
Design Time Detection Of Architectural Mismatches in
Service Oriented Architectures

Thesis by

Carl J. Gamble

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

School of Computing Science,

Newcastle University,

Newcastle upon Tyne, UK

July 2011

ii

For my girls, Evie and Lily.

Evie’s laughter reminded me what was important and gave me inspiration when things

were tough; and while Lily put in an appearance only a few days ago, her imminent

arrival was a great reason to finish.

X

iii

Acknowledgements

The sign-off of the final corrections to this thesis marks the end of a very long journey that has mostly

been very enjoyable and certainly much better than having a real job! ;) And while the contributions

and technical content included in the many many pages that follow 1 are certainly mine, I am quite

positive that they would not be here or would be far more poor without the support of a few special

people. So it is with great pleasure that the final words I will write here will recognise at least some

of them.

I will start with my long suffering Ph.D. supervisor, Cristina Gacek. Somehow, through a

combination of listening, guiding, commenting, encouragement and the occasional good hard push,

she managed to get me through the Ph.D. I have thoroughly enjoyed the experience of working with

her and sincerely hope that I have opportunity to do so again.

Thanks must also go to my thesis committee, Alexander Romanovsky, John Fitzgerald and Aad

van Morsel for their sound advice and for helping to keep the scope of the work down to manageable

size when I was getting a little ambitious towards the end.

My examiners, Tom Anderson and Michel Wermelinger are also deserving of praise. I actually

rather enjoyed the discussions that took place during the viva and I think that the thesis is far better

after implementing the changes they laid out for me.

I also need to thank Tom for helping to dig me out of deep holes when Brian Randell asked hard

questions in presentations, but at the same time to extend thanks to Brian for asking the questions

in the first place, these always caused me to think of the work in different ways.

I would also like to thank Bradley Schmerl of Carnegie Mellon University for correcting the bugs

I found in ACME Studio and also for his assistance when I could not get my external analysis

working. Related to this is my gratitude to Jeremy Bryans for patiently listening to my questions

and ideas regarding the use of CSP in this work.

Thanks are also due to Steve Riddle for allowing me the time to complete the thesis while working

for him as an RA. It would not have been possible to complete the work without his cooperation.

I also want to thank my fellow Ph.D. students. The gaming, lunch-time/coffee-break/any-other-

time-we-felt-like-it chats and other good times all played a big part in keeping me sane!

1Sorry about the size of the thesis, I apparently don’t know when to stop! ;)

iv

Last, but by no means least, I come to my family. I want to thank my mother and father for

their unshakable belief that I would get through the Ph.D., this is rather more confidence than I had

at the time. Finally I want to thank my wife Emma and my little girl Evie. Without Emma’s help

and support I would not have been able to even consider doing the Ph.D. and without her insistence

on holidays and family days out would have been in danger of losing touch with the world outside

of the office. Evie’s help was simply being her cheery, smiley, fun self and always being ready to

play. Our trips to the park and to the beach were instrumental in helping me to relax and keep a

perspective of what really matters at the end of the day.

I am sure I will have forgotten some people or some help, so if you are one of those people then

please give yourself a pat on the back and say thanks to yourself from me :D.

Cheers!

Carl.

v

Publications

Aspects of this work have appeared in the following publications.

Journal

C. Gacek and C. Gamble. Mismatch avoidance in web services software architectures. Journal of

Universal Computer Science, 14(8):1285 – 1313, 2008.

Conference

Carl Gamble, Detecting Architectural Mismatches Between Web Services. In DSN ’07: Supplemental

Volume, 37th IEEE/IFIP International Conference on Dependable Systems and Networks, pages

315–317, 25-28 June, 2007, IEEE Computer Society, 2007.

Workshop

Carl Gamble, Architectural Mismatch in Web Services. In IRTG ’06: Proceedings of the Interna-

tional Research Training Groups Workshop, pages 52–53, 6-8 November, 2006, GITO-Verlag, Berlin,

2006.

Technical Reports

Carl Gamble and Cristina Gacek. Mismatch Avoidance in Web Services Based Software Architec-

tures. Technical Report CS-TR-1079, Newcastle University, Newcastle upon Tyne, United Kingdom,

2008.

Carl Gamble and Cristina Gacek. Minimal Web Services Style Architectural Style Description and

Example Instantiation. Technical Report CS-TR-1078, Newcastle University, Newcastle upon Tyne,

United Kingdom, 2008.

vi

Carl Gamble and Cristina Gacek. Mismatch Avoidance with Web Services. Technical Report CS-

TR-1061, Newcastle University, Newcastle upon Tyne, United Kingdom, 2007.

Carl Gamble. Detecting Architectural Mismatches Between Web Services. Technical Report CS-

TR-1019, Newcastle University, Newcastle upon Tyne, United Kingdom, 2007.

Carl Gamble. A minimal web service architectural style. Technical Report CS-TR-1015, Newcastle

University, Newcastle upon Tyne, United Kingdom, 2007.

vii

Abstract

Service Oriented Architecture (SOA) is a software component paradigm that has the potential to

allow for flexible systems that are loosely coupled to each other. They are discoverable entities that

may be bound to at run time by a client who is able to use the service correctly by referring to the

service’s description documents.

Assumptions often have to be made in any design process if the problem domain is not fully spec-

ified. If those decisions are about the software architecture of that component and it is inserted into

a system with differing and incompatible assumptions then we say that an architectural mismatch

exists.

Architectural styles are a form of software reuse. They can simply be used by referring to a

name such as “client-server” or “pipe and filter”, where these names may conjure up topologies

and expected properties in the architects mind. They can also however be more rigorously defined

given the right software environment. This can lead to a vocabulary of elements in the system,

defined properties of those elements along with rules and analysis to either show correctness of an

implementation or reveal some emergent property of the whole.

SOA includes a requirement that the service components make available descriptions of them-

selves, indicating how they are to be used. With this in mind and assuming we have a suitable

description of the client application it should be the case that we can detect architectural mis-

matches when designing a new system. Here designing can range from organising a set of existing

components into a novel configuration through to devising an entirely new set of components for an

SOA.

This work investigates the above statement using Web Services as the SOA implementation and

found that, to a degree, the above statement is true. The only element of description required for a

web service is the Web Service Description Language (WSDL) document and this does indeed allow

the detection of a small number of mismatches when represented using our minimal web service

architectural style.

However from the literature we find that the above mismatches are only a subset of those that

we argue should be detectable. In response to this we produce an enhanced web service architec-

tural style containing properties and analysis supporting the detection of this more complete set of

mismatches and demonstrate its effectiveness against a number of case studies.

viii

Contents

Acknowledgements iii

Publications v

Abstract vii

1 Motivation and Introduction 1

1.1 Thesis and Goals . 2

1.2 Assumptions of the Work . 3

1.3 Structure of the Thesis . 4

2 Background 6

2.1 Web Services and SOA . 6

2.1.1 Description and Interoperability . 7

2.2 Software Architecture . 9

2.2.1 Description Languages . 10

2.2.1.1 Summary of ADLs . 12

2.2.1.2 Why ACME was selected . 13

2.2.2 Styles . 14

2.2.2.1 Characteristics . 16

2.2.3 Mismatch . 25

2.2.3.1 Avoidance and Resolution . 28

2.2.3.2 Web Services Composition . 30

2.2.3.3 Architectural Scope . 30

2.3 Summary . 32

3 Minimal Web Service Architectural Style 34

3.1 What is a Minimal Web Service? . 34

3.1.1 Characteristics Relevant to the Web Services Based Architectural Style . . . 36

3.1.2 Characteristics Irrelevant to the Style Description 39

ix

3.1.3 Summary . 40

3.2 Describing the Minimal Style in ACME & Armani 41

3.2.1 Ports and Data Structures . 41

3.2.2 Components . 42

3.2.3 Connector . 44

3.2.4 Configuration Rules . 45

3.3 Summary . 47

4 Web Service Architectural Mismatches 48

4.1 Davis, Gamble and Payton . 49

4.1.1 System Characteristics . 49

4.1.2 Control Characteristics . 50

4.1.3 Data Characteristics . 53

4.2 DeLine . 55

4.3 Gacek . 57

4.4 Yakimovich, Bieman and Basili . 60

4.5 Summary . 61

5 Enhanced Web Service Architectural Style 66

5.1 Requirements for the Style . 67

5.2 Defining the Enhanced Style . 67

5.2.1 Port to Port Scope . 67

5.2.1.1 Message Exchange Pattern Description 67

5.2.1.2 Message Contents . 74

5.2.1.3 Message Mapping . 79

5.2.1.4 Message Exchange Patterns . 81

5.2.1.5 State Scope . 84

5.2.1.6 Data Continuity . 85

5.2.1.7 Failure Modes . 86

5.2.1.8 Connector Binding Time . 88

5.2.1.9 End Points . 91

5.2.2 Component to Environment Scope . 94

5.2.2.1 Basic CSP System Model . 96

5.2.2.2 Basic Conversational Analysis: Commission 97

5.2.2.3 Basic Conversational Analysis: Omission 98

5.2.2.4 Cooperative Connectors . 101

5.2.2.5 Stubborn Connectors . 102

x

5.2.2.6 Multiple Connections . 104

5.2.2.7 Multi-threading . 109

5.2.2.8 Complications and Interleaving . 110

5.2.2.9 No Explicit Pattern Termination . 112

5.2.2.10 Patterns with Optional Non-explicit Endings 112

5.2.3 Architecture Elements . 114

5.2.3.1 Components . 114

5.2.3.2 Ports . 114

5.2.3.3 Connectors . 114

5.2.4 Type Checking . 116

5.3 Summary . 117

6 Case Study and Evaluation 119

6.1 ACME Studio Graphical View Key . 119

6.2 Case Study to Evaluate the Minimal Style . 119

6.2.1 Section Summary . 124

6.3 Case Studies to Evaluate the Enhanced Style . 125

6.3.1 Car Parking . 125

6.3.1.1 Initial Configuration and Mismatches 126

6.3.1.2 Section Summary . 133

6.3.2 Additional Tests : Omission . 135

6.3.3 Additional Tests: Cooperative Connector . 139

6.3.4 Additional Tests: Stubborn Connector . 140

6.3.4.1 Section Summary . 144

6.3.5 Additional Tests: Multiple Connectors . 145

6.3.6 Additional Tests: Multi Threading . 146

6.3.6.1 Section Summary . 147

6.3.7 Mismatch Coverage by Examples . 149

6.4 Evaluating Mismatch Detection in the Enhanced Style 151

6.4.1 Depth . 152

6.4.1.1 Section Summary . 155

6.4.2 Dependancies . 156

6.4.3 False Results . 157

6.4.3.1 Hidden Commission . 157

6.4.3.2 False Commission/Hidden Omission 158

6.4.3.3 Hidden Omission . 158

xi

6.4.3.4 Potentially False Omission . 158

6.4.3.5 Omission Partial Match/Mismatch 159

6.4.3.6 String Properties Correctly Populated 159

6.4.3.7 Global Type Checking Rules . 159

6.4.3.8 Discussion . 160

6.4.4 Meaningful Results . 161

6.4.4.1 Armani Only Rules . 161

6.4.4.2 Armani and External Analysis Rules 163

6.4.5 Scope of the Enhanced Style . 163

6.5 Summary . 165

7 Further Work 167

7.1 Style Related . 167

7.1.1 Static Properties . 167

7.1.2 Model Checked Properties . 169

7.1.3 Style Implementation . 171

7.2 SOA Related . 174

7.2.1 Characteristic Publication . 174

7.2.2 Missing Properties . 175

8 Conclusions 176

8.1 Key Contributions . 177

8.2 Architectural Styles and Results . 177

8.3 Generalising . 179

8.4 Reflections upon the Work . 180

8.5 Final Conclusions . 181

9 Glossary 182

Bibliography 185

A ACME Studio Introduction 192

A.1 ACME Architecture Description Language . 192

A.2 Armani Predicate Language . 196

A.3 External Analysis . 197

A.4 ACME Studio and ACME Libs . 198

B Minimal Style Description 201

xii

C Complete ACME Descriptions of Minimal Style Scenario 207

D Enhanced Style Description 221

D.1 Rules for using the style . 221

D.1.1 Port message pattern naming . 221

D.1.2 Message naming . 221

D.1.3 Forbidden message name . 222

D.2 The Style Definition . 222

E Complete ACME Descriptions of Enhanced Style Scenarios 240

E.1 Car Parking Scenario . 240

E.1.1 Initial Configuration . 240

E.1.2 Final Configuration . 249

E.2 Additional Tests . 265

E.2.1 Omission Check . 265

E.2.2 Cooperative Connector Check . 271

E.2.3 Stubborn Connector Check . 276

E.2.4 Multiple Connectors Check . 281

E.2.4.1 SpaceCCBuy . 281

E.2.4.2 SpaceCCBuy Alternate . 287

E.2.4.3 BookPayCC . 293

E.2.5 Multi Threading Check . 299

F External Analysis Descriptions and Source Code 306

F.1 Class Group Outlines . 306

F.1.1 External Analysis Main Classes . 306

F.1.2 Message Pattern Comparison . 306

F.1.3 Message Comparison . 306

F.1.4 Data Extraction Utils . 308

F.1.5 CSP Modelling . 308

F.1.6 Acme Interface . 309

F.1.7 Exceptions . 309

F.1.8 Reporting . 309

F.1.9 Data Types . 309

F.1.10 Support . 310

F.2 External analysis file outputs . 310

F.2.1 Commission Mismatch / Partial Match . 310

xiii

F.2.2 Omission Mismatch / Partial Match . 310

F.2.3 Concurrent Calls to this Port . 312

F.2.4 Message Data Types Match . 312

F.2.5 Message Over Data . 312

F.2.6 Message under Data 1 . 312

F.2.7 Message under Data 2 . 312

F.2.8 State Scopes Match . 313

F.2.9 Message Exchange Patterns Match . 313

F.2.10 Message Exchange Patterns Partially Match 313

F.2.11 Central Data Store Correct . 314

F.2.12 Message Pattern and Message List Concur . 314

F.2.13 Choice Groups Have Choice Maker . 314

F.3 Message index numbers . 314

F.4 Source Code . 315

F.4.1 Acceptable Exception . 316

F.4.2 Active Analysis Checker . 316

F.4.3 Acme Interface . 317

F.4.4 Central Data Store Correct . 326

F.4.5 Choice Groups Have Choice Maker . 329

F.4.6 Commission Mismatch . 332

F.4.7 Commission Partial Match . 334

F.4.8 Component . 337

F.4.9 Concurrent Calls To This Port . 337

F.4.10 Connector . 340

F.4.11 CSP Connector Constructor . 341

F.4.12 CSP Hiding Set Constructor . 345

F.4.13 CSP Memory Constructor . 348

F.4.14 CSP Model Builder . 351

F.4.15 CSP Thread Counter Constructor . 361

F.4.16 Data Extraction Utils . 363

F.4.17 Element CSP Data . 369

F.4.18 FDR Results Analyzer . 371

F.4.19 Helper . 377

F.4.20 Look Up . 379

F.4.21 Message Comparison . 379

F.4.22 Message Data Mapping . 386

xiv

F.4.23 Message Data Types Match . 387

F.4.24 Message Exchange Patterns Match . 388

F.4.25 Message Exchange Patterns Partially Match 390

F.4.26 Message Mapping . 392

F.4.27 Message Over Data . 398

F.4.28 Message Pattern Comparison . 400

F.4.29 Message Pattern And Message List Concur 402

F.4.30 Message Under Data 1 . 408

F.4.31 Message Under Data 2 . 409

F.4.32 Message Vector . 411

F.4.33 Omission Mismatch . 412

F.4.34 Omission Partial Mismatch . 415

F.4.35 Port . 418

F.4.36 Reportable Exception . 419

F.4.37 Reporter . 419

F.4.38 State Scopes Comparison . 422

F.4.39 State Scopes Match . 422

F.4.40 T Data Rep . 424

F.4.41 T Data Semantics . 425

F.4.42 T Safe Boolean . 425

F.4.43 Wait . 426

G Traces Tables 427

H CSP Introduction 431

H.1 Model Definition . 431

H.1.1 Linear Process Definition . 431

H.1.2 Concurrency . 432

H.1.2.1 Interleaved . 432

H.1.2.2 Alphabetised Parallel . 432

H.1.3 Process Branching . 433

H.2 Model Analysis . 434

H.2.1 Deadlock . 434

H.2.2 Traces Refinement . 435

H.3 Summary . 436

xv

I CSP Templates 437

I.1 Port CSP Templates . 437

I.1.1 Notification - One-way . 437

I.1.1.1 Template Derivation . 437

I.1.1.2 Actual Templates and Useage . 439

I.1.2 Robust-out-only - Robust-in-only . 440

I.1.2.1 Template Derivation . 440

I.1.2.2 Actual Templates and Useage . 443

I.1.3 Solicit-Response - Request-Response . 444

I.1.3.1 Template Derivation . 444

I.1.3.2 Actual Templates and Useage . 446

I.1.4 Out-optional-in - In-optional-out . 447

I.1.4.1 Actual Templates and Useage . 451

I.2 Port Template Linking . 453

I.2.1 Sequential Flow . 453

I.2.2 Breaking Out . 454

I.3 Central CSP Templates . 455

I.3.1 Single Thread . 456

I.3.2 Single Thread With Choice of Ports . 456

I.3.3 Multiple Identical Threads . 457

I.3.4 Multiple Diverse Threads . 458

I.3.5 Branching . 459

I.3.6 Looping . 459

xvi

List of Figures

2.1 Three lampposts diagram . 11

2.2 A simplified just in time delivery system . 15

2.3 Yakimovich et. al. synchronisation . 19

2.4 Yakimovich et. al. packaging . 20

2.5 Yakimovich et. al. control . 20

2.6 Yakimovich et. al. information . 20

2.7 Yakimovich et. al. binding . 20

2.8 Davis et al. data semantic relationships . 24

2.9 Davis et al. control semantic relationships . 24

2.10 Assumptions and Goals . 32

3.1 Message exchange pattern, notify/one-way . 38

3.2 Message exchange pattern, robust-out-only/robust-in-only 38

3.3 Message exchange pattern, solicit-response/request-response 38

3.4 Message exchange pattern, out-optional-in/in-optional-out 39

3.5 Partial match example . 39

3.6 ACME, style port descriptions . 43

3.7 ACME, style property types . 43

3.8 ACME, style component types . 44

3.9 ACME, message exchange pattern rule, part 1 . 45

3.10 ACME, message exchange pattern rule, part 1 . 46

3.11 ACME, style type check rules . 46

4.1 Layers of components in web services . 51

5.1 ACME, Port CSP and sends first message properties 70

5.2 Solicit response pattern . 71

5.3 ACME, Central data records properties, types and rules 75

5.4 ACME, Connector rules checking semantics and syntax of exchanged messages 80

5.5 ACME, Connector rules checking message exchange patterns match 84

xvii

5.6 ACME, State scope type and rule . 86

5.7 ACME, Data continuity property, type and rule . 87

5.8 ACME, Failure mode properties, types and rules . 88

5.9 ACME, Binding time properties, type and rules . 89

5.10 ACME, Connector creation and destruction properties and rules 92

5.11 ACME, Endpoint protocol properties, types and rule 93

5.12 ACME, Discoverability properties and rules . 94

5.13 Component and environment overview . 95

5.14 ACME, Message commission rules and properties . 99

5.15 ACME, Message omission rules and properties . 101

5.16 ACME, Cooperative Connector . 102

5.17 ACME, Stubborn Connector . 104

5.18 Multiple connector example . 105

5.19 ACME, Port Binding Cardinality . 108

5.20 ACME, Port concurrency properties and rules . 111

5.21 Artificial decThread example . 113

5.22 Artificial decThread all patterns . 113

5.23 ACME, ports in components type checking . 115

5.24 Enhanced style components . 115

5.25 Enhanced style ports . 116

5.26 Enhanced style connectors . 116

5.27 ACME, Nature of components and connectors rules 117

6.1 Initial system architecture with mismatch warnings 121

6.2 The rule summary for the connector between NU and CM1E2 121

6.3 The rule summary for the connector between SNP and RS2 122

6.4 The mismatching message exchange patterns between SNP and RS2 122

6.5 The final architecture of the envisaged system. 124

6.6 Car park scenario, Service Protocols . 127

6.7 Car park scenario, Initial Configurations . 128

6.8 Car park scenario, SCENE component . 130

6.9 ACME, Adapted Messages in SCENE . 134

6.10 Car park scenario, Final configuration . 134

6.11 Omission Check, System Configuration . 135

6.12 Omission check, Client rules . 136

6.13 Omission check, Service rules . 136

xviii

6.14 Omission check, Possible System Traces . 138

6.15 Omission check, Possible Service Traces . 139

6.16 Cooperative Connector Check, System Configuration 140

6.17 Stubborn Connector Check, System Configuration . 140

6.18 Multiple Connectors Check . 145

6.19 Mult Threading, System Configuration . 146

A.1 ACME, system declaration . 192

A.2 ACME, component description . 193

A.3 ACME, connector description . 193

A.4 ACME, connector attachment . 193

A.5 ACME, component representation graphical view . 194

A.6 ACME, component representation text view . 195

A.7 ACME, style declaration . 195

A.8 ACME, component and port style declarations . 195

A.9 ACME, connector style declaration . 196

A.10 ACME, simple connector rule example . 196

A.11 ACME, global rule example . 197

A.12 ACME, complex connector rule example . 197

A.13 ACME, external analysis declaration . 198

A.14 ACME Studio, basic layout . 199

D.1 ACME, example messagePattern property . 221

F.1 Enhanced Style - Analysis Active Component, in ACME 311

I.1 Sequential flow example . 453

I.2 Breaking out example . 454

I.3 Choice Example . 456

I.4 Looping . 460

xix

List of Tables

2.1 Davis et. al. System Classification . 21

2.2 Davis et. al. Data Classification . 22

2.3 Davis et al. Control Classification . 23

4.1 Minimal style rules . 62

4.2 Minimal style mismatches . 63

4.3 Second search mismatches . 63

5.1 All enhanced style mismatches . 68

5.2 Message Mappings Between MEPs . 82

5.3 Matching port traces . 83

5.4 Partially matching port traces . 83

5.5 Mismatch inferences from message exchange rules . 85

5.6 Sections where mismatches are addressed . 118

6.1 Style Icon Key . 120

6.2 Car Park, BookingPaymentCC Interface . 126

6.3 Car Park, SpaceCCBuy Interface . 126

6.4 Sections in which mismatch detection is demonstrated 150

7.1 Effort and value associated with future work item . 168

F.1 Analysis class groups . 307

F.2 Message index numbers . 315

G.1 Notification - * traces . 428

G.2 Robust-out-only - * traces . 429

G.3 Solicit-response - * traces . 429

G.4 Out-optional-in - * traces . 430

1

Chapter 1

Motivation and Introduction

The practice of software construction in a component-based fashion heavily based on software com-

ponents reuse has long been recognized as an important solution for the software crisis [McI69].

It is a powerful means of not only reducing software development costs in the long run, but also

reducing the risk of project failure, improving software quality, shortening development time, and

greatly increasing the productivity of the individual software developer [Som01, Gac98]. This vision

is still fully to become a reality. Obstacles to date have ranged from various organisational to tech-

nical barriers. Technical barriers include the occurrence of architectural mismatches during systems’

composition from various independent software parts.

An architectural mismatch [GAO95] occurs when two or more software components are connected

to form a system, and those components make differing and incompatible assumptions about their

interactions or the environment in which they exist. The presence of an architectural mismatch

between the elements being composed within a system can hinder reuse in a variety of ways. Problems

can range from preventing elements’ composition altogether to experiencing undesired side effects at

run-time. Hence, architectural mismatches must be handled appropriately [Sha95a], by either being

avoided during development and/or system reconfiguration, or being tolerated at run time.

Approaches to the mismatch problem have been discussed previously in the existing literature.

These include the use of formal models for mismatch detection both at design or composition

time [Gac98, AA96, FS02] and at run-time [UY00], pattern and mediator based resolution of mis-

match [KG98, DeL99, HGK+06, CN08] and avoidance through flexible packaging [DeL01].

The work in this thesis is most closely related to those works on composition time detection,

utilising architectural styles to encapsulate the rules and properties required for mismatch detection.

Architectural styles have much to offer in this respect: they provide a vocabulary of architectural

elements; parameters for the architect to follow; and constraints to check the validity of the in-

dividually chosen attribute values, as well as the overall system configuration. For these reasons

architectural styles are heavily employed in this thesis with a significant portion of the contribution

taking this form.

2

Service-Oriented Architectures (SOAs) are becoming one of the main trends in the current en-

gineering of software. Web services are a recent approach towards supporting SOAs, building from

standards agreed upon by various community stakeholders, while avoiding proprietary middleware

solutions. Put simply, a Web service is any system that provides a network interface that is described

by a published Web Service Description Language (WSDL) [W3C06c][W3C06d] [W3C06e] [W3C06f]

document and uses Simple Object Access Protocol (SOAP) [W3C06a] as its message format. In this

respect it is fair to characterise Web services as being an integration middleware [Bak02] or standard

for presenting the interface parts of SOA [FS05] [Beh03]. Hence, using web services, as defined by

W3C Web Services Architecture Working Group [W3C06b], supports the engineering of SOAs by

providing rules and restrictions that apply to the definition of web services and how they can interact

with other components to form a larger system.

1.1 Thesis and Goals

Given that SOA components are expected to make descriptions of themselves available, then provided

a suitable description of client components are also available it should be the case that it is possible

to detect architectural mismatches when bringing these components together to form a system. It is

precisely this area that this work will explore, ultimately aiming to answer the following questions:

Central Questions. Is the stipulated description of Web Service components sufficient to allow

detection of all relevant architectural mismatches? If not, then what properties should both the

services and the clients that use them make explicit to allow all relevant mismatches to be discovered?

Finally, are architectural styles a suitable approach to support the representation and analysis of Web

Service compositions for mismatch discovery?

While there are many description documents that can be associated with a web service com-

ponent [Pap08] they are only required to provide a WSDL description of themselves. An ex-

amination of WSDL in comparison to the architectural characteristics presented in the litera-

ture [Gac98, BJPW, DeL99, DGP02a] indicates that it does not contain sufficient coverage of prop-

erties to allow mismatch detection. From this the first thesis for this work to test is derived:

Thesis 1. It is not possible to detect, at configuration time, all architectural mismatches in a system

comprising of web services given only the minimal web service description and specifications.

This question naturally leads to a more positive second thesis to test:

Thesis 2. It is possible to describe a set of characteristics and rules that would allow all architectural

mismatches relevant to web service components to be detected at configuration time.

3

A number of smaller questions can be used to guide the work towards testing the two main theses.

The first of these directly relates to the first thesis question and sets a baseline for the following

work.

Sub Goal 1. What mismatches could be detected currently?

This only gives part of the information required to answer the first thesis, to complete the answer

requires the following question also to be answered.

Sub Goal 2. What mismatches are relevant in the scope of web services and their clients?

The above goal highlights an aspect of the scope of this work. While the title mentions service

oriented architecture, it will not be possible to detect mismatch unless the client components using

the services are also represented. Thus client type components will also be included in the analysis

styles.

Once the mismatches are known this will guide the development of an architectural style to allow

their detection. The following two questions will also be answered in parallel as they are dependant

upon each other.

Sub Goal 3. What characteristics are required to represent the relevant mismatches and how can

they be represented?

Sub Goal 4. What analysis is required to detect these mismatches?

1.2 Assumptions of the Work

There are a number of assumptions that are made during this work, these and their motivations are

listed below.

Dynamic Systems It is assumed that the software environment of SOA is dynamic with services

appearing and disappearing as markets change and as they are upgraded. The result is that

systems defined using this style must acknowledge that the components they are connected to

may tear down the connections between them and cease to exist.

Organisational Separation 1 It is assumed that in a world of SOA the organisations developing

client applications may be separate to the organisations developing services. Also a client may

make use of services provided by more than one organisation. In this work then it is not

possible for the developer of an application to know more about a component than is made

available in it’s public description. It is also only possible for a developer to make changes to

their own component designs.

4

Organisational Separation 2 It is assumed that a web service may depend upon other web ser-

vices to provide its functionality. For example a travel agent may offer flight availability

information based upon several airline web services and a developer of a client for the travel

agent service may not know about the existence or identity of the airline web services. The

mismatch analysis therefore cannot assume it will have a complete view of the system.

Client Descriptions While it is currently true that web services should provide a standard (WSDL)

description of their interface, the same is not true for client applications. Without some de-

scription of the client application it would not be possible to detect mismatches, so this work

assumes that developers will produce description documents of their client designs.

Other description documents While a system design process may involve many documents de-

scribing the requirements of the system including the goals of any stakeholders, this work does

not assume they are available for the purpose of mismatch detection.

Ontologies This work assumes that ontologies exist covering a number of aspects of the work.

Firstly for giving semantic descriptions of data items and secondly relating to the failure

modes described by each port. Furthermore is is assumed that these ontologies are shared

between organisations developing client, service and broker type components.

Exploration not Simulation It is not the intention of this work to attempt to simulate the in-

teractions between web service components, but rather to explore the possible interactions

between them. This means that the actual timing of messages and the specific values of data

they may contain are ignored in favour of a more abstract model which considers message

order and the semantics of the data only.

1.3 Structure of the Thesis

Chapter 2 provides some background, introducing software architecture, web services and summaris-

ing a number of key pieces of related work.

The contribution starts in Chapter 3 where the minimal web service architectural style is de-

scribed. This sets the baseline for the work by showing what mismatches can be detected currently

with a minimal service description.

Chapter 4 sees the work returning to the literature to ascertain what mismatches are considered

significant for general software components and then explores which of these are applicable within

the scope of web services.

Chapter 5 describes an enhanced web service architectural style that builds upon the minimal

style to address the additional mismatches found in Chapter 4. This is where the data structures

and associated analysis used to detect mismatches are defined.

5

Chapter 6 shows the evaluation of both the minimal and enhanced architectural styles using a

number of case studies. The work then finishes with suggested future work in Chapter 7 and the

conclusions in Chapter 8.

The main chapters are followed by nine appendices that are included to support the thesis

document and for repeatability, but are not compulsory reading. Appendix A gives an introduction

to ACME and ACME Studio, the architecture description language (ADL) and environment used

throughout this work. Appendices B–E contain the complete ACME[Gro06a] descriptions of both

architectural styles presented here and also the ACME descriptions of the main scenarios used to

evaluate this work. Appendix F contains a description of the external analysis utilised by the

enhanced style along with the complete Java source code for the plugins. Appendix G presents

the tables used by the external analysis to determine if two message exchange patterns match and

the final two appendices, H and I, give and introduction to the CSP constructs employed here and

describe the templates required for the correct functionality of the style.

6

Chapter 2

Background

This work has two main focuses, Web Services and software architecture. The background starts

with a description of both what Service Oriented Architecture (SOA) and Web Services are before

touching upon some efforts at improving Web Service interoperability both through standardisation

and more explicit description. The content then moves to look at software architecture in general

before listing some of the many architecture description languages (ADLs) available and describ-

ing why the ACME ADL was chosen to support this work. The following section describes two

aspects key to this work, architectural styles and a number of software architecture characteristics

deemed significant for interoperability by the relevant literature. The final section discusses archi-

tecture mismatch itself along with a number of approaches to its avoidance and resolution in general

components. This section concludes by touching on some works related to formal description and

analysis of Web Service compositions and a statement describing what is “architectural” taken from

the literature.

2.1 Web Services and SOA

This first section introduces SOA and Web Services to give an outline of the components and systems

this work aims to detect mismatches in.

SOA is a term which can frequently be found in relation to web services, but the literature seems

lacking in precise descriptions. This may be due to them being a paradigm and not a hard protocol,

however the OASIS consortium has produced a reference model [OAS06] which outlines the key

features of SOA along with their relationships. A direct quote from the model states:

Service Oriented Architecture is a paradigm for organizing and utilizing distributed

capabilities that may be under the control of different ownership domains. It provides

a uniform means to offer, discover, interact with and use capabilities to produce desired

effects consistent with measurable preconditions and expectations.

7

The above statement along with the three key aspects of SOA cited by OASIS (visibility, inter-

action and real world effects) are used as the guidance in this work.

The use of web services is one of the possible ways to implement a SOA [Sta06]. Web ser-

vices themselves have been the focus of many research papers, with attempts at characterising their

behaviour [MMR06] and formalising their descriptions [Col04, YWD06, Yeu06]. These works con-

centrate on providing detailed formal models of specific narrow focussed aspects of web services and

not the more broad architectural style presented later in this work.

The Web Services Architecture working group (WS-ARCH) of the World Wide Web Consortium

(W3C) define a web service as follows [W3C06b]:

A Web service is a software system designed to support interoperable machine-to-machine

interaction over a network. It has an interface described in a machine-processable format

(specifically WSDL). Other systems interact with the Web service in a manner prescribed

by its description using SOAP messages, typically conveyed using HTTP with an XML

serialization in conjunction with other Web-related standards.

Papazoglou [Pap08] describes two distinct types of web service, programatic and interactive:

Programatic these are relatively simple informational services. They may take the form of a

request-response pair such as requesting the current weather at a location, or may provide

front-ends to complex business information systems. These functions are generally atomic in

nature;

Interactive services are those where a function is delivered by composing multiple services into

a single service that may require multiple message exchanges to complete and also may be

stateful, where the service keeps track of client state between invocations, and transactional.

Whichever type of service is implemented, a key aspect of SOA discoverability is that clients are

able to “use” the services, and this requires some kind of description.

2.1.1 Description and Interoperability

Having given an outline of what SOA and Web Services are, this section now presents both the

basic description document of Web Services along with some of the efforts at standardisation and

expanded descriptions.

The basic description of a Web Service component is contained within a Web Service Description

Language (WSDL) document. This is an XML formatted document that contains six main element

types [Top03]:

Import Web service descriptions can be spread over multiple files, this is where the additional file

locations are defined;

8

Types definition of any non standard data types to be exchanged in messages, such as ‘record’ type

data structures;

Messages defines the messages exchanged at the web service interface, where each message is named

and can contain multiple data items;

Port type this describes each port in terms of the messages it exchanges and pattern employed1;

Bindings each port can be bound to multiple concrete protocols, for example HTTP and SOAP;

and

Services groups related ports together to represent a service.

In essence these documents describe the syntax and ordering of messages required by each port

provided and required by a service, but no more. Beugnard et al. [BJPW] argue that while com-

ponents can offer much to software engineering, if they do not behave as expected then it is either

because they are faulty or they are being mis-used. They propose that components should be used

with contracts at four levels :

Syntactic level interface definition language;

Behavioural level pre and post conditions;

Synchronisation level service object synchronisation, path expression; and

QOS (Quality of service) levels such issues as maximum/average response time, accuracy of the

result or throughput. Issues at this level may be negotiated when the contract is set up between

service provider and consumer.

WSDL only covers the syntactic level of this four level contract. It is not surprising then to find

that there are a great many other WS-* description languages in existance today covering many of

these aspects. For example, Papazoglou [Pap08] mentions 43 such languages. However, this list is

not complete, for example Parastatidis et al. [PWW+05, PW05c, PW05b, PW05a] have produced a

number of web service descriptions that focus on SOAP as being the only allowed message protocol.

These descriptions include some support for including Communicating Sequential Processes (CSP)

descriptions of message choreographies and so reach higher than the four level scale described above.

Similarly, Fiadeiro et al. [FLB06] have described a language, SRML, which provides primitives to

describe service compositions and their message passing behaviour. One distinguishing feature of

SRML is that it describes the expected behaviour of the composition in terms of properties the

composition should adhere to rather than prescribing a choreography.

1These message exchange patterns are described in Chapter 3.

9

A description of these languages is not included as none of them are mandated by the W3C as

‘required’ for a web service; all are optional2.

This great number of optional languages and the natural language nature of the W3C web service

descriptions mean that there are many implementation details that are not well defined. The Web

Services Interoperability Organisation (WS-I) has produced a number of ‘profiles’ detailing a great

number of implementation details of web services in a mismatch avoidance effort. For example:

XML 1.0 allows UTF-8 encoding to include a BOM; therefore, receivers of envelopes must

be prepared to accept them. The BOM is mandatory for XML encoded as UTF-16.

R4001 A RECEIVER MUST accept envelopes that include the Unicode Byte Order

Mark (BOM)

The WS-I work also includes tool support to test service implementations against those require-

ments that are testable. These details are much closer to the implementation choices than the

intended scope of this work suggests, but it is important to acknowledge that such efforts exist. Also

while prescriptive specifications could remove mismatch by eliminating design choice, it is also fair

to say that some freedom of choice is required to build suitable systems, to quote Shaw [Sha95a]

commenting on the flawed idea of designing all systems using a single paradigm:

Most fundamentally, different architectural styles have different strengths and weak-

nesses, and a system architecture should be chosen to fit the problem at hand.

2.2 Software Architecture

It would not be possible to examine architectural mismatch without considering software architec-

ture. This section starts therefore with a general description of software architectures.

Software architectures represent the high-level design of a software system. They provide critical

abstractions with which it is possible to reason about and describe the structure and behaviour of

a system3.

These then are abstract models of a software system, but for that model to have some kind of

meaning the syntax and semantics that underlie that model must be defined. It is the purpose of

architecture description languages (ADLs) to provide, to differing degrees, exactly this.

Unfortunately there is no consensus on the details of what should and should not be included

in an architectural description. In their original work, Perry and Wolf [PW92], suggested that

architecture consisted of elements, form and rationale, where each has the following meanings :

2It is possible that the characteristics described later in this thesis as being required for mismatch detection are
actually made explicit in these optional descriptions. A study of this point would be of value but it was not possible
to conduct it during this work.

3A more thorough introduction to software architectures may be found in such material as [BCK98, PW92, SG96].

10

Elements are the processing, data and connecting elements within the system;

Form weighted properties or choices, where the weighting indicates the importance of the property

or the requirement to select among alternatives;

Rationale is the motivation for the various choices made in defining an architecture.

It was from this grounding that the so called “first generation” of ADLs were produced. Medvi-

dovic and Taylor in 2000 [MT00] produced a classification framework which not only described what

they, at that time, believed should exist in an ADL but also the key properties of the languages that

fitted their characteristics. The top level of their classification criteria is as follows:

Components the unit of computation or a data store;

Connectors the building blocks which model the interactions among the components;

Architectural Configurations the connected graphs of components and connectors which form

the architectural stucture;

Tool Support strictly not part of the language, but vital to perform analysis, assist with code

generation etc.

Further to this the interfaces to both the component and connectors are often described:

Ports represent the interfaces provided and required by a software component;

Roles declare the endpoints of a connector, these attach to ports and in doing so form the config-

uration of the system.

2.2.1 Description Languages

Web Services, as already described, use WSDL to describe their basic interfaces; but it is the

intention within this work to use an ADL to describe the components and their configuration and

utilise the associated tool support to facilitate mismatch detection. The purpose of this section is

to recount what the literature says should be included in an ADL, give a brief description of some

ADLs and then finally to describe why ACME was selected to support the work.

Following their classification Medvidovic and Taylor described ten notations which matched the

criteria and were considered ADLs. A significant finding of the study was the range of focus of

the ADLS, from quite general, structural, relativly semantic free offerings such as ACME [Gro06a]

through to domain oriented notations such as MetaH[BEJV96]. The languages also varied in their

choice of formal underpinnings and the maturity of their tool support.

In 2007, Medvidovic et al. [MDT07] produced another study in this area, extending the criteria

to be deemed an ADL even further. In this study they postulate that a software architecture is

11

Technology

Domain Business

Generic concepts, description languages,
analysis techniques, and tools

Application-family
architecture

Underlying science;
Domain characteristics Corporate core

competencies
Business practices

Accounting practices,
marketing, ...

Domain-
indepenent
Infrastructure

Product-line
architectures,

...

Figure 2.1: “Three lampposts” proposed by Medvidovic et al. [MDT07]

not simply a technological description of a system, but should include the viewpoints and require-

ments of other stakeholders involved in its inception. They propose that there exist three concerns

which software architecture must address, technology, domain and business, but that the previous

languages almost exclusively focus on the technology. They describe each area using a “lamppost”

analogy, where each casts a light and there exist areas of overlap between them. Their Venn diagram

representing this concept is reproduced in Figure 2.2.1

In their work, Medvidovic et al. argue that “second generation” ADLs should, as far as possible,

provide support for all areas lit by the three lampposts; but, what they find is that there is no current

notation that achieves this. Indeed, they do no expect that there ever will be a single notation that

suits every project’s modelling needs due to the variety of domain and business specific requirements.

This work was initiated before the publication of the lampposts model, but it is interesting to

look at where it fits in. Primarily this work’s view of architectural mismatch is a technological

one, as was the case with the literature from which inspiration was drawn [GAO95, Gac98]. As

such it does not come close to the accounting or marketing aspects which are given as examples

on the lampposts diagram. At the same time the work does exist within the scope of the domain

12

lamppost as it is focussed on web services and the definition of their “Domain characteristics” and

the assumptions that can be made of them. In fact a large portion of this work is dedicated to the

formalisation of these characteristics into an architectural style, which fits well into the “Application-

family architecture” segment, which is described as addressing “technical problems that occur while

building software systems within a target domain” [MDT07].

2.2.1.1 Summary of ADLs

A brief summary of ADLs taken from [MDT07], starting with the first generation ADLs is as follows:

ACME An interchange language for sharing architecture descriptions descriptions between tools,

predominately at the structural level;

Aesop Specification of architectures in specific styles;

C2 Architectures of highly distributed, evolvable and dynamic systems;

Darwin Architectures of highly distributed systems whose dynamism is guided by strict formal

underpinnings;

MetaH Architectures in the guidance, navigation and control domain;

Rapide Modelling and simulation of the dynamic behaviour described by an architecture;

SADL Formal refinement of architectures across levels of detail;

UniCon Glue code generation for interconnecting existing components using common interaction

protocols;

Weaves Data flow architectures characterised by a high volume of data and real-time requirements

on its processing;

Wright Modelling and analysis (specifically deadlock analysis) of the dynamic behaviour of con-

current systems;

The second generation ADLs as suggested by Medvidovic et al. can be summarised as follows:

UML 2.0 defines a set of views that can be used to represent a system or parts of a system. It is

not specialized for modelling any particular domain and its diagrams and symbols do not have

a formal semantics.

AADL is a language for specifying system architectures including both the software and hardware

elements. It includes a number of predefined hardware and software types and these prescribe

what kinds of properties may be specified about an element of a type. This language originates

from MetaH.

13

Koala is an ADL derived from Darwin and is effectively a structural notation. It includes several

constructs for supporting product line variability, such as switches describing variation points

where a choice can be made about which implementation to use.

xADL 2.0 is an XML based ADL where types are described using XML schema. This allow users

to add their own data types as needed by extending the existing schema, these schema can then

be used to support syntactic checking of an xADL model. The existing xADL tool support

focusses on the creation and manipulation of the XML schema and does not yet support the

analysis a model’s properties and structure.

2.2.1.2 Why ACME was selected

There were a number of unknowns at the point when ADLs were being considered. Firstly, it was

not clear exactly what characteristics would need to be represented, and therefore an ADL that

allowed flexibility regarding the properties included would be required. At the same time as not

understanding what properties would be included it was not known how each would be represented,

so an ADL that facilitated the inclusion of arbitrary data representations would be desirable.

A goal of this research was not only to enable the representation of the meta-data important

to the detection of mismatches, but also to provide the rules which are employed to expose them.

Architectural styles [SC97] (described later in this chapter) provide the means by which we can

specify important characteristics and also the semantics and rules which apply to them. Style

support was also then an essential element.

Finally, it was desired to be able to experiment with and test the outcomes of this study, so

tool support which is capable of acting upon the constraints expressed in the architectural style to

analyse system descriptions was also vital.

When the study commenced only one ADL stood out as fulfilling the above criteria, ACME

[Gro06a], developed by Carnegie Mellon University. This language was developed as an architectural

interchange language and so was designed from the outset to support the definition of arbitrary prop-

erties. ACME is also supported by a tool, ACME Studio [Gro06b] which offers a graphical interface

and performs checks on an architectural description according to any ACME family (architectural

style) it refers to. The rules are represented in a predicate language called Armani [Mon01], that

allows the construction of boolean statements which are functions of the properties and existence

of the architectural elements in the description. So ACME and ACME Studio provide a suitable

environment in which to explore the representation of web services.

An introduction to the language and tool support of ACME and ACME Studio is presented in

Appendix A.

14

2.2.2 Styles

As mentioned earlier, the ACME ADL and ACME Studio tool were selected partly for their support

for architectural styles. This section gives an outline of what an architectural style is and provides

references to a number of works that describe styles, one of which uses formally described styles to

detect some of the architectural mismatches considered later in this work.

Architectural styles are a form of software design reuse [MKMG97, MG96]. At the simplest level

they are used in name only, for example, stating that a system has a “client-server” architecture

should give a mental picture of a single (or few) server components to which a larger number of client

components connect to make use of their services. This is of course a very simple view but even so

it can aid the forming of a mental model of the system in question, the roles of the components and

even possibly hint at their behaviour.

Simply using styles by name can unfortunately be a source of misunderstanding as well. To quote

Shaw and Clements [SC97]:

After looking through the table many readers will say, “But that’s not what I mean by

style X!”. Indeed, it may not be. But it is, as far as we can tell, what someone else

means. This is an indication that different readers use style names in different ways.

Architectural styles however can offer much more than this general level of understanding, if

used to their potential they provide the architect designing a system with three types of assistance.

Firstly they can provide a vocabulary of elements which are expected to exist in a system of a

particular style. Clearly in a client-server style system the components are either going to be clients

or servers, but the vocabulary can also include the connectors, for example in a pipe and filter system

the connectors between filters should be of the pipe type. The ports and roles of the components

and connectors can be similarly named.

By themselves the names do not add much, but the second benefit of architectural styles, prop-

erties do. Each named type can have a distinct set of properties associated with it. The exact

nature of these properties depends on the ADL, the environment in which it is used and the domain

and purpose of the system being modelled, but they can range from primitive types such as integer

values and strings to complex behavioural specifications and beyond. A server in a client-server

system may for example have a maximum number of concurrent connections, which could be repre-

sented by an integer property, while the message passing behaviour it expects of a client could be

described using a process algebra.

Finally, and in conjunction with the tools supporting it, the style can provide constraints and

means for analysing a system. The constraints act upon the properties and configuration of the

system and can tell us whether it is a valid instance of that style or not. The analysis can be used to

model emergent behaviour of the system such as throughput or message passing conversations which

15

Figure 2.2: A simplified architectural view of a just-in-time delivery system. The two architectural
styles present can be seen in the pipe-and-filter approach of the yellow main modules and the shared-
data arrangement they take with the database.

can then be evaluated against system requirements or against component expectations for validity.

So architectural styles can guide an architect as to what elements should exist in a system of a

certain type, prompt design decisions by providing properties which need populating with values and

then offer feedback in the form of the constraint and analysis evaluations showing if and potentially

where problems exist in a design.

The literature contains many references to styles, for example Gacek [Gac98] describes 11 styles

including, Pipe and filter, Black board and Event based. Shaw [Sha95b] discusses seven styles, also

including Pipeline, Layered and Implicit invocation. There are two points here, the first is that there

are multiple styles already available that the architectures community value and the second is that

they are often described in different ways and include different characterstics depending on their

purpose– Gacek uses Z while Shaw uses natural language. This means there is no standard for how

to represent a style or what characteristics should be included.

While many styles exist, it is not the case that all styles are appropriate for every system [Sha95b,

SC97] or perhaps for a complete system. For this reason many systems exhibit characteristics of more

than one style at the same time. For example, whilst working in indsutry the author experienced a

just-in-time delivery system which could be described as both pipe and filter for the data processing

to maintain the strict data ordering and shared data to maintain a consistent situational view (Figure

2.2).

The inclusion of multiple styles does not have to be at the gross level, it could be simply that

the overall system style is pipe and filter but that the filters themselves are implemented using a

16

hierarchical style.

While styles may not be mutually exclusive, this work reduces complexity by adopting a single

style only view where all elements and configurations are expected to adhere to the web service

styles presented. This imposes a view of the system including only the externally visible ports and

abstracting away many internal details. This is argued to be the correct level of abstraction given

that some of the web service components represented may belong to other administrative domains

which may not be willing to share such internal details of their services or components.

2.2.2.1 Characteristics

The properties assigned to the architectural elements are at least as important to the final system

as the structure itself. The issue is, what properties should an architecture description include? It

is generally accepted that a model is an abstraction of a system that hides details not required for

the purpose of that model. The same is true of software architecture, so the properties a particular

description holds would be determined by its specific purpose and the analysis we might wish to

carry out as can be seen in the dissimilar description methods applied to similar styles in the works

of Gacek [Gac98] and Shaw [Sha95b].

There have been a number of works in which are described sets of characteristics that could be

used in the description of architectures and styles. Those that proved influential in this work are

now presented.

Shaw and Clements

In their Field Guide to Boxology [SC97] Shaw and Clements provide an early classification of styles

using control and data as the dominant axis upon which to differentiate between styles. Their

classification is divided into five features.

The first feature relates to the constituent parts allowed in a style, this is essentially the

vocabulary as described in Section 2.2.2 and names the types of components and connectors allowed

in a style.

Their second criterion control issues details the control flow between the components and the

temporal properties they exhibit. This is broken down into three subcategories: control topology,

describes the geometric form of the control flow graph in the system; control synchronicity, in-

forms whether the control states of the components dependant on one another and control binding

time, elucidates at what point in the component life cycle is the identity known of a partner in an

exchange, design time to invocation time.

Data issues form the third category in their study and as with control issues this is broken down

into multiple subcategories. Data topology refers to the geometric form of the data flow graph

of a system. Data continuity describes the expected rates of flow of data through the system,

17

this can range from sporadic to continuous, but also includes the notion of volume of data, ranging

from high volume (data intensive) to low volume (compute intensive). Data mode indicates the

means by which data is shared within a system, examples of which include passed in object oriented

styles and shared variables in shared data systems. This also relates to the cardinality of elements

receiving data in the exchange, point to point indicates a singular recipient while multicast indicates

multiple recipients. Data binding time is the final data attribute that, as with the control binding

time, describes when the partner in an exchange is known.

Control and data flows may not be independent of each other and so control/data interactions

form the fourth set of characteristics. This is divided into two parts both referring to the relative

geometry of the control and data flows. Shape indicates to what degree the shapes of the control

and data flow graphs are isomorphic to each other. In the cases where these two graphs are similar,

then directionality describes any relations between the directions of control and data flow, for

example same, opposite or none.

Type of reasoning is the final category. Again this mirrors the analysis as mentioned in Section

2.2.2 and eludes to the analysis a style allows.

Gacek

In her PhD thesis Gacek [Gac98] describes tool support for describing the stylistic assumptions of

components within a system and from that detecting architectural mismatches (described later in

Section 2.2.3). The characteristics were given no explicit groupings and so are presented below,

attempting to position related items closely.

Concurrency defines whether there is a constraint on the number of threads of control within a

system. Single-threaded systems only have one thread of control passed between the components via

calls while multi-threaded allow more than one thread to exist. Related to the concurrency property

is that of reentrance. While a style may allow multi-threading, a component is only reentrant if

the separate threads do not interfere with each other during execution. In the case that a style

assumes multiple threads of execution it may also support the definition of component priorities

which allow components performing more urgent roles to be executed in preference to others. In a

similar area is preemption which describes the act of swapping out the current task on a processor

and replacing it with another, some styles may allow this and others may not.

Distribution determines if a style constrains the mapping of processes to processor nodes. A

distributed style either expects or allows the processes within it to exist on distributed hardware.

The dynamism property depicts whether the style allows for changes to its topology at runtime.

This includes the creation and deletion of component and connector processes. Reconfiguration

is the act of altering the topology or components in a system in some way, systems and styles may

differ regarding whether this is allowed to happen on-line, off-line or at all.

18

A system which exhibits encapsulation provides a well defined interface to the components

which use it, hiding other internal functionality. Similarly, the layering characteristic is used to

represent whether there will be layers of components in the style, where each layer provides a virtual

machine to the layer above it while using services of the layer below it. There should not be any

bypassing of the layers above or below to reach more distant layers in this style.

Styles may also specify the supported data transfers, which are the means by which data

is moved around, mirroring the data mode of Shaw and Clements. Styles may or may not have a

triggering capability, that is some mechanism to allow the software to respond to events. State is

also considered and the backtracking property determines if a component has the ability to return

to an earlier state if required.

A control unit is a component which governs the execution of other components within a

system. Some styles may require the presence of such a component.

The final characteristic is that of response time, which has three suggested values predictable,

bounded or unpredictable.

DeLine

In his study of packaging mismatch DeLine [DeL99] proposed a number of assumptions a component

may make about its environment and the components with which it will interact. In keeping with

the previous works these characteristics are now summarised.

Components may disagree on the data representation they employ, which includes the type

of data they are sharing (e.g. integer versus floating point) and the low level bitwise portayal of the

value. In larger data structures such as a file containing a word processor document, the mismatching

understanding of the representation may result in, for example, a loss of formatting.

Data and control transfer includes many aspects of the interaction between components.

Firstly the mechanism by which the transfer takes place, for example a shared variable and also

what is transferred during the interaction, data, control or both. Finally, whether the transmission

is instigated by the sender or the receiver, usually termed push and pull respectivly. The number

and direction of these transfers is captured by the transfer protocol property.

As with the backtracking characteristic of Gacek, state is considerd here. First is state per-

sistance which considers whether state is maintained between interactions with a component and

secondly state scope depicts the amount of its state a component allows others to affect.

The final two characteristics included in the work are failure, the degree to which a component

will tolerate others’ failures and connection establishment which is similar in nature to both

control and data binding times of Shaw and Clements.

19

Figure 2.3: The ordering of concepts related to synchronisation from Yakimovich et al. [YBB99]

Yakimovich, Bieman and Basili

The study of Yakimovich et al. [YBB99] looked at a means for estimating the cost of integrat-

ing commercial off the shelf (COTS) software into systems. The basis for the costing estimates

comparison of the various architectural asumptions made by the components and specifically those

related to their interactions. The study identifies four major types of interactions: Component–

platform between the component and the machine it runs on, e.g. assumptions about processor

type. Component–hardware, the hardware devices the component interacts with, e.g. assump-

tions about the adresses of ports. Component–user, the interface provided to the user, e.g.

assumptions about the language. Finally component–software, almost always components will

interact with other components, e.g. assumptions about data representation.

Of these four the study focusses only on the component–software issues which are applicable to

this work, these are divided into five subcategories. The approach taken for estimating the amount

of “glue code” required is to compare the assumptions of the component to be integrated with those

which make up the system and evaluate whether they are equal, compatible or incompatible. This

evaluation is made possible by determining possible qualitative values for each subcategory and

placing them into partially ordered sets, the ordering in these sets indicates compatibility, this is

clarified in the description of the first category.

The synchronisation category captures whether a component blocks while waiting for a re-

sponse from another. It has only two values, synchronous and asynchronous as shown in Figure 2.3.

An asynchronous component could be made compatible with a synchronous one by including a loop

to wait for a response to a call, so the arc in the diagram goes from asynchronous to synchronous to

indicate an asynchronous assumption is potentialy compatible with a synchronous system. Packag-

ing of a component represents how it is packaged for integration into a system, Figure 2.4. Control

indicates the assumptions about the cardinality of threads and there location within the system,

shown in Figure 2.5. Information, Figure 2.6, represents what is flowing between components in

terms of data, control or a mixture of both. Finally Figure 2.7 depicts the types of binding expected

in the system. The rationale behind these orderings can be found in the original paper.

Davis, Gamble and Payton

The above works, along with others, provide sets of characteristics that can be used to describe

architectures and architectural styles, but they are not orthogonal and so an exercise in combination

20

Figure 2.4: The ordering of concepts related to component packaging from Yakimovich et al.
[YBB99]

Figure 2.5: The ordering of concepts related to control from Yakimovich et al. [YBB99]

Figure 2.6: The ordering of concepts related to information flow from Yakimovich et al. [YBB99]

Figure 2.7: The ordering of concepts related to binding from Yakimovich et al. [YBB99]

21

Characteristic Values Definition
Identity of com-
ponents

Aware, unaware A components awareness of the existence
or identity of those componenet’s with
which it communicates. Generally, filters
in the pipe and filter architecture style are
unaware, whereas object-oriented compo-
nent names are used for method access.

Blocking Blocking, non-
blocking

Whether a component suspends execu-
tion to wait for communication. Most
knowledge based systems run to comple-
tion without interruption and then wait,
once done, for execution to be reinitiated.

Module Filters, objects,
layers, knowl-
edge sources,
blackboard
data structures,
control, interpre-
tation engine,
memory, process

Modules are loci of computation and state.
Each module has an interface specification
that defines its properties, which include
the signatures and functionality of its re-
sources together with global relationships,
performance properties etc. The specific
named entities visible in the interface of
the module are its interface points.

Connector Controller, pipes,
procedure calls,
shared data, im-
plicit invocation

Connectors are the loci of relations among
modules. Each connector has its proto-
col specification that defines its properties
which include rules about the type of in-
terfaces it is able to mediate for, assur-
ances about the properties of the interac-
tion, rules about the order in which things
happen, and the commitments about the
interaction

Table 2.1: The system classifications proposed by Davis et al. [DGP02a]

is required. Fortunately, Davis et al. have performed just such a task [DGP02a]. In their study the

authors surveyed the available literature and found 74 separate characteristics, which by a process

of combination and removing duplicates they reduced down to a set of 21 concepts.

We will now present their findings in similar form to the original work, before recounting the

relationships between the characteristics which exist on three different abstraction levels.

The characteristics are divided into three groupings. System characteristics deal with the

general coordination and characteristics of the style. This includes four characteristics, Identity

of components, blocking, module and connector all of which are detailed in Table 2.1 where the

description and suggested values from the paper can be found. The other two groups are data

characteristics and control characteristics. As with the system characteristics, the descriptions

of each are presented in Tables 2.2 and 2.3 respectively.

Reading the data and control tables it is apparent that the characteristics within each table are

not orthogonal with some being refinements of others, this is a consequence of the three levels of

abstraction employed by the study. The two semantic relationship diagrams shown in Figures 2.8

22

Characteristic Values Definition
Data topology Hierarchical,

star, arbitrary,
The geometric configuration of modules in a system corre-
sponding to potential data exchange. A main/subroutine
architectural style has a hierarchical data structure.

Data flow No explicit val-
ues

The way in which data moves between the modules of a
system. It clarifies the data interactions between internal
modules and the exit points at which the data is made
available. A pipe and filter style enforces a linear flow.

Data scope Restricted, unre-
stricted

The extent to which modules internal to the component
make their data available to other modules defines a com-
ponent’s data scope. In main/subroutine style a variable
is only available for the subroutine in which it is defined
and must be explicitly passed if needed by another func-
tion.

Method of data
communication

Point-to-point,
broadcast, mul-
ticast

Refers to how data is delivered to other modules. The
method details whether data will enter a specific module
at a specific point, e.g. pipe and filter architectures; if it
will be delivered to those who have registered to receive
it, e.g. event-based systems; or if it will be sent to every-
one and only those who need it will use it, e.g. message
queuing and broker systems.

Data binding
time

Write, compile,
invocation, run
time

The time when a data interaction is established. A java
process allows run time binding, making it possible to
bind object classes together as they are defined.

Continuity Sporadic, contin-
uous

A general measure of the availability of data flow in the
system. A pipeline has fresh data available at all times
(continuous).

Supported data
transfer

Explicit, im-
plicit, shared

This delineates the type and format of data communica-
tion that a component supports as a precursor to actually
choosing a method to communicate. For instance, im-
plicit data transfer denotes an indirect mode of transfer
as in an event-based system.

Data storage
method

Repository, data
with events, lo-
cal data, global
source, hidden
and distributed

Details such as what type of data and how in the system
will it be represented are gleaned from the chosen value
of this characteristic. A blackboard architecture pattern
utilizes a repository, namely the balckboard. Knowledge
sources both store and retrieve data in this common space
so that they may share knowledge.

Data mode Passed, shared,
multicast,
broadcast

How data is communicated/transferred, in the logical
sense, throughout the component. An event-based ar-
chitecture will often broadcast its data.

Table 2.2: The data classifications proposed by Davis et al. [DGP02a]

23

Characteristic Values Definition
Control topology Hierarchical,

star, arbitrary,
linear, fixed

The geometric configuration of components in a system
corresponding to potential data exchange. A main/-
subroutine architectural style has a hierarchical control
topology.

Control flow No explicit val-
ues

The way in which control moves between the modules
of a system. It clarifies the control interactions between
the internal modules and the exit points at which the
control is made available. For example, control flow is
bidirectional between modules in a hierarchical topology.

Control scope Restricted, non-
restriced

The extent to which the modules internal to the compo-
nent make their control available to other modules defines
a component’s control scope. In a main/subroutine style,
certain modules are scoped to receive control only from
a parent module.

Method of con-
trol communica-
tion

Point-to-point,
broadcast, mul-
ticast

Refers to how control is passed to other modules. The
method details whether control will enter a specific mod-
ule at a specific point, e.g. pipe and filter architectures;
if it will be delivered to those that have registered to re-
ceive it, e.g. event-based systems; or if it will be sent to
all and only those that need it will use it, e.g. message
queuing and broker systems.

Control binding
time

Write, compile,
invocation, run
time

The time when a data interaction is established. Unix
pipes and filters bind at invocation time.

Synchronicity Lockstep, asyn-
chronous,
synchronous,
opportunistic

The level of dependancy of a module on other modules
control state. It can operate either when no one else has
control (synchronous) or during the execution of other
components (asynchronous). Decentralised components
are most often asynchronous. On the other hand, a
main/subroutine style has synchronous control.

Control struc-
ture

Single-thread,
multi-thread,
decentralised

A measure of both the state of control and the possi-
bility of concurrent execution. Control can reside solly
with one module (single-thread), it can reside in multi-
ple modules (multi-thread), and it can reside in multiple
modules without any knowledge of other execution states
(decentralised). A web-based interface will often have a
decentralised control structure, whereas a pipe and filter
style will utilise only a single thread.

Concurrency Multi-threaded,
single-threaded

The possibility that modules of a component can have
simultaneous control. The number of threads present in
the component denotes the concurrency. Databases sup-
port interleaved concurrency in transaction processing to
allow multiple users to access a single account.

Table 2.3: The control classifications proposed by Davis et. al. [DGP02a]

24

a network of associations with other entities. Graphi-
cally, semantic networks depict entities as named nodes
with labeled links to show relationships between them.
For example, quality inheritance is often depicted as an
‘‘is-a’’ relationship among entities (e.g. a penguin ‘‘is-a’’
bird), delegating pertinent entities to the highest level of
abstraction and reducing the size of the knowledge base
used for assessment.
A node on the semantic net is an architectural char-

acteristic, while an edge represents a relationship (se-
mantic connection) from one characteristic to another.
Thus, the links connect the characteristics by virtue of
their definitions and their purpose in describing the
component architecture.
For the semantic nets to be expressive, it is necessary

to define uniform relationships among characteristics

from which we can infer deeper meaning. For instance,
‘‘is-a’’ is not an informative relationship for the refined
set of architectural characteristics in Tables 1–3. Instead,
we eliminated or combined characteristics with this re-
lationship because such redundancy does not suit our
goals for comparison. The similarity that does exist
breaks down when usage, viewpoint, and detail are
considered.
For clarity, we define a separate semantic net for the

control and data characteristics in Tables 2 and 3. The
semantic nets for control and data characteristics are
found in Figs. 2 and 3, respectively. In this section, we
describe the intra-level relationships among chara-
cteristics followed by the inter-level relationships. We
conclude the section by discussing the relevance of
transitivity across links and the results from the analysis.

Fig. 3. Semantic relationships among data characteristics.

Fig. 2. Semantic relationships among control characteristics.

