

distinguishing between multiple users. But an interesting application remains the 

application of the chaos in providing security at the physical level for the message signal to 

be transmitted. Indeed, a number of techniques have been proposed [66, 75, 82-84]. 

Regardless of the method adopted, chaotic synchronization is required for successful 

message recovery. 

2.7.1 Different Chaotic Communication Methods 

Chaotic Masking, Parametric Modulation, Chaotic Shift Keying (CSK) and the Inclusion 

techniques are the most popular methods used for chaotic communications. Many other 

methods have also been proposed but almost all fall under one or more of these categories. 

2.7.1.1 Chaotic masking 

This is one of the earlier methods to use chaotic signals for transmitting a message signal 

as described in [85-90] and is illustrated in Figure 2.14. In this scheme, a message signal is 

added, i.e. masked, to the output of a chaotic oscillator at the transmitter side prior to 

transmission.  
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Upon receiving the signal at the receiver side, a chaotic synchronization is performed and 

the estimate of the chaotic component is subtracted from the received signal, thus 

recovering the original message signal m(t). The transmitter is given by the following state 

space representation as given by: 

= ݐ  ݔ F ݐ ݕ   ݐ ݔ = H ݐ ݔ  . 
(2.21) 

The output signal is y(t) which is the function of the transmitter state x(t). This is added to 

m(t) to form the transmitted signal s(t) which is given by: 

= ݐ ݏ + ݐ ݕ  (2.22) . ݐ ݉

The common practice to choose y(t) is to opt for one of the components of x(t), however, in 

a general case H ݐ ݔ   can be any function of x(t) as long as, at the receiver, chaotic 

synchronization is possible with the choice of the output signal. The receiver dynamic, 

which is being driven by s(t), is given by the following state space representation: 

 

– 

+ 

Figure 2.14: Chaotic communication scheme based on chaotic masking. 
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= ݐ   ݔ F ݐ  ݔ , = ݐ  ݕ  (ݐ)ݏ H ݐ  ݔ  . 
(2.23) 

Now, when the receiver synchronizes with the transmitter, then: 

limݐ  ݔ ∞→ݐ − = (ݐ)ݔ 0 

Now, the estimate of m(t) can be done simply by subtracting the estimated ݐ  ݕ  from s(t): 

 ݉ = ݐ  − ݐ ݏ  (2.24)  ݐ  ݕ

The addition of m(t) at the output y(t) of the transmitter can cause the degradation of the 

quality of synchronization at the receiver side since the driving signal is not quite the 

output of the transmitter but s(t). Therefore, the amplitude of m(t) has to be very small as 

compared to the chaotic signal, otherwise, the synchronization may not be possible and 

also the chaotic signal will no longer be able to hide the message spectrum. Chaotic 

masking has the advantage of simplicity and can be implemented very easily in electronic 

circuits [89]. However, the method of masking has been shown to be insecure and various 

cryptanalysis methods exist [91-96] that makes it possible to estimate the sender dynamics 

and decoding of the message signal. 

 

2.7.1.2 Chaotic parametric modulation 

In the chaotic modulation technique, the message signal is used to modulate (change) one 

or many chaotic system parameters of the transmitter such that its trajectories keep 

changing in different chaotic attractors. This method is proposed and described in [88, 89, 

97-100] and illustrated in Figure 2.15. The idea is to utilize the complex bifurcation space 

of the chaotic system such that the change in the parameter(s) due to the modulation of 
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message signal will not be known to the intruders even if they know the structure of the 

chaotic system. The output of the chaotic system is the transmitted signal. 

 

Now, at the receiver side, chaotic synchronization is performed along with some adaptive 

tuning of the parameter(s) such that the synchronization error approached to zero thus 

recovering the message signal. The transmitter is given by the following state space 

representation: 

= ݐ  ݔ F ݐ ݕ  ((ݐ)݉)ߚ, ݐ ݔ = H ݐ ݔ  . 
(2.25) 

Here, the parameter ߚ of the system is being changed with m(t), thus resulting in different 

chaotic attractors. The output signal y(t) is the function of the transmitter state x(t) and is 

the transmitted signal.  

Upon receiving y(t), the receiver dynamics is given by the following state space 

representation: 

Figure 2.15: Chaotic communication scheme based on chaotic parametric modulation. 
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= ݐ   ݔ F = ݐ  ݕ   ݐ  ߚ, ݐ  ݔ  H ݐ ݁   ݐ  ݔ = − ݐ  ݕ = ݐ  ߚ  ݐ ݕ  .  ݐ ݁ �

(2.26) 

where �(. ) is an adaptive function tuning the parameter ݐ  ߚ  such that e(t) approaches to 

zero thus achieving synchronization and recovering the message signal ݉ (ݐ). Although the 

method of modulation provides better security than the masking method, it is still shown to 

be insecure by various cryptanalysis methods [94, 95, 101-103]. 

 

2.7.1.3 Chaotic shift keying 

CSK is basically a special case of the parametric modulation technique devise to transmit 

digital message securely over a communication channel. In this method, depending on 

either 0 or 1 to be transmitted, outputs from two statistically similar chaotic attractors are 

taken. These two attractors are generated by the two chaotic systems that have slightly 

different parameters but having same structure. At the receiver, the chaotic system is tuned 

to the parameter corresponding to either 0 or 1 and thus synchronization will be achieved if 

the correct bit is transmitted else there will be no synchronization. Thus, by simply passing 

the error signal through a low pass filter and then thresholding the error signal, the digital 

bits could be recovered. This method was proposed and explained in [104, 105] and 

illustrated in Figure 2.16.  

In CSK, switching between multiple attractors is also possible, see ref [106] thus 

transmitting a symbol in a duration of �ݏ. The number of bits ܾܰ  that could be transmitted 

during �ݏ is given by ܾܰ =  .where M is the number of switching attractor ܯ2݃݋݈
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Therefore, if we need to transmit either „0‟ or „1‟ in the symbol duration for binary signal, 

the required attractor is 2 as it was explained earlier. 

 

 has to be long enough to ensure that the chaotic dynamics converges to one of the ݏ�

allowed attractors otherwise synchronization will not be possible at the receiver side in 

order to recover the message. �ݏ depends on the largest negative Lyapunov exponent 

determining the rate of convergence to the attractor. The transmitter is given as: 

= ݐ  ݔ F ݐ ݕ  ((ݐ)݉)ߚ, ݐ ݔ = H ݐ ݔ  . 
(2.27) 

If the binary signal (0, 1) is to be transmitted then, we have ܯ = 2, therefore two 

parameters need to be defined for ߚ, hence: 

= (ݐ)݉ ߚ 0ߚ   = ݐ ݉ ݄݊݁ݓ  0 

= ݐ ݉ ݄݊݁ݓ 1ߚ  1.

  (2.28) 

– 

+ 

Figure 2.16: Chaotic communication scheme based on chaotic shift keying. 
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y(t) is the output transmitted signal. At the receiver side, upon receiving the signal, chaotic 

synchronization is performed. The receiver is given as: 

= ݐ   ݔ F ݐ  ݕ  0ߚ, ݐ  ݔ = H ݐ  ݔ  . 
(2.29) 

The synchronization error signal will now be: 

= ݐ ݁ − ݐ  ݕ   (2.30) . (ݐ)ݕ

such that, 

= ݐ ݁ ݀݁ݐݐ݅݉ݏ݊ܽݎݐ 0 ݄݊݁ݓ 0 
.݀݁ݐݐ݅݉ݏ݊ܽݎݐ 1 ݄݊݁ݓ ݁ݏ݅ݓݎ݄݁ݐ݋ 

  (2.31) 

So, from the error signal, the message could easily be recovered because of the obvious 

synchronization error that will exist because of the parametric mismatch. This type of 

message recovery is the coherent detection type. The message could also be recovered via 

a non-coherent detection scheme where synchronization is not required. The extraction of 

the bits is done by looking at the statistical attributes (such as bit energy distribution, 

variance, mean, etc) of the transmitted signal to which the attractor corresponds [107]. 

However, these statistical properties may allow the intruders to decode the message 

without any knowledge of the transmitter dynamics thus making it less secure than its 

counterpart, the coherent detection. Although CSK method is found to be robust with noise 

and parametric mismatches, it has also been found to be insecure [93-95, 101, 108, 109]. 

 

2.7.1.4 Chaotic inclusion method 

In this method, instead of changing the chaotic parameter as in the modulation, the 

message signal is used to change the chaotic attractor directly in the phase space. In 
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parameter modulations, switching was made between different trajectories in different 

chaotic attractors, however, in this technique, switching is made between different 

trajectories of the same attractor. Care should however be taken such that the inclusion of 

the message does not take the system away from the bifurcation space and destroy the 

chaotic nature of the system. At the transmitter, the message is included at one of states (or 

more) of the chaotic system and the output is transmitted. At the receiver, once 

synchronization is achieved, the message is recovered by some inverse operation. This 

method is explained in [54, 86, 110-112] and depicted in Figure 2.17. 

 

Since, the inclusion of the message as the input in the transmitter dynamics, the message 

recovery becomes unknown input problem in case of control theory where observers are 

used. Therefore, the system further has to satisfy the observability matching condition [54, 

113-115] as well as the left invertibility property [115-118] so that it guarantees the 

possibility of recovering all states and the unknown input message at the receiver from y(t) 

and its derivates [55]. The transmitter is given as: 

= ݐ  ݔ F ݐ ݕ  (ݐ)݉, ݐ ݔ = H ݐ ݔ  . 
(2.32) 

Figure 2.17: Chaotic communication scheme based on chaotic inclusion. 
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Here the message m(t) is included in the states of the chaotic system. At the receiver, the 

receiver dynamics is given as: 

= ݐ   ݔ F ݐ  ݕ   ݐ  ݔ = H ݐ  ݔ  . 
(2.33) 

Now by applying the inversion as shown in [54, 86], the message is recovered under the 

left invertibility condition. 

The method based on inclusion is also shown to be vulnerable to some attack methods [95] 

and therefore unsatisfactory without further modifications. 

 

2.7.2 Some Considerations Regarding the Implementation of Chaotic Secure 

Communication 

Few things are worth mentioning regarding the implementation of the chaotic 

communication system which will also be helpful in the later results chapters. One point 

worth pointing out is, are the chaotic signals really broadband? Since, the basic idea was to 

hide the narrow band message spectrum within the wide band of chaotic signals, therefore 

the chaotic signals being used as the carrier should have a wide spectrum. However, the 

power spectrum of the output signal from the Lorenz oscillator illustrates that the spectrum 

hardly exceeds beyond 4-5 Hz, certainly not a broad band signal by any means. Therefore, 

a message signal e.g. a sine wave with a frequency of 5 Hz after being masked with that 

chaotic signal will be easily detected from the observed spectrum of the masked signal. A 

simple high pass filter is all one needs to capture the message signal. Also, the power of 

the message signal should be considerably lower than the power of the chaotic carrier; 

otherwise once again the message signal will be clearly visible in the spectrum. This is 
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illustrated in Figure 2.18 where a sine wave with amplitude 1V and a frequency 5 Hz is 

masked with the output of the Lorenz oscillator. 

 

This example simply illustrate that this chaotic signal generated by the Lorenz equation is 

not really broadband. The chaotic signals are aperiodic, and are more or less noise like 

(chaotic signals are deterministic however). Even the autocorrelation function of the 

chaotic and noise signals are the same where the former is only equal to itself when there is 

no time delay, otherwise it‟s not related to itself in any time shift. The autocorrelation 

function for the output of the Lorenz oscillator is shown in Figure 2.2. The explanation of 

the spectrum of chaotic signals generated by the Lorenz equation not spanning more than 

4-5 Hz is such that, the equation can be thought to be generating signals with respect to a 

normalized time. Therefore the Lorenz equation in its normalized form will generate a very 

slow time varying signal, but with no repeatability. So, if the time scale is de-normalized, 

then the chaotic signals can easily be made a broadband signal. Hence, it should be 

understood that a chaotic oscillator generates signal in the normalized form i.e. ݔ   should be 

seen as dx/dĲ such that the normalized time Ĳ = t/T. T is a normalizing time factor and 

 

 
Figure 2.18: (a) Power spectrum of the chaotic carrier, and (b) message extraction using a 

high pass filter. 
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therefore, normalized angular frequency ωnorm = ωT. In this thesis, we provide all results by 

taking T equals to 1.  

Therefore, a key point when using chaotic signals as the carrier is that the frequency of 

message signal should be such that it is completely buried inside the spectrum of the 

chaotic signal. This means when a chaotic system is used for demonstrating any of the 

above methods, the message signal should have considerably lower frequency well within 

the power spectrum of the chaotic carrier regardless of frequency being used. The system 

can easily be extended to support higher frequencies by de-normalizing the chaotic carrier 

signal. Therefore, all illustrations later on in this thesis will show a very low frequency 

message signal being transmitted i.e. when taking normalized time T = 1. Therefore, with 

the earlier explanation, it should be clear that it is not the limitation of the chaotic 

communication and the examples are shown only for verification purposes. 

 

2.7.3 Chaos-based Attack Methods 

Various attack methods were proposed in the literature to break the methods of masking, 

modulation, inclusion and CSK and decode the message signal without any information 

about the transmitter dynamics. The methods were mostly based on signal processing. The 

cryptanalysis of chaos based communication systems can be done in either of the three 

possibilities [14]. 

a) Extraction of the chaotic carrier signal from the transmitted signal to recover the 

message signal by removing the estimated carrier signal from the transmitted 

signal. 

b) Direct extraction of the message signal from the transmitted chaotic signal. 
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c) Estimation of the secret parameters of the chaotic systems from the transmitted 

chaotic signal to completely break the system. 

Now, let us talk about various well known chaos-based attack methods that are available in 

the literature. 

 

2.7.3.1 Chaotic carrier extraction based on non-linear dynamic (NLD) forecasting 

This method is one of the first proposed methods to attack the chaotic communication 

methods. This method is useful in extracting message signal that use chaotic masking and 

modulation techniques. In the NLD forecasting method, first of all, the chaotic carrier 

signal is extracted from the transmitted signal which is then removed from the transmitted 

signal to reveal the message signal. Although well known and quite popular technique, this 

suffers from not being able to extract the message accurately and also may not be used in 

varied modulation technique. The details of this technique are available in these references 

[91, 102, 119-121]. 

 

2.7.3.2 Power spectral analysis and filtering 

As it was pointed out in the earlier section of some consideration regarding the 

implementation of the chaotic communication system, the message spectrum may peak out 

if spectral analysis of the transmitted chaotic signal is done. This is because, popular 

chaotic systems like Lorenz, Duffing, Rossler, Chua‟s, etc in its standard normalized form 

do not produce a really broadband signal but instead produce a narrow band signal. 

Consequently, the chaotic signal will not be able to hide the message spectrum successfully 

if higher frequency for message is chosen for implementation. Attackers therefore will be 

able to use this information and simply high pass filter the transmitted signal to accurately 



48 
 

extract the message signal as shown in Figure 2.18. This attack is very powerful because 

no prior knowledge of the system structure or configuration is required. However, if the 

consideration in the section 2.7.2 is fulfilled then this attack can be avoided. This technique 

is the direct extraction of message signal from the transmitted chaotic signal and details are 

available in these references [93, 96, 103, 122, 123]. 

2.7.3.3 Generalized synchronization technique 

The GS method that had been discussed earlier can also be used an attack options to 

chaotic communication methods, particularly the CSK method. The GS attack method is 

first proposed on [108]. In this technique, the precise knowledge of the chaotic transmitter 

is not known. It is also assumed that the chaotic receiver designed using GS will never 

synchronize to the unknown chaotic transmitter because there exists some significant 

difference both in the structure and parameters (which is regarded as key in the 

cryptosystem) between the transmitter and the intruder receiver. However, this technique 

will be able to decode the binary message signal as good as the legible receiver that has 

same structure and parameters as of the transmitter. In CSK, the trajectory of the 

transmitter is switched between two chaotic attractors, and hence GS transformation is also 

switched to two different ones. Now, if the difference between the GS transformation 

corresponding to 0 and 1 is big enough, then the hidden message can be detected. The key 

thing is to measure the synchronization error over time, then will be possible to detect the 

switching of the two attractors in the transmitter as a variation in a square error. GS is used 

for breaking other type of method as mentioned in [124]. The GS based attack is depicted 

in Figure 2.19. The CSK system is based on Lorenz system with parameter b switched 

between 4 and 4.4 when 0 or 1 is transmitted respectively and at the intruder receiver the 

parameter is set blindly at 4.6. 
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Figure 2.19: GS based attack on the CSK method that uses the Lorenz system: (a) the 
transmitted binary message, and (b) the error signal at the intruder receiver. 

 

2.7.3.4 Artificial neural network (ANN) technique 

Neural networks can also be used to attack the chaotic communication methods especially 
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signal, other analysis may not be able to hide the message. In [94], the authors had 

proposed a technique to attack CSK method based on NN. It consisted of 2 steps. In the 

first step, the time series of the transmitted signal are transferred in the spectral-temporal 

space by using a spectrogram that is a moving window of FFT of the time series. The 

spectrogram is used of retrieving the evolution of the spectral characteristics of the 
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for optimization. Since, the CSK method clearly makes switching between two signals, the 

cryptanalysis simply became a pattern classification problem and can be cracked by 

intruders using ANN. 

 

2.7.3.5 Return map (RM) technique 

RM is one of the popular methods to attack the chaotic communication methods. In [93], 

the RM was successfully utilized to break methods based on CSK and in [95], it is further 

shown that RM could be used to attack methods based on masking, modulation, inclusion  

and CSK. The RM looks for the maximum and the minimum return of the signal, analyses 

them and plot against each other.  If xi and Xi are the i-th minima and maxima for a signal 

y, respectively, then RM can be obtained by plotting xi versus Xi in a simple case. Also if 

RM is to be obtained as explained in [93], then lets define Ai = (Xi + xi)/2 and Bi = (Xi - xi). 

The plot of Bi with respect to Ai will be the return map of the signal y. Figure 2.20 

illustrates the RM of the transmitted signal using CSK method that implements the Lorenz 

system switching between values 4.0 and 4.4 for the parameter b. Distinct two branches are 

seen and by checking which strip the point (Ai, Bi) falls on, one can easily unmask the 

current value of the binary message signal. Since one has to assign either 0-bit or 1-bit to a 

strip in each segment, it was claimed in [93] that there are only seven chances to make 

wrong assignments, which can be easily detected by observing the waveform of the 

reconstructed message signal. 
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Figure 2.20: Return map of the transmitted implementing CSK method. 

 

2.7.4 Various Other Modified Techniques 

It is seen that various chaos based communication systems are available in the literature 

but along with them different attack methods are also available such that intruders are able 

to extract the message signal without actually knowing the chaotic transmitter structures, 

dynamics, parameters, etc. Be it masking, modulation, inclusion or CSK methods, all 

methods are found to be insecure by one method or two. Researchers have moved forward 

and proposed various modifications on these methods. Indeed, various other methods have 

been proposed, see [40, 63, 66, 70, 84, 90, 125-153] and references therein. These methods 

were based on concepts such as two channel transmissions, modifications of masking or 

modulation or inclusion techniques. But, almost all techniques repeated the same 

shortcomings as mentioned for previous methods and did not quite took into considerations 

of various attack methods, since researchers concentrated on only proposing newer 
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methods. Other proposed methods based on the projective synchronization [63], phase 

synchronization [99], GS [154] were broken as well [124, 155]. Researchers also suggested 

to use hyperchaos in order to improve the security of the communication system [156-158], 

because hyperchaos increased the randomness and unpredictability of the chaotic system. 

However, it was shown later that NLD forecasting can be used to attack hyperchaos based 

methods of a six dynamics [120]. Next, it was the use of time-delay systems. It is known 

that even simple time-delay systems exhibit hyperchaotic property [159]. Therefore, time-

delay system was used [160] as an alternative for providing secure methods with low 

detectability since chaotic attractors of time-delay systems can have much higher 

dimension and many more positive Lyapunov exponents. But the time-delay based method 

was broken as well [161]. A method based on cryptography was also proposed which used 

an additional encryption algorithm to add complexity of the system [1], however NLD 

based forecasting method was later employed to attack this type of system as shown in 

[119]. The method based on cryptography has nevertheless good scope to improve the 

security. Heterogeneous chaos based cryptosystem was also proposed which used a 

combination of masking and modulation technique or CSK and modulation as shown in 

[162, 163] however this was shown to be insecure by method mentioned in [164].  Another 

method based on adaptive chaotic synchronization and modulation as proposed in [165] 

but was soon broken in [103]. The list of different methods and then subsequent attack 

methods has kept on growing over the last decade.  

Researchers also tried to improve the existing modulation techniques and CSK techniques 

and provided security analysis by showing that methods such as NLD or RM are not 

useful. In [134], a periodic signal  is combined with one state of the transmitter to modulate 

the transmitted signal so as to blur the reconstructed RM in order to frustrate the attacker. 

However, it was soon broken in the work described in [135, 166, 167] by distinguishing 
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the phase and angular frequency of the periodic modulating signal and then removing it. A 

modified scheme of the original method of [134] was proposed in [135] to further improve 

its security. However, in the work mentioned in [168] this modified modulating scheme is 

still shown not to be secure enough and that the modulating signal can even now be 

effectively removed via parameters estimation. CSK method has also been modified such 

as in [136, 169] etc, but was shown to be not quite secure enough as pointed out in [109, 

144]. Therefore, it shows that still proposing new techniques for secure communication 

using chaotic signals is quite a challenging task considering different attack methods and 

various challenges. This thesis will therefore talk about various possibilities on how the 

challenges can be met and newer and secure methods are possible. 

 

2.8 Summary 

In this chapter, an introduction to chaos and its possibility to be used in chaotic 

communication for implementing security directly at the physical was presented. The 

introduction of chaos was provided with its fundamental properties. It was known that 

chaotic systems are highly sensitive to initial conditions, generates fundamentally 

broadband signals that are aperiodic. Although, chaotic signals seem like random signal, 

they have deterministic dynamics. These properties therefore are useful for implementing 

them in secure communication. Furthermore, different route to chaos were discussed and 

few examples were mentioned. It was also discussed that even though chaotic systems 

shows sensitivity to initial conditions, etc, it is still possible to synchronize two chaotic 

systems starting from different initial conditions under some conditions. The possibility of 

chaotic synchronization further opened the door to implement them in analog based secure 

communication. We also in brief showed how synchronization is possible mathematically 
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and talked about various types of synchronization and various ways of obtaining 

synchronization. Different methods available in the literature for implementing chaotic 

communication was then discussed, methods such as chaotic masking, modulation, CSK 

and inclusion methods were discussed in detail since these models form the foundation of 

chaotic communication and are very important to understand newer techniques. It was also 

presented that these methods were not very secure and lots of different attack methods 

existed such as NLD based forecasting, power spectral analysis, RM, ANN, etc. Different 

variations and techniques were also discussed and it was concluded that there still exists 

the requirement to come up with a better technique such that secure communication can be 

realized where the existing attack methods will not be useful. Now, in the chapters to 

follow in this thesis, newer modified methods will be proposed and explained. 
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Chapter 3 Observer Based Synchronization: 

Application to Secure Communication 

 

3.1 Introductions 

In the previous chapter, we had talked about chaotic synchronization and we saw that 

different form of synchronization exist such as CS, GS, etc. The use of chaotic systems in 

communication systems will mean that it is necessary to transmit a signal from one system 

to another, thus forming a unidirectional coupling, which is essential for synchronization. 

The attention of this chapter will be limited to CS on unidirectional coupled system and 

will discuss an idea of observers for achieving CS. From here on wards the term 

synchronization for CS will be used throughout the chapter unless stated explicitly.  

Many methods have been proposed for achieving synchronization such as Pecora & Caroll 

method [42, 43], an active-passive decomposition [170], an Extended Kalman filtering 

approach [171, 172], an observer based approach [52, 53, 57, 173] etc. Amongst all these 

methods, the observer based synchronization is the most promising method which is the 

focus of this chapter. Before going into details of observer based synchronization, we start 

by recalling some basic concepts on observer design theory. 

 

3.2 Some Recalls on Observers 

Roughly speaking an observer is basically a software sensor that permits to provide an 

estimation of the unmeasured states variables of a system. In more precise terms, an 

observer is a dynamical system that uses the available measurements (inputs and outputs) 
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to provide an estimation of the state variables that are not available to be measured. The 

basic block diagram of the observer is shown in Figure 3.1. 

 

 

Figure 3.1: Block diagram of an observer. 

 

3.2.1 Mathematical Description of Observers 

Consider the general nonlinear system described by  

 (3.1) 

where nRx , pRy , mRu , nmn RRRf :  and pn RRh :  are assumed to be 

smooth functions. 

The observation problem is addressed when np   (we have less sensors than the number 

of state variables). This means that we do not know the initial condition of part of the state 

variables. The observer is generally described as: 

 (3.2) 

where nRz  is the state of the observer and x̂  is the estimate of the state x  such that 

 

The above is a general definition of observer. In practice, it is not easy to design an 

observer for a general system. Also, there is no systematic method to design the function 
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g   and l  for any given dynamical system given by (3.1). 

For this reason, we generally impose a specific structure for an observer as follows: 


 


.ˆ

))ˆ((),ˆ(ˆ
.

xy

xhyuxfx

obs

  (3.3) 

Such a structure is interesting in the sense that if  0))(ˆ()(  txhty  after some time, say 1t , 

then the two systems (3.1) and (3.2) become identical and )()(ˆ txtx   for all 1tt  ; due to 

the unicity of solution of the above system. 

The observer therefore mainly amounts to the design of the function     - known as the 

gain of the observer - such that the estimation error  .0ˆlim  xxt   

Note that the observation problem is basically an initial condition problem because if we 

know )0(x  then there is no need for an observer. The integration of the above model (3.1) 

would suffice to find all state variables provided the model is perfect and there is no 

measurement noise. 

Various types of observers exists in the literatures such as the classical Luenberger 

observer also called proportional observer as will be explained later, the sliding-mode 

observer [55], the proportional-integral (PI) observer [174], adaptive observer [148, 175], 

the neural observer [176], etc. 

 

3.2.2 Observability 

In order to design an observer for a system, we need to analyse the observability of the 

system.  Observability is the property of a system that determines whether an observer 

design is possible or not. 

Definition 1. The system (3.2) is said to be observable on a time interval [0, T] if for any 

two distinct initial conditions ,0x  0x  there is an input )(tu  defined on ],0[ T  such that the 
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output  ),,( 0 tuxy , ),,( 0 tuxy  corresponding to these initial conditions when the input )(tu  

is applied to the system, are also distinct. 

Roughly speaking for two different initial conditions we should obtain two different 

outputs. Note the above definition suggest that the observability of a system depends on 

the inputs applied to the system. 

For linear systems, however, the above definition is true for all inputs and in particular for 

the input 0u . Because of this special property, the observability of linear systems of the 

form 







,Cxy

BuAxx
 (3.4) 

where nRx , pRy , mRu  amounts to checking whether its corresponding 

observability matrix 






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






1n

x

CA

CA

C


O  (3.5) 

has full rank or not. This is the so-called observability rank condition. Note also that for 

linear systems xO  does not depend on u . 

 

3.2.3 Nonlinear Observer Design 

As mentioned above the observability of nonlinear systems depends on the inputs. This 

means that the same nonlinear system can be observable for some set of inputs while being 

unobservable for another set of inputs. The sets of inputs that render the nonlinear system 

unobservable are called singular inputs. The sets of inputs that render the nonlinear system 

observable are called universal inputs.  
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The singular inputs, in fact, constitute the main bottleneck for nonlinear observer design. 

Such a situation does not occur in the linear case as we have seen previously.  

Let us consider an example in order to clarify the issue with singular inputs. In effect, 

consider the following 2-dimensional system: 

.

0

1

2

22
1

xy
dt

dx

uxx
dt

dx





 

(3.6) 

For  1)( tu  , this system is not observable. Therefore, u(t)= -1 is a singular input for the 

above systems. Every input u(t)-1 are universal. 

As a matter of fact, we cannot speak of observability in a broad sense as in the linear case. 

We can only design observers for classes of nonlinear systems; that is, we have to 

characterise those classes of nonlinear systems for which we can design an observer. 

 

In particular, we can ask the following question: is there a class of nonlinear systems 

which is observable for all inputs? The answer to this question is yes and the class of such 

systems is called uniformly observable systems. For this class of system, the theory of 

observer design is well established. For more details see [177-179]. 

One important subclass of uniformly observable systems are those that have linearisable 

error dynamics and will be discussed next. 

 

3.2.4 System with Linearisable Error Dynamics 

One important subclass of nonlinear systems of the form (3.2) are those that can be 

transformed via a change of coordinates into the following output injection form as: 
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





.

)(

Cxy

yBfAxx
 (3.7) 

where the pair of matrices (A,C) is rank observable. Such systems are also uniformly 

observable; that they are observable for all inputs.  

A fairly large class of chaotic systems are transformable into the above form as we shall 

see in the subsequent chapters. 

An observer for the above system (3.8) can be defined as: 

).ˆ()(ˆˆ xCyKyBfxAx   (3.8) 

Setting ݁ = ݔ −  then the error dynamics is given as , ݔ

 e.AKC)e(Ae c  (3.9) 

The observer gain K can be chosen such that all the eigenvalues of matrix (A - KC) have 

negative real part. Then, the error will converge exponentially to zero. Hence, the state x 

will converge exponentially to the estimated state ݔ  regardless of the initial conditions x(0) 

and (0) ݔ. 

 

3.2.5 Proportional Integral (PI) Observers  

Note that in the above observer (3.9) the correction term )ˆ( xCyK  is proportional to the 

output observation error ( )ˆ( xCy ). For this reason, the above observer is called a 

„proportional observer‟. However, nothing prevents one to add an additional term to the 

observer that is proportional to the integral of the output observation error; that is,  

 
dtxCyKxCyKyBfxAx i   )ˆ()ˆ()(ˆ̂  (3.10) 

In such a case the observer is called a proportional integral observer; in short a PI observer. 
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It is shown in [174] PI-observer shows more resilience to noise. Also, it is simpler in terms 

of its design compared to sliding-mode observers which is also robust with respect to 

measurement noise. 

For these reasons, in this work, we are going to use PI-observer to propose a new chaos 

based communication scheme. This is discussed in detail in the next section. 

 

3.3 PI-observer Based Communication System 

In this section, a new scheme for chaos based communication will be proposed where a 

combinational technique of chaotic masking and inclusion method is used as shown in 

Figure 3.2. As was discussed in previous chapters, the chaotic masking method is insecure 

while the inclusion method brings left invertibility problem making message extraction 

difficult. Therefore, this method facilitates the message recovery process and also increases 

the security. The performance of P and PI observers are studied for the proposed method 

and the performance of both observers on successfully recovering the message in presence 

of channel noise is studied. It will be shown that the PI-observer indeed provides improved 

performance and flexibility compared to other observer. This chapter is focussed on 

showing that PI observers are best suited for using in communication systems since they 

show high resistant to system noise. The security analysis is not done for the combinational 

scheme and is left for new and better schemes in the later chapters. 

We assume that the chaotic oscillator at the transmitter is described by: 

= ݔ  Aݔ + B݂ ݕ + ݕ  ݐ ݄ = Cݔ, 

(3.11) 

 

where h is the forcing function, and f is a continuous nonlinear function satisfying the 

following Lipschitz condition: 
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− ݕ ݂   ൑ ( ݕ)݂ ݕ ߢ −  (3.12) ,  ݕ

where   ∙   is the Euclidean norm, and  ߢ > 0 is the Lipschitz constant. The matrices A, B 

and C are of the following form: 

 

A =  0 1 ڮ ڭ0 ⋱ ڭ
1ܽ1 ڮ ܽ݊ , B = ڭ0 

0

1

 . 

C =  1 01×݊−1 . 

(3.13) 

Note that chaotic systems not defined by the above equations can simply be defined by 

transformation/change of coordinates.  

 

3.3.1 Proposed Combinational Scheme 

The proposed scheme is shown in Figure 3.2. Here we propose to inject the message in the 

oscillator as well as adding the message to the output of the oscillator. The injecting of 

message in the derivate of the state changes the attractor directly at the phase space and 

therefore will increase the security while the adding of the message in the output will 

facilitate the message recovery process. 

 

 

 y(t) (ݐ)ݐݕ

  ݐ 0݉݀
�(t) 

m(t) Chaotic 
Oscillator  Channel 

Amplifier 

Chaotic 
Receiver 

 Message (t) ݕ
Recover
y ݕ (t) 

mr(t) 

Receiver 

Transmitter 

Figure 3.2: A block diagram of the combinational scheme implementing chaotic masking 
and inclusion method. 
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The system is described as:  

= ݔ  Aݔ + B݂ ݐݕ + + ݐ ݄ B݉(ݐ) ݐݕ = Cݔ +  . ݐ 0݉݀
(3.14) 

Note, the message signal m(t) is included at the derivative of the state variable xn and at the 

output ݐݕ . The received signal with the noise �(t) is given by: 

= ݕ  ݐݕ +  (3.15) .(ݐ)�

3.3.2 Problem with Proportional Observer 

A classical proportional observer designed for synchronization with system (3.14) can be 

written as: 

=  ݔ  Aݔ + B݂ ݕ  + + ݐ ݄ Kݕ ݌ − Cݔ   ݔ  =  A − K݌C ݔ + B݂ ݕ  + + ݐ ݄ Kݕ݌ , 
(3.16) 

where K݌ =  ݇1 ݌݇ ڮ ݇݊ T  is the gain chosen such that  A − K݌C  is stable.  

Now let ݁ = ݔ −  be the error between real and estimated states. Then, from (3.14) and  ݔ

(3.16) the error dynamics is given by: 

  ݁ = A݁ + B ݂ ݐݕ − +   ݕ ݂ B݉ ݐ − K݌ − ݕ  Cݔ   
    = A݁ + B ݂ ݐݕ − +   ݕ ݂ B݉ ݐ − K݌ Cݔ + + ݐ 0݉݀ − ݐ � Cݔ   
    =  A − K݌C ݁ + B ݂ ݐݕ − +   ݕ ݂  B − Kݐ ݉ 0݀݌ − K݌  . ݐ � 

(3.17) 

In (3.17), it can be seen that one needs to arbitrarily choose the value of K݌  in order to 

make the matrix  A − K݌C  stable, but since higher the value of K݌  the effect of noise � ݐ  
and ݉ ݐ  in error dynamics will also be amplified because of the terms K݌  and  ݐ � 

B − K0݀݌ in the error dynamics. We need to be able to choose K݌ = 0 (or at least very 

small) for removing the influence of noise on the error dynamics and B − K0݀݌ = 0 for 



64 
 

eliminating the influence of the message. This means higher value of ݀ 0 will now affect 

the chaotic property of transmitter oscillator. Therefore, the value of  K݌  has to be chosen 

judiciously such that the matrix  A − K݌C  is stable while at the same time reducing the 

influence of message and noise. Hence, it is too much constraint on the sole proportional 

gain and therefore the P-observer is not the suitable observer to be implemented in this 

scenario. The following section will show that the PI-observer provides a better solution in 

terms of much reduced influence of the message signal and noise on the error dynamics. 

 

3.3.3 Proportional-Integral Observer 

Figure 3.3 depicts a channel and receiver block diagram of chaotic communication system 

using the PI-observer. Note that the integrator is located at the input of the receiver, thus 

eliminating the need for sending two signals from the transmitter. The transmitter is as 

shown in Figure 3.2.   

 

To design a PI-observer, we set 0ݔ = ݐ݀(�) ݕ 
0

� = 0 ݔ In other words .�ݕ = = ݕ Cݔ + ݐ 0݉݀+  instead of yt because the integrator is placed at the receiver  ݕ We are using . ݐ �

side, i.e. once the transmitted signal is corrupted by the noise. We now have the following 

expressions: 

 

yt (t) 

�(t) 

Channel 
Chaotic 
Receiver 

 Message (t) ݕ
Recovery 

 (t) ݕ
mr(t) 

 (ݐ)�ݕ  

Figure 3.3: A block diagram for PI-observer based receiver. 
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0 ݔ  = Cݔ + + ݐ 0݉݀ = ݔ  ݐ � Aݔ + B݂ ݐݕ + + ݐ ݄ B݉ ݐݕ  ݐ = Cݔ + = ݕ  ݐ 0݉݀ Cݔ + + ݐ 0݉݀  . ݐ �

(3.18) 

 

An augmented system can be written for (3.18) as follows: 

݃ݑܽ ݔ  = A ݃ݑܽݔ + B ݂ ݐݕ + + ݐ ݄  C0
T(݀0݉ ݐ + ( ݐ � + B ݉(ݐ) ݐݕ = C ݃ݑܽݔ + �ݕ  ݐ 0݉݀ = C0݃ݑܽݔ = ݕ  C ݃ݑܽݔ + + ݐ 0݉݀  , ݐ �

(3.19) 

 

where 

݃ݑܽݔ  = ݔ0ݔ     ,  A =   0      C

0n×1 A
   

B =   0
B

  , = ݐ ݄      ݐ 0݄  
C0 =   C  0 , C =   0  C . 

 

Now a PI-observer for (3.19) can be designed as: 

݃ݑܽ  ݔ  = A ݃ݑܽ ݔ + B ݂ ݕ  + + ݐ ݄  L � ݕ�−C0݃ݑܽ ݔ  +  K ݕ ݌ − C ݃ݑܽ ݔ  , (3.20) 

where K ݌ =  ݇0 K݌ T =  ݇0 ݇1 ڮ ݇݊ T and L � =  ݈0 L� T =  ݈0 ݈1 ڮ ݈݊ T 

are the proportional and integral gains, respectively. 

By defining the error signal ݁ܽ ݃ݑ = ݃ݑܽݔ − ݃ݑܽ ݔ , from (3.19) and (3.20) and following 

few calculation steps, the error dynamics is defined as: 

݃ݑܽ݁   =  A − L �C0 − K ݌C  ݁ܽ݃ݑ + B  ݂ ݐݕ −    ݕ ݂
+  C0

T ݀0݉ ݐ + +  ݐ � B ݉ ݐ −  K ݐ 0݉݀݌ − K ݐ �݌  

          = F݁ܽ݃ݑ + B ݃ ݐݕ +  ݕ,  (C0
T − K ݐ 0݉݀)(݌ + ( ݐ � + B ݉ ݐ , 

(3.21) 

 

where F =  A − L �C0 − K ݌C   and ݃ ݐݕ  , =  ݕ − ݐݕ ݂   .   ݕ ݂
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Ideally, one could choose (C0
T − K ݌) = 0, to keep the effect of noise and message on the 

error dynamics to a minimum. However, by setting K ݌ =  C0
T , the noise term could be 

eliminated but at the cost of the overall system (3.18) becoming unobservable, thus  

making it unfeasible to choose L � to stabilize the overall augmented system. Consequently, 

we have chosen the followings conditions: 

 ݇0 = 1 − � ݇1 = ݇2 = ڮ = ݇݊−1 = 0 ݇݊ = 1 ݀0
 . 

(3.22) 

Equation (3.21) can be re-written using the special gains in (3.22) as: 

݃ݑܽ݁   = F݁ܽ݃ݑ + B ݃ ݐݕ +  ݕ, ݀0� C0
T݉ ݐ + (� C0

T + 1 ݀0
 B )� (3.23) . ݐ 

Since F is stable, there exist P and Q, symmetric positive definite (SPD) matrices, such 

that: 

 FTP + PF = −Q (3.24) 

Let  V(݁ܽ݃ݑ ) = T݃ݑܽ݁ P݁ܽ݃ݑ  be the candidate Lyapunov function. Then using (3.23), (3.24) 

and (3.12), we get the followings: 
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V = T݃ݑ2݁ܽ P ݃ݑܽ݁   

    = T݃ݑ2݁ܽ PF݁ܽ݃ݑ + T݃ݑ2݁ܽ PB ݃ ݐݕ , +  ݕ T݃ݑ0݁ܽ݀�2 P C0
T݉ ݐ 

+ T݃ݑ2݁ܽ P(� C0
T + 1 ݀0

 B )� ݐ  

    ൑ T݃ݑܽ݁− Q݁ܽ݃ݑ + 2 P݁ܽ݃ݑ ݐݕ ݃   , +   ݕ 2�݀0 P݁ܽ݃ݑ   ݐ ݉  
+ 2 P݁ܽ݃ݑ   � +

1݀0

   ݐ �  
    ൑ T݃ݑܽ݁− Q݁ܽ݃ݑ + ݃ݑP݁ܽ ߢ2 +  ݐ �   2�݀0 P݁ܽ݃ݑ   ݐ ݉  

+ 2 P݁ܽ݃ݑ   � +
1݀0

   ݐ �  
    ൑ T݃ݑܽ݁− Q݁ܽ݃ݑ + 2 P݁ܽ݃ݑ   Ɉ + � +

1݀0

  ݐ �  
+ 2 P݁ܽ݃ݑ  .  ݐ ݉ 0݀� 

(3.25) 

 

We know, 

 −ɉmin  Q  ݁ 2 ൒ −݁�Q݁ ൒ −ɉmax  Q  ݁ 2  −ɉmin  P  ݁ 2 ൒ −݁�P݁ ൒ −ɉmax  P  ݁ 2 , 
(3.26) 

where ɉmin  and ɉmax  are minimum and maximum eigen values for the respective matrices. 

Now from (3.26), 

 −݁�Q݁ ൑ −ɉmin  Q  ݁ 2 

൑ −ɉmin  Q ݁�P݁ɉmax  P  

−݁�Q݁ ൑ −ɉ0݁�P݁ = −ɉ0V, 

(3.27) 

where ɉ0 is the ratio between minimum eigen value of Q and maximum eigen value of P.  

Also, we can write, 

  ݁ 2 ൑ Vɉmin  P  (3.28) 
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 ݁ ൑  V ɉmin  P  
Therefore, from (3.27) and (3.28), provided that ݉  are bounded (3.25) can  ݐ � and  ݐ 

now be written as: 

 V  ൑ −ɉ0V +
c ɉmin  P  V = −ɉ0V + ɉ1 V. (3.29) 

The value ɉ1 depends on the minimum eigen value of P and ϵ and ݀ 0. 

Hence, by choosing � and ݀ 0 judiciously we can make 1ߣ < in which case V  ൑ ,0ߣ 0, thus 

proving synchronization is achieved. 

Here, L �, � and ݀ 0 are chosen in such a way to ensure that the matrix F is stable and  the 

effect of noise and message as minimum as possible.  Also, the value of ݀ 0 can be made 

small enough such that masking of message does not affect the chaotic property of the 

transmitter oscillator. By doing the PI-observer scheme adds degree of freedom and 

flexibility. The integral and proportional gains can be selected to achieve rapid 

synchronization and reduced noise impact, respectively. 

Having achieved the desired convergence, the message signal can be retrieved by 

calculating the following difference equation: 

− ݐ  ݕ  = ݐ  ݕ − ݐ ݕ + ݐ  ݕ + ݐ 0݉݀   ݐ �
                       = + ݐ �  . ݐ �

(3.30) 

With limݐ→∞ − ݐ ݕ  →  ݐ  ݕ 0, the recovered message signal is given by: 

≈ ݐ ݎ݉  0݀ ݐ �

+  (3.31) . ݐ �

The noise � ݐ  term can simply be removed using a low pass filter. 
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The proposed method will be implemented using the Duffing oscillator and P and PI-

observer will be designed. The simulation will be carried out using Matlab/Simulink and 

the performance for both the observers will be observed and compared. 

 

3.4 Implementation of PIO using Duffing Oscillator 

The Duffing oscillator is defined as: 

1 ݔ  = 2 ݔ 2ݔ = 1ݔ−

4
− 1ݔ

3 + 11cos⁡(ݐ). 
(3.32) 

We assume that state variable 1ݔ is measured, i.e. the output equation is ݕ =  so that the 1ݔ

system can be written in a matrix form as: 

= ݔ  Aݔ + B݂ ݕ + h(ݐ) ݕ = Cݔ, 
(3.33) 

where   

  A =  0 1

0 0
 , B =  0

1
 , C =  1 = ݕ ݂  0 ݕ−

4
− ,3ݕ h ݐ =  0

11cos⁡(ݐ) . 

 

Then this system is in the form described by (3.11). Now the proposed combinational 

system can be expressed as: 

1 ݔ  = 2 ݔ 2ݔ = ݐݕ−
4
− 3ݐݕ + 11cosݐ + ݐݕ  ݐ ݉ = 1ݔ +  . ݐ 0݉݀

(3.34) 

Note that ݉  and the output of 2ݔ is present in the derivative of the second state variable  ݐ 

the system ݐݕ . This combinational system is of the form (3.14).  
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3.4.1 P-Observer Based Scheme 

As described earlier in the paper, the classical proportional observer for system (3.34) is 

given by: 

1  ݔ  = 2 ݔ + − ݕ)1݇ 2  ݔ (1 ݔ =  ݕ−
4
− 3 ݕ + 11cosݐ + − ݕ)2݇  (1 ݔ

(3.35) 

where  ݇1 ݇2 T = K݌   is the proportional gain. 

 

3.4.1.1 Simulation results 

A simulation of the above observer (3.35) was carried out using Matlab/Simulink. The 

poles of the observer were set as p1 =  p2 = 0.1 so that ݇1 = 0.2 and ݇ 2 = 0.01. The values 

of gain have been chosen to be small in order to reduce the effect of message and the 

channel noise. Therefore, ݀0 = −݇2
−1 = −100. In addition, the initial conditions for the 

oscillator at the transmitter and receiver are chosen to be arbitrarily different. The message 

signal m(t), channel and its specification used in simulation are given in Table 3.1.  

Figure 3.4 depicts the transmitted signal with a non-chaotic profile. This partly is due to 

the requirement of having to choose very a high value for  ݀0 where the oscillator is 

operating in the normal periodic mode. Figure 3.5 illustrates the time waveforms for (ݐ)1ݔ 

and (ݐ)1 ݔ, whereas the plot of state (ݐ)1ݔ against (ݐ)1 ݔ is shown in Figure 3.6. Both 

figures illustrate that the synchronization has not been achieved satisfactorily. The 

recovered message (in dotted lines) signal together with m(t) are shown in Figure 3.7. Both 

the synchronization problem and distorted mr(t) can be explained by  B − Kp݀0 ݉(ݐ) and 

Kݐ �݌  terms in (3.17), which are non-zero with real values. The best scenario would be to 

make  B − Kp d0 ݉ ݐ = 0, however by doing so the eigenvalue of matrix (A – KpC) 
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cannot be chosen arbitrarily. This effect can be minimized by choosing a high value for  ݀0 

but at the cost of possible loss of chaotic behaviour of the oscillator (in fact, the chaotic 

property is already lost for current value of  ݀0). To regain or reinstate the chaotic 

behaviour the amplitude of ݉ ݐ  should be reduced significantly by more than 100 times. 

This constraint on message to be transmitted as well as synchronization susceptibility to 

the inherent channel noise, make the use of P-observer based receiver less attractive. 

Table 3.1: Parameters used in the simulation. 

Parameters Values 
Message signal m(t) sint 

Channel Additive white Gaussian 

noise (AWGN) Signal-to-noise ratio  25 dB 

Filter type Butterworth LPF 

Filter order 8 

Filter cut-off 3 rad/sec 

 

 

Figure 3.4: Transmitted chaotic signal yt using the P-observer. 

0 5 10 15 20
-15

-10

-5

0

5

10

15

Time (s)

y t



72 
 

 

Figure 3.5: Time waveforms of x1(t) and )(ˆ1 tx . 

 

 

Figure 3.6: Plot of the state of x1(t) versus )(ˆ1 tx  using the P-observer. 

0 10 20 30 40 50
-150

-100

-50

0

50

100

150

Time (s)

x 1 &
 x

1
h

 

 

x
1

x
1h

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

x
1

x 1
h



73 
 

 

Figure 3.7: Transmitted and recovered message signals for the P-observer based system. 

 

3.4.2 PI-Observer Based Scheme 

Following the PI-observer methodology described above, we set  0ݔ = ݐ݀(�) ݕ 
0

� = �ݕ . In 

other words, 0 ݔ = = ݕ 1ݔ + + ݐ 0݉݀  We then have the following augmented . ݐ �

system using the Duffing oscillator: 

0 ݔ  = 1ݔ + + ݐ 0݉݀ 1 ݔ  ݐ � = 2 ݔ 2ݔ = ݐݕ−
4
− 3ݐݕ + 11cosݐ + ݐݕ  ݐ ݉ = 1ݔ + �ݕ  ݐ 0݉݀ =  .0ݔ

(3.36) 

The PI-observer for the above system is given by: 

0  ݔ  = 1 ݔ + − ݕ 0݇ + 1 ݔ 0ݔ 0݈ − 1  ݔ  0 ݔ = 2 ݔ + − ݕ 1݇ + 1 ݔ 0ݔ 1݈ −  (3.37)  0 ݔ
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2  ݔ =  ݕ−
4
− 3 ݕ + 11cosݐ + − ݕ 2݇ + 1 ݔ 0ݔ 2݈ −  , 0 ݔ

where  ݇0 ݇1 ݇2 T = K ݌  is the proportional gain, and  ݈0 ݈1 ݈2 T = L � is the 

integral gain of PI-observer. 

 

3.4.2.1 Simulation results 

With the parameters in Table 3.1 and by selecting ݀0 =  � = 0.01 so that ݇ 0 = 0.99 and ݇2 = 100, and all poles are to 0.1 so that ݈0 = 0.3, ݈1 = −99.7 and ݈2 = −29.99 and 

equations (3.36) and (3.37) the PI-observer based system was simulated using Matlab. 

Although exact comparison between the P and PI observers is not possible since the former 

and the latter are of the order 2 and 3, respectively. However approximate comparison can 

be made provided the poles are fixed at the same location. Here too the initial conditions 

are chosen to be arbitrarily different for transmitter and receiver oscillators. Figure 3.8 

shows the transmitted chaotic signal for the PI-observer illustrating that the chaotic regime 

is being maintained. Figure 3.9 depicts the plot of (ݐ)1ݔ and (ݐ)1 ݔ and Figure 3.10 shows 

the plot of (ݐ)1ݔ against (ݐ)1 ݔ. The 450 line shown in Figure 3.10 illustrates almost perfect 

synchronization that has been achieved compared to Figure 3.6. The recovered message 

signal is very similar to the transmitted message as shown in Figure 3.11. The improved 

performance offered by the PI-observer compared to the P-observer is because of the 

proportional and integral gains being selected independently. In the P-observer, the 

constraint imposed on the proportional gain affects the stability of the error dynamics as 

well the message/noise impact on the error dynamics. On the other hand, with the PI-

observer, the integrator gain improves the stability of the error dynamics while the 

proportional gain reduces the effect of noise and message signal on the error dynamics. 
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Figure 3.8: Transmitted chaotic signal yt using the PI-observer. 

 

Figure 3.9: Plot of states x1(t) and )(ˆ1 tx  versus the time. 
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Figure 3.10: Plot of state x1(t) versus )(ˆ1 tx  using the PI-observer. 

 

Figure 3.11: Message recovery using the PI-observer. 
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3.5 Summary 

The P-observer and PI-observer based chaotic synchronization has been studied and the 

performance of both observers for the proposed combinational chaotic communication 

scheme is analysed. It was found that for the proposed scheme, PI-observer showed greater 

robustness in synchronization in terms of noise immunity and therefore message 

extraction. This was mainly because the degree of freedom was added in the system due to 

the integrator in the PI-observer. The integral gain in PI-observer was used to stabilize the 

error dynamics for better synchronization while the proportional gain was used to reduce 

the effect of noise/message in the synchronization performance. In P-observer, however, 

there was only proportional gain available imposing too much constraint on it. The 

performance of the proposed method using P and PI-observer was simulated taking 

AWGN channel having SNR equal to 25 dB using Matlab/Simulink.
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Chapter 4 Cascaded Chaotic Masking for Secure 

Communication 

 

4.1 Introductions 

As pointed out in the earlier chapters, chaotic systems have potential to be used in 

implementing secure communication and significant work has been done in realizing this 

by researchers. However, there are still lots of shortcomings present, particularly in the 

methods related to security. As mentioned earlier, there exist different attack methods to 

break the chaotic communication model and schemes. Therefore there is still a requirement 

and necessity to come up with a scheme that can be potentially secure by eliminating 

shortcomings of earlier methods such as chaotic masking and modulation schemes.  

In this and subsequent chapters, few possibilities of enhancing the security of the 

previously proposed chaotic communication methods will be proposed and discussed. It 

will be shown that by employing some techniques, the existing methods could be extended 

and modified so as to be potentially secure. This chapter proposes one method based on 

cascaded chaotic masking in order to try to remove the vulnerability of the masking 

method by increasing the complexities.  

 

4.2 Cascaded Chaotic Masking 

It is now generally agreed that the traditional chaotic masking technique is not a secure 

method. To break it, researchers had used methods where they were able to forecast and 

predict the carrier behaviour. By subtracting the predicted values of the carrier, the 

spectrum of the hidden signal can be known, thus making relatively easy to reconstruct the 
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message signal by some signal processing operations [91]. In [91], however, it was also 

pointed out that it is possible to increase the security capabilities if two chaotic signals can 

be added together at roughly equal power to create a carrier signal of sufficient complexity 

such it is not possible to use simple phase geometry to do the forecasting. Hence, to 

increase the security of the communication link, a new method is proposed in this section 

where a cascaded chaotic masking method is implemented as shown in Figure 4.1. A 

cascaded chaotic system has been proposed with improved security by adding together two 

chaotic signals of almost equal power. 

 

In this technique, the message signal m(t) is added to the output y₁(t) of the chaotic 

oscillator A to produce a chaotic output ݉ݕ  It should be noted that, here a .(ݐ)ݐݕ of chaotic oscillator B to produce an output (ݐ)2ݕ The chaotic output is added to the output .(ݐ)

chaotic signal is modulated with another chaotic signal and only one of them contains the 

information about the message signal. This will hence effectively increase the security of 

the communication link and make it difficult for intruders to predict the carrier behaviour 

and therefore find the spectrum of the hidden message signal. On the receiver side, again a 

mr 
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Figure 4.1: Block diagram of chaotic communication using cascaded structure. 
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cascaded model is implemented. The chaotic receiver B is used to estimate (ݐ)2 ݕ and 

hence to predict ݕ ݉ ݉ ݕ The signal .(ݐ)  will now is used to drive a chaotic receiver A and (ݐ)

estimate (ݐ)1 ݕ. Now, the prediction of ݉  can simply be carried out by the inverse (ݐ)ݎ

operation. The synchronization between the transmitter and the receiver oscillators can be 

achieved by using any existing methods available in the literature [42, 43, 52-54].  

 

4.2.1 Cascaded Chaotic Masking Scheme 

The transmitter system is described as a class of chaotic system given as: 

,C

),()F(

xy

tygxyx




 (4.1) 

where RyRx n  , . Here the matrix F is a function of the output ,y  C is a constant 

matrix of appropriate dimension and ),( tyg  is a smooth function of y or the driving 

signal. We also assume that the entries of F(y) are smooth and bounded for all .Ry  In 

addition, the pair C))(F( ,y  is rank observable or detectable for all Ry . We will now 

define the proposed system. Here the cascaded method will be using two chaotic oscillator 

systems A and B as defined in (4.1). The oscillator A will be described as: 







,C

),()(F
:(A)

1

111

mymxy

tygxyx

AAm

AAA 
 

(4.2) 

where  RyRx n
A  1, . 1y  is the output of the oscillator A and m  is the message to be 

transmitted. Hence, my  is the output due to first step of masking. The oscillator B will be 

described as: 
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





,C

),()(F
:)B(

2

222

mmBBt

BBB

yyyxy

tygxyx 
 (4.3) 

where  ., 2 RyRx n
B   2y   is the output of the oscillator B. Hence,  my   is the output due 

to second step of masking and is the signal that will be transmitted through the channel. 

We have used different BA F,F  and BA C,C  to show that two different types of chaotic 

oscillator can be used for this design. 

For the receivers, one has to design cascaded chaotic oscillators in order to synchronize 

with (B) and (A) respectively. Simple proportional observers will be defined for designing 

these cascaded receivers although simple drive response type synchronization as explained 

in chapter 2 can also be achieved. The key here is to show the potential of cascaded 

masking approach rather than dwelling too much on the synchronization method to be 

used. 

Let us first design an observer B that can synchronize with the oscillator B given as (4.3) 

first so that we can estimate 2ŷ . This value can then be used, as will be shown later, to 

retrieve signal mŷ .  

),()ˆC(Kˆ)(Fˆ 222 t,ygxyxyx BBtBpBBB

.   (4.4) 

where BpK  is the gain matrix of appropriate dimension. Now, if we define error as, Be

BB xx ˆ , then the error dynamics can again be written as: 
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  .KCK)(F

)ˆC(K)(F

2

2

mey

xyeye

BpABBpB

BBtBpBBB




 
(4.5) 

We can see the presence of message signal on the error dynamics. For the influence of 

message on error dynamics, which is affecting the convergence of the error to zero, the 

value of mBpK  should be zero or at least should be very small. If we choose BpK  as zero, 

then it implies an observer with zero gains and in effect )(F 2yB  should be stable on its own 

and hence we cannot improve the convergence rate of the observer. Therefore, the value of 

gain should be chosen sensibly such that the matrix  BBpB y CK)(F   is stable while at the 

same time reducing the influence of masking signal. After the synchronization is achieved 

and mŷ  estimated, observer A can be defined to synchronize with oscillator A as:  

),()ˆCˆ(Kˆ)(Fˆ 111 t,ygxyxyx AAmApAAA

.   (4.6) 

where ApK  is the gain matrix of appropriate dimension. Now, if we define error as, Ae

AA xx ˆ , then the error dynamics can again be written as: 

  .KCK)(F

)ˆCˆ(K)(F

1

1

mey

xyeye

ApAAApA

AAmApAAA




 (4.7) 

We have assumed in (4.7) that  mm yy ˆ . 

Finally when the convergence is achieved by both observers (4.6) and (4.4), the driving 

signal mŷ  for (4.6) and message m  is retrieved by performing the following difference: 

).()(ˆ)(ˆ)()(ˆ)()(ˆ
222

ttytytytytyty Bmtm   (4.8) 
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Since, 0)(ˆ)(lim
22

 tyty
t

, we have 

).()()(ˆ tytty mBm    (4.9) 

Once, )(ˆ tym  is retrieved from (4.4) the message signal can be decrypted as: 

).()()(ˆ)()(ˆ)(ˆ)(
111

ttmtytytytytm Amr   (4.10) 

Since, )()(ˆ tyty mm   and 0)(ˆ)(lim
11

 tyty
t

 , we now have 

).()()( tmttm Br    (4.11) 

Hence, it is shown that the retrieved message signal asymptotically converges to the 

transmitted message signal even when a cascaded approach is taken. 

 

4.3 Implementation of the Cascaded Chaotic Masking 

Now, the cascaded masking scheme proposed in the earlier section will be verified using 

Lorenz system. The Lorenz system given in (4.12) is of the form (4.1), 

,5

20

3213

21312

211

bxxxx

xrxxxx

xxx









 
 (4.12) 

where  

).001(C and 0),( ,

50

201

0-

=)F( 










 tyg

by

yry


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We will use the Lorenz system (4.12)  for both transmitter oscillators (4.2) and (4.3) i.e.  

FA = FB and CA = CB, hence the cascaded masked system using Lorenz system can be 

written as: 

,

5

20

1

323

232

211

mxy

bxxyx

xryxyx

xxx

Am

AAmA

AmAmA

AAA











 
 (4.13) 

and 

.

5

20

1

323

232

211

mBt

BBtB

BtBtB

BBB

yxy

bxxyx

xryxyx

xxx











 
 (4.14) 

Similarly, the observers for the cascaded masked system (4.13) and (4.14) can be written 

as: 

),ˆˆ(Kˆˆ5ˆ

)ˆˆ(Kˆˆ20ˆ

)ˆˆ(Kˆˆˆ

13323

12232

11211

BtBBBtB

.

BtBBtBtB

.

BtBBBB

.

xyxbxyx

xyxryxyx

xyxσxσx





 (4.15) 

and 

).ˆˆ(Kˆˆˆ5ˆ

)ˆˆ(Kˆˆˆˆ20ˆ

)ˆˆ(Kˆˆˆ

13322

12232

11211

AmAAAmA

.

AmAAmAmA

.

AmAAAA

.

xyxbxyx

xyxyrxyx

xyxσxσx





 (4.16) 

Note that the observer (4.15) and (4.16) are driven by the signals  ty   and  mŷ   

respectively. 



85 
 

4.4 Simulation Results 

The simulation of the proposed secure communication system is presented in this section. 

The value of  br,,  are taken as 16, 45.6 and 4 respectively for the Lorenz system. The 

values of the gain are chosen to be zero because as discussed earlier this would reduce the 

influence of message on the error dynamics and also with this choice of gains, 

synchronization was still possible. Initial conditions for the oscillators were chosen to be 

arbitrarily different. The message signal to be transmitted is taken as  ).2sin(1.0)( ttm   

Figure 4.2 shows the output after first level of masking which has the message to be 

transmitted hidden in it. This output ym is further used to mask the output of the oscillator 

(4.14). Figure 4.3 depicts the final output yt which has been obtained after second level of 

masking, which is the transmitted signal. The signal yt appears to be chaotic and 

successfully hides the message in it. In fact, the autocorrelation function of the signal yt, as 

shown in Figure 4.4, illustrates the function to have only spike at time shift equals to zero. 

Now at the receiver side, synchronization is obtained via cascaded receivers. First the 

signal ym is estimated. Figure 4.5 demostrates the synchronization error while estimating 

the signal ym and it can easily be seen that after some time, the error is rapidly converging 

to zero. Once ym is estimated, receiver A will also synchronize with transmitter A and then 

decrypts the message back. Figure 4.6 depicts the performance of the cascaded receivers 

for decrypting the message signal where dashed line represents the transmitted message 

signal. 
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Figure 4.2: Output ym after first level of masking from oscillator (4.13). 
 

 

Figure 4.3: Output yt after second level of masking from oscillator (4.14). 
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Figure 4.4: Autocorrelation function of the transmitted signal yt. 
 

 

Figure 4.5: Synchronization error while estimating ym by oscillator (4.15). 
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Figure 4.6: Transmitted and received message signal 
 

4.5 Summary 

In this chapter, a new method by implementing cascaded chaotic transmitter and receivers 

was proposed to increase the security of the traditional masking. Indeed, since the two 

roughly equal powered chaotic signals were added together, this will add complexities to 

the attack methods. However, it is still not convincing that the method proposed as 

cascaded structured oscillators will indeed make the communication scheme secure enough 

for intruders. The fact that the message signal is added to the sum of two chaotic signals of 

equal power means that rather than using 3-dimensional chaotic system for modulation 

purposes, an equivalent higher dimensional, 6 in this case, chaotic system has been used 

for modulation of the message. This will indeed make the task of extracting the message 

harder but it is uncertain that this method will be highly secure enough for motivated 
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intruders considering the fact that systems implementing hyperchaotic systems or time-

delay systems are also proven to be insecure. Therefore, more secure methods need to be 

tried and investigated. In the subsequent chapters in this thesis, we will discuss about 

different other possible techniques to improve the security of the different methods.  
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Chapter 5 The Concepts of Indirect Coupled 

Chaotic Synchronization 

 

5.1 Introductions 

Chaotic synchronization is the most important concept for chaotic signals to be used in 

communication system application. There are different types of chaotic synchronization as 

discussed earlier such as CS, GS, Phase Synchronization, Projective Synchronization, Lag 

Synchronization etc and many ways to achieve these such as drive-response system, active 

passive decomposition method, and method based on observer theory, etc. No matter what 

types or methods, there is always a coupling between the two chaotic systems that means 

an output chaotic signal from one chaotic system is driving another chaotic system thus 

forming a unidirectional coupling. Synchronization based on bidirectional coupling is also 

possible but might not be relevant for communication system applications. Since a signal 

had to be fed from one system to another, if there are two chaotic systems separated by a 

distance (channel), the unidirectional coupling will be equivalent to the transmission of a 

signal from the transmitter to the receiver. Therefore, in almost all chaotic communication 

methods proposed until now uses unidirectional coupling for chaotic synchronization. 

In this chapter, however, a different type of chaotic synchronization called Indirect 

Coupled Chaotic Synchronization is proposed and on subsequent chapters, it will be 

utilized for implementing a secure communication link. In this method of synchronization, 

the oscillator to be synchronized is not being driven directly by an output of another 

oscillator. This method of synchronization is being proposed for the first time in this PhD 

work. This method is shown in the block diagram as depicted in Figure 5.1. 



91 
 

 

As it can be seen in the Figure 5.1, there are 4 chaotic oscillators present. (S1) and (S2) are 

coupled together such that (S2) is being driven by the output of oscillator (S1) 

(unidirectional coupling). Now, our motive is to achieve synchronization between (Σ1) and 

(Σ2) even though they are not coupled together directly. The idea follows like this. Since, 

oscillator (S1) and (S2) are coupled together, chaotic synchronization can be achieved 

between them which mean all states of (S1) and (S2) will coincide once synchronization 

happens. Now, another output is selected from both oscillator (S1) and (S2). These output 2ݕ and 2 ݕ are used to drive chaotic oscillators (Σ1) and (Σ2) independently. Since 2ݕ and 2 ݕ 

are going to be equal once synchronization occurs between (S1) and (S2), logically it seems 

that two chaotic oscillators are being driven by a common signal making them to 

synchronize as well, just like as if they were unidirectionally coupled. Since, the chaotic 

oscillators to be synchronized are not directly coupled this scheme of synchronization is 

termed as Indirect Coupled Chaotic Synchronization. 

The Lorenz and Chua‟s system will be used to demonstrate ICCS. Simulation using 

Matlab/Simulink will be performed to show that this technique is indeed useful for 

achieving chaotic synchronization between oscillators (S1) and (S2). However, it should be 

݇ 

Chaotic 

Oscillator (S1) 

Chaotic 

Oscillator (S2) 

Chaotic 

Oscillator (Σ1) 

Chaotic 

Oscillator (Σ2) 

Figure 5.1: Block diagram to show the proposed indirect coupled chaotic 
synchronization. 

 2 ݕ 2ݕ

 1ݕ

 ݇ 
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noted that the performance of (Σ1) and (Σ2) oscillators to synchronize with each other is the 

key for ICCS of (Σ1) and (Σ2). Oscillators (S1) and (S2) are defined as Lorenz equations as 

(5.1).  

= ݑ ݑ� + = ݒ     : S1  ݒ� ݓݑ20− + ݑݎ − = ݓ ݒ ݑ5 − 1ݕ ݓܾ = 2ݕ ݑ =  ݒ
=  ݑ  + ݑ� =  ݒ     : S2   ݒ� + ݓݑ20− ݑݎ − =  ݓ  ݒ ݑ5 − 2 ݕ  ݓܾ =   ݒ

(5.1) 

 

The oscillators (Σ1) and (Σ2) are defined as Chua‟s equations. ݌ = ݍ)ߙ − ݌ − = ݍ     : Σ1  ((2ݕ)݂ 2ݕ − ݍ − = ݏ ݏ ݍߚ− −  ݏߛ
=  ݌  − ݍ)ߙ − ݌ =  ݍ     : Σ2  ((2 ݕ)݂ 2 ݕ − − ݍ =  ݏ  ݏ − ݍߚ−   ݏߛ

(5.2) 

 

It can be seen on (5.2) that (Σ1) and (Σ2) are being driven by output of (S1) and (S2), i.e. 2ݕ 

and 2 ݕ respectively. The signals are fed into the non-linearity of the Chua‟s system in order 

to remove the effect of non-linearity on error dynamics for achieving synchronization.  The 

parameters used in (5.1) and (5.2) are as follows. 

� = 16, ݎ = 45.6,ܾ = ߙ,4.2 = ߚ,10 = ߛ,14.87− = 0 

Figure 5.2 shows the states ݌ and ݌  of Chua‟s system (Σ1) and (Σ2) when the ICCS is not 

implemented. Therefore, (Σ1) and (Σ2) are independent chaotic oscillators starting from 

different initial conditions which means, the trajectory ݌ and ݌  will diverge from each 

other as time progresses as seen on Figure 5.2. Figure 5.3 depicts the states ݌ and ݌  when 
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ICCS is implemented and Figure 5.4 verifies the functionality of ICCS by illustrating the 

linear decrease of the log plot of the synchronization error between ݌ and ݌  showing rapid 

synchronization. It is clear that when ICCS is implemented, the two systems (Σ1) and (Σ2) 

synchronize with each other even if they are starting from different initial conditions. The 

log plot of the synchronization error is decreasing linearly against time, which proves the 

exponential convergence of system (Σ1) and (Σ2). 

Simulation results confirm that indirect coupled synchronization for chaotic systems is 

indeed possible but in next section it will be mathematically proven. The ICCS will be 

proven for both the continuous and discrete-time chaotic systems. For continuous system, 

proof will be made for two different forms of the system which shall be useful in 

subsequent chapters of this thesis when ICCS is utilized for achieving secure 

communication. 
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Figure 5.2: τutput of Chua‟s system (A) and (B) when there is not ICCS between them. 

 

Figure 5.3: τutput of Chua‟s system (A) and (B) when ICCS is implemented. 
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Figure 5.4: Synchronization error for Chua‟s system (A) and (B) when ICCS is 

implemented. 

 

5.2 Mathematical Proof of Indirect Coupled Chaotic 

Synchronization 

In this section, the stability of the error dynamics of the chaotic systems (Σ1) and (Σ2) will 

be analyzed. If the error dynamics of the two systems are stable, then synchronization is 

achieved. The ICCS proof will now follow for the continuous and discrete-time chaotic 

systems. 

5.2.1 Continuous Time Chaotic System Case 

Proofs for two different forms of chaotic systems are done in this section. Each of these 

form are used later on to propose secure chaotic communication technique.  
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5.2.1.1 Proof 1 

Let us consider the chaotic systems S1 and Σ1 of the following general form: 









))(()(

))(()(

))(),(()(

:)S(

22

11

1

1

txhty

txhty

tytxftx

 







)),(()(

))(),(()(
:)( 2

1 tzqtk

tytzptz

(5.3) 

where 1nRx , 2nRz  and .,, 21 Rkyy   The output functions )(1 xh , )(2 xh  and )(zq  are 

assumed to be smooth. 

Now, consider the following coupled chaotic systems: 









))(ˆ()(ˆ
))(ˆ()(ˆ

))(),(ˆ()(ˆ
:)S(

22

11

1

.

2

txhty

txhty

tytxftx

 


 
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))(ˆ()(ˆ

))(ˆ),(ˆ()(ˆ:)( 2

.

2

tzqtk

tytzptz

(5.4) 

We shall assume that: 

A1) There exist a constant symmetric positive definite matrix 1P  and a positive constant 

01   such that for all ,1nR  Ry : 

,P),(A),(AP
111

T
1 nIyy    (5.5) 

where ),(A y
x

f 
  and 

1nI  is the identity matrix of dimension .1n  

A2) There exist a constant symmetric positive definite matrix 2P  and a positive constant 

02   such that for all ,2nR  Ry : 
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,P),(F),(FP
222

T
2 nIyy    (5.6) 

where ),(F y
z

p 
  and 

2nI  is the identity matrix of dimension .2n  

A3) There exists a constant 0M  such that Myz
y

p 


),(  for all ,2nRz  .Ry  

A4) There exists a positive constant   such that  


)(2

x

h
 for all 1nR . 

Our aim is to show, under the above assumptions, 0ˆlim  zzt . More precisely, our 

main result is summarised in the following theorem. 

Theorem 1. Assume that the pairs of coupled systems 1(S , )1  and 2(S , )2  satisfy 

assumption A1) - A4). Then, 0ˆlim  xxt  and 0ˆlim  zzt . In other words, 1S  

synchronises with 2S  and 1  synchronises with .2  

Proof: Set xx ˆ , then, 

).,ˆ(),( 11 yxfyxf   (5.7) 

By mean value theorem, we know that there exists   belonging to the segment with end 

points x  and x̂   such that: 

.),(A),(

),ˆ(),(

11

11




yy
x

f

yxfyxf


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

 (5.8) 

Similarly, let ,ẑz  then, 
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for some   belonging to the segment with end points z  and ,ẑ  and   belonging to the 

segment with end points 2y  and .ˆ2y  

Additionally, 
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(5.10) 

where   belongs to the segment with end points x   and .x̂  

Now let  1P)( TV   be a candidate Lyapunov function for (5.7). Then, 

.),(AP2),(P2P2)( 11111  yy
x

f
V TTT 

   (5.11) 

By assumption A1) we have   ,,),(AP2
2

11111   TT yy  so that: 

.)(
2

1  V  (5.12) 

Similarly, let  2P)( TW  be a candidate Lyapunov function for (5.9). Then, 

 
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22
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 (5.13) 

By assumption A3) and A4), we have: 

.P2)( 2

2

2   MW  (5.14) 

Now,  
2

12

2

0 P   T  where 0, 10   are respectively the smallest and largest 

eigenvalue of .P2  Similarly, 
2

11

2

0 P   T  where 0, 10   are respectively the 
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smallest and largest eigenvalue of 1P . Consequently, 

)()(2)()(
00

1

1

2 





VW
M

WW   (5.15) 

and 

).()(
1

1 
 VV   (5.16) 

Additionally, 
.

WW(W )()(2)   and 
.

V(εV(ε((εV )2)    so that (5.23) and (5.24) 

becomes: 
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In other words, 


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M

 (5.18) 

Since the matrix F  is stable, we have 0)(lim  Wt  and 0)(lim  Vt . 

Consequently, 0ˆlim  xxt  and 0ˆlim  zzt  which, in turn implies that 

.0)ˆ()(limˆlim   zqzqkk tt  

This completes the proof of Theorem 1 thus proving the ICCS for the chaotic systems of 

the form defined in (5.3) and (5.4). 

Remark 1: If system )S( 1  was slightly perturbed so that: 
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
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 (5.19) 

Then, it can be shown that: 


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yxf
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  (5.20) 

It is therefore clear that, 0ˆlim  xxt  and 0ˆlim  zzt  if A  and F  are stable 

and provided that 0),( 1  yxf . This idea will be used in the context of in improving the 

CSK method for secure communication in chapter 7. 

 

5.2.1.2 Proof 2 

We assume that the oscillator (S1) is now described by a dynamical system of the 

following form:  









),(

)(

),()(F

:)S(

22
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1

xhy

xhy

ytgxyx

 
   

(5.21) 

where the state nx   with initial condition 0)0( xx  . The outputs of the oscillator are 

1y  and 2y . The matrix F is of appropriate dimension while h1 and h2 are 

analytical vector functions and g is a smooth bounded function of time. 

The chaotic oscillator (Σ1) is of the similar form: 






),(

)(A
:)( 2

1 zhk

t,ybzz
 (5.22) 
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which is driven by the output )(2 ty . Here, qz   (q is not necessarily equal to n), k  

is the output, h is an analytical vector function and b is a smooth bounded function of time 

and A is a stable matrix of appropriate dimensions.  

The receiving chaotic oscillator (S1) is given by:  









).ˆ(ˆ
)ˆ(ˆ

),(ˆ)(Fˆ
:)S(

22

112

xhy

xhy

ytgxyx tt


 (5.23) 

Finally, the key generator (Σ2) is given by: 


 


).ˆ(ˆ

)ˆ(ˆAˆ
:)( 2

2
zhk

yt,bzz
 (5.24) 

We shall make the following assumptions: 

A5) There exist symmetric positive definite (SPD) matrices P1 and Q1 such that  

.QFPPF 111
T   (5.25) 

A6) The function )(2 xh  is globally Lipschitzian with respect to x. 

A7) The function b(t,y) is globally Lipschitzian with respect to y uniformly in t. 

The objective is to show that the oscillators (S1) and (S2) synchronize and (Σ1) and (Σ2) are 

synchronized with each other when ICCS is implemented. In effect, based on the above 

assumptions, we state the following: 

Theorem 2. Under the assumption A5), there exist two constants 0,   such that 

)0(ˆ)0()(ˆ)( xxetxtx t    for all 0t . In other words, the oscillator (S2) 

synchronizes exponentially with the oscillator (S1). 

Proof: Let ),(ˆ)()( txtxt   then the error dynamics between (S1) and (S2) is given by: 
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.)(F  ty  (5.26) 

Owing to assumption A5), a candidate Lyapunov function of the above error dynamics can 

be chosen as:  

.P)( 1 TV   (5.27) 

Differentiating )(V  with respect to time, yields: 

  .0Q)(FPP)(F

PP)(

111

11







T
tt

TT

TT

yy

V




 (5.28) 

Since Q1 is SPD, there exist 1c , 02 c such that .PQP 12111  TTT cc   

Consequently, 

).()( 1  VcV    

Integrating the last equation results in:  

)).0(())(( 1  VetV tc   

Again, since P1 is SPD, there exist 1 , 02   such that .P 211  TTT 
Consequently:  

.)0()(
2

2

2

1
1  tcet   (5.29) 

In other words:  

.)0()0()( 2
1

1

2 
 tt

eet
c    (5.30) 

That is: 

.)0(ˆ)0()(ˆ)( xxetxtx t    (5.31) 



103 
 

This means that )(ˆ tx  converges to )(tx  exponentially. In other words, the oscillator (S2) 

synchronizes exponentially with (S1). This completes the proof of Theorem 2. 

Theorem 3. Assume that system (Σ1) and (Σ2) satisfies assumption A7), then 

0)(ˆ)(lim  tztzt . That is, the oscillator (Σ1) synchronizes asymptotically with the 

oscillator (Σ2). 

Proof: Set ),(ˆ)()( tztzt   then the error dynamics between the (Σ1) and (Σ2) is given by: 

)ˆ,(),(A 22 ytbytb    (5.32) 

Since A is stable, there exist P2 and Q2 SPD such that .QAPPA 222
T   Consequently, 

consider the following candidate Lyapunov function: 

 2PTW     (5.33) 

Differentiating W with respect to time results in: 
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 

 (5.34) 

for some positive constant 1  and 3  which depends on the Lipschitz constant of b and h2. 

Now, 

.)(
22

31 tWW    (5.35) 

Therefore, 
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.)(
2

))0(())((
0

)(
232
11  

dteWetW
t

tt     
(5.36) 

From the above inequality, we can see that when t  

.0)( t  (5.37) 

This completes the proof of Theorem 3 and therefore (Σ1) converges with (Σ2) 

asymptotically.  

 

5.2.2 Discrete Time Chaotic System Case 

Consider the following discrete-time dynamical systems: 
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 (5.38) 

where the state nRx  with initial condition .)0( 0xx   The outputs of the oscillator 

Ry 1  and Ry 2 . The functions f, h1 and h2 are smooth. The discrete chaotic oscillator 

(Σ1) is given as: 







)),(()(

))(),(()1(
   :)( 2

1 kzhku

kykzgkz
 (5.39) 

where qRz  (q is not necessarily equal to n), Ru , and h  is an analytical function 

vector of appropriate dimension. 

The chaotic oscillator (S2) to synchronize with (S1) is given by 
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 Finally, the chaotic oscillator (Σ2) to synchronize with (Σ1) is given as 


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
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)).(ˆ()(ˆ
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   :)( 2
2 kzhku
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(5.41) 

Note that the oscillator (Σ1) and (Σ2) are being driven by signal y2(k) and )(ˆ2 ky  

respectively for ICCS.  

We will make the following assumptions: 

A8) The matrix F of (T) and (R) is stable. 

A9) The function ),z( wg  is globally Lipschitzian with respect to z  and w . 

Additionally, there exists a positive constant 10   such that 

,)(ˆ)())(),(ˆ())(),(( kzkzkwkzgkwkzg    for all 0k  and all .Rw  

A10)  yyyzgyzg ˆ)ˆ,(),(    

Our objective is to show that the oscillator (Σ1) and (Σ2) synchronize with each other to 

prove the ICCS. 

In effect, based on the above assumptions, we state the following: 

Theorem 4. Under the Assumptions A8), we have 0)(ˆ)(lim  kxkxk . In other words, 

the oscillator (S2) synchronizes exponentially with the oscillator (S1).  

Proof: Let ),(ˆ)()( kxkxk   then the error dynamics between (S1) and (S2) is given by: 
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).()1( kFk    (5.42) 

Since F is stable, it is clear that 0)( k  as .k  In other words, (S2) synchronizes 

with (S1) exponentially. This completes the proof of Theorem 4. 

Remark 2: If F is not stable, then a discrete observer can easily be designed such that the 

overall error dynamics is stable. The aim here is to show the ICCS for a discrete system 

therefore the simplest form of coupled synchronization is employed for (S1) and (S2). 

Theorem 5. Assume that system (Σ1) and (Σ2) satisfies assumptions A8), A9) & A10), then  

0)(ˆ)(lim  kzkzk  . That is, the oscillator (Σ1) synchronizes asymptotically with (Σ2). 

Sketch of proof: Set ),(ˆ)()( kzkzk   then the error dynamics between the (Σ1) and (Σ2) 

is given by: 

).(ˆ),(ˆ())(),(()1( 22 kykzgkykzgk   (5.43) 

Now, consider the following candidate Lyapunov function: 

.)()( kkW   (5.44) 

Then, 
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

 (5.45) 

Finally, 
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  .)()(1)()1( kkWkWkW    (5.46) 

Since from Theorem 4, 0)( k  as ,k  we will eventually have 

.0)()1(  kWkW  

This completes the proof of Theorem 5. 

 

5.3 Summary 

A chaotic synchronization technique where two chaotic oscillators (Σ1 and Σ2) are not 

directly coupled with each other is proposed in this chapter. The method, indirect coupled 

chaotic synchronization, is unique because there is no obvious link between that is there is 

no signal being fed from one oscillator to another one unlike every other synchronization 

techniques. However, there has to be some sort of connection between these two chaotic 

oscillators, starting from different initial conditions, if they are to be synchronized 

together. Because, if the oscillators have different initial conditions and have no connection 

between them, then because of the property of chaotic system, “Sensitivity to initial 

conditions”, the trajectory of these two oscillators will diverge rapidly from each other. 

These two oscillators are therefore being driven independently by the output of two 

synchronized chaotic oscillators (S1 and S2) that have similar structure. These two chaotic 

oscillators are achieving synchronization from normal unidirectional coupling therefore the 

output, which are used to drive the former two chaotic oscillators, will be equal. Hence, 

equivalently, it will look like two chaotic oscillators are being driven by a common signal. 

The mathematical proof was done for both continuous-time and discrete-time chaotic 

systems. For continuous-time case, proof for two special forms was performed. The 

performance of the ICCS between (Σ1) and (Σ2) is dependent on the synchronizing 

performance of (S1) and (S2) which can be obtained from methods that are already 
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available on the literatures, for example, observer based synchronization. The ICCS can be 

very useful in realize secure communication, because the output from these indirectly 

coupled chaotic oscillators can be used as keystream in the transmitter and receiver side, 

without the need for it to get transmitted in the communication channel. This can have a 

major advantage, since the intruders will not be able to estimate the keystream being used 

for encryption purposes simply by having the transmitted signal available. In the coming 

chapters, it will be shown how ICCS can be implemented to realize secure communication 

link by removing the shortcomings of the methods that are available in the literature. 
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Chapter 6 Application of Indirect Coupled 

Chaotic Synchronization to Secure 

Communications 

 

6.1 Introductions 

It was discussed in the previous chapter that ICCS is possible between two chaotic 

oscillators. The idea of ICCS can now further be implemented for realizing a secure 

communication system. In recent years, there have been lots of works where chaotic 

signals have been utilized for implementing secure communication. Methods like chaotic 

masking, chaotic modulation, inclusion method and CSK methods have already been 

discussed in the earlier part of this thesis. Cascaded method was also proposed earlier, but 

it was also pointed out there is still some vulnerabilities in it. Many modifications of the 

traditional methods were also discussed earlier and it was also pointed that almost all of 

those methods were shown to be breakable by a method or two. Hence, there is real 

incentive to devise new chaotic communication methodologies in order to realize a secure 

communication link. Even though chaotic signals have inherent properties like being 

aperiodic and limited predictability along with broad spectrum, etc, using them for secure 

communication have not become a straightforward task as it was thought to be. There had 

been significant number of attack methods that could recover the message signals only by 

performing signal processing of the transmitted signal.  

In this chapter, we will see the possibility of implementing ICCS for realizing secure 

communication such that the attack methods available up to now in the literature will not 

be effective. 
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In one of the work proposed by Yang, et. al [1], a method based on encryption technique 

was proposed, where a different output from chaotic transmitter which was transmitted in 

the channel was used as a keystream to encrypt the message signal. The encrypted message 

signal masked with another output of the chaotic oscillator was employed as the 

transmitted signal. It was claimed that since the intruder could not get hold of the 

keystream, it was impossible for the attackers to extract the message.  Unfortunately a later 

work done by Parker & Short [119] showed that it was still possible to extract the 

keystream from the transmitted chaotic signal since the keystream carried the information 

of the dynamics of the transmitter. In fact, since, both the carrier and keystream were the 

outputs of same oscillator; the carrier held the dynamics of the keystream as well. 

Therefore, it was impossible to hide the dynamics of the keystream from intruders, as a 

signal has to be transmitted from the transmitter to the receiver for synchronization and 

message transmission purpose. However, since the principle of the method proposed in [1] 

is nevertheless interesting, there is a real incentive for finding ways for improving the 

method by eliminating its shortcomings.  

Figure 6.1 shows the block diagram of the cryptography based chaotic system for secure 

communication that had been proposed at [1]. The transmitter consists of the encryption 

function e(.) and the chaotic system. The key been used in the encryption function to 

encrypt the plain text m(t) is one of the state variable of the chaotic system. Another state 

variable is used as a masking signal to generate output yt(t) that is transmitted in the public 

channel which the intruders will also have access to. At the receiver side, the signal yt(t) 

(assuming minimal influence of channel noise) will be used to achieve synchronization to 

estimate the key and the encrypted signal. Upon applying the decryption function d(.) on 

the recovered encrypted signal, the estimate of plain text is achieved. 
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For encryption and decryption purposes, n-shift cipher algorithm is used. The encryption 

algorithm is given as: 

,)())()),...,()),(),((((...))(( 111 tstktktktmffftme

nn


  

 
(6.1) 

where f1(*.*) is the following non-linear function: 
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where h is the encryption parameter chosen such that m(t) and k(t) lies within the interval  

(-h, h). The non-linear function given in (6.2) is shown Figure 6.2. 

 

f1(x,k) 

2h h -h 

h 

0 

-h 

-2h 
x+k 

Figure 6.2: Non-linear function used in continuous n-shift cipher. 
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Figure 6.1: Yang‟s method based on cryptography [1]. 
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The corresponding decryption function d(.) to recover the plaintext at the receiver side is 

same as the encryption rule given as: 

),)(ˆ)),...,(ˆ)),(ˆ),(((((...))((()(ˆ 111

nn

tktktktmeffftmedtm
  
  (6.3) 

where )(ˆ tk is recovered at the receiver side and should be approximately equal to k(t). 

 

6.2 Proposed Method Based on Cryptography 

In this section of this thesis chapter, we will propose a new chaotic communication 

technique based on indirect coupled chaotic synchronization. This technique is essentially 

the improvement of the method that had been proposed by Yang, et. al  [1] where the 

shortcomings of that technique are eliminated. Instead of generating the chaotic signal used 

as a key from the same chaotic oscillator that is used to generate the transmitted signal, we 

propose to use a chaotic signal, which is an output of a different chaotic oscillator, as the 

key. The proposed method is demonstrated in the block diagram shown in Figure 6.3. 
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Decryption 
Rule d(.) 

 

 

Chaotic Key 
Generator (B) 

Plain text ݉  (ݐ) ݉ Plain text (ݐ)

 (ݐ) ݏ

Figure 6.3: Block diagram of the proposed chaotic communication technique based on 
cryptography using ICCS. 
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The novelty here lies in the generation of the keystream. The chaotic transmitter (T) is first 

used to generate two output signals, y1(t) and y2(t). The signal y1(t) is used for modulation 

purpose while output y2(t) is used to drive chaotic oscillator (A) whose structure is 

different from the transmitter (T). The output k(t) of key generator (A) is used as a 

keystream to encrypt the  plain text message m(t) using an  encryption rule e(.). The 

resulting encrypted signal s(t) is modulated using y1(t) yielding the transmitted signal y(t). 

The output y(t) is fed back into the transmitter in the form of an output injection with the 

aim of cancelling the effect of non-linearity while performing synchronization at the 

receiver side. The modulated transmitted signal y(t) is sent through the channel to the 

receiver.  

At the receiver end, upon receiving the signal )(' tyt , the chaotic receiver (R) - which is 

similar in structure to the transmitter (T) - permits to obtain an estimate )(ˆ1 ty  and )(ˆ2 ty  of 

the signals y1(t) and y2(t) respectively by synchronization. This can be done by using any 

techniques existing in the literature such as observers, etc [43, 52, 54, 173]. The signals 

)(ˆ1 ty  and )(' tyt  are used to generate an estimate )(ˆ ts  of the encrypted signal. The estimate 

)(ˆ2 ty  is used to drive the chaotic key generator (B) - which is similar in structure to 

generator (A) – and which yields the keystream estimate )(ˆ tk . Consequently, the plain text 

message m(t) can be recovered by using the decryption rule d(.). 

Note that since, the chaotic key generators (A) and (B) are driven by y2(t) and )(ˆ2 ty  

respectively, an indirect coupled synchronization is required between these two chaotic 

oscillators. Also, y2(t) and )(ˆ2 ty  are outputs of chaotic transmitter (T) and receiver (R) 

respectively and will be equal once synchronization is achieved. Intuitively, one would 
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expect this synchronization to take place and ICCS has already been proven in the earlier 

chapter. 

The important part of this method is the generation of the keystream. No information 

regarding the keystream is transmitted in the channel. In [1], it was possible to estimate the 

particular state which was used as keystream (as shown in [119]) since the state that was 

transmitted in the public channel had information of the dynamics of the keystream as they 

were the state variables of same chaotic oscillator.  

In contrast, in this method, the keystream is generated from a chaotic oscillator with a 

totally different structure. It will not be possible to estimate the dynamics of the chaotic 

key generator from the signal being transmitted in the channel by using the method 

mentioned in [119]. Even if the intruder manages to get hold of the encrypted signal from 

the transmitted signal, without the knowledge of keystream, the message signal cannot be 

decrypted back. Therefore, a secure communication link can be realized by implementing 

the proposed method.  

The method based on ICCS can however have some disadvantages in its own right. In real 

time continuous system, the implementation of encryption algorithm along with the chaotic 

keystream can be a major bottleneck. When this is implemented in continuous time system, 

the implementation of the encryption algorithm can be very complicated to design 

specially with electronic components. However, this disadvantage will not exist in discrete 

time system since it can easily be implemented using digital signal processing. Also, if the 

intruders can reconstruct the keystream generator driving chaotic output of the transmitter 

T, then with the knowledge of the structure of the keystream generator, intruders might try 

to perform ICCS on their side to find out the keystream. Therefore, further studies on how 

the reconstructed driving chaotic output in T will help the intruders to estimate the 
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keystream should be done. Also, another point that arises is again the parameter of the key 

generator oscillator acting as another level of key of the cryptosystem. Therefore, the fact 

that driving signal could not be perfectly estimated and along with the parameters of key 

generator acting as another level of key, it can be said that estimating the keystream can be 

a challenging task for intruders with only the knowledge of the transmitted signal. 

The method based on cryptography implementing ICCS will be implemented both on 

continuous-time and discrete-time context. 

 

6.2.1 Continuous Time Scenario 

Based on the communication scheme illustrated by Figure 6.3, we assume that the 

transmitter oscillator (T) described by a dynamical system of the following form:  
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    (6.4) 

where the state nx   with initial condition 0)0( xx  . The outputs of the oscillator are 

1y  and 2y . The matrix F is of appropriate dimension while h1 and h2 are 

analytical vector functions. The signal ty  is the transmitted signal and e(.) is the 

encryption function using key k(t) and the function g is a smooth bounded function of time. 

The keystream k(t) is generated using another chaotic oscillator (A) of similar form: 
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
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(6.5) 

which is driven by the output )(2 ty . Here, qz   (q is not necessarily equal to n), k  

is the keystream, h is an analytical vector function and b is a smooth bounded function of 
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time and A is a stable matrix of appropriate dimensions. It is assumed that the channel is 

perfect and that no distortion of the transmitted signal has taken place. 

The receiving chaotic oscillator (R) is given by:  
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(6.6) 

Finally, the key generator (B) is given by: 
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(6.7) 

The proof done in the Chapter 5, section 5.2.1.2  can be recalled for proving that (T) and 

(R) synchronize with each other and (A) and (B) synchronize with each other forming the 

ICCS, however the assumptions made should be verified when implementation is done in 

the next section of this chapter. 

Once the synchronization is obtained between (A) and (B), the message can be decrypted 

by applying the keystream. 

 

6.2.1.1 Implementation using Lorenz and Chua’s system 

Now, the proposed system is demonstrated using the Lorenz system as the transmitter (T) 

and the receiver (R). More specifically, (T) and (R) are chosen as: 
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(6.9) 

Again it can easily be seen that (6.8) and (6.9) are in the form (6.4) and (6.6) with )(F ty  

given as: 
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Now, we need to show that the assumptions made in Chapter 5 while proving the ICCS are 

valid for these choice of the systems. First of all, assumption A5) in Chapter 5 holds true 

for the following choice of SPD matrices 1P  and 1Q : 
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where  0,,,,, 321 rblll  , 34
1

2 ll   and 2
4

10 ll  . 

Remark. Note that, at first sight one would expect the matrices 1P  and 1Q  to be time 

dependent since )(F ty  is time dependent. However, interestingly, due to the particular 

form of )(F ty  the matrices turn out to be constants. 

For the key generating oscillators A and B, the Chua‟s system is adopted given as below: 
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The non-linear )(f is piecewise linear function given as: 

).11)((5.0)(   bab GGGf  

Note that (6.11) and (6.12) are in the form (6.5) and (6.7) respectively, with A  and 

),( 22 ytb  given as: 
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It can also be shown that matrix A is stable since there exist P2 and Q2 SPD such that 

222
T QAPPA   for the following matrices: 
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where 0,,, 321 lll , ,0,0   32 ll   and .0 2
4

1 ll   

Finally, it is obvious that assumptions A6) and A7) of Chapter 5 are satisfied.  

The encryption and decryption function are used same as in (6.1) and (6.3) respectively. 
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6.2.1.2 Simulation results 

The parameters employed in the equations (6.8), (6.9), (6.11) and (6.12) are as follows: 

.05.0,68.0,27.1,0

87.14,10,2.4,6.45,16

0 
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dGG

br

ba


 

The encryption parameter h  is chosen to be 3.0  and the message m(t) is taken as a square 

wave modulating digital binary bits. Also in encryption rule (6.1), a 30-shift cipher is used. 

The initial conditions for each oscillator are chosen to arbitrarily different. 

Figure 6.4 illustrates the autocorrelation function of the keystream signal )(tk . It is clear 

that the keystream is not similar to itself with any amount of time shift so its 

autocorrelation function has only a single spike at point of zero time shift. This means the 

keystream generated is chaotic in nature and therefore has limited predictability. Figure 6.5 

shows the encrypted message signal using (6.1) and signal )(tk  as keystream. Figure 6.6 

depicts the transmitted chaotic carrier and it can be seen that message signal is totally 

buried inside it. Figure 6.7 illustrates the error in estimating the keystream and it can be 

seen that although two oscillators are starting from different initial conditions, the error 

converges rapidly to zero after some initial period taken for synchronization.  

Figure 6.8 depicts the performance of the proposed method in decrypting the message 

signal back and it is readily seen that the transmitted message signal has been estimated 

convincingly. Once it is clear that the message extraction is possible using the proposed 

method, security analysis of the method should be discussed. 
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Figure 6.4: Autocorrelation of the key stream signal k(t). 
 

 

Figure 6.5: Encrypted message signal. 
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Figure 6.6:  Transmitted signal yt(t) generated from the oscillator T. 

 

Figure 6.7:  Synchronization error in the estimation of the keystream. 
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Figure 6.8:  Plot of the extracted message mr(t) and m(t). 
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from separate chaotic oscillators which have different structure and dynamics from the 

transmitter. Therefore, the method in [119] will not be useful to estimate the keystream. 

Next, we will see another popular attack based on RM on the proposed method. It turns out 

that it destroys the possibility of the phase space reconstruction of the sender dynamics by 

analyzing the transmitted chaotic signal using RM since it blurs the map and no distinct 

branching is seen. Figure 6.9 shows the RM of the transmitted signal generated from the 

proposed system that modulates the digital bits. It can be seen that the map is totally 

blurred with no apparent information in it regarding the transmitted bits. Even if the local 

maxima and minima, i.e. small fluctuations, are filtered out from the transmitted signal, 

and RM is plotted, as shown in Figure 6.10, there is no distinct branching of the RM to 

reveal the transmitted bits. Therefore, it can be concluded that the proposed method is 

immune to methods based on NLD and RM. 

 

Figure 6.9:  Return map of the transmitted signal yt(t). 
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Figure 6.10:  Return map (small fluctuations filtered out) of the transmitted signal yt(t). 
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in discrete-time context. The model is same as shown in Figure 6.3 but in discrete context 

i.e. time, t will be replaced by samples, k. 

Consider the following discrete-time dynamical systems: 
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where the state nRx  with initial condition .)0( 0xx   The outputs of the oscillator 

Ry 1  and Ry 2 . The functions f, h1 and h2 are smooth and m(k) is the message signal. 

The signal Ryt   is the transmitted signal where e(.) is an encryption function that uses 

u(k)  and key and the function f  is a smooth bounded function. 

The key signal u(k) is generated using another chaotic oscillator which is driven by the 

signal y2(k); that is: 
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where qRz  (q is not necessarily equal to n), Ru , and h  is an analytical function 

vector of appropriate dimension. 

The chaotic oscillator (R) to synchronize with (T) is given by: 
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 Finally, the chaotic oscillator (B) to synchronize with (A) is given as: 
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Note the oscillator (A) and (B) being driven by signal y2(k) and )(ˆ2 ky  respectively in order 

to form ICCS. The proof for ICCS for the discrete-time context has already been done in 

Chapter 5, section 5.2.2 and is valid for the systems (6.14), (6.15), (6.16) and (6.17) since 

they are of the same form as (5.38), (5.39), (5.40) and (5.41) used for the proof. 

 

6.2.2.1 Implementation using 3-D Henon map and discrete Lorenz system 

In this section, the performance of the proposed synchronization and method as shown in 

Figure 6.3 is demonstrated using the 3D-Henon as the transmitter/receiver system and 

discrete Lorenz system as the key generating oscillator.  The 3D-Henon map is defined for 

transmitter and receiver as [180]:  
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 (6.18) 

where a = 1.07 and b = 0.3. The key generating oscillators are represented in discrete 

Lorenz system as [41]: 
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Notice that the oscillator (A) and (B) are being driven by 2ݕ(݇) and 2 ݕ(݇) respectively to 

form ICCS. Same n-shift cipher algorithm used earlier for the encryption and decryption is 

used here as well. 

 

6.2.2.2 Simulation results 

The encryption parameter h is taken to be 0.02 and the signal m(k) is modulated by the 

digital signal simply by making m(k) = 0.01 when bit 1 is present and m(k) = 0 when bit 0 

is present. Therefore, the encryption function is basically changing the m(k) in different 

levels anywhere between -0.02 and 0.02 using the encryption keystream. The initial 

conditions for each oscillator are chosen to be arbitrarily different. The system is run for 

200 samples. 

Figure 6.11 shows the digitally modulated message signal to be transmitted securely and 

Figure 6.13 depicts the encrypted message signal after applying the keystream in Figure 

6.12. The resulting transmitted signal is depicted in Figure 6.14. The keystream being 

generated at the receiver side is shown in Figure 6.15 while Figure 6.16 shows the 

synchronization error between the keystream generated in the transmitter and the receiver 

validating the ICCS in discrete-time context. The error converges rapidly to zero after 

some initial samples due to the time taken for synchronization and finally Figure 6.17 
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shows the extracted message and it can clearly be seen that after some samples, the 

modulated digital bits are recovered perfectly. The error due to the initial error in the bits 

due to synchronization can be removed by transferring few insignificant bits for first few 

samples. 

 

Figure 6.11: Message to be transmitted. 

 

 

Figure 6.12: Keystream generated at the transmitter side. 
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Figure 6.13: Encrypted message after applying the encryption algorithm and the 
keystream. 

 

 

Figure 6.14: The transmitted chaotic signal yt(k). 
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Figure 6.15: Estimated keystream at the receiver. 

 

Figure 6.16: Synchronization error in estimating the keystream. 
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Figure 6.17: Extracted message signal. 
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2h. This means there is no change in the attractor of the transmitter chaotic system in a 

particular pattern when 0 or 1 is modulated.  

 

Figure 6.18: Encrypted message versus the binary message to be transmitted to show the 

digital bit is being modulated in multiple levels. 

Now let us see if the RM of the transmitted signal provides any information regarding the 

transmitted bits. For the sake of comparison, let us also study the RM when CSK is 

implemented and when no message is transmitted for the 3D-Henon system. This will 

make the improvement evident of the proposed method. The return maps are plotted for 

10,000 samples. If Am is the vector of maxima and Bm is the vector of minima of the 

transmitted signal yt, here plot of Am versus Bm is giving us the return map of the signal yt. 

Figure 6.19 shows the return map of the transmitted signal when no message is transmitted. 

When CSK is implemented, however, to transmit digital bits 0 and 1 with parameter b of 

Henon-3D switching between either 0.26 or 0.3, obvious branching in RM is observed as 
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transmitted. But, when the proposed method based on cryptography implementing ICCS is 

used for transmitting digital bits, the information is not revealed in the return map of the 

transmitted signal as depicted in Figure 6.21. It can be seen that the return map does not 

necessarily change when binary message is transmitted by the proposed method. RM in 

Figure 6.21 is very similar to RM in Figure 6.19, however Figure 6.21 is bit dirty due to 

the presence of fake maxima and minima induced by small changes in the transmitted 

signal for the proposed method. 

 

 

Figure 6.19: Return map of the transmitted signal when no message is transmitted. 
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Figure 6.20: Return map of the transmitted signal when CSK is implemented to transmit 0 

and 1. 

  

Figure 6.21: Return map of the transmitted signal when message is transmitted using the 

proposed method based on cryptography using ICCS. 
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6.3 Hardware Realization 

In this section, the realization of the proposed discrete system in DSP board is presented. 

The DSP is preferred over analogue components because of the space, flexibility and ease 

of use. In effect, in analogue circuits, small change in the design parameters may result in 

the complete rewiring of the hard-wired analogue circuit, while the same change can be 

achieved by changing few lines of code in ROM or EPROM of the DSP. Also, chaotic 

systems are sensitive to slightest parametric mismatches and when implemented on 

analogue electronic components, the temperature fluctuations and parameter fluctuations 

can cause significant system error and therefore can be a major issue for the performance 

of the system. Furthermore, the practical implementation of the system on the analogue 

components can be hard to realize offering limited flexibility and ultimately being costly. 

Therefore, digital signal processing seems to be a suitable option that will provide 

flexibility in the design logic and with minimum effect of temperature and parameter 

discrepancies. 

Matlab/Simulink embedded IDE link [187] in combination with Texas Instrument (TI) 

CCS is used for the rapid prototyping of the system. Here, the TMS320C6713 DSK DSP 

board is used for the experimental verification of the proposed method. TMS320C6713 is 

capable of the floating point operation with clock speed of 225 MHz [188]. Therefore, if 

the system can be implemented on this board, it could easily be realized successfully in 

modern DSP board for high speed operations. For the verification and validation of the 

results, output from the DSP board is imported back to the host computer and the 

performance is analysed. A comparison of the DSP output with the simulation output from 

Matlab is done. In what follows, the details of the method and implementation with few 

outputs are described. 
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6.3.1 Implementing ICCS for Secure Communication in DSP 

Let us recall the block diagram of the proposed model in that is to be implemented which 

is shown in Figure 6.3. Here the discrete time scenario is adapted in the DSP. The 

proposed method was validated using Matlab/Simulink earlier which provided the deep 

insight on how the method works. For the practical implementation, the Simulink model of 

the proposed model is first converted into the C-language which will in turn be used to 

program the DSP board using the CCS. 

The model is divided into two parts: the transmitter part and the receiver part. The 

Simulink model of the transmitter is shown in Figure 6.22. The input signal is encrypted 

first using the encryption block. The keystream used has been generated from the ICCS. It 

can be seen that the transmitter T generates the driving signal which is then in turn fed into 

the key generator block. The output from the transmitter block is the transmitted signal. 

The input signal is the message m(k) that has to be transmitted securely. Here, m(k) is a 

digital signal where  m(k) = 1 when bit 1 is present and m(k) = 0 when bit 0 is present. 
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Figure 6.22: Simulink model of the Transmitter implementing ICCS for secure 
communications. 

 

Figure 6.23 shows the Simulink block diagram of the receiver. For simplicity, the received 

signal is assumed to be free from any noises and interferences. In the receiver side the 

ICCS has been performed also. The decrypted signal is the extracted message. This method 

has been explained in detail in the earlier section. 
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Figure 6.23: Simulink model of the Receiver implementing ICCS for secure 
communications. 

 

The Simulink model is converted into assembly code for the TMS320C6713 using 

Simulink and the CCS. The real-time data exchange (RTDX) link is used to transfer data 

from the DSP to the computer and vice-versa. The message m(k) is fed into the DSP from 

the host computer using the RTDX and then transmitted using the scheme given in Figure 

6.22. The message is extracted using the model given in Figure 6.23. The extracted 

message is again fed back to the host computer where the comparison of the transmitted 

message with the extracted message is done. The keystream generated at the transmitter 

and the receiver side are also fed into the host computer where they are compared as well. 

Finally, the transmitted signal and the extracted message when both the DSP and Matlab 

are employed are compared. The running of the model in the DSP board and the data 

exchange is shown in the Figure 6.24 and Figure 6.25 for the transmitter and the receiver 

respectively. 
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It should however be kept in mind that processing in the Matlab and the DSP are 

independent of each other. Just for the sake of comparison, both are shown in the same 

setup. The error er between the transmitted signals generated by the Matlab and the DSP is 

calculated by subtraction and is depicted in Figure 6.26. It can be seen that the error signal 

is equal to zero for all samples, therefore making the implementation of DSP board and the 

Simulink model equivalent. 

 

Figure 6.24: The simulink model of the DSP implementation of the transmitter 
implementing ICCS. 
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Figure 6.25: The simulink model of the DSP implementation of the receiver   
implementing ICCS. 

 

Figure 6.27 shows the transmitted signal yt that has been generated using the DSP board. 

The signal yt is the input signal for the receiver. At the receiver, estimate of the keystream 

is obtained. The synchronization error signal ek of the keystream generated at the 

transmitter and the receiver using the DSP is shown in Figure 6.28. It can be seen that the 

error converges rapidly to zero after some initial samples, which is the time taken for 

synchronization. Next let us see the message extraction which is depicted in Figure 6.29, in 
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the receiver, after the keystream is obtained. It can be seen that the after some samples that 

is taken for synchronization, the message is extracted perfectly. Finally, let us see the 

comparison between the messages extracted when implemented on Simulink and on DSP 

board. Figure 6.30 demonstrates the error signal em
 which is calculated by subtracting 

Matlab output with the DSP output. It can be seen that error is nearly equal to zero for all 

samples. Therefore, this provides sufficient evidence that ICCS based secure chaotic 

communication can successfully be implemented in the DSP that has floating point 

operations capabilities. 

 

Figure 6.26: Error signal er between the DSP and the Matlab generated transmitted signal. 

 

Figure 6.27: Transmitted signal yt generated from the DSP board. 
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Figure 6.28: Key stream synchronization error generated at the transmitter and receiver 
side using DSP. 

 

 

Figure 6.29: Successful extraction of the message signal using the DSP board. 
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Figure 6.30: Error signal em between the DSP and Matlab outputs against the number of 

samples. 

 

6.4 Summary 

In this chapter, the ICCS has been utilized to propose a new chaotic communication 

method based on cryptography that is implemented both on continuous time and discrete 

time context. This proposed method was different from previous methods available in the 

literature because it used keystream generated from two chaotic oscillators at transmitter 

and receiver side that are indirectly coupled with each other. ICCS allowed to generate 

same keystream at the transmitter and the receiver side. The transmitted signal was 

generated from a different chaotic oscillator from the keystream generating oscillator. The 

keystream is not part of the transmitted signal therefore the dynamics of the keystream and 

the keystream generating oscillator is always hidden from the intruders. Without the 

knowledge of the valid keystream, the intruders will not be able to extract the message 

signal ensuring secure transmission of message signal. In continuous time, the method was 

implemented using Lorenz and Chua‟s system while in discrete time, 3D-Henon map and 

discrete Lorenz map is used. Simulation results verified the validity of the proposed 
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method to successfully extract the transmitted message signal using the authentic receiver. 

Therefore, the use of ICCS successfully allowed us to implement secure communication 

system using chaotic systems. Next, the realization of the proposed ICCS based secure 

chaotic communication method is achieved in TMS320C6713 DSK DSP board. First of all, 

the Simulation model of the proposed technique was designed. The transmitter and the 

receiver model were implemented independently. The message to be transmitted was 

loaded into the DSP board from the host computer by using RTDX and then the 

transmitted signal was generated. Furthermore, the transmitted signal was imported into 

the host computer. Next, the receiver model was implemented where the transmitted signal 

was loaded and then the message extraction was performed. Comparison of the transmitted 

signal and message output was done when DSP and Matlab were used. The results showed 

that the results obtained when DSP was implemented were almost identical to what was 

achieved from Matlab implementation. This was due the fact that both Matlab and DSP 

operation operated at the same floating point precision. This indicates that the proposed 

chaotic communication method can successfully be implemented on the DSP board that 

has capability of doing floating point operations. 

 



145 
 

Chapter 7 Modified Chaotic Shift Keying 

Method Using Indirect Coupled 

Chaotic Synchronization 

 

7.1 Introductions 

The problem with CSK method is that the value of the parameter had to be switched 

between two values when 0 and 1 is to be transmitted. Therefore there will be an imminent 

pattern in the transmitter output signal that has the information regarding the message 

signal. Hence, recovering bits for the intruders can simply amount to a classification 

problem which can easily be done by methods such as RM, ANN and therefore message 

signal could be extracted only by analysing the transmitted signal without knowing the 

dynamics and structure of the transmitter chaotic systems. Also GS can be used to break 

the CSK method. The method of CSK and its vulnerabilities to different attack methods 

were discussed in the Chapter 2 of this thesis. In this chapter we will use the concept of 

ICCS proposed earlier to modify the CSK method to improve the security of it such that 

the attack methods in questions become futile. 

In the literatures, different researchers have proposed various countermeasures for resisting 

the attack based on RM. In [134], a periodic signal  is combined with one state of the 

transmitter to modulate the transmitted signal so as to blur the reconstructed RM in order 

to frustrate the attacker. However, it was soon broken in the work described in [135, 166, 

167] by distinguishing the phase and angular frequency of the periodic modulating signal 

and then removing it. A modified scheme of the original method of [134] was proposed in 

[135] to further improve its security. However, the work mentioned in [168], this modified 
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modulating scheme is still not secure enough and that the modulating signal can still be 

effectively removed via parameters estimation.  

Few more works to modify the CSK method and increase the security are proposed in 

[136, 169] where the authors have claimed that the information regarding the bit will not 

be present on the RM of the transmitted signal. In [169], two new countermeasures were 

proposed and combined to enhance the security of CSK against RM attacks. The first 

countermeasure is to increase the number of strips in the RM by modulating the parameter 

m  between 2n different values: n,02,01,0 ,...,,   corresponding to bit value 0 and 

n,12,11,1 ,...,,   corresponding to bit value 1. It was claimed that the chances to make 

wrong assignments become (22n − 2)3 − 1 ≈ 26n and that the security against RM attacks is 

dramatically enhanced even when n is not too large [109, 169]. The second 

countermeasure is to alternatively use two states of the transmitter as output, i.e., as the 

driving signal to allow the receiver system to synchronize with the transmitter, which will 

further split the constructed return map into two parts corresponding with each states [169]. 

However, the cryptanalysis work done later in [109] showed that the security estimated for 

the first countermeasure was over-estimated and the combination of two countermeasures 

can easily be separated. This proved that the work proposed in [169] is still vulnerable 

against the known attack methods. 

In [136], another variation to the CSK method is proposed where the parameter m  was 

not only switched between two values according to the bit values, but some more 

additional random switches are introduced to confuse a possible intruder. However, in 

[144], it is shown that when the RM of the transmitted signal, using this method, is 

zoomed, there still existed close but distinct branching. 
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In this work, an effort is made to modify the existing CSK method to strengthen the 

security by removing any pattern that will be imminent in the transmitted chaotic signal 

due to switching of binary values in CSK method. 

 

7.2 Proposed Modified CSK Method for Secure Communication 

In this section the ICCS proven in the previous Chapter 5 section 5.2.1.1 is employed for 

proposing a new improved CSK scheme for secure digital communication. Using the 

ICCS, same keystream is generated at the transmitter and the receiver side. This keystream 

in turn will be used to encrypt the binary message to be transmitted. Two methods are 

proposed by which CSK can be modified to improve the security. 

 

7.2.1 Modified CSK Method 1 

Consider the following system as to be used as a transmitter:  
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݉ߚ  is the parameter value given as: 
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(7.2) 

where e(.) is an encryption algorithm,   is a scalar constant and k is the keystream for 

performing encryption. The output of ),( kze  is such that it falls within interval [-h, h] 

where h is an encryption parameter. Therefore, we will always have   hh m . 

With the proper choice of h, it can be ensured that m  always falls within the range such 
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that system (7.1) is chaotic. 1y  is the transmitted signal for synchronization to the receiver 

(R). 
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where  
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Here also   hh m
ˆ . Now according to Remark 1 in section 5.2.1.1, we have a 

slightly perturbed systems when 1 is transmitted therefore if synchronization is achieved, it 

can be concluded that 0 is transmitted otherwise 1 is transmitted. The keystreams k  and k̂  

are generated using ICCS and the systems for generating them are defined as: 
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(7.5) 

The systems defined by Eqs. (7.4) and (7.5) are driven by 2y  and 2ŷ  respectively to 

perform ICCS. It should be noted that 2y  and 2ŷ  are not always equal since the parameter 

m  in the transmitter and m̂  in the receiver are varying differently depending on the 

transmitted bits. In the transmitter, it is changing according to both binary values; but in 

the receiver, it is changing only due to the binary value 0 therefore will be useful for 

message recovery since we will have a slightly perturbed system as was pointed in the 

remark 1 of the proof in chapter 5. 
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The main disadvantage of the CSK method was that it performed switching based on one 

parameter, into two values. Therefore, when 0 was to be transmitted one parameter was 

used and when 1 was to be transmitted, another value was used. Therefore, the change in 

parameter could easily be detected by pattern recognition algorithms and by GS. In this 

proposed method, the switching is not happening between two values. In fact the parameter 

is such that   hh m , i.e. it is switching between a range with infinite 

possibility. Therefore, it will not leave any pattern in the output transmitted signal. 

The proposed method is shown in the Figure 7.1. 

 

Figure 7.1: Block diagram for the proposed modified CSK method 1. 
 

Note: The form of the systems taken in (7.1), (7.3) and (7.5) that are used to define the 

proposed method implementing ICCS are of the same form as taken for proving ICCS in 

(5.3) and (5.4) in Chapter 5. This means that the ICCS could be employed in the proposed 

method. 
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7.2.2 Modified CSK Method 2 

The CSK method proposed in method 1 can be varied by not changing the parameter of the 

system but by directly including the encrypted message in one of the state such that the 

attractor is changed directly at the phase space. This method can be written mathematically 

as follows: 
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(7.6) 

Here m  is 0 or   depending on either message is 0 or 1 and B is a matrix of appropriate 

dimension. The keystream k  and k̂ are generated using ICCS as shown in method 1. This 

method is depicted in Figure 7.2. 

 

Figure 7.2: Block diagram for the proposed modified CSK method 2. 
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7.3 Implementation using Lorenz and Chua’s system 

Now the proposed both methods will be implemented using the Lorenz and Chua‟s system. 

Lorenz system will be implemented as the transmitter (T) and receiver (R) while the 

Chua‟s system is implemented as the key generators (A) and (B). The encryption function 

e(.) to be used in the proposed design is chosen to be n-shift cipher algorithm as used 

earlier. To recall, 

)),...),,(((...),( 111 
nn

kkkzfffkze   
(7.7) 

where ),(1 kzf  is given as: 
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and h is the encryption parameter. 

 

7.3.1 Implementation Method 1 

The Lorenz system acting as transmitter is given as: 



















,

5

20

:)T(

22

11

3213

21312

21111

xy

xy

xxyx

xryxyx

xxx

m








 

(7.9) 

where parameter m  modulates the binary message signal in the same manner as given in 

(7.2).  

The keystream k is generated using the Chua‟s system and is driven by signal 2y  generated 

in (7.9).  
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where d0 is a scaling factor such that k(t) lie within the interval [-h, h]. Note that here the 

signal 2y  is injected in the nonlinearity )( 2y  of the Chua‟s system which is given as: 

  115.0)( 2222  yyGGyGy baa
 (7.11) 

The receiver is given as: 
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The parameter 0  is given in (7.4) and k̂  is generated using Chua‟s system synchronizing 

with (7.10) and is given as: 
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(7.13) 

Eq. (7.13) is driven by 2ŷ  such that (A) and (B) synchronize with each other forming an 

indirect coupling. The non linearity here will then be 

  1ˆ1ˆ5.0ˆ)ˆ( 2222  yyGGyGy baa
 (7.14) 

In order to show that the systems (7.9), (7.10), (7.12) and (7.13) synchronize respectively 

as described in Section 5.2.1.1 of Chapter 5,  the assumptions A1), A2), A3) and A4) made 

should be shown to be valid for the systems (7.9), (7.10), (7.12) and (7.13).  
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A1): For the transmitter and receiver defined by Lorenz system in (7.9) and (7.12), the 

matrix A can be written as: 
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Here )Q( 1min > 0 is the smallest eigenvalue of the matrix Q1 and I1 is an identity matrix. 

Therefore assumption A1) holds true. 

A2) For the keystream generating oscillator defined by Chua system defined in (7.10) and 

(7.13), the matrix F can be written as: 
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.)Q(QFPPF 22min222
T I  (7.16) 

Here )Q( 2min > 0 is the smallest eigenvalue of the matrix Q2 and I2 is an identity matrix. 

Therefore assumption A2) holds true. 

A3) The Jacobian of the function p for the system defined in (7.10) and (7.13) can be 

written as: 
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Now since the function )(y is of the class C1, the 
y

y


 )(

 is bounded, i.e. M
y

yzp 
 ),(

thus proving assumptions A3). 

A4) In (7.9) and (7.12), the function ݄2(ݔ) is a linear function and therefore Lipschitz 

continuous, hence the assumption A4) will hold true. 

 

7.3.2 Implementation Method 2 

Method 2 is quite similar to method 1, the only difference being that the encrypted 

message is included in one of the states rather than changing the chaotic system parameter. 

(T) and (R) can now be written as 
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 (7.18) 

with everything else remaining the same as in method I. 
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7.4 Simulation Results 

Systems (7.9), (7.10), (7.12), (7.13) and (7.18) are simulated using Matlab/Simulink for the 

transmission of randomly generated digital bits. The different values used for the systems 

are taken as  

1  = 16, r = 45.6,  = 4.2,   = 0.1, h = 0.2, = 10,  = -14.87,  = 0, 0d  = 0.05 

and n for cipher shift algorithm is taken as 30. 

 

7.4.1.1 Method 1 results 

Figure 7.3 shows the randomly generated binary message signal to be transmitted. Figure 

7.4 shows the scatter plot of the switching parameter m  encrypted by the algorithm 

mentioned in (7.7) using the keystream k shown in Figure 7.5. It can be seen that the 

switching parameter is varying between the ranges 4 to 4.4 with no particular order. Now, 

one question that might arise is with this variation of parameter in the system (7.9), will the 

system still remain in the chaotic regime. The answer is provided by the strange attractor of 

the system (7.9) depicted in Figure 7.6. It can clearly be seen that the shape of the attractor 

is still preserved and is same as the standard Lorenz attractor. Therefore, even with the 

implementation of the proposed method, the inherent chaotic property of the Lorenz 

system will not be compromised. Finally, the transmitted signal, i.e. output from the 

Lorenz oscillator (7.9) is shown in Figure 7.7 which is the signal transmitted to the receiver 

through the public channel. 
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Figure 7.3: Randomly generated bits to be transmitted. 

 

 

Figure 7.4: The switching parameter  varying within the range of 4 to 4.4. 
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Figure 7.5: Keystream generated at the transmitter. 

 

 

Figure 7.6: Strange attractor of the Lorenz system (7.9). 
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Figure 7.7: Output from the transmitter (T) i.e. transmitted chaotic signal. 
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performed. First let us see how the switching parameter and keystream differ in the 

receiver side with their counterpart in the transmitter side which are shown in Figure 7.8 
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as before, when 1 is transmitted key generated and switching parameters are different in 

the transmitter and receiver side implying the synchronization error in (T) and (R). 

This means that the binary message signal that has been transmitted can successfully 

recovered by examining the synchronization error that will exists between (T) and (R). The 

successful message extraction is shown in Figure 7.10, where there exists obvious 

synchronization error when 1 is transmitted while the error rapidly approaches to zero 

when 0 is transmitted. 

 

 

Figure 7.8: Error between the switching parameter used at the transmitter and receiver. 
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Figure 7.9: Synchronization error between the keystream generated at the transmitter and 
receiver. 

 

 

Figure 7.10: Synchronization error between the transmitter and receiver to recover the 
transmitted message. 
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7.4.1.2 Method 2 results 

Figure 7.11 shows the random binary message that has to be transmitted securely. Figure 

7.12 shows the scatter plot of the encrypted inclusion parameter corresponding to bit value 

that uses the encryption algorithm given in (7.7) and keystream k as shown in Figure 7.13. 

Here again, there is no apparent order in which the inclusion parameter value is changing. 

Here again, the analysis of the chaoticity of the Lorenz system after implementing the 

proposed method 2 is done. For this, the strange attractor is plotted for the Lorenz 

transmitter and is shown in Figure 7.14 and is same as the attractor of the standard Lorenz 

system. Therefore, with the implementation of the method 2, even when one time varying 

inclusion parameter is added to one of the states of the Lorenz system, for implementing 

CSK, chaotic property of it is maintained. Finally, Figure 7.15 shows the resulting output 

signal that has to be transmitted. 

 

 

Figure 7.11: Randomly generated bits to be transmitted. 
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Figure 7.12: The inclusion parameter varying within the range of -0.2 to 0.2. 
 

 

Figure 7.13: Keystream generated at the transmitter. 
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Figure 7.14: Strange attractor of the Lorenz system used as the transmitter. 

 

 

Figure 7.15: Output from the transmitter (T) i.e. transmitted chaotic signal. 
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Now at the receiver side, upon receiving the transmitted signal synchronization is 

performed, keystream is regenerated and inclusion parameter is also produced. Depending 

on which bit value is transmitted, we will get error in the inclusion parameter and also in 

the keystream generated. Same reasoning mentioned for Method 1 is valid in this case as 

well. Figure 7.16 shows the error in the inclusion parameter while Figure 7.17 shows the 

synchronization error in the generation of the keystream. Finally, Figure 7.18 shows the 

synchronization error between (T) and (R) which shows significant error when 1 is 

transmitted while error converges rapidly to zero when 0 is transmitted, thus successfully 

recovering the message. 

 

 

Figure 7.16: Error between the inclusion parameter used at the transmitter and receiver. 
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Figure 7.17: Synchronization error between the keystream generated at the transmitter and 
receiver. 

 

 

Figure 7.18: Synchronization error between the transmitter and receiver to recover the 
transmitted message. 
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7.5 Security Analysis 

In this section, security analysis of the both proposed methods using the most common 

decryption attack will be done. Not all of the attack methods are possible to be taken into 

consideration. However, RM being the common and the most powerful decryption method 

for attacking CSK, it is used here in this work. RM sees the extraction of bits as a 

classification problem. In fact, extraction of either 0 or 1 from the transmitted signal is a 

classification problem which is how digital equalization is also performed [181] in digital 

communication. Other pattern classification tools can also be studied; however, if there is 

no pattern to classify for one method (RM in this case), it will generally imply that it will 

be valid for the remaining tools. 

The method proposed here has improved the security of the CSK technique. The use of the 

keystream, generated by ICCS at the transmitter and the receiver, will generate the 

parameter m  (or inclusion parameter) of different values, in fact infinite possibilities 

within a boundary. The keystream generated is not part of the transmitted signal therefore 

there is no way that the intruders will be able to generate it from only the knowledge of the 

transmitted carrier signal. Without the knowledge of the keystream, it will be impossible 

for the intruders to find the change in the parameter m̂  (or the inclusion parameter) in the 

receiver to perform synchronization/desynchronization for extracting the bits. 

Figure 7.19 and Figure 7.20 shows the return maps of the transmitted signal that is 

generated using proposed method 1 and 2. It can clearly be seen that RM of the transmitted 

signal does not change according to the bit values being sent. This therefore will remove 

the possibility of seeing extraction of the bits as a classification problem. Therefore, by 

implementing the proposed methods a secure communication can be realized. For 

comparison, the RM of the transmitted signal is plotted when CSK is not implemented, i.e. 
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when the transmitted bits does not modulate the parameter of the transmitter. It can be seen 

in Figure 7.21 that the RM is similar as in Figure 7.19 and Figure 7.20 concluding that the 

proposed method does not necessarily change the RM of the transmitted carrier chaotic 

signal. Even when the return map is zoomed in, the RM does not split. 

Brute force attacks also will not be valid because of the large key space to choose from. 

Switch detection that detect the discontinuities of the first derivative of the transmitted 

signal to reveal the transmitted bits will also not be a convincing option because the 

encryption rule will generate range of values in the interval [-h, h] thus bringing about 

infinite levels of switching. Exhaustive cryptanalysis such as known plaintext attack, 

known ciphertext attack, etc may be done as part of the future work of this research.  

 

Figure 7.19: Return map of the transmitted carrier signal using method 1. 
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Figure 7.20: Return map of the transmitted carrier signal using method 2. 

 

Figure 7.21: Return map of the transmitted carrier signal when CSK is not implemented. 
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7.6 Summary 

In this chapter, improved CSK method was proposed to transmit digital bits securely. This 

new method was suggested using the ICCS where the generated keystream was used to 

encrypt the switching parameter that modulated the digital bits. Two different variations of 

the methods were proposed. The method proposed was implemented using Lorenz and 

Chua‟s system and the simulation results confirmed the possibility of extracting the 

transmitted message signal. Further, the security analysis of both methods was performed 

and the RM of the transmitted signal was shown for both methods. It was seen that no 

information regarding the message was revealed in RM unlike in traditional CSK or other 

modified CSK methods, available in the literature, giving the proposed method distinct 

advantage to the existing techniques. 

 



170 
 

Chapter 8 Digitization of Chaotic Signals: 

Application in Non-Ideal Channels 

 

8.1 Introductions 

Chaotic communication has promised a lot in secure communication and there is still a 

great scope for it to be implemented for security purposes even though many attack 

methods are proposed. The existing methods can be modified, as seen in earlier chapters, 

and more new methods will be devised gradually eventually. However, in order to 

implement chaotic carriers for security purpose in real environment, channel noise and 

channel model have to be considered as well. Synchronization methods for reducing the 

effect of noise have been proposed in the literatures (see e.g. [182-184]) but they were 

mainly concentrated on either spread spectrum applications or in CSK methods or only 

focussed on synchronization issues. Also, the majority of the chaotic communication 

methods proposed do not complement with the existing digital communication schemes 

but requires to be implemented differently thus leading to parallel development of error 

correction, equalisation, and dispersion compensation schemes. Therefore, it would be 

logical and a step forward move if future development in chaotic communication systems 

can be built on the existing technologies where the nature of chaotic signals will provide 

advantages of security while the existing digital communication building blocks will be 

utilized for all other aspects of communication.  

In this chapter, we propose a method where the chaotic carrier containing the message 

signals are first digitized and converted into binary data sequences. These binary sequences 

are transmitted using the conventional digital communication links. At the receiving end, 
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the digital sequence is regenerated using existing technology where the error correction, 

equalisation and dispersion compensation can readily be applied. The recovered chaotic 

signal can be used for chaotic synchronization and extraction of the actual hidden message 

signal. In this method, it is shown that message recovery is possible with a high degree of 

accuracy at moderate SNR of 14 dB even when the BER is very high. The SNR required to 

recover the message can further be reduced by implanting the error correction codes and 

digital signal processing tools which are already well established in digital communication.  

The security issues are not taken into consideration in this study and a simple chaotic 

masking is used to demonstrate the concept of digitization. However, other methods can 

easily be implemented using the same concept. The idea here is to show the potential of the 

method of digitization. 

 

8.2 Digitization of Chaotic Signals 

The schematic block diagram of the proposed system is shown in the Figure 8.1. Assuming 

a band limited chaotic signal and provided the sampling rate is higher than the Nyquist rate 

the continuous chaotic signal y(t) can be represented in discrete format Yi. y(t) is converted 

into a digital format with uniform sampling before being digitally encoded. Assuming the 
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Figure 8.1: Block diagram of the proposed chaotic communication system using 
digitization. 
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Discrete Memoryless Source (DMS), the simplest encoding scheme of fixed length code 

word of n-bits per sample is used for representing the binary digits. Different coding 

techniques (i.e.  Pulse Code Modulation (PCM), Differential PCM (DPCM), adaptive 

PCM, delta modulation) could be applied to reduce the quantization error and hence 

improve the performance. In this work, PCM with uniform quantization level is used. 

Investigating the systems performance using other coding techniques could be a subject of 

further study. Simple baseband modulation technique of On-Off keying (OOK) with 100% 

duty cycle is used for the digital transmission.  

The channel h(t) is assumed to be Additive White Gaussian (AWG). At the receiver a 

matched filter followed by a sampler and a threshold detector are used to regenerated the 

binary sequence � ݅ . The binary sequence is converted back into analogue chaotic signal 

using D/A. A chaotic receiver can be used for chaotic synchronization and to recover the 

original message signal. Any existing method at chaotic receiver can be used for achieving 

synchronization. 

Converting the chaos signal into a digital format has the advantages of being able to 

transmit it through existing communications links wired or wireless (radio or optical) 

taking advantage of the existing infrastructure. Problems including noise, multipath 

induced distortion and dispersion, and fading can readily be dealt with in the digital 

domain. For example, it is rather complicated and challenging to design equalizing filters 

for chaotic communications since it has a broad spectrum. However, with digitization of 

chaotic signal this is no longer a major problem. One key advantage of the proposed 

system is the perfect reconstruction of the chaotic signal at the receiver having been 

propagated through a real channel. The metric for comparing the performance and 

measuring the reliability of digital communication system is the bit error rate (BER). In 

this chapter, we study the performance of the communication system for different BER. 
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Once the minimum BER require for message recovery is set, the error control coding, (e.g. 

convolutional, turbo and a low parity density codes) can be used to improve the BER 

performance and hence increase reliability [185].  

It is to be noted that in the analysis of chaotic system, researchers generally tend to 

consider the channel to be noise-free and non-dispersive. However, physical channels are 

always noisy and may be dispersive. Nevertheless, with the digitization concept proposed, 

the dispersion can simply be compensated by means of equalizers including like linear 

equalizer, decision feedback equalizers and the more recently reported WT and ANN 

based equalizer [186]. 

 

8.3 Simulation Results and Discussions 

Simulation of the proposed chaotic communication system using digitization is done using 

the Matlab/Simulink. We have used the popular Lorenz system [88] as a chaotic oscillator 

and the chaotic synchronization obtained is from classical drive-response principle. The 

masking method adopted includes the message of m =  sin(t) with  = 1 rad/sec and the 

resulting output signal is sampled and quantized using an A/D converter. The quantization 

resolution n is 6. The digital sequence in OOK format is transmitted through the non-ideal 

channel. The SNR is varied in order to achieve BER of different order. To accurately 

estimate the message signal, the performance of the system is examined for over a range of 

BER and a threshold BER is determined. 

Figure 8.2 illustrates the synchronization between the observed state 1 ݔ and the transmitter 

state x1 when BER obtained is 10-6. The 450 line indicates perfect synchronization 

illustrating that chaotic synchronization is still possible after A/D and D/A conversion of 

the chaotic carrier signal. One thing that should be pointed out is the signal used to drive 
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the chaotic receiver for synchronization is obtained after the channel noise had its effect on 

the carrier. So, this means that without the need of any other complex method, 

synchronization can easily be obtained if concept of digitization is employed.  

 

Figure 8.2: Synchronization between states used for masking when BER is 10-6. 

Now let us see how accurately the message is recovered for a given BER. Figure 8.3 

depicts time waveforms for transmitted and recovered message signal m at a BER of 10-6. 

Since, method of masking is used; the received quantized chaotic carrier is subtracted to 

obtain the message signal. Therefore, the quantization error because of A/D conversion 

will have effect on message recovery. So, to reduce the effect of quantization error an 8th 

order low-pass Butterworth filter with a cut off frequency of 2 rads/sec is employed to 

recover the message signal. For a reliable digital communication link the optimum BER is 

considered to be 10-6. We can see in Figure 8.3 that the perfect recovery of message is 
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reasonable quality at BER of 10-4. However, there is some distortion for higher values of 

BER (i.e.10-3). These results demonstrate the potential of this scheme for BER of < 10-4 

over noisy channel condition. The proposed system can readily be implemented using 

existing commercial components. To further increase the performance of the system, 

quantization error can be reduced using DPCM scheme, or other advanced source coding, 

which can be a subject of further study. 

 

 

Figure 8.3: Transmitted and recovered message at BER 10-6. 
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Figure 8.4: Recovered message at different BERs. 

 

8.4 Summary 

It is quite a known fact that chaotic signals has a lot of potential to be utilized for secure 

communication however the real environment and channels might bring on the problem of 

dispersion and interferences due to noise. Equalisation techniques, error correction 

techniques have to be realized for chaotic communication if it has to be implemented in 

practical applications. However, the development of digital communication and all the 

tools that are available can be utilized in chaotic communication without the need of 

parallel development. In this chapter, a method based on digitization of chaotic signals 

acting as a transmitted carrier signal is proposed. It was shown that the chaotic 

synchronization and thus message recovery was possible for the BER as low as 10-4 and 
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transmit the digitally encoded bits; however other techniques can easily be implemented. 

Also, simple masking method was used to mix message signal with the chaotic carrier for 

simplicity to demonstrate the concept of digitization, but other form of methods enhancing 

the security can easily be implemented as well. 
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Chapter 9 Conclusions and Future Works 

 

9.1 Conclusions 

The objective of this research was to explore techniques to exploit the properties of chaotic 

signals to implement secure communication. The facts that chaotic signals were aperiodic, 

broadband and sensitive to initial conditions/parameters mismatches were important for 

them to be utilized in security. Therefore the chaotic parameters acted some sort of 

hardware key and hence same dynamical system was necessary for the transmitter and the 

receiver with proper chaotic synchronization techniques. Different techniques exist in the 

literature to implement secure chaotic analog based communication such as chaotic 

masking, modulation, inclusion or CSK methods. However, all of these methods suffered 

from various disadvantages mainly being vulnerable to different attack methods to extract 

the hidden message even when the intruders where not aware of the dynamics of the 

chaotic transmitter system. The attack methods were based on NLD methods, power 

filtering methods, pattern classification methods such as RM or ANN, etc. Various other 

modifications for these methods and some other newer techniques could also be found in 

the literature, however all suffered again from similar issues. Therefore, there is a real 

incentive to exploit the chaotic signals in such a way that it thwarted existing attack 

methods. In this research, various different methods were revisited and the possible 

improvements in them were pointed out. 

In Chapter 3 it was found that the Proportional Integral observer is a better choice for 

obtaining chaotic synchronization. When the performance of both P and PI observer were 

done for the combinational masking + inclusion method, it was found that PI observer 
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showed better resilient to the noise and better message recovery. Therefore, PI observer is 

better suited for performing chaotic synchronization. 

One of the main aims of this research was to find a method that will allow secure 

transmission of the message such that the intruders will not be successful to extract the 

message without the legible receiver. In Chapter 4, cascaded chaotic masking technique 

was proposed and it was found that when two equal powered chaotic signals were added to 

each other and message was modulated in it, then it adds complexity to the transmitted 

signal thus making NLD method more or less ineffective. However, it should be noted that 

by using cascaded chaotic structures, the dimension of the dynamical system was increased 

from n to 2n, 3 to 6 in case of Lorenz implementation, so for motivated enough users, they 

might be able to crack the system from the methods that were used to attack hyperchaotic 

systems. Even though, the no attack methods are reported yet to break cascaded structures, 

more possibilities were still needed to be explored. 

In Chapter 5 a new type of chaotic synchronization technique called ICCS was proposed. 

ICCS is a unique type of synchronization technique where the two oscillators were not uni 

directionally coupled, i.e. the output of one oscillator was not used for driving another 

chaotic oscillator, and instead both were being driven independently from the output that 

was originating from two different chaotic oscillators. The ICCS was very useful because 

the output from these indirectly coupled chaotic oscillators were used as keystream in the 

transmitter and receiver side, without the need for it to get transmitted in the 

communication channel. This has a major advantage, since the intruders will not be able to 

estimate the keystream being used for encryption purposes simply by having the 

transmitted signal available. The application of this was done in Chapter 6 and 7 where 

existing communication schemes were modified to propose secure methods. The security 
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analysis performed showed that the methods proposed were indeed secure and popular 

attack methods were not able to extract the transmitted message signal. It was seen that 

NLD based forecasting method will not be feasible for the proposed method implementing 

ICCS, since the dynamics of the keystream generator was not be present in the transmitted 

signal, hence without knowing the keystream, even if the intruders got hold of the 

encrypted message, message extraction was not be possible. The practical realization of the 

proposed system done in the DSP board (TMS320C6713 DSK) showed that the proposed 

method is feasible to implement practically in real time. 

Along with the investigation for increasing the security, fundamental aspects of 

communication like combating noise and dispersion/fading effects plays a vital role in the 

performance of the method. Already much advancement has been made in digital 

communication with different methods available for error correction codes and dispersion 

compensation. Therefore, it will be wise to use all these existing methods while chaotic 

signals adding the security layer to the communication framework. Hence, a concept of 

digitization was proposed in Chapter 8. The proposed method takes the advantage of using 

the existing tools available in digital domain on the digitized chaotic signals to combat the 

noise and channel model. The simulation results showed the performance of the method to 

successfully recover the message signal at a moderate SNR of 14 dB. The system was able 

to recover the message at BER up to 10-4. The BER could easily be improved by using 

error control codes and equalization techniques already available in digital domain. 

 

9.2 Future Works 

Though extensive work had been carried out for implementing chaotic signals for secure 

communication, it is very essential to provide a list of further works that is necessary to 
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make the system more efficient and effective. A number of encouraging methods were 

proposed however there might be needed to perform some further investigation. 

One of the key points was in the implementation of the methods that were proposed in the 

research. In most of the cases, the message signal that was used to be transmitted was very 

low frequency signal. Therefore, further investigation to modify the proposed method to be 

used to support higher bandwidth is necessary. This research only focused in developing 

newer ideas for implementing chaotic signals for secure communication, so further works 

can be made in this aspect. 

The implementation of the method was done mostly by using Lorenz and Chua‟s system 

therefore, the performance of the methods in other chaotic systems, preferably higher order 

systems, or time delay systems, can also be done in order to improve the security further. 

Moreover, other sophisticated encryption algorithms instead of just n-shift cipher 

algorithm can be investigated for enhancing the security. 

The proposed discrete method in Chapter 6 was implemented in DSP board as shown in 

the same chapter. The implementation was just a prototype of the model and was done to 

show that actually the proposed method is realizable in DSP board. The message signal 

and transmitted signal were analysed using RTDX in the computer only, therefore, a full 

communication setup can be implemented as part of the future work to transmit real time 

electrical signal. 

The system performance and comparison of the digitization concept proposed in Chapter 8 

using other source coding techniques like delta modulation, DPCM, etc can also be done. 

First implementation of a simple equalizer to show the potential of digitization concept can 

be performed after which more complex equalization methods can also be looked into.  
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All of the methods proposed in the research were concentrated on radio frequency 

implementation though the methods can also be easily adapted to optical based chaotic 

systems. Since the ICCS was proven mathematically for a class of chaotic systems, 

implementation of ICCS in optical domain is theoretically possible. Therefore, the 

application of the proposed method in optical domain along with practical applications can 

be a subject for further research. 



183 
 

Appendix A 

 

In this appendix, few definitions and theorems are listed that will be useful to understand 

some of the mathematical notion used in the thesis. 

 

Stability of Dynamical Systems 

The very first concept considered when studying a dynamical system is the stability of its 

equilibrium point(s). 

Definition 1. Equilibrium point: A point ex  is said to be an equilibrium point or a fixed 

point for the system   txtfx ,
.   if ex  satisfies 

 extf ,0  

In other words, if the system is initialised at x = ex , the solution will stay there for all 

future times.  

The stability of a system is concerned with its behaviour near its equilibrium point(s). This 

intuitive idea is actually very complex for non-linear and time-delay systems in particular. 

Consequently, a large variety of definitions have been proposed, which differ in very 

subtle ways. The main objective of the theory of stability is to be able to draw conclusions 

on the system behaviour without actually calculating its solution. 

Now let us have some of the definitions mentioned in the literatures most importantly: 

Lyapunov stability, asymptotic stability, uniform stability, and exponential stability. 

Consider the general autonomous nonlinear system  

     0

.

0 ;0 ,, xxttxtfx   
(A1) 

where  nnf RRR  :   is continuous. Since f  is continuous, we are assuming that 

the above system has a unique solution corresponding to each initial condition. This is true, 

in particular, if f  is a global Lipschitz function. Note that f  is global Lipschitz if there 

exist finite positive constants T  and k , such that 
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    ].,0[ ,, ,,, Ttyxyxkytfxtf n  R  (A2) 

A function satisfying the Lipschitz condition (A2) is said to be Lipschitz continuous, and is 

continuously differentiable. 

Recall also that a state n
ex R  is an equilibrium point for system (A1) if   ,0, extf  

.0t  In what follows, we shall assume that ex  is an equilibrium point for system (A1). 

We also denote by ),,( 00 xttx , the solution of (A1) at time instant t  corresponding to the 

initial condition ).,,( 0000 xttxx   

Definition 2. Lyapunov stability: The equilibrium point ex  of system (A1) is stable or 

Lyapunov stable if for all ,0  there exists 0),( 0 t  such that 

.),,(),( 00000 ttxxttxtxx ee    

On the other hand, the equilibrium point ex  is unstable if ex  is not Lyapunov stable. 

Definition 3. Uniform stability: The equilibrium point ex  of system (A1) is uniformly 

Lyapunov stable if for all ,0  there exists 0)(   such that 

.),,()( 0000 ttxxttxxx ee    

Equivalently, when   depends only on ,  the equilibrium point ex  is said to be uniformly 

stable. 

Lyapunov stability does not guarantee that the solution ),,( 00 xttx  will converge to the 

equilibrium point .ex  It simply says that the solution will remain in some region around the 

equilibrium point as time passes, but will not necessarily ever approach it, so long as the 

initial condition was within a certain distance,  , of the equilibrium point. A system with a 

limit cycle, in particular, is stable in the sense of Lyapunov. 

As a result of such a bounded-based type of stability definition, the notions of attractivity, 

asymptotic stability, and exponential stability are defined. 

Definition 4. Attractivity: The equilibrium point ex  of system (A1) is attractive or 

convergent if for each ,0
Rt  there exists an 0)( 0 t  such that 

  .),,( 00000  tasxxtttxtxx ee   
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Definition 5. Uniform attractivity: The equilibrium point ex  of system (A1) is uniformly 

attractive if there exists a number 0  such that 

  . and inuniformly , as,,0, 0000000 xttxxtttxtxx ee    

By combining the above definitions, we obtain the important notion of asymptotic stability 

and uniform asymptotic stability. 

Definition 6. Asymptotic stability: The equilibrium point ex  of system (A1) is 

asymptotically stable if it is stable and attractive. It is uniformly asymptotically stable if it 

is both uniformly stable and uniformly attractive. 

In many practical situations such as in the convergence of observers, exponential stability 

is preferred to asymptotic stability. 

Definition 7. Exponential stability: The equilibrium ex  is exponentially stable if there exist 

constants ,r  ,a  0b  such that 

    ree Bxttbtxxaxxtttx  000000  ,0 , ,exp,,  

 where rB  is a ball of radius .r  

The above definitions are local in nature in the sense that they describe the behaviour of 

the system solution initialised near the equilibrium point. In other words, there is some 

region around the equilibrium point in which the initial condition vectors will lead to 

asymptotically or exponentially stable responses. This region is called the zone of 

attraction to the equilibrium point. 

The following definitions are given in the sense of the global behaviour of system 

trajectories. 

Definition 8. Global uniform asymptotic stability: The equilibrium ex  is globally 

uniformly asymptotically stable if (i) it is uniformly stable, and (ii) for each pair of positive 

numbers ,M    with M  arbitrarily large and   arbitrarily small, there exists a finite time  

 ,MTT   such that 

   .,,,,0, 00000  MTtxxtttxtMxx ee   

This definition says that the solution will converge to the equilibrium point and remain 

there as time passes (since  ,MT  is finite), in response to any initial condition (since M  

is arbitrarily large). 
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Definition 9. Global exponential stability: The equilibrium ex  is globally exponentially 

stable if there exist constants ,a  0b  such that 

    . ,0 , ,exp,, 000000
n

e xttbtxxaxtttx R  

It is worth noting that these kinds of definitions can only be satisfied for systems having a 

single equilibrium point at which the system can come to rest. This is the case of linear 

systems where the origin is the unique equilibrium point. 

In practice, the study of stability is done using Lyapunov's second, or direct, method. This 

consists of defining a Lyapunov function with appropriate properties; the existence of 

which will imply the type of desired stability. The second method allows the determination 

of stability without having to solve the system equations (or find the eigenvalues in the 

linear case). Consequently, it is a useful method for nonlinear and time-varying systems 

where the solution of the state equations is very difficult to find in general. Recall that 

Lyapunov's first method comprises studying the stability of a nonlinear system in the 

vicinity of an equilibrium point by calculating the eigenvalues of a linearised model of the 

nonlinear system around the equilibrium point. 

Note that we can always consider 0ex  since we can always bring the equilibrium point 

to the origin by a change of coordinates. In what follows, we shall effectively assume that 

such is the case. 

Definition 10. Lyapunov function: A Lyapunov function for the system (A1) is a real-

valued function ),,( txV  which possesses the following properties: 

i) ),( txV  is of class 1C  such that .0),( txV e  

ii)  ),( txV  is positive definite. In other words, there exists a nondecreasing real continuous 

function   such that 0)0(   and ),()(0 txVx  , for all t  and for all 0x  with 

)( x  as .x  

iii)  ),( txV  is negative definite. In other words, there exists a nondecreasing real 

continuous function   such that 0)0(   and the time derivative ),( txV  of ),( txV  along 

the trajectories of system (A1) is such that: ),( txV 0)( x  for all t  and for all 

0x . 

iv) There exists a nondecreasing real continuous function   such that 0)0(   and 

)(),( xtxV   for all t . 
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The following theorem shows that the existence of such a Lyapunov function is a 

necessary and sufficient condition for uniform asymptotic stability of system (A1). 

Theorem 1: The origin of system (A1) is uniformly asymptotically stable if and only if 

system (A1) admits a Lyapunov function. 

The properties on ),( txV  can be weakened according to the type of stability desired. We 

therefore have the following corollary: 

Corollary 1. The origin of system (A1) is: 

a) stable if and only if system (A1) admits a Lyapunov function which satisfies conditions 

i), ii) and the following condition : iii*) 0),( txV  for all t  and for all x  

b) uniformly stable if and only if system (A1) admit a Lyapunov function which satisfies 

conditions i), ii), iii*) and iv) 

Corollary 2: For the autonomous system 

  00 ),(
.  fxfx  

the asymptotic stability is guaranteed by the existence of a Lyapunov function )(xV  of 

class 1C , such that 

1)  ,0)0( V  

2)    0xV  , ,0x  

3)    xV  as ,x  and   0
. xV  , 0x  

 

Stability of Linear Time-Invariant (LTI) Systems 

In general, the Lyapunov direct method can also be applied to linear systems, whether they 

are time-varying or time-invariant. However, for time-invariant systems  

nRxAxx  ,  (A3) 

the concept of positive and negative definite functions are readily defined in terms of 

quadratic functions involving positive and negative definite matrices, respectively. More 

precisely, the quadratic form PxxxV T)(  , where P  is a SPD matrix, is usually employed 
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as a candidate Lyapunov function. Having chosen an SPD matrix P , the derivative of 

)(xV   with respect to time, along the trajectories of the system (A3), is calculated to test 

for negative definiteness:  

QxxPxAxPAxx

PxxxPxxV
TTTT

TT


  )(

 
(A4) 

 where  

.QPAPA T   (A5) 

The equation (A5) is called an algebraic Lyapunov equation. If the matrix Q  turns out to 

be negative definite with the particular choice of P , then the origin of system (A3) will be 

asymptotically stable. 

Note that since the origin is the only (trivial) isolated equilibrium point of system (A3) we 

generally speak of the asymptotic stability of the system rather than the asymptotic stability 

of the origin. It is also clear that asymptotic stability of the LTI system (A3) also means 

global asymptotic stability of the latter since there is only one critical point. 

Another interesting feature of the above LTI system is that its eigenvalues can also provide 

information regarding the stability of the system. Indeed, it is known that any matrix A  

can be transformed into the Jordan form by a change of coordinates. Let Sxz   be a 

transformation such that JSAS 1  , where J  is in Jordan form. More precisely,  

.1 JzzSASxSz    

 We know that the diagonal elements of J  are the eigenvalues of A . In addition, 

tj
ij

m
j

r
i

Jt ii etpzetz 1
11)0()(    where r  is the number of distinct eigenvalues of A ; 

;,,1 r   im  is the multiplicity of the eigenvalues i , and ijp  are interpolating 

polynomials. It is clear that 0)( tz  as t  if the eigenvalues of A  are all negative. 

This is summarised in the following theorem. 
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Theorem 2: The autonomous LTI system (A3) is globally asymptotically stable if and only 

if all the eigenvalues of A  have negative real parts; that is, all the eigenvalues of A  lie in 

the left-half complex plane. 
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