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Abstract 

One of the current interests of exercise physiologists is to understand the nature 

and control of fatigue related to physical activity to optimise athletic performance. 

Therefore, this research focuses on the mathematical modelling and analysis of 

the energy system pathways and the system control mechanisms to investigate 

the various human metabolic processes involved both at rest and during exercise. 

The first case study showed that the PCr utilisation was the highest energy 

contributor during sprint running, and the rate of ATP production for each 

anaerobic subsystem was similar for each athlete. The second study showed that 

the energy expenditure derived from the aerobic and anaerobic processes for 

different types of pacing were significantly different. The third study demonstrated 

the presence of the control mechanisms, and their characteristics as well as 

complexity differed significantly for any physiological organ system. The fourth 

study showed that the control mechanisms manifest themselves in specific ranges 

of frequency bands, and these influence athletic performance. The final study 

demonstrated a significant difference in both reaction time and accuracy of the 

responses to visual cues between the control and exercise-involved cognitive 

trials. Moreover, the difference in the EEG power ratio at specific regions of the 

brain; the difference in the ERP components’ amplitudes and latencies; and the 

difference in entropy of the EEG signals represented the physiological factors in 

explaining the poor cognitive performance of the participants following an 

exhaustive exercise bout. Therefore, by using mathematical modelling and 

analysis of the energy system pathways and the system control mechanisms 

responsible for homeostasis, this research has expanded the knowledge how 

performance is regulated during physical activity and together with the support of 
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the existing biological control theories to explain the development of fatigue during 

physical activity.  
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CHAPTER ONE 

  Introduction  

 

1.1 Definitions 

Exercise physiology, one of the main disciplines of sport and exercise science, is 

developed from its “parent”, physiology, which is concerned with the study of the 

function and characteristics of the living systems (Garland, 1994). The studies can 

range from the basic unit of organisms, for example the cell, to the more complex 

organs and organ systems such as the brain and circulatory system respectively. 

As the focus of physiology is, by definition, at the level of organs, and systems 

within systems, exercise physiologists therefore should not only know how the 

different parts of an organism work together to achieve a particular function, but 

also they should have a thorough understanding of how the human body responds 

to exercise and training (Bangsbo, 1996; Elia, 1992). Then, these concepts that 

are developed from exercise physiology can be used to train the athlete, and 

improve the athlete’s sport performance (Wilmore and Costill, 2005). One of the 

main factors that affect sport performance and involves all body systems, is 

exercise-induced fatigue which results from excessive exertion and leads to a 

decrease in bodily and mental functions (Chen et al., 2004; Gao and Chen, 2003; 

Wu et al., 2003). Therefore, one of the goals of exercise physiologists is to 

investigate how to delay the onset of exercise fatigue, or how to use efficiently the 

available metabolic resources in the body to complete a physical activity (Lambert 
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et al., 2004; Munir Che Muhamed, 2008; Noakes, 2000; St Clair Gibson et al., 

2005). 

1.2 Background 

Sports performance, in an athletic context, is the pursuit of excellence where an 

athlete measures his or her performance quantitatively or qualitatively to advance 

towards his or her desired goal. In those physical activities where the result is 

measurable and defined, such as a race (e.g. time), a jump (e.g. height) or the 

maximum distance covered by an object (e.g. javelin throw, projecting heavy 

weights), the end result is quantifiable which makes it easier to monitor the 

progress of the athlete. Several physical aspects can influence sport performance. 

One of these aspects is the neuromuscular factor (Tsiganos et al., 2008) that 

arises from the relationship between the nervous system, and the musculoskeletal 

system (e.g. endurance, flexibility, genetics, muscular strength, reaction time, and 

training). Moreover, in many sports (e.g. running and cycling), the establishment of 

an effective rhythm will keep an athlete organised, and physically efficient for an 

excellent performance (Plagenhoef, 1985). Subsequently, this rhythm will impose 

a cadence on musculoskeletal activity, mental control as well as psychological 

factors. These psychological factors, for instance, can be self-motivation, level of 

alertness and mental acuity that are the product of a number of integrated factors 

like physical fatigue or other unrelated sport stresses (e.g. personal 

circumstances, environmental conditions) that are not within the athlete’s personal 

control. The athlete is required to have the ability to adapt in these unexpected 

environmental factors. Another aspect is coaching and external support for the 

athlete that are important in providing assistance and direction (e.g. in terms of 

nutrition, sport technique, tactics and training) to the aspiring competitor for 
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success to occur (Bangsbo, 1996; Plagenhoef, 1985; Tsiganos et al., 2008; 

Wilmore and Costill, 2005). 

1.3 Current issues in Exercise Physiology 

The ability to exercise depends on various physiological systems. When these 

systems are incapable of withstanding such requirements of physical activity, 

fatigue may occur. In exercise physiology, various theoretical control models of 

fatigue have been proposed (Edwards, 1983; Hill and Lupton, 1923; Munir Che 

Muhamed, 2008; St Clair Gibson et al., 2004; Ulmer, 1996; Weir et al., 2006) with 

the aim of providing a clearer picture of the underlying mechanisms of fatigue 

either from energy or biorhythms perspectives. For instance, it has been 

suggested that muscle fatigue creates a momentary decrease in the performance 

capacity of exercising muscles, owing to a failure in sustaining a certain amount of 

expected force or power (Hargreaves, 2008). This muscle fatigue is also described 

as the sensation of tiredness with associated decrease in muscular performance 

and function (Abbis and Laursen, 2005; Hargreaves, 2008). These descriptions 

take into account the elaboration of fatigue from various disciplines which are part 

of exercise science arenas such as physiology, biomechanics and psychology. 

Several review articles have been published, over the past few years, in an 

attempt to provide a better insight into the nature of the physiological adaptations 

to exercise, and how these physiological adaptations results in a delay on the 

development of fatigue (Abbis and Laursen, 2005; Hargreaves, 2008; Lambert et 

al., 2004; Noakes, 2000; St Clair Gibson et al., 2005). However, these 

physiological models cannot explain exactly the cause and effect of fatigue on 

sports performance. These theoretical models will be elaborated further in the 

literature review chapter. The next section will explain the importance and the role 
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of mathematical modelling and analysis of physiological signals in exercise 

physiology.  

1.4 Importance of mathematical modeling and analysis 

Mathematics, especially in biology and medicine, provides a wealth of 

opportunities for mathematical modellers and analysts to help clarify the 

underlying mechanisms that control the physiological systems as well as to 

investigate the energy production and depletion from the various energy pathways 

(Weswick and Kearney, 2003). This is because the modelling process enables the 

mathematical modeller to focus on separating the essential from the inessential. A 

mathematical model can be used to investigate theories that are not easily 

amenable to experiment, and that are time consuming as well as costly to conduct. 

Hence, mathematics is a valuable tool in these areas to test out ideas or 

hypotheses (Sloan et al., 1996). In addition, it is also a concise but yet a powerful 

and popular language that allows both the hidden similarities and distinct features 

among different physiological systems to be discovered (Sloan et al., 1996). 

1.5 Aims & Objectives  

This research focuses on the mathematical modelling and analysis of the energy 

system pathways, and the system control mechanisms (present in the 

physiological systems) which are responsible for the regulation of homeostasis 

(i.e. balance or harmony within the physical body system) required to enhance 

sports performance. Various mathematical methods, commonly utilised in the 

biological and medical field (Higuchi, 1988; Rioul and Vetterli, 1991; Shannon, 

1948; Zbilut et al., 1995) are used for modelling and analysis to see how the 

physiological systems dynamically interact and function. These mathematical 
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models are based on observations and data collection from multiple biological and 

physiological systems under laboratory conditions to understand the integrative 

control systems that create human behaviour and control physical activity. These 

predictive complex system control models and analysis can be used to improve 

our understanding of sports performance in terms of quantifiable and reliable 

measures. The objectives are elaborated in terms of research studies following a 

thorough literature review of the existing physiological control models of exercise 

fatigue. These are addressed further in the following section. 

An in-depth knowledge into the underlying mechanisms of exercise fatigue seems 

beneficial to optimise sports performance (Lambert et al., 2004; Noakes, 2000). 

Therefore, in order to assess the cause and effect of the exercise-induced fatigue, 

this research focuses, firstly, on the modelling and analysis of the biological 

energy system pathways to investigate the energy expenditure during high 

intensity exercise of short duration and an endurance physical activity; and 

secondly to investigate the system control mechanisms that regulate the internal 

milieu of the physiological systems in an attempt to observe how the physiological 

systems dynamically interact and function.  

The following objectives were devised to investigate these research goals using 

mathematical modelling and analysis of the physiological systems data in an 

attempt: 

 To elucidate how the human organism regulates the amount and the rate of 

adenosine triphosphate (ATP) to better understand the cause and effect of 

exercise-induced fatigue on athletic performance during maximal exercise 

of short duration; 
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 To find out how pacing, for an endurance time-trial exercise, affects the 

energy production from the aerobic and anaerobic systems and the 

homeostatic disturbance (if ever) that pacing may cause to the human 

organism; 

 To find out the nature and characteristics of the system control mechanisms 

that regulate homeostasis in the internal milieu of the human organism 

subjected to different pacing of a prolonged exercise for sustaining 

performance; 

 To be able to understand how a potential central regulator paces the human 

organism during a physical activity, and how the physiological systems 

dynamically interact or function; 

 To investigate whether there are finite metabolic resources in the brain by 

assessing cognitive performance, in terms of reaction time and accuracy of 

responses, while performing both cognitive and physical tasks to 

exhaustion. 

 

1.6 Structure of  thesis 

The thesis is organised into nine chapters. Chapter One introduces the theme of 

this research, Chapter Two provides a thorough literature review of the existing 

exercise-induced physiological control models, the importance of energy system 

pathways and homeostatic control mechanisms followed by a description of 

mathematical techniques used in this research in analysing physiological signals 

together with their current uses. Chapters Three, Four, Five, Six and Seven 

consist of the 5 experimental case studies, based on mathematical modelling and 

analysis, to critically analyse the challenging physiological control models. Chapter 
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Eight provides a general discussion of the findings through a critical evaluation of 

the existing physiological control theories of exercise-induced presents in the light 

of the mathematical findings from the experimental case studies. The thesis 

concludes with Chapter Nine which emphasizes the significance and importance 

of this research with respect to previous findings and established mathematical 

and theoretical contributions to the current physiology and sports science research 

about the nature and control of exercise-induced fatigue. Before embarking on the 

literature review, the experimental case studies are briefly described in the 

following paragraphs. The first case study was based on the mathematical 

modelling and analysis of elite athletes’ sprint data (from a 100-m race) which was 

obtained from the International Association of Athletics Federations (IAAF) to 

indirectly study the regulation and the rate of adenosine triphosphate (ATP) 

utilization during maximal exercise of short duration. A type of Gamma distribution 

(Hogg and Craig, 1978) was used to model the rate of production and decay of 

each anaerobic energy subsystem as it is a flexible model to represent exponential 

distribution, and a good fit for the sum of independent exponential random 

variables (Schmidt, 1985; Wlodarczyk and Kierdaszuk, 2006).   

  

For the second case study, the energy expenditure of ten well-trained and healthy 

male cyclists was mathematically modelled and analysed for both aerobic and 

anaerobic energy system pathways during various pacing trials that were self 

pace, even pace and variable pace. These different types of pacing were used by 

the cyclists to complete 20-km cycling time trials, and all these trials were 

conducted in the physiology laboratory of the School of Life Sciences at 

Northumbria University. For studies 3 and 4, the same time trial data together with 

other biological variables (such as heart rate, volume of oxygen consumption and 
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blood lactate concentration) were analysed to investigate the control mechanisms 

underlying various physiological systems (i.e. the power outputs representing the 

integrative behaviour of the whole human body system, the cardiovascular system 

and the respiratory system). 

 

The third experimental study was based on the mathematical analysis of the 

nature and characteristics of the system control mechanisms underlying the 

physiological data during the 20-km cycling time trials associated with pacing. In 

order to analyse these physiological control mechanisms, mathematical 

techniques, including fractal analysis and recurrence analysis were used to find 

any similarities, distinct features, or characteristics of the biological mechanisms 

that modulate human behaviour and physical activity. These specific mathematical 

techniques were employed since fractal analysis is a common technique used in 

physiology and medicine to find self-similarity of biological signals (Glenny, 1991; 

Tapanainen, 2002); and recurrence analysis is widely used as a graphical and 

quantification tool to detect shifts in physiological states and nonstationarities 

(Trulla et al., 1996; Zbilut et al., 1995). Furthermore, from the recurrence plot, 

several recurrence quantitative analysis measures were computed to find whether 

the physiological system activities being assessed were predictable, stable and 

resilient during physical activity. For the fourth experimental case study, a different 

mathematical method was utilized to investigate the system control mechanism to 

see how a central regulator theoretically paces the physical body during a 20-km 

cycling time trial exercise for various pacing trials. According to certain theoretical 

control models of fatigue, physical exercise is modulated by a central regulator 

within the brain. Therefore, this fourth study was conducted to find out how a 

central regulator paces the physical body during exercise. This was accomplished 
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by analysing the physiological data including power outputs, volume of oxygen 

consumption and heart rate using Continuous Wavelet Transform (CWT). CWT 

was used to produce a two-dimensional view of the physiological signal in order to 

observe and analyse the local and general characteristics as well as behaviour of 

the physiological signal (Mallat, 1989). Moreover, CWT has been described as an 

indirect way of assessing the functions of the central system (i.e. the brain and the 

brain stem) by observing any changes at different frequency bands of the 

biological signals (David et al., 2007). 

 

According to certain theoretical models (Lambert et al., 2004; St Clair Gibson et 

al., 2004), fatigue is not always peripheral but rather is a result of brain function. 

Therefore, the fifth experimental case research study was designed and 

conducted to investigate whether there is a finite level of metabolic resources in 

the brain. This was achieved by performing both cognitive tasks (i.e. Rapid Visual 

Information Processing and Modified Stroop tests) and physical tasks to 

exhaustion with subsequent assessment of the effect of these exhaustive tasks on 

cognitive performance (this was evaluated in terms of reaction time and accuracy 

of responses to visual cues). 

 

1.7 Contribution to knowledge 

This research was important since through the mathematical modelling and 

analysis of the collected biological data, the various energy systems and the 

interactions between the physiological systems (peripheral and central systems) 

were mathematically assessed in an attempt to unlock the principle control of 

activity in these different physiological systems as well as their “hidden” properties 
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and characteristics that regulate physiological behaviour. Moreover, this research 

work endeavoured to unearth the nature and control of the exercise-induced 

fatigue in exercise physiology so as to improve the sport performance of athletes 

using a set of mathematical theories together with the existing biological control 

model theories. 

1.8 Principal related works in this area 

While a number of theoretical models have been produced in the field of exercise 

physiology, the following articles were specifically concerned in this research 

followed by articles describing currently and commonly used mathematical 

techniques in biology and medicine. 

(i) Theory (Physiological control models) 

 Hill and Lupton (1923) 

 St Clair Gibson et al. (2004) 

 Lambert et al. (2004) 

 Weir et al. (2006) 

 

(ii) Mathematics in biology and medicine 

 Recurrence analysis works by (Webber et al.,1990) and (Zbilut et al., 

1995);  

 Wavelet transform (Rioul and Vetterli., 1991);  

 Fractal analysis (Higuchi, 1988);  

 Entropy (Shannon, 1948; Rosso et al., 2002). 
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                         CHAPTER TWO 

  Literature Review 

 

2.1 Introduction 

The study of complex regulatory systems controlling biorhythms and activity 

arising from physiological systems, and the availability of metabolic resources in a 

human body system is important for optimising and understanding athletic 

performance (Lambert et al., 2004; Manfredini et al., 1998; Murphy, 1996; St Clair 

Gibson et al., 2005). These physiological and metabolic signals constitute an 

enriched source of biological information where the application of linear statistical 

analysis may find correlations but may fail to explain the nature and characteristics 

of the control mechanisms responsible for these correlations (Ottesen et al., 

2004).  

 

When statistical analysis is merged with mathematical modelling and analysis of 

these dynamics, however, new insight into the nature of the physiological 

responses and control mechanisms may be revealed. Furthermore, in the long 

term mathematical models may help generate new mathematical and physiological 

theories of the control of physical activity and human behaviour (McSharry et al., 

2005; Ottesen, 1997; Ottesen et al., 2004). Moreover, physiological and brain 

activities change irregularly in time (Bassingthwaighte, 1994; Glass, 1988; Keener, 

1998; Winfree, 2001), mathematical methods, including nonlinear techniques, are 

required to model and analyse the system control mechanisms that regulate the 
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physiological homeostasis (i.e. there is balance in the biological activities within a 

particular physiological system), and control the energy contribution from the 

energy pathways required to sustain athletic performance (Bangsbo, 1996; 

Lambert et al., 2004; St Clair Gibson et al., 2005). The system control 

mechanisms are biological mechanisms or processes responsible for the 

regulation of any particular physiological system (Cannon, 1926).  

 

In the next section, various theoretical models of fatigue, in an exercise physiology 

context, are described followed by a description of possible factors that influence 

sport performance, and how these can be optimised to improve sports 

performance. Subsequently, the mathematical techniques used in this thesis are 

elaborated as well as their importance to model and analyse biological systems is 

provided. 

 

2.2 Evolution of theoretical exercise-induced physiological models 

Various physiological models have been devised in the aim to understand the 

development of exercise-induced fatigue. Currently, the physiological theories to 

explain the cause and the effect of fatigue on exercise performance include the: (i) 

cardiovascular/anaerobic/catastrophic model, (ii) energy supply/energy depletion 

model, (iii) biomechanical model (iv) thermoregulatory model, (v) teleoanticipation 

model, (vi) integrative central regulator model, (vii) neuromuscular fatigue model, 

(viii) task dependency model and (ix) psychological/motivational model (Abbis et 

al., 2005; Hargreaves, 2008; Lambert et al., 2004; Noakes, 2000; St Clair Gibson 

and Noakes, 2004; Ulmer, 1996; Weir et al., 2006). Therefore, these various 
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theoretical models and theories that endeavoured to explain the development of 

fatigue during exercise are described in the following subsections.  

2.2.1 Cardiovascular/Anaerobic/Catastrophic model 

The cause of the exercise-induced fatigue which is developed during high intensity 

exercise of short duration is still unknown. From studies of Fletcher and Hopkins 

(1907) and that of Sir Archibald Vivian Hill, and colleagues (Hill et al., 1923; Hill, 

1924), it was suggested that this form of exercise is limited by a peripherally-based 

metabolite that induced failure of the skeletal muscle contractile function 

independent of the reduction in skeletal muscle activation which is caused by the 

central nervous system (CNS) (Noakes, 2000).  

The classical theory, also defined as the Cardiovascular /Anaerobic /Catastrophic 

(CAC) model of exercise physiology (Hill, 1923; Noakes, 2000), states that the 

fatigue associated with high-intensity exercise results from a skeletal muscle 

“anaerobiosis”. This “anaerobiosis” is developed when the increasing oxygen 

demand of the exercising muscles cannot be supplied by the heart. Therefore, this 

inadequate oxygen supply to the exercising muscles prevented the neutralisation 

of the progressive accumulation of lactic acid that Hill (1923) believed would 

prevent skeletal muscle relaxation leading to skeletal muscle rigor (Hill, 1923; 

1924; 1927; Noakes, 2000).  

However, it is known that it is the depletion of adenosine triphosphate (ATP) within 

the exercising skeletal muscle that causes rigor (Fitts, 1994). This peripheral 

model also led to the “catastrophe theory” of Edwards (1983) which states that 

physical activity stops when the biochemical and physiological limits of the body 
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are surpassed causing a catastrophic failure of the mechanism responsible for 

intracellular homeostasis. 

According to the cardiovascular/anaerobic/catastrophic model, during maximal 

exercise, fatigue occurs when the cardiovascular system is unable to provide the 

required amount of oxygenated blood to the active muscle and the waste products 

accumulate in the skeletal muscle. Therefore, endurance athletes, such as 

marathoners have superior aerobic capacity. This means that these endurance 

athletes can run at speeds that require them to utilise about 75% of their maximal 

oxygen uptake (  O2max) during a race at a high level of oxygen uptake (Wilmore 

and Costill, 2005). This feat is ascribed to the ability of the heart to pump large 

amount of blood as well as the ability of extracting oxygen at the exercising 

muscles (Noakes, 2000). Subsequently, if there is an insufficient amount of 

oxygenated blood at the working muscles, then this endurance athlete would rely 

primarily on anaerobic metabolism which would result in a higher blood lactate 

accumulation during physical activity. This happens because the rate of removal of 

blood lactate is relatively less than its rate of production (Brooks et al., 1996). 

In addition, Brooks and his colleagues found that there was a good correlation 

between power output reductions in endurance sports exercise and increases in 

blood lactate concentrations. Findings from Lucia et al. (2002) showed that elite 

cyclists were not capable of maintaining high level of workload for prolonged 

duration when the blood lactate concentration in the active muscles was beyond 

the lactate threshold. Unfortunately, the accumulation of blood lactate caused a 

decrease in the intramuscular pH which prevented the phosphofructokinase (PFK) 

activity, which in turn reduced the release of calcium ions that consequently 

decreased force production within a skeletal muscle (Brooks et al., 1996). 
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2.2.2 Energy Supply/Energy Depletion model 

The cardiovascular/anaerobic model is further extended into another model called 

the energy supply/energy depletion model that associates fatigue during exercise 

to the failure of the energy metabolic pathways to produce sufficient amount of 

energy (ATP) to the active muscles, or to the depletion of endogenous substrates 

such as carbohydrates (Gollnick et al., 1973; Shulman and Rothman, 2001). This 

energy depletion model is the direct result of the depletion of the fuel substrates 

that are muscle and liver glycogen when the physical exercise exceeds more than 

2 hours (Noakes, 2000). This model highlights the importance of conserving 

energy production through energy pathways (i.e. the anaerobic system and the 

aerobic system) and incorporating a strategy to utilise efficiently the available 

metabolic energy resources during the exercise. Shulman and Rothman (2001) 

highlighted that athlete who had greater amount of glycogen in muscles at the start 

of the physical activity had an extended duration of exercise to fatigue by being 

more resistant to this exercise-induced fatigue. 

2.2.3 Biomechanical model 

Another model involving the biomechanics of the human body states that the role 

of muscles is regarded as elastic energy systems which work in the same principle 

as springs and torque producers during physical activity (Pennisi, 1997; Roberts et 

al.,1997). This model predicts that the more elastic is the muscle, the less torque 

this particular muscle is required to produce which in turn increases the efficiency 

of the muscle system. This will eventually enhance sport performance, especially 

in weight-bearing activities such as running, by decreasing the rate of substrates 



16 

 

accumulation that might induce exercise fatigue; and by decreasing the rate of rise 

of body temperature so as the physical body is delayed in reaching critical core 

temperature, which is responsible in preventing exercise activity (Noakes, 2000). 

2.2.4 Thermoregulatory model  

Environmental conditions greatly affect exercise ability (Cheuvront and Haymes, 

2001; Nybo and Nielsen, 2001). The thermoregulatory fatigue model proposes that 

when the human body core temperature increases to a critical level of about 40oC, 

fatigue occurs (Gonzalez-Alanso et al., 1999). This is because the central nervous 

system (CNS) has a reduced ability to maintain a constant neural drive (Nybo and 

Nielsen, 2001) at or above this critical temperature of 40oC. During prolonged 

exercise, the beginning of hyperthermia (i.e. body temperature much above 

normal) is related to a reduction in cerebral circulation that results in a decreased 

supply of substrates or metabolic resources to and from the brain (Nybo and 

Nielsen, 2001). 

When the body temperature increases, the skin blood flow increases together with 

an increase in sweating rate that creates a stressful environment for the circulatory 

system. When the skin temperature is increased, there is a decrease in mean 

arterial pressure, stroke volume, and total peripheral resistance together with an 

increase in heart rate (Rowell, 1986). The decrease in stroke volume as the skin 

temperature increases lead finally to a reduced cardiac output that eventually 

impedes the oxygenated blood supply to the active muscles. Moreover, Parkin and 

colleagues (1999) found there was a greater glycogen utilisation rate in heat stress 

(such as 40oC) as compared to a colder environment (3oC). 
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2.2.5 Teleoanticipation model 

In contrast to the previous physiological models that focus on the efficiency of 

expenditure of the energy systems, Ulmer (1996) proposed a totally different 

hypothesis of the physical fatigue during exercise. He proposed a hypothetical 

model of a control system which optimised performance especially during heavy 

physical activity. This model was founded on a standard feedback control loop 

where efferent signals from the central nervous system (CNS) contain information 

to determine muscle metabolic rate and exercise intensity. Then, afferent signals 

from the muscles or peripheral organs, feedback information to change movement 

and power output in order to optimise sport performance accordingly. Couple with 

that, it was also proposed (Ulmer, 1996) that the model was more complex than 

this simple feedback control loop when taking into consideration the additional 

presence of endogenous reference signals, and factors such as training, muscle 

reserve, muscle metabolic rate and past experiences. This subsequently gave rise 

to the ‘teleoanticipation model’ which included both feed forward planning and 

feedback control from afferent changes, which are principally regulated by the 

known endpoint of an event and the distance still to be covered to complete that 

event. 

2.2.6 Integrative Central Regulator model 

Working from the teleoanticipation model, another model of integrative central 

neural regulation of effort and fatigue was proposed (Lambert et al., 2004; St Clair 

Gibson and Noakes, 2004). In this physiological control model, it was suggested 

that physical activity is regulated by a central controller in the brain, and that the 

human body functions as a complex system during exercise. In this model, a 

central regulator paces the body during exercise to make sure that the physical 
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activity is completed without homeostatic failure by sending and receiving 

information to and from central and peripheral sensors and body systems in a 

deterministic manner (Lambert et al., 2004).  

2.2.7 Neuromuscular Fatigue model 

The neuromuscular Fatigue model or the central fatigue model (Davis and Bailey, 

1997) states that it is not the rate of supply of substrate (i.e. oxygen/fuel) to muscle 

that limits the performance during physical activity but rather the processes 

involved in the skeletal muscle recruitment. The nervous system is important in 

coordinating physiological responses in the human body and the neuromuscular 

fatigue model also suggests that there is a reduction in force or power output 

despite the fact that perception of effort increases. This reduction in force or power 

is suggested to be associated with central activation failure (i.e. a reduction of 

muscle activation by the CNS) or the neuromuscular propagation failure (i.e. the 

decreasing response of the muscle to an electrical stimulus). The decreasing 

ability of the muscle to respond to an electrical stimulus is due to the reduction in 

the muscle action potential called the M-Wave, or a decrease in the speed of 

conduction of action potentials to the working muscle. The reduction in M-Wave 

occurs when there is a decrease in ionic transmembrane gradient such as sodium 

and potassium ions (Fowles et al., 2002; Nielsen and Clausen, 2000). The studies 

that supported the idea that fatigue is linked to the CNS have also examined and 

found changes in the CNS neurotransmitter (serotonin and dopamine) 

concentrations in the brain during prolonged exercise that in turn was suggested to 

diminish the level of arousal (excitement) and skeletal muscle recruitment (Davis 

et al., 2000) which are altogether related to an increase in the perception of effort 

that eventually affects exercise performance. This neuromuscular fatigue model 
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also incorporates the peripheral fatigue theory which describes fatigue can occur 

at the muscle site and include failure of the excitation-contraction coupling 

mechanism (Behm and St-Pierre, 1997) which is the physiological process of 

converting an electrical stimulus to a mechanical response (Sandow, 1952). 

Therefore, this evidence demonstrates that the central nervous system fatigue 

model contributes to fatigue during prolonged exercise lasting tens of minutes to 

hours (Baker et al., 1993). 

2.2.8 Task Dependency model 

Following the neuromuscular model and the integrative central controller model, it 

was argued that various studies (Calbet et al., 2003; Edwards et al., 1995) 

indicated that decreases in performance, owing to exercise-induced fatigue, 

cannot be explained fully by any one of these models (Weir et al., 2006). Instead 

the concept of task dependency model was recommended as a suitable model of 

fatigue in which mechanisms of fatigue vary depending on the specific exercise 

and this model includes characteristics of the central and peripheral contributions 

to fatigue, and their relative importance depends on the type of exercise (Weir et 

al., 2006). 

2.2.9 Psychological/Motivational model 

This model postulates that the capability to maintain exercise performance comes 

from a conscious effort, and is frequently included as an additional component of 

the central fatigue model hypothesis (Davis and Bailey, 1997). However, this 

model does not support one principle of the muscle recruitment model which holds 

that performance during exercise is controlled at a subconscious level. The 

psychological/motivational model does not agree that the conscious brain can 
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override fundamental physiological functions and cause irreversible damage to the 

human body.  

2.2.10 Summary of the physiological control models 

Following the hypothesis of these physiological control models, it is clear that there 

is an uncertainty of these biological theories in successfully explaining the real 

cause of fatigue during physical activity. Therefore, this research focused on the 

mathematical analysis and modelling of the various physiological systems in the 

hope to observe the nature and characteristics of the system control mechanisms 

that are responsible for human behaviour and control physical activity during 

exercise. These mathematical modelling and analysis were performed on 

physiological data collected, under laboratory conditions, from athletes or club-

level healthy participants at rest and during exercise. These mathematical 

modelling and analysis attempted to find the cause of fatigue during exercise as 

well as the nature and characteristics of the system control mechanisms 

responsible for homeostatic regulation of the physiological systems. In so doing, 

mathematical theories as well as physiological theories can be developed or 

extrapolated from the existing biological control theories to understand better the 

control of fatigue during exercise so as to boost athletic performance.  

By taking into account the different factors that influence sports performance from 

the theories of these exercise physiological models, the next sections describe (i) 

the energy system pathways that are aerobic and anaerobic systems; (ii) the 

importance of pacing in competition; (iii) the relationship between pacing and 

ratings of perceived exertion (RPE); (iv) the importance and effect of biorhythms 

on sports performance; (v) the importance of homeostasis in physiological 

systems; (vi) the arousal state for optimum performance (cognitive load and 
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information processing), and (vii) finally the relevance and importance of 

mathematical methods, commonly used in biology and medicine, in the modelling 

and analysis of biological data in exercise physiology. 

2.3 Energy system pathways and physical activity 

To perform a marathon run or sprint, skeletal muscle is fuelled by one compound, 

(Gajewski et al., 1986) the adenosine triphosphate (ATP). ATP is an organic 

compound (with chemical formula C10H16N5O13P3) which consists of high-energy 

bonds, and is utilized to transport energy to cells for biochemical activities such as 

muscle contraction through its hydrolysis (i.e. reaction with water) to ADP 

(adenosine diphosphate) (Atul et al., 2010).  The human body stores a small 

amount of this energy currency which is sufficient to meet the energy demands of 

an all-out explosive exercise for a few seconds (Baechle and Earle, 2000; Wilmore 

and Costill, 2005). Therefore, the human organism is required to resynthesize ATP 

on a continual basis to meet the energy demands and there are several metabolic 

pathways that the body utilises for the replacement of ATP. Which particular 

pathway will normally predominate depends on the physical activity being 

performed. Firstly, the ATP-PCr (Adenosine Triphosphate-Phosphocreatine) 

system will produce about 5 to 8 seconds worth of energy in an all-out activity 

such as sprinting after the initial storage of ATP in the muscles is used up 

(Baechle and Earle, 2000; McArdle et al., 2000, Wilmore and Costill, 2005).  

Then, for longer duration or activity, the lactic system predominates whereby 

carbohydrate is broken down and used to produce ATP in a metabolic process 

called the anaerobic glycolysis. The chemical reactions, during anaerobic 

glycolysis, take place without the presence of oxygen, and the by-product of 

anaerobic exercise is lactic acid (Brooks et al., 1996; Mole, 1983). This lactic acid 
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system can be the source of fuel to an athlete for about 45 seconds, and for 

exercise duration greater than this, the aerobic system will begin to predominate 

(Baechle and Earle, 2000; McArdle et al., 2000). For exercise duration extending 

more than 2 minutes, the body shifts slowly towards the aerobic metabolic energy 

pathway to replace the initial ATP stores by breaking down carbohydrate or fat 

(depending on various factors such as exercise intensity, diet and training) to 

produce ATP within the aerobic system. During the aerobic exercise, the human 

body has enough time to use oxygen in the biochemical reactions (Brooks et al., 

1996). 

2.3.1 The importance of pacing in sporting activities 

The changes in the pattern of speed or velocity during a time-trial race (e.g. 

running), has drawn the attention of sport scientists and exercise physiologists to 

examine the concept of pacing (Abbis and Laursen, 2008; Foster et al., 1993; 

Tucker, 2009). The three well-known types of pacing are negative, positive and 

even pacing that depend greatly on the event duration and the consequences of 

slowing down because of power output reduction (Foster et al., 1993; Hettinga et 

al., 2006 and Tucker et al., 2006). It was posited that pacing during physical 

activity is developed as a preventive measure to optimize sports performance 

according to the limit of the individual physical or physiological abilities, and hence 

preventing their physiological systems from large fluctuations in homeostatic 

disturbances during an exercise bout (Lambert et al., 2004; St Clair Gibson et al., 

2006; Tucker et al., 2006). It was suggested that changes in the concentration of 

intramuscular metabolites (Foster et al., 1993), body core or brain temperature 

and other physiological factors determine the power output during shorter 

competitions of 1 to 30 minutes duration. Then, subsequently the conscious brain 
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integrates all these factors together creating a conscious fatigue which can be 

measured using the ratings of perceived exertion scale (RPE) (Borg, 1998; 

Lambert et al., 2004; Ulmer, 1996), a psychological instrument, to measure 

sensations of fatigue. 

2.3.2 Relationship between pacing and rating of perceived exertion (RPE)  

In a perception-based model for exercise performance by (Tucker, 2009), it was 

suggested that changes in the homeostatic status, as represented by momentary 

rating of perceived exertion (RPE), enables changes in pacing strategy or power 

output in a responsive or anticipatory manner that were founded from pre-exercise 

expectations and feedback from different peripheral physiological systems. 

 

It was shown that RPE increases linearly with the percentage of completed event 

(Faulkner et al., 2008; Joseph et al., 2008; Swart et al., 2009), and has also 

proportional relationship when plotted against percentage of exercise task 

completed (whether it is duration or distance). Altogether, these observations 

show that an athlete is always comparing how they feel at any instant during a 

competition with how they expected to feel at that particular instant. If RPE is more 

than expected at any moment during a physical activity, then the power output of 

the athlete will reduce to a point of giving up a competition. Otherwise, if RPE is 

less than expected, then their power output will increase accordingly and hence 

this process of regulating muscular power output via RPE appears to occur 

continuously throughout a time-trial exercise or an exercise bout. Thus, the 

regulation of muscular power output takes into consideration the proportion of the 

distance that remains to be completed and the momentary value of RPE (St Clair 

Gibson et al., 2006; Tucker, 2009). The next important factor which is described in 
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the next section is the influence of the biological rhythms that govern the human 

behaviour and physical activity. 

 
2.4 The importance and effect of biorhythms on sports Performance 

The examination of biorhythms or circadian rhythms is described as chronobiology 

which is defined as “the study of rhythm patterns in biological phenomena” 

(Manfredini et al., 1998). In chronobiology, the nature of these biorhythms patterns 

is identified within the German model, namely “zeitgebers” meaning time-givers, 

and the biorhythms are considered as external environmental cues. These 

external cues influence the ability of an athlete to adapt to daylight, seasons and 

time zone. The psychomotor, physiological, cognitive and psycho-emotional 

processes are all influenced by these biorhythms (Manfredini et al., 1998; Murphy 

and Cambell, 1996;  ’Conner and Bensky, 1995; Seligman, 1990). Within the 

sports performance context, by understanding the patterns of the biorhythms and 

the energy flow within the human body, the factors that may deter an athlete’s 

optimal performance can be identified. 

In the scientific community, biorhythms are considered as geophysical phenomena 

related with the rhythmic rotation of the earth on its axis as well as the shift from 

dawn to dusk (Murphy, 1996). It is known (Meyer-Bernstein and Morin, 1996) that 

the human biological clock is located within the hypothalamus, particularly in the 

suprachiasmatic nucleus (SCN). This theory suggests that light stimuli trigger the 

SCN through a process called phototransduction (that is, the light from photo 

receptors are transformed into an electrical potential. Then, the brain coordinates 

information among myriads of nerve fiber pathways. The influence upon athletic 

performance varies once the electrical impulse is transferred from the 

suprachiasmatic nucleus to these nerve fibers. This includes sleep, physical 
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activity, rest, adjusting the core body temperature, secretion of hormone; 

melatonin levels (light impedes melatonin secretion and hence causes 

drowsiness), biological drive, and psychological/emotional behaviours (Meyer-

Bernstein, 1996;  ’Conner, 1995). 

Now, some common biological rhythms associated with human performance are 

explained. Firstly, the psychomotor rhythms may affect sport performance through 

the synchronization of neurotransmitters and motor neuron synthesis for both 

coordination and reaction time (Meyer-Bernstein and Morin, 1996; Murphy and 

Cambell, 1996). Secondly, the physiological rhythms may also influence 

performance owing to the synchronization process of neurotransmitters, the ability 

to generate ATP, the ability to develop lactic acid tolerance for speed as well as 

strength and power (Nielsen et al., 2001) and the elasticity of muscle fibers for 

flexibility (Pennisi, 1997; Roberts et al., 1997). Moreover, the physiological 

rhythms stress the heart to pump as efficiently as possible during endurance 

exercise (Manfredini et al., 1998, Wimmer, 2003). Thirdly, there are also cognitive 

rhythms which affect performance through memory and attention followed by 

psycho-emotional rhythms which affect sports performance such as pressures in a 

competition (Manfredini et al., 1998; Meyer-Bernstein and Morin, 1996; Murphy 

and Cambell, 1996). 

There are other individual variables that may affect biorhythms including 

chronological age, eating habits, genetic predisposition, lifestyle, and overtraining 

(Roth et al., 1994; Seligman, 1990). These variables account for the individual 

peak performance of an athlete which has to be at an exquisite level for elite 

athletic performance. Most athletes who get exhausted during training sessions 

are experiencing the effect of the body and mind wanting to go back to rest (Roth 
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et al., 1994; Seligman, 1990). This affects ultimately their quality of psychomotor, 

physiological and cognitive rhythms which influences the athlete’s potential for 

optimal performance. Thus, practice and training need to be held at multiple 

different times throughout the day for elite athletes to gain maximal recovery and 

high level of training efficiency on a continual basis (Roth et al., 1994; Seligman, 

1990; Wimmer, 2003). 

2.5 Importance of homeostasis within the human body system 

An undesirable change in the internal conditions of the human organism could 

result in disease or death owing to the failure of homeostasis of the physiological 

systems. Homeostasis refers to the living system ability to maintain a stable set of 

internal conditions subjected to changes in the external or internal environment 

(Cannon, 1926). Examples of internal conditions are body temperature, blood 

pressure, and the composition of body fluids which must remain relatively stable 

for the correct functioning of the human body system. Therefore, in order to 

maintain homeostasis, an organism must react to its external environment by 

making internal adjustments which are activated by homeostatic reflexes (Sawka 

et al., 1988; Schmidt and Simon, 1982; Simon et al., 1986). 

For instance, a simple example of homeostatic reflexes occurs when we stay 

outside on a hot day. If our body does not adjust to the heat, body temperature will 

rise to such a level that brain cells, may die at a high rate. However, homeostatic 

reflexes help sustain a constant internal body temperature. Therefore, when the 

solar heat strikes the skin, nerve endings acting as receptors sense this heat, and 

send a message to the brain (control centre) which then sends nerve impulses 

(efferent signals) that cause the blood vessels (effector), in the skin, to expand.  

The resulting increase in blood flow to the skin produces greater heat loss from the 
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skin surface. The brain also instructs the sweat glands (effectors) to increase 

production, because evaporation of sweat cools the skin (King, 2004). All these 

processes can be summarized in a simple feedback and feed-forward loop as 

shown in Figure 2.1 (King, 2004; Sawka et al., 1988; Schmidt and Simon, 1982; 

Simon et al., 1986). 

 

 

 

 

 

 

Figure 2.1: An illustration of the basic processes that happen during homeostasis 

(King, 2004; Sawka et al., 1988; Schmidt and Simon, 1982; Simon et al., 1986). 

  

2.6 Arousal State and Sports performance 

From certain physiological control models of exercise-induced fatigue and 

physiological studies, it was found that changes in the neurotransmitter 

concentration affect the level of arousal which subsequently affects the skeletal 

muscle recruitment during physical activity (Baker et al., 1993; Davis and Bailey, 

1997; Fowles et al., 2002; Newham et al., 1991; Nielsen and Clausen, 2000). 

The studies (Davis et al., 2000) that supported the idea that fatigue is linked to the 

central nervous system found in fact an increase in the dopamine and serotonin 

concentration in the brain during prolonged exercise. This, in turn, diminishes the 
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level of arousal and skeletal muscle recruitment (Davis et al., 2000; Polich et al., 

1995) which are altogether related to a decrease in the perception of effort that 

eventually impoverishes exercise performance.  

Furthermore, Yerkes and Dodson (1908) observed that as the arousal level 

increases, the physical and mental performance of an individual also increases 

accordingly but only up to a critical point called the optimal level (Figure 2.2), 

where performance is highest where ideally, an elite athlete is expected to reach. 

However, too much arousal will cause mental and physical performance to 

decrease like in cases of a stressful environment. Therefore, in order to optimise 

sports performance, research shall focus on investigating the energy system 

pathways of the human organism, the effect of pacing on these energy systems, 

the effect of the biological patterns on sport performance and lastly but not least 

the effect of the level of arousal on physical and cognitive performance. 

 

 

 

 

 

 

 

 

 

     Figure 2.2: Level of performance as influenced by level of arousal (Yerkes and  

     Dodson, 1908). 
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2.7 Importance of mathematics in biological systems 

The importance of mathematics in biology or physiology is that it aims at the 

mathematical representation and modelling of biological processes. Furthermore, 

by describing the biological systems in a quantitative way, their biological 

behaviour can be simulated and their properties can be predicted which may not 

be an easy task to the biologist or physiologist (Baianu, 1987; Barnes and Chu, 

2010; Goldbeter, 1996). Also recent development of mathematical tools can help 

understand the complex, nonlinear mechanisms in living systems as well as an 

increase in computing power can help perform lengthy or difficult calculations and 

simulations quicker (Eckmann, 1987; Marwan et al., 2007; Marwan, 2008). 

Therefore, the following sections will describe the importance and the workings of 

the mathematical tools that are currently used in medicine and biology and applied 

in this research to probe into the functioning of the various physiological systems 

in order to investigate the cause and control of fatigue during physical exercise.  

  

2.7.1 Deterministic and stochastic signals 

In order to understand the regulation of physiological systems, it is necessary to 

differentiate between deterministic and stochastic signal as the common 

characteristics of biological activities (Kac and Logan, 1976; Nelson, 1985; Priplata 

et al., 2006) A signal is said to be deterministic if its future values can be produced 

according to a set of known parameters and rules (Najim et al., 2004). For 

example, a deterministic cosine signal yd (t) = cos (2πft) can be predicted accurately 

based on condition that its frequency f is known (subscript d stands for 

deterministic and t is time). In order to distinguish between a deterministic 

outcome and a stochastic outcome, two cases are considered to elaborate this. 
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For example, if an output signal yr (k) is generated by repeatedly tossing an 

unbiased coin, there is no way to predict the kth outcome of the output accurately, 

even if all the output values (head or tail) are known (subscript r in stochastic 

outcome yr (k) stands for random). These represent two distinct cases: yd (t) is 

purely deterministic while yr (k) is random or stochastic (Najim et al., 2004). The 

following sections describe the mathematical techniques used in this thesis, and 

their current applications in biology and medicine. 

2.7.2 Fractals in biological systems 

Fractal dimension (FD) is a means to measure the complexity of a physiological 

signal whereby the more complex a biological signal is, the higher the FD value. 

For instance, the fractal dimension of a single point is 0, a simple curve (line) is 1 

and a plane is 2. In order to investigate the complexity of biological signals, fractal 

analysis using Higuchi's theorem (Higuchi, 1988) can be used to determine the 

fractal dimension. The Higuchi’s fractal dimension, Df, can be calculated directly 

from the real-time physiological signals and for instance, a curve such as the Koch 

Snowflake (Figure 2.3) has a fractal dimension 1.26. The figure 2.3 (Addison, 

1997; Edgar, 1990) shows how the Snowflake is constructed. Level 0 starts with a 

straight line and then in level 1, the line is subdivided into 4 parts and in level 2, 

each part is again subdivided into another 4 parts and this procedure is repeated 

to create a complex fractal signal. The following paragraphs describe how the 

fractal dimension using the Higuchi’s theorem works. 
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Fig. 2.3: The simulated Koch Snowflake is an example of fractal curve and 

has fractal dimension 1.26 (Addison, 1997; Edgar, 1990) starting with level 

0 (extreme left) and increasing to level 4 (extreme right). 

 

From a given time series X(1), X(2)... X(N), the algorithm constructs k new self-

similar (fractal) time series X(k, m) as: X(k, m) =  { X(m), X(m +  k), X(m +  2k), ...,      

X(m +  int [(N-m)/k]∙k) } for m =  1, 2, ... k  where int [.]  is an integer function. The 

length Lm (k) is computed (Equ. 2.1) for each of the k time series or curves X (k, m), 

and then averaged for all m forming the mean value of the curve length L (k), for 

each k (Higuchi, 1988). Then the fractal dimension (FD) is determined as the slope 

of least squares linear best fit from the plot of log (L(k)) versus log (1/k). This is 

summarized in Figure 2.4.    

  

 

Fig. 2.4: Flowchart depicting the sequential steps involved in Higuchi's algorithm 

for the computation of fractal dimension (from left to right). 
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          [∑                       ቆ              ቇ               ]…  Equ. 2.1 

In equation 2.1, the length, Lm (k), of each curve Xk
m is calculated and m represents 

the initial time with m = 1, 2… k and, k is time interval; int (r) is the integer part of a 

real number r and N represents the total number of samples. The length of the 

curve (Equ. 2.2) for a given time interval k, L (k), is calculated as the mean of the k 

values Lm (k) for m = 1, 2… k. 

       ∑                            …  Equ. 2.2 

Apart from determining the complexity of the signals in the hope to find any 

properties of the physiological activities that may be associated with the cause or 

control of exercise-induced fatigue, the wavelet analysis mathematical method is 

used to probe into the time and frequency analysis of the biological signals. 

2.7.3 Wavelet Analysis  

The time-based and frequency-based analysis of dynamic biological data are not 

suitable (Mallat, 1989) to analyse the nonstationary and irregular patterns of the 

complex physiological signals, Continuous Wavelet Transform (CWT) operates at 

every scale (ranging from 1 to 256) and time-position (Rioul and Vetterli, 1991) to 

observe changes (if any) at different frequency bands of the biological signals.  

 

The ability of continuous wavelet transform to perform a time-scale analysis of 

dynamic data, and detect singularities (single points or lines) is an important tool in 

the analysis of non-stationary and fractal signals (Daubechies, 1992; Rioul and 
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Vetterli, 1991). A wavelet is a waveform of short period, and it has a mean 

amplitude value of zero over that duration, and therefore CWT splits up a signal 

into scaled and shifted versions of the original or mother wavelet, unlike the 

Fourier transform that breaks up a signal into a series of sine waves.  

 

For instance, the Morlet wavelet, as shown in Figure 2.5, corresponds to higher 

frequency, and it can be observed more than the other wavelet families as well as 

it is commonly used in analysing biological signals (David et al., 2007). Wavelet 

analysis generates a time-scale view of a signal whereby scaling a wavelet 

signifies to compress or to stretch it, and it is usually denoted by scale factor a 

(Mallat, 1989). A low scale value a, representing a compressed wavelet, detects 

high frequency details of a signal while a high scale a detects low frequency 

details of the signal which is depicted in Figure 2.6. The relationship between the 

pseudofrequency (Hz) (this is a general theory connecting time-frequency 

representations) and the scale factor a is shown (See Appendix A, Figure A.1). 

The Continuous Wavelet Transform of a real time signal x(t) at a scale a ≥ 1 and 

translational value b ϵ ℝ (where ℝ represents real numbers) is denoted as            

Xw (a, b) and is shown below (Equ. 2.3)  where   ( ) is the wavelet function and t is 

time where the integral to infinity means over the whole range of the real-time 

signal x(t). 

Xw (a, b) =   √ ∫                              … Equ. 2.3. 
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Figure 2.5: Morlet wavelet shape used for the CWT 

 

Figure 2.6: Illustration to show how the wavelet transform performs local analysis. 

 

As shown in Figure 2.6, at high scale, the Morlet wavelet is dilated in the x-axis 

(representing time) to detect changes in low frequencies of a particular signal (the 
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top curve) and at low scale, the Morlet wavelet is compressed in the x-axis 

direction to detect changes in high frequencies of that signal and y-axis represents 

the scale. The continuous wavelet transform of a real time physiological signal 

enables changes in time, frequency and amplitude to be easily observed so that 

the frequency and intensity of happening of physiological events together with their 

respective times can be monitored to see how these changes are related to sport 

performance. The next subsection describes recurrence analysis a different 

mathematical method which was implemented in this research and it was used to 

investigate the behaviour of the physiological signals so as to understand better 

the characteristics of the system control mechanisms that regulate physical 

activity. 

 

2.7.4 Recurrence Analysis to show patterns of complex system 

In chaos theory, a recurrence plot (RP) is a graphical plot that shows for a 

particular moment in time, the times that a phase space trajectory travels about 

the same area in that phase space (Findlay 1911). This means it is a graph of: 

   ⃗⃗            ⃗⃗                        … Equ. 2.4 

In equation 2.4, i represents the horizontal axis and j represents the vertical axis, 

and   ⃗⃗  is a phase space trajectory.  

 

For instance, biochemical processes may have a distinct recurrent behaviour that 

is periodicity (Eckmann et al., 1987). In addition, the recurrence of states (states 

are again close after some divergence time, is an important property of 

deterministic as well as dynamical systems and is typical for biological systems. 
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The recurrence of states in nature existed for a long time (Poincaré, 1900) and 

Eckmann et al., (1987) showed that from recurrence plots, one can observe the 

periodicity of states in a phase space (Figure 2.7).  The phase space allows the 

representation of the behaviour of the physiological signal in geometric form and 

how the dynamics of this physiological signal evolves with time.  

 

However, a phase space does not have a low dimension such as two or three to 

be easily visualized and higher dimensional phase spaces can only be observed 

by transforming them into a lower dimension such as 2 or 3 (Webber Jr. and 

Zbilut, 1994; Zbilut and Webber Jr., 1992). Therefore, recurrence plots allow the 

observer to analyse m-dimensional (multi-dimensional) phase space trajectory via 

a 2-dimensional representation of its recurrences. A recurrence of a state at time i 

and a different time j is viewed as a two-dimensional matrix with white and black 

dots respectively (time j is not a recurrent state of time i). This representation of 

states is named a recurrence plot (Zbilut and Webber Jr., 1992). The first order 

recurrence plot (RP) of a raw cosine function is shown in Figure 2.7 together with 

the corresponding phase-space plot and the effect of increasing the embedding 

dimension, m, of the recurrence plot is simulated in (See Appendix A, Figure A.2). 

By moving to a higher dimension, one may misinterpret the behaviour of a system. 

Several important quantification measures that were used in this research study 

were determined from the properties of the first-order recurrence plots. These 

measures are recurrence rate, determinism and trapping time. The equations of 

these parameters were developed (Webber Jr. and Zbilut, 1994; Zbilut and 

Webber Jr., 1992). The recurrence rate (RR) represents the percentage of 

recurrence points (black dots) in an RP or the probability that a specific state will 

recur. 
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Figure 2.7: This figure shows a simulated raw cosine signal (top), its phase plot 

(middle) and its corresponding recurrence plot 1st order and threshold e being 0.05 

(bottom). 

 

In equation 2.5, R (i, j) represents all the recurrence points on the recurrence plot 

with notation i representing states in the x-axis and notation j representing states 

in the y-axis, and the variable N represents the total number of recurred points that 

appear in the recurrence plot. 

 

RR =  
    ∑                      …Equ. 2.5 

The next measure is the percentage of points that form diagonal lines in the 
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recurrence plot of minimal length lmin. P(l) represents the frequency distribution of 

the diagonal lines of lengths l, and this measure is known as determinism which is 

related to the predictability of the dynamical system. For example, white noise has 

a recurrence plot with practically only dots and very few diagonal lines (Zbilut and 

Webber Jr., 1992; Webber Jr. and Zbilut, 1994), and the deterministic process has 

a recurrence plot with some single dots but many lengthy diagonal lines. 

Determinism is represented by DET as shown in the equation below (Equ. 2.6): 

DET =  
∑              ∑                     …Equ. 2.6 

Furthermore, the trapping time (TT) of a dynamical system (Equ. 2.7) is a measure 

of how long this system remains in a specific state and it is a measure of the 

average length of the vertical lines of the dynamical system. P( ) is the average 

length of the vertical lines,       is the minimum length of the vertical lines and v is 

the length of the vertical lines.  

TT = 
∑                ∑                     …Equ. 2.7  

The mathematical measures, described before, are commonly used in assessing 

the complexity of the biological signals (Webber and Zbilut, 1996), the occurrence 

of physiological events both in time and frequency domain as well as the 

predictability and stability of the physiological systems. Furthermore, there are 

specific mathematical measures or methods that are currently used to assess 

brain signals and these are described in the following sections. 

2.7.5 Electroencephalogram (EEG) power at characteristic frequency ranges 

Electroencephalography (EEG) measures the voltage fluctuations within the 

neurons of the brain, and it is normally recorded for a short period of time 
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(between 20 to 40 minutes) from various electrodes that are attached to the scalp 

(Niedermeyer and da Silva, 2004; Nunez and Srinivasan, 1981). EEG is a valuable 

tool for research and diagnosis (Abou-Khakil and Musilus, 2006) with the 

advantage of millisecond-range temporal resolution which is not possible with X-

ray computed tomography (CT) or magnetic resonance imaging (MRI) 

(Niedermeyer and da Silva, 2004).  Another important feature with EEG activity is 

that it oscillates at characteristic frequency ranges which are associated to 

different states of the brain function (e.g. waking and sleeping). For instance, 

attention related studies within the sporting context by Baumeister et al. (2008) 

revealed that expert golfers had higher fronto-midline theta band power (power of 

the EEG frequencies ranging from 4 to 8 Hz), and higher parietal alpha power 

(power of the EEG frequencies ranging from 8 to 12 Hz) as compared to novices 

(Aurlien et al., 2004; Tatum et al., 2008). This was associated to focused attention 

and an economy in the parietal sensory information processing that gave rise to 

more successful putting performance of expert golfers. Several researchers 

associated frontal theta power values with attention and the parietal alpha band 

power to the somatosensory information processing (Gevins et al., 1997, 

Slobounov et al., 2000; Baumeister et al., 2008). Moreover, Smith et al. (1999) 

stated that increased frontal theta power was associated with task complexity and 

focused attention while decreased parietal alpha power was related to increased 

information processing in a cognitive and visuomotor task owing to a higher 

activity of neural populations in the somatosensory cortex. Therefore, in this 

research, the frontal theta power and the parietal alpha power were investigated 

as well as the ratio of power of these two EEG frequency ranges characteristics 

was determined and named the 'cognitive ratio'. 



40 

 

2.7.6 Event Related Potentials (ERPs)  

The event-related potentials represent the averaged EEG or brain responses that 

are time-locked to the presentation of a stimulus (e.g. visual or auditory). This 

technique is employed typically in cognitive science and psychophysiological 

research (Chapman and Bragdon, 1964). In this research, the ERP components 

N100, P200 and P300 were assessed as they are related to the cognitive 

functions. In neuroscience, the N100 is a large negative-going evoked potential 

and occurs around 80 to 120 ms after the triggering of a stimulus over the fronto-

central region of the scalp. The N100 ERP component is linked to a person’s 

arousal (Nash and Williams, 1982) and selective attention (Hillyard et al., 1973). 

Moreover, the P200 ERP component (a positive going electrical potential varying 

between 150 to 275 ms) represents higher-order perceptual processing which is 

regulated by attention and it is elicited as a normal response to visual stimuli (Luck 

and Hillyard, 1994). The P200 is widely studied in relation to visual search and 

attention as well as cognitive matching system by comparing sensory inputs with 

stored memory (Freunberger et al., 2007; Furutsuka, 1989). Finally, the P300 

component, a positive-going brain potential occurring at around 300 ms, is 

normally linked to a person’s reaction to a stimulus, engagement of attention, and 

processes in evaluating or categorizing a stimulus (Polich, 2007). Moreover, the 

P300 ERP component has maximum amplitude over the frontal, central and 

parietal brain areas (Polich, 2003; 2007). Therefore, the presence, magnitude and 

latency of these ERP components were used as metrics in this research for 

cognitive functions. The next section describes a common mathematical method 

currently adapted to clinical research in assessing the level of consciousness and 

information flow based on the EEG oscillations.  
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2.7.7 Shannon Entropy and Beyond 

Certain physiological control of exercise fatigue (Davis and Bailey, 1997; Noakes, 

2000) states that there is a conscious neural effort that maintains physical 

performance. Therefore, to investigate this hypothesis, the information entropy or 

simply entropy was used in this research. The entropy of a signal is becoming an 

emerging and promising mathematical method in analysing the loss of 

consciousness and quantifying the amount of information flow especially in the 

electroencephalogram (EEG) signals. The current clinical uses of the entropy 

principles involve the monitoring of anaesthetic depth by assessing the loss of 

consciousness using both the degree of spatial and temporal integration of 

neuronal activity in the brain (Bruhn et al., 2003). The following paragraph 

describes the mathematical principles of entropy. 

Actually, information entropy was initially developed by Shannon (1948) to 

measure and evaluate the information content of a transmitted communication 

signal. Therefore, the entropy (H) is defined as the average amount of information 

per source output and is expressed by following equation: 

H = - ∑ pi log2 pi (bits/source output)     …Equ. 2.8 

Where pi represents the probability of occurrence of the i th output, log2 is the 

logarithm function to base 2, and the summation (∑) of all the probabilities is equal 

to 1. From the entropy measures together with the EEG and ERP metrics, it was 

hoped to be able to observe any changes or associations in the brain activities 

with cognitive performance. 
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2.8 Summary 

The fatigue which is developed during exercise seems to be a ‘blackbox’ 

phenomenon which exercise physiologists are trying to solve by creating 

physiological control models based on various physical and physiological 

observations or factors. Some of these models have some common principles 

while other models totally conflict with the principles of the cause and control of 

fatigue during physical activity. This thesis, therefore, attempted to unlock the 

nature and cause of fatigue by investigating the energy systems and the control 

mechanisms that regulate and sustain homeostasis in the physiological systems 

using mathematical methods that are currently used in medicine and biology. The 

following chapters describe the five experimental case studies, based on different 

mathematical techniques, which were used to model and analyse different 

physiological systems in the hope to answer the objectives and aims of this thesis 

in understanding better the principles or mechanisms responsible for the exercise-

induced fatigue. 
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CHAPTER THREE 

     Study One 

 

Mathematical modelling and analysis of elite athletes’ sprint data to study the rate 
and regulation of ATP during a maximal exercise of short duration. 

 

According to the review of literature of the existing biological control models of 

exercise-induced fatigue that the cardiovascular/anaerobic/catastrophic model 

(Edwards, 1983; Hill et al., 1923; Hill, 1924) and the energy supply/energy 

depletion model (Shulman and Rothman, 2001), it is not clear how the depletion of 

substrates (adenosine triphosphate) affects sprint performance. Therefore, this 

experimental case study was conducted to find out how the human organism 

regulates the amount and the rate of adenosine triphosphate so as to observe how 

these factors affect performance specifically during a maximal exercise of short 

duration. 

3.1 Introduction 

The energy which is produced during anaerobic metabolism has been of growing 

interest to exercise physiologists in order to understand how this specific energy 

pathway affects sprint performance or high-intensity exercise of short duration (de 

Koning JJ et al., 2011; Hill et al.,, 1923; Lambert et al., 2004). Despite there has 

been quite a bit of physiological laboratory work during short duration maximal 

exercise (Bogdanis, 1996; Gaitanos et al. 1993), most proposed theoretical 

models (Edwards, 1983; Hill et al., 1923; Hill, 1927; Noakes, 2000; Ulmer, 1996), 

however, cannot explain how the human body controls the rate of adenosine 

triphosphate (ATP) production to prevent a severe fall in ATP concentration in the 

active muscles.  
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Therefore, in this study mathematical modelling and analysis was used in an 

attempt to validate certain physiological theories of control fatigue. In fact, a large 

fall in ATP levels occurs during times of maximal exercise of short duration such 

as sprinting (Fox et al., 1993; Matthews et al., 1971; Mackenzie, 1998). To date, 

various research studies have incorporated single equation models to analyse the 

anaerobic metabolism (Di Prampero et al., 1993; Laurent and Locatelli, 2002; 

Lloyd, 1967; Peronnet and Thibault, 1989; Ward-Smith, 1985; Ward-Smith and 

Mobey, 1995). However, one study (Ward-Smith and Radford, 2000), has 

tentatively developed a mathematical model to represent the biochemical 

processes during the anaerobic metabolism based on several assumptions. They 

considered the total finishing times or duration of the sprints using a fourth-order 

Runge-Kutta mathematical method whereby temporal information of what is 

happening at discrete time intervals was lost and, by taking the height of the 

centre of mass of all sprinters who participated in the sprinting event to be equal, 

which was not the case according to their different weights and heights (Ferro et 

al., 2001; IAAF, 2008). Based on these assumptions, they found that the overall 

maximum anaerobic power of the sprinters for the 100m event at the 1987 World 

Championships was 51.6 Wkg-1. The oxygen independent glycolysis, being the 

highest contributor of energy, was 11.7% greater than the energy derived from 

phosphocreatine utilisation anaerobic energy subsystem. 

In order to extend the previous models, the aims of this experimental study were, 

therefore, firstly to develop mathematical models to determine indirectly the rate of 

ATP production and utilisation through the anaerobic subsystems that are 

endogenous ATP (i.e. ATP initially stored in the exercising muscles), 

Phosphocreatine (PCr) utilization and oxygen-independent glycolysis. Secondly, 
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this research aimed to assess how the anaerobic subsystems can be exploited 

further to improve high intensity short duration sporting activities such as sprint 

performance. 

3.2 Method 

3.2.1 Data collection and preliminary calculations 

In this experimental case study, the International Association of Athletics 

Federations (IAAF) 10-m split times, for the Men’s 100-m Final at the 1999 world 

championships, in Sevilla Spain, were used to model mathematically high-intensity 

exercise of short duration (Table 3.1) to investigate the elite athletes’ sprint 

performance. In addition, the professional level of these sprinters would represent 

a good baseline for comparison purposes of the anaerobic subsystems and 

aerobic system at a track and field event. This mathematical model was then used 

to investigate the availability of metabolic resources, as well as the rate of energy 

production among the elite athletes.  

 

The mean (± standard deviation) height, mass and body mass index (BMI) of the 

athletes were 1.78 (±0.03) m, 75.8 (±6.6) kg and 23.8 (±1.5) kg∙m-2 respectively 

(IAAF, 2008). Each elite sprinter’s height, weight and reaction times was used to 

mathematically model the energy systems. The wind speed was +0.2ms-1, the air 

temperature was 27oC (300.15 K), air density was 1.179 kgm-3 and the mean 

reaction time of the sprinters was 0.141 (±0.01) s. 
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Sprinter 
ranking 
number 

Distance covered/m 

10 20 30 40 50 60 70 80 90 100 

Time elapsed for each 10m interval/ s 

1 1.86 2.89 3.81 4.69 5.55 6.39 7.24 8.09 8.94 9.80 

2 1.88 2.88 3.79 4.68 5.53 6.38 7.24 8.10 8.96 9.84 

3 1.87 2.89 3.81 4.71 5.57 6.41 7.29 8.18 9.07 9.97 

4 1.91 2.93 3.85 4.76 5.63 6.50 7.36 8.24 9.12 10.00 

5 1.87 2.89 3.81 4.71 5.60 6.37 7.33 8.22 9.11 10.02 

6 1.91 2.95 3.88 4.77 5.65 6.52 7.39 8.28 9.16 10.04 

7 1.91 2.93 3.85 4.74 5.62 6.51 7.40 8.28 9.17 10.07 

8 1.97 2.99 3.93 4.83 5.72 6.61 7.50 8.38 9.31 10.24 

 Table 3.1: 10-m split data intervals for the 100m sprint race in Sevilla Spain 1999.  

(Courtesy Ferro, A.; Rivera, A.; Pagola, I.; Ferreruela, M.; Martín, A.; Rocandio, V. 

"Biomechanical Analysis of the World Championships in Athletics Sevilla'99: 100, 

200, 400m sprint events". New Studies in Athletics, 16 1\2 (2001)). 

 
3.2.2 Data analysis 

All computations were performed using Matlab software R2008a as the 

programming platform as well as optimization toolbox together with Microsoft 

Excel 2007 for data handling purposes.  

 

3.2.2.1 First Law of Thermodynamics 

 

The mathematical equations used in this study were based on the First Law of 

Thermodynamics (Lehninger, 1971); At the start of a sprint, the rate of the 

chemical energy production is converted to heat energy (H) and external work 

energy (W). The rate of change of energy is expressed per unit body mass (Wkg-1) 
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and it is written in differential form (Equ. 3.1) where the left term represents the 

rate of chemical energy conversion (C), and the first and second terms on the right 

hand side are the rate of heat energy (H) and external mechanical work (W) 

respectively. The rate of heat energy is proportional to the instantaneous velocity 

v(t) (Ward-Smith and Radford, 2000). 

                             … Equ. 3.1 

 

Furthermore, the rate of external mechanical work is expressed as the sum of the 

rate of change of kinetic energy of the sprinter to move forward; the potential 

energy of the sprinter relative to his crouching state at the beginning of the race; 

and the work done to overcome aerodynamic drag. The parameters for each of the 

energy components for the external mechanical work can be determined using 

already developed equations (Laurent and Locatelli, 2002; Ward-Smith and 

Radford, 2000) (See also Appendix B, section B.1).  

 

3.2.2.2 Rate of change of potential energy relative to crouching state 

For a typical athlete (Baumann, 1976), the centre of mass is raised from its initial 

position (ho) of 0.65m in the blocks to about 1.0 m which was assumed to be the 

centre-of-mass height (hcm) of a standing athlete, and was used same for all 

athletes for analysis (Laurent and Locatelli., 2002; Ward-Smith and Radford, 

2000). Therefore, the change in height (    of the centre-of-mass of the sprinter 

(Baumann, 1976) above the horizontal running surface relative to his crouching 

state position is given by equation 3.2. 

                 (        ≠ 0)     … Equ. 3.2 
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In equation 3.2, the angle  , measured in radians, can be expressed further (Mitra, 

2006) as 2πft, where f, in this case, is the stride frequency which is equal to the 

number of stride cycles per second, and variable t is the time measured in 

seconds. It was also shown that the stride frequency is well estimated by taking 

the inverse of the stride period (frequency is inversely proportional to time) 

(Stokes, 1998), and hence, the stride velocity is the product of stride length and 

stride frequency (Kamen, 2002). The centre-of-mass height (   ) for each sprinter 

is 0.57hs for healthy men (Grimshaw et al., 2004; McGinnis, 2005) and the stride 

length is given by 1.35hs, where hs is the standing height of the athlete (Hoffman, 

1971; Rompottie, 1972).  

 

3.2.2.3 Rate of change of anaerobic energy 

Moreover, the rate of chemical energy conversion can also be expressed as the 

sum of the rate of energy produced from the aerobic and anaerobic metabolic 

pathways (Ward-Smith, 2000). By combining this sum with equation 3.1, therefore, 

the following formula as shown in equation 3.3 can be derived: 

 

                                     … Equ. 3.3 

The rate of aerobic energy is subtracted from the sum of the rate of heat energy 

and mechanical work to determine the rate for the anaerobic energy. The 

component on the left hand side (Equ. 3.3) is the rate of change of anaerobic 

energy (Can) and the components on the right hand side are the rate of change of 

heat energy (H), mechanical work (W) and aerobic energy (Cae) respectively. The 

associated rate of change of aerobic energy is determined in accordance with 

theoretical equations (See Appendix B, section B.2) previously developed by Van 

Ingen Schenau (1991).  
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3.2.2.4 Modelling the rate of energy production for each anaerobic subsystem 

The mathematical model that was used to represent the rate of production and 

decay of each anaerobic energy subsystem, was based on a type of Gamma 

distribution model since it is a flexible distribution to model biochemical processes 

that are hypothetically to be exponentially distributed, and a good fit for the sum of 

independent random variables (Hogg and Craig, 1978; Wlodarczyka and 

Kierdassuk, 2006). The Gamma mathematical model is expressed and 

characterised with respect to different parameters in terms of a shape (α) 

parameter, and a scale (β) parameter which is also known as the rate parameter 

(Equ. 3.4). For this model, the shape α was taken as 2 in accordance with previous 

works of Hogg and Craig (1978) so that a first-order in time t (Equ. 3.5) was 

obtained to represent the characteristics of the three anaerobic subsystem power 

distribution curves and hence, this makes computations faster (Gu et al., 1996).  

The gamma distribution G (Equ. 3.4) comprises of the gamma function which is 

denoted by      and this mathematical notation is the factorial of        and   is 

an integer number greater or equal to 1. The variables β, α, and t represent the 

scale, shape and time respectively, and the variable e represents the exponential 

value.  

                                   … Equ. 3.4 

                  ,                 … Equ. 3.5        
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The initial estimates for the scale parameters β1, β2 and β3 for ATP endogenous, 

Phosphocreatine (PCr) utilization and oxygen-independent glycolysis were 

determined by finding the time constants corresponding to the respective 

maximum of the mean anaerobic power distribution curve for all the sprinters. 

These rate parameters served as initial estimates or inputs to run the 

computational program (See Appendix B, sections B.3 and B.4).   

By using equation 3.5, the rate of change of the anaerobic metabolism was 

expressed as the sum of multiple gamma distributions to represent the three 

anaerobic subsystem powers, and this was mathematically represented in 

equations 3.6, 3.7 and 3.8. The symbol    represents the instantaneous powers for 

each anaerobic subsystem measured in watts per kilogram. The nonlinear 

parameters      are the rate parameters of the respective anaerobic subsystem, 

and they are initially determined by taking the inverse of the time constant (    for 

each anaerobic subsystem. The subscript n is an integer number ranging from 1 to 

3 and it represents the three anaerobic subsystems. In equation 3.7, the variable 

P1 denotes the rate of energy released from endogenous ATP, the variable P2
 is 

the rate of energy released from Phosphocreatine (PCr) utilisation, and the 

variable P3 represents the rate of energy released from the oxygen-independent 

glycolysis anaerobic subsystem (See Appendix B, sections B.3 and B.4).  

                                                … Equ. 3.6 

                                           … Equ. 3.7 

       ∑                        … Equ. 3.8  
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3.2.3 Determination of the initial estimates of the nonlinear parameters 

The initial estimates of the nonlinear parameters were determined by taking the 

maxima (3 maxima) from the curve obtained by calculating the mean of the 

anaerobic powers (i.e. rate of change of anaerobic energy) for all athletes over 

each 10-m interval, and it is illustrated in Figure 3.1. It is important to find these 

first estimates to minimise computational time, and prevent divergence from 

solutions (Boutayeb and Darouach, 1995; Chen and Fassois, 1992). The 

computational program, as shown and summarized in flowchart diagram (See 

Appendix B, section B.3), was run repeatedly until convergence is reached or until 

the error (ε) which is the difference between the computed anaerobic power, and 

the total of the anaerobic subsystem powers at each distance interval for each 

athlete was minimal. At first, the 10-m split times, the total anaerobic power and 

the estimated values of the nonlinear parameters (   were initial inputs to the 

computational program to find an estimate of the individual subsystem anaerobic 

powers. The norm function (norm) was used to find the residual error so that the 

amplification errors were kept minimum (Kariya and Kurata, 2004; Wolberg, 2005). 

In addition, the pseudo-inverse function (pinv) was used, in this case, especially for 

a non-square matrix (6 variables representing the anaerobic subsystem powers 

and the rate parameters x 10 equations representing the 10 split times) and this 

function works well when the number of equations are greater than the number of 

variables (Campbell and Meyer, 1991; Zheng and Bapat, 2004). In this particular 

case, the initial estimates of the time constants obtained from Figure 3.1, were 

determined as   = 1.1 s;   = 3.9 s;   = 7.9 s, and are used subsequently to 

estimate the rate parameters   ,    and    by taking the inverse of the respective 

time constants. In Figure 3.1, the variables m1, m2 and m3 represent the three 

consecutive maxima of the anaerobic power curve. 
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        Figure 3.1:  Initial estimates of the nonlinear variables  
 

3.2.4 Validation of model 

The validation of the mathematical modelling was assessed in respect to the root 

mean square error (RMSE), in determining the total anaerobic powers derived for 

each athlete. The percentage root mean square error was calculated to find the 

error between the exact calculated total anaerobic power at each discrete time 

from the sum of the simulated individual anaerobic subsystem powers at these 

discrete times. The calculated total anaerobic power was the difference between 

the total aerobic power and the power lost due to mechanical work and heat. 

Figure 3.2 summarises the energy processes involved to mathematically model 

and analyse the chemical energy produced from the anaerobic energy system 

pathway. The chemical energy produced from both the anaerobic and aerobic 

metabolisms was converted into heat energy and mechanical energy. 
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Consequently, from this relationship, the energy from the anaerobic process can 

be determined, and then subsequently compared to the sum of the energy 

produced from the three corresponding anaerobic subsystems (Laurent and 

Locatelli, 2002; Ward-Smith and Radford, 2000). 

 

 

 

 

 

Figure 3.2: The flowchart diagrams summarise the mathematical model in 

simulating the various anaerobic energy subsystems (Laurent and Locatelli, 

2002; Ward-Smith and Radford, 2000).       

 
        

3.3 Results 

The velocity-time graph (Fig. 3.3) of the elite sprinters showed clearly the increase 

in speed from 0 ms-1 to a maximum speed where, during this period, the 

acceleration was maximal as shown by the steep slope of the velocity-time curve 

during the first 2 seconds. Subsequently, around 5 to 8 seconds, the sprinters 

started to decelerate slowly which continued in the same trend till the completion 

of this sprinting race. 

 

Chemical Energy 
from aerobic 
metabolism 

Heat Energy, and Mechanical 
Energy (Kinetic Energy, 
Potential Energy and energy 
to overcome drag force) 

Chemical Energy 
produced from 
anaerobic metabolism 

–  

Chemical Energy 
produced from 
anaerobic metabolism 

This chemical energy is also the sum of the energy from the 
anaerobic subsystems that are endogenous ATP, 
Phosphocreatine (PCr) utilisation and oxygen independent 
glycolysis that are modelled using the gamma distribution.  
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                        Figure 3.3: Velocity of all the 100m-dash elite sprinters (n = 8) 

 

3.3.1 Anaerobic and aerobic power contributions 

The total power, anaerobic power and aerobic power per unit body mass for all 

sprinters were determined (See Figure 3.4). Respective measured reaction time 

for each sprinter was excluded from the respective finishing time since during this 

brief period of about 0.141 (±0.01)s, the sprinters were still at rest, and hence 

equations 3.1 and 3.3 do not apply as the rate of change of heat energy and 

mechanical energy were assumed to be zero at time t = 0. It was found that the 

anaerobic power contributed to approximately 95% of the total power for this     

100-m sprint. 
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Figure 3.4: Total power, anaerobic power and aerobic power for all sprinters (n=8) 

are plotted vs. finishing times excluding measured reaction times.  

 

3.3.2 Anaerobic subsystems (ATP endogenous, PCr utilisation and oxygen 

independent glycolysis) 

 

Figure 3.5 shows the normalised maximum rate of energy production for each 

subsystem for the anaerobic metabolism for a particular athlete to illustrate the 

difference among the anaerobic subsystems.  The time T1 (Figure 3.5) represents 

the time when the ATP endogenous curve intersects the oxygen independent 

glycolysis energy curve measured as 2.71 s, and T2 represents the time when 

there is intersection between the phosphocreatine (PCr) utilisation and oxygen-

independent glycolysis energy curves measured as 5.17 s. Furthermore, the mean 

and standard deviation of the power variables (watts per kilogram) P1, P2 and P3 

were 6.6±1.78 Wkg-1, 40.5±2.97 Wkg-1 and 9.98±1.04 Wkg-1 respectively and the 

nonlinear parameters ( 1,  2,  3) representing the rate parameters of the 
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anaerobic subsystems were 0.94±0.05 s-1, 0.31±0.015 s-1and 0.11±0.004 s-1 

respectively. As shown in Figure 3.5, the endogenous ATP concentrations 

decreased rapidly at the start of the race and contributed to most energy during 

the first 2 to 3 seconds of this 100-m sprint race. Then, Phosphocreatine (PCr) 

utilisation process buffered the drop in ATP for another 5 to 8 seconds during 

which the PCr utilisation curve reached its maximum much before the oxygen 

independent glycolysis energy-curve reached its maximum at about 9.1 seconds.  

 

 
Figure 3.5: Normalised maximum rate of energy production of first rank sprinter 

(Maurice Greene) for each subsystem of the anaerobic metabolism vs. time 

excluding reaction times. The arrows represent the x and y coordinates of the 

points of intersection of the anaerobic subsystem curves. 

 

By extrapolating the mathematical results, the effect of increasing the percentage 

of energy released from the PCr utilisation anaerobic subsystem was investigated 

using the computed anaerobic subsystem powers and the rate parameters for the 

first rank sprinter (See Appendix B, Table B.1). The mathematical model predicted 
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that if the percentage of energy released from the PCr Utilisation was increased to 

110%, the finishing time of the first rank sprinter would have been 9.27 s, and if 

the percentage of energy contribution from this particular anaerobic subsystem 

was increased further to 120%, the finishing time would have been 8.88 s and 

these results are shown in Figure 3.6.  

 

 
Figure 3.6 The effect of increasing the percentage of energy released from the 

PCr utilisation anaerobic subsystem for the first rank sprinter. The arrows 

represent the effect of increasing the percentage of energy produced from the PCr 

anaerobic subsystem and the expected finishing times for Maurice Greene. 

 

3.3.3 Root mean square error (RMSE) of mathematical model 

The percentage root mean square error was calculated to determine the error 

between the exact calculated total anaerobic power at each discrete time from the 

sum of the simulated individual anaerobic subsystem powers at each discrete time 

(Figure 3.7). This total anaerobic power is the difference between the total aerobic 

power and power lost due to mechanical work and heat. The minimum percentage 
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root mean square error was 0.0022 and the maximum percentage root mean 

square error was 0.018. The variability of the percentage errors were caused by 

the distinct kinematics as well as the distinct weights, heights and reaction times of 

the elite sprinters in finding convergent solutions to the variables. 

 

Figure 3.7: Percentage root mean square error (RMSE) in estimating the total 

anaerobic power for all athletes (n = 8). The average value of RMSE was 0.009W. 

 
3.4 Discussion 

3.4.1 Model validation 

The average value of the root mean square error (RMSE) for this mathematical 

model in determining the total anaerobic powers for all athletes was 0.009W which 

indicates a good model (Ward-Smith and Radford, 2000; Wargon et al., 2009) in 

determining the total anaerobic power for this data, under these physical and 

environmental conditions. Furthermore, muscle biopsy studies by Gaitanos et al. 

(1993) and Bogdanis (1996) found that, in maximal 6 seconds and 10 seconds 
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cycling sprints, that power output was supported by energy derived mainly from 

PCr degradation (the concentration of which decreased by 57%) and there was 

also a causal relationship between the percentage of PCr and speed which 

affected sprint performance. 

 

3.4.2 Aerobic and anaerobic metabolisms 

It was observed that the percentage of chemical energy derived from the 

anaerobic process was 95%, compared to literature where they found 

mathematically that 92% of chemical energy during the 100m sprint running was 

produced from anaerobic sources (Peronnet and Thibault, 1989; Ward-Smith, 

1985). Therefore, the calculated percentage of energy production from anaerobic 

process as compared to literature also suggests that mathematical modelling may 

be a reliable tool in assessing the anaerobic and aerobic energy system pathways. 

The difference in percentage of the energy derived from the anaerobic process 

between literature and the mathematical model may be related to decreasing  

finishing times of the 100-m sprint running over the last decades (IAAF, 2008). 

Nevertheless, the values obtained by mathematical modelling and previous related 

studies (Peronnet and Thibault, 1989; Laurent and Locatelli, 2002) indicate that it 

is possible to model physiological systems accurately by mathematical models. 

 

3.4.3 PCr utilisation anaerobic subsystem 

The speed of all the athletes started to decrease at around 5 to 7 seconds through 

the sprint race as well as in previous studies (Hirvonen et al., 1987), and it is 

shown (Figure 3.3) that this decrease in speed coincided with the highest rate of 

decay of the Phosphocreatine (PCr) utilisation energy curve (Figure 3.5). The 

energy contribution from the PCr system was found to be 12.8% higher than the 
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energy contribution derived from oxygen independent glycolysis over the total 

sprint duration. Bogdanis et al. (1996), who had examined the contribution of 

phosphocreatine (PCr) during repeated bouts of cycle ergometer sprints (10 to 30-

s), established that there was a high correlation (r) between the percentage of PCr 

and the percentage of restoration of mean power output (MPO) as well as speed 

during the initial 10 seconds of the sprints (r = +0.84 and r = +0.91). Couple with 

that, Bogdanis et al. (1996), did not find any correlation between power output 

recovery and concentration of any other metabolites (lactate, hydrogen and 

dihydrogen phosphate ions). Furthermore, there was no observed correlation 

between the percentage of PCr and MPO during the last 20-s of the sprint 

(Bogdanis et al., 1996). In addition to Bogdanis’ observations, an independent 

study by Hirvonen et al. (1987) demonstrated, in a series of maximal cycling 

sprints (40-100 m), that skeletal PCr stores were severely depleted after 5 to 7-s. 

Interestingly, it was found that elite sprinters used more of their available PCr 

stores over the first 5 to 7-s than sprinters of slightly less ability. Furthermore, the 

rate constant for the PCr anaerobic metabolic energy process (0.31s-1) as 

determined in this mathematical modelling was found to be greater than that of the 

oxygen-independent glycolysis metabolic process (0.11s-1). This observed 

metabolic behaviour can be explained  because it takes more time for the ATP to 

be produced from the oxygen independent glycolysis process than that from the 

PCr utilisation energy process (Baechle and Earle, 2000; Wilmore and Costill, 

2005).  
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3.5 Summary 

In this study, the energy produced from the anaerobic and aerobic capacity was 

investigated using nonlinear mathematical modelling. It was found that anaerobic 

energy contributes to 95% of the energy needed to complete the 100m sprint. In 

addition, investigation on the anaerobic subsystems showed that the 

phosphocreatine utilisation energy was found to be 12.8% higher than the energy 

contribution from oxygen independent glycolysis for the total duration of the sprint. 

Furthermore, it was found that, for any particular anaerobic subsystem, that the 

rate parameters for all the elite sprinters were similar and that both the rate 

parameter and the maximum power achieved, for any particular anaerobic 

subsystem, affected sprint performance. It was shown in this study through 

mathematical modelling together with dietary-based as well as muscle biopsy 

studies (Baechle and Earle, 2000; Bogdanis et al, 1996; Wilmore and Costill, 

2005) that this phosphocreatine utilisation anaerobic subsystem affects the 

performance of athletes during high-intensity short duration exercise. The next 

experimental case study, chapter four, investigated the energy produced from the 

anaerobic and aerobic systems for an endurance physical activity. 
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CHAPTER FOUR 

     Study Two 

 

Optimal management of resources during various pacing trials for a 20-km 
cycling time trial  

 

According to the literature review of the physiological models of exercise fatigue, 

the type of physical activity (Weir et al., 2006), the failure of the energy metabolic 

pathways (Noakes, 2000; Shulman and Rothman, 2001), the conservation of 

energy via the energy systems (Shulman and Rothman, 2001), the increase in 

blood lactate concentration (Brooks et al., 2005; Hill et al., 1923; Hill, 1924) may 

cause power output reduction during endurance exercise, the increase in 

perception of effort during endurance exercise (Behm and St-Pierre, 1997; 

Sandow, 1952) altogether affect sports performance. Therefore, this experimental 

case study was conducted in the hope to validate these physiological control 

model hypotheses by, firstly, analyzing the effect of different pacing on the 

performance of an endurance time trial exercise by modelling and analysing the 

energy production from the energy systems; And secondly by analyzing the 

homeostatic disturbance that these different pacing might cause to the human 

organism and finding any relationship between blood lactate concentration and the 

rating of perceived exertion (RPE).  

4.1 Introduction 

In the first study, the amount of energy derived from the energy systems in 

maximal exercise of short duration were investigated, and in this second 

experimental case study, the effect of pacing on the energy expenditure from the 
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aerobic and anaerobic systems was investigated for a 20-km cycling time trial 

exercise. Furthermore, this second study endeavoured to find the degree of 

homeostatic disturbance that different pacing time trials (self pace, even pace and 

variable pace) might cause on the human organism together with any association 

between RPE and blood lactate concentration. 

 

In athletic competition, pacing is important so that the available metabolic 

resources are utilised effectively to finish a physical activity in the minimum 

possible time, and to maintain enough metabolic resources to complete that task 

successfully (Ulmer, 1996). One way to analyse pacing is through time trial 

exercise and these can be assessed in terms of energy efficiency. Few studies 

have investigated the energy production from anaerobic and aerobic metabolisms 

during prolonged exercise bouts (Hettinga et al., 2006; Hettinga et al., 2007). In 

this study, therefore, the energy produced from aerobic and anaerobic metabolic 

processes are investigated for various types of pacing, and assessed with respect 

to work rate and energy expenditure for a 20-km cycling time trial. 

 

4.2 Method 

4.2.1 Participants 

Ten healthy and well-trained male cyclists participated in this study. The mean (± 

standard deviation) height, body mass index (BMI), the measured maximum 

oxygen uptake of the cyclists (  O2max) and their known associated work capacity 

were 1.77 (±0.06) m, 24.2 (±1.8) kg·m-2, 4.89 (±0.32) L·min-1, 353 (±30) W 

respectively. The age of the participants ranged from 25.5 to 40.1 years. 
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4.2.2 Study protocol 

This research study was ethically approved by the School of Life Sciences Ethics 

Committee, University of Northumbria at Newcastle. The healthy and well-trained 

participants were required to complete a 20-km cycling exercise bout in the 

minimum possible time employing different pacing trials. These were: self pace 

(cycle as hard as they felt they could at any moment in time), even pace using the 

mean output from their self pace cycling time trial, and a variable pace based on 

70% and 140% of the subject's respective self pace average power output (de 

Koning et al., 2011; Palmer et al., 1999). The participants completed these three 

different pacing time trials on separate occasions, in the physiology lab of the 

School of Life Sciences in Northumbria University, with at least one week rest in-

between the trials for them recovery purposes and prevent a training effect (Flynn 

et al., 1994).  

 

4.2.3 Data collection 

Physiological data including heart rate (BPM) were recorded using a data 

acquisition system (Powerlab, ADI Instruments, Australia), and volume of oxygen 

consumption (  O2/L.min-1) was measured using an online gas analyser (Cortex 

Metalyser, Cortex Biophysik, Germany). Power outputs were recorded at a 

frequency rate of 11 Hz using Velotron 3D software which was interfaced with the 

Cycle Ergometer (VelotronPRO, RacerMate Inc., USA) that was used for all 

cycling time trials. The rating of Perceived Exertion (RPE) was used as a 

subjective measure for the sensation of fatigue the cyclists felt during the 20-km 

cycling time trial, and these RPE scores were obtained at every 2-km interval while 

blood samples were collected for every 4 km interval to determine blood lactate 

concentration (mmolL-1). The data were collected by the research team of School 
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of Life Sciences, and these data were then analysed using Matlab software 

platform version R2008a. SPSS v17 software was used for subsequent statistical 

analysis. All the collected and computed data were tested for parametricity using 

Kolmogorov-Smirnov (K-S) test to find out whether they follow a normal 

distribution so as to ensure the appropriate statistical tests were identified for 

comparison purposes (Fasano and Franceschini, 1987; Lopes et al., 2007). 

 

4.2.4 Data analysis 

In order to analyse the energy expenditure for the different pacing trials, the 

metabolic aerobic power (Pmet) was determined from the measured volume of 

oxygen consumption (  O2), and the respiratory exchange ratio (RER) which is the 

ratio of the amount of carbon dioxide produced to the amount of oxygen consumed 

by the cyclist. The metabolic aerobic power (Hettinga et al., 2006) was determined 

based on the volume of oxygen consumption and RER (Equ. 4.1). Then, the Gross 

Mechanical Efficiency (GME) was calculated from the ratio of the power output 

(Ptot) to metabolic aerobic power (Pmet); and the anaerobic mechanical power (Pan) 

during the time-trial was computed as the difference between the power output 

and the aerobic mechanical power Pae as shown in Equ. 4.2.     

Pmet (W) =   O2 (L.min-1) x {(4940.RER + 16040)/60}      …Equ. 4.1 

Pan =  Ptot - Pae                              …Equ. 4.2 

In this analysis, it was assumed that respiratory exchange ratios (RER) in excess 

of 1.00 happened due to the buffering of lactate by bicarbonate (Hettinga et al., 

2006; Hettinga et al., 2007). The lactate is the body’s buffering agent that 

neutralizes the acid that accumulates in the working muscles (Brooks, 2001; 

Robergs et al., 2004).  
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Moreover, the Hazard Score index (de Koning et al., 2011), which is the product of 

the momentary rating of perceived exertion (RPE) and the fraction of the 

remaining distance, has the ability to depict the likelihood that the cyclists would 

change their power outputs or their velocities during the cycling time-trial. This 

hazard score would also show indirectly how the power outputs of the cyclists 

were regulated. The calculated anaerobic and aerobic powers for the various 

pacing trials were then tested for parametricity using Kolmogorov-Smirnov (K-S) 

test, and then One Way Analysis of Variance (ANOVA) with repeated measures 

was used to compare the mean data between the time trials (Field, 2009). When 

significant F ratios were found (p < 0.05) in the statistical analysis, the means of 

the tested variables were subsequently compared using a Tukey's post-hoc test. 

When testing for statistical significance, the p-value represents the probability of 

reaching the test statistic value (e.g. the mean of a population sample) as extreme 

as the observation value (Berger and Casella, 2001). The F-ratio (See Appendix 

C, section C.1) is a test statistic in finding whether the difference between two or 

more independent variables is statistically significant or stable by computing the 

ratio of the variance between groups and the variance within groups (Lomax, 

2007; Sawilowsky, 2002). The product moment correlation coefficient (r) was used 

to analyse relationship (if any) between the variables (See Appendix C, section 

C.2 for its mathematical formula). 

4.3 Result  

4.3.1 Total work done by all the cyclists for all the pacing time-trials 

The mean (± standard deviation) of total work done by all the cyclists for self pace, 

even pace and variable pace were 5.14 (±0.01) MJ, 5.15 (±0.01) MJ and 5.13 

(±0.01) MJ respectively (See Table 4.1).  
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Table 4.1: A summary of the total work (WT), work through anaerobic capacity 

(WAnae) and work through aerobic capacity (WAe) are displayed for each pacing trial. 

There was no significant difference between WT (p > 0.05). However, there were 

significant differences among anaerobic capacities, and aerobic capacities for all 

pacing trials (p < 0.01). Each row of the table (from the 3rd row onwards) 

corresponds to the work done by a cyclist in increasing order of time performance 

except for the last row (bold) which represents the average of these variables. 

Self Pace (x 105 / J) Even Pace (x 105 / J) Variable Pace (x 105 / J) 

WT WAnae WAe WT WAnae WAe WT WAnae WAe 

5.5694 0.9786 4.5909 5.5590 0.6373 4.9217 5.5689 2.0467 3.5222 

5.5684 0.9994 4.5690 5.5680 0.8807 4.6873 5.5714 2.1433 3.4281 

5.5657 1.5923 3.9733 5.5710 0.5777 4.9933 5.5366 2.0519 3.4847 

5.3173 0.8023 4.5150 5.3233 0.5591 4.7642 5.2821 1.9936 3.2885 

5.1568 1.0666 4.0901 5.1490 0.5264 4.6225 5.0718 1.9452 3.1266 

5.1085 0.7840 4.3245 5.1052 0.6652 4.4400 5.1047 1.8907 3.2139 

5.0100 1.2439 3.7661 5.0069 0.8631 4.1437 5.0038 2.0832 2.9206 

5.0132 1.1701 3.8431 5.0145 0.7242 4.2903 5.0089 2.0278 2.9810 

4.7312 1.0714 3.6598 4.7332 0.7877 3.9455 4.7346 2.0332 2.7013 

4.3988 0.8725 3.5262 4.4339 0.6643 3.7696 4.3699 1.7514 2.6184 

5.14393 1.05811 4.0858 5.1464 0.68857 4.4578 5.1252 1.9967 3.1285 
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As expected, these results confirmed that there was no significant difference (p > 

0.05) in the total work done by all the cyclists for each of the three different pacing 

trials. Furthermore, there was no significant difference (p > 0.05) in the total power 

which is the sum of the aerobic and anaerobic powers for each athlete for each 

pacing trial. Furthermore, the total energy used by each cyclist for each pacing trial 

was practically constant despite the large variation in the amount of energy 

produced via the anaerobic energy system and the aerobic energy system for 

each pacing trial.  

 

4.3.2 Anaerobic power, aerobic power and total power 

Figure 4.1 shows the total power output together with the corresponding computed 

aerobic powers and anaerobic powers for the first rank cyclist for the self pace trial 

depicting the exponential growth and decay respectively of the energy produced 

from each energy pathway. Figure 4.2 shows the mean total power of all the 

cyclists for 5-km cycling interval. The average even pace power was about 265 W 

which was constant throughout the time trial while both self pace power and 

variable pace power decreased between 5 km to 15 km followed by endspurts 

(increase in power outputs) between 15 km to 20 km of the cycling time trial. 

Moreover, the mean gross mechanical efficiencies for self pace, even pace and 

variable pace were 17.9±1%, 18.1±0.9% and 18.3±1.1% respectively. In addition, 

it was found that there was no significant difference (p > 0.05) in the gross 

mechanical efficiency between the different pacing time-trials.  
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Figure 4.1: Anaerobic power, aerobic power and total power (W) distribution 

vs. time (s) for a particular cyclist (ranked first) in terms of performance time 

for a 20-km cycling self pace time-trial. 

 
                

 
Figure 4.2: The average total power (W) for all the cyclists for 5-km interval 

for even pace, self pace and variable pace trials. 
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4.3.3 Mean aerobic and anaerobic powers at 5-km cycling interval 

The aerobic and anaerobic powers for all cyclists were determined for each 5-km 

interval, and for each type of pacing (Figures 4.3, 4.4). The data in Figure 4.3, 

showed that for self pace trial, the mean aerobic power increased to a peak until 

the mid-point of the time trial (i.e. 10-km), then decreased slowly from 10 km 

towards the end of the cycling race. In even pace and variable pace time trials, 

however, the mean aerobic power for all athletes increased monotically to a 

“plateau”.  Interestingly, it was found that there was a significant difference (p < 

0.01) between the estimated aerobic powers for all pacing trials. In Figure 4.3, the 

difference in the absolute values for each pacing aerobic power occurred because 

there was a large variability in the energy produced by the aerobic system from the 

ten cyclists. 

 
 

Figure 4.3: Mean aerobic power for the subjects (n = 10) for the 20-km 

cycling time trials for even pace, self pace and variable pace (p < 0.01). 
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Figure 4.4 describes the mean anaerobic power vs. distance (km) for the 

participants for the 20-km cycling time trial for even pace, self pace and variable 

pace at 5-km interval. It was found that there was also significant difference (p < 

0.01) between the anaerobic powers for all pacing trials. Furthermore, the 

endspurts were clearly observed by the increase in the anaerobic powers between 

the 15-km to the 20-km of the cycling race for both variable pace and even pace 

trials. In Figure 4.4, the difference in the absolute values for each pacing 

anaerobic power occurred because there was a large variability in the energy 

produced by the anaerobic system from all the ten cyclists. 

 
 

    
Figure 4.4: Mean anaerobic power of the cyclists (n = 10) for the 20-km 

cycling time trials for even pace, self pace and variable pace at 5-km 

interval (p < 0.01). 
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4.3.4 Hazard score index of the cyclists for various pacing time-trials 

It was observed that the cyclists obtained the highest hazard score for the variable 

pace and least in self pace. Hence, variable pace caused greatest homeostatic 

disturbances in the physiological systems of the cyclists. In addition, all the hazard 

score graphs increased to a maximum and then decrease to zero resembling the 

arousal state inverted-U model or behaviour of the cyclists at a particular distance. 

 

Figure 4.5: Hazard Score of the cyclists for each pacing time-trial vs. 

distance covered (Hazard score = momentary RPE x Percentage of 

remaining distance). 
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highest in the variable pace time trial with 5.8 (± 1.7) mmolL-1 followed by self pace 

(5.0±1.7) mmolL-1 and least in even pace time trial with a concentration of (4.1 

±1.3) mmolL-1. The association between blood lactate concentration and ratings of 

perceived exertion was found using the product moment correlation coefficient (r) 

which was +0.681. This means that there was a strong positive relationship 

(Cohen, 2002) between blood lactate concentration and the ratings of perceived 

exertion. 

 

4.4 Discussion 

4.4.1 Mean gross mechanical efficiency 

The effect of three types of pacing on the energy expenditure during a 20-km 

cycling time trial was investigated. The mean gross mechanical efficiency of 

18.1±1 % determined in this study corresponded to previous data obtained for 

nonprofessional cyclists (Chavarren, and Calbet 1999; Moseley and Jeukendrup, 

2001). 

4.4.2 Total work done by cyclists 

The total work done by all the cyclists was lowest for variable pace trial and 

highest for self pace trial, but there were no significant difference in the total work 

done among the three pacing trials. These results are in agreement of what was 

found in certain research studies that investigated shorter cycling distances 

(Hettinga, et al., 2006; Hettinga et al., 2007) where they found also that even pace 

was found to be the preferred type of pacing.  For a particular type pacing to be 

employed for a prolonged or endurance exercise, therefore, depends on the 

distance of the race. As shown in Figure 4.3, it was observed that the energy 

derived from the aerobic energy system pathway for even pace as greatest and 

least for variable pace. In contrast, it was observed that the energy derived 
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through anaerobic metabolism for variable pace was greatest and least in even 

pace even though there was no significant difference in the total energy used by 

the cyclists for each pacing (Figure 4.4). Therefore, pacing did not necessarily 

favour a total economy of resources but rather influenced the way that energy was 

produced from the energy system pathways and it also helped to establish a 

suitable internal environment for the completion of physical activity. 

 

4.4.3 Hazard score Index, RPE and blood lactate concentration 

There is the tendency of the athletes to change pace (even in self pace time-trial) 

during competitive simulations which is partially related to how they feel at the 

moment (RPE) and to how much proportion of the event remains. The 

computation of a simple index by merging these two predictors produced the 

Hazard Score that represents the hazard of a competitively catastrophic collapse 

faced by the cyclist in a competition or a race, which seems to a good prediction of 

subsequent behaviour. It was found that the variable pace time trial caused the 

highest homeostatic disturbance, and least in self pace time trial as part of a 

conservatory nature or behaviour of the human organism. Interestingly, apart from 

the positive linear relationship between the rating of perceived exertion and blood 

lactate concentration, both measures were highest for variable pace as compared 

to the other pacing time trials. 

4.5 Summary 

In this study, the energy produced from anaerobic and aerobic metabolisms for 

various types of pacing for a 20-km cycling time trial were investigated. It can be 

deduced that even pace was aerobic energy system dependent, and variable pace 

was anaerobic energy system dependent. Hence, one of the questions that arises 
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is whether a particular type of pacing favours a particular metabolic energy 

process (i.e. anaerobic or aerobic) and, if this is so, then there is a need to 

understand whether the human body system favours a particular energy system 

and optimizes performance accordingly. Furthermore, the hazard score index 

showed that the variable pace time-trial caused the greatest homeostatic 

disturbance as compared to the other pacing time-trials (self pace and even pace), 

and there was a correlation between blood lactate concentration and ratings of 

perceived exertion. As such, mathematical modelling and analysis was able to 

probe into the workings of the energy systems, and also attempted to predict the 

effect of pacing on the physical behaviour and performance from mathematical 

measures. 
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CHAPTER FIVE 

  Study Three 

 

Nature and characteristics of the system control mechanisms underlying 

physiological data. 

 

According to the literature review of the physiological control models, there is the 

presence of a control mechanism which optimises physical performance (Ulmer, 

1996), and some physiological control models posit that the biological signals are 

complex but yet deterministic in nature (Lambert et al., 2004; Weir et al., 2006). 

Furthermore, St Clair Gibson and Noakes (2004) suggested that the neural 

integration of the afferent information from the various peripheral systems leads to 

an oscillatory power output and physiological responses during physical activity. 

The time constant (how fast a system returns back to baseline after a perturbation) 

of the extent to which a particular physiological system deviates from a metabolic 

setpoint (baseline), during exercise, may be associated to the homeostatic control 

of the interlinked physiological systems (Koeslag et al., 1997; St Clair Gibson and 

Noakes, 2004). Therefore, this experimental case study was conducted to 

investigate the hypotheses of these control models of exercise-induced fatigue 

using various mathematical methods. 

 
5.1 Introduction 

The changes in power output during exercise, previously associated with fatigue,  

has been recently been suggested to be related to a complex integrative control 

which involves the continuous interaction between all the physiological peripheral 

systems and central nervous system in a deterministic way (Lambert et al., 2004). 

The continuous change in the metabolic and physiological variables at rest and 
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during exercise, the deviation of a particular biological system variable from its 

metabolic setpoint value (i.e. normal state at rest for a healthy individual) and the 

speed at which this variable returns to its baseline point, are important factors in 

regulating homeostasis in any physiological system (St Clair Gibson, 2005). 

However, few studies (Atkinson et al., 2007; Tucker et al., 2006) have been 

conducted to investigate these physiological system control mechanisms despite 

the great need to investigate their nature and characteristics to better understand 

how these biological mechanisms regulate homeostasis, control human behaviour 

and physical activity (Atkinson et al., 2007; Lambert et al., 2004; Noakes et al., 

2004; St Clair Gibson et al., 2005; Tucker et al., 2006) at rest and during exercise. 

From the second research study, the presence of a defensive mechanism was 

observed and a particular energy system was favoured at the expense of the other 

energy metabolic systems depending on the intensity and duration of the physical 

activity. Here, the aim of this study was to investigate the nature and 

characteristics of the system control mechanisms underlying physiological data 

using mathematical analysis to understand how these mechanisms control 

physical activity during exercise, and hence improve athletic performance 

accordingly, without any risk of physiological system failure.  

 

5.2 Methods 

5.2.1 Participants 

Ten healthy and well-trained male cyclists participated in this study and this 

research study was approved by the Ethics Committee of the School of Life 

Sciences at Northumbria University at Newcastle. 
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5.2.2 Data Collection 

The data collected from Study 2 was used to investigate the system control 

mechanisms underlying physiological data and these data included volume of 

oxygen consumption (  O2), heart rate (BPM) and power output (W). Apart from 

physiological changes during self pace, variable pace and even pace cycling time 

trial, blood lactate concentration was monitored at 4 kilometre interval while rating 

of perceived exertion (RPE) using Borg scale (Borg, 1998) was measured at 2 

kilometre distance interval.  

 

5.2.3 Data Analysis 

5.2.3.1 Distribution of power output during the self pace 20-km cycling time trial 

Frequency histogram power distributions (See Figure 5.1) for all cyclists for self 

pace 20-km cycling time trials were analysed to assess how the system control 

mechanisms control behaviour and activity using indirect measurements as 

described below. The frequency of a constant pacing is zero and as for the 

variable pace is mono-frequency that depends on the period of the pulse-wave 

variable power output signal. 

 

5.2.3.2 Presence or manifestation of the system control mechanisms underlying 

physiological data 

 

The power spectral densities of the self pace power outputs of the cyclists were 

computed to determine how spectral power varies with normalized increasing 

frequency which is the ratio of the frequency components to the maximum 

frequency component of the power output signal. Depending on the spectral power 

behaviour of the physiological signal, this would determine the presence or 

absence of system control mechanisms in the biological data (Tucker et al., 2006). 
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5.2.3.3 Nature of metabolic setpoint function using fractal analysis 

Normally, for healthy individuals, the biological processes that occur within a 

physiological system set the level of metabolic activity whether at rest or during 

exercise. In order to investigate the nature of the metabolic setpoint function (St 

Clair Gibson et al., 2005), in terms of similarity or redundancy, fractal analysis was 

applied to the power output of the various pacing trials as well as the physiological 

data (i.e. heart rate and volume of oxygen consumption) for all pacing trials that 

were generated for the 20-km cycling time trial (as described in section 4.2). The 

fractal dimension was determined using Higuchi's algorithm theorem (Higuchi, 

1988) and tested using Weierstrass synthetic function of known dimension 

(Mandelbrot, 1982; Mandelbrot, 1983). The fractal dimension (FD) is a means to 

measure the complexity of a signal, and the more complex a signal is, the higher 

the FD value. The hypothesis was based upon whether the fractal dimensions for 

all the different types of physiological data were similar for all athletes so as to 

observe any redundancy in the system control mechanisms that influenced the 

metabolic setpoint function (Koegslag et al., 1997; Lambert et al., 2004). 

 

5.2.3.4 Characteristics of the complex system control mechanism using 

recurrence analysis 

 

In order to determine the characteristics of the complex system control 

mechanisms, recurrence analysis was used to locate rhythms and patterns in the 

data (Trulla et al., 1996; Zbilut et al., 1995). For example, if the current state 

(value) of a signal for time t1 is the same as a future time t2, then it is called a 

recurrence in time, and this recurrence is represented by a black dot, and these 

black dots form patterns. Then, from this type of plot, quantitative measures (as 



80 

 

described in section 2.7.4) such as the recurrence rate (RR), the determinism 

(DET), and the Trapping Time (TT) were used to find the characteristics for a 

particular physiological system (Zbilut et al., 1995; Zbilut et al., 1992). 

 

5.2.3.5 Data and statistical analysis 

These data were analysed using Matlab software platform version R2008a and 

SPSS software was used for statistical analysis. All the measured and computed 

data derived in this study were tested for parametricity using Kolmogorov-Smirnov 

(K-S) test (Fasano and Franceschini, 1987). A One-Way Analysis of Variance 

(ANOVA) with repeated measures was used to compare the means of these 

computed variables and then Tukey's HSD was used as post-hoc test to find 

whether the difference was significant or not (Field, 2009). A significant difference 

occurred when statistical p was less than 0.05. 

 

5.3 Result 

5.3.1 Distribution of power output during the self pace 20-km cycling time trial 

Figure 5.1 represents the frequency histogram distribution of self pace power 

output (W) for each cyclist with increasing rank order in terms of finishing time 

from top (Figure 5.1a) to bottom (Figure 5.1j).  It was shown that the self pace 

power distributions of 90% of all cyclists displayed a negative skewness of mean 

value -1.29 (±0.75) which means that the mass of the power distribution is 

concentrated on the right of the frequency histogram mean, and the average 

kurtosis or "peakedness" of the self pace power distribution curves was 14.8 

(±9.6). Apart from the skewness and peakedness of the self pace power 

distributions, it was also observed that the density of the self pace power 

distributions varied among the ten cyclists which meant that some self pace power 
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distributions appeared to be discrete continuous (a small cluster of similar power 

outputs) as shown in figures 5.1(f), 5.1(i) and 5.1(j). Most of the frequency 

histogram self pace power distributions showed simple inverted bell-shaped 

distributions. 

Figure 5.1: Frequency histogram distribution for self pace power output for all 

cyclists (n=10) with increasing rank order from top figure 5.1(a) to bottom figure 

5.1(j). Some power output distributions were discrete continuous 5.1(f), 5.1(i) and 

5.1(j) and the other power output distributions spanned over certain range. 
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5.3.2 Presence of the system control mechanisms underlying physiological data 

In Figure 5.2, the power spectral densities of the self pace power outputs of 

various rank cyclists showed clearly the 1/f – scaling factor (where f  is frequency) 

or the inverse proportionality of spectral power with increasing normalised 

frequency. This means that the self pace power output distributions for all cyclists 

with increasing frequency showed the same trend. The spectral density (power of 

signal vs. frequency) or the spectrum of a signal captures the frequency content of 

the physiological signals and helps in identifying periodicities (i.e. occurrences at 

regular intervals) but temporal information is lost (Davenport and Root, 1987). 

 

Figure 5.2: Power Spectral Density vs. normalized frequency (Hz) for the 

self pace power output for cyclists ranked 1st , 5th and 10th from top to 

bottom for 20km cycling time trial. The power spectrum magnitudes (dB) 

were negative after the normalised frequency 0.5 because they were close 

to zero. 
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5.3.3 Nature of metabolic setpoint function using fractal analysis 

For even pace trial (Figure 5.3), the fractal dimension was constant with value 1 

followed by the self pace trial and variable pace trial with mean values 1.33 (±0.03) 

and 1.38 (±0.01) respectively. 

   

 

Figure 5.3: Fractal dimension for power output for all pacing time-trials and for all 

the cyclists (n=10). 

 

In addition, the mean fractal dimension for the volume of oxygen consumption for 

all individuals for all pacing trials was 1.16 (±0.03), and that for heart rate was 1.38 

(±0.08). This means that the complexity of the biological activities which occurred, 

for any particular physiological system, was similar for different human organisms. 

However, there was a significant difference between the fractal dimension 

1 2 3 4 5 6 7 8 9 10
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Ranking order of cyclist

Fr
ac

ta
l d

im
en

si
on

 (F
D

)

Fractal dimension on power output of the various pacing strategies

 

 

self paced

even paced
variable paced



84 

 

between heart rate and volume of oxygen consumption (p < 0.05) which means 

that each physiological system had different complexity. 

 

5.3.4 Characteristics of the system control mechanism using recurrence analysis 

 

The recurrence plots depicting the patterns for variable pace, even pace and self 

pace are shown in Figure 5.4. The left hand side figures represent the one 

dimensional view of the variable pace, even pace and self pace power output 

signals, and the right hand side figures are their corresponding recurrence plots 

from top to bottom respectively. 

 

Figure 5.4: Recurrence plot depicting the patterns for variable pace, even pace 

and self pace power outputs for one particular cyclist (figures 5.4(d), 5.4(e) and 

5.4(f)) and its corresponding one dimensional view (figures 5.4(a), 5.4(b) and 

5.4(c)). 
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The pattern of the variable pace power output resembled a checker board 

(periodic change), that of even paced was homogeneous (no change) and that of 

self pace was complex as shown by the cluster of points that form small-scale 

structures (including single dots, diagonal line) and large-scale structure 

(representing general changes). All these were further quantified and interpreted 

using recurrence quantitative analysis measures to find out about the determinism, 

trapping time and recurrence rate (or probability that a particular physiological 

state happen at a time) of the physiological signals. 

 

Table 5.1: The mean (± standard deviation) Recurrence Quantitative Analysis 

(RQA) measures for each pacing time-trial for the volume of oxygen consumption 

(V  O2/L
.min-1

 ) for all cyclists (n = 10). 

 

 

RQA measures 

 

 

Self Pace 

 

Even Pace 

 

Variable Pace 

 
Recurrence Rate 
 (%)                
 

 
8.5 ± 0.9 

 
10 ± 1.6 

 
8.3 ± 0.9 

 
Determinism (DET) 
 

 
0.29 ± 0.04 

 
0.31 ± 0.06 

 
0.30 ± 0.05 

 
Trapping Time (TT/s) 
 

 
2.5 ± 0.1 

 
2.5 ± 0.2 

 
2.5 ± 0.1 
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Table 5.2: The mean (± standard deviation)  Recurrence Quantitative Analysis 

(RQA) measures for each type of pacing for heart rate (BPM) for all cyclists (n = 

10, the asterisk symbol * represents statistical significance with statistical p < 

0.01). 

 

RQA measures 

 

 

Self Paced 

 

Even Paced 

 

Variable Paced 

 
Recurrence Rate 
        (%) 
 

 
11.2 ± 0.05 

 
11.2 ± 0.06 

 
8.5 ± 0.03 

 
Determinism (DET) 
 

 
0.89 ± 0.18 

 
0.92 ± 0.11 

 
0.86 ± 0.18 

 
Trapping Time* 

 (TT/s) 
 

 
7.0 ± 3.9a 

 
10.9 ± 8.8 

 
6.7 ± 3.2b 

 

The superscript a denotes significant difference between even pace trial and self 

pace trial; superscript b denotes significant difference between even pace trial and 

variable pace trial.  

 

5.4 Discussion 

5.4.1 Distribution of power output during the self pace 20-km cycling time trial 

All self pace power distribution curves had high and positive kurtosis of mean 

+14.8 where values above 3 are considered a sharp peak (Dodge, 2003). 

Therefore, this means that the cyclists varied their cycling power output in a 

specific and narrow range based on the very sharp peak of their power output 

frequency distribution. Moreover, their self pace mean power output was lower 

than their corresponding median power output. This accounted for the negative 
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skewness of their power histogram distribution curves.  

 

5.4.2 Presence of the system control mechanisms underlying physiological data 

The power spectral densities of the self pace power outputs showed the 1/f  

scaling factor, where f is the frequency which was in agreement with the previous 

studies by Tucker et al. (2006) who emphasized that this could not be a 

consequence of noise, since noise would have a broad and constant spectrum for 

any particular frequency (f). It was also observed that for all cyclists the highest 

spectral power occurred at a very low frequency followed by small ripples or peaks 

in a 1/f -scaling manner. The presence of this inverse frequency scaling factor and 

multiple frequency peaks suggest that the system control mechanisms appeared 

similar in different human organisms (Tucker et al., 2006). These were 

investigated further in the following section using fractal analysis, and in Study 4 

using wavelet analysis to understand what was happening at the low and high 

frequency bands. 

5.4.3 Nature of metabolic setpoint function using fractal analysis 

To verify how far these system control mechanisms, present in the human body 

physiological systems, are similar, fractal analysis was used. In Figure 5.3, it was 

observed that the complexity of a self pace power output signal lies in between the 

fractal dimension (FD) values obtained for variable paced power output and that of 

even paced power output. The percentage error in estimating the fractal 

dimensions was 3% since fractal dimension cannot be derived exactly (Dubuc et 

al., 1989). The complexity of the system control mechanisms, for a particular 

physiological system, depends on the number of independent sources controlling 

that system (Hoyer et al., 2007; Pajunen, 1998). As such, for the complexity of a 

signal to increase, there should be an increase in the number of independent 
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control centres modulating a physiological system. This results in an increase in 

the information processing load between the central system (e.g. the brain or the 

brain stem) and the peripheral systems that may be the cause for the sensation of 

fatigue (Okamura, 2007; Okogbaa, 1994; St Clair Gibson et al., 2006) which was 

experienced by the cyclists as shown by their high RPE values (see results in 

section 4.3.5). Furthermore, the difference in complexity of the biological system 

activities may be attributed to the notion that when the system is more complex, 

the more robust it might be, or it does not allow the system to collapse completely 

even if a single control mechanism fails (Lambert et al., 2004; Pincus, 1994). 

 

5.4.4 Characteristics of the system control mechanisms using recurrence 

analysis  

 

A recurrence quantitative analysis (RQA) was applied to the physiological data to 

determine the characteristics of the system control mechanisms underlying those 

physiological data. It was found for the volume of oxygen consumption 

physiological variable that there was no significant difference between the RQA 

measures for all cyclists performing the different pacing trials (p > 0.05). The mean 

recurrence rate (RR) was 9%, mean determinism (DET) was 0.29, and trapping 

time (TT) was 2.5 s, and there was no significant difference (p = 0.03) between the 

RQA measures for heart rate for all pacing trials, and the mean values of RR was 

10%, DET was 0.89, and TT was 8.2 s. However, the difference in the trapping 

times between the respiratory system and the cardiovascular system biological 

activities implied that heart rate activities stayed longer in a particular state than 

that of the physiological activities of the respiratory system according to the 

trapping time values. Interestingly, the heart rate activities were more deterministic 

than the respiratory system physiological activities. This suggests that future 
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activities of the heart could be predicted much more easily than the more 

stochastic process of the physiological data produced from the respiratory system 

despite both recurrence rates (RR) being low. Moreover, the trapping times for the 

heart rate activities were significantly different (p < 0.01) for each pacing trial. 

There was a tendency for the imposed pacing trials (even pace and variable pace) 

to force that physical system to mimic its behaviour (Table 5.2) as reflected by the 

duration of the mean trapping time, to remain in a physiological state was highest 

in even pace (10.9 s), and shortest in variable pace (6.7 s). 

 

5.5 Summary 

In this study, it was observed that the 1/f-scaling factor was present in the spectral 

power outputs suggesting that the presence of system control mechanisms in the 

physiological activities. Fractal analysis of power outputs showed that an even 

pace trial had the smallest fractal dimension value as compared to self pace and 

variable pace, and hence it can be useful tool in distinguishing particular pacing 

trial for optimising performance. Moreover, each physiological organ system had 

different fractal dimensions which suggest that the complexity of the homeostatic 

control mechanisms regulating these systems are different, and this may be 

associated to the robustness of the system to physiological failure. For specific 

duration of a race, finally, it was observed that each physiological system had its 

own characteristics based on the different recurrence quantitative measures and 

this means the system control mechanisms controlling any particular physiological 

system are different in nature. Henceforth, recurrence analysis can be used as an 

important graphical and quantitative tool to determine the stability (i.e. in terms of 

trapping time and recurrence rate), and predictability (i.e. in terms of determinism) 

of a physiological system during exercise.  
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Chapter Six 

Study Four 

 

Mathematical analysis of the system control mechanisms to investigate indirectly 

how a central regulator paces the human body during a 20-km cycling time trial 

 

In exercise physiology, there is an increasing need to assess the various complex 

physiological signals to verify the theories of certain physiological models (Lambert 

et al., 2004; St Clair Gibson and Noakes, 2004; St Clair Gibson et al., 2006). 

These exercise physiology models posited that physical exercise is modulated by 

a central regulator in the CNS, and the human body works as a complex 

integrative system. From the previous experimental case studies, it was found that 

there was the presence of a control and that the physiological system activities 

had different characteristics but not much was known about how the system 

control mechanisms sustain homeostasis in any physiological system especially 

during physical activity. Therefore, this study utilised a different mathematical 

method to investigate how the physiological systems are regulated. 

 

6.1 Introduction 

In order to find how the physiological systems are controlled, a mathematical 

method was needed to assess the biological activities both in time and frequency. 

However, time-based and frequency-based mathematical analyses are not 

suitable for the exploration of the irregular and non-stationary patterns of the 

complex biological signals (Mallat, 1989). Therefore, the continuous wavelet 

transform (CWT) was utilised to conduct time-scale analysis of the real-time 

signals which occur at every scale and time-position unlike the Discrete Wavelet 
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Transform (Rioul and Vetterli, 1991). The advantage of CWT is that it enables any 

changes at different frequency bands of the physiological signals to be observed in 

order to provide an indirect assessment of corresponding brain functions (David et 

al., 2007).  

6.2 Method 

6.2.1 Participants 

Ten healthy and well-trained male cyclists took part in this research study, and it 

was approved by the Ethics Committee of the School of Life Sciences at 

Northumbria University. Their mean (± standard deviation) height and BMI were 

1.77(±0.06) m, and 24.2 (±1.8) kg∙m-2 respectively. The age of the participants 

ranged from 25.5 to 40.1 years. The data as described in the previous two 

chapters were used to investigate how the system control mechanisms modulated 

physical activity. 

 

6.2.2 Data analysis  

The Matlab software platform version R2008a and Wavelet ToolboxTM 4 were used 

for this research study. The continuous wavelet transform (CWT), using Morlet 

wavelet, was applied to physiological signals including volume of oxygen 

consumption, heart rate and power outputs (which integrate all the physiological 

activities of the various physiological systems) to obtain continuous wavelet 

spectrum coefficients. These coefficients were then subdivided into regions or 

bands that were Ultra Low Frequency (ULF), Low Frequency (LF) and High 

Frequency (HF) bands. The observed frequency regions were then classified in 

frequency bands (Addison, 2005; Yamaguchi, 2003) based on the wavelet 

transform scales (n) where integer variable n ranges from 1 to 256: the scales 

ranging from 1 to 8 were classified as high frequency; scales 9 to 64 were 
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classified as low frequency; and scales 65 to 256 were classified as ultra-low 

frequency (Lu et al., 2006; Pichot et al., 1999). The inverse relationship between 

the pseudofrequency (Hz) and the scale factor using Morlet wavelet is depicted in 

Figure 6.1. In this way the respective mean wavelet normalised powers (Indiradevi 

et al., 2007; Latka et al., 2003) were determined for each frequency band (Equ. 

6.1) to investigate the frequency changes (if any) and monitor the respective 

duration of these events at various scales or frequencies of the physiological 

signals to determine how a central regulator regulates these physiological 

systems. The mean normalised wavelet spectrum power was found from equation 

6.1 where the variable i represents the time events at every second of the 

physiological signal up to m which represents the total duration of the physiological 

activity whereas the variable j represents the scale number, and finally, Coefs (i, j) 

represents the continuous wavelet transform coefficients at time i and scale 

number j with limits n and m representing the scale number and time respectively.    {      (          )∑ ∑                      }     … Equ. 6.1

 

Figure 6.1: Relationship between pseudofrequency (Hz) and scales 
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6.2.3 Statistical analysis 

The wavelet powers that were determined for self pace, even pace and variable 

pace trials were tested for parametricity using Kolmogorov-Smirnov test (Fasano 

and Franceschini, 1987). In addition a 3x3 (frequency band x pacing trial) factorial 

ANOVA with repeated measures was used to compare the means of the various 

frequency bands and any significant difference occurred when statistical p was 

less than 0.05 (Berger and Casella, 2001). Then, Tukey's HSD post-hoc test was 

used following the ANOVA to find any significant difference in the analysed 

variables (Field, 2009). If significance occurred, relationships between variables 

were then examined by calculating the product moment correlation coefficient r. 

Results were then presented as means ± standard deviation (S.D).  

 

6.3 Result 

6.3.1 Continuous wavelet transform on physiological data 

Figure 6.2 displays the wavelet spectrum analysis profiles of the self pace power 

output for a particular cyclist together with the associated physiological data that 

include volume of oxygen consumption and heart rate activities during the 20-km 

cycling time trial. In these wavelet spectrums, the shift from a dark region (low) to 

light coloured region (high) represents a transition in the signal, or the occurrence 

of an event. For example, for the heart rate data (Figure 6.2), a dark region 

suggests that the heart rate activity is homogenous (i.e. there is no large 

fluctuation) whereas when a light coloured region is observed there is an abrupt 

change in heart rate activity. The higher amplitudes or change in transition are 

shown as lighter or brighter areas of the continuous wavelet spectrum. Using the 

two dimensional view of the signal, the general (large-scale structure) and local 
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(small-scale structure) behaviour and characteristics of the signal in time are 

clearly shown, which are not obvious from the one dimensional view of the raw 

physiological signals. 

 

Figure 6.2: Continuous Wavelet Transform (Scale vs. time) on self pace power 

output, volume of oxygen consumption and heart rate for one particular cyclist who 

ranked 2nd.  

 

In Figure 6.2, the x-axis represents time (in seconds) and y-axis represents the 

scale n which varies from 1 to 256. There were more abrupt changes at low 

frequencies than at high frequencies of the spectrum for all physiological signals, 

and there were more changes but less abrupt at high frequencies. By abrupt, it is 

meant that there is a big transition such as moving from a white region to a dark 
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region of the wavelet spectrum. So using the example of the heart rate data, it was 

observed that heart rate activity increased abruptly at the beginning of the race 

and at the near end of the race (about three minutes before the end of the race 

which represents the endspurt) depicted by the light coloured regions. Moreover, 

during the race there were frequent small changes in heart rate activities as shown 

by the dark regions. In this manner the bright colour (Figure 6.2) was classified as 

high transition (change in amplitude) whilst the dark colour was classified as low 

transition. 

 

In addition to that, Figure 6.3 shows the variation in amplitude and frequency of 

the self pace power output profiles obtained after the wavelet transform was 

applied at three different scales 16, 128 and 200 to show the happenings or 

events in these regions. The y-axis of Figure 6.3 represents changes in the 

amplitudes of the power output signal for three chosen scales as drawn with a 

white line on the continuous wavelet transform figure and presented subsequently 

on three time-series figures.  

It was clearly observed that there were high peaks at the start and end of the 

cycling time trial. By moving to the higher data capture rate or frequency, recurring 

changes at specific intervals about 200 seconds can be observed by the small 

peaks on scale 16 and positions in time as compared to the broader small ripple 

peaks depicted in the scales 128 and 200 between the time 200 seconds to 1400 

seconds. Therefore, by moving to higher capture rate, it was possible to know 

precisely the happening of an event in time, as well as its corresponding 

pseudofrequency. 
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Figure 6.3: One dimensional view at specific scales (16, 128 and 200 from top to 

bottom respectively) of the wavelet coefficients obtained after CWT has been 

applied to self pace power output.  

 

6.3.2 Wavelet band powers for volume of oxygen consumption for all cyclists 

For the volume of oxygen consumption physiological activities, it was found that 

there was a significant difference (p < 0.01) between the ULF wavelet power as 

compared to both HF and LF wavelet powers that were determined for each type 

of pacing (Table 6.1). However, there was no significant difference (p > 0.05) 

between HF and LF wavelet powers (See Appendix D, Figure D.1). In addition a 

small decrease in ULF band power with increasing performance times of the 
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cyclists was also observed whereby more prominent decreases in ULF band 

power were evident for self pace (r = -0.77), and even pace (r = -0.66) trials than 

in variable pace trial( r = -0.16).  

 Variables Self pace Even pace Variable pace 

HF band power 0.033 ± 0.009 0.030 ± 0.012 0.025 ± 0.011 

LF band power 0.024 ± 0.007 0.024 ± 0.008 0.024 ± 0.008 

ULF band power 0.068 ± 0.004* 0.066 ± 0.003* 0.073 ± 0.005* 

Table 6.1: This table represents the mean normalised power of the wavelet 

coefficients together with the standard deviation for volume of oxygen 

consumption (  O2) for each pacing and for each frequency band (HF, LF and 

ULF). The symbol * means there was a significant difference between that 

frequency band power and the other frequency bands with statistical p < 0.05. 

 

6.3.3 Wavelet band powers for heart rate for all cyclists 

Both ULF and LF band wavelet powers were not significant with mean values 0.06 

(±0.4%) and 0.012 (±0.1%) respectively for all cyclists and for all pacing time trials 

(Table 6.2). For any particular pacing time-trial, there was no significant difference 

(p > 0.05) between HF and ULF (p > 0.05) but there was a significant difference 

between HF and LF bands (p < 0.01). Furthermore, there was a small positive 

correlation between the HF band power of heart rate physiological activities and 

performance times (r = 0.3; p = 0.03) (See Appendix D, Figure D.2). 
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Variables Self pace Even pace Variable pace 

HF band power 0.1658  ± 0.1805* 0.1452 ± 0.1585* 0.1339  ± 0.1331* 

LF band power 0.0128  ±  0.001 0.022  ± 0.027 0.0132  ±  0.001 

ULF band power 0.066  ±  0.005 0.079  ± 0.004 0.066  ±  0.004 

Table 6.2: This table represents the mean normalised power of the wavelet 

coefficients together with the associated standard deviation for heart rate (HR) for 

each pacing and for each frequency band (HF, LF and ULF). The symbol * means 

there was a significant difference between that frequency band power and the 

other frequency bands with statistical p < 0.05. 

 

6.4 Discussion 

In order to analyse the physiological data to assess how a central control paces 

the body or the peripheral systems during exercise, a continuous wavelet 

transform was applied to these data to split these complex biological signals into 

specific scales and hence frequency bands (Mallat, 1989). For the self pace trial, 

there were sudden changes at low frequencies in the power output and 

physiological data especially at the start and at the end of the race (endspurt). 

These abrupt changes at low frequencies coincided with the acceleration at the 

beginning and at the end of the race (endspurt) and were consistent with common 

observations during a time-trial exercise (Ansley et al., 2004; St Clair Gibson et al., 

2004; Tucker et al., 2006a; Tucker et al., 2006b). Furthermore, smoother frequent 

changes occurred at high frequencies for self pace power output. The factors that 

govern the power output are the force applied at the pedal by the cyclist as well as 
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the velocity (or cadence) at which the cyclist is moving (Gordon and 

Papadopoulos, 2004). These factors depend on the number and type of muscle 

fibres that are activated or recruited to generate the required force and velocity. 

According to McComas (1996), small motoneurones fire slowly and continually 

(observed as small changes in amplitude) and they innervate motor units that are 

resistant to fatigue as compared to large motoneurones which fire rapidly (the 

changes are for short duration) and in bursts (as shown by large amplitudes) that 

innervate motor units that are fatigable.  This was perhaps why there were sudden 

changes in low frequency band as large motoneurones were triggered especially 

at the start and at the end of the race in contrast to slow and continual firing rates 

of small motoneurones that occurred in the low frequency bands during the race. 

6.4.1 Wavelet band powers for volume of oxygen consumption for all cyclists 

For volume of oxygen consumption, the ULF band wavelet power was highest as 

compared to the other frequency bands for the whole duration of the race. 

Therefore, this might be the frequency band where there was interactive 

communication between the central regulator to this particular physiological 

system. According to Sherwood (2005), it is the brain stem that consists of the 

respiratory control centers and generates the periodic pattern of breathing 

(Sherwood, 2005).  In addition, there was a slight decrease in ULF band wavelet 

power with increasing cyclists' performance times, and this suggests that this 

control centre used this frequency band to regulate this particular physiological 

system (via feedforward and feedback information) which subsequently affected 

the sport performance of the cyclists.  

 

 

  



100 

 

6.4.2 Wavelet band powers for heart rate for all cyclists 

 As for the observed heart rate activities, both LF and ULF band powers were 

almost constant for all cyclists. In addition, the significant difference in the HF band 

power as compared to the other frequency bands, however, means that there was 

some external drive or controller (Lu et al., 2006; Pichot et al., 1999; Xu et al., 

1998) which was using this frequency band, or specific range of frequencies, to 

control this particular physiological activities of that particular athlete despite the 

poor correlation between HF band power and increasing performance times.  

 

6.5 Summary 

In this study, the system control mechanisms underlying physiological data were 

investigated to see how a central regulator within the central nervous system 

paces the human body during exercise. It was found that the ULF band power for 

volume of oxygen consumption was highest for all cyclists and this ULF power 

decreases with increasing cyclists’ performance times. Moreover, there was a 

significant difference in the HF wavelet band power as compared to other 

frequency bands (i.e. HF was highest for heart rate activities for all cyclists). As 

such, there may be a regulator that paces the human body which uses specific 

frequency bands to control and communicate with the different physiological 

peripheral systems simultaneously so as the physical activity is completed without 

homeostatic failure. The strength in the wavelet power in the ULF band for 

respiratory system and HF band for heart rate activities suggest that these 

frequencies in fact depicted the behaviour of the sympathetic or parasympathetic 

drive which means that these system control mechanisms role were to reduce or 

increase such physiological system activities to complete a race or competition 

without catastrophic physiological system failure. 
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CHAPTER SEVEN 

      Study 5 

        The effect of an exhausting exercise bout on cognitive performance 

According to certain theoretical control models, exercise-induced fatigue is not 

always peripheral, and it is the brain that causes the sensation of fatigue owing to 

a decrease of metabolic resources to and from the brain, or to a central activation 

process that regulates behaviour and physical performance (Davis and Bailey, 

1997; Fowles et al., 2002; Gonzalez-Alanso et al., 1999; Lambert et al., 2004; 

Nielsen and Clausen, 2000; Parkin et al., 1999; Nybo and Nielsen, 2001; St Clair 

Gibson and Noakes., 2004). Therefore, this experimental case study was 

conducted to assess whether there was finite level of metabolic energy resources 

in the brain, by performing both mental and physical tasks to exhaustion. In so 

doing, it was hoped to be able to observe the effect of these exhausting tasks on 

cognitive performance.  

 

7.1 Introduction 

Up to now, very little is known about the psychophysiological mechanisms that 

underlie mental fatigue and the cognitive functions (Cox, 1994). Specifically within 

athletics, the ability to allocate and maintain attention during sporting competition 

can be as much taxing as the physical exertion associated with the sporting 

activity for successful performance (Nideffer, 1993). However, minimal research 

has evolved in exploring cognitive fatigue as a possible performance mediator 

within athletics and hence, the influence of fatigue on attention and performance is 
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still unclear. The studies that examined the impact of either acute or long-term 

exercise on cognition are equivocal, and it was suggested that physical exercise 

has a possible small positive effect on cognition (Etnier, 1997). Further studies 

are, therefore, needed to investigate the effects of exercise on cognitive 

performances (Etnier, 1997; Tomporowski, 2002). Based on the principle that 

processing in the brain is competitive, and it has finite metabolic resources, a new 

mechanistic explanation for the effect of exercise on the brain function, called the 

“transient hypofrontality hypothesis” was developed (Dietrich, 2003). This 

hypothesis states that during physical exercise the extensive neural activation 

which is needed to run motor patterns, assimilate sensory inputs, and coordinate 

autonomic regulation causes a decrease in brain activity (Dietrich, 2003; Dietrich 

and Sparling, 2004).  

In addition, the limitation of most studies related to the effect of exercise on 

cognition used only reaction time as the sole measure of cognition even in studies 

employing complex behavioural tasks (Chmura et al., 1994). Those relatively few 

studies (Deligniѐres and Brisswalter, 1995; Paas and Adam, 1991) that included 

response accuracy in their analysis, reported that there was either no change or 

increased accuracy with exercise. Therefore, by conducting this cognitive fatigue 

study, it was hoped to observe the response of cortical activities to an exhausting 

physical exercise, and how physical activity affects cognitive performance in terms 

of reaction time and accuracy as they seemed to reflect important aspects of 

cognition. The next section describes the methodology used to conduct this 

experimental case study. 
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7.2 Methods 

7.2.1 Participants Details 

This research study was approved by the Ethics Committee of the School of Life 

sciences, Northumbria University at Newcastle. Twelve healthy and right-handed 

participants (6 males and 6 females) were recruited and their mean (± standard 

deviation) height was 1.73 (±0.08) m. The participants’ age ranged from 25.9 to 

33.3 years, and their body mass ranged from 56.6 kg to 82.8 kg. All the 

participants came to the neurophysiology laboratory on three separate occasions 

with at least one week apart so as to reduce any learning effect (Lord et al., 1998; 

Wright, 1936). In addition, these volunteers were moderately to highly mentally 

and physically active as they were required to complete a series of cognitive tasks 

lasting for half an hour on two occasions, and also on one occasion they had to 

cycle as hard as they could for about half an hour or until they felt they could not 

continue this physical activity anymore.  

 

7.2.2 Description of the cognitive tasks 

The rapid visual information processing (RVIP) and modified stroop (MST) tasks 

were used in this research study, and the psychological strain which was placed 

by these tasks on the participants was mostly cognitive (Capuron et al., 2005; 

Coull et al., 1998). Hence, they needed to sustain attention for half an hour for 

them to be accurate and quick in their responses during the cognitive trials. The 

cognitive tasks are described as follows. 

 

For the modified stroop task (MST), the participants had to respond to the colour 

of the word appearing at the centre of a computer screen (Red, Blue, Yellow and 

Green) by pressing respectively and quickly the numerical keys (1, 2, 8 and 9) on 
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the keyboard. Moreover, if the word that appeared on the screen was written in 

grey, they were required to respond to the word. For instance, if the word 

YELLOW was written in grey colour, then the participants would need to press the 

numerical key ‘8’ which was associated to yellow colour. In addition, during the 

modified stroop task, they had to count mentally the number of white squares (size 

of 9 cm by 9 cm) and white circles (diameter size was 9 cm) that appeared 

randomly and sparsely at the centre of the screen. The duration of this type of 

cognitive task was 5 minutes.  

 

As for the rapid visual information processing (RVIP) task, the participants were 

required to respond to a specific sequence (odd or even) of integer numbers from 

0 to 9 which appeared one at a time every 600 ms on the computer screen. For 

example, when they noticed three consecutive odd numbers (e.g. 3, 5, 7) or three 

consecutive even numbers (e.g. 2, 8, 6), they had to press the ‘spacebar’ on the 

keyboard as quickly and accurately as they could. The duration of this cognitive 

task was also 5 minutes. And then, these cognitive tasks were alternately 

presented to the participants for a period of 30 minutes so that there were in all 

three RVIPs and three MSTs which represented the cognitive battery test. 

 

7.2.3 Hardware and software resources 

The material resources that were used for this study comprised of Research 

Powerlab, Dual and Octal Bio Amp systems (Powerlab, ADInstruments, Australia) 

for the recording of the electrocardiogram (ECG) and electroencephalogram 

(EEG) physiological data. The electro-caps (the electro-cap size can be small, 

medium or large) consist of Ag/AgCl electrodes embedded in the elastic electro-

cap fabric to record EEG activities from the scalp, and these physiological data 
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was transmitted to the powerlab systems via an electro-cap interface (Electro-Cap 

International, Inc., USA). Moreover, the ECI electro-gel was used to reduce the 

resistance between the EEG electrodes and the scalp, and a digital multimeter 

(Draper 52320, UK) was used to measure this impedance. In addition, a ‘0-volt’ 

potential 8-lines cable was built and used as a reference baseline voltage to 

measure the EEG potentials. Couple with that, a parallel communication interface 

port was built and tested to send 8-bit parallel data from the Research Powerlab to 

the installed E-Prime software workstation. This communication interface was 

used to send 8-bit data to ‘timestamp’ the responses of the participants while 

responding to the visual stimuli on the computer screen. These 8-bit data actually 

represented 2-digit numbers called digital bytes that were assigned ‘comment 

texts’ (i.e. blue, red, green, yellow, square, circle, odd and even) to display on the 

real-time physiological data upon the trigger of the corresponding visual stimuli. 

These would help to convert the continuous EEG data into data epochs time 

locked to specified event types for analysis purposes. Finally, the software that 

were used in this experimental case study were Chart 5 for Windows (Research 

Powerlab) to record and process the physiological signals, the E-Prime software 

version 2.0 to implement and conduct the mental fatigue tasks, and Matlab 

software 7.0 for data analysis.   

 

7.2.4 Study protocol and procedures 

On the first visit to the physiology laboratory, the participants completed each a 

screening health questionnaire to determine their eligibility for taking part in this 

research study and then, they were each assigned an identification number to 

protect their anonymity. The right size electro cap was identified using the electro-

cap head tape measure (Electro-Cap International, Inc., USA) for each participant, 
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and then they were given each a practice session on the cognitive tasks that they 

would need to complete during their second and third visits. Moreover, this first 

visit allowed the participants to familiarise themselves with the laboratory 

environment and the procedures.  

 

During the second visit (also named the ‘control’ experiment), the participants 

completed first the Multidimensional Fatigue Inventory (MFI-20) questionnaire 

which comprised of 20 items assessing the general fatigue, physical fatigue, 

mental fatigue, reduced activity and reduced motivation. Before starting the 

cognitive battery test, the participants sat comfortably facing the computer monitor 

at a distance of about 60 cm (Corr, 2002) and the appropriate EEG electro-cap 

was fitted onto the participant’s scalp according to the manufacturer’s instructions 

(Electro-Cap International Inc., USA). Next, a blunted needle was used to fill each 

electro-cap electrode, relevant to this study, with the ECI electro-gel to ensure the 

impedance between the EEG electrode and the scalp was less than 5000 Ω using 

the digital multimeter. Then, EEG activities at the frontal midline (Fz), central 

midline (Cz), and parietal midline (Pz) were recorded while the reference Ag/AgCl 

electrodes were attached to A1 representing the left ear lobe (Uetake and Murata, 

2000), and the ground electrode was located at AFz representing the Anterior 

Frontal of the scalp (Boksem et al.,2006). Furthermore, the ECG electrodes were 

attached to the arms and wrist of each participant according to the manufacturer’s 

specifications (Powerlab SPB08c, 2004), and connected to the powerlab systems 

to record the heart rate activities and the corresponding beat-to-beat intervals. The 

sampling frequency was set at 400 Hz which was sufficient to capture the EEG 

and ECG activities based on Nyquist’s criterion (Shannon, 1949).  
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Then, after each 5 min-block of cognitive task (either RVIP or MST), they had to 

complete the visual analogue scales (VAS) so that their mental fatigue, physical 

fatigue and concentration were quickly and easily monitored during the trial. For 

these visual analogue scales, the participants were required to mark in-between 

the horizontal scales that consisted of two extreme marks ‘0’ and ‘10’ representing 

low and high respectively. Afterwards, at the end of the cognitive experiment, they 

had to fill again the MFI-20 questionnaire to compare any changes in the 

subjective feeling measures between pre and post the cognitive battery 

experiment. As a preliminary procedure, a pilot study was conducted to test the 

reliability of the MFI questionnaire items using Cronbach’s alpha (Cronbach, 1951; 

Schmitt, 1996). The value of the Cronbach’s alpha was found to be 0.82 which 

showed a reliable tool for assessing the internal consistency of a psychometric test 

in representing subjectively the fatigue felt by these participants for this type of 

cognitive experiment (Cronbach, 1951; Schmitt, 1996).  

 

On their third visit (also named as the ‘exercise’ experiment), the participants each 

performed, first of all, an exhausting cycling exercise bout for about half an hour. 

They wore comfortable clothes and footwear to perform this tiring cycling bout on 

the Velotron (VelotronPRO, RacerMate Inc., USA) whereby they were instructed to 

cycle as hard as they could till they could not continue this physical activity 

anymore. After completing this physical activity, they had to complete the MFI-20 

questionnaire, and then, during the cognitive trial, they were asked to complete the 

series of RVIP and Modified Stroop tasks similar to the second visit, while 

physiological data that were EEG and ECG were recorded following the same 

procedure as described for the second visit. Finally, after completing the cognitive 
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battery test, they filled again the MFI-20 questionnaire. As precautions, the 

participants were requested to try not to blink while responding to the visual cues, 

during the cognitive experiments, to reduce interference of the electrooculogram 

activities (Erfanian, and Mahmoudi, 2005) to the measured EEG signals. Apart 

from the visual cues on the screen, there were neither other visual stimuli nor 

auditory stimuli that would distract the participants from the cognitive trials. 

 

7.2.5 Data analysis  

Both EEG and ECG activities were recorded while the participants performed the 

series of cognitive tasks in both experimental conditions (control and exercise). 

The heart rate activities could provide information about the instantaneous 

intensity of the physical and mental exercise but it could not measure the additive 

effect of the physical and mental stress that lasted for a period of time (Pichot et 

al., 2002). As recent research (Pichot et al., 2002) focused on heart rate variability 

(HRV) in evaluating cumulative fatigue subjected to a physical activity, therefore, 

both beat-to-beat intervals and heart rate were included to find whether these 

variables could show any physiological difference among the participants 

subjected to these two experimental conditions (control vs. exercise). The 

following subsections explain in more details the recording and analysis of the 

EEG activities as well as the event related potentials (ERP) data. 

7.2.5.1 EEG analysis 

EEG activities were recorded continuously from the midline placements Fz, Cz and 

Pz according to the international 10-20 system electrode placement using the 

Ag/AgCl electrodes embedded in the elastic electro cap fabric (Figure 7.1). The 

cortical EEG activities were amplified, digitized, sampled at a frequency rate of 
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400Hz, and online filtered using a pass band of 0.1 to 100Hz using the powerlab 

systems (Lorist et al., 2005). Then, the EEG signals were digitally low pass filtered 

with a cut-off frequency of 30 Hz, and online reduced to a sample frequency of 100 

Hz to analyse the EEG frequency bands of interest (Boksem et al., 2006). 

Moreover, artefacts such as blinking and fast eye movements were removed from 

the recorded signals based on any amplitude greater than ±70 µV (Holm et al., 

2009). Then, these processed signals were used for the EEG and ERP analysis.  

For the EEG analysis, the average power in the theta band (4 – 8 Hz), and alpha 

band (8 – 12 Hz) were computed at the frontal and parietal electrodes Fz and Pz 

respectively. Next, the ratio of these two powers was determined, and named the 

‘cognitive ratio’. Moreover, the entropy (i.e. the amount of information flow or 

content) of the EEG signals (Fz, Cz and Pz) were computed to represent an 

additional mathematical measure to compare the cognitive performance of the 

participants for each experimental condition (i.e. control vs. exercise cognitive 

trials). 

 

Figure 7.1: The 10-20 international system electrode placement showing the EEG 

electrode placement, the reference electrode (A1 - left earlobe) and the ground 
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electrode (AFz), Fz (Frontal midline electrode), Cz (central midline electrode) and 

Pz (parietal midline electrode). 

 

7.2.5.2 ERP analysis 

The Event Related Potential (ERP) data were at first processed following the same 

procedure used for the EEG analysis, then segmented into stimulus-locked (i.e. 

the visual stimulus) EEG epochs between -100 ms to +600 ms. The EEG epochs 

of the trials with omitted or miss responses were not included in the stimulus-

locked ERP (Boksem et al., 2008) as they represent biased responses for the 

subsequent EEG analysis. And then, three types of ERP components (N100, P200 

and P300) were analysed in this research study based on their associated 

cognitive function properties. As described in the literature review, the N100 ERP 

component ranges in-between 80 to 120 ms after a stimulus is triggered and is 

linked to a person’s arousal and selective attention (Hillyard et al., 1973; Nash and 

Williams, 1982). Moreover, the P200 appears in-between 150 ms to 275 ms after 

the onset of an external stimulus and is related to the higher-order perceptual 

processing which is regulated by attention and visual cognition (Freunberger et al., 

2007; Furutsuka, 1989; Luck and Hillyard, 1994). In addition, the P300 is an 

evoked potential associated to engagement of attention and it is linked to an 

individual’s reaction time to an external stimulus as well as it can be used to 

measure how demanding a task is on the cognitive workload (Polich, 2003; Polich, 

2007).  

The averaged evoked related potentials were then used to measure the latencies 

and amplitudes of the ERP components N100, P200 and P300 respectively. 

Latencies were peak latencies, and were determined based on the visual 
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examination of the spatial distribution of the ERP components while amplitudes 

were mean amplitudes, and these were calculated as the average amplitudes in a 

time window of ±50ms (Walhovd and Fjell, 2002) around the peak latency. 

7.2.6 Statistical Analysis  

Firstly, all recorded and computed data were tested for normality using 

Kolmogorov-Smirnov (K-S) test (Fasano and Franceschini, 1987; Lopes et al., 

2007). Then, a two-way factorial ANOVA (Analysis of Variance) was used 

(Quintana and Maxwell, 1994) to investigate the effects of time (6 intervals of 5 

minutes) on various variables (e.g. reaction time, accuracy, cognitive ratio, heart 

rate, RR-interval and subjective measures of fatigue) for two experimental 

conditions (control and exercise) for same group of participants. When the main 

analysis indicated a significant interaction (p < 0.05) between the factors, follow-up 

analysis were achieved, adjusting error rates according to Bonferroni correction 

(Boksem et al., 2005). Furthermore, paired t-test was used to compare the means 

of any dependent variable subjected to these two experimental conditions. (Also 

see Appendix C, section C.1 for more details on F-ratio and degrees of freedom) 

7.3 Results 

The results are divided into several sections that are namely the subjective 

measures that  consisted of the visual analogue scales (mental fatigue, physical 

fatigue and concentration) and the MFI-20 questionnaire that assessed the 

general fatigue, physical fatigue, mental fatigue, reduced motivation, reduced 

activity pre and post the cognitive battery test; the cognitive performance of the 

participants in terms of both reaction time and percentage accuracy of responses 

to visual cues followed by the ECG, EEG and ERP analysis results. 
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7.3.1 Subjective measures of fatigue 

A two-way (2 experimental conditions x 6 time intervals) factorial ANOVA with 

repeated measures was conducted on the visual analogue scale data to determine 

whether there was a statistical significance in the means of dependent variables 

that were mental fatigue, physical fatigue and concentration between the two 

experimental conditions (control vs. exercise) but on the same group of 

individuals. The within-subject variable was the time-on-task repeated measures 

that were denoted as time5, time10, time15, time20, time25, and time30 (i.e. time5 

means 5 minutes of the cognitive task had elapsed, time10 means 10 minutes of 

the cognitive task had elapsed, and so on till completion of the cognitive task). The 

model assumptions in terms of normality using Kolgomorov-Smirnov (K-S) test 

(Fasano and Franceschini, 1987; Lopes et al., 2007), and homogeneity of 

covariance using Box’s test (Anderson, 1958; Seber, 1984) were evaluated and 

met in this statistical analysis. Furthermore, the MFI-20 subjective measures were 

analysed using a 2 (two experimental conditions) x 2 (pre and post cognitive tasks) 

factorial ANOVA with repeated measures, and the statistical results of these 

subjective measures of fatigue are as follows in the subsequent subsections.  

7.3.1.1 Visual analogue scales (VAS) subjective measures 

As shown in Figure 7.2, it was found that there was a statistically significant 

interaction in the percentage of mental fatigue between the condition type and 

time-on-task factor times (F(6, 22) = 492.19, p < 0.001) as well as there was a 

significant main effect of time-on-task (time5 to time30) (F(5, 22) = 463.794, p < 

0.001). In addition, there was also a significant main effect in the condition type (F 

(1, 22) = 713.133, p < 0.001) which represented a large effect size. For the physical 

fatigue subjective measure, there was a significant difference between the two 
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experimental conditions (p < 0.001), and within the subject test times (p < 0.001). 

However, there was no significant difference between the means of the 

concentration visual analogue scale for these two experimental conditions (p = 

0.057) despite a significant difference (p < 0.001) in the time-on-task repeated 

measures. 

 

Figure 7.2: Energy-VAS subjective measures for the participants (n=12) 
under two conditions (control and exercise involved cognitive task). 

 

7.3.1.2 Multi-Fatigue Inventory (MFI) subjective measures 

A summary of results is shown in Table 7.1 depicting the mean value together with 

the respective standard deviation for each subjective measure, and for each 

experimental condition (control vs. exercise-involved) at the start and at the end of 
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the cognitive tasks. There was a significant difference between the mean of each 

dependent variable subjected for both experimental conditions and also between 

pre and post each experimental condition (p < 0.05).  

 

    Type of   
         Fatigue 
 
 
Type of  
Trial 

 
General 
Fatigue 

 
Physical 
fatigue 

 
Reduced 
Activity 

 
Reduced 
Motivation 

 
Mental 
fatigue 

 
Control (Pre) 

 
5.5±1.8** 

 
5.4±2.2** 

 
5.3±1.9** 

 
4.5±1.7** 

 
4.3±1.2** 

 
Control (Post) 

 
10.6±2.6* 

 
7.3±2.9** 

 
9.0±2.9** 

 
9.6±3.2* 

 
13.3±1.7* 

 
Exercise (Pre) 

 
11.6±3.1** 

 
11.8±2.6** 

 
13.4±4.0** 

 
9.6±2.7** 

 
8.4±2.6** 

 
Exercise (Post) 

 
15.4±2.2* 

 
15.5±2.3** 

 
14.9±2.7** 

 
14.0±4.2* 

 
15.0±1.9* 

 
Table 7.1: Summary of the MFI measures obtained from the participants (n = 12) 
under these two conditions (control and exercise involved cognitive tasks). The 
double asterisk (**) denotes a statistical significance at p < 0.01 between the 
means of the subjective measures for pre-control and pre-exercise whereas the 
single asterisk (*) denotes a statistical significance between the means for post-
control and post-exercise experimental condition with statistical significance p < 
0.05. 
 

7.3.2 Cognitive performance (Reaction Time and Accuracy) 

The cognitive performance, in terms of reaction time of the participants in choosing 

the correct responses by pressing the appropriate key as well as the mean 

percentage of accuracy for all the participants subjected to these two experimental 

conditions, was evaluated for each 5 minutes time-on-task interval. The dependent 

variables that were reaction time and accuracy were analysed using two-way (2 

experimental conditions x 6 time intervals) factorial ANOVA with repeated 

measures. 
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7.3.2.1 Reaction time performance  

The mean reaction time (Figure 7.3) of the participants in responding to the visual 

cues over the whole duration of the cognitive task for the control experiment was 

475 ± 19.2 ms, and that for the exercise-involved experiment was 410.6 ± 16.6 ms 

(See Appendix E, Table E.2).  

 

 

Figure 7.3: The mean (± S.D) reaction times of the participants (n = 12) for control 

and exercise-involved cognitive tasks were 475 (±19.2) ms and 410 (±16.6) ms 

respectively). 

It was observed that the reaction times decreased linearly with increasing time-on-

task for the control experiment with reaction times at time5 (5 minutes elapsed) of 

cognitive task was 550 ± 20 ms and at time30 (30 minutes elapsed) was 405 ± 20 

ms (p < 0.01), and the contrary was found for the exercise-involved task whereby 

reaction times increased linearly till to the completion of the cognitive experiment 
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(time5 was 320 ± 10 ms vs. time30 was 470 ± 20 ms, p < 0.01). It was found that 

there was also a significant interactive effect between the repeated measures of 

time-on-task and experimental conditions (F(6, 22) = 1418.8, p < 0.001). 

7.3.2.2 Accuracy performance 

As shown in Figure 7.4, the participants performed significantly better (F(1, 22) = 

93.875, p < 0.01) in the control trial with a mean percentage accuracy of (91.3 ± 

1.2)% as compared to their accuracy of response performance for the exercise-

involved cognitive trial which was (89.1 ± 1.4)%. However, there was no significant 

interactive effect between time-on-task and the two experimental conditions (p = 

0.236, non-significant). 

  

Figure 7.4: The mean (± S.D) percentage accuracy of the participants (n=12) for 

no-exercise (control) and exercise conditions were 91.3 (±1.2) % vs. 89 (±1.4) % 

respectively. 
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In both cognitive trials, it was found that the percentage accuracy of the responses 

decreased linearly based on the 6 data time intervals from time5 to time30 (See 

also Appendix E, Table E.1). Furthermore, there was no significant difference (p > 

0.05) in the percentage of accuracy of the responses of the participants for the 

control and exercise experimental conditions in counting mentally the low 

probability target visual cues that were the white squares and white circles 

randomly shown up on the screen for the Modified Stroop task. 

 

7.3.3 ECG Analysis (heart rate/bpm and RR – Interval/ seconds)  

First of all, as shown in Figure 7.5, there was a significant difference at 95% 

confidence interval in the time-on-task factors (i.e. there was a significant 

difference in the mean of the heart rate activities for the various time intervals from 

time5 to time30, F(5, 22) = 4.455, p = 0.046). There was also an interactive 

significant effect (time-on-task factors x experimental conditions, p < 0.001) and a 

significant difference between the mean heart rate activities (Figure 7.5) for each 

cognitive trial (p = 0.039). For the control trial, heart rate activities decreased from 

an average of 79 bpm in the first interval (time5) to 77 bpm in the last interval 

(time30) of the cognitive tasks, and for the exercise involved trial, heart rate 

activities fluctuated more often than that of the control experiment by increasing 

and decreasing through time.  
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Figure 7.5: The mean heart rate activities (HR/BPM) for the twelve participants for 

each cognitive task session (control was 78.3 ± 1 bpm vs. exercise was 82.3 ± 2 

bpm) at 5 minutes time-on-task intervals.  

 

Secondly, as shown in Figure 7.6 there was a significant difference in the mean of 

the beat-to-beat interval for the two experimental conditions (p < 0.001) which was 

0.776 seconds for the control experiment, and 0.740 seconds for the exercise-

involved experiment. In addition, there was also a significant interactive effect for 

the within-subject factor (time-on-task) and the between-subject factor (conditions) 

with significant high F ratios of F (6, 22) = 27.720, and statistical p < 0.001. 
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Figure 7.6: The mean beat-to-beat (RR interval/seconds) for the twelve 

participants for each cognitive task session (control vs. exercise) at 5 minutes 

time-on-task interval. The RR-interval for the control experiment was (0.776 ± 

0.02) s vs. exercise involved experiment was (0.740 ± 0.01) s. 

 

7.3.4 EEG Analysis and Entropy  

In Figure 7.7, the notation Fzθ represents the theta band power at the frontal 

midline, the notation Pzα represents the alpha band power at the parietal midline 

of the brain and the cognitive ratio is the ratio of the frontal theta band power to the 

parietal alpha band power. For the whole duration of the cognitive trial, the mean 

(± standard deviation) of the theta band power, at the fronto-midline (Fz) for all the 

participants, was 6.76 (±1.74) μ 2 for the exercise-involved cognitive trial vs. 6.59 

(±1.68) μ 2 for the control cognitive trial. Whilst the mean (± standard deviation) of 

the alpha band power of the participants at the parieto-midline (Pz) was 4.25 

(±0.928) μ 2 for the exercise experiment as compared to 4.37 (±0.725) μ 2 for the 
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control experiment. From the fronto-parietal network data analysis, it was found 

that there was no significant difference between the cognitive ratios computed for 

both exercise and control cognitive trials (F(1, 22) = 3.140; p = 0.09) even though the 

cognitive ratios were slightly higher for the exercise-involved cognitive trial than 

that of the control trial. However, there was a significant effect of the within subject 

factor time-on-task (p < 0.01), and there was also a significant difference in the 

cognitive ratio between the first 10 minutes (2.82 ± 0.31) of the cognitive trial as 

compared to that for the last 20 minutes (1.14 ± 0.16) of the cognitive trial for both 

experimental conditions (control vs. exercise-involved cognitive task trials, p < 

0.01). (See also Appendix E, Table E.3). 

 

Figure 7.7: Cognitive ratio for both exercise-involved and no exercise 

(control) involved cognitive tasks (n = 12). 

A further investigation was conducted by analysing the entropy (Section 2.7.7) of 

the EEG signals in order to find out the amount of information flowing in the frontal 
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and parietal regions in both conditions (Table 7.2). A 2-way factorial ANOVA with 

repeated measures (2 experimental conditions x 3 locations in the brain) was 

applied to the entropy data, and the statistical analysis revealed that there was a 

significant difference in the mean entropy between the frontal region (Fz) and the 

parietal (Pz) region (p < 0.05). In fact, the ratio of the entropy of the EEG signals at 

Fz to that of Pz for the control experiment was 0.867, and the ratio of the entropy of 

the EEG signals at Fz region to that of Pz for the exercise-involved cognitive task 

trial was 1.25. 

 
Descriptive statistics for entropy 

Brain 
Locations 

Conditions Mean Range N 

Cz 

Control 2.0325 0.23542 12 

Exercise 2.0392 0.57619 12 

Total 2.0358 0.43046 24 

Fz 

Control 1.9958* 1.49913 12 

Exercise 2.3033* 0.92830 12 

Total 2.1496 1.22949 24 

Pz 

Control 2.3008* 1.31144 12 

Exercise 1.8408* 0.43025 12 

Total 2.0708 0.98300 24 

Table 7.2: Summary of the entropy results of the EEG signals for the three brain 

regions (Cz, Fz and Pz) analysed in two experimental conditions (control vs. 

exercise) for 12 participants. The asterisk symbol * represents a statistical 

significance between the means of the entropy of EEG activities at Pz and Fz for 

both conditions with statistical p < 0.05. 
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7.3.5 ERP analysis results 

In this section, the results from the ERP analysis are described and this ERP 

analysis was conducted to find out if there were any associations between the 

ERP components (N100, P200 and P300) and cognitive functions. Figure 7.8 

illustrates the average ERP profile of a particular participant at the frontal midline 

region (Fz) for both exercise and control trials. This figure depicts clearly the ERP 

components after the onset of a stimulus. The coordinates A represents the N100 

ERP component which occurred at 123.5 ms, and coordinates B represents the 

P300 ERP component which occurred at 304 ms.  

  

Figure 7.8: The average event related potential for one particular participant at the 

frontal midline region (Fz) for both cognitive trials. 
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The results of the ERP analysis are shown in Table 7.3 that summarizes the mean 

amplitude and latency of the various ERP components (N100, P200 and P300) for 

all the participants subjected to both experimental conditions that were the control 

and exercise-involved cognitive tasks.  

 
Brain 

Locations 

 
Conditions 

 
ERP 

Components 

 
Amplitude 

(μV) 
Mean (± 
Range) 

 
Latency (ms) 

 
Mean (± 
Range) 

 

 

Fz 

 
 

Control 

N100 -1.42 (±0.60) 108 (±25) 

P200 2.10 (±0.70)* 238 (±32) 
P300 4.25 (±2.80) 383 (±74) 

 
 

Exercise 
 

N100 -1.87 (±0.80) 71.6 (±33) 
P200 3.84 (±1.40)* 228 (±55) 

P300 6.20 (±3.10) 369 (±63) 

 

 

Cz 

 
 

Control 

N100 -0.135 (±2.0) 89.3 (±18) 
P200 4.22 (±1.30) 193 (±29) 
P300 3.04 (±1.5)* 406 (±76) 

 
 

Exercise 

N100 -2.11 (±1.73) 89.7 (±23) 
P200 4.20 (±1.40) 232 (±37) 
P300 6.80 (±2.60)* 395 (±87) 

 

 

Pz 

 
 

Control 

N100 -0.99 (±0.60) 118 (±31) 
P200 2.40 (±0.90) 226 (±37) 
P300 1.61(±1.10)** 432 (±65)** 

 
 

Exercise 

N100 -1.42 (±0.82) 103 (±36) 
P200 2.90 (±1.10) 227 (±17) 
P300 6.13(±1.70)** 372 (±58)** 

Table 7.3: Summary of statistical analysis of the mean amplitude (μ ) and latency 

(ms) ERP components (N100, P200 and P300) for both experimental conditions 

for all participants (n = 12) (the single asterisk * represents p < 0.05 and the double 

asterisk symbol ** represents statistical significance p < 0.01).  
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Statistical analysis at the brain location Fz revealed that there was only a 

significant difference between the means of the amplitude of the P200 ERP 

component (p < 0.05) for the control and exercise cognitive trial. Moreover, there 

was a significant difference in the means of the P300 amplitude (p < 0.05) between 

these two experimental conditions at Cz; and also a significant difference (p < 0.01) 

between the means for both P300 amplitude at Pz (1.61 ± 1.10 μV for control vs. 

6.13 ± 1.70 μV for exercise) and P300 latency at Pz (432 ± 65 ms for control vs. 

372 ± 58 ms for exercise). 

7.4 Discussions 

7.4.1 Questionnaire analysis (Fatigue-related subjective measures) 

The visual analogue scales subjective measures showed that the participants felt 

more fatigued mentally and physically in the exercise-involved cognitive trial than 

the control experiment. Furthermore, there was an increase in the physical fatigue 

and mental fatigue as well as a decrease in concentration with increasing cognitive 

time-on-task trials for both experimental conditions. In the same line of thought, 

certain researchers (Dureman and Bodén, 1972; Matthew 2004) showed that the 

subjective measures of fatigue were significantly greater than initial fatigue ratings 

as time-on-task increased. 

From the MFI results, both mental and physical fatigue subjective measures were 

significantly greater in the exercise-involved cognitive experiment than that of the 

control experiment. Furthermore, the participants felt more reduced motivation and 

reduced activity for the exercise-involved cognitive experiment than the control 

experiment as well as they felt more reduced motivation and reduced activity at 

the end than at the start of the experimental conditions. In addition, McMorris and 

Graydon (1996) stated that motivation would not increase with increasing time-on-
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task as the task demands were maintained same across trial blocks. In fact, for the 

exercise-involved cognitive trial, the author observed that most of the participants 

around time20 (20 minutes of the cognitive task had elapsed), started to feel very 

sleepy or tired (initiation of yawning processes) (Hermanowicz, 2007; LeWinter, 

2007), and they stated as post-study comments that they needed a ‘good nap or 

sleep’. 

7.4.2 Cognitive performance (Reaction time and Accuracy of responses) 

Interestingly, the participants subjected to the exercise-involved cognitive 

experiment had overall a lower mean reaction time (or faster speed) in pressing 

the numerical keys when presented with a particular visual stimulus or when the 

chunk of odd or even numbers was found. However, the reaction time of the 

participants in the exercise-involved cognitive task increased exponentially with 

increasing time on task. In contrast to that, the reaction time of the participants for 

the control experiment decreases exponentially, and hence they performed at 

faster speed during the last time interval (time30) of the cognitive trial. Several 

researchers indicated a relationship between cognitive task length and response 

time. Firstly, Levitt and Gutin (1971) found a non-monotonic effect on reaction time 

while Macchi et al. (2002) found a positive relationship between response time and 

cognitive task length; Furthermore, Boksem et al. (2005) found a mixed 

relationship based on post error responses which was negative and post correct 

responses which was positive after either a medium or long-haul physical task 

performance. 

In this research study, the participants were more accurate in their responses 

during the control experiment than during the exercise-involved cognitive 

experiment. Couple with that, the accuracy of the responses to the visual cues 



126 

 

decreased significantly for both experimental conditions as time-on-task increased. 

Lorist et al. (2002) emphasized a negative relationship between task duration and 

performance as response accuracy decreased significantly across the participants 

with increasing time-on-task. Another subjective report of fatigue by Lorist et al. 

(2000) showed that as fatigue increased, response accuracy decreased 

independent of time-on-task. Certain researchers, Williams et al. (1999) and 

Williams (2000), demonstrated that when the subjective reports of fatigue 

increased, the number of visual fixations increased as more fixations were needed 

to extract sufficient information from the visual scene which might contribute to a 

greater sensation of fatigue. Following a physical and a series of mental fatiguing 

task, the participants’ arousal decreased based on the subjective measures of 

fatigue where they seemed to disengage from the task even though that the 

cognitive task demand was same across the cognitive block trials. Overall, the 

participants subjected to the control experiment performed better in terms of 

higher percentage accuracy of their responses but with slower reaction times than 

in the exercise-involved cognitive experiment. 

 7.4.3 ECG analysis (Heart rate and RR-Interval) 

Heart rate activities were higher for the exercise session and the beat-to-beat 

interval was higher for the control session. For the exercise session, there were 

more fluctuations in the mean heart rate activities with increasing time-on-tasks 

whereas for the control session, the mean heart rate activities of the participants 

started to decrease from time20 (20 minutes elapsed). The frequency of 

fluctuations in the heart rate activities (for the exercise session) showed the 

frequent fluctuating physical efforts while combatting fatigue (Dureman and Bodén, 

1972; Matthew, 2004). The decreasing heart rate activities of the participants in 
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the control showed that the arousal levels of the participants started to decrease 

by taking into account the decreasing percentage accuracy of their responses 

(Steriade, 1996; Yerkes and Dodson, 1908). The decrease in heart rate activities 

and corresponding increase in beat-to-beat intervals for the exercise-involved 

cognitive trial were associated to an increase in fatigue due to an increase in the 

parasympathetic control or activity of the nervous system (Hancock and Meshkati, 

1988; Jouanin et al., 2004). The next section discusses the results from the EEG 

and ERP analysis. 

7.4.4 EEG analysis (cognitive ratio and entropy)  

There was no difference in the means of alpha band power at Pz and theta band 

power at Fz subjected to both experimental conditions. Moreover, there was no 

difference in the cognitive ratio (frontal theta band power to parietal alpha band 

power) between the two experimental conditions. However, there was a difference 

in the cognitive ratio with increasing time-on-task including an abrupt reduction in 

cognitive ratio after 10 minutes of the cognitive trial had elapsed for both control 

and exercise cognitive experiments. The decrements in cognitive function 

(cognitive ratio and poor accuracy) that were observed during the sustained 

mental work can be regarded as cognitive fatigue which subsequently prevented 

the alert participants to continue high mental performance (Hockey et al., 1997; 

Montgomery et al., 1995). In addition, Makeig and Inlow (1993) found a 

progressive increase in the EEG power in the frequency range of 4 Hz to 14 Hz as 

alertness decreased and error rates increased in a vigilance mental task. Cheng et 

al. (2007) found that there was a significant difference between the theta band and 

alpha band frequency power before a mental fatigued 3-hour visual display task 

session as compared to post session. When people feel fatigued during or after 
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prolonged periods of cognitive activity, they have the tendency to lose 

concentration and cannot focus their attention on the tasks they are performing 

(Boksem et al., 2006). Furthermore, some researchers found that when arousal 

level dropped, EEG activities changed from fast and low amplitude waves to slow 

and high amplitude waves, and this decrease in arousal brought about a 

corresponding increase in low-frequency alpha and theta activities (Klimesch, 

1999; Lafrance and Dumont, 2000; Oken and Salinsky, 1992), which might be 

reflecting a decrease in cortical activation (Cook et al., 1998; Laufs et al., 2003). 

Hence, the amount of alpha and theta power can provide an indication of the level 

of fatigue which one experiences during mental fatiguing tasks (Boksem, 2005).  

As the cognitive ratio is based on a particular frequency range principle, the 

advantage of using the entropy mathematical method was that it considers the 

total information content of the EEG signal across the brain regions under 

investigation (Viertio-Oja et al., 2004). It was found that the mean entropy was 

significantly different between the fronto-midline and the parieto-midline regions of 

the brain, and the ratio of the entropies of these two brain areas was higher during 

the exercise-involved experiment than in the control experiment.  Therefore, it 

appeared that there was an "overload" of information that prevented the 

participants in performing well, and remarkably, the cognitive ratio (as described in 

the previous section) was also slightly higher during exercise than that of the 

control session. During competitive sporting environments, Mathews and 

Desmond (2002) stated that high task difficulty, prolonged task exposure and 

multiple task demands could induce a great level of information processing which 

subsequently increased the mental workload. Such increments in mental 

workloads caused a depletion of the cognitive system’s resources that were 
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available for task completion and consequently promoted the development of 

fatigue (Matthews et al., 2000; Mathews and Desmond, 2002).  According to 

activation theory stated by Lindsley (1951) and elaborated by Hebb (1955), the 

continuum ranging from low activation (e.g. sleep) to high activation (e.g. excited 

states) is a function of cortical bombardment by the ascending reticular activating 

system (Magoun, 1952; Steriade, 1996), and the relationship between activation 

and level of performance is represented by the inverted U curve (Yerkes and 

Dodson, 1908). This means that, with an increasing activation level, the level of 

performance increases monotically but after exceeding an optimal point, the 

relation becomes nonmonotonic which implies that further increase in activation 

level beyond this optimal point decreases the level of performance; this reduction 

in performance is related to the amount of increase in the level of activation. 

Therefore, the overflow of information as shown by the entropy ratio prevented the 

participants to focus properly their attention which might contribute to the reason 

why their response accuracy decreased specifically during the exercise-involved 

cognitive trial.  

7.4.5 ERP analysis (N100, P200, P300 ERP components) 

The N100 ERP component mean amplitude was relatively greater, and its 

corresponding latency was smaller during the exercise session than in the control 

session for all three brain locations. This insinuates the participants reached a 

faster and higher arousal state in the exercise-involved cognitive trial than in the 

control experiment (Nash and Williams, 1982). The higher amplitude of the ERP 

component P200 at the frontal lobe showed that the participants achieved a 

greater intensity of higher-order perceptual processing and visual cognition. 

However, the higher arousal state, and higher-order perceptual processing and 
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visual cognition were impaired by cognitive fatigue as shown by the decreasing 

cognitive ratio. One possible reason was that there might be too much information 

flow (as shown by the entropy values) that caused a mental stress on the 

participants post exercise which affected the accuracy of their responses that was 

lower than the control session (Freunberger et al., 2007; Luck and Hillyard, 1994). 

This greater amount of information flow was caused by a greater of amount of 

activation at cortical level to such a point that the participants surpassed the 

optimal level of arousal for optimal performance. Even though the participants 

subjected to the exercise-involved experiment had faster reaction time (reflected 

by their lower P300 latencies), their response accuracies were poorer hence 

resulting poorer cognitive performance. On the other hand, the control session 

results showed that the participants improved their reaction times in the last 

intervals of the cognitive tasks but they failed to improve their accuracy in 

responding to the visual cues with increasing time-on-task because they felt more 

fatigued in the last intervals of the cognitive tasks than at the start according to 

their subjective measures of fatigue. Moreover, the P300 amplitude increased 

acutely following an aerobic exercise (Nakamura et al., 1999) whereas other 

researchers found that P300 amplitude significantly increased after a 3-hour VDT 

experimental task where the subjects appeared mentally fatigued (Doppelmayr et 

al., 2007). Therefore, both the latency and amplitude of the P300 ERP component 

seemed to be influenced following both physical and cognitive activities and hence 

representing promising tool for measuring cognitive performance. 

7.5 Summary 

The participants felt physically and mentally more fatigued during the exercise-

involved cognitive trial than during the control experiment. Moreover, there was the 
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apparent decreasing engagement from the cognitive task based on the decreasing 

accuracy performance of responses together with decreasing cognitive ratios with 

increasing time-on-task cognitive trial for both experimental conditions. This 

cognitive fatigue and the changes in heart rate activities as well as beat-to-beat 

intervals across the cognitive trials showed that the development of fatigue did not 

manifest only centrally but also peripherally. In addition, sustaining attention during 

the cognitive task is closely related to arousal according to the differences in the 

event-related potentials which subsequently influence the cognitive performance of 

the participants. The circular relationship between fatigue, performance and 

arousal state implies that one should work ‘harder’ to sustain performance levels 

which would require consequently more energy resources, thereby intensifying the 

development and consequences of fatigue. Therefore, the increase in perceived 

mental workloads and decrease cognitive performance following an exercise-

involved cognitive experiment as well as between pre and post both experimental 

conditions demonstrated that there appeared limited amount of energy resources 

in the central systems that are reflected in their cognitive behaviours and cognitive 

performance.  
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CHAPTER EIGHT 

                     General Discussion 
 

 

8.1 General discussion of the physiological control models of exercise 
fatigue 

The aim of this thesis was to use mathematical modelling and analysis techniques 

to explore the nature and cause of exercise fatigue to optimise performance during 

physical activity. A set of objectives, in the form of experimental case studies were 

devised to investigate, firstly, adenosine triphosphate production from the energy 

system pathways during physical activity (i.e. during maximal exercise of short 

duration or endurance exercise using different types of pacing) (Hill et al., 1923; 

Shulman and Rothman, 2001; Weir et al., 2006);  And secondly to investigate the 

presence, complexity and the characteristics of the system control mechanisms 

which regulate physical behaviour and activity, and sustain homeostasis in the 

physiological systems (Davis and Bailey, 1997; Lambert et al., 2004; St Clair 

Gibson and Noakes., 2004; Ulmer, 1996). Therefore, by understanding the 

physiological principles that are responsible for the control of exercise-induced 

fatigue, through well-known mathematical techniques to biology and medicine 

together with the existing biological theories, it was hoped to be able to evaluate 

and develop these physiological theories in order to improve sports performance. 

Various theoretical control models of fatigue have been proposed to explain the 

cause of exercise fatigue, and these physiological models have somehow similar 

or different rules underlying their developments.  
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For instance, some biological control models (Brooks et al., 2005; Hill et al., 1923; 

Hill, 1924) state that physical activity is limited only by changes in the substrates or 

metabolites found in the working skeletal muscles. These changes can represent 

either too much accumulation of metabolites (such as blood lactate) or depletion of 

important substrates (such as adenosine triphosphate) that can impede the proper 

functioning of the exercising muscles which impair the capacity of these muscles 

to produce force or power. Another control model of exercise fatigue (Davis and 

Bailey, 1997; Fowles et al., 2002; Nielsen and Clausen, 2000) states, however, 

that only chemical changes within the brain modify the cerebral function that 

reduces the capacity to maintain central motor drive to the working muscles 

(central fatigue).  

Furthermore, some non-catastrophic control models (Lambert et al., 2004; St Clair 

Gibson and Noakes., 2004) posit that exercise performance is regulated by the 

central nervous system to maintain homeostasis in all physiological systems so as 

to prevent any physiological systems failure as opposed to the catastrophic central 

fatigue or peripheral fatigue conceptual models (Davis and Bailey, 1997; 

Gonzalez-Alanso et al., 1999; Hill et al., 1923; Roberts et al., 1997). In fact, all the 

biological control models revolve around the idea that either exogenous or 

endogenous factors affect the physical performance of the athletes, and hence are 

related to the fatigue which occurred during physical activity. Following these 

popular theories in explaining the cause of fatigue, this thesis attempted, together 

with the existing physiological control models, to unearth the essence and cause 

of exercise-induced fatigue through the use of various mathematical modelling and 

analysis techniques in various physical conditions at rest and during exercise. The 

following sections critically evaluate the mathematical results in light of the 
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physiological models of the exercise fatigue, present the corresponding 

implications for the cause of exercise fatigue, and describe the limitations of the 

experimental case studies. 

8.2 General discussion of the physiological models based on the results of 

the experimental case study one 

In this research, there was a growing need to understand how the human body 

system modulates the amount and the rate of ATP utilisation during high-intensity 

exercise of short duration to delay the onset of fatigue and hence, improve sprint 

performance. According to the results from experimental case study one, the 

energy produced from the oxygen-independent glycolysis anaerobic subsystem 

seemed to undergo a more physical demanding metabolic process (i.e. the time 

constant of the oxygen-independent glycolysis metabolic energy process was 

highest) as compared to the energy produced from the other anaerobic 

subsystems (ATP-endogenous and PCr utilisation). In addition, the PCr anaerobic 

subsystem contributed to most energy needed to complete that physical activity 

and the depletion of this anaerobic subsystem affects sprint performance. The 

energy production from the various energy systems seemed to be controlled 

following the timely metabolic process (the maximal metabolic process of the 

anaerobic subsystems occurred at specific times) as well as the metabolic setting 

rate of ATP production from each energy system. Furthermore, it was observed 

that the underlying mechanisms responsible for this timely metabolic process and 

metabolic rate, for any particular anaerobic subsystem, appeared similar as the 

value of the corresponding time constant was practically same for all sprinters.  
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The results obtained from study one support one particular hypothesis predicted 

by the cardiovascular/anaerobic/catastrophic model which states that the depletion 

of substrates (such as ATP) may affect the working muscles (Edwards, 1983; Hill 

et al., 1923). However, these mathematical results did not implicate that the 

exercise fatigue which affected their sprinting performance was only peripheral 

because there appeared to be some common controlling mechanisms among all 

sprinters that affected the rate of ATP production and depletion for the various 

anaerobic energy subsystems. These common controlling mechanisms can 

originate from the peripheral or central systems, or both. 

These mathematical results are also in agreement with the energy supply/energy 

depletion model (Shulman and Rothman, 2001) whereby fatigue during exercise is 

associated to the failure of the metabolic pathways to produce sufficient amount of 

energy (ATP) to the active muscles. This particular physiological theory and the 

mathematical modelling result show that if the sprinters' body systems can 

produce more energy from the PCr utilisation metabolic process, or store a larger 

amount of ATP endogenously, or initiate a faster metabolic process of the oxygen-

independent glycolysis, their sprinting performance could have been better.  

Furthermore, the energy supply/energy depletion model predicts the importance of 

conserving energy production through energy pathways (i.e. the anaerobic 

subsystems and the aerobic system) which is thought to affect performance. This 

insinuates that by depleting any particular energy system pathway, this may cause 

a stress on the human organism where in this research, it was demonstrated that 

the highest rate of expenditure of ATP via the PCr system caused a simultaneous 

decrease in maximum speed whereby the sprinters failed to sustain the maximal 

speed performance. From these results, certain physiological control model 
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theories (Edwards, 1983; Hill et al., 1923; Shulman and Rothman, 2001) support 

the mathematical findings but they do not provide answers to certain mathematical 

observations such as the common controlling mechanisms that were observed 

peripherally for all sprinters which affected their sprint performance.  

8.3 General discussion of the physiological models based on the 

experimental results of case study two 

To continue evaluating the principles underlying the physiological control models, 

there was also a great need to investigate how pacing affects sport performance 

during a time-trial exercise in terms of energy expenditure and physiological 

homeostatic disturbance (Ansley et al., 2004; de Koning et al., 2011; Noakes, 

2000; Shulman and Rothman, 2001; Tucker et al., 2006; Ulmer, 1996). One 

common and important observation in athletic competition (Ansley et al., 2004; 

Tucker et al., 2006; Ulmer, 1996), especially in time-trial exercise, is that athletes 

have a tendency to vary their pacing during the race. In so doing, they either let 

their competitors surpass them (as part of a foreseen plan) or accelerate in the 

middle of the time-trial race or at the near end of the race (the latter is normally 

observed as an endspurt). These observations show that muscular power output 

seems to be controlled in an anticipatory manner to avoid unexpectedly large (and 

uncontrolled) homeostatic disturbances in the physiological systems. Therefore 

three common types of pacing (de Koning et al., 2011) were considered (self pace, 

even pace and variable pace) for this experimental case study for comparison 

purposes of the metabolic resources from the energy systems, and the effect of 

pacing on physiological systems. The mathematical modelling and analysis results 

showed that pacing affected considerably the amount of energy produced from the 

aerobic and the anaerobic energy systems as it was found that a particular type of 

pacing can be either anaerobic energy system dependent or aerobic energy 
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system dependent. Therefore, by adopting a pace, it is just to optimise these 

energy systems accordingly. Interestingly, for any particular cyclist, the total work 

done for completing each pacing trial was not significantly different. This indicates 

that pacing does not necessarily economise the total metabolic energy resources 

found in the human body system but rather creates a desirable internal 

environment for the biological metabolic processes to take place so that the 

physical activity can be completed successfully. Moreover, the hazard score index 

predicted the amount of homeostatic disturbance that pacing may inflict on the 

physiological systems by taking into consideration the momentary ratings of 

perceived exertion (a subjective measure of fatigue) and the percentage distance 

that remains to be covered.  

 As expected, both self pace and even pace time trials caused less homeostatic 

disturbance (with low hazard score index) to the physiological systems throughout 

the time trials as compared to the variable pace trial. The mathematical results as 

well as other research studies (Hettinga et al., 2006) showed that there was a 

constant reduction in power output during the endurance time trial exercise, and 

this acted as a defensive mechanism to prevent the cyclist (human organism) from 

maintaining same high pace or power output to avoid any catastrophic 

physiological system failure or any irreversible damage. This observation also 

showed that muscular power output appeared to be controlled in an anticipatory 

manner to avoid large (and uncontrolled) homeostatic disturbances. Furthermore, 

blood lactate concentration correlated with RPE values whereby it was found that 

variable pace was the most tiring type of pacing with highest blood lactate 

concentration and rating of perceived exertion. Therefore, these mathematical 

findings are in partial agreement with certain principles of the 
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cardiovascular/anaerobic/catastrophic physiological model which posits that when 

the rate of production of blood lactate concentration is higher than its rate of 

removal, this may cause exercise-induced fatigue. In addition, the mathematical 

results (case study two) demonstrated that the energy supply/energy depletion 

model predicted well by stating that the insufficient amount of energy from a 

particular metabolic pathway may inhibit sport performance as variable pace was 

the most anaerobic energy system dependent where mean RPE and blood lactate 

concentration over the whole time-trial were highest. Moreover, the experimental 

results also support another important prediction of this energy supply/energy 

depletion model which postulates that energy production from the energy 

pathways may affect physical activity performance and a proper strategy is 

needed to use the available metabolic energy resources efficiently.  

Moreover, the mathematical results also favour one particular hypothesis of the 

neuromuscular fatigue model which states that there is a reduction in force or 

power output despite the fact that the perception of effort increases (which is 

believed to be caused by a reduction of muscle activation by the central nervous 

system) as was observed with increasing RPE specifically during the mid-portion 

of the self pace time-trial.  The biomechanical model predicts that the muscles can 

be regarded as elastic energy systems where the more elastic the muscle is, the 

less torque this muscle is required to produce and this increases efficiency 

(Pennisi 1997, Roberts et al., 1997; Noakes, 2000). During the variable pace, the 

cyclists utilised fast twitch muscle fibres more often (based on the very high 

intensity of 140% of their mean pace power output) (Pascoe and Gladden, 1996) 

that consequently made the blood lactate concentration to increase (McMahon 

1984; Wasserman et al., 1986) and they felt most fatigued by adopting this 
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variable pace. The mathematical modelling results together with the ratings of 

perceived exertion and the blood lactate concentration did not support the notion 

that the more elastic muscle one utilised, this would decrease the rate of 

substrates accumulation as posited by the biomechanical model (Pennisi, 1997). 

In addition, implicit to the task dependency model, the physiological mechanisms 

of exercise-induced fatigue in fact varied with the different pacing time-trials where 

the cyclists felt most fatigued while performing a variable pace and least fatigued 

for the even pace trial even though the cycling distance to be covered was kept 

constant. The presence of the endspurt that occurred at the end of the cycling race 

demonstrated that there was the inherent conscious effort which influenced 

exercise performance as predicted by the psychological/motivational model and 

also performance was sub-optimal specifically throughout the self pace time-trial. 

Therefore, it was shown based on the mathematical modelling and analysis results 

as well as the conceptual model theories that pacing affected the amount of 

energy produced from the aerobic and anaerobic energy systems and this caused 

different degrees of homeostatic disturbance which subsequently brought about 

different levels of the sensation of exercise-induced fatigue. During self pace trial, 

there was the conservatory nature of the cyclists of not pushing themselves to the 

physical limit that influence their exercise behaviour without disregarding the fact 

that they were consciously changing their physical effort, in an anticipatory 

manner, as shown by the endspurts when reaching the end of the race and 

frequent changes in power output throughout the cycling time-trial race. 
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8.4 General discussion of the physiological models based on the 

experimental results of study three 

Following a thorough mathematical analysis of the effect of pacing trial on energy 

expenditure, results from the third experimental case study confirmed the 

presence of control mechanisms in the physiological system activities. By taking 

into account the hypotheses of certain physiological control models (Lambert et 

al., 2004; St Clair Gibson and Noakes., 2004), mathematical results also showed 

that the complexity and characteristics of the physiological system control 

mechanisms were different so as to maintain the proper functioning of these 

biological organ systems during physical activity. The inverse relationship of power 

to increasing frequency as well as the multiple frequency peaks demonstrated the 

presence of control mechanisms in the physiological systems. However, for any 

particular organ system, the complexity and characteristics (predictability and 

resilience to change) of the system control mechanisms responsible for regulating 

the various physiological systems were different.  

Furthermore, the fractal dimension predicted the complexity of the pacing trial, and 

the complexity of the physical activity influenced the development of fatigue which 

consequently affected the physical performance of the cyclists as posited by the 

task dependency model (Weir et al., 2006). For a control to occur there should be 

the presence of a frequency or a rate inherent in the communication or interaction 

among the physiological systems. The existence of such type of control system 

that was showed to be existent in this research supports the prediction of Ulmer 

(1996) in his teleoanticipation model which stated a control is important to optimise 

performance during a physical activity. The difference in complexity of the system 

control mechanisms demonstrated that the human body works as a complex 
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system (as hypothesized by the Central Integrative Regulator model) and this 

complexity may be due to the complex interaction of the biological processes that 

occurred between the central systems and the peripheral systems (Lambert et al., 

2004; St Clair Gibson and Noakes., 2004). The behavioural characteristics of the 

physiological systems in terms of resilience to change subjected to a physical 

activity (a particular type of pacing) and predictability (in terms of determinism and 

recurrence rate) form an important part of the possible features of the control 

mechanisms that influence the onset of fatigue that are supported by the 

predictions of the task dependency model. Some physiological systems are more 

stringently protected by this control system as per the high trapping time of the 

biological activities of the cardiovascular system as compared to that of respiratory 

system. This is one of the expectations of a more robust system (with higher time 

constant) as suggested by (Lambert et al., 2004; Pincus, 1994). The predictability 

of the behaviour of the physiological activities of the biological organ systems as 

supported by the task dependency model may also contribute to the onset of 

exercise-induce fatigue and affect sport performance accordingly. 

Therefore, certain principles of the existing biological control models of exercise 

fatigue and the mathematical results from this research support the idea there is 

the presence of a control system which is important to regulate the internal 

environment, the interactive behaviour of the physiological systems and the whole 

human organism subjected to a physical activity.  

8.5 General discussion of the physiological models based on the 

experimental results of study four 

Some physiological models (Lambert et al., 2004; St Clair Gibson and Noakes., 

2004) postulated that there may be a potential central regulator that paces the 

human organism during physical activity by interacting with the various 
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physiological organ systems. Based on the mathematical analysis of the 

physiological system activities, it was observed that the system control 

mechanisms used specific frequency bands simultaneously to interact with the 

physiological systems. For there to be the simultaneous allocation of frequencies 

to modulate the physiological activities of the organ systems (See Sections 6.3.2 

and section 6.3.3), there should be a higher level of control to these organ 

systems. As such, this control may be present in the central systems in regulating 

the peripheral systems (Anthea et al., 1993). In addition, an increase or decrease 

in the frequency power of the communication band regulating any particular 

physiological system affects the physiological and overall behaviour as well as 

performance of the cyclists during physical exercise. 

These mathematical results are in line with the prediction of the teleoanticipation 

model which suggested that, through a preventive process; the efferent signals 

from that “controller” can determine various peripheral processes and then the 

afferent signals from these peripheral systems can feedback information to change 

pace or power output (Ulmer, 1996). Moreover, the integrative central regulator 

model (Lambert et al., 2004; St Clair Gibson and Noakes., 2004) postulates that 

this controller paces the body during exercise through interactive communication 

between the central and the peripheral systems. In fact for a pacing to occur, the 

various physiological systems should be simultaneously controlled to produce an 

effective and non-catastrophic physical activity and behaviour. If there was no 

simultaneous control, the physiological systems would have been unmanageable 

which would subsequently lead to an undesirable catastrophic physiological 

system failure during the race or physical activity. Following certain predictions of 

physiological exercise models of fatigue and the mathematical analysis from this 
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research, there is in fact a control system which regulates the peripheral systems 

through an interactive biological communication process. Moreover, this control 

system is complex and has higher level of control to the peripheral systems as it 

has the ability to communicate simultaneously to these physiological systems 

using specific frequency bands frequencies and the power of which affects the 

physiological behaviour of the organ systems that subsequently influences 

performance during physical exercise. 

8.6 General discussion of the physiological models based on the 

experimental results of study five 

The last experimental case study investigated whether there were finite metabolic 

resources in the brain by performing exhausting physical and cognitive tasks. The 

decreasing cognitive performance in terms of poor accuracy of responses, and 

faster reaction times following a tiring exercise-involved cognitive trial showed that 

there was definitely a change in the cognitive behaviour in the central system as 

compared to the control cognitive trial. According to the subjective measures of 

fatigue (i.e. reduced  activity, motivation and concentration as well as increased 

mental fatigue and general fatigue), it was certain that the cognitive load which 

was perceived by the participants post a tiring physical activity seemed to increase 

even though the cognitive task demand placed mentally on them was kept 

constant throughout the cognitive trials. This insinuates that for a perceived 

‘cognitive load’ to increase, there should be a decrease in the level of arousal or 

metabolic energy in the brain. In this research, the high cognitive ratio and 

information processing (i.e. entropy) across the fronto-parietal network during the 

exercise-involved cognitive trial impaired cognitive performance by decreasing the 

arousal state according to the inverted-U relationship of performance with 

increasing arousal level (Yerkes and Dodson, 1908). In addition, the significantly 
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higher heart rate activities, physical fatigue and general fatigue post the 

exhausting physical exercise also implicate that the participants felt that they were 

applying greater physical effort while performing the cognitive tasks than during 

the control cognitive experiment.  

According to the thermoregulatory model of fatigue (Nybo and Nielsen, 2001; in et 

al., 1999), during a physical activity, an increase in body temperature increases 

heart rate activities which were observed post the exercise-involved cognitive trial 

and this may represent an additional physical stress on the participants while 

performing the cognitive tasks. Also, the reduction in arousal post an exhausting 

physical exercise trial, could have caused the fatigue in the peripheral systems 

(via a decrease in neuromuscular propagation) as shown by the subjective 

measures (increase physical fatigue, general fatigue and reduce activity) and the 

fluctuations in heart rate activities as hypothesized by the neuromuscular fatigue 

model (Davis and Bailey, 1997). 

Interestingly, the central fatigue model supports the idea that the brain regulates 

behaviour by regulating the arousal or the central activation. This is clear that the 

participants were more fatigued mentally and physically following the tiring 

exercise bout and this affects their cognitive behaviour and performance. Most 

participants felt very sleepy during the near end of the exercise involved cognitive 

experimental condition (also predicted by psychological/motivational model) which 

means that the performance of the participants in this cognitive experiment was 

also regulated at a subconscious level to prevent a conscious override of the 

bodily functions as shown by their poor cognitive performance (Davis and Bailey, 

1997). 
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Therefore, the mathematical analysis of the physiological and brain activities, the 

subjective measures of fatigue, and the predictions of the physiological control 

models of exercise-induced fatigue, it may be deduced that not only the brain 

appeared to have finite metabolic resources but also the whole human body 

seemed to possess finite level of energy resources. Therefore, for sport 

performance to be a peak level, both the central systems and the peripheral 

systems should be equipped with necessary metabolic energy resources to reach 

optimum arousal and complete successfully a physical activity. 

8.7 Limitations of this research 

This thesis was able to analyse certain key principles of the existing physiological 

control models. However, more research should be devised to assess the veracity 

of the current mathematical findings under different sporting conditions as well as 

the hypothesis of other biological control models (such as the thermoregulatory 

and biomechanical models) in the aims to produce a solid and clear picture of the 

aetiology of exercise-induced fatigue. Furthermore, the mathematical methods that 

were used in this thesis were chosen mainly because they are currently applied to 

the field of biology and medicine and they are robust to noise (Higuchi, 1988; Rioul 

and Vetterli, 1991; Zbilut et al., 1995). Therefore, this could be improved by 

developing mathematical and statistical tools based on the temporal 

characteristics and frequency behaviour of the biological activities. The 

experimental case studies comprised both lab-based (experimental case studies 

2, 3, 4 and 5) and one field data (experimental case study 1), this thesis assumed 

that the data collected in the laboratory conditions really give a succinct picture of 

the behaviour of the athletes in a real sporting environment.  
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8.7.1 Type and size of the sample population used in this research 

The study population consisted mainly of young and healthy group of people with 

mean age 31.2 (±7.3) years and mean body mass index 23.9 (±2.1) as well as 

their physical activity varied from club level to elite level athletes. Based on these 

criteria, this thesis does not generalise the findings or the concepts of the control 

of fatigue to an older, or younger, or to a less physically active (sedentary) group 

of people. The population sample size used in the various experimental case 

studies varied between 8 to 12 participants and this was why strong inferential 

statistics were used to support the results data (Andrew et al., 2011; Gratton and 

Jones, 2004). In addition, by recording the physiological activities at high capture 

rates (between 10Hz to 400Hz), the physiological samples, under analysis, range 

from hundreds to thousands, and these were sufficient for this research to produce 

reliable results (Cronbach et al., 1972; VanVoorhis and Betsy, 2007; Marcoulides, 

1993) but at the expense of great amount of time in extracting the physiological 

data, processing the data for analysis and in computation. 

8.7.2 Accuracy of report 

Even though the mathematical results obtained in this research are reliable and 

promising, the accuracy of this report could be improved by the following ways. 

Firstly, the accuracy of the experimental results could be improved by increasing 

the quantity of physiological data by using a higher capturing rate (Marcoulides, 

1993), or secondly, by increasing the population sample covering a wider or 

narrower age group, or by repeating the experimental case studies to increase 

reliability. Last but not least, the quality of data can be improved by utilising 

appropriate pre-processing techniques such as data transformation to help in 
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conducting statistical or mathematical analysis easily on the biological data (van 

den Berg et al., 2006). 
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CHAPTER NINE 

       Conclusion 
 

9.1 Conclusions based on mathematical findings and existing biological 

theories 

A current challenge in exercise science is the cause of fatigue that affects exercise 

performance under different sporting conditions. Despite various physiological 

control models have been developed, none of them has been able to explain with 

certainty this cause of exercise-induced fatigue (Noakes, 2000; Weir et al., 2006). 

For example, certain foundations of the physiological models (Davis and Bailey, 

1997; Lambert et al., 2004; St Clair Gibson and Noakes., 2004) are the on-going 

developments of previously hypothesized control models (Baker et al., 1993; 

Newham et al., 1991; Ulmer, 1996) or clash with certain principles of the other 

existing theoretical models of exercise fatigue as described in the literature review 

(Bilodeau et al., 2001; Calbet et al., 2003; Edwards et al., 1995; Hill et al., 1923). 

According to the mathematical results obtained from the experimental case 

studies, this thesis partially supports certain principles or predictions of the current 

biological control theories. The following paragraphs draw conclusions from these 

mathematical modelling and analysis case studies and their overall implications in 

the light of the physiological control model theories. Then, the last section 

describes recommendations for future research in consolidating the current works 

of this thesis based on the mathematical findings and the existing physiological 

control theories, to help delay the onset of fatigue during exercise and improve 

sports performance.  



149 

 

From the mathematical findings of experimental case study one, the human 

organism regulates the amount of ATP by setting the metabolic processes (ATP 

production and depletion) of the anaerobic subsystems and the aerobic energy 

system at different rates which affected sprint performance. Moreover, the 

similarity of the time constants, for any anaerobic subsystem, revealed a common 

controlling mechanism, observed in all the elite athletes, which hinders their sprint 

performance. Hence, the observations from mathematical modelling and analysis 

in this particular case study are in agreement with one particular principle of the 

cardiovascular/anaerobic/catastrophic model which supports the idea that the 

depletion of a substrate (i.e. ATP) may affect the exercising muscles (Brooks et 

al., 2005; Hill et al., 1923; Shulman and Rothman, 2001). In the same line of 

thought, the mathematical results also approve one particular prediction of the 

energy supply/energy depletion model which supports the notion that exercise 

fatigue may be related to the incapacity of the metabolic energy pathways to 

generate sufficient energy to the active muscles (Noakes, 2000; Shulman and 

Rothman, 2001); And in this research, it was shown that the time at which the 

highest rate of ATP depletion from the PCr anaerobic system occurred, there was 

a simultaneous decrease in sustaining maximal speed. However, the CAC model 

and the energy supply/energy depletion model together with the existing 

physiological control theories (Davis and Bailey, 1997; Gonzalez-Alanso et al., 

1999; Roberts et al., 1997; St Clair Gibson and Noakes., 2004; Ulmer, 1996; Weir 

et al., 2006) of exercise fatigue cannot explain the common controlling mechanism 

that was observed in regulating the metabolic processes in the physiological 

systems which influenced sport performance. 
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Findings from the experimental case study two show that pacing, during an 

endurance exercise time-trial, influenced the amount of adenosine triphosphate 

produced from the aerobic and the anaerobic systems but did not affect the total 

amount of energy produced from these two energy systems. These observations 

confirm one of the principles of the Energy Supply/Depletion model (Shulman and 

Rothman, 2001) which postulates that the insufficient amount of energy from a 

particular metabolic pathway causes exercise fatigue which subsequently impairs 

sport performance. Furthermore, pacing caused different degrees of homeostatic 

disturbance in the physiological systems as predicted by the hazard score index 

mathematical measure which was highest for variable pace, and lowest for self 

pace time-trial exercise. This degree of homeostatic disturbance influenced the 

physical behaviour of the cyclists which consequently affected their time-trial 

performance. In addition, the cyclists felt most fatigued (i.e. mean RPE for the 

whole trial was highest) during the variable pace trials (most anaerobic system 

dependent) and they felt least fatigued in even pace trial (most aerobic system 

dependent) whereby blood lactate concentration was highest for variable pace and 

least in even pace time trial. Undoubtedly, this relationship suggests that blood 

lactate concentration contributed to the perception of fatigue that the cyclists felt 

during the race, and hence supports one particular hypothesis of the CAC model 

(Brooks et al., 2005; Hill et al., 1923; Lucia et al., 2002) which posits exercise-

induced fatigue occurs specifically when the rate of production of blood lactate 

concentration is higher than its rate of removal from the human body. Moreover, 

results from case study two favour the neuromuscular fatigue model (Davis and 

Bailey, 1997; Fowles et al., 2002; Nielsen and Clausen, 2000) as it was found that 

there was a reduction in cycling power output during the self pace time-trial 

despite an increase in the perception of effort as observed by the rating of 
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perceived exertion. However, during the variable pace time-trial, both the mean 

rating of perceived exertion and blood lactate were highest, and according to 

mathematical results, variable pace was classified as the most anaerobic energy 

system dependent as it involved high-intensity bouts most often as compared to 

self pace and even pace. Hence, they probably used most often the fast-twitch 

muscle fibers which would increase the accumulation of metabolites as shown by 

the high blood lactate concentration. Then, these observations show that at the 

expense of employing more elastic muscle (e.g. fast-twitch muscle fibers), there 

may involve an increase in unwanted by-products (as shown by an increase in 

blood lactate concentration) which conflicts with the efficient elastic energy system 

principle of the biomechanical model (Pennisi, 1997; Roberts et al., 1997). On the 

contrary, the task dependency model (Weir et al., 2006) hypothesis matches well 

with certain mathematical findings in case study two as in fact both the 

mechanisms (whether the physical activity was anaerobic system dependent or 

aerobic system dependent), and the perceptions (RPE) of fatigue varied with 

different types of pacing. Furthermore, there was the presence of the endspurts 

(accelerations) at the near end of the cycling time trial which showed, firstly, that 

physical performance was sub-optimal during the race, and secondly, there was 

the presence of a conscious neural effort which modified the pace representing 

one of the key principles of the psychological/motivational model (Davis and 

Bailey, 1997). Therefore, apart from some unbiased predictions of certain 

principles of the conceptual models in explaining the cause of exercise-induced 

fatigue, however, they cannot provide an explanation why the total energy 

expended (from both aerobic and anaerobic systems), for any pacing time trial, 

were practically constant. 
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The third experimental case study demonstrated the presence of system control 

mechanisms based on frequency changes of the spectrum of the physiological 

system activities during physical activity. This was one of the revolutionary 

predictions by Ulmer (1996) in the development of the teleoanticipation model 

stating that a physiological control is essential in optimising sport performance. 

Moreover, the complexity, and characteristics (i.e. in terms of predictability and 

stability) of the physiological system activities demonstrate the complex behaviour 

or function of the physiological activities as supported by the integrative central 

regulator model (Lambert et al., 2004; St Clair Gibson and Noakes., 2004), and 

the task dependency model (Weir et al., 2006). In the same line of thought, the 

task dependency model also postulates that the characteristics or properties of 

these physiological systems together with the type of physical exercise may 

contribute to the exercise-induced fatigue whereby it was demonstrated 

mathematically that the power output of each pacing trial was different in 

complexity (i.e. in terms of FD), and these different pacing time-trials influenced 

the predictability (i.e. in terms of determinism and recurrence rate) and stability 

(i.e. trapping time) of the physiological systems. However, none of the principles of 

these conceptual control models have been able to explain how and why certain 

physiological systems are more stringently protected than the others during 

physical activity and how the predictability of the behaviour of any physiological 

system affects sport performance. 

Some physiological models (Lambert et al., 2004; St Clair Gibson and Noakes., 

2004) hypothesized that there may be a central regulator that paces the human 

organism during physical activity by interacting with the various biological systems. 

The mathematical results from the experimental case study four showed that the 
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system control mechanisms utilised specific frequency bands simultaneously for 

control communications with the peripheral systems, and the power of these 

specific frequency bands influenced (positively or negatively) the physical 

performance. In order to allocate frequencies to regulate the behaviour or function 

of the physiological systems, this needs a higher level of control that may happen 

in the central systems and external to these peripheral systems (Anthea et al., 

1993). Moreover, the teleoanticipation model suggested that the efferent signals 

from that possible central controller determine biological processes from various 

peripheral systems, and then afferent signals from these physiological systems 

feedback information to change the pace of the physical activity accordingly. Thus, 

the interactive communication process between this central regulator and the 

peripheral systems illustrates the complex function of the human organism 

(Lambert et al., 2004; St Clair Gibson and Noakes., 2004; Ulmer, 1996). 

Therefore, the results from experimental case studies 3 and 4 showed that both 

the simultaneous control and the physiological systems' interactions demonstrate 

the complex and non-catastrophic behaviour of the functioning of the human 

organism subjected to a physical exercise which do not support the catastrophic 

physiological principles as predicted by certain peripheral fatigue models (Hill et 

al., 1923; Brooks et al., 2005). 

The experimental case study 5 demonstrated through indirect measures that there 

were finite metabolic resources in the brain after performing exhausting physical 

and cognitive tasks which subsequently change the physical behaviour and 

cognitive performance of the participants. This change in behaviour was 

associated to the arousal state or neural activation theory (Steriade, 1996) of the 

human organism which posits that performance is impaired because of the 
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incapability to maintain same level of concentration (this same observation was 

found in this research). This poor cognitive behaviour in the exercise-involved 

cognitive trial experiment may be related to the prediction of the thermoregulatory 

model which states that the increase in physiological activities such as heart rate 

activities may cause an additional physical stress on the human body system 

(Nybo and Nielsen, 2001) that subsequently impairs performance. Moreover, the 

Neuromuscular model (Davis and Bailey, 1997) supports this observation by 

emphasizing that there may be a reduced central activation which consequently 

causes a decrease in the neuromuscular propagation that affects performance. 

The feeling of sleep (Gandevia, 1992) and initiation of yawning process 

(Hermanowicz, 2007; LeWinter, 2007) as observed by the participants post the 

exercise-involved cognitive trial confirms the presence of a withdrawal signal from 

continuing mental activity (or to prevent a conscious override on the bodily 

functions that may cause physiological damage) as predicted by both 

psychological/motivational model and the integrative central regulator model 

(Davis and Bailey, 1997; Lambert et al., 2004; St Clair Gibson and Noakes., 2004). 

Therefore, these physiological control model predictions and mathematical results 

from this case study do not support the catastrophic-failure principles of the central 

fatigue model. 

From a general point of view, based on the mathematical results and the 

conceptual biological theories, the aetiology and the underlying mechanism for the 

exercise-induced fatigue seemed to be influenced by a reductionist approach 

(Lambert et al., 2004). Most of the hypotheses or predictions (that were assessed 

in this research) of these biological control models seem plausible because each 

physiological control model is perceiving the development of exercise fatigue on a 
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different but yet unbiased narrow perspective. For instance, some models 

perceived exercise fatigue to be developed peripherally, or centrally, or it is just a 

sensory perception rather than a physical phenomenon, or it is associated with 

external physical factors (types of physical activity and external environment). 

However, only when integrating altogether these possible causes of fatigue, then a 

clearer picture of the cause of exercise-induced fatigue can be observed. 

Therefore, the mathematical findings from this thesis as well as the literature 

review of the biological control models of fatigue extend the existing theory of the 

nature of fatigue by presenting evidence of a complex non-catastrophic integrative 

model of fatigue which is regulated by both the central and peripheral systems 

where changes in physical performance (such as in terms of work output) are both 

consciously and subconsciously regulated based on endogenous and exogenous 

feedbacks from the various physiological systems. 

9.2 Future recommendations and applications of findings. 

The recommendations are based on the mathematical findings of the various 

experimental case studies conducted in this research together with the existing 

biological control theories of exercise fatigue. 

I. Exercise training for sprint running can be focused on devising ‘training 

protocols’ with sufficient recovery periods based on the rate of ATP production 

and depletion from the PCr utilization and oxygen-independent glycolysis 

metabolic processes to develop more robust anaerobic subsystems to the 

development of fatigue. Research could be also directed towards diet 

manipulation (Burke and Hawley, 2006) where nutritional intake of an athlete is 

related to exercise performance, and this type of strategy is to keep the athlete 

properly fuelled for peak performance for that physical activity. 
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II. More research should be conducted on investigating the ‘ideal’ pacing for 

various distances of a time-trial exercise, and also endeavoured to find ‘an 

individualised pacing’ based on individual performances. The type of pacing can 

be assessed in terms of complexity (using fractal dimension) complemented 

with the hazard score index to evaluate the homeostatic disturbance that each 

‘simulated’ pacing could cause on the physiological systems (de Koning et al., 

2011). In so doing, time and energy can be saved as well as costs of 

conducting physiological experiments are reduced by focusing on the ideal 

‘pacing protocol’ for any particular distance. Interval training can be 

incorporated specifically for endurance athletes to enhance their aerobic 

capacity which will consequently delay the onset of fatigue as it was found that 

even pace was most aerobic energy system dependent whereby the cyclists felt 

least fatigue. During the interval training, the athletes need to train at a high 

intensity for a short period of time of about 10 minutes to improve their tolerance 

towards anaerobic metabolism. 

 
III. Moreover, it was observed that a reduction in the neuromuscular propagation 

(Fowles et al., 2002; Nielsen and Clausen, 2000) can affect sport performance. 

Therefore, plyometric training can be used to delay the onset of fatigue by 

loading the muscle and then contracting it in rapid sequence. This type of 

exercise training not only can generate rapid and powerful movements but also 

enhance the nervous system. This is because when the muscle spindles are 

stimulated by the rapid stretch, there is a greater activation of the muscle and 

the neuromuscular pathways.  
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IV. In addition, biofeedback (Gruzelier et al., 2007; Vernon, 2009) may help in the 

training of the muscular strength. In this research, the physiological states or 

behaviours (as regulated by the system control mechanisms) influence the 

physical and cognitive performance but most of the body’s physiological 

processes are not under volitional control. Nevertheless, learning to control 

certain aspects of physiology can be an important component for performing at 

peak levels (Peper and Schmid, 1984). Advocates of biofeedback training 

suggest that this method can help athletes to gain more confidence in their 

behavioural ability, improve focus, reduce stress and enhance power in sports 

(Costa et al., 1984; Croce 1986; Norris 1986). One example of biofeedback 

training (Zaichkowsky and Fuchs, 1988) is that the physiological information is 

recorded from bio-sensors, then processed and fed back to the individual in the 

form of an auditory and/or visual signal where the individual will learn to alter 

the physiological activity. This biofeedback can enhance performance (Landers, 

1985) by optimising arousal (either an increase or reduction) according to the 

inverted-U model (Yerkes and Dodson, 1908); secondly, this biofeedback can 

improve performance by helping the individual to optimise autonomic control of 

a particular physiological process. Through a process of learned self-regulation, 

the athlete can become consciously aware of the processes such as muscle 

tension to manipulate them. Moreover, Parks (1997) states that biofeedback 

technique can provide a mechanism for accessing the higher states of 

consciousness, greater awareness and improved cognition. 

 

V. In the same line of thought, this biofeedback can be extrapolated to train the 

cognitive strength or mental agility based on the brain activities, which is called 

the neurofeedback (Dempster and Vernon, 2009; Vernon, 2005; Parks, 1997). 
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By training the cognitive behaviours, this will eventually enable better mind 

management; improve mental performance, attention as well as athletic 

performance. One application can include a compact digital video EEG 

recording system which can be developed and used as a tool to allow the 

participants to know consciously their subconscious behaviours or physiological 

behaviours such as the level of cognitive fatigue or level of arousal so that the 

athletes can optimise sports performance. 
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Appendix A  

 

A.1 The relationship between pseudofrequency and scales 

                     

 

Figure A.1: The figure displays the relationship between pseudofrequency 

(Hz) and scales for the Morlet wavelet transform.  

 

It is shown for the Morlet wavelet transform that there is an inverse relationship 

between pseudofrequency and scale. As the number of scales increases from 1 to 

50, the pseudofrequency decreases in an inverse-relationship manner from 0.8 to 

0 Hz. 
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A.2 The recurrence plot of a cosine function using different embedding 

dimensions 

 

                      
Figure A.2: This figure shows the effect of increasing the embedding dimension 

(from dimension 1(middle figure) to dimension 2 (bottom figure) using recurrence 

analysis to represent a cosine signal (top figure).   

 

The main difference that occurred while increasing the dimension of representing 

a time series signal onto a recurrence plot is that the pattern becomes less 

complex (from a diagonal grid like pattern for dimension 1 to a stripe pattern for 

dimension 2). In so doing, one has the tendency to underestimate the true 

behaviour of this signal. 
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Appendix B  

 

B.1 The energy components of the external mechanical work 

The rate of external mechanical work comprises of three components (Laurent and 

Locatelli, 2002; Di Prampero et al., 1993; Lloyd, 1967; Peronnet and Thibault, 

1989; Ward-Smith, 1985; Ward-Smith and Mobey, 1995).  

These three energy components are described as follows: 

(i) The first energy component is the rate of change of kinetic energy of the 

sprinter in the horizontal direction which is given by           where      
represents the instantaneous velocity in the horizontal direction, and       
is the rate of change of horizontal velocity;  

(ii) The second energy component is the rate of change of potential energy 

of the sprinter in the vertical direction relative to his crouching state 

centre of mass height at the beginning of the race is described by        
where   is the acceleration of free fall (9.81 ms-2) and  

     is the rate of 

change of vertical height; 

(iii) And the third energy component is the rate of work against aerodynamic 

drag, and it is given by              where      is the drag force (N) at 

time    and      is the instantaneous velocity (     ) while variable    is 

the mass (kg) of the athlete. 

Therefore, the overall equation for the rate of change of external mechanical work 

is summarised as shown in equations Equ.B.1 (1) and Equ.B.1 (2) 
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                                 ,         …Equ.B.1 (1) 

where                                    …Equ.B.1 (2) 

In equation Equ.B.1 (2), the notation    represents the frontal projected area (m2) 

of each sprinter, and it is determined by                              (Laurent and 

Locatelli, 2002); the notation    is the drag coefficient and it is 0.9; the variable    

represents the wind speed (    ) and the symbol   is the air density (     ). 

B.2 The rate of change of aerobic energy  

The rate of chemical energy derived from aerobic metabolism is calculated from 

the following equation: 

       =        )         … Equ.B.2 (1) 

In Equ.B.2 (1), the variable R is the maximum sustainable aerobic power per unit 

mass, and the variable   represents the rate of aerobic energy release (van Ingen 

Schenau et al., 1995). 

B.3 Flowchart diagram summarising the computation of the parameters 

In the flowchart diagram (Figure B.1), the linear variable (P) represents power of 

the anaerobic subsystems. The error (ε) is kept to a minimum by calculating the 

residual error between the calculated anaerobic power, and the sum of the 

estimated anaerobic subsystem powers. The nonlinear parameters (β1, β2 and β3) 

represent the rate constants of the anaerobic subsystem power distributions (the 

working principle of this flowchart diagram is described in Chapter three). 
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Figure B.1: Flowchart of the computational program to find the linear 

variables (anaerobic subsystem powers), and the nonlinear variables 

(the rate constants of the anaerobic subsystem powers). 
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B.4 Gamma distribution model to represent the three anaerobic subsystems’ 
powers 

According to Wlodarczyka and Kierdaszuk (2006), Gamma distribution model is 

used extensively in biochemistry and it is a flexible model for physical systems that 

are exponentially distributed as well as it represents a good fit for the sum of 

independent exponential random variables. It is expressed and parameterized in 

terms of a shape (α) parameter, and a rate parameter (β).  

                              ,       ... Equ. B.4(1) 

Where                    ... Equ. B.4(2) 

For this model, the shape   is taken as 2 so that a first-order in time, , is produced 

to represent the behaviour of each anaerobic subsystem power distribution curve 

(Hogg and Craig, 1978). And therefore, the rate of change of chemical energy is 

expressed as the sum of three first-order gamma distribution function, and is 

shown in the following equations (B.4(3) and B.4(4)). By taking the shape   to be 

2, the equation of gamma distribution function to represent the behaviour for each 

anaerobic subsystem power simplifies to: 

                             ,             ... Equ. B.4(3) 

And                         ... Equ. B.4(4)
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By taking the results of Equ. B.4 (4), the Equ. B.4 (3) simplifies further as shown in 

Equ. B.4 (5) which consists of the factor time t and the rate parameter  . 

                    ,                 ... Equ. B.4(5) 

Now the rate of change of chemical energy from the anaerobic subsystems is the 

sum of the rate of change of energy from the three anaerobic subsystems that 

were the ATP-endogenous, PCr utilisation anaerobic process, and the oxygen-

independent glycolysis anaerobic subsystem.  

                                                     ... Equ. B.4(6) 

 
                                               ... Equ. B.4(7) 

Since the rate of change of energy of the anaerobic subsystem is actually the 

power (P) of the anaerobic subsystem,  

Pn =                 ... Equ. B.4(8) 

In Equ. B.4 (8), the nonlinear parameter           represents the inverse of time 

constants of each individual distribution for the three subsystems respectively. 

Then, Equ. B.4 (7) simplifies to the following equation: 

                              ... Equ. B.4(9) 

In Equ. B.4 (9), the notation    represents the anaerobic subsystem powers at time 

t and it is measured in watts per kilogram (Wkg-1). This is simplified in 

mathematical notation into the following equation: 

       ∑            ,                                                                          ... Equ. B.4(10)               
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The linear parameters P1 denotes the rate of energy released from endogenous 

ATP at time t, P2
 denotes rate of energy released from Phosphocreatine (PCr) 

utilisation at time t and P3 denotes rate of energy released from oxygen-

independent glycolysis utilisation at time t. 

B.5   Anaerobic subsystem power and the corresponding rate parameter for 

each sprinter. 

The mean and standard deviation of the anaerobic subsystem powers P1, P2 and 

P3 were 6.6±1.78 Wkg-1, 40.5±2.97 Wkg-1 and 9.98±1.04 Wkg-1 respectively. The 

rate parameters of the anaerobic subsystems  1,  2, and  3 were 0.94±0.05s-1, 

0.31± 0.015 s-1and 0.11±0.004s-1. 

 

Ranking of 

sprinters 

Anaerobic subsystem 

power (Wkg-1) 

Nonlinear variables (s-1) 

P1 P2 P3    

 

   

 

   

 

1 7.1 42.8 10.8 0.9239 0.3315 0.1130 

2 7.4 38.9 9.4 0.9341 0.2962 0.1131 

3 7.9 44.1 10.8 0.9286 0.3352 0.1115 

4 9.5 37.3 10.2 0.9956 0.2990 0.1075 

5 3.6 39.8 10.8 0.8486 0.3045 0.1194 

6 6.0 38.8 10.1 0.9652 0.3152 0.1112 

7 5.7 37.5 10.1 0.9570 0.2958 0.1151 

8 5.6 44.8 7.7 0.9863 0.3038 0.1109 

Table B.1: The results for the anaerobic subsystem power per unit mass, and the 

nonlinear parameters for all the elite sprinters are shown. 
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Appendix C  
 

C.1  Statistical F-ratio 

The F-ratio is a test statistic to find whether the difference between two or more 

independent variables is statistically significant or stable by computing the ratio of 

the variance between groups, and the variance within groups (Lomax, 2007; 

Sawilowsky, 2002). The computation of the statistics F-ratio is summarised in the 

following equations (Lomax, 2007): 

                                                    

In the above formula, the between-group variability is given by: ∑                  

And the within-group variability is given by: ∑                     

The variables   ,   ,  ,        ,   represent the sample mean in the i th group, the 

number of observations in the i th group, the overall mean of the data, the number 

of groups, the j th observation in the i th out of k groups and the overall sample size 

respectively.  

Moreover, the number of degrees of freedom for the between-group variability is 

represented by the notation df1 and the number of degrees of freedom for the 

within-group variance is represented by the notation df2. Therefore, these two 

degrees of freedom are represented by the following formula where k and N 

represents the number of participants (sample size) and k is the number of groups. 

 df1 =    … (i) 

   df2 =    … (ii)  
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C.2  Product moment correlation coefficient   

The Pearson’s correlation coefficient between two variables is defined as the 

covariance of the two variables (X and Y) divided by the product of their respective 

standard deviations (       ). This is represented by the following mathematical 

equations.      =  
                ,  

where cov is covariance, notation    represents the standard deviation for variable 

X and notation    represents the standard deviation for variable Y.      = 
                       

Where symbol E represents Expectation,    represents the mean of the variable X 

and   represents the mean of variable Y. 
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Appendix D  

 

D.1 The frequency band power for volume of oxygen consumption (VO2) 

The mean normalized wavelet power for each frequency band for the volume of 

oxygen consumption physiological activity for all cyclists for each pacing time trial 

is depicted in Figure D.1. Moreover, the changes in HF band, LF band and ULF 

band for this particular physiological activity are compared as shown below. 

 

 

Figure D.1: The x-axis represents the finishing times of the cyclists and the y-axis 

represents the normalised wavelet power so that the changes in the three different 

frequency bands can be compared. 
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D.2 The frequency band power for heart rate (HR) 

The mean normalized wavelet power for each frequency band for heart rate 

physiological activity for all cyclists for each pacing time trial is depicted in Figure 

D.2. Moreover, the changes in HF band, LF band and ULF band for this particular 

physiological activity are compared as shown below. There was a significant 

difference between HF band and LF band (p < 0.01), and there was a small 

positive correlation between HF band with increasing performance times of the 

cyclists (correlation r = 0.3 and statistical p =0.03). 

   

 
 

 

Figure D.2: The x-axis represents the finishing times of the cyclists, and the y-axis 

represents the normalised wavelet power of the heart rate activities so that the 

changes in the three different frequency bands can be compared. 
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                                                 Appendix E 

 

 

E.1 Descriptive statistics for the percentage accuracy of responses 

 

The descriptive statistics for the accuracy of the responses of the participants 

while responding to the visual cues for both the control and exercise experimental 

condition is shown in Table E.1. In addition, the average accuracy of the 

responses for every 5 minute block cognitive task trial for a period of 30 minutes is 

shown.  

 
Time-on-task  

(minutes) 
Condition Mean Standard deviation 

5 Control 96.667 1.3027 
Exercise 93.667 1.4975 

   
10 Control 94.000 1.2000 

Exercise 92.000 1.2660 
   

15 Control 92.000 1.6396 
Exercise 90.000 1.8396 

   
20 Control 90.000 1.8528 

Exercise 88.000 1.3501 
   

25 Control 88.000 0.8528 
Exercise 86.500 1.5667 

   
30 Control 87.000 0.6396 

Exercise 84.750 1.2154 

Table E.1: Descriptive statistics for the percentage of accuracy  

of responses (n = 12). 
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E.2 Descriptive statistics for reaction time (ms) of the responses 

 

The descriptive statistics for the reaction time of the participants while responding 

to the visual cues for both the control and exercise experimental condition is 

shown in Table E.2. In addition, the average reaction time of the responses for 

every 5 minute block cognitive task trial for a period of 30 minutes is shown.  

 

Time-on-task  
(minutes) 

Condition Mean Standard deviation 

5  
Control 

550.0000 20.0280 

Exercise 320.0000 10.0302 
   

10 Control 530.0000 8.52803 
Exercise 355.0000 6.39602 

   
15 Control 490.0000 12.06045 

Exercise 390.0000 6.39602 
   

20 Control 455.0000 6.39602 
Exercise 425.0000 8.52803 

   
25 Control 450.0000 8.52803 

Exercise 425.0000 9.53463 
   

30 Control 470.0000 20.07920 
Exercise 405.0000 15.39602 

Table E.2: Descriptive statistics for the reaction time (ms)  

of responses (n = 12). 
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E.3 Descriptive statistics for the cognitive ratios 

 

The descriptive statistics for the average cognitive ratios of the participants for 

both the control and exercise-involved cognitive trials are shown in Table E.3. In 

addition, the table displays the values of the cognitive ratio for every 5 minute 

interval of the cognitive trial for both experimental conditions.  

Time-on-task  
(minutes) 

condition Mean S.D 

5 1.00 2.7167 .57181 

2.00 3.0250 .46734 

Total 2.8708 .53445 

10 1.00 2.7083 .29064 

2.00 2.8667 .39158 

Total 2.7875 .34680 

15 1.00 1.0958 .44643 

2.00 1.0208 .32576 

Total 1.0583 .38410 

20 1.00 1.2583 .48140 

2.00 1.3667 .40973 

Total 1.3125 .44066 

25 1.00 1.1583 .35982 

2.00 1.2000 .01706 

Total 1.1792 .25002 

30 1.00 1.0333 .21881 

2.00 1.0083 .26443 

Total 1.0208 .23770 

Table E.3: Descriptive statistics for the cognitive ratio for both 

experimental conditions (n = 12). 
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                                                           Appendix F 
Recurrence Quantification Analysis of the System Control Mechanisms  
                               underlying Physiological Data 
 

D. Chuckravanen1, M. Angelova2, A St Clair Gibson1, Thomas K1, Stone M1, Ansley L1, Thompson K.G1 

1. School of Psychology and Sport Sciences, Northumbria University, Newcastle, UK 
2. School of Computing, Engineering and Information Sciences, Northumbria University, Newcastle, 

UK 

 

In exercise physiology, the study of the complex rhythms arising from the peripheral and central 
systems of the human body is crucial to optimise athletic performance. According to a novel 
theoretical model of fatigue1, 2, there is a central governor in the brain that regulates the physical 
activity to ensure that this exercise activity is completed without homeostasis failure through 
interactive communication between the physiological and central systems in a deterministic way. 
Therefore, there is an increasing need to investigate on the characteristics of these system control 
mechanisms that regulate our homeostasis and control our behaviour and activity.  In order to 
determine the characteristics of these complex system control mechanisms, recurrence analysis is 
used to locate any rhythms or patterns in these physiological data3, 4. In this study, various pacing 
strategies that are self pace, even pace and variable pace were used for a 20-km cycling time trial to 
observe how these pacing strategies influence the heart rate (HR) activities (BPM) and the volume 
of oxygen consumption (VO2  / L

.min-1) of these cyclists. 

It is observed that for VO2, there is no significant difference between the RQA measures that are 
recurrence rate (RR), determinism (DET) and trapping time (TT) for all ten cyclists performing the 
different pacing strategies. The mean RR is 9%, DET is 29.6% and TT is 2.5 s and there is no 
significant difference between the aforesaid RQA measures for heart rate activities for all pacing 
strategies and the mean value RR is 10%, DET is 89% and TT is 8.2 s. The difference in the 
trapping times and the determinism values between VO2 and HR suggests that each physical 
system has different characteristic behaviour. It is observed that the heart rate activities of these 
cyclists stay three times longer in a particular physiological state than that of the respiratory 
system. Interestingly, for the heart rate with mean DET of 89% implicates that these activities can 
be predicted much easier than the random process of the events observed from the respiratory 
system even though the probability of recurrence in both cases are low. Moreover, the trapping 
times for the heart rate activities are significantly different for each pacing strategy and there is the 
tendency of the imposed pacing strategy to force that physical system to imitate its behaviour as 
shown by the duration of the mean trapping time to remain in a state is highest in even pace (10.9s) 
and least in variable pace (6.7s).  
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[2] St Clair et al., (2005) 'Metabolic setpoint control mechanisms in different physiological systems at rest 
and during exercise', J of Theo Bio, 235, pp. 60-72. 
[3] Trulla, LL, Giuliani A., Zbilut JP., and Webber Jr. CL (1996), 'Recurrence quantification analysis of the 
logistic equation with transients'. Physics Letters, A (223), pp. 225-260. 
[4] Zbilut JP, Zak M, Webber Jr. CL (1995), 'Nondeterministic chaos in physiological systems', Chaos, 
Solutions, and Fractals 5, pp. 1509-1516. 
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Continuous Wavelet Analysis of Physiological Data for various Pacing 
Strategies of a 20-km Cycling Time Trial 

 
 

Chuckravanen D1, Rajbhandari S2, Angelova M2, St Clair Gibson A1, Ansley L1, Thompson KG1  
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    School of Computing, Engineering and Information Sciences2  
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Recently, in exercise physiology, a novel model to regulate the central neural effort and fatigue has 
been proposed. This model theorizes that physical activity is controlled by a central regulator in the 
brain, and the human body works as a complex integral system, unlike the 
Cardiovascular/Anaerobic/Catastrophe model of Sir A.V. Hill of exercise physiology. In this study, 
physiological data were collected from club level cyclists for different pacing strategies that were 
self pace, even paced, and variable paced for a 20km cycling time trial in order to assess the 
underlying system control mechanisms that show how the brain paces the human body during 
exercise. Continuous Wavelet Transform (CWT) was used to analyse the non-stationary and 
nonlinear physiological signals that were heart rate (HR/bpm) and volume of oxygen consumption 
(VO2/ Lmin-1). Normalised mean wavelet powers were used to compare the powers at different 
frequency bands of the continuous wavelet spectrum. These frequency bands were classified as 
High Frequency (HF), Low Frequency (LF) and Ultra Low Frequency (ULF) bands. There was a 
significant difference in the ULF band for the volume of oxygen consumption (p<0.01) that 
decreased with increasing performance times of cyclists for all pacing strategies. As for the heart 
rate activities, both ULF and LF band powers were practically constant for all cyclists, and there 
was a significant difference in the HF band power compared to the other frequency bands. It was 
shown that the brain paces the human body by acting as an external drive to that particular 
peripheral system and it uses specific frequency bands to control and communicate with a 
particular peripheral system in the aims to reach the end of that physical task without homeostasis 
failure. 
 