L. Davis et al. / The Journal of Systems and Software 61 (2002) 31–45 39

Figure 2.8: The semantic relationships and abstraction level of the data characteristics proposed by
Davis et al. [DGP02a].

Figure 2.9: The semantic relationships and abstraction level of the control characteristics proposed
by Davis et al. [DGP02a].

and 2.9 show the semantic relationships between and the abstraction levels of the characteristics in

the data and control tables respectively.

The three abstraction levels are:

orientation level the most coarse grained, relating to the application requirements and the com-

ponents within it;

latitude level this is finer grained than the orientation level and represents the where and how

data and control flow through system; and

execution level the lowest level, it provides details such as data structures and other implemen-

tation details.

The four relationship types are:

25

is-a-part-of X is-part-of Y if and only if X and Y are at the same abstraction level and either X

has attributes embodied in Y or X performs functions also used by Y;

has-comparable-values-in X has-comparable-values-in Y if and only if X is at the same abstrac-

tion level as Y and there exists at least one value in X that can be mapped onto at least one

value in Y;

contributes-to X contributes-to Y if and only if X is at a lower level of abstraction than Y and X

extends or refines some part of Y;

is-represented-by X is-represented-by Y if and only if X is at a lower level of abstraction than Y

and the functionality of the value of X is reflected in some way by the value of Y.

2.2.3 Mismatch

The final aspect that requires introduction is the class of fault that inspired this investigation. This

section starts by outlining what an architectural mismatch is before citing three examples. It then

continues by discussing two sets of related work. The first is the literature presenting methods

for either avoiding or resolving mismatch in general software components, while the second cites

a number of works that employ formal descriptions of Web Service components for the purpose of

detecting certain types of mismatch. The section concludes by recounting, from the literature, a

possible definition of what “architectural” actually means.

Architectural mismatches prevent the successful integration of components to form a system.

Architectural mismatches were first discussed by Garlan et al., when they introduced the term

[GAO95]. To quote:

Architectural mismatch stems from mismatched assumptions a reusable part makes about

the structures of the system it is to be part of.

In their paper Garlan et al. describe a number of problems they encountered during the construc-

tion from component parts of Aesop which is, ironically, a platform to experiment with architecture

development environments. The paper includes both the actual problems encountered and the group-

ings Garlan et al. derived from them. The problem groups are presented below with a description

of the actual mismatches encountered in the following section.

Nature of components This category includes assumptions about the substrate on which the

component is built (infrastructure), about which components will control the computation

sequencing (control model) and about the way the environment will manipulate the data

managed by a component (data model).

26

Nature of connectors This category contains assumptions about the patterns of interaction char-

acterised by a connector (protocols) and about the kind of data communicated (data model).

Global architectural structure This category includes assumptions about the topology of the

system communications and about the presence or absence of particular components and con-

nectors.

Construction process In many cases the components and connectors are produced by instanti-

ating a generic building block. For example, a database is instantiated, in part, by providing

a schema; an event-broadcast mechanism is instantiated, in part, by providing a set of events

and registrations. In such cases these building blocks frequently make assumptions about the

order in which pieces are instantiated and combined in a system.

Key conclusions from their experience are a number of recommendations to support the con-

struction of systems from components, these are now summarised:

Make architectural assumptions explicit A key problem is that the assumptions made during

development of a component are not documented. This is not just part of the general problem

of lacking documentation but also exists because there is no convention for documenting the

architectural assumptions that the paper discusses;

Use orthogonal subcomponents The architectural assumptions of a system can be spread out

among the components it comprises, this makes altering the configuration more difficult than

just changing the links between components;

Provide bridging techniques In the paper several components are reverse engineered to over-

come mismatches, this can be very costly. Bridging techniques such as mediating connectors

and wrappers can help reduce these costs4;

Develop sources of design guidance If sufficient intuition regarding which patterns of compo-

nents work well together is not available then designers may use trial and error. The software

community must find ways to codify and disseminate principles and rules for software compo-

sition.

The following three subsections outline motivating examples of mismatches. The first two present

situations where the conflicting assumptions have been discovered after the system has been com-

posed, in one case leading to the costly failure of an interstellar mission. The final example shows

that while the problem of mismatching assumptions is known, there are still tools being used in

industry that do not verify a system is free of even some of the simpler mismatches discussed in this

work.
4 An example of a mediating connector appears in the car parking scenario seen in Chapter 6 of this work.

27

Aesop

Garlan et al. encountered a number of difficulties during the development of Aesop, theses were

attributed to the assumptions made during the development of the components it was built from.

A selection of these mismatches will be outlined now.

The first example relates to the data structures owned by part of the graphical user interface

(GUI), Unidraw. It had a hierarchical model that assumed that access to any child object would be

through the top level parent object. While the data in Aesop was indeed hierarchical, the hierarchical

access approach did not match with the intended use of Aesop which required that child objects

could be modified directly. The resolution here was to create a flat data structure in Unidraw and

implement a parallel hierarchical structure to represent the dependencies between parent and child

objects.

Also related to data assumptions are the differing approaches taken by the Softbench event

broadcast and the Mach remote procedure call (RPC) mechanisms used to facilitate inter-tool com-

munications. Softbench assumed that most communications would be about files and their contents

and represented data as ASCII strings, while Mach assumed it would be connecting components writ-

ten as C programs and so used C data structures. In this case extra interfaces were implemented to

perform translations between the incompatible data structures used.

The Aesop project expected to make use of two types of tool interaction, notification and re-

quest/reply. Softbench handled both mechanisms using the same callback structure for all three

massage types. This meant that to implement a request/reply interaction a tool required two call

back routines, one for the first message and one for the response. The result of this was that if a tool

that had already sent a request, was itself sent a request or a notification then the callback routine

associated with it would be invoked, forcing the tool to handle multiple threads and concurrency

even if this was not a natural choice for the tool in question.

The final mismatch of significance to this work relates to the topological assumptions made by the

OBST database utilised. It assumed a data centric star topology, with the database at the centre and

no interactions between the surrounding tools at all. This caused problems when tools cooperating

in a some action attempted to release the database to each other and forced the implementation of

a transaction manager to hide these interactions from the database.

The overall result of the discovered mismatches was that the first Aesop prototype was achieved

after 2.5 man years of effort rather than the 0.5 - 1 that was originally estimated.

Mars Climate Orbiter

A noteable example of a costly failure due to mismatching assumptions is the failed NASA Mars

Climate Orbiter mission. Johnson [Joh05] tells us that the probe utilised an asymmetric solar array

28

rather than a symmetric one, this necessitated the inclusion of a flywheel to counteract the small

torque the array imposed on the probe. However as the flywheel velocity increased it became a

threat to the safety of the mission and so had to be desaturated of kinetic energy by braking,

this braking force was then countered by a firing of rocket motors. The mismatching assumption

was in the sementics of the values being used to calculate the thrust required from each burn,

with one software component assuming metric units and another using imperial units. The mishap

investigation report [NAS99] cites the root cause as follows:

The MCO MIB [Mars Climate Orbiter Mishap Investigation Board] has determined

that the root cause for the loss of the MCO spacecraft was the failure to use metric

units in the coding of a ground software file, “Small Forces,” used in trajectory models.

Specifically, thruster performance data in English units instead of metric units was used

in the software application code titled SM FORCES (small forces). A file called Angular

Momentum Desaturation (AMD) contained the output data from the SM FORCES

software. The data in the AMD file was required to be in metric units per existing

software interface documentation, and the trajectory modelers assumed the data was

provided in metric units per the requirements.

This mismatch could have been detected if the architectural assumptions of all components

involved had been explicit as suggested by Garlan.

Industrial Tool Allowing Mismatches

Even after the intervening years there still exist design environments that allow the construction of

systems containing mismatches that go undetected and unreported. One such tool, which cannot be

named because of commercial sensitivities, allows, for example a connector to be defined between

component ports where none of the ports expects to write data onto the connector. Such a connector

would serve no purpose and the attached ports would not receive any data, this is unlikely to be

desirable and should be flagged to the designer.

2.2.3.1 Avoidance and Resolution

Since the phrase was coined a number of interesting works have been produced relating to architec-

tural mismatch, the focus of these can generally be divided into two groups:

Mismatch Avoidance: includes means for either reducing the number of options available so

mismatch is not possible or tools and techniques for detecting mismatch when it exists; and

Mismatch Resolution: techniques and patterns for handling a mismatch once it has been de-

tected.

29

Gacek [Gac98] and Abd-Allah [AA96] both use the formal language Z to define architectural

styles and systems and also to detect a selection a mismatches between the components.

Fukuzawa snd Saeki [FS02] use a similar approach, except in their case they use the coloured Petri

Net formalism to assess if there is mismatch between the composed system and its specifications in

terms such as reliability, resource efficiency and security. In this case the authors make the following

admission:

It may be difficult for practitioners and untrained persons to describe software architec-

tures formally with CPNs [Coloured Petri Nets].

It is possible that this applies to any system that requires the user to construct a formal model

before analysis can be performed.

The detection approach of Uchitel and Yankelevich [UY00] is to augment an existing system

architecture model with additional labelled transition systems (LTS). These assumption LTS do not

contribute additional behaviours to the system but instead restrict it as required by the assumptions

they represent, for example, indicating the number of invocations of a service before old data must be

purged to maintain performance. The LTS can then be monitored at run-time to detect mismatches

in such non functional properties.

DeLine’s approach [DeL01] falls into the mismatch avoidance category. He advocates that the

early binding of functionality to a packaging method gives reduced flexibility. Instead he proposes

that separating the functionality from the packaging and then building the packaging when the

target system is known would increase flexibility. If a “ware” came with a high level specification

of its channels and the target system had a specification of its required packaging then a packager

component could generate “glue code” to produce a component that is directly integrateable with

the target system.

In his earlier work DeLine [DeL99] follows a mismatch resolution approach. In it DeLine describes

a number of abstract patterns that may be employed to mediate between components that mismatch

on a number of characteristics.

Keshav and Gamble [KG98] also adopt the pattern based approach to resolving mismatches

describing a number of patterns based upon combinations of three component types:

Translators change the data in some way;

Controllers control the communcations between components; and

Extenders which add functionality.

Cavalaro and Di Nitto [CN08] describe a framework called SCENE that allows a client application

to connect to semantically equivelant services that differ in the details of their interfaces, for example

30

in the number of messages exchanged to complete identical transactions. An example from this work

is used later in Chapter 6 as part of the evaluation of the styles developed in this thesis.

2.2.3.2 Web Services Composition

A number of works exist that closely relate to aspects of this thesis in that they explicitly consider

the composition of web service components.

The majority of these works describe the use of a formal language to both describe and in

some way analyse the composition of components in terms of the messages passed. A variety of

languages have been employed including Extended Finite-state automata/Promela [Nak06, Nak05],

Petri-nets [VvdA05] , Coloured Petri-nets [YTX05] and Message Sequence Charts [FUMK03]. These

approaches allow for analysis such as deadlock freedom and reachability to be carried out on the

composed systems.

A different approach is presented by Ait-Sadoune and Ait-Ameur [ASAA09]. In this case the

authors describe tool support for generating Event-B5 models from BPEL [JE07] documents. The

Event-B models are then passed into the RODIN6 tool. This tool generates proof obligations result-

ing from the model and can discharge a number of them automatically. So while this proof approach

does not suffer from the same state space explosion problems, it could require a user skilled in the

Event-B formalism if the proof obligations cannot be automatically discharged or if some functional

aspects of the services are to be verified.

These approaches are related to part of the work presented in Chapter 5 although the work here

differs in a number of ways. The enhanced style presented uses a different formalism, CSP [Hoa85],

to detect different mismatches relating to assumptions about the concurrency support of specific

components along with both unexpected and missing messages, though the latter two could be

linked to the deadlocks mentioned earlier.

2.2.3.3 Architectural Scope

While the above hints at what architectural mismatch is and how it may be tackled, it does not

form a definition, certainly it begs the question, what is in and not in the scope “architectural”?

Eden and Kazman [EK03] describe two orthogonal criteria that can be used to differentiate between

three strata of specifications, architecture, design and implementation. The two criteria are:

Intensional/Extensional specification “a specification is intensional iff there are infinitely-

many possible instances thereof. Conversely, all other expressions are extensional.” Another

way of expressing this is that a specification is intentional if it can be satisfied by an unbounded

number of programs.

5Event B, http://www.event-b.org/
6RODIN, http://rodin.cs.ncl.ac.uk/

http://www.event-b.org/
http://rodin.cs.ncl.ac.uk/

31

Local/non Local specifiction the authors quote from Monroe et al. [MKMG97] “Architectural

designs are typically concerned with the entire system”. They go on to state that the difference

between architectural and design specificiations is that “architectural specifications must be met

by every extension of the program”, this suggests that design specifications are local, i.e. need

only be satisfied in some part of the system. Another way of describing a local specification is

that it can be satisfied in “some corner” of a program without being affected by what the rest

of the program is like.

These criteria define the three strata of specification as follows:

Architectural specifications are intensional and non-local

Design specifications are intensional but local ; and

Implementation specifications are extensional and local.

Eden and Kazman use architectural styles to demonstrate what intentional and non-local mean

in less abstract terms. As an example they describe two rules relating to the layered architectural

style described by Garlan and Shaw [GS93]. The first rule states that each element in the system is

defined in exactly one layer while the second rule is that each element may only depend on elements

in the same layer or in any lower layer.

They argue that this specification is intentional because it is obvious that an unbounded number

of programs may meet this specification, due to there being no constraints on the nature of the

elements in the system other than their dependencies. Furthermore they argue that the specification

is non local as it may be violated by any component in the system depending on another that exists

in a higher layer.

The ideas of intentional versus extensional specification and local versus non-local scope will be

used during the final analysis of this work to evaluate the nature of the properties and analysis

performed, with the purpose of justifying the use of the term “architectural mismatch”.

Component versus System properties

The previous section describes the guidance that will be used to determine if a characteristic can be

considered architectural. This section describes a second criteria that will be applied to determine

if a characteristic should be included in the style. Figure 2.10 illustrates the two different types of

assumptions that may be made. First there are the assumptions made by the components within

the system about the properties of the other components that they will interact with. Secondly

there are the assumptions made by the architect about the properties of the resulting system, this

last set will be termed goals.

32

System

Component 1 Component 2

Architect

Assumptions

Goals

Figure 2.10: Components 1 and 2 make assumptions about how they will interact, these assumptions
are within scope for this work. The architect may define goals for the system, such as job throughput,
these are out of scope for this work.

The significant difference between the two is where the desired value for a property would be

described. A component-to-component mismatch exists if one component makes a different assump-

tion to another about how they are going to interact. The assumptions about how a component

expects to interact will be known to the designers of those components and therefore they could be

included in the description of those components.

A system property-to-goal mismatch occurs when a property does not meet the goal of the

architect. In this case the system property may not be completely determined by a single component

and may be an emergent property of the system as a whole and so would require some analytical

technique to predict its value. An example of such a property would be the throughput of a system

which depends on the throughputs of the individual components and their configuration. While

it is not hard to imagine how the throughput of a system is computed, in the more general case

the definition and compositionality of non-functional properties is not well understood [PF10]. Of

greater significance to this work is the issue of where the desired values for these properties would

be expressed. These goals are defined by the architect, not by the designers of the individual

components and so the desired values would be expressed in an architect’s goals document, which

would be separate to the component descriptions.

While it is the goal of this work to determine what mismatches can be detected when composing

a system from web service components, it is not the goal to either solve the issues associated with

composing non-functional properties or to develop the additional description documents that would

be required. For these reasons, characteristics that would be expressed in this architect’s goals

document will not be included in the style.

2.3 Summary

This chapter has introduced the main concepts and items of work upon which the following thesis

is based.

33

There are works described in similar areas of mismatch but those aimed at mismatch detection

relied heavily upon a knowledge of formal methods while those biased towards avoidance used

pattern based approaches. The work that follows presents an architectural style based approach

to composition time detection that employs predefined templates to reduce the formal methods

expertise required for use.

The works also hinted that there are a great many architectural characteristics that the WSDL

document does not contain. As WSDL is the only description document mandated for a web service

to provide this means there are likely to be architectural mismatches that are not guaranteed to

be explicit during composition of a system. It is interesting then to consider what mismatches are

definitely detectable in comparison to those that the literature suggests are significant.

The contribution of this thesis begins in the next chapter where a minimal architectural style

representing the properties of WSDL and the mismatches they can cause is described. The following

chapters then build upon this to include many of the other characteristics from the literature,

resulting in a style that detects a more complete set of mismatches.

34

Chapter 3

Minimal Web Service
Architectural Style

The purpose of this chapter, the first of those in which we detail our contribution, is to determine

the base line upon which the remainder of the work is grounded.

The literature around architectural styles provides us with a number of characteristics that could

be considered when building a style. The base line consists of two parts, a list of those characteristics

that could cause mismatch and are guaranteed to be made explicit, and a list of characteristics that

are not guaranteed to be included in the description of a web service component. The first half of

the chapter is dedicated to discussing these characteristics, the criteria for placing a characteristic

on the first list and finally presenting both lists.

The second part of the chapter is devoted to developing the minimal architectural style based

upon the characteristics in the first list. Here we show how each of the characteristics can be

represented using the native data types in ACME and also that it is possible to construct rules

in the associated predicate language, Armani, that detect all the mismatches associated with the

minimal style. The characteristics in the second list are considered in more detail in Chapters 4 and

5.

3.1 What is a Minimal Web Service?

To be able to analyse web services for the purpose of building an architectural style we first need

two things:

Evie
G

amble17
.9

.2
00

9 A set of characteristics that an architectural style might contain; and

Evie
G

amble17
.9

.2
00
9 A description of web services from which the values to populate the characteristics may be

drawn.

35

For the first item we turn to three of the main works referenced in Chapter 2, specifically these

are the outputs of Shaw and Clements [SC96], DeLine [DeL99] and Gacek [Gac98]1.

For the second part we desired a description of ‘standard’ web services to work from; we found

this provided by the W3C working group on web services architectures [W3C06b]. This group defines

a web service as follows:

A Web service is a software system designed to support interoperable machine-to-machine

interaction over a network. It has an interface described in a machine-processable format

(specifically WSDL). Other systems interact with the Web service in a manner prescribed

by its description using SOAP messages, typically conveyed using HTTP with an XML

serialization in conjunction with other Web-related standards.

This description, along with the W3C descriptions of WSDL [W3C06c, W3C06e] and SOAP

[W3C06a] forms the basis of our model of what a minimal web service is, and more importantly,

what assumptions can be made about them.

In the following section we present characteristics from the literature that, in the light of the

W3C descriptions, we found to be relevant to our style. To be relevant, a characteristic must meet

two criteria

Evie
G

amble17
.9

.2
00

9 Its effects are visible outside the component; and

Evie
G

amble17
.9

.2
00

9 It may adopt more than a single value.

The first criterion stems from our aim of detecting mismatches that exist between components

in a system and so if the effect of a choice is not visible externally then it cannot cause a mismatch

within our scope.

The second criteria aims to remove redundant data if it cannot contribute to a mismatch. For

example, web services encode their SOAP messages using XML. This is certainly visible externally

but cannot be the cause of a mismatch since all web services will do the same. However while all web

services use SOAP, the W3C currently hold descriptions of both SOAP 1.1 and SOAP 1.2. From

this we can imagine that if a web service client expecting to use SOAP 1.2 attempts to interact with

a web service using SOAP 1.1 then there is at least the possibility of interoperability problems and

so this should be flagged as a potential mismatch.

We now move on to present the set of characteristics we found to be relevant to a minimal web

service. A complete list of all the characteristics can be found in our technical report describing an

early version of the minimal architectural style [Gam07].

1Davis et al [DGP02b] is not included in this list as the paper was not discovered until after the minimal architec-
tural style was complete and the work had moved on to developing the enhanced style. The real value of their work
was in guiding the characteristics to be considered for the enhanced style (Chapter 4) and it would not have changed
the contents of the minimal style itself and so this chapter was not altered to include it.

36

3.1.1 Characteristics Relevant to the Web Services Based Architectural

Style

Only two of the topological characteristics found have any bearing on the architectural style we

produced, the first of which was infrastructure and resource availability. This characteristic

captures the dependency assumptions a component makes about the system, such as the interfaces

it expects to find in the supporting software and hardware infrastructure [Gac98]. While we found

no constraints on the geometry of web service system topologies, it is fair to assume that a web

service consumer will only attempt to connect to a web service provider interface.

Also under the topology banner comes connection establishment, which covers two aspects:

when is the identification of a component, with which a connection is made, known, and how is

the identification made available to the component. For both aspects there are differences between

components that consume a provided service (the client) and those that provide it (the service).

There is an underlying principle in SOA that services should be discoverable, which in turn implies

that prior to an interaction neither the service nor the client know each other’s identity. This

strongly points towards components in a web service architecture not being pre-bound in any way.

The second aspect also differs between clients and services. Clients are supposed to discover services

and therefore their identification, a URI, by searching registries and then using binding information

held in a WSDL document. Services on the other hand will likely only discover the identity of

the client when the interaction starts through some mechanism in either the transport protocol or

the message packaging as clients are not obliged to publish any interface description before using a

service.

From the Characterisation category [Gam07] we found several more relevant properties. The

first two items, components and connectors [SC97], are a broad statement about what types of

components and connectors we expect to find in a system. In software architectures that are based

on the use of web services it is valuable to distinguish between three different types of components

given the specific roles that they play. These are: services that are web service components available

to be discovered and integrated in various applications; clients that require services available as web

services; and intermediaries that act as mediators between the clients and various services. Note

that clients and intermediaries may be web services themselves, and there may be any number of

intermediaries mediating interactions between clients and services. Given that web services are an

implementation of SOA [Sta06], we deduce that they must provide access to some logical resource

via a networked interface. Also from the W3C2 we find that to be considered a web service the

component must have an interface described by a WSDL document and also utilise SOAP as its

message format. The associated connectors are largely unconstrained except that clearly they must

2http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211

37

carry SOAP messages and be compatible with whichever transport protocol is used by the web

services.

Data mode [DeL99] refers to the abstract mechanism employed by a component to share data,

such as a shared memory location, a broadcast message or an explicit transfer in a method call.

Along with the choice of mechanism, it also includes the concepts of pass by value or by reference.

SOAP messages are sent on a point to point basis between component ports and, as they are the

only allowed means of communication in the style, it follows that the data they contain is passed on

a by-value basis.

Data representation [DeL99] refers to the syntactic manifestation of the data being shared

between components. At its simplest level this could mean the bitwise representation of an integer,

for example how many bits long it is and if it is big endian or little endian. With larger data

structures, such as a spreadsheet document, the components also need to agree on details of the

structure in which the data resides. For web services both of these issues are resolved by the use of

SOAP, which gives both a commonly understood structure and set of primitive data types that may

be used.

None of the characteristics that fell within internal behaviour were constrained by either web

services or SOA descriptions, so we move on to the external behaviour characteristics.

Here we found that the characteristics of data and control transfer and transfer protocol

[DeL99] were both greatly influenced by the web service specifications. The two characteristics refer

to components agreeing on what is transferred during an interaction, data and/or control and on

the number and direction of transfers. These, with the possible exception of control transfer which

is still implicit, are very clearly encapsulated in the message exchange patterns defined for web

services, which are described next. Though these patterns only describe individual client or service

ports, they do not extend to the longer term choreography between them, for example the fact that

a component may expect an interaction on port 1 before it will allow an interaction on port 2 is not

included.

There are two distinct versions of web services description language (WSDL), the main descrip-

tion language used by web services, WSDL 1.1 [W3C06c] and WSDL 2.0 [W3C06f]. These languages

allow designers to describe the interfaces provided and required by a web service. The two versions

perform largely the same function, but they differ in one main respect: WSDL 2.0 offers an ex-

tended set of message exchange patterns compared to those in WSDL 1.1, these will now be briefly

described.

The out-only/in-only message exchange pattern, called notification/one-way in WSDL 1.1

terms, consists of just a single message sent from one port to another with no response. This is

shown in Figure 3.1.

The robust-out-only/robust-in-only pattern, which has no equivalent in WSDL 1.1, extends

38

Figure 3.1: WSDL 1.1 Notify/One way and also WSDL 2.0 Out-only/In-only that exhibit the same
message exchange pattern

the previous pattern by allowing an optional message in response which would indicate a fault has

occurred. This is shown in Figure 3.2.

Figure 3.2: WSDL 2.0 Robust-out-only/Robust-in-only message exchange pattern

WSDL also allows for two way message patterns, out-in/in-out called solicit-response/request-

response in WSDL 1.1, is the first of these. It consists of a single message sent from one port to

the other which is then expected to reply with either the correct response or a message indicating a

fault. This is shown in Figure 3.3.

Figure 3.3: WSDL 1.1 Solicit response/Request response and WSDL 2.0 Out-in / In-out message
exchange pattern

The final message pattern included is out-optional-in/in-optional-out and has no equivalent

in WSDL 1.1. This pattern starts with a single message sent from one port to the other that then

has the options of replying with the correct response, sending a fault message or not responding at

all. In the case that it sends the response message the port that sent the initial message can then

send a fault message if necessary. This pattern is shown in Figure 3.4.

The above patterns are presented in their matching pairs, there are also a number of pattern pairs

that could be described as partial matches. A partial match is where the message patterns expected

by one port are a proper subset of the other’s. In this situation it may be possible to constrain the

behaviour of the port with the super set of message patterns such that it behaves in accordance with

39

Figure 3.4: WSDL 2.0 Out-optional-in/In-optional-out message exchange pattern

the expectations of the other. An example of this would be a robust-out-only port connected with

an in-only port (Figure 3.5), so long as the component with the robust-out-only port is prepared

never to receive a fault then the two ports may interoperate. This is also true of a number of other

message pattern pairs such as out-optional-in with robust-in-only and out-optional-in with in-out.

Caller Callee

1
message

2
message

response

3

message

fault

Caller (Out-optional-in)
expected patterns

Caller Callee

A
message

Callee (In-only / one way)
expected patterns

4

message

fault

response

Figure 3.5: Partial match of Out-optional-in and In-only/One way. The callee message pattern “A”
is only matched by the caller pattern “1”.

3.1.2 Characteristics Irrelevant to the Style Description

Many more characteristics are untouched by the minimal web service specifications, these then are

not included in the architectural style we present.

In the topological field we find that neither the data topology nor the control topology,

which describe the overall geometric form of the data and control flows, are prescribed by the W3C.

40

There is also no constraint on the control/data shapes or control/data directions that conveys

if there are implications between the shape and direction of the control flows and the data flows, and

vice versa. Thus the shape of the architecture of a web services based system cannot be characterised

in the same way as say a pipe and filter system.

Internal behaviour is highly unconstrained, with characteristics like state persistence and state

scope not described, meaning that components may or may not maintain state between invocations

and they may or may not partition their internal state so the effects of one invocation are hidden

from another concurrent invocation. Also, while there may be an intuition that a web service should

have concurrency support in some way there is no constraint on if or how this is to be achieved.

There are several aspects of external behaviour that are not addressed by the standards either.

Control synchronicity that looks at how dependent system components are upon each other’s

states is not touched upon. Dynamic properties such as the expected data continuity and timing

issues are similarly untouched. Finally, while some message exchange patterns provide for fault

messages to be sent as part of an exchange, failure tolerance and error recovery methods are

neither constrained nor describable using the minimum set of specifications.

3.1.3 Summary

The findings of the above can be summarised into two lists. The first list includes those characteristics

that are constrained or made explicit when complying with the minimum set of specifications applied

to web services and the second includes those characteristics that are left free and at the choice of

the designer of the component.

Constraints

Evie
G

amble17
.9

.2
00

9 All components must be accessible to others via a network;

Evie
G

amble17
.9

.2
00

9 each port on each component must be described by at least one WSDL document;

Evie
G

amble17
.9

.2
00

9 each component must encode messages as SOAP;

Evie
G

amble17
.9

.2
00

9 each connector must use transport protocols compatible with SOAP;

Evie
G

amble17
.9

.2
00

9 service ports should allow clients to bind to them at invocation time; and

Evie
G

amble17
.9

.2
00

9 data should be passed on a “by value” basis.

Freedoms

Evie
G

amble17
.9

.2
00

9 Control topology is unconstrained and not made explicit in WSDL;

Evie
G

amble17
.9

.2
00

9 control synchronicity is unconstrained and not made explicit in WSDL;

41

Evie
G

amble17
.9

.2
00

9 data topology is unconstrained;

Evie
G

amble17
.9

.2
00

9 data and control topologies are not constrained to be isomorphic;

Evie
G

amble17
.9

.2
00

9 data and control directionality are not constrained by each other;

Evie
G

amble17
.9

.2
00

9 data continuity is unconstrained;

Evie
G

amble17
.9

.2
00

9 components may or may not maintain state;

Evie
G

amble17
.9

.2
00

9 components may or may not support concurrent invocations;

Evie
G

amble17
.9

.2
00

9 components are not constrained to respond in any timescale; and

Evie
G

amble17
.9

.2
00

9 components may or may not support error recovery mechanisms.

3.2 Describing the Minimal Style in ACME & Armani

We now present the description of the style in its ACME & Armani form. This is comprised of the

definition of the relevant ports, components, connectors, roles, and valid configuration rules. We

first present the port types and data structures they use, followed by the component types then the

single connector type. Finally we present the configuration rules. Note that there are no specialised

roles in this style, so the default ACME roles with no explicit properties or rules are used.

3.2.1 Ports and Data Structures

The ports in this style contain all the properties required by the style. ACME supports inheritance

between types so most of the properties are found in a PortTWS Common type, with PortTWS Service

and PortTWS Client extending and specialising from it, shown in Figure 3.63. The definitions of

the data types used by the properties can be found in Figure 3.7.

PortTWS Common starts with an EndPointList property. End points are defined in WSDL and

define the URI and message packaging protocol used by a port. A port may have more than one

end point. This property, as with all those that do not have predefined values by the style, has an

Armani rule to check that it is populated, which is considered to be requirement for a system to be

compliant with the style.

Next in the PortTWS Common definition we have the three properties that embody the message

exchange pattern characteristics of a port. First we have InOurControlDomain, which determines if

“we” have administrative control over a port, in which case it would be possible to alter its definition.

This is vital to the rules defined in the connector that check compatibility of the message exchange

3All ACME & Armani descriptions presented here have had their comments removed for brevity of the descriptions.
A complete description of the style including all relevant comments can be found in Appendix B.

42

patterns of two connected ports. This property uses a SafeBoolean type we defined due to not being

able to confirm if a property using the native boolean type has been populated by the architect as

ACME Studio assumes the default value of true if not populated.

The MessageExchangePatterns property represents the actual messages, their order and direc-

tion expected by this port. It is represented by a data type messagePatterns, which is a set of

validExchange. A validExchange represents one complete path through the message exchange

pattern as a sequence of message. Finally, a message is a record consisting of a string token repre-

senting the message name or syntax and a direction token that shows if the message is outbound or

inbound from the point of view of the port that sends the first message. Thus we can completely

describe the messaging behaviour expected by a port in a way that allows for message definitions to

be refined as development continues.

In PortTWS Common we also have SendsFirstMessage, a SafeBoolean type where we define

whether a port sends the first message in the pattern or expects to receive it.

The definition of PortTWS Client comes next. This port is identical to

PortTWS Common except that it declares itself in property InInterface to be part of the client

interface. As previously discussed in Section 3.1.1 there is no requirement for client interfaces to be

publicised so it needs no other properties.

Finally, we define PortTWS Service that also extends PortTWS Common. The service interface is

required to be published so we have two additional properties here. EndPointAddressList stores a

set of strings representing the address of that port. There are two rules associated with it, the first

checks that the list is populated and the second checks there is one address for each end point offered

by the port. The second property WsdlDocRefs is where the location of any WSDL documents that

include this port is stored. This is not a functional property of the port, but, since it is required in

SOAs that service ports be discoverable, this property has been included in the style.

3.2.2 Components

There are four types of component declared in the style, none of which have properties of their own

but contain rules relating to the port types they can have, shown in Figure 3.8. The CompTWSCommon

comes first and neither has any properties or rules, but it has been included as a place holder as future

developments of this work may utilise it. The three types, CompTWSClient, CompTWSService and

CompTWSIntermediary that extend CompTWSCommon all have a similar structure so are explained to-

gether. CompTWSClient represents a client component that only consumes services and thus its rules

only allow it to have PortTWSClient type ports. CompTWSService represents a service provider and

so its rules only allow it to have PortTWSService type ports. The third type CompTWSIntermediary

represents a brokerage type component that offers services to some components while consuming

services of others.

43

1 Port Type PortTWSCommon = {
2 Property EndPointList : EndPoints;
3 invariant size(EndPointList) > 0;
4

5 Property InOurControlDomain : SafeBoolean;
6 invariant InOurControlDomain == Yes OR InOurControlDomain == No;
7

8 Property MessageExchangePatterns : messagePatterns;
9 invariant size(MessageExchangePatterns) > 0;

10

11 Property SendsFirstMessage : SafeBoolean;
12 invariant SendsFirstMessage == Yes OR SendsFirstMessage == No;
13 }
14

15

16 Port Type PortTWSClient extends PortTWSCommon with {
17 Property InInterface : Interfaces = Client;
18 }
19

20 Port Type PortTWSService extends PortTWSCommon with {
21 Property InInterface : Interfaces = Service;
22

23 Property EndPointAddressList : EndPointAddresses;
24 invariant size(EndPointAddressList) > 0;
25 invariant size(EndPointAddressList) == size(EndPointList);
26

27 Property WsdlDocRefs : WsdlDocs;
28 invariant size(WsdlDocRefs) > 0;
29 }

Figure 3.6: The ACME descriptions of the three port types defined in the style.

1 Property Type WsdlDocs = Set{string };
2

3 Property Type SafeBoolean = Enum { Yes , No };
4

5 Property Type legalSoapVersions = Enum { SOAP1_1 , SOAP1_2 };
6 Property Type legalTransportProtocols = Enum { HTTP1_0 , HTTP1_1 };
7 Property Type EndPoint = Record [
8 Transport : legalTransportProtocols;
9 Encoding : legalSoapVersions;

10];
11 Property Type EndPoints = Set{EndPoint };
12

13 Property Type EndPointAddresses = Set{string };
14

15 Property Type message = Record [
16 ST : string;
17 DT : string;
18];
19 Property Type validExchange = Sequence <message >;
20 Property Type messagePatterns = Set{validExchange };
21

22 Property Type Interfaces = Enum { Client , Service };

Figure 3.7: The data structures created to represent the properties used in the style. The ST & DT

on lines 16 & 17 stand for ‘syntax token’ and ‘direction token’ in the message record type.

44

1 Component Type CompTWSCommon = {
2 }
3

4 Component Type CompTWSClient extends CompTWSCommon with {
5 invariant Forall p : port in self.Ports | satisfiesType(p, PortTWSClient) ;
6

7 invariant size(self.ports) > 0;
8 }
9

10 Component Type CompTWSService extends CompTWSCommon with {
11 invariant Forall p : port in self.Ports | satisfiesType(p, PortTWSService);
12

13 invariant size(self.ports) > 0;
14 }
15

16 Component Type CompTWSIntermediary extends CompTWSCommon with {
17 invariant Forall p : port in self.Ports | satisfiesType(p, PortTWSClient)
18 OR satisfiesType(p, PortTWSService) ;
19

20 invariant Exists p : port in self.Ports | satisfiesType(p, PortTWSClient) ;
21

22 invariant Exists p : port in self.Ports | satisfiesType(p, PortTWSService) ;
23 }

Figure 3.8: The ACME description of the component types used in the style.

3.2.3 Connector

The style defines a single connector type CompTWSCommon that is shown split over Figures 3.9 and

3.10. The connector has no explicit properties of its own but it contains rules that make it the locus

of mismatch detection. The first of these rules, shown in Figure 3.9 line 2, asserts that the connector

may only have two roles, this is to embody web service connections being point to point in nature.

The second rule, Figure 3.9 lines 4 - 8, is a check that two connected ports have end points that

have at least one matching pair of end point protocols. The final two rules in Figure 3.9, on lines

10 - 12 and 14 - 15, check that one of the connected ports expects to send the first message and the

other expects to receive the first message.

The final two rules, shown in Figure 3.10, are both concerned with checking the compatibility of

the message exchange patterns of the two connected ports. The first rule is defined as a heuristic

and the second is defined as an invariant, as are all the other rules in the style. This does not

affect how they are evaluated but instead determines how a failure of a rule is displayed. When an

invariant rule evaluates to false, a red warning triangle is displayed over the component or connector

in question. However when a heuristic rule is failed then a yellow warning is given, indicating that

a potentially less significant rule has been broken.

The message exchange pattern rules are based upon there being three possible outcomes of

comparing the patterns of two connected ports. Remembering that a message exchange pattern is

described using a set of valid exchanges, we define the first outcome, a complete match, as existing

when the set of valid exchanges of one port is identical to that of the other. We can then also

say that when the sets of valid exchanges are disjoint, we have a mismatch. However as we saw in

Section 3.1.1 there are situations where one message exchange pattern may be a partial match for

45

1 Connector Type ConnTWS = {
2 invariant size(self.roles) == 2;
3

4 invariant Forall r1 : role in self.roles |
5 Forall r2 : role in self.roles |
6 Forall p1 : PortTWSCommon in r1.attachedPorts |
7 Forall p2 : PortTWSCommon in r2.attachedPorts |
8 (r1 != r2 AND attached(r1 , p1) AND attached(r2, p2))
9 -> size(intersection(p1.EndPointList , p2.EndPointList)) > 0;

10

11 invariant Exists r : role in self.roles |
12 Forall p : PortTWSCommon in r.attachedPorts |
13 attached(r, p) -> p.SendsFirstMessage == Yes ;
14

15 invariant Exists r : role in self.roles |
16 Forall p : PortTWSCommon in r.attachedPorts | attached(r, p)
17 -> p.SendsFirstMessage == No ;
18 }

Figure 3.9: Part 1 of the ACME description of the single connector type defined, with the message
exchange pattern rules removed.

another. We can now define two conditions for a partial match to exist, they are:

Evie
G

amble17
.9

.2
00

9 one set of valid exchanges must be a proper subset of the other; and

Evie
G

amble17
.9

.2
00

9 the port with the superset must be within “our” domain of control so “we” may reduce its set

of valid exchanges to match that of the other port4.

The two rules are constructed such that only one of them can fail on any one connector. So if

the message exchange patterns completely match then neither rule will fail, if the conditions for a

partial match are found then the heuristic rule will fail. Finally, if neither a complete match nor a

partial match is found then the invariant will fail. In this way we are able to flag either a partial

match or a mismatch being found and provide a visual clue to the architect regarding the degree of

problem to be solved.

3.2.4 Configuration Rules

Finally we come to the rules that govern the configuration of the system. As we saw in Section

3.1.2, there are no constraints on the topology of a system of web services at all, but the web service

style components will expect to connect to other web service style components. Also this style is

aimed only at detecting mismatches between web services and may give false positives or negatives

if other types of component are introduced. So two rules are defined, shown in Figure 3.11. The

first states that all components found in a system of this style must satisfy the requirement to be

of one of the three component types CompTWSClient, CompTWSService or CompTWSIntermediary.

The second rule checks that all connectors in the system must satisfy the single connector type in

the style CompTWSCommon, without which no mismatch detection will take place.

4The decision about whether this is possible or not must lie with the architect as understanding the implications
of implementing the reduction in behaviour is outside the scope of this style.

46

1 heuristic Forall r1 : role in self.roles |
2 Forall r2 : role in self.roles |
3 Forall p1 : PortTWSCommon in r1.attachedPorts |
4 Forall p2 : PortTWSCommon in r2.attachedPorts |
5 (r1 != r2 AND attached(r1 , p1) AND attached(r2, p2)) ->
6 (!
7 (
8 (p1.InOurControlDomain == Yes
9 AND

10 (!
11 (isSubset(p1.MessageExchangePatterns , p2.MessageExchangePatterns))
12)
13 AND
14 isSubset(p2.MessageExchangePatterns , p1.MessageExchangePatterns)
15)
16 OR
17 (p2.InOurControlDomain == Yes
18 AND
19 (!
20 (isSubset(p2.MessageExchangePatterns , p1.MessageExchangePatterns))
21)
22 AND
23 isSubset(p1.MessageExchangePatterns , p2.MessageExchangePatterns)
24)
25)
26);
27

28 invariant Forall r1 : role in self.roles |
29 Forall r2 : role in self.roles |
30 Forall p1 : PortTWSCommon in r1.attachedPorts |
31 Forall p2 : PortTWSCommon in r2.attachedPorts |
32 (r1 != r2 AND attached(r1 , p1) AND attached(r2, p2)) ->
33 (p2.MessageExchangePatterns == p1.MessageExchangePatterns)
34 OR
35 (
36 p1.InOurControlDomain == Yes
37 AND
38 (!
39 (isSubset(p1.MessageExchangePatterns , p2.MessageExchangePatterns))
40)
41 AND
42 (
43 isSubset(p2.MessageExchangePatterns , p1.MessageExchangePatterns)
44)
45)
46 OR
47 (
48 p2.InOurControlDomain == Yes
49 AND
50 (!
51 (isSubset(p2.MessageExchangePatterns , p1.MessageExchangePatterns))
52)
53 AND
54 (
55 isSubset(p1.MessageExchangePatterns , p2.MessageExchangePatterns)
56)
57);

Figure 3.10: Part 2 of the ACME description of the single connector type defined, showing the rules
relating to checking message exchange pattern compatibility.

1 Family ws_minimal_3 = {
2

3 invariant Forall comp : component in self.Components | satisfiesType(comp , CompTWSClient)
4 OR satisfiesType(comp , CompTWSService)
5 OR satisfiesType(comp , CompTWSIntermediary);
6

7 invariant Forall conn : connector in self.connectors | satisfiesType(conn , ConnTWS);
8 }

Figure 3.11: The ACME description of the configuration rules that check that all components and
connectors in a system satisfy the requirements of this style.

47

3.3 Summary

In this chapter we have presented the derivation of our minimal architectural style. We started by

discussing a set of characteristics that were obtained from the literature and met our criteria of

being externally visible, non-trivial and explicit in a WSDL document. This resulted in a set of

characteristics that are guaranteed to have descriptions and that can contribute to mismatch. This

set formed the specification for the style, developed in ACME Studio that allows compositions of

web services, clients and intermediaries to be assessed for a number of mismatches.

While the style shows us what mismatches we can detect, we also listed a number of characteristics

that were considered important enough to be presented in the literature but that could not be

determined from the description provided by a minimal web service. It is these characteristics that

we will address in the following chapter where we will return to the literature to expand upon what

they mean and if they are significant in terms of potentially contributing to mismatch in a system.

48

Chapter 4

Web Service Architectural
Mismatches

Chapter 3 showed that with the expressiveness of ACME and the power of Armani it is possible to

produce an architectural style that will represent the required data and provide analysis to detect

the significant mismatches within the stated scope. Chapter 3 also focussed on a minimal web

service, one that only makes available the compulsory set of data; but, even a cursory glance at the

freedoms list in that chapter shows that there are still architectural mismatches possible that would

go undetected by the rules in this style.

This chapter then has the goal of exploring the freedoms and determining what characteristics

ought to be included in an enhanced web service architectural style and from that what mismatches

the style is aiming to discover. The work now returns to the literature with the purpose of obtaining

the details of these free characteristics and assessing their significance to SOA. Beyond simply listing

the characteristics, values are suggested for representing the assumptions made by the components

for each, without which it would not be possible to begin the task of designing the analysis rules to

check for correct values and to detect mismatches.

Defining a scope is important for any work if it is to be successful. The scope here is to consider

only those aspects that are common to web services and not be distracted by orthogonal character-

istics. For example, Davis, Gamble and Payton included a data storage method characteristic in

their work, this characteristic has suggested values including repository and local data. These are

values that represent in some way the semantics of the component that are not related to it being a

web service. The repository is described as being the main data store in a blackboard style system.

However, while web services could be used to construct a blackboard system, they can be used to

build other types of system as well. Because of this, the data storage method is counted as being

out of scope of the web service style under construction and to check for architectural mismatches

related to the blackboard characteristics of the system, that a blackboard architectural style should

be constructed and used. This scoping issue also applies to a number of characteristics proposed by

49

Gacek [Gac98], these are detailed in the discussion of her work later in the chapter.

As discussed in Section 2.2.2.1 the survey by Davis et al. has performed a good portion of this

work, but, as we will see, they do not completely cover all aspects of the other works described in

the background. The chapter starts with the characteristics of Davis et al. but will then include

characteristics from the other works by DeLine, Gacek and Yakimovich et al., discussing if and

where they overlap with the survey or what they add. When each characteristic is discussed, any

envisaged mismatches relating to it will be named. At the end of the chapter a complete list of all

named mismatches will appear to act as part of the specification for the enhanced architectural style

to follow.

4.1 Davis, Gamble and Payton

4.1.1 System Characteristics

The first characteristic in the survey is identity of components. The survey proposed two potential

values for it, aware and unaware. Web services send messages in a point-to-point manner [Pap08]

and as such must be aware of the recipient’s identity, at least in terms of its address. Also, the

concept of broadcasting, which would be associated with being unaware of a message’s recipients, is

not associated with web services. So while a web service should always be aware of the identity of its

partner in an exchange, it may be possible for the architect constructing the system to introduce a

connector that suggests the use of multicasting by it having more than two roles. To protect against

this and to enforce the point-to-point nature of web service communications the following mismatch

is suggested.

mismatch 1: Non-point-to-point connector exists in the system.

The second characteristic is that of blocking, this is given the potential values blocking or non-

blocking. While one might assume that web services, that exist in an open environment potentially

without control over the clients that use them, would be implemented such that they can handle

multiple requests concurrently, it is not actually stipulated by the W3C [W3C06b] that this should

be the case. Therefore a web service component could adopt either a blocking or non-blocking

approach. It follows then that this may result in a mismatch where a client assumes a non-blocking

model while the service blocks.

mismatch 2: Concurrent calls to a blocking non-queuing port.

In the survey the characteristic of module1 is given example values of filter and object, these

indicate what type of component they are in terms of the vocabulary of the style. In this style the

1A module is a container of functionality and so is synonymous with a component. Thus the characteristics
associated with modules in the survey are applied to components in this work.

50

actual role, in terms of functionality, is considered out of scope, it is assumed that a web service could

perform any role. The only aspect of importance then is that a component is compliant with the

constraints of being web service. If a component were not compliant in any way, this is considered

to be a mismatch.

mismatch 3: Non web service compliant component in the system.

The final characteristic to appear in the system section of the survey is that of connector.

Following on from the module characteristic this is given example values named after types of

connector, for example pipes, procedure calls and shared data. As with the module characteristic,

the style is not concerned with the details of the connector so long as it meets all the constraints,

thus the existence of a non-compliant connector is considered to be a mismatch.

mismatch 4: Non web service compliant connector in the system.

4.1.2 Control Characteristics

The control topology characteristic refers to the geometric shape formed by the control transfers

within a system and is given values such as “star” and “linear” by Davis et al. Terms like these

have meaning when looking at the system as a whole but they do not apply to this web service

architectural style for two reasons. Firstly there is no requirement that web service based systems

form any particular shape in the specifications available [W3C06b]. Secondly when integrating

a component into a system, the component is only directly affected by the behaviours visible to

it, exhibited by its directly connected neighbours and the details of the control flows outside of

this first ring of components is irrelevant. This then is similar to a layered architectural style, as

described in [Gac98], in which components can connect to components in the same layer and the

layers directly above and below them. The layer directly below a component effectively provides a

virtual machine to it. Figure 4.1 shows an example of a web service composition in which layers

exist, not in the virtual machine sense of the layered architectural style , as there is no prohibition

regarding which components may communicate directly with any other, but in the sense of what can

definitely be known. In the diagram the client component “knows” it is connected to components

A1 – A4, however it may not know about the existence or connections to components B1 and B2 as

components A1 – A3 may exist in a different administrative domain and may not wish to make that

information available. As such there is nothing to gain by making assumptions about the topology

beyond the directly connected components.

The focus now moves down to the latitude level (Figure 2.9, page 24) and to the control flow

characteristic. Davis et al. did not suggest any specific values for this characteristic but did describe

it as “[clarifying] the control interactions between the internal modules and the exit points at which

51

Figure 4.1: A client component that connects directly to components A1, A2, A3 and A4. Compo-
nents B1 and B2 also exist in this composition but only the behaviour of A1–A4 seen by the client
is significant.

it is made available”. The only interactions visible at the abstraction level adopted by this style

take the form of the messages passed between connected ports.

A mismatch at this level then is relatively easy to visualise in the form of a message sent to a port

on a service when the service is not expecting it. Looking at the left hand side of Figure 2.9 (page

24) we see that control flow is fed by two execution level characteristics which are now discussed.

Control synchronicity describes the dependence of one component upon the control state of

another, for example a synchronous component may not have control while another has it. Pa-

pazoglou [Pap08] observes that there are two distinct types of web services, synchronous services,

using remote procedure call (RPC) type communications and asynchronous services using a docu-

ment passing paradigm. From a control flow point of view these differ in that the former passes

control to the service with the call and control is returned with the reply. While the latter passes

the document but does not pass control or wait for an immediate reply. As presented in Section

3.1.1 there are several message exchange patterns that may be employed by web services and the

communication paradigm chosen for each port is implicit in this choice. For example the one-way

message exchange pattern, Figure 3.1 page 38, sends a message but does not expect any response

and so is applicable in asynchronous situations. Conversely the request-response pattern, Figure 3.3

page 38, sends a single message then expects either a response or an error message before continuing

and so is consistent with the synchronous paradigm. The mismatch then lies in the choice of message

exchange pattern with the implied effects on the logical control flow of a component.

mismatch 5: Mismatching message exchange patterns.

Returning briefly to the control flow characteristic, note that the above mismatch does not

capture the problem of an unexpected call to a port. For example, while two components may agree

52

on using the asynchronous document passing paradigm, if they may not agree on the number or

direction of documents passed, [DeL99], then there still exists a mismatch. A mismatch relating to

the conversations each component expects is added in response to this.

mismatch 6: Mismatching conversational assumptions.

Control binding time is the other characteristic that feeds into control flow. This represents

the point in a component’s life cycle at which the identity of a partner in an exchange of data

or control is first known. Web services, as an example of SOA, should be loosely coupled and as

described in [Pap08] this means late binding. While this is certainly true of web service components

that provide services, it does not necessarily apply to the client components that use those services,

a client component may be bound at design time to use a specific service. This leads to a mismatch

type being identified for web service components providing services, where they are bound to a set

of client’s components before runtime. In this case the mismatch does not cause any interoperability

issues until a new client, that is not part of a predetermined set, attempts to make use of that

service. The mismatch then is between the service provider and the general expectations that may

be applied to a web service by a prospective client.

mismatch 7: Incorrect binding time of a service provider.

Control structure is given the potential values single-threaded, multi-threaded and decentralised

by Davis et al.. From one point of view a system composed entirely of web service components must

be decentralised as each component must have at least one thread of control to be able to either send

a message to another service or to listen for incoming messages. On the other hand this could also be

seen as a practical detail and if logical threads of control representing the value adding functionality

are considered instead, then a different conclusion may be arrived at.

The goal of any system is surely to do something useful; Schneider [Sch00] defines the concept

of ‘liveness’ as “something good will happen”. Schneider also tells us that a component on its own

cannot guarantee that an event will occur given that the system may prevent the event by refusing

to cooperate. In a system of web services, cooperation could be interpreted as a component being

willing to send a message while another is willing to accept it.

Mismatches relating to the willingness to send or receive a message are already accounted for by

mismatches 5 and 6, but for the system to do something useful then at least one of the components

must start with a thread of control that will lead to it sending the first message. If none of the

components have such a thread then no useful actions will take place and the system will not exhibit

liveness.

The mismatch in this case may not be immediately intuitive as it is not an incompatibility

between any pair of components, but instead results from all components in the system waiting for

53

some other to send the first message. If we define a component that can send a message to another

before it receives any messages as having an active thread of control then the following mismatch

can be derived.

mismatch 8: No component starts with an active thread of control.

Control scope describes the restrictions a component places upon the other components that

it is willing to share control with. While in the example given by Davis et al. a subroutine will only

receive control from its parent, web services may receive a message and therefore a logical thread of

control from any component to which they are correctly bound. No new mismatches are identified

here.

The final two characteristics in the control section are method of communication and concurrency.

Method of communication has the suggested values peer-to-peer, multi-cast and broadcast. As

web services use the point-to-point (peer-to-peer) method, there should be no scope for mismatch

but as with identity of components characteristic (Section 4.1.1) there could be a fault introduced

if the architect introduced a non-point-to-point connector into the system. Mismatch 1, which was

declared in that earlier section, is sufficient to cover this issue as well.

Concurrency has two proposed values, multi-threaded and single-threaded. As discussed in re-

lation to the blocking characteristic previously, it may seem intuitive, given the open environment

in which web services exist, that they should be logically multi-threaded and support multiple con-

current invocations, but this is not mandatory. The developer’s choice of implementing technology

affects this ability. For example web service constructed using Java servlets will support multiple

threads 2 while those built using the Enterprise Java Beans (EJB) technology are strictly single-

threaded with the number of threads supported by the component being then dictated by the number

of beans instantiated [Top03]. In the cases where only a single logical thread can be processed it

may be advantageous to include a queuing facility to store messages waiting to be processed. From

this a single mismatch is derived.

mismatch 9: Concurrent threads attempted in a single-threaded component.

4.1.3 Data Characteristics

Data topology, similar to control topology in the previous section, represents the geometric shape

formed by the data flows in the system. The same argument applies in this case as it did before,

that a component may be unaware of the data flows details on the far sides of the components it

directly interacts with. The component should therefore only make assumptions about the known

2Allowing multiple threads to exist does not strictly mean that they are supported as this would imply that logical
concurrency issues such as race conditions are accounted for in the component development. These are discussed later
when looking at the reentrance characteristic on page 59

54

data flows between it and the directly connected neighbours. No new mismatch types are identified

here.

In another mirroring of the control characteristics, data flow has much in common with control

flow. Again it represents the flows, this time of data, around the system. The mechanism used for

implementing data flows is the same as that for control flows, i.e. the sending of SOAP messages,

so we would argue that the previously described mismatches relating to control flows (mismatches

5 and 6) also apply here.

Data flow is fed into by all three execution level characteristics. Data binding time has the

same SOA principles applying to it as control binding time had, i.e. that a service should be

discoverable which implies binding at run-time. Also client components using the services have the

same flexibility regarding binding time, i.e. at any point in the lifecycle. The need for mismatch 7,

identifying a service pre-bound to specific clients still holds here.

Systems may differ with respect to their data continuity. This characteristic represents whether

a component will always have fresh data available for it to process, such as an osciloscope, or whether

the appearance of new data will be sporadic, such as a bar code reader at a supermarket checkout.

These two situations are termed continuous and sporadic respectively. While web services do not

stream data as such3, there is no specification of an upper bound of the frequency with which

messages are sent from one web service component to another. This could lead to an approximation

of streaming if a sufficiently high rate of messages were sent and received. This effectively allows a

mismatch in the continuity assumptions between services if one component expected only sporadic

communications while the other expected a near continuous stream of messages.

mismatch 10: Differing data continuity assumptions.

The method of communication of data is the same for data as for control, i.e. point-to-point

message passing only. So again, as there are no options no new mismatches are identified here.

Data Scope also receives the same treatment as its control couterpart and a component will, if any

security constraints are met, share data with any correctly connected component.

The data mode characteristic represents how a component expects to share data with others

in the system. Davis, Gamble and Payton suggest a number of possible values, passed, shared,

multicast and broadcast. As already discussed web services use a point-to-point messaging style,

so multicast and broadcast are out of scope4. Shared data is not disallowed in any specifications

found, but using shared data would imply that there exists one or more connectors in the system

3IBM has produced a plugin to allow a web service host to stream data such as video (https://www.alphaworks.
ibm.com/tech/streamingengine), however no evidence was found that a body such as the W3C have standardised
the way in which web services would handle stream requests, though a use case of streaming data was described in
2002 (http://www.w3.org/TR/ws-desc-usecases/#N103D8). (URLs correct on 5th November 2008)

4Multicasting is included in the WS-discovery specification (http://xml.coverpages.org/ni2004-02-17-b.html)
but no other mention of it was found. Also the specification relates to methods for announcing and discovering web
services rather than their operational message passing.

https://www.alphaworks.ibm.com/tech/streamingengine
https://www.alphaworks.ibm.com/tech/streamingengine
http://www.w3.org/TR/ws-desc-usecases/#N103D8
http://xml.coverpages.org/ni2004-02-17-b.html

55

that represent the shared locations. One of the constraints imposed on the style is that only web

service type connectors are allowed and these do not support shared variables, so shared data is not

allowed in this style. This only leaves the passed option and thus no possibility of mismatch relating

to this characteristic.

Data storage method has already been discussed in the introduction to this chapter, but to

reiterate here, this characteristic is out of scope of this web service architectural style.

The final characteristic of Davis, Gamble and Payton is that of supported data transfer to

which the authors assign two possible values: explicit or implicit. Web services are explicit about

data transfers for two reasons. Firstly they use a point-to-point method, directly sending the SOAP

message to its intended endpoint. Secondly they are explicit about the data included in those SOAP

messages, at least in terms of each datum’s name and data type, these are detailed in the web service

WSDL document [W3C06c, W3C06e]. A client wishing to use a service does not have to publish a

WSDL document, so its data names and type are not made explicit, but web services do not discover

and bind to clients, the binding takes place the other way round. It is assumed that a developer

of a client component has documentation regarding the interfaces required by that component,

effectively making that data explicit, at least internally to those building the composition. Given

these assumptions, the information regarding the data types to be used by a client application will

always be explicit and so there is no new mismatch here.

4.2 DeLine

DeLine’s work on packaging mismatch contains a number of characteristics that are positioned at

the right level of abstraction to be of use in this study. While no example values are presented for

any of the characteristics they are all illustrated with examples that help clarify the intent of each

characteristic.

Data representation is the first characteristic presented. It has no direct counterpart in the

Davis, Gamble and Payton study as it concerns how each data item is presented by a component.

This presentation is in terms of the data type (floating point, integer etc) representing the value and

also the bitwise representation of that value (most significant bit first or least significant bit first

etc). Web services use the XML schema syntax to define the data types used in a WSDL service

description document and therefore also by the component interface. SOAP itself also uses these

data types so communicating web services will have a common understanding about the data types

in use and their representation. This still leaves web services with a potential mismatch relating to

the actual data types used in a particular exchange of messages. For example a stock broker service

may quote prices in pence using an integer, while the client expects the price in pounds as a floating

point number. Here we can see two distinct mismatches. The first is a mismatch of the actual data

56

types exchanged. The second is the meaning of the values encoded, where one component’s data

could be described as “value in pence” while the second is “value in pounds”. Both issues need to

be set right for correct operation to occur.

mismatch 11: Mismatching data types in a message.

mismatch 12: Mismatching data semantics.

DeLine also states that with large data structures whether there is a mismatch or not is less of

a black and white issue. This is illustrated with the example of a word processor document, while a

word processor may be able to open a file of another vendor’s product, some formatting information

may be lost. The raises the possibility of a new mismatch type.

mismatch 13: Mismatching data structure.

Data and control transfer lies in much the same area as the Davis, Gamble and Payton control

flow and data flow characteristics. DeLine breaks down a number of communication mechanisms

using two criteria, what is transferred between the components and who requests the transfer. Web

services always transfer data, whether control is passed or not is implicit in the message exchange

pattern, so mismatches regarding what is transferred are captured already in mismatches 5 and

10. The issue of who requests the transfers is also already covered in the mismatches regarding

the message exchange patterns and longer term conversations, mismatches 5 and 6 respectively.

The same applies to DeLine’s transfer protocol characteristic where the “number and order” of

individual transfers would be described . This is precisely the purpose of the message exchange

patterns and so mismatches with respect to it are already captured in mismatch 5.

DeLine proposes two characteristics relating to the state of the component. State persistance

targets how much state is maintained between interactions of components. Papazoglou [Pap08]

describes two types of web services, informational services that provide access to data such as

weather reports, these do not keep any memory of the previous interactions and are considered

stateless. The second type are termed complex services, these typically include multi-step business

processes, for example purchasing, which could include requesting a quotation, placing a purchase

order, confirming the order, delivery information and so on. This type of service must maintain

state to be able to function. State can include the values of attributes of a component [ML05] and

can also include the expected or allowed transitions of a component [CBB+04]. Both of these could

lead to a mismatch, the first in an assumption about whether a component’s variables are stateful

or not and the second in an assumption about the messages a service is prepared to send or receive.

The former therefore leads to a new mismatch type while the second is included in mismatches 5

and 6. The significance of this characteristic is related to the concept of rely/guarantee [Jon81]. If

component A assumes that state is maintained while component B assumes it is not and then B

57

makes changes to some data, this could cause problems later if A relied upon the data having the

earlier value.

mismatch 14: Mismatching assumption about statefulness of variables.

DeLine’s second state related characteristic is state scope, this represents the assumption about

the amount of scope a component is willing to allow another to affect. For example if a service allows

multiple client applications to use it simultaneously then it may divide its internal state, allowing

each client to affect only its own portion or it may share some state between the clients. The clients

themselves may make assumptions about whether the state they interact with is shared or private,

thus a mismatch is possible here.

mismatch 15: Mismatching assumptions about privacy of state.

Failure tolerance is the penultimate characteristic here. It represents the assumptions compo-

nents make about the failure modes of others. DeLine gives the example of a component packaged

to interact with a local hard disc, that instead receives its data over a network. The network may

exhibit different failure behaviour to a local disc drive, possibly leading to the component making

erroneous assumptions about the failure that occurred. A mismatch relating to differing failure

modes is added to acknowledge this.

mismatch 16: Differing failure modes assumed and exhibited by interacting components.

Finally DeLine includes a connection establishment characteristic. This includes how and

when the ID of a component to be interacted with is known. This has already been covered in

discussion of the control and data binding times of Davis et al. that led to the inclusion of mismatch

7.

4.3 Gacek

Gacek’s work on detecting architectural mismatch contains 14 characteristics, many of which were

not covered by the scope of the Davis et al. study, so the complete set is presented below.

Concurrency was the only characteristic of Gacek’s explicitly cited in the Davis et al. survey

and has already been accounted for in mismatch 9.

The distribution characteristic describes assumptions about the mapping of processes to pro-

cessor nodes. Problems may occur if a component expects its partners to exist on the same node but

they are placed upon another due to the potential delays or errors caused by communications across

the network. Web services, as their name implies, are primarily intended for service provision across

networks, though this does not preclude co-locating web service components on a single node. There

58

is the potential for mismatch then, though it is not clear what problems, other than performance

related issues, would arise from this.

mismatch 17: Differing distribution assumptions.

Dynamism concerns assumptions about changes in topology at runtime. Certainly web services

are oriented towards dynamic discovery at runtime using standard UDDI (Universal Description,

Discovery and Integration)5 registries. Papazoglou [Pap08] defines two types of web service clients,

static that are pre-bound to a specific service provider and dynamic that understand the methods

and parameters of a service type but do not bind to a particular service end-point until run-time.

This means that the creation of a connector can certainly be dynamic, but topology changes can

also include destruction of a connector to terminate a binding to a component. No detail was found

regarding which ports involved in a connection are allowed to instigate the destruction of a connector.

From this it is possible that the ports may differ in their assumptions about which of them may

destroy the connection and thus leave the other waiting for a message that will not arrive or sending

a message to a port that will not accept it. A new mismatch is added to represent the assumptions

made about which parties involved in a connection may create and/or destroy a connector.

mismatch 18: Differing assumptions about who may create or destroy a connector.

The encapsulation of a component is considered next but this is not a source of mismatch for

two reasons. Firstly encapsulation requires that a component has a well defined interface and web

services are obliged to provide a WSDL document describing their public interface so this requirement

is met. The other part of encapsulation regards whether the interface can be circumvented or not.

In the minimal web service style presented in Chapter 3 we stipulated that all service ports must

have an associated WSDL document, to reflect the first part of encapsulation. This acknowledges

that the described service interface can only be circumvented if there are service ports that have no

description. This rule will be maintained in the enhanced style that follows.

mismatch 19: Provision of an undescribed service port.

Layering in a style implies there are hierarchic levels in the topology of the system, each layer

providing a virtual machine to the layer above and using the virtual machine below it. We previously

discussed Similar aspects were previously discussed relating to Davis et al.’s control and data topol-

ogy characteristics, concluding that there is no constraint on the geometric form of a web service

system.

In a layered style components may only connect with components in the same layer or those

directly above or below it. While the virtual machine metaphor from the layered style was used

5http://www.w3schools.com/WSDL/wsdl_uddi.asp

http://www.w3schools.com/WSDL/wsdl_uddi.asp

59

when discussing control topology earlier in the chapter (page 50), the associated rules about not

bypassing the adjacent layers do not apply here and any suitable component may be connected to.

The result is that no new mismatches are found here.

Supported data transfers is slightly different to the Davis et al. characteristic of the same

name. While the latter is just concerned about whether the transfer method is explicit or implicit

in nature, Gacek’s version focusses on the type of mechanism used, e.g. shared variables or data

repository. The mechanism used by web services is explicit message passing so there can be no

mismatch in this respect.

The reconfiguration property characterises commitments about when a system can be recon-

figured, either on-line or off-line. If a reconfiguration is taken to mean a change in topology then

this equates to whether web services can bind and unbind on-line and/or off-line. We determined

earlier in this chapter that web services should allow binding at run-time (on-line) and that client

components can bind at any time, this gave rise to mismatch 7. Nothing has been found explicitly

describing when connections between web services may be destroyed, also assumptions about this

characteristic were covered when discussing dynamism, which spawned mismatch 18. For example

a component making the assumption that reconfiguration can only occur off-line might assume that

neither it or the component it is connected to may destroy the connector and so that connector will

be available until the system is shut down. So no new mismatches are found here.

Reentrance is an important characteristic when considering systems with multiple threads of

control. It describes whether a component supports multiple concurrent invocations of parts of its

interface. The interpretation of supporting taken here relates to the component being protected

against logical concurrency issues such as race conditions rather then the question of whether the

framework upon which the web service is built actually permits two or more concurrent threads in

the same component. The following mismatch is added to cover this.

mismatch 20: Concurrent threads in a non-reentrant method.

The final six characteristics in Gacek’s work are all considered to be out of scope in the context

of this web service style, we will now briefly describe why each is so.

Three of the characteristics backtracking, control unit and triggering capability all repre-

sent aspects of the semantics for use of a component in the same way as the data storage method

of Davis, Gamble and Payton. Again whether a component has these characteristics or not is or-

thogonal to whether it is a correct web service or not, thus it is suggested that they would be better

suited to existing in more application specific styles such as a blackboard architecture style.

The next two characteristics are related to how the operating system handles the components

for execution. Pre-emption describes if a process may be “swapped out” so another process may

get some processor time, and component priorities describe if defining priorities for each process

60

within a system is allowed or expected. These two characteristics may affect how a web service

component performs but not in a way that would affect the interoperability of the components.

Finally, the response time characteristic represents the degree to which the temporal aspects

of an interaction can be predicted. This is an important aspect in the arena of quality of service

(QoS), however service level agreements (SLA) are a subject in their own right and not an area

targeted within this work. No mismatch will be included with respect to this characteristic.

4.4 Yakimovich, Bieman and Basili

The motivation for this piece of work was to aid in estimating the cost of integrating COTS compo-

nents into a system, by assessing the degree of difference between the component to be integrated

and the system using five characteristics. The characteristics are described below.

The packaging of a component describes the form in which it is to be found, where the form has

values ranging from an independant program to a source code module with types such as overlays

and dynamic link libraries in between. The context of this style gives three possible scenarios with

respect to the packaging characteristic. The first is that all the web service components already

exist and are immutable, in which case the role of the architect is to compose simply the system by

creating connections between the desired ports. The second scenario is that a number of web service

components already exist and the role of the architect is to design one or more new components to

be integrated with the existing ones. The final role is that none of the components exist, or that

they are all within the architect’s control and therefore can be changed, so the role again is that

of a designer. So while the context for the style does not allow for the full gamut of packaging,

Yakimovich et al. propose it does allow the spirit of this characteristic to enter in the form of the

mutability of the components and ports.

Mixing mutable and immutable components does not in itself lead to interoperability problems.

This characteristic becomes important however when other mismatches are discovered as these may

be corrected either through direct modification of the component or by using a technique such as

those proposed by DeLine [DeL99] and Cavallaro and Di Nitto [CN08]. This drives the inclusion of

a generic type of mismatch, the partial match. This does not target any particular property at this

point but will be used in situations where a property of two components shares some commonality

but is not completely compatible. An example from the minimal style would be a partially matching

message exchange pattern where there exists at least one path that is shared by both components

but there are also paths that they do not share.

mismatch 21: Partial characteristic mismatch between two or more components.

The control characteristic describes the sort of control flow expected in the system. Values here

61

range from multiple processes, where each component has its own thread of control, to components

such as a library which make no control assumptions. This concept was discussed in reference to

Davis, Gamble and Payton’s control structure where it was determined that all web services must

have a thread of control to either listen for incoming messages or to initiate an outgoing message.

It was decided that a component would only be considered to have a thread of control if it would

initiate communications with another component without any external stimulation. This led to the

formation of mismatch 8 “no component has an active thread of control” that applies equally here.

The information flow characteristic captures whether control, data or both flow between com-

ponents during interactions. Both of these concepts have been seen before, with the control flow

captured implicitly in mismatch number 5 and mismatches in data flow would be caught by mismatch

11.

Synchronicity only has two values, synchronous and asynchronous. Again this is a concept that

has already been covered previously in the two mismatches relating to message flow expectations,

mismatches 5 and 6.

The final characteristic we considered by Yakimovich, Bieman and Basili is that of binding, this

evaluates the time at which the ID of the component to be connected to is known, once again this

is already covered by a previously defined mismatch, in this case it is number 7, “incorrect binding

time of a service provider”.

4.5 Summary

In this chapter a number of sources from the literature have been reviewed for candidate charac-

teristics for the enhanced architectural style. It was found that while there was a degree of overlap

between the characteristics each includes, they were all able to add to the set of mismatches to

consider.

There were also a number of characteristics that were found to be out of scope for the purposes

of our work. For example the characteristics that relate to specific components such as the control

unit proposed by Gacek or those that relate to the semantics of the component such as the data

storage method proposed by Davis, Gamble and Payton. These characteristics are better suited to

existing in application domain specific styles such as one that might describe a blackboard system.

The characteristics that influenced the mismatches that will be used in the style are those that are

oriented towards the interoperability and discovery of SOA.

This chapter has indicated that there are more mismatches suggested by the literature than are

detectable using the WSDL description alone, the following tables will be used to illustrate this. The

minimal style in Chapter 3 contained some 22 rules with their associated properties representing the

features found to be significant, these are shown in Table 4.1 where each rule is assigned an ID of

62

ID Name

Port Rules – Figure 3.6 page 43
r1 Endpoint list must be populated
r2 Sends first message populated
r3 MEP populated
r4 In our control domain
r5 Service : end point address list populated
r6 Service : has address for each endpoint
r7 Service : is defined by a wsdl doc

Component Rules – Figure 3.8 page 44
r8 Client : clients have only client type ports
r9 Client : has some ports
r10 Service : has only service ports
r11 Service: has some ports
r12 Intermediary : has only client or service ports
r13 Intermediary : has at least one client port
r14 Intermediary : has at least one service port

Connector Rules – Figures 3.9 and 3.10 pages 45 and 46
r15 Has exactly two roles
r16 Attached ports must share a common transport and encoding protocol pair
r17 One attached port must send the first message
r18 One attached port must receive the first message
r19 Attached message exchange patterns should match
r20 Attached message exchange patterns may partialy match

Configuration Rules – Figure 3.11 page 46
r21 All components must be web service client, service or intermediary
r22 All connectors must be web service connectors

Table 4.1: Rules specified in the minimal architectural style, Chapter 3

the form r<x>. While some of these rules directly relate to the detection of a specific mismatch, for

example r19 confirms that the message exchange patterns match, several of the rules relate to the

integrity of the architectural model, e.g. r6 confirms there is an address for each end-point provided

by a service.

The underlying mismatch behind each of the rules is presented in Table 4.2 where each is assigned

a minimal style ID (min<x>) and associated with the rules used to detect it.

This chapter has provides us with a second list of mismatches, those suggested by the literature.

These are presented in Table 4.3, relating the mismatch ID (lit<x>) with the name of the mismatch.

In this case the ID numbers are identical to those given in the body of the chapter.

From the tables then we can see that there are certainly more mismatches suggested by the

literature than WSDL facilitates the detection of. In terms of overlap there are a number of instances

where the minimal style mismatches concur with those from the literature, for example both lists

contain references to mismatching/partially matching message exchange patterns. Table 5.1 on

page 68 shows that there are 6 mismatches from the literature that the minimal style already

63

ID Name Associated rule

Mismatches affecting interoperability
min1 Message exchange patterns should match r19
min2 Message exchange patterns may partially match r20
min3 Connected ports have a common transport and encoding protocol pair r16
min4 Message directionality should match r17,r18

Mismatches between elements and the style
min5 Ports must be well defined r1 – r7
min6 Components must have the correct port types r8 – r14
min7 System may only contain web service compliant elements r21, r22
min8 Connectors have exactly two roles, point-to-point r15

Table 4.2: Mismatches checked by the minimal architectural style, Chapter 3

ID Name

lit1 Non-point-to-point connector exists in the system.
lit2 Concurrent calls to a blocking non-queuing port
lit3 Non web service compliant component in the system
lit4 Non web service compliant connector in the system
lit5 Mismatching message exchange patterns
lit6 Mismatching conversational assumptions
lit7 Incorrect binding time of a service provider
lit8 No component has an active thread of control
lit9 Concurrent threads attempted in a single threaded component
lit10 Differing data continuity assumptions
lit11 Mismatching data types in a message
lit12 Mismatch of data semantics
lit13 Mismatch of data structure or syntax
lit14 Mismatching assumption about statefulness
lit15 Mismatching assumption about privacy of state
lit16 Differing failure modes assumed and exhibited by interacting components
lit17 Differing distribution assumptions
lit18 Differing assumptions about who may create or destroy a connector
lit19 Provision of an undescribed service port
lit20 Concurrent threads in a non-reentrant method
lit21 Partial characteristic mismatch between two or more components

Table 4.3: Mismatches determined during the literature review in Chapter 4

64

considers, this means that 15 of them are not detectable using the minimal style, and therefore

WSDL, alone.

The literature does not only suggest a greater number of mismatches than the minimal style

considers, but it also covers a wider scope. The minimal style only considers syntactic issues

that are included in WSDL, such as the messages exchanged, the data types they contain and

the transport/encoding protocol. The mismatches from the literature include similar concepts but

also consider characteristics that go beyond a single pair of connected ports, such as the longer term

conversations the components might expect, the semantics of the data a component exchanges and

failure modes a component may exhibit to name but a few.

At this point it is interesting to reconsider whether the mismatches listed in both tables relate

to web services or to SOA or to both. Certainly the mismatches presented in the minimal style are

applicable in the web service domain, but do they also apply to SOA? The considered answer at

this point is yes, the mismatches are applicable to both web services and to SOA in general. The

caveat here is that while the mismatches do apply to both domains, the same does not apply to the

rules used to detect those mismatches. A prime example of this is the mismatch min 3 - Connected

ports have a common transport and encoding protocol pair. For two ports to communicate they

must have compatible protocols, this is true for both web services and SOA, so the mismatch itself

stands in both cases. The significant difference is that while web services are constrained to use

HTTP and SOAP, the more general SOA paradigm does not prescribe any such constraint. For

this reason the rules in the minimal style used to confirm that each port uses HTTP and SOAP

of various version would not be suitable for SOA. A similar situation is found if we consider the

message exchange protocol mismatch, this essentially stipulates that connected ports must agree on

the number, direction and (syntactic) contents of the messages they exchange. This is surely as true

for SOA in general as it is for web services, but again the difference would appear the rules used

to check the correctness of the port descriptions with web services having to comply with the eight

message exchange patterns defined for WSDL 2.0 while SOA is not constrained in this way.

If a similar view is taken of the additional mismatches suggested by the literature in this chapter

then arguments analogous to those above can be found for all but a few of the mismatches. There

are three specific mismatches that either do not apply or would require alteration to apply to SOA.

The first of these is lit 1 - Non-point-to-point connector exists in the system. While web services

are constrained to use point-to-point communications, the author is not aware of there being such

a constraint on SOA in general and so this mismatch only applies to web services. The other

two mismatches that do not apply, lit 3 and lit 4 both refer to the architectural elements in the

system being either correct web service components or connectors, in this case they would need to

be reworded to relate to SOA instead and the relevant changes made in the type checking rules.

Moving forward, the mismatches identified in this chapter can now be used as part of the spec-

65

ification for the design of an enhanced web service architectural style, which is the subject of the

next chapter.

66

Chapter 5

Enhanced Web Service
Architectural Style

Chapter 4 showed that there were more architectural mismatches described in the literature than

were described and caught by the minimal architectural style presented in Chapter 3. This confirms

a need to build an enhanced version of the architectural style to account for them.

This chapter presents the derivation of the enhanced style. It begins by compiling the complete

set of mismatches found, bringing together mismatches from the minimal style and those found in

the previous chapter. This results in a list of some 27 mismatches.

The remainder of the chapter is dedicated to description of the derivation of the properties, rules

and element types proposed to allow detection of the mismatches. It starts with those mismatches

detectable simply by considering any pair of connected ports and then moves on to discuss those

that can only be discovered by considering the emergent behaviour of the system as whole. Several

of the mismatches tackled by this style were also considered by the minimal style, but while a few

of the data structures and analysis rules remain from that earlier work, others have been completely

reworked to improve both the data structures themselves and also the focus of the results returned.

These changes were made possible by making extensive use of the external analysis features that were

made available with ACME Studio 3. Apart from revamping some parts inherited from the minimal

style, the external analysis allows for much more powerful analysis techniques to be employed in

the style than would be possible under the limitations of the Armani predicate language included in

ACME Studio. The most notable example is the generation of CSP models of the system, these are

passed to an external model checking tool, FDR, before the results are used to capture emergent

mismatches that would not be detectable statically.

67

5.1 Requirements for the Style

Chapter 4 revealed that there were many more mismatches indicated by the literature than were

actually detectable using WSDL. The requirements for the enhanced architectural style will be

derived by combining the lists in both Tables 4.2 & 4.3 to form the combined set that will be

considered, these are shown in Table 5.1. These mismatches are grouped into three sections based

upon their type and the system scope that needs to be considered to determine their existence or

not. First are listed the mismatches that can be found simply by comparing any pair of attached

ports, these are given IDs matching the form cp<x>. The second set are those mismatches that

are found by viewing the system as a whole and in this case performing some model generation

and checking. These have IDs of the type cc<x>. Finally there are the type checking mismatches

that confirm the system is well defined and uses the correct types, these are labelled ct<x>. Each

mismatch is listed with its ID, a descriptive name and the sources from which it is derived.

5.2 Defining the Enhanced Style

The description of this style takes place in four parts. The first section, port to port scope, focusses

on those combined mismatches, cp1–cp13, that may be found by comparing any pair of attached

ports. This section starts by describing one of the biggest changes between this style and the previous

incarnation, the way in which the message exchange patterns are represented. This is followed by a

description of the properties and rules associated with detection of this set of mismatches.

The next section, component to environment scope, considers the combined mismatches, cc1–cc6,

the ones that can only be found by considering the system as a whole. The premise of the model and

the CSP assertions used to detect the commission and omission failures that form the basis of the

analysis are described. This is followed by adding in the complications related to allowing multiple

conversational threads, multiple connections to a single port and approach to modelling a system

containing unknown portions.

The final two parts define the architectural element types included in the style and the rules

asserting which of these types may be instantiated.

5.2.1 Port to Port Scope

5.2.1.1 Message Exchange Pattern Description

We can see that a great many of the mismatches listed in Table 5.1 relate to or are affected by the

message passing behaviour of the components in the system in terms of the order, quantity and data

included in the messages. For example cc1 - Concurrent calls to a non-queueing and non-reentrant

port relates to the number of messages sent to an individual port, while cp7 - Mismatching data

68

ID description sources

Port to port scope
cp1 Mismatching message exchange patterns lit5 & min1 & min4
cp2 Partially matching message exchange patterns lit5 & lit21 & min2 &

min4
cp3 Incorrect binding time of a service provider lit7
cp4 Differing data continuity assumptions lit10
cp5 Mismatching data types in a message lit11
cp6 Mismatching data structure/syntax lit13
cp7 Mismatching data semantics in a message lit12
cp8 Mismatching state maintenance assumptions lit14
cp9 Mismatching state scope assumptions lit15
cp10 Mismatching failure mode assumptions lit16
cp11 Mismatching connector creation/destruction assumptions lit18
cp12 Connection to a non public web service port lit19 & min5
cp13 Connected ports must share transport and encoding protocols min3

Component to environment scope
cc1 Concurrent calls to a no queuing and non-reentrant port lit2
cc2 Mismatching conversations lit6
cc3 Partially matching conversations lit6 & lit21
cc4 No component has an active thread of control lit8
cc5 Concurrent threads in a single thread only component lit9
cc6 Concurrent threads in a non-reentrant port lit20
cc7 Mismatching process distribution assumpations lit17

Type checking
ct1 Non web service compliant connector lit4 & min7
ct2 Non web service compliant component lit2 & min7
ct3 Ports must be well defined min5
ct4 Components must have correct port types min6
ct5 Components must be well defined ct31

ct6 Connectors must be well defined ct3 & min8 & lit1
ct7 Roles must be well defined ct3
1 ct3 existed for ports but no similar conditions existed for the components, connectors or roles, so these were

added.

Table 5.1: The combined set of mismatches that will be considered in the design of the enhanced
style.

69

semantics in a message requires knowledge of the data meaning and types included. The approaches

taken to representing the properties upon which these mismatches are founded and the rules that

will detect them are presented in the following order:

Evie
G

amble17
.9

.2
00

9 Mismatches between connected ports, in terms of the message exchange patterns, data seman-

tics and syntax;

Evie
G

amble17
.9

.2
00

9 Mismatches between components in the system in terms of the quantity and order of port

invocations; and

Evie
G

amble17
.9

.2
00

9 Mismatches of properties that are affected by the conversations, such as multi-threading.

The mismatches labelled cp1, cp2, cp5, cp6 and cp7 1 all focus on the messages exchanged

between two connected ports and the semantics and syntax of the data included in those messages.

To detect such mismatches we require the following information:

Evie
G

amble17
.9

.2
00

9 A representation of the patterns of messages passed between two interating ports;

Evie
G

amble17
.9

.2
00

9 The semantics of the data in the messages;

Evie
G

amble17
.9

.2
00

9 The types of the data included in those messages.

Only one of these aspects was included in the minimal architectural style presented in Chapter

3, specifically the message exchange pattern. While this did facilitate the detection of mismatching

message exchanges, the data structures used necessitated repetition of data and were quite verbose

in nature. Another weakness of the structure in the context of this enhanced style is that it did not

lend itself to representing the longer term conversations between components that are required. The

decision was taken to change the data representing the messages and message exchange patterns

completely. Previously the messages and message patterns both existed in the same data structure

but now these have been separated out into distinct properties.

The message exchange patterns are now expressed using the formal process algebra CSP2 and

each port in the style holds a CSP description of its message passing behaviour, represented as a

single string data item as shown in line 7 of Figure 5.1.

It would be entirley possible to represent many of the properties covered in the architectural

models using a single CSP model, in fact it is exactly this single CSP model that the external

analysis generated, based upon the simpler properties defined in the style. This would, however,

require the creator of the model to be familiar enough with the formalism to construct such a model

and the assertion statements that inform if the model meets its specification. It is a goal to allow

1cp1 : Mismatching message exchange patterns, cp2 : Partially matching message exchange patterns, cp5 : Mis-
matching data types in a message, cp6 : Mismatching data structure/syntax, cp7 : Mismatching data semantics in a
message.

2An introduction to all the CSP used in this work can be found in Appendix H

70

1 Property Type TCSP = string;
2 Property Type TSafeBoolean = Enum {Yes ,No};
3

4 Port Type PortTWSCommon = {
5 ...
6 Property SendsFirstMessage : TSafeBoolean;
7 Property MessagePattern : TCSP;
8 ...
9 rule SendsFirstMessagePopulated = invariant SendsFirstMessage == Yes OR SendsFirstMessage == No;

10 rule MessagePatternPopulated = invariant MessagePattern != "";
11 }

Figure 5.1: The property type and properties to hold the CSP representing the message exchange
pattern of a port and also the boolean indicating if that port sends the first message or not.

mismatches to be detected while reducing the work required from the architect as far as possible.

It is also a goal that the style could be used by a practitioner architect who may not be versed in

formalisms such as, in this case, CSP. To have confidence in the results of analysing a formal model,

we must first have confidence in the “correctness” of the model itslef. As already stated, this work

does not assume that the user has any specialist knowledge of CSP, so to support this the work

includes a set of templates that represent the message exchange patterns available to web services.

As an illustration, the WSDL 2.0 out-in/in-out message exchange pattern is presented below.

The templates have two purposes :

1. be a verified representation of the message passing behaviour of a specific message exchange

pattern, thereby increasing confidence in the models produced; and

2. allow for easy linking to represent subsequent behaviour of the component.

To address the first point requires a specification of the message exchange patterns and these

can be found in the W3C WSDL descriptions [W3C06c, W3C06f]. In the case of the out-in message

exchange pattern text description is as follows :

1. A message:

Evie
G

amble17
.9

.2
00

9 indicated by an Interface Message Reference component whose message label is

“Out”and direction is “out”

Evie
G

amble17
.9

.2
00

9 sent to some node N

2. A message:

Evie
G

amble17
.9

.2
00

9 indicated by an Interface Message Reference component whose message label is

“In” and direction is “in”

Evie
G

amble17
.9

.2
00

9 sent from node N

...
...

Any message after the first in the pattern MAY be replaced with a fault message, which

MUST have identical direction.

71

For completeness, the matching in-out pattern is described thus:

1. A message:

Evie
G

amble17
.9

.2
00

9 indicated by an Interface Message Reference component whose message label is

“In” and direction is “in”

Evie
G

amble17
.9

.2
00

9 received from some node N

2. A message:

Evie
G

amble17
.9

.2
00

9 indicated by a Interface Message Reference component whose message label is

“Out” and direction is “out”

Evie
G

amble17
.9

.2
00

9 sent to node N

...
...

Any message after the first in the pattern MAY be replaced with a fault message, which

MUST have identical direction.

Chapter 3 presented a graphical interpretation of this and the other patterns starting on page

38 but this is repeated in the diagram in Figure 5.2 for convenience. This pattern has esentially two

routes through it, the message is received and a response returned or the message is received and a

fault message returned. This can be represented in CSP using the following trivial description:

Figure 5.2: WSDL 1.1 Solicit response/Request response and WSDL 2.0 Out-in/In-out message
exchange pattern

αTRIV SPEC SOLI = {Request ,Response,Fault}

TRIV SPEC SOLI =̂ Request → (Response → Stop

2 Fault → Stop)

This specification, which cannot be proven as it is based upon a natural language description,

is arguably a correct representation of the pattern in terms of the messages that may be passed.

However it does not represent the direction of those messages, which is important for the analysis

described later in this chapter. The message names are expanded to be composed of a send part

72

and a get part to map properly to the events experienced by each port, so the “request” message is

replaced by a “sendReq” and a “getReq” message. This yields the following specification:

αSPEC SOLI = {sendReq , getReq , sendRes, getRes, sendFault , getFault}

SPEC SOLI =̂ sendReq → getReq → (sendRes → getRes → Stop

2 sendFault → getFault → Stop)

The specification describes the messages that would be sent and consumed during a single, correct

interaction between a pair of out-in/in-out ports. From this is is possible to construct the templates

for the ports and also a connector process that, when combined, exhibit this exact behaviour. At

this point the templates all assume a single interaction and terminate in a Stop.

The out-in template is as follows:

αSOLI = {sendReq , getRes, getFault}

SOLI =̂ sendReq → SOLI P1

SOLI P1 =̂ SOLI P2 2 SOLI P3

SOLI P2 =̂ getRes → SOLI OK

SOLI P3 =̂ getFault → SOLI FAULT

SOLI OK =̂ Stop

SOLI FAULT =̂ Stop

The in-out template is as follows:

αREQR = {getReq , sendRes, sendFault}

REQR =̂ getReq → REQR P1

REQR P1 =̂ REQR P2 2 REQR P3

REQR P2 =̂ sendRes → REQR OK

REQR P3 =̂ sendFault → REQR FAULT

REQR OK =̂ Stop

REQR FAULT =̂ Stop

The templates require a connector process to provide a mapping between the sent message and

the recieved message, it also defines the order in which events take place and in effect enforces a

send-receive message semantics.

73

CONN SOLI =̂ sendReq → getReq → CONN SOLI

2 sendRes → getRes → CONN SOLI

2 sendFault → getFault → CONN SOLI

Finally then a system comprising of an out-in port, an in-out port and the connector can be

constructed. This composed system is shown to exhibit identical behaviour to the specification by

asserting that it refines the specification according to the traces model and also that the specification

refines the composed system according to the traces model.

PORTS SOLI =̂ SOLI ||| REQR

COMPOSED SOLI =̂ PORTS SOLI |[αSOLI , αREQR]|CONN SOLI

COMPOSED SOLI vMUTSPEC SOLI

SPEC SOLI vMUTCOMPOSED SOLI

After having the message names altered to match those exchanged by the port (discussed later),

the message pattern is held in the MessagePattern property.

The complete set of message exchange pattern templates and their derivations can be found in

Appendix I.

The nature of CSP means that the templates themselves do not explicitly state whether a port

expects to send the first message in an exchange or whether it receives it. This problem also existed

with the data structure used in the minimal architectural style, so the SendsFirstMessage boolean

property is retained which is used to orient the message directions in the pattern, line 6 of Figure

5.1.

Finally with respect to defining the message exchange behaviour of the ports, the style needs to

check that both the properties described above have been populated with data.

The inclusion of CSP in the style makes use of ACME’s interchange language abilities. Unfortu-

nately this does not include any support for the parsing of any parts of the description represented

in languages other than ACME. It was considered that writing a CSP syntax checker was outside

the scope of the contribution of this work. The result is that the TCSP data type is a pseudonym for

a string data type and the style checks that the CSP descriptions do not contain the empty string,

line 10 of Figure 5.1.

The SendsFirstMessage property makes use of the TSafeBoolean data type defined in the style

that is simply an enumeration of the values Yes and No. The problem with the native ACME boolean

type is that it adopts the value true if the property value is not explicitly defined. This makes it

impossible to write a rule to confirm that the value of a property has been explicitly defined as the

predicate

74

property == true or property == false

will always return true, even if property has not been assigned a value. However if the same

predicate is applied to a property declared as a TSafeBoolean as follows

propertySafe == Yes or propertySafe == No

then the predicate will return true if and only if propertySafe has been assigned the value true,

otherwise the rule will show an error resulting from the inability to evaluate the expression. The

corresponding rule checking the status of the SendsFirstMessage property can be found on line 9

of Figure 5.1. This structure can be found by checking the populated states of all TSafeBoolean

properties in this style.

5.2.1.2 Message Contents

There are only four pairs of message exchange patterns defined for web services, so if just the

messagePattern and sendsFirstMessage parameters were used to determine if there was a mis-

match then there would be a one in eight chance that any two randomly selected ports would match

in terms of the number and direction of messages exchanged. Intuitively this is not the case, as the

content of the messages also needs to be compatible for the message exchange to be successful. This

was acknolwedged in the minimal style where the data included in a message was represented by

a syntax token. This token was a string that held a textual description of the message contents.

Messages were said to be a match if their syntax tokens were exactly equal. While this scheme

allowed for messages to be matched it has two main weaknesses:

Evie
G

amble17
.9

.2
00

9 it requires there to be a one-to-one mapping between a message and its description; and

Evie
G

amble17
.9

.2
00

9 it hides the message structure from ACME, greatly reducing its ability to type check and parse

it.

A further weakness arose from the description of the direction of each message. A direction token

was assigned to each message in each port, “inbound” or “outbound”. Due to the simple means

applied to determine if the descriptions match, the direction tokens in both ports were required to

match also. This meant that the direction tokens in the port that received the first message were

always reversed and were therefore considered to be counter intuitive.

Given that mismatches cp5, cp6 and cp73 require analysis based upon the semantics and syntactic

representation of the data included in the messages passed, a new structure was required to describe

them. The goals of the newer structure were both to make the data semantics and representation

explicit and available to the analysis functions, and also to to reduce the repetition that was inherent

in the earlier structure. The resulting structure, Figure 5.3, is essentially broken down into two parts.

3cp5 : Mismatching data types in a message, cp6 : Mismatching data structure/syntax, cp7 : Mismatching data
semantics in a message.

75

1 external analysis EAMessagePatternAndMessageListConcur(thisPort : Element)
2 : boolean = uk.ac.ncl.cjg.ws_enhanced.MessagePatternAndMessageListConcur;
3 external analysis EACentralDataStoreCorrect(thisComponent : Element)
4 : boolean = uk.ac.ncl.cjg.ws_enhanced.CentralDataStoreCorrect;
5 Property Type TStateScopeExpected = Enum {Private ,Shared ,NoPreference };
6 Property Type TStateScopeExhibited = Enum {Private ,Shared };
7 Property Type TCentralDataRecord = Record [DatumID : string;
8 DatumSemantics : TDataSemantics;
9 DatumScopeExhibited : TStateScopeExhibited;];

10 Property Type TDataSemantics = string;
11 Property Type TDataRep = Enum {SOAP_Int ,SOAP_String ,SOAP_Float , SOAP_Bool ,
12 SOAP_Date , SOAP_Time , SOAP_DateTime };
13 Property Type TMessage = Record [MessageId : string;
14 MessageData : Set {TMessageDatum };];
15 Property Type TMessages = set {TMessage };
16 Property Type TMessageDatum = Record [DatumId : string;
17 DatumRep : TDataRep;
18 DatumStateScopeExpected : TStateScopeExpected;];
19 Component Type CompTWSCommon = {
20 ...
21 Property CentralDataRecords : Set {TCentralDataRecord };
22 ...
23 rule MsgDatumDescribed = invariant EACentralDataStoreCorrect(self);
24 }
25 Port Type PortTWSCommon = {
26 ...
27 Property Messages : TMessages;
28 ...
29 rule MsgNamesConsistent
30 = invariant EAMessagePatternAndMessageListConcur(self);
31 }

Figure 5.3: The properties and types used to represent the messages shared by a component in terms
of the data included, their syntax and semantics. Also the definition of the external analysis rules
used to check the consistency of the data described in the ports and the component.

The first exists as a property of each port called Messages, this stores a description of each message

sent or expected to be received by that port. The messages are linked to the messages in the port’s

MessagePattern property by the MessageId.

Each message is represented by the type TMessage that contains the MessageId and a set of

TMessageDatum. Each element in this set represents a single piece of data included in that message,

including a DatumId to identify that piece of data, a DatumRep describing the syntactic form the data

will take and the DatumStateScopeExpected, this last item will be described later in this chapter4.

The second part of the new structure is a property of the component itself named

CentralDataRecords. This holds a set of TCentralDataRecord, a data type containing a DatumId,

the DatumSemantics and the DatumScopeExhibited, again more on this last item later. The moti-

vation behind separating out the semantics of a datum from the message description was to allow a

single point of declaration for each datum that may then be referenced in many messages if required

via the datum ID. A potential bonus of this structure is that it allows the architect to hint at the

passage of data items between component ports by using the same ID, though this feature is not

utilised in this work.

4The type used by DatumRep, TDataRep, contains six of the SOAP data types only for brevity, there are in fact
many more types than this described by the W3C as can be found at http://www.w3.org/2001/12/soap-encoding

http://www.w3.org/2001/12/soap-encoding

76

There are two checks for consistency associated with this structure. The first, evaluated by the

rule MsgNamesConsistent, focusses on each port declared and confirms that the set of messages

named in the MessagePattern matches those included in the Messages property of that port. It

returns true if and only if the sets are identical.

77

Rule MsgNamesConsistent (∀m : messageID · ∃M : messageID

· inMessages(m)

∧ inMessagePattern(M)

∧ namesMatch(m,M))

∧

(∀M : messageID · ∃m : messageID

· inMessages(m)

∧ inMessagePattern(M)

∧ namesMatch(m,M))

This analysis makes use of the external analysis feature of Acme Studio as there is no functionality

included to allow the extraction of the message names from the CSP message pattern description,

which is represented by a single string5.

The second consistency check is performed between the data declared in the Messages set of

each port and the CentralDataRecords. Here the rule is passed if for every datum declared in each

message of every port, there is an entry in the central data records with the same datum ID. This

ensures that all data included in the messages can have their semantics examined.

Rule MsgDatumDescribed ∀m : messageID · ∀ d : datumID · ∃D : datumID

· inMessages(m)

∧ datumIncludedInMessage(d ,m)

∧ inCentralData(D)

Again, there is no facility to perform such a check within the Armani predicate language so the

rule MsgDatumDescribed is evaluated using a plugin developed for the style.

The properties, types and rules described above can be found in the ACME form in Figure 5.3.

With the data structure determined it is now possible to check for mismatches relating to the

syntax and semantics of data passed between ports and thus discharge the requirements posed by

mismatches cp5, cp6 and cp76. A key decision at this point was what strategy to adopt with respect

to matching the data included in the sent message with that in the received message. The three

options were, by datum name, by message syntax or by declared semantics. The name is initially

attractive but there is as yet no general standard for the naming of the parameters shared. This

means it is possible for two components to use different names for the same data item an example

of this can be found in the car park scenario used to assess this work in Chapter 6.

The second option was to consider the syntax of the exchanged messages in terms of the order in

which data and their types are declared in the service description. This was rejected for two reasons.

5 The construction of this external analysis, and all others included in this work, can be found in Appendix F. The
interested reader is directed there to find the complete Java source code.

6cp5 : Mismatching data types in a message, cp6 : Mismatching data structure/syntax, cp7 : Mismatching data
semantics in a message.

78

Firstly SOAP is based upon XML and data included in it are enclosed in XML tags containing the

datum name, so data could be extracted from a message by name, meaning that order is not critical.

Secondly we consider data representation to be of secondary importance compared to data semantics.

For example, if two services agree they they are exchanging a length in metres and one uses a string

type “one” and the other uses a float type “1.0” then these services may have their messages mediated

and the data representation converted. However if one service is sending a length while the other is

expecting a mass, then it does not matter if the data types are matching and the data exchanged

are simply not correct.

The chosen approach is to match the datum in the exchanged messages based upon their seman-

tics.

Cp77 talks about “mismatching data semantics” as a single problem, however three different

cases are identified within this category. Two cases cover scenarios where a sent message is missing

one or more items of required data, these are termed “under data”. The two cases differ based upon

whether there is the possibility that data could be made available or not. The third case is where

the sent message contains one or more items of data that are not required by the recipient, this is

termed “over data”. The rules to determine the existence of all three cases are now presented below.

The first rule checks if there is data expected by the recieving port that is not sent by the sender,

but where that data may be available as it, or something with the same semantics, is declared in

the central data store. It should only return false if there is data missing and that data may be

available, otherwise it should return true.

Rule UnderData1 ¬(Rs − Ss 6= φ ∧ (Rs − Ss) ∩ Sc 6= φ)

where Rs = set semantics expected by the receiving port

Ss = set semantics actually received

Sc = set of semantics that could be sent to the receiver

The second rule checks if there is data expected by the receiving port that is both not sent in the

message and not defined in the sender’s central data store. In this case the sender simply does not

have the required data and cannot therefore send it. This rule should return false if these conditions

are met and true otherwise.

Rule UnderData2 ¬(Rs − Ss 6= φ ∧ (Rs − Ss)− Sc 6= φ)

The third rule looks at the opposite type of mismatch, where data is sent that is not expected by

the recipient. This can be determined simply by finding the remainder after subtracting the received

message semantics from the sent message semantics. If the remainder is the empty set then there

is no extra data so the rule should return true, if the remainder is a non empty set then the rule

should return false to indicate a mismatch.
7cp7 : Mismatching data semantics in a message.

79

Rule OverData ¬(Ss − Rs 6= φ)

The final rule relating to the semantics and syntax of the messages exchanged concerns the data

types used to represent each data item in the message. Its purpose is to confirm that where sent

and received data have matching semantics, they also have matching data types. An outline of the

rule that will check the data type compatibility of the messages would be: for each data item in the

sent message, where that data item has a semantic match in the expeced message, their data types

must also match.

Rule DataTypesMatch ∀ ds : datum ∈ sentMessage · ∀ dr : datum ∈ receivedMessage

·semanticMatch(ds , dr)

⇒ dataTypesMatch(ds , dr)

It should be noted that the above four rules are independant of each other and are not mutually

exclusive so all combinations of their evaluation to true or false are possible for each message in an

interaction. For this reason the rules were separated in the style both in terms of the mismatch

they target but also which message in the interaction they examine. For example, there is a rule

checking for an over data mismatch in the first message that may be passed between the ports and

also other rules checking for the same mismatch in the second, third and fourth messages 8. The

ACME instantiation of these rules can be found in Figure 5.4.

5.2.1.3 Message Mapping

Performing the above analysis requires the descriptions of a pair of messages, one sent by one port

and the other received by the other port, such that their properties may be extracted. The mapping

between messages sent and messages received is defined by which message exchange pattern each

port employs. Table 5.2 contains the data required to map the messages in both ports onto each

other. The relations are given in terms of the line number in the CSP template on which the message

name will be found and also the direction that message travels, a right arrow indicating ‘from the

port that sent the first message’, a left arrow indicating ‘to the port that sent the first message in

the exchange’. Only a quarter of the pairings are perfect matches, in all other cases there are one

or more messages that are not expected or are not sent, these are indicated by a ‘-1’ on either side

of the pairing. In these situations all rules relating to syntax and semantics simply report a ‘rule

passed’ status in ACME Studio as:

Evie
G

amble17
.9

.2
00

9 There is only one message so there is nothing to compare; and

8The reference here is to the number of messages that are declared for a connected pair of ports not the order
in which they may be exchanged. For example, there are four messages defined for an out-optional-in/in-optional-
out port pair, message, response to message, fault triggered by message and fault triggered by response. This is one
interpretation of the W3C specification which could also be taken to imply an infinite trace of fault messages triggering
fault messages. Interpretations of all the patterns are formally described in Appendix I.

80

1 external analysis EAMessageDataTypesMatch(firstPort : Element , secondPort : Element , messageNo : int)
2 : boolean = uk.ac.ncl.cjg.ws_enhanced.MessageDataTypesMatch;
3 external analysis EAMessageOverData(firstPort : Element , secondPort : Element ,messageNo : int)
4 : boolean = uk.ac.ncl.cjg.ws_enhanced.MessageOverData;
5 external analysis EAMessageUnderData1(firstPort : Element , secondPort : Element ,messageNo : int)
6 : boolean = uk.ac.ncl.cjg.ws_enhanced.MessageUnderData1;
7 external analysis EAMessageUnderData2(firstPort : Element , secondPort : Element ,messageNo : int)
8 : boolean = uk.ac.ncl.cjg.ws_enhanced.MessageUnderData2;
9

10 Connector Type ConnTWS = {
11 Role role1 = {
12 }
13 Role role2 = {
14 }
15 ...
16 rule CorrectNumberOfRoles = invariant size(self.ROLES) == 2;
17 rule Msg1MessageDataTypesMatch = invariant forall r1 : Role in self.ROLES |
18 forall r2 : Role in self.ROLES |
19 forall p1 : PortTWSCommon in r1.ATTACHEDPORTS |
20 forall p2 : PortTWSCommon in r2.ATTACHEDPORTS |
21 (r1 != r2) AND attached(r1 , p1) AND attached(r2, p2)
22 -> EAMessageDataTypesMatch(p1 , p2, 1);
23 rule Msg1MessageOverData = invariant forall r1 : Role in self.ROLES |
24 forall r2 : Role in self.ROLES |
25 forall p1 : PortTWSCommon in r1.ATTACHEDPORTS |
26 forall p2 : PortTWSCommon in r2.ATTACHEDPORTS |
27 (r1 != r2) AND attached(r1 , p1) AND attached(r2, p2)
28 -> EAMessageOverData(p1, p2 , 1);
29 rule Msg1MessageUnderData1 = invariant forall r1 : Role in self.ROLES |
30 forall r2 : Role in self.ROLES |
31 forall p1 : PortTWSCommon in r1.ATTACHEDPORTS |
32 forall p2 : PortTWSCommon in r2.ATTACHEDPORTS |
33 (r1 != r2) AND attached(r1 , p1) AND attached(r2, p2)
34 -> EAMessageUnderData1(p1, p2, 1);
35 rule Msg1MessageUnderData2 = invariant forall r1 : Role in self.ROLES |
36 forall r2 : Role in self.ROLES |
37 forall p1 : PortTWSCommon in r1.ATTACHEDPORTS |
38 forall p2 : PortTWSCommon in r2.ATTACHEDPORTS |
39 (r1 != r2) AND attached(r1, p1) AND attached(r2, p2)
40 -> EAMessageUnderData2(p1, p2, 1);
41 }

Figure 5.4: The rules contained in the common connector and port types that are used to check
for mismatches in semantics and syntax of the messages shared. For space reasons only the rules
targetting the data in the first message in the message exchange pattern are shown, however there
are identical rules for the other three messages possible in the current web service patterns.

81

Evie
G

amble17
.9

.2
00

9 This problem will be highlighted when the message exchange patterns themselves are com-

pared, so reporting it here would simply distract from the real problem.

5.2.1.4 Message Exchange Patterns

The next rules presented consider the pattern in which the messages are exchanged between ports, as

required to satisfy mismatches cp1 and cp29. Cp1 requires looking for matching messages exchange

patterns while for cp2 it is necessary to check for the relaxed condition of partially matching message

exchange patterns. Definitions of the conditions under which both of these situations exist were

described in Chapter 3 in terms of sets of expected message exchanges. Essentially, patterns were

said to be matching if the quantity, direction and contents of the messages described in a pair of

ports were identical. A partial match was a relaxation of this, defined as being when the message

exchanges expected by one port are a proper subset of another port, where the second port is within

our domain of control. However, in the minimal style the message syntax and exchange pattern

were recorded in the same data structure and so both were considered when assessing if there was

a message exchange match or not.

The data structures have now been separated out allowing the consideration of the number and

direction of messages independently of their contents. So analysis of message content mismatches

can now be ignored and instead the analysis focusses on the quantity and direction of messages

exchanged when considering matching and partially matching message exchanges. This has two

effects:

Evie
G

amble17
.9

.2
00

9 First it gives a slightly different semantics to partially matching patterns compared to the

minimal style. Now they are partially matching if they do not match and one of the ports is

within ‘our’ domain of control; and

Evie
G

amble17
.9

.2
00

9 Secondly it gives a more precise indication of the type of problem compared to the minimal

style as now the rules can only be failed due to the quantity and direction of messages, not

due to the content of the messages.

This leaves the problem of how to assess the quantity and direction of messages each port

expects, two options were available at this point. The initial thought was to model check the

message exchanges based upon the port CSP, creating a process based upon the connected ports

with a connector process that will deadlock whenever a mismatch path is explored. However to

create such a connector requires prior knowledge of the mismatching messages, this would mean

that the effort required to build and check such a model would be wasted.

9cp1 : Mismatching message exchange patterns, cp2 : Partially matching message exchange patterns.

82

R
ec

ie
ve

s
F

ir
st

P
o
rt

s
in

o
ri

o
re

qr
io

o
(1

,r
eq

,→
)

(1
,r

eq
,→

)
(5

,fl
t,
←

)
(1

,r
eq

,→
)

(3
,r

es
,←

)
(1

,r
eq

,→
)

(6
,r

es
,←

)
(4

,fl
t,
←

)
(5

,fl
t,
←

)
(7

,fl
t,
→

)

SendsFirstPorts

n
o
ti

(1
,r

eq
,→

)
(1

,1
,→

)
(1

,1
,→

)
(-

1
,5

,←
)

(1
,1

,→
)

(-
1
,3

,←
)

(1
,1

,→
)

(-
1
,5

,←
)

(-
1
,4

,←
)

(-
1
,6

,←
)

(-
1
,8

,→
)

ro
o

(1
,r

eq
,→

)
(5

,fl
t,
←

)
(1

,1
,→

)
(5

,-
1
,←

)
(1

,1
,→

)
(5

,5
,←

)
(1

,1
,→

)
(5

,4
,←

)
(1

,1
,→

)
(5

,5
,←

)
(-

1
,3

,←
)

(-
1
,6

,←
)

(-
1
,8

,→
)

so
li

(1
,r

eq
,→

)
(3

,r
es

,←
)

(1
,1

,→
)

(4
,-

1
,←

)
(1

,1
,→

)
(4

,5
,←

)
(1

,1
,→

)
(3

,3
,←

)
(1

,1
,→

)
(3

,6
,←

)
(4

,fl
t,
←

)
(3

,-
1
,←

)
(3

,-
1
,←

)
(4

,4
,←

)
(4

,5
,←

)
(-

1
,8

,→
)

oo
i

(1
,r

eq
,→

)
(4

,fl
t,
←

)
(1

,1
,→

)
(5

,-
1
,←

)
(1

,1
,→

)
(4

,5
,←

)
(1

,1
,→

)
(5

,3
,←

)
(1

,1
,→

)
(5

,6
,←

)
(5

,r
es

,←
)

(9
,fl

t,
→

)
(4

,-
1
,←

)
(9

,-
1
,→

)
(5

,-
1
,←

)
(9

,-
1
,→

)
(4

,4
,←

)
(9

,-
1
,→

)
(4

,5
,←

)
(9

,8
,→

)

T
ab

le
5.

2:
T

h
is

ta
b

le
sh

ow
s

th
e

m
ap

p
in

g
of

m
es

sa
g
es

b
et

w
ee

n
d

iff
er

en
t

m
es

sa
g
e

ex
ch

a
n

g
e

p
a
tt

er
n

p
a
ir

in
g
s.

N
ex

t
to

ea
ch

ab
b

ri
ev

ia
te

d
m

es
sa

ge
p

at
te

rn
n

am
e

a
re

o
n

e
to

fo
u

r
m

es
sa

g
e

d
es

cr
ip

ti
o
n

s,
sh

ow
in

g
th

e
li

n
e

in
th

e
C

S
P

te
m

p
la

te
o
n

w
h

ic
h

th
a
t

m
es

sa
g
e

ca
n

b
e

fo
u

n
d

,
th

e
m

ea
n

in
g

of
th

e
m

es
sa

ge
an

d
th

e
d

ir
ec

ti
o
n

it
ta

ke
s.

T
h

e
m

ea
n

in
g
s

a
b

b
re

v
ia

ti
o
n

s
a
re

‘r
eq

’
=

in
it

ia
l

re
q
u

es
t,

‘r
es

’
=

re
sp

o
n

se
m

es
sa

g
e,

‘fl
t’

=
fa

u
lt

m
es

sa
ge

.
A

n
ar

ro
w

p
oi

n
ti

n
g

to
th

e
ri

g
h
t

in
d

ic
a
te

s
th

e
m

es
sa

g
e

w
il

l
b

e
se

n
t

b
y

“
se

n
d

s
fi

rs
t”

p
o
rt

,
a
n

a
rr

ow
p

o
in

ti
n

g
to

th
e

le
ft

in
d

ic
a
te

s
it

w
il

l
b

e
se

n
t

b
y

th
e

“r
ec

ei
ve

s
fi

rs
t”

p
or

t.
T

h
e

b
o
d

y
of

th
e

ta
b

le
sh

ow
s

th
e

co
rr

ec
t

m
ap

p
in

g
s,

b
y

li
n

e
n
u

m
b

er
,

o
f

th
e

m
es

sa
g
es

in
cl

u
d

ed
in

ea
ch

o
f

th
e

C
S

P
te

m
p

la
te

s.
F

o
r

ex
a
m

p
le

,
“
(5

,6
,←

)”
in

d
ic

at
es

th
e

m
es

sa
ge

on
th

e
fi

ft
h

li
n

e
of

th
e

“s
en

d
s

fi
rs

t”
p

o
rt

is
m

a
p

p
ed

to
th

e
si

x
th

m
es

sa
g
e

o
f

th
e

“
re

ce
iv

es
fi

rs
t”

p
o
rt

.
T

h
e

le
ft

a
rr

ow
in

d
ic

a
te

s
th

e
m

es
sa

ge
or

ig
in

at
es

fr
om

th
e

“r
ec

ei
ve

s
fi

rs
t”

p
o
rt

.
A

-1
in

d
ic

a
te

s
th

er
e

is
n

o
m

es
sa

g
e

in
o
n

e
p

a
tt

er
n

a
ss

o
ci

a
te

d
w

it
h

th
e

m
es

sa
g
e

in
th

e
o
th

er
p

at
te

rn
.

T
h

e
m

es
sa

ge
ex

ch
an

ge
p

at
te

rn
n

am
e

ab
b

re
v
ia

ti
o
n

s
a
re

a
s

fo
ll

ow
s,

in
o

:
In

-O
n

ly
;

ri
o

:
R

o
b

u
st

-I
n

-O
n

ly
;

re
qr

:
R

eq
u

es
t-

R
es

p
o
n

se
;

io
o

:
In

-O
p

ti
o
n

a
l-

O
u

t;
n

o
ti

:
N

ot
ifi

ca
ti

on
;

ro
o

:
R

ob
u

st
-O

u
t-

O
n

ly
;

so
li

:
S

o
li

ci
t-

R
es

p
o
n

se
;

oo
i:

O
u

t-
O

p
ti

o
n

a
l-

in
.

83

ID Msg. Orig. Msg. Orig. Msg. Org.
T1 req ob
T2 req ob res ib
T3 req ob flt ib
T4 req ob res ib flt2 ob

Table 5.3: A table showing the possible traces between an out-optional-in port and an in-optional-
out port. The ID is simply an identifier, Msg. gives a short version of the message name and Orig.
describes which port sends the message. “ob” = outbound, i.e. the port that sends the first message,
“ib” = inbound, i.e the port that receives the first message.

ID Msg. Orig. Msg. Orig.
T1 req ob
D1 req ob flt ibd

Table 5.4: A table showing the one matching trace and the one divergent trace when a notification
port is paired with a robust-in-only port. Note here the direction of the last message of the divergent
trace D1, the label “ibd” tells us that the inbound port desires this message but the outbound port
does not send it.

The approach adopted takes advantage of there being only four types of outbound (sends the

first message) ports and four types of inbound (receives the first message) ports. This gives a total

of 16 sensible combinations of ports, where ‘sensible’ means a pair containing an outbound port and

in inbound one. This small number means that it is possible to predetermine all traces each pair

can witness. Such a trace is presented in Table 5.3 where all traces possible for a matching pair of

ports consisting of an out-optional-in port along with an in-optional-out are shown, demonstrating

that there are four traces this pair of ports would witness. In this case if there were no message

content mismatches, these two port message exchange patterns could be described as matching.

A different situation occurs if two ports are connected that are not a natural pair, for example a

one-way port with a robust-in-only, the traces of which are shown in Table 5.4. Here we find there is

a single trace upon which both ports agree, this is labelled T1, but there is a second divergent trace

labelled D1. A divergent trace allows the representation of behaviour expected by one port that is

not expected by the other, in this case it is the sending of the fault message by the robust-in-only

port which is not expected by the one-way port. It should be noted that while in this instance the

divergent trace was only one event longer than the common trace, all messages are recorded. The

complete set of these tables of traces can be found in Appendix G.

It should be noted that while in this instance the divergent trace followed the correct trace and

added a single event to the end, if there is a sequence of messages occuring after a correct trace

then they will all be recorded. In the parlance of Anderson and Lee [AL81] the first message in the

expected trace of one port that is not in the others is the point at which the fault is activated. For

this reason the traces could stop at the first divergent event but for completeness the entire trace is

included.

84

1 external analysis EAMessageExchangePatternsMatch(thisConnector : Element)
2 : boolean = uk.ac.ncl.cjg.ws_enhanced.MessageExchangePatternsMatch;
3 external analysis EAMessageExchangePatternsPartiallyMatch(thisConnector : Element)
4 : boolean = uk.ac.ncl.cjg.ws_enhanced.MessageExchangePatternsPartiallyMatch;
5

6 Port Type PortTWSCommon = {
7 ...
8 Property InOurControlDomain : TSafeBoolean;
9 ...

10 rule InOurControlDomainPopulated
11 = invariant InOurControlDomain == Yes OR InOurControlDomain == No;
12 }
13 Connector Type ConnTWS = {
14 ...
15 rule CorrectNumberOfRoles = invariant size(self.ROLES) == 2;
16 rule OnePortSendsFirstMessage = invariant exists r : Role in self.ROLES |
17 forall p : PortTWSCommon in r.ATTACHEDPORTS |
18 attached(r, p) -> p.SendsFirstMessage == Yes;
19 rule OnePortReceivesFirstMessage = invariant exists r : Role in self.ROLES |
20 forall p : PortTWSCommon in r.ATTACHEDPORTS |
21 attached(r, p) -> p.SendsFirstMessage == No;
22 rule MessageExchangePatternsMatch
23 = invariant EAMessageExchangePatternsMatch(self);
24 rule MessageExchangePatternsPartiallyMatch
25 = invariant EAMessageExchangePatternsPartiallyMatch(self);
26 }

Figure 5.5: The rules contained in the common connector that are used to check for mismatches in
the message exchange patterns.

Using the complete set of traces it is possible to determine if there are mismatching assumptions

about the quantity and direction of messages exchanged by examining the message exchange pattern

ID that is included as the first line. This, along with the inOurControlDomain safe boolean char-

acteristic that all ports possess, allows us to determine the mismatch status of any two connected

ports according to the following statements:

Rule MEPMatch ¬divergentTracesBetween(port1, port2)

Rule MEPPartialMatch ¬divergentTracesBetween(port1, port2)

∨ (divergentTracesBetween(port1, port2)

∧ (inOurControlDomain(port1)

∨ inOurControlDomain(port2)))

The two rules should be considered in tandem to determine the type of mismatch, if any, that is

discovered. Table 5.5 shows the pass/fail status of each rule and the meaning that should be inferred

in terms of the degree of match. All other conditions are considered to be a mismatch. The ACME

relating these rules can found in Figure 5.5.

5.2.1.5 State Scope

Mismatch cp910 concerns the scope each component associates with each data item, essentially

whether it is private to the thread or session that sends it or is visible to any other threads or

10cp9: Mismatching state scope assumptions.

85

Match Partial Match Mismatch
MEP Match X X X
MEP Partial
Match

X X X

Table 5.5: Here the results returned from the two rules focussed on the message exchange patterns
of each port are related to the degree of match or mismatch that exists between the two ports. A
X indicates the rule returned a true result and a ‘X’ indicates it false result.

sessions in the receiving component. From this, two values are suggested for the characteristic,

Private and Shared.

There is however no clear rule for determining a partial match between such values. For example,

if a piece of data is required to be private to a session, such as a user’s account details, then this

clearly should not be visible to other sessions in that component. At the same time, data that

should be shared, such as the availability of a particular parking space in an on-line parking space

manager, must be visible to interested threads for correct operation. It may be the case though that

a component has no preference about the scope applied to a piece of data it communicates. For

example a public weather service may not have such a preference, it is therefore unrealistic to force

it to align with one statement or the other. Therefore the style allows a third value to be assigned

to data a component communicates and this is NoPreference. This value has the semantics implied

by its name and will match with either a private or shared value.

The rule checking this characteristic for each datum defined in an interface with the central data

store of the connected component is as follows:

Rule StateScopesMatch ∀ de : datum ∈ sentMessage

· ∃ dc : datum ∈ oppositeComponentCentralData

· semanticMatch(ds , dc)

⇒ ds .stateScopeExpected == dc .stateScopeExhibited

∨ ds .stateScopeExpected == NoPreference

The ACME portion of this rule along with the additional data types and properties required to

support it can be found in Figure 5.6.

5.2.1.6 Data Continuity

Mismatch cp411 considers the continuity of data in the system. The literture discusses this character-

istic as describing whether a component will have data available either continuously or sporadically,

thus this was initially contemplated as being a characteristic of the component. This was rejected

however due to the possibility that an architect could describe the entire set of web services an or-

ganisation provides in a single WSDL document and also as a single component in this environment.

11cp4 : Differing data continuity assumptions.

86

1 external analysis EAStateScopesMatch(thisConnector : Element
2 ,firstPort : Element ,secondPort : Element)
3 : boolean = uk.ac.ncl.cjg.ws_enhanced.StateScopesMatch;
4

5 Connector Type ConnTWS = {
6 ...
7 rule StateScopeAssumptionsMatch = invariant forall p1 : PortTWSCommon in role1.ATTACHEDPORTS |
8 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |
9 attached(role1 , p1) AND attached(role2 , p2)

10 -> EAStateScopesMatch(self , p1, p2);
11 ...
12 }
13

14 Property Type TStateScopeEhxibited = Enum {Private ,Shared };
15 Property Type TStateScopeExpected = Enum {Private ,Shared ,NoPreference };

Figure 5.6: The rule in the connector calling the external analysis to test state scope and the
declaration of the property types it uses.

This combined system could provide some services that constantly make fresh data available, such

as a wind speed and direction monitor, while others could be sporadic, such as the total sunlight for

a given date. Thus the property was moved into the port descriptions. This allows the above set of

services to be described.

While a connected pair of ports declaring themselves as Continuous or a pair stating Sporadic

as their property value could be considered to be a match, there appears to be no general rule

to determine where different values do not constitute a potential problem. For example, a client

port declared as sporadic requesting stock information from a service port declared as continuous

should be acceptable, however a sporadic port sending safety related data to a port that expects it

continuously would not appear to be satisfactory. Therefore the rule reviewing the model for this

mismatch can only be passed where the data continuity values of the connected ports are equal, in

all other cases the potential mismatch must be flagged to the user.

Figure 5.7 sets out the two rules required by this mismatch. One rule confirms that the property

is populated in each port while the second confirms that an attached pair of ports exhibit the same

value.

5.2.1.7 Failure Modes

The failure assumptions and behaviour of the components in a system are the focus of mismatch

cp1012. Of the literature drawn upon, only DeLine [DeL99] refers to component failure assump-

tions but does not propose any set of values the characteristic may adopt. There is however

the taxonomic work of Avizienis et al.[ALRL04] from which a set of five failure mode domains

is extracted, {ContentFailures, EarlyTimingFailures, LateTimingFailures, HaltFailures,

ErraticFailures}.

While other mismatches, and their associated analysis, described in this work aim to discover

potential faults such that they may be removed, here it would unrealistic to say that we may discover

12cp10 : Mismatching failure mode assumptions.

87

1

2 Port Type PortTWSCommon = {
3 ...
4 Property DataContinuity : TDataContinuity;
5 ...
6 rule DataContinuityPopulated =
7 invariant DataContinuity == Sporadic
8 OR DataContinuity == Continuous;
9 }

10

11 Connector Type ConnTWS = {
12 ...
13 rule MatchingDataContinuityAssumptions = invariant forall r1 : Role in self.ROLES |
14 forall r2 : Role in self.ROLES |
15 forall p1 : PortTWSCommon in r1.ATTACHEDPORTS |
16 forall p2 : PortTWSCommon in r2.ATTACHEDPORTS |
17 (r1 != r2) AND attached(r1, p1) AND attached(r2, p2)
18 -> p1.DataContinuity == p2.DataContinuity;
19 }
20

21 Property Type TDataContinuity = Enum {Sporadic ,Continuous };

Figure 5.7: The port property and type describing data continuity and the ACME rule testing for
a mismatch.

and remove all failure modes. In this case then the intention is for components to be explicit about

their failure modes and also the assumptions they make about the failure modes of other components

attached to them. A mismatch is then said to occur when a component may exhibit a failure mode

that an attached component does not assume it will. At the same time, it is not considered a

mismatch to assume a component may exhibit a type of failure that, due to internal error handling,

it will not exhibit.

It is acknowledged that a single web service component in this style may, in fact, be composed of

multiple different software components each providing part of its functionality. In respect of this it

is assumed that each sub component could both exhibit different failure behaviour and also assume

different failure modes of the other components in our system. Therefore the style represents failure

behaviour or assumptions not at the component level but rather includes it on a port by port basis.

In the style then a FailureModesExpected and a FailureModesExhibited property is defined

in each port. These properties are both sets that may hold the failure modes listed previously. A

mismatch occurs if the following predicate rule, FailureModeAssumptions, does not evaluate to

true. This rule along with the associated data structures can be found in their ACME form in Figure

5.8.

Rule FailureModeAssumptions P1.FMx ⊆ P2.FMe ∧ P2.FMx ⊆ P1.FMe

where P1 and P2 = connected ports

FMx = set of failure modes exhibited by this port

FMe = set of failure modes assumed by the connected port

This work treats the failure mode names as tokens only, it assumes that the system developers

have a shared understanding of their meaning. It also assumes that the analysis of the components

88

1

2 Port Type PortTWSCommon = {
3 Property FailureModesExpected : TFailureModes;
4 Property FailureModesExhibited : TFailureModes;
5 }
6

7 Connector Type ConnTWS = {
8 rule FailureModeAssumptions = invariant forall r1 : Role in self.ROLES |
9 forall r2 : Role in self.ROLES |

10 forall p1 : PortTWSCommon in r1.ATTACHEDPORTS |
11 forall p2 : PortTWSCommon in r2.ATTACHEDPORTS |
12 (r1 != r2) AND attached(r1, p1) AND attached(r2, p2)
13 -> (isSubset(p1.FailureModesExhibited , p2.FailureModesExpected))
14 AND (isSubset(p2.FailureModesExhibited , p1.FailureModesExpected));
15 }
16

17 Property Type TFailureMode = Enum {ContentFailures , EarlyTimingFailures ,
18 LateTimingFailures , HaltFailures ,
19 ErraticFailures };
20 Property Type TFailureModes = Set {ws_enhanced_01.TFailureMode };

Figure 5.8: The port properties and types describing failure modes and the rule in the connector
testing for a mismatch.

leading to the statements of which failure modes it may exhibit and which it can handle when

exhibited by other components is performed by some means.

5.2.1.8 Connector Binding Time

Mismatches cp3 and cp1113 pertain to the attachment of connectors to ports. Specifically when an

attachment may be made in terms of the software life-cycle but also which of the parties associated

by a connector may have created it or may destroy it.

The former mismatch, as discussed in Chapter 4 concerns the binding time of a service provider.

The style model allows for three types of component, client, intermediary and service. The primary

difference between these types lies in the interfaces their ports belong to. The ports on a client com-

ponent must all be part of the client interface, the ports on a service component must all contribute

to its service interface while an intermediary should have ports representing both interfaces. Thus

the rules relating to this mismatch are located within the port definitions so they target the correct

interfaces.

The purpose of the rule is to check the point in the software lifecycle that the port expects to

bind to another. The model enumerates four points in the cycle as follows:

write-time: when the process is designed and written;

compile-time: when the process is compiled and linked;

instantiation-time: when an instance of the process is constructed; and

run-time: when the instance is running, this may include idle time waiting for communications.

13cp3 : Incorrect binding time of a service provider, cp11 : Mismatching connector creation/destruction assumptions.

89

1 Port Type PortTWSCommon = {
2 Property BindTime : TBindTime;
3 ...
4 }
5

6 Port Type PortTWSClient extends PortTWSCommon with {
7 rule BindingTimePopulated =
8 invariant BindTime == Write
9 OR BindTime == Compile

10 OR BindTime == Instantiation
11 OR BindTime == Run;
12 }
13

14 Port Type PortTWSService extends PortTWSCommon with {
15 rule StatedBindingTime =
16 invariant BindTime == Instantiation
17 OR BindTime == Run;
18 }
19

20 Property Type TBindTime = Enum {Write ,Compile ,Instantiation ,Run};

Figure 5.9: The properties and type describing when a port will bind and the rules checking their
values are suitable for the port type.

The fault to detect is when a service port is pre-bound to a specific set of clients or addresses.

In this case while it may be discovered in a search for services it would not be possible to utilise the

service as it would not allow itself to bind to the new client. It follows then that the port should be

as late-binding as possible, so in this model a service port that reports binding at run-time would

meet this criteria.

Also, if a new instance of a service is created in response to a client request then this would

exhibit the required late binding. To acknowledge this the style also allows services to bind at

instantiation time.

The rule, StatedBindingTime, is located within the style description of the PortTWSService

and can be described using the following predicate. At the same time the ACME fragment showing

the actual rule and associated data structures can be found in Figure 5.9.

Rule StatedBindingTimeMismatch BindTime = Run ∨ BindTime == Instantiation

Mismatch cp1114 forces consideration of which of the ports attached by a connector may either

create or destroy that connector. This is approached in terms of a statement of rights to either create

or destroy the connector rather than commitment to or prohibition to do either at any particular

point in time15.

In the model, four properties are declared in each port that will make explicit these state-

ments of rights, these properties are BindingSelfAdd, BindingSelfRemove, BindingOtherAdd and

BindingOtherRemove. In the naming of these properties, self refers to the port in which the prop-

erty is stated and Other means a port attached to the other end of the connector. At the same

time, Add implies the ability to create the connector (binding) between the two ports while Remove

14cp11 : Mismatching connector creation/destruction assumptions.
15The issue of when connector changes can be made is discussed in Chapter 7 on Future Work.

90

indicates the potential to destroy the connector (unbinding).

Creating a connector means a binding between the ports or a willingness to exchange messages,

this is opposed to the act of sending or receiving messages which may or may not happen as a

consequence of the branches in the conversation tree taken. Destroying a connector, conversely, is

where the ports will no longer expect message traffic to pass between them.

A key point to understanding this property is that while it is stated on a port by port basis,

it is not necessarily the individual ports that create or destroy the willingness to participate in an

exchange of messages. Rather it will be the component itself or possibly another port. However

as a component may embody a number of different functionalities and it is possible that each may

have different binding and unbinding characteristics, it is required that each port state its own

properties. Here the ports effectively say ‘with respect to this port, the component expects to be

able to create/destroy connections’.

For example, a weather application may choose to connect to a free weather service that provides

two ports. Port S handles subscription to/unsubscribing from the service, while port M sends out

the regular weather updates. Here, after exchanging messages with port S the client will be willing

to accept weather updates from port M. Thus in the model the connector between the client and M

would now be created even though no messages have yet passed. Also the client may unsubscribe

from the service at any time, effectively destroying the connector between itself and M as it is

no longer willing to receive messages. In this case both the client ports have the right to create

connections and they also have the right to destroy the connections16. At the same time, we can

also imagine a situation where an application assumes it has the right to create a connector on a

port and will do so in the normal course of events but that it also allows another component to do

so if required. In this case we must allow for the possibility that a component may not actually have

a preference about whether the other component believes it has the right to connect or not as either

are acceptable to it.

To support these options a two value logic is applied for describing a components own rights to

create and destroy a connector, specifically the terms May and MayNot are used. A pseudo three value

logic ***ref here*** is used to describe assumptions about the other components rights, specifically

the values May, MayNot and Either. The predicate rule, ConnectorCreationDestruction, for

detecting a mismatch accounts for both the situation where a component makes a specific assumption

about the other component’s rights and the situation where it does not. In the first case the rule

confirms that the values assumed by each component are equal, while in the second case it allows

a component to apply the Either to the other so long as it applies the value May to itself. This

final assertion ensures that at least one of the components will have the right to create/destroy the

16In this slightly simplified example the service is not allowed to cancel a subscription, though this could also be
captured by giving the service the right to destroy connections.

91

connector.

Rule ConnectorCreationDestruction(
P1.BindingOtherAdd == P2.BindingSelfAdd

∨(P1.BindingOtherAdd == Either ∧ P1.BindingSelfAdd == May)
)

∧
(
P1.BindingOtherRemove == P2.BindingSelfRemove

∨(P1.BindingOtherRemove == Either ∧ P1.BindingSelfRemove == May)
)

∧
(
P2.BindingOtherAdd == P1.BindingSelfAdd

∨(P2.BindingOtherAdd == Either ∧ P2.BindingSelfAdd == May)
)

∧
(
P2.BindingOtherRemove == P1.BindingSelfRemove

∨(P2.BindingOtherRemove == Either ∧ P2.BindingSelfRemove == May)
)

The above rule requires a companion to guard against the entry of nonsensical data such as all

four properties being assigned the value No, the TSafeBoolean equivalent of false. Thus a sanity

check that each port expects that at least one of them can create the connector and at least one

of them can destroy it is added17. The second predicate SaneConnectorCreationDestruction

capturing this sanity check is recounted below. The ACME versions of both these rules, along with

the supporting data structures and rules confirming that properties are populated can be found in

Figure 5.10.

Rule SaneConnectorCreationDestruction (P1.BindingSelfAdd == May

∨P2.BindingSelfAdd == May)

∧(P1.BindingSelfRemove == May

∨P2.BindingSelfRemove == May)

5.2.1.9 End Points

The final analysis performed by comparing pairs of connected ports looks at the mismatches labelled

cp13 and ct318. These relate to mismatching end point protocols and missing service port descrip-

tions respectively. Both of these were included in the minimal architectural style, they are briefly

repeated here as no changes were deemed necessary.

The endpoint protocols are defined by a pair consisting of a network transport protocol and a

message encoding, each pair prescribing the protocols supported by a particular endpoint. As with

the minimal style the rules determine if a pair of connected ports have at least one common endpoint

17The situation where a connector is created and then exists for perpetuity is considered to be highly unlikely and
so is guarded against in the style.

18cp13 : Connected ports must share transport and encoding protocols, ct3 : Ports must be well defined.

92

1 Property Type TConnCreationDestructionAssumption = Enum {May , MayNot , Either };
2

3 Port Type PortTWSCommon = {
4 ...
5 Property BindingSelfAdd : TConnCreationDestructionAssumption;
6 Property BindingSelfRemove : TConnCreationDestructionAssumption;
7 Property BindingOtherAdd : TConnCreationDestructionAssumption;
8 Property BindingOtherRemove : TConnCreationDestructionAssumption;
9 ...

10 rule BindingSelfAddPopulated = invariant
11 BindingSelfAdd == May
12 OR BindingSelfAdd == MayNot;
13 rule BindingSelfRemovePopulated = invariant
14 BindingSelfRemove == May
15 OR BindingSelfRemove == MayNot;
16 rule BindingOtherAddPopulated = invariant
17 BindingOtherAdd == May
18 OR BindingOtherAdd == MayNot
19 OR BindingOtherAdd == Either;
20 rule BindingOtherRemovePopulated = invariant
21 BindingOtherRemove == May
22 OR BindingOtherRemove == MayNot
23 OR BindingOtherRemove == Either;
24 }
25

26 Connector Type ConnTWS = {
27 ...
28

29 rule ConnectorCreationDestruction = invariant
30 forall p1 : PortTWSCommon in role1.ATTACHEDPORTS |
31 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |
32 attached(role1 , p1) AND attached(role2 , p2)
33 -> (p1.BindingOtherAdd == p2.BindingSelfAdd
34 OR(p1.BindingOtherAdd == Either AND p1.BindingSelfAdd == May))
35 AND (p1.BindingOtherRemove == p2.BindingSelfRemove
36 OR(p1.BindingOtherRemove == Either AND p1.BindingSelfRemove == May))
37 AND (p2.BindingOtherAdd == p1.BindingSelfAdd
38 OR(p2.BindingOtherAdd == Either AND p2.BindingSelfAdd == May))
39 AND (p2.BindingOtherRemove == p1.BindingSelfRemove
40 OR(p2.BindingOtherRemove == Either AND p2.BindingSelfRemove == May));
41

42 rule SaneConnectorCreationDestruction = invariant
43 forall p1 : PortTWSCommon in role1.ATTACHEDPORTS |
44 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |
45 attached(role1 , p1) AND attached(role2 , p2)
46 -> (p1.BindingSelfAdd == May OR p2.BindingSelfAdd == May)
47 AND (p1.BindingSelfRemove == May OR p2.BindingSelfRemove == May);
48 }

Figure 5.10: Properties describing if a port assumes it can create or destroy a connector and whether
it assumes the other port can create or destroy the connector.

93

1

2 Port Type PortTWSCommon = {
3 Property EndPointList : TEndPoints;
4 ...
5 rule EndpointListPopulated = invariant size(EndPointList) > 0;
6 ...
7 }
8

9 Connector Type ConnTWS = {
10 rule EndpointProtocols = invariant forall r1 : Role in self.ROLES |
11 forall r2 : Role in self.ROLES |
12 forall p1 : PortTWSCommon in r1.ATTACHEDPORTS |
13 forall p2 : PortTWSCommon in r2.ATTACHEDPORTS |
14 (r1 != r2 AND attached(r1 , p1) AND attached(r2, p2))
15 -> size(intersection(p1.EndPointList , p2.EndPointList)) > 0;
16 }
17

18 Property Type TEndPoint = Record [Transport : TLegalTransportProtocols;
19 Encoding : TLegalSoapVersions;];
20 Property Type TEndPoints = Set {TEndPoint };
21 Property Type TLegalSoapVersions = Enum {SOAP1_1 ,SOAP1_2 };
22 Property Type TLegalTransportProtocols = Enum {HTTP1_0 ,HTTP1_1 };

Figure 5.11: The properties and types describing the protocols supported by a web service endpoint,
also the rule to confirm that a connected pair of ports share a common protocol pair.

protocol, and use that to conclude that there is not a mismatch. There is no built in mechanism to

allow ACME Studio to inform which protocol pair(s) the connected ports have in common, so the

determination of which to employ would be left to the user.

The predicate rule EndpointProtocols capturing this is shown below, with the ACME version

to be found in Figure 5.11.

Rule EndpointProtocols P1.EndPointList ∩ P2.EndPointList 6= φ

The second mismatch brought forward from the minimal style, checking that a service type

port is well defined, requires confirmation that a number of descriptive properties are populated

correctly. The first of these data items is the EndPointAddressList. This is a set holding the

network addresses at which the endpoints of a port may be found. The model requires both that

the list be populated, otherwise the port may not be accessed, and also that there is an address

for each endpoint defined for that port. The predicate rules EndPointAddressPopulated and

EachEndpointProtocolAddressed address these requirements.

Rule EndPointAddressPopulated size(EndPointAddressList) > 0

Rule EachEndpointProtocolAddressed size(EndPointAddressList) = size(EndPointList)

The final data checked is to confirm that the service port is published for discovery, this addresses

mismatch cp1219 by asserting that all service ports must be referenced in at least one WSDL docu-

ment.. To confirm this a check that the port has an entry in the WSDLDocRefs property is performed.

19cp12: Connection to a non public web service port.

94

1 Port Type PortTWSService extends PortTWSCommon with {
2 ...
3 Property WsdlDocRefs : TWsdlDocs;
4 Property EndPointAddressList : TEndPointAddresses;
5 ...
6 rule EndPointAddressPopulated =
7 invariant size(EndPointAddressList) > 0;
8 rule EachEndpointProtocolAddressed =
9 invariant size(EndPointAddressList) == size(EndPointList);

10 rule HasWSDL = invariant size(WsdlDocRefs) > 0;
11 }
12

13 Property Type TWsdlDocs = Set {string };
14 Property Type TEndPointAddresses = Set {string };

Figure 5.12: The properties and types describing how a service port is made discoverable along with
rules to confirm the properties are populated.

This property is a set as the same port may be referenced in multiple descriptions. The predicate

rule HasWSDL is shown below, with the ACME version of this and the previous two rules to be

found in Figure 5.12.

Rule HasWSDL size(WsdlDocRefs) > 0

5.2.2 Component to Environment Scope

The remaining mismatches identified in Chapter 4 can only be detected by considering the system

as sa whole and not by focussing on individual pairs of connected ports. This is because these

mismatches all either affect or are a result of the emergent behaviour of the system in terms of

the messages shared and the logical threads of control they witness. Some of the rules consider

properties of the whole system, such as determining if the system starts live and will do something.

Others take the focus of an individual component interacting with its environment, such as checking

for mismatching conversational expectations.

Mismatches cc2 and cc320, relate to mismatching and partially matching conversations. Conver-

sations in this context refer to all the messages exchanged between two or more components while

conducting their business. This means if we considered a simple service that has only a single port,

then the conversation would be identical to the message exchange pattern of that port. It could also

consist of many more messages if the service requires a client to log in on one port before browsing

a directory on another and making purchases on yet another. In either case a mismatch exists if the

components disagree on either the quantity, direction of content of the messages exchanged during

these conversations. Rules to check for mismatches relating to both the syntax and semantics of the

messages exchanged between two ports have already been described. To avoid a “double jeopardy”

situation these results are ignored when checking the conversations, in effect the following rules

20cc2 : Mismatching conversations, cc3 : Partially matching conversations.

95

Component
messages

Environment
messages

Connector

System

Component Environment

Figure 5.13: For the conversational analysis the rules take the view point of each component in turn
and consider its interactions with its directly connected environment in terms of the messages it
may send and receive. The connector both translates the message names between components and
enforces a send-receive semantics that CSP does provide.

say “if all the messages exchanged were semantically and syntactically correct, then these are the

conversation mismatches that would exist”.

While the conversation(s) that take place are a property of the system as a whole, the rules

presented all take the focus of each component in the system in turn. That is, they consider the

problems that occur at the interface between the “current” component and its environment. Here the

environment consists of only those components that directly exchange messages with the component

in focus. This gives a view of the system as depicted in Figure 5.13, where we have the messages

sent and received by the component and those sent and received by the environment. These two sets

of messages acknowledge that correctly matched components may use different names to represent

the same message, this requirement to translate the message names and the means by which it is

achieved is vital to the analysis as shall be seen later.

The SHARD [Pum99] guidewords commission and omission provide us with the faults we need

to look for relating to message exchanges21. Commission describes an extra or unexpected message,

while omission is the term for a missing message. In terms of the analysis view described above,

commission relates to an extra message sent by either the focussed component or its environment

while omission is a message that either the component or the environment will not receive as it

was never sent. The analysis view allows us to consideronly commission and omission events occur-

ring with respect to the component in focus as the rules are eventually applied to each and every

component in the system and in this way we will also visit each component in the environment as

well.

A key point of this approach is that it explores all branches of the conversation tree a system can

visit and it is done without making any assumption about the internal decision making process of

any component. The term cooperative choice is used to describe this approach which means that if

21SHARD also includes the guidewords early and late but the literature search did not highlight actual timings for
message exchanges as being potential architectural mismatches. This only leaves message sequences to be considered,
in which case a late message could also be described as an omitted message followed by a commission of another
message and, mutatis mutandis, the same is true for an early message.

96

a component has to make a choice about which port it will listen on for the next incoming message

then it will defer that choice until the message arrives. This is done as it allows the analysis to visit

all points in the conversation tree and know that if an expected message does not arrive or if an

unexpected message does then it is due to the underlying choreography in the system and is not

caused by an internal choice or an internal decision such as a time-out.

5.2.2.1 Basic CSP System Model

Before the analysis is described, the basics of the CSP model of the system that it will generate

must be introduced.

The model consists of a number of component processes and the vital connector process. The

components themselves are composed from the CSP descriptions of the ports that were described

earlier in this chapter and also a central CSP description of the component. The central CSP essen-

tially describes how many threads of control exist in a component, which ports on that component

are willing to interact initially and can also be used to support the chaining together of ports to

describe acceptable conversation trees. It starts with a single process that has the same name as the

component and then defines a number of processes representing the number of threads of control it

will contain. This central CSP is described in Appendix I.3 with an illustrative examples given.

Essentially the combination of the central CSP along with the CSP descriptions in each port

describe the basic structure of the conversational trees expected by a component. It is required that

there are no duplicated process or event names in the composed system, so each name is prepended

with the name of the component and port. The components are then composed into an interleaved

process that forms the bulk of the model. Below we see a system composed of three components

called COMP1, COMP2 and COMP3.

SYS =̂ COMP1 ||| COMP2 ||| COMP3

While there are many connectors in the architectural model of the system, there is only a single

connector process in the CSP model. The connector simply consists of a number of simple processes

that have two purposes. Firstly they provide a name translation service to associate the sent message

with the received message, secondly they allow the forcing of a send-receive semantics by separating

the sent message from the received message and giving them an order. This latter property is the

part vital to the analysis as is described shortly.

97

CONN =̂ msg1Send → msg1Receive

2 msg2Send → msg2Receive

2 msg3Send → msg3Receive
...

...
...

2 msgNSend → msgNReceive

The final step is to create parallel processes consisting of the components and the connector,

with the two synchronised on the messages sent and received. This ensures that a component may

not send a message unless the connector is waiting for one to be sent and that the connector cannot

deliver a message unless the target component and port are ready for that to occur.

5.2.2.2 Basic Conversational Analysis: Commission

The basic conversational analysis has two parts to it to capture two issues from the viewpoint of the

component in focus, these are:

Evie
G

amble17
.9

.2
00

9 component sends an unexpected message (commission)

Evie
G

amble17
.9

.2
00

9 component does not receive an expected message (omission)

These two conditions are symmetrical to the environment receiving an unexpected message or

not sending an expected message. So as each component in the system will at some point be the

component in focus and will at some other points form part of the environment interface, the analysis

will cover all commission and omission related issues in this way.

The first part of the analysis targets the commission events. This is conducted by performing a

deadlock analysis on the composed system model. A deadlock occurs when the CSP model reaches

a point where it is unable to perform any further events so the trace of the model cannot proceed.

The style uses the single connector, previously described, to force a deadlock when a message is

sent but the target port is not ready to receive it. This property is guaranteed as once a message

is placed upon the connector the only event the connector can perform is to deliver that message.

The connector is synchronised on all send and receive events with the relevant ports, so if the port

is not ready to receive that specific message then the connector cannot proceed. Then as no further

messages may be placed on the connector the whole system deadlocks.

Detection of a deadlock highlights a problem but it does not immediatly point to the component

in focus as being the sender. To determine this we need to examine each deadlock trace, as there

may be many, returned by the model checker. As no message passing events can occur once the

system is deadlocked we know that the last message in the trace caused the deadlock and so if that

message is one that the component in focus sends then the failure occurs because that component is

98

sending an unexpected message. If the message causing the deadlock was not sent by the component

in focus, then another component is sending the unexpected message and the analysis will report

the mismatch when that component becomes the one in focus.

Once it is determined that this component causes the commission failure the style is then obliged

to ascertain how to report this to the architect. Recall that both mismatching conversations and

partially matching conversations were listed in the mismatch table (Table 5.1, mismatches cc2 &

cc3). This is because the commission occurance could be avoided by either not attempting to send

the message or allowing the target component to receive it. These could be implemented by altering

the conversation of one or both components involved, a task only possible if one or both of the

components has the value true assigned to the ComponentInOurControlDomain property. The style

acknowledges this by including two rules examining for commission events, one detects when a

commision occurs but neither component can be altered, this is reported as a mismatch. The other

detects when a commission occurs and one or both of the components can be altered, this is reported

as a potential partial match22.

As both of these rules are implemented using external analysis it is possible to return extra detail

regarding the traces that lead to the deadlock in the form of a text file. Details of the text file output

and a description of the data included for both this and every other external analysis that makes

use of the feature can be found in Appendix F.

Two rules are included in the style for detecting these commission events. The CommissionMis-

match rule informs the architect if there is a commission event and neither component is desclared

as being in our control domain. CommissionPartial fails if there is a commission failure and either

of the components involved is under our control. The ACME declarations of these rules, external

analysis and associated properties can be found in Figure 5.14.

Rule CommissionMismatch ∃ dt : deadlockTrace

· ¬inOurControlDomain(senderLastMessage(dt))

∧ ¬inOurControlDomain(receiverLastMessage(dt))

Rule CommissionPartial ∃ dt : deadlockTrace

· inOurControlDomain(senderLastMessage(dt))

∨ inOurControlDomain(receiverLastMessage(dt))

5.2.2.3 Basic Conversational Analysis: Omission

Deadlock can only tell us about events that actually occur in a trace, it cannot tell us about events

that do not occur, this means a different method is required to detect the omission events representing

22The rule reports a potential partial match as we cannot determine autonomously from this model if the required
changes can be made when considering the purpose and business rules of each component.

99

1 external analysis EACommissionMismatch(thisComponent : Element)
2 : boolean = uk.ac.ncl.cjg.ws_enhanced.CommissionMismatch;
3 external analysis EACommissionPartialMatch(thisComponent : Element)
4 : boolean = uk.ac.ncl.cjg.ws_enhanced.CommissionPartialMatch;
5 external analysis EAChoiceGroupsHaveChoiceMaker(thisComponent : Element)
6 : boolean = uk.ac.ncl.cjg.ws_enhanced.ChoiceGroupsHaveChoiceMaker;
7

8 Component Type CompTWSCommon = {
9 Property CentralProcessDescription : TCSP;

10 Property ComponentInOurControlDomain : TSafeBoolean;
11

12 ...
13

14 rule CentralProcessDescribed = invariant CentralProcessDescription != "";
15 rule ComponentInOurControlDomainDescribed
16 = invariant ComponentInOurControlDomain == Yes
17 OR ComponentInOurControlDomain == No;
18 rule CommissionMismatch = invariant EACommissionMismatch(self);
19 rule CommissionPartialMatch = invariant EACommissionPartialMatch(self);
20 rule ChoiceGroupsHaveChoiceMakers = invariant EAChoiceGroupsHaveChoiceMaker(self);
21 }

Figure 5.14: The rules implementing the commission analysis required.

unfulfilled expected messages. The traces refinement concept of the CSP formalism is employed for

this purpose. A model A is a traces refinement of model B if all the traces of A are also traces of B23.

Essentially this is used to confirm that a model does nothing that is not allowed by its specification.

The following work is based upon two assertions:

Evie
G

amble17
.9

.2
00

9 the CSP model of a component describes the behaviour that component expects to witness in

terms of messages sent and recieved; and

Evie
G

amble17
.9

.2
00

9 the CSP model generated of the whole system of components and connectors describes all

conversations, in terms of messages that can actually occur in that system.

The analysis is based upon an assertion in the CSP model that the system model, after hiding

all events and messages other than those the component in focus sends and receives is refined by

the CSP model of the component itself.

α =̂ messagesNotInComponentInterface

SYS \ α vMUTCOMPONENT

This assertion can only be true if the component can experience all branches of its expected

conversations, in which case the traces of the system model, hiding all other messages, will be

identical to the traces of the component. If the system does not allow any branch of the conversation

to be explored then the system model will not contain a trace including that branch so the refinement

will fail as the component model will contain that trace.

This analysis cannot be performed in isolation as it may return potentially false negative results

if the system deadlocks and prevents one or more branches of the component’s conversation tree

23A more detailed description of traces refinement and its semantics can be found in Schneider [Sch00].

100

being followed. This is termed a potential false negative as until the deadlock is resolved it is not

possible to tell if the refinement failure is a real problem or not. To differentiate between potential

omission failure and real ones the deadlock trace results found previously are utilised. A refinement

failure is deemed to be a potential false negative if the trace leading to the omitted message can

be found in its entirity, in order, with no other messages from that component’s interface, in one

or more of the deadlock traces. This means that the component is able to follow a conversational

branch up to the point where is is ready to receive that message, but there is some fault in the

system that is preventing it from happening. The argument here is that if the deadlock did not

occur then the system may proceed to a point where the omitted message is sent and that particular

refinement failure no longer exists.

Once the deadlock is removed, one of three situations may occur:

Evie
G

amble17
.9

.2
00

9 A later and preivously unreached deadlock may appear and the potential false negative will

still exist;

Evie
G

amble17
.9

.2
00

9 the refinement failure will still occur and with no relevant deadlocks it will then be counted as

a genuine omission failure and will be flagged to the architect for rectification;or

Evie
G

amble17
.9

.2
00

9 the refinement failure will not occur, indicating the message would be sent and received and

that it was originally a false negative.

Again, the style allows for the possibility that the component expecting the message may be

declared to be in our control domain as described earlier. If it is, then the omission event is reported

as a potential partial match, if not then it is reported as a mismatch24.

At the same time the refinement assertion will also highlight messages the component expects

to send but cannot due to some earlier deadlock. Unlike the omission failures, refinement failures

involving sent messages can only be caused by the connector being deadlocked at the point where

the port was ready to send the message, as otherwise there would be at least one interleaving during

model checking that would allow the message to be placed and so the refinement check would not

be failed. A true commission failure will show up in the deadlock analysis previously described, so

refinement failures ending with an outgoing message from that component are ignored.

Two rules are included in the style for detecting omission events. OmissionMismatch reports

a missing expected message where the waiting component is not under our control while Omission-

Partial reports a missing message where the waiting component is under our control. The ACME

declarations of these rules, external analysis and associated properties can be found in Figure 5.15.

24It is possible to determine both the sending and receiving component in a commission event so both are included
when considering a partial match. However if multiple connectors are attached to an inbound port then it is not
currently able to determine which component(s) may have been expected to send a message in an omission event, so
only the recieving component is considered for the purposes of partial match.

101

1 external analysis EAOmissionMismatch(thisComponent : Element)
2 : boolean = uk.ac.ncl.cjg.ws_enhanced.OmissionMismatch;
3 external analysis EAOmissionPartialMatch(thisComponent : Element)
4 : boolean = uk.ac.ncl.cjg.ws_enhanced.OmissionPartialMatch;
5 external analysis EAChoiceGroupsHaveChoiceMaker(thisComponent : Element)
6 : boolean = uk.ac.ncl.cjg.ws_enhanced.ChoiceGroupsHaveChoiceMaker;
7

8 Component Type CompTWSCommon = {
9 ...

10

11 rule OmissionMismatch = invariant EAOmissionMismatch(self);
12 rule OmissionPartialMatch = invariant EAOmissionPartialMatch(self);
13 }

Figure 5.15: The rules implementing the omission analysis required.

Rule OmissionMismatch ∃ rt : refinementFailureTrace

· ¬ ∃ dt : deadlockTrace

· traceContains(cropLastMessage(rt), dt)

⇒ ¬inOurControlDomain(receiverLastMessage(rt))

Rule OmissionPartial ∃ rt : refinementFailureTrace

· ¬ ∃ dt : deadlockTrace

· → traceContains(cropLastMessage(rt), dt)

⇒ inOurControlDomain(receiverLastMessage(rt))

5.2.2.4 Cooperative Connectors

The inclusion of the intermediary component type acknowledges that some services may be depen-

dant upon others. If such a service is provided by a different administrative domain then this opens

up the possibility that the architect may not know the components and toplogy of the architecture

on the far side of that component. This could result in a situation where the model includes ports

that are not attached to any connectors or other components. This is problematic in two ways.

Firstly, it will not be clear to an observer whether an unattached port represents the gateway to

unknown portions of the system or simply an incomplete model. Secondly the analysis described

above relies heavily upon the connector deadlocking to trap failures and stop further processing, if a

port is not attached to the common connector then it will not be bound to halt when the connector

locks, weakening the analysis.

The compromise here is to add a second type of connector to the style, called ConnTWSCooperative.

This connector has only a single role in its description, no properties or rules and is termed ‘cooper-

ative’ as it represents a perfectly matched component on its other, virtual, end. While it includes no

analysis rules in itself it does contribute to the CSP models of the sytem by adding further events

to the connector. For example, if a cooperative connector is attached to a port which sends the

message called ‘request’ and then expects either ‘response’ or ‘fault’ to be returned then the

102

1 Connector Type ConnTWSCooperative = {
2 Role role1 = {
3 }
4 }

Figure 5.16: The entire description of the ConnTWSCooperative connector type showing that it
only contains a single role and no rules or properties. Its purpose is to inform both the user and
the external analysis that this is the end of our knowledge of the system and, for the purposes of
analysis, we should assume everything beyond it works perfectly.

golden connector would add the following branches to the common connector CONN.

CONN = ...

2 request → CONN

2 response → CONN

2 fault → CONN

Assuming the connector is not already deadlocked or in the middle of delivering another message

then this addition is always willing to perform any of the message send or receive events of the port

without the risk of deadlocking the connector as there are no events following any of them. However

if the connector is already deadlocked then the port will not be able to send or receive any further

messages which could comprimise the previously described analysis. The ACME description of this

connector type, showing that its only feature which is a single role with no properties or rules, can

be seen in Figure 5.16.

5.2.2.5 Stubborn Connectors

Previously in this chapter the common connector type used in this style has been described. This

connector type is used to represent the conduit between every pair of known interacting ports in the

system. Then in the previous sub-section the cooperative connector was introduced to acknowledge

that there may be interactions taking place with elements that are outside of the scope of the system

being modelled. Both of these types are based on the assumption that a connection exists for every

port in the system, even if the element on the other end is not known.

There may be occasions however when there are ports in the system to which no connection is

made, an example of this will be shown later in Section 6.3.1 when describing one of the scenarios

used to assess this work. In the scenario there exists a port to which there is no obvious partner,

in terms of the data exchanged, to connect it to, attaching a normal connector between the ports

highlights this mismatch. Another approach would be to attach a cooperative connector to the port,

however this is inappropriate also as it would represent a connection to a component outside the

visible system where that component is well matched in terms of data exchanged and the message

103

exchange pattern, neither of which is true in the scenario.

To acknowledge this, a third type of connector is included in the style, called ConnTWSStubborn

to reflect the effect it has on the behaviour of the attached port. Recall that one of the concerns with

using a cooperative connector was that it represents an unseen port that reacts as a port expects,

let’s call this example port ‘A’. In the resulting CSP model of the system this means that if port A

were to send a message, then the unseen port would be willing to receive it. At the same time the

unseen port is willing to send any messages that port A expects to receive. The result of this is that

if the behaviour of the system is such that port A should interact with another, then it will interact

as it expects. However, given that no such connection exists in the scenario any messages it sends

will have no destination and there is no “other” port to send the messages it expects. In response to

this, the behaviour of the stubborn connector is to block any interactions assumed by the port, the

goal being to highlight the system traces that lead to it needing to interact. The blocking behaviour

takes two forms, both involving the connector process in the CSP model of the system.

Evie
G

amble17
.9

.2
00

9 The first form considers messages the port expects to send. Here the connector allows the

message to be placed onto the network and then performs a CSP Stop event. This will have

the effect of deadlocking the system immediately after the message is placed and will cause

the send attempt to be detected as a commission event.

Evie
G

amble17
.9

.2
00

9 The second form considers a message the port expects to receive. In this case we allow the

connector to deliver the message, but only after it witnesses a faux event. Since this event

cannot happen, as the style assumes the architect will not use it as a message name, this means

the port will never receive the message. A trace leading to this state would be revealed by an

omission event.

An example of the CSP connector described above is shown below. In this example the port

expects to send the request message and receive both the response and fault messages.

CONN = ...

2 request → Stop

2 faux → response → CONN

2 faux → fault → CONN

Thus by using the stubborn connector type the architect may explicitly highlight a port for which

there are no connections and be able to see the effect it has on the system behaviour.

It should be noted that while the facility exists to instantiate the stubborn connector type, the

external analysis defaults to adding this type of connector to any port in the system that has no

connectors attached to it. In this way a system that contains no connections will not be able to

104

1 Connector Type ConnTWSStubborn = {
2 Role role1 = {
3 }
4 }

Figure 5.17: The ACME description of the stubborn port type. This type has only a single role
and no rules as there will not be a pair of ports attached to compare. Its purpose is to explicitly
highlight a port that is not connected to any other and to allow the CSP models to report traces in
which such a port would expect to interact.

witness any successful message exchanges, instead it will fail both the commission and omission

rules. This is arguably the correct result of analysing such a system.

The ACME description of this connector type can be found in Figure 5.17. The type has only a

single role since it should only connect to a single port. Also it does not perform any of the analysis

of the common connector as there is not a pair of ports to compare.

5.2.2.6 Multiple Connections

Unlike the minimal style where the majority of the rules existed in the connector and only considered

the point to point scope defined by its instances, the enhanced style contains rules that are affected

by the topology of the system in terms of its message passing behaviour. Specifically these rules

are the ones associated with the conversations a component will have with the components it is

connected to. This means that the models assessed by those rules need to represent the possible

interplay of two or more connections to a single port.

The style allows both client ports and service ports to attach to multiple connectors. E-mail is

a good example of where both of these situations may occur, a client application may connect to

separate servers hosting the user’s different accounts, while a mail server may service multiple clients

simultaneously.

An example of such a topology is shown in Figure 5.18, where a simple e-mail client is connected to

two e-mail servers. The three ports on it could represent login, download mail and logout operations.

If it is assumed that the e-mail client can only interact with one mail server at a time then it follows

that if it performs a successful operation on mail server A then it should perform the download mail

and log out operations on that server before it attempts to perform any operations on any other

server. To put this another way, it is not expected that a successful login operation on mail server

A followed by an attempt to download mail from server B would be successful.

While a combination of the central component CSP and port CSP can easily represent the

constraints on the order in which the client invokes the login/download mail/logout ports, it gives

no indication regarding their dependancies in terms of which server(s) they can be directed to.

To support this the style includes another level in the hierarchy of port types. There are similar

specialisms for both the client and service port types, one specialism for ports that attach to a single

105

Figure 5.18: Simple e-mail client attached to two e-mail servers and showing how multiple connectors
may be attached to a single port.

connector only, and another that supports one or more connector attachments.

PortTWSClientSingle and PortTWSServiceSingle extend their respective parent types by ini-

tialising values of BindingCardinalityMin and BindingCardinalityMax both to 1. This has the

effect of constraining that port type to only allow a single connector to be attached without failing

the rule CardinalityOfAttachmentsOK defined in the PortTWSCommon type. As there is only a single

attachment allowed on this type of port no further modifications are necessary.

The other type of specialist ports are the PortTWSClientUnicast and PortTWSServiceUnicast.

Both of these port types are endowed with two new properties that are required to describe the dep-

ancies of choice between ports. The first property is a string type in each port called ChoiceGroup.

Ports that share a name are considered to be in a group where they all have connections to the same

set of components and if one chooses to send a message to a specific component then the following

ports will also send their messages to that component. The actual value of this choice group property

has no significance beyond defining a unique group in a component. In Figure 5.18 all three ports

on the client component would have the same value as they share the same choice of component.

The second property added is a safe boolean called ChoiceGroupMaker. As the name implies

this property determines whether a particular port is one that is allowed to make a choice about

which component it and other members of the group will communicate with (ChoiceGroupMaker =

Yes) or whether it is a port that must follow the choice of another (ChoiceGroupMaker = No). In

the e-mail example, the login port is defined as the choice maker, while the other two ports have to

follow its choices.

Both of these properties are included to allow the effects of communicating with each of the

possible components to be examined and so the characteristics represented by these properties need

to be included in the CSP models that are produced. To do this the external analysis makes three

changes to the model when compared to a system where only single connectors are attached to each

port. The first change is to the CSP describing the message exchange pattern of the port. By default

106

all the pattern templates assume that only a single connector will be attached to the port, so at each

point in the process where a message is sent or received. However now the model needs to allow for

that message to be sent to or received from any of the connected components. This is achieved using

the external choice operator and by also copying the message, renaming it to include the name of

the component it was sent to or received from. These new message names are then included in the

connector and mapped to the approriate attached componet to ensure it is delivered to or received

from the correct one. The log in port from the e-mail client, which uses the solicit-response CSP

template, would intially look like this:

LOG IN =̂ logIn → LOG IN P1

LOG IN P1 =̂ LOGI N P2 2 LOG IN P3

LOG IN P2 =̂ logInResult → LOG IN OK

LOG IN P3 =̂ fault → LOG IN FAULT

LOG IN OK =̂ DOWNLOAD

LOG IN FAULT =̂ LOG IN

After manipulation we see that the original messages have been replaced with choices of a message

to or from each connected component :

LOG IN =̂ (logInMail Serv A→ LOG IN P1

2 logInMail Serv B → LOG IN P1)

LOG IN P1 =̂ LOG IN P2 2 LOG IN P3

LOG IN P2 =̂ (logInResultMail Serv A→ LOG IN OK

2 logInResultMail Serv B → LOG IN OK)

LOG IN P3 =̂ (faultMail Serv A→ LOG IN FAULT

2 faultMail Serv B → LOG IN FAULT)

LOG IN OK =̂ DOWNLOAD

LOG IN FAULT =̂ LOG IN

However there is still a need to record the choice made in the above port and to ensure that the

two following ports follow that choice. The following process was added to the model to perform

this action:

CHOICE =̂ logInMail Serv A→ CHOICEMail Serv A

2 logInMail Serv B → CHOICEMail Serv B

107

CHOICEMail Serv A =̂ logInMail Serv A→ CHOICEMail Serv A

2 logInMail Serv B → CHOICEMail Serv B

2 logInResultMail Serv A→ CHOICEMail Serv A

2 faultMail Serv A→ CHOICEMail Serv A

2 downloadMail Serv A→ CHOICEMail Serv A

2 downloadResultMail Serv A→ CHOICEMail Serv A

2 downloadFaultMail Serv A→ CHOICEMail Serv A

2 logOutMail Serv A→ CHOICEMail Serv A

2 logOutResultMail Serv A→ CHOICEMail Serv A

2 logOutFaultMail Serv A→ CHOICEMail Serv A

CHOICEMail Serv B =̂ logInMail Serv A→ CHOICEMail Serv A

2 logInMail Serv B → CHOICEMail Serv B

2 logInResultMail Serv B → CHOICEMail Serv B

2 faultMail Serv B → CHOICEMail Serv B

2 downloadMail Serv B → CHOICEMail Serv B

2 downloadResultMail Serv B → CHOICEMail Serv B

2 downloadFaultMail Serv B → CHOICEMail Serv B

2 logOutMail Serv B → CHOICEMail Serv B

2 logOutResultMail Serv B → CHOICEMail Serv B

2 logOutFaultMail Serv B → CHOICEMail Serv B

The choice process “CHOICE” in the above example represents the initial quiescent state before

any decision has been made as to which component to interact with. Essentially the choice process is

initially willing to allow a message to be sent from the login port to either mail server A or B. Once

a message has been sent to one of these the process moves to either CHOICE A or CHOICE B

depending on the target of the message and effectively records the choice made by the login port.

The subprocesses have a structure that both allows future choices of target to be made by

the choice maker port while also constraining the dependent ports so they only communicate with

the current choice of component. The ability to make future choice is provided by replicating the

structure of the CHOICE process in each of the sub processes. This allows the process to choose

to send the logInMail Serv A or logInMail Serv B message each and every time the conversation

thread reaches the login port. The remainder of each subprocess defines the set of messages that the

conversation thread is allowed to exchange given that the decision of which component to interact

with has been made. Observe that in the case of the CHOICE A process the messages sent and

108

1 Port Type PortTWSClientSingle extends PortTWSClient with {
2 rule CardinalityOfAttachmentsOK = invariant size(self.ATTACHEDROLES) == 1;
3 }
4

5 Port Type PortTWSClientUnicast extends PortTWSClient with {
6 Property ChoiceGroup : string;
7 Property GroupChoiceMaker : TSafeBoolean;
8 rule ChoiceGroupPopulated = invariant ChoiceGroup != "";
9 rule CardinalityOfAttachmentsOK = invariant size(self.ATTACHEDROLES) > 0;

10 }
11

12 Port Type PortTWSServiceSingle extends PortTWSService with {
13 rule CardinalityOfAttachmentsOK = invariant size(self.ATTACHEDROLES) == 1;
14 }
15

16 Port Type PortTWSServiceUnicast extends PortTWSService with {
17 Property ChoiceGroup : string;
18 Property GroupChoiceMaker : TSafeBoolean;
19 rule ChoiceGroupPopulated = invariant ChoiceGroup != "";
20 rule CardinalityOfAttachmentsOK = invariant size(self.ATTACHEDROLES) > 0;
21 }

Figure 5.19: The properties and rules pertaining to the cardinality of their bindings. The ‘single’
type ports must have a single connector attached to be correct while the ‘unicast’ types must have
one or more connectors attached.

received by the download and logout ports are all appended with the name of their target component

“Mail Serv A”, matching the renamed messages in those port’s CSP descriptions. The same is true

for CHOICE B, just with the target component being “Mail Serv B”25.

The definition of the choice process is performed automatically by the external analysis and each

conversation thread defined in the central component CSP is placed in parallel with it, synchronising

on each message sent or received by each port in the choice group. In this way each conversation

thread in the component can make independent non interfering choices about which component to

communicate with.

From an analysis point of view there are no changes between a system with only single connec-

tors attached to each port and those with multiple connections included. The analysis previously

described still applies as each message is named such that its intended target or source is identified.

This maintains the unique naming of messages that is required for the model to function and also

identifies the pair of components between which a commission or omission failure is found.

Having defined ports that make different expectations about the number of attachments they

should encounter, the style also includes rules to inform the architect should these expectations be

breached. For the ‘single’ type ports there should be a single connector attached, while the ‘unicast’

type ports function with one of more ports attached. It should be noted that the style assumes

that no ports are left unconnected in a system, so both the rules for single and unicast port types

preclude zero attachments. These rules, called CardinalityOfAttachmentsOK, can be seen for all

four port types in Figure 5.19.

25The port CSP descriptions are not shown for the download and logout ports, but they have essentially the
same structure as the login port and the same modifications to allow them to send and receive messages from either
component A or B.

109

5.2.2.7 Multi-threading

In the previous section it was shown that the enhanced style supports multiple connectors attached

to a single port, also the style includes templates, described in Appendix I.3, that allow multiple

conversation threads to be defined in a component. Both of these open up the possibility that a port

could experience concurrent attempts to invoke it. This forces the style to support the detection of

mismatches cc1 & cc626, that consider the number of concurrent threads in a non-reentrant port.

If a port is reentrant then the assumption is that it is able to process concurrent invocations

without any undesirable side effects. However if the port is not reentrant then the assumption is

that it does not support concurrent invocations and a system is therefore defined as containing a

mismatch if such a port is subjected to multiple invocations. The mismatch exists in a specific port

if the following rule evaluates to false:

Rule PortReentered Port .Reentrant == Yes ∨MaxThreadsInPort < 2

The first clause in the predicate is trivial to assess as there is a property, Reentrant, in the

common port description. This safe boolean type property is given the value Yes if the port supports

concurrency, otherwise is should be given the value No.

The second clause requires the use of external analysis as once again it can only be determined

by model checking the system. For the purposes of the analysis, the rule does not need to return a

value giving the exact maximum number of threads simultaneously in the port, instead it simply just

needs to return a boolean value relating to the second clause above. A true value implies there was

never more than one thread in the port at any time while false indicates that two or more threads

in the port occurred at some point during the model checking.

The basis of this anlysis is that the points in the message exchange pattern templates indicating

the entrance and exit of a conversational thread from that port are identified. Using the request

response message exchange pattern as an example, the receipt of the request message would indicate

the entrance of the conversational thread and the sending of either the response or fault messages

would indicate it leaving. To allow detection of the event where more than one thread exists in the

component a thread monitor process is introduced that synchronises with the thread entry and exit

points of the message exchange pattern.

THREAD MON O =̂ request → THREAD MON 1

THREAD MON 1 =̂ request → THREAD MON 2

2 response → THREAD MON O

2 fault → THREAD MON O

THREAD MON 2 =̂ multiThreads → Stop

26cc1 : Concurrent calls to a no queuing and non-reentrant port, cc6 : Concurrent threads in a non-reentrant port.

110

The THREAD MON process has three states. It starts as THREAD MON 0 as no ports

can start by containing a thread. The first instance of request message moves the process to

THREAD MON 1 indicating that the port now contains a thread. While in this state, if either

a response or fault message is witnessed then the thread monitor moves back to the zero thread

state, however if a request message is seen then the process moves to THREAD MON 2. This last

state indicates that there are two threads concurrently in that port, this is indicated by generating

a multiThreads event and then stopping. The Stop event is used once multiple threads have been

detected as we know that the situation can occur and there is no need for further model checking and

by stopping this process, which is synchronised with the port, we aim to expedite the termination

of the model checking process.

To actually detect that concurrent events occured the style once again uses the refinement feature

of CSP. A specification process is generated that contains all the messages sent and received by the

port

THREAD SPEC =̂ request → THREAD SPEC

2 response → THREAD SPEC

2 fault → THREAD SPEC

Finally, the analysis checks for the condition occurring using the following assertion that the

specification is refined by the system containing the port and the thread monitor after hiding all

messages not involved with that port.

THREAD SPEC vMUTSYSTEM \ allOtherMessages

If there are one or more traces where concurrency could occur in the port being examined then

the above assertion will fail, this result can be returned by the external analysis to be fed into the

port reentrance rule. The rules and properties supporting the detection of a reentrance mismatch

can be found in Figure 5.20.

5.2.2.8 Complications and Interleaving

The above example was presented using the request-response message exchange pattern, in which

there are clear points where the conversational thread could be said to enter and exit the pattern.

This, however, is not the case for all the message exchange patterns web services may employ.

While in the request-response pattern it could be assumed that the conversation enters the port

when it receives the first message and leaves it when it sends the response, this does not apply to its

counter part, the solicit-response pattern. In solicit-response the first message it witnesses is the one

111

1 external analysis EAConcurrentCallsToThisPort(thisPort : Element)
2 : boolean = uk.ac.ncl.cjg.ws_enhanced.ConcurrentCallsToThisPort;
3

4 Port Type PortTWSCommon = {
5 Property Reentrant : TSafeBoolean;
6 ...
7 rule PortReentered =
8 invariant Reentrant == Yes
9 OR EAConcurrentCallsToThisPort(self) == true;

10 rule ReentrantPopulated = invariant Reentrant == Yes OR Reentrant == No;
11 ...
12 }

Figure 5.20: The properties used to describe if a port is reentrant and supports concurrency and the
rules calling the external analysis to determine if it occurs or not.

it sends out at the begining of the exchange, from this it could be inferred that the conversational

thread was present in that port before the message was sent as it will have contributed to the

construction of that message. To represent this faithfully in the CSP model would require an event

in the template before the sending of the first message, however this is not possible as it would break

the conversational analysis by interfering with the cooperative choice it requires27.

The solution lies in the fact that conversational threads in our components are interleaved and

explore all combinations of traces. If we imagine a simplified solicit-response pattern where no fault

message is allowed, then adding an event to represent the entry of the thread, incThread, before the

first message would yield the following process:

PORT =̂ incThread → request → response → Stop

If we then contruct a system with two instances of PORT interleaved and extract the set of

complete traces we end up with:

Trace 1 incThread → request → response → incThread → request → response

Trace 2 incThread → request → incThread → response → request → response

Trace 3 incThread → request → incThread → request → response → response

Trace 4 incThread → incThread → request → response → request → response

Trace 5 incThread → incThread → request → request → response → response

If the events incThread and response are used to indicate the points at which the conversation

enters and leaves the port then we see that all traces except Trace 1 contain a section where both

processes contain a thread simultaneously and so the port would have experienced concurrency.

Abstracting away from the above model and assuming that the thread enters the solicit-response

port when it sends the first messages, the now redundant incThread event can be removed resulting

27There would now be an event after the start of the template and before the first message, this means the first
message is effectively hidden from any choice of which port the conversation should follow and so that decision cannot
be made cooperatively.

112

in the process PORT2.

PORT2 =̂ request → response → Stop

Interleaving two instances of PORT2 will yield the following traces:

Trace 1 request → response → request → response

Trace 2 request → request → response → response

If the request event is now used to indicate entry of the thread and response to indicate its

exit, then Trace 1 shows an interleaving where no concurrency issues exist, while Trace 2 shows an

execution where concurrency will occur.

This shows us that, as the analysis is simply looking for the existence of a trace in which

concurrency occurs, either model of the port could be used and would return the same result.

So the style adopts the following abstraction, any port type that sends the first message will be

modelled as receiving the conversational thread at the point where that message is sent. A similar

argument can be used to ignore any housekeeping that takes place after the last message in a pattern

and simply use that last message, if it exists, to indicate the exit of a thread.

5.2.2.9 No Explicit Pattern Termination

Two of the message exchange patterns, notification and in-only contain only a single message in

their structure. Applying the abstraction discussed above it is possible to determine the point at

which the thread enters the port but there is no event to indicate the exit of the thread. It is vital

that there be separate events to increment and decrement the thread count so the model has a finite,

non zero length of time for the thread to be in the port. In this case the only option was to add an

aritificial decThread event to the CSP template after the message. This achieves the finite period of

thread occupancy while not adding or blocking any decisions the conversation can make regarding

the path followed. This allows detection of concurrent invocations of the port while leaving the

results in terms of system traces unaltered when the new event is hidden.

5.2.2.10 Patterns with Optional Non-explicit Endings

The two message exchange pattern pairs added with WSDL 2.0, robust-out-only/robust-in-only and

out-optional-in/in-optional-out pose the same problem, they both contain paths including optional,

additional messages. The result of this is that the exchange of the initial message in the pattern

does not guarantee the exchange of any further messages. Using the simpler of the two patterns as

an example, this means that after the first message has been exchanged, the receiving port may or

113

req
flt

req
flt

dec
+robust-out-only

robust-in-only

Figure 5.21: The robust-out-only and robust-in-only patterns, on the left before adding the dec-
Thread event and with the new event added on the right.

req
res
flt

flt2

req
res

flt

req

req
res
flt

flt2

dec

req dec
+

+ _

+ _

notification
in-only

solicit-response
request-response

out-optional-in
in-optional-out

Figure 5.22: The remaining three message exchange patterns shown as trees. On the left the original
patterns and on the right those with the additional artificial decThread event. req, res, flt and flt2
are all messages appropriate to each pattern, dec represents the decThread event. The blue dot
represents the termination points of the patterns and the red + and green - represent the entry
point and exit point of the thread in the CSP models.

may not respond with a fault message. From a thread point of view this means there is no explicit

point at which the thread leaves the port.

An initial approach taken was to model a timeout by adding the decThread event in any branch

that terminated without an explicit message exchange. However this approach introduced deadlocks

into the system where one port times out while the other sends the fault message. While it could be

argued that this echoes reality as a message received after a timeout could constitute a commission

event, it is not in keeping with the approach taken towards analysis which is to cooperatively

explore the possible conversations and only report commissions and omissions that are a result of

choreography and not performance/timing.

The result of this was that the decThread event was moved to be after the first message but

before any decision points in the pattern, as shown in Figure 5.21.

This position means that the modelled concurrency critical section is much shorter than the

patterns themselves. This is justified by appealing to the argument made earlier regarding the entry

and exit of threads before and after the first and last messages. The interleaving model means we

get the same result using this shorter critical section as if the critical section were modelled as being

the entire length of the pattern, so long as the anlysis is simply interested in the existence of a

concurrency event rather than the exact length of that event or the number of traces including it.

Diagrams showing the original patterns along with the new modifed patterns including the arti-

ficial dexThread events can be found in Figure 5.22.

114

5.2.3 Architecture Elements

5.2.3.1 Components

Most of the references in this chapter have been to a common web service type that is not intended

to be directly instantiated in the model. As with the minimal style there is the desire to distinguish

between the three roles a component may adopt and constrain the port types they contain accord-

ingly. The three types of component intended for use are CompTWSClient, CompTWSService and

CompTWSIntermediary. The client type is intended to represent the client component that connects

to and uses services provided by other components, it is therefore only permitted to host ports

that satisfy the type PortTWSClient. The service component type, as the name suggests, provides

services that other components may discover and use. It is constrained to allow only ports satisfying

the type PortTWSService to be associated with it. The final type of component allowed is the

intermediary, this type can host both client and service type ports. It can act as a go between for

other components, perhaps to increase the dependability of service provided as in the Web Service

Mediator described by Chen [Che08].

Shown in Figure 5.23 are the component type descriptions. All types extend the common type but

include their own rules to tailor the port types they each allow, also ensuring that each component

has at least one port. Also shown is the declaration of the client and service port types with an

enumerated property to allow the ACME rules to positively distinguish between them. These rules

address the mismatch type ct428. The complete hierarchy of component types in this style can be

seen in Figure 5.24.

5.2.3.2 Ports

The properties and rules included in the port types have all been included in the previously pre-

sented ACME fragments so there is nothing to add here other than to clarify the hierarchy of

types. Figure 5.25 shows the hieararchy. Only the PortTWSClientSingle, PortTWSClientUnicast,

PortTWSServiceSingle and PortTWSServiceUnicast types are intended to be instantiated in a

system, their supertypes do not contain all the rules or properties required for proper analysis.

5.2.3.3 Connectors

Finally in the elements is the simple hierarchy of connector types in this style, Figure 5.26. The

ConnTWSCommon should be used for all connections between ports in the system, the ConnTWSCooperative

connector type serves to represent unknown portions of the system while the ConnTWSStubborn con-

nector makes explicit connections that we know will not exist.

28ct4 : Components must have correct port types.

115

1

2 Port Type PortTWSClient extends PortTWSCommon with {
3 Property InInterface : TInterfaces = Client;
4
5 }
6

7 Port Type PortTWSService extends PortTWSCommon with {
8 Property InInterface : TInterfaces = Service;
9 ...

10 }
11

12 Component Type CompTWSClient extends CompTWSCommon with {
13 ...
14 rule AllClientPorts = invariant forall p : Port in self.PORTS |
15 satisfiesType(p, PortTWSClientSingle)
16 OR satisfiesType(p, PortTWSClientUnicast);
17 rule ComponentHasValidPorts = invariant size(self.PORTS) > 0;
18 }
19

20 Component Type CompTWSIntermediary extends CompTWSCommon with {
21 ...
22 rule ComponenthasValidPorts = invariant forall p : Port in self.PORTS |
23 satisfiesType(p, PortTWSClientSingle)
24 OR satisfiesType(p, PortTWSClientUnicast)
25 OR satisfiesType(p, PortTWSServiceSingle)
26 OR satisfiesType(p, PortTWSServiceUnicast);
27 rule ComponentHasClientInterface = invariant exists p : Port in self.PORTS |
28 satisfiesType(p, PortTWSClientSingle)
29 OR satisfiesType(p, PortTWSClientUnicast);
30 rule ComponentHasServiceInterface = invariant exists p : Port in self.PORTS |
31 satisfiesType(p, PortTWSServiceSingle)
32 OR satisfiesType(p, PortTWSServiceUnicast);
33 }
34

35 Component Type CompTWSService extends CompTWSCommon with {
36 ...
37 rule AllServicePorts = invariant forall p : Port in self.PORTS |
38 satisfiesType(p, PortTWSServiceSingle)
39 OR satisfiesType(p, PortTWSServiceUnicast);
40 rule ComponentHasValidPorts = invariant size(self.PORTS) > 0;
41 }
42

43 Property Type TInterfaces = Enum {Client ,Service };

Figure 5.23: The definition of the final component and port types used along with the rules regarding
the port types each component type may host.

CompTWS...

Common

Client Intermediary Service

AnalysisControl

Figure 5.24: The hierarchy of component types in the enhanced style.

116

PortTWS...

Common

Client

ClientSingle ClientUnicast

Service

ServiceSingle ServiceUnicast

Figure 5.25: The hierarchy of port types in the enhanced style.

ConnTWS...

Common Cooperative Stubborn

Figure 5.26: The hierarchy of connector types in the enhanced style.

5.2.4 Type Checking

The final rules included in the style serve two purposes. Firstly they assert that all component,

port and connectors instantiated in a system must be those defined in this style. Secondly they only

allow a subset of all types defined in the style to be instantiated without indicating a fault. The

former aspect of the rule disallows the standard ACME component, port and connector types to

be instantiated as these by default have no properties and contain no rules to perform the analysis

required. The latter aspect acknowledges the hierarchic approach taken in building the style. This

means that only the leaf elements in each tree branch contain all properties and rules required by

the style and so only these are allowed to exist in the system. These rules directly address mismatch

types ct1 & ct229 and in doing so they enforce the checking of the remainder of the type related

mismatches ct2-ct730

The two rules, one constraining the connector types and the other the component types can

be seen in Figure 5.27. The observant reader may note that there is a fourth type of component

CompTWSAnalysisControl allowed in the nature of components rule. This type is not intended to

represent an element in an actual system but is used to allow some control over the external analysis

that takes place. As this type is not part of the web service style per se it is not detailed here but

is described along with the external analysis it controls in Appendix F.

29ct1 : Non web service compliant connector, ct2 : Non web service compliant component.
30ct3 : Ports must be well defined, ct4 : Components must have correct port types, ct5 : Components must be well

defined, ct6 : Connectors must be well defined, ct7 : Roles must be well defined.

117

1 ...
2 rule NatureOfComponents = invariant forall comp : Component in self.COMPONENTS |
3 satisfiesType(comp , CompTWSClient)
4 OR satisfiesType(comp , CompTWSService)
5 OR satisfiesType(comp , CompTWSIntermediary);
6 OR satisfiesType(comp , CompTWSAnalysisControl);
7 rule NatureOfConnectors = invariant forall conn : Connector in self.CONNECTORS |
8 satisfiesType(conn , ConnTWS)
9 OR satisfiesType(conn , ConnTWSCooperative)

10 OR satisfiesType(conn , ConnTWSStubborn);

Figure 5.27: Rules asserting the only types of connectors and components that may exist in the
system.

5.3 Summary

This chapter started with the compilation of a set of mismatches applicable to web service compo-

sitions. These mismatches were then used as guidance for the construction of our enhanced web

service architectural style. The style definition was divided up into three separate parts, each target-

ing a different scope of problem, port to port mismatches, component to environment mismatches

and conformity to the style.

Table 5.6 repeats the list of mismatches intended for inclusion in the style and shows in which

section they are addressed. The observant reader may have noticed that a small number of the

mismatches from the combined set presented in Table 5.6 were not addressed in this style. Specifically

these were

cp8 Mismatching state maintenance assumptions;

cc4 No component has an active thread of control;

cc5 Concurrent threads in single thread only component; and

cc7 Mismatching process distribution assumptions.

These items will be discussed under future work in Chapter 7.

Moving on, with the style and its supporting external analysis in place, the work now is to test

and evaluate the style and its associated analysis as a tool for detecting the mismatches.

118

ID description Section

Port to port scope
cp1 Mismatching message exchange patterns 5.2.1.4
cp2 Partially matching message exchange patterns 5.2.1.4
cp3 Incorrect binding time of a service provider 5.2.1.8
cp4 Differing data continuity assumptions 5.2.1.6
cp5 Mismatching data types in a message 5.2.1.2
cp6 Mismatching data structure/syntax 5.2.1.2
cp7 Mismatching data semantics in a message 5.2.1.2
cp8 Mismatching state maintenance assumptions Not addressed
cp9 Mismatching state scope assumptions 5.2.1.5
cp10 Mismatching failure mode assumptions 5.2.1.7
cp11 Mismatching connector creation/destruction assumptions 5.2.1.8
cp12 Connection to a non public web service port 5.2.1.9
cp13 Connected ports must share transport and encoding protocols 5.2.1.9

Component to environment scope
cc1 Concurrent calls to a no queuing and non-reentrant port 5.2.2.7
cc2 Mismatching conversations 5.2.2.2 and 5.2.2.3
cc3 Partially matching conversations 5.2.2.2 and 5.2.2.3
cc4 No component has an active thread of control Not addressed
cc5 Concurrent threads in a single thread only component Not addressed
cc6 Concurrent threads in a non-reentrant port 5.2.2.7
cc7 Mismatching process distribution assumpations Not addressed

Type checking
ct1 Non web service compliant connector 5.2.4
ct2 Non web service compliant component 5.2.4
ct3 Ports must be well defined 5.2.1.9
ct4 Components must have correct port types 5.2.3.1
ct5 Components must be well defined 5.2.3.1
ct6 Connectors must be well defined 5.2.3.3
ct7 Roles must be well defined Roles have no proper-

ties so no well defined
checks are performed

Table 5.6: The sections in which each mismatch type is addressed.

119

Chapter 6

Case Study and Evaluation

Previous chapters have described the derivations of both minimal and enhanced web service architec-

tural styles; this chapter will demonstrate their effectiveness in representing a system and detecting

mismatches.

The chapter is in three parts. The first part presents a case study used to demonstrate a range

of mismatches detectable by the minimal style. The second section moves on to demonstrate some

of the mismatch detection capabilities of the enhanced style. In this section the style is used to

represent a system from the literature showing that it can both be used to detect the mismatches

discussed and the confirm their removal from the resulting corrected system. The final section

looks at the enhanced style from a number of different view points relating to the accuracy and

effectiveness of its analysis and the results presented.

6.1 ACME Studio Graphical View Key

Throughout this chapter screen shots of the graphical view in ACME Studio will be used to illustrate

the system being discussed and how the mismatches are initially indicated to the user. To aid with the

understanding of these figures, a key relating the element types and their graphical representations

is shown in Table 6.1.

6.2 Case Study to Evaluate the Minimal Style

This first part of the evaluation of this work shows a case study developed to demonstrate the

capabilities the minimal web service architectural style. The scenario covers an in-car satellite

navigation system based upon existing services with some extra functionality added. Fragments of

the system model, defined in ACME, will be presented in this section to illustrate the key points

while the full ACME description may be found in Appendix C.

The service being developed consists of two separate software components: the satellite navigation

120

Image Type Image Type
Components Ports

CompTWSClient PortTWSClientSingle

CompTWSService PortTWSClientUnicast

CompTWSIntermediary PortTWSServiceSingle

CompTWSAnalysiControl PortTWSServiceUnicast

Connectors Misc.

ConnTWSCommon ACME Mismatch Warning

ConnTWSCooperative Diagram Annotation

ConnTWSStubborn

Table 6.1: A key to the elements in the graphical view of the style in ACME Studio.

provider (SNP), which is centralised at some data centre and an in-car navigation unit (NU). The

NU has the usual functionality of selecting a route from the current location to a specified address,

but it can also delegate route calculation back to the systems at SNP via web service connections

over a General Packet Radio Service (GPRS1) connection. The routes calculated can then take into

account the latest traffic reports and road works, leading to a potentially much better route choice.

The central SNP systems can also update the route provided to individual NUs if there is a relevant

traffic situation change. This is done by querying the current location of the vehicle and sending a

new route plan if appropriate.

A second addition to the normal satellite navigation functionality is that the SNP will contact

and direct recovery services to the vehicle if a breakdown is signalled. To enhance the service

provided, the NU can obtain some diagnostic information from the vehicle’s engine management

unit (if available) so the recovery service can respond to the situation in the most appropriate way.

The information is obtained from the engine management unit using web service protocols and is

assumed to consist of raw sensors’ information. Thus, we also include a service provided by the

car manufacturers whereby they will decode and collate the sensors’ data and return a plain text

diagnostic. The diagnostic, vehicle location and passenger status is passed to a number of recovery

services, which return their assistance offers, consisting of estimated time of arrival (ETA), cost and

details such as if they intend to attempt to repair on site or just to tow away. The user can then

select which of the service offers to accept. Additionally, the recovery services may need to alter

their ETA as a result of other breakdowns that have a higher priority, such as a lone female driver

at night, in which case the new details of the recovery can be sent to the NU.

1http://gsmworld.com/technology/gprs.htm or for the specification detail see http://www.3gpp.org/ftp/Specs/

html-info/0260.htm.

http://gsmworld.com/technology/gprs.htm
http://www.3gpp.org/ftp/Specs/html-info/0260.htm
http://www.3gpp.org/ftp/Specs/html-info/0260.htm

121

Figure 6.1 shows the initial proposed architecture of this system consisting of components to

represent SNP and NU that are being developed, as well as existing external services: two recovery

services (RS1 & RS2), two car manufacturers (CM1 & CM2) and a selection of their engines with

their corresponding management units (CM1E1, CM1E2 & CM2E1). These have been described

using the minimal web service architectural style within the ACME Studio environment.

Figure 6.1: The initial system architecture with warning triangles showing where mismatches have
been detected.

ACME Studio has placed warning triangles on three of the connectors in the architecture. These

warning triangles are overlaid on components or connectors to indicate that one or more constraints

on them are not met. In this case that means that an architectural mismatch has been detected and

is localised around that connector. A triangle does not indicate what the nature of the mismatch

is for that one must select the connector in question and note which of the rules are reported as

failed. Figure 6.2 shows this view for the connector between NU and CM1E2. The rule indicates

that there is no matching pair of endpoint protocols shared between the two ports as shown in the

following two fragments from the architecture description, the first being from the port on NU and

the second being from the port on CM1E2.

Figure 6.2: The rule summary for the connector between NU and CM1E2

122

1 // extract from the original NU port description

2 Property EndPointList : EndPoints = {[

3 Transport = HTTP1_0;

4 Encoding = SOAP1_1]};

1 // extract from the CM1E2 port description

2 Property EndPointList : EndPoints = {[

3 Transport = HTTP1_0;

4 Encoding = SOAP1_2]};

This is corrected by changing the SOAP processor used by the NU to one which supports both

SOAP 1.1 and SOAP 1.2, which is described by altering the port description to be as follows.

1 // extract from the updated NU port description

2 Property EndPointList : EndPoints = {[

3 Transport = HTTP1_0;

4 Encoding = SOAP1_1], [

5 Transport = HTTP1_0;

6 Encoding = SOAP1_2]};

The second warning is found on a connector between the SNP and RS2, examining the rules

reveals that the mismatch relates to the messages exchanged between the ports, Figure 6.3. From

the descriptions we can learn that while the port on RS2 expects a request response message exchange

pattern, the port on SNP is using a one way (notification) pattern, shown in Figure 6.4. This is

so RS2 can get a confirmation that its services are still required if it has to change details of a

previously accepted offer.

Figure 6.3: The rule summary for the connector between SNP and RS2

Figure 6.4: The mismatching message exchange patterns between SNP and RS2

1 // extract from the original SNP port description

2 Property MessageExchangePatterns : messagePatterns = {< [

3 ST = "updateOffer";

4 DT = "out"] >};

123

1 // extract from the original RS2 port description

2 Property MessageExchangePatterns : messagePatterns = {< [

3 ST = "updateOffer";

4 DT = "out"], [

5 ST = "isUpdateAccepted";

6 DT = "in"] >, < [

7 ST = "updateOffer";

8 DT = "out"], [

9 ST = "fault";

10 DT = "in"] >};

To correctly interoperate with RS2 then it is necessary to add a new port to SNP which follows

the expected interaction2. Then for completeness the interface between NU and SNP is altered such

that the user can make the decision whether to accept the new offer or not.

The final warning exists on the connector between SNP and CM2. The rules summary for

this connector shows that the same rule failed as for the previous connector, however, examining

the message exchange patterns shows that they are both of the request response type. So in this

situation the tokens representing the data included in each message must be considered to find

where the problem lies. CM2 requires an additional data item to be sent before it can respond with

a diagnostic report, this is the vehicle chassis number that is not included in the raw sensor data.

To avoid this mismatch another client port is added to SNP which has the same message exchange

pattern as the original but also includes this extra information.

1 // extract from the original SNP port description

2 Property MessageExchangePatterns : messagePatterns = {< [

3 ST = "rawVehicleData";

4 DT = "out"], [

5 ST = "diagnosticInformation";

6 DT = "in"] >, < [

7 ST = "rawVehicleData";

8 DT = "out"], [

9 ST = "fault";

10 DT = "in"] >};

1 // extract from the original CM2 port description

2 Property MessageExchangePatterns : messagePatterns = {< [

3 ST = "rawVehicleDataAndChassisNumber";

4 DT = "out"], [

5 ST = "diagnosticInformation";

6 DT = "in"] >, < [

7 ST = "rawVehicleDataAndChassisNumber";

8 DT = "out"], [

9 ST = "fault";

10 DT = "in"] >};

With these corrections made, the final architecture (shown in Figure 6.5) has no mismatches

detected according to this architectural style. So actual development of the software components

2i.e. the description of the new SNP port message exchange patterns property becomes identical to that of the
RS2 port.

124

Figure 6.5: The final architecture of the envisaged system.

NU and SNP could now begin with greater confidence of success.

6.2.1 Section Summary

This section demonstrated that the style is able to detect mismatches in the example system de-

scribed, but what can be said about its applicability to other systems? The question to answer here

is, would the analyses included in the style be able to detect the same mismatch types in any other

web service system? The answer to this question lies in both the scope of the analysis rules and the

nature of the properties they act upon.

The rules all have very restricted scope, they are all limited to either a single port, a single

connector or a single component, the exceptions to this are the two system wide type checking rules.

Those rules that have the scope of a single component or port are used to confirm that the element

in question is well defined either by including all the required properties or by containing the correct

sub-elements, for example a client component only contains client type ports. This first type of rule

does not consider the other components in the system at all and so cannot be affected by them. The

rules in the connectors consider the properties of the ports at both ends and so long as both of those

ports have the properties required by the style, the analysis represented by the rules should work

correctly. The connector rules do assume that only point-to-point connections exist and therefore

each connector has exactly two roles and that each is attached to a single port. This assumption is

codified in a single rule asserting that a connector has two roles, so a connector that would invalidate

the assumptions of the analysis rules would be flagged to the user. Finally the two rules with a scope

wider than a single element simply assert that each component or connector in the system satisfies

125

one of the types defined in the style.

The second factor to consider is the nature of the properties feeding the analyses. In the case

of the minimal style all properties included in the analyses are static in nature, being described by

the architect when the model is created, there are no analyses that are based upon the emergent

behaviour of the composed system. The argued answer to the earlier question then is that there is

a high degree of confidence that the analysis in the minimal architectural style would be effective at

discovering mismatches in any system constructed using it.

The next sections show that the enhanced style is capable of detecting the mismatches derived

in Chapters 4 and 5. It is also capable of detecting all mismatches included in the minimal style

but demonstration of this is not included for sake of brevity.

6.3 Case Studies to Evaluate the Enhanced Style

6.3.1 Car Parking

The first scenario used to demonstrate the enhanced style is based upon the work of Cavallaro and

Di Nitto [CN08]. Their work is complementary to this thesis as it assumes a situation where one or

more mismatches have been detected in a system. The approach they illustrate allows the adaptation

of semantically equivalent services so they exhibit the same interface protocols through the use of a

mediator framework and scripts.

The complete ACME descriptions of both the initial and final configurations discussed in this

section may be found in Appendices E.1.1 and E.1.2 respectively.

The approach is outlined using the example of a pair of car park pre-payment services,

BookingPaymentCC and SpaceCCBuy3, along with a client application that is required to connect to

both services. The name CPClient will be applied to the client in this work. Abstractly the client

expects to be able to log-in to a car park service, make a payment to reserve a space and then log

out again. Tables 6.2 and 6.3 show the interfaces provided by both services and while the names for

the data change slightly and the data is not formally described in any way, it is possible to see by

inspecting the parameters columns that the same information is required by both services.

Further inspection of the interfaces reveals that a mismatch exists in the form of a different

sequence of messages expected when making a payment. In the BookingPaymentCC protocol there

is a single solicit-response message pattern containing all the details required for the transaction

while in the SpaceCCBuy protocol, the card and ownership details are transferred in one solicit-

response exchange and then the amount to be paid is conveyed separately. This is essentially the

only difference between the two services, both of which share a similar, linear, process flow through

3The original paper used the service names BookingPaymentCC and BookingCCPayment, these sound quite close to
each so to reduce confusion BookingCCPayment was replaced with SpaceCCBuy for this work. Also BookingPaymentCC

is truncated to BookPayCC in the models to reduce space.

126

Operation name Parameters Return value
setupConf String:userName

String:password
boolean:success

paymentCC String:owner
String:CCNumber
float:amount
Date:expirationDate

boolean:success

logout boolean:success

Table 6.2: The interface offered by the BookingPaymentCC service

Operation name Parameters Return value
setupConf String:user

String:password
boolean:success

checkCreditCard String:owner
String:cardNumber
Date:expDate

boolean:success

payByCC float:amount boolean:success
logout boolean:success

Table 6.3: The interface offered by the SpaceCCBuy service

the available messages that may be exchanged as shown in the form of simple state machines in

Figure 6.6.

To satisfy the requirements of the style a number of assumptions were made about the components

that were not made explicit in the paper as they were out of scope. The actual values chosen are

not of great importance as they do not impact on the detection of the mismatches in the scenario at

all. The one slight exception to this stems from the very optimistic view taken by Cavallaro and Di

Nitto about the success of each message exchange, specifically the protocols ignore the possibility

of any port invocation returning a fault message. This is merely noted as a slight oddity in this

scenario as it seems likely that, for example, a fault message returned from the checkCreditCard in

the BookingPaymentCC protocol should not then lead to a state where the protocol is considered

‘ready for payment’. However as it is possible to imagine both protocols with a more realistic

treatment of fault messages and at the same time both patterns remaining semantically equivalent

to each other, the original protocols described by Cavallaro and Di Nitto are used in the ACME

architecture model.

6.3.1.1 Initial Configuration and Mismatches

The client proposed by Cavallaro and Di Nitto is based upon the interface exposed by the

BookingPaymentCC service, so there is an implicit mapping between the ports of the client and that

service. The result is that connecting the client to that service is trivial and results, as expected, in

no mismatches.

The SpaceCCBuy service has a different interface and so while there is an obvious match between

127

Figure 6.6: The protocols expected by the services in the car park scenario. On the left is BookPayCC
protocol, and on the right the SpaceCCBuy protocol

the login and logout ports of the client and service, it is not apparent how to connect the remaining

ports. There are, however, two options that can be tried.

Evie
G

amble17
.9

.2
00

9 CPClient.paymentCC connects to SpaceCCBuy.checkCreditCard; or

Evie
G

amble17
.9

.2
00

9 CPClient.paymentCC connects to SpaceCCBuy.payByCC.

Both of these options were constructed and the resulting models in ACME Studio are shown in

Figure 6.7. Both models result in mismatches being detected as indicated by the presence of the red

warning triangles, one on the component and another on the connector described above.

Considering the CPCClient component warning triangle first and consulting the rules view in

ACME Studio informs us that the mismatch indicated is a commission partial match. This is one of

the external analysis rules developed as part of the style and additional information regarding the

details of the mismatch is available from the text file output by the analysis. For this rule type, the

output describes the traces returned from the FDR model checker that lead to the sending of the

additional, unexpected message. The analysis output generated from the initial configuration is as

follows:

CPClient attempted to send unexpected messages (commission events) in 1 traces.

Commission trace number 1

CPClient setupConf sendReq SpaceCCBuy SpaceCCBuy login sendReq CPClient

SpaceCCBuy login getFault CPClient CPClient setupConf getFault SpaceCCBuy

CPClient PaymentCC sendReq SpaceCCBuy SpaceCCBuy checkCreditCard sendReq CPClient

128

Figure 6.7: The alternative initial configurations of the car park system. On the
left with CPClient.paymentCC connected to SpaceCCBuy.checkCreditCard and on the right
CPClient.paymentCC connected to SpaceCCBuy.payByCC. A stubborn connector is used to indi-
cate that there is no known connection to one of the SpaceCCBuy ports in each case

SpaceCCBuy checkCreditCard getFault CPClient CPClient PaymentCC getFault SpaceCCBuy

CPClient logout sendReq SpaceCCBuy

While the alternate configuration results in the following analysis output:

CPClient attempted to send unexpected messages (commission events) in 1 traces.

Commission trace number 1

CPClient setupConf sendReq SpaceCCBuy SpaceCCBuy login sendReq CPClient

SpaceCCBuy login getFault CPClient CPClient setupConf getFault SpaceCCBuy

CPClient PaymentCC sendReq SpaceCCBuy

Both outputs inform the architect that the client component is attempting to send a message

that is not expected by its environment as the final message in both traces emanates from the client

component.

Proper use of the naming scheme for messages described in the style assists greatly in interpreting

these traces. A message should always have a name that starts with the component ID, followed by

the port ID and then finally the identifier of that message within the port. The external analysis

then appends this given name with the ID of the component it will be sent to or received from. The

first message shown in the trace above is named CPClient setupConf sendReq SpaceCCBuy. This

means the message was defined in the CPClient, in the setupConf port and was called sendReq,

the name implies the message was sent from this port and its target is a port on the component

SpaceCCBuy.

With this and the knowledge that the final message in the trace is the one that was sent unex-

129

pectedly, we can see that in the first configuration the client attempts to interact with the logout

port of the service after interacting with the checkCreditCard port. An inspection of the protocol

shows us that this is not allowed as the service expects an interaction on the payByCC port before a

logout is allowed. In the second configuration the client attempts to send a message to the payByCC

port without interacting with the checkCreditCard port, again an inspection of the protocol for

this service shows that this is not allowed.

This confirms that the client is not directly compatible with the SpaceCCBuy service in terms of

the number of messages exchanged and that there is some mediation required.

The second warning triangle reports a mismatch on the connector between the

CPClient.paymentCC port and the SpaceCCBuy.checkCreditCard or SpaceCCBuy.payByCC port

depending on which configuration is being observed. Examining the rule view for the faulty connector

in both variants of the system reveals a “message over data” mismatch in the first message in the

sequence. This rule is implemented using the external analysis facility and so allows the output of

additional descriptive information, in this case the output reveals the IDs of the data in the sent

message that are not required by the recipient.

The initial configuration gives the following output:

The following data was sent but is not expected: amount

And the alternative configuration gives this output:

The following data was sent but is not expected: owner

The following data was sent but is not expected: CCNumber

The following data was sent but is not expected: expirationDate

From a mediation point of view the results tell us two things:

Evie
G

amble17
.9

.2
00

9 the lack of any mismatches of the “under data” type means that the client is sending all the

data required by the service; and

Evie
G

amble17
.9

.2
00

9 it is possible to describe which items of data should be filtered out of the messages for each

port from the datum IDs listed.

Addition of Adaptation Framework

In the paper, service adaption takes place between the client and service instances with a run-time

choice of which service to employ. In the ACME model a new intermediary type component is added

to represent the SCENE adaption framework Cavallaro and Di Nitto reference. The adaptation

framework assumes there is an abstract interface, which in this case is identical to that provided by

the BookingPaymentCC component. To reflect this, the ACME model of the SCENE component is

130

Figure 6.8: The SCENE Framework component, with its service ports on the left and the client ports
on the right

initially populated with a set of ports and properties that are consistent with the BookingPaymentCC

component.

The actual adaptation in the framework is represented by a number of mappings though only two

of these impact this model of the system, these are the operation mapping and parameter mapping.

Attending first to the more coarse grained operation mapping we see that the paymentCC operation

in the abstract interface is replaced by the sequential invocation of checkCreditCard and then

payByCC operations when utilising the SpaceCCBuy service. As we are aware that these operations

not only have different names but both contain a subset of the parameters paymentCC operation, two

new ports were added, both populated, for the time being, with the same properties as paymentCC.

The graphical form of this component is shown in Figure 6.8.

Protocol Adaptation

It was then necessary to adjust the process names in the port CSP templates and also make a change

to the central component CSP to allow either service to be selected at run-time and also to ensure

that the correct choreography for each is observed.

Starting with the central CSP, we define a thread process that is initially willing to accept a

request from the client on the In login port. Upon receiving this request, the process breaks out

from that port’s CSP template and is forwarded to the Out login port. This Out login port is

where the choice is made about which service component to interact with and so is made the choice

maker for the choice group ‘services’, which includes all the client ports on this component. The

outcome points of the CSP template in the Out login port are pointed toward the appropriate

points on the In login template such that the identical response message is returned to the client.

Finally for the login ports, both outcome points on the In login template are directed towards the

In paymentCC port, which is the next in the choreography. The CSP templates for both of these

ports are recounted below.

131

SF In login =̂ SF In login getReq → SF Out login

SF In login p1 =̂ SF In login p2 2 SF In login p3

SF In login p2 =̂ SF In login sendRes → SF In login OK

SF In login p3 =̂ SF In login sendFault → SF In login FAULT

SF In login OK =̂ SF In PaymentCC

SF In login FAULT =̂ SF InPaymentCC

SF Out login =̂ SF Out login sendReq → SF Out login p1

SF Out login p1 =̂ SF Out login p2 2 SF Out login p3

SF Out login p2 =̂ SF Out login getRes → SF Out login OK

SF Out login p3 =̂ SF Out login getFault → SF Out login FAULT

SF Out login OK =̂ SF In login p2

SF Out login FAULT =̂ SF In login p3

When the login process is complete the interaction moves to the next step where the client will

pay for a parking space. This process is initiated by the port SF In PaymentCC receiving the request

message from the client application, this message is represented by SF In PaymentCC getReq in

the CSP below.

SF In PaymentCC =̂ SF In PaymentCC getReq → SF Process Branch

SF In PaymentCC p1 =̂ SF In PaymentCC p2 2 SF In PaymentCC p3

SF In PaymentCC p2 =̂ SF In PaymentCC sendRes → SF In PaymentCC OK

SF In PaymentCC p3 =̂ SF In PaymentCC sendFault → SF In PaymentCC FAULT

SF In PaymentCC OK =̂ SF In logout

SF In PaymentCC FAULT =̂ SF In logout

It is after the request message has been received that the selection of the correct protocol for

the chosen car park service takes place. This selection is achieved via two mechanisms. The first

mechanism is a branching process added to the component’s central CSP. This process, which is

called immediately after the request message is received above, allows the process flow to branch in

either of two directions, one direction meeting the BookPayCC protocol and the other meeting the

SpaceBuyCC protocol. The choice of direction is dictated by the second mechanism, specifically that

both ports referenced in the branching process are part of the ‘services’ choice group. The result is

that the process can only proceed down the path representing the correct protocol for the service

chosen during the earlier login step.

SF Process Branch =̂ SF Out paymentCC 2 SF Out checkCreditCard

In the case that the first branch is taken, the process moves to the CSP included in the

132

SF Out PaymentCC port, shown below. This port adheres to the payment part of the BookPayCC pro-

tocol by sending a paymentCC message to the required server and expects a single message in return.

The process flow is then redirected to the SF In PaymentCC port at either SF In PaymentCC p2

if a normal response message was received, or at SF In PaymentCC p3 if the response indicated a

fault.

SF Out PaymentCC =̂ SF Out PaymentCC sendReq → SF Out PaymentCC p1

SF Out PaymentCC p1 =̂ SF Out PaymentCC p2 2 SF Out PaymentCC p3

SF Out PaymentCC p2 =̂ SF Out PaymentCC getRes → SF Out PaymentCC OK

SF Out PaymentCC p3 =̂ SF Out PaymentCC getFault → SF Out PaymentCC FAULT

SF Out PaymentCC OK =̂ SF In PaymentCC p2

SF Out PaymentCC FAULT =̂ SF In Payment p3

If the other branch was taken then the process moves to the CSP included in the SF Out checkCreditCard

port, shown below. The port adheres to the first step when making a payment using the SpaceCCBuy

protocol. It sends the checkCreditCard message expected by the protocol and waits for a message

in response. When the response is received the process is then directed to the SF Out payByCC

port. This port sends the payByCC message expected next in the protocol and then waits for the

message response. As with the process description presented above, the process flow is then returned

to the SF In PaymentCC port at the correct point to indicate whether a normal response or a fault

message was received.

SF Out checkCreditCard =̂ SF Out checkCreditCard sendReq → SF Out checkCreditCard p1

SF Out checkCreditCard p1 =̂ SF Out checkCreditCard p2 2 SF Out checkCreditCard p3

SF Out checkCreditCard p2 =̂ SF Out checkCreditCard getRes → SF Out checkCreditCard OK

SF Out checkCreditCard p3 =̂ SF Out checkCreditCard getFault → SF Out checkCreditCard FAULT

SF Out checkCreditCard OK =̂ SF Out payByCC

SF Out checkCreditCard FAULT =̂ SF Out payByCC

SF Out payByCC =̂ SF Out payByCC sendReq → SF Out payByCC p1

SF Out payByCC p1 =̂ SF Out payByCC p2 2 SF Out payByCC p3

SF Out payByCC p2 =̂ SF Out payByCC getRes → SF Out payByCC OK

SF Out payByCC p3 =̂ SF Out payByCC getFault → SF Out payByCC FAULT

SF Out payByCC OK =̂ SF In PaymentCC p2

SF Out payByCC FAULT =̂ SF In PaymentCC p3

Regardless of which protocol was observed for payment, the process is now directed to the

SF In logout port. This port also contains a breakout to forward the request to the SF Out logout

port. This latter port is also part of the choice group as the logout request should be directed toward

the service interacted with. Again the received response message causes the process to move to the

appropriate point on the SF In logout to allow the correct message to be returned to the client.

133

Both outcome points of the CSP then direct the process back to the starting point of the whole

protocol.

SF In logout =̂ SF In logout getReq → SF Out logout

SF In logout p1 =̂ SF In logout p2 2 SF In logout p3

SF In logout p2 =̂ SF In logout sendRes → SF In logout OK

SF In logout p3 =̂ SF In logout sendFault → SF In logout FAULT

SF In logout OK =̂ SF Thread

SF In logout FAULT =̂ SF Thread

SF Out logout =̂ SF Out logout sendReq → SF Out logout p1

SF Out logout p1 =̂ SF Out logout p2 2 SF Out logout p3

SF Out logout p2 =̂ SF Out logout getRes → SF Out logout OK

SF Out logout p3 =̂ SF Out logout getFault → SF Out logout FAULT

SF Out logout OK =̂ SF In logout p2

SF Out logout FAULT =̂ SF In logout p3

Message Data Adaption

With the adaptation of the protocol now correct in terms of the number and direction of messages

we now attend to the parameters mapping to correct the data passed.

There are two aspects to this part, ‘what data’ is included in each message and ‘what name’

each item is given. As discussed in Chapter 5, the actual names assigned to parameters are not

considered to be significant as these are just identifiers that could be altered without affecting the

system behaviour at all. So for our purposes we just consider the semantics of the data included in

each message.

The Out checkCreditCard and Out payByCC ports were initially populated with the properties

from the Out paymentCC port. We know from Tables 6.2 and 6.3 that the first two ports each contain

a subset of the data exchanged by the original port, so the adaptation takes the form of deleting the

unrequired data from each message. The details of which data in each message is unrequired can

also be found in the output of the “over data” rule.

Figure 6.9 contains the initial messages data structure that both ports inherited followed by the

final, reduced versions that the Out checkCreditCard and Out payByCC contain respectively.

There is now a complete representation of the SCENE Framework adaptation component and

we can see from the graphical view in ACME Studio, Figure 6.10, that the adaptation is correct

according to our mismatch model as there are no warning triangles present any longer.

6.3.1.2 Section Summary

This section showed that the enhanced style can be used to represent a system described in the

literature and could have been used to both determine the mismatches to be corrected by the

134

1

2 Port Out_paymentCC : PortTWSClientUnicast = new PortTWSClientUnicast extended with {
3 ...
4 Property Messages : TMessages = {
5 [MessageId = "SCENE_Framework_Out_PaymentCC_sendReq";MessageData = {
6 [DatumId = "owner";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],
7 [DatumId = "CCNumber";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],
8 [DatumId = "amount";DatumRep = SOAP_Float;DatumStateScopeExpected = Private;],
9 [DatumId = "expirationDate";DatumRep = SOAP_Date;DatumStateScopeExpected = Private ;]};],

10 [MessageId = "SCENE_Framework_Out_PaymentCC_getRes";MessageData = {
11 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],
12 [MessageId = "SCENE_Framework_Out_PaymentCC_getFault";MessageData = {
13 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};
14 ...
15 }
16

17 Port Out_checkCreditCard : PortTWSClientUnicast = new PortTWSClientUnicast extended with {
18 ...
19 Property Messages : TMessages = {
20 [MessageId = "SCENE_Framework_Out_checkCreditCard_sendReq";MessageData = {
21 [DatumId = "owner";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],
22 [DatumId = "CCNumber";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],
23 [DatumId = "expirationDate";DatumRep = SOAP_Date;DatumStateScopeExpected = Private ;]};],
24 [MessageId = "SCENE_Framework_Out_checkCreditCard_getRes";MessageData = {
25 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],
26 [MessageId = "SCENE_Framework_Out_checkCreditCard_getFault";MessageData = {
27 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};
28 ...
29 }
30

31 Port Out_payByCC : PortTWSClientUnicast = new PortTWSClientUnicast extended with {
32 ...
33 Property Messages : TMessages = {
34 [MessageId = "SCENE_Framework_Out_payByCC_sendReq";MessageData = {
35 [DatumId = "amount";DatumRep = SOAP_Float;DatumStateScopeExpected = Private ;]};] ,
36 [MessageId = "SCENE_Framework_Out_payByCC_getRes";MessageData = {
37 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],
38 [MessageId = "SCENE_Framework_Out_payByCC_getFault";MessageData = {
39 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};
40 ...
41 }

Figure 6.9: The messages properties of the three adapted ports in the SCENE Framework component.

Figure 6.10: The final configuration of the car park scenario including the SCENE Framework com-
ponent. There are no mismatches reported

135

Figure 6.11: The configuration of the simple system used to demonstrate the omission check, with
mismatches reported on both components

mediation component and confirm that they are no longer present in the final system.

This scenario does not, however, demonstrate some of the other interesting features of the en-

hanced style. The following sections describe simple systems in which these features can be shown.

6.3.2 Additional Tests : Omission

To demonstrate the analysis concerning omitted messages a simple system including two compo-

nents each with four ports was constructed, Figure 6.11. Its ACME description may be found in

Appendix E.2.1. The ports on both components are simply named p1...p4 and the components are

designed to agree on all properties except the order in which they expect to interact on the ports.

The client component expects to interact on its four ports as follows:

Client =̂ p1→ p4→ p2→ Client

2 p3→ Client

While the service expects:

Service =̂ p1→ p2→ p3→ Service

2 p4→ Service

Comparing the two conversations we can see that the two components only agree on one part

of the conversation, the initial interaction on p1, they then make differing assumptions about the

port that follows p1. The components also disagree on the port that represents the alternative

conversation path to p1, p3 for the client and p4 for the service. From this we can say that four

mismatches could be reported by the analysis:

Commission Mismatch:

136

Figure 6.12: The ACME studio rule view for the Client component

Figure 6.13: The ACME studio rule view for the Service component

Evie
G

amble17
.9

.2
00

9 Client attempts to send a message to p4 after p1;

Evie
G

amble17
.9

.2
00

9 Client attempts to send a message to p3 initially;

Omission Mismatch:

Evie
G

amble17
.9

.2
00

9 Service expects a message on p2 after p1;

Evie
G

amble17
.9

.2
00

9 Service can accept a message on p4 initially but Client cannot send it.

The actual analysis results, indicated in Figures 6.12 & 6.13, differ slightly from the expected

results. The client component has a commission mismatch reported, as expected but also has an

omission mismatch. The service component has an omission mismatch reported, as expected.

Opening up the analysis output files associated with the reported mismatches reveals the following

details.

Client commission file

Client attempted to send unexpected messages (commission events) in 2 traces.

Commission trace number 1

Client p3 sendReq Service

Commission trace number 2

Client p1 sendReq Service Service p1 getReq Client

Service p1 sendFault Client Client p1 getFault Service

Client p4 sendReq Service

The file includes two traces ending in commission events. The first shows that the client will

137

attempt to send Client p3 sendReq Service at the very start of the interaction and the second

shows it will attempt to send Client p4 sendReq Service after a successful interaction on port

p1. These are both consistent with the predicted results.

Client omission file

[Client p1 sendReq Service, Client p1 getRes Service,

Client p4 sendReq Service, Client p4 getRes Service]

This file shows that the client fails to receive the message Client p4 getRes Service after a

successful interaction on port p1. This result was not predicted for the system and is in fact a false

result as will be discussed shortly.

Service omission file

[Service p4 getReq Client]

The final output file shows that there was an omission mismatch relating to the service compo-

nent, it does not receive the Service p4 getReq Client it is willing to receive. This omission was

predicted but so was another, a message to port p2 after a successful interaction on port p1, which

has not been reported by the analysis.

So, the analysis correctly identified 3 of the 4 mismatches predicted but it also flagged a mismatch

that should not have been listed according to the predictions. We will consider the unpredicted

omission linked to the client application first.

The trace found in the client omission file shows that the client component expects to interact on

port p1 and then on port p4 but that it does not receive a response to the request it sends to port

p44. The earlier CSP specification shows that the service component expects to interact on port p2

after p1 and so is not willing to receive a message on port p4. This is backed up by the second trace

found in the client commission file, where it can be seen that the client sending a request to port p4

is an unexpected event and would have resulted in the system deadlocking.

While it is true that the client will not receive a result from port p4, this is because the request

it sends to that port is unexpected. The means that this omission event occurs after an earlier

commission event. Recall from Section 5.2.2.3 that the omission analysis was designed to ignore

potential false negative results by removing any omission event that occurs after a deadlock. In this

case, as will now be explained, the “potential false negative” safeguard has failed.

Examining the trace for the omission mismatch we see that the client receives a normal response

message (Client p1 getRes Service) from the service before attempting to interact with p4. In

4The output of the omission analysis shows a trace expected by the component that was not permitted by the
system. The final event in this trace relates to a message that will not be sent in the current configuration.

138

Common trace

Omission trace

Commission trace

Figure 6.14: The ProBE output showing the traces possible in this system, with the trace returned
by FDR for each mismatch highlighted

the earlier commission trace we see that the client receives a fault message

(Client p1 getFault Service) from the service before it attempts to interact with p4. The

omission analysis can only remove a potential false negative omission result if the trace leading to

that omitted message contains the trace that leads to a commission event. In this case the traces

are different and so the omission event is reported.

The root cause of this problem is that the FDR model checker does not return all traces leading

to a deadlock failure. For example, in the second commission failure above, an examination of the

model in the ProBE CSP animator tool5 shows that there are two possible traces that can lead to

the client attempting to send a message to p4. The lower path is that taken in the commission

trace returned and involves the service returning a fault message to the client, the upper path is the

path taken in the omission trace in which the service returns a normal response message. Without

a complete set of deadlock traces it is not possible to guarantee the absence of potentially false

negative results. Figure 6.14 shows the output from the ProBE tool confirming these traces.

Moving on to consider the missing omission analysis result, examining the service omission file

reveals the single trace that was reported.

[Service p4 getReq Client]

This single trace matches the second of the two omission events predicted, while there is no

indication of the first predicted omission event. Manually running the FDR tool on the CSP model

generated to check for omission events returns only a single trace, the one shown above. However if

we once again use the ProBE tool to explore the possible traces of the service component in isolation

we find that they extend beyond those allowed by the system and therefore should result in further

5This tool makes it possible to explore all possible traces of a CSP model. It was obtained from Formal Systems
Europe Ltd at http://www.fsel.com/software.html.

http://www.fsel.com/software.html

139

Figure 6.15: The ProBE output showing that the Service component has traces beyond those allowed
by the system.

refinement failures. Figure 6.15 shows the ProBE results.

So again we see that FDR is not returning all possible failure traces and this is compromising

the trust that can be placed in the results of the omission analysis. To balance this out it should

be noted that at no point during the testing did FDR fail to report either a refinement failure or

a deadlock failure when one existed in the system model, it just does not report them all. From

an analysis point of view this means that potentially there may be both false positives and false

negatives relating to the omission analysis. This risk can however be reduced6 by first correcting

any commission faults in the system and then tackling the omission faults.

6.3.3 Additional Tests: Cooperative Connector

To demonstrate the effect of using the ConnTWSCooperative connector type, a CompTWSIntermediary

component acting as a simple service broker was constructed, the complete ACME description may

be found in Appendix E.2.2. This component offers three service ports, s1...s3, for clients to connect

to and also has three client ports, c1...c3, of its own that would connect to a chosen service provider.

The basic choreography expected by the component is described below using CSP and referencing

the port IDs. Ports s1, s2, c1 and c2 are bound together in terms of choreography while s3 and c3

are not bound.

Broker =̂ s1→ c1→ s2→ c2→ Broker

2 s3→ Broker

2 c3→ Broker

The cooperative connector type was included in the style to indicate connections to unknown

parts of the system. It assumes that those parts of the system work exactly as needed so that

any mismatches reported on the model are found within the model rather than being a pessimistic

assumption about unknown component properties.

6The risk of false results can only be reduced, not eliminated, at this point due to a fault in the one part of the
external analysis code. This flaw is demonstrated and discussed in Section 6.3.4

140

Figure 6.16: The configuration of the simple system used to demonstrate the cooperative connector

Figure 6.17: The configuration of the simple system used to demonstrate the stubborn connector

As expected then, and as shown in Figure 6.16, there are no mismatches reported in the system

with the broker and all cooperative connectors.

6.3.4 Additional Tests: Stubborn Connector

The following test is a mirror of the previous, and demonstrates the effects of employing the

ConnTWSCooperative connector type to the same broker component as before. The complete ACME

description may be found in Appendix E.2.3. As this system contains many instances of both omis-

sion and commission mismatches, as well a demonstrating that they are all eventually detected, the

opportunity will be taken to show the process that might be followed to correct them.

The initial configuration is shown in Figure 6.17 and as expected there is a warning triangle on

the component indicating that one or more mismatches have been detected.

As the stubborn connector type inhibits all message passing behaviour associated with a port no

externally visible progress can be made by this component. Considering the choreography outlined

in the previous section it is possible to deduce that this component would be initially willing to

interact on ports s1, s3 and c3. Ports s1 and s3 are both inbound ports7 and so it is expected that

omission mismatches would be reported there. Port c3 is outbound and so a commission mismatch

would be anticipated there.

7Inbound ports listen for the first message in their message pattern while outbound ports send the first message
in their message patterns.

141

Following the choreography beyond the initially active ports reveals that the next ports in se-

quence after s1 are c1, s2 and then c2. C1 is outbound so a commission mismatch might be expected

here, however the omission mismatch at port s1 means that the system will have no traces that reach

c1, so the commission cannot occur at this point. S2 is inbound and so will be the locus of an omis-

sion. This event would normally be hidden by the analysis as it occurs after the commission on port

c1, however as no trace can reach c1 there will be no deadlock trace and so the omission at s2 should

be listed. No mismatches will be reported against port c2 at this point as the conversation thread

cannot reach it due to the earlier deadlock at port s1.

Summarising the above, the following mismatches are expected to be reported:

Commission port c3

Omission ports s1, s2 and s3

Examining the rules view of the component reveals that both commission and omission mis-

matches have occurred, as expected, however the details of which ports exhibit those mismatches is

a subset of those expected. The results from the analysis output follow.

Commission result

Broker attempted to send unexpected messages (commission events) in 1 traces.

Commission trace number 1

Broker c3 sendReq

Omission Result

[Broker s1 getReq]

These mismatches are consistent with those expected, they are also a correct assessment of the

mismatches given the results returned by the FDR model. Once again we find that FDR is only

reporting a subset of the dead and refinement failure traces that exist in the system.

The user of the system must now decide which of the reported mismatches to address. As we

have already seen that omission results can be false, it is suggested that correcting commission

mismatches first, and only when no more exist, should the user turn his attention to correcting the

omission mismatches.

Following this principle, the commission mismatch related to port c3 should be tackled first. In

this system there is only a single component attached to six stubborn connectors so the solution to

mismatches at any of the ports is to change the connector type to a cooperative one.

142

Modification 1

The connector attached to port c3 is changed to a cooperative type and this leaves a system that

now reports the existence of only a single mismatch as follows:

Omission Result

[Broker s1 getReq]

This result confirms that the commission mismatch on port c3 has been corrected. As there are

no other mismatches reported the architect should now move onto correcting the omission on port

s1. Once again this involves changing the connector attached to that port to a cooperative type.

Modification 2

The third version of the system has two new mismatches reported.

Commission result

Broker attempted to send unexpected messages (commission events) in 1 traces.

Commission trace number 1

Broker s1 getReq Broker s1 sendFault Broker c1 sendReq

Omission Result

[Broker s3 getReq]

The first is a commission mismatch on port c1 while the second is an omission on port c3. Both

of these are consistent with what would be expected. The commission mismatch was hidden by the

earlier omission on port s1 that prevented the conversation trace reaching that port. The omission

mismatch was also hidden by the mismatch on port s1 but, as already discussed, this was due to

FDR returning only a subset of the expected traces.

Modification 3

Continuing with the commission before omission approach, the next modification made to the system

was to change the connector attached to port c1 to a cooperative type. The resulting system also

reporting two mismatches as follows:

Commission result

Broker attempted to send unexpected messages (commission events) in 1 traces.

Commission trace number 1

143

Broker s1 getReq Broker s1 sendFault Broker c1 sendReq Broker c1 getRes

Omission Result

[Broker s3 getReq]

This is an interesting result as at first glance they appear to be the same ones that existed before

the cooperative connector was attached in place of the stubborn one. This is certainly true of the

omission mismatch which is identical to that reported before the change, however in the case of the

commission mismatch there is now an additional message shown at the end of the trace.

The significant property of this additional message in the trace is that it is a message that

particular component expects to receive, not one it expects to send. This means that the port c1

actually completed its message pattern successfully having sent and received a message but that

these were the last two messages exchanged in the system.

This reveals a fault in the analysis logic as the port c1 is no longer harboring any mismatches

however one is being reported against it. During the analysis each deadlock trace found is examined

and if the final message in that trace is described in that component’s interface then that component

is considered to have sent it and therefore to have caused the commission. However this assumes

that the only point where deadlocks can occur is after a message is placed onto the connector and

before it is delivered to the other port. In this case port c1 sends and receives a message before the

choreography moves to port s2, but the inbound port s2 is attached to a stubborn connector and so

will never receive a message, meaning the system is deadlocked.

The fault in the logic stems from an over simplification used when determining if a commission

event is caused by a particular component. Simply the analysis considers all messages in a com-

ponent’s interface when determining if that component sent the offending message, when in fact it

should only consider the messages that component sends and not those it receives.

So the actual mismatch in the example is on port s2 but it is causing a false commission to

be reported on port c1 and the false commission exists because of an assumption made during

development of the analysis. In this case then the commission before omission principle breaks

down as the commission result is a red herring and in fact the reported omission should be tackled.

Modification 4

After the connector attached to port s3 is replaced to address the above omission mismatch the

system only reports a single mismatch as existing, this is the same false commission as discussed

above.

Commission result

Broker attempted to send unexpected messages (commission events) in 1 traces.

144

Commission trace number 1

Broker s1 getReq Broker s1 sendFault Broker c1 sendReq Broker c1 getRes

There are no omission results reported by the analysis, even though it would be possible to

demonstrate that one exists on port s2. The reason for this is that the traces leading to the omission

contain the false commission trace and so the analysis is hiding it as a potential false negative.

At this point the modification required is not determined from the reported analysis but based

upon a prediction of what the analysis would report if the commission assumption were corrected.

Specifically this is that no commission mismatches would be reported while a single omission would

be reported relating to port s2. This prediction is used to make the next change to the model.

Modification 5

With port s2 now connected to a cooperative connector, the result is a system in which a single

commission mismatch is reported.

Commission result

Broker attempted to send unexpected messages (commission events) in 1 traces.

Commission trace number 1

Broker s1 getReq Broker s1 sendFault Broker c1 sendReq Broker c1 getRes

Broker s2 getReq Broker s2 sendFault Broker c2 sendReq

This mismatch is one that would be expected to be reported by the analysis as it represents the

message trace having finally reached port c2 and then being stopped by the stubborn connector it

finds there. At this point then it is possible to return to following the commission before omission

principle to correct the mismatch.

Modification 6

In the final iteration of this demonstration system the connector attached to port c2 is replaced with

a cooperative type and no more mismatches are reported.

6.3.4.1 Section Summary

The main conclusions to draw from this section are that while the analysis works in most cases there

are situations where an actual mismatch present can be masked. This results from all messages sent

or received by a component being used to determine if it is the origin for an unexpected message

when only the messages it sends should be considered. Time did not allow this flaw in the analysis

code to be corrected within the scope of this work.

145

Figure 6.18: The three configurations used to confirm that the mismatched reported in the car
parking scenario, Section 6.3.1, were not caused by the presence of multiple connectors being attached
to individual ports.

If the above flaw in the analysis code had been corrected then the false commission indicated after

modification 3 would not have occurred. Taking this into account then we argue that while FDR does

not allow all mismatches to be detected in the first instance, if the correction to the analysis code

were made and if the principle of “commission before omission” is followed then through repeated

analysis and correction cycles a user will be guided to find all mismatches of those classes.

6.3.5 Additional Tests: Multiple Connectors

A demonstration that the style and analysis detects mismatches when multiple connectors are at-

tached to ports has effectively been performed in the earlier car park scenario. However, it is

important to know that the mismatches in that earlier model were genuine mismatches and not a

side effect of the methods used to model the multiple connections. To demonstrate this, the models

of the initial state of the car park scenario, in which mismatches exist, are dissected so that the car

park client is connected to only a single service at a time. The three configurations of the client

and both services are shown in Figure 6.18 and each of their ACME descriptions may be found in

Appendix E.2.4. This shows that once again, there are no mismatches found between CPClient

and the BookPayCC service but that there are mismatches found in both configurations involving the

SpaceCCBuy service. Selecting the rule views for both these faulty configurations reveals that the

following mismatches have been detected.

146

Figure 6.19: The system used to demonstrate the analysis looking for multiple threads in non-
reentrant ports. The ports are named p1 ... p4 from top to bottom.

Initial configuration:

Evie
G

amble17
.9

.2
00

9 Message Over Data - Message 1;

Evie
G

amble17
.9

.2
00

9 Commission Partial Match;

Alternate configuration:

Evie
G

amble17
.9

.2
00

9 Message Over Data - Message 1;

Evie
G

amble17
.9

.2
00

9 Commission Partial Match;

These are identical to the mismatches found in the initial stages of the car park scenario. Further-

more, examination of the information in the analysis output reveals that details of the mismatches

are also identical. This shows that the mismatches in the earlier car park scenario are not influenced

by the presence of multiple connections.

6.3.6 Additional Tests: Multi Threading

To demonstrate the multithreading analysis included in the style a simple system consisting of two

components was constructed, Figure 6.19, its ACME description may be found in Appendix E.2.5.

Each component has four ports labelled p1 ... p4 and the central CSP in the components is set

up so that p1 and p2 will experience multiple threads while p3 and p4 will only witness a single

conversational thread. The expected conversations in terms of the port IDs are as follows.

147

Client =̂ Client Multi Thread ||| Client Multi Thread ||| Client Single Thread

Client Multi Thread =̂ p1→ p2→ Client Multi Thread

Client Single Thread =̂ p3→ p4→ Client Single Thread

Service =̂ Service Upper Thread ||| Service Upper Thread

||| Service Lower Thread ||| Service Lower Thread

Service Upper Thread =̂ p1→ p2→ Service Upper Thread

Service Lower Thread =̂ p3→ p4→ Service Lower Thread

As the client component contains all the ports that send the first message, this means that both

the client and the service can have multiple conversations running through ports p1 and p2. At the

same time, while the service could handle two conversations running through its lower thread (ports

p3 and p4) this will not occur as the client has only a single thread to interact with those ports. To

demonstrate that the analysis rules correctly account for the reentrance property of the ports, p1

and p3 on both components are defined as being reentrant while p2 and p4 are defined as not being

reentrant.

The analysis returns three mismatches from this model:

Evie
G

amble17
.9

.2
00

9 Client.p2: Concurrent calls to this port;

Evie
G

amble17
.9

.2
00

9 Service.p2: Concurrent calls to this port;

Evie
G

amble17
.9

.2
00

9 Service: Omission partial match;

The concurrent call mismatches are exactly as expected, firstly as p1 and p2 are the only ports

that can actually experience multiple concurrent invocations and then the p2 ports are the only

ones in that set that are not reentrant. The ports p3 and p4 are not shown as experiencing multiple

threads as, while the service could service multiple invocations of those ports the client component

only has a single thread working through those ports and so there can never be more than one actual

invocation of each port at any time.

The third mismatch reported in this system is an omission of a message to port p3. This is

consistent with the service being able to support multiple invocations, by way of it having two

threads available to ports p3 and p4, but the client only ever utilises one of them.

6.3.6.1 Section Summary

This section has demonstrated that the enhanced style is able to represent a case study from the

literature, confirm the problems stated about that system and show that the final proposed solution

is devoid of mismatches. This showed that, with the notable exception of the false commission result,

148

the analysis rules function as they were designed to. The subsection also showed examples of the

analysis based upon CSP models and discussed some issues related to them.

As with the minimal style earlier, there is a need to consider what confidence can be placed in the

style as a means for assessing web service systems in general. The approach taken with the minimal

style, i.e. considering the scope of the analysis rules and the nature of the data upon which they

depend, will also be applied in this case. The mismatches driving the enhanced style development

were split into three groups, port to port scope, component to environment scope and type checking,

the assessment here will follow the same groups.

Taking the port to port mismatches first, labelled cp1 – cp13 in Table 5.6. These mismatches

are all constrained to consider the data contained in both the ports and components at either end of

the connector. This means that this entire set of analysis rules is unaffected by the overall structure

and size of the system being considered. The data for all of these analyses are based upon properties

directly input by the architect into the connected ports and components, there is no manipulation

of the data before analysis.

The second group of analyses included in the style are those associated with type checking, the

analyses within this group have one of two distinct scopes. The first scope is constrained to within

a component. There is only a single analysis with this scope and it is concerned with the types of

ports a component owns. The second scope covers the whole system and these analyses consider the

nature of components and connectors it contains. While these analyses have very different scopes

they are joined by the nature of the data they act upon which are the boolean results of all analysis

rules used to determine if an element satisfies its declared type or not.

The first two groups are both unaffected by the quantity and structure of components and

connectors in a system under analysis and so the suggestion is that these analyses would perform

equally well on any web service system described according to the style.

The final group of mismatches are those with a component to environment scope. All four of

the analyses produced to address mismatches in this group are based upon the generation of CSP

models from the CSP fragments included in the components. These models are then checked against

a specification, such as deadlock freedom or being a correct traces refinement of some model, by the

FDR model checker. This means that they are in some ways the complete opposite of the previous

group as each analysis required data from the entire system and also that data is manipulated by

the analysis code before being passed to the model checker.

This last group of analyses is affected by the structure of the system as the data they act upon

is generated from properties within each component and so there are two potential points at which

they could fail to perform correctly, the generated models upon which each analysis is based could

be incorrect in some way and the analysis performed upon the model could be fundamentally flawed.

Taking the model generation point first, while the analysis code was tested using a number of test

149

systems during the development of the analyses and these systems targeted specific aspects of each

analysis, this testing is in no way guaranteed to be complete in terms of all combinations of port

types, multiple connected ports, central CSP templates, cooperative and stubborn connectors etc.

This means there may be system configurations that result in a model being produced that is not

correct with respect to the system being analysed and the analysis to be performed. Secondly is the

nature of the model checking and interpretation of their results. Each one was discussed individually

in Chapter 5 and they stand on those arguments alone. They were also tested during development,

but as with the model generation and as highlighted by the false commission result in Section 6.3.4,

these tests cannot be guaranteed to cover all situations. The result is that there must currently be a

degree of doubt placed upon the results output by this group of rules, but this doubt can be reduced

by correction of the known faults.

6.3.7 Mismatch Coverage by Examples

In this section, the detection of a number of mismatches has been demonstrated and discussed.

There were two motivations behind the tests selected for inclusion in the work. The first was to

explore the effectiveness of the CSP based mismatch detection as the modelling of the message

passing behaviour was the most complex part of the style and would be interesting to demonstrate.

The second motivation was to demonstrate that the style could be used to support the related work

of Cavallaro and Di Nitto [CN08].

The examples shown achieved those goals but they do not cover all mismatches identified in the

early part of Chapter 5. Table 6.4 returns to the list of mismatches and shows in which sections

the individual mismatches have been demonstrate. From this list we can see that the majority of

mismatch types are listed as “tested during development”, meaning they have not been explicitly

tested in this thesis. Each and every one of those mismatches listed were tested during the develop-

ment of the style and, with the exception of a few that are discussed later in this subsection, they

all worked as expected. The motivation behind not including the systems in which these were tested

was brevity. The excluded systems tested mismatches that were detected using relatively simple

techniques such as a set comparison, so it was considered that their inclusion would add little to the

value of the work while adding considerably to the bulk.

In each case the excluded mismatch analyses were checked by constructing trivial systems that

allowed a range of values for the properties of interest to be tested. The actual range of values used

to check each mismatch analysis depended on the nature of the analysis. An example is the case

of the failure modes mismatch (Section 5.2.1.7), where the analysis is essentially a comparison of

two sets. In this case only a small number of the possible values for each set concerned were tested,

just enough to give confidence that the ACME Studio “isSubset” function worked correctly. Other

mismatch analyses were tested with a complete set of inputs. An example of this is the connector

150

ID Description Section Demonstrated

Port to port scope
cp1 Mismatching message exchange patterns Mimimal style version demonstrated

in Section 6.2, Enhanced style ver-
sion tested during development

cp2 Partially matching message exchange patterns Mimimal style version demonstrated
in Section... Enhanced style version
tested during development

cp3 Incorrect binding time of a service provider Tested during development
cp4 Differing data continuity assumptions Tested during development
cp5 Mismatching data types in a message Tested during development
cp6 Mismatching data structure/syntax 6.3.1
cp7 Mismatching data semantics in a message 6.3.1
cp8 Mismatching state maintenance assumptions Not addressed
cp9 Mismatching state scope assumptions Tested during development
cp10 Mismatching failure mode assumptions Tested during development
cp11 Mismatching connector creation/destruction as-

sumptions
Tested during development

cp12 Connection to a non public web service port Tested during development
cp13 Connected ports must share transport and encod-

ing protocols
6.2

Component to environment scope
cc1 Concurrent calls to a no queuing and non-reentrant

port
6.3.6

cc2 Mismatching conversations 6.3.1 & 6.3.2 & 6.3.3 & 6.3.4 & 6.3.5
cc3 Partially matching conversations 6.3.1 & 6.3.2 & 6.3.3 & 6.3.4 & 6.3.5
cc4 No component has an active thread of control Not addressed
cc5 Concurrent threads in a single thread only compo-

nent
Not addressed

cc6 Concurrent threads in a non-reentrant port 6.3.6
cc7 Mismatching process distribution assumpations Not addressed

Type checking
ct1 Non web service compliant connector Tested during development
ct2 Non web service compliant component Tested during development
ct3 Ports must be well defined Tested during development
ct4 Components must have correct port types Tested during development
ct5 Components must be well defined Tested during development
ct6 Connectors must be well defined Tested during development
ct7 Roles must be well defined Roles have no properties so no well

defined checks are performed

Table 6.4: The sections in which the detection of specific mismatch classes by the enhanced style is
demonstrated.

151

creation and destruction assumptions (Section 5.2.1.8), here it was necessary to test all combinations

of the property values to gain confidence that the logic the rule was based upon returned the expected

results.

A third type of analysis to test is exemplified by the mismatching data semantics in a message

rule (Section 5.2.1.2). In this case the analysis rule takes into account the semantics of each datum

included in each message exchanged. There are no fixed values defined by the style for these seman-

tics, the intention being that these values would be defined in one or more ontologies, this meant

that it is not possible to test all possible values. The testing in this case took advantage of the

fact that the actual values of the semantics are not important, they are treated simply as strings,

but whether the value declared by one component and the value expected by the other are equal

is. So as the semantics are represented as strings the standard Java sting comparison methods were

employed to check for equality. This meant that the required testing was reduced to a small number

of cases where the quantity of data items and the simple strings representing their semantics were

varied to confirm the logic of the external analysis code functioned correctly.

Earlier in this section it was mentioned that there were a few parts of the analysis that did not

work as expected, specifically these were the two global rules concerning the architectural element

types that exist in the system and rules confirming that a string property is populated. The two

global rules make use of the ACME function “satisfiesType”. In ACME Studio version 2.2.9b these

rules worked correctly, i.e. a component would only satisfy it’s type if it contained all the properties

required and all rules relating to that type are passed. The rules were carried forward into the

enhanced style which made use of a later version of ACME Studio, 3.2, and its support for external

analysis. Unfortunately in ACME Studio 3.2 the satisfiesType function does not account for the

results of the style rules defined for each element type. The result is that the output of the global

rules checking element types in a system cannot be trusted in version 3.2, but it is hoped that this

software bug is corrected in future versions of ACME Studio.

The second analysis part that did not function as expected is the check that a string property is

populated. Once again this is a carry over from the minimal style in ACME 2.2.9b, in which is does

work correctly, resulting in a rule being failed if a string is empty or is not defined at all. In ACME

Studio 3.2, the rule results in an error if the property in question is not defined. In a sense this still

has the effect of alerting the architect to the fact that a required property is not defined, but does

not have the feel of being a proper check.

6.4 Evaluating Mismatch Detection in the Enhanced Style

The previous section demonstrated the enhanced style analysis using a number of test systems to

show how well it performed in the task of detecting mismatches. In this section, a number of different

152

views of the style and its analysis will be presented. These views challenge the depth of the analysis,

the correctness and meaningfulness of the results it returns and how dependant the analyses are on

having a complete model.

6.4.1 Depth

In this analysis depth refers to an estimation of how much the analysis tells the architect that he

does not know by just looking at the model. For example an analysis rule confirming that a boolean

property has been populated can certainly help ensure that a model is correctly described but does

not tell us anything that would not be known by looking for that property in the model. This could

then be described as being a shallow analysis. At the other end of the scale, a CSP model created

from a number of fragments and used to determine if all traces of a component are allowed by the

emergent behaviour of the system it exists in could be described as being deep.

The actual values of shallow and deep are certainly subjective and so no attempt to assign

numerical values is made. Instead, the analysis rules are presented in groups where all the rules

have an arguably similar depth.

As well as being separated by depth, the groups of rules are also separated into those that provide

analysis directly relating to a mismatch type and those that confirm the model produced has the

correct element types with all properties described and within the prescribed value ranges.

These groups are now presented, starting with the mismatch oriented rules and then the style

oriented rules.

Mismatch Oriented Rules

For the mismatch oriented rules four groups of rules have been identified and will now be presented

in order of increasing depth.

The first and shallowest group of mismatch rules are those that simply compare the values of

two properties to determine if a mismatch exists. These constitute seven of the 33 mismatch rules

in the style as follows:

Evie
G

amble17
.9

.2
00

9 there are four rules confirming that each of the allowed port types has an acceptable number

of connectors attached to it;

Evie
G

amble17
.9

.2
00

9 two rules confirm that a connector is attached to one outbound and to one inbound port;

Evie
G

amble17
.9

.2
00

9 the final rule confirms that the data continuity assumptions of a pair of connected ports match.

The second group of rules are those that require comparison of multiple properties to determine

if there is a mismatch. Three of the 33 mismatch rules fit into this category:

153

Evie
G

amble17
.9

.2
00

9 two of the rules are used to compare the message exchange patterns employed by a pair of

connected ports, if a mismatch is found it requires the inOurControlDomain property to be

looked up to classify it as being a partial match or a mismatch;

Evie
G

amble17
.9

.2
00

9 a single rule compares the values of the connector creation and destruction assumptions of a

pair of connected ports for compatibility.

The penultimate group of mismatch oriented rules is also based upon comparing multiple proper-

ties, but now the properties contain a data structure rather than single values. This means searching

through the structures to find the required data instances. Also included here is a rule that requires

comparison of two sets to determine the presence of mismatches.

These are described as being deeper than the previous group of rules because there is an increased

overhead in searching for the values to compare before comparison can be made. This represents an

increased opportunity for mistakes to be made if the analysis were performed manually rather than

using a supporting style such as this.

Eighteen of the 33 rules in the style are assigned to this category:

Evie
G

amble17
.9

.2
00

9 there are four rules in the common connector type that compare the data types of the data

included in the messages exchanged. This requires gathering and matching message names

from the message pattern properties of the connected ports. The names are matched to the

messages in the messages property so the individual data they include can be matched based

upon their semantics in the central data store. Once matched the data types of each datum

can be looked up in the messages property and compared. There are four rules performing

this, one for each possible message in a message exchange pattern:

Evie
G

amble17
.9

.2
00

9 similar to the data types above, there are four rules comparing the semantics of each datum

in each message exchanged by a pair of ports. The semantics are compared in the “over data”

rules to check for redundant data being sent;

Evie
G

amble17
.9

.2
00

9 there are a further eight “under data” rules comparing the semantics of the data in the messages

exchanged. In this case the rules check for omission of data expected by the port receiving the

message;

Evie
G

amble17
.9

.2
00

9 also linked to the data exchanged is the “state scope assumptions” rule. Here each matched

datum in the exchanged messages has its expected and exhibited state scope assumptions

looked up and compared to determine the existence of mismatch;

Evie
G

amble17
.9

.2
00

9 the final rule in this group compares the sets of expected and exhibited failure modes declared

by a pair of connected ports, to pass the rule both exhibited sets must be subsets of the other

port’s expected sets.

154

The final group in this category is unique among the analysis in the style in that the analysis

results they provide cannot be determined directly by observing the values of properties. In this

case the values of a number of properties along with the very structure of the system itself is used

to construct a model that is then checked against specific assertions to determine if certain types

of mismatches exist. For this reason this group is considered to be the deepest of all the analyses.

Five of the 33 rules are found in this category:

Evie
G

amble17
.9

.2
00

9 two of the rules generate models checking for commission mismatches relating to a specific

component;

Evie
G

amble17
.9

.2
00

9 two of the rules generate models checking for omission mismatches relating to a specific com-

ponent;

Evie
G

amble17
.9

.2
00

9 the final rule generates a model checking to determine if a specific port experiences concurrent

invocations or not.

Style Oriented Rules

As with the mismatch oriented rules, four distinct groups are identified in this category. While

it could be argued that the first three groups presented follow a pattern of increasing depth, the

ordering of the last two is less distinct. The separation between them is, as we will see, based upon

the sort of analysis they perform rather than the complexity of the analysis.

The first group in this set of four contains those rules that confirm a property has been populated.

These constitute 15 of the 25 style oriented rules8 in the style. These are listed below but no

description is given as the names give an adequate indication of the property they target.

Components CentralProcessDescribed, ComponentInOurControlDomainDescribed;

Ports EndpointListPopulated, InOurControlDomainPopulated, ReentrantPopulated,

BindingSelfAddPopulated, BindingSelfRemovePopulated,

BindingOtherAddPopulated, BindingOtherRemovePopulated,

MessagePatternPopulated, DataContinuityPopulated, BindingTimePopulated,

ChoiceGroupPopulated, EndPointAddressPopulated, HasWSDL.

The next group of style oriented rules are those that compare multiple parameters to determine

if the model is correct to the style. Only two of the 25 rules are positioned here.

Evie
G

amble17
.9

.2
00

9 a single rule confirms that all service end points are addressed by asserting that the cardinality

of end point definitions and end point addresses are equal;

8The total number of rules is based upon the properties they consider, not the number of rule instances in the
style. For example, each port type has a rule to check it has some ports but the rule performing this was only counted
once.

155

Evie
G

amble17
.9

.2
00

9 the second rule confirms that the connector creation and destruction properties in each port

are populated in a sane manner so that at least one port may create the connector and also

at least one port may destroy it.

The third group of rules are those that require the consideration of multiple elements or the

exploration of multiple properties. These all required the use of the ACME Studio external analysis

feature for their development. There are three rules in this category.

Evie
G

amble17
.9

.2
00

9 The MsgDatumDescribed rule confirms that each data item in each message of each port has

an associated entry in the central data store to allow its semantics and scoping data to be

extracted;

Evie
G

amble17
.9

.2
00

9 a single rule confirms that each set of ports on a component that share a choice group have at

least one port designated as the choice maker;

Evie
G

amble17
.9

.2
00

9 the final rule in this set confirms that the message names included in a port’s message pattern

CSP description also exist in that port’s messages property.

The final group of rules perform type checking on the elements in the style. While the structure

of the rules in the style are relatively simple these rules utilise the Armani predicate satisfiesType(X).

For this predicate to return true, the element being checked must pass each rule associated with

type X and also have every property required by type X. There are five of the 25 rules involved in

this type of analysis.

Component ComponentHasValidPorts, AllClientPorts, AllServicePorts,

ComponentHasClientInterface, ComponentHasServiceInterface9;

Connector CorrectNumberOfRoles;

System NatureOfComponents, NatureOfConnectors.

6.4.1.1 Section Summary

While many of the rules in the enhanced style involve analysis that could be performed by manual

inspection of the component and port descriptions it should be noted that the style leads to models

containing a great many properties, for example, the final configuration of the car parking scenario

contains 300 property instances. Given this, it is suggested that there is a distinct possibility that

a manual approach would result in some mistakes and so argue that the rules add value.

9The AllClientPorts, AllServicePorts,ComponentHasClientInterface, ComponentHasServiceInterface rules all
perform a similar function but are specialised for the component types. They are counted as a single rule for the
purpose of this analysis.

156

The model checking based analysis, while in the minority of the rules, also adds to the value

of the results by informing the user of mismatches that can only be determined by discovering the

emergent behaviour of the complete system.

6.4.2 Dependancies

It is generally acknowledged that the earlier in the software development process that a fault is

discovered the cheaper it is to correct [PA06]. This principle, we suggest, could also be applied to

the development of a system architecture model representing a future system, in this case though,

the faults take the form of architecture mismatches. If this idea is accepted then it follows that

it is desirable if mismatches can be detected at the earliest possible point when developing the

architecture, i.e. as soon as the properties and structure required to determine each individual type

of mismatch are in place.

Assessing how complete the architecture model needs to be before each analysis rule in the style

can be evaluated results in three distinct groups.

The very best rules, those that can be evaluated earliest, are those that focus upon whether the

properties required by the style exist and are populated. These are only dependant upon a single

or just a few properties within the same port and component. They are all able to confirm if a

component has been correctly populated before any connections are introduced in the system.

Component CentralProcessDescribed, ComponentInOurControlDomainDescribed,

ComponentHasValidPorts, AllClientPorts, AllServicePorts,

ComponentHasClientInterface, ComponentHasServiceInterface;

Port EndpointListPopulated, InOurControlDomainPopulated, SendsFirstMessagePopulated,

ReentrantPopulated, BindingSelfAddPopulated, BindingSelfRemovePopulated,

BindingOtherAddPopulated, BindingOtherRemovePopulated, MessagePatternPopulated,

DataContinuityPopulated, BindingTimePopulated, ChoiceGroupPopulated,

EndPointAddressPopulated, EachEndPointProtocolAddressed, HasWSDL,

StatedBindingTime.

The next group covers the majority of the analysis rules. This includes the remaining analysis

rules that are purely based upon the Armani predicate language and do not make use of the external

analysis. It also includes the external analysis based rules that consider the messages exchanged

between ports in terms of the data types and semantics they contain. All of these analyses can be

performed as soon as their required properties are populated and there is a connector relating the

ports to be assessed.

157

Port EndPointProtocols, OnePortSendsFirstMessage, OnePortReceivesFirstMessage,

MatchingDataContinuityAssumptions, MsgXMessageDataTypesMatch10,

MsgXMessageOverData, MsgXMessageUnderData1, MsgXMessageUnderData2,

ConnectorCreationDestruction, SaneConnectorCreationDestruction,

FailureModeAssumptions;

The final group includes all the remaining external analysis rules. These can only be performed

when the whole model is complete and populated with data. This means a mismatch revealed by

any of them may incur the maximum cost to repair in terms of correcting the architecture.

The reason for this dependancy on a complete model for evaluation was a decision made while

constructing the external analysis. The decision was to build a simplified Java version of the archi-

tecture to reduce the programming overhead involved in extracting each property from the ACME

model when needed. This made developing the external analysis easier, however the Java model

requires that many of the properties of the system are populated before it can be constructed. This

means the analysis that uses it is also dependant on these properties being populated before they can

be evaluated, even if a particular analysis does not require some of the properties for its evaluation.

The result then is that this last set of external analyses are sometimes artificially delayed by

waiting for properties to be populated when they don’t need them to be.

Component CommissionMismatch, CommissionPartialMatch, OmissionMismatch,

OmissionPartialMatch, MssgDatumDescribed, ChoiceGroupsHaveChoiceMakers

Port PortReentered, MsgNamesConsistent

Connector MessageExchangePatternsMatch, MessageExchangePatternsPartiallyMatch,

StateScopeAssumptionsMatch

6.4.3 False Results

During the development and analysis of the enhanced style, a small number of possibilities for both

false positive and false negative results have been identified. These will now be presented.

6.4.3.1 Hidden Commission

As discussed during the earlier demonstration of the omission mismatch analysis, Section 6.3.2, the

FDR model checker does not necessarily return all traces leading to deadlock when it is assessing

a system for deadlock freedom. The result of this is that while the analysis will always report the

presence of a commission event if one or more exist in the system, it may not report them all in

10Here the X refers to the message number in the message exchange pattern. There are up to four messages described
in a pattern and so there are four copies of each of the rules starting MsgX....

158

the first instance. So the result of altering a model and removing a commission event could be the

revelation of further commission events that already existed in the system.

6.4.3.2 False Commission/Hidden Omission

This false result is shown in the stubborn connector demonstration in Section 6.3.4. This situation

occurs because there is a solicit-response port, c1, attached to a cooperative connector and this is

followed by a request-response port, s2, attached to a stubborn connector. This means that s2 will

never received the incoming message it is waiting for, in terms of the analysis, this constitutes an

omission event. However the omission analysis aims not to report potentially false negative omission

events by hiding those that occur after a deadlock. In this system there is a deadlock immediately

after c1 receives a response message from the cooperative connector as s2 cannot proceed, resulting

in the omission on s2 being hidden. The problem here is that the analysis assumes that deadlocks

can only occur when a port sends an unexpected message i.e. a commission event and that the

last message in a deadlock trace will be the unexpectedly sent message. This can only be resolved

by altering the analysis to filter deadlock traces where the final event is a message received by a

component and not one sent by a component.

6.4.3.3 Hidden Omission

In this case the hidden omissions are caused by FDR not returning all the refinement failure traces it

can find. As with the hidden commission earlier, the analysis will report the presence of an omission

event if one or more exist, but it may not report them all in the first instance. Again this means that

the removal of an omission reported by the analysis may result in a further example being reported.

6.4.3.4 Potentially False Omission

As omission mismatches are detected via a refinement assertion it is possible for the FDR model

checker to find an omission that occurs after the system being analysed has deadlocked. It is termed

a ‘potentially’ false omission due to it occurring after the system deadlocked and therefore the

omission may be a genuine mismatch or it may be a result of the prior deadlock. To protect the

architect against being inundated with potentially false omission results, each omission mismatch

found is checked to see if it occurs after a deadlock, if it does this omission is not reported. The

problem observed in Section 6.3.2 was that while the omission did occur after deadlock, FDR did

not return all traces to the deadlock or the following omission so the this was not detected by the

analysis.

159

6.4.3.5 Omission Partial Match/Mismatch

To detect an omission mismatch, an assertion in the CSP model of the system that the system is

refined by the component in focus is used. For this to work it is necessary to hide every message in

the system that is not defined in the interface of that component. The result of this is that, while

the refinement trace can inform the analysis of which message was omitted, it does not inform the

analysis of which component and port was expected to send that message. The result of this is that

the analysis is not aware of whether the sending component and port are inOurControlDomain or

not.

The analysis currently assumes that for the receiving port inOurControlDomain has the value No,

then this means that the analysis has to report an omission mismatch exists when it could in fact be

a partial match if the other component is inOurControlDomain. This could be corrected by altering

the analysis code to look at the port on the other end of the connector, however this approach can

only work where a single connector is involved, ports with multiple connectors attached would still

exhibit the same problem.

6.4.3.6 String Properties Correctly Populated

There are no facilities in ACME Studio to parse a string property, thus the analysis rules charged

with confirming a property is populated can do only that. They are able to report if there is a string

value in the property or not, they cannot confirm if that string is meaningful. There are varying

degrees of need for this function, for example the choice group names in unicast ports can use a

short string for the name, however the properties that hold CSP could benefit in terms of checking

the CSP is syntactically correct and the process names match across the whole component. This

functionality could be added in the form of further external analysis classes.

6.4.3.7 Global Type Checking Rules

There are a number of type checking rules in the style that make use of the ACME Studio function

“satisfiesType”. In ACME Studio version 3.2, used for the developement and testing of the enhanced

style, this function is flawed and returns the result “true” regardless of the outcome of any rules

relating to the element type in question. This means that an element may declare itself as a web

service connector type and therefore be bound by all the rules defined for that type, but it may fail

to meet the conditions of any of the rules without the global rule checking that all connectors satisfy

the web service type reporting a fault. It should be noted that while this is not ideal, the architect

will still be alerted to the fact that the connector failed the conditions of one or more rules by the

red warning triangle that will appear on the connector itself.

The nature of this false result means that it is out of this author’s control to correct, but it has

160

been brought to the attention of the ACME Studio developers and it is hoped it will be corrected

in future versions.

6.4.3.8 Discussion

The issues listed above are not equal in terms of the size of problem they pose to an architect using

the ACME Studio with the style. As the purpose of the style is to facilitate mismatch detection

it follows that we may rank these issues in terms of their effect on the accuracy of the mismatch

detection. The two false results with the least significance on this scale are the hidden omission and

hidden commission. These are the least significant issues as the architect may accept that they exist

and know that correcting the current set of reported mismatches may result in previously hidden

instances being revealed. If this process is repeated then eventually all instances of these mismatches

will be revealed and can then be corrected by the architect. The potentially false omission issue is

also at this level of significance as it can be worked around by removing all commission mismatches

before addressing any omission mismatches.

The omission partial match/mismatch issue would appear next in the significance order. For the

architect to determine if the reported mismatch is in fact a partial match requires the examination

of the ’in our control domain’ property of the port that should have sent the message. So if the

port expecting the message only has a single connector attached then this can be done with ease.

The difficulty arises if there are multiple connectors attached to the port, in which case it may not

be possible to identify which other component was being interacted with and should have sent the

message.

The most significant of the issues is the false commission/hidden omission false result. This

has been placed at the top of the list as there is no simple approach to addressing the issue as it

requires an understanding of the CSP descriptions of a component and the system to diagnose its

existence. Fortunately this issue can be removed from the style by an adjustment of the analysis

code as described in Section 6.3.4.

The final issue listed above is given a separate treatment as the problem it miss-reports is the

failure to populate a property rather than a mismatch that would appear at run-time. The problem

associated with it failing, i.e. it reports that the string property is populated but does not report

some fault in the value of that property, is that there is no systematic process for discovering the

nature or location of the fault. For this reason it is considered to be a potentially significant false

result due to the time that may be lost in diagnosing it. As stated above, this issue could be removed

by adding further analysis classes to parse the string properties and check for consistency with any

other related properties, such as port names being typed correctly.

The above list was populated from notes made during testing and evaluation of the style and so

is complete in that sense. There may of course be other issues that have not yet been discovered

161

but it is hoped that the testing revealed the most prevalent items.

6.4.4 Meaningful Results

Another view that can be applied when assessing the enhanced style regards how meaningful are the

results of the analysis. The results presented within ACME Studio itself take the form of a three

value boolean that equates to passed, failed or indeterminate, where this latter value indicates there

was some problem evaluating the rule.

The rules within the style can be separated into two sets based upon their implementation

method, those that are implemented entirely using the built in Armani predicate language and those

that use the external analysis facility to some extent. These should be separated as the opportunities

for providing a meaningful result differ vastly between the two. The first group examined are those

that only use the Armani predicate language and so can only respond with a boolean value, then

the rules using the external analysis and therefore able to output text files with detailed results will

be examined.

In both cases the rules will be classified as being “OK” or “Expansion Required”. The second

grouping implying that, perhaps the meaning of the mismatch in terms of the course of action that

could follow is not clear. In this latter case, some description of why the description falls short is

provided.

6.4.4.1 Armani Only Rules

A great number of the Armani rules that were considered to be OK were concerned with checking

that the properties were populated, but this set also included some of the mismatch detection rules.

However, the boolean nature of the Armani rule output combined with some limitations of the

language mean that several of the rules fall into the expansion required classification, these will be

detailed now.

Component Rule: Central Process Described This rule checks that the string property is

populated, however this property contains one of the CSP descriptions of the system and so

even if populated the contents could be both syntactically incorrect CSP and also inconsistent

with the other CSP properties in the component.

Port Rule: Message pattern populated This rule checks that the string type property, message

pattern, is populated. This contains the other parts of the CSP model mentioned above and

it potentially suffers from the same problems, that a positive result can be achieved while it

contains an incorrect and inconsistent CSP description of that part of the component.

Connector Rule: Matching end points The purpose of this rule is to confirm that two con-

nected ports share a pair of protocols to encode and transport the messages they exchange.

162

The rule returns a positive result if there is one or more shared pairs of protocols, however

this does not indicate which pairs of protocols match. This mandates a manual examination

of the related data structures in both ports to determine which protocol pairs can be used.

Port Rule: End points addressed A second rule relating to the end points aims to ensure that

there is an address defined for each end point. The rule simply counts the number of end

points and addresses and returns a positive result if they match. A fail result then is caused

by a difference in the cardinality of the end point addresses and end point protocol sets, while

this could also be the result of multiple end point addresses employing the same protocol pair.

Connecting the end point protocol and point address data structures would facilitate a more

meaningful result if external analysis were employed and would also provide extra data to

improve the results of the previous rule.

Connector Rule: Failure mode assumptions This rule compares the expected and exhibited

failure modes of a connected pair of ports. A fail result is returned if either of the exhibited

sets is not a subset of the opposing expected set. The expansion opportunity would be to

indicate which failure modes are missing from the expected set rather than expecting a manual

examination of the sets as the current rule does.

Port Rule: Has WSDL This is another rule checking that a string property is populated. Again,

if parsing were possible, then the rule could differentiate between the property being devoid of

a value and it being an incorrect url. Another possibility is that a future implementation of

this style could include a rule that verifies the stated url of the WSDL document by fetching

it.

Connector Rule: Connector creation/destruction assumptions This rule gives a negative

result if any of the four connector creation/destruction assumption properties do not match.

The improvement here would be to indicate which properties formed the basis for the mismatch

and what their values were, again this is to remove the need for manual inspection of the model

following the analysis.

Component Rule: Component has the right type of ports This rule confirms that a com-

ponent is populated with ports that satisfy the types it should have, the rule returning a

negative result if any of the ports are incorrect. At first glance this appears to be another

instance of a rule failing that requires the inspection of, in this case, the declared port type.

However this is not necessarily so as the rule can be passed so long as the ports hosted by

a component have the correct properties and pass the rules of the required types, they do

not have to declare the type. Thus, to reduce the effort involved in searching, it would be

163

advantageous if this rule reported back which port types were missing or which specific ports

failed to meet the requirements.

System Rule: Contains the correct component types This rule is similar to the above, how-

ever in this case the rule should return the identities of the offending components.

System Rule: Contains the correct connector types As above, but with the identities of the

offending connectors listed.

6.4.4.2 Armani and External Analysis Rules

The external analysis method of performing analysis involves the creation of Java plug-ins compatible

with the Eclipse environment on which ACME Studio is built. So while these analyses are limited

to returning a boolean response to the user within the ACME Studio environment, they can also

output further detailed explanations, in this case, through plain text files. As such, when considering

the output of each analysis, it was found that the vast majority of them, 13 out of 15 classes, did

produce output that could be used to direct corrective actions. A description of all the analysis

outputs can be found in Appendix F.2 starting on page 310.

The two analysis classes that return an output that would benefit from some expansion are

both involved in the omission analysis, one detecting mismatches and the other reporting on partial

matches. The output takes the form of the trace followed by the component in focus up to and

including the omitted message. While this informs the user about the behaviour of the component

in focus it does not give any detail about the behaviour of the surrounding system other than that

it is unwilling to send the missing message at this point.

In a system consisting of two components both with single conversational threads, then it would

be possible to determine the behaviour of the other component based upon the trace information.

However this task increases in difficulty as the number of components and conversation threads

increases due to the number of traces that need to be explored. Some tool support to assisting with

the exploration of system traces leading to the refinement failure point could greatly assist with

understanding the state of the other components in the system and from that potentially lead to

solutions to the mismatch being derived.

6.4.5 Scope of the Enhanced Style

In Section 2.2.3.3, page 30, a definition of architectural specification by Eden and Kazman [EK03]

was presented where architectural characteristics were said to be intensional and non-local. An

aide-mémoire to the definitions and their example is given below:

Intentional specification a specification is intentional if it can be satisfied by an unbounded

number of programs.

164

Non local specification a non- local specification is one that it can be satisfied in “some corner”

of a program without being affected by what the rest of the program is like.

The example Eden and Kazman gave was a layered architectural style with two rules.

Evie
G

amble17
.9

.2
00

9 each element must be described in exactly one layer

Evie
G

amble17
.9

.2
00

9 each element may only depend on elements in the same layer or lower layers

This style meets their definition of architectural specification as there are an unbounded number

of programs that may meet the specification (intentional) and any one component failing to meet

the second rule means the system as a whole is not correctly characterized by the style (non-local).

The focus of this part of the evaluation is to discuss whether the mismatches presented in this

thesis are also intentional and non-local in nature and so can justifiably be termed architectural

mismatches.

Non-local

The above layered style could be altered to include a “layered element” component type, then this

component type could include the two rules regarding where an element is described and which

components it depends upon. The style would then need a rule stating that all elements need to

satisfy this type for the system to be considered correctly layered. The modified style is shown

below:

Evie
G

amble17
.9

.2
00

9 layered element rule - this element must only be described in exactly one layer

Evie
G

amble17
.9

.2
00

9 layered element rule - this element may only depend on elements in the same layer or lower

layers

Evie
G

amble17
.9

.2
00

9 all elements in the system must satisfy the type layered element

This style is identical in effect to the original one in that any one component failing to meet either

condition will result in the system not meeting the requirements of the layered style specification.

In this respect, the web service architectural styles presented in this work are identical to the second

style. Both web service styles define component and connector types containing rules that must

be respected for the architectural elements in the system to satisfy their types, also both styles

contain global type checking rules requiring that all elements in the system respect the component

or connector types defined. So if a single component or connector fails to meet the requirements

of the element type then one of the global type checking rules will not be passed and the system

as a whole will not be considered to meet the requirements of the web service style. Therefore,

even though many of the rules in the style have a local scope, some even just considering properties

within a single port, the overall style can be considered to be non-local in nature.

165

Intentional

The layered style example was said to be intentional as it could represent an unbounded number of

programs Eden and Kazman stated that this was obvious [EK03], but it is presumably due to there

only being a single constraint on the elements run-time properties, specifically that it only depends

on elements in layers below it. The layered style therefore imposes no constraints on the variables

representing the inputs to the elements, their internal processes or their outputs, so these could be

said to be free.

The enhanced architectural style does include properties and rules relating to both the inputs

and outputs of each component in terms of their data types, semantics and choreography but it does

not enforce any bounds on these, for example there are no bounds on the number or semantics of

the data items input or output by any port. There are bounds on the pattern of messages that may

be exchanged by any one port, but since there is no upper limit to the number of ports a component

may possess and those ports may be linked together to form longer patterns of message exchanges it

follows that there are no bounds on the number of program models a component in the style could

represent. Furthermore, the style places no limits on the number of components that may exist in

the system.

At the same time, there are a number of characteristics that are tightly constrained, such as

the message transport and encoding protocols a port may employ, these are limited to a number of

versions of HTTP and SOAP respectively. It would be fair to say that the choice of using, for example

HTTP 1.0 or HTTP 1.1 as the transport protocol, is an implementation level specification as it is

potentially local to an individual port and constrains the port to some degree. The same argument

could also be applied to the port property describing the choice of SOAP versions supported by a

port.

The argument then is that while the components are constrained in certain aspects of how they

communicate they are not constrained in terms of what they communicate or how they process

that data and so can indeed represent an unbounded number of program models. Based upon this

argument it is fair to say that the enhanced architectural style presented in this work is justified in

using the architectural term with respect to the majority of the analyses performed, while at the

same time it is arguable that the implementation level characteristics could be removed from the

style to leave a model that is more purely architectural.

6.5 Summary

The minimal style showed that it is capable of representing a system and detecting the classes of

mismatch within its scope and so in some sense it meets its requirements. However, as discussed in

Chapter 5 the data structures employed were poor as they required data replication which introduces

166

the possibility of inconsistency.

This chapter then showed that the enhanced style is also capable of representing a system and

detecting mismatches within it. In this case the system was drawn from the literature and it demon-

strated the style’s ability to support related work by detecting existing mismatches and confirming

that they were removed in the final configuration.

The additional smaller tests raised some key points about the analysis with respect to imple-

mentation assumptions and the external model checker employed. Both of these issues can be either

corrected by modifying the source code of the analysis plug-ins or by employing the “commission

before omission” principle.

Assessing the style from a depth viewpoint informed us that while the majority of the analyses

included in the style could be performed manually, there are two distinct benefits of employing the

style. Firstly, the task of performing the commission, omission and multi-threading analyses is not

practical for a non trivial system without the aid of tool support. Secondly, the number of individual

properties and mismatches to consider would make mistakes a distinct possibility.

In terms of dependencies it was seen that a large number of the analyses were being artificially

delayed by an implementation decision, potentially increasing repair costs if mismatch is found. This

again could be corrected by adjusting the analysis source code.

The results were found to be mainly meaningful, especially when the external analysis was

employed. This raises the question about whether the decision to employ external analysis should

only be based upon complexity of the analysis and whether a reasonable Armani predicate can be

formed, as was the case when developing the style or whether the detail desired from the results

should also play a part.

Finally, with respect to false results: some can be adjusted by correcting the analysis source

code, while others that stem from the FDR model checking output can be mitigated by following a

procedure.

With the styles assessed, it is now possible to consider what future work exists in this area, the

details of which will be discussed in the following chapter.

167

Chapter 7

Further Work

The future work below is divided into two sections, the first discusses details of future directions for

the enhanced web service architectural style, while the second section touches on work relating to

the SOA aspects of the thesis.

To guide the reader potentially interested in performing any of the future work. the description

of each item is followed by a brief discussion of both its value to the work and the type of effort that

is believed to be involved. The value is divided into one of two categories. Substantive modifications

are those that would yield improvements in the analysis performed by the style, while assistive

modifications aim to improve the experience of using the style. It is not easy to determine the

exact effort that would need to be expended to implement the modifications suggested and so each

modification is placed into one of three time scales in which it is believed each could be achieved,

these are weeks, months and years. Table 7.1 groups all items of future work presented in this

chapter in terms of their estimated value and time to perform.

7.1 Style Related

7.1.1 Static Properties

During the analysis of the enhanced style a number of properties were identified as areas for potential

improvement:

Connector Creation and Destruction the characteristics here describe which participants in

a connection have the privileges to create or destroy that connector. It may be the case

however that those privileges are not static but are instead dependant on the state of the

component or point in the conversation taking place. A means for modelling each components

assumptions about states a conversation may adopt in such a way that allows models from

different administrative domains to be compared could allow the creation and destruction

characteristics to be more realistic.

168

Substantive Assistive
Weeks • False Commission

• Explicit Data Mapping In Messages
Exchanged

• CSP Unparsed
• Unique Process and Message Names
• Case Sensitive Analysis Code
• Exception Garbage Collection
• Empty String Test
• Sends First/Receives First
• Mismatch Reporting

Months • Data Continuity
• Connector Creation and Destruction
• Omission Mismatch Pessimistic
• Commission and Omission, Fault

or Failure?
• Multiple Component Threads
• Multiple Workflows
• Loop Bounding
• BPEL
• Overlapping Choice Groups
• Characteristic Publication

Years • Data Semantics
• Failure Modes
• Number of Traces Returned
• Missing Properties

Table 7.1: The estimated value and time to perform each of the items of future work discussed in
this chapter.

Again this would represent a substantive improvement on the current situation, allowing a

more realistic representation of when components expect to create and destroy connections

therefore increasing the accuracy of the mismatch detection. It is envisaged that suitable

models for describing this property and the associated analysis could be achieved on a time

scale of months.

Data Continuity this characteristic is represented as an enumeration with two polar values, spo-

radic and continuous without them having any rigorous specification. This leaves this charac-

teristic open to interpretation and weakens the single mismatch analysis result based upon it.

This characteristic would therefore benefit from a more precise definition, one possible basis

for this description would be to make explicit the Time Bands [BB05] that each component is

using as its point of reference.

This would be a substantive improvement to the work as it would increase the expressiveness

of the property and therefore potentially the accuracy of the mismatch result. It is envisaged

that a suitable model for this property and the associated analysis could be achieved on a time

scale of months.

Data Semantics the semantics in this work are simply represented as strings, and data semantics

are compared by performing a string comparison, with string equality indicating semantic

169

equivalence. This does not allow for any subsumption to be taken into consideration. For

example, a car is a type of vehicle, in the current style this semantic similarity would be lost

as the two strings are not equal. The future work here then would be to consider the use

of an ontology language such as OWL [W3C09] to allow for such relationships to be better

described. The addition of semantic relationships could allow for a greater range of mismatch

results indicating the degree of semantic separation between two concepts.

The implementation of this item would improve the validity of the work by allowing the use of

globally accepted or domain specific ontologies to determine the conceptual closeness of data

items exchanged and so it is categorised as substantive. At the same time its reliance on

both the generation of the ontologies and the means to determine how close concepts in those

ontologies put it firmly in the years category for development time.

Failure Modes the failure modes exhibited and expected are chosen from the set of service failure

modes presented by Avizienis et al. [ALRL04]. The question is whether these are sufficient and

appropriate for an architectural description, or too abstract. If the latter is the case then what

would be the next level of refinement. Also, the failure modes are considered currently on a

point-to-point basis only, so each pair of connected ports must have compatible assumptions

regarding the failure modes that may occur between them. This ignores the possibility of the

failure being handled correctly by some other component in the system. For example, if a

system consists of three components, A, B and C connected in a chain and A sends a message

containing a content failure to B, then even if B cannot handle or detect the failure C may be

able to, so the system as whole has some protection in the face of this type of failure. The

addition of a model of failure handling and propagation could lead to a more realistic view of

the system’s fault tolerance as a whole.

The ability to determine how failures would propagate through a system would certainly be a

substantive improvement on the current situation, but it is envisaged that it would require

a considerable effort to achieve, putting it into the years category for effort.

7.1.2 Model Checked Properties

There are also a number of improvement opportunities relating to the description and analysis of

the dynamic properties within the style:

Omission Mismatch Pessimistic The nature of the model checking used to detect omission mis-

matches means that the expected sender of a missing message is not known. This means the

analysis can only know whether the receiving port is inOurControlDomain or not when de-

termining if there is an omission mismatch or omission partial match. The other port is then

170

assumed not to be within our domain of control. If the port that should have sent the message

was known then its domain of control could be found allowing the mismatch to be correctly

evaluated. With a change to the analysis source code, this could be achieved for those cases

where there is only a single connector attached to the port experiencing the omission, however

it is not currently possible where multiple connectors are attached. A means for handling with

these latter cases would improve accuracy.

This improvement would increase the accuracy of mismatch reporting, its main benefit being

that it would remove any time lost by the architect attempting to correct the mismatch by

altering the wrong component. This modification is placed in the substantive category rather

than assistive as the time spent trying to correct such a mismatch by altering the wrong compo-

nent could be considerable. In terms of time it is hoped that a method for its implementation

could be determined on the months scale.

Commission and Omission, Fault or Failure? Faults in systems lead to error states and if

these are not handled they emerge from a component at which point it is said that a fail-

ure has occurred [AL81]. Commission and omission mismatches are detected when the model

checking finds that an extra message is sent or an expected message is not received, these

events along with the traces that lead up to them are then reported. However in both cases

it may be that the commission or omission event is simply the result of following a branch in

the conversation where the decision to follow that branch was made several steps earlier. In

these cases, commission and omission may be described as failures of the system rather than

a fault within it, the actual fault being the ability to follow the conversation branch leading

to that point. The future work here then would be to support walking back along the trace to

find the decisions made to reach this point and in doing so reveal the actual fault.

As above, the main benefit of this improvement is to reduce the time an architect might

spend in tracking down the root cause of the mismatch, so again this is classified as being

substantive and on the months time scale.

Multiple Component Threads Mismatch cc5 in Chapter 5 required that the number of con-

current threads present in a component be monitored. While the port CSP templates were

modified so that concurrent threads in an individual port could be detected this does not yet

support the detection of multiple threads in an individual component. The detection of the

potential for a component to experience multiple threads spread accross a number of ports

becomes important if those ports share a resource that is not protected against concurrency

related problems such as race conditions. Additional modifications of the port CSP templates

may allow this mismatch to be detected.

The style is currently unable to detect the presence of this mismatch type so its definition of

171

the properties and related analysis would certainly constitute a substantive improvement. It

is envisaged that, as was observed during the development of many of the CSP part of this

work, a modelling solution and analysis could be determined on the time scale of months.

Multiple Workflows The port CSP templates all specify the next process or port to be followed

once a port’s message exchange pattern is complete. The result of this is that if there are two or

more conversational threads within a component that make use of a common port, then these

work flows are forced to exhibit the same behaviour after passing through the common port.

A means for separating out the work flow from the port CSP templates while maintaining the

“cooperative choice” principle would help in this respect.

The addition of multiple workflow support would increase the expressiveness of the style and

so would constitute a substantive improvement over the choreographies currently possible

using the style. Again it is envisaged the modelling and analysis solution could be determined

in months.

Loop Bounding The current means for defining loops within the style does not support any bound-

ing on the number of iterations. This might be supported using a separate work flow, as

required above, to constrain the number of iterations performed.

As above, this would improve the expressiveness of the process modelling and so is also cate-

gorised as substantive and on the months time scale.

BPEL A number of the works cited in Chapter 2 relate themselves to the business process language

BPEL [JE07] and the choreographies it is capable of expressing. Any future work on describing

the conversations expected by a component should also be performed in the light of, and

assessed against, this language to gain confidence in the completeness of the choreographic

assumptions the style can express.

This would be a substantive addition to any work due to the confidence it could garner. It is

reasonable to expect that acquiring the required understanding of BPEL and then performing

a comparison of what choreographies the style allows against what BPEL supports could be

completed in months.

7.1.3 Style Implementation

The final group of future work possibilities all stem from the approaches taken and decisions made

during the implementation of the style and its analysis.

False Commission The existence of a false commission result stems from the commission and

omission analyses not differentiating between messages sent by a component and those received.

Correction of this simplification would remove this false result.

172

The correction of the external analysis to remove this issue would yield an improvement in

the accuracy of the mismatch results returned and so it is listed as substantive. The under-

lying fault causing this issue is known and was discussed while demonstrating the stubborn

connectors, Section 6.3.4, as such the implementation could be performed on the weeks time

scale.

Explicit Data Mapping In Messages Exchanged The data in messages sent and received by

a pair of ports are matched automatically based upon their declared semantics, once matched

they can then have their data types and state scope assumptions compared. An alternative

to this would be to manually describe the user’s intended message data mappings in the

connector. This would make the mappings explicit, an improvement on the current system

where the mappings upon which the analysis is performed are not revealed in their entirety to

the user. This would, of course, be at the cost of extra time declaring the mappings. A second

option that could reduce the time cost would involve automatically generated data mappings

that are revealed to the user within the tool environment for confirmation or adjustment. The

first option of manual data mapping is possible currently within ACME Studio while the level

of interaction between the user and the analysis rules required by the second option does not

appear to be supported by ACME Studio at this time.

Either of the above options would constitute a substantive improvement to the style as they

both reveal information that is currently hidden and either one could be implemented in weeks

requiring only modifications to the style and/or modification to the related external analysis.

Overlapping Choice Groups The analysis code associated with multiple connections to a port

assumes that each port will only be a member of a single choice group. It is conceivable that

in a system with diverse work flows there will be ports that are members of multiple groups.

A means for both representing and modelling such situations for analysis would be required

to support this.

The addition of this feature would increase the expressiveness of the style and allow the rep-

resentation of choreographies that the current CSP cannot, therefore it should be considered

substantive. It would require modification of the CSP models and related external analysis

so it is envisaged that it could take months to design and implement.

Number of Traces Returned A number of comments were made during the evaluation of this

work that the model checker used was not returning all deadlock and refinement traces that

one might expect of a model. This is despite, apparently, supplying the command line interface

with the parameters for it to return the first 100 examples. While it is not possible to define

a required number of traces and guarantee capturing all examples, receiving 100 would have

173

allowed many more omission and commission examples to be reported by the analysis. A

means for obtaining a more complete set of traces should be investigated.

This improvement is unique as its implementation is outside the control of the author, poten-

tially requiring a modification to the FDR model checking tool itself. This makes the required

effort an unknown, so a worst case is assumed and it is placed in the years category. Its im-

plementation would certainly yield benefits to the analysis as the architect would be presented

with a more complete view of the mismatch situation and so may be better able to choose the

best correction strategy. This item is therefore listed as substantive.

CSP Unparsed The CSP descriptions are included as a string property in the model and are

not parsed for syntax errors by either ACME Studio, which offers no such facility, or by the

analysis itself. Parsing of the CSP would allow for constructive comment to be included in the

exceptions output by the external analysis when the analysis is unable to construct a model,

rather than attempting to process a flawed model and returning an unprocessed exception as

is currently the case.

This does not add to the expressiveness of the style and so is an assistive item. Its imple-

mentation as an external analysis plug-in could be achieved in a matter of weeks.

Unique Process and Message Names The process and message names used in the CSP must

be guaranteed unique by the user of the system. This task could, however, be automated by

processing the CSP descriptions during construction of the system models.

As above, this modification is assistive in nature and a CSP pre-processor to ensure all process

names were unique could be implemented on the weeks time scale.

Case Sensitive Analysis Code ACME Studio allows a characteristic to be declared in a model

where the identifier string differs in terms of case from the characteristic declaration in the

style. The interfaces provided within ACME Studio, that the external analysis use, however are

very much case sensitive. The case sensitivity could be reduced by handling certain exception

types when accessing the ACME model and performing the string comparisons after conversion

to lower case.

The removal of the case sensitivity of the external analysis is an assistive improvement and

could be performed on the order of weeks.

Exception Garbage Collection Much of the external analysis is dependant on an ACME model

being completely defined, otherwise exceptions are raised. These exceptions exist as files and

are not currently cleared once the exception no longer exists. Automating this would give

confidence that a model is correctly specified.

174

This is a purely assistive improvement as the same effect can be achieved by the author

deleting the exception files periodically, it could be implemented in within weeks.

Empty String Test In several rules the statement X!=‘‘’’ is used to confirm that a string prop-

erty is not empty. This was carried over from the minimal style, developed in ACME Studio

2.2.9b where it worked, and was reused in the enhanced style that was developed in ACME

Studio 3.2.0 where it does not capture empty strings. An alternative approach should be found

to confirm string properties are populated.

If we assume that the problem is not corrected by the developers of ACME Studio itself, then

an assistive external analysis function to perform the same check could be implemented within

weeks.

Mismatch Reporting The external analysis currently outputs any details regarding a discovered

mismatch into a text file whose name is derived from the element ID and mismatch rule that

was not passed. A potentially more convenient way of reporting this information would be

to employ a view within ACME Studio, which after all is based upon Eclipse and supports

plug-ins, and display the mismatch details there.

This would not reveal new information to the architect but would make it potentially more

convenient to find, it is therefore assistive and could be implemented in weeks.

Sends First/Receives First These port properties are a part of the message exchange pattern

analysis that is retained from the minimal style and was incorporated into the enhanced style

analysis. However since the enhanced style now includes an explicit message exchange pattern

identifier at the head of the port CSP, these are now redundant and should be removed from

both the Armani and External analysis.

The removal of these redundant properties can be at most assistive as it would save the time

needed to populate them. It is near trivial to implement and could be performed well within

weeks.

7.2 SOA Related

7.2.1 Characteristic Publication

There are two parts to the publication of characteristics that would be of interest following this

work.

The first would consider if and where the characteristics presented are available in the numerous

web service description languages and, if they are, in what form do they exist.

175

The second part is based upon the assertion implicit in this work that these characteristics are

important for detection of mismatches at composition time and so should be made explicit in the

standard description of a web service component. From this, a study of where to and how to include

these characteristics in a future version of WSDL could be of value.

This would be a substantive addition to the work as it may guide the architect to find the

information required by the style that is currently not included in the WSDL specification. The

development of a map of where the data could be found would require the examination of the many

types of document that may be used to describe various aspect of web service components and so

might be completed in a matter of months.

7.2.2 Missing Properties

A number of system characteristics were conspicuous by their absence from the works on architectural

styles used as sources of properties to include. Most notable of these were the various dependability

characteristics such as security, availability, reliability etc. Security is touched upon in the style

in the form of the state scope assumptions, but this is a small part of security at best. Inclusion

of such characteristics would greatly increase the coverage provided by the style presented and in

doing so give a greater confidence in the composed system. It may be the case though that an

application component may not specify its quality of service requirements, these instead might be

specified elsewhere, perhaps as part of a contract between a service provider and client.

If such characteristics were added to the style along with the required analysis then this would

surely be a substantive improvement, yielding a wider variety of mismatches than the current style

supports. The definition of the characteristics of these properties, many of which could be considered

non-functional is an open problem [PF10] and so is put firmly in the years time scale.

176

Chapter 8

Conclusions

This thesis set out to answer three central questions relating to architectural mismatches and SOA.

Firstly, Is the stipulated description of Web Service components sufficient to allow detection of all

relevant architectural mismatches? In this respect Chapter 3 showed that the minimum description

required of Web Service components does allow some mismatches to be detected but comparing

these to the mismatches identified in Chapter 4 reveals that it certainly does not allow detection of

all relevant mismatches.

The second central question then asks, If not, then what properties should both the services and

the clients that use them make explicit to allow all relevant mismatches to be discovered? The

mismatches identified in Chapter 4 were used to drive the development of an Enhanced Web Service

Architectural Style in Chapter 5. This style addresses the question by providing descriptions of

client, intermediary and service components including all the properties and analysis required to

allow detection of the majority of the identified mismatches.

The final central question focussed on the means for representing the systems and performing the

analysis, are architectural styles a suitable approach to support the represention and analysis of Web

Service compositions for mismatch discovery?. In this respect the architectural style acquitted itself

well in the roles of providing guidance regarding the properties to be considered and then reporting

on the results of the analysis. If a number of the suggestions in Chapter 7 were implemented then

one could imagine such a system forming a useful tool for a Web Service composition process.

177

8.1 Key Contributions

The key contributions of this thesis can be summarised as follows:

Mismatches this work has presented two sets of mismatches. The first set are those that can

be detected using only the standard WSDL document. The second set was derived from the

architectural styles community literature. From this we were able to see the areas in which

WSDL falls short.

Representation the enhanced architectural style presented in this work included example repre-

sentations of the characteristics required to detect the above mismatches. These range from

simple strings and enumerated sets to templates allowing the use of the CSP formalism to

depict the conversational expectations of a component.

Detection to accompany the characteristics, the means for detection of each mismatch was pre-

sented with both a mathematical description and an example implementation in both ACME

and Java where appropriate.

Demonstration both example scenarios and specially designed test system were used to demon-

strate the effectiveness of the mismatch detection.

The contributions of this work show that while there is an overhead for the designer of each com-

ponent, related to the additional characteristics they would need to populate in the component’s

description, there is a definite gain in terms of the scope of mismatches that can be detected. The

demonstrated mismatches represent significant potential problems, such as the designer misinter-

preting the semantics of the data exchanged in a message or the failure of a component to exchange

messages as expected. Therefore it is suggested that the standard description documents for web

services in particular or SOA in general need to take into account the properties proposed in this

thesis, then tool vendors can consider including the analysis required to autonomously detect the

mismatches during system composition.

8.2 Architectural Styles and Results

The thesis started by describing a Minimal Web Service Architectural Style in the ADL ACME

and making use of the ACME Studio environment with its predicate language, Armani. This style

included the significant properties available in a WSDL document and facilitated the representation

of web service components architecturally. However it is not possible to detect architectural mis-

matches without also having some representation of the client components that use the services, so

the style includes support for these and in doing so provides guidance to an architect regarding the

178

properties to consider. A third type of component, an intermediary, is also included to represent

those components described in the literature that offer a brokerage type service or mediate between

incompatible components.

It was demonstrated during the evaluation that the style facilitates the detection of all those

mismatches that can be made explicit using the minimal web service description.

The work then returned to the literature to determine a group of architecture characteristics

deemed important for interoperability. This group was then reduced to reveal the subset that is

significant in the scope of SOA. This resulted in some 20 separate mismatches found that could be

relevant between an SOA component and its client.

The first use of these is to confirm the first thesis that “It is not possible to detect, at configuration

time, all architectural mismatches in a system comprising of web services given only the minimal

web service description and specifications”. This is simply demonstrated by the mismatches found

to be significant to SOA covering areas that the minimal style and WSDL do not touch upon.

The second use of the newly found mismatches, along with those highlighted from the work on

the minimal architectural style was to drive the development of an architectural style that would

facilitate their detection. The resulting Enhanced Web Service Architectural Style was certainly an

improvement over the minimal style in terms of both representation of properties and coverage of

mismatches detectable, however even this style did not detect all of the mismatches listed. The four

mismatches that still cannot be detected are:

cp8 Mismatching state maintenance assumptions;

cc4 No component has an active thread of control;

cc5 Concurrent threads in single thread only component; and

cc7 Mismatching process distribution assumptions.

Of these it is believed that cp8 could be included if the architectural model contained a state

view of the components, however ACME Studio does not support such a view. Cc7 could also be

detected if a view mapping service components to physical hardware and networks were available.

An analysis rule could have been produced to detect a system where no component starts with

an active thread of control, however this would be partially redundant as such a system would also

report omission mismatches on all ports expecting to receive a message. Finally, it may be possible

to detect cc5 with further development of the CSP templates used to represent the port message

exchange patterns and the construction of an appropriate external analysis class.

One success of the enhanced style is its employment of templates to represent the message passing

assumptions of the component ports and component threads of control in the process algebra CSP.

179

This allows the style to use the formal method along with the model checker, FDR, to detect

mismatches caused by the emergent message passing behaviour of the system.

Based upon the above then it is not possible yet to confirm that the second thesis statement is

true, though the hope is that with further development it could be possible to both describe the

required properties and detect all the mismatches found relating to SOA. However, the enhanced

style was still shown to have value by both detecting mismatches and then confirming their removal

in a case study drawn from the literature.

While it is true that a small number of mismatches escaped the style and some of the analysis

it includes could be improved in terms of the results returned, it does show that a style can be

used, within a suitable environment such as ACME Studio, to detect mismatches and also provide a

rigorous description of the properties an architect should consider when composing such a system.

8.3 Generalising

In more general terms, the style based approach worked well. It was found while building the

examples that having a list of characteristics to populate allowed energies to be focussed on the task

of deciding what values were appropriate rather than having to consider what properties should be

included. While using ACME Studio it was found that the majority of time was spent creating the

system model and populating the characteristics with values, the resulting analysis then taking very

little time in comparison. This was partly due to all properties being manually populated, when in

a more mature tool-kit one might reasonably expect to be able to import a complete Web Service

description from perhaps some future version of WSDL or another service description language.

Alternatively, if a component such as a client is being developed, then there may not be a complete

description to import from. In such cases an improved user interface, possibly based upon the

software wizard paradigm, could be employed to assist with the construction of the more complex

data structures, such as the message definitions in the enhanced style.

While the styles presented in this thesis handled well the systems they were faced with, these

systems were all constructed with the style in mind and did not, for example contain multiple styles

like the pipe-and-filter and shared-data that exist in the example system in Figure 2.2 on page 15.

If a style based approach were applied to such a system then it is at least plausible that the different

styles employed may have contradictory specifications regarding individual characteristics. Careful

design of the environment and possibly also the styles themselves, may be required to properly

highlight such contradictions and also allow the suppression of warnings raised by whichever style

constraints are ignored as part of the solution to the mismatch.

180

8.4 Reflections upon the Work

The author has heard it said that no PhD thesis is perfect, and this one is no exception. There now

follow a short list of reflections upon the work performed in conducting this research.

The formalism CSP features very heavily in the choreographic properties and analysis in the style

and for the most part it performs well. At the same time it is fair to say that the effort expended on

adding a sort of state to the model to allow some of the analysis far outweighed the effort required

to produce the basic CSP capable to representing the message exchanges between components. For

example, it was necessary to determine methods to alter the basic CSP to support the detection

of multiple threads in a port and also to ensure that messages were sent to the correct component

when multiple components were connected to the same port. The efforts stem from CSP not having

a natural mechanism for storing state.

One possibility for taking a different approach would be to have considered using a different

formalism once the difficulties associated with using CSP became apparent. A distinct possibility

for an alternate formalism would be Coloured Petri Nets (CPN) [Jen03]. CPNs are an extension

of the standard Petri Net that allows the tokens to contain variables representing their state, these

variables are known as the token’s colour. Colouring could be used to record which component a

message should be directed to if there are multiple components attached to a port. Colouring may

also allow the implementation of multiple workflows for a component by using the colour to indicate

which flow a token is following.

A second aspect of the work that would be altered with hindsight is the order in which the

mismatches were tackled during the development of the enhanced style. The mismatches were

attempted roughly in order of the assumed complexity of their representation and analysis. This

left the more complex properties requiring the largest external analysis plug-ins till last. A PhD is a

time limited project and so following the above method does not ensure that the highest value work

is performed before the time expires, indeed it is only by virtue of the author securing a research

position that the choreographic aspects were given more than a token treatment. The alternative

approach would have seen the properties ranked according to their complexity and potential value

to the project such that high value mismatches, in terms of their interest and contribution, could be

attempted early on and the more trivial mismatches left till later.

The final reflection that will be made relates to the validation and motivation for the work. The

subject of the thesis was derived from two sources, the author’s previous masters research in the

area of SOA and the supervisors’ previous research on architectural mismatch. This resulted in

work that had interest for both parties and was a pleasure to work on, but it meant that the work

was not initiated by a concrete motivating example. The examples cited in Section 2.2.3 all relate

to the problem of architecture mismatch but the literature did not yield documented examples of

181

it occurring in the domain of web services. So while this work shows that the problem is possible

in the web service domain, an actual concrete example would make for a more convincing case and

would also help when describing the research to colleagues.

The lessons learned by the author from the above reflections could be summarised as

Evie
G

amble17
.9

.2
00

9 Don’t commit a path until it is necessary to, try to keep options and implementation details

open

Evie
G

amble17
.9

.2
00

9 Plan work according to the value it will return

Evie
G

amble17
.9

.2
00

9 Work is ideally based on concrete examples

8.5 Final Conclusions

The overarching conclusions of this work are:

Evie
G

amble17
.9

.2
00

9 The basic description of Web Service components is lacking important properties that are

required to employ them with confidence;

Evie
G

amble17
.9

.2
00

9 Client components also need to have explicit descriptions if compositions are to be analysed

for mismatches;

Evie
G

amble17
.9

.2
00

9 An architectural style can provide the support needed to detect mismatches and, if coupled

with tools such as ACME Studio together with some of the suggested interface improvements,

could form a valuable part of a Web Service composition tool kit;

Evie
G

amble17
.9

.2
00

9 The enhanced web service architectural style itself provides extensive definitions of the prop-

erties required, for client, intermediary and service components, to permit mismatch detection

by the analysis also described within this work. Additional investigation into the missing prop-

erties highlighted in the Future Work chapter can only serve to increase the confidence gained

by employing the style to assess a SOA system composition for architectural mismatch.

182

Chapter 9

Glossary

ADL Architecture Description Language

Architectural Mismatch A situation where software components in a system make different and

incompatible assumptions about the system they will be in

ASCII American Standard Code for Information Interchange

BPEL Business Process Execution Language

CBSE Component Based Software Engineering

Component A software component is a locus of computation and or storage in a system.

Connector A connector provides a conduit through which data and/or control may flow between

components

Configuration A specific set of components, connectors their properties and the topology they

form.

COTS Commercial Off The Shelf. A term given to software components purchased as is, without

specialisation for the buyers purpose

CPN “Coloured Petri Net”. A modification of Petri Nets that allow the tokens to contain state

variables.

CSP “Communicating Sequential Processes”. A process algebra for describing patterns of interac-

tion between systems.

EFA Extended Finite-state Automata

FDR A CSP model checking tool produced by Formal Systems (Europe) Ltd.

http://www.fsel.com/software.html

http://www.fsel.com/software.html

183

FSP Finite State Process

GUI Graphical User Interface

HTTP HyperText Transfer Protocol

INO In-Only - message exchange pattern

IOO In-Optional-Out - message exchange pattern

LTS Labelled Transition System

MSC Message Sequence Charts

NOTI Notification - message exchange pattern

OOI Out-Optional-In - message exchange pattern

Port A port represents an interface through which a component may exchange data and/or control

with others

QoS Quality of Service

REQR Request-Response - message exchange pattern

RIO Robust-In-Only - message exchange pattern

Role A role is an endpoint of a connector, it attaches to a port to allow data and/or control to flow

accross the connector

ROO Robust-Out-Only - message exchange pattern

RPC Remote Procedure Call

SENSORIA Software Engineering for Service-Oriented Overlay Computers1

SLA Service Level Agreements

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol. The protocol most commonly used by web services to

format their messages, it uses XML as its basis. (It is also sometimes termed Service Oriented

Architecture Protocol).

SOLI Solicit-Response - message exchange pattern

SRML SENSORIA Reference Modelling Language

1http://www.sensoria-ist.eu/

http://www.sensoria-ist.eu/

184

UDDI Universal Description, Discovery and Integration. A registry where clients may search for

services by type and recive addresses of the WSDL descriptions of the service so they may

bind to and use that service.

UML Unified Modeling Language

W3C World Wide Web Consortium

WS-I Web Services Interoperability Organisation

WSDL Web Service Description Language. An XML interface description laguage for web services.

It defines any operations provided by a service and also any it may require in essentially terms

of the messages sent and received by operation and the data types included in those messages

along with a binding to an address, transport protocol (usually HTTP) and message encoding

protocol (usually SOAP) to be used.

XML eXtensible Markup Language.

185

Bibliography

[AA96] A. Abd-Allah. Composing Heterogeneous Software Architectures. PhD thesis, Univeristy

of Southern California, Los Angeles, CA, 1996.

[AL81] Tom Anderson and Peter A. Lee. Fault Tolerance, Principles, and Practice. Prentice-

Hall, 1981.

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic

concepts and taxonomy of dependable and secure computing. IEEE Transactions on

Dependable and Secure Computing, 01(1):11–33, 2004.

[ASAA09] Idir Ait-Sadoune and Yamine Ait-Ameur. A proof based approach for modelling and

verifyingweb services compositions. In ICECCS ’09: Proceedings of the 2009 14th IEEE

International Conference on Engineering of Complex Computer Systems, pages 1–10,

Washington, DC, USA, 2009. IEEE Computer Society.

[Bak02] Sean Baker. Web services and corba. In On the Move to Meaningful Internet Systems,

2002 - DOA/CoopIS/ODBASE 2002 Confederated International Conferences DOA,

CoopIS and ODBASE 2002, pages 618–632, London, UK, 2002. Springer-Verlag.

[BB05] Gordon Baxter and Alan Burns. Time bands in systems structure. In Denis Besnard,

Cristina Gacek, and Cliff B. Jones, editors, Structure for Dependability, pages 74–88.

Springer, 2005.

[BCK98] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-

Wesley, 1998.

[Beh03] A. Behr. Defining the soa. Software Development Times, pages 29–31, November 1

2003.

[BEJV96] P. Binns, M. Engelhart, M. Jackson, and S. Vestal. Domain-specific software architec-

tures for guidance, navigation, and control. Int’l J. Software Eng. and Knowledge Eng.,

6(2), 1996.

186

[BJPW] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien Watkins. Making

components contract aware.

[CBB+04] Paul Clements, Felix Bachman, Len Bass, David Garlan, James Ivers, Reed Little,

Robert Nord, and Juidth Stafford. Documenting Software Architectures. Addison Wes-

ley, 2004.

[Che08] Yuhui Chen. WS-Mediator for Improving Dependability of Service Composition. PhD

thesis, School of Computing Science, University of Newcastle, UK, 2008.

[CN08] Luca Cavallaro and Elisabetta Di Nitto. An approach to adapt service requests to actual

service interfaces. In SEAMS ’08: Proceedings of the 2008 international workshop on

Software engineering for adaptive and self-managing systems, pages 129–136, New York,

NY, USA, 2008. ACM.

[Col04] J. W. Coleman. Features of bpel modelled via structural operational semantics. Master’s

thesis, Newcastle University, 2004.

[DeL99] Robert DeLine. A catalog of techniques for resolving packaging mismatch. In SSR ’99:

Proceedings of the 1999 symposium on Software reusability, pages 44–53, New York,

NY, USA, 1999. ACM Press.

[DeL01] Robert DeLine. Avoiding packaging mismatch with flexible packaging. IEEE Transac-

tions on Software Engineering, 27(2):124–143, 2001.

[DGP02a] L. Davis, R. F. Gamble, and J. Payton. The impact of component architectures on

interoperability. J. Syst. Softw., 61(1):31–45, 2002.

[DGP02b] L. Davis, R. F. Gamble, and J. Payton. The impact of component architectures on

interoperability. J. Syst. Softw., 61(1):31–45, 2002.

[EK03] Amnon H. Eden and Rick Kazman. Architecture, design, implementation. In ICSE

’03: Proceedings of the 25th International Conference on Software Engineering, pages

149–159, Washington, DC, USA, 2003. IEEE Computer Society.

[FLB06] José Luiz Fiadeiro, Antónia Lopes, and Laura Bocchi. A formal approach to service

component architecture. In WS-FM, pages 193–213, 2006.

[FS02] Kimiyuki Fukuzawa and Motoshi Saeki. Evaluating software architectures by coloured

petri nets. In SEKE ’02: Proceedings of the 14th international conference on Software

engineering and knowledge engineering, pages 263–270, New York, NY, USA, 2002.

ACM.

187

[FS05] D. F. Ferguson and M. L. Stockton. Service-oriented architecture: programming model

and product architecture. IBM Syst. J., 44(4):753–780, 2005.

[FUMK03] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. Model-based veri-

fication of web service compositions. Automated Software Engineering, International

Conference on, 0:152–161, 2003.

[Gac98] Cristina Gacek. Detecting Architectural Mismatches During Systems Composition. PhD

thesis, University of Southern California, 1998.

[Gam07] Carl Gamble. A minimal web service architectural style. Technical Report CS-TR-1015,

Newcastle University, Newcastle upon Tyne, United Kingdom, 2007.

[GAO95] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: why reuse is so hard.

Software, IEEE, 12(6):17–26, 1995.

[Gro06a] ABLE Group. http://www.cs.cmu.edu/~acme/, 2006.

[Gro06b] ABLE Group. http://www.cs.cmu.edu/~acme/AcmeStudio/index.html, 2006.

[GS93] David Garlan and Mary Shaw. An introduction to software architecture. In V. Ambriola

and G. Tortora, editors, Advances in Software Engineering and Knowledge Engineering,

pages 1–39, Singapore, 1993. World Scientific Publishing Company.

[HGK+06] M. Hepner, R. Gamble, M. Kelkar, L. Davis, and D. Flagg. Patterns of conflict among

software components. J. Syst. Softw., 79(4):537–551, 2006.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[JE07] Diane Jordan and John Evdemon. Web services business process execution language

version 2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html,

April 2007.

[Jen03] Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use

(Volume 1), volume 1 of EATCS Series. Springer Verlag, April 2003.

[Joh05] C. W. Johnson. The natural history of bugs: Using formal methods to analyse software

related failures in space missions. In J. S. Fitzgerald, I. J. Hayes, and A. Tarlecki,

editors, Formal Methods Europe 2005, LNCS 3582, pages 9–25, 2005.

[Jon81] C. B. Jones. Development Methods for Computer Programs including a Notion of Inter-

ference. PhD thesis, Oxford University, June 1981. Printed as: Programming Research

Group, Technical Monograph 25.

http://www.cs.cmu.edu/~acme/
http://www.cs.cmu.edu/~acme/AcmeStudio/index.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

188

[KG98] R. Keshav and R. Gamble. Towards a taxonomy of architecture integration strategies.

In ISAW ’98: Proceedings of the third international workshop on Software architecture,

pages 89–92, New York, NY, USA, 1998. ACM.

[McI69] M. D. McIlroy. Mass produced software components. Software Engineering,NATO

Science Committee, pages 138–155, January 1969.

[MDT07] Nenad Medvidovic, Eric M. Dashofy, and Richard N. Taylor. Moving architectural

description from under the technology lamppost. Inf. Softw. Technol., 49(1):12–31,

2007.

[MG96] Robert T. Monroe and David Garlan. Style-based reuse for software architectures. In

ICSR ’96: Proceedings of the 4th International Conference on Software Reuse, page 84,

Washington, DC, USA, 1996. IEEE Computer Society.

[MKMG97] Robert T. Monroe, Andrew Kompanek, Ralph Melton, and David Garlan. Architectural

styles, design patterns, and objects. IEEE Software, 14(1):43–52, January 1997.

[ML05] Leszek A. Maciaszek and Bruc Lee Liong. Practical Software Engineering A Case Study

Approach. Addison Wesley, 2005.

[MMR06] Lee Momtahan, Andrew Martin, and A. W. Roscoe. A taxonomy of web services using

csp. Electr. Notes Theor. Comput. Sci., 151(2):71–87, 2006.

[Mon01] Robert T. Monroe. Capturing software architecture design expertise with armani. Tech-

nical Report CMU-CS-98-163, Carnegie Mellon University School of Computer Science,

January 2001.

[MT00] Nenad Medvidovic and Richard N. Taylor. A classification and comparison framework

for software architecture description languages. IEEE Trans. Softw. Eng., 26(1):70–93,

2000.

[Nak05] Lightweight formal analysis of web service flows. Progress in informatics : PI, 2:57–76,

2005.

[Nak06] Shin Nakajima. Model-checking behavioral specification of bpel applications. Electronic

Notes in Theoretical Computer Science, 151(2):89 – 105, 2006. Proceedings of the

International Workshop on Web Languages and Formal Methods (WLFM 2005).

[NAS99] NASA. Mars climate orbiter mishap investigation board phase I report. ftp://ftp.

hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf, 1999.

ftp://ftp.hq.nasa.gov/pub/pao/reports/ 1999/MCO_report.pdf
ftp://ftp.hq.nasa.gov/pub/pao/reports/ 1999/MCO_report.pdf

189

[OAS06] OASIS. Reference model for service oriented architecture v 1.0. http://www.

oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf, August 2006.

[PA06] Shari Lawrence Pfleeger and Joanne M. Atlee. Software Engineering, Theory And Prac-

tice, Third Edition. Pearson Education, 2006.

[Pap08] Michael P. Papazoglou. Web Services: Principles and Technology. Prentice Hall, 2008.

[PF10] R. Payne and J.S. Fitzgerald. Evaluation of architectural frameworks supporting

contract-based specification. Technical Report CS-TR-1233, Newcastle University, De-

cember 2010.

[Pum99] David John Pumfrey. The Principled Design of Computer System Safety Analyses. PhD

thesis, Department of Computer Science, University of York, UK., 1999.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software archi-

tecture. SIGSOFT Softw. Eng. Notes, 17(4):40–52, 1992.

[PW05a] Savas Parastatidis and Jim Webber. Csp ssdl protocol framework. Technical Report

CS-TR-901, School of Computing Science, Newcastle University, UK, 2005.

[PW05b] Savas Parastatidis and Jim Webber. Mep ssdl protocol framework. Technical Report

CS-TR-900, School of Computing Science, Newcastle University, UK, 2005.

[PW05c] Savas Parastatidis and Jim Webber. The soap service description language. Technical

Report CS-TR-899, School of Computing Science, Newcastle University, UK, 2005.

[PWW+05] Savas Parastatidis, Jim Webber, Simon Woodman, Dean Kuo, and Paul Greenfield. An

introduction to the soap service description language. Technical Report CS-TR-898,

School of Computing Science, Newcastle University, UK, 2005.

[SC96] M. Shaw and P. Clements. A field guide to boxology: Preliminary classification of

architectural styles for software systems, 1996.

[SC97] Mary Shaw and Paul C. Clements. A field guide to boxology: Preliminary classification

of architectural styles for software systems. In COMPSAC ’97: Proceedings of the 21st

International Computer Software and Applications Conference, pages 6–13, Washington,

DC, USA, 1997. IEEE Computer Society.

[Sch00] Steve Schneider. Concurrent and Real-time Systems The CSP Approach. WILEY, 2000.

[SG96] Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging

Discipline. Prentice Hall, April 1996.

http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf
http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf

190

[Sha95a] Mary Shaw. Architectural issues in software reuse: It’s not just the functionality, it’s

the packaging. In ACM SIGSOFT Symposium on Software Reusability, pages 3–6, 1995.

[Sha95b] Mary Shaw. Comparing architectural design styles. IEEE Software, 12(6):27–41, 1995.

[Som01] Ian Sommerville. Software Engineering, Sixth Edition. Addison Wesley, 2001.

[Sta06] Michael Stal. Using architectural patterns and blueprints for service-oriented architec-

ture. IEEE Softw., 23(2):54–61, 2006.

[Top03] Kim Topley. Java Web Services In A Nutshell. O’Reilly, 2003.

[UY00] Sebastian Uchitel and Daniel Yankelevich. Enhancing architectural mismatch detection

with assumptions. ecbs, 00:138–147, 2000.

[VvdA05] H. M. W. Verbeek and W. M. P. van der Aalst. Analyzing bpel processes using petri

nets. In 2nd International Workshop on Applications of Petri Nets to Coordination,

Workflow and Business Process Management (PNCWB 2005), pages 59–78. Florida

International University, Miami, Florida, 2005.

[W3C06a] W3C. Soap version 1.2. http://www.w3.org/TR/soap12/, 2006.

[W3C06b] W3C. Web services architecture. http://www.w3.org/TR/ws-arch/#introduction,

2006.

[W3C06c] W3C. Web services description language 1.1. http://www.w3.org/TR/wsdl, 2006.

[W3C06d] W3C. Web services description language 2.0 part 0 : Core jan 6 2006. http://www.

w3.org/TR/2006/CR-wsdl20-primer-20060106/, 2006.

[W3C06e] W3C. Web services description language 2.0 part 1 : Core jan 6 2006. http://www.

w3.org/TR/2006/CR-wsdl20-20060106/, 2006.

[W3C06f] W3C. Web services description language 2.0 part 2 : Adjuncts jan 6 2006. http:

//www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106/, 2006.

[W3C09] W3C. Owl 2 web ontology language. http://www.w3.org/TR/owl2-overview/, 2009.

[YBB99] Daniil Yakimovich, James M. Bieman, and Victor R. Basili. Software architecture

classification for estimating the cost of cots integration. In ICSE ’99: Proceedings of the

21st international conference on Software engineering, pages 296–302, Los Alamitos,

CA, USA, 1999. IEEE Computer Society Press.

[Yeu06] Wing Lok Yeung. Mapping ws-cdl and bpel into csp for behavioural specification and

verification of web services. In ECOWS, pages 297–305, 2006.

http://www.w3.org/TR/soap12/
http://www.w3.org/TR/ws-arch/#introduction
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2006/CR-wsdl20-primer-20060106/
http://www.w3.org/TR/2006/CR-wsdl20-primer-20060106/
http://www.w3.org/TR/2006/CR-wsdl20-20060106/
http://www.w3.org/TR/2006/CR-wsdl20-20060106/
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106/
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106/
http://www.w3.org/TR/owl2-overview/

191

[YTX05] YanPing Yang, QingPing Tan, and Yong Xiao. Verifying web services composition based

on hierarchical colored petri nets. In IHIS ’05: Proceedings of the first international

workshop on Interoperability of heterogeneous information systems, pages 47–54, New

York, NY, USA, 2005. ACM.

[YWD06] W. L. Yeung, Ji Wang, and Wei Dong. Verifying choreographic descriptions of web

services based on csp. In SCW ’06: Proceedings of the IEEE Services Computing Work-

shops (SCW’06), pages 97–104, Washington, DC, USA, 2006. IEEE Computer Society.

192

Appendix A

ACME Studio Introduction

ACME, Armani and ACME Studio are extensively used throughout this work, so an introduction

is required. It will cover the language and its tool support, outlining the important features of each

and providing example description fragments to help familiarisation.

A.1 ACME Architecture Description Language

ACME was designed as an architecture interchange language where interchange means a common

language that tools designed for different ADLs could use to exchange data. It was designed from the

ground up then to explicitly support the most basic architectural elements, components, connectors,

ports, roles, and their structural relationships.

When building an ACME model the first step is to define the system, its name and reference any

architectural styles it will employ, Figure A.1.

After that there is no prescribed order, but one approach is to define the components and their

ports, the connectors and their roles and finally make the attachments, which is the point when the

components become a system.

A component is defined by first declaring its name and type before adding any child elements

and properties. The properties can be of any of the primitive types supported by ACME or may be

a composite type defined in the architectural style.

The child elements of a component are its ports, these represent the interface it presents to

the environment. Ports are declared within the description of the component itself and there is no

restriction on the number of instances or types a component may have. Ports like components can

1 import families\ws_minimal_3.acme;
2 System exampleSystem : ws_minimal_3 = new ws_minimal_3 extended with {
3 \\ description of system elements goes here
4 };

Figure A.1: System declaration in ACME

193

1 Component SNP : CompTWSIntermediary = new CompTWSIntermediary extended with {
2 Port calcRoute : PortTWSService = new PortTWSService extended with {
3 Property EndPointList : EndPoints = {[
4 Transport = HTTP1_0;
5 Encoding = SOAP1_1]};
6 Property Interface : Interfaces = Service;
7 Property EndPointAddressList : EndPointAddresses = {"snp.com/calcRoute"};
8 Property SendsFirstMessage : SafeBoolean = No;
9 Property InOurControlDomain : SafeBoolean = Yes;

10 Property WsdlDocRefs : WsdlDocs = {"http :// wsdl.snp.com"};
11 Property MessageExchangePatterns : messagePatterns = {< [
12 ST = "routeCriteria";
13 DT = "out"], [
14 ST = "pathData";
15 DT = "in"] >, < [
16 ST = "routeCriteria";
17 DT = "out"], [
18 ST = "fault";
19 DT = "in"] >};
20 };
21 // the rest of the ports in this component would be described here also
22 };

Figure A.2: A component description in ACME containing a single port with a number of properties

1 Connector ConnTWS1 : ConnTWS = new ConnTWS extended with {
2 Role r1;
3

4 Role r2;
5 };

Figure A.3: Description of a connector with no properties, in ACME

also have properties but cannot have child elements, Figure A.2.

The other major architectural element is the connector. Like the components before it is a first

class entity and so is declared at system level. Also like components it can have properties and

child elements, which in this case are roles. In the same way that ports represent the interface of

a component, roles represent the interaction points of a connector. Roles are declared within the

description of a connector and may have their own properties but no child elements, Figure A.3.

The final step in building an ACME model is to attach the roles to the required ports to form

the structure of the system, Figure A.4.

If required it is possible to refine the components and connectors into their constituent elements

and structures to enable further development. ACME supports this in the form of representations.

A representation is defined as a system in its own right and as such its description shares almost the

same structure and the parent system it exists within. The only difference is that a representation

is obliged to implement the interface presented by its parent element. Thus while many of the ports

and roles in the representation are attached to each other, some of them are linked to the ports (or

1 Attachment SNP.calcRoute to ConnTWS1.r1;
2 Attachment SN.getRoute to ConnTWS1.r2;

Figure A.4: An example of attaching a connector ConnTWS1 to ports on components SNP and SN

194

Figure A.5: Graphical view of a component names “MainComp”, shown on the left, with its internal
representation shown on the right.

roles) of the parent component (or connector), Figures A.5 and A.6.

This allows description of the structure and properties of the architecture of a system, however

to automatically analyse the system requires rules or constraints in the form of an architectural

style. An ACME style is defined using a similar structure to a system, with the exception that the

declaration now refers to types rather than instances and constraints can now be included.

A style description starts with a declaration of its name and any styles1 it extends, Figure A.7.

To support being an interchange language ACME permits us to either use the primitive data types

it supplies or build bespoke data structures using them. For example a CSP [Hoa85] description may

be stored as a simple string type whereas an interaction between two ports could also be described

by defining a message data type and a description of the message exchange pattern.

ACME provides a number of collection data structures, with which it is possible to build complex

data types. Firstly there are Sets, which contain elements of a defined type with no duplicates

allowed. Enumerations allow definition of a set of values of a type, which can then be used to

describe the allowed values for properties. Sequences are ordered lists of elements of a defined type

in which duplicates are allowed. Finally there are Records, which are structures which are defined

to contain a number of individually named and typed values. For all of these data structures the

types they hold can be any of the other collection structures, so a sequence of records is possible,

which allows the construction of varied data types for use in the architecture descriptions.

Once the data types are in place the component types may be defined by naming the types and

declaring what properties are expected within the types along with any default values. Any default

child element instances may also be defined, Figure A.8.

The same then applies to the port, connector and role types that make up a style, for example

a connector type declaration is shown in Figure A.9.

Already with this style achieves two things. Firstly it guides the architect with regard to what

parameters are deemed to be important and secondly it allows the tool support to warn the architect

1In ACME parlance and architectural style is termed a “family” which the reader may notice in the description
excerpts, however we will use the former term during this work

195

1 Component MainComp = {
2 Port Port0 = {...}
3 Port Port1 = {...}
4

5 Representation MainComp_Rep = {
6 System MainComp_Rep = {
7

8 Component SubComp0 = {
9 Port Port0 = {...}

10 Port Port1 = {...}
11 }
12

13 Component SubComp1 = {
14 Port Port0 = {...}
15 Port Port1 = {...}
16 }
17

18 Connector conn = {
19 Role r0 = {...}
20 Role r1 = {...}
21 }
22

23 Attachment SubComp0.Port1 to conn.r0;
24 Attachment SubComp1.Port0 to conn.r1;
25 }
26

27 Bindings {
28 MainComp.Port0 to SubComp0.Port0;
29 MainComp.Port1 to SubComp1.Port1;
30 }
31 }
32 }

Figure A.6: The representation shown in Figure A.5 in its ACME form.

1 Family ws_minimal_3 = {
2 // style description goes here
3 }

Figure A.7: A style declaration in ACME, this style does not extend any others

1 Component Type CompTWSService extends CompTWSCommon with {
2

3 // rule checking the component has at least one port
4 invariant size(self.ports) > 0<<label : string = "Component has at least one port";
5 errMsg : string = "Component should have at least one port";>>;
6

7 PortTWSCommon Port0;
8 . . .
9 . . .

10 . . .
11

12 }
13

14 Port Type PortTWSCommon = {
15 // Property that holds the "wire" protocols , i.e. transport and encoding
16 // protocol pairs that this port supports
17 Property EndPointList : EndPoints;
18

19 invariant size(EndPointList) > 0<<label : string = "Endpoint list is populated";
20 errMsg : string = "Endpoint list must be populated";>>;
21 . . .
22 . . .
23 . . .
24 }

Figure A.8: Declaring and component and port type in the style. Both contain invariant rules,
which are described later. The component requires that a port of type PortTWSCommon be declared
as a child element.

196

1 Connector Type ConnTWS = {
2 // These connectors are currently prevented from providing multicast facilities ,
3 // a multicast can only be achieved by explicitly instantiating multiple
4 // connectors
5 invariant size(self.roles) == 2
6 <<label : string = "A connector of this type must have 2 roles";
7 errMsg : string = "This connector must have exactly two roles";>>;
8 };

Figure A.9: An example connector type declaration in a style.

1 invariant Forall r1 : role in self.roles |
2 Forall r2 : role in self.roles |
3 Forall p1 : PortTWSCommon in r1.attachedPorts |
4 Forall p2 : PortTWSCommon in r2.attachedPorts |
5 (r1 != r2 AND attached(r1 , p1) AND attached(r2, p2)) ->
6 size(intersection(p1.EndPointList , p2.EndPointList)) > 0
7 <<label : string = "Ports have a matching Transport / Encoding pair";
8 errMsg : string = "No matching pair of endpoint protocols";>>;

Figure A.10: A rule which, if in a connector, will select the two port instances the connector is
attached to and will then evaluate the size of the intersection of their EndPointList property.

if the properties are either none existent or if they are of the wrong data type. This is really a

syntactic check, however ACME also supports the inclusion of constraints described in the predicate

language Armani which allows for more powerful checks to be performed on a model.

A.2 Armani Predicate Language

Rules written in the Armani predicate language have two main parts to them, selection and evalu-

ation.

Selection is the process of finding the architectural elements of importance to the rule. Evaluation

is a boolean function over those elements and their properties.

The location of the rule definition in the style description is significant as this defines the scope

of that rule and sets the context from which the selections can be made. For example if a rule is

defined inside a connector type called TConnA, then the rule will be invoked wherever a connector of

that type is instantiated in a system. Also it will have its scope limited to those connector instances

and the roles and ports directly attached to it. This means a rule can evaluate properties of the

connector itself, its roles and the ports attached to it. This is achieved by traversing the sets provided

by ACME, Figure A.10.

This scoping also means that the same rule can be evaluated for each instance of the connector

and will return true or false (pass or fail effectively) dependant on the individual circumstances of

each connector.

Rules can be defined with any level of scope depending on where they are declared. So a rule in

a port definition can only “see” individual instances of that port. But a rule defined outside all the

element type definitions will have global scope in a system and can evaluate all elements and their

197

1 invariant Forall comp : component in self.Components |
2 satisfiesType(comp , CompTWSClient)
3 OR satisfiesType(comp , CompTWSService)
4 OR satisfiesType(comp , CompTWSIntermediary)
5 <<label : string = "All components are WSClients , WSServices or WSIntermediarys";
6 errMsg : string = "Style only permits WSClient , WSService and WSIntermediary
7 type components";>>;

Figure A.11: A global rule, which exists in the root of the style description, this checks
that all components in a system satisfy one of the types CompTWSClient, CompTWSService or
CompTWSIntermediary.

1 heuristic Forall r1 : role in self.roles |
2 Forall r2 : role in self.roles |
3 Forall p1 : PortTWSCommon in r1.attachedPorts |
4 Forall p2 : PortTWSCommon in r2.attachedPorts |
5 (r1 != r2 AND attached(r1 , p1) AND attached(r2, p2)) ->
6 (!((p1.InOurControlDomain == Yes
7 AND
8 (!(isSubset(p1.MessageExchangePatterns , p2.MessageExchangePatterns)))
9 AND

10 isSubset(p2.MessageExchangePatterns , p1.MessageExchangePatterns)
11)
12 OR
13 (p2.InOurControlDomain == Yes
14 AND
15 (!(isSubset(p2.MessageExchangePatterns , p1.MessageExchangePatterns)))
16 AND
17 isSubset(p1.MessageExchangePatterns , p2.MessageExchangePatterns)
18)
19))

Figure A.12: A complex rule using multiple logic statements to conditionally evaluate the two ports
attached to a connector.

properties, Figure A.11. Finally, if an element type is defined as extending another type, then the

new type will also inherit any rules the super type contained.

Once the required elements have been selected, boolean expressions are employed to evaluate

properties of interest. These expressions include simple equalities of the property values, set oper-

ations such as checking for subsets2 and existential functions among others [Mon01]. The normal

boolean operators (And & Or) may also be used to construct more complex statements. The rule

shown in Figure A.10 only contains a single evaluation statement, while the rule shown in Figure

A.12 uses logic operators to perform a conditional evaluation of two ports.

A.3 External Analysis

While Armani allows for complex statements to be constructed it is still limited to a set of generic

boolean functions, ACME Studio does, however, afford the user the opportunity to extend this set

with their own external analysis.

The purpose of external analysis is to allow the user to define their own means for evaluating the

elements and their properties. The external analyses are Java classes that are packaged as Eclipse

2the Armani expression isSubset(A,B) returns true if A ⊆ B , there is no proper subset expression other than
negating the reverse.

198

1 Family externalAnalysisExample = {
2

3 external analysis chkname(a : element) : boolean = uk.ac.ncl.CompNameCheck;
4

5 Component Type comp1 = {
6 Property name : String;
7 rule checkComponentName = heuristic chkname(self);
8 }
9 }

Figure A.13: An example of declaring an external analysis which uses a Java class (CompNameCheck
in the package uk.ac.ncl) to perform the evaluation. This analysis is then used in the rule check-
ComponentName in the component type comp1.

plug-ins. The plug-ins return a boolean value indicating if a system or element passes or fails the

analysis it represents, Figure A.13.

There are a number of features which make external analysis potentially more powerful and

flexible than the Armani provided functions.

Firstly, being effectively Java programs in their own right they can have all the power and

freedom of any Java application. This means arbitrarily complex analysis may be performed or the

Java application may form a connector to existing application to use its functionality. Specifically

in this work the FDR3 CSP model checker is used in this way.

Secondly, external analysis is not constrained by rule definition scope in the same way as the

normal Armani analysis. The java representations of the architectural elements provide methods to

allow access to their parent elements, something which is not possible in Armani. This means that

given a reference to a port object, it is possible to get access to its parent component object and

from there get access to the system it exists in. Thus external analysis is able to traverse the entire

architecture model reaching any element from any other element. Much of the analysis described in

Chapter 5 would not have been possible without this feature.

A.4 ACME Studio and ACME Libs

ACME was chosen not only for its language but also for its tool support which is available in two

distinct versions ACME Studio, the graphical editing and analysis tool , and ACME Libs, which are

the underlying command line libraries and parser.

ACME Studio is built upon the Eclipse4 platform so has a modular layout that users of that is

split into 5 panes (Figure A.14). These have the following purposes :

Project Explorer this is the standard project explorer provided by Eclipse. In here the user can

manage the files associated with a project, this is also one of the places to create new projects

and the systems / styles within them.

3FDR CSP model checker, of Formal Systems (Europe) Ltd. http://www.fsel.com/software.html
4http://www.eclipse.org/

199

Figure A.14: ACME Studio basic layout, with the Configuration / Source / Style parameters editor
shown in the configuration view.

Configuration / Source / Style Parameters Editor This pane is where most of the actual

work is performed and it has three main functions :

1. It provides the graphical view of the system being developed and allows the architectural

elements to be dragged and dropped from the element palette (described below). It also

allows the elements to be positioned / resized to represent the system5. It is in this view

that warning triangles appear to indicate which elements do not satisfy their type, that

is one or more rules they contain do not evaluate to true or one or more properties are

not defined or have invalid values.

2. The second view allows direct editing of the system or style description source directly.

It provides simple highlighting of lines containing syntax errors upon the source file being

saved.

3. The final view, only available in the context of editing an architectural style description.

It allows the setting of visual parameters which are associated with the element types

included in the style, such as colours and shapes.

This is also where the “connection patterns” are defined. These are tuples of component

type - port type - role type - connector type - role type - port type - component type. These

patterns are used by the graphical editor to determine when to attach a role to a port.

This feature does not relate to any topological constraints, if any, defined in the style

itself, also attachments may be made in the source editor which do not relate to the

patterns at all. None of the changes in this view save for creating or editing a type or its

“actual” properties are reflected in the style at all.

5This has no effect on the semantics of the system, it is purely cosmetic.

200

Element Palette When in the graphical view (above) this presents a palette of all architectural

element types available as standard in ACME Studio and those provided in any styles adopted

by the system. It is from here that element types may be dragged and dropped to produce

instances in the system.

Information / Property Editor This panel is where data specific to a selected element is dis-

played. It allows editing of the values of the properties of that element, which avoids editing

them directly in the source pane. Most usefully though, it also lists all rules which apply to

that element, the rule IDs and whether or not each individual is satisfied or not. This then

gives the details of which rules caused a warning triangle to appear on the graphical display,

this is vital to the success of this environment as a means to detect mismatches.

Object Browser This presents a hierarchical view of the system and all elements within it. Select-

ing an element here has the same effect as selecting it in the graphical view, but is sometimes

easier as ports, roles and connectors are not labelled with their names in the graphical view.

ACME Libs is a much simplified command line means to use the libraries that underpin ACME

Studio. It therefore has the same analytical abilities as its graphical sibling, but it provides no

system editing facilities, providing instead only parsing and rule evaluation of an ACME model.

This results in a verbose text output detailing each and every rule that is not satisfied.

It has two potential benefits over the ACME Studio tool.

1. the analysis runs once and once only on the model while ACME Studio continuously works

through all analysis rules. The difficulty with ACME Studio comes from the silent execution

of analysis rules, this means that after a change had been made to a system model the user

does not know for sure when that change has been viewed by all rules6.

2. it does not require the external analysis classes to be packaged as Eclipse plugins they can

simply be Java classes.

6The approach taken in this work was to close and restart ACME Studio after changes were made to a model,
then when all rules had been evaluated it was known that the results represented the current model and not an earlier
state.

201

Appendix B

Minimal Style Description

1 Family ws_minimal_3 = {

2 // Below are the custom types used in this style , the syntax does not allow them

3 // to be defined in the connectors where the properties based upon them are

4 // instantiated

5

6 // This represents a set of strings which are intended to hold valid URIs to valid

7 // WSDL documents

8 Property Type WsdlDocs = Set{string };

9

10 // A safe boolean type property. This allows us to check that a user has

11 // populated it unlike a boolean , which if not initialised defaults to returning

12 // true when queried.

13 Property Type SafeBoolean = Enum { Yes , No };

14

15 // Defines the set of legal soap versions as tokens , which are utilised in the

16 // EndPoint type

17 Property Type legalSoapVersions = Enum { SOAP1_1 , SOAP1_2 };

18

19 // Defines the set of legal transport protocols as tokens , this set is in no way

20 // complete. The set is utilised in the TransportProtocols set

21 Property Type legalTransportProtocols = Enum { HTTP1_0 , HTTP1_1 };

22

23 Property Type EndPoint = Record [

24 Transport : legalTransportProtocols;

25 Encoding : legalSoapVersions;

26];

27

28 Property Type EndPoints = Set{EndPoint };

29

30 Property Type EndPointAddresses = Set{string };

31

32 // The definition of a "message" type , a " validExchange " type and a

33 // " messagePatterns " type , which can be used to define , using tokens , the

34 // message exchanges a port can accept. The message is weakly defined as a token

35 // representing the syntax of the message (ST) and a token representing its

36 // direction (in , out), the direction is always defined from the point of view

37 // of the port initiating the message exchange. i.e. the first message in a

38 // valid exchange will always have DT = "out"

202

39 Property Type message = Record [

40 ST : string;

41 DT : string;

42];

43

44 Property Type validExchange = Sequence <message >;

45

46 Property Type messagePatterns = Set{validExchange };

47

48 // An enumerated type to distinguish ports which are intended to be part of the

49 // client interface of a component , or its service interface.

50 Property Type Interfaces = Enum { Client , Service };

51

52 // *** Below are the configuration rules ***

53

54 // Checks that all components in the system satisfy the requirements of being a

55 // web service

56 invariant Forall comp : component in self.Components |

57 satisfiesType(comp , CompTWSClient) OR

58 satisfiesType(comp , CompTWSService) OR

59 satisfiesType(comp , CompTWSIntermediary)

60 <<label : string = "All components are WSClients , WSServices or WSIntermediarys";

61 errMsg : string = "Style only permits WSClient , WSService and WSIntermediary

62 type components";>>;

63

64 // Checks that all connectors in the system satisfy the requirements of being a

65 // web service type

66 invariant Forall conn : connector in self.connectors |

67 satisfiesType(conn , ConnTWS)

68 <<label : string = "All Connectors are WS type";

69 errMsg : string = "Either a non web service connector has been used or a

70 connection has been made which breaks one or more rules";>>;

71

72 // *** Below are the component types ***

73

74 Component Type CompTWSCommon = {

75 }

76

77 Component Type CompTWSClient extends CompTWSCommon with {

78 // Rule checking all associated ports conform to the Client port type

79 invariant Forall p : port in self.Ports |

80 satisfiesType(p, PortTWSClient)

81 <<label : string = "External ports are all Client type";

82 errMsg : string = "Only client type ports are allowed";>>;

83

84 // rule checking the component has at least one port

85 invariant size(self.ports) > 0

86 <<label : string = "Component has at least one port";

87 errMsg : string = "Component should have at least one port";>>;

88

89 }

90

91

92 Component Type CompTWSService extends CompTWSCommon with {

203

93 // Rule checking all associated ports conform to the Service port type

94 invariant Forall p : port in self.Ports |

95 satisfiesType(p, PortTWSService)

96 <<label : string = "External ports are all Service type";

97 errMsg : string = "Only service type ports are allowed";>>;

98

99 // rule checking the component has at least one port

100 invariant size(self.ports) > 0

101 <<label : string = "Component has at least one port";

102 errMsg : string = "Component should have at least one port";>>;

103

104 }

105

106

107 //

108 Component Type CompTWSIntermediary extends CompTWSCommon with {

109 // Rule checking all associated ports conform to the Client or Service type

110 invariant Forall p : port in self.Ports |

111 satisfiesType(p, PortTWSClient) OR

112 satisfiesType(p, PortTWSService)

113 <<label : string = "External ports are of the web service type";

114 errMsg : string = "Only WebService type ports are allowed";>>;

115

116 // rules checking the component has at least one client port and one service

117 // port

118 invariant Exists p : port in self.Ports |

119 satisfiesType(p, PortTWSClient)

120 <<label : string = "Component has at least one client type port";

121 errMsg : string = "Component must have at least one client type port";>>;

122

123 invariant Exists p : port in self.Ports |

124 satisfiesType(p, PortTWSService)

125 <<label : string = "Component has at least one service type port";

126 errMsg : string = "Component must have at least one service type port";>>;

127

128 }

129 // *** Below is the single connector type ***

130

131 Connector Type ConnTWS = {

132 // These connectors are currently prevented from providing multicast facilities ,

133 // a multicast can only be acchieved by explicitly instantiating multiple

134 // connectors

135 invariant size(self.roles) == 2

136 <<label : string = "A connector of this type must have 2 roles";

137 errMsg : string = "This connector must have exactly two roles";>>;

138

139 // Rule checking for at least one common end point protocol pair

140 invariant Forall r1 : role in self.roles |

141 Forall r2 : role in self.roles |

142 Forall p1 : PortTWSCommon in r1.attachedPorts |

143 Forall p2 : PortTWSCommon in r2.attachedPorts |

144 (r1 != r2 AND attached(r1 , p1) AND attached(r2, p2)) ->

145 size(intersection(p1.EndPointList , p2.EndPointList)) > 0

146 <<label : string = "Ports have a matching Transport / Encoding pair";

204

147 errMsg : string = "No matching pair of endpoint protocols";>>;

148

149 // Part 1 of 2 of message passing rules : heuristic that flags a connection

150 // where only a partial match of message patterns is made , this is to warn that

151 // the calling services behaviour should be restricted to that compatible with

152 // the called service.

153 heuristic Forall r1 : role in self.roles |

154 Forall r2 : role in self.roles |

155 Forall p1 : PortTWSCommon in r1.attachedPorts |

156 Forall p2 : PortTWSCommon in r2.attachedPorts |

157 (r1 != r2 AND attached(r1 , p1) AND attached(r2, p2)) ->

158 (!

159 (

160 (p1.InOurControlDomain == Yes

161 AND

162 (!(isSubset(p1.MessageExchangePatterns , p2.MessageExchangePatterns)))

163 AND

164 isSubset(p2.MessageExchangePatterns , p1.MessageExchangePatterns)

165)

166 OR

167 (p2.InOurControlDomain == Yes

168 AND

169 (!(isSubset(p2.MessageExchangePatterns , p1.MessageExchangePatterns)))

170 AND

171 isSubset(p1.MessageExchangePatterns , p2.MessageExchangePatterns)

172)

173)

174)

175 <<label : string = "Check for a full match";

176 errMsg : string = "Services partialy compatible ,

177 behaviour of one service should be constrained!";>>;

178

179 // part 2 of 2 of message passing rules : invariant checking that there is

180 // either a partial or full match of the message patterns between the connected

181 // ports , otherwise raises an error highlighting incompatible ports.

182 invariant Forall r1 : role in self.roles |

183 Forall r2 : role in self.roles |

184 Forall p1 : PortTWSCommon in r1.attachedPorts |

185 Forall p2 : PortTWSCommon in r2.attachedPorts |

186 (r1 != r2 AND attached(r1 , p1) AND attached(r2, p2)) ->

187 (p2.MessageExchangePatterns == p1.MessageExchangePatterns)

188 OR

189 (p1.InOurControlDomain == Yes

190 AND

191 (!(isSubset(p1.MessageExchangePatterns , p2.MessageExchangePatterns)))

192 AND

193 (isSubset(p2.MessageExchangePatterns , p1.MessageExchangePatterns))

194)

195 OR

196 (p2.InOurControlDomain == Yes

197 AND

198 (!(isSubset(p2.MessageExchangePatterns , p1.MessageExchangePatterns)))

199 AND

200 (isSubset(p1.MessageExchangePatterns , p2.MessageExchangePatterns))

205

201)

202 <<label : string = "Check for a partial match";

203 errMsg : string = "Message exchange patterns or message signatures

204 do not match";>>;

205

206 invariant Exists r : role in self.roles |

207 Forall p : PortTWSCommon in r.attachedPorts |

208 attached(r, p) -> p.SendsFirstMessage == Yes

209 <<label : string = "One port expects to send the first message";

210 errMsg : string = "Neither port expects to send the first message";>>;

211

212 invariant Exists r : role in self.roles |

213 Forall p : PortTWSCommon in r.attachedPorts |

214 attached(r, p) -> p.SendsFirstMessage == No

215 <<label : string = "One port is listening for the first message";

216 errMsg : string = "Neither port is listening for the first message";>>;

217

218 }

219

220 // *** Below are the port types ***

221

222 Port Type PortTWSCommon = {

223 // Property that holds the "wire" protocols , i.e. transport and encoding

224 // protolcol pairs that this port supports

225 Property EndPointList : EndPoints;

226

227 invariant size(EndPointList) > 0

228 <<label : string = "Endpoint list is populated";

229 errMsg : string = "Endpoint list must be populated";>>;

230

231 // Property that determines if this port is within "our" domain of control and

232 // "we" may be able to alter its behaviour

233 Property InOurControlDomain : SafeBoolean

234

235

236

237 invariant InOurControlDomain == Yes OR InOurControlDomain == No

238 <<label : string = "In our control domain property is populated";

239 errMsg : string = "In Our Control Domain property must be populated";>>;

240

241 // placeholder for the message exchange pattern data , with a rule checking

242 // that it is populated

243 Property MessageExchangePatterns : messagePatterns;

244

245 invariant size(MessageExchangePatterns) > 0

246 <<label : string = "Message exchange pattern is populated";

247 errMsg : string = "Message exchange pattern must be populated";>>;

248

249 // does this port send the first message in an exchange or does it wait for the

250 // first message to come in , followed by a rule checking it is populated

251 Property SendsFirstMessage : SafeBoolean;

252

253 invariant SendsFirstMessage == Yes OR SendsFirstMessage == No

254 <<label : string = "Sends first message property is populated";

206

255 errMsg : string = "Sends First Message property must be populated";>>;

256

257 }

258

259

260 Port Type PortTWSClient extends PortTWSCommon with {

261 Property InInterface : Interfaces = Client;

262

263 }

264

265

266 Port Type PortTWSService extends PortTWSCommon with {

267 Property InInterface : Interfaces = Service;

268

269 // holds the list of endpoint addresses of this port

270 Property EndPointAddressList : EndPointAddresses;

271

272 // rule check the End point address list is populated

273 invariant size(EndPointAddressList) > 0

274 <<label : string = "Endpoint address list is populated";

275 errMsg : string = "Endpoint address list must be populated";>>;

276

277 // rule check there are as many end point addresses as there are end points

278 invariant size(EndPointAddressList) == size(EndPointList)

279 <<label : string = "Number EndPoint addresses = number of EndPoint protocol pairs";

280 errMsg : string = "Must be one End Point Address for each End Point protocol pair";>>;

281

282 // placeholder for the WSDL document references , with a rule checking each port

283 // is referenced by at least one doc

284 Property WsdlDocRefs : WsdlDocs;

285

286 invariant size(WsdlDocRefs) > 0

287 <<label : string = "WSDL reference list is populated";

288 errMsg : string = "WSDL reference list should be populated";>>;

289 }

290 }

207

Appendix C

Complete ACME Descriptions of
Minimal Style Scenario

1 import $AS_PROJECT_PATH\families\ws_minimal_3.acme;

2 System SatNavScenario : ws_minimal_3 = new ws_minimal_3 extended with {

3 Component SNP : CompTWSIntermediary = new CompTWSIntermediary extended with {

4 Port calcRoute : PortTWSService = new PortTWSService extended with {

5 Property EndPointList : EndPoints = {[

6 Transport = HTTP1_0;

7 Encoding = SOAP1_1]};

8 Property InInterface : Interfaces = Service;

9 Property EndPointAddressList : EndPointAddresses = {"snp.com/calcRoute"};

10 Property SendsFirstMessage : SafeBoolean = No;

11 Property InOurControlDomain : SafeBoolean = Yes;

12 Property WsdlDocRefs : WsdlDocs = {"http :// wsdl.snp.com"};

13 Property MessageExchangePatterns : messagePatterns = {< [

14 ST = "routeCriteria";

15 DT = "out"], [

16 ST = "pathData";

17 DT = "in"] >, < [

18 ST = "routeCriteria";

19 DT = "out"], [

20 ST = "fault";

21 DT = "in"] >};

22 };

23

24 Port checkStatus : PortTWSService = new PortTWSService extended with {

25 Property InInterface : Interfaces = Service;

26 Property EndPointList : EndPoints = {[

27 Transport = HTTP1_0;

28 Encoding = SOAP1_1]};

29 Property EndPointAddressList : EndPointAddresses = {"snp.com/statusRequest"};

30 Property SendsFirstMessage : SafeBoolean = Yes;

31 Property InOurControlDomain : SafeBoolean = Yes;

32 Property WsdlDocRefs : WsdlDocs = {"http :// wsdl.snp.com"};

33 Property MessageExchangePatterns : messagePatterns = {< [

34 ST = "requestStatusAndLocation";

35 DT = "out"], [

36 ST = "statusAndLocation";

208

37 DT = "in"] >, < [

38 ST = "requestStatusAndLocation";

39 DT = "out"], [

40 ST = "fault";

41 DT = "in"] >};

42 };

43

44 Port updateRoute : PortTWSService = new PortTWSService extended with {

45 Property InInterface : Interfaces = Service;

46 Property EndPointList : EndPoints = {[

47 Transport = HTTP1_0;

48 Encoding = SOAP1_1]};

49 Property EndPointAddressList : EndPointAddresses = {"snp.com/updateRoute"};

50 Property SendsFirstMessage : SafeBoolean = Yes;

51 Property InOurControlDomain : SafeBoolean = Yes;

52 Property WsdlDocRefs : WsdlDocs = {"http :// wsdl.snp.com"};

53 Property MessageExchangePatterns : messagePatterns = {< [

54 ST = "newPathData";

55 DT = "out"] >};

56 };

57

58 Port requestAssistance : PortTWSService = new PortTWSService extended with {

59 Property InInterface : Interfaces = Service;

60 Property EndPointList : EndPoints = {[

61 Transport = HTTP1_0;

62 Encoding = SOAP1_1]};

63 Property EndPointAddressList : EndPointAddresses = {"snp.com/requestAssistance"};

64 Property SendsFirstMessage : SafeBoolean = No;

65 Property InOurControlDomain : SafeBoolean = Yes;

66 Property WsdlDocRefs : WsdlDocs = {"http :// wsdl.snp.com"};

67 Property MessageExchangePatterns : messagePatterns = {< [

68 ST = "requestAssistance";

69 DT = "out"], [

70 ST = "assistanceOffers";

71 DT = "in"] >, < [

72 ST = "requestAssistance";

73 DT = "out"], [

74 ST = "fault";

75 DT = "in"] >};

76 };

77

78 Port assistanceChoice : PortTWSService = new PortTWSService extended with {

79 Property InInterface : Interfaces = Service;

80 Property EndPointList : EndPoints = {[

81 Transport = HTTP1_0;

82 Encoding = SOAP1_1]};

83 Property EndPointAddressList : EndPointAddresses = {"snp.com/assistanceChoice"};

84 Property SendsFirstMessage : SafeBoolean = No;

85 Property InOurControlDomain : SafeBoolean = Yes;

86 Property WsdlDocRefs : WsdlDocs = {"http :// wsdl.snp.com"};

87 Property MessageExchangePatterns : messagePatterns = {< [

88 ST = "assistanceChoice";

89 DT = "out"], [

90 ST = "assistanceConfirmation";

209

91 DT = "in"] >, < [

92 ST = "assistanceChoice";

93 DT = "out"], [

94 ST = "fault";

95 DT = "in"] >};

96 };

97

98 Port assistanceUpdate : PortTWSService = new PortTWSService extended with {

99 Property InInterface : Interfaces = Service;

100 Property EndPointList : EndPoints = {[

101 Transport = HTTP1_0;

102 Encoding = SOAP1_1]};

103 Property EndPointAddressList : EndPointAddresses = {"snp.com/assistanceUpdate"};

104 Property SendsFirstMessage : SafeBoolean = Yes;

105 Property InOurControlDomain : SafeBoolean = Yes;

106 Property WsdlDocRefs : WsdlDocs = {"http :// wsdl.snp.com"};

107 Property MessageExchangePatterns : messagePatterns = {< [

108 ST = "updateOffer";

109 DT = "out"], [

110 ST = "isUpdateAccepted";

111 DT = "in"] >, < [

112 ST = "updateOffer";

113 DT = "out"], [

114 ST = "fault";

115 DT = "in"] >};

116 };

117

118 Port requestOffer : PortTWSClient = new PortTWSClient extended with {

119 Property InInterface : Interfaces = Client;

120 Property EndPointList : EndPoints = {[

121 Transport = HTTP1_0;

122 Encoding = SOAP1_1]};

123 Property SendsFirstMessage : SafeBoolean = Yes;

124 Property InOurControlDomain : SafeBoolean = Yes;

125 Property MessageExchangePatterns : messagePatterns = {< [

126 ST = "requestAssistance";

127 DT = "out"], [

128 ST = "assistanceOffers";

129 DT = "in"] >, < [

130 ST = "requestAssistance";

131 DT = "out"], [

132 ST = "fault";

133 DT = "in"] >};

134 };

135

136 Port confirmOffer : PortTWSClient = new PortTWSClient extended with {

137 Property InInterface : Interfaces = Client;

138 Property EndPointList : EndPoints = {[

139 Transport = HTTP1_0;

140 Encoding = SOAP1_1]};

141 Property SendsFirstMessage : SafeBoolean = Yes;

142 Property InOurControlDomain : SafeBoolean = Yes;

143 Property MessageExchangePatterns : messagePatterns = {< [

144 ST = "confirmOffer";

210

145 DT = "out"], [

146 ST = "offerConfirmation";

147 DT = "in"] >, < [

148 ST = "confirmOffer";

149 DT = "out"], [

150 ST = "fault";

151 DT = "in"] >};

152 };

153

154 Port updateOffer : PortTWSClient = new PortTWSClient extended with {

155 Property InInterface : Interfaces = Client;

156 Property EndPointList : EndPoints = {[

157 Transport = HTTP1_0;

158 Encoding = SOAP1_1]};

159 Property SendsFirstMessage : SafeBoolean = Yes;

160 Property InOurControlDomain : SafeBoolean = Yes;

161 Property MessageExchangePatterns : messagePatterns = {< [

162 ST = "updateOffer";

163 DT = "out"] >};

164 };

165

166 Port updateOffer2 : PortTWSClient = new PortTWSClient extended with {

167 Property InInterface : Interfaces = Client;

168 Property EndPointList : EndPoints = {[

169 Transport = HTTP1_0;

170 Encoding = SOAP1_1]};

171 Property SendsFirstMessage : SafeBoolean = Yes;

172 Property InOurControlDomain : SafeBoolean = Yes;

173 Property MessageExchangePatterns : messagePatterns = {< [

174 ST = "updateOffer";

175 DT = "out"], [

176 ST = "isUpdateAccepted";

177 DT = "in"] >, < [

178 ST = "updateOffer";

179 DT = "out"], [

180 ST = "fault";

181 DT = "in"] >};

182 };

183

184 Port requestDiagnostic : PortTWSClient = new PortTWSClient extended with {

185 Property InInterface : Interfaces = Client;

186 Property EndPointList : EndPoints = {[

187 Transport = HTTP1_0;

188 Encoding = SOAP1_1]};

189 Property SendsFirstMessage : SafeBoolean = Yes;

190 Property InOurControlDomain : SafeBoolean = Yes;

191 Property MessageExchangePatterns : messagePatterns = {< [

192 ST = "rawVehicleData";

193 DT = "out"], [

194 ST = "diagnosticInformation";

195 DT = "in"] >, < [

196 ST = "rawVehicleData";

197 DT = "out"], [

198 ST = "fault";

211

199 DT = "in"] >};

200 };

201

202 Port requestDiagnostic2 : PortTWSClient = new PortTWSClient extended with {

203 Property InInterface : Interfaces = Client;

204 Property EndPointList : EndPoints = {[

205 Transport = HTTP1_0;

206 Encoding = SOAP1_1]};

207 Property SendsFirstMessage : SafeBoolean = Yes;

208 Property InOurControlDomain : SafeBoolean = Yes;

209 Property MessageExchangePatterns : messagePatterns = {< [

210 ST = "rawVehicleDataAndChassisNumber";

211 DT = "out"], [

212 ST = "diagnosticInformation";

213 DT = "in"] >, < [

214 ST = "rawVehicleDataAndChassisNumber";

215 DT = "out"], [

216 ST = "fault";

217 DT = "in"] >};

218 };

219

220 };

221

222 Component NU : CompTWSClient = new CompTWSClient extended with {

223 Port getRoute : PortTWSClient = new PortTWSClient extended with {

224 Property InInterface : Interfaces = Client;

225 Property EndPointList : EndPoints = {[

226 Transport = HTTP1_0;

227 Encoding = SOAP1_1]};

228 Property SendsFirstMessage : SafeBoolean = Yes;

229 Property InOurControlDomain : SafeBoolean = Yes;

230 Property MessageExchangePatterns : messagePatterns = {< [

231 ST = "routeCriteria";

232 DT = "out"], [

233 ST = "pathData";

234 DT = "in"] >, < [

235 ST = "routeCriteria";

236 DT = "out"], [

237 ST = "fault";

238 DT = "in"] >};

239 };

240

241 Port checkStatus : PortTWSClient = new PortTWSClient extended with {

242 Property InInterface : Interfaces = Client;

243 Property EndPointList : EndPoints = {[

244 Transport = HTTP1_0;

245 Encoding = SOAP1_1]};

246 Property SendsFirstMessage : SafeBoolean = No;

247 Property InOurControlDomain : SafeBoolean = Yes;

248 Property MessageExchangePatterns : messagePatterns = {< [

249 ST = "requestStatusAndLocation";

250 DT = "out"], [

251 ST = "statusAndLocation";

252 DT = "in"] >, < [

212

253 ST = "requestStatusAndLocation";

254 DT = "out"], [

255 ST = "fault";

256 DT = "in"] >};

257 };

258

259 Port updateRoute : PortTWSClient = new PortTWSClient extended with {

260 Property InInterface : Interfaces = Client;

261 Property EndPointList : EndPoints = {[

262 Transport = HTTP1_0;

263 Encoding = SOAP1_1]};

264 Property SendsFirstMessage : SafeBoolean = No;

265 Property InOurControlDomain : SafeBoolean = Yes;

266 Property MessageExchangePatterns : messagePatterns = {< [

267 ST = "newPathData";

268 DT = "out"] >};

269 };

270

271 Port getEngineData : PortTWSClient = new PortTWSClient extended with {

272 Property InInterface : Interfaces = Client;

273 Property EndPointList : EndPoints = {[

274 Transport = HTTP1_0;

275 Encoding = SOAP1_1], [

276 Transport = HTTP1_0;

277 Encoding = SOAP1_2]};

278 Property SendsFirstMessage : SafeBoolean = Yes;

279 Property InOurControlDomain : SafeBoolean = Yes;

280 Property MessageExchangePatterns : messagePatterns = {< [

281 ST = "requestData";

282 DT = "out"], [

283 ST = "rawData";

284 DT = "in"] >, < [

285 ST = "requestData";

286 DT = "out"], [

287 ST = "fault";

288 DT = "in"] >};

289 };

290

291 Port requestAssistance : PortTWSClient = new PortTWSClient extended with {

292 Property InInterface : Interfaces = Client;

293 Property EndPointList : EndPoints = {[

294 Transport = HTTP1_0;

295 Encoding = SOAP1_1]};

296 Property SendsFirstMessage : SafeBoolean = Yes;

297 Property InOurControlDomain : SafeBoolean = Yes;

298 Property MessageExchangePatterns : messagePatterns = {< [

299 ST = "requestAssistance";

300 DT = "out"], [

301 ST = "assistanceOffers";

302 DT = "in"] >, < [

303 ST = "requestAssistance";

304 DT = "out"], [

305 ST = "fault";

306 DT = "in"] >};

213

307 };

308

309 Port assistanceChoice : PortTWSClient = new PortTWSClient extended with {

310 Property InInterface : Interfaces = Client;

311 Property EndPointList : EndPoints = {[

312 Transport = HTTP1_0;

313 Encoding = SOAP1_1]};

314 Property SendsFirstMessage : SafeBoolean = Yes;

315 Property InOurControlDomain : SafeBoolean = Yes;

316 Property MessageExchangePatterns : messagePatterns = {< [

317 ST = "assistanceChoice";

318 DT = "out"], [

319 ST = "assistanceConfirmation";

320 DT = "in"] >, < [

321 ST = "assistanceChoice";

322 DT = "out"], [

323 ST = "fault";

324 DT = "in"] >};

325 };

326

327 Port assistanceUpdate : PortTWSClient = new PortTWSClient extended with {

328 Property InInterface : Interfaces = Client;

329 Property EndPointList : EndPoints = {[

330 Transport = HTTP1_0;

331 Encoding = SOAP1_1]};

332 Property SendsFirstMessage : SafeBoolean = No;

333 Property InOurControlDomain : SafeBoolean = Yes;

334 Property MessageExchangePatterns : messagePatterns = {< [

335 ST = "updateOffer";

336 DT = "out"], [

337 ST = "isUpdateAccepted";

338 DT = "in"] >, < [

339 ST = "updateOffer";

340 DT = "out"], [

341 ST = "fault";

342 DT = "in"] >};

343 };

344

345 };

346

347 Component CM1E1 : CompTWSService = new CompTWSService extended with {

348 Port engineData : PortTWSService = new PortTWSService extended with {

349 Property InInterface : Interfaces = Service;

350 Property EndPointList : EndPoints = {[

351 Transport = HTTP1_0;

352 Encoding = SOAP1_1]};

353 Property EndPointAddressList : EndPointAddresses = {"192.168.0.1/ vehicleData"};

354 Property SendsFirstMessage : SafeBoolean = No;

355 Property InOurControlDomain : SafeBoolean = No;

356 Property WsdlDocRefs : WsdlDocs = {"http ://192.168.0.1/ wsdl"};

357 Property MessageExchangePatterns : messagePatterns = {< [

358 ST = "requestData";

359 DT = "out"], [

360 ST = "rawData";

214

361 DT = "in"] >, < [

362 ST = "requestData";

363 DT = "out"], [

364 ST = "fault";

365 DT = "in"] >};

366 };

367

368 };

369

370 Component CM1E2 : CompTWSService = new CompTWSService extended with {

371 Port engineData : PortTWSService = new PortTWSService extended with {

372 Property InInterface : Interfaces = Service;

373 Property EndPointList : EndPoints = {[

374 Transport = HTTP1_0;

375 Encoding = SOAP1_2]};

376 Property EndPointAddressList : EndPointAddresses = {"192.168.0.1/ vehicleData"};

377 Property SendsFirstMessage : SafeBoolean = No;

378 Property InOurControlDomain : SafeBoolean = No;

379 Property WsdlDocRefs : WsdlDocs = {"http ://192.168.0.1/ wsdl"};

380 Property MessageExchangePatterns : messagePatterns = {< [

381 ST = "requestData";

382 DT = "out"], [

383 ST = "rawData";

384 DT = "in"] >, < [

385 ST = "requestData";

386 DT = "out"], [

387 ST = "fault";

388 DT = "in"] >};

389 };

390

391 };

392

393 Component CM2E1 : CompTWSService = new CompTWSService extended with {

394 Port engineData : PortTWSService = new PortTWSService extended with {

395 Property InInterface : Interfaces = Service;

396 Property EndPointList : EndPoints = {[

397 Transport = HTTP1_0;

398 Encoding = SOAP1_1]};

399 Property EndPointAddressList : EndPointAddresses = {"192.168.0.1/ vehicleData"};

400 Property SendsFirstMessage : SafeBoolean = No;

401 Property InOurControlDomain : SafeBoolean = No;

402 Property WsdlDocRefs : WsdlDocs = {"http ://192.168.0.1/ wsdl"};

403 Property MessageExchangePatterns : messagePatterns = {< [

404 ST = "requestData";

405 DT = "out"], [

406 ST = "rawData";

407 DT = "in"] >, < [

408 ST = "requestData";

409 DT = "out"], [

410 ST = "fault";

411 DT = "in"] >};

412 };

413

414 };

215

415

416 Component CM1 : CompTWSService = new CompTWSService extended with {

417 Port requestDiagnostic : PortTWSService = new PortTWSService extended with {

418 Property InInterface : Interfaces = Service;

419 Property EndPointList : EndPoints = {[

420 Transport = HTTP1_0;

421 Encoding = SOAP1_1]};

422 Property EndPointAddressList : EndPointAddresses = {"cm1.com/getDiagnostic"};

423 Property SendsFirstMessage : SafeBoolean = No;

424 Property InOurControlDomain : SafeBoolean = No;

425 Property WsdlDocRefs : WsdlDocs = {"http :// wsdl.cm1.com"};

426 Property MessageExchangePatterns : messagePatterns = {< [

427 ST = "rawVehicleData";

428 DT = "out"], [

429 ST = "diagnosticInformation";

430 DT = "in"] >, < [

431 ST = "rawVehicleData";

432 DT = "out"], [

433 ST = "fault";

434 DT = "in"] >};

435 };

436

437 };

438

439 Component CM2 : CompTWSService = new CompTWSService extended with {

440 Port requestDiagnostic : PortTWSService = new PortTWSService extended with {

441 Property InInterface : Interfaces = Service;

442 Property EndPointList : EndPoints = {[

443 Transport = HTTP1_0;

444 Encoding = SOAP1_1]};

445 Property EndPointAddressList : EndPointAddresses = {"cm2.com/getDiagnostic"};

446 Property SendsFirstMessage : SafeBoolean = No;

447 Property InOurControlDomain : SafeBoolean = No;

448 Property WsdlDocRefs : WsdlDocs = {"http :// wsdl.cm2.com"};

449 Property MessageExchangePatterns : messagePatterns = {< [

450 ST = "rawVehicleDataAndChassisNumber";

451 DT = "out"], [

452 ST = "diagnosticInformation";

453 DT = "in"] >, < [

454 ST = "rawVehicleDataAndChassisNumber";

455 DT = "out"], [

456 ST = "fault";

457 DT = "in"] >};

458 };

459

460 };

461

462 Component RS1 : CompTWSService = new CompTWSService extended with {

463 Port requestOffer : PortTWSService = new PortTWSService extended with {

464 Property InInterface : Interfaces = Service;

465 Property EndPointList : EndPoints = {[

466 Transport = HTTP1_0;

467 Encoding = SOAP1_1]};

468 Property SendsFirstMessage : SafeBoolean = No;

216

469 Property EndPointAddressList : EndPointAddresses = {"rs1.com/requestOffer"};

470 Property WsdlDocRefs : WsdlDocs = {"http :// wsdl.rs1.com"};

471 Property InOurControlDomain : SafeBoolean = No;

472 Property MessageExchangePatterns : messagePatterns = {< [

473 ST = "requestAssistance";

474 DT = "out"], [

475 ST = "assistanceOffers";

476 DT = "in"] >, < [

477 ST = "requestAssistance";

478 DT = "out"], [

479 ST = "fault";

480 DT = "in"] >};

481 };

482

483 Port confirmOffer : PortTWSService = new PortTWSService extended with {

484 Property InInterface : Interfaces = Service;

485 Property EndPointList : EndPoints = {[

486 Transport = HTTP1_0;

487 Encoding = SOAP1_1]};

488 Property SendsFirstMessage : SafeBoolean = No;

489 Property EndPointAddressList : EndPointAddresses = {"rs1.com/confirmOffer"};

490 Property WsdlDocRefs : WsdlDocs = {"http :// wsdl.rs1.com"};

491 Property InOurControlDomain : SafeBoolean = No;

492 Property MessageExchangePatterns : messagePatterns = {< [

493 ST = "confirmOffer";

494 DT = "out"], [

495 ST = "offerConfirmation";

496 DT = "in"] >, < [

497 ST = "confirmOffer";

498 DT = "out"], [

499 ST = "fault";

500 DT = "in"] >};

501 };

502

503 Port updateOffer : PortTWSService = new PortTWSService extended with {

504 Property InInterface : Interfaces = Service;

505 Property EndPointList : EndPoints = {[

506 Transport = HTTP1_0;

507 Encoding = SOAP1_1]};

508 Property SendsFirstMessage : SafeBoolean = No;

509 Property EndPointAddressList : EndPointAddresses = {"rs1.com/updateOffer"};

510 Property WsdlDocRefs : WsdlDocs = {"http :// wsdl.rs1.com"};

511 Property InOurControlDomain : SafeBoolean = No;

512 Property MessageExchangePatterns : messagePatterns = {< [

513 ST = "updateOffer";

514 DT = "out"] >};

515 };

516

517 };

518

519 Component RS2 : CompTWSService = new CompTWSService extended with {

520 Port requestOffer : PortTWSService = new PortTWSService extended with {

521 Property InInterface : Interfaces = Service;

522 Property EndPointList : EndPoints = {[

217

523 Transport = HTTP1_0;

524 Encoding = SOAP1_1]};

525 Property SendsFirstMessage : SafeBoolean = No;

526 Property EndPointAddressList : EndPointAddresses = {"rs2.com/requestOffer"};

527 Property WsdlDocRefs : WsdlDocs = {"http :// wsdl.rs2.com"};

528 Property InOurControlDomain : SafeBoolean = No;

529 Property MessageExchangePatterns : messagePatterns = {< [

530 ST = "requestAssistance";

531 DT = "out"], [

532 ST = "assistanceOffers";

533 DT = "in"] >, < [

534 ST = "requestAssistance";

535 DT = "out"], [

536 ST = "fault";

537 DT = "in"] >};

538 };

539

540 Port confirmOffer : PortTWSService = new PortTWSService extended with {

541 Property InInterface : Interfaces = Service;

542 Property EndPointList : EndPoints = {[

543 Transport = HTTP1_0;

544 Encoding = SOAP1_1]};

545 Property SendsFirstMessage : SafeBoolean = No;

546 Property EndPointAddressList : EndPointAddresses = {"rs2.com/confirmOffer"};

547 Property WsdlDocRefs : WsdlDocs = {"http :// wsdl.rs2.com"};

548 Property InOurControlDomain : SafeBoolean = No;

549 Property MessageExchangePatterns : messagePatterns = {< [

550 ST = "confirmOffer";

551 DT = "out"], [

552 ST = "offerConfirmation";

553 DT = "in"] >, < [

554 ST = "confirmOffer";

555 DT = "out"], [

556 ST = "fault";

557 DT = "in"] >};

558 };

559

560 Port updateOffer : PortTWSService = new PortTWSService extended with {

561 Property InInterface : Interfaces = Service;

562 Property EndPointList : EndPoints = {[

563 Transport = HTTP1_0;

564 Encoding = SOAP1_1]};

565 Property SendsFirstMessage : SafeBoolean = No;

566 Property EndPointAddressList : EndPointAddresses = {"rs2.com/updateOffer"};

567 Property WsdlDocRefs : WsdlDocs = {"http :// wsdl.rs2.com"};

568 Property InOurControlDomain : SafeBoolean = No;

569 Property MessageExchangePatterns : messagePatterns = {< [

570 ST = "updateOffer";

571 DT = "out"], [

572 ST = "isUpdateAccepted";

573 DT = "in"] >, < [

574 ST = "updateOffer";

575 DT = "out"], [

576 ST = "fault";

218

577 DT = "in"] >};

578 };

579

580 };

581

582 Connector ConnTWS0 : ConnTWS = new ConnTWS extended with {

583 Role r1;

584

585 Role r2;

586

587 };

588

589 Attachment NU.getEngineData to ConnTWS0.r1;

590 Attachment CM1E1.engineData to ConnTWS0.r2;

591 Connector ConnTWS1 : ConnTWS = new ConnTWS extended with {

592 Role r1;

593

594 Role r2;

595

596 };

597

598 Attachment SNP.calcRoute to ConnTWS1.r1;

599 Attachment NU.getRoute to ConnTWS1.r2;

600 Connector ConnTWS2 : ConnTWS = new ConnTWS extended with {

601 Role r1;

602

603 Role r2;

604

605 };

606

607 Attachment SNP.updateRoute to ConnTWS2.r1;

608 Attachment NU.updateRoute to ConnTWS2.r2;

609 Connector ConnTWS3 : ConnTWS = new ConnTWS extended with {

610 Role r1;

611

612 Role r2;

613

614 };

615

616 Attachment SNP.requestAssistance to ConnTWS3.r1;

617 Attachment NU.requestAssistance to ConnTWS3.r2;

618 Connector ConnTWS4 : ConnTWS = new ConnTWS extended with {

619 Role r1;

620

621 Role r2;

622

623 };

624

625 Attachment SNP.assistanceChoice to ConnTWS4.r1;

626 Attachment NU.assistanceChoice to ConnTWS4.r2;

627 Connector ConnTWS5 : ConnTWS = new ConnTWS extended with {

628 Role r1;

629

630 Role r2;

219

631

632 };

633

634 Attachment SNP.assistanceUpdate to ConnTWS5.r1;

635 Attachment NU.assistanceUpdate to ConnTWS5.r2;

636 Connector ConnTWS6 : ConnTWS = new ConnTWS extended with {

637 Role r1;

638

639 Role r2;

640

641 };

642

643 Attachment RS1.requestOffer to ConnTWS6.r1;

644 Attachment SNP.requestOffer to ConnTWS6.r2;

645 Connector ConnTWS7 : ConnTWS = new ConnTWS extended with {

646 Role r1;

647

648 Role r2;

649

650 };

651

652 Attachment RS1.confirmOffer to ConnTWS7.r1;

653 Attachment SNP.confirmOffer to ConnTWS7.r2;

654 Connector ConnTWS8 : ConnTWS = new ConnTWS extended with {

655 Role r1;

656

657 Role r2;

658

659 };

660

661 Attachment RS1.updateOffer to ConnTWS8.r1;

662 Attachment SNP.updateOffer to ConnTWS8.r2;

663 Connector ConnTWS9 : ConnTWS = new ConnTWS extended with {

664 Role r1;

665

666 Role r2;

667

668 };

669

670 Attachment CM1.requestDiagnostic to ConnTWS9.r1;

671 Attachment SNP.requestDiagnostic to ConnTWS9.r2;

672 Connector ConnTWS10 : ConnTWS = new ConnTWS extended with {

673 Role r1;

674

675 Role r2;

676

677 };

678

679 Attachment SNP.requestDiagnostic2 to ConnTWS10.r2;

680 Attachment CM2.requestDiagnostic to ConnTWS10.r1;

681 Connector ConnTWS11 : ConnTWS = new ConnTWS extended with {

682 Role r1;

683

684 Role r2;

220

685

686 };

687

688 Attachment SNP.requestOffer to ConnTWS11.r2;

689 Attachment RS2.requestOffer to ConnTWS11.r1;

690 Connector ConnTWS12 : ConnTWS = new ConnTWS extended with {

691 Role r1;

692

693 Role r2;

694

695 };

696

697 Attachment SNP.confirmOffer to ConnTWS12.r2;

698 Attachment RS2.confirmOffer to ConnTWS12.r1;

699 Connector ConnTWS13 : ConnTWS = new ConnTWS extended with {

700 Role r1;

701

702 Role r2;

703

704 };

705

706 Attachment SNP.updateOffer2 to ConnTWS13.r1;

707 Attachment RS2.updateOffer to ConnTWS13.r2;

708 Connector ConnTWS14 : ConnTWS = new ConnTWS extended with {

709 Role r1;

710

711 Role r2;

712

713 };

714

715 Attachment CM1E2.engineData to ConnTWS14.r2;

716 Attachment NU.getEngineData to ConnTWS14.r1;

717 Connector ConnTWS15 : ConnTWS = new ConnTWS extended with {

718 Role r1;

719

720 Role r2;

721

722 };

723

724 Attachment CM2E1.engineData to ConnTWS15.r2;

725 Attachment NU.getEngineData to ConnTWS15.r1;

726 Connector ConnTWS16 : ConnTWS = new ConnTWS extended with {

727 Role r1;

728

729 Role r2;

730

731 };

732

733 Attachment NU.checkStatus to ConnTWS16.r2;

734 Attachment SNP.checkStatus to ConnTWS16.r1;

735 };

221

Appendix D

Enhanced Style Description

D.1 Rules for using the style

The style and analysis makes three assumptions about the CSP properties within a system, all of

which are syntactic. These are:

D.1.1 Port message pattern naming

The analysis requires that the process IDs in each port’s messagePattern property are unique within

a system. A suggested structure to ensure this is to name each process with the qualified name of

the port it exists within. For example the message pattern process of port ‘port1’ on component

‘comp1’ would be ‘comp1-port1’. This naming structure should also be included in the following lines

of message pattern template. An example of this from a port named setupConf on the component

CPClient can be seen in Figure D.1.

D.1.2 Message naming

The analysis also requires that the names given to each message in the message pattern CSP descrip-

tions are unique within the system. The suggested structure here is an extension of that suggested

for the ports, i.e. the qualified name of the port followed by the message name within the port.

For example a ‘login’ message in the above port would be named ‘comp1-p1-login’. This naming

1 Property MessagePattern = "SOLI
2 CPClient_setupConf = CPClient_setupConf_sendReq -> CPClient_setupConf_p1
3 CPClient_setupConf_p1 = CPClient_setupConf_p2 [] CPClient_setupConf_p3
4 CPClient_setupConf_p2 = CPClient_setupConf_getRes -> CPClient_setupConf_OK
5 CPClient_setupConf_p3 = CPClient_setupConf_getFault -> CPClient_setupConf_FAULT
6 CPClient_setupConf_OK = CPClient_PaymentCC
7 CPClient_setupConf_FAULT = CPClient_PaymentCC";

Figure D.1: An example messagePattern property from a port in the car parking scenario listed in
Appendix E.

222

structure can be seen employed in Figure D.1.

D.1.3 Forbidden message name

The naming structures are suggested but are not mandatory. In the case that they are not followed

there is a single message ID that should be avoided. This is faux. This name is used to represent

a message that will not exist when stubborn connectors exist in a system. Using it as a message

name could lead to false results being returned by all the analyses based upon the CSP model of

the system.

D.2 The Style Definition

1 Family ws_enhanced_01 = {

2

3 // Below are the declarations of the external analyses used in the style. The declaration

4 // takes follow the form "external analysis <rulename ><formal parameters > : <return type >

5 // = <java class and path >;". The external analysis

6

7 external analysis EAMessageExchangePatternsMatch(thisConnector : Element) : boolean

8 = uk.ac.ncl.cjg.ws_enhanced.MessageExchangePatternsMatch;

9

10 external analysis EAMessageExchangePatternsPartiallyMatch(thisConnector : Element) : boolean

11 = uk.ac.ncl.cjg.ws_enhanced.MessageExchangePatternsPartiallyMatch;

12

13 external analysis EAConcurrentCallsToThisPort(thisPort : Element) : boolean

14 = uk.ac.ncl.cjg.ws_enhanced.ConcurrentCallsToThisPort;

15

16 external analysis EACentralDataStoreCorrect(thisComponent : Element) : boolean

17 = uk.ac.ncl.cjg.ws_enhanced.CentralDataStoreCorrect;

18

19 external analysis EACommissionMismatch(thisComponent : Element) : boolean

20 = uk.ac.ncl.cjg.ws_enhanced.CommissionMismatch;

21

22 external analysis EACommissionPartialMatch(thisComponent : Element) : boolean

23 = uk.ac.ncl.cjg.ws_enhanced.CommissionPartialMatch;

24

25 external analysis EAOmissionMismatch(thisComponent : Element) : boolean

26 = uk.ac.ncl.cjg.ws_enhanced.OmissionMismatch;

27

28 external analysis EAOmissionPartialMatch(thisComponent : Element) : boolean

29 = uk.ac.ncl.cjg.ws_enhanced.OmissionPartialMatch;

30

31 external analysis EAMessageDataTypesMatch(thisConnector : Element ,firstPort : Element

32 ,secondPort : Element ,messageNo : int) : boolean

33 = uk.ac.ncl.cjg.ws_enhanced.MessageDataTypesMatch;

34

35 external analysis EAMessageOverData(thisConnector : Element ,firstPort : Element

36 ,secondPort : Element ,messageNo : int) : boolean

37 = uk.ac.ncl.cjg.ws_enhanced.MessageOverData;

223

38

39 external analysis EAMessageUnderData1(thisConnector : Element ,firstPort : Element

40 ,secondPort : Element ,messageNo : int) : boolean

41 = uk.ac.ncl.cjg.ws_enhanced.MessageUnderData1;

42

43 external analysis EAMessageUnderData2(thisConnector : Element ,firstPort : Element

44 ,secondPort : Element ,messageNo : int) : boolean

45 = uk.ac.ncl.cjg.ws_enhanced.MessageUnderData2;

46

47 external analysis EAStateScopesMatch(thisConnector : Element ,firstPort : Element

48 ,secondPort : Element) : boolean

49 = uk.ac.ncl.cjg.ws_enhanced.StateScopesMatch;

50

51 external analysis EAMessagePatternAndMessageListConcur(thisPort : Element) : boolean

52 = uk.ac.ncl.cjg.ws_enhanced.MessagePatternAndMessageListConcur;

53

54 external analysis EAChoiceGroupsHaveChoiceMaker(thisComponent : Element) : boolean

55 = uk.ac.ncl.cjg.ws_enhanced.ChoiceGroupsHaveChoiceMaker;

56

57 // Below are the custom types used in this style , the syntax does not allow them

58 // to be defined in the connectors where the properties based upon them are

59 // instantiated

60

61

62

63 // The following types support the definition of the messages exchange

64 // and the data they contain

65

66 Property Type TMessage = Record [

67 MessageId : string;

68 MessageData : Set {TMessageDatum };

69];

70

71 Property Type TMessages = set{TMessage };

72

73 Property Type TMessageDatum = Record [

74 DatumId : string;

75 DatumRep : TDataRep;

76 DatumStateScopeExpected : TStateScopeExpected;

77];

78

79 Property Type TDataRep = Enum {

80 SOAP_Int ,

81 SOAP_String ,

82 SOAP_Float ,

83 SOAP_Bool ,

84 SOAP_Date ,

85 SOAP_Time ,

86 SOAP_DateTime

87 };

88

89 Property Type TCentralDataRecord = Record [

90 DatumID : string;

91 DatumSemantics : TDataSemantics;

224

92 DatumScopeExhibited : TStateScopeExhibited;

93];

94

95 Property Type TDataSemantics = string;

96

97

98 // Two types supporting the scope over which an element of data

99 // is expected to be shared and the maximum scope over which a component

100 // states it may share it.

101

102 Property Type TStateScopeExhibited = Enum {

103 Private ,

104 Shared

105 };

106

107 Property Type TStateScopeExpected = Enum {

108 Private ,

109 Shared ,

110 NoPreference

111 };

112

113

114 // These types support the definition of an adressable endpoint in terms of

115 // their transport encoding protocols and address. The address is only applicable

116 // to service type ports that are required to be discoverable .

117

118 Property Type TLegalSoapVersions = Enum {

119 SOAP1_1 ,

120 SOAP1_2

121 };

122

123 Property Type TLegalTransportProtocols = Enum {

124 HTTP1_0 ,

125 HTTP1_1

126 };

127

128 Property Type TEndPoint = Record [

129 Transport : TLegalTransportProtocols;

130 Encoding : TLegalSoapVersions;

131];

132

133 Property Type TEndPointAddresses = Set {string };

134

135 Property Type TEndPoints = Set {TEndPoint };

136

137

138 // Types used to indicate types of failure a port might exhibit or

139 // that a port may assume another port may exhibit and therefore contain

140 // handlers for.

141

142 Property Type TFailureMode = Enum {

143 ContentFailures ,

144 EarlyTimingFailures ,

145 LateTimingFailures ,

225

146 HaltFailures ,

147 ErraticFailures

148 };

149

150 Property Type TFailureModes = Set {ws_enhanced_01.TFailureMode };

151

152

153 // An enumeration of the allowed binding times in the style

154

155 Property Type TBindTime = Enum {Write ,Compile ,Instantiation ,Run};

156

157

158 // A property type used to allow ACME Studio to distinguish between

159 // client and service ports correctly

160

161 Property Type TInterfaces = Enum {

162 Client ,

163 Service

164 };

165

166

167 // The simple type used to contain the CSP descriptions in the

168 // system.

169

170 Property Type TCSP = string;

171

172

173 // A type to hold the addresses of the WSDL documents referring to a specific port

174

175 Property Type TWsdlDocs = Set {string };

176

177

178 // A type to indicate the continuity of data availability either expected or

179 // exhibited by a port.

180

181 Property Type TDataContinuity = Enum {

182 Sporadic ,

183 Continuous

184 };

185

186

187 // A work -a-round alternative for the built in boolean for which there is no means

188 // to positively identify a property that has not been initialised

189

190 Property Type TSafeBoolean = Enum {

191 Yes ,

192 No

193 };

194

195 // A type to allow a port to have no preference whether the other port can create

196 // or destroy a particular connection

197

198 Property Type TConnCreationDestructionAssumption = Enum {

199 May ,

226

200 MayNot ,

201 Either

202 };

203

204 // Below are the component types created in the style.

205 // The component heirarchy is :

206 // CompTWSCommom CompTWSAnalysisControl

207 // CompTWSClient CompTWSService CompTWSIntermediary

208

209

210 Component Type CompTWSCommon = {

211

212 Property CentralProcessDescription : TCSP;

213

214 Property CentralDataRecords : Set {TCentralDataRecord };

215

216 Property ComponentInOurControlDomain : TSafeBoolean;

217

218 rule CentralProcessDescribed = invariant CentralProcessDescription != ""

219 << label : string = "Components Central CSP process Description has contents";

220 errMsg : string = "The Central CSP process description is empty"; >>;

221

222 rule ComponentInOurControlDomainDescribed = invariant ComponentInOurControlDomain == Yes

223 OR ComponentInOurControlDomain == No

224 << label : string = "The ComponentInOurControlDomain property is populated";

225 errMsg : string = "The ComponentInOurControlDomain property is not populated"; >>;

226

227 rule MsgDatumDescribed = invariant EACentralDataStoreCorrect(self)

228 << label : string = "All data in the messages is represented in the central

229 data store";

230 errMsg : string = "Data represented in a message does not exist in central data

231 store , check the analysis output for details"; >>;

232

233 rule ChoiceGroupsHaveChoiceMakers = invariant EAChoiceGroupsHaveChoiceMaker(self)

234 << label : string = "All choice groups in this component have their own choice

235 makers";

236 errMsg : string = "One or more choice groups are missing a choice maker , check the

237 analysis output for details"; >>;

238

239 rule CommissionMismatch = invariant EACommissionMismatch(self)

240 << label : string = "This component does not send any unexpected messages to its

241 environment - where neither port is in our control";

242 errMsg : string = "The component sends one or more unexpected messages to the

243 environment , neither port is in our control , see analysis

244 output for details."; >>;

245

246 rule CommissionPartialMatch = invariant EACommissionPartialMatch(self)

247 << label : string = "This component does not send any unexpected messages to its

248 environment - where one or bort ports is in our control";

249 errMsg : string = "The component sends one or more unexpected messages to the

250 environment where one or both ports involved is in our control ,

251 see analysis output for details."; >>;

252

253 rule OmissionMismatch = invariant EAOmissionMismatch(self)

227

254 << label : string = "This component receives all expected messages on connections

255 where neither port is in our control";

256 errMsg : string = "The port does not receive one or more expected messages on

257 connections where neither port is in our control"; >>;

258

259 rule OmissionPartialMatch = invariant EAOmissionPartialMatch(self)

260 << label : string = "This component receives all expected messages on connections

261 where one or both ports are in our control";

262 errMsg : string = "This component does not receive one or more messages on

263 connections where one or both ports are in our control ,

264 see analysis output for details"; >>;

265 }

266

267

268 Component Type CompTWSClient extends CompTWSCommon with {

269

270 rule AllClientPorts = invariant forall p : Port in self.PORTS |

271 satisfiesType(p, PortTWSClientSingle)

272 OR satisfiesType(p, PortTWSClientUnicast)

273 << label : string = "External ports are all Client type";

274 errMsg : string = "Only client type ports are allowed"; >> ;

275

276 rule ComponentHasValidPorts = invariant size(self.PORTS) > 0

277 << label : string = "Component has at least one port";

278 errMsg : string = "Component should have at least one port"; >> ;

279

280 }

281

282

283 Component Type CompTWSIntermediary extends CompTWSCommon with {

284

285 rule ComponenthasValidPorts = invariant forall p : Port in self.PORTS |

286 satisfiesType(p, PortTWSClientSingle)

287 OR satisfiesType(p, PortTWSClientUnicast)

288 OR satisfiesType(p, PortTWSServiceSingle)

289 OR satisfiesType(p, PortTWSServiceUnicast)

290 << label : string = "External ports are of the web service type";

291 errMsg : string = "Only WebService type ports are allowed"; >> ;

292

293 rule ComponentHasClientInterface = invariant exists p : Port in self.PORTS |

294 satisfiesType(p, PortTWSClientSingle)

295 OR satisfiesType(p, PortTWSClientUnicast)

296 << label : string = "Component has at least one client type port";

297 errMsg : string = "Component must have at least one client type port"; >> ;

298

299 rule ComponentHasServiceInterface = invariant exists p : Port in self.PORTS |

300 satisfiesType(p, PortTWSServiceSingle)

301 OR satisfiesType(p, PortTWSServiceUnicast)

302 << label : string = "Component has at least one service type port";

303 errMsg : string = "Component must have at least one service type port"; >> ;

304 }

305

306

307 Component Type CompTWSService extends CompTWSCommon with {

228

308 rule AllServicePorts = invariant forall p : Port in self.PORTS |

309 satisfiesType(p, PortTWSServiceSingle)

310 OR satisfiesType(p, PortTWSServiceUnicast)

311 << label : string = "External ports are all Service type";

312 errMsg : string = "Only service type ports are allowed"; >> ;

313

314 rule ComponentHasValidPorts = invariant size(self.PORTS) > 0

315 << label : string = "Component has at least one port";

316 errMsg : string = "Component should have at least one port"; >> ;

317 }

318

319

320 Component Type CompTWSAnalysisControl = {

321

322 Property ActiveAnalysisCommissionMismatch : boolean;

323

324 Property ActiveAnalysisCommissionPartialMatch : boolean;

325

326 Property ActiveAnalysisOmissionMismatch : boolean;

327

328 Property ActiveAnalysisOmissionPartialMatch : boolean;

329

330 Property ActiveAnalysisMessageExchangePatternsMatch : boolean;

331

332 Property ActiveAnalysisMessageExchangePatternsPartiallyMatch : boolean;

333

334 Property ActiveAnalysisConcurrentCallsToThisPort : boolean;

335

336 Property ActiveAnalysisCentralDataStoreCorrect : boolean;

337

338 Property ActiveAnalysisMessageDataTypesMatch : boolean;

339

340 Property ActiveAnalysisMessageOverData : boolean;

341

342 Property ActiveAnalysisMessageUnderData1 : boolean;

343

344 Property ActiveAnalysisMessageUnderData2 : boolean;

345

346 Property ActiveAnalysisStateScopesMatch : boolean;

347

348 Property ActiveAnalysisMessagePatternAndMessageListConcur : boolean;

349

350 Property ActiveAnalysisChoiceGroupsHaveChoiceMaker : boolean;

351

352 Property outputPath : string;

353

354 rule AnalysisCommissionMismatchActive

355 = invariant ActiveAnalysisCommissionMismatch

356 << label : string = "Message commission mismatch : analysis active";

357 errMsg : string = "Message commission mismatch : analysis inactive"; >>;

358

359 rule AnalysisCommissionPartialMatchActive

360 = invariant ActiveAnalysisCommissionPartialMatch

361 << label : string = "Message commission partial mismatch : analysis active";

229

362 errMsg : string = "Message commission partial mismatch : analysis inactive"; >>;

363

364 rule AnalysisOmissionMismatchActive

365 = invariant ActiveAnalysisOmissionMismatch

366 << label : string = "Message omission mismatch : analysis active";

367 errMsg : string = "Message omission mismatch : analysis inactive"; >>;

368

369 rule AnalysisOmissionPartialMatchActive

370 = invariant ActiveAnalysisOmissionPartialMatch

371 << label : string = "Message omission partial mismatch : analysis active";

372 errMsg : string = "Message omission partial mismatch : analysis inactive"; >>;

373

374 rule AnalysisMessageExchangePatternsMatchActive

375 = invariant ActiveAnalysisMessageExchangePatternsMatch

376 << label : string = "Message exchange pattern match : analysis active";

377 errMsg : string = "Message exchange pattern match : analysis inactive"; >>;

378

379 rule AnalysisMessageExchangePatternsPartiallyMatchActive

380 = invariant ActiveAnalysisMessageExchangePatternsPartiallyMatch

381 << label : string = "Message exchange pattern partial match : analysis active";

382 errMsg : string = "Message exchange pattern partial match : analysis inactive"; >>;

383

384 rule AnalysisConcurrentCallsToThisPortActive

385 = invariant ActiveAnalysisConcurrentCallsToThisPort

386 << label : string = "Concurrent calls to a non reentrant port : analysis active";

387 errMsg : string = "Concurrent calls to a non reentran port : analysis inactive"; >>;

388

389 rule AnalysisCentralDataStoreCorrectActive

390 = invariant ActiveAnalysisCentralDataStoreCorrect

391 << label : string = "Confirmation that message data is represented in central data

392 store : analysis active";

393 errMsg : string = "Confirmation that message data is represented in central data

394 store : analysis inactive"; >>;

395

396 rule AnalysisMessageDataTypesMatchActive

397 = invariant ActiveAnalysisMessageDataTypesMatch

398 << label : string = "Data types match in messages exchanged : analysis active";

399 errMsg : string = "Data types match in messages exchanged : analysis inactive"; >>;

400

401 rule AnalysisMessageOverDataActive

402 = invariant ActiveAnalysisMessageOverData

403 << label : string = "Message contains unrequired data : analysis active";

404 errMsg : string = "Message contains unrequired data : analysis inactive"; >>;

405

406 rule AnalysisMessageUnderData1Active

407 = invariant ActiveAnalysisMessageUnderData1

408 << label : string = "Message does not contain required data : analysis active";

409 errMsg : string = "Message does not contain required data : analysis inactive"; >>;

410

411 rule AnalysisMessageUnderData2Active

412 = invariant ActiveAnalysisMessageUnderData2

413 << label : string = "Message does not contain required data : analysis active";

414 errMsg : string = "Message does not contains required data : analysis inactive"; >>;

415

230

416 rule AnalysisStateScopesMatchActive

417 = invariant ActiveAnalysisStateScopesMatch

418 << label : string = "Expected and exhibited state scopes : analysis active";

419 errMsg : string = "Expected and exhibited state scopes : analysis inactive"; >>;

420

421 rule AnalysisMessagePatternAndMessageListConcurActive

422 = invariant ActiveAnalysisMessagePatternAndMessageListConcur

423 << label : string = "Message names in port CSP and messages property match :

424 analysis active";

425 errMsg : string = "Message names in port CSP and messages property match :

426 analysis inactive"; >>;

427

428 rule AnalysisChoiceGroupsHaveChoiceMakerActive

429 = invariant ActiveAnalysisChoiceGroupsHaveChoiceMaker

430 << label : string = "Confirmation that choice groups have a choice maker :

431 analysis active";

432 errMsg : string = "Confirmation that choice groups have a choice maker :

433 analysis inactive"; >>;

434 }

435

436

437 // Below are the port types created in the style.

438 // Their heirarchy is as follows :

439 // PortTWSCommon

440 // PortTWSClient PortTWSService

441 // PortTWSClientUnicast PortTWSClientSingle PortTWSServiceSingle PortTWSServiceUnicast

442

443

444

445 Port Type PortTWSCommon = {

446

447 Property EndPointList : TEndPoints;

448

449 Property InOurControlDomain : TSafeBoolean;

450

451 Property SendsFirstMessage : TSafeBoolean;

452

453 Property FailureModesExpected : TFailureModes;

454

455 Property FailureModesExhibited : TFailureModes;

456

457 Property Reentrant : TSafeBoolean;

458

459 Property Messages : TMessages;

460

461 Property BindTime : TBindTime;

462

463 Property BindingSelfAdd : TConnCreationDestructionAssumption;

464

465 Property BindingSelfRemove : TConnCreationDestructionAssumption;

466

467 Property BindingOtherAdd : TConnCreationDestructionAssumption;

468

469 Property BindingOtherRemove : TConnCreationDestructionAssumption;

231

470

471 Property MessagePattern : TCSP;

472

473 Property DataContinuity : TDataContinuity;

474

475 rule EndpointListPopulated = invariant size(EndPointList) > 0

476 << label : string = "Endpoint list is populated";

477 errMsg : string = "Endpoint list must be populated"; >> ;

478

479 rule InOurControlDomainPopulated = invariant InOurControlDomain == Yes

480 OR InOurControlDomain == No

481 << label : string = "In our control domain property is populated";

482 errMsg : string = "In Our Control Domain property must be populated"; >> ;

483

484 rule SendsFirstMessagePopulated = invariant SendsFirstMessage == Yes

485 OR SendsFirstMessage == No

486 << label : string = "Sends first message property is populated";

487 errMsg : string = "Sends First Message property must be populated"; >> ;

488

489 rule PortReentered = invariant Reentrant == Yes

490 OR EAConcurrentCallsToThisPort(self) == true

491 << label : string = "No reentrance problems with this port";

492 errMsg : string = "Reentrance problem detected with this port , see analysis

493 output for details"; >>;

494

495 rule MsgNamesConsistent = invariant EAMessagePatternAndMessageListConcur(self)

496 << label : string = "All messages in the CSP pattern are included in the

497 messages property";

498 errMsg : string = "One or more messages in the CSP patter is not included in

499 the message property , see analysis output for details."; >>;

500

501 rule ReentrantPopulated = invariant Reentrant == Yes

502 OR Reentrant == No

503 << label : string = "Port reentrance property is populated";

504 errMsg : string = "Port reentrance property is not populated"; >>;

505

506 rule BindingSelfAddPopulated = invariant BindingSelfAdd == May

507 OR BindingSelfAdd == MayNot

508 << label : string = "BindingSelfAdd property populated";

509 errMsg : string = "BindingSelfAdd property is not populated or may

510 be set to Either which is not allowed"; >> ;

511

512 rule BindingSelfRemovePopulated = invariant BindingSelfRemove == May

513 OR BindingSelfRemove == MayNot

514 << label : string = "BindingSelfRemove property populated";

515 errMsg : string = "BindingSelfRemove property is not populated or may

516 be set to Either which is not allowed"; >> ;

517

518 rule BindingOtherAddPopulated = invariant BindingOtherAdd == May

519 OR BindingOtherAdd == MayNot OR BindingOtherAdd == Either

520 << label : string = "BindingOtherAdd property populated";

521 errMsg : string = "BindingOtherAdd property is not populated"; >> ;

522

523 rule BindingOtherRemovePopulated = invariant BindingOtherRemove == May

232

524 OR BindingOtherRemove == MayNot OR BindingOtherRemove == Either

525 << label : string = "BindingOtherRemove property populated";

526 errMsg : string = "BindingOtherRemove property is not populated"; >> ;

527

528 rule MessagePatternPopulated = invariant MessagePattern != ""

529 << label : string = "Port CSP message pattern property is not empty";

530 errMsg : string = "Port CSP pattern property is empty"; >>;

531

532

533 rule DataContinuityPopulated = invariant DataContinuity == Sporadic

534 OR DataContinuity == Continuous

535 << label : string = "Data Continuity property populated";

536 errMsg : string = "Data continuity property is not populated"; >>;

537 }

538

539

540 Port Type PortTWSClient extends PortTWSCommon with {

541

542 Property InInterface : TInterfaces = Client;

543

544 rule BindingTimePopulated = invariant BindTime == Write

545 OR BindTime == Compile

546 OR BindTime == Instantiation

547 OR BindTime == Run

548 << label : string = "Port binding time is populated";

549 errMsg : string = "port binding time is not populated"; >>;

550 }

551

552

553 Port Type PortTWSClientSingle extends PortTWSClient with {

554

555 rule CardinalityOfAttachmentsOK = invariant size(self.ATTACHEDROLES) == 1

556 << label : string = "Port is attached to an acceptable number of connectors";

557 errMsg : string = "Port is attached to too many or too few connectors"; >>;

558 }

559

560

561 Port Type PortTWSClientUnicast extends PortTWSClient with {

562

563 Property ChoiceGroup : string;

564

565 Property GroupChoiceMaker : TSafeBoolean;

566

567 rule ChoiceGroupPopulated = invariant ChoiceGroup != ""

568 << label : string = "Choice group is populated";

569 errMsg : string = "Choice group property is empty"; >>;

570

571 rule CardinalityOfAttachmentsOK = invariant size(self.ATTACHEDROLES) > 0

572 << label : string = "Port is attached to an acceptable number of connectors";

573 errMsg : string = "Port is attached to too few connectors"; >>;

574 }

575

576

577 Port Type PortTWSService extends PortTWSCommon with {

233

578

579 Property InInterface : TInterfaces = Service;

580

581 Property EndPointAddressList : TEndPointAddresses;

582

583 Property WsdlDocRefs : TWsdlDocs;

584

585 rule EndPointAddressPopulated = invariant size(EndPointAddressList) > 0

586 << label : string = "Endpoint address list is populated";

587 errMsg : string = "Endpoint address list must be populated"; >> ;

588

589 rule EachEndpointProtocolAddressed =

590 invariant size(EndPointAddressList)== size(EndPointList)

591 << label : string = "Number EndPoint addresses = number of EndPoint protocol pairs";

592 errMsg : string = "Must be one End Point Address for each End Point protocol pair";

593 >> ;

594

595 rule HasWSDL = invariant size(WsdlDocRefs) > 0

596 << label : string = "WSDL reference list is populated";

597 errMsg : string = "WSDL reference list should be populated"; >> ;

598

599 rule StatedBindingTime = invariant BindTime == Instantiation

600 OR BindTime == Run

601 << label : string = "Binding time is populated correctly";

602 errMsg : string = "Binding time is either empty or has a disallowed value"; >>;

603 }

604

605

606 Port Type PortTWSServiceSingle extends PortTWSService with {

607

608 rule CardinalityOfAttachmentsOK = invariant size(self.ATTACHEDROLES) == 1

609 << label : string = "Port is attached to an acceptable number of connectors";

610 errMsg : string = "Port is attached to too many or too few connectors"; >>;

611 }

612

613

614 Port Type PortTWSServiceUnicast extends PortTWSService with {

615

616 Property ChoiceGroup : string;

617

618 Property GroupChoiceMaker : TSafeBoolean;

619

620 rule ChoiceGroupPopulated = invariant ChoiceGroup != ""

621 << label : string = "Choice group is populated";

622 errMsg : string = "Choice group property is empty"; >>;

623

624 rule CardinalityOfAttachmentsOK = invariant size(self.ATTACHEDROLES) > 0

625 << label : string = "Port is attached to an acceptable number of connectors";

626 errMsg : string = "Port is attached to too few connectors"; >>;

627 }

628

629

630 // Below are the connector types created in the style.

631 // There is no heirarchy as the two types are completely independant with ConnTWS being

234

632 // used to represent all known connections in the system and the ConnTWSCooperative

633 // representing links to unknown parts of the system.

634

635 Connector Type ConnTWS = {

636

637 Role role1 = {

638 }

639

640 Role role2 = {

641 }

642

643 rule CorrectNumberOfRoles = invariant size(self.ROLES) == 2

644 << label : string = "A connector of this type must have 2 roles";

645 errMsg : string = "This connector must have exactly two roles"; >> ;

646

647 rule EndpointProtocols = invariant forall p1 : PortTWSCommon in role1.ATTACHEDPORTS |

648 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |

649 attached(role1 , p1)

650 AND attached(role2 , p2)

651 -> size(intersection(p1.EndPointList , p2.EndPointList)) > 0

652 << label : string = "Ports have a matching Transport / Encoding pair";

653 errMsg : string = "No matching pair of endpoint protocols"; >> ;

654

655 rule OnePortSendsFirstMessage = invariant exists r : Role in self.ROLES |

656 forall p : PortTWSCommon in r.ATTACHEDPORTS |

657 attached(r, p)

658 -> p.SendsFirstMessage == Yes

659 << label : string = "One port expects to send the first message";

660 errMsg : string = "Neither port expects to send the first message"; >> ;

661

662 rule OnePortReceivesFirstMessage = invariant exists r : Role in self.ROLES |

663 forall p : PortTWSCommon in r.ATTACHEDPORTS |

664 attached(r, p)

665 -> p.SendsFirstMessage == No

666 << label : string = "One port is listening for the first message";

667 errMsg : string = "Neither port is listening for the first message"; >> ;

668

669 rule MessageExchangePatternsMatch = invariant EAMessageExchangePatternsMatch(self)

670 << label : string = "The message exchange patterns match or there may be a partial

671 match , check the other rule";

672 errMsg : string = "The message exchange patterns do not match and neither port is in

673 our control , see analysis output for details."; >>;

674

675 rule MessageExchangePatternsPartiallyMatch = invariant

EAMessageExchangePatternsPartiallyMatch(self)

676 << label : string = "The message exchange pattern either matches completely or there

677 is a mismatch , check the other rule.";

678 errMsg : string = "There is a partial match between the message exchange patterns ,

679 see the analysis output for details."; >>;

680

681

682 rule MatchingDataContinuityAssumptions = invariant forall p1 : PortTWSCommon in role1.

ATTACHEDPORTS |

683 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |

235

684 attached(role1 , p1)

685 AND attached(role2 , p2)

686 -> p1.DataContinuity == p2.DataContinuity

687 << label : string = "The data continuity assumptions of both ports match";

688 errMsg : string = "The data continuity assumptions do not match"; >>;

689

690

691 rule Msg1MessageDataTypesMatch = invariant forall p1 : PortTWSCommon in role1.

ATTACHEDPORTS |

692 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |

693 attached(role1 , p1)

694 AND attached(role2 , p2)

695 -> EAMessageDataTypesMatch(self , p1, p2 , 1)

696 << label : string = "The message data types in the first message in the

697 pattern match";

698 errMsg : string = "There is a mismatch in the data exchanged in the first message ,

699 see the analysis output for details."; >>;

700

701

702 rule Msg1MessageOverData = invariant forall p1 : PortTWSCommon in role1.ATTACHEDPORTS |

703 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |

704 attached(role1 , p1)

705 AND attached(role2 , p2)

706 -> EAMessageOverData(self , p1, p2, 1)

707 << label : string = "There is no redundant information in the first message sent";

708 errMsg : string = "The first message sent contains information not required by the

709 recipient , see the analysis output for details."; >>;

710

711 rule Msg1MessageUnderData1 = invariant forall p1 : PortTWSCommon in role1.ATTACHEDPORTS |

712 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |

713 attached(role1 , p1)

714 AND attached(role2 , p2)

715 -> EAMessageUnderData1(self , p1 , p2 , 1)

716 << label : string = "There is no data missing from the first message that is

717 required by the recipient that the sender may be able to send";

718 errMsg : string = "There is data missing from the first message that the recipient

719 requires that the sender may be able to send , see the analysis

720 output for details"; >>;

721

722 rule Msg1MessageUnderData2 = invariant forall p1 : PortTWSCommon in role1.ATTACHEDPORTS |

723 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |

724 attached(role1 , p1)

725 AND attached(role2 , p2)

726 -> EAMessageUnderData2(self , p1 , p2 , 1)

727 << label : string = "There is no data missing from the first message that is

728 required by the recipient that the sender is unable to send";

729 errMsg : string = "There is data missing from the first message that the recipient

730 requires that the sender is unable to send , see the analysis

731 output for details"; >>;

732

733 rule Msg2MessageDataTypesMatch = invariant forall p1 : PortTWSCommon in role1.

ATTACHEDPORTS |

734 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |

735 attached(role1 , p1)

236

736 AND attached(role2 , p2)

737 -> EAMessageDataTypesMatch(self , p1, p2 , 2)

738 << label : string = "The message data types in the second message in the

739 pattern match";

740 errMsg : string = "There is a mismatch in the data exchanged in the second message ,

741 see the analysis output for details."; >>;

742

743 rule Msg2MessageOverData = invariant forall p1 : PortTWSCommon in role1.ATTACHEDPORTS |

744 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |

745 attached(role1 , p1)

746 AND attached(role2 , p2)

747 -> EAMessageOverData(self , p1, p2, 2)

748 << label : string = "There is no redundant information in the second message sent";

749 errMsg : string = "The second message sent contains information not required by the

750 recipient , see the analysis output for details."; >>;

751

752

753 rule Msg2MessageUnderData1 = invariant forall p1 : PortTWSCommon in role1.ATTACHEDPORTS |

754 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |

755 attached(role1 , p1)

756 AND attached(role2 , p2)

757 -> EAMessageUnderData1(self , p1 , p2 , 2)

758 << label : string = "There is no data missing from the second message that is

759 required by the recipient that the sender may be able to send";

760 errMsg : string = "There is data missing from the second message that the recipient

761 requires that the sender may be able to send , see the analysis

762 output for details"; >>;

763

764 rule Msg2MessageUnderData2 = invariant forall p1 : PortTWSCommon in role1.ATTACHEDPORTS |

765 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |

766 attached(role1 , p1)

767 AND attached(role2 , p2)

768 -> EAMessageUnderData2(self , p1 , p2 , 2)

769 << label : string = "There is no data missing from the second message that is

770 required by the recipient that the sender is unable to send";

771 errMsg : string = "There is data missing from the second message that the recipient

772 requires that the sender is unable to send , see the analysis

773 output for details"; >>;

774

775 rule Msg3MessageDataTypesMatch = invariant forall p1 : PortTWSCommon in role1.

ATTACHEDPORTS |

776 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |

777 attached(role1 , p1)

778 AND attached(role2 , p2)

779 -> EAMessageDataTypesMatch(self , p1, p2 , 3)

780 << label : string = "The message data types in the third message in the

781 pattern match";

782 errMsg : string = "There is a mismatch in the data exchanged in the third message ,

783 see the analysis output for details."; >>;

784

785 rule Msg3MessageOverData = invariant forall p1 : PortTWSCommon in role1.ATTACHEDPORTS |

786 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |

787 attached(role1 , p1)

788 AND attached(role2 , p2)

237

789 -> EAMessageOverData(self , p1, p2, 3)

790 << label : string = "There is no redundant information in the third message sent";

791 errMsg : string = "The third message sent contains information not required by the

792 recipient , see the analysis output for details."; >>;

793

794 rule Msg3MessageUnderData1 = invariant forall p1 : PortTWSCommon in role1.ATTACHEDPORTS |

795 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |

796 attached(role1 , p1)

797 AND attached(role2 , p2)

798 -> EAMessageUnderData1(self , p1 , p2 , 3)

799 << label : string = "There is no data missing from the third message that is

800 required by the recipient that the sender may be able to send";

801 errMsg : string = "There is data missing from the third message that the recipient

802 requires that the sender may be able to send , see the analysis

803 output for details"; >>;

804

805 rule Msg3MessageUnderData2 = invariant forall p1 : PortTWSCommon in role1.ATTACHEDPORTS |

806 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |

807 attached(role1 , p1)

808 AND attached(role2 , p2)

809 -> EAMessageUnderData2(self , p1 , p2 , 3)

810 << label : string = "There is no data missing from the third message that is

811 required by the recipient that the sender is unable to send";

812 errMsg : string = "There is data missing from the third message that the recipient

813 requires that the sender is unable to send , see the analysis output

814 for details"; >>;

815

816 rule Msg4MessageDataTypesMatch = invariant forall p1 : PortTWSCommon in role1.

ATTACHEDPORTS |

817 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |

818 attached(role1 , p1)

819 AND attached(role2 , p2)

820 -> EAMessageDataTypesMatch(self , p1, p2 , 4)

821 << label : string = "The message data types in the fourth message in the

822 pattern match";

823 errMsg : string = "There is a mismatch in the data exchanged in the fourth message ,

824 see the analysis output for details."; >>;

825

826 rule Msg4MessageOverData = invariant forall p1 : PortTWSCommon in role1.ATTACHEDPORTS |

827 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |

828 attached(role1 , p1)

829 AND attached(role2 , p2)

830 -> EAMessageOverData(self , p1, p2, 4)

831 << label : string = "There is no redundant information in the fourth message sent";

832 errMsg : string = "The first message sent contains information not required by the

833 recipient , see the analysis output for details."; >>;

834

835 rule Msg4MessageUnderData1 = invariant forall p1 : PortTWSCommon in role1.ATTACHEDPORTS |

836 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |

837 attached(role1 , p1)

838 AND attached(role2 , p2)

839 -> EAMessageUnderData1(self , p1 , p2 , 4)

840 << label : string = "There is no data missing from the fourth message that is

841 required by the recipient that the sender may be able to send";

238

842 errMsg : string = "There is data missing from the fourth message that the recipient

843 requires that the sender may be able to send , see the analysis output

844 for details"; >>;

845

846 rule Msg4MessageUnderData2 = invariant forall p1 : PortTWSCommon in role1.ATTACHEDPORTS |

847 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |

848 attached(role1 , p1)

849 AND attached(role2 , p2)

850 -> EAMessageUnderData2(self , p1 , p2 , 4)

851 << label : string = "There is no data missing from the fourth message that is

852 required by the recipient that the sender is unable to send";

853 errMsg : string = "There is data missing from the fourth message that the recipient

854 requires that the sender is unable to send , see the analysis output

855 for details"; >>;

856

857 rule StateScopeAssumptionsMatch = invariant forall p1 : PortTWSCommon in role1.

ATTACHEDPORTS |

858 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |

859 attached(role1 , p1)

860 AND attached(role2 , p2)

861 -> EAStateScopesMatch(self , p1, p2)

862 << label : string = "The state scope assumptions of both ports match";

863 errMsg : string = "There is a mismatch in the state scope assumptions , see

864 the analysis output for details"; >>;

865

866 rule ConnectorCreationDestruction = invariant forall p1 : PortTWSCommon in role1.

ATTACHEDPORTS |

867 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |

868 attached(role1 , p1) AND attached(role2 , p2)

869 -> (p1.BindingOtherAdd == p2.BindingSelfAdd

870 OR(p1.BindingOtherAdd == Either AND p1.BindingSelfAdd == May))

871 AND

872 (p1.BindingOtherRemove == p2.BindingSelfRemove

873 OR(p1.BindingOtherRemove == Either AND p1.BindingSelfRemove == May))

874 AND

875 (p2.BindingOtherAdd == p1.BindingSelfAdd

876 OR(p2.BindingOtherAdd == Either AND p2.BindingSelfAdd == May))

877 AND

878 (p2.BindingOtherRemove == p1.BindingSelfRemove

879 OR(p2.BindingOtherRemove == Either AND p2.BindingSelfRemove == May))

880 << label : string = "The connector creation and destruction assumed

881 permissions are compatible";

882 errMsg : string = "There is a mismatch in the connector creation

883 and destruction assumed permissions."; >>;

884

885 rule SaneConnectorCreationDestruction = invariant forall p1 : PortTWSCommon in role1.

ATTACHEDPORTS |

886 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |

887 attached(role1 , p1)

888 AND attached(role2 , p2)

889 -> (p1.BindingSelfAdd == May OR p2.BindingSelfAdd == May)

890 AND

891 (p1.BindingSelfRemove == May OR p2.BindingSelfRemove == May)

892 << label : string = "The assumed permissions for connector creation and

239

893 destruction are realistic";

894 errMsg : string = "The assumed permissions for connector creation and destruction

895 do not allow the connector to be either created or destoyed."; >>;

896

897 rule FailureModeAssumptions = invariant forall p1 : PortTWSCommon in role1.ATTACHEDPORTS

|

898 forall p2 : PortTWSCommon in role2.ATTACHEDPORTS |

899 attached(role1 , p1)

900 AND attached(role2 , p2)

901 -> (isSubset(p1.FailureModesExhibited , p2.FailureModesExpected))

902 AND

903 (isSubset(p2.FailureModesExhibited , p1.FailureModesExpected))

904 << label : string = "The failure mode expected cover all those exhibited";

905 errMsg : string = "There are failure modes exhibited that are not expected by the

906 other port."; >>;

907 }

908

909

910 Connector Type ConnTWSCooperative = {

911 Role role1 = {

912 }

913 }

914

915

916 Connector Type ConnTWSStubborn = {

917 Role role1 = {

918 }

919 }

920

921

922 rule NatureOfComponents = invariant forall comp : Component in self.COMPONENTS |

923 satisfiesType(comp , CompTWSClient)

924 OR satisfiesType(comp , CompTWSService)

925 OR satisfiesType(comp , CompTWSIntermediary)

926 OR satisfiesType(comp , CompTWSAnalysisControl)

927 << label : string = "All components are WSClients , WSServices WSIntermediary

928 or WSAnalysisControl";

929 errMsg : string = "Style only permits WSClient , WSService , WSIntermediary and

930 WSAnalysisControl type components"; >> ;

931

932 rule NatureOfConnectors = invariant forall conn : Connector in self.CONNECTORS |

933 satisfiesType(conn , ConnTWS)

934 OR satisfiesType(conn , ConnTWSCooperative)

935 OR satisfiesType(conn , ConnTWSStubborn)

936 << label : string = "All Connectors are WS type";

937 errMsg : string = "Either a non web service connector has been used or a

938 connection has been made which breaks one or more rules"; >> ;

939 }

240

Appendix E

Complete ACME Descriptions of
Enhanced Style Scenarios

E.1 Car Parking Scenario

E.1.1 Initial Configuration

1 import families/ws_enhanced_01.acme;

2

3 System ScenarioCarparkInitial : ws_enhanced_01 = new ws_enhanced_01 extended with {

4

5 Component CompTWSAnalysisControl0 : CompTWSAnalysisControl = new CompTWSAnalysisControl

extended with {

6 Property ActiveAnalysisCentralDataStoreCorrect = true;

7 Property ActiveAnalysisCommissionMismatch = true;

8 Property ActiveAnalysisChoiceGroupsHaveChoiceMaker = true;

9 Property ActiveAnalysisCommissionPartialMatch = true;

10 Property ActiveAnalysisConcurrentCallsToThisPort = true;

11 Property ActiveAnalysisMessageDataTypesMatch = true;

12 Property ActiveAnalysisMessageExchangePatternsMatch = true;

13 Property ActiveAnalysisMessageExchangePatternsPartiallyMatch = true;

14 Property ActiveAnalysisMessageOverData = true;

15 Property ActiveAnalysisMessagePatternAndMessageListConcur = true;

16 Property ActiveAnalysisMessageUnderData1 = true;

17 Property ActiveAnalysisMessageUnderData2 = true;

18 Property ActiveAnalysisOmissionMismatch = true;

19 Property ActiveAnalysisOmissionPartialMatch = true;

20 Property ActiveAnalysisStateScopesMatch = true;

21 Property outputPath = "";

22 }

23

24

25 Component CPClient : CompTWSClient = new CompTWSClient extended with {

26 Port setupConf : PortTWSClientUnicast = new PortTWSClientUnicast extended with {

27

28 Property MessagePattern = "SOLI

29 CPClient_setupConf = CPClient_setupConf_sendReq -> CPClient_setupConf_p1

30 CPClient_setupConf_p1 = CPClient_setupConf_p2 [] CPClient_setupConf_p3

241

31 CPClient_setupConf_p2 = CPClient_setupConf_getRes -> CPClient_setupConf_OK

32 CPClient_setupConf_p3 = CPClient_setupConf_getFault -> CPClient_setupConf_FAULT

33 CPClient_setupConf_OK = CPClient_PaymentCC

34 CPClient_setupConf_FAULT = CPClient_PaymentCC";

35

36 Property Messages : TMessages = {

37 [MessageId = "CPClient_setupConf_sendReq"; MessageData = {

38 [DatumId = "userName";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

39 [DatumId = "password";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

40 [MessageId = "CPClient_setupConf_getRes";MessageData = {

41 [DatumId = "success";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};] ,

42 [MessageId = "CPClient_setupConf_getFault";MessageData = {

43 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

44

45 Property BindTime = Instantiation;

46 Property BindingOtherAdd = No;

47 Property BindingOtherRemove = No;

48 Property BindingSelfAdd = Yes;

49 Property BindingSelfRemove = Yes;

50 Property ChoiceGroup = "CarPark";

51 Property DataContinuity = Sporadic;

52 Property GroupChoiceMaker = Yes;

53 Property InOurControlDomain = Yes;

54 Property Reentrant = No;

55 Property SendsFirstMessage = Yes;

56 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

57 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

58 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

59 }

60

61 Port PaymentCC : PortTWSClientUnicast = new PortTWSClientUnicast extended with {

62

63 Property MessagePattern = "SOLI

64 CPClient_PaymentCC = CPClient_PaymentCC_sendReq -> CPClient_PaymentCC_p1

65 CPClient_PaymentCC_p1 = CPClient_PaymentCC_p2 [] CPClient_PaymentCC_p3

66 CPClient_PaymentCC_p2 = CPClient_PaymentCC_getRes -> CPClient_PaymentCC_OK

67 CPClient_PaymentCC_p3 = CPClient_PaymentCC_getFault -> CPClient_PaymentCC_FAULT

68 CPClient_PaymentCC_OK = CPClient_logout

69 CPClient_PaymentCC_FAULT = CPClient_logout";

70

71 Property Messages : TMessages = {

72 [MessageId = "CPClient_PaymentCC_sendReq";MessageData = {

73 [DatumId = "owner";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

74 [DatumId = "CCNumber";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

75 [DatumId = "amount";DatumRep = SOAP_Float;DatumStateScopeExpected = Private;],

76 [DatumId = "expirationDate";DatumRep = SOAP_Date;DatumStateScopeExpected = Private

;]};],

77 [MessageId = "CPClient_PaymentCC_getRes";MessageData = {

78 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

79 [MessageId = "CPClient_PaymentCC_getFault";MessageData = {

80 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

81

242

82 Property BindTime = Instantiation;

83 Property BindingOtherAdd = No;

84 Property BindingOtherRemove = No;

85 Property BindingSelfAdd = Yes;

86 Property BindingSelfRemove = Yes;

87 Property ChoiceGroup = "CarPark";

88 Property DataContinuity = Sporadic;

89 Property GroupChoiceMaker = No;

90 Property InOurControlDomain = Yes;

91 Property Reentrant = No;

92 Property SendsFirstMessage = Yes;

93 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

94 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

95 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

96 }

97

98 Port logout : PortTWSClientUnicast = new PortTWSClientUnicast extended with {

99

100 Property MessagePattern = "SOLI

101 CPClient_logout = CPClient_logout_sendReq -> CPClient_logout_p1

102 CPClient_logout_p1 = CPClient_logout_p2 [] CPClient_logout_p3

103 CPClient_logout_p2 = CPClient_logout_getRes -> CPClient_logout_OK

104 CPClient_logout_p3 = CPClient_logout_getFault -> CPClient_logout_FAULT

105 CPClient_logout_OK = CPClient_Thread

106 CPClient_logout_FAULT = CPClient_Thread";

107

108 Property Messages : TMessages = {

109 [MessageId = "CPClient_logout_sendReq";MessageData = {

110 [DatumId = "userName";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

111 [MessageId = "CPClient_logout_getRes";MessageData = {

112 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

113 [MessageId = "CPClient_logout_getFault";MessageData = {

114 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

115

116 Property SendsFirstMessage = Yes;

117 Property Reentrant = No;

118 Property InOurControlDomain = Yes;

119 Property GroupChoiceMaker = No;

120 Property DataContinuity = Sporadic;

121 Property ChoiceGroup = "CarPark";

122 Property BindingSelfRemove = Yes;

123 Property BindingSelfAdd = Yes;

124 Property BindingOtherRemove = No;

125 Property BindingOtherAdd = No;

126 Property BindTime = Instantiation;

127 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

128 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

129 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

130 }

131

243

132 Property CentralDataRecords : Set {TCentralDataRecord} = {

133 [DatumID = "userName";DatumSemantics = "USER:ID";DatumScopeExhibited = Private;],

134 [DatumID = "password";DatumSemantics = "USER:KEY";DatumScopeExhibited = Private;],

135 [DatumID = "success";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private;],

136 [DatumID = "FaultData";DatumSemantics = "FAULT:DESCRIPTION";DatumScopeExhibited = Private

;],

137 [DatumID = "owner";DatumSemantics = "ACCOUNT:NAME";DatumScopeExhibited = Private;],

138 [DatumID = "CCNumber";DatumSemantics = "ACCOUNT:CARD:REFERENCE";DatumScopeExhibited =

Private;],

139 [DatumID = "amount";DatumSemantics = "FINANCE:VALUE";DatumScopeExhibited = Private;],

140 [DatumID = "expirationDate";DatumSemantics = "ACCOUNT:CARD:VALIDTO";DatumScopeExhibited =

Private;],

141 [DatumID = "accepted";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private ;]};

142

143 Property CentralProcessDescription = "CPClient = CPClient_Thread

144 CPClient_Thread = CPClient_setupConf";

145

146 Property ComponentInOurControlDomain = Yes;

147 }

148

149

150 Component BookPayCC : CompTWSService = new CompTWSService extended with {

151 Port setupConf : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

152

153 Property MessagePattern = "REQR

154 BookPayCC_setupConf = BookPayCC_setupConf_sendReq -> BookPayCC_setupConf_p1

155 BookPayCC_setupConf_p1 = BookPayCC_setupConf_p2 [] BookPayCC_setupConf_p3

156 BookPayCC_setupConf_p2 = BookPayCC_setupConf_getRes -> BookPayCC_setupConf_OK

157 BookPayCC_setupConf_p3 = BookPayCC_setupConf_getFault -> BookPayCC_setupConf_FAULT

158 BookPayCC_setupConf_OK = BookPayCC_PaymentCC

159 BookPayCC_setupConf_FAULT = BookPayCC_PaymentCC";

160

161 Property Messages : TMessages = {

162 [MessageId = "BookPayCC_setupConf_sendReq";MessageData = {

163 [DatumId = "userName";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

164 [DatumId = "password";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

165 [MessageId = "BookPayCC_setupConf_getRes";MessageData = {

166 [DatumId = "success";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};] ,

167 [MessageId = "BookPayCC_setupConf_getFault";MessageData = {

168 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

169

170 Property BindTime = Run;

171 Property BindingOtherAdd = Yes;

172 Property BindingOtherRemove = Yes;

173 Property BindingSelfAdd = No;

174 Property BindingSelfRemove = No;

175 Property DataContinuity = Sporadic;

176 Property InOurControlDomain = No;

177 Property Reentrant = Yes;

178 Property SendsFirstMessage = No;

179 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

180 Property EndPointAddressList : TEndPointAddresses = {"www.BookPayCC/setupConf"};

181 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

244

182 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

183 Property WsdlDocRefs : TWsdlDocs = {"www.BookPayCC.com/WSDL"};

184 }

185

186 Port PaymentCC : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

187

188 Property MessagePattern = "REQR

189 BookPayCC_PaymentCC = BookPayCC_PaymentCC_sendReq -> BookPayCC_PaymentCC_p1

190 BookPayCC_PaymentCC_p1 = BookPayCC_PaymentCC_p2 [] BookPayCC_PaymentCC_p3

191 BookPayCC_PaymentCC_p2 = BookPayCC_PaymentCC_getRes -> BookPayCC_PaymentCC_OK

192 BookPayCC_PaymentCC_p3 = BookPayCC_PaymentCC_getFault -> BookPayCC_PaymentCC_FAULT

193 BookPayCC_PaymentCC_OK = BookPayCC_logout

194 BookPayCC_PaymentCC_FAULT = BookPayCC_logout";

195

196 Property Messages : TMessages = {

197 [MessageId = "BookPayCC_PaymentCC_sendReq";MessageData = {

198 [DatumId = "owner";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

199 [DatumId = "CCNumber";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

200 [DatumId = "amount";DatumRep = SOAP_Float;DatumStateScopeExpected = Private;],

201 [DatumId = "expirationDate";DatumRep = SOAP_Date;DatumStateScopeExpected = Private

;]};],

202 [MessageId = "BookPayCC_PaymentCC_getRes";MessageData = {

203 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

204 [MessageId = "BookPayCC_PaymentCC_getFault";MessageData = {

205 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

206

207 Property SendsFirstMessage = No;

208 Property Reentrant = Yes;

209 Property InOurControlDomain = No;

210 Property DataContinuity = Sporadic;

211 Property BindingSelfRemove = No;

212 Property BindingSelfAdd = No;

213 Property BindingOtherRemove = Yes;

214 Property BindingOtherAdd = Yes;

215 Property BindTime = Run;

216 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

217 Property EndPointAddressList : TEndPointAddresses = {"www.BookPayCC/PaymentCC"};

218 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

219 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

220 Property WsdlDocRefs : TWsdlDocs = {"www.BookPayCC.com/WSDL"};

221 }

222

223 Port logout : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

224

225 Property MessagePattern = "REQR

226 BookPayCC_logout = BookPayCC_logout_sendReq -> BookPayCC_logout_p1

227 BookPayCC_logout_p1 = BookPayCC_logout_p2 [] BookPayCC_logout_p3

228 BookPayCC_logout_p2 = BookPayCC_logout_getRes -> BookPayCC_logout_OK

229 BookPayCC_logout_p3 = BookPayCC_logout_getFault -> BookPayCC_logout_FAULT

230 BookPayCC_logout_OK = BookPayCC_Thread

231 BookPayCC_logout_FAULT = BookPayCC_Thread";

245

232

233 Property Messages : TMessages = {

234 [MessageId = "BookPayCC_logout_sendReq";MessageData = {

235 [DatumId = "userName";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

236 [MessageId = "BookPayCC_logout_getRes";MessageData = {

237 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

238 [MessageId = "BookPayCC_logout_getFault";MessageData = {

239 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

240

241 Property SendsFirstMessage = No;

242 Property Reentrant = No;

243 Property InOurControlDomain = No;

244 Property DataContinuity = Sporadic;

245 Property BindingSelfRemove = No;

246 Property BindingSelfAdd = No;

247 Property BindingOtherRemove = Yes;

248 Property BindingOtherAdd = Yes;

249 Property BindTime = Run;

250 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

251 Property EndPointAddressList : TEndPointAddresses = {"www.BookPayCC/logout"};

252 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

253 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

254 Property WsdlDocRefs : TWsdlDocs = {"www.BookPayCC.com/WSDL"};

255 }

256

257 Property CentralProcessDescription = "BookPayCC = BookPayCC_Thread

258 BookPayCC_Thread = BookPayCC_setupConf";

259

260 Property CentralDataRecords : Set {TCentralDataRecord} = {

261 [DatumID = "userName";DatumSemantics = "USER:ID";DatumScopeExhibited = Private;],

262 [DatumID = "password";DatumSemantics = "USER:KEY";DatumScopeExhibited = Private;],

263 [DatumID = "success";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private;],

264 [DatumID = "FaultData";DatumSemantics = "FAULT:DESCRIPTION";DatumScopeExhibited = Private;],

265 [DatumID = "owner";DatumSemantics = "ACCOUNT:NAME";DatumScopeExhibited = Private;],

266 [DatumID = "CCNumber";DatumSemantics = "ACCOUNT:CARD:REFERENCE";DatumScopeExhibited =

Private;],

267 [DatumID = "amount";DatumSemantics = "FINANCE:VALUE";DatumScopeExhibited = Private;],

268 [DatumID = "expirationDate";DatumSemantics = "ACCOUNT:CARD:VALIDTO";DatumScopeExhibited =

Private;],

269 [DatumID = "accepted";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private ;]};

270

271 Property ComponentInOurControlDomain = No;

272 }

273

274

275 Component SpaceCCBuy : CompTWSService = new CompTWSService extended with {

276 Port login : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

277

278 Property MessagePattern = "REQR

279 SpaceCCBuy_login = SpaceCCBuy_login_sendReq -> SpaceCCBuy_login_p1

280 SpaceCCBuy_login_p1 = SpaceCCBuy_login_p2 [] SpaceCCBuy_login_p3

281 SpaceCCBuy_login_p2 = SpaceCCBuy_login_getRes -> SpaceCCBuy_login_OK

246

282 SpaceCCBuy_login_p3 = SpaceCCBuy_login_getFault -> SpaceCCBuy_login_FAULT

283 SpaceCCBuy_login_OK = SpaceCCBuy_checkCreditCard

284 SpaceCCBuy_login_FAULT = SpaceCCBuy_checkCreditCard";

285

286 Property Messages : TMessages = {

287 [MessageId = "SpaceCCBuy_login_sendReq";MessageData = {

288 [DatumId = "user";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

289 [DatumId = "password";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

290 [MessageId = "SpaceCCBuy_login_getRes";MessageData = {

291 [DatumId = "success";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};] ,

292 [MessageId = "SpaceCCBuy_login_getFault";MessageData = {

293 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

294

295 Property BindTime = Instantiation;

296 Property BindingOtherAdd = Yes;

297 Property BindingOtherRemove = Yes;

298 Property BindingSelfAdd = No;

299 Property BindingSelfRemove = No;

300 Property DataContinuity = Sporadic;

301 Property InOurControlDomain = No;

302 Property Reentrant = Yes;

303 Property SendsFirstMessage = No;

304 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

305 Property EndPointAddressList : TEndPointAddresses = {"www.SpaceCCBuy/login"};

306 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

307 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

308 Property WsdlDocRefs : TWsdlDocs = {"www.SpaceCCBuy.com/WSDL"};

309 }

310

311 Port checkCreditCard : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

312

313 Property MessagePattern = "REQR

314 SpaceCCBuy_checkCreditCard = SpaceCCBuy_checkCreditCard_sendReq ->

SpaceCCBuy_checkCreditCard_p1

315 SpaceCCBuy_checkCreditCard_p1 = SpaceCCBuy_checkCreditCard_p2 []

SpaceCCBuy_checkCreditCard_p3

316 SpaceCCBuy_checkCreditCard_p2 = SpaceCCBuy_checkCreditCard_getRes ->

SpaceCCBuy_checkCreditCard_OK

317 SpaceCCBuy_checkCreditCard_p3 = SpaceCCBuy_checkCreditCard_getFault ->

SpaceCCBuy_checkCreditCard_FAULT

318 SpaceCCBuy_checkCreditCard_OK = SpaceCCBuy_payByCC

319 SpaceCCBuy_checkCreditCard_FAULT = SpaceCCBuy_payByCC";

320

321 Property Messages : TMessages = {

322 [MessageId = "SpaceCCBuy_checkCreditCard_sendReq";MessageData = {

323 [DatumId = "owner";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

324 [DatumId = "cardNumber";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

325 [DatumId = "expDate";DatumRep = SOAP_Date;DatumStateScopeExpected = Private ;]};] ,

326 [MessageId = "SpaceCCBuy_checkCreditCard_getRes";MessageData = {

327 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

328 [MessageId = "SpaceCCBuy_checkCreditCard_getFault";MessageData = {

329 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

247

330

331 Property Reentrant = No;

332 Property SendsFirstMessage = No;

333 Property InOurControlDomain = No;

334 Property DataContinuity = Sporadic;

335 Property BindingSelfRemove = No;

336 Property BindingSelfAdd = No;

337 Property BindingOtherRemove = Yes;

338 Property BindingOtherAdd = Yes;

339 Property BindTime = Instantiation;

340 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

341 Property EndPointAddressList : TEndPointAddresses = {"www.SpaceCCBuy/checkCreditCard"};

342 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

343 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

344 Property WsdlDocRefs : TWsdlDocs = {"www.SpaceCCBuy.com/WSDL"};

345 }

346

347 Port payByCC : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

348

349 Property MessagePattern = "REQR

350 SpaceCCBuy_payByCC = SpaceCCBuy_payByCC_sendReq -> SpaceCCBuy_payByCC_p1

351 SpaceCCBuy_payByCC_p1 = SpaceCCBuy_payByCC_p2 [] SpaceCCBuy_payByCC_p3

352 SpaceCCBuy_payByCC_p2 = SpaceCCBuy_payByCC_getRes -> SpaceCCBuy_payByCC_OK

353 SpaceCCBuy_payByCC_p3 = SpaceCCBuy_payByCC_getFault -> SpaceCCBuy_payByCC_FAULT

354 SpaceCCBuy_payByCC_OK = SpaceCCBuy_logout

355 SpaceCCBuy_payByCC_FAULT = SpaceCCBuy_logout";

356

357 Property Messages : TMessages = {

358 [MessageId = "SpaceCCBuy_payByCC_sendReq";MessageData = {

359 [DatumId = "amount";DatumRep = SOAP_Float;DatumStateScopeExpected = Private ;]};] ,

360 [MessageId = "SpaceCCBuy_payByCC_getRes";MessageData = {

361 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

362 [MessageId = "SpaceCCBuy_payByCC_getFault";MessageData = {

363 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

364

365 Property BindTime = Instantiation;

366 Property BindingOtherAdd = Yes;

367 Property BindingOtherRemove = Yes;

368 Property BindingSelfAdd = No;

369 Property BindingSelfRemove = No;

370 Property DataContinuity = Sporadic;

371 Property InOurControlDomain = No;

372 Property Reentrant = No;

373 Property SendsFirstMessage = No;

374 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

375 Property EndPointAddressList : TEndPointAddresses = {"www.SpaceCCBuy/payByCC"};

376 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

377 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

378 Property WsdlDocRefs : TWsdlDocs = {"www.SpaceCCBuy.com/WSDL"};

379 }

248

380

381 Port logout : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

382

383 Property MessagePattern = "REQR

384 SpaceCCBuy_logout = SpaceCCBuy_logout_sendReq -> SpaceCCBuy_logout_p1

385 SpaceCCBuy_logout_p1 = SpaceCCBuy_logout_p2 [] SpaceCCBuy_logout_p3

386 SpaceCCBuy_logout_p2 = SpaceCCBuy_logout_getRes -> SpaceCCBuy_logout_OK

387 SpaceCCBuy_logout_p3 = SpaceCCBuy_logout_getFault -> SpaceCCBuy_logout_FAULT

388 SpaceCCBuy_logout_OK = SpaceCCBuy_Thread

389 SpaceCCBuy_logout_FAULT = SpaceCCBuy_Thread";

390

391 Property Messages : TMessages = {

392 [MessageId = "SpaceCCBuy_logout_sendReq";MessageData = {

393 [DatumId = "user";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

394 [MessageId = "SpaceCCBuy_logout_getRes";MessageData = {

395 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

396 [MessageId = "SpaceCCBuy_logout_getFault";MessageData = {

397 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

398

399 Property Reentrant = No;

400 Property SendsFirstMessage = No;

401 Property InOurControlDomain = No;

402 Property BindingSelfRemove = No;

403 Property BindingSelfAdd = No;

404 Property BindingOtherRemove = Yes;

405 Property BindingOtherAdd = Yes;

406 Property BindTime = Instantiation;

407 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

408 Property EndPointAddressList : TEndPointAddresses = {"www.SpaceCCBuy/logout"};

409 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

410 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

411 Property WsdlDocRefs : TWsdlDocs = {"www.SpaceCCBuy.com/WSDL"};

412 Property DataContinuity = Sporadic;

413 }

414

415 Property CentralProcessDescription = "SpaceCCBuy = SpaceCCBuy_Thread

416 SpaceCCBuy_Thread = SpaceCCBuy_login";

417

418 Property CentralDataRecords : Set {TCentralDataRecord} = {

419 [DatumID = "user";DatumSemantics = "USER:ID";DatumScopeExhibited = Private;],

420 [DatumID = "password";DatumSemantics = "USER:KEY";DatumScopeExhibited = Private;],

421 [DatumID = "success";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private;],

422 [DatumID = "FaultData";DatumSemantics = "FAULT:DESCRIPTION";DatumScopeExhibited = Private

;],

423 [DatumID = "owner";DatumSemantics = "ACCOUNT:NAME";DatumScopeExhibited = Private;],

424 [DatumID = "cardNumber";DatumSemantics = "ACCOUNT:CARD:REFERENCE";DatumScopeExhibited =

Private;],

425 [DatumID = "amount";DatumSemantics = "FINANCE:VALUE";DatumScopeExhibited = Private;],

426 [DatumID = "expDate";DatumSemantics = "ACCOUNT:CARD:VALIDTO";DatumScopeExhibited = Private

;],

427 [DatumID = "accepted";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private ;]};

428

249

429 Property ComponentInOurControlDomain = No;

430 }

431

432 Connector ConnTWS0 : ConnTWS = new ConnTWS extended with { }

433 Connector ConnTWS1 : ConnTWS = new ConnTWS extended with { }

434 Connector ConnTWS2 : ConnTWS = new ConnTWS extended with { }

435 Connector ConnTWS3 : ConnTWS = new ConnTWS extended with { }

436 Connector ConnTWS4 : ConnTWS = new ConnTWS extended with { }

437 Connector ConnTWS5 : ConnTWS = new ConnTWS extended with { }

438

439 Connector ConnTWSStubborn0 : ConnTWSStubborn = new ConnTWSStubborn extended with { }

440

441 Attachment BookPayCC.setupConf to ConnTWS0.role1;

442 Attachment CPClient.setupConf to ConnTWS0.role2;

443 Attachment BookPayCC.PaymentCC to ConnTWS1.role2;

444 Attachment CPClient.PaymentCC to ConnTWS1.role1;

445 Attachment CPClient.logout to ConnTWS2.role1;

446 Attachment BookPayCC.logout to ConnTWS2.role2;

447 Attachment SpaceCCBuy.login to ConnTWS3.role2;

448 Attachment CPClient.setupConf to ConnTWS3.role1;

449 Attachment SpaceCCBuy.checkCreditCard to ConnTWS4.role2;

450 Attachment CPClient.PaymentCC to ConnTWS4.role1;

451 Attachment CPClient.logout to ConnTWS5.role1;

452 Attachment SpaceCCBuy.logout to ConnTWS5.role2;

453 Attachment SpaceCCBuy.payByCC to ConnTWSStubborn0.role1;

454 }

E.1.2 Final Configuration

1 import families/ws_enhanced_01.acme;

2

3 System ScenarioCarparkFinal : ws_enhanced_01 = new ws_enhanced_01 extended with {

4

5 Component CompTWSAnalysisControl0 : CompTWSAnalysisControl = new CompTWSAnalysisControl

extended with {

6 Property ActiveAnalysisCentralDataStoreCorrect = true;

7 Property ActiveAnalysisCommissionMismatch = true;

8 Property ActiveAnalysisChoiceGroupsHaveChoiceMaker = true;

9 Property ActiveAnalysisCommissionPartialMatch = true;

10 Property ActiveAnalysisConcurrentCallsToThisPort = true;

11 Property ActiveAnalysisMessageDataTypesMatch = true;

12 Property ActiveAnalysisMessageExchangePatternsMatch = true;

13 Property ActiveAnalysisMessageExchangePatternsPartiallyMatch = true;

14 Property ActiveAnalysisMessageOverData = true;

15 Property ActiveAnalysisMessagePatternAndMessageListConcur = true;

16 Property ActiveAnalysisMessageUnderData1 = true;

17 Property ActiveAnalysisMessageUnderData2 = true;

18 Property ActiveAnalysisOmissionMismatch = true;

19 Property ActiveAnalysisOmissionPartialMatch = true;

20 Property ActiveAnalysisStateScopesMatch = true;

21 Property outputPath = "";

22 }

23

24

250

25 Component CPClient : CompTWSClient = new CompTWSClient extended with {

26 Port setupConf : PortTWSClientUnicast = new PortTWSClientUnicast extended with {

27

28 Property MessagePattern = "SOLI

29 CPClient_setupConf = CPClient_setupConf_sendReq -> CPClient_setupConf_p1

30 CPClient_setupConf_p1 = CPClient_setupConf_p2 [] CPClient_setupConf_p3

31 CPClient_setupConf_p2 = CPClient_setupConf_getRes -> CPClient_setupConf_OK

32 CPClient_setupConf_p3 = CPClient_setupConf_getFault -> CPClient_setupConf_FAULT

33 CPClient_setupConf_OK = CPClient_PaymentCC

34 CPClient_setupConf_FAULT = CPClient_PaymentCC";

35

36 Property Messages : TMessages = {

37 [MessageId = "CPClient_setupConf_sendReq";MessageData = {

38 [DatumId = "userName";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

39 [DatumId = "password";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

40 [MessageId = "CPClient_setupConf_getRes";MessageData = {

41 [DatumId = "success";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};] ,

42 [MessageId = "CPClient_setupConf_getFault";MessageData = {

43 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

44

45 Property BindTime = Instantiation;

46 Property BindingOtherAdd = No;

47 Property BindingOtherRemove = No;

48 Property BindingSelfAdd = Yes;

49 Property BindingSelfRemove = Yes;

50 Property ChoiceGroup = "CarPark";

51 Property DataContinuity = Sporadic;

52 Property GroupChoiceMaker = Yes;

53 Property InOurControlDomain = Yes;

54 Property Reentrant = No;

55 Property SendsFirstMessage = Yes;

56 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

57 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

58 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

59 }

60

61 Port PaymentCC : PortTWSClientUnicast = new PortTWSClientUnicast extended with {

62

63 Property MessagePattern = "SOLI

64 CPClient_PaymentCC = CPClient_PaymentCC_sendReq -> CPClient_PaymentCC_p1

65 CPClient_PaymentCC_p1 = CPClient_PaymentCC_p2 [] CPClient_PaymentCC_p3

66 CPClient_PaymentCC_p2 = CPClient_PaymentCC_getRes -> CPClient_PaymentCC_OK

67 CPClient_PaymentCC_p3 = CPClient_PaymentCC_getFault -> CPClient_PaymentCC_FAULT

68 CPClient_PaymentCC_OK = CPClient_logout

69 CPClient_PaymentCC_FAULT = CPClient_logout";

70

71 Property Messages : TMessages = {

72 [MessageId = "CPClient_PaymentCC_sendReq";MessageData = {

73 [DatumId = "owner";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

74 [DatumId = "CCNumber";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

75 [DatumId = "amount";DatumRep = SOAP_Float;DatumStateScopeExpected = Private;],

251

76 [DatumId = "expirationDate";DatumRep = SOAP_Date;DatumStateScopeExpected = Private

;]};],

77 [MessageId = "CPClient_PaymentCC_getRes";MessageData = {

78 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

79 [MessageId = "CPClient_PaymentCC_getFault";MessageData = {

80 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

81

82 Property BindTime = Instantiation;

83 Property BindingOtherAdd = No;

84 Property BindingOtherRemove = No;

85 Property BindingSelfAdd = Yes;

86 Property BindingSelfRemove = Yes;

87 Property ChoiceGroup = "CarPark";

88 Property DataContinuity = Sporadic;

89 Property GroupChoiceMaker = No;

90 Property InOurControlDomain = Yes;

91 Property Reentrant = No;

92 Property SendsFirstMessage = Yes;

93 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

94 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

95 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

96 }

97

98 Port logout : PortTWSClientUnicast = new PortTWSClientUnicast extended with {

99

100 Property MessagePattern = "SOLI

101 CPClient_logout = CPClient_logout_sendReq -> CPClient_logout_p1

102 CPClient_logout_p1 = CPClient_logout_p2 [] CPClient_logout_p3

103 CPClient_logout_p2 = CPClient_logout_getRes -> CPClient_logout_OK

104 CPClient_logout_p3 = CPClient_logout_getFault -> CPClient_logout_FAULT

105 CPClient_logout_OK = CPClient_Thread

106 CPClient_logout_FAULT = CPClient_Thread";

107

108 Property Messages : TMessages = {

109 [MessageId = "CPClient_logout_sendReq";MessageData = {

110 [DatumId = "userName";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

111 [MessageId = "CPClient_logout_getRes";MessageData = {

112 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

113 [MessageId = "CPClient_logout_getFault";MessageData = {

114 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

115

116 Property SendsFirstMessage = Yes;

117 Property Reentrant = No;

118 Property InOurControlDomain = Yes;

119 Property GroupChoiceMaker = No;

120 Property DataContinuity = Sporadic;

121 Property ChoiceGroup = "CarPark";

122 Property BindingSelfRemove = Yes;

123 Property BindingSelfAdd = Yes;

124 Property BindingOtherRemove = No;

125 Property BindingOtherAdd = No;

126 Property BindTime = Instantiation;

252

127 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

128 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

129 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

130 }

131

132 Property CentralDataRecords : Set {TCentralDataRecord} = {

133 [DatumID = "userName";DatumSemantics = "USER:ID";DatumScopeExhibited = Private;],

134 [DatumID = "password";DatumSemantics = "USER:KEY";DatumScopeExhibited = Private;],

135 [DatumID = "success";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private;],

136 [DatumID = "FaultData";DatumSemantics = "FAULT:DESCRIPTION";DatumScopeExhibited = Private

;],

137 [DatumID = "owner";DatumSemantics = "ACCOUNT:NAME";DatumScopeExhibited = Private;],

138 [DatumID = "CCNumber";DatumSemantics = "ACCOUNT:CARD:REFERENCE";DatumScopeExhibited =

Private;],

139 [DatumID = "amount";DatumSemantics = "FINANCE:VALUE";DatumScopeExhibited = Private;],

140 [DatumID = "expirationDate";DatumSemantics = "ACCOUNT:CARD:VALIDTO";DatumScopeExhibited =

Private;],

141 [DatumID = "accepted";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private ;]};

142

143 Property CentralProcessDescription = "CPClient = CPClient_Thread

144 CPClient_Thread = CPClient_setupConf";

145

146 Property ComponentInOurControlDomain = Yes;

147 }

148

149 Component BookPayCC : CompTWSