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Abstract 
 

Cystic fibrosis (CF) is the most common inherited life-limiting condition in the United 

Kingdom. Lung disease, involving retention of mucopurulent secretions, neutrophilic 

inflammation and endobronchial infection is the major cause of mortality. CF is caused 

by variants in the CF-transmembrane conductance regulator gene, however the exact 

pathogenesis of lung disease is not fully understood. Valid experimental models are 

therefore critical to advance research. 

 

I describe the establishment of a successful method to culture primary bronchial 

epithelial cells (PBECs) from explanted CF lungs removed at transplantation. This 

technique has yielded an important resource to further study the pathogenesis of CF 

lung disease.  

 

The cytokine interleukin-17 orchestrates the activity of neutrophils and increases mucin 

gene expression in BECs – two key features of CF lung disease. I demonstrate that 

interleukin-17 is increased in the airway of people with advanced CF lung disease. I 

also show evidence suggesting that neutrophils themselves may be a source of 

interleukin-17 potentially leading to an ever-increasing spiral of inflammation. 

 

In a CF mouse model ceramide accumulates in BECs and is associated with neutrophilic 

inflammation and susceptibility to Pseudomonas aeruginosa infection. Furthermore, 

amitriptyline treatment normalised ceramide, inflammation and susceptibility to 

infection. The role of ceramide is a complex area, however, with a divergence of 

opinion in the literature and paucity of human data. I demonstrate using 

immunohistochemistry that ceramide is increased in the lower airway epithelium in 

advanced CF lung disease compared to pulmonary hypertension and unused lung donors 

and is correlated with neutrophilic inflammation and increased in those colonised with 

Pseudomonas aeruginosa. Ceramide species C16:0, C18:0 and C20:0 but not C22:0 are 

increased in lung homogenates of CF lungs compared to pulmonary hypertension 

measured using the independent technique of high performance liquid chromatography-

mass spectrometry. 

 

Both interleukin-17 and ceramide represent important topics for further translational CF 

lung disease research. 
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1. Chapter 1. Introduction 

 

 

1.1. Background: cystic fibrosis from 1938 to 2010  

 

Cystic fibrosis (CF) is the most common life-limiting genetically acquired disease of 

white populations with an incidence of approximately 1 in 2500 newborns. (O'Sullivan 

and Freedman, 2009) Although less frequent, CF is also increasingly recognised in non-

white racial groups. (Kabra et al., 2007, Kabra et al., 2006, Spencer et al., 1994) There 

are over 7000 individuals who have CF in the United Kingdom (UK), spanning both 

paediatric and adult age groups. (Davies et al., 2007)  

 

The first clinical description of CF was published in 1938. (Andersen, 1938) A disease 

entity, separate from infants with coeliac disease, consisting of mucus plugging of the 

pancreas was described and termed ‘cystic fibrosis of the pancreas’. The early clinical 

descriptions of CF were characterised by fat and protein malabsorption, steatorrhoea, 

growth failure and respiratory infection. It was assumed that pancreatic damage and 

subsequent deficiency of pancreatic enzymes resulted in malabsorption and poor 

nutrition leading to a predisposition for respiratory infections that were frequently 

terminal. (Davis, 2006) In 1944 Farber described thick and tenacious mucus obstructing 

the ducts of mucus glands throughout the body leading to the alternative terms 

‘mucoviscidosis’ and ‘generalised exocrinopathy’. (Farber, 1944, Di Sant’Agnese, 

1956) 

 

During the heat wave of 1948 in New York di Sant’Agnese observed that several 

infants presenting with dehydration fitted a CF phenotype. He demonstrated that their 

sweat was abnormal, containing five-fold concentrations of sodium and chloride, and 

that this abnormality persisted once the high temperatures had subsided. (Di 

Sant’Agnese, 1953) 

 

The modern day term CF refers to a disease caused by variants in the cystic fibrosis 

transmembrane conductance regulator (CFTR) gene that codes for a protein that 

functions primarily as a chloride channel. (O'Sullivan and Freedman, 2009, Sheppard 

and Welsh, 1999) CFTR is expressed in many epithelial cells, including sweat duct, 



 2 

airway, pancreatic duct, intestine, biliary tree and vas deferens. This may give rise to an 

elevated sweat chloride concentration, lung disease characterised by bacterial infection 

and bronchiectasis, pancreatic insufficiency, intestinal obstruction, biliary cirrhosis and 

congenital bilateral absence of the vas deferens, often found in combination. (Davis, 

2006) 

 

Over the past two decades the level of understanding of the disease has increased 

rapidly and this has impacted significantly on the clinical management of people with 

CF. This has yielded a significant increase in survival. (Dodge et al., 2007) Where CF 

used to represent a lung and gastrointestinal disease primarily of young children it is 

now a complex multi-system disorder that extends in to adulthood. Indeed there will 

soon be more adults than children with CF in the UK. Infants born today with CF have a 

predicted median survival of greater than 50 years. (Dodge et al., 2007) Figure 1 shows 

the steady improvement in length of survival for people with CF born in the UK over 

the last four decades. 

 

 

■ 1968-70, ○ 1971-73, ▲ 1974-76, □ 1977-79, ♦ 1980-82, ◊ 1983-85, ∆ 1986-88, ● 1989-91, ∇ 

1992-94 (Dodge et al., 2007) 

 

 

Figure 1. Proportion of a) males and b) females in the UK with CF, of each 3-

year cohort, surviving until 2003. 
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1.2. Clinical aspects of cystic fibrosis 

 

1.2.1. Introduction 

 

As outlined above, CF is a multisystem disorder that arises from variants in the CFTR 

gene. (O'Sullivan and Freedman, 2009) Defects in ion and water transport across 

epithelia lead to a progressive disease that affects a number of different organs, 

including the upper and lower airways, pancreas, liver, and gastrointestinal and 

reproductive tracts. (Davies et al., 2007)  

 

1.2.2. Newborn screening and diagnosis 

 

In 2007 screening for CF was introduced in the UK as part of the newborn bloodspot 

programme. (Downing and Pollitt, 2008) This programme involves initial screening of 

samples for the level of immunoreactive trypsinogen (IRT). Positive samples (around 

0.5%) are then analysed for the most common CFTR variants and appropriate infants 

then referred for diagnostic sweat chloride testing. Importantly, the UK screening 

programme is designed to identify infants with CF, which is subsequently diagnosed 

formally by sweat testing, rather than to highlight heterozygote carriers. (Downing and 

Pollitt, 2008) It is inevitable however that some carrriers will be found by this method 

and also that some families will undergo the stress associated with an initial ‘false 

positive’ IRT result. (Kai et al., 2009)  

 

There is evidence from a North American randomised trial of nutritional benefits in 

children with CF diagnosed by newborn screening. (Farrell et al., 1997) Pulmonary 

outcomes were influenced by confounding factors in this study, none the less there are 

genuine concerns regarding possible earlier acquisition of Pseudomonas aeruginosa in 

screened children. (Southern et al., 2009) Prior to the introduction of newborn screening 

children were typically diagnosed when a sweat test was performed because of a 

chronic history of recurrent lower respiratory tract infections and growth faltering. 

Delay in diagnosis was common along with the inevitable associated morbidity for the 

child and emotional stress for the family involved. (Jackson et al., 2010) 
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1.2.3. Clinical aspects of cystic fibrosis lung disease 

 

It is estimated that lung disease is responsible for over 95% of morbidity and mortality 

in people with CF. (Doring et al., 2007) Clinically CF lung disease is characterised by 

chronic endobronchial infection with specific microorganisms including Staphylococcus 

aureus, Haemophilus influenzae and P. aeruginosa, neutrophilic inflammation and 

retention of mucopurulent secretions. This results in progressive bronchiectasis, decline 

in lung function and ultimately respiratory failure in young adulthood (Figure 2). The 

mainstays of treatment include intensive physiotherapy and inhaled mucolytics to aid 

clearance of secretions and prophylactic or treatment antimicrobials to deal with 

infection. (Davies et al., 2007) Lung transplantation is the only life-preserving 

intervention for end-stage CF lung disease. (Meachery et al., 2008) 

 

1.2.4. Non-pulmonary manifestations of cystic fibrosis 

 

Brief details of the common non-pulmonary clinical manifestations of CF and 

appropriate interventions are summarised in Table 1.  
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Figure 2. Severe bronchiectasis in end stage cystic fibrosis shown in chest 

radiograph and computed tomogram. 

(Davies et al., 2007) 
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Organ Problem(s) Intervention 

Pancreas Exocrine insufficiency 

and malabsorption 

High-fat diet, supplementation of 

pancreatic enzymes and fat- soluble 

vitamins 

 Pancreatitis Largely symptomatic 

 Endocrine insufficiency: 

CF-related diabetes 

Insulin 

Oesophagus Gastro-oesophageal reflux Pro-kinetics, acid suppression, 

fundoplication 

Small intestine Meconium ileus Gastrograffin enemas, surgery 

 Distal Intestinal 

Obstruction Syndrome 

Gastrograffin, surgery 

Large bowel Rectal prolapse Pancreatic enzymes, surgery 

Liver CF-related liver disease Ursodeoxycholic acid, vitamin K 

supplements, transplantation 

Upper airway Nasal polyps Topical steroids, surgery 

 Sinusitis Topical steroids or antibiotics, surgery 

Bones Osteopaenia Exercise, calcium and vitamin D 

supplements 

Sweat glands Increased electrolyte loss Electrolyte supplements 

Reproductive 

tract 

Bilateral absence of vas 

deferens 

Assisted fertilisation techniques 

 

Table 1. Non-pulmonary manifestations of cystic fibrosis and interventions 
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1.3. The cystic fibrosis transmembrane conductance regulator (CFTR) 

 

The gene encoding CFTR was first cloned in 1989 and is situated on the long arm of 

chromosome 7. (Riordan et al., 1989, Kerem et al., 1989, Rommens et al., 1989) CFTR 

is a member of the ATP-binding cassette transporter superfamily. (Verkman and 

Galietta, 2009) The major function of CFTR is as a chloride channel that regulates ion 

and water balance across epithelia. (Sheppard and Welsh, 1999) CFTR is also involved 

in the regulation of a multitude of other physiological cellular processes including 

bicarbonate-chloride exchange, sodium transport via the epithelial sodium channel 

(ENaC), acidification of intracellular organelles and calcium-activated chloride channel 

(CaCC) function. (Quinton, 2008, Reisin et al., 1994, Schwiebert et al., 1995, Stutts et 

al., 1995, Mehta, 2005) The protein contains 1480 amino acids and includes two 

membrane-spanning domains, two nucleotide-binding domains and a unique regulatory 

domain. (Hwang and Sheppard, 2009)  

 

Activation of CFTR relies on phosphorylation, particularly through protein kinase A, 

but most probably also involves a complex system of other kinases and phosphatases as 

well. (Ostedgaard et al., 2001, Hwang and Sheppard, 2009) Channel activity is 

governed by the two nucleotide-binding domains, which regulate channel gating. The 

carboxyl terminal of CFTR is anchored through a PDZ-type-binding interaction with the 

cytoskeleton and is kept in close approximation with a number of associated proteins. 

(Borthwick et al., 2007) These proteins influence CFTR function, including 

conductance, regulation of other channels, signal transduction, and localization at the 

apical plasma membrane. (Rowe et al., 2005) The hypothesized structure of CFTR is 

shown in Figure 3. 

 

Over 1500 loss-of-function CFTR variants have been identified, although the number of 

true disease-causing variants is probably much lower. (Proesmans et al., 2008, Verkman 

and Galietta, 2009) CFTR variants are recessive and may be classified in to five classes 

depending on their effect on the CFTR protein. (Wilschanski et al., 1995) Table 2 

describes the classes of variants I to V and Figure 4 depicts each class 

diagrammatically. 
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By far the most frequent disease-causing variant is p.Phe508del. It is traditionally 

considered to be a class II variant resulting from deletion of phenylalanine at position 

508 and leading to aberrantly folded CFTR protein that is identified and degraded in the 

endoplasmic reticulum. (Cheung and Deber, 2008) This defective trafficking of the 

protein is thought to result in the absence of mature CFTR at the apical membrane, 

although this is still a subject of some debate. (LA Borthwick, personal communication 

August 2010) There is evidence from work in nasal brushings and mice that 

p.Phe508del should also be considered to be a class IV variant with some apically 

localised p.Phe508del CFTR present in homozygotes. (Penque et al., 2000) Importantly 

p.Phe508del CFTR exhibits a reduced open probabililty compared to wild type CFTR. 

(Pilewski and Frizzell, 1999)  p.Phe508del accounts for 70% of all variant alleles with 

10-20 less common variants accounting for another 15%. (Proesmans et al., 2008) 
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Figure 3. Hypothesised structure of the cystic fibrosis transmembrane conductance 

regulator (CFTR) 

(Rowe et al., 2005) 
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Class of 
variant 

Effect Example of 
common variant 

allele 
I No CFTR mRNA or protein formed, e.g. 

nonsense, frame shift or splice site mutation 
p.Gly542X 

II Trafficking defect. CFTR protein forms but 
fails to traffic to cell membrane 

p.Phe508del  
(also class IV) 

III Regulation defect. CFTR reaches the cell 
membrane but does not respond to cAMP 

stimulation 

p.Gly551Asp 

IV Channel defect. CFTR functions as a defective 
Cl- channel 

p.Arg117His 

V Synthesis defect. Reduced or defective 
processing of normal CFTR 

p.Ala455Glu 

 

Table 2. Description of different classes of cystic fibrosis  

transmembrane conductance regulator (CFTR) variants 

(Proesmans et al., 2008, Wilschanski et al., 1995) 
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Figure 4. Schematic representation of the different classes of cystic fibrosis 

transmembrane conductance regulator (CFTR) variants 

(Rowe et al., 2005) 
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1.4. The science of cystic fibrosis lung disease 

 

1.4.1. Pathogenesis 

 

The lung histology of newborns with CF is essentially structurally normal with the 

exception of mild dilatation and plugging of submucosal gland ducts. (Konstan and 

Berger, 1997, Elizur et al., 2008) As outlined later in this thesis, there is some evidence 

of a pro-inflammatory milieu in the lungs of foetuses with CF however. (Hubeau et al., 

2001b) The respiratory tract is constantly exposed to numerous airborne pathogens. A 

wide array of innate host defences and clearance mechanisms are therefore critical to 

prevent infection. (Martin and Frevert, 2005, Chilvers and O'Callaghan, 2000) In CF 

these defences fail and the airways of young children with CF become inflamed with a 

predominantly neutrophilic infiltrate and infected with bacteria such as S. aureus and H. 

influenzae quite rapidly. (O'Sullivan and Freedman, 2009, Stafler et al., 2009) Airway 

neutophilia has been detected in bronchoalveolar lavage (BAL) fluid from clinically 

well infants with CF (Khan et al., 1995) A longstanding debate has existed in CF 

research as to whether inflammation precedes infection, or vice versa, this is discussed 

in more detail later in the thesis. (Wine, 2010) 

 

P. aeruginosa subsequently becomes the most prominent airway pathogen in older 

children and adults with CF. (Rosenfeld et al., 2003) P. aeruginosa has a particular 

predilection for the CF airway and chronic infection appears to be frequently 

established with a number of potential explanations. These include the presence of 

hypoxic microenvironmental niches in adherent mucus plugs, increased bacterial 

binding to epithelial cells deficient in CFTR, reduced innate immune defences and 

complex adaptations in the bacteria themselves, including biofilm formation, quorum 

signalling and even immunomodulation. (Matsui et al., 2006, Worlitzsch et al., 2002, 

Imundo et al., 1995, Campodonico et al., 2008, Davies et al., 1998, Buchanan et al., 

2009) 

 

An ever-increasing vicious cycle then ensues of chronic endobronchial infection, 

neutrophilic inflammation and obstruction of airways and submucosal gland ducts by 

tenacious secretions consisting of mucus, inflammatory debris and bacteria. (Rubin, 

2009, Elizur et al., 2008) The natural history of CF lung disease is typified by a gradual 
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drop in lung function punctuated by more marked drops associated with acute infective 

exacerbations. Progressive, severe bilateral bronchiectasis and ultimately respiratory 

failure and premature death occur. (O'Sullivan and Freedman, 2009) The only life-

sustaining intervention for end-stage disease is lung transplantation. (Meachery et al., 

2008) 

 

The precise connection between CFTR dysfunction and the chronic inflammation and 

infection present in CF lung disease has not been fully elucidated and has been the 

subject of a huge amount of research and indeed debate in the scientific literature. 

(Wine, 2010) The low volume hypothesis proposed by Boucher and colleagues from the 

University of North Carolina, USA is currently the most widely accepted explanation. 

(Boucher, 2007a) This theory involves excessive isotonic absorption in the airway 

reducing the periciliary liquid volume and concentrating mucus resulting in grossly 

defective mucociliary transport. Retained mucus then serves as a nidus for chronic 

bacterial infection. In addition to the results of several elegant in vitro experiments 

performed by Matsui (Figure 5) and colleagues to support this theory, the most striking 

clinical correlate is the recent proof that nebulisation of hypertonic saline, resulting in 

increased airway surface liquid volume, in people with CF improves mucus clearance 

and lung function and reduces pulmonary exacerbations (Figure 6). (Elkins et al., 2006, 

Donaldson et al., 2006, Matsui et al., 1998, Tarran et al., 2007, Boucher, 2007b) 

 

At least four other hypotheses have been put forward to explain how the presence of 

defective CFTR leads to the clinical CF phenotype and it is possible that aspects of all 

the various hypotheses contribute to the pathogenesis of CF lung disease in vivo. 

(O'Sullivan and Freedman, 2009) The high-salt hypothesis argues that as a result of 

defective CFTR the concentration of sodium and chloride is raised in the airway surface 

liquid leading to dysfunction of innate antimicrobial peptides and subsequent chronic 

opportunistic pulmonary infection. (Goldman et al., 1997, Smith et al., 1996, Zabner et 

al., 1998)  

 

In addition to effects on airway surface liquid and mucociliary transport there is also 

evidence that CFTR dysfunction per se leads to a pro-inflammatory milieu that results 

in airway inflammation prior to infection and exaggerated inflammatory responses once 

infection is established. (Major and Elborn, 2009) CFTR dysfunction may also cause a 

primary predisposition to infection. It is known that P. aeruginosa binds to functional 
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CFTR and normally initiates an appropriate, rapid and self-limiting innate immune 

response. This effect is lost in the presence of defective CFTR and furthermore there is 

increased binding of S. aureus and P. aeruginosa via lipid rafts to the apical membrane 

of epithelial cells. (Campodonico et al., 2008, Imundo et al., 1995) Accumulation of 

ceramide in airway epithelial cells has also been recently implicated in the pathogenesis 

of CF lung disease as discussed comprehensively in section 1.7. Paul Quinton, 

University of California, has also postulated that defective bicarbonate secretion plays a 

significant role in the pathogenesis of CF and leads to poorly solubilised mucins with 

the subsequent accumulation of mucus that is found in the affected organs of people 

with CF. (Quinton, 2008) 
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Figure 5. Evidence from well-differentiated human airway cultures supporting 

airway surface liquid (ASL) volume depletion in the pathogenesis of cystic 

fibrosis lung disease 

(a) Measurement of ASL volume after addition of small volume of 'ASL' in normal 
airway epithelia devoid of mucus layer. ASL is absorbed until height is reached (∼7 µm) 
that maintains beating of extended cilia (see EM insert). Bar above depicts relative rates 

of Na+ absorption versus Cl− secretion with ASL height. (b) Measurement of ASL 
volume (height) after addition of ASL to CF culture. Note, added ASL is absorbed more 

rapidly than in normal cultures and all ASL is absorbed, as defined by the absence of 
sufficient liquid to maintain ciliary extension (see EM insert). Bar above illustrates that 
Na+ absorption persists, and there is a failure to secrete Cl−, despite inappropriately low 

ASL height/volume. (c, d) Similar experiments, but with mucus layer left intact on 
normal (c) and CF (d) cultures. Note concentration of mucus and apposition/adhesion of 

mucus to 'bent over' cilia in CF. e) Immunohistochemistry of mucus layer adherent to 
CF culture after ASL volume depletion. A mucus plaque has formed on the epithelial 

surface (containing nuclei labelled with DAPI) composed of MUC5AC (red) and 
MUC5B (green). (f) Light micrograph of airway excised from young adult CF patient. 

Within the airway lumen is mucopurulent material containing multiple round 
macrocolony-like biofilms of Pseudomonas aeruginosa. (Boucher, 2007b) 
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Figure 6. Mucociliary transport in the healthy lung and in cystic fibrosis and the 

therapeutic effect of osmotic agents. 

A fluid layer that is maintained through a balance of chloride secretion and sodium 
absorption covers the surface of airway epithelial cells. The airway surface fluid 

supports a thin mucus layer produced by mucosal secretory glands. The mucus layer is 
transported by respiratory cilia from the lower airways to the airway opening (Panel A). 
In cystic fibrosis, defective chloride secretion and sodium hyperabsorption lead to the 

depletion of the layer of airway surface fluid, with consecutive breakdown of 
mucociliary transport (Panel B). Osmotic agents increase the volume of airway surface 
fluid through an increase in water influx, thereby restoring mucociliary function (Panel 

C). (Ratjen, 2006) 
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1.4.2. The role of inflammation in cystic fibrosis lung disease 

 

As mentioned earlier in this thesis, lung histopathology from newborns with CF is 

essentially structurally normal with the exception of mild dilatation and plugging of 

submucosal gland ducts. (Konstan and Berger, 1997, Elizur et al., 2008) However, there 

is some evidence of an in vivo pro-inflammatory state in the lungs of foetuses with CF. 

This includes dysregulated activation of the nuclear factor-kappa B (NF-κB) pathway 

and infiltration of the airways by macrophages. (Verhaeghe et al., 2007, Hubeau et al., 

2001b)  

 

Direct sampling studies from young children with CF have identified raised baseline 

levels of inflammatory biomarkers and both increased and exaggerated inflammatory 

responses to bacterial infection. Khan and colleagues demonstrated raised neutrophil 

counts and levels of interleukin (IL)-8 and neutrophil elastase in BAL fluid from 

asymptomatic infants with CF diagnosed by newborn screening compared to controls. 

Moreover the BAL fluid from 7 of the 16 children with CF was negative on culture for 

bacteria and viruses but markers of inflammation were still raised. (Khan et al., 1995) 

Similarly Balough et al. (1995) and Rosenfeld et al. (2001) found raised neutrophil 

counts in sterile BAL fluid from young children with CF but minimal respiratory 

symptoms. (Balough et al., 1995, Rosenfeld et al., 2001) In a larger study, Muhlebach 

and colleagues obtained BAL fluid from children with CF and controls both with and 

without positive cultures for bacterial lower respiratory tract infection. They found that 

children with CF in both the infected and non-infected groups had raised neutrophil 

counts and that the ratio of IL-8 and neutrophils to number of bacteria in those infected 

were raised. (Muhlebach et al., 1999)  

 

An important deficiency of these studies however is that in order to warrant a 

bronchoscopy all of these children had a history of recent lower respiratory tract 

symptoms. Conversely Armstrong et al. found no significant difference in BAL fluid 

neutrophil counts and inflammatory markers in truly infection naïve children with CF 

compared to controls. (Armstrong et al., 2005, Armstrong et al., 1995) It is perhaps 

significant though that around a third of the control group had either a positive growth 
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from BAL fluid or symptoms of lower respiratory tract infection within 48 hours of the 

bronchoscopy. (Rao and Grigg, 2006)    

 

There is indirect evidence of a pro-inflammatory state in CF from work showing that 

cultured peripheral monocytes from adults with the disease produce increased amounts 

of tumour necrosis factor-alpha (TNF-α) compared to controls. (Pfeffer et al., 1993) 

Macrophages cultured from a CF mouse model contain four times the TNF-α 

messenger ribonucleic acid (mRNA) found in macrophages from wild-type mice. 

(Thomas et al., 2000) In addition, airways from infection naïve CF mice grafted on to 

animals with severe combined immunodeficiency produce raised amounts of IL-8 

relative to controls and ultimately display luminal inflammation. (Tirouvanziam et al., 

2000) 

 

In contrast however, recently published work performed using a new porcine model of 

CF suggests that there is no significant difference between CF and wild-type newborn 

piglets in baseline levels of BAL fluid IL-8 and inflammatory cell counts. (Stoltz et al., 

2010) The newborn CF piglets did have evidence of a defective capacity to eliminate 

bacteria however. (Stoltz et al., 2010)  

 

There is also evidence that in addition to a pro-inflammatory state that there may be 

defective down regulation of inflammation in CF lung disease. Work performed by 

Bonfield et al. has demonstrated that IL-10 production is decreased in bronchial 

epithelial cells from people with CF compared to controls. (Bonfield et al., 1995) 

 

In conclusion there is good evidence that an exaggerated inflammatory response occurs 

in the CF airway to infection. There is also inconclusive evidence that the airway may 

be primed in a pro-inflammatory state prior to infection.  

 

1.4.3. How is airway inflammation damaging in cystic fibrosis lung disease? 

 

Intense endobronchial and peribronchial neutrophilic inflammation are the hallmarks of 

the histopathology of established CF lung disease. (Hubeau et al., 2001a) The principal 

chemoattractant for neutrophils in the CF airway is IL-8. (Downey et al., 2009) 

Bronchial epithelial cells and immune cells such as macrophages and dendritic cells 
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produce IL-8 in the lungs. A wide range of other factors such as leukotriene B4, IL-1, 

IL-6, granulocyte-macrophage colony-stimulating factor (GMCSF), TNF-α and more 

recently IL-17 have also been identified as important in the modulation of the 

inflammatory response. (Downey et al., 2009, Brodlie et al., 2009c) This includes 

stimulating further production of IL-8 and recruitment of immune cells such as 

neutrophils and macrophages. (Elizur et al., 2008) Neutrophils then trigger the release 

of additional pro-inflammatory mediators and chemoattractants resulting in a sustained 

inflammatory response and positive feedback loop. (Downey et al., 2009) 

 

Neutrophils contain a number of proteolytic enzymes that are stored in specific 

cytoplasmic granules and are critical in intracellular pathogen destruction and hence 

response to infection. (Haslett et al., 1989) Large amounts of these proteases, such as 

the serine proteases neutrophil elastase, proteinase 3 and cathepsin G and matrix 

metalloproteases-8 and -9, are released in to the extracellular milieu on neutrophil 

degranulation or death and subsequently mediate tissue damage. (Linden et al., 2005, 

Korkmaz et al., 2008) Neutrophil elastase in particular digests a diverse range of 

substrates found in the lung including the structural proteins elastin and fibronectin and 

further activates pro-matrix metalloprotease-9. (Gaggar et al., 2007, Korkmaz et al., 

2008) In the CF lung this large protease burden overwhelms intrinsic anti-protease 

activity and results in epithelial injury, airway remodelling and irreversible damage to 

structure leading to severe bronchiectasis. (Balfour-Lynn, 1999, Griese et al., 2008, 

Hilliard et al., 2007) There is also evidence from ex vivo studies that neutrophil elastase 

stimulates airway gland mucus secretion. (Schuster et al., 1992, Cardell et al., 1999)  

 

On a clinical basis there is indirect evidence of the role of neutrophil elastase from work 

published by Sagel et al. (2002). They found that the concentration of neutrophil 

elastase in induced sputum from stable children with CF correlated negatively with their 

forced expiratory volume in one second (FEV1). (Sagel et al., 2002)    

 

Pathogens are also eliminated by neutrophils via cytotoxic reactive oxygen species that 

are generated through a membrane-associated nicotinamide adenine dinucleotide 

phosphate (NADP)-oxidase system. (Roos et al., 2003) Along with oxygen radicals 

from bacterial products and the environment this produces a cumulative oxidative stress 

in the CF lung that serves to further exacerbate airway injury. (Elizur et al., 2008) 

Kettle and colleagues found evidence of oxidative stress in the airways of young 
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children with CF in terms of raised concentrations of myeloperoxidase, 3-

chlorotyrosine, a biomarker for hypochlorous acid, and protein carbonyls in BAL fluid. 

(Kettle et al., 2004)  

 

Finally, on cell death neutrophils release large amounts of deoxyribonucleic acid (DNA) 

that constitutes a major polymeric component of the highly adhesive secretions 

characteristic of CF lung disease. (Rubin, 2007) The successful use of nebulised 

dornase alpha, which hydrolyses DNA in the airway, to improve mucociliary clearance 

in many people with CF provides practical evidence of the importance of increased 

concentrations of DNA in secretions in CF lung disease. (Jones and Wallis, 2003) 
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1.5. Interleukin-17 

 

1.5.1. Introduction 

 

IL-17 is the signature cytokine of the recently described TH-17 subset of CD4+ T cells. 

(Gaffen, 2009) The TH-17 cell lineage represents the first major revision to the 

landmark TH-1/TH-2 paradigm proposed by Mossman and Coffman over 20 years ago 

and addresses a number of discrepancies that had become apparent in the model. 

(Mosmann et al., 1986) IL-17 was first described and cloned in 1993. (Yao et al., 

1995b, Rouvier et al., 1993) A family of cytokines has now been described that 

comprises of six unique homodimeric domains, namely IL-17A, IL-17B, IL-17C, IL-

17D, IL-17E (IL-25) and IL-17F. The IL-17 family of cytokines are structurally very 

similar with homologous features such as disulphide linkage, C-terminal amino acid 

sequences and cysteine residues. (Linden et al., 2005) The most widely studied and 

prevalent members of the family in human biology are IL-17A and the related T cell 

isoform IL-17F. From this point onwards in this thesis unless specifically stated IL-17 

refers to the cytokine IL-17A. 

 

TH-17 cells are characterised in humans by the production of the cytokines IL-17A, IL-

17F, IL-22, IL-21 and IL-26. (Gaffen, 2009) In mice the differentiation of naïve T cells 

to a TH-17 phenotype is regulated by the transcription factors signal transducer and 

activator of transcription 3 (STAT3), retinoic acid receptor-related orphan receptor-γt 

(RORγt) and aryl hydrocarbon receptor. This process is driven by transforming growth 

factor-β (TGF-β), IL-1 and IL-6. (Gaffen, 2009, Ivanov et al., 2006)  

 

Our understanding of the immunobiology of IL-17 in humans is currently evolving 

rapidly and, interestingly there appear to be significant differences to the situation in 

mice. (Laurence and O'Shea, 2007, de Jong et al., 2010) Yang et al. (2008) found that 

TGF-β and IL-21 uniquely promote the differentiation of naïve human CD4+ T cells to 

TH-17 cells that is accompanied by expression of the transcription factor RORC2, the 

human orthologue of RORγt. (Yang et al., 2008, Unutmaz, 2009) IL-1β and IL-6 

induced IL-17A production from human central memory CD4+ T cells but not from 

naïve CD4+ T cells. IL-23 is required to expand and stabilise the TH-17 population but is 
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not involved in the differentiation of naïve T cells. (Bettelli et al., 2007, Aggarwal et al., 

2003) Figure 7 illustrates the differentiation of TH cell subsets. 

 

TH-17 cells are not the only source of IL-17 identified however. IL-17 is also known to 

be produced by γδ T cells and natural killer T cells. (Michel et al., 2007, Roark et al., 

2008) Apart from lymphocytes there is also an emerging literature showing that 

myeloid cells can also express IL-17. It has recently been shown that mast cells in 

rheumatoid arthritis synovium and alveolar macrophages in a mouse model of allergy 

express IL-17. (Hueber et al., 2010, Song et al., 2008) Moreover it has also been 

suggested in human alcoholic liver disease and mouse models of lipopolysaccharide-

induced airway inflammation and kidney ischaemia-reperfusion injury that neutrophils 

are a potential source of IL-17. (Lemmers et al., 2009, Ferretti et al., 2003, Li et al., 

2010) 

 

The current overall understanding of IL-17 receptor (IL-17R) biology is weak. The IL-

17R consists of five subunits, IL-17RA to IL-17RE. (Aggarwal and Gurney, 2002) IL-

17RA is by far the largest and most well studied receptor. (Gaffen, 2009) IL-17RA is 

expressed by a wide range of cells relevant to lung immunobiology, including airway 

epithelial cells, fibroblasts, B- and T-lymphocytes, endothelial cells and 

myelomonocytic cells. (Linden et al., 2005, Yao et al., 1995a, McAllister et al., 2005) 

The majority of these cells express the receptor constitutively suggesting that under 

physiological conditions they are primed for an immediate response on exposure to IL-

17. IL-17RA activation by IL-17A induces a highly pro-inflammatory programme of 

gene expression, including the NFκB and mitogen-activated protein kinase (MAPK) 

pathways, similar to that induced by receptors associated with innate immunity such as 

Toll-like and IL-1 receptors (Figure 8). (Gaffen, 2009) In the future an improved 

understanding of the receptor biology of IL-17 is likely to lead to novel therapeutic 

approaches with greater precision in terms of targeting the harmful aspects of 

inflammation while avoiding more general deleterious effects on the host immune 

system. (Gaffen, 2009) 
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Figure 7. Differentiation of TH cell subsets 

Following activation by antigen-presenting cells such as dendritic cells (DCs), naive 
CD4+ T cells can be polarized into different effector T cell subsets — T helper 1 (TH1), 

TH2, TH17 and regulatory T (TReg) cells — depending on the local cytokine 
environment. The differentiation of each of these effector T cell subsets is controlled by 

distinct sets of transcription factors. In the presence of interleukin-6 (IL-6) and 
transforming growth factor-β (TGFβ), naive T cells can differentiate into TH17 cells, 

which are characterized by expression of the transcription factors retinoic acid receptor-
related orphan receptor-γt (RORγt) and signal transducer and activator of transcription 3 

(STAT3). Furthermore, IL-1 and IL-23 can promote and/or stabilize TH17 cell 
differentiation and expansion. FOXP3, forkhead box P3; GATA3, GATA-binding 

protein 3; IFNγ, interferon-γ; TCR, T cell receptor. (Zou and Restifo, 2010) 
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Figure 8. Interleukin-17 induced signalling pathways 

Schematic depicting interleukin-17 receptor (IL-17R) signalling. The IL-17R complex 
is composed of IL-17RA and IL-17RC. IL-17RA engages the SEFIR domain-containing 

adaptor ACT1 to mediate various downstream events. Specifically, ACT1 is required 
for recruitment of TNFR-associated factor 6 (TRAF6) and possibly TRAF3, which are 

essential upstream activators of the canonical nuclear factor-B (NF-B) pathway. It is not 
clear whether TRAF6 is also required for the activation of the mitogen-activated protein 

kinase (MAPK) p38. ACT1, but not TRAF6, is required for IL-17A-induced 
stabilization of several target mRNAs, particularly those encoding chemokines and 

cytokines. A second functional domain on IL-17RA is located in the carboxy-terminal 
region and is not required for efficient activation of NF-B and MAPK pathways. 

(Gaffen, 2009) 
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1.5.2. Interleukin-17 and neutrophils 

 

A substantial body of evidence supports a central role for IL-17A in host defence in the 

lungs. Principally IL-17A exerts an orchestrating effect on the accumulation and 

associated activity of neutrophils in the bronchoalveolar space. (Linden et al., 2005) 

This effect is achieved indirectly via the local release of neutrophil-mobilising factors, 

including IL-8, IL-6, GM-CSF, IL-1β, TGF-β, TNF-α and prostaglandin E2, from cells 

resident in the lung such as bronchial epithelial cells, fibroblasts, macrophages and 

endothelial cells. (Aujla et al., 2007) There is clear evidence that airway challenge with 

IL-17 causes substantial neutrophil accumulation in rats and mice in vivo. (Hoshino et 

al., 2000, Prause et al., 2004) The activated neutrophil products neutrophil elastase and 

myeloperoxidase are also similarly increased. (Hoshino et al., 2000) Animal studies 

have also demonstrated that IL-17 signalling plays a central role in defence against 

Gram-negative bacterial infections in the lungs. Mice deficient for the IL-17 receptor 

have an increased mortality due to Klebsiella pneumoniae lower respiratory tract 

infection, decreased neutrophil mobilisation and poorer clearance of bacteria. (Ye et al., 

2001a)  

 

As described earlier in this thesis, TH-17 cells are thought to be an important source of 

IL-17. (Bettelli et al., 2007) IL-17 therefore represents a strategic link between acquired 

and innate immunity and there is growing evidence that T lymphocytes play a role in 

the sustained mobilisation and activation of neutrophils through this mechanism. 

(Linden et al., 2005, Glader et al., 2010)  

 

1.5.3. Interleukin-17 and disease 

 

The IL-17 family of cytokines has been the focus of a great deal of research over recent 

years and has been implicated in the pathogenesis of a diverse range of inflammatory 

conditions. These include the neutrophilic lung diseases asthma, chronic bronchitis, 

chronic obstructive pulmonary disease and chronic lung allograft rejection along with 

non-respiratory conditions such as rheumatoid arthritis, multiple sclerosis, inflammatory 

bowel disease and autoimmune encephalomyelitis. (Bullens et al., 2006, Laan et al., 
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2002, Curtis et al., 2007, Murphy et al., 2008b, Asquith and McInnes, 2007, McFarland 

and Martin, 2007, Bamias and Cominelli, 2007, McGeachy and Anderton, 2005) 

 

1.5.4. Interleukin-17 and cystic fibrosis 

 

As outlined above, IL-17 is linked to both neutrophilic inflammation and mucus excess, 

which are two cardinal features of CF lung disease, in addition to dysregulation of 

acquired immunity.(Chen et al., 2003, Bettelli et al., 2007, Aujla et al., 2007) It has 

been shown that people with CF who exhibit robust T cell responses to P. aeruginosa 

manifest more severe lung disease. (Winnie and Cowan, 1991) Other findings in the 

published literature pertinent to a role for IL-17 in CF lung disease include the reports 

that immortalised airway epithelial cells that do not express functional CFTR upregulate 

their innate immune responses following stimulation with IL-17. In particular 

nucleotide-binding oligomerisation domain 1 is increased. (Roussel and Rousseau, 

2009) IL-17 also modulates bicarbonate secretion in normal airway epithelial cells 

suggesting that it may affect airway surface liquid physiology. (Kreindler et al., 2009) 

In addition treatment with IL-17 increases expression of the mucin genes MUC5AC and 

MUC5B in bronchial epithelial cells in vitro. (Chen et al., 2003) 

 

Dendritic cells (DCs) are an important source of IL-23 in the lung. DCs form an 

immune sensing mesh that surrounds the airway and rapidly processes antigens. This is 

achieved by a process known as “snorkelling” where by DCs extend processes through 

intercellular spaces in the epithelium and sample the airway milieu. (Vermaelen et al., 

2001, Holt, 2005) Dubin et al. (2007) hypothesise that the resultant high antigen load 

generates marked induction of IL-23 production by DCs in the airways of people with 

CF. (Dubin et al., 2007) It follows that a cytokine milieu rich in IL-23 would favour 

expansion of TH-17 cells and hence IL-17 production.  

    

Published human studies of IL-17 in CF are rare but some support the importance of 

this axis. McAllister et al. (2005) analysed sputum from 8 young adults with CF, known 

to be colonised with P. aeruginosa, during hospitalisation for intravenous antibiotic 

therapy to treat an infective exacerbation. Sputum was collected pre-treatment and on 

days 10 and 20 of antibiotics. Levels of IL-17A, IL-17F and IL-23 along with a panel of 

IL-17-induced cytokines including IL-8 and GM-CSF were measured in the sputum 
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samples by enzyme-linked immunosorbent assay (ELISA). They found that IL-17A, IL-

17F and IL-23 were raised in sputum during the exacerbation and were significantly 

reduced by day 20 of antibiotic treatment. A similar pattern was observed in the panel 

of IL-17-induced cytokines, most notably IL-8. (McAllister et al., 2005) Raised levels 

of IL-17 have also been reported in BAL fluid from children with CF during infective 

exacerbations by the same research group. (Dubin et al., 2007, Aujla et al., 2008) IL-17 

has also been found to be raised in the serum of clinically stable adults with CF. 

(Dufresne et al., 2009) 

  

In summary, there is strong evidence from animal and cellular studies that IL-17 is 

linked to neutrophilic airway inflammation and IL-17 has also been demonstrated in 

vitro to increase mucin gene expression. Neutrophilic inflammation and mucus excess 

are two of the cardinal features of the CF airway making IL-17 a highly plausible 

mediator in the pathogenesis of CF lung disease. To date actual evidence of the 

probable role of IL-17 in CF lung disease is limited to a sputum study involving a small 

number of patients. It follows that further research in this area is likely to yield 

important results in terms of enhancing our understanding of the pathogenesis of CF 

lung disease and elucidating potential therapeutic targets in the cascade of neutrophilic 

inflammation that is responsible for progressive bronchiectasis. 
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1.6. Experimental models of cystic fibrosis lung disease 

 

1.6.1. Introduction 

 

As outlined earlier in this chapter, over 95% of morbidity and mortality in CF is 

associated with lung disease. (Doring et al., 2007) Developments in clinical care have 

yielded ever-increasing survival for people with CF over recent decades. (Dodge et al., 

2007) However, 20 years after the identification of the CFTR gene, the exact 

pathogenesis of CF lung disease remains poorly understood. (Rogers et al., 2008a, 

Riordan et al., 1989) Valid experimental models are therefore required to further 

determine the pathogenesis of CF lung disease. (Wine, 2010)   

 

A number of exciting novel, small-molecular compounds targeted at specific CFTR 

mutations have been described in recent years. For example, VX-770 is a CFTR 

potentiator that has shown promising early results in a phase IIa clinical trial in people 

with at least one p.Gly551Asp class III variant. (O'Sullivan and Freedman, 2009, Van 

Goor et al., 2009) PTC124 was initially identified using a cell-based assay and induces 

ribosomes to read through premature stop codons. (Welch et al., 2007) This compound 

has potential benefit in approximately 10% of people with CF who have in-frame 

nonsense variants, such as p.Trp1282X or p.Gly542X, and PTC124 has been shown to 

restore CFTR protein and function in a mouse model with the p.Gly542X mutation. (Du 

et al., 2008, O'Sullivan and Freedman, 2009) A subsequent phase II clinical trial in 

people with nonsense variants showed an increase in nasal potential difference in some 

but not all. (Kerem et al., 2008) These findings highlight the huge importance of 

accurate experimental models to enable the development and evaluation of novel 

potentially therapeutic strategies. (Auld et al., 2009) 
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1.6.2. Animal models 

 

Since the cloning of the CFTR gene it has been possible to develop animal models of 

CF. (Riordan et al., 1989) A large amount of work has been performed in this area, 

principally focussed on mice, that has generated over 2500 publications to date. 

(Scholte et al., 2004) There has also been exciting progress recently in the development 

of CF pig and ferret models. (Rogers et al., 2008b, Sun et al., 2008, Stoltz et al., 2010) 

The obvious strength of animal models is that they allow in vivo study designs of 

disease pathogenesis or the evaluation of novel therapeutic strategies, which are not 

technically or ethically possible in humans. Once the appropriate genetic manipulation 

has been achieved, however, the utility of an animal model is dependent on how closely 

the phenotype of the animal matches that observed in human disease. This is further 

complicated by the relatively weak correlation between CFTR genotype and phenotype 

of lung disease seen clinically in people with CF. (Rowntree and Harris, 2003, 

Bronsveld et al., 2001) When considering this area, it is important to be aware of the 

timely establishment of organisations such as the National Centre for the Replacement, 

Refinement and Reduction of Animals in Research in the United Kingdom to facilitate 

the careful use of animals in medical research. (NC3Rs, 2010) 

 

1.6.3. Mouse models 

 

The first murine models were produced by interruption of the CFTR gene and produced 

a knockout effect resulting in no detectable mouse CFTR mRNA production. 

(Snouwaert et al., 1992, Ratcliff et al., 1993, Hasty et al., 1995, Rozmahel et al., 1996) 

Mice with residual function that produce low levels of mouse CFTR mRNA were 

subsequently produced by an insertional strategy. (Dorin et al., 1992, O'Neal et al., 

1993) Although fundamental to subsequent research it became apparent that the 

mutations in these early models did not accurately simulate the effects of relevant 

clinical mutations such as the dysfunctional CFTR produced with the p.Phe508del 

mutation. (Grubb and Boucher, 1999)  

 

In view of this recombinant mice were therefore generated with specific clinically 

relevant mutations. The first example of which were p.Phe508del CFTR mice 
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developed to replicate the most frequent human CF mutation. (Colledge et al., 1995, 

Zeiher et al., 1995, van Doorninck et al., 1995) In addition mice carrying the human CF 

mutations p.Gly480Cys, p.Gly551Asp and p.Gly542X have been produced. (Delaney et 

al., 1996, Dickinson et al., 2002, Du et al., 2002)  

 

Once the appropriate genetic manipulation has been achieved clearly a vital 

consideration are the phenotypic properties of the various strains of CFTR mutant mice. 

In general the mice exhibit a characteristic CF bioelectric phenotype. (Grubb and 

Boucher, 1999) Intestinal disease, typified by intestinal obstruction, dilated crypts filled 

with mucus and goblet cell hyperplasia, is the most prominent feature in CF mice. This 

intestinal phenotype closely mimics that seen in humans and is widely accepted as a 

valid model. (Guilbault et al., 2007) Pancreatic insufficiency is a problematic feature of 

classical CF in humans but is not convincingly replicated in most mouse models. 

Pancreatic disease appears to be less severe in CF mice due to lower levels of CFTR 

expression in the murine pancreas and the presence of an alternative secretory pathway. 

(Gray et al., 1995) In male mice CFTR dysfunction leads to mucoid obstruction of the 

vas deferens rather than complete absence as is seen in human CF. The net effect 

however is similarly severely reduced fertility. (Scholte et al., 2004)     

 

CF lung disease in humans is characterised by chronic infection with bacteria such as S. 

aureus, H. influenzae and P. aeruginosa, neutrophilic inflammation and retention of 

mucopurulent secretions. (Davidson et al., 1995, Downey et al., 2009) Unfortunately 

there are significant differences between the human CF lung phenotype and that seen in 

CF mice. Despite promising bioelectric features of the airway in some CF mice, 

establishing chronic infection with P. aeruginosa and subsequent inflammation and 

fibrotic lung damage has proved difficult. Scholte et al. in a review of animal models 

for CF concluded that: “the development of an ideal mouse model of CF lung disease, 

to enable the dissection of pathogenesis, or testing of novel therapeutics, is yet to be 

achieved.” (Scholte et al., 2004) Possible explanations for this observation include 

inter-species differences in lung physiology, innate immunity, airway epithelial cell 

composition, alternative chloride channels and less widespread submucosal glands. 

(Pack et al., 1980, Grubb et al., 1994, Borthwick et al., 1999, Maxwell et al., 2003) 

 

In an alternative approach, Mall and colleagues, developed a mouse with airway-

specific overexpression of the β epithelial sodium channel subunit. (Mall et al., 2004) 
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Interestingly the resultant increase in sodium absorption in vivo generated a spontaneous 

CF-like lung disease in the mice including reduced airway surface liquid, increased 

mucus concentration, defective mucus transport, neutrophilic inflammation and poor 

bacterial clearance. This model provides an important mechanistic link between altered 

ion transport, dysregulation of airway surface liquid and CF-like lung disease. However, 

unlike human CF lung disease CFTR function is preserved and the mice also develop 

pulmonary emphysema. (Mall et al., 2008) The model is therefore currently of limited 

value in translation to human CF.  

 

1.6.4. Other animal models 

 

The limitations outlined above of murine models have led to attempts in recent years to 

develop other animal models. Larger animals such as pigs, sheep or ferrets have the 

advantage that their lungs resemble human lungs more closely in terms of anatomy and 

in particular submucosal glands are extensively distributed throughout the respiratory 

tract. (Rogers et al., 2008a)  

 

The preliminary results of a major programme of work based at the University of Iowa 

to develop pigs and ferrets with CFTR mutations have recently been published and 

presented at international meetings. (Rogers et al., 2008b, Sun et al., 2008, Rogers et al., 

2008c) Piglets with disrupted CFTR have been observed to develop an extreme 

gastrointestinal phenotype including meconium ileus, necessitating ileostomy, exocrine 

pancreatic destruction and focal biliary cirrhosis. (Rogers et al., 2008c, Meyerholz et al., 

2010) Gastrointestinal morbidity has also included gastric ulceration and abdominal 

pathology has been responsible for a significant early mortality rate.  

 

The initial results with regard to the recapitulation of CF lung disease have recently 

been published. (Stoltz et al., 2010) As mentioned earlier, newborn CF piglets did not 

show increased evidence of inflammation (BAL fluid IL-8 and neutrophil counts) but 

were less often sterile and eliminated bacteria less effectively. This suggests an intrinsic 

host defense defect against bacteria is the initial pathogenic event in the lungs of CF 

piglets. Within only months of birth the piglets developed spontaneously several 

features of human CF lung disease including mucus accumulation, neutrophilic 

inflammation and endobronchial infection. (Stoltz et al., 2010) Figure 9 illustrates some 

of the pathological features found in the CF pigs. (Stoltz et al., 2010) The pig model 
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remains at an experimental stage and certainly does not represent a mainstream research 

tool that is available to other researchers currently. A major challenge for this model to 

realise its full potential will be to increase the length of survival of the pigs. This has 

been limited to 6 months due to severe morbidity, requiring euthanasia, associated with 

meconium ileus, gastric ulceration and respiratory infections. (Wine, 2010)     
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Figure 9. Lung disease in cystic fibrosis pigs 

(A) Infiltration of the airway wall by lymphocytes and plasma cells (arrows). PAS stain. 
Scale bar, 80 µm. (B) Obstruction (arrows) of bronchi and small bronchioles was a 

striking feature in otherwise unaffected lung (asterisks). H&E stain. Scale bars, 0.75 
mm. (C) Airways from non-CF and CF pigs were scored for the most severe degree of 

leukocytic infiltration de- tected, *P < 0.05, Mann-Whitney test. Horizontal line 
indicates the median. (D) Airways (left panels) (scale bar, 0.7 mm) ranged from 

relatively unaffected (top) to severe disease (bottom; note that the luminal mucocellular 
plug was removed at necropsy) with airway wall thickening. Surface epithelium (right 
panels) (scale bar, 70 µm) ranged from near normal (top) to mucinous and hyperplastic 
change (asterisks) in moderate to severe disease (middle and bottom panels). Note that 

hypertrophy or hyperplasia of submucosal glands (arrows, bottom right) was uncommon 
and generally restricted to the most severe and chronically affected airways. (Stoltz et 

al., 2010) 
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1.6.5. Cellular models 

 

In addition to structural and barrier functions airway epithelial cells are increasingly 

recognised to operate as ‘effector’ cells. Airway epithelial cells produce a wide range of 

inflammatory and immunomodulatory cytokines and growth factors that contribute to 

the pathogenesis of respiratory disease. (Ward et al., 2009, Smyth, 2009, Crystal et al., 

2008, Wang et al., 2009, Brodlie et al., 2009a) 

 

For a number of decades it has been possible to culture human airway epithelial cells in 

vitro. (Gruenert et al., 1995, Lechner et al., 1981) Cells may be cultured most simply 

under submerged conditions on plastic in petri dishes or flasks, however, primary cells 

revert to a poorly differentiated phenotype within a limited number of passages. 

(Gruenert et al., 1995, Araya et al., 2007) More advanced culture techniques, such as 

within collagen gels, as three-dimensional spheroids or most commonly on semi-

permeable membranes at an air-liquid interface, allow more accurate reproduction of the 

native airway epithelium. (de Jong et al., 1993, Ulrich and Doring, 2004, Bals et al., 

2004, Choe et al., 2006)  

 

Air-liquid interface cultures have been pivotal in several major advances in our current 

understanding of the pathogenesis of CF lung disease, including depletion of the 

periciliary liquid layer. (Matsui et al., 1998) Semi-permeable membranes may also be 

used to co-culture different cell types and investigate their interactions, for instance 

airway epithelial cells and fibroblasts. (Zhang et al., 1999) Airway epithelial cells may 

also be used in electrophysiology experiments in whole-cell patch clamping or cultured 

monolayers in assays of iodide efflux or Ussing chambers. (Rakonczay et al., 2008, 

Jurkuvenaite et al., 2009, Brodlie et al., 2010f)  

	
  

1.6.6. Immortalised cell lines 

 

Immortalised airway epithelial cell lines, originating from human neoplasms or 

produced in vitro by physical or chemical mutagenesis or introduction of viral 

oncogenes, are used extensively in CF research and have contributed significantly. 
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(Gruenert et al., 1995, Lundberg et al., 2002, Fulcher et al., 2009, Pedemonte et al., 

2005) Immortalised cell lines have been particularly useful for the investigation of 

relationships between CFTR genotypes, metabolic and biochemical characteristics and 

disease phenotypes. (Gruenert et al., 2004) Immortalised cells are also essential in the 

early stages of high-throughput screening strategies to identify novel therapeutic 

compounds. (Pedemonte et al., 2005) Advantages of immortalised cell lines include 

their widespread availability, especially when compared to the scarcity of primary CF 

tissue and cells, homogeneity in terms of biochemical, electrophysiological and growth 

characteristics and the presence of matched isogenic control lines. (Gruenert et al., 

2004) Cell lines that are commonly used in CF research have been comprehensively 

reviewed. (Gruenert et al., 2004)   

 

However, the process of immortalisation may generate karyotypic instability and have 

major effects on cellular differentiation, morphology or function compared to the 

situation in vivo. (Gruenert et al., 2004, Fulcher et al., 2009, Karp et al., 2002) The 

condition of the primary culture prior to immortalisation is crucial in determining the 

validity and utility of the cell line.  Careful selection must be made of the most 

appropriate immortalised cell line guided by the biological end points that are to be 

evaluated. Although the dependence of these end points on the cellular context cannot 

always be regulated. (Gruenert et al., 2004) Karyotypic instability may also lead to the 

emergence of subpopulations that do not retain the phenotypic characteristics of 

interest. (Gruenert et al., 2004)   

	
  

1.6.7. Primary tissue or cellular ex vivo models 

 

CF is a uniquely human disease and therefore primary tissue or cells cultured directly 

from people with CF represent a highly valuable experimental resource. The ex vivo 

culture of primary airway epithelial cells from people with CF, that have not been 

immortalised, is likely to reproduce the behaviour of cells in vivo more accurately than 

immortalised cell lines. Furthermore, primary airway epithelial cell cultures have been 

instrumental in several important developments in our understanding of the 

pathophysiology of CF lung disease. (Fulcher M. L., 2005, Matsui et al., 1998, Blouquit 

et al., 2006, Joseph et al., 2005, Widdicombe, 1990)  
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Primary airway epithelial cells are particularly important in the new era of targeted 

therapies for the molecular defects associated with specific CFTR variants. (O'Sullivan 

and Freedman, 2009) The problems outlined earlier with the murine models of CF lung 

disease clearly limit their utility in drug discovery. (Scholte et al., 2004) Although 

immortalised cell lines are extremely valuable in the early stages of high-throughput 

screening, primary cells are vital to confirm and validate any initial findings in a 

immortalised cell line prior to more advanced stages of analysis. (Pedemonte et al., 

2005, Van Goor et al., 2006, Ma et al., 2002, O'Sullivan and Freedman, 2009) 

 

In CF there is a diverse spectrum of disease and often a weak correlation between CFTR 

genotype and clinical lung phenotype. (Rowntree and Harris, 2003) Primary airway 

epithelial cells from individual donors are likely to reflect this inherent biological 

heterogeneity in terms of their function. (Becker et al., 2004) Indeed, for some 

experiments the homogeneity of an immortalised cell line along with isogenic controls 

may be preferable. Primary cells possess a finite reproductive capacity before they 

senesce and this has provided impetus to establish novel immortalised cell lines derived 

from primary cells. (Fulcher et al., 2009, Ben-Porath and Weinberg, 2005)  

 

Several potential sources of primary airway epithelial cells from people with CF are 

described below, including explanted lungs, bronchial and nasal brushings. Appropriate 

ethical approval and strict adherence with human tissue legislation are clearly essential 

along with the informed consent of the participants and any research sampling must not 

compromise the care or health of patients. (Trouet, 2004, Anon, 2006, Trouet et al., 

2004, Dodge, 2004, Mallory, 2006, Bush and Davies, 2006) 

	
  

1.6.8. Explanted lungs 

 

The only life-sustaining intervention for end-stage CF lung disease is transplantation. 

(Meachery et al., 2008) Explanted lungs removed at the time of transplantation from 

people with CF represent a potential source of large numbers of primary bronchial 

epithelial cells. The procurement of appropriate lung tissue is logistically demanding 

however, lung transplantation is unpredictable in nature, informed consent is required in 

advance from patients and the cooperation of the multidisciplinary transplant team is 
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essential. (Brodlie et al., 2010f) It is also important to note that cells and tissue obtained 

from explanted lungs maybe only representative of advanced disease. 

 

It is imperative that the multidrug-resistant microorganisms, which frequently colonise 

the airways of people with end-stage CF lung disease, are eradicated from cultures at an 

early stage to achieve success. (Gruenert et al., 2004, Randell et al., 2001) Chapter 5 of 

this thesis reports the establishment of a successful technique and programme to culture 

primary bronchial epithelial cells from explanted lungs in Newcastle upon Tyne. 

 

Intact sheets of bronchial epithelium may also be resected from lungs shortly after 

explantation and placed in perfused mini-Ussing chambers. This allows the 

investigation of electrophysiological responses, for example with small molecule CFTR 

correctors or potentiators, in the context of an intact epithelium complete with 

submucosal glands. (Derichs, 2009, Jaffar et al., 1999)  

	
  

1.6.9. Bronchial brushings 

 

Bronchial epithelial cells maybe cultured in smaller numbers from brushings of the 

lower airway. Once the appropriate ethical approval is in place an opportunistic 

approach is likely to be required on behalf of the clinical researcher to obtain informed 

consent and bronchial brushings from people with CF when they undergo elective 

procedures such as gastrostomy or totally implantable vascular access device insertion. 

Eradication of infection remains essential for the successful ex vivo culture of cells.          

 

Bronchial brushings may be obtained blindly from patients who have been intubated by 

passing a cytology brush down the endotracheal tube. (Doherty et al., 2003) 

Alternatively, brushings may be performed under direct vision via a flexible 

bronchoscope in patients, including children, who are intubated or with a laryngeal 

mask airway in situ, or in those who are undergoing bronchoscopy for a clinical 

indication. (McNamara et al., 2008, Forrest et al., 2005, Lane et al., 2005)  
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1.6.10. Nasal brushings 

 

The nose is an alternative source of airway epithelial cells that is easily accessible. 

Nasal brushings may be performed in a relatively non-invasive manner in a clinic 

setting. In adults and older children the technique does not require any sedation or 

anaesthesia and therefore allows repeated isolations from the same individual, for 

instance with a particular CFTR genotype of interest. This also provides the potential 

for longitudinal studies of aetiology and treatment strategies, the evaluation of the 

effects of primary CFTR defects and subsequent host-pathogen interactions on 

phenotype.  Nasal brushings may also be performed on groups such as children who are 

less likely to undergo bronchoscopy due to practical or ethical reasons. (Mosler et al., 

2008, McDougall et al., 2008) There are several published methods for the culture of 

nasal epithelial cells from people with CF and feasibility of the technique has even been 

demonstrated in infants. (Bridges et al., 1991, Mosler et al., 2008)  

 

McDougall et al. compared the release of proinflammatory mediators and surface 

expression of receptors by undifferentiated monolayers of nasal and bronchial epithelial 

cells from the same individuals under resting conditions and in response to cytokine 

stimulation. (McDougall et al., 2008) They found differences in absolute mediator 

levels but similar responses to stimulation and comparable cell surface receptor 

expression suggesting that nasal epithelial cells may represent an accessible surrogate 

for lower airway epithelial cells to study inflammation. (McDougall et al., 2008) 

 

1.6.11. Experimental model summary 

 

Experimental models are critically important for use in research to advance both our 

knowledge of the pathogenesis of CF lung disease and to discover and evaluate novel 

therapeutic compounds and strategies. This is especially relevant in light of the recent 

exciting advances in the development of small-molecule compounds directed at specific 

CFTR mutations. A large amount of work over the last two decades has unfortunately 

failed to yield a good CFTR-deficient murine model of CF lung disease. The 

development of larger animal models, for example, the porcine model shows promise 

but remains in its infancy and is yet to be fully validated. Immortalised airway epithelial 

cell lines have contributed significantly to CF research but have inherent limitations, 
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including karyotypic instability and poor replication of behaviour in vivo. Primary lung 

tissue and airway epithelial cells harvested from nasal or bronchial brushings or 

explanted lungs from people with CF represent a valuable resource for the ex vivo study 

of CF lung disease. A schematic diagram of approaches to the use of different 

experimental models in drug discovery for CF lung disease is shown in Figure 10. 
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Figure 10. Schematic diagram illustrating the use of different experimental models 

in drug discovery for CF lung disease 
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1.7. Ceramide and cystic fibrosis lung disease 

 

1.7.1. Introduction and biochemistry 

 

Ceramide is a ubiquitous sphingolipid that is found in the membrane of cells. The 

original ‘fluid mosaic model’ of cell membrane structure has subsequently been revised 

to include the concept of membrane microdomains including ceramide-enriched lipid 

rafts. (Singer and Nicolson, 1972, Simons and Ikonen, 1997, Gulbins et al., 2004) Lipid 

rafts act as anchoring points in cell membranes for the cytoskeleton and as receptors for 

the start of signalling cascades and the uptake of microorganisms. (Grassme et al., 2003, 

Uhlig and Gulbins, 2008, Manes et al., 2003) In addition to their function in cell 

membranes, sphingolipids are also recognised to regulate a number of key physiological 

intracellular processes via roles as pleiotropic second-messengers. (Hannun and Obeid, 

2002) This includes apoptosis, senescence, innate and acquired immunity, vascular 

permeability and smooth muscle tone. (Uhlig and Gulbins, 2008, Novgorodov and 

Gudz, 2009) 

  

Sphingolipids are amphiphatic and comprise of a hydrophobic ceramide moiety and a 

hydrophilic headgroup. (Becker et al., 2010c) Sphingolipds are principally derived from 

sphingosine. Sphingosine-1-phosphate (S1P) is formed by phosphorylation of 

sphingosine and its acylation results in ceramide. Ceramide is coupled with 

phosphocholine to produce sphingomyelin. The reverse of this processs, the production 

of ceramide from sphingomyelin by sphingomyelinase, is of greater significance in 

disease. Ceramide itself may be degraded by acid ceramidase to sphingosine and fatty 

acid. (Uhlig and Gulbins, 2008) Figure 11 provides a summary of sphingolipid 

metabolism. Figure 12 illustrates the de novo synthesis pathway and the salvage 

pathway that ceramide is principally generated by. (Novgorodov and Gudz, 2009)   

 

Sphingolipids exert profound effects on cell fate. S1P mediates survival and 

proliferation where as ceramide promotes differentiation, apoptosis and cell-cycle 

arrest. (Uhlig and Gulbins, 2008) Hence the term ‘the sphingolipid rheostat’ has been 

coined to describe the critical role of sphingolipids in cell fate, particularly in response 
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to different stressors. (Pyne and Pyne, 2000) Accordingly sphingolipid levels are tightly 

regulated in cells. (Novgorodov and Gudz, 2009)  

 

There is wide-ranging evidence that ceramide in particular is a key sphingolipid 

messenger in the regulation of cellular responses to stress, including apoptosis and 

senescence. (Pettus et al., 2002) Ceramide consists of a family of approximately 50 

distinct species that are defined by molecular structure including acylation, desaturation 

and hydroxylation. (Novgorodov and Gudz, 2009)      

 

The study of sphingolipids in biological systems is highly complex and techinically 

demanding. Ceramide is hydrophobic and therefore the identification of specific 

intracellular binding partners has proved difficult. (Uhlig and Gulbins, 2008) Another 

major challenge is difficulties with the lack of an efficient method to quantify levels of 

sphingolipids in biological samples. Two ceramide antibodies are now commercially 

available, a mouse IgM monoclonal antibody (Sigma-Aldrich) and an antiserum 

enriched for IgM polyclonal antibody (Glycobiotech). Cowart et al. compared the 

specificity of these two antibodies and found the polyclonal antibody to be more 

specific for ceramide than the monoclonal antibody, which also detects 

dihydroceramide, phosphatidylcholine and sphingomyelin. (Cowart et al., 2002)  

 

As mentioned above, ceramide truly consists of a large family of distinct molecular 

species. Importantly, there is evidence that individual ceramide species have specific 

biological functions and vary in their relative concentrations, for example C16 and C24 

ceramide in apoptosis. (Kroesen et al., 2003) In order to identify and accurately 

quantify individual ceramide species analytical chemistry techniques are required. For 

example high performance liquid chromatography-mass spectrometry (HPLC-MS) may 

be used to analyse homogenates of tissues. (Pettus et al., 2003) Clearly such an 

approach does not allow architectural localisation of ceramide species in tissues 

however. (Brodlie et al., 2010d) 
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Figure 11. Overview of sphingolipid metabolism.  

Blue colours indicate chemical moieties transferred by the enzymatic reactions. Red 
arrows indicate heavily regulated enzymes that are thought to play a major role 

in pulmonary disease (Uhlig and Gulbins, 2008) 
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Figure 12. Biosynthesis of ceramide including the de novo and salvage pathways  

(Novgorodov and Gudz, 2009) 
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1.7.2. Sphingolipids and pulmonary disease 

 

Sphingolipids are increasingly recognised to play a role in the pathogenesis of several 

lung conditions. The metabolic conditions Niemann-Pick disease (NPD) type A and B 

result from deficiency of sphingomyelinase and subsequent lysosomal accumulation of 

sphingomyelin. NPD is associated with pulmonary infection and interstitial lung 

disease. (Schuchman, 2007) In the context of acute lung injury and pulmonary oedema 

acid sphingomyelinase activity has been shown to be increased and may represent a 

potentially useful therapeutic target. (Niessen et al., 2008, Claus et al., 2005, Lindner et 

al., 2005) Asthma is characterised by chronic inflammation involving eosinophils, mast 

cells, neutrophils and lymphocytes, airway smooth muscle contraction and 

hyperresponsiveness. (Brodlie and McKean, 2009, Holgate, 2008) Sphingolipids are 

involved in the regulation of all of the aforementioned processes. (Ammit et al., 2001) 

Ceramide has also been identified as an important mediator in the development of 

emphysema. In this context ceramide is thought to act by inducing oxidative stress and 

apoptosis of alveolar endothelial and epithelial cells. (Petrache et al., 2005, Petrache et 

al., 2008) 

 

Ceramide-enriched lipid rafts are intimately involved in airway epithelial cells defences 

against infection by microorganisms. This includes hosting key signalling events in the 

immune-surveillance of pathogens. (Manes et al., 2003) In addition a number of 

pathogens have evolved strategies to enter airway epithelial cells via lipid rafts. (Manes 

et al., 2003)  The invasion of epithelial cells by rhinovirus involves ceramide-enriched 

lipid rafts. (Grassme et al., 2005) The infection of epithelial cells with P. aeruginosa 

also critically involves ceramide-enriched membrane domains. (Grassme et al., 2003) 

Furthermore it has been shown that CFTR acts as a receptor for the internalization of P. 

aeruginosa. (Pier et al., 1996, Pier et al., 1997) 
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1.7.3. Ceramide and cystic fibrosis lung disease 

 

Chronic infection with P. aeruginosa and intense neutrophilic inflammation are two 

hallmarks of CF lung disease. (Davidson et al., 1995, Downey et al., 2009) In lung 

endothelial cells CFTR function is also required for stress-induced apoptosis by 

maintaining ceramide activation. (Noe et al., 2009) Ceramide is therefore a plausible 

mediator in the pathogenesis of CF lung disease.  

 

Two specific strains of CFTR-deficient mice have recently been demonstrated to 

accumulate ceramide in airway epithelial cells. (Teichgraber et al., 2008) The 

accumulation of ceramide triggered chronic neutrophilic pulmonary inflammation, 

death of airway epithelial cells and extracellular deposition of DNA in the airways, 

thereby increasing susceptibility to infection with P. aeruginosa. (Teichgraber et al., 

2008) Importantly, treatment with the tricyclic antidepressant amitriptyline, which is an 

acid sphingomyelinase inhibitor, normalised pulmonary ceramide, inflammation and 

susceptibility to P. aeruginosa infection. (Becker et al., 2010b, Teichgraber et al., 2008) 

Ceramide accumulation was also shown in nasal epithelial cells and demonstrated at a 

qualitative level in three sections of lower airway from people with CF. (Teichgraber et 

al., 2008)  

 

The precise role of epithelial ceramide accumulation in the pathogenesis of CF lung 

disease is yet to be fully elucidated. The work performed by Teichgräber et al. (2008) 

suggests that ceramide accumulation occured in a constitutive, age-dependent fashion in 

the airway epithelial cells of CFTR-deficient animals and promoted pro-inflammatory 

cytokine release, apoptosis and DNA deposition in the airway. (Teichgraber et al., 

2008) A proposed mechanism for ceramide accumulation is that defective CFTR leads 

to inappropriate alkalinisation of intracellular vesicles, in particular pre-lysosomes and 

lysosomes, resulting in an increase in acid sphingomyelase and reduction in acid 

ceramidase activity and subsequent ceramide accumulation (Figure 13). (Teichgraber et 

al., 2008) However, the role of CFTR in the acidification of lysosomes has been hotly 

debated recently with apparently contradictory results published by different 

investigators. (Haggie and Verkman, 2009a, Haggie and Verkman, 2009b, Di et al., 

2006, Teichgraber et al., 2008, Poschet et al., 2002, Noe et al., 2009) 
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Figure 13. Schematic diagram of proposed mechanism of ceramide accumulation 

in the pathogenesis of cystic fibrosis lung disease 

Synthesis of ceramide from sphingomyelin by acid sphingomyelinase (ASM) and 
degradation by acid ceramidase (AC) is optimal at an acidic pH, such as that of normal 

intracellular vesicles (pH 4.5). Lack of functional CFTR increases vesicle pH to 5.9, 
partially inhibiting ASM and highly inhibiting AC, resulting in ceramide accumulation 

in the vesicle and age-dependent pulmonary inflammation. Other properties of the 
cystic fibrosis–affected lung, including lack of the CFTR receptor needed for clearing 

Pseudomonas aeruginosa, enhanced mucin secretion, a dehydrated airway surface 
liquid, viscous mucus and DNA deposits released from ceramide-engorged apoptotic 
cells, also contribute to P. aeruginosa airway colonization. Eventually, this microbe 

establishes a chronic infection wherein bacterial cells reside in low-oxygen mucus plugs 
and become highly resistant to clearance or killing by host defenses. (Pier, 2008) 
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The findings of current research into ceramide and CF pathophysiology are divergent 

however, and possibly specific to the model systems studied. Furthermore, there is a 

lack of human data in the literature, particularly in relation to the lower airways, which 

are the site of the vast majority of morbidity and mortality in people with CF. (Guilbault 

et al., 2008b, Guilbault et al., 2008a, Teichgraber et al., 2008)  

 

Low plasma levels of ceramide have been reported by Guilbault et al. (2008a and 

2008b) in people with CF compared to healthy volunteers. The same researchers also 

found reduced levels of ceramide in the plasma, lungs, pancreas and ileum of CFTR-

deficient mice that could be corrected by treatment with fenretinide. (Guilbault et al., 

2008b, Guilbault et al., 2008a) Yu et al. found no significant difference in basal 

ceramide levels in IB3-1 immortalised CF bronchial epithelial cells and lung 

homogenate from CFTR knock out mice compared to wild type cells and mice. (Yu et 

al., 2009) Physiological levels of ceramide appear to be essential for the homeostasis of 

cells and inflammatory responses and therefore it is plausible that too little ceramide 

may be equally as deleterious to epithelial physiology as a situation where ceramide 

accumulation occurs. (Guilbault et al., 2008a) 
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1.8. Airway remodelling in cystic fibrosis lung disease 

 

CF lung disease is characterised by airflow obstruction, neutrophilic inflammation and 

chronic endobronchial infection. (Davies et al., 2007) Children with CF are born with 

airways of essentially normal structure however. (Konstan and Berger, 1997) Airway 

remodelling, in the form of architectural changes in the airway wall, is well recognised 

in people with asthma and chronic obstructive pulmonary disease (COPD). (Jeffery, 

2001, Davies, 2009)  

 

One specific feature of airway remodelling seen in adults and children with asthma is 

apparent thickening of the sub-epithelial reticular basement membrane (RBM) due to 

collagen matrix deposition (Figure 14). (Ward et al., 2002, Payne et al., 2003) It has 

also been postulated that airway remodelling may be implicated in the pathogenesis of 

CF lung disease and RBM thickening has been reported in endobronchial biopsies from 

children with CF. (Hilliard et al., 2007) Clinical evidence of structural airway 

remodelling at an early stage in CF lung disease includes the observation that airway 

function is demonstrably abnormal in infants newly diagnosed clinically with CF. 

(Ranganathan et al., 2001) Furthermore, their lung function does not improve despite 

intensive treatment, and the airway obstruction would appear to be ‘fixed’. 

(Ranganathan et al., 2004) 

 

However, in an earlier study Durieu et al. examined RBM thickness in a mixture of 

endobronchial and lobectomy specimens from a total of 9 children and adults with a 

spectrum of severity of CF lung disease. (Durieu et al., 1998) They assessed the basal 

lamina thickness of the basement membrane qualitatively using immunostaining for 

murine laminin in fresh frozen sections and transmission electron microscopy. In 

contrast to the findings of Hilliard et al., they found the RBM to be thinned in the CF 

specimens compared to 3 healthy, non-smoking volunteers. (Hilliard et al., 2007, 

Durieu et al., 1998) A dense, fibrous, acellular sub-epithelial deposit was observed 

however. (Durieu et al., 1998)  
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Figure 14. Example of airway remodelling in an endobronchial biopsy from a 

person with asthma 

(1) subepithelial reticular basement membrane thickening as denoted by collagen 
subtype I staining and (2) diffuse staining in the lamina propria. (Ward et al., 2001) 
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Wojnarowski et al. found the RBM to be thickened in association with a metaplastic 

epithelium in endobronchial biopsies taken from children during an acute exacerbation 

of CF. (Wojnarowski et al., 1999) In this study the biopsies were fixed in 

paraformaldehyde and embedded in paraffin prior to haematoxylin and eosin staining of 

2µm sections. Biopsies from clinically stable children with CF were found to contain an 

intact respiratory epithelium with normal RBM appearances. (Wojnarowski et al., 1999) 

Changes in airway dimension have been described in explanted CF lungs but RBM 

thickness has not been specifically investigated in end-stage disease to the best of my 

knowledge. (Tiddens et al., 2000) 

 

Eosinophilic inflammation has been implicated in the pathogenesis of airway 

remodelling in asthma via the maintenance and progression of aberrant airway tissue 

injury and repair. (Holgate and Polosa, 2008) The biological activity of eosinophils is 

largely mediated by the release of stored granules containing potent cytotoxic proteins 

such as eosinophilic cationic protein, eosinophil peroxidase and major basic protein. 

(Stone et al., 2010) In addition, eosinophils produce oxygen radicals, lipid mediators 

and a wide range of pro-inflmmatory cytokines and chemokines. (Hamid and Tulic, 

2009) A number of cytokines produced by eosinophils are associated with remodelling 

and fibrosis, most notably TGF-β but also IL-6, IL-11, IL-13, IL-17 and IL-25. (Hamid 

and Tulic, 2009, Minshall et al., 1997)  Interestingly, Hilliard et al. found a positive 

correlation between RBM thickness and total TGF-β1 concentration in bronchoalveolar 

lavage fluid in chidren with CF. (Hilliard et al., 2007) 

 

In summary, there are contradictory reports in the literature regarding RBM thickness in 

CF lung disease and no descriptions of RBM thickness in end-stage disease. 
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Figure 15. Schematic diagram of eosinophilic inflammation and airway 

remodelling in asthma 

Eosinophils in the asthmatic lung release latent TGF-β1. Latent TGF-β1 (latTGF-β1) is 
activated by αvβ6 expressed on airway epithelial cells. TGF-β1 mediates airway 
remodeling by inducing the formation of myofibroblasts that secrete extracellular 

matrix proteins, and the growth factor also stimulates airway smooth muscle 
hyperplasia. (Williams, 2004) 
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2. Chapter 2. Hypotheses 
 

 

The work described in this thesis investigated the following hypotheses 

 

1. It is technically possible to culture PBECs from explanted CF lungs and to 

establish a programme to do this at the Freeman Hospital, Newcastle upon Tyne. 

2. Expression of interleukin-17 is raised in the lower airway of people with 

advanced CF lung disease. 

3. Interleukin-17 may be localised to cells other than lymphocytes in the lower 

airway of people with CF 

4. Stimulation with interleukin-17 would increase the production of pro-

neutrophilic mediators by ex vivo cultures of PBECs from people with advanced 

CF lung disease. 

5. Ceramide is raised in the lower airway epithelium of people with advanced CF 

lung disease and is correlated with markers of neutrophilic inflammation and P. 

aeruginosa infection. 

6. RBM thickness is increased in advanced CF lung disease and that this is linked 

to mucosal eosinophils. 
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3. Chapter 3. Aims 
 

 

In accordance with the hypotheses outlined in Chapter 2 the aims of the work described 

in this thesis were to: 

 

1. Develop and optimise a method to culture PBECs from explanted CF lungs 

2. Establish a programme to culture PBECs from lungs removed at the time of 

transplantation from people with CF at the Freeman Hospital in Newcastle upon 

Tyne 

3. Investigate the protein expression of interleukin-17 in the lower airway of 

people with advanced CF lung disease and compare to the non-suppurative 

condition pulmonary hypertension. 

4. Describe the cellular localisation of interleukin-17 in the lower airway of people 

with advanced CF lung disease. 

5. Investigate the effects of stimulation with interleukin-17 on the production of the 

pro-neutrophilic mediators interleukin-8, interleukin-6 and granulocyte 

monocyte colony-stimulating factor by ex vivo primary bronchial epithelial cell 

cultures from people with advanced CF lung disease.  

6. Investigate levels of ceramide in the lower airway of people with advanced CF 

lung disease. More specifically to: 

a. Quantify immunoreactive ceramide localised to the lower airway 

epithelium in advanced CF lung disease compared to pulmonary 

hypertension, emphysema and, previously healthy, unused lung donors. 

b. Quantify the specific ceramide species C16:0, C18:0, C20:0 and C22:0 

in whole lung tissue from people with advanced CF lung disease 

compared to pulmonary hypertension by the independent technique of 

high performance liquid chromatography-mass spectrometry. 

7. Correlate the amount of immunoreactive ceramide in the lower airway 

epithelium in advanced CF lung disease, pulmonary hypertension, emphysema 

and unused lung donors with levels of neutrophilic inflammaion in the lower 

airway mucosa, as measured by the number of cells staining positive for 

neutrophil elastase and myeloperoxidase per mm of basement membrane. 
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8. Investigate the relationship between the amount of immunoreactive ceramide in 

the lower airway epithelium in advanced CF lung disease, pulmonary 

hypertension and emphysema, and colonisation with P. aeruginosa. 

9. Quantify RBM thickness in the lower airways of people with advanced CF lung 

disease requiring transplantation 

10. Investigate any relationship between RBM thickness and number of mucosal 

eosinophils 

11. Investigate any relationship between RBM thickness and age at time of lung 

transplantation 
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4. Chapter 4. Materials and methods 
 

 

4.1. Ethics and consent 

 

Approval was obtained for this study from the Newcastle and North Tyneside 2 

Research Ethics Committee, reference number 07/Q0906/47, on an application by Drs 

Malcolm Brodlie, Christopher Ward, Michael McKean and James Lordan. The study 

was also approved by the Research and Development Department of the Newcastle 

upon Tyne Hospitals Foundation NHS Trust, reference number 3910. 

 

I obtained informed consent from all participants at the time of acceptance on to the 

active lung transplantation list at the Freeman Hospital, Newcastle upon Tyne. 

	
  

	
  

4.2. Culture of primary bronchial epithelial cells from the lungs of people with 

cystic fibrosis removed at the time of transplantation 

 

4.2.1. Procurement of explanted lungs 

 

As a matter of routine lungs removed at the time of transplantation are examined 

macroscopically and histologically by a Consultant Pathologist in order to confirm the 

nature of the underlying disease and to identify any additional pathology present that 

may have been unidentified prior to transplantation, for example a malignancy. 

(Abrahams et al., 2004) I am grateful to Dr Fiona Black, Consultant Pathologist, 

Newcastle upon Tyne Hospitals NHS Foundation Trust, for permission to remove the 

tissue samples for this study prior to processing of the lungs for routine pathology. 

 

Explanted lungs were stored at 4°C once samples of frank airway secretions had been 

obtained for microbiology testing. Tissue was processed as soon as possible following 

explantation, typically in under 60 minutes. This work has therefore necessitated a 

permanent on-call commitment on my part in the event of a lung transplant occurring. 

The support of Dr Laura MacKay, MRC Clinical Research Training Fellow, Newcastle 
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University, the cardiopulmonary transplant coordinators, cardiothoracic surgeons and 

theatre staff at the Freeman Hospital has also been invaluable. 

 

4.2.2. Airway lavage of explanted lungs 

 

A small-volume airway lavage of 15mL of phosphate-buffered saline (PBS) was 

performed on each CF lung (total volume of 30mL/patient). This was achieved by 

installation of saline in to the main or first generation bronchus via a 20mL syringe with 

a 5cm quill attached that was then aspirated back in to the syringe. The median lavage 

return was 22mL/patient (73%) using this technique. The resulting lavage fluid was then 

promptly centrifuged at 2000 revolutions per minute (rpm) and the supernatant 

aliquoted and frozen at -20°C prior to analysis. The lower phase, containing cellular and 

mucoid material was also frozen and stored.    

  

4.2.3. Resection of main bronchus and initial processing 

 

All culture work was performed using strict aseptic technique in a class II laminar flow 

hood. Pieces of main bronchus, around 0.5cm by 2cm in dimension, were resected and 

cut free from surrounding connective, lymphoid, alveolar and vascular tissue. Around 

four pieces of bronchus were removed from each lung. The pieces of bronchus were 

then rinsed twice in 25mL volumes of sterile phosphate buffered saline (Sigma-Aldrich, 

Dorset, UK) at 4°C. The rinsed tissue was then submerged in 20mls of washing solution 

A at 4°C (Table 3). After 30 minutes the solution was agitated and the pieces of 

bronchus were rinsed twice in 25mL volumes of Dulbecco’s Modified Eagle’s Medium 

(DMEM) (Invitrogen, Paisley, UK) at 4°C before being submerged in 20mls of washing 

solution B (Table 4). The tissue was then maintained at 4°C whilst being agitated on a 

rocker-shaker set at 50Hz for 48 to 72 hours. 
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Component Concentration Supplier 

DMEM Neat Invitrogen 
Dnase 10µg/mL Sigma-Aldrich 

Dithiothreitol 500µg/mL Sigma-Aldrich 
Designated antimicrobials See Table 5 

 

Table 3. Constituents of washing solution A 

 

 

Component Concentration Supplier 
DMEM Neat Invitrogen 
Dnase 1µg/mL Sigma-Aldrich 

Protease 0.1% Sigma-Aldrich 
Designated antimicrobials See Table 5 

 

Table 4. Constituents of washing solution B 

 

 

Initially a fixed, ‘best-guess’, combination of antimicrobials (amphotericin B, 

ceftazidime, vancomycin and tobramycin) was used based on discussions with Professor 

John Perry, Microbiology Department, Freeman Hospital.  This approach was 

subsequently changed however to a tailored, ‘patient-specific’, approach that was based 

on expert microbiology advice from Professor John Perry and Audrey Nicholson taking 

in to account where possible the sensitivity results for organisms recently isolated from 

the sputum of specific patients. The antimicrobial strategy is discussed fully in section 

5.6 and this was the principal difference from the method previously published by Dr 

Scott Randell, University of North Carolina at Chapel Hill, USA. (Randell et al., 2001) 

 

The various antimicrobials used along with the working concentrations are detailed in 

Table 9. The concentration of each antimicrobial used was decided based on data 

published by Randell et al. (2001) regarding the relative cytotoxicity of different agents 

in primary bronchial epithelial cell (PBEC) cultures and discussion with Professor Perry 

concerning the concentration required for the desired antimicrobial effect. (Randell et 

al., 2001)    
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Antimicrobial Concentration 
Ceftazidime 128µg/mL 
Tobramycin 16µg/mL 
Vancomycin 10µg/mL 

Colistin 5µg/mL 
Meropenem 100µg/mL 

Co-trimoxazole 12µg/mL 
Ticarcillin and clavulanate 16µg/mL 

Amphotericin B 4µg/mL 
Voriconazole 10µg/mL 

 

Table 5. Working concentrations of antimicrobials used in media 

 

 

4.2.4. Harvesting of primary bronchial epithelial cells 

 

Following 48 to 72 hours in washing solution B the PBECs were harvested. This was 

achieved by firstly adding 5mls of Roswell Park Memorial Institute-1640 (RPMI) 

(Invitrogen) containing 10% fetal calf serum (FCS) (Invitrogen) to the solution in order 

to neutralise any remaining protease activity. The pieces of bronchus were then 

transferred to a sterile petri dish. A scalpel blade was used to lightly scrape the lumenal 

side of the bronchi and thus remove the epithelial cells. The scraped cells were then 

suspended in 10mls of RPMI containing 10% FCS and centrifuged at 1000 rpm for 5 

minutes.  

 

The supernatant was discarded and the cells were resuspended in 5mls of Bronchial 

Epithelial Growth Medium (BEGM) (Lonza, Basel, Switzerland) warmed to 37°C and 

supplemented with the single quots detailed in Table 6, 1% streptomycin (Sigma-

Aldrich), 1% penicillin (Sigma-Aldrich) and designated antimicrobials as described in 

Table 5. The resulting cell suspension was then seeded in to a 25cm2 tissue culture flask 

(Corning, New York, USA) pre-coated with type I collagen (Purecol, Nutacon, 

Leimuiden, Netherlands) and placed in a carbon dioxide (5%) enriched incubator at 

37°C. 
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Component Volume added to 

500mL* 
Bovine pituitary extract 2mL 

Insulin 500µL 
Hydrocortisone 500µL 
Retinoic acid 500µL 
Transferrin 500µL 
Epinephrine 500µL 

Human epidermal growth factor 500µL 
Tri-iodothyronine 500µL 

Gentamicin/amphotericin 500µL 
 

*concentrations not published by the manufacturer  

(available as product number CC-4175 from Lonza) 

 

Table 6. Components (single quots) added to bronchial epithelial basal medium to 

create bronchial epithelial growth medium 

 

 

The PBEC cultures were then carefully observed to ensure that the cells were growing 

satisfactorily and for any evidence of infection. In the latter event the flask was 

immediately removed from the incubator and the contents sent for routine bacterial and 

fungal cultures to identify the infecting organism and relevant antimicrobial sensitivities 

(performed by Professor John Perry and Audrey Nicholson). The BEGM was replaced 

every 48 hours. The designated antimicrobials were normally removed from the BEGM 

after around 96 hours of successful cell culture free of overt infection.     

 

Once flasks were around 80% confluent the PBECs were passaged using 

trypsin/ethylene diamine tetraacetic acid (EDTA) (Sigma-Aldrich) by the following 

method. The culture medium was removed from the flask and replaced with 2mls of 

trypsin/EDTA pre-warmed to 37°C. Adherent PBECs were then gently removed by a 

shaking action. The level of trypsinisation was assessed dynamically by light 

microscopy. Once it was gauged that a sufficient number of cells had been lifted from 

the base of the flask the trypsin was neutralised by the addition of an equal volume of 

RPMI containing 10% FCS. The resultant suspension was then removed and 

centrifuged at 1000 rpm for 5 minutes. The supernatant was discarded and the cell pellet 

was either resuspended in BEGM and seeded in to flasks or 24-well plates (Corning) for 
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further submerged culture, on to Transwell® inserts (Corning) for air-liquid interface 

(ALI) culture or cryopreserved. 

 

4.2.5. Cryopreservation 

 

Cell pellets were generated using the trypsinisation method described above. The pellets 

were resuspended in 1ml of 10% dimethyl sulfoxide (DMSO) (Sigma-Aldrich) in FCS 

and transferred to sterile cryotubes (Fisher Scientific, Loughborough, UK). Tubes were 

placed in an isopropranolol cell freezer (Fisher Scientific) at room temperature that was 

then stored at -80°C for 24 hours. At this point the tubes were transferred to a liquid 

nitrogen cell freezer for long-term storage. It is important to note that no cryopreserved 

cells were used for the experiements described in this thesis. All experiments were 

performed using cells freshly isolated from expanted cystic fibrosis lungs.  

 

4.2.6. Fixation of submerged cultures for tinctorial staining and 

immunohistochemistry 

 

First-passage PBECs were grown on 8-chamber slides (Fisher Scientific) coated with 

type I collagen as outlined above. Once confluent the cells were fixed with 4% 

paraformaldehyde (Mallinckrodt Baker, Deventer, Netherlands) for 20 minutes. 

 

4.2.7. Reconstitution of cryopreserved cells 

 

Cryotubes containing 1ml cell suspensions in 10% DMSO in FCS were removed from a 

liquid nitrogen cell freezer and rapidly rewarmed in a 37°C water bath. Once defrosted 

the suspension was centrifuged at 1000rpm for 5 minutes. The supernatant was 

discarded and the cells were immediately resuspended in 2mls of BEGM pre-warmed to 

37°C and seeded in a 25cm2 tissue culture flask and grown as described previously. 

 

4.2.8. Electrophysiology studies 
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First passage PBECs from patient 9, (see Table 9), were grown on type I collagen 

(Nutacon) coated glass coverslips. The PBECs were transferred to a tissue chamber and 

mounted on the stage of an inverted microscope. Whole-cell currents were recorded 

with an EPC-7 patch clamp amplifier (List Electronic, Darmstadt, Germany). Currents 

were elicited using a step voltage protocol over the range ± 100 mV and analysed as 

described previously. (Winpenny et al., 1995) 

 

The pipette solution for experiments involving ionomycin contained (mM): 120.0 CsC1, 

2.0 MgCl2, 0.2 EGTA, 1.0 ATP and 10.0 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), (pH 7.2 with CsOH). Pipette solution for 

experiments using forskolin had EGTA adjusted to 5 mM and the addition of 2.12 mM 

CaCl2 (calculated free Ca2+ concentration 100 nM).  The standard bath solution 

contained (mM): 145 NaCl, 4.5 KCl, 2.0 CaCl2, 1.0 MgCl2, 10.0 HEPES, and 5.0 

glucose (pH 7.4). Cl- selectivity of whole cell current was confirmed by measuring the 

change in reversal potential (Erev) following the replacement of 100mM NaCl in the 

standard bath solution with 100mM sodium aspartate. Stock solutions of 100mM 

forskolin (Tocris, Bristol, UK) and 10mM ionomycin (Calbiochem, San Diego, USA) 

were prepared in DMSO. 

 

4.2.9. Air-liquid interface culture of primary bronchial epithelial cells 

 

A solution containing 1*105 cells/mL suspended in BEGM was generated by the 

trypsinisation method described above from PBECs grown in submerged culture at 

either passage level 0 or 1. Transwell inserts were pre-coated with type IV collagen 

(Nutacon) and seeded with 0.5mL of this suspension and placed in a carbon dioxide 

(5%) enriched incubator at 37°C. The lower basolateral chamber was filled with 1ml of 

pre-warmed BEGM. Once at 80-90% confluency, typically after 48 to 72 hours, the 

apical medium was removed and the PBECs were exposed to air at the apical 

membrane. At this stage the medium in the basolateral chamber was changed to ALI 

medium (Table 7) and was replaced every 48 to 72 hours.  

 

Once mucus was visible by light microscopy at the apical surface it was washed every 

72 hours in order to remove excess mucus and to harvest it for analysis. This was 
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achieved by gently applying 500µL of PBS warmed to 37°C. The PBS was left in situ 

for 5 minutes after which time it was carefully removed by pipette and stored at   

-20°C immediately prior to analysis. 

 
Constituent Volume or concentration 

Bronchial epithelial basal medium (Lonza) 250mL 
DMEM high glucose (Invitrogen) 250mL 

1% Penicillin/streptomycin (Sigma-Aldrich) 5mL 
Human epidermal growth factor 0.5ng/mL 

Bovine pituitary extract 2mL* 
Insulin 500µL* 

Hydrocortisone 500µL* 
Retinoic acid 500µL* 
Transferrin 500µL* 
Epinephrine 500µL* 

Tri-iodothyronine 500µL* 
Calcium chloride 1mM 

 

*concentrations not published by the manufacturer  

(available as product number CC-4175 from Lonza) 

 

Table 7. Air-liquid interface medium 

 

 

4.2.10. Fixation of air-liquid interface cultures for tinctorial staining 

 

ALI cultures were fixed by addition of 4% paraformaldehyde (Mallinckrodt Baker) for 

20 minutes. 

 

4.2.11. Scanning electron microscopy of air-liquid interface cultures 

 

Scanning electron microscopy (SEM) of ALI cultures was performed by Electron 

Microscopy Research Services, Newcastle University. In brief, cultures were fixed by 

treatment with gluteraldehyde followed by osmium tetroxide. This was followed by 

dehydration through graded alcohols and embedding in resin. SEM was performed by 

Electron Microscopy Research Services staff using a Cambridge Stereoscan 240 

electron microscope with digital image capture. 
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4.2.12. Slot blot enzyme-linked immunosorbent assay for MUC5B 

 

A slot blot technique was used to detect the airway gel-forming mucin MUC5B in 

apical washings from ALI cultures. (Taylor et al., 2004, Smirnova et al., 2003) 

Nitrocellulose membrane sheets (Whatman, Kent, UK) of 0.2µm pore size were 

mounted on the Minifold II 72-well slot blot apparatus (Schleicher and Schuell, Dassel, 

Germany) and supported on blotting paper wetted with deionised water. Standards of 

MUC5B, purified from human saliva (Professor JP Pearson, Newcastle University), and 

100µL aliquots of ALI washings were added to individual wells in triplicate and the 

block attached to a vacuum source. Once the samples were absorbed on to the 

membrane it was removed and blocked overnight at 4°C, to minimise non-specific 

binding in PBS containing 2% bovine serum albumin (BSA). After blocking the 

membrane was incubated with the primary antibody, MUC5B thick effusion polyclonal 

anti-serum (Queen’s Medical Centre, Nottingham, UK), at 1:1000 dilution in PBS 

containing 1% BSA for 2 hours at room temperature. The membrane was then washed 

twice in 0.5% Tween20 in PBS followed by 3 changes of PBS. The secondary antibody, 

anti-rabbit IgG horseradish peroxidase conjugated (Sigma-Aldrich) diluted at 1:10000 

in 1% BSA in PBS, was then added for 1.5 hours at room temperature. The membrane 

was then washed as described above and developed using 0.05% 3, 3’diaminobenzidine 

tetrahydrochloride (DAB) (Sigma-Aldrich) with 0.3% H2O2 in PBS for 5 minutes. Once 

sufficiently developed the membrane was washed in tap water and left to dry overnight. 

The membrane was then read at 595nm using a Shimadzu scanning densitometer 

(Columbia, USA). Negative controls were performed to determine non-specific binding 

of the primary antibody by incubating it with 1% BSA in PBS alone.     
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4.2.13. Measurement of trans-epithelial resistance of air-liquid interface cultures of 

primary bronchial epithelial cells 

 

Trans-epithelial resistance (TER) measurements were performed using an epithelial 

volt-ohmmeter (World Precision Instruments, Stevenage, UK) as per the manufacturer’s 

instructions. In order to measure the TER 0.5mL of pre-warmed BEGM was applied to 

the apical surface and allowed to equilibriate for 20 minutes prior to performance of the 

measurements. The resistance of a ‘blank’ membrane included in each plate that was 

treated identically, but not seeded with cells, was subtracted from each measurement. 

 

4.2.14. Stimulation of primary bronchial epithelial cells with interleukin-17 

 

First or second passage PBECs were grown to 70-80% confluence in 24-well plates 

coated with type I collagen using BEGM. Cells were rested for 24 hours with serum-

free resting medium (Table 8) prior to stimulation with 500µL of resting medium 

containing 1, 10 or 100ng/mL of recombinant human IL-17 (R&D Systems). 

 

 

Constituent Volume added to 500mL 
of bronchial epithelial 
basal medium (Lonza) 

ITS liquid media supplement: 1mg/mL insulin from 
bovine pancreas, 0.55mg/mL human transferrin and 

0.5µg/mL sodium selenite (Sigma-Aldrich) 

5mL 

1% Penicillin/streptomycin (Sigma-Aldrich) 5mL 
Gentamicin/amphotericin single quot (Lonza) 500µL* 

 

*concentrations not published by the manufacturer  

(available as product number CC-4175 from Lonza) 

 

Table 8. Constituents of resting medium 
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4.2.15. Stimulation of primary bronchial epithelial cells with flagellin 

 

First or second passage PBECs were grown to 70-80% confluence in 24-well plates 

coated with type I collagen using BEGM. Cells were rested for 24 hours with serum-

free resting medium (Table 8) prior to stimulation with 500µL of resting medium 

containing 1, 10 or 100 ng/mL of flagellin (Alexis biochemicals, Exeter, UK). 

 

4.2.16. Measurement of interleukin-17 in airway lavage fluid from explanted cystic 

fibrosis lungs 

 

Airway lavage fluid supernatants were defrosted on ice and then promptly assayed for 

IL-17 concentration using an ultrasensitive ELISA kit (MesoScale Discovery, 

Maryland, USA) with a lower limit of detection of 0.2pg/mL as per manufacturer’s 

instructions. The plates were read using the MSD Discovery Workbench analyser and 

software package. (MesoScale Discovery). 

 

4.2.17. Measurement of interleukin-23 in airway lavage fluid from explanted cystic 

fibrosis lungs 

 

Airway lavage fluid supernatants were defrosted on ice and then promptly assayed for 

IL-23 concentration using a Quantikine® ELISA kit (R&D Systems) with a lower limit 

of detection of 6.8pg/mL as per manufacturer’s instructions. Each sample and standard 

was assayed in triplicate and a mean taken. A standard curve was then constructed and 

the IL-23 concentration was quantified for each sample.  

 

4.2.18. Measurement of interleukin-8, interleukin-6 and granulocyte macrophage 

colony-stimulating factor in culture supernatants 

 

The contents of each well was removed by pipette after 24 hours, centrifuged at 

1000rpm for 2 minutes and the supernatant immediately frozen at -80°C prior to 

analysis. A multiplex enzyme-linked immunosorbent assay (ELISA) was then 
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performed as per manufacturer’s instructions (Meso Scale Discovery). The plates were 

read using the MSD Discovery Workbench analyser and software package. (MesoScale 

Discovery). 

 

 
4.3. Histology 

 

4.3.1. Preparation of paraffin embedded blocks of airway 

 

A 2cm by 0.5cm piece of lung parenchyma was resected using tweezers and a fresh 

scalpel. The intention being to produce sections of intermediate-large sized airways, in 

the region of 1-5mm diameter and lined by columnar ciliated respiratory epithelium. 

The tissue was then fixed in 10% buffered formalin (Genta Medical, York, UK) for 12 

hours. 

 

Fixed tissue was then placed in cassettes (Simport, Beloeil, Canada) and dehydrated 

through graded alcohols. This was performed by immersion for 20 minutes in: 70% 

industrial methylated spirit (IMS), 70% IMS, 80% IMS, 80% IMS, 95% IMS, 95% 

IMS, 74OP IMS, 74OP IMS and 74OP IMS respectively. Finally the tissue was 

submerged in xylene (VWR) twice for 20 minutes and then embedded in paraffin wax 

for 1 hour at 60ºC. 

 

4.3.2. Preparation of paraffin sections 

 

Sections of 5µm thickness were cut using a microtome from paraffin blocks of distal 

airway. The sections were dewaxed by soaking in xylene for 5 minutes and then 

rehydrated through graded alcohols, 1 minute each in 95% IMS, 99% IMS and 99% 

IMS again. 
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4.4. Tinctorial stains 

 

4.4.1. Haematoxylin and eosin staining 

 
Haematoxylin and eosin staining was used to examine the basic histology of the 

sections. (Kiernan, 2008) Sections were cut, dewaxed and rehydrated as described 

above. In the case of 8-chamber slides the rehydration steps were unnecessary. The 

sections were then washed in water and stained in freshly filtered Harris Haematoxylin 

(Fisher Scientfic) for 1 minute. The staining process was assessed dynamically under a 

light microscope. Next the sections were washed in running tap water for 2-3 minutes 

before being differentiated in 0.1% acid alcohol and washed in running tap water until 

the nuclei were appropriately blue. The sections were then counterstained with Eosin Y 

(Fisher Scientific) for 2 minutes. Finally the sections were washed well in tap water and 

dehydrated back through graded alcohols and xylene. The sections were then mounted 

with DPX (VWR, Lutterworth, UK). 

 

4.4.2. Periodic acid-Schiff staining 

 

Periodic acid-Schiff (PAS) staining was used to stain for the mucin glycoproteins in 

mucus. (Kiernan, 2008) Sections were cut, dewaxed and rehydrated as described above. 

In the case of 8-chamber slides the rehydration steps were unnecessary.  Firstly the 

sections were soaked in 1% periodic acid for 5 minutes and then washed under running 

tap water for 2 minutes. Next they were soaked in Schiff’s solution (Sigma-Aldrich), 

diluted 1 in 4 with distilled water, for 6 minutes and then washed under running tap 

water for 5 minutes. The sections were then counter-stained with Harris Haematoxylin 

for 30 seconds and washed until blue. Finally the sections were dehydrated and 

mounted with DPX as described previously. 
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4.4.3. Alcian blue/periodic acid-Schiff staining 

 

The combination of alcian blue and PAS staining was used to stain acidic and neutral 

mucins in airway sections. (Kiernan, 2008) Sections were cut, dewaxed and rehydrated 

as described above. Firstly sections were incubated with 0.1% diastase (VWR) for 30 

minutes at 37°C followed by alcian blue pH 2.5 (Sigma-Aldrich) for 20 minutes and 

then washed thoroughly with tap water. Periodic acid-Schiff staining was then 

performed as outlined above. 

 

4.4.4. Sirius red staining 

 

Sirius red was used to stain for eosinophils. (Meyerholz et al., 2009) Sections were cut, 

dewaxed and rehydrated as described above. Nuclei were firstly stained with Harris 

Haematoxylin as outlined above. Sections were then stained with Sirius red (Sigma-

Aldrich) for 1 hour and then thoroughly washed in tap water for 10 minutes. Finally the 

sections were dehydrated and mounted with DPX as described previously. 

 

 
4.5. Immunohistochemistry 

 

4.5.1. Immunohistochemistry for pan-cytokeratin panel 

 

Confluent monolayers of PBECs were fixed on 8-chamber slides as described in section 

4.2.6 and stained for an epithelial panel of pan-cytokeratin markers as previously 

described. (Forrest et al., 2005) The cells were initially treated with 5% normal lamb 

serum (Dako, Ely, UK) in PBS for 1 hour to minimise non-specific antibody binding. 

The primary mouse monoclonal anti-human cytokeratin clone LP34 (Dako) was then 

applied at a dilution of 1:50 in normal lamb serum for 2 hours at room temperature. The 

slides were washed with PBS and then treated with an appropriate secondary system as 

per manufacturers instructions (EnVision/HRP, Dako). Matched istotype negative 

controls were used. 
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4.5.2. Immunohistochemistry for interleukin-17 

 

Paraffin sections were cut, dewaxed and rehydrated as described above. Endogenous 

peroxidase activity was blocked by soaking sections in methanolic hydrogen peroxide. 

The sections were then washed for 10 minutes in running tap water. Antigen retrieval 

was performed in citrate buffer at pH 6 for 5 minutes in a microwave set at 30% power. 

The sections were then washed 3 times in tris-buffered saline (TBS) and blocked with 

20% normal horse serum (Vector Laboratories, Peterborough, UK) for 30 minutes. The 

primary antibody (goat polyclonal affinity purified anti-human IL-17, R&D Systems, 

Abingdon, UK) was diluted 1 in 40 in 3% bovine serum albumin (BSA) and applied for 

1 hour at room temperature. The sections were then washed twice with TBS and treated 

with biotinylated horse anti-goat secondary antibody (Vector Laboratories) for 30 

minutes. The sections were washed twice with TBS and treated with the ABC 

Vectastain Elite kit and DAB (Vector Laboratories) as per the manufacturer’s 

instructions.  The sections were finally counter-stained with Carazzi’s stain for 1 minute 

and then mounted. Isotype negative controls were performed using normal goat 

immunoglobulins (R&D Systems). 

 

4.5.3. Immunohistochemistry for retinoic acid receptor-related orphan receptor 

gamma 

 

Paraffin sections were cut, dewaxed and rehydrated as described above. Endogenous 

peroxidase activity was blocked by soaking sections in methanolic hydrogen peroxide. 

The sections were then washed for 10 minutes in running tap water. The sections were 

steamed in citrate buffer pH 6 at 100°C for 20 minutes and then left to cool in the buffer 

at room temperature for a further 20 minutes. The sections were then washed 3 times in 

tris-buffered saline (TBS) and blocked with 20% normal horse serum (Vector 

Laboratories, Peterborough, UK) for 30 minutes. The primary antibody (retinoic acid 

receptor-related orphan receptor gamma rabbit polyclonal, AbCam, Cambridge, UK) 

was diluted 1 in 40 in 3% bovine serum albumin (BSA) and applied for 1 hour at room 

temperature. The sections were then washed twice with TBS and treated with 

biotinylated horse anti-rabbit secondary antibody (Vector Laboratories) for 30 minutes. 

The sections were washed twice with TBS and treated with the ABC Vectastain Elite kit 
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and DAB (Vector Laboratories) as per the manufacturer’s instructions.  The sections 

were finally counter-stained with Carazzi’s stain for 1 minute and then mounted. 

Isotype negative controls were performed using normal rabbit immunoglobulins (R&D 

Systems). 

 

4.5.4. Immunohistochemistry for ceramide (Glycobiotech antibody) 

 

Paraffin sections were cut, dewaxed and rehydrated as described above. The antiserum 

enriched for IgM anti-ceramide polyclonal antibody (Glycobiotech, Kükels, Germany) 

is commercially available and has been utilised by other researchers and demonstrated 

by lipid overlay assays to be specific for ceramide.  (Cowart et al., 2002, Teichgraber et 

al., 2008, Vielhaber et al., 2001) Antigen retrieval was performed in citrate buffer at pH 

6.0 in a microwave on high power for 3 minutes. The primary antibody was used at 

1/150 dilution in 3% BSA. Sections were incubated for 48 hours at 4ºC with the primary 

antibody before treatment with the EnVision peroxidase-based secondary system 

(Dako). Appropriate negative controls; no primary antibody added and mouse IgM 

(Dako) istotype negative control were performed. 

 

4.5.5. Immunohistochemistry for ceramide (Sigma antibody) 

 

Paraffin sections were cut, dewaxed and rehydrated as described above. The 

monoclonal anti-ceramide mouse IgM antibody (Sigma-Aldrich) was used at 1/50 

dilution in 3% BSA. Antigen retrieval was performed in citrate buffer at pH 6.0 in a 

microwave on high power for 3 minutes. Sections were incubated for 48 hours at 4ºC 

with the primary antibody before treatment with the EnVision peroxidase-based 

secondary system (Dako). Appropriate negative controls; no primary antibody added 

and mouse IgM (Dako) istotype negative control were performed. It is important to note 

that this antibody has been shown in lipid overlay assays to be less specific for ceramide 

than the polyclonal antibody in that it also detects dihydroceramide, phophatidylcholine 

and sphingomyelin. (Cowart et al., 2002) 
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4.5.6. Immunohistochemistry for neutrophil elastase 

 

Paraffin sections were cut, dewaxed and rehydrated as described above. Sections were 

then incubated at room temperature for 45 minutes with mouse anti-neutrophil elastase 

monoclonal antibody (Dako) diluted 1/300 in 3% bovine serum albumin. No antigen 

retrieval was required. The EnVision secondary system (Dako) was used. Mouse 

immunoglobulin G1 (R&D Systems) isotype negative controls were performed. 

 

4.5.7. Immunohistochemistry for myeloperoxidase 

 

Paraffin sections were cut, dewaxed and rehydrated as described above. Antigen 

retrieval was performed for 10 minutes in citrate buffer at pH 6.0 in a microwave on 

high power. Sections were incubated overnight at 4°C with rabbit anti-myeloperoxidase 

polyclonal antibody (Novocastra, Newcastle upon Tyne, United Kingdom) diluted 

1/1000 in 3% bovine serum albumin. The Immpress peroxidase-based secondary system 

was used (Vector Labs, Peterborough, United Kingdom). Appropriate rabbit 

immunoglobulin (Dako) negative controls were performed. 

 

 

4.6. Quantification and analysis of staining 

 

4.6.1. Quantification and analysis of interleukin-17 staining 

 

Positive staining was measured in the airway epithelium in 5 randomly selected, non-

overlapping x40 objective high power fields for each patient. I was blinded to the 

diagnosis of each patient. Image analysis software was used (Image Pro Plus 4.0, 

MediaCybernetics, Bethesda, USA) to quantify the staining in terms of mean percentage 

area of epithelium staining positive and number of positive inflammatory cells per mm 

of basement membrane in the lamina propria and epithelial compartments as previously 

described. (Ward et al., 2005) Neutrophils were identified by appropriate dimensions 
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and characteristic morphological features such as multilobular nuclei and granular 

cytoplasm. (Bain, 2002) 

 

4.6.2. Quantification of ceramide staining 

 

Positive staining was measured in the airway epithelium in 5 randomly selected, non-

overlapping x40 objective high power fields for each patient. Image analysis software 

was used (Image Pro Plus 4.0) to quantify the staining in terms of percentage area of 

epithelium positive for ceramide as previously described. (Ward et al., 2005) I was 

blinded to the diagnosis of each patient. A further analysis using a Bland-Altman plot 

was performed to assess the intra-observer repeatability of these measurements that is 

presented in section 7.5.5. (Bland and Altman, 1986) 

 

4.6.3. Quantification of neutrophil elastase and myeloperoxidase staining 

 

The number of cells staining positive in the epithelium and lamina propria were counted 

in 5 randomly selected, non-overlapping x20 objective high power fields for each 

patient using image analysis software (Image Pro Plus 4.0). The length of basement 

membrane in each field was measured to calculate the number of positive 

cells/millimetre basement membrane. I was blinded to the diagnosis of each patient. 

 

4.6.4. Measurement of reticular basement membrane thickness 

 

Measurements were performed on 5µm sections stained with haematoxylin and eosin 

taken from formalin-fixed, paraffin-embeeded blocks of intermediate-large airway as 

described in sections 4.3.1 and 4.3.2. RBM thickness was quantified by measuring the 

distance between two demarcating lines in each high-power section using Image 

ProPlus software (MediaCybernetics) as shown in Figure 87. 
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4.7. High performance liquid chromatography-mass spectrometry for ceramide 

 

4.7.1. Clinical sample preparation and lipid extraction 

 

Biopsies were resected from freshly explanted lungs and immediately snap frozen in an 

isopentane slurry cooled with liquid nitrogen prior to storage at -80°C. At the time of 

analysis around 100mg of tissue was defrosted to room temperature, weighed and 

immediately homogenised. Lipids were then extracted from the homogenate using a 

previously described chloroform/methanol protocol. (Folch et al., 1957, Guilbault et al., 

2008b)  

 

4.7.2. High performance liquid chromatography-mass spectrometry 

 

A Waters (Milford, MA, USA) nanoACQUITY HPLC pump, with autosampler and a 

LTQ-FT hybrid linear ion trap-FTMS (Thermo Electron, Bremen, Germany) mass 

spectrometer were interfaced using an ADVANCE (Michrom Bioresources, Auburn, 

CA, USA) MS ion source. The calibration standards used were C16:0 (N-Palmitoyl-D-

Sphingosine, N-Hexadecanoyl-D-sphingosine, Palmitoyl ceramide, catalogue number 

C2777-8), C18:0 (N-Stearoyl-D-sphingosine, Stearoyl ceramide, catalogue number 

C2777-83), C20:0 (N-Eicosanoylsphingosine, catalogue number C2777-85) and C22:0 

(N-[(3E)-2-hydroxy-1-(hydroxymethyl)-3-heptadecenyl]-docosanamide, catalogue 

number C2777-87) ceramides (US Biological, Swampscott, Ma, USA). Each standard 

was reconstituted using an appropriate volume of chloroform:methanol (2:1) to generate 

20mM stock solutions for HPLC-MS analysis. Further dilutions were made using 

acetonitrile.   

 

The lower (chloroform) phase of each patient sample was carefully transferred to a 

clean tube and then evaporated to dryness in a centrifugal evaporator. Samples were re-

suspended in 1mL of chloroform:methanol (2:1) and then diluted 1:10 with acetonitrile 

prior to HPLC-MS analysis.  

 

All samples and standards were analyzed in triplicate on a Waters (Milford, MA, USA) 

C18 symmetry column (0.3 by 100mm) maintained at 45°C and a flow rate of 
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10µL/min. A non-aqueous reversed phase HPLC (NARP) gradient was used. Buffer A 

comprised acetonitrile:formic acid (99.8:0.2) while buffer B was 20% isopropanol in 

acetonitrile. Samples were eluted using a gradient of 0 to 15% buffer B over 20 minutes. 

 

The mass spectrometer method consisted of two scan events, a FTMS scan at 12,500 

resolution in the range 475 – 675m/z (to minimize sample matrix noise), followed by 

one data-dependant ion trap MS/MS. The ADVANCE spray source was used without 

sheath gas and the spraying voltage was 1.5kV. 

 

Calibration curves were constructed from triplicate readings of a four ceramide mixture 

at 5, 0.5, 0.05 and 0.005pmoles injected on-column, (Table 15 and Figure 69 to Figure 

72 respectively). The initial plan was to monitor the MS/MS product ion at 264.3m/z as 

a means for selective quantitation. However it soon became apparent that the ceramide 

spectra were dominated by [M+Na]+ adducts as the major ion species precluding 

observation of the desired product ion at a sufficiently high sensitivity.  To circumvent 

this problem the mass accuracy of the FTMS was used for ion selection and 

quantitation.   

 

Qualbrowser software (Thermo Electron, Bremen, Germany) was used to sum the ion 

currents for both observed [M+H] + and [M+Na] + singly –charged ion species of each 

ceramide. For selectivity the mass tolerance for each ion was set to within 0.02m/z.  The 

peak areas of the detected ion signals were recorded and calibration plots constructed 

using this data for each of the four ceramide species. The calibration plots were then 

used to obtain quantitative results for C16:0, C18:0, C20:0 and C22:0 ceramides from 

triplicate measurements on the 10 patient samples. 

 

4.7.3. Protein assay 

 

The Bio-Rad Protein Micro Assay (Bio-Rad, Hemel Hempstead, UK), based on the 

Bradford protein assay technqiue, was used to measure protein levels spectroscopically 

in the upper phase of the HPLC-MS analysates. (Bradford, 1976) Standards ranging 

from 0.8 to 20µg/mL were prepared from a stock of 400µg/mL made by dissolving 

BSA in deionised water. Samples were diluted 1:2 with deionised water prior to 

analysis. In a clean dry test tube 800µL of standard or diluted sample was mixed with 
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200µL of reagent and incubated for 30 minutes at room temperature. The optical density 

at 595nm was then read in fresh cuvettes using a spectrometer (Unicam 8625 UV/VIS 

spectrometer, Cambridge, UK). The optical density of a ‘blank’ cuvette filled with 1mL 

of deionised water was subtracted from each reading. Each sample and standard was 

assayed in triplicate and a mean taken. A standard curve was then constructed and the 

protein concentration was quantified for each sample. 

 

4.7.4. Phosphate assay 

 

The PiBlue Phosphate Assay Kit (BioAssay Systems, Hayward, USA) was used to 

quantify levels of phosphate in the upper pahse of the HPLC-MS analysates. Standards 

ranging from 4 to 40µM phosphate were prepared from a stock 40µM solution as per 

the manufacturer’s instructions. Using a clean dry 96-well plate 50µL of standard or 

sample was added to each well followed by 100µL and incubated for 30 minutes at 

room temperature. The optical density at 620nm was then read in fresh cuvettes using a 

spectrometer (Unicam 8625 UV/VIS spectrometer, Cambridge, UK). Each sample and 

standard was assayed in triplicate and a mean taken. A standard curve was then 

constructed and the phosphate concentration was quantified for each sample. 
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4.8. Statistics 

 

Statistical analyses were performed using Minitab 15 (Minitab Incorporated, 

Pennsylvania, USA). Graphs were prepared using Prism 5 for Mac (GraphPad software, 

California, USA).  

 

Non-parametric statistical tests were used to test the null hypothesis using the most 

conservative approach possible. A P value <0.05 was considered to be significant. 

Where multiple comparisons were performed correction was performed using the Holm-

Bonferroni method. (Holm, 1979) The Holm–Bonferroni method is a closed test 

procedure that allows the performance of more than one hypothesis test simultaneously 

by adjusting the relevant P value accordingly. (Marcus et al., 1976) The specific 

statistical test used is stated in the figure caption directly below the graph in the thesis. 
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5. Chapter 5. Development of a method to culture primary bronchial 

epithelial cells from the lungs of people with cystic fibrosis removed 

at the time of transplantation 
 

 

Elements of the work described in this chapter have been previously reported in the 

form of presentations at medical and scientific meetings and in a peer-reviewed paper. 

(Brodlie et al., 2008a, Brodlie et al., 2008b, Brodlie et al., 2009f, Brodlie et al., 2010f) 
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5.1. Abstract 

 

Background: Lung disease is responsible for more than 95% of morbidity and mortality 

in cystic fibrosis. The exact pathogenesis of cystic fibrosis lung disease remains poorly 

understood. Experimental models are therefore vital for use in research. Animal models 

and immortalised cell lines both have inherent limitations. Explanted lungs removed 

from people with CF at the time of transplantation represent a potentially valuable but 

technically and logistically challenging source of primary cystic fibrosis bronchial 

epithelial cells. 

Methods: Pieces of segmental bronchus from explanted lungs were treated with patient-

specific antimicrobials prior to isolation of bronchial epithelial cells. Cultured cells 

were characterised by their morphology under light microscopy, cytokeratin and 

haematoxylin-eosin staining, electrophysiological profile and cytokine production. 

Results: Primary bronchial epithelial cells were successfully cultured from 23 of 34 

patients attempted. The cells exhibited typical epithelial morphology, staining for 

cytokeratin, lack of responsiveness to forskolin treatment, produced interleukin-8, 

interleukin-6 and granulocyte macrophage colony-stimulating factor and remained 

viable after storage in liquid nitrogen. Eleven unsuccessful cultures failed due to early 

infection with bacteria known to colonise the airways pre-transplant. 

Conclusions: Primary bronchial epithelial cell culture is possible from explanted cystic 

fibrosis lungs and provides an important cellular model to elucidate the pathogenic 

mechanisms in cystic fibrosis lung disease and to investigate potential therapeutic 

targets. 
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5.2. Introduction 

 

Promising developments in clinical care have yielded an increase in survival for people 

with CF over recent decades, however, the exact pathogenesis of CF lung disease 

remains poorly understood. (Dodge et al., 2007) It follows that valid experimental 

models are required to further elucidate the pathogenesis of CF lung disease and to 

evaluate novel, potentially therapeutic compounds. (Doring et al., 2007)   

 

Shortly after the cloning of the CFTR gene in 1989 it has been possible to develop 

animal models of CF. (Riordan et al., 1989) Work has principally focussed on murine 

models and has generated over 2500 publications to date. (Scholte et al., 2004) Mice 

with complete interruption of the CFTR gene, residual function and with specific, 

clinically relevant mutations have been developed. (Davidson and Rolfe, 2001, 

Guilbault et al., 2007) However, despite promising bioelectric features and replication 

of gastrointestinal pathology it has proved impossible to reproduce the human CF lung 

phenotype. Indeed, Scholte et al. (2004) in a review of this topic concluded that:  

 

 “the development of an ideal mouse model of CF lung disease, to enable the 

dissection of pathogenesis, or testing of novel therapeutics is yet to be achieved.”   

 

Possible explanations for this include inter-species differences in submucosal gland 

distribution, innate immunity, epithelial cell composition and chloride channels in the 

lung. (Pack et al., 1980, Grubb et al., 1994, Borthwick et al., 1999, Maxwell et al., 

2003)  

 

A major programme of work is under way to develop pigs and ferrets with mutant 

CFTR that may produce animals with a closer lung phenotype to that seen in CF but it 

will be a substantial number of years before they represent a practical tool for research. 

(Sun et al., 2008, Rogers et al., 2008c) 

 

Immortalised cell lines, derived from relevant tissues in people with CF, non-CF 

individuals and other mammals, have also been used extensively in research and have 

contributed to our current understanding of the disease. (Lundberg et al., 2002) There 

are a number of important limitations, however, that must be remembered if the results 
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of experiments involving immortalised cells are to be extrapolated to the situation in 

vivo.  

 

Firstly, a cell line is always derived from a fixed clone of a phenotypically diverse 

mixed primary cell culture. The phenotype of cells is also likely to change with multiple 

passages in vitro and furthermore karyotypic instability is a feature of immortalised 

cells that may lead to the emergence of diverse subpopulations that do not retain the 

phenotypic characteristics of interest. (Gruenert et al., 2004)   

 

In summary, both animal models and immortalised cell lines have contributed 

significantly to CF research but there are inherent limitations to both systems. 

(Carvalho-Oliveira et al., 2007, Gruenert et al., 2004, Guilbault et al., 2007) In 

particular, animal models have failed to reproduce the lung disease characterised by 

neutrophilic inflammation, chronic bacterial infection and mucus hypersecretion that is 

responsible for 95% of mortality and morbidity in CF. Immortalised cell lines are 

accessible and convenient but it is widely acknowledged that high passage cells are 

likely to significantly differ from those found in vivo and that they display karyotypic 

instability. 

 

Primary tissue and cells from people with CF therefore represent an important and rare 

experimental resource. The ex vivo culture of PBECs from people with CF is likely to 

produce a superior cellular model to that produced by immortalised cell lines with 

characteristics that replicate more accurately those found in vivo. Furthermore, well-

differentiated PBEC cultures maintained at ALI are an excellent model of airway 

epithelial function and have been integral to several important developments in our 

current knowledge of the pathophysiology of CF lung disease. (Matsui et al., 1998, 

Fulcher et al., 2005)    

 

Lung transplantation is the only life-sustaining option for end-stage CF lung disease. 

(Meachery et al., 2008, Corris, 2008) The organs explanted from people with CF during 

lung transplantation represent a potential source of CF PBECs. The culture of PBECs 

from explanted CF lungs poses scientific and logistical challenges however. The major 

practical obstacles to the successful culture of cells include firstly, actual procurement 

of appropriate lung tissue and secondly, infection of cell cultures by multi-resistant 
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organisms present in the copious mucopurulent secretions that are prevalent in end-

stage CF lungs. (Randell et al., 2001)  

 

To the best of my knowledge, prior to the commencement of this work PBECs were not 

cultured routinely from explanted CF lungs outside of a handful of centres in North 

America, most notably at the University of North Carolina, Chapel Hill. (Karp et al., 

2002, Yamaya et al., 1992, Randell et al., 2001) The Freeman Hospital in Newcastle 

upon Tyne is the largest lung transplantation centre in the United Kingdom. Lungs 

removed at the time of transplantation from people with CF in Newcastle therefore 

represent a previously under used and potentially highly valuable resource for CF 

research. 
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5.3. Aims 

 

The aims of the work described in this chapter were to: 

 

• Develop and optimise a method to culture PBECs from explanted CF lungs 

• Establish a programme to culture PBECs from lungs removed at the time of 

transplantation from people with CF at the Freeman Hospital in Newcastle upon 

Tyne  
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5.4. Hypothesis 

 

I hypothesised that it would be technically possible to culture PBECs from explanted 

CF lungs and to establish a programme to do this at the Freeman Hospital, Newcastle 

upon Tyne. 
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5.5. Results 

 

5.5.1. Development of a method to culture primary bronchial epithelial cells from 

explanted cystic fibrosis lungs 

 

The detailed method that I used to culture PBECs is described in Chapter 4. The 

technique published by Randell et al. (2001) was used as an initial template. This was 

subsequently optimised through personal experience, helpful discussions with Dr Scott 

Randell, University of North Carolina and Professor Christopher O’Callaghan, 

University of Leicester, input from my supervisors in Newcastle and further discussions 

with delegates and other invited speakers at the ‘Workshop on Epithelial Cells from 

Lung: Production, Cultivation and Characterization’ held by EuroCareCF in Lisbon, 

Portugal in July 2008. 

 

I developed the novel approach of using patient-specific combinations of antimicrobials. 

These were based on up to date knowledge of the organisms cultured from the sputum 

of patients in their clinical management pre-transplant. (Corris, 2008, Meachery et al., 

2008) The expert advice of Professor John Perry and Audrey Nicholson, Department of 

Medical Microbiology, Freeman Hospital, was invaluable in selecting an appropriate 

anti-microbial combination for each specific patient. 

       

A key consideration when using primary tissue in research is that the clinical care of 

patients is not compromised. The method that I developed allows clinical specimens to 

be collected from explanted lungs for microbiology and involves only modest dissection 

thereby enabling a full examination of the lungs to be performed by a pathologist.  
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5.5.2. Establishment of a programme to culture primary bronchial epithelial cells 

from explanted cystic fibrosis lungs at the Freeman Hospital, Newcastle upon 

Tyne   

 

In addition to the scientific challenges of culturing PBECs from end-stage CF lungs, the 

establishment of a programme to utilise explanted lungs relied on excellent working 

relationships with the entire multidisciplinary transplant team. This includes obtaining 

the appropriate ethical approval to perform such work and clearly the informed consent 

of the transplant recipients themselves. In my experience it is ideal if individuals are 

approached for consent at the time of visiting the transplant centre for assessment and 

not during the emergency admission immediately prior to a potential transplant 

occurring. Indeed, the Local Research Ethics Committee advised this timing of 

approach for consent when they considered our ethical application for this work.  

 

Furthermore, the helpful co-operation of cardiothoracic surgeons, transplant 

coordinators and theatre staff is essential in order to ensure that the research team is 

informed. Due to the unpredictable nature of transplantation in my experience a 

permanent ‘on-call’ commitment is important in facilitating and ensuring the 

appropriate timely procurement of tissue in the event of a transplant occurring. An 

onward stream of interested researchers is likely to be essential to sustain this 

programme of tissue procurement in the future.     

 

5.5.3. Outcome of primary bronchial epithelial cell cultures from explanted cystic 

fibrosis lungs 

 

I actively procured lungs between October 2007 and March 2010. During this period 36 

people with CF were transplanted at the Freeman Hospital. I attempted to culture 

PBECs from the lungs of 34 of the 36 patients. Figure 16 shows a typical explanted CF 

lung. 

 

Cultures were successful from 23 (68%) of the 34 patients attempted. When 

unsuccessful this was universally due to early bacterial overgrowth once the initial anti-

microbial cocktail had been removed from the culture medium. Routine microbiological 
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culture of infected supernatants was performed by Professor John Perry and Audrey 

Nicholson, which revealed that the bacteria responsible in each case were the same 

organisms that had colonised the lungs of the patients pre-transplantation. Table 9 

outlines the clinical details, the organisms isolated from sputum pre-transplant, 

antimicrobial combination used and the outcome of cell culture for each patient. Figure 

17 compares the success rate of cultures with the initial ‘best guess’ approach (50%) to 

that following adoption of a tailored patient-specific anti-microbial strategy (75%). 

 

 

 
 

Figure 16. Typical example of an explanted cystic fibrosis lung. 

Dimensions 230mm superior-inferior, 155mm anterior-posterior 
and 60mm medial-lateral 
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Table 9. Brief clinical details of patients, microbiology and outcome of primary 

bronchial epithelial cell cultures 

  

No. Age* CFTR 
variant$ 

FEV1
^ 

 
Sputum 

microbiology 
Antimicrobials 

used in cell 
culture 

Outcome of 
cultures 

1 28 p.Phe508del 
p.Phe508del 

15 Pseudomonas 
aeruginosa, 
Aspergillus 
fumigatus 

Ceft, Tobr, 
Vanc, Amph 

Successful 

2 57 p.Arg117His  
p.Arg553X 

23 P. aeruginosa Ceft, Tobr, 
Vanc, Amph 

Successful 

3 32 Unknown 25 P. aeruginosa, 
Burkholderia 
vietnamiensis 

Ceft, Tobr, 
Vanc, Amph 

Not 
successful, B. 
vietnamiensis 
overgrowth 

4 25 p.Phe508del 
Unknown 

22 P. aeruginosa,  
Staphylococcus 

aureus 

Ceft, Tobr, 
Vanc, Amph 

Not 
successful, 
apparent 
infection, 

negative on 
culture 

5 23 Unknown 21 Scedosporium sp., 
Alcaligines sp., 

S. Aureus 

Ceft, Tobr, 
Vanc, Amph, 
Mero, Vori 

Successful 

6 39 p.Phe508del 
p.Phe508del 

14 P. aeruginosa Ceft, Tobr, 
Vanc, Amph 

Successful 

7 29 p.Phe508del 
p.Gly551Asp 

23 P. aeruginosa, 
Methicillin-

Resistant 
S. aureus 

Ceft, Tobr, 
Vanc, Amph, 

Mero 

Not 
successful, P. 
aeruginosa 
overgrowth 

8 27 p.Phe508del 
p.Phe508del 

22 P. aeruginosa Ceft, Tobr, 
Vanc, Amph, 

Mero 

Not 
successful, P. 
aeruginosa 
overgrowth 

9 43 p.Phe508del 
p.Arg560Thr 

15 Stenotrophomonas 
maltophilia, 

Acinetobacter sp. 

Ceft, Tobr, 
Vanc, Amph, 

Colo, CoTrim, 
Tim 

Successful 

10 28 p.Phe508del 
p.Asp443fs 

17 P. aeruginosa Ceft, Tobr, 
Vanc, Amph, 
Mero, Colo 

Successful 

11 29 p.Phe508del 
p.Phe508del 

20 P. aeruginosa, 
A. fumigatus 

Ceft, Tobr, 
Vanc, Amph, 
Mero, Colo 

Successful 

12 30 p.Phe508del 
p.Phe508del 

30 P. aeruginosa Ceft, Tobr, 
Vanc, Amph, 
Mero, Colo, 

CoTrim 

Successful 
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13 40 Unknown 24 P. aeruginosa Ceft, Tobr, 

Vanc, Amph, 
Mero, Colo, 
CoTrim, Tim 

Vori 

Not 
successful, P. 
aeruginosa 
overgrowth 

14 23 p.Phe508del 
p.Gly551Asp 

30 P. aeruginosa,    
A. fumigatus 

Ceft, Tobr, 
Vanc, Amph, 
Mero, Colo, 

CoTrim, Vori 

Successful 

15 46 Unknown 30 P. aeruginosa Ceft, Tobr, 
Vanc, Amph, 
Mero, Colo, 
CoTrim, Tim 

Successful 

16 29 p.Phe508del 
p.Gln685fs 

17 B. multivorans, 
A. fumigatus, 
Geosmithia 
argillacae 

Ceft, Tobr, 
Vanc, Amph, 
Mero, Colo, 
CoTrim, Tim 

Vori 

Not 
successful, B. 
multivorans 
overgrowth 

17 22 p.Phe508del 
p.Phe508del 

23 P. aeruginosa Ceft, Tobr, 
Vanc, Amph, 
Mero, Colo, 
CoTrim, Tim 

Successful 

18 20 p.Phe508del 
p.Phe508del 

21 P. aeruginosa Ceft, Tobr, 
Vanc, Amph, 
Mero, Colo, 

CoTrim 

Successful 

19 29 p.Phe508del 
c.317+10kbC>T 

29 P. aeruginosa, 
S. maltophilia 

Ceft, Tobr, 
Vanc, Amph, 
Mero, Colo, 
CoTrim, Tim 

Not 
successful, P. 
aeruginosa 
overgrowth 

20 28 Unknown 20 P. aeruginosa, 
Methicillin-

Resistant 
S. aureus 

Ceft, Tobr, 
Vanc, Amph, 
Mero, Colo, 
CoTrim, Tim 

Successful 

21 48 p.Phe508del 
Unknown 

29 P. aeruginosa, 
S. aureus 

Ceft, Tobr, 
Vanc, Amph, 
Mero, Colo, 
CoTrim, Tim 

Successful 

22 33 Unknown 23 P. aeruginosa Ceft, Tobr, 
Vanc, Amph, 
Mero, Colo, 
CoTrim, Tim 

Successful 

23 22 p.Phe508del 
p.Phe508del 

25 P. aeruginosa, 
A. fumigatus 

Ceft, Tobr, 
Vanc, Amph, 
Mero, Colo, 
CoTrim, Tim 

Not 
successful, P. 
aeruginosa 
overgrowth 

24 40 Unknown 36 P. aeruginosa, S. 
maltophilia, 

Achromobacter 
xylosoxidans 

Ceft, Tobr, 
Vanc, Amph, 
Mero, Colo, 
CoTrim, Tim 

Successful 
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25 24 p.Phe508del 

p.Phe508del 
26 P. aeruginosa Ceft, Tobr, 

Vanc, Amph, 
Mero, Colo, 
CoTrim, Tim 

Successful 

26 21 Unknown 25 P. aeruginosa Ceft, Tobr, 
Vanc, Amph, 
Mero, Colo, 
CoTrim, Tim 

Successful 

27 45 p.Phe508del 
p.Phe508del 

21 P. aeruginosa, 
A. fumigatus 

Ceft, Tobr, 
Vanc, Amph, 
Mero, Colo, 
CoTrim, Tim 

Not 
successful, P. 
aeruginosa 
overgrowth 

28 33 Unknown 17 P. aeruginosa, 
Mycobacterium 

gordonae 

Ceft, Tobr, 
Vanc, Amph, 
Mero, Colo, 
CoTrim, Tim 

Successful 

29 33 Unknown 18 P.aeruginosa Ceft, Tobr, 
Vanc, Amph, 
Mero, Colo, 
CoTrim, Tim 

Successful 

30 26 Unknown 25 P. aeruginosa Ceft, Tobr, 
Vanc, Amph, 
Mero, Colo, 
CoTrim, Tim 

Not 
successful, P. 
aeruginosa 
overgrowth 

31 22 Unknown 20 B. multivorans Ceft, Tobr, 
Vanc, Amph, 
Mero, Colo, 
CoTrim, Tim 

Not 
successful, B. 
multivorans 
overgrowth 

32 29 p.Phe508del 
p.Phe508del 

19 P. aeruginosa, 
S. maltophilia, 
Achromobacter 

sp., 
M. avium, 

A. fumigatus, 
G. argillacea 

Ceft, Tobr, 
Vanc, Amph, 
Mero, Colo, 
CoTrim, Tim 

Successful 

33 23 Unknown 27 P. aeruginosa, 
P. putida, 

A. fumigatus, 
A. xylosoxidans, 

Paecilomyces sp., 
M. avium complex 

Ceft, Tobr, 
Vanc, Amph, 
Mero, Colo, 
CoTrim, Tim 

Successful 

34 27 Phe508del 
Gly551Asp 

22 P. aeruginosa Ceft, Tobr, 
Vanc, Amph, 
Mero, Colo, 
CoTrim, Tim 

Successful 

 

Abbreviations: *Age in years at time of transplant, $cystic fibrosis transmembrane 
conductance regulator genotype (where known), ^forced expiratory volume in 1 second 

(% predicted), Ceft: ceftazidime, Tobr: tobramycin, Vanc: vancomycin, Amph: 
amphotericin, Mero: meropenem, Vori: voriconazole, Colo: colomycin, CoTrim: co-

trimoxazole, Tim: timentin 
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Figure 17. Culture success rates with fixed and tailored antimicrobial strategies 
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5.5.4. Characterisation of primary bronchial epithelial cells 

	
  

5.5.5. Morphology 

 

Brightfield light microscopy on repeated occasions revealed characteristic epithelial 

‘cobblestone’ morphology and growth characteristics as shown in Figure 18. 

(Borthwick et al., 2009, Ward et al., 2005)  

	
  

5.5.6. Haematoxylin and eosin staining 

 

First passage PBECs were grown under submerged conditions to confluence on 

collagen coated eight-chamber slides and stained with haematoxylin and eosin as 

described in Chapter 4. The PBECs displayed typical ‘cobblestone’ epithelial 

morphology (Figure 19). 

	
  

5.5.7. Cytokeratin immunohistochemistry 

 

First passage PBECs were grown under submerged conditions to confluence on 

collagen coated eight-chamber slides and stained with an epithelial, pan-cytokeratin 

marker, as described in section 4.5.1. The PBECs stained positively for cytokeratin in a 

similar pattern to that observed previously in PBECs cultured from bronchial brushings 

performed on lung transplant recipients  (Figure 20). (Forrest et al., 2005) 
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Figure 18. Brightfield light micrograph of primary bronchial epithelial cells 

cultured under submerged conditions from an explanted cystic fibrosis lung 

 

50 µm 
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Figure 19. Haematoxylin and eosin staining of primary bronchial epithelial cells 

cultured under submerged conditions from an explanted cystic fibrosis lung 

 

50 µm 
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Figure 20. Pan-cytokeratin staining of primary bronchial epithelial cells cultured 

under submerged conditions from an explanted cystic fibrosis lung 

 

50 µm 
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5.5.8. Electrophysiology 

 

A characteristic feature of CF airway epithelial cells is the lack of a cAMP/protein 

kinase A activated Cl- conductance, due to dysfunctional mutant CFTR channels. 

(Moran and Zegarra-Moran, 2008) However, CF epithelial cells do retain a Cl- 

conductance that can be activated by an elevation of intracellular calcium. (Mall et al., 

2003, Hartzell et al., 2005) In order to investigate whether my cultured PBECs retained 

this signature CF phenotype electrophysiological experiments were performed on cells 

grown as monolayers on glass coverslips. Whole cell Cl- currents were measured using 

the patch clamp technique.   

 

Exposure of PBECs to 5µM forskolin (a cAMP-elevating agent), for a minimum of 4 

minutes, failed to elevate whole cell current above basal levels (0/9), (Figure 21A). In 

contrast, treatment with 1µM ionomycin (a calcium elevating agent) initiated a rapid 

increase in whole cell current within 60 seconds of addition (7/12 cells). In 4 of these 

experiments, this current increase was transient in nature, however, in the remaining 

cells tested, this increase was sustained and the current was shown to be outwardly 

rectifying and possess the time dependent kinetics characteristic of a calcium-activated 

chloride current (CaCC) (Figure 21B). (Hartzell et al., 2005, Tarran et al., 2002) 

Furthermore, substitution of 100mM of bath Cl- with aspartate caused a shift in Erev of  

+22.5 ± 3.6mV (n = 3), indicating a predominantly Cl- selective current (under these 

conditions, a +29.3mV shift would indicate a perfectly Cl- selective current). These 

results therefore confirm that my cultured PBECs from explanted lungs retain the 

characteristic electrophysiological profile expected of CF cells.
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Figure 21. Representative current traces and summary data for cells treated 

with Forskolin (A) and Ionomycin (B). 

For summary data, current was measured at Erev +60 mV (upright bars) and -60 mV 

(inverted bars) and normalised to cell capacitance. 
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5.5.9. Cytokine production 

	
  

5.5.10. Basal (unstimulated) cytokine production  

 

I investigated the production of the cytokines IL-8, IL-6 and GMCSF by submerged 

PBEC cultures by performing a multiplex ELISA on culture supernatants. Constitutive 

production of these cytokines is known to occur and would be expected to happen in 

viable airway epithelial cells. (Becker et al., 2004, Murphy et al., 2008a) As described 

fully in section 4.2, PBECS were rested for 24 hours prior to the medium being replaced 

with fresh resting medium for a further 24 hours and then harvested for analysis. 

Typical standard curves for the ELISA in my hands are shown in Figure 46 to Figure 48 

respectively. 

 

Figure 22 to Figure 24 display basal levels (unstimulated) of IL-8, IL-6 and GMCSF 

production by PBECs from people with advanced CF lung disease (see Table 9). As has 

been described previously by other researchers, there is variability in the baseline levels 

of production of these cytokines by PBECs from different individuals. (Becker et al., 

2004, Ribeiro et al., 2009) 
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Figure 22. Basal production of interleukin-8 by primary bronchial epithelial cells 

from people with advanced cystic fibrosis lung disease 

Horizontal lines indicate the median basal production of interleukin-8, results from four 
replicate experiments. The boxes indicate the 25th and 75th percentiles and whiskers 

minimum and maximum respectively. See Table 9 for clinical details relating to each 
patient number.  
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Figure 23. Basal production of interleukin-6 by primary bronchial epithelial cells 

from people with advanced cystic fibrosis lung disease 

Horizontal lines indicate the median basal production of interleukin-6, results from four 
replicate experiments. The boxes indicate the 25th and 75th percentiles and whiskers 
minimum and maximum respectively. See Table 9 for details relating to each patient 

number.  
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Figure 24. Basal production of granulocyte macrophage colony-stimulating factor 

by primary bronchial epithelial cells from people with advanced cystic 

fibrosis lung disease 

Horizontal lines indicate the median basal production of granulocyte macrophage 
colony-stimulating factor, results from four replicate experiments. The boxes indicate 
the 25th and 75th percentiles and whiskers minimum and maximum respectively. See 

Table 9 for details relating to each patient number. 
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5.5.11. Cytokine production following stimulation with flagellin 

 

Following on from the experiments described in section 5.5.10 investigating the basal 

production of the cytokines IL-8, IL-6 and GMCSF by PBECS from people with 

advanced CF lung disease I investigated the effect of stimulation with flagellin on the 

production of these cytokines. Flagellin is the major component of bacterial flagella and 

is found abundantly in flagellated bacteria, for example Salmonella typhimurium, 

Escherichia coli and P. aeruginosa. (Feldman et al., 1998) Importantly flagellin is 

expressed by motile forms of P. aeruginosa, which in the context of CF lung disease is 

most relevant in the early stages of infection and colonisation. (Raoust et al., 2009, 

Prince, 2006) Flagellin is a key target of epithelial innate immunity and toll-like 

receptor (TLR) 5 is a specific receptor. (Vijay-Kumar and Gewirtz, 2009) Flagellin 

therefore represents a potent pro-inflammatory stimulus to epithelial cells that triggers a 

number of signalling cascades, including the NFκB and MAPK pathways, and leads to 

the production of IL-8, IL-6 and GMCSF, amongst other mediators. (Pena et al., 2009, 

Lorenz et al., 2010, Sha et al., 2004) Appropriate responses would therefore be expected 

to occur in viable airway epithelial cells following challenge with flagellin. 

 

As described fully in section 4.2.15, PBECS were rested for 24 hours prior to the 

medium being replaced with fresh resting medium containing 1, 10 or 100ng/mL 

flagellin. After 24 hours the supernatant was harvested and analysed by multiplex 

ELISA. The flagellin used for these experiments was purified from S. typhimurium 

(Alexis Biochemicals). 

 

Figure 25 to Figure 27 display levels of IL-8, IL-6 and GMCSF produced by PBECs 

from people with advanced CF lung disease following stimulation with 1, 10 or 

100ng/mL. Typical standard curves for the ELISA in my hands are shown in Figure 46 

to Figure 48 respectively. Increases in IL-8 production were statistically significant 

following stimulation with 1, 10 and 100ng/mL of flagellin (Figure 25). Although there 

was also an increase in production of IL-6 and GMCSF in some experiments, see Figure 

26 and Figure 27, this was not consistent and was not statistically significant.



 103 

 

 

 
 

Figure 25. Increase in interleukin-8 production by primary bronchial epithelial 

cells from people with advanced cystic fibrosis lung disease following 

stimulation with flagellin 

Each symbol represents an individual donor (n=9) and is the mean of three replicate 
experiments.  

Horizontal lines indicate the median.  
Median basal interleukin-8 production 242pg/mL.  

**P=0.009  
Wilcoxon signed-rank test for each concentration of flagellin compared to basal 

production. (Wilcoxon, 1945) Holm-Bonferonni correction applied. (Holm, 1979) 
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Figure 26. Increase in interleukin-6 production by primary bronchial epithelial 

cells from people with advanced cystic fibrosis lung disease following 

stimulation with flagellin 

Each symbol represents an individual donor (n=9) and is the mean of three replicate 
experiments.  

Horizontal lines indicate the median. 
Median basal interleukin-6 production 2pg/mL. 

Differences not significant by Wilcoxon signed-rank test for each concentration of 
flagellin compared to basal production. (Wilcoxon, 1945) Holm-Bonferonni correction 

applied. (Holm, 1979) 
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Figure 27. Change in granulocyte macrophage colony-stimulating factor 

production by primary bronchial epithelial cells from people with advanced 

cystic fibrosis lung disease following stimulation with flagellin 

Each symbol represents an individual donor (n=9) and is the mean of three replicate 
experiments.  

Horizontal lines indicate the median. 
Median basal granulocyte macrophage colony-stimulating factor production 8.1pg/mL  

Differences not significant by Wilcoxon signed-rank test for each concentration of 
flagellin compared to basal production. (Wilcoxon, 1945) Holm-Bonferonni correction 

applied. (Holm, 1979) 
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5.5.12. Cryopreservation 

 

Cells were reconstituted after a prolonged period of cryopreservation using the method 

described in section 4.2.5 on over 20 occasions with a success rate of 80% for 

subsequent submerged culture. 

 

5.5.13. Air-liquid interface culture 

 

Airway epithelial cells may be cultured most simply in vitro under submerged 

conditions, as was the case in the work described in this chapter so far. However, 

primary airway epithelial cells revert to a poorly differentiated phenotype within a 

limited number of passages. (Gruenert et al., 1995, Araya et al., 2007) More advanced 

culture techniques, such as within collagen gels, as three-dimensional spheroids or most 

commonly on semi-permeable membranes at ALI, allow recapitulation of a more 

accurate representation of the native airway epithelium. (de Jong et al., 1993) ALI 

cultures facilitate prolonged culture of cells in vitro, muco-ciliary differentiation and 

formation of a polarised epithelium characterised by tight junction formation and a 

raised trans-epithelial resistance. 

 

The successful culture of primary airway epithelial cells at ALI is widely acknowledged 

to be technically challenging and to require specialist expertise. (Personal 

communications with research groups in Liverpool, Sheffield, Edinburgh, Belfast, 

Leeds and Leicester) To date only a small amount of ALI culture work has been 

performed in our research group in Newcastle. I therefore performed some preliminary 

experiments in an attempt to establish ALI cultures with PBECs from people with CF. 

 

The method described in Chapter 4 that I used to establish the ALI cultures was largely 

based on personal discussions with Dr Scott Randell, University of North Carolina, and 

Professor Chris O’Callaghan, University of Leicester and the method published by 

Fulcher et al. (2005). In essence the technique involved the submerged culture of first 

passage cells to confluence on semi-permeable filters coated with type IV collagen 

using standard supplemented bronchial epithelial growth medium. Followed by 
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exposure of the apical membrane to air and switching of the basolateral media to a 

different, ‘ALI medium’. 

 

A trans-epithelial resistance in excess of 500Ω/cm2, indicative of a polarised epithelium, 

was routinely achieved at ALI. (Zabner et al., 2003, Fulcher et al., 2005) An example of 

trans-epithelial resistance measurements for PBECs cultured from a person with CF is 

shown in Figure 28. The morphology of the apical surface of PBECs cultured at ALI is 

shown in Figure 29 with areas of mucus accumulation indicated. Washings from the 

apical surface of the cultures were positive for the gel-forming airway mucin MUC5B 

detected by slot-blot ELISA (Figure 30). Periodic acid-Schiff staining of formalin-fixed 

ALI cultures was also positive (Figure 31). These results confirm the presence of 

different cell types, including well-differentiated mucus-secreting cells. Scanning 

electron micrographs of PBECs from a person with CF cultured at an air-liquid 

interface, illustrating morphology at different time points and tight junction formation 

are shown in Figure 32. 

 

In summary, it has been possible to generate polarised cultures with a consistently 

raised trans-epithelial resistance, which secrete mucus and form tight inter-cellular 

junctions and maintain them in vitro for over 6 weeks. True ciliogenesis did not occur 

and the cells appeared to be squamous rather than columnar in morphology after 

prolonged culture. 

 

Alternative approaches to establishing well-differentiated airway epithelial cell cultures 

that have been used by other researchers include 3-dimensional models involving 

collagen gels and co-culture with fibroblasts alone or along with other inflammatory 

cells such as eosinophils. (Choe et al., 2003, Ulrich and Doring, 2004, Bals et al., 2004, 

Parker et al., 2010, Zhang et al., 1999)  This suggests that ‘cross-talk’ between epithelial 

and other cell types is likely to be important in maintaining epithelial homeostasis and 

function. (Xu et al., 2002, Wang et al., 2009)  
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Figure 28. Trans-epithelial resistance measurements for primary bronchial 

epithelial cells cultured at an air-liquid interface for 22 days from an 

explanted cystic fibrosis lung 

Horizontal bars represent the median resistance. 

3 6 8 11 14 18 22
0

1000

2000

3000

4000

Days at air-liquid interface

Tr
an

s-
ep

ith
eli

al 
re

sis
tan

ce
 (!

/cm
2 )



 109 

 

 

 
 

Figure 29. Light micrograph of primary bronchial epithelial cells cultured at an 

air-liquid interface from an explanted cystic fibrosis lung 
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Figure 30. Example of positive slot-blot enzyme-linked immunosorbent assay for 

the gel-forming airway mucin MUC5B from washings from the apical 

surface of primary bronchial epithelial cells cultured at an air-liquid 

interface from explanted cystic fibrosis lungs 
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Figure 31. Periodic acid-Schiff staining of primary bronchial epithelial cells 

cultured at an air-liquid interface from an explanted cystic fibrosis lung 

50 µm 
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Figure 32. Scanning electron micrographs of primary bronchial epithelial cells 

from a person with cystic fibrosis cultured at an air-liquid interface, illustrating 

morphology at different time points and tight junction formation (a), (b) and (c), 

and microvilli formation (d) 

	
  

	
  

(a)  Day 14 

 
 

b)  Day 21 

Tight junctions 
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c)  Day 28 

 
 

d) Microvilli formation 
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5.6. Discussion 

 

Despite the presence of multidrug resistant microorganisms and copious muco-purulent 

secretions I have been successful in establishing a programme to culture PBECs from 

explanted CF lungs in Newcastle. The PBECs were characterised in terms of their 

morphology (light microscopy and haematoxylin and eosin staining) and cytokeratin 

staining (immunohistochemistry). In addition, it was possible to perform whole-cell 

patch clamp experiments to demonstrate the absence of a forskolin-induced CFTR 

current and the presence of an ionomycin-induced CaCC. Under submerged 

unstimulated conditions the PBECs produced IL-8, IL-6 and GMCSF. 

 

Experience of culturing PBECs from end-stage CF lung tissue has been previously 

described in North America. (Karp et al., 2002, Randell et al., 2001, Yamaya et al., 

1992) The present study has established an optimised culture method with the novel 

aspect of using patient-specific combinations of antimicrobials. These were based on up 

to date knowledge of the organisms cultured from the sputum of patients, in their 

clinical management pre-transplant. I feel that this has been a significant factor in 

achieving a favourable success rate (67% overall, 50% using a fixed ‘best guess’ 

antimicrobial cocktail and 75% with a patient-specific approach).  

 

In a European setting there are also particular logistical, infrastructure and resource 

considerations. I have shown that it is possible to utilise tissue from a supra-regional 

National Health Service clinical transplant programme to set up CF primary culture 

research. Though mostly generated ‘out of hours’, tissue was transferred successfully to 

associated university research facilities, with successful cultures the most common 

outcome. 

 

It is clearly essential that microorganisms are eliminated from cell cultures and that this 

is balanced against the potential cytotoxic effects of antimicrobials on epithelial cells. 

The concentration of each antimicrobial used was guided where available by 

cytotoxicity data published by Randell et al. (2001). Anecdotally, I concur with the 

finding that the deleterious effects of antimicrobials are manifested by a reduction in 

growth rate rather than any noticeable effect on cell attachment. (Randell et al., 2001) In 
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my experience antimicrobials should be removed from the culture medium as early as is 

practicable to ensure optimal growth rates.  

 

One advantage of an ex vivo culture system is that significantly higher and sustained 

concentrations of antimicrobials can be used compared to those possible in the lungs of 

patients in vivo. Clearly the choice of agents is also not hampered by the frequent 

allergies encountered clinically in people with end-stage CF lung disease. (Parmar and 

Nasser, 2005) In patients where cell culture was unsuccessful this was universally due 

to early overgrowth of cultures with organisms known to colonise the lungs pre-

transplant once antimicrobials had been withdrawn from the medium. It has previously 

been demonstrated that undifferentiated airway epithelial cells, cultured under 

submerged conditions, are much less resistant to the internalisation of P. aeruginosa 

than differentiated cells that form a tight epithelium. (Plotkowski et al., 1999, 

Plotkowski et al., 2001)  One potential explanation for the recrudescence of infection is 

the persistence of bacteria in epithelial cells. (Garcia-Medina et al., 2005)  In the 

context of bronchial brushings from clinically stable patients post-lung transplantation it 

has been noted that respiratory pathogens are sometimes cultured from epithelial cell 

cultures when bronchoalveolar lavage fluid bacterial culture is negative. (Forrest et al., 

2005)          

 

The culture of PBECs from explanted CF lungs is demanding, both in terms of effort 

and expense, and is limited by their finite lifespan, however, ultimately it yields a model 

system that is likely to more accurately recapitulate the situation in vivo than 

immortalised cell lines. (Karp et al., 2002) In people with CF there is a diverse 

spectrum of disease and often a weak correlation between CFTR genotype and clinical 

lung disease phenotype. (Rowntree and Harris, 2003) It is important to remember that 

PBECs are likely to reflect this inherent biological heterogeneity in terms of their 

function. This is illustrated by the variable levels of the cytokines IL-8, IL-6 and 

GMCSF produced by cells from different donors that I found in the work described in 

this chapter. Indeed, for some experiments the homogeneity of an immortalised cell line 

along with isogenic controls may be preferable. Clearly, cultured PBECs from people 

with CF may be used to establish valuable novel immortalised cell lines. (Fulcher et al., 

2009)  
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Flagellin is the principal component of the flagellum of bacteria and is an agonist of 

TLR-5 along with a number of other receptors. (Vijay-Kumar and Gewirtz, 2009) In 

proof-of-principle experiments stimulation of the cultured PBECs with flagellin resulted 

in a significant increase in IL-8 production and also in cells from some donors IL-6 and 

GMCSF although this was not a consistent phenomenon. The increase in IL-8 

production is in keeping with the findings of others in the published literature and has 

been demonstrated to involve the NFκB pathway. (Pena et al., 2009) It is biologically 

plausible that the stimuli that I used of 1-100ng/mL of flagellin are supraphysiological 

compared to the situation in the airway in vivo, however such concentrations are orders 

of magnitude lower than those employed by other researchers in ex vivo experiments. 

(Kunzelmann et al., 2006) When considering Figure 25 it would seem likely that further 

experiments, for example using 0.1 and 0.01ng/mL flagellin, would be necessary to 

establish the threshold concentration of flagellin required to elicit an IL-8 response. In 

work performed by Schmeck et al. (2007) investigating the inflammatory response of 

immortalised A549 alveolar epithelial cells to infection by the flagellated bacterium 

Legionella pneumophila it was found that infection resulted in production of several 

pro-inflammatory mediators, including IL-8 and IL-6, but not GMCSF. (Schmeck et al., 

2007)  

 

Further experiments involving an increased number of donors would be necessary to 

robustly conclude about the effects of flagellin stimulation on IL-6 and GMCSF 

responses on PBECs from people with advanced CF lung disease. There are numerous 

other pathogen-associated molecular patterns that could be studied using this cellular 

model. (Govan and Deretic, 1996) This includes lipopolysaccharides produced by P. 

aeruginosa and Burkholderia cepacia complex that are highly relevant to the 

pathophysiology of advanced CF lung disease. (De Soyza et al., 2008, Pier, 2007)    

Another important area for potential future experiments is investigation of the signalling 

pathways involved in the transduction of pro-inflammatory responses by PBECs. The 

careful use of tools such as receptor-blocking antibodies or antagonism of specific steps 

by small molecules or small interfering RNAs would allow further dissection of the 

pathways involved. (Chakraborty and Mann, 2010, Murphy, 2008)   

 

PBECs represent an important resource, particularly so in the new emerging era of 

targeted therapies for the molecular defect associated with specific CFTR mutations. 

(O'Sullivan and Freedman, 2009) The problems outlined earlier in this thesis with the 
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murine models of CF lung disease clearly limit their utility in drug discovery. (Scholte 

et al., 2004) Although immortalised cell lines are extremely valuable in the early stages 

of high-throughput screening, as evidenced by the recent identification of novel 

compounds, primary cells are vital to confirm and validate any initial findings in a cell 

line prior to more advanced stages of analysis (Figure 10). (Pedemonte et al., 2005, Van 

Goor et al., 2006, Ma et al., 2002, O'Sullivan and Freedman, 2009)  

 

An alternative approach to performing electrophysiology experiments is to use cells 

grown to confluence and forming a tight epithelium on Transwell inserts in an Ussing 

chamber system. (Illek et al., 2010) This would allow more complex and prolonged 

experimentation and is certainly an area worthy of future exploration using the CF 

PBECs described in this chapter. 

          

In addition to the scientific challenges of culturing PBECs from end-stage CF lungs, the 

establishment of a programme to utilise explanted lungs has relied on excellent working 

relationships with the entire multidisciplinary transplant team. This includes obtaining 

the appropriate ethical approval to perform such work and clearly the informed consent 

of the transplant recipients themselves. In my experience it is ideal if individuals are 

approached for consent at the time of visiting the transplant centre for assessment and 

not during the emergency admission prior to a potential transplant. Furthermore, the 

helpful cooperation of cardiothoracic surgeons, transplant coordinators and theatre staff 

is essential in order to ensure that the research team is informed. Due to the 

unpredictable nature of transplantation in my experience an ‘on-call’ commitment is 

essential to facilitate and ensure the appropriate timely procurement of tissue in the 

event of a transplant occurring.    

 

A key consideration when using primary tissue in research is that the clinical care of 

patients is not compromised. The method described in this chapter allows clinical 

specimens to be collected from explanted lungs for microbiology and involves only 

modest dissection thereby enabling a full examination of the lungs to be performed by a 

pathologist. This is important because rarely clinically significant findings may be 

identified solely by pathological examination of explanted lungs, such as a previously 

undetected neoplasm. (Abrahams et al., 2004) Theoretically the risk is lower in CF than 

some other disease groups that are transplanted however. Conversely, a more radical 

dissection technique would undoubtedly yield a greater number of cells from each lung. 
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In this chapter I have described the initial results and experiences in establishing a 

programme to culture PBECs from CF lungs removed at the time of transplantation. 

The culture of PBECs from chronically infected lungs poses technical and logistical 

challenges but ultimately yields a valuable cellular model to study CF lung disease.    
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6. Chapter 6. Interleukin-17 and advanced cystic fibrosis lung disease 
 

 

Elements of the work described in this chapter have been previously reported in the 

form of a presentation at a scientific meeting and a peer-reviewed paper. (Brodlie et al., 

2009c, Brodlie et al., 2010c) 
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6.1. Abstract 

 

Background: Interleukin-17 is pivotal to pulmonary host defence by orchestrating the 

activity of neutrophils. Neutrophilic inflammation is the dominant pathology in cystic 

fibrosis lung disease. I investigated interleukin-17 protein expression in the lower 

airway in advanced cystic fibrosis lung disease, including the cellular 

immunolocalisation and the effects of interleukin-17 on cystic fibrosis primary 

bronchial epithelial cells. 

Methods: I performed immunohistochemistry for interleukin-17 on explanted cystic 

fibrosis lungs and compared findings to the non-suppurative condition pulmonary 

hypertension. Primary bronchial epithelial cell cultures were also generated from some 

of the explanted cystic fibrosis lungs and treated with interleukin-17.    

Results: Immunoreactivity for interleukin-17 was significantly increased in the lower 

airway epithelium in cystic fibrosis (median 14.1% of surface area) compared to 

pulmonary hypertension (2.95%, P=0.0001). The number of cells staining positive for 

interleukin-17 in the lower airway mucosa was also increased (64 compared to 9/mm 

basement membrane, P=0.0005) and included both neutrophils, which were frequently 

intra-epithelial, in addition to mononuclear cells. Treatment of primary bronchial 

epithelial cells with interleukin-17 increased production of interleukin-8, interleukin-6 

and granulocyte macrophage colony-stimulating factor. 

Conclusion: Interleukin-17 protein expression is raised in the lower airway of people 

with cystic fibrosis in terms of surface area of the airway epithelium staining postive 

and number of inflammatory cells staining positive in the mucosa, including both 

neutrophils and mononuclear cells. Interleukin-17 increases production of pro-

neutrophilic mediators by primary bronchial epithelial cells from people with cystic 

fibrosis. The immunolocalisation of IL-17 to neutrophils suggests a novel potential 

positive feedback loop of neutrophilic inflammation in the CF airway. 
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6.2. Introduction 

 

As outlined earlier in this thesis, CF is caused by abnormalities in the CFTR gene and is 

associated with life-long morbidity and premature mortality, principally from lung 

disease. (O'Sullivan and Freedman, 2009) The CF airway is characterised by 

neutrophilic inflammation, lymphocytic infiltration of the mucosa, retention of 

mucopurulent secretions and chronic endobronchial infection. (O'Sullivan and 

Freedman, 2009, Hubeau et al., 2001a)  

 

The cytokine IL-17 plays a central role in pulmonary host defence by orchestrating the 

accumulation and associated activity of neutrophils in the bronchoalveolar space. 

(Linden et al., 2005, Aujla et al., 2007) A family of IL-17 cytokines has been described, 

however IL-17A (referred to as IL-17 onwards in this chapter), and to a lesser extent IL-

17F, are the best characterised. (Gaffen, 2009) The orchestrating effect of IL-17 on 

neutrophils is achieved indirectly via the local release of neutrophil-mobilising factors, 

including CXC chemokines, from cells resident in the lung. (Linden et al., 2005) 

Treatment with IL-17 has also been shown to increase expression of the mucin genes 

MUC5AC and MUC5B by bronchial epithelial cells in vitro. (Chen et al., 2003)  

 

IL-17 is the signature cytokine produced by TH-17 lymphocytes and therefore represents 

a strategic link between acquired and innate immunity via its orchestrating effect on 

neutrophils. (Glader et al., 2010) TH-17 cells are not the only source of IL-17 identified 

however. IL-17 is also known to be produced by γδ T-cells and natural killer T-cells. 

(Michel et al., 2007, Roark et al., 2008) Apart from lymphocytes it has also recently 

been shown that mast cells express IL-17 in rheumatoid arthritis synovium. (Hueber et 

al., 2010) Moreover, it has also been suggested in human alcoholic liver disease and 

rodent models of lipopolysaccharide-induced airway inflammation, perinuclear anti-

cytoplasmic neutrophil antibodies (p-ANCA) positive vasculitis and kidney ischaemia-

reperfusion injury that neutrophils themselves are a potential source of IL-17. (Lemmers 

et al., 2009, Ferretti et al., 2003, Li et al., 2010, Hoshino et al., 2008)  

 

IL-17 is therefore linked to neutrophilic inflammation and mucus excess, two cardinal 

features of CF lung disease, in addition to dysregulation of acquired immunity. (Chen et 

al., 2003, Bettelli et al., 2007, Aujla et al., 2007) Published human studies of IL-17 in 

CF are rare but some support the importance of this axis. Increased levels of IL-17 have 
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been found in bronchoalveolar lavage from children and adults during infective 

exacerbations, and in the serum of clinically stable adults. (McAllister et al., 2005, 

Dubin et al., 2007, Aujla et al., 2008, Dufresne et al., 2009) In addition, people with CF 

who exhibit robust T-cell responses to P. aeruginosa manifest more severe lung disease. 

(Winnie and Cowan, 1991) Such work emphasises the need for further translational 

studies.  

 

In the work described in this chapter I have examined the hypothesis that increased IL-

17 protein expression occurs in advanced CF lung disease. To investigate this 

hypothesis I used airway samples that I had collected from CF lungs removed at the 

time of transplantation to perform immunohistochemistry and compared findings to 

those in the non-suppurative condition pulmonary hypertension (PH). I also analysed 

airway lavage samples from explanted CF lungs for IL-17. In view of the recent reports 

of myeloid cells producing IL-17 I also investigated the cellular localisation of the 

positive IL-17 staining in explanted CF lungs. (Li et al., 2010, Hueber et al., 2010, 

Ferretti et al., 2003, Lemmers et al., 2009) In addition I generated PBEC cultures from 

some of the same CF lungs, as outlined in Chapter 5. These were used in proof of 

concept experiments, which examined the effects of IL-17 stimulation on the production 

of inflammatory mediators in ex vivo PBEC cultures. 
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6.3. Aims 

 

The aims of the work described in this chapter were to: 

• Investigate the protein expression of interleukin-17 in the lower airway of 

people with advanced cystic fibrosis lung disease using  

o immunohistochemistry of the airway epithelium in comparison to the 

non-suppurative condition pulmonary hypertension. 

o airway lavage fluid in comparison to healthy volunteers 

• Describe the cellular localisation of interleukin-17 in the lower airway of people 

with advanced cystic fibrosis lung disease. 

• Investigate the effects of stimulation with interleukin-17 on the production of the 

pro-neutrophilic mediators interleukin-8, interleukin-6 and granulocyte 

monocyte colony-stimulating factor by ex vivo primary bronchial epithelial cell 

cultures from people with advanced cystic fibrosis lung disease.  
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6.4. Hypothesis 

 

Interleukin-17 is pivotal in the orchestration and accumulation of neutrophils in 

pulmonary host defence and neutrophilic inflammation is the dominant pathology in 

cystic fibrosis lung disease. I therefore hypothesised that expression of interleukin-17 

would be raised in the lower airway of people with advanced cystic fibrosis lung 

disease. Furthermore I also hypothesised that interleukin-17 may be localised to cells 

other than lymphocytes in the lower airway of people with cystic fibrosis and that 

stimulation with interleukin-17 would increase the production of pro-neutrophilic 

mediators by ex vivo cultures of primary bronchial epithelial cells from people with 

advanced cystic fibrosis lung disease.  
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6.5. Results 

 

6.5.1. Detection of interleukin-17 in airway lavage fluid from explanted cystic 

fibrosis lungs 

 

I performed a standardised airway lavage  of 15mL phosphate buffered saline on freshly 

explanted CF lungs as outlined in section 4.2.2. This involved a total lavage volume of 

30mL/patient. I then assayed the lavage fluid supernatant from 28 CF lungs for IL-17 

using an ultrasensitive IL-17 ELISA kit with a lower limit of detection of 0.2pg/mL 

(MesoScale Discovery). Brief clinical details of the people with CF whose explanted 

lung lavage fluid was assayed for IL-17 are provided in Table 10. The standard curve 

for the IL-17 ELISA is displayed in Figure 33. Figure 34 displays the concentrations of 

IL-17 detected in airway lavage fluid from each CF lung (n=28, median 56.9pg/mL, 

interquartile range 34.9-79.7pg/mL). Comparison is made with data from the previous 

work of Dr Des Murphy in Newcastle where IL-17 was undetectable in bronchoscopic 

BAL (3x60mL) fluid from 4 healthy volunteers. (Murphy, 2008) Dr Murphy used the 

same IL-17 ELISA kit manufactured by MesoScale Discovery along with a kit with a 

higher limit of detection manufactured by R&D Systems. (Murphy, 2008)   
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Table 10. Clinical details of the people with cystic fibrosis that bronchoalveolar 

lavage fluid was assayed for interleukin-17  

 

Age* CFTR 
Variant$ 

FEV1
^ 

 
Sputum microbiology 

32 Unknown 25 Pseudomonas aeruginosa,  
Burkholderia vietnamiensis 

25 p.Phe508del 
Unknown 

22 P. aeruginosa,  
Staphylococcus aureus 

23 Unknown 21 Scedosporium sp.,  
Alcaligines sp.,  
S. Aureus 

39 p.Phe508del 
p.Phe508del 

14 P. aeruginosa 

27 p.Phe508del 
p.Phe508del 

22 P. aeruginosa 

43 p.Phe508del p.Arg560Thr 15 Stenotrophomonas maltophilia, 
Acinetobacter sp. 

28 p.Phe508del 
p.Asp443fs 

17 P. aeruginosa 

29 p.Phe508del 
p.Phe508del 

20 P. aeruginosa, 
A. fumigatus 

30 p.Phe508del 
p.Phe508del 

30 P. aeruginosa 

40 Unknown 24 P. aeruginosa 
23 p.Phe508del 

p.Gly551Asp 
30 P. aeruginosa,     

A. fumigatus 
46 Unknown 30 P. aeruginosa 
29 p.Phe508del  

p.Gln685fs 
17 B. multivorans,  

A. fumigatus,  
Geosmithia argillacae 

22 p.Phe508del 
p.Phe508del 

23 P. aeruginosa 

20 p.Phe508del 
p.Phe508del 

21 P. aeruginosa 

29 p.Phe508del 
c.317+10kbC>T 

29 P. aeruginosa,  
S. maltophilia 

28 Unknown 20 P. aeruginosa,  
Methicillin-Resistant S. aureus 

48 p.Phe508del 
Unknown 

29 P. aeruginosa,  
S. aureus 

33 Unknown 23 P. aeruginosa 
22 p.Phe508del 

p.Phe508del 
25 P. aeruginosa,  

A. fumigatus 
24 p.Phe508del 

p.Phe508del 
26 P. aeruginosa 

21 Unknown 25 P. aeruginosa 
45 p.Phe508del 

p.Phe508del 
21 P. aeruginosa,  

A. fumigatus 
33 Unknown 17 P. aeruginosa,  

Mycobacterium gordonae 
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26 Unknown 25 P. aeruginosa 
22 Unknown 20 B. multivorans 
29 p.Phe508del 

p.Phe508del 
19 P. aeruginosa,  

S. maltophilia,  
Achromobacter sp.,  
M. avium,  
A. fumigatus,  
G. argillacea 

23 Unknown 27 P. aeruginosa,  
P. putida,  
A. fumigatus,  
A. xylosoxidans,  
Paecilomyces sp.,  
M. avium complex 

 
Abbreviations: *Age in years at time of transplantation. $Cystic fibrosis transmembrane 

conductance regulator genotype (where known). ^Percentage predicted forced 

expiratory volume in 1 second pre-transplant.  
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Figure 33. Standard curve for interleukin-17 enzyme-linked immunosorbent 

assay 
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Figure 34. Interleukin-17 in airway lavage fluid from explanted cystic fibrosis 

lungs 

Each symbol represents an individual patient and concentrations account for a dilution 
factor of 30 in the cystic fibrosis group.  

The horizontal line represents the median (56.9pg/mL).  
The lower limit of detection was 0.2pg/mL.  

The healthy volunteer data relates to 180mL bronchoalveolar lavages performed and 
assayed by Dr Des Murphy in Newcastle where IL-17 was universally undetectable. 

(Murphy, 2008)  
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6.5.2. Measurement of interleukin-23 in airway lavage fluid from explanted cystic 

fibrosis lungs 

 

Following on from the detection of IL-17 in lavage fluid from explanted CF lungs I 

performed an ELISA for IL-23 on the same samples. The rationale behind this was that 

IL-23 is known to be essential for the maintenance of TH-17 cells. (Wilson et al., 2007, 

Volpe et al., 2008, Cosmi et al., 2008) IL-23 is principally produced by dendritic cells 

and macrophages in the lung. (Nembrini et al., 2009) The ELISA kit used (Quantikine 

human IL-23 immunoassay, R&D Systems) had a limit of detection of 6.8pg/mL. The 

standard curve for the IL-23 ELISA is displayed in Figure 35. Figure 36 shows the BAL 

fluid results, IL-23 was undetectable in 18 of the 26 patient samples assayed. 
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Figure 35. Standard curve for interleukin-23 enzyme-linked immunosorbent assay 

y=0.009x+0.027. R square 0.998 
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Figure 36. Interleukin-23 in airway lavage fluid from explanted cystic fibrosis 

lungs 

Each symbol represents an individual patient and concentrations account for a dilution 
factor of 30.  

The median concentration of IL-23 detected was 0pg/mL (undectable in 18/26 samples). 
The lower limit of detection of the assay was 6.8pg/mL. 
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6.5.3. Immunoreactivity for interleukin-17 is increased in the lower airway 

epithelium of people with advanced cystic fibrosis lung disease 

 

Immunohistochemistry was performed on sections of medium-large lower airway from 

explanted lungs removed at the time of transplantation from 19 people with advanced 

CF lung disease and 8 with PH. Brief details of the 27 patients used for 

immunohistochemistry are provided in Table 11.  

 

The percentage area of lower airway epithelium positive for IL-17 (mean of 5 randomly 

selected high power fields) in each individual is displayed in Figure 37. Staining for IL-

17 was significantly higher in the CF group, median 14.1%, compared to PH, 3.0% 

(P=0.0001). Figure 38 shows representative IL-17 staining, in an explanted CF (a) and 

PH (b) lung, and negative control (c).   



 134 

Table 11. Brief clinical details of patients undergoing lung transplantation used for 

interleukin-17 immunohistochemistry and stimulation of primary bronchial 

epithelial cells 

 

IHC 
 

Patient 
number 

Diagnosis Pre-operative sputum 
microbiology 

IL-
17 

Neu. 

PBEC 
culture 

1 CF Pseudomonas aeruginosa + - - 
2 CF P. aeruginosa,  

Staphylococcus aureus 
+ - - 

3 CF P. aeruginosa,  
S. aureus,  
Stenotrophomonas maltophilia, 
Aspergillus fumigatus 

+ + - 

4 CF P. aeruginosa,  
S. aureus 

+ + - 

5 CF P. aeruginosa,  
Aspergillus fumigatus 

+ + - 

6 CF P. aeruginosa,  
Stenotrophomonas maltophilia 

+ - - 

7 CF P. aeruginosa,  
Methicillin-Resistant S. aureus 

+ - - 

8 CF P. aeruginosa,  
Burkholderia vietnamiensis 

+ + - 

9 CF P. aeruginosa + - + 
10 CF Scedosporium aspiospermum,  

S. aureus,  
Alcaligines sp. 

+ - + 

11 CF P. aeruginosa + + - 
12 CF P. aeruginosa,  

S. aspiospermum 
+ - - 

13 CF P. aeruginosa,  
A. fumigatus 

+ - + 

14 CF P. aeruginosa + + - 
15 CF P. aeruginosa + - - 
16 CF P. aeruginosa + - + 
17 CF P. aeruginosa,  

S. aureus 
+ - - 

18 CF P. aeruginosa,  
S. aureus 

+ - - 

19 CF P. aeruginosa + +  
20 CF Stenotrophomonas maltophilia, 

Acinetobacter sp. 
- - + 

21 CF P. aeruginosa - - + 
22 CF P. aeruginosa - - + 
23 CF P. aeruginosa,  

A. fumigatus 
- - + 

24 CF P. aeruginosa,  
A. fumigatus 

- - + 
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25 PH Negative + - - 
26 PH Negative + - - 
27 PH Negative + - - 
28 PH Negative + - - 
29 PH Negative + - - 
30 PH Negative + - - 
31 PH Negative + - - 
32 PH Negative + - - 
 

Abbreviations: IHC patient used for immunohistochemistry, Neu patient used for 
percentage of neutrophils positive for IL-17, PBEC patient used for primary bronchial 

epithelial cell culture, CF cystic fibrosis, PH pulmonary hypertension 
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Figure 37. Percentage of epithelium surface area staining positive for interleukin-

17 in people with advanced cystic fibrosis lung disease compared to 

pulmonary hypertension 

 
Each symbol represents an individual patient and represents the mean from 5 high-

power fields.  

Horizontal bar indicates median for each group.  

Mann-Whitney test used to compare the two groups.
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Figure 38. Representative immunohistochemistry for interelukin-17 in the lower 

airway mucosa of an explanted lung from a person with a) advanced cystic 

fibrosis lung disease, b) pulmonary hypertension and c) negative control 

(normal goat immunoglobulins) 

a) Advanced cystic fibrosis lung disease 

 
 

b) Pulmonary hypertension 
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c) Negative control (normal goat immunoglobulins) 
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6.5.4. Interleukin-17 positive cells are increased in the lower airway mucosa in cystic 

fibrosis and include neutrophils 

 

The number of IL-17 positive cells in the mucosa was significantly increased in the CF 

group, median 64/mm of basement membrane and included both neutrophils and 

mononuclear cells, compared to PH, 9/mm basement membrane (P=0.0005, Mann-

Whitney test). The mean number of positive cells per mm of basement membrane in 

each individual is displayed inFigure 39. In the CF group substantial numbers of 

inflammatory cells staining positive for IL-17 were found in the epithelium, of note this 

frequently included neutrophils  (Table 12 and Figure 40) in addition to mononuclear 

cells (Figure 41). In the PH group IL-17 positive inflammatory cells were absent from 

the epithelium (Table 12). 

 

The percentage of mucosal neutrophils staining positive for IL-17 was quantified in a 

subset of 7 people with CF (identified in Table 11). The percentage of neutrophils 

staining positive for IL-17 in these individuals is displayed in Figure 42, median 38% 

(interquartile range 34). 

 

I also performed immunohistochemistry for the transcription factor RORγ on sections of 

lower airway mucosa from people with advanced CF lung disease. RORγ is a 

transcription factor that is encoded by the retinoic acid receptor-related orphan receptor 

C (RORC) gene. RORC expression is known to be important in production of IL-17 by 

TH-17 cells and mast cells. (Bettelli et al., 2007, Hueber et al., 2010) Figure 43 displays 

a low power view of the lower airway mucosa from an explanted lung from a person 

with advanced CF lung disease showing several positive cells for RORγ in the mucosa. 

At higher power, as shown in Figure 44, it is evident that the positive cells are 

neutrophils. Staining was universally absent in isotype negative controls (normal rabbit 

immunoglobulins), as exemplified in Figure 45. 
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Figure 39. Number of interleukin-17 positive cells/mm basement membrane in the 

lower airway mucosa in cystic fibrosis and pulmonary hypertension lungs  

Each symbol represents an individual patient and represents the mean from 5 high-
power fields.  

The horizontal bar indicates the median for each group.  
Mann-Whitney test used to compare the two groups.
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 Cystic 
fibrosis 

Pulmonary 
hypertension 

Median IL-17 positive cells/mm basement 
membrane (mucosa) 
[IQR] 

63.9** 
[37.0-81.9] 

8.8 
[2.4-19.9] 

Median IL-17 positive cells/mm basement 
membrane (epithelium) 
[IQR] 

17.6 
[8.5-23.8] 

0 

Median IL-17 positive cells/mm basement 
membrane (lamina propria) 
[IQR] 

41.1* 
[19.0-59.9] 

8.8 
[2.4-19.9] 

 

Table 12. Number of interleukin-17 positive cells in the mucosa, epithelium and 

lamina propria in lungs explanted from people with cystic fibrosis and 

pulmonary hypertension 

Abbreviations: *P=0.032, **P=0.0005, IQR Inter-quartile range. 
Mann-Whitney test used to compare the two groups. 
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Figure 40. Example of neutrophil (N) staining positive for interleukin-17 in the 

epithelium of an explanted lung from a person with advanced cystic fibrosis 

lung disease 
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Figure 41. Example of mononuclear cells (M) staining positive for interleukin-17 in 

the explanted lung of a person with advanced cystic fibrosis lung disease 
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Figure 42. Percentage of neutrophils staining positive for interleukin-17 in the 

lower airway mucosa of explanted cystic fibrosis lungs (n=7) 

Mean of 5-high power fields. 

Horizontal line indicates the median.
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Figure 43. Immunohistochemistry for retinoic acid receptor-related orphan 

receptor gamma in advanced cystic fibrosis lung disease lower airway (x20 

objective) 
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Figure 44. Immunohistochemistry for retinoic acid receptor-related orphan 

receptor gamma in advanced cystic fibrosis lung disease lower airway 

(higher power, x40 objective), including evidence of positive staining in 

neutrophils (N) 
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Figure 45. Example of isotype negative control (normal rabbit immunoglobulins) 

for retinoic acid receptor-related orphan receptor gamma 

immunohistochemistry cystic fibrosis airway 
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6.5.5. Stimulation of primary bronchial epithelial cells isolated from people with 

advanced cystic fibrosis lung disease with interleukin-17 increases production of 

the pro-neutrophilic mediators interleukin-8, interleukin-6 and granulocyte 

macrophage colony-stimulating factor 

 

The lower airway epithelium is the predominant site of neutrophilic inflammation in CF 

lung disease. (Hubeau et al., 2001a) Airway epithelial cells are increasingly recognised 

to operate as ‘effector’ cells that produce a wide range of inflammatory cytokines and 

growth factors. (Ward et al., 2009, Brodlie et al., 2009a) The cytokines IL-8, IL-6 and 

GMCSF are important in neutrophil activation, recruitment and longevity. (Gabay, 

2006, Standiford et al., 1993, Barreda et al., 2004) I therefore investigated the effects of 

IL-17 on the production of these mediators by ex vivo cultures of PBECs from people 

with CF.  

 

PBEC cultures were established from people with CF as outlined in Chapter 3. Table 11 

provides brief clinical details of the 9 individual donors, some of whom were also used 

for immunohistochemistry. There was a significant increase in IL-8 production from 

control conditions following stimulation with 1 (P=0.033), 10 (P=0.009) and 100ng/mL 

(P=0.009) of IL-17 (Figure 49, n=9 individual patient donors). There was also a 

statistically significant increase in IL-6 production (Figure 50) from control following 

stimulation with 10 and 100ng/mL of IL-17 (P=0.009). There was a clear trend towards 

increased production of IL-6 following stimulation with 1ng/mL of IL-17 although this 

was not statistically significant (P=0.076). Increase in production of GMCSF (Figure 

51) was statistically significant following stimulation with IL-17 100 ng/mL only 

(P=0.013). There was a non-significant trend towards increased levels following 

stimulation with IL-17 at 1 and 10ng/mL (P=0.407 and 0.193). 
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Figure 46. Standard curve for interleukin-8 enzyme-linked immunosorbent assay 
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Figure 47. Standard curve for interleukin-6 enzyme-linked immunosorbent assay 
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Figure 48. Standard curve for granulocyte macrophage colony-stimulating factor 

enzyme-linked immunosorbent assay 
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Figure 49. Increase in interleukin-8 production by primary bronchial epithelial 

cells from people with advanced cystic fibrosis lung disease from control 

following stimulation with 1, 10 and 100ng/mL interleukin-17. 

Each symbol represents an individual patient and is the mean of 3 replicate experiments  
(n=9 individual patient donors).  

Median basal IL-8 production 242pg/mL.  
*P=0.033, **P=0.009.  

Wilcoxon signed-rank test comparing each concentration of IL-17 to basal 
production. (Wilcoxon, 1945) Holm-Bonferonni correction applied. (Holm, 1979) 
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Figure 50. Increase in interleukin-6 production by primary bronchial epithelial 

cells from people with advanced cystic fibrosis lung disease from control 

following stimulation with 1, 10 and 100ng/mL interleukin-17. 

Each symbol represents an individual patient and is the mean of 3 replicate experiments  
(n=9 individual patient donors).  

Median basal IL-6 production 2.04pg/mL.  
**P=0.009. 

Wilcoxon signed-rank test comparing each concentration of IL-17 to basal production 
(1ng/mL not significant). (Wilcoxon, 1945) Holm-Bonferonni correction applied. 

(Holm, 1979) 
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Figure 51. Increase in granulocyte macrophage colony-stimulating factor 

production by primary bronchial epithelial cells from people with advanced 

cystic fibrosis lung disease from control following stimulation with 1, 10 and 

100ng/mL interleukin-17. 

Each symbol represents an individual patient and is the mean of 3 replicate experiments  
(n=9 individual patient donors).  

Median basal GMCSF production 8.08pg/mL.  
*P=0.013.  

Wilcoxon signed-rank test comparing each concentration of IL-17 to basal production 
(only 100ng/mL significant). (Wilcoxon, 1945) Holm-Bonferonni correction applied. 

(Holm, 1979) 
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6.6. Discussion 

 

In this chapter I have demonstrated that IL-17 is expressed and raised in the lower 

airway of people with advanced CF lung disease, using immunohistochemistry 

compared to the non-suppurative condition PH and measured in airway lavage fluid 

compared to healthy volunteers. I also identified substantially increased numbers of 

inflammatory cells staining positive for IL-17 present in the lower airway mucosa of 

people with CF. Some of these were mononuclear cells, in keeping with the literature 

indicating that TH-17 cells are a source of IL-17. (Glader et al., 2010) However, I also 

consistently identified abundant IL-17 positive neutrophils - a new finding, which may 

be significant in CF lung disease. In addition I found neutrophils in the lower airway 

mucosa to stain positively for the transcription factor RORγ. 

 

There are no previous descriptions of which I am aware showing that IL-17 protein is 

localised to neutrophils in human lung, with a strong emphasis on TH-17 biology in the 

current literature. IL-17 staining has been described in neutrophils previously in the 

context of human liver disease and complicated atherosclerotic plaques, and in the lungs 

of mice, however. (Lemmers et al., 2009, Ferretti et al., 2003, de Boer et al., 2010) IL-

17 has also been co-localised to mast cells in rheumatoid arthritis synovium. (Hueber et 

al., 2010) 

 

Elegant work, only achievable in a mouse setting, recently showed that renal ischaemia-

reperfusion injury is IL-17 dependent, and that IL-17 is produced by neutrophils. (Li et 

al., 2010) This work used IL-17 knockouts, IL-17 production assays, as well as bone 

marrow transplantation to produce chimeric mice. A series of experiments showed that 

kidney damage was IL-17 mediated and that this was produced by bone marrow derived 

neutrophils. Hence, protection from kidney injury was shown in IL-17–/– mice, and this 

was reversed following transfer of wild type neutrophils, but not IL-17–/– neutrophils. 

Where reconstituted the injury was in turn attenuated by antibody neutralization of IL-

17. 

 

If neutrophils are a source of IL-17, as evidenced by my current human lung work, the 

aforementioned human liver study and in more detailed animal model work, this 

suggests that IL-17 mediated injury may have an amplifying positive autocrine feedback 

element. (Li et al., 2010, Lemmers et al., 2009, Ferretti et al., 2003) IL-17 causes 
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neutrophil recruitment, which themselves may be potential sources of this key cytokine. 

(Ferretti et al., 2003) Figure 52 illustrates this potential positive feedback loop of 

neutrophilic inflammation involving IL-17. IL-17 also has a modulatory post-

transcriptional effect on IL-8 and IL-6 responses by epithelial cells in addition to 

stimulatory effects. (van den Berg et al., 2005)  

 

 

 
 

Figure 52. Illustrative diagram of potential positive feedback loop of neutrophilic 

inflammation involving interleukin-17 in cystic fibrosis airway 

Abrreviations: Ep. Epithelium, IL. Interleukin, DC dendritic cell, N neutrophil, Pa 
Pseudomonas aeruginosa. 
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A potential for positive feedback was further suggested by my proof of concept 

experiments. In these I assessed the effect of IL-17 stimulation on CF airway epithelial 

cells. IL-17 is known to exert effects on neutrophil accumulation and activation in the 

bronchoalveolar space indirectly via the local release of neutrophil-mobilising factors. 

(Aujla et al., 2007, Linden et al., 2005) I therefore investigated the effects of treatment 

with IL-17 on the production of the key pro-neutrophilic cytokines and chemokines IL-

8, IL-6 and GMCSF by PBEC cultures from people with CF. This showed that 

stimulation of PBECs with IL-17 resulted in significant increases in the release of these 

key mediators.  

 
IL-8 is a potent chemoattractant and activator of neutrophils and is the dominant 

neutrophil chemokine in the sputum of people with CF during an infective exacerbation. 

(Standiford et al., 1993, McAllister et al., 2005, Downey et al., 2009) A substantial 

literature also shows that IL-8 is involved in airway angiogenic structural remodelling. 

(Walters et al., 2008) Stimulation with IL-17 resulted in a significant increase in IL-8 

production in all of my CF PBEC experiments. This data is therefore consistent with a 

potential contributory role in neutrophilic airway inflammation and remodelling in CF. 

The growth factor GMCSF displays pleiotropic effects on neutrophil proliferation, 

maturation, activation and inhibition of apoptosis. (Barreda et al., 2004) My finding that 

treatment of PBECs with IL-17 caused increased GMCSF production, is also therefore 

consistent with a broad association between IL-17, epithelial cells and neutrophilic 

inflammation in CF. Furthermore, in the context of myocarditis, there is evidence to 

suggest that GMCSF plays a key role in the generation and maintenance of TH-17 cells 

via regulation of IL-23 and IL-6 in vivo. (Sonderegger et al., 2008) 

 

Production of IL-6 was also increased significantly following treatment with 10 and 100 

ng/mL IL-17 with a clear but non-significant trend towards increased levels at 1 ng/mL. 

IL-6 plays a key role in the acute phase inflammatory response. (Gabay, 2006) 

Furthermore, IL-6 induces IL-17 production from human central memory CD4+ T-cells. 

(Yang et al., 2008) Together with my finding that neutrophils themselves are a source 

of IL-17, the increase in IL-6 production by PBECs following IL-17 treatment 

represents a further potential aspect of a positive feedback loop, and augmentation of 

IL-17 responses. Furthermore, it has recently been shown that following stimulation 

with IL-17, IL-6 production by bronchial epithelial cells with intact CFTR function is 
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enhanced when co-cultured with basophils compared to when cultured alone. (Wong et 

al., 2010)              

 

It was apparent that there was a high degree of variability in the production of IL-8, 

GMCSF and IL-6 in PBECs isolated from different individuals. This reflects previously 

described inherent biological heterogeneity in chemokine and cytokine production, and 

is in keeping with the experiences of other researchers with PBECs. (Becker et al., 

2004) Interestingly the findings in my ex vivo system resonate with the biological 

variability seen in the human CF lung disease phenotype, although all of these patients 

ultimately developed advanced lung disease. (O'Sullivan and Freedman, 2009, 

Rowntree and Harris, 2003)   

 

The finding that airway wall neutrophils stain positively for IL-17 does not necessarily 

mean that they are the source of the ligand. Neutrophils express the IL-17 receptor and 

can bind IL-17. (Ye et al., 2001b) However, this would appear to be an unlikely sole 

explanation due to the diffuse intra-cellular staining that we identified. If IL-17 is 

adherent to receptors on neutrophils this may also represent a biologically significant 

reservoir that is potentially released in to the microenvironment following neutrophil 

necrosis. (Watt et al., 2004, Haslett, 1999) My finding of positive staining for RORγ in 

airway mucosa neutrophils provides further evidence to support the hypothesis that 

neutrophils themselves may be a source of IL-17 in the airway. 

 

Other findings in the published literature pertinent to a role for IL-17 in CF lung disease 

include the report that immortalised airway epithelial cells that do not express 

functional CFTR upregulate their innate immune responses following stimulation with 

IL-17. (Roussel and Rousseau, 2009) In particular, nucleotide-binding oligomerisation 

domain 1 is increased. (Roussel and Rousseau, 2009) IL-17 has also been demonstrated 

to modulate bicarbonate secretion in normal airway epithelial cells. (Kreindler et al., 

2009) 

 

Although my study includes potentially significant observations, it has limitations. This 

work was clearly limited to a study of advanced CF lung disease, utilising a well-

characterised and substantive tissue archive that I helped establish.  However, this 

precluded any meaningful exploration of clinical associations and did not include any 

individuals with less severe lung disease. Further work, in earlier stages of CF lung 
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disease, in less severe phenotypes and in patients with differing microbiology are 

therefore warranted. Lung tissue from people with non-CF bronchiectasis would also be 

an important future comparative group. 

 

The suggestion that IL-17 is produced by airway neutrophils was achieved using 

unambiguous, immunolocalisation using an affinity-purified, specific antibody. (Le 

Gouvello et al., 2008) I clearly showed IL-17 positive, intra-epithelial neutrophils. My 

results do not however indicate what the levels of local IL-17 release are at this precise 

intra-epithelial site. In particular, concentrations at the immunological interface between 

neutrophils, lymphocytes and epithelial cells are not known. 

 

The detection of IL-17 in airway lavage fluid from explanted CF lungs is an important 

finding, albeit at relatively low levels. It is particularly significant when considered in 

the context of the previous work performed by Dr Des Murphy in Newcastle where IL-

17 was universally undetectable using the same ultrasensitive ELISA, in addition to a 

number of other commercially available ELISA kits, in 180ml BALs from healthy 

volunteers and lung allograft recipients at the time of clinical stability, acute rejection or 

with broncholitis obliterans syndrome. (Murphy, 2008) (DM Murphy, personal 

communication) The inevitable difference in lavage technique between the BAL in 

healthy volunteers performed by Dr Murphy and the smaller volume airway lavages of 

explanted CF lungs should be noted however.  

 

In agreement with my findings in CF, researchers in Pittsburgh, USA, have found 

similar levels of IL-17 (in the region of 40-200pg/mL) to my results in BAL from adults 

and children with CF during an infective exacerbation. (McAllister et al., 2005, Dubin 

et al., 2007)  Lower levels of IL-17 (0.5-1.5pg/mL) have recently been reported by 

Glader et al. in BAL fluid from healthy human volunteers following experimental 

airway exposure to endotoxin. (Glader et al., 2010)  

 

Interestingly in the same study IL-23 was undetectable in BAL following challenge 

with vehicle alone but was detectable at low levels (2-20pg/mL) in some samples post-

endotoxin challenge. (Glader et al., 2010) I measured detectable levels of IL-23 in BAL 

from 8 of 26 explanted CF lungs.  
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The work in this chapter describes elevated IL-17 in the airways of patients with 

advanced CF lung disease and the first description that neutrophils are a potential source 

of this key cytokine in human airway. This should stimulate further translational work 

as well as other approaches including appropriate animal models. Such work may be 

particularly important in CF, but may also be relevant in other lung pathophysiologies 

involving neutrophil biology such as chronic obstructive pulmonary disease, asthma, 

non-CF bronchiectasis, adult respiratory distress syndrome, chronic allograft rejection 

and viral bronchiolitis. (Alcorn et al., 2010, Tsushima et al., 2009, Robertson et al., 

2009, McNamara et al., 2003, Eastham et al., 2004) 
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7. Chapter 7. Ceramide and cystic fibrosis lung disease 
 

 

Elements of the work described in this chapter have been previously reported in the 

form of presentations at medical and scientific meetings and in a peer-reviewed paper. 

(Brodlie et al., 2009b, Brodlie et al., 2009d, Brodlie et al., 2010b, Brodlie et al., 2010a) 
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7.1. Abstract 

 

Background: Ceramide accumulates in the airway epithelium of cystic fibrosis 

transmembrane conductance regulator-deficient mice resulting in susceptibility to 

Pseudomonas aeruginosa infection and inflammation. The primary aim of the work 

described in this chapter was to quantitatively investigate ceramide levels in the lower 

airway of people with cystic fibrosis compared to pulmonary hypertension, emphysema 

and lung donors. In addition I examined relationships between levels of immunoreactive 

ceramide in the lower airway epithelium and markers of neutrophils and colonisation 

with Pseudomonas aeruginosa.  

Methods: Immunohistochemistry was performed on the lower airway epithelium of 

explanted lungs (8 cystic fibrosis, emphysema and pulmonary hypertension 

respectively) and 8 donor lungs using ceramide, neutrophil elastase and 

myeloperoxidase antibodies. High performance liquid chromatography-mass 

spectrometry was performed on tissue from 5 cystic fibrosis and 5 pulmonary 

hypertension lungs.  

Results: Staining for ceramide was significantly increased in the lower airway 

epithelium of people with cystic fibrosis (median 14.11% surface area) compared to 

pulmonary hypertension (3.03%, P=0.0009), unused lung donors (3.44%, P=0.0009) 

and emphysema (5.06%, P=0.01). Ceramide staining was increased in emphysematous 

lungs compared to pulmonary hypertension (P=0.0135) and unused donors (P=0.0009). 

The number of neutrophil elastase and myeloperoxidase positive cells in the airway was 

positively correlated with the percentage of epithelium staining for ceramide (P=0.001). 

Ceramide staining was significantly increased in lungs colonised with Pseudomonas 

aeruginosa (10.1%) compared to those not colonised (3.14%, P=0.0106). Significantly 

raised levels of ceramides C16:0, C18:0 and C20:0 were detected by mass spectrometry 

in cystic fibrosis lungs compared to pulmonary hypertension. Differences in C22:0 were 

not significant. 

Conclusion: Immunoreactive ceramide is increased in the lower airway epithelium of 

people with advanced cystic fibrosis. Detected by mass-spectrometry ceramide species 

C16:0, C18:0 and C20:0 but not C22:0 are increased. 
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7.2. Introduction 

 

As outlined in earlier chapters of this thesis, CF is a chronic condition caused by 

abnormalities in the CFTR gene that is associated with life-long morbidity and 

mortality. (Ratjen, 2009, Davies et al., 2007) Over 95% of morbidity and mortality in 

CF is associated with lung disease. (Doring et al., 2007) Promising developments in 

clinical care have yielded an increase in survival for people with CF over recent 

decades, however, the exact pathogenesis of CF lung disease remains poorly 

understood. (Dodge et al., 2007, O'Sullivan and Freedman, 2009)  

 

The sphingolipid ceramide is an essential component of plasma membranes and 

regulates many physiological cellular functions including apoptosis and responses to 

stress and cytokines. (Uhlig and Gulbins, 2008) There is also growing evidence that 

sphingolipids play a central role in the pathogenesis of several lung diseases, including 

acute lung injury, viral infection, asthma, emphysema and CF. (Niessen et al., 2008, 

Oskeritzian et al., 2007, Teichgraber et al., 2008, Petrache et al., 2005, Grassme et al., 

2005, Noe et al., 2009)  

 

Chronic infection with P. aeruginosa and intense neutrophilic inflammation are two 

hallmarks of CF lung disease. (Davidson et al., 1995, Downey et al., 2009) Teichgraber 

et al. (2008) recently demonstrated that CFTR-deficient mice accumulate ceramide in 

airway epithelial cells.  Furthermore, ceramide accumulation triggered chronic 

pulmonary inflammation, death of airway epithelial cells and extracellular deposition of 

DNA in the airways, thereby increasing susceptibility to infection with P. aeruginosa. 

(Teichgraber et al., 2008) Treatment with the tricyclic antidepressant amitriptyline 

normalised pulmonary ceramide and susceptibility to P. aeruginosa infection in CFTR-

deficient mice. (Becker et al., 2010b, Teichgraber et al., 2008) Ceramide accumulation 

was also shown in nasal epithelial cells and demonstrated at a qualitative level in three 

sections of airway from people with CF. (Teichgraber et al., 2008)  

 

In contrast, low plasma levels of ceramide have been reported by Guilbault et al. (2008a 

and 2008b) in people with CF compared to healthy volunteers.  The same researchers 

also found reduced levels of ceramide in the plasma, lungs, pancreas and ileum of 

CFTR-deficient mice that could be corrected by treatment with fenretinide. (Guilbault et 

al., 2008b, Guilbault et al., 2008a) The potential broad importance of ceramide biology 
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to lung homeostasis is indicated by the recent finding that in lung endothelial cells 

CFTR function is required for stress-induced apoptosis by maintaining ceramide 

activation. (Noe et al., 2009)  

 

The findings of current research into ceramide and CF pathophysiology are divergent 

however, and possibly specific to the model systems studied. (Guilbault et al., 2008b, 

Guilbault et al., 2008a, Teichgraber et al., 2008)  Hence, Yu et al. found no significant 

difference in basal ceramide levels in IB3-1 immortalised CF bronchial epithelial cells 

and lung homogenate from CFTR knock out mice compared to wild type cells and mice. 

(Yu et al., 2009)  

 

The lower airways are the site of major pathology in human CF lung disease. (Hamutcu 

et al., 2002) The aim of the work described in this chapter was therefore to investigate 

the hypothesis that ceramide accumulates in the lower airway of people with advanced 

CF lung disease. In light of the findings of Teichgraber et al. (2008) outlined above, 

relationships between levels of epithelial ceramide and markers of neutrophilic 

inflammation and colonisation with P. aeruginosa were also investigated.  
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7.3. Aims 

 

The aims of the work described in this chapter were to: 

  

• Investigate levels of ceramide in the lower airway of people with advanced 

cystic fibrosis lung disease. More specifically to: 

o Quantify immunoreactive ceramide localised to the lower airway 

epithelium in advanced CF lung disease compared to pulmonary 

hypertension, emphysema and, previously healthy, unused lung donors. 

o Quantify the specific ceramide species C16:0, C18:0, C20:0 and C22:0 

in whole lung tissue from people with advanced CF lung disease 

compared to pulmonary hypertension by the independent technique of 

high performance liquid chromatography-mass spectrometry. 

• Correlate the amount of immunoreactive ceramide in the lower airway 

epithelium in advanced CF lung disease, pulmonary hypertension, emphysema 

and unused lung donors with levels of neutrophilic inflammaion in the lower 

airway mucosa, as measured by the number of cells staining positive for 

neutrophil elastase and myeloperoxidase per mm of basement membrane. 

• Investigate the relationship between the amount of immunoreactive ceramide in 

the lower airway epithelium in advanced cystic fibrosis lung disease, pulmonary 

hypertension and emphysema, and colonisation with Pseudomonas aeruginosa. 
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7.4. Hypothesis 

 

The work in this chapter examines the hypothesis that ceramide is raised in the lower 

airway epithelium of people with advanced CF lung disease. 
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7.5. Results 

 

7.5.1. Immunohistochemistry for ceramide in the lower airway epithelium in 

advanced cystic fibrosis lung disease, pulmonary hypertension, emphysema and 

unused lung donors 

 

Immunohistochemistry was performed on sections of medium-large lower airway from 

explanted lungs removed at the time of transplantation from 8 people with advanced CF 

lung disease, PH and emphysema respectively. The clinical details of these 24 patients 

are provided in Table 13. Airway sections were also obtained from 8 donor lungs that 

were assessed but not used for lung transplantation. Haematoxylin and eosin stained 

sections of airway from these blocks were independently evaluated to be free from 

fibrosis and significant inflammation as previously described. (Ward et al., 2005) 

 

Historically a lack of appropriate antibodies has limited the study of ceramide and other 

sphingolipids in biological systems. However, two antibodies have become 

commercially available in recent years, namely a mouse IgM anti-ceramide monoclonal 

antibody (Clone MID 15B4, Sigma-Aldrich) and a polyclonal mouse, antiserum 

enriched for IgM, anti-ceramide antibody (Clone S58-9, Glycobiotech). In lipid overlay 

assays the polyclonal antibody has been demonstrated to have favourable specificity for 

ceramide and dihydroceramide compared to the monoclonal antibody. (Cowart et al., 

2002) In order to adopt the most thorough approach possible I performed 

immunohistochemistry using each of the antibodies.  
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Age* Transplant† Diagnosis    

(CFTR variant) 
Sputum microbiology 

23§ SSL Cystic fibrosis  
(p.Phe508del / p.Phe508del) 

P. aeruginosa,  
S. maltophilia 

26 SSL Cystic fibrosis 
(p.Phe508del / p.Phe508del) 

P. aeruginosa,  
S. apiospermum 

25§ SSL Cystic fibrosis  
(Unknown) 

P. aeruginosa 

57 SSL Cystic fibrosis  
(p.Arg117His / p.Arg553X) 

P. aeruginosa 

26§ SSL Cystic fibrosis  
(Unknown) 

P. aeruginosa,  
A. fumigatus 

28§ SSL Cystic fibrosis  
(F508del/F508del) 

P. aeruginosa,  
A. fumigatus 

14 SSL Cystic fibrosis  
(Unknown) 

P. aeruginosa,  
C. parapsilosis 

32 SSL Cystic fibrosis  
(Unknown) 

P. aeruginosa,  
B. vietnamiensis 

53 HL Pulmonary hypertension Nil 
60 HL Pulmonary hypertension Nil 
52 HL Pulmonary hypertension Nil 
25 HL Pulmonary hypertension Nil 
36 HL Pulmonary hypertension Nil 
51 HL Pulmonary hypertension Nil 
37§ HL Pulmonary hypertension Nil 
52 HL Pulmonary hypertension Nil 
46 SL Emphysema Nil 
59 SSL Emphysema P. aeruginosa 
37 SSL Emphysema P. aeruginosa 
51 SSL Emphysema M. catarrhalis,  

Serratia sp. 
47 SL Emphysema Nil 
33 SSL Emphysema P. aeruginosa 
54 SSL Emphysema M. catarrhalis 
58 SSL Emphysema P. aeruginosa 

 

Table 13. Clinical details of the patients undergoing lung transplantation used for 

ceramide immunohistochemistry 

Abbreviations: *Age in years at time of transplant (complete years only). †SSL bilateral 
single sequential lung transplant, SL single lung transplant, HL heart-lung transplant. 

§Patient also used for high performance liquid chromatography-mass spectrometry 
(Table 14). 
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7.5.2. Glycobiotech polyclonal mouse, antiserum enriched for IgM, anti-ceramide 

antibody 

 

Staining for ceramide using the Glycobiotech antibody was significantly increased in 

the lower airway epithelium of people with CF (median 14.11%) compared to PH 

(3.03%, P=0.0009), unused lung donors (3.44%, P=0.0009) and emphysema (5.06%, 

P=0.01) (Figure 53). Ceramide staining was significantly increased in emphysematous 

lungs compared to PH (P=0.0135) and unused donors (P=0.0009) (Figure 53). 

Representative staining using the Glycobiotech antibody is illustrated from people with 

CF, emphysema, PH and unused lung donors in Figure 54. Appropriate negative 

controls; no primary antibody added and istotype control are also shown in Figure 54. 
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Figure 53. Percentage of epithelium staining positive for ceramide with 

Glycobiotech antibody. 

Each symbol represents an individual patient and is the mean of the percentage 
epithelium staining positive in five randomly selected high power fields.  

The horizontal bar represents the median for each group. 
Abbreviations: CF cystic fibrosis, PH pulmonary hypertension, UD unused lung donors, 

Em emphysema. 
*P=0.0135, **P=0.01, ***P=0.0009. Mann-Whitney tests, Holm-Bonferonni correction 

applied. (Mann and Whitney, 1947, Holm, 1979) 
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Figure 54. Representative staining for ceramide with Glycobiotech antibody, (a) in 

a person with advanced cystic fibrosis lung disease, (b) emphysema, (c) 

pulmonary hypertension, (d) emphysema and (e) negative control (isotype 

IgM cystic fibrosis airway). 

 

(a) 
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(b) 
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(c) 
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(d) 
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(e) 

 
 

 

50µm 
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7.5.3. Sigma monoclonal IgM anti-ceramide antibody 

 

Staining for ceramide using the Sigma antibody was significantly increased in the lower 

airway epithelium of people with CF (median 13.45%) compared to PH (4.62%, 

P=0.01) and unused lung donors (3.22%, P=0.005) (Figure 55). There was no 

statistically significant difference between people with CF (13.45%) and emphysema 

(6.35%, P=0.1278) using the monoclonal antibody (Figure 55). Staining for ceramide 

was significantly greater in emphysematous lungs (6.35%) compared to PH (4.62%, 

P=0.0136) and unused donors (3.22%, P=0.0009) (Figure 55). Representative staining 

using the Sigma antibody is illustrated from people with CF, emphysema, PH and 

unused lung donors in Figure 56. Appropriate negative controls; no primary antibody 

added and istotype control are also shown in Figure 56. 
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Figure 55. Percentage of epithelium staining positive for ceramide with Sigma 

antibody. 

Each symbol represents an individual patient and is the mean of the percentage 
epithelium staining positive in five randomly selected high power fields.  

The horizontal bar represents the median for each group. 
Abbreviations: CF cystic fibrosis, PH pulmonary hypertension, UD unused lung donors, 

Em emphysema. 
*P=0.01, **P=0.005, ***P=0.0009, n/s non-significant. Mann-Whitney tests, Holm-

Bonferonni correction applied. (Mann and Whitney, 1947, Holm, 1979) 
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Figure 56. Representative staining for ceramide with Sigma antibody, (a) in a 

person with advanced cystic fibrosis lung disease, (b) emphysema, (c) 

pulmonary hypertension, (d) emphysema and (e) negative control (isotype 

IgM cystic fibrosis airway). 

 

(a)
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(b) 
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(c)
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(d) 
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(e) 
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7.5.4. Comparison of Glycobiotech polyclonal mouse, antiserum enriched for IgM, 

anti-ceramide antibody and Sigma monoclonal IgM anti-ceramide antibody 

 

As mentioned earlier in this chapter, in lipid overlay assays the Glycobiotech polyclonal 

antibody has been demonstrated to have favourable specificity for ceramide and 

dihydroceramide compared to the Sigma monoclonal antibody. (Cowart et al., 2002) 

Examination of Figure 54 and Figure 56 allows comparison of the typical staining 

appearances with each antibody. A Bland-Altman plot of average against difference is 

shown in Figure 57. (Bland and Altman, 1986) As one would expect there was a degree 

of variability in staining between the two antibodies. However, there was no systematic 

bias in the measurements, i.e. one antibody was not systematically providing higher 

percentage staining compared to the other (bias -0.07742%, standard deviation of bias 

±3.164, 95% limits of agreement -6.280% and +6.125%) (Figure 57). 

 

 

 
 

Figure 57. Bland-Altman plot comparing lower airway epithelial staining with the 

Glycobiotech polyclonal mouse, antiserum enriched for IgM, anti-ceramide 

antibody and Sigma monoclonal IgM anti-ceramide antibody 

Bias -0.07742% (standard deviation of bias ±3.164) 
95% limits of agreement (dashed lines) -6.280% and +6.125% 
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7.5.5. Investigation of the reproducibility of percentage epithelium staining positive 

measurements 

 

In order to investigate the reproducibility of my measurements of the percentage 

epithelium staining positive I performed a Bland-Altman analysis. I blindly repeated the 

measurements on a random selection of three patients from each group stained with the 

Glycobiotech ceramide antibody. Figure 58 displays the Bland-Altman plot. A degree of 

variability is evident but no systematic bias between each occasion. 

 

 

 
 

Figure 58. Bland-Altman plot of difference against average for repeat 

measurements of percentage epithelium positive for ceramide using 

Glycobiotech ceramide antibody 

Bias -0.4813, 95% limits of agreement -3.622 to 2.659 (dotted lines)  
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7.5.6. Immunohistochemistry for neutrophil elastase in the lower airway mucosa in 

advanced cystic fibrosis lung disease, pulmonary hypertension, emphysema and 

unused lung donors 

 

The CF airway is characterised by neutrophilic inflammation and as one would expect I 

found significantly more neutrophil elastase positive cells/millimetre basement 

membrane in people with CF (median 203.5) compared to PH (2.8, P=0.0002), 

emphysema (14.9, P=0.0003) and unused donors (9.2, P=0.0002) (Figure 59). (Hays 

and Fahy, 2006, Downey et al., 2009) Representative staining for neutrophil elastase in 

each of the respective groups is shown in Figure 60. A negative isotype control is also 

shown in Figure 60. 
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Figure 59. Number of neutrophil elastase positive cells in the lower airway mucosa 

in advanced cystic fibrosis lung disease, pulmonary hypertension, 

emphysema and unused lung donors 

Abbreviations: CF cystic fibrosis, PH pulmonary hypertension, UD unused lung donors, 
Em emphysema. 

Horizontal bars indicate the median for each group. 
Mann-Whitney tests, Holm-Bonferonni correction applied. (Mann and Whitney, 1947, 

Holm, 1979)
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Figure 60. Representative staining for neutrophil elastase in the lower 

airway mucosa in advanced cystic fibrosis lung disease (a), pulmonary 

hypertension (b), emphysema (c), unused lung donor (d) and 

immunoglobulin G1 isotype negative control (e). 

 

(a) 
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(b) 
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(c) 
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(d) 
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(e) 

 
 



 192 

 

7.5.7. Immunohistochemistry for myeloperoxidase in the lower airway mucosa in 

advanced cystic fibrosis lung disease, pulmonary hypertension, emphysema and 

unused lung donors 

 

Similarly to neutrophil elastase, I found significantly increased myeloperoxidase 

positive cells/millimetre basement membrane in people with CF (median 299.3) 

compared to PH (14.8, P=0.0002), emphysema (20.5, P=0.0002) and unused lung 

donors (6.8, P=0.0002) (Figure 61).  Representative staining for myeloperoxidase in 

each of the respective groups is shown in Figure 62. A negative isotype control is also 

shown in Figure 62. 

 



 193 

 

 

 
 

Figure 61. Number of myeloperoxidase positive cells in the lower airway mucosa in 

advanced cystic fibrosis lung disease, pulmonary hypertension, emphysema 

and unused lung donors 

Abbreviations: CF cystic fibrosis, PH pulmonary hypertension, UD unused lung donors 
and Em emphysema. 

Horizontal bars indicate the median for each group. 
Mann-Whitney tests, Holm-Bonferonni correction applied. (Mann and Whitney, 1947, 

Holm, 1979) 

CF PH UD Em
0

100

200

300

400

500
P=0.0002

P=0.0002
P=0.0002

M
ye

lo
pe

ro
xi

da
se

 p
os

iti
ve

 
ce

lls
/m

m
 b

as
em

en
t m

em
br

an
e



 194 

Figure 62. Representative staining for myeloperoxidase in the lower airway 

mucosa in advanced cystic fibrosis lung disease (a), pulmonary 

hypertension (b), emphysema (c), unused lung donors (d) and rabbit 

immunoglobulins negative control (e) 

 

(a) 

 



 195 

 

(b) 
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(c) 
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(d) 
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(e) 
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7.5.8. Correlation between epithelial staining for ceramide and neutrophilic 

inflammation 

 

There was a positive correlation between the number of neutrophil elastase positive 

cells/millimetre basement membrane and percentage of epithelium staining positive for 

ceramide with the Glycobiotech antibody (Pearson correlation 0.634, P<0.000) and the 

Sigma antibody (Pearson correlation 0.574, P=0.001) across all groups (Figure 63 and 

Figure 64 respectively). Similarly, I found a positive correlation between the number of 

myeloperoxidase positive cells/millimetre basement membrane and percentage of 

epithelium staining positive for ceramide with the Glycobiotech antibody (Pearson 

correlation 0.704, P<0.000) and the Sigma antibody (Pearson correlation 0.577 

P=0.001) across all groups (Figure 65 and Figure 66). 
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Figure 63. Scatter plot of number of neutrophil elastase positive cells in the lower 

airway mucosa against percentage of epithelium staining positive for 

ceramide with Glycobiotech antibody across all groups 

Pearson correlation 0.634 (P<0.000) 

Abbreviations: CF cystic fibrosis, PH pulmonary hypertension, Em emphysema, UD 

unused donor 

 



 201 

 

 

 
 

Figure 64. Scatter plot of number of neutrophil elastase positive cells in the lower 

airway mucosa against percentage of epithelium staining positive for 

ceramide with Sigma antibody across all groups 

Pearson correlation 0.574 (P=0.001) 

Abbreviations: CF cystic fibrosis, PH pulmonary hypertension, Em emphysema, UD 

unused donor 
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Figure 65. Scatter plot of number of myeloperoxidase positive cells in the lower 

airway mucosa against percentage of epithelium staining positive for 

ceramide with Glycobiotech antibody across all groups 

Pearson correlation 0.704 (P<0.000) 

Abbreviations: CF cystic fibrosis, PH pulmonary hypertension, Em emphysema, UD 

unused donor 
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Figure 66. Scatter plot of number of myeloperoxidase positive cells in the lower 

airway mucosa against percentage of epithelium staining positive for ceramide 

with Sigma antibody across all groups 

Pearson correlation 0.577 (P=0.001) 

Abbreviations: CF cystic fibrosis, PH pulmonary hypertension, Em emphysema, UD 

unused donor 
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7.5.9. Relationship between epithelial staining for ceramide and colonisation with 

Pseudomonas aeruginosa 

 

In view of the finding that ceramide accumulation in CFTR-deficient mice has been 

shown to increase susceptibility to infection with P. aeruginosa. (Teichgraber et al., 

2008) I analysed my results for ceramide staining in people with CF, PH and 

emphysema with regard to the presence or absence of colonisation with P. aeruginosa, 

as judged by standard pre-operative sputum culture (Table 13). (Forrest et al., 2005, 

Meachery et al., 2008, Corris, 2008) Ceramide staining with the Glycobiotech antibody 

was significantly increased in lungs colonised with P. aeruginosa (median 10.1%) 

compared to those not colonised across all disease groups (3.1%, P=0.0106) (Figure 

67). It was also significantly increased with the monoclonal antibody in lungs colonised 

with P. aeruginosa (median 11.9%) compared to those not colonised (5.3%, P=0.0337) 

(Figure 68). 
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Figure 67. Percentage of epithelium staining positive for ceramide with 

Glycobiotech antibody in patients colonised with Pseudomonas aeruginosa 

compared to those not colonised across all disease groups 

Abbreviations: PA patients colonised with Pseudomonas aeruginosa, No PA patients 
free of Pseudomonas aeruginosa. 

Legend:  cystic fibrosis, pulmonary hypertension,  emphysema 
Mann-whitney test comparing each group. 

The horizontal lines indicate the median in each group. 
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Figure 68. Percentage of epithelium staining positive for ceramide with Sigma 

antibody in patients colonised with Pseudomonas aeruginosa compared to 

those not colonised across all disease groups 

Abbreviations: PA patients colonised with Pseudomonas aeruginosa, No PA patients 
free of Pseudomonas aeruginosa. 

Legend:  cystic fibrosis, pulmonary hypertension,  emphysema 
Mann-whitney test comparing each group. 

The horizontal lines indicate the median in each group. 
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7.5.10. Quantification of specific ceramide species in lung tissue from people with 

advanced cystic fibrosis lung disease and pulmonary hypertension by high-

performance liquid chromatography mass spectrometry 

 

When considered in more detail ceramides are in reality a family of more than 50 

molecularly distinct molecules. (Novgorodov and Gudz, 2009) Each specific ceramide 

consists of sphingosine and a fatty acid. (Hannun and Obeid, 2008) It is highly probable 

that specific species of ceramide are of particular importance to disease, as highlighted 

by the work of Guilbault et al. in the plasma of people with CF and by Hamai et al. in 

immortalised epithelial cell lines that express defective CFTR. (Guilbault et al., 2008a, 

Hamai et al., 2009) I therefore also used the independent technique of HPLC-MS to 

quantify levels of the specific ceramide species C16:0, C18:0, C20:0 and C22:0 in 

homogenates of 5 explanted CF lungs and 5 PH lungs. The clinical details of these 

patients are provided in Table 14. 
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Age* Patient 

number§ 
Transplant† Diagnosis 

(CFTR genotype) 
Sputum microbiology 

15 1 HL Pulmonary 
hypertension 

Negative 

37‡ 2 HL Pulmonary 
hypertension 

Negative 

45 3 HL Pulmonary 
hypertension 

Negative 

32 4 HL Pulmonary 
hypertension 

Negative 

32 5 HL Pulmonary 
hypertension 

Negative 

26‡ 6 SSL Cystic fibrosis 
(Unknown) 

Alcaligines xylosoxidans 
Aspergillus fumigatus 

22 7 SSL Cystic fibrosis 
(Unknown) 

Burkholderia multivorans 

25‡ 8 SSL Cystic fibrosis 
(Unknown) 

Pseudomonas aeruginosa 

28‡ 9 SSL Cystic fibrosis 
(F508del/F508del) 

Pseudomonas aeruginosa 
Aspergillus fumigatus 

23‡ 10 SSL Cystic fibrosis 
(F508del/F508del) 

Pseudomonas aeruginosa 
Stenotrophomonas 

maltophilia 
 

Table 14. Clinical details of the patients undergoing lung transplantation used for 

high performance liquid chromatography-mass spectrometry 

*Age in years at time of transplant (completed years only). †SSL: bilateral single 
sequential lung transplant, HL: heart-lung transplant. ‡Patient also used for 

immunohistochemistry (Table 13). §See Table 16 and Table 17. 
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7.5.11. Generation of calibration curves for ceramides C16:0, C18:0, C20:0 and 

C22:0 

 

Calibration curves were constructed from triplicate readings of a mixture of standards of 

the 4 ceramides at 5, 0.5, 0.05 and 0.005 pmoles. Table 15 shows the calibration data 

for each of the specific ceramides. Figures 16 to 19 show the calibration curves for 

ceramides C16:0, C18:0, C20:0 and C22:0 respectively. 
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Concentration 
(pmoles) Peak area under curves 

 C16:0 C18:0 C20:0 C22:0 
5 321454794 338757912 386878421 461716911 
5 309895960 394520533 394408476 394636261 
5 337470071 391280778 378286076 385015360 
0.5 50499758 56725146 80340968 81024680 
0.5 53036558 68302685 81008837 77468080 
0.5 59397105 76549954 75690065 75153958 
0.05 5169044 5194721 8324085 7497218 
0.05 5453865 7215912 8551650 8618399 
0.05 6695481 8077005 7970736 8654490 
0.005 256436 324888 464547 279308 
0.005 378237 448890 510001 414620 
0.005 463414 516844 535174 440815 
 

Table 15. Calibration data for high performance liquid chromatography-mass 

spectrometry ceramide standards 
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Figure 69. Calibration plot for ceramide C16:0 standard 
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Figure 70. Calibration plot for ceramide C18:0 standard 
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Figure 71. Calibration plot for ceramide C20:0 standard 
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Figure 72. Calibration plot for ceramide C22:0 standard 
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7.5.12. Analysis of homogenates of explanted cystic fibrosis and pulmonary 

hypertension lungs 

 

7.5.13. Amount of ceramide per mass of wet tissue 

 

Figure 73 to Figure 76 show the amounts of C16:0, C18:0, C20:0 and C22:0 

respectively measured in each lung per mass of wet tissue. The median levels were 

significantly increased in the CF lungs compared to PH for C16:0 (10.01 and 2.92 

pmoles/mg, P=0.0216), C18:0 (1.09 and 0.31 pmoles/mg, P=0.0367) and C20:0 (0.70 

and 0.17 pmoles/mg, P=0.0216) ceramides. The difference was not significant for 

C22:0 (2.90 and 1.82pmoles/mg, P=0.1437). 
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Figure 73. Amount of C16:0 ceramide per mass of wet tissue in the parenchyma of 

explanted cystic fibrosis and pulmonary hypertension lungs 

Each symbol represents an individual patient and is the mean of three independent 
measurements. The median of each group is represented by a horizontal bar. 

Abbreviations: PH pulmonary hypertension, CF cystic fibrosis. 
Mann-whitney test.
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Figure 74. Amount of C18:0 ceramide per mass of wet tissue in the parenchyma of 

explanted cystic fibrosis and pulmonary hypertension lungs 

Each symbol represents an individual patient and is the mean of three independent 
measurements. The median of each group is represented by a horizontal bar. 

Abbreviations: PH pulmonary hypertension, CF cystic fibrosis  
Mann-whitney test.
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Figure 75. Amount of C20:0 ceramide per mass of wet tissue in the parenchyma of 

explanted cystic fibrosis and pulmonary hypertension lungs 

Each symbol represents an individual patient and is the mean of three independent 
measurements. The median of each group is represented by a horizontal bar. 

Abbreviations: PH pulmonary hypertension, CF cystic fibrosis 
Mann-whitney test. 
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Figure 76. Amount of C22:0 ceramide per mass of wet tissue in the parenchyma of 

explanted cystic fibrosis and pulmonary hypertension lungs 

Each symbol represents an individual patient and is the mean of three independent 
measurements. The median of each group is represented by a horizontal bar. 

Abbreviations: PH pulmonary hypertension, CF cystic fibrosis. 
Mann-whitney test. 
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7.5.14. Amount of ceramide per micromole of phosphate 

 

I performed a further analysis using the concentration of phosphate in the lung 

homogenate as the denominator. The phosphate levels were quantified using the PiBlue 

assay described in Chapter 4. The standard curve for the assay is shown in Figure 77. 

The concentrations of phosphate in each homogenate are presented in Table 16. The 

data for the individual patients is displayed for ceramides C16:0, C18:0, C20:0 and 

C22:0 in Figure 78 to Figure 81 respectively. Despite trends towards increased levels in 

CF compared to PH with each ceramide species none of these differences were 

statistically significant (Figure 78 to Figure 81). 
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Figure 77. Phosphate assay standard curve 

Each symbol represents the mean of triplicate measurements 
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Patient number Phosphate* 
(µM) 

1 7.59 
2 11.98 
3 6.86 
4 9.52 
5 8.27 
6 9.00 
7 5.90 
8 4.97 
9 38.93 
10 6.20 

 

Table 16. Phosphate concentration for each lung homogenate 

*mean of triplicate measurements
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Figure 78. Amount of C16:0 ceramide per micromole of phosphate in the 

parenchyma of explanted cystic fibrosis and pulmonary hypertension lungs 

Each symbol represents an individual patient and is the mean of three independent 
measurements. The median of each group is represented by a horizontal bar. 

Abbreviations: PH pulmonary hypertension, CF cystic fibrosis 
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Figure 79. Amount of C18:0 ceramide per micromole of phosphate in the 

parenchyma of explanted cystic fibrosis and pulmonary hypertension lungs 

Each symbol represents an individual patient and is the mean of three independent 
measurements. The median of each group is represented by a horizontal bar. 

Abbreviations: PH pulmonary hypertension, CF cystic fibrosis 
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Figure 80. Amount of C20:0 ceramide per micromole of phosphate in the 

parenchyma of explanted cystic fibrosis and pulmonary hypertension lungs 

Each symbol represents an individual patient and is the mean of three independent 
measurements. The median of each group is represented by a horizontal bar. 

Abbreviations: PH pulmonary hypertension, CF cystic fibrosis 
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Figure 81. Amount of C22:0 ceramide per micromole of phosphate in the 

parenchyma of explanted cystic fibrosis and pulmonary hypertension lungs 

Each symbol represents an individual patient and is the mean of three independent 
measurements. The median of each group is represented by a horizontal bar. 

Abbreviations: PH pulmonary hypertension, CF cystic fibrosis 
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7.5.15. Amount of ceramide per microgram of protein 

 

I performed a further analysis using the concentration of protein in the lung homogenate 

as the denominator. The protein levels were quantified spectroscopically using a 

Bradford protein assay as described in Chapter 4. The standard curve for the assay is 

shown in Figure 82. The concentrations of protein in each homogenate are presented in 

Table 17. The data for ceramides C16:0, C18:0, C20:0 and C22:0 per microgram of 

protein in each patient are displayed in Figure 83 to Figure 86 respectively. Despite 

trends towards increased levels in CF compared to PH with each ceramide species none 

this was only statistically significant in the case of C18:0.    
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Figure 82. Protein assay standard curve 

Each symbol represents the mean of triplicate assays. 
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Patient number Protein* 
(µg/mL) 

1 6.46 
2 10.49 
3 11.45 
4 29.16 
5 13.87 
6 12.86 
7 9.48 
8 13.28 
9 12.86 
10 10.21 

 

Table 17. Protein concentration for each lung homogenate 

*mean of triplicate measurements
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Figure 83. Amount of C16:0 ceramide per microgram of protein in the 

parenchyma of explanted cystic fibrosis and pulmonary hypertension lungs 

Each symbol represents an individual patient and is the mean of three independent 
measurements. The median of each group is represented by a horizontal bar. 

Abbreviations: PH pulmonary hypertension, CF cystic fibrosis 
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Figure 84. Amount of C18:0 ceramide per microgram of protein in the 

parenchyma of explanted cystic fibrosis and pulmonary hypertension lungs 

Each symbol represents an individual patient and is the mean of three independent 
measurements. The median of each group is represented by a horizontal bar. 

Abbreviations: PH pulmonary hypertension, CF cystic fibrosis 
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Figure 85. Amount of C20:0 ceramide per microgram of protein in the 

parenchyma of explanted cystic fibrosis and pulmonary hypertension lungs 

Each symbol represents an individual patient and is the mean of three independent 
measurements. The median of each group is represented by a horizontal bar. 

Abbreviations: PH pulmonary hypertension, CF cystic fibrosis 
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Figure 86. Amount of C22:0 ceramide per microgram of protein in the 

parenchyma of explanted cystic fibrosis and pulmonary hypertension lungs 

Each symbol represents an individual patient and is the mean of three independent 
measurements. The median of each group is represented by a horizontal bar. 

Abbreviations: PH pulmonary hypertension, CF cystic fibrosis 
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7.6. Discussion 

 
The data presented in this chapter provides the first quantitative immunohistochemical 

evidence to support the hypothesis that ceramide accumulates in the lower airway 

epithelial cells of people with CF, agreeing with previous descriptive data. (Teichgraber 

et al., 2008) It was of some interest that I found increased ceramide staining in 

emphysematous lungs compared to PH and unused lung donors, although this was at 

lower levels than in the people with CF. This is in keeping with previous work that has 

identified ceramide as a mediator in the development of emphysema, thought to act by 

inducing oxidative stress and apoptosis of alveolar endothelial and epithelial cells. 

(Petrache et al., 2005, Uhlig and Gulbins, 2008, Petrache et al., 2008) 

 

The precise role of epithelial ceramide accumulation in the pathogenesis of CF lung 

disease is yet to be fully elucidated. The work performed by Teichgräber et al. (2008) in 

mice suggests that ceramide accumulation occurs in a constitutive, age-dependent 

fashion in the airway epithelial cells of CFTR-deficient animals and promotes pro-

inflammatory cytokine release, apoptosis, DNA deposition in the airway and 

susceptibility to P. aeruginosa infection. It has previously been elegantly demonstrated 

that ceramide-enriched membrane platforms are central to epithelial defence against P. 

aeruginosa. (Grassme et al., 2003, Nieuwenhuis et al., 2002) Physiological levels of 

ceramide appear to be essential for the homeostasis of cells and inflammatory responses 

and therefore it is plausible that too little ceramide may be equally as deleterious to 

epithelial physiology as a situation where ceramide accumulation occurs. (Guilbault et 

al., 2008a) 

 

A proposed mechanism for ceramide accumulation is that defective CFTR leads to 

inappropriate alkalinisation of intracellular vesicles, in particular pre-lysosomes and 

lysosomes, resulting in an increase in acid sphingomyelase and reduction in acid 

ceramidase activity and subsequent ceramide accumulation. (Teichgraber et al., 2008) 

However, the role of CFTR in the acidification of lysosomes has been hotly debated 

recently with apparently contradictory results published by different investigators. 

(Haggie and Verkman, 2009a, Haggie and Verkman, 2009b, Di et al., 2006, Teichgraber 

et al., 2008, Poschet et al., 2002, Noe et al., 2009)  
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I found that staining for ceramide was not significantly increased in the lower airway 

epithelium in CF compared to end-stage emphysema using the Sigma monoclonal 

antibody. This may make a defective CFTR-specific mechanism for the accumulation of 

ceramide as a sole explanation, less likely. I would however emphasise that low 

numbers were used in this study and that it was not designed to investigate mechanisms 

of ceramide dysregulation. 

 

I found a positive association between the number of cells staining for the neutrophil 

products neutrophil elastase and myeloperoxidase in the airway and epithelial ceramide 

staining across all patients. This suggests a potential link between epithelial ceramide 

levels and neutrophilic inflammation in humans similar to that proposed in mice. 

(Teichgraber et al., 2008) In the lungs of CFTR-deficient mice Teichgräber et al. found 

a constitutive increase in the expression of IL-1 and keratinocyte-derived chemokine 

(KC), the mouse homolog of human IL-8. (Teichgraber et al., 2008) Inhibition of acid 

sphingomyelinase activity normalised levels of IL-1 and KC suggesting that cytokine 

upregulation is linked to ceramide accumulation.  It is known that children with CF who 

have P. aeruginosa infecting their lower airway have higher levels of IL-8, neutrophils 

and neutrophil elastase in bronchoalveloar lavage fluid compared to children free of 

lower respiratory tract P. aeruginosa infection. (Sagel et al., 2009) 

 

In contrast to my results and those of Teichgräber et al., Guilbault et al. found low 

plasma levels of ceramide in people with CF compared to healthy volunteers and 

similarly low levels in the plasma and organs of CFTR-deficient mice that could be 

corrected by treatment with fenretinide. (Guilbault et al., 2008b, Guilbault et al., 2008a, 

Teichgraber et al., 2008) Specifically, Guilbault et al. found decreased levels of several 

ceramide sphingolipid species in the plasma of people with CF, namely C14:0, C20:1, 

C22:0, C22:1, C24:0 and dihydroxy ceramide. (Guilbault et al., 2008a) One explanation 

proposed by the Gulbins group for the apparently discrepant results in mice is that 

CFTR-deficient strains that require high fat feeds, such as Peptamen®, develop 

artificially high cholesterol levels that subsequently reduce acid sphingomyelinase 

activity. (Becker et al., 2010b, Pier, 2008, Teichgraber et al., 2008) However, Guilbault 

et al. did not find low levels of ceramide in the plasma or lungs of CFTR-deficient mice 

after prolonged ingestion of Peptamen®. (Guilbault et al., 2008b) 
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The prospective focus for my study was to evaluate levels of ceramide specifically in 

the lower airway epithelium of people with CF. As outlined in the introduction of this 

chapter, I did this because it is the site of the major pathology in CF lung disease. 

(Hamutcu et al., 2002) By using immunohistochemistry coupled with image analysis, 

quantification of ceramide was possible along with architectural resolution to the 

specific tissue compartment of interest, in human patients with CF. Correlations with 

neutrophil numbers, also determined by immunohistochemistry were also possible, 

which is potentially important given the salient importance of neutrophilic inflammation 

to the disease. (Downey et al., 2009) To strengthen my approach, 2 antibodies were 

used in the study.  

 

To confirm my findings and to allow quantification of specific ceramide species, 

namely C16:0, C18:0, C20:0 and C22:0, I used the independent technique of HPLC-MS 

on lung tissue from people with CF. Clearly analysis of whole lung homogenates using 

HPLC-MS does not allow the localisation to specific tissue compartments of interest in 

the lung, however.  A number of other ceramide species, for example C24:0 and C24:1, 

are known to be biologically important and abundant. (Haus et al., 2009) It may be that 

specific species are of particular importance to disease, as highlighted by the work of 

Guilbault et al. in the plasma of people with CF and by Hamai et al. in immortalised 

epithelial cell lines that express defective CFTR. (Guilbault et al., 2008a, Hamai et al., 

2009) The HPLC-MS method used in this study was not designed or optimised to 

characterise all species of ceramide, and I was therefore unable to measure the 

abundance of all potentially relevant ceramides in the lungs of people with advanced CF 

lung disease. This underlines a need for further translational studies in this area of 

research.  

 

A major strength of my work is that it involved human tissue, dissected directly from 

the complex milieu present in the CF lung. (Brodlie et al., 2010f) The correlation of 

findings in cellular or animal work to the actual human disease has been stated as vital. 

(Doring et al., 2007) Given the discrepant results regarding ceramide obtained in 

different models and compartments of CF disease, I feel that the additional human 

airway data provided by this study is a useful contribution to the current debate, offering 

a translational perspective to compliment the available science.  
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The number of individuals included in this study was modest. This unfortunately 

precludes analysis relating to CFTR genotype. Lung transplantation is an intervention 

for end-stage disease and therefore the span of ages was also insufficient to address the 

important question of whether or not ceramide accumulates in an age-dependent manner 

in people with CF, as has been described in CFTR-deficient mice. (Teichgraber et al., 

2008)  

 

At a basic level I was able to examine the level of ceramide staining in people with CF, 

PH and emphysema with consideration of the presence or absence of colonisation with 

P. aeruginosa. The finding that ceramide staining was increased in those colonised with 

P. aeruginosa concurs with the work of Teichgräber et al. in mice and suggests a 

putative link between epithelial ceramide accumulation and P. aeruginosa infection. 

(Teichgraber et al., 2008) Importantly however, P. aeruginosa colonisation is frequent 

in people with end-stage CF lung disease and indeed was universal in my study cohort. 

There was also a high prevalence of colonisation with P. aeruginosa in people with 

emphysema in this study. This is likely to reflect the severity of disease present in those 

who come forward for lung transplantation. (Murphy et al., 2008c) A larger sample size 

would be required to thoroughly evaluate possible inter-relationships between specific 

microbial infections and epithelial ceramide accumulation. Appropriately designed 

animal or cellular studies may also be of value in this area. Yu et al. have recently 

shown that in S9 immortalised human airway epithelial cells and the lungs of wild type 

mice there is a significant increase in acid sphingomyelinase and total ceramide levels 6 

hours after infection with P. aeruginosa. (Yu et al., 2009) This increase did not occur in 

the CF bronchial epithelial cell line IB3-1 or the lungs of CFTR knock out mice. (Yu et 

al., 2009) 

 

At a translational level my findings add weight to the suggestion that the accumulation 

of ceramide is a potential target for pharmacotherapy. Amitriptyline, along with a 

number of other agents, degrades acid sphingomyelinase, thereby reducing ceramide 

production, and has been shown to almost normalise ceramide levels and susceptibility 

to P. aeruginosa infection in CFTR-deficient mice. (Becker et al., 2010b, Teichgraber et 

al., 2008) The efficacy of amitriptyline in humans with CF is yet to be objectively 

evaluated however, along with potential safety issues relating to side effects and 

possible negative consequences for epithelial defence to infection if ceramide 

production is over-inhibited. (Becker et al., 2010b, Pier, 2008) This emphasises the need 



 238 

for a multi-disciplinary approach to further study, and the importance of appropriate 

translational studies in patients. 
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8. Chapter 8. Reticular basement membrane thickness in advanced 

cystic fibrosis lung disease 
 

 

Elements of the work described in this chapter have been previously reported in the 

form of a presentation at a medical and scientific meeting. (Brodlie et al., 2009e) 
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8.1. Abstract 

 

Background: Cystic fibrosis lung disease is characterised by airflow obstruction, 

neutrophilic inflammation and chronic endobronchial infection. Apparent thickening of 

the sub-epithelial reticular basement membrane due to collagen matrix deposition is a 

characteristic feature of airway remodelling seen in people with asthma. Airway 

remodelling has also been implicated in the pathogenesis of cystic fibrosis lung disease 

and basement membrane thickening has been reported in endobronchial biopsies from 

children with cystic fibrosis. Changes in airway dimension have been described in 

explanted cystic fibrosis lungs but basement membrane thickness has not been 

thoroughly investigated in end-stage disease with divergent findings in limited studies 

to date. The primary objective of this study was to quantify RBM thickness in the 

airways of people with CF requiring lung transplantation. In the context of asthma, 

eosinophilic inflammation has been implicated in the pathogenesis of airway 

remodelling via the maintenance and progression of aberrant airway tissue injury and 

repair. I therefore also investigated any relationship between number of airway mucosa 

eosinophils and basement membrane thickness. Finally, it has been suggested that 

basement membrane thickness may increase with age and I therefore investigated any 

correlation between basement membrane thickness and age at time of transplant. 

Methods: Blocks of intermediate-large airway were dissected from the explanted lungs 

of 16 people with cystic fibrosis, median age 28 years [14.7 - 57.7], and fixed in 10% 

formalin and embedded in paraffin before 5µm sections were stained with haematoxylin 

and eosin. Basement membrane thickness was evaluated objectively by measuring the 

distance between two demarcating lines in 5 high-power fields using image analysis 

software. Comparison was made with basement membrane thickness measured in an 

earlier study of 22 healthy subjects and previously published normal measurements.  

Results: Median basement membrane thickness in the cystic fibrosis airways was 

9.58µm [range 7.15 - 13.56]. This compares to 7.7µm [5.2 - 9.6] in healthy subjects in 

the earlier study by Ward et al. (2002) (P=0.0008). Other published normal 

measurements for basement membrane thickness in formalin fixed tissue range from 2.9 

to 6.7µm. There was no apparent relationship between basement membrane thickness 

and number of mucosal eosinophils or age at time of transplant. 
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Conclusion: Reticular basement membrane thickness is significantly increased in 

advanced cystic fibrosis lung disease. This agrees with results in children and provides 

evidence of airway remodelling in advanced disease. In this dataset basement membrane 

thickness appears to be independent of the number of mucosal eosinophils and age. 
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8.2. Introduction 

 

As outlined earlier in this thesis, lung disease accounts for over 95% of morbidity and 

mortality in people with CF. (O'Sullivan and Freedman, 2009) CF lung disease is 

characterised by airflow obstruction, neutrophilic inflammation and chronic 

endobronchial infection. (Davies et al., 2007) Children with CF are born with airways 

of essentially normal structure however. (Konstan and Berger, 1997)    

 

Airway remodelling, in the form of architectural changes in the airway wall, is well 

recognised in people with asthma and chronic obstructive pulmonary disease (COPD). 

(Jeffery, 2001, Davies, 2009) One specific feature of airway remodelling seen in adults 

and children with asthma is apparent thickening of the sub-epithelial reticular basement 

membrane (RBM) due to collagen matrix deposition. (Ward et al., 2002, Payne et al., 

2003) It has also been postulated that airway remodelling may be implicated in the 

pathogenesis of CF lung disease and RBM thickening has been reported in 

endobronchial biopsies from children with CF. (Hilliard et al., 2007)  Clinical evidence 

of structural airway remodelling at an early stage in CF lung disease includes the 

observation that airway function is demonstrably abnormal in infants newly diagnosed 

clinically with CF. (Ranganathan et al., 2001)  Furthermore, their lung function does not 

improve despite intensive treatment, and the airway obstruction would appear to be 

‘fixed’. (Ranganathan et al., 2004)     

 

However, in an earlier study Durieu et al. examined RBM thickness in a mixture of 

endobronchial and lobectomy specimens from a total of 9 children and adults with a 

spectrum of severity of CF lung disease. (Durieu et al., 1998) Durieu et al. assessed the 

basal lamina thickness of the basement membrane qualitatively using immunostaining 

for murine laminin in fresh frozen sections and transmission electron microscopy. In 

contrast to the findings of Hilliard et al., they found the RBM to be thinned in the CF 

specimens compared to 3 healthy, non-smoking volunteers. (Hilliard et al., 2007, 

Durieu et al., 1998) A dense, fibrous, acellular sub-epithelial deposit was observed 

however. (Durieu et al., 1998) Wojnarowski et al. found the RBM to be thickened in 

association with a metaplastic epithelium in endobronchial biopsies taken from children 

during an acute exacerbation of CF. (Wojnarowski et al., 1999)  In this study the 

biopsies were fixed in paraformaldehyde and embedded in paraffin prior to 
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haematoxylin and eosin staining of 2µm sections. Biopsies from clinically stable 

children with CF were found to contain an intact respiratory epithelium with normal 

RBM appearances. (Wojnarowski et al., 1999) Changes in airway dimension have been 

described in explanted CF lungs but RBM thickness has not been specifically 

investigated in end-stage disease to the best of my knowledge. (Tiddens et al., 2000) 

 

Eosinophilic inflammation has been implicated in the pathogenesis of airway 

remodelling in asthma via the maintenance and progression of aberrant airway tissue 

injury and repair. (Holgate and Polosa, 2008) The biological activity of eosinophils is 

largely mediated by the release of stored granules containing potent cytotoxic proteins 

such as eosinophilic cationic protein, eosinophil peroxidase and major basic protein. 

(Stone et al., 2010) In addition, eosinophils produce oxygen radicals, lipid mediators 

and a wide range of pro-inflmmatory cytokines and chemokines. (Hamid and Tulic, 

2009) A number of cytokines produced by eosinophils are associated with remodelling 

and fibrosis, most notably TGF-β but also IL-6, IL-11, IL-13, IL-17 and IL-25. (Hamid 

and Tulic, 2009, Minshall et al., 1997)  Interestingly, Hilliard et al. found a positive 

correlation between RBM thickness and total TGF-β1 concentration in bronchoalveolar 

lavage fluid in chidren with CF. (Hilliard et al., 2007) 

 

In summary, there are contradictory reports in the literature regarding RBM thickness in 

CF lung disease and no descriptions of RBM thickness in end-stage disease. 



 244 

	
  

8.3. Aims 

 

The objectives of the work described in this chapter were to 

 

1. Quantify RBM thickness in the lower airways of people with advanced CF lung 

disease requiring transplantation 

2. Investigate any relationship between RBM thickness and number of mucosal 

eosinophils 

3. Investigate any relationship between RBM thickness and age at time of lung 

transplantation 
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8.4. Hypothesis 

 

I hypothesised that RBM thickness is increased in advanced CF lung disease and that 

this is linked to mucosal eosinophils and age at time of lung transplantation. 
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8.5. Results 

 

8.5.1. Reticular basement membrane thickness in advanced cystic fibrosis lung 

disease 

 

Clinical details of the patients with CF that I quantified RBM thickness in are provided 

in Table 18. Measurements were performed on 5µm sections stained with haematoxylin 

and eosin taken from formalin-fixed, paraffin-embeeded blocks as described in Chapter 

2. Figure 87 displays an example of how I quantified RBM thickness by measuring the 

distance between two demarcating lines in each high-power section using Image 

ProPlus software (MediaCybernetics).  

 

Comparison was made with data from a group of healthy volunteers enrolled in a 

previous study. (Ward et al., 2002) In this study endobronchial biopsies were fixed in 

ice-cold acetone and embedded in glycol methacrylate. RBM thickness was then 

quantified using the same image analysis technique that I employed in 2µm sections 

immunostained for collagen type I.   

 

The median RBM thickness was significantly increased in the CF group (9.58µm) 

compared to healthy volunteers (7.7µm, P=0.0002) in the previous study. (Ward et al., 

2002) Figure 88 shows the mean RBM thickness for each individual in the study along 

with other reported ranges for RBM thickness in healthy volunteers in formalin-fixed 

haematoxylin and eosin stained tissue, namely 2.9-6.7µm. (Lundgren et al., 1988, 

Wilson and Li, 1997) 
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Age* CFTR 
Variant$ 

Sputum microbiology 

14 Unknown Pseudomonas aeruginosa 
Candida parapsilosis 

26 p.Phe508del 
p.Phe508del 

P. aeruginosa  
Scediosporium aspiospermum 

23 p.Phe508del 
p.Phe508del 

P. aeruginosa Stenotrophomonas 
maltophilia 

25 Unknown P. aeruginosa 
28 p.Phe508del 

p.Phe508del 
P. aeruginosa  

Aspergillus fumigatus 
57 p.Arg117His   

p.Arg553X 
P. aeruginosa 

32 Unknown P. aeruginosa  
Burkholderia vietnamiensis 

23 Unknown Scedosporium sp.  
Alcaligines sp. 

Staphylococcus aureus 
39 p.Phe508del 

p.Phe508del 
P. aeruginosa 

27 p.Phe508del 
p.Phe508del 

P. aeruginosa 

40 Unknown P. aeruginosa 
46 Unknown P. aeruginosa 
22 p.Phe508del 

p.Phe508del 
P. aeruginosa 

20 p.Phe508del 
p.Phe508del 

P. aeruginosa 

29 p.Phe508del  
c.317+10kbC>T 

P. aeruginosa, 
S. maltophilia 

28 Unknown P. aeruginosa  
Methicillin-Resistant S. aureus 

 

Abbreviations: *Age at time of transplantation (years). $Cystic fibrosis transmembrane 

conductance regulator genotype (where known).  

Table 18. Clinical details of people with cystic fibrosis used to measure reticular 

basement membrane thickness 
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Figure 87. Example of measurement of reticular basemement membrane thickness 

in a haematoxylin and eosin stained section of lower airway from a person 

with advanced cystic fibrosis lung disease 
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Figure 88. Reticular basement membrane thickness in healthy volunteers and 

people with advanced cystic fibrosis lung disease 

Each symbol represents an individual patient (mean of 5 measurements).  
Horizontal bars indicate medians. 

Abbreviations: CF, cystic fibrosis, *Data from Ward et al. (2002), endobronchial 
biopsies fixed in ice-cold acetone, embedded in glycol methacrylate. RBM thickness 
quantified using image analysis in 2µm sections immunostained for collagen type I. 
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8.5.2. Number of mucosal eosinophils and lower airway reticular basement 

membrane thickness in people with advanced cystic fibrosis lung disease 

 

As outlined in the introduction of this chapter, eosinophilic inflammation has been 

implicated in the pathogenesis of airway remodelling in asthma via the maintenance and 

progression of aberrant airway tissue injury and repair. 

 

I therefore quantified the number of mucosal eosinophils in a sub-group of 12 of the 

people with CF that I measured RBM thickness in. I did this by using the tinctorial stain 

Sirius red (Figure 89) and counting the number of mucosal eosinophils per mm of 

basmement membrane in 5 high-power fields in each patient. (Carvalho et al., 2003) 

The number of eosinophils plotted against RBM thickness is shown in Figure 90. There 

is no clear relationship between RBM thickness and number of eosinophils in this 

dataset. However there is a suggestion of a negative correlation from the limited number 

of data points in Figure 90 if one considers the patient with the highest number of 

eosinophils as an outlier (R2=0.274, P>0.05).   
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Figure 89. Example of Sirius red staining in the lower airway mucosa of a person 

with advanced cystic fibrosis lung disease 
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Figure 90. Scatter plot of reticular basement membrane thickness 

against number of lower airway mucosal eosinophils in people with advanced 

cystic fibrosis lung disease 

 

0 1 2 3 4 5

6

8

10

12

14

Eosinophils 
(per mm basement membrane)

R
et

ic
ul

ar
 b

as
em

en
t 

m
em

br
an

e 
th

ic
kn

es
s 

(µ
m

)



 253 

 

8.5.3. Age and reticular basement membrane thickness in advanced cystic fibrosis 

lung disease 

 

It has been suggested that RBM thickness changes with age although there is no 

definitive longitudinal or cross-sectional study published in the literature to confirm 

this. (Liesker et al., 2009) I therefore plotted the RBM thickness results for the people 

with advanced CF lung disease versus age at time of transplant (Figure 91). There is no 

apparent relationship in this dataset. 
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Figure 91. Scatter plot of reticular basement membrane thickness against age at 

transplant 
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8.6. Discussion 

 

The finding of increased RBM thickness in advanced CF lung disease provides 

evidence of structural airway remodelling. My results agree with those published by 

Hilliard et al. in children and are opposite to the findings of Durieu et al. in a mixture of 

adults and children. (Hilliard et al., 2007, Durieu et al., 1998) The data presented in this 

chapter represents the largest sample size in the published literature regarding RBM 

thickness in advanced CF lung disease. 

 

A number of sources of variation are important when considering the measurement of 

RBM thickness. Tissue acquisition (biopsy, explant or post mortem), processing, 

preservation (paraffin wax or plastic resin embedding or snap-freezing) and 

visualisation (tinctorial or immunostaining, light or electron microscopy) methods all 

impact on measurements of RBM thickness and other indices of airway remodelling. 

(Bergeron et al., 2007, Jeffery et al., 2003, Liesker et al., 2009, Wilson and Li, 1997) 

Comparisons between different publications should therefore be made with caution and 

inconsistencies may even exist between control and disease tissue in some studies. The 

fact that the CF tissue used in this study was fixed in formalin and embedded in paraffin 

means that my measurements are likely to be an underestimate compared to those made 

with the acetone and glycol methacrylate technique for the healthy volunteer samples in 

the previous study by Ward et al. (2002). 

 

I found no apparent relationship in my relatively limited dataset between age and RBM 

thickness in end-stage CF lung disease (Figure 91). Similarly, Payne et al. found no 

association between RBM thickness and duration of symptoms in a cohort of children 

with severe asthma. (Payne et al., 2003) One potential explanation is that once 

established in an inflammatory airway milieu, RBM thickness reaches a maximal level 

in individuals.  Suitably powered longitudinal studies involving repeat biopsies of 

children and young adults with CF at different time points would be required to answer 

this question. Such studies would however present ethical and practical issues. As 

mentioned earlier there is also a paucity of good quality data in the literature regarding 

the natural history of RBM thickness in healthy individuals. 

 

At an anecdotal level Wojnarowski et al. describe RBM thickening in endobronchial 

biopsies from children with CF during an acute exacerbation but not in other clinically 
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stable children. (Wojnarowski et al., 1999) This finding would argue against a fixed 

maximal RBM thickness state, at least in early CF lung disease, because presumably the 

stable children had previously experienced acute exacerbations. The situation in 

advanced CF lung disease, where the spiral of inflammation and infection is profound 

and may be almost permanent, is likely to be different however. 

 

In the context of asthma, the precise clinical significance of RBM thickening has been 

debated in the literature. In theoretical models increased RBM thickness has been 

shown to lead to a greater propensity for luminal collapse and obstruction. (Wiggs et al., 

1997) However, it is possible that associated features of airway remodelling such as 

airway smooth muscle hypertrophy are of greater importance. (Bush, 2008) RBM 

thickening has been shown to correlate with several other parameters of airway 

remodelling however. (James et al., 2002) Equally the involvement of eosinophilic 

inflammation as a primary event in airway remodelling in asthma has been challenged 

by indirect evidence from pre-school children, where wheezing is largely viral-induced, 

that corticosteroids are ineffective, the inflammation is principally neutrophilic and 

airway structural remodelling still occurs. (Panickar et al., 2009, Bush, 2008, Saglani et 

al., 2007) Eosinophilic inflammation and remodelling may be best regarded as parallel 

processes but the progression of each is independent. (Bush, 2008) The relationship 

between RBM thickness and numbers of inflammatory cells other than eosinophils in 

the airway mucosa, most notably neutrophils in the context of CF, is an important area 

for future research. (Downey et al., 2009) 

 

In summary the data presented in this chapter provides evidence to support the 

hypothesis that RBM thickness is raised in advanced CF lung disease. To investigate 

RBM thickness more thoroughly in advanced CF lung disease it would be necessary to 

confirm findings in a larger cohort with contemporaneous, age-matched controls and to 

use alternative techniques such as immunostaining for collagen sub-types and/or 

electron microsocopy. More generally, the phenomenon of airway remodelling and its 

pathogenesis in CF lung disease is a relatively neglected area that warrants further 

translational research and may yield novel therapeutic strategies. (Dupuit et al., 1995)  
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9. Chapter 9. Discussion and future work 
 

 

9.1. Introduction 

 

Clinically CF lung disease is characterised by retention of mucopurulent secretions and 

chronic endobronchial infection with specific organisms including P. aeruginosa. 

(O'Sullivan and Freedman, 2009) Histologically the airway pathology is dominated by 

intense neutrophilic inflammation. (Downey et al., 2009) This results in progressive 

bronchiectasis, airway obstruction and ultimately respiratory failure. (Davies et al., 

2007) Lung transplantation is the only life-preserving intervention available for 

advanced CF lung disease. (Meachery et al., 2008)  

 

It is known that CF results from variants in the gene that encodes for the CFTR protein. 

CFTR is a complex and multifaceted protein that along with its principal function as an 

epithelial chloride channel amongst other properties also regulates sodium transport. 

(Sheppard and Welsh, 1999) The precise mechanisms involved in the translation of 

defective CFTR function in to the ‘clinical syndrome’ of CF are yet to be fully 

elucidated however and occupy thousands of researchers worldwide. (Wine, 2010) 
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9.2. Background and summary of results 

 

9.2.1. Development of a method to culture primary bronchial epithelial cells from 

the lungs of people with cystic fibrosis removed at the time of transplantation 

 

Valid experimental models are vital to advance research in to the pathogenesis of CF 

lung disease and identify novel therapeutic targets. Despite a huge amount of work and 

effort recapitulation of the CF lung disease phenotype in murine models has proved 

impossible to date. (Scholte et al., 2004) Preliminary results of the recently developed 

porcine model describe an extreme gastrointestinal and lung phenotype with severe 

morbidity, frequent early mortality and significantly overall reduced survival. (Stoltz et 

al., 2010) In terms of cellular approaches airway epithelial cells may be cultured in 

vitro, differentiated to form a ciliated multi-layered epithelium and co-cultured with 

other cell types or pathogens of interest. Immortalised cell lines frequently exhibit 

phenotypic instability and may not truly replicate the behaviour of cells in vivo 

however. Primary cells used at a low passage level are more likely to provide a superior 

model but are typically a scarce, expensive and time-consuming resource. 

 

Through the work described in this thesis I have established a programme to culture 

PBECs from explanted CF lungs at the largest lung transplant centre in the UK. This 

involved developing a culture method that included tailoring of patient-specific anti-

microbials that yielded a favourable success rate of around two-thirds. The PBECs were 

characterised in terms of morphology, cytokeratin immunohistochemistry, 

electrophysiology and cytokine production. Prolonged culture was possible at ALI with 

generation of a raised TER and mucus production, but not true ciliogenesis. Importantly 

low passage cells were cryopreserved and successfully reanimated for submerged 

culture. 

 

The routine culture of PBECs from explanted CF lungs represents an important resource 

for CF research that has not previously been realised outside of a small number of large 

North American centres. The number of cells obtained is substantially greater than that 

from alternative methods such as bronchial or nasal brushings and clearly does not 

involve any additional invasive procedures for the donor. In addition, the procurement 

of fixed and snap-frozen tissue and airway lavage from explanted lungs is another 
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valuable resource that allowed much of the other work described in this thesis to be 

performed. The importance of this work has been recognised by invitations to speak at 

the European CF Society Basic Science Conference and the EuroCare CF ‘Workshop 

on Epithelial Cells from Lung: Production, Cultivation and Characterization’ in 2008 

and led to the publication of a peer-reviewed paper. (Brodlie et al., 2008a) (Brodlie et 

al., 2010e) 

 

9.2.2. The role of interleukin-17 in cystic fibrosis lung disease 

 

IL-17 is known to be pivotally involved in the accumulation and associated activity of 

neutrophils in the bronchoalveolar space and is important in pulmonary host defense. 

(Linden et al., 2005, Aujla et al., 2007) This is achieved indirectly via the local release 

of neutrophil-mobilising factors, including CXC chemokines, from cells resident in the 

lung. (Linden et al., 2005) IL-17 also increases the expression of the mucin genes 

MUC5AC and MUC5B by bronchial epithelial cells in vitro. (Chen et al., 2003) IL-17 

is therefore linked to neutrophilic inflammation and mucus excess, which are two of the 

key features of CF lung disease.  

 

A great deal of work in the literature has focussed on TH-17 lymphocytes, a recently 

described novel CD4+ TH subset, as the principal source of IL-17 in biological systems. 

This is clearly of huge interest and relevance because IL-17 in this context represents a 

strategic link between acquired and innate immunity. (Glader et al., 2010) However, γδ 

T cells and natural killer T cells have also recently been identified as producing IL-17. 

(Michel et al., 2007, Roark et al., 2008) In addition cells from the myeloid lineage have 

also been shown to produce IL-17, including mast cells in human rheumatoid arthritis 

synovium and neutrophils in human alcoholic liver disease and rodent models of 

lipopolysaccharide-induced airway inflammation, renal iscahemia-reperfusion injury 

and p-ANCA positive vasculitis. (Hueber et al., 2010, Lemmers et al., 2009, Ferretti et 

al., 2003, Li et al., 2010, Hoshino et al., 2008) 

 

In the work described in this thesis I have shown using immunohistochemistry that 

expression of IL-17 is raised in the lower airway epithelium of people with advanced 

CF lung disease compared to those with PH. Furthermore, levels of IL-17 were raised in 

airway lavage fluid from explanted CF lungs compared to bronchoscopic BAL from 
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healthy volunteers. Another important finding was that IL-17 was consistently 

immunolocalised to mucosal neutrophils that stained positively for the transcription 

factor RORγ. This is the first description of neutrophils as a potential source of IL-17 in 

the human airway. In proof-of-principle experiments I went on to show that stimulation 

of PBECs from people with CF with IL-17 led to an increase in production of the pro-

neutrophilic cytokines IL-8, IL-6 and GMCSF. IL-6 is known to be critical in the 

differentiation of TH-17 cells and along with the suggestion that neutrophils themselves 

are a potential source of IL-17 in the airway a novel paradigm emerges of a positive 

feedback loop of neutrophilic inflammation. Figure 92 illustrates the potential positive 

feedback loop of neutrophilic inflammation involving IL-17 in a CF airway. 

 

 
 

Figure 92. Illustrative diagram of potential positive feedback loop of neutrophilic 

inflammation involving interleukin-17 in cystic fibrosis airway 

Abbreviations: Ep. Epithelium, IL. Interleukin, DC dendritic cell, N neutrophil,  
Pa Pseudonas aeruginosa. 
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9.2.3. Ceramide and cystic fibrosis lung disease 

 

The sphingolipid ceramide is a ubiquitous component of cell membranes. In addition 

ceramide-enriched membrane domains are important in interactions with pathogens and 

intracellularly sphingolipids are key second messengers in several signalling cascades, 

most notably with regard to cell fate. (Uhlig and Gulbins, 2008) 

 

Teichgraber et al. (2008) recently reported that CFTR-deficient mice accumulate 

ceramide in airway epithelial cells and that this led to chronic inflammation, death of 

epithelial cells and deposition of DNA in the airways and susceptibility to P. 

aeruginosa infection. Importantly all of these features could be reversed by systemic, 

and in a later paper nebulised, treatment with the acid sphingomyelinase inhibitor 

amitriptyline. (Becker et al., 2010b, Teichgraber et al., 2008) Accumulation of ceramide 

was demonstrated qualitatively in nasal epithelial cells from people with CF and in a 

limited number of lower airway sections. (Teichgraber et al., 2008) 

 

In direct contrast researchers from Canada have reported low levels of ceramide in the 

organs and plasma of a different CFTR-deficient mouse that could be corrected by 

treatment with fenretinide. (Guilbault et al., 2008a) The same group also found reduced 

levels of ceramide in the plasma of people with CF. (Guilbault et al., 2008b) 

 

Proposed explanations for this divergence in the literature include variations between 

strains of CFTR-deficient mice, the effects of high-fat animal feeds and different 

techniques used to measure ceramide. (Pier, 2008) A definitive explanation is yet to be 

established. Ceramide truly represents a family of around 50 molecularly distinct 

species. (Novgorodov and Gudz, 2009) There is evidence that the relative levels of 

individual ceramide species is important in cellular homeostasis and this is likely to be 

true in the context of ceramide in CF. (Wooten-Blanks et al., 2007, Brodlie et al., 

2010b) In this context, different measurement techniques will clearly impact on the 

interpretation of results. It is certain however that further translational studies are 

warranted and in particular relating to the lower airway in humans with CF. 
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In the work described in this thesis I have demonstrated that ceramide is increased in the 

lower airway epithelium of people with advanced CF lung disease. This was shown in 

comparison to PH and unused lung donors using immunohistochemistry with two 

different ceramide antibodies. Across all disease groups, staining for ceramide was 

increased in people colonised with P. aeruginosa and was correlated with the neutrophil 

markers neutrophil elastase and myeloperoxidase. Furthermore, levels of the ceramide 

species C16:0, C18:0 and C20:0, but not C22:0, were increased in lung homogenates of 

CF lungs compared to PH measured using the independent technique of HPLC-MS. 

These findings provide further evidence to support the ‘ceramide accumulation 

hypothesis’ suggested by the Gulbins group and add weight to the argument that 

ceramide may represent a potential therapeutic target in CF lung disease.  

 

9.2.4. Reticular basement membrane thickness in cystic fibrosis lung disease 

 

Thickening of the sub-epithelial RBM is a recognised feature of airway wall 

remodelling in asthma. (Ward et al., 2002, Payne et al., 2003) Eosinophilic 

inflammation has been implicated in its pathogenesis via the maintenance and 

progression of aberrant airway tissue injury and repair. (Holgate and Polosa, 2008) 

Airway remodelling has also been implicated in the pathogenesis of CF lung disease 

and RBM thickening has been described in endobronchial biopsies from children with 

CF. (Hilliard et al., 2007) Other researchers, in studies involving only small numbers of 

patients, have described a thinned RBM in children and adults with CF or thickening 

only in association with an infective exacerbation. (Durieu et al., 1998, Wojnarowski et 

al., 1999) Tissue sampling, fixation, staining and measurement techniques are all likely 

to impact on the results of such studies. (Jeffery et al., 2003) To the best of my 

knowledge RBM thickness has not been investigated in advanced CF lung disease. 

 

In the work described in this thesis I have shown that RBM thickness is increased in 

advanced CF lung disease compared to measurements in endobronchial biopsies from 

healthy volunteers. There was no apparent correlation between number of mucosal 

eosinophils or age at time of transplantation and RBM thickness in this dataset.  
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9.2.5. Experimental controls 

 

As has been outlined in this thesis a non-suppurative disease comparator (pulmonary 

hypertension) was used for the IL-17 work and in the case of the ceramide chapter 

sections from unused lung donors (previously healthy and objectively free of significant 

lung fibrosis or inflammation) were also used. These control groups were chosen largely 

due to logistical considerations and the availability of tissue for research use in our 

transplant centre. The ideal control group for many of the experiments would have been 

tissue and samples from healthy volunteers however there are obvious limitations in the 

availability of such tissue and constraints with in the scope of a PhD project. 
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9.3. Potential future work 

 

9.3.1. Development of a method to culture primary bronchial epithelial cells from 

the lungs of people with cystic fibrosis removed at the time of transplantation 

 

PBECs harvested from explanted CF lungs are by definition only representative of 

advanced CF lung disease. As a paediatrician I am acutely aware of the spectrum of 

severity and progressive nature of CF lung disease and therefore primary cellular 

models that reflect less advanced stages of disease are also vitally important. This may 

be achieved by opportunistic brushing of the lower airway at the time of flexible 

bronchoscopy or other general anaesthetic for a clinical indication. (McNamara et al., 

2008) An alternative approach is to sample nasal epithelial cells from the upper airway, 

which is clearly a more accessible method with the potential for repeated sampling. A 

related and important question however is: how representative of the lower airway are 

nasal epithelial cells and indeed are cells from different anatomical locations in the 

lower airway comparable? In the context of advanced CF lung disease the resource of 

explanted lungs represents a potentially useful tool to investigate these questions. A 

greater understanding of disease processes at the early stages of CF lung disease would 

allow the development of interventions with the potential to maintain lung function in 

the normal range. 

 

There is also potential to use pieces of fresh intact large airway from explanted CF 

lungs to perform electrophysiology experiments in mini-Ussing chambers or real-time 

cilia or mucus studies. (Derichs, 2009, N'Dow et al., 2005) 

 

Some of the greatest challenges in the continuation of the culturing of PBECs from 

explanted CF lungs will arguably relate to logistics and infrastructure. To date the 

programme has relied on a permanent on-call commitment from myself and funding for 

this form of core resource is often difficult to obtain outside of North America. 
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9.3.2. The role of interleukin-17 in cystic fibrosis lung disease 

 

There are a number of potential future avenues for research leading from this work. In 

relation to CF lung disease specifically, larger scale BAL and tissue-based studies are 

warranted across the spectrum of severity of disease. Of interest it has been reported 

that in children with earlier stages of CF lung disease the inflammatory infiltrate of the 

endobronchial mucosa is dominated by lymphocytes with neutrophils only 

predominating in the airway lumen. (Tan et al., 2009) This is in contrast to my findings 

in advanced CF lung disease of intense neutrophilic inflammation of the airway mucosa, 

for example in Figure 60. Using dual staining CD4+ IL-17+ presumed TH-17 cells have 

also been demonstrated in the airway mucosa of endobronchial biopsies from children 

with CF and non-CF bronchiectasis. (Tan et al., 2009) It is plausible therefore that TH-

17 cells may be more important in the pathogenesis of the early stages of CF lung 

disease than in advanced disease, although this is pure conjecture. 

 

The suggestion from my work that neutrophils themselves may be a source of IL-17 is 

potentially very significant but requires further investigation. Taken with the evidence 

that I found that IL-17 leads to the increased production of pro-neutrophilic mediators 

from CF PBECs the possibility of a novel vicious cycle of inflammation emerges in 

advanced CF lung disease. This could also be of relevance to other neutrophilic lung 

pathologies such as non-CF bronchiectasis, asthma or bronchiolitis. 

 

At a more fundamental level ex vivo experiments using isolated neutrophils are required 

to investigate IL-17 transcription and translation. Investigation of relevant factors 

involved in the production of IL-17 by neutrophils should also be performed. The most 

accessible source of neutrophils for such work would be those isolated from peripheral 

blood, however activated neutrophils from the lung compartment are likely to be harder 

to obtain but physiologically more relevant. (Sabroe et al., 2004, Zemans et al., 2009) 

  

I believe that a much greater understanding of IL-17 receptor biology and signalling 

pathways is required before serious consideration is made of the potential for 

antagonism. (Gaffen, 2009) However, at least at a superficial level, IL-17 is an 

attractive therapeutic target given the major role of neutrophilic inflammation in the 

pathogenesis of CF lung disease. As with any immunomodulatory strategy a balance 

would have to be struck between the benefits of reducing the harmful effects of 
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neutrophilic inflammation versus potential harm from compromising innate defenses 

against infection. (Sabroe and Whyte, 2007) A stark parallel is provided if one considers 

children with autosomal dominant hyper-immunoglobulin E syndrome (HIES). Children 

with HIES have very high levels of IgE and reduced neutrophil chemotaxis resulting in 

amongst other features, problems with S. aureus infection of the skin and lungs. 

(Grimbacher et al., 1999) The molecular basis of HIES has recently been shown to 

involve mutations in STAT3 and defective IL-17 signalling. (Holland et al., 2007) 

 

9.3.3. Ceramide and cystic fibrosis lung disease 

 

The potential role of ceramide in the pathogenesis of CF lung disease remains topical 

but highly controversial. The genuine complexities of studying lipids in biological 

systems have made this field a particularly difficult one. (Becker et al., 2010c) In my 

opinion a larger scale study is required to provide a definitive answer about levels of 

individual ceramide species in the human CF lower airway epithelium. This could 

potentially be achieved using a modern imaging modality such as matrix-assisted laser 

desorption and ionization mass spectrometry. (Fuchs et al., 2010) 

 

The hypothesis put forward by Teichgraber et al. involving impaired acidification of 

intracellular vesicles in the presence of defective CFTR to explain the accumulation of 

ceramide has been challenged. (Teichgraber et al., 2008, Haggie and Verkman, 2009b) 

One potential explanation for the divergent findings however relates to different 

methods used to measure vesicular pH. (Becker et al., 2010a) A method that involves 

the endocytosis of a pH-sensitive marker will clearly only measure the pH of 

endocytotic vesicles and it is suggested that CFTR may not be involved in the 

regulation of this subset of vesicles. Clearly a great deal of careful in vivo laboratory 

work is required in this complex area to resolve this issue in the future. 

 

From a clinical perspective the most attractive aspect of this area of work is the 

potential to antagonise the accumulation of ceramide with acid sphingomylinase 

inhibitors. The Gulbins group have demonstrated that acid sphingomyelinase inhibitors, 

including amitriptyline, amlodipine and fluoxetine, delivered via nebuliser can 

normalise ceramide levels, pulmonary inflammation and susceptibility to P. aeruginosa 

in CFTR-deficient mice. (Becker et al., 2010b) Clinical evidence of the use of 
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amitriptyline in people with CF is largely anecdotal aside from a single n=4 placebo-

controlled, double-blinded crossover trial and linked n=19 14 day phase II trial. (Becker 

et al., 2010b, Riethmuller et al., 2009) In this study amitriptyline was well tolerated 

orally and its use was associated with a modest improvement in lung function. 

(Riethmuller et al., 2009) Clearly further trials are indicated with particular caution 

indicated with regard to potential toxic effects of tricyclic antidepressants and any 

deleterious impact on epithelial physiology and host defense of overinhibition of 

ceramide biosynthesis given its key homeostatic role. (Pier, 2008, Brodlie et al., 2010b) 

 

9.3.4. Reticular basement membrane thickness in cystic fibrosis lung disease 

 

The topic of airway remodelling in CF lung disease has received relatively little 

attention in the literature to date. This is despite histological evidence of structural 

airway remodelling in children with CF and demonstrably abnormal airway function in 

infants newly diagnosed clinically with CF. (Ranganathan et al., 2001, Hilliard et al., 

2007) This abnormal lung function does not improve despite intensive treatment, and 

the airway obstruction would therefore appear to be ‘fixed’. (Ranganathan et al., 2004)      

 

In contrast, aberrant epithelial wound repair and airway remodelling in other lung 

diseases, such as asthma, pulmonary fibrosis and obliterative bronchiolitis, has been the 

topic of intense study in recent years. (Gardner et al., 2010) Interestingly 

polymorphisms in TGF-β1 have been shown to be modifier genes for CF lung disease. 

(Collaco and Cutting, 2008) Increased concentrations of TGF-β1 have been detected in 

BAL from children with CF and levels found to correlate with neutrophil markers, 

reduced lung function, RBM thickness and disease activity. (Harris et al., 2009, Hilliard 

et al., 2007) Little is known about the potential mechanisms behind these observational 

findings and further research in this general area is clearly warranted. The potential role 

of TGF-β1 driven epithelial-mesenchymal transition in CF lung disease has also not 

been investigated. (Ward et al., 2005, Borthwick et al., 2009) Markers of epithelial 

remodelling have been linked to the relative expression and cellular distribution of 

CFTR in nasal polyps from wild type and p.Phe508del homozygous individuals 

suggesting that airway remodelling may play a role in the regulation of CFTR 

expression. (Dupuit et al., 1995) 
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9.3.5. Summary 

 

The work described in this thesis has led to the establishment of an ex vivo PBEC 

culture model to study CF lung disease. Using primary lung tissue and the PBEC model 

I have provided insights in to the possible roles of IL-17, ceramide and airway 

remodelling in the pathogenesis of CF lung disease, thus contributing to the scientific 

literature and suggesting potential therapeutic targets and areas for future translational 

research.   
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9.4. Reflection 

  

Over the course of this PhD I have gained experience in many of the key core skills and 

techniques used in translational respiratory research.  

 

These have included:  

• processing and standardising of BAL  

• sampling and fixation of lung tissue and associated sectioning, tinctorial staining 

and immunohistochemistry 

• image analysis techniques for semi-quantitative 

histology/immunohistochemistry 

• primary airway epithelial cell culture and associated laboratory techniques 

• ELISA and associated techniques 

• principles of HPLC-MS 

• principles of electrophysiology 

• compliance with the Human Tissue Act 

• involvement in a randomised-control trial 

• ethics application procedure 

• informed consent, good clinical practice training 

• setting-up of collaborations 

• writing of grant applications and scientific papers 

• MRC fellowship interview 

• oral and poster presentation at local, national and international meetings 

• review of scientific papers 

• organisation and self-discipline required for a successful research project 

  

I have been fortunate to have received excellent supervision and to have enjoyed access 

to and involvement in an active translational respiratory research programme in 

Newcastle. This has included my involvement in a number of other areas of research in 

addition to the work formally presented in this thesis. This has included the consenting 

and organisation of samples from lung transplant patients undergoing surveillance 

bronchoscopies, consenting and procurement of explanted lungs for a tissue bank, 

mitochondrial studies of paediatric cardiac tissue and investigation of aspiration as a 

source of lung injury in CF. Over the course of my PhD I have written several 
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clinically-based case reports and an editorial, in keeping with my planned career path as 

a paediatric respiratory clinician. This experience has established a firm platform from 

which I hope to build an academic clinical career and in the short-term to pursue some 

of the research areas outlined in section 9.3. 
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