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! I!

 

Abstract 

 

Mitochondria are cellular organelles that are present in all nucleated eukaryotic cells 

and contain their own genome (mtDNA). Mitochondrial DNA encodes beside 13 

polypeptides and 22 tRNAs, 2 ribosomal RNAs. All mtDNA encoded proteins are 

synthesized within the mitochondrial matrix and essential parts of intra membrane 

multi-enzyme complexes, involved in oxidative phosphorylation. Mitochondrial protein 

synthesis is therefore essential for life. This process, however, is still poorly 

understood. Around 100 mitoribosomal proteins, initiation and elongations factors are 

involved in mitochondrial translation but the exact mechanisms of how the 

mitochondrial 55S monosome and the constituted subunits assemble remain obscure. 

 

In an attempt to identify factors that play a role in mitoribosome assembly, proteomic 

analyses of affinity purified complexes using mtRRF were performed (Rorbach et al., 

2008). One identified protein was ERAL1, a KH domain containing GTPase with 

sequence similarity to Era, a eubacterial protein involved in maturation of the 16S-

rRNA. SiRNA mediated ERAL1 depletion experiments in human cell lines were 

established and used to investigate the molecular function of the protein. As data in 

this thesis show, ERAL1 is a mitochondrial protein and is essential for mammalian 

cells. ERAL1 acts in mitochondria as a 12S-rRNA chaperone via binding at a 

conserved stem loop structure close to the 3’ terminus of the 12S-rRNA and loss 

affects the assembly of the small mitoribosomal subunit. Depletion of ERAL1 causes its 

major growth phenotype, partly by inducing apoptosis. Thus the mitochondrial oxidative 

phosphorylation machinery is not affected during ERAL1 depletion. 

ERAL1 is therefore an essential protein in eukaryotic cells, involved in 12S-rRNA 

maintenance. 
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Chapter 1 Introduction 

 

Mitochondria were discovered as separate unique cellular organelles, present in 

eukaryotic cells in the middle of the 19th century. In the 1950’s the ultra-structure of 

mitochondria was discovered by high-resolution electron microscopy. 

Soon afterwards mitochondria were identified as the main cellular energy suppliers by 

using transmembrane proton gradients generated from the final stage of oxidative 

metabolism of foodstuffs such as sugars and fats to produce ATP by forming 

phosphodiester bonds between ADP and inorganic phosphate. Our interest in 

understanding the functional mechanisms of mitochondria has increased rapidly during 

the last few decades and more cellular mechanisms such as ion-homeostasis, iron-

sulfur-metabolism, apoptosis and cell cycle regulation have become associated with 

mitochondrial functions. In addition to housing key metabolic enzymes for oxidising fats 

and sugars, enzymes involved in other biological processes such as synthesis of 

cellular amino acids, phospholipids, pyrimidine biosynthesis and numerous biological 

cofactors are partly or entirely located in mitochondria. It soon became clear that 

alterations in mitochondrial functions are responsible for a range and variety of human 

diseases. 

 

In contrast to other vertebrate organelles only the nucleus and mitochondria contain 

their own DNA. The human mitochondrial DNA (mtDNA) is a circular, covalently closed 

DNA molecule of 16,569 bp and encodes 37 genes whose products include 13 

essential proteins of the mitochondrial oxidative phosphorylation machinery 

(OXPHOS). The remaining ~ 76 subunits of the OXPHOS machinery are nuclear 

encoded and must be imported into the organelle. Furthermore, all proteins that are 

involved in mitochondrial gene expression, including mtDNA replication, transcription 

and translation are encoded in the nucleus. A growing interest of the scientific world in 

mitochondrial gene expression and regulation during the last few years has shed light 

on some of the mechanisms involved in mitochondrial gene expression. However, a 

fundamental understanding of all aspects of the mitochondrial gene expression 

machinery is still elusive but is essential if we are trying to explain the role of 

mitochondrial dysfunction in numerous human diseases. 
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1.1 Origins of mitochondria 

 

The human cell is a symbiosis of two forms of life where one is represented by the 

nucleus-cytosol and the other the mitochondrial component. It is now in general 

accepted that the mammalian cell we see today arose from a single endosymbiontic 

event 1 – 2 billion years ago (Margulis, 1970; Margulis, 1982; Gray, 1999; Gray et al., 

1999). The species that provided the nucleus-cytosol part emphasised its structure and 

took over many functions of the alpha-proteobacterial ancestor of the modern day 

mitochondrion, including the majority of genomic information (Wallace 1982; Gray et 

al., 1999; Wallace, 2005). The human mitochondrion has retained only a small subset 

of 37 genes in the form of a circular DNA molecule with a size of ~ 16.5 kb (Anderson 

et al., 1981) whose gene products are specialised in coupling respiration to the 

production of ATP, supplying the main energy for the cell. 

Within the last decade, complete sequences of many mitochondrial genomes have 

been published including Rickettsia prowazekii, which is considered to be the closest 

ancestor of human mitochondria (Andersson et al., 1998, Gray et al., 1999). 

 

 

1.2 Structure of mitochondria 

 

The mitochondrial structure was visualised using high-resolution electron-microscopy 

from Palade (1952) and Sjöstrand (1956), both recognised mitochondria as multi-

compartment organelles. In many cells, mitochondria form elongated tubules with a 

length of 1.0 – 2.0 µm and width of 0.2 – 1.0 µm that are changing size and shape or 

even moving along cytoskeletal structures (Bereiter-Hahn and Voth, 1994; Nunnari et 

al., 1997). In fact, mitochondria are highly dynamic organelles within the cell and 

interact with other cell organelles like the endoplasmic reticulum (ER) (Mannella et al., 

1998; Mannella 2000; Pinton et al., 2008) or even with each other being able to form 

large reticular networks during fusion or budding off during fission processes. The 

process of mitochondrial dynamics is clearly essential, and defects in components of 

the fusion process such as Mfn2 and OPA1 can cause diseases such as Charcot-

Marie-Tooth 2A or dominant optic atrophy (reviewed by Hoppins et al., 2007). Further, 

both proteins have been associated with apoptosis regulation in mammalian cells 

(Frezza et al., 2006; Cipolat et al., 2006; Karbowski and Youle, 2003). 

 

The existence of two mitochondrial membranes (outer- and inner membrane) enables 

the formation of two aqueous compartments, denoted the intermembrane space and 

the mitochondrial matrix (Figure 1.1). 
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Figure 1.1: Electron microscopy image of a mitochondrion and 3D model. Left panel; 

Electron microscopy (EM) was used to visualise the mitochondrial structure of chicken 

cerebellar cells. Various structural features are enlarged, presented with size indications around 

the image and explained in the text. Right panel; 3D model calculated of EM images as 

presented in (A). Images were taken from Frey and Mannella (2000). 

 

Both mitochondrial membranes harbour different enzymatic complexes and functions. 

The outer mitochondrial membrane carries the TOM complex, the main entry gate into 

mitochondria and also the SAM complex responsible for integration of proteins in the 

outer membrane (reviewed by Neupert and Herrmann, 2007 and Chacinska et al., 

2009). Further, the outer membrane is involved in fission and fusion processes, 

apoptotic regulation as well as in signaling pathways and is an interacting point with 

other cellular organelles such as the ER (reviewed by Ryan and Hoogenrad, 2007 and 

Frey and Mannella, 2000). 

 

In contrast the inner mitochondrial membrane is protein rich and harbours oxidative 

phosphorylation complexes (OXPHOS), their assembly structures and protein 

degradation machineries such as membrane bound AAA-proteases (Nolden et al., 

2005). In mammals, five complexes are involved in OXPHOS (complex I – V). 

Additionally a large number of channel forming translocases are integrated in the inner 

mitochondrial membrane lipid bi-layer (Arco and Satrustegui, 2005) such as the TIM23-

PAM complex (Chacinska et al., 2005) facilitating further transport of proteins to the 

matrix or the TIM23SORT complex (van der Laan et al., 2006, Chacinska et al., 2010), 

responsible for protein integration into the inner mitochondrial membrane, respectively. 
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The two mitochondrial membranes are separated from each other by the 

intermembrane space. This region is further divided into intermembrane boundary, a 

small space between outer and inner membrane, and cristae, which form long 

projections into the matrix (reviewed by Frey and Mannella, 2000). Further mobile 

redox-enzymes, cofactors and apoptosis associated factors are located in the 

intermembrane space (Koehler et al., 2006; Webb et al., 2006). 

 

The mitochondrial matrix harbours the majority of mitochondrial proteins especially 

enzymes of metabolic processes as the TCA cycle or fatty-acid oxidation and can 

reach protein concentrations up to 560 mg/ml (reviewed by Ryan and Hoogenraad, 

2007). Further all protein complexes involved in the mitochondrial gene expression 

machinery such as mtDNA replication and transcription, the mitochondrial ribosome, 

translational activators or repressor proteins and protein folding complexes are located 

in the matrix. 

 

It has to be emphasised that mitochondrial compartments are functionally and 

physically connected to each other. Within the last few years efficient bioinformatic 

algorithms were developed to enable a more precise modeling of electron microscopy 

(EM) images. EM 3D tomography suggests a restriction of internal compartments. 

Small sections of the outer and inner membrane seem to be closer together then 

others originally denoted as “contact sides” (Hackenbrock, 1966) and are located at the 

inner boundary membrane close to the cristae base (Frey and Mannella, 2000). Further 

cristae are connected to the inner boundary membrane via cristae junctions (Perkins 

and Frey, 2000). 

As reviewed by Westerhoff et al. (1988), these membrane connections enable 

mitochondria to control diffusion between internal compartments. Therefore, the 

mitochondrial membrane morphology might be able to regulate the redox-reactions 

involving release of cytochrome c from the intermembrane space during apoptosis. 

Thus, mitochondrial membranes are dynamic compartments, able to response to 

alterations of metabolic conditions as already suggested in 1966 from Hackenbrock. 
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1.3 The role of mitochondria in energy metabolism 

 

The main energy source of the cell is provided by the oxidative phophorylation system, 

found within mitochondria. The respiratory chain in human mitochondria consists of 

four multi-subunits enzyme complexes, designated as NADH-coenzyme Q (CoQ) 

oxido-reductase or complex I; succinate-CoQ oxido-reductase (complex II), ubiquinol-

cytochrome c oxido-reductase (complex III) and cytochrome c oxidase (complex IV). 

Additionally two electron carriers are involved, a lipophilic quinone, designated 

coenzyme Q (CoQ) or ubiquinone and one hydrophilic haem-protein, cytochrome c. 

This multi-enzyme system carries electrons from complex I and II to complex IV and 

the free energy released on electron transfer is used by complex I, III and IV to create 

an electrochemical proton gradient between the mitochondrial matrix and the 

intermembrane space. Electrons finally reduce molecular oxygen to water at complex 

IV. Protons in the intermembrane space flow back as a consequence of the proton 

gradient through the F0 component of complex V which is embedded in the membrane, 

causing a rotation of the F1 unit, leading to the synthesis of ATP from ADP. Complex I 

– IV in addition to complex V constitute the oxidative phosphorylation system 

(OXPHOS) (Figure 1.2). 

The interest in mitochondrial oxidative phophorylation over the last few decades, forced 

in part by association of defects in the OXPHOS machinery with human decreases, 

has been unable to completely explain these mechanisms at the molecular level 

although there are now crystallographic images of mammalian complexes II, III and IV, 

plus the F1 component of complex V and very recently a structure of the complex I 

orthologue from the bacteria Thermus thermophilus published (Sun et al., 2005; Iwata 

et al., 1998; Tsukihara et al., 1996; Abrahams et al., 1994; Efremov et al., 2010). 

However, using new methods development such as high-resolution X-ray 

crystallography or Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE) closer 

views of the biochemical functionality could be obtained. 

The basic substrate to form finally ATP comes from the glycolytical pathway in the 

cytosol, where glucose a 6-carbon monosaccaride is oxidised to the monocarboxyl acid 

pyruvate. Pyruvate can be transported through the outer and inner mitochondrial 

membrane to the matrix side and reacts with coenzyme A to produce acetyl-CoA, 

which is further oxidised in the TCA cycle. Acetyl-CoA is also produced during fatty-

acid metabolism (!-oxidation). During the TCA cycle three molecules of NADH+H+ and 

one molecule FADH2 are produced. These reduced cofactors donate electrons at 

complex I or II, respectively. 
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mtDNA        7                      0               1                3                 2 

nDNA        39                     4              10              10               14 

 

Figure 1.2: Schematic overview of the mitochondrial OXPHOS system in human 

mitochondria. Electrons fed into complex I from NADH+H
+
 or into complex II from FADH2 are 

transferred via coQ to complex III and are eventually transferred to molecular oxygen in 

complex IV to form water. Released energy during the electron transport is used by complex I, 

III and IV to pump protons from the mitochondrial matrix to the intermembrane space across the 

inner membrane (gray arrows), creating a proton gradient, which is used by complex V to 

generate ATP. Recent data suggest a clustering of several complexes in supercomplexes, 

indicated at the right. For a more detailed explanation of the OXPHOS machinery see text. 

Mitochondrial (mtDNA) and nuclear (nDNA) encoded proteins are marked above the image. The 

image is taken from Seelert et al. (2009). 

 

NADH is the electron source for complex I, the largest and most complicated OXPHOS 

complex. The prokaryotic complex I contains 14 proteins (“core subunits”) (Weidner et 

al., 1993). All these central subunits have orthologues in mammalian complex I 

(Gabaldon et al., 2005) and seven of these proteins (ND1 – ND6 and ND4L) are 

encoded by the mtDNA (Carroll et al., 2003, Ugalde et al., 2004). Together with at least 

39 additional proteins (Hinchliffe and Sazanov, 2005; Scarpulla, 2008), these core 

subunits form a complex of ~ 1 MDa in mammals (Hirst et al., 2003; Caroll et al., 2003). 

The fine structure of the mammalian complex I is still elusive, however it has been 

suggested that complex I contains one hydrophilic peripheral arm facing the 

mitochondrial matrix and another hydrophobic membrane integrated module 

(containing ND1 – ND6 and ND4L), forming complex I in a “L-shaped boot” structure 

(Friedrich and Bottcher, 2004; Yagi and Matsuno-Yagi, 2003; Clason et al., 2010; 

Morgan and Sazanow, 2008; Efremov et al., 2010). 

Electrons are fed into complex I on reduction of the NADH by FMN a non covalent 

bound flavin mononucleotide and are passed through the complex by a serious of eight 
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redox-active iron-sulfur (Fe-S) clusters (Sazanov, 2007). The final electron acceptor is 

the lipophilic ubiquinone (CoQ), which is reduced to ubiquinol accepting two electrons. 

The transfer of two electrons is energetically coupled by pumping four protons from the 

matrix to the intermembrane space. 

 

Complex II is entirely nuclear encoded and is composed of four subunits (reviewed 

from Rutter et al., 2010). The complex is anchored in the inner mitochondrial 

membrane and contains two soluble factors SdhA, a flavoprotein and SdhB, an Fe-S 

cluster containing enzyme. These soluble proteins have succinate-dehydrogenase 

activity and catalyse oxidation of succinate to fumarate, producing FADH2 in the TCA 

cycle. Electrons from FADH2 are transported trough the membrane integrated, Fe-S 

cluster containing proteins SdhC and SdhD, finally reducing CoQ. 

 

The ubiquinol-cytochrome c oxido-reductase complex (complex III or bc1 complex) is 

localised in the inner mitochondrial membrane and contains a highly conserved core 

unit comprised of the highly hydrophobic cytochrome b associated with the trans-

membrane proteins of the Rieske iron-sulfur protein and cytochrome c1. It can only 

function as a dimer (Berry et al., 2004). Electron transport through complex III is also 

known as the Q-cycle. 

The reduction of ubiquinon to ubiquinol at complex I and II requires two electrons and 

protons. Ubiquinol is oxidised at the P centre of cytochrome b and is transferred 

througth the Rieske protein and cytochrome c1 to cytochrome c. The second oxidised 

electron of ubiquinol moves over the bl to the bh heam-centre and reduces ubiquinone 

to ubisemiquinone. A further ubiquinol oxidation at the P centre of cytochrome b 

donates the missing electron to further reduce ubisemiquinone to ubiquinol. The 

deprotonation of ubiquinol at the P centre and the protonation of ubiquinone at the N 

centre drives the transport of two protons througth complex III to the intermembrane 

space, a movement that is further forced by the negative charged electrons through the 

bl and bh heam-centres. 

 

Cytochrome c oxidase (complex IV) is also embedded in the inner mitochondrial 

membrane and harbours beside 10 nuclear encoded subunits three encoded by the 

mtDNA (COX1, COX2 and COX3). The X-ray structure of complex IV from bovine 

heart (Tsukihara et al., 1996) identified these three proteins as the catalytic core of the 

enzyme. COX2, a two copper atom containing protein (CuA centre), acquires two 

electrons from reduced cytochrome c and passes them to COX1. The electrons are 

bound by COX1 at two cytochromes (a / a3) and the copper B (CuB) centre. This 

reactive centre binds also molecular oxygen that functions as an electron acceptor and 
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is reduced to water. To reduce one molecule O2, four cytochrome c molecules have to 

be oxidised and the electrical force is used to pump four protons into the 

intermembrane space. 

 

The ATP synthase or F0F1-ATPase (reviewed by Yoshida et al., 2001 and Fernández-

Vizarra et al., 2008) is a large complex of ~ 500 kDa and highly conserved through 

bacteria, plants and humans (Kanazawa et al., 1981; Walker et al., 1985). The complex 

contains 16 protein species in human, two encoded by the mtDNA (ATPase6 and 

ATPase8) that are arranged further into two large sub-complexes, a membrane-

embedded F0 part and a F1 part (~ 380 kDa), facing the mitochondrial matrix. The two 

parts are connected by a central stalk that is formed by a subset of F1 components (", 

#, $) and a peripheral stalk (or stator) containing OSCP, F6, b and d subunits. The F1 

sub-complex contains five kinds of subunits in stoichiometry %3!3"1#1$1 and the F0 

contains eight different proteins (a, b, c, d, e, f, g and A6L). 

Protons channeled through F0, force the central part of F0 to rotate and trigger the 

rotation of "$-unit of F1. The rotation of the "-subunit alternates, inducing other 

conformational changes, the structure of the !-subunits and forces ATP production. 

The active site of the matrix located F1 component binds ADP and mitochondrial 

phosphate, forming a phosphordiester bound by further rotation of the complex. The 

synthesised ATP is transported to the cytosol through the ADP / ATP translocase in 

exchange with ADP. 

 

Two different models proposed organisation of respiratory complexes in the inner 

mitochondrial membrane. The “randem diffusion model” (Hackenbrock et al., 1986) 

described OXPHOS complexes as randomly moving within the inner mitochondrial 

membrane and electrons transported between complexes by the mobile carrier 

ubiquinone / -ol and cytochrome c. The second model (solid model) suggests an 

organisation of complexes in larger structures to enable a quick transport of electrons 

through the OXPHOS machinery (reviewed by Lenaz and Genova, 2007). 

Supercomplexes, multi-complex units of OXPHOS components, in cells were already 

predicted by Hatefi et al. (1961) for complexes I – III and from Yu et al. (1974) for 

complex II – III. More recently Schägger and Pfeiffer (2000) reported the existence of 

supercomplexes in yeast and mammalian cells. Blue Native Polyacrylamide Gel 

Electrophoreses (BN-PAGE) together with a mild digitonin-solubilisation of 

mitochondria was used to investigate interaction of different complexes. Complex I 

seem to be nearly entirely associated with other complexes (Schägger and Pfeiffer, 

2001). Complex I and III form one supercomplex that is further assembled into two 

major supercomplexes (respirasomes) with different stoichiometries of complex IV 
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(I1III2IV1 or I1III2IV2). According this model, the OXPHOS machinery is highly organised 

and enables a very efficient coupling between cellular respiration and ATP synthesis. 

 

 

1.4 ROS and mitochondria 

 

The term ‘Reactive oxygen species (ROS)’ (or indeed reactive nitrogen species, RNS) 

is generally used to described O2-derived free radical species in cells (reviewed by 

Circu and Aw, 2010). ROS exist in cells both as O2-derived non-radical species - such 

as hydrogen peroxide (H2O2) and as damaging hydroxyl (HO!), peroxyl (RO2!) or 

alkoxyl (RO!) radicals. However the most common radical is the superoxide anion 

(O2
!!) and mitochondria are the major intracellular source of ROS. Although complex II 

was potentially associated with ROS production (Zhang et al., 1998) it is mainly 

generated at the level of complex I and complex III of the respiratory chain (Brand, 

2005). It has been postulated that as much as 0.2 - 2 % of the total mitochondrial 

consumed oxygen is regularly transformed to ROS (Boveris and Chance, 1973). 

The biochemical mechanism of how ROS in form of superoxide (O2
!!) is generated at 

complex I is not clear. It has been suggested that ROS is produced between the FMN 

and the rotenone-binding side (rotenone is a complex I inhibitor) or at one of the Fe-S 

centres (Herrero and Barja, 2000; Genova et al., 2001). 

ROS production at complex III is also controversial and still not fully understood but it is 

likely that superoxide (O2
!&) is produced by involving unstable semiquinone, which may 

occasionally donate electrons directly to oxygen (Rich and Bonner, 1978). However, 

changes of physiological stages such as altering the membrane potential (Korshunov 

et al., 1997) or the matrix pH (Lambert et al., 2004) can trigger ROS production. 

 

However, the OXPHOS machinery is by far not the only source of mitochondrial ROS. 

To date ~10 other potentially ROS generating mitochondrial systems have been 

described, distributed over all mitochondrial and cellular compartments (reviewed 

Andreyev et al., 2005). 

The outer membrane protein cytochrome b5 reductase oxidises cytosolic NAD(P)H and 

reduces cytochrome b5, naturally producing superoxide (O2
!&) at relatively high rates 

(Whatly et al., 1998). At the outer surface of the inner mitochondrial membrane ROS 

has been reported to be produced in the form of H2O2 by glycerol-3-phosphate 

dehydrogenase in mouse (Kwong and Sohal, 1998) as well as in Drosophila 

melanogaster (Miwa et al., 2004). Other ROS producers are the TCA cycle enzyme 

complexes such as aconitase, producing hydroxyl radicals (HO!) (Vasquez-Vivar et al., 

2000) in the mitochondrial matrix or enzyme complexes tightly associated with the 
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inner mitochondrial membrane like %-ketoglutamat dehydrogenase (%-KGDH) or 

pyruvate dehydrogenase are involved in generating superoxide (O2
!&) and hydrogen 

peroxide (H2O2) (Tretter and Adam-Vizi, 2004; Starkov et al., 2004). 

 

Several mechanisms have been developed during evolution to prevent damaging of 

cells by ROS. Cytochrome c previously described as a mobile component of the 

respiratory chain is capable of scavenging electrons directly from superoxide. The 

reduced cytochrome c is regenerated by complex IV (McCord and Fridovich, 1970). 

 

Superoxide radicals (O2
!!) are the target of the mitochondrial manganese-containing 

superoxide dismutase (MnSOD). The enzyme is located inside mitochondria and 

dismutates superoxide radicals to H2O2 protecting Fe-S cluster proteins (Gardner et al., 

1995). H2O2 per se is also toxic for cells and has to be detoxified by other enzymes. 

 

Catalase converts H2O2 in O2 and H2O. However, the removal of H2O2 by catalase is 

believed to be insignificant in comparison to glutathione peroxidase (Antunes et al., 

2002). The enzyme is ubiquitously expressed in tissues (Lenzen et al., 1996) and was 

detected in different cellular compartments, including mitochondria. Potentially, 

glutathione peroxidase is the main cellular ROS-defending component, however, data 

from knock-out mice suggested a less essential role (Spector et al., 1996; Cheng et al., 

1997; Ho et al., 1997; Cheng et al., 1998;). 

 

Although the existence of ROS in cells was often thought to be only damaging, recent 

evidence has shown that mitochondrial derived ROS plays an essential role in several 

cellular signaling pathways. ROS has been associated with signals involved in the cell 

cycle, cell proliferation, metalloproteinase function, oxygen sensing, protein kinases, 

phosphatases, transcription factors and apoptosis (reviewed by Brooks et al., 2004). 

 

However, a chronic exposure to free radicals can damage different mitochondrial 

components. Superoxide radicals are dismutated to H2O2 by the MnSOD. H2O2, in the 

presence of metal-ions, can be converted to the highly reactive hydroxyl radicals (HO!) 

via Fenton and/or Haber-Weiss reaction. ROS-mediated oxidative damage can affect 

most cellular component such as proteins, lipids or nucleic acids potentially contributed 

to the ageing process (Wei and Lee, 2002). 
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1.5 Mitochondria and apoptosis 

 

In contrast to single-cellular organisms multi-cellular organisms have enveloped a self-

demise mechanism, apoptosis. The destruction of infected, damaged or unwanted cells 

is necessary to ensure survival of healthy cells. The programmed cell death in human 

cells is divided in two main pathways, the extrinsic, mitochondrial independent pathway 

and the intrinsic. The apoptosis stimulation through the intrinsic pathway by ROS or 

mtDNA damage promotes mitochondrial permeability transition (PT) by forming a pore, 

reported as the point-of-no-return (Kroemer et al., 1995). The PT-pore spans both 

mitochondrial membranes and includes the voltage-dependent anion channel (VDAC), 

the adenine translocase (ANT) and the only permanent component and modulator 

cyclophilin D (Bains et al., 2005; Kokoszka et al., 2004; Schinzel et al., 2005). 

Mitochondrial mediated apoptosis follows two independent pathways (Figure 1.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Mitochondrial pathways of cellular apoptosis. Intramitochondrial stimuli (e.g. 

ROS) activate the release of proapoptotic proteins by permeabilisation of the outer 

mitochondrial membrane. In the cytosol the apoptosome complex is formed by cytochrome c 

and Apaf-1. This complex recruits and activates pro-caspase-9, hence activating effecter 

caspases (e.g. caspase-3) and initiating the final steps of apoptosis. To further enhance this 

pathway, complexes such as Smac/Diablo or Omi/HtrA2 inhibit anti-apoptotic proteins (IAPs). 

The caspase independent pathway is mediated by release of endonuclease G and the 

apoptosis inducing factor (AIF) from mitochondria. After reaching the cytosol both proteins 

translocate to the nucleus and mediate DNA fragmentation. The main regulatory factors are Bak 

and Bax protein containing complexes, for details see text. The image was adapted from Circu 

and Aw (2010). 

 

Extrinsic pathway 
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During the caspase independent pathway, release of mitochondrial proteins to the 

cytosol such as AIF (apoptosis inducing factor) and endonuclease G, signals directly 

through the cytosol to the nucleus and induces nuclear chromatin condensation and 

DNA fragmentation (Susin et al., 1999). 

The second mitochondrial initiated pathway, denoted caspase dependent pathway, 

involves release of complexes such as Smac/Diablo and Omi/HtrA2 as well as 

cytochrome c (Liu et al., 1996; Ryter et al., 2007). 

How cytochrome c exits the organelle is still under debate but two mechanisms have 

been proposed. First, the outer membrane bursts followed by matrix swelling and 

opening of a high-conductance channel in the inner membrane and loss of membrane 

potential (Bernardi, 1996). The second mechanism suggests a forced exit of 

cytochrome c by a yet unidentified pore in the outer membrane (Green and Reed, 

1998). The PT-pore had been supposed to be involved in cytochrome c release 

(Simuzu et al., 2001; Wang et al., 2001); however, other studies reported that the PT-

pore is not important (Basanez et al., 1999). Recent studies suggested an involvement 

and remodeling of cristae junctions, regulated by Opa1 containing complexes (Frezza 

et al., 2006; Yamaguchi et al., 2008; Yamaguchi and Parkins, 2009). Opa1 is the 

mammalian counterpart of the yeast Mgm1 protein, localised to the inner membrane 

and involved in mitochondrial fusion (reviewed by Hoppins et al., 2007). However, EM 

analysis of Xenopus leavis eggs showed that cytochrome c was released without any 

ruptures of the outer membrane (Kluck et al., 1999). Further, the apoptotic 

mitochondria retained a membrane potential and continued to import proteins, strongly 

suggesting a controlled release of cytochrome c from the mitochondrial inter 

membrane space to the cytosol (von Ahsen et al., 2000). 

 

Cytochrome c forms the apoptosome with apoptotic protease activated factor 1 (Apaf-

1) and recruits pro-caspase 9. This complex induces the cleavage of downstream 

effectors caspase-3 and -7. This simultaneously inhibits the Smac / Diablo - Omi / 

HtrA2 complex IAP (inhibitor of apoptosis protein), further enhancing caspase 

activation. 

 

The main regulators of the mitochondrial apoptosis induced pathways are members of 

the Bcl-2 family, which can be divided in two classes: anti-apoptotic Bcl-2 family 

members (e.g. Bcl-XL, Bcl-w, Mcl-1, Bcl-Rambo) and pro-apoptotic proteins, such as 

Bax, Bak and Bok (Cory and Adams, 2002). A third group, BH3-family proteins (e.g. 

Puma, Noxa, Bid, Bad) inhibit Bcl-2 anti-apoptotic proteins and act as pro-apoptotic 

factors (Youle and Strasser, 2008).  
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However, the main intracellular target regulators of apoptosis seems to be Bak and 

Bax, because neither activation of BH3 proteins only nor suppression of Bcl-2 proteins 

is sufficient to trigger apoptosis (Zong et al., 2001). Bax is a cytosolic monomer protein 

and translocates on apoptosis to mitochondria (Wolter et al., 1997; Hsu et al., 1997) 

forming oligomers (Antonssen et al., 2001). Also the Bak protein oligomerises during 

apoptosis but is bound permanently as a monomer to the mitochondrial outer 

membrane (Griffiths et al., 1999). 

 

The intrinsic pathway can also be activated by cytosolic factors. A significant caspase 8 

activation in the cytosol mediates a direct activation of caspase 3 and induces 

apoptosis. However, a low amount of activated caspase 8 cleaves the Bid protein and 

the activated tBid interacts with the Bax / Bak pro-apoptotic system, triggering 

apoptosis through the caspase dependent pathway (Barnhart et al., 2003). 

 

 

1.6 A small circle, important for life – mtDNA 

 

Before the symbiosis of the proto-mitochondrion and the proto-host cell, both contained 

the genetic information sufficient for independent survival. The nucleus-cytosolic 

component subsumed most of the proto-mitochondrial functions during evolution and 

mitochondria to date have become highly specialised energy tranducing organelles. 

 

A few genes are still retained in mitochondria as the mtDNA (Nass and Nass, 1963) 

(Figure 1.4). The human mitochondrial DNA, in somatic cells is present in ~1000 – 

10,000 copies (Smeitink et al., 2001), is a covalently closed, double stranded circle of 

16,569 bp (Anderson et al., 1981). However, mtDNA contains a non-coding region, the 

D- or displacement loop and it is believed that the majority of mtDNA in this region is in 

a triplex formation at any time. 
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Figure 1.4: Map of the human mitochondrial genome. The human mitochondrial genome 

(mtDNA) has a size of ~16.6 kb. The two strands contain different amounts of G and C 

nucleotides and thus behave differently in caesium chloride gradients, denoted “heavy (H) 

strand” (blue) and “light (L) strand” (black). Thirty-seven genes are encoded in mtDNA, 13 

proteins, 2 rRNA and 22 tRNAs (brown strings). In addition to the individual genes is the D-loop 

the only major non-coding region, present in a triplex structure. Although the H-strand origin 

(OH) for mtDNA replication is placed in the D-loop region, the origin of the L-strand (OL) is still 

under dispute and was suggested to be ~11 kb apart from OH. Mitochondrial transcription starts 

at three independent promoters, two on the H-strand and one on the L-strand. The image was 

taken from Scarpulla (2008). 

 

Mitochondrial DNA contains 37 genes, which encode 22 tRNAs, 2 ribosomal RNAs and 

13 proteins, all essential subunits of the multiple enzyme complexes needed for 

oxidative phosphorylation (see 1.3) (Holt et al., 1990; Hofhaus and Attardi, 1995). The 

two mtDNA strands, owing to differential nucleotide composition (G and C nucleotides) 

are denoted “heavy strand” (H-strand) and “light strand” (L-strand) dependent on their 

buoyant densities in caesium chloride gradients (Kasamatsu and Vinograd, 1974). The 

L-strand encodes 8 tRNAs and one polypeptide, ND6. All other mtDNA genes are 

encoded on the H-strand. 

 

Human mtDNA lacks introns and genes are mostly separated by only a few nucleotides 

(Anderson et al., 1981, Montoya et al., 1982). Each polypeptide-encoding gene is 

flanked by at least one mt-tRNA encoding gene, described as the tRNA-punctuation 
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model (Ojala et al., 1981). However, genes encoding ATPase6 and ATPase8 as well 

as ND4 and ND4L have overlapping open reading frames. Moreover, a number of 

genes lack the termination codon for the open reading frame, which is completed post-

transcriptionally by poly(A)-addition (Ojala et al., 1981). 

The mtDNA contains a short (~ 1100 nt) triple-strand non-coding region, called the 

“displacement loop” or D-loop. Clayton (1982) proposed a model where the origin of 

the H-strand (OH) is located in the D-loop region. The origin of the L-strand replication 

(OL) was mapped ~ 11 kb apart from OH (Shadel and Clayton, 1997; Shadel et al., 

2003). Recent studies by Brown et al. (2005) suggested multiple origins on the L-

strand. Fusté et al. (2010) showed that the RNA polymerase functions as primase for 

DNA synthesis from OriL and after about 25 nt is replaced by the mitochondrial 

polymerase POL". Therefore, the exact mechanism of L-strand replication remains 

elusive. 

 

Several hypotheses have been proposed as why mitochondria still contain their own 

genomes (reviewed by Wallace, 2007). 

Differences in the genetic code used by the cytosolic translation machinery in contrast 

to mitochondria were suggested to be a reason for retaining a separate mitochondrial 

genome (Osawa et al., 1992; Doolitte, 1998; Wallace, 2005). The cytosolic stop codon 

UGA is decoded in mitochondria as tryptophan. Further, arginine is decoded in the 

cytosol from the triplet AGA and AGG. These codons are not recognised by an tRNA in 

the human mitochondrial DNA and are part of a back-translocation unit to invoke a -1 

frameshift (Temperley et al., 2010) at the termini of the two open reading frames of 

COX1 and ND6. Therefore mitochondria retain two stop codons, UAA and UAG in 

contrast to three of the cytosolic universal code. Further, the codon AUA is decoded in 

the cytosol as isoleucine and in mitochondria as methionine. 

Another hypothesis stressed the functional importantce of all mtDNA encoded proteins 

as evolutionary conserved core subunits of OXPHOS complexes. Therefore, they 

provide a scaffold in the inner mitochondrial membrane for the correct multi-enzyme 

complexes assembly. However, Wallace (2007) suggested that the mitochondrial 

import machinery would be efficient enough to assemble all complexes properly even if 

all components were to become nuclear encoded. 

The third hypothesis argues that mtDNA encoded proteins are to hydrophobic to be 

translated in the cytosol or are mislocalised to other cell compartments such as the ER. 

 

Spelbrink (2010) recently reviewed the organisation of mtDNA in dense packed 

nucleoid complexes. In mammals the first evidence of mtDNA organisation in nucleoid 

complexes was proposed by Satoh and Kuroiwa in 1991. Each nucleoid contains 
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between 2 - 10 mtDNA molecules (Iborra et al., 2004; Legros et al., 2004) and proteins 

involved in mitochondrial transcription or translation have been found in association. 

The main organising protein of mitochondrial nucleoids seems to be TFAM 

(transcription factor A, mitochondrial) that binds every 10 bases of mtDNA (Alam et al., 

2003). Further, TFAM is involved in mitochondrial transcription promoter recognition 

(Parisi and Clayton, 1991; Fisher and Clayton, 1988; Falkenberg et al., 2002; see 

further down) and is potentially also involved in replication modulation (reviewed by 

Kang and Hamasaki, 2005). Also a function of TFAM in sensing of mtDNA damage and 

protection for oxidative stress was suggested (Kang and Hamasaki, 2005). 

However, beside the expected mitochondrial replication-machinery proteins such as 

TFAM, Twinkle, POL" or the single-strand binding protein (mtSSB) (Garrido et al., 

2003) have been subunits of complex I, the adenine nucleotide translocase (ANT), 

subunits of the ATP synthase or prohibitin I and II identified in highly purified nucleoid 

preparations (Wang and Bogenhagen, 2006; Bogenhagen et al., 2008). These findings 

suggest an involvement of mtDNA nucleoids into further mitochondrial functions than 

mtDNA maintenance. 

 

 

1.7 Transcription of mtDNA 

 

Transcription of human mtDNA is initiated from three promoters, the H-strand 

promoters HSP1 and HSP2 as well as the L-strand promoter (LSP) (Montoya et al., 

1982; Montoya et al.
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Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly
of the 28S small mitochondrial ribosomal subunit
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Robert N. LIGHTOWLERS2

Mitochondrial Research Group, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K.

The bacterial Ras-like protein Era has been reported previously
to bind 16S rRNA within the 30S ribosomal subunit and to play a
crucial role in ribosome assembly. An orthologue of this essential
GTPase ERAL1 (Era G-protein-like 1) exists in higher eukaryotes
and although its exact molecular function and cellular localization
is unknown, its absence has been linked to apoptosis. In the present
study we show that human ERAL1 is a mitochondrial protein
important for the formation of the 28S small mitoribosomal
subunit. We also show that ERAL1 binds in vivo to the rRNA
component of the small subunit [12S mt (mitochondrial)-rRNA].
Bacterial Era associates with a 3′ unstructured nonanucleotide
immediately downstream of the terminal stem–loop (helix 45)
of 16S rRNA. This site contains an AUCA sequence highly
conserved across all domains of life, immediately upstream of the
anti-Shine–Dalgarno sequence, which is conserved in bacteria.

Strikingly, this entire region is absent from 12S mt-rRNA. We
have mapped the ERAL1-binding site to a 33 nucleotide section
delineating the 3′ terminal stem–loop region of 12S mt-rRNA.
This loop contains two adenine residues that are reported to be
dimethylated on mitoribosome maturation. Furthermore, and also
in contrast with the bacterial orthologue, loss of ERAL1 leads
to rapid decay of nascent 12S mt-rRNA, consistent with a role
as a mitochondrial RNA chaperone. Finally, whereas depletion
of ERAL1 leads to apoptosis, cell death occurs prior to any
appreciable loss of mitochondrial protein synthesis or reduction
in the stability of mitochondrial mRNA.

Key words: Era G-protein-like 1 (ERAL1), mitoribosome,
ribosome assembly, rRNA, translation.

INTRODUCTION

Mammalian mitochondria possess their own genome, mtDNA
(mitochondrial DNA), which encodes 13 proteins and all of the 24
RNA components necessary to drive intramitochondrial protein
synthesis [1]. The remaining proteins required for this process,
including all the protein components of the mitoribosome, are
nuclear encoded, translated in the cytosol and imported into the
organelle. Correct mtDNA expression is essential for all obligate
aerobes, as these polypeptides constitute vital members of the pro-
tein complexes that couple oxidative phosphorylation. Protein
synthesis is facilitated by themitoribosome (i.e. themitochondrial
ribosome), whose assembly and molecular mechanisms are
still largely uncharacterized. The mammalian 55S mitoribosome
differs substantially from its 70S and 80S counterparts found in
prokarya and the eukaryotic cytosol respectively [2,3]. Whereas
it has minimized its rRNA components, it has extended its
polypeptide constituents with the result that, although its overall
mass is slightly greater than that of the bacterial ribosome (approx.
2.7MDa), it has a decreased density. Thus themt (mitochondrial)-
SSU (small subunit) and mt-LSU (large subunit) are designated
28S and 39S respectively, generating a complete monosome of
55S.Ahighly purified bovine 55Smitoribosomal particle has been
resolved to 13.5 Å (1 Å= 0.1 nm) by cryoelectron microscopy.

This indicates the positions of the shorter 12S and 16S mt-rRNA
constituents relative to the 29 and 48 polypeptides within the mt-
SSU and mt-LSU respectively [2]. It is possible, however, that
a small number of less tightly associated bona fide members
may have been lost during purification. Indeed, there is still
some discussion as to the possible mitoribosomal association of
a 5S rRNA species, which has been shown to be imported into
mammalian mitochondria [4,5].
The assembly pathway of the mammalian mitoribosome is

uncharacterized. It is believed that as many as 200 proteins
are required to assemble the 80S ribosome in the yeast cytosol
[6]. Bioinformatic analyses, however, suggest that mitoribosomal
assembly may require only a minimal number of factors, more
related to the situation in bacteria [7]. In an attempt to identify
factors loosely associated with mitoribosomes, we recently
performed a proteomic analysis of particles immunoprecipitated
by the mtRRF (mitochondrial ribosome recycling factor) [8]. In
addition to almost an entire set of mitoribosomal proteins, we
identified nucleoid components and other proteins of unknown or
diverse function. One of these proteins ERAL1 (Era G-protein-
like 1), is the human orthologue of the Escherichia coli Ras-like
protein Era [9]. In bacteria, this GTPase has been reported to
be essential for cell division [10]. More recently, Era has been
shown to bind via its C-terminal KH (K homology) domain

Abbreviations used: CLIP, cytoplasmic linker protein; COX, cyclo-oxygenase; DAP3, death-associated protein 3; ERAL1, Era G-protein-like 1; FBS, fetal

bovine serum; GDH, glutamate dehydrogenase; HEK-293T, HEK (human embryonic kidney)-293 cells expressing the large T-antigen of SV40 (simian virus

40); HSP70, heat-shock protein 70; ICT1, immature colon carcinoma transcript 1; IP, immunoprecipitation; KH, K homology; LSU, large subunit; MEM,

minimal essential medium; MGC, mammalian gene collection; MRP, mammalian ribosomal protein; mt, mitochondrial; MTND, mitochondrially encoded

NADH dehydrogenase; NDUFA9, NADH dehydrogenase (ubiquinone) 1 α subcomplex 9; NDUFB8, NADH dehydrogenase (ubiquinone) 1 β subcomplex 8;

NEAA, non-essential amino acids; NT, non-targeting; RNP, ribonucleoprotein; ROS, reactive oxygen species; SD, Shine–Dalgarno; siRNA, small interfering

RNA; SSU, small subunit; TFB1M, transcription factor B1, mitochondrial; UTR, untranslated region.
1 Present address: Department of Plant Sciences, University of Cambridge, Downing Site, Downing Street, Cambridge CB2 3EA, U.K.
2 Correspondence may be addressed to either of these authors (email z.chrzanowska-lightowlers@ncl.ac.uk or r.n.lightowlers@ncl.ac.uk).
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to the 30S small ribosomal subunit near to the 3′ terminus
of the 16S rRNA [11,12]. These elegant X-ray diffraction and
cryoelectron microscopy studies show Era bound either to an
oligoribonucleotide or to the entire 30S subunit lacking ribosomal
protein S1. Era both occludes the binding site for S1 and
inhibits the interaction of the SD (Shine–Dalgarno) sequence
of mRNAs with the anti-SD sequence at the 3′ terminus of the
mature 16S rRNA, each of which are required for translation
initiation. Taken together, these results predict that Era plays an
essential role in ribosomematuration and quality control. The few
reports on the mammalian orthologue ERAL1, have suggested
that it is a membrane-bound protein possibly associated with the
endoplasmic reticulum [13] and that depletion led to growth arrest
and apoptosis [14]. These latter functions were attributable to the
conserved RNA-binding KH domain.
In the present study we show that ERAL1 is an essential

mitochondrial protein. In a similar fashion to the bacterial
orthologue, it associatesmainlywith the 28Smt-SSUwhere it acts
as a chaperone for the 12S mt-rRNA, binding at the 3′ terminal
stem–loop region. Depletion of ERAL1 leads to 12S instability
and a consequent loss of newly synthesized 28S subunits.Wewere
able to confirm apoptosis, but intriguingly this occurred prior to
any appreciable effect on mitochondrial protein synthesis or on
the steady-state level of most mt-mRNAs.

EXPERIMENTAL

Cell culture

Human HeLa cells were propagated in Eagle’s MEM (minimal
essential medium; Sigma–Aldrich), supplemented with 1×
NEAA (non-essential amino acids), 10% (v/v) FBS (fetal
bovine serum) and 2 mM L-glutamine, at 37 ◦C under a 5%

CO2 humidified atmosphere. Osteosarcoma cells (143B.206
rho0) were provided by Professor R. Wiesner, Center for
Molecular Medicine, University of Cologne, Germany, and
were cultured in DMEM (Dulbecco’s modified Eagle’s medium)
supplemented with 10% (v/v) FBS, 50 µg/ml uridine and 1×
NEAA. Flp-InTMT-RexTM-293 cells {HEK-293T [HEK (human
embryonic kidney)-293 cells expressing the large T-antigen of
SV40 (simian virus 40)]; Invitrogen} were grown in identical
medium supplemented with 10 µg/ml Blasticidin S (Invitrogen).
Post-transfection selection was effected with Hygromycin B
(100 µg/ml). Growth curve analyses were performed in glucose
medium.

Cell lysate, mitochondrial preparation and fractionation

Production of mitochondria and cell lysates were essentially as
described in [15]. HEK-293T cells were homogenized on ice.
Aggregates were removed by centrifugation at 400 g for 10 min
at 4 ◦C. Mitochondria were precipitated via centrifugation at
11000 g for 10 min at 4 ◦C. The post-mitochondrial supernatant
was used for further analysis. Proteinase K treatment was carried
out in a 50 µl volume of isolation buffer (10 mM Tris/HCl,
pH 7.4, 0.6 M mannitol, 1 mM EGTA and 0.1% BSA), lacking
BSA, containing 30 µg of freshly isolated mitochondria and the
appropriate amount of proteinase K. Reactions were incubated
on ice for 30 min, stopped by the addition of 2 mM PMSF, and
mitochondria were then washed twice in 1 ml of the isolation
buffer (without BSA) and re-suspended in the desired buffer.
Where necessary, mitochondria were solubilized by the addition
of 1% (v/v) Triton X-100.

Production of FLAG-tagged constructs, transfection and expression

The original human ERAL1 clone was obtained from the
MGC (mammalian gene collection; clone 4893068; accession
number BC019094). All constructs were prepared by PCR
using the MGC clone as a template. Constructs to facilitate
inducible expression of C-terminally FLAG-tagged ERAL1
were prepared by generating an amplicon using the following
primers: forward 5′-ctctctggatccatggctgcccccagctg-3′ and reverse
5′- ctctccggatccctacttatcgtcgtcatccttgtaatccttgaggagcttcacagag-3′

(the ATG start codon is in bold; the BamH1 restriction site is
in italics). The original human MRPS26 (mammalian ribosomal
protein S26) clone was obtained from MGC (clone 3051126; ac-
cession number BC013018). All constructs were prepared by PCR
using the MGC clone as a template. Constructs to facilitate in-
ducible expression of C-terminally FLAG-tagged MRPS26 were
prepared by generating an amplicon using the following primers:
forward 5′-tactatggatccaccatgctacgcgcgctgag-3′ and reverse 5′-
atactactcgagctacttatcgtcgtcatccttgtaatcggagtccctgcgttgtgg-3′ (the
ATG start codon is in bold; BamH1 and Xho1 restriction sites are
in italics). Amplicons and pcDNA5/FRT/TO (Invitrogen) were
digestedwith appropriate restriction enzymes and ligated. Fidelity
and orientation were confirmed by sequence analysis. The human
HEK-293T cells were transfected at ∼50% confluency with the
vectors pOG44 and pcDNA5/FRT/TO containing sequences of
the genes to be expressed [FLAG-tagged ERAL1,MRPS27, ICT1
(immature colon carcinoma transcript 1)] as described previously
[16].

Affinity purification and elution of FLAG-tagged polypeptides

For affinity purification either cell lysates or mitochondria from
HEK-293T cells expressing FLAG-tagged derivatives were used.
Cell lysates were prepared in lysis buffer [50 mM Tris/HCl,
pH 7.4, 150 mM NaCl, 10 mM MgCl2, 1 mM EDTA, 1%

(v/v) Triton X-100, 1× protease inhibitor cocktail (Roche) and
1 mM PMSF], and mitochondrial preparations were as described
above. Mitochondrial preparations were treated with DNase I
(0.5 units/mg of mitochondria) for 15 min at room temperature
(22 ◦C), and proteinase K (5 µg/mg of mitochondria) for 30 min
at 4 ◦C, reactionwere then stopped by the addition by 1 mMPMSF.
Pelleted mitochondria were washed (in homogenization buffer),
digitonin-treated to remove the outer membrane (400 µg/mg of
mitochondria), washed and finally resuspended in lysis buffer.
Immunoprecipitation was effected with anti-FLAG M2-agarose
affinity gel as recommended by the manufacturer (Sigma–
Aldrich), followed by specific elution using 5 µg of 3× FLAG
peptide per 100 µl of elution buffer.

Isokinetic sucrose gradient analysis

Total cell lysates (0.5–0.7 mg in lysis buffer) or eluted IPs
(immunoprecipitations) were loaded on to a linear sucrose gradi-
ent [1 ml, 10–30% (v/v)] in 50 mM Tris/HCl, pH 7.2, 10 mM
magnesium acetate, 40 mM NH4Cl, 0.1 M KCl, 1 mM PMSF
and 50 µg/ml chloramphenicol, and with a Beckman OptimaTLX
bench ultracentrifuge, using a TLS55 rotor at 39000 rev./min for
135 min at 4 ◦C. Fractions (100 µl) were collected and analysed
by Western blot or by silver staining. For Western blot analysis,
proteins from cell lysate, following sucrose-gradient separation,
or after immunoprecipitation and elution, were separated by
SDS/PAGE and transferred on to PVDF membranes as described
in [8]. After binding of primary antibodies, visualization of
specific proteins was facilitated with horseradish-peroxidase-
conjugated secondary goat or mouse IgG (both Dako), using ECL
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(enhanced chemiluminescence) Plus reagents (GE Healthcare)
using a Storm 860 (GE Healthcare) PhosphorImager or by
exposure to standard autoradiographic film. The following rabbit
polyclonal antibodies were used: anti-ERAL1, -MRPS25, -
MRPS18B (Protein Tech Group, catalogue numbers: 11478,
15277, 16139), anti-GDH (glutamate dehydrogenase) (in-house
production), anti-MRPL3 (Abcam; catalogue number AB39268).
Mouse monoclonal antibodies against: DAP3 (death-associated
protein 3), HSP70 (heat-shock protein 70), MRPL12 (Abcam;
catalogue numbers AB11928, AB2799, AB58334), β-actin
(Sigma–Aldrich; catalogue number A1978), porin, COX2 (cyclo-
oxygenase 2) (Invitrogen, catalogue numbers A33319A, A6404),
NDUFA9 [NADH dehydrogenase (ubiquinone) 1 α subcomplex
9] and NDUFB8 [NADH dehydrogenase (ubiquinone) 1 β

subcomplex 8] (Mitosciences U.S.A.; catalogue numbersMS111,
MS105) were used. For silver staining polyacrylamide gels were
fixed in 50%methanol for 1 h, followed by a 15 min incubation in
staining solution [0.8%AgNO3, 1.4% (v/v)NH4OHand 0.075%

NaOH], the washes of 5 min in nanopure distilled water, and then
developed in 0.055% formaldehyde/0.005% citric acid and fixed
in 45% methanol/10% acetic acid.

siRNA (small interfering RNA) constructs and transfection

Three sequences targeting ERAL1 were tested for effi-
ciency of protein depletion: siORF1 (+ 702) 5′-GUGUCCUG-
GUCAUGAACAA; siORF2 (+ 1096), 5′-GGAGGUGCC-
UUACAAUGUA; siUTR (+ 1698), in the 3′-UTR (untranslated
region), 5′-CCUUGAACUUGGAUAAGAA (starting nucleotide
positions are relative to sequence NM_005702; sense sequence
only given). Transfections were performed on 20% confluent
HeLa cells with Oligofectamine (Invitrogen) in Opti-MEM-I
medium (Gibco) with 0.2 µM siRNA. Reverse transfections were
performed as described in [17] on approx. 12000HEK-293T cells
per cm2 with LipofectamineTM RNAiMAX (Invitrogen) in Opti-
MEM-I medium (10–33 nM siRNA). Custom and control non-
targeting (NT; OR-0030-neg05) duplex siRNAs were purchased
pre-annealed from Eurogentec.

Northern analysis

RNA was isolated with TRIzol® as recommended by the supplier
(Invitrogen). Northern blots were performed as described in
[18]. Briefly, aliquots of RNA (4 µg) were electrophoresed
through 1.2% (w/v) agarose under denaturing conditions and
transferred on to GenescreenPlus membrane (NEN duPont)
following the manufacturer’s protocol. Radiolabelled probes
were generated using random hexamers on PCR-generated
templates corresponding to internal regions of the relevant
genes.

Identification of oligoribonucleotides bound in vivo [CLIP
(cytoplasmic linker protein) assays]

Assays were performed essentially as described in [19]. Briefly,
cells expressing ERAL1 were grown to ∼80% confluency
in four 15 cm2 plates, washed in PBS and UV-irradiated at
400 mJ/cm2 in a Stratalinker (Stratagene). To ensure only
short protected RNA species remained, cells were lysed, the
bound RNP (ribonucleoprotein) was treated with RNase T1
and ERAL1 RNP was immunoprecipitated as above. Bound
RNA was dephosphorylated and ligated to the 3′ linker as
described in [19]. To visualize the complex, the 5′ termini
were incubated with [γ -32P]ATP (3000 Ci/mol, PerkinElmer)

and PNK (T4 polynucleotide kinase; New England Biolabs),
separated by SDS/PAGE (10% Novex precast gels), transferred
on to nitrocellulose (BA-85 Whatman) and subjected to
autoradiography. For RNA isolation, bound RNP was cut from
the nitrocellulose, protein was degraded with proteinase K and
the RNA precipitated following phenol/chloroform extraction.
Ligation of the 5′ terminus, reverse transcription and PCR
amplification were as described previously [19]. PCR products
were ligated into pCR4-TOPO and inserts sequenced from
individual clones (ABI 3130XL).

In vivo mitochondrial protein synthesis

Analysis of mitochondrial protein synthesis in cultured cells
was performed as described previously [20] after addition of
emetine andwas pulsed with [35S]methionine/cysteine for 30 min.
Samples (50 µg) were separated by SDS/PAGE (15% gels) and
gels were exposed to PhosphorImage cassettes and visualized
using ImageQuant software (GE Healthcare).

Analysis of apoptosis

The proportion of apoptotic cells was analysed using the APO-
DIRECT kit (BD Biosciences) following the manufacturer’s
protocol. Labelling reactions were performed on 0.5× 106 cells
and FACS analysis performed on a three laser beam (633 nm,
488 nm and 405 nm) FACSCanto II (BectonDickinson). Terminal
deoxynucleotidyl transferase, used to detect the DNA strand
breaks, was conjugated to FITC and measured from the excitation
of the 488 nm laser and collected using a 530/30 bandpass PMT
(photomultiplier tube) filter; 5000–10000 cells were counted per
analysis.

Statistical analysis

Where significance values are shown, P values were calculated
using an unpaired Student’s t test.

RESULTS

ERAL1 is a mitochondrial protein that associates with the small
28S subunit of the mitoribosome

To assess the cellular distribution of ERAL1, human HEK-
293T cells were separated into cytosolic and mitochondrial
fractions. Western blots revealed a strong co-localization with
the crude mitochondrial fraction with no signal in the cytosol
or nucleus (Figure 1A, left-hand panels). As it is formally
possible that ERAL1 localizes to the mitochondrial periphery
and remains associated with the mitochondrial outer membrane
on subfractionation, isolated intact mitochondria were subjected
to increasing amounts of proteinase K to remove co-purifying
contaminants. As shown in Figure 1(A) (right-hand panel),
ERAL1 remains resistant to the protease, similar to the
mitochondrial matrix marker, GDH. Both proteins were digested
after detergent solubilization of the organelles. A similar pattern
was observedwith subfractionatedHeLa cells (results not shown).
These results are consistent with ERAL1 being a mitochondrial
protein, potentially within the mitochondrial matrix.
As Era, the bacterial orthologue of ERAL1, has been shown

to play an important role in ribosome assembly, we next
determined whether ERAL1 associates with mitoribosomal
subunits. Following fractionation of HeLa cell lysates by sucrose
gradients, a small population of ERAL1 was found in the lowest
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Figure 1 ERAL1 associates with the 28S mt-SSU

(A) Left-hand panel: Western blot analysis, with the indicated antibodies, of HEK-293T cells
subfractionated into nuclear (N) or cytoplasmic (Cp) compartments, with the latter fraction
further divided into mitochondrial (M) and cytosolic (Cs) fractions. Equivalent volumes of each
fraction are loaded. Right-hand panel: mitochondria (30 µg) were pretreated with the indicated
amounts of proteinase K and solubilized with Triton X-100 or subjected directly to Western
blot analysis with the indicated antibodies. (B) HeLa cell lysate (0.7 mg) was separated by
isokinetic gradient centrifugation as detailed in the Experimental section, prior to fractionation
and Western blot analysis to indicate the position of mitoribosomal subunits (DAP3 for 28S
mt-SSU; MRPL3 for 39S mt-LSU). The blot is representative of three independent repeats. (C)
Eluted immunoprecipitate from mitochondria of cells expressing MRPS27–FLAG were separated
by isokinetic gradient centrifugation and fractions were silver-stained (upper panel) or subjected
to Western blotting with the indicated antibodies (lower panels). 28S mt-SSU, grey circle; 39S
mt-LSU, black hexagon. Gels are representative of two independent repeats.

density fractions, whereas the majority appeared to co-localize
with DAP3, a marker of the mt-SSU (Figure 1B). Separation
of the 28S mt-SSU and 39S mt-LSU by isokinetic gradient
centrifugation is robust, but the complete 55S monosome is often
not detectable. However, by IP of the mitoribosome followed by
similar gradient centrifugation, it has been recently reported that
the monosome can be detected [20]. To assess whether ERAL1
binds only to the mt-SSU and not the intact monosome, a FLAG-
tagged component of the 28S subunit, MRPS27 was inducibly
expressed in human HEK-293T cells. Following IP, the bound
complexes were eluted and separated through a similar 10–30%

isokinetic gradient (Figure 1C). Under these conditions, ERAL1
was mainly visible in fractions 4 and 5, co-migrating with DAP3.

As expected, no 39S subunit is precipitated alone, butDAP3, along
with the 39S subunit markers MRPL3 and MRPL12, are visible
in fractions 8 and 9, marking the 55S monosome (Figure 1C) with
minimal ERAL1 associated.

Depletion causes a loss of de novo mt-SSU formation

ERAL1 associates selectively with the mt-SSU, suggesting it
may play a role in late 28S assembly. Depletion of ERAL1,
would be predicted to result in a reduction of newly formed 28S,
while having no effect on 39S mt-LSU formation. Therefore, to
investigate the effect of ERAL1 loss on mitoribosome formation,
siRNA was used to deplete the protein in cells prior to induction
of either a FLAG-tagged component of the 28S (MRPS26) or 39S
(ICT1) subunit. Three independent siRNA molecules were able
to deplete ERAL1 (Figure 2A). Further experiments were per-
formed with siORF1, directed at the open reading frame, after
the likelihood of off-target effects was determined to be minimal
(see below). Cells were treated with siORF1 for 24 h prior to
induction of FLAG-tagged mitoribosomal protein for a further
2 days. Interestingly, similar signals were apparent in control
and ERAL1-depleted samples for protein components of the
28S subunit following ICT1 IP. This suggests that the levels of
complete mitoribosome in the control (NT) and ERAL1-depleted
(ORF1) cells were similar (Figure 2C). In contrast, markers of
both the small and large subunit in theMRPS26 IP were markedly
decreased, consistent with a substantial reduction in 28S assembly
in the absence of ERAL1 (Figure 2B). Taken together, these
results infer that although little nascent 28S subunit is being made
after loss of ERAL1, mitoribosome formation is still maintained
during the depletion period, presumably due to re-use of 28S
mt-SSU that had been assembled prior to ERAL1 depletion.
How does ERAL depletion prevent 28S subunit assembly? In
bacteria, Era may play a role in maturation of the 16S rRNA,
through binding to the larger pre-16S species associated with the
30S ribosomal subunit and by promoting cleavage by various
RNases [12]. Human mt-rRNAs are matured from a discrete
polycistronic unit, although it is believed that this is mediated
by folding of mt-tRNAs that flank both the 12S and 16S mt-
rRNAs respectively [21]. To assess the quantity and quality of
mitochondrial RNAs, Northern blots were performed after the
siRNA treatment of cells (Figure 2D). Depletion of ERAL1 led
to a minor increase in the steady-state levels of most mt-mRNAs
analysed, with a substantial increase inMTND2 (mitochondrially
encoded NADH dehydrogenase 2) and MTND3. Essentially no
effect on stability could be measured (Supplementary Figure
S1 at http://www.BiochemJ.org/bj/430/bj4300551add.htm). The
most profound observation, however, was the selective loss
of 12S mt-rRNA (Figure 2D, MT-RNR1), consistent with the
reduction in 28S mitoribosomal subunit. As 16S mt-rRNA is not
depleted (Figure 2D, MT-RNR2) and is produced from the same
polycistronic unit, it can be concluded that loss of ERAL1 leads
to a rapid and specific degradation of 12S mt-rRNA.

ERAL1 is an RNA chaperone for the 12S mt-rRNA

The degradation of 12S mt-rRNA may be mediated by the
lack of mitoribosome assembly; conversely it may the loss of
RNA stability that leads to a mitoribosomal assembly defect.
The bacterial Era has been shown to bind 16S rRNA and
the human orthologue ERAL1 contains an RNA-binding KH
domain. Previously, this KH domain had been shown to be
capable of binding RNA, although the target species was
unknown [13]. In contrast, the RNA sequence to which the
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Figure 2 ERAL1 is required for assembly of the 28S small mitoribosomal subunit

(A) Western blot of HEK-293T cell lysate (5, 10 or 15 µg) pretreated with NT or three independent ERAL1-targeted siRNAs for 3 days and probed with anti-ERAL1 or anti-β-actin antibodies. UTR,
siRNA targeting the the 3′-UTR of Eral1; ORF1 and ORF2, siRNAs targeting regions of the open reading frame. In all further siRNA experiments, depletion of ERAL1 was confirmed by Western
blotting. (B) Western blot of immunoprecipitate from cells expressing MRPS26–FLAG following 3 days of non-targeting (NT) or ERAL1-depletion (ORF1) siRNA. Position of mitoribosomal subunits
are indicated with the markers DAP3, MRPS18B and MRPS25 for the28S mt-SSU, and MRPL3 and MRPL12 for the 39S mt-LSU. Quantification was performed on three independent experiments.
On each occasion, signals were normalized to levels of MRPS26 in the immunoprecipitate. Results are means + S.D. (C) Western blot of immunoprecipitate from cells expressing ICT1–FLAG.
Experimental details and data analysis as described for panel (A) (n = 3). (D) Northern blot of 4 µg of RNA isolated from HEK-293T cells treated with si-NT or following ERAL1 depletion (si-ORF1)
for 4 days. RNA from four independent experiments is shown. Probes highlight transcripts encoding components of complex I (MTND2), complex III (MTCYB; mitochondrially encoded cytochrome
b) and complex IV (MTCO3, COX3) as well as both 16S (MT-RNR2) and 12S (MT-RNR1) mt-rRNAs. A probe to human 18S rRNA is shown as a loading and quality control (18S). The quantification
is shown for 14 independent transcripts from four repeats. Results are means + S.D. ***P < 0.001, **P < 0.01, *P < 0.05.

bacterial protein binds has been clearly identified. It is an
unstructured nonanucleotide finishing only two nucleotides from
the 16S 3′ terminus and contains the CCUCC anti-SD sequence
that is not present in mammalian 12S mt-rRNA. To identify
an RNA-binding footprint on mt-rRNA in vivo, we used the
CLIP assay that has been established previously for use with
cytosolic RNA-binding proteins [19]. Induction of FLAG-tagged
ERAL1 was inefficient, resulting in levels similar to endo-
genous ERAL1 (results not shown). Following induction, cells
were UV-irradiated and the bound RNA cleaved by RNase
T1 before rescue and identification. As shown in Figure 3(A),
12S mt-rRNA was found in 63% of sequenced clones (31 out
of 49), revealing a minimal footprint of 33 nt. This region is
close to the 3′ terminus of 12S mt-rRNA and spans a stem–
loop that has a structural orthologue in bacterial 16S rRNA,
but is distinct to the bacterial Era-binding site (Figure 3B).
No other mt-rRNA sequence was identified, although several
mt-tRNAPro sequences were recovered (Supplementary Table
S1 at http://www.BiochemJ.org/bj/430/bj4300551add.htm). The

significance of this is unclear; however, other mitochondrial
RNA-binding proteins subjected to CLIP in our laboratory have
also shown a similar association with the 3′ terminus of mt-
tRNAPro (Mateusz Wydro, unpublished work). The remaining
clones contained sequences from E. coli 23S rRNA (two clones),
human transcripts (three clones) or could not be identified (six
clones). We conclude that ERAL1 functions to protect the 12S
rRNA by binding at its 3′ terminus, but that the position and
sequence to which it binds differs from the bacterial protein.

ERAL1 depletion induces cell death prior to mitochondrial
translation or respiratory defects

ERAL1 plays an important role in the assembly of the 28S
mt-SSU by acting as an RNA chaperone for the 12S mt-rRNA.
Depletion with siORF1 resulted in a marked effect on normal
(rho+) cell growth (Figure 4A), but had no effect on cells that did
not require mtDNA expression for growth (rho0; Supplementary
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Figure 3 ERAL1 binds in vivo to the predicted 3′ terminal stem–loop of 12S
mt-rRNA

Short RNA species bound by ERAL1 in vivo were identified following the CLIP assay as described
in the Experimental section. (A) The sequence of the 50 nt 3′ terminal residues of 12S mt-rDNA,
equivalent to nt 1551–1601 of the mitochondrial genome [1] is listed, along with the first four 5′

residues of mt-tRNAVal , immediately downstream. The entire insert of each clone is shown as a
filled line spanning the corresponding part of the reference sequence, with the number of clones
with an identical sequence indicated. The minimal ERAL1-binding site is boxed. The bold AA
highlights the dimethylated adenine residues at nt 1582–1583. The sequences of all 31 clones
are given in Supplementary Table S1 (at http://www.BiochemJ.org/bj/430/bj4300551add.htm).
*, two clones were deleted for two A residues of the A triplet at nt 1582–1584. (B) The
highly conserved 3′ terminal stem–loop structure in the mitochondrial 12S (left-hand side) or
bacterial 16S (helix 45, right-hand side) [22] are shown, along with the terminal unstructured
nucleotides. The minimal 33 nt binding site for ERAL1, along with the delineated nonamer for
Aquifex aeolicius Era [12] is highlighted as a solid line. The highly conserved AUCA is shown
in bold; the anti-SD region, CCUCC, is italicized. The two dimethylated adenines are shown in
outline [23,24].

Figure S2 at http://www.BiochemJ.org/bj/430/bj4300551add.htm).
A previous report used an inducible knockout technique in a
chicken cell line to ablate the EraL1 gene [14]. This showed
that loss of ERAL1 led to cell-cycle arrest and a substantial
increase in the proportion of apoptotic cells in the population.
We repeated this analysis on HEK-293T cells after 3 days
of siRNA treatment and found a similar apoptotic response
(with siORF1 35.9+− 9.5% were apoptotic compared with
0.3+− 0.4% with NT siRNA, n = 4; Supplementary Figure
S3 at http://www.BiochemJ.org/bj/430/bj4300551add.htm).
Intriguingly, however, as shown in Figure 2, although ERAL1
depletion prevented the formation of nascent 28S, it did not
reduce the amount of completemitoribosome during the depletion
time course. Consistent with this observation, metabolic labelling
experiments showed that mitochondrial protein synthesis in HeLa
cells was unaffected even after 4 days of depletion (Figure 4B)
and was only partially affected in HEK-293T cells after 3 days of
depletion (Figure 4C, left-hand panel). Furthermore, steady-state
levels of proteins either directly encoded by mtDNA (COX2) or
as markers of stable complexes that incorporate mtDNA-encoded
polypeptides (NDUFB8) (Figure 4C, right-hand panel) were
unaffected, although a consistent increase in HSP70 was found.
These results infer that ERAL1 depletion does not induce

Figure 4 Depletion of ERAL1 leads to apoptosis prior to appreciable loss
of mitochondrial protein synthesis

(A) Counts of HEK-293T or HeLa cells were taken after siRNA treatment (3 or 4 days respectively)
with an NT control or each of the three independent siRNAs targeted either to the EraL1 open
reading frame (ORF1; ORF2) or to the corresponding 3′-UTR. Counts were performed on three
(HeLa) or six (HEK-293T) independent repeats. ***P < 0.001. (B) Metabolic radiolabelling of
mitochondrial gene products was performed for 30 min in HeLa cells treated for three days with
siRNA (NT or against ERAL1). Aliquots (50 µg) were separated by SDS/PAGE and visualized
with a PhosphorImage as described in the Experimental section. Mitochondrial gene products
are assigned from [20]. A small section of the gel is shown following exposure, rehydration
and Coomassie Blue (CB)-staining to confirm equal loading. ATP8, mitochondrially encoded
ATP synthase 8; Cytb, cytochrome b ; ND, NADH dehydrogenase. (C) De novo synthesis
(left-hand panel) and steady-state levels (right-hand panel) of mt-proteins in HEK-293T cell
lysates following 3 days of siRNA treatment (siORF1 or NT control). Quantification of metabolic
labelling is presented as a percentage of NT control for each translation product and is from three
independent experiments. COX1/ND4, COX2/ATP6 and ND4L/ATP8 were quantified together
as they could not confidently be quantified independently. The Western blot analysis visualized
mitoribosomal proteins with antibodies as described in the text; markers used are: for complex I,
NDUFB8 and NDUFA9; for complex IV, COX2; for the mitochondrial matrix, chaperone HSP70,
and for the mitochondrial outer membrane, porin. Results are means + S.D.

apoptosis merely through the loss of mitochondrial translation
products, but may involve a discrete signalling mechanism.

DISCUSSION

ERAL1 is involved in the assembly of the mt-SSU. To date,
only one other non-mitoribosomal protein, TFB1M (transcription
factor B1, mitochondrial), has been shown to be important for
28S assembly, through its role in dimethylation of the 12S rRNA
[25]. Completion of the assembly of the entire mitoribosome has
been shown to require proteolytic maturation of MRPL32 by the
mAAAprotease, which promotes association of themitoribosome
with the inner mitochondrial membrane [26]. Our results show
that ERAL1 is a mitochondrial protein whose function is to
protect the 12S mt-rRNA on the 28S mitoribosomal subunit
during SSU assembly. It therefore has some similar roles to its
bacterial counterpart, where Era binding not only protects the
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16S rRNA precursor, it also binds in a pocket that precludes
the 50S subunit from associating with the 30S subunit. It
also prevents mRNA forming the essential SD/anti-SD pairing
necessary for protein synthesis initiation [11,12]. No SD motif
exists in human mt-mRNA and so no such interaction occurs
between the mt-rRNA and mRNA. The molecular mechanism by
which the mitoribosome locates the mt-mRNA initiating codon is
unclear [27]. Virtually all mt-mRNAs have three or fewer residues
of 5′-UTR and for seven of the open reading frames the first ‘A’ of
the initiating codon is the absolute 5′ terminal nucleotide [21,28].
Sequence analysis from our CLIP assays reflected physiological
binding and demonstrated unequivocally that ERAL1 binds very
close to the 3′ terminus of the 12S mt-rRNA, covering a sequence
predicted to form a terminal stem–loop structure. This small 33 nt
footprint includes two adjacent adenosine residues within the loop
that are known to be dimethylated by the mitochondrial protein
TFB1M in mammals [22,25]. In two of our clones, both of
these nucleotides were missing, consistent with methylation
of these residues potentially inducing deletions by the reverse
transcriptase or indicating their covalent attachment to ERAL1
during UV-irradiation [19]. In cells from mice devoid of TFB1M,
levels of the 12S mt-rRNA are dramatically reduced, whereas mt-
mRNA levels remain largely unaffected or even increase; both of
these results are similar to those noted in human cells depleted
of ERAL1. It is tempting to suggest that ERAL1 binding may
require adenine dimethylation in the loop. However, in both mice
and humans, 12S adenine dimethylation is not absolute. Thus it
is possible that ERAL1 has a greater affinity for the dimethylated
stem–loop, but can still bind and protect unmethylated species
albeit with a weaker affinity.
There is a marked variation between the RNA motif bound

by Era in bacteria and ERAL1 in mitochondria. The 12S and
bacterial 16S rRNA share sequence and structural similarity
in the 3′ terminal stem–loop (helix 45 in bacteria), which is
clearly identified as the 12S-binding site by our CLIP assays
(Figure 3B). The 16S rRNA nucleotides that have been shown by
X-ray crystallography to directly interact with the KH domain of
Aquifex aeolicus Era are nts 1530–1534 (GAUCA) and the anti-
SD sequenceCCUCC immediately downstreamat nts 1535–1539.
The AUCA sequence is highly conserved across the domains of
life, whereas the anti-SD is present but restricted to prokarya.
Strikingly, however, this entire nonanucleotide primary sequence
is absent from 12S mt-rRNA (Figure 3B). Therefore although
ERAL1 is clearly a mitochondrial orthologue of Era, the RNA
bound by the conserved KH domain is completely different. This
may reflect the different functions that are required for these
orthologues. Binding of Era promotes maturation of pre-16S
rRNA by a currently unidentified RNase. Such processing is not
required for the 12S equivalent, although binding is clearly needed
to protect the 12S mt-rRNA from degradation. Furthermore, it is
not clear from our results whether ERAL1 binding to 12S mt-
rRNA on the mt-SSU completely precludes association with the
mt-LSU as noted on Era binding to bacterial 30S. Clearly, the vast
majority of ERAL1 is associated with isolated mt-SSU. However,
LC-MS/MS data of complexes immunoprecipitated by ERAL1–
FLAG does identify a small number of mt-LSU subunits and this
is currently being explored (results not shown).
The protection of mt-mRNAs on ERAL1 depletion and in

TFB1M-knockout mice that also prevents assembly of the
28S subunit, suggest that mt-mRNA is not initially associated
with the mitoribosome or constituent subunits. Our preliminary
results from RNA isolated from gradient fractions suggests
that nascent mt-mRNA associates with a separate complex,
which increases in mass proportionally with the size of the
transcript and that the gradient profile for these mt-mRNAs

remains unchanged in the ERAL1-depleted cells (S. Dennerlein,
unpublished work). It is possible that initially after synthesis,
mt-mRNA becomes associated with an RNA-binding complex
and remains associated until the mt-mRNA is recruited to the
mitoribosome for translation. The foundation for such a RNP
complex has recently been reported [29]. This RNP contains two
generic mitochondrial RNA-binding proteins, LRP130 (130 kDa
leucine-rich protein) and SLIRP (stem–loop interacting RNA-
binding protein). It is possible and even probable that this complex
will associate with other mitochondrial RNA-binding proteins,
such as those originally demonstrated in [30].
What is the cause of apoptosis in the ERAL1-depleted

cell lines? Clearly, ERAL1 depletion leads to the loss of the
newly assembled 28S subunit. However, the depleted lines
appear to retain sufficient intact mitoribosomes to allow efficient
mitochondrial protein synthesis up to the point when the cells die
of apoptosis. This suggests that either the cells synthesize aberrant
polypeptides as a function of having to recycle old 28S subunits, or
there is an undefined retrograde signal from the mitochondrion to
the nucleus that leads to the apoptosis. Polarographic analyses
of ERAL1-depleted cells revealed no apparent difference in
oxygen utilization or respiratory control ratios (results not shown).
Furthermore, we were unable to measure any differences in ROS
(reactive oxygen species) production or substantial changes in
mitochondrial membrane potential. There have been numerous
reports linking mitochondrial ribosomal subunits, such as DAP3,
with apoptosis [31,32]. The lack of 28S assembly will result
in more freely available polypeptides, but it would appear
unlikely that such proteins could be exported from the matrix.
Alternatively, perhaps it is possible that lack of SSU assembly
leads to accumulation of nascent MRPs, such as DAP3 in the
cytosol, leading to apoptosis. This intriguing area is currently
being pursued.
Finally, we note that immediately prior to submission of this

article, another manuscript was published on the function and
localization of ERAL1 [33]. The authors also reported a 28S
mitoribosomal association possibly mediated by 12S mt-rRNA-
binding and a similar growth phenotype on depletion. However,
their siRNA targeted a different sequence to the three siRNAs
used in the present study, which we tested for both specific and
off-target effects. Unlike the present study, their report indicated
that depletion was shown to cause a lowered steady-state level
of respiratory complexes, elevated ROS, lowered membrane
potential and a substantial reduction in the level of most mtDNA-
encoded transcripts. Their observation of this decrease in steady-
state levels of mt-mRNA is surprising. It is in contrast with
results with TFB1M-knockout mice that exhibit defective mt-
SSU formation and in a patient where 12S mt-rRNA is lost as a
consequence of a MRPS16 mutation [34], where in neither case is
transcript loss noted. Irrespective, we are now able to report that
the essential function of ERAL1 is as a 12S mt-rRNA chaperone
and the identification of its binding site, in vivo.
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Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly
of the 28S small mitochondrial ribosomal subunit
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Figure S1 Stability of mitochondrially encoded transcripts is unaffected by
loss of ERAL1

HEK-293T cells were transfected with control (siNT) or ERAL1-targeting (siORF1) siRNA for 3
days, after which mitochondrial transcription was inhibited by the addition of ethidium bromide
(250 ng/ml). RNA was then isolated at the time points indicated post-addition of transcriptional
inhibitor and 4 µg of each sample was separated through 1.2 % agarose under denaturing
conditions. Northern blot analysis was performed with random hexamer generated DNA probes
to the mitochondrial transcripts indicated. MTCO3, COX3; MTCYB; mitochondrially encoded
cytochrome b .

Figure S2 Confirmation that siORF1 that targets ERAL1 lacks off-target
effects

End-point cell proliferation was quantified after 3 days of siRNA depletion of ERAL1 in 143B
parental and rho0 cells with control (NT siRNA) or ERAL1-targeting (ORF1 siRNA). Depletion of
ERAL1 with siORF1 showed a significant effect on the proliferation of parental 143B osteosarcoma
cells (rho+), that contain mtDNA. In contrast, no effect on cell growth was observed in
143B rho0 cells (supplemented with 50 µg/ml uridine) that lack mtDNA and therefore are
unaffected as they do not require mtDNA gene expression for growth. Results are means + S.D.
P < 0.001.

1 Present address: Department of Plant Sciences, University of Cambridge, Downing Site, Downing Street, Cambridge CB2 3EA, U.K.
2 Correspondence may be addressed to either of these authors (email z.chrzanowska-lightowlers@ncl.ac.uk or r.n.lightowlers@ncl.ac.uk).
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Figure S3 Analysis of apoptosis in HEK-293T cells post-siRNA treatment

HEK-293T cells were treated with control (siNT) or ERAL1-targeting (siORF1) siRNA for 3
days after which the proportion of apoptotic cells was estimated using the APO-Direct kit. (A)
Representative primary FACS data for the both control and ERAL1-depleted cells. Analyses were
performed on independent cultures of siRNA-transfected HEK-293T cells. (B) Quantification of
the results in (A) is presented (n = 4) as a percentage of apoptotic cells within the population.
Results are means + S.D. P < 0.001.
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Table S1 Sequences of all 31 short RNA species bound by ERAL1 in the CLIP assay

N, signifies not determined by sequencer; *12S mt-rRNA sequences are portrayed in a linear fashion in Figure 3 in the main paper. TNF, tumour necrosis factor.
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Translation termination in human mitochondrial
ribosomes
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Abstract
Mitochondria are ubiquitous and essential organelles for all nucleated cells of higher eukaryotes. They contain

their own genome [mtDNA (mitochondrial DNA)], and this autosomally replicating extranuclear DNA encodes

a complement of genes whose products are required to couple oxidative phosphorylation. Sequencing of

this human mtDNA more than 20 years ago revealed unusual features that included a modified codon

usage. Specific deviations from the standard genetic code include recoding of the conventional UGA stop to

tryptophan, and, strikingly, the apparent recoding of two arginine triplets (AGA and AGG) to termination

signals. This latter reassignment was made because of the absence of cognate mtDNA-encoded tRNAs, and

a lack of tRNAs imported from the cytosol. Each of these codons only occurs once and, in both cases, at the

very end of an open reading frame. The presence of both AGA and AGG is rarely found in other mammals,

and the molecular mechanism that has driven the change from encoding arginine to dictating a translational

stop has posed a challenging conundrum. Mitochondria from the majority of other organisms studied use

only UAA and UAG, leaving the intriguing question of why human organelles appear to have added the

complication of a further two stop codons, AGA and AGG, or have they? In the present review, we report

recent data to show that mammalian mitochondria can utilize a − 1 frameshift such that only the standard

UAA and UAG stop codons are required to terminate the synthesis of all 13 polypeptides.

Introduction
Mitochondria are vital organelles that are present in all

nucleated cells of higher eukaryotes. They play critical roles in

many processes, including calcium homoeostasis, apoptosis,

Fe–S cluster formation and oxidative phosphorylation.

Mitochondria contain their own genome (mtDNA, where mt

is mitochondrial) encoding mt-mRNAs that are translated

within the organelle [1]. In humans, these transcripts

encode 13 proteins that are all components of the oxidative

phosphorylation machinery, in addition to the two mt-

rRNAs and 22 mt-tRNAs, which are required for the

intramitochondrial translation of the mt-mRNAs. The

remaining protein components required for intra-organellar

translation and mitochondrial biogenesis are nuclear-encoded

and need to be imported from the cytosol. Human mtDNA

is a relatively small genome (16 569 bp) and is found in

many copies per mononucleate cell. A minimal non-coding

sequence is present, which contains regions that control the

initiation of mtDNA replication and transcription. From

these regions, this compact genome is almost fully transcribed

from both strands [2]. As a consequence, long polycistronic

transcriptional units are generated, which are subsequently

processed to separate the mt-rRNA, mt-tRNAs and mt-

mRNAs, and are then matured [2,3]. For the mt-tRNAs,

Key words: mitochondrion, protein synthesis, release factor, stop codon, translation termination.

Abbreviations used: IF, initiation factor; mt, mitochondrial; ORF, open reading frame; RF, release

factor; RRF, ribosome recycling factor; UTR, untranslated region.
1To whom correspondence should be addressed (email Z.Chrzanowska-Lightowlers@

ncl.ac.uk).

this involves the addition of -CCA to the 3′-teminus of

the precursor by the tRNA-nucleotidyltransferase, a protein

encoded by TRNT1 [4]. The 3′-termini of the mt-mRNAs

are also matured, but by the addition of a poly(A) tail. This

modification appears to be constitutive and is effected by

mtPAP, a nuclear-encoded poly(A) polymerase that is specific

to mitochondria [5]. In contrast with cytosolic mRNAs, their

mitochondrial counterparts lack any modification to the 5′-

termini and remain as a simple 5′-PO4. Another contrasting

feature is the relative lack of UTRs (untranslated regions),

leaving most ORFs (open reading frames) unflanked. Thus

initiation commences at or within three nucleotides of the

extreme 5′-termini for all except two of the ORFs, whereas

completion of the UAA stop codon is facilitated by the

addition of ‘A’ residues as a consequence of polyadenylation

of seven ORFs.

Protein synthesis in the human
mitochondrion
Initiation of protein synthesis occurs mainly at AUG codons,

but AUA and AUU can also be decoded as initiating

methionines [1]. Compared with translation in the eukaryotic

cytosol, where there are many IFs (initiation factors) that

come together to form the initiation complex, there appears

to be a much reduced system in mammalian mitochondria.

In the latter, the initiation complex appears to have retained

only two homologues: IF2 and IF3 [6,7]. It does appear,

however, that mtIF2 may have taken on the functions of

Biochem. Soc. Trans. (2010) 38, 1523–1526; doi:10.1042/BST0381523 C©The Authors Journal compilation C©2010 Biochemical SocietyB
io

c
h

e
m

ic
a
l 
S

o
c
ie

ty
 T

ra
n

s
a
c
ti

o
n

s
  
  
 w

w
w

.b
io

c
h

e
m

s
o

c
tr

a
n

s
.o

rg



1524 Biochemical Society Transactions (2010) Volume 38, part 6

bacterial IF1 [8]. Elongation proceeds along the mt-mRNA

facilitated by mtEF-Tu, mtEF-Ts and mtEF-G1 [9–12].

Another major difference lies in the general structure of the

mammalian mitochondrial ribosome when compared with

the more familiar bacterial 70S and eukaryotic cytosolic 80S

counterparts [13]. Rather than a predominance of rRNA,

mammalian mitochondrial ribosomes have reduced the

RNA component to two shorter rRNA species, 12S and

16S, while concomitantly increasing the number of protein

components, thus reversing the conventional ratio to ∼70 %

protein and only ∼30 % rRNA. As a consequence, the

structure is more open and porous with no conventional

E-site and with altered sedimentation values of 28S and 39S

for the small and large subunits respectively and 55S for the

complete monosome [13].

Termination of protein synthesis in human
mitochondria
The 55S particle continues protein synthesis until a

stop codon is reached and positioned within the A-site.

Sequencing of the human mtDNA almost 30 years ago

[1] revealed the features mentioned above. This included

the reassignment of the standard stop codon UGA as a

tryptophan, a not uncommon reassignment in mitochondrial

genetic codes. Strikingly, it also indicated the apparent

recoding of AGA and AGG as stop signals since each of

these triplets is found only once and, in both cases, only

at the very end of the ORFs of mitochondrial transcripts

MTCO1 or MTND6 respectively. The conclusion that these

were now stop signals was driven by the fact that the

mtDNA does not code for any tRNA that could decode either

AGA/AGG triplets and no tRNA has been shown to be

imported physiologically into the human organelle [14]. The

remaining 11 mitochondrial ORFs terminate in either of

the two standard stops, UAA or UAG. The original dilemma

was therefore what form of the class I RF (release factor)

would be required to promote peptidyl-tRNA hydrolysis

at these stop codons? Do human mitochondria follow the

bacterial paradigm where two RFs are required to decode

the three stop codons (RF1 recognizing UAA/UAG, and

RF2 showing specificity for UGA/UAA [15,16]), or do they

utilize a single RF more akin to eRF1 (eukaryotic RF1)/aRF1

(archaeal RF1) in the eukaryotic or archaeal cytosol respect-

ively [17,18]? A single mitochondrial RF, however, would

have to recognize an unusual and expanded repertoire of four

triplets.

Over 12 years ago, bioinformatic mining identified an

encouraging candidate for the role of human mtRF1. This

protein contained a predicted decoding tripeptide motif

(comprising proline and threonine with a variable amino acid

between the two and thus designated the ‘PXT’ motif) which,

although divergent, aligned more closely with that of bacterial

RF1 than RF2 [19]. The PXT motif in mtRF1 is made up of

six amino acids, PEVGLS, rather than just the three, thus

differing from the accepted RF1 type PXT consensus in both

length and sequence. It was considered that these differences,

when taken with a second sequence variation at the tip of

the α-5 helix, could have evolved to allow recognition of this

extended repertoire of stop triplets. Subsequent biochemical

analysis with mtRF1, however, failed to identify any release

activity with any codons. A more recent search for a further

candidate identified a protein, mtRF1a, with high overall

identity with mtRF1 [20]. Analysis of the codon recognition

domains revealed greater similarity to that of the bacterial

RF1 homologue and consensus sequences, with PKT as the

sequence constituting the tripeptide motif. Activity assays

demonstrated that mtRF1a has a specificity for the standard

UAA and UAG codons, but fails to recognize AGA/AGG

or any other codon tested [20]. Since the in vitro assays

are performed with 70S bacterial ribosomes, the lack of

recognition of AGA/AGG by mtRF1 or mtRF1a could

have been the consequence of using a heterologous system,

especially in the light of the significant differences between

55S and 70S particles described above. Further bioinformatic

searches have now revealed a family of four predicted

mitochondrial RFs, with ICT1 and C12orf65 adding to the

previously described mtRF1 and mtRF1a. Intriguingly, these

two new members, ICT1 and C12orf65, both lack the two

regions involved in codon recognition and are therefore

unlikely candidates for AGA/AGG recognition [21].

Reanalysis of the two transcripts containing the AGA or

AGG codons indicated that each of these triplets is directly

preceded by a ‘U’ nucleotide, which, following procession of

the mitochondrial ribosome to the end of the reading frame,

would be placed immediately adjacent, in the P-site [1]. Thus,

by invoking a single nucleotide shift, a conventional UAG

stop signal would be positioned in the A-site. In support

of this hypothesis, although 3′-UTRs are unusual in human

mt-mRNAs, these are present in both of the transcripts

containing in-frame AGA or AGG, and are predicted to

form stable secondary structures [22]. Frameshifting on

mitochondrial mRNAs is not common and no examples

have been identified previously in mammalian mitochondria.

Indeed there are only very few examples in mitochondria,

all of which thus far are in the +1 direction and occur

within the mt-ORFs [23–25]. The frameshifting proposed

in human mitochondria would contrast not only with these

other mitochondrial examples (as it is in the − 1 direction),

but also with all standard frameshifts, as it would occur after

protein synthesis has been completed. Furthermore, many

frameshifts offer an inefficient alternative to readthrough

[26], which can be regulated by changes in physiological

conditions [27]. In the instance of this human mitochondrial

example, there would be no possibility for readthrough, as

there is no cognate mt-tRNA for the AGA/AGG triplets.

We have been able to test this hypothesis by combining the

use of a mitochondrially targeted bacterial A-site-specific

endonuclease, mtRelE, together with sequence analysis of the

resultant cleaved RNA [22]. These fine mapping data revealed

the A-site codon at termination and confirmed that a − 1

frameshift does indeed occur. Thus the human mitochondrial

translation system only requires the more standard UAG and

UAA codons for termination. Moreover, as a consequence,

C©The Authors Journal compilation C©2010 Biochemical Society
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only a single RF is required, mtRF1a, which has already been

characterized to show selectivity and specificity for these two

termination signals [20].

Recycling of the human mitochondrial
ribosome following translation
termination
No orthologue of a class II RF has been identified in

human mitochondria, leaving the question of how mtRF1a is

removed from the mitoribosome after translation. Recycling

of the post-termination complex to release the deacylated

mt-tRNA, mt-mRNA and separation of the monosome into

the two subunits is effected by the mitochondrial ribosome

recycling factor, mtRRF, in conjunction with mt-EF-G2

and mt-IF3 [28–31]. This second elongation factor mt-EF-

G2 was characterized recently and appears to play no role

in elongation, but co-operates exclusively with mtRRF in

the recycling process [29]. The eukaryotic 80S and bacterial

70S ribosomes were believed to employ only a single EF-

G for both processes. However, bioinformatic, in vitro and

in vivo data now show that in fact it is not uncommon

for bacteria to have separated the elongation and recycling

activities and have two EF-G paralogues, as is the case in

human mitochondria [32]. Human mtRRF has an N-terminal

presequence that targets the protein to the mitochondrion,

but this is not cleaved after successful import into the

matrix of the organelle, as is the case for many of the

nuclear-encoded but mitochondrially destined proteins [28].

Alignment with numerous RRF sequences suggests that the

human mtRRF has a 79-amino-acid N-terminal extension

that lacks homology with other proteins [28]. Since this is

retained in the mature protein, it is tempting to speculate that

it may contain as yet uncharacterized functional domains.

Investigations are ongoing in our group to determine

whether such domains are present and, if so, what their

contribution might be to the process of mitoribosomal

recycling.

In conclusion, mitochondrial translation and termination,

particularly in humans, shares a number of similarities, but

also differs in many ways from these processes in bacteria and

the eukaryotic cytosol. This is perhaps not surprising, as it

has become clear over the last 30 years that the mitochondrial

protein synthesis machinery has an essential association with

the membrane, reflecting the highly hydrophobic nature

of its translation products, exclusively so in mammals. A

greater understanding of this process is hampered by a lack

of two important factors. First, our inability to manipulate

the mitochondrial genome, which means that it is currently

not possible to investigate the role of any cis-acting elements

in mitochondrial translation. Second, although impressive

reconstituted protein synthesis systems have been reported,

these are essentially hybrid systems and we therefore lack

a faithful reconstituted mitochondrial translation system. If

either of these two issues can be resolved in the near future,

our in-depth understanding of these processes will increase

rapidly.
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Hungry Codons Promote Frameshifting
in Human Mitochondrial Ribosomes

Richard Temperley,* Ricarda Richter,* Sven Dennerlein, Robert N. Lightowlers,

Zofia M. Chrzanowska-Lightowlers†

R
ibosome frameshifting, although rare,

must occur in mitochondrial (mt) trans-

lation systems with interrupted open

reading frames (ORFs) (1), but all human mt-

ORFs are unbroken. However, we show that

human mitoribosomes do invoke

–1 frameshift at the AGA and

AGG codons predicted to termi-

nate the two ORFs inMTCO1 and

MTND6, respectively. As a conse-

quence, both ORFs terminate in

the standard UAG codon, neces-

sitating the use of only a single

mitochondrial release factor (2).

Frameshifting could be pro-

moted by (i) paused mitoribosomes

on AGA or AGG triplets, because

no mt-tRNAs exist that recognize

these codons; (ii) upstream “slip-

pery” sequences that are poorly de-

fined in human mt-mRNA; or (iii)

a downstream stable secondary

structure predicted for bothMTCO1

andMTND6 (fig. S1) (3). To dem-

onstrate that –1 frameshifting oc-

curs in human mitochondria, we

targetedRelE, a bacterial endoribo-

nuclease that specifically cleaves

mRNA in the ribosomal A site,

to the mitochondrion [mtRelE

(4, 5), fig. S2]. This enzyme shows

marked sequence preference for

standard termination codons UAG

andUAAwith negligible predicted

recognition of AGA and AGG

(4). On induction, the majority of

MTCO1 (68 T 1.73%, n = 3) and

MTCO2 (70 T 1.4%, n = 3) were

intact (Fig. 1A, lanes 1 and 3),

ruling out nonspecific transcript

degradation by mtRelE. How-

ever, mitochondrial translation

was reduced for most mt-proteins,

including COX1 and ND6 (Fig.

1B).Depletion of themitochondri-

al release factor mtRF1a stabilizes transcripts

through extended association with the mitori-

bosome,whereasRelEpromotesreleaseofcleaved

mRNAfrom bacterial ribosomes (4). Therefore,

mtRelEexpressionwouldbepredicted toabrogate

mitoribosome-mediated protection. mtRF1a de-

pletion in tandem with mtRelE expression does

reduce the amounts of full-length mt-transcripts

and markedly so for MTCO1 (Fig. 1A, lanes 2

and4), indicating both recognition and cleavage

by mtRelE.

Northern analysis could not resolve whether

the short 3′ untranslated regions (3′UTRs)

present in MTCO1 [72 nucleotides (nt)] had

been lost post–mtRelE cleavage. MTND5,

however, possesses a longer 3′UTR (568 nt).

On mtRelE induction, a species was detected

that is consistent with cleavage at the stop codon

and loss of this 3′UTR (Fig. 1A, lanes 3 and 4

indicated by asterisks). Human mtDNA encodes

two transcripts with overlapping ORFs, one

containing MTATP8/6 (RNA14) and one

MTND4L/4 (RNA7). Cleavage at the stop codon

of the upstream ORF would release an RNAwith

a 5′-truncated downstream ORF. As with

MTND5, novel species were detected on mtRelE

expression. This was particularly apparent for

RNA14, where MTATP8 terminates in UAG, a

preferred stop codon for RelE (Fig. 1A).

Fine mapping was performed on MTCO2

and the 5′ truncated site of MTATP6 in the

bicistronic RNA14 (fig. S3). This revealed

mtRelE cleavage in the UAG termination codon

uniquely between nucleotides 2 and 3 before reade-

nylation. This result therefore allowed us to

determine unequivocally whether termination of

MTCO1 occurred at the AGA or UAG codon;

AGA termination codon would result

in –AAAAUCUAGAn, whereasUAG

would produce –AAAAUCUAAn. On

sequencing, 10 clones from control

cells reflected full-length 3′UTR

containing MTCO1 transcripts; two

were truncations in the antisense

tRNASer, a commonly identified

expressed sequence tag. This species

was also found in two of the mtRelE

samples. However, all the remain-

ing 33 mtRelE clones terminated in

–AAAAUCUA followed by read-

enylation (Fig. 1C), signifying that

MTCO1 terminates at UAG rather

than AGA. These data suggest that

mtRF1a is sufficient to terminate all

13 human mt-ORFs.
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Fig. 1. Expression of mtRelE results in specific cleavage of mt-mRNA stop
codons. Cells expressing mtRelE show (A) specific cleavage of mt-mRNA,
generating novel products indicated by asterisks in both wild-type (WT) cells
and those treated with siRNA to mtRF1a; (B) reduced metabolic labeling of
mtDNA encoded gene products; and (C) cleavage of MTCO1 transcripts specific
at the UAG codon (33/35 clones, 2 were common truncated WT sequences)
whereas WT cells retained the 3′UTR.
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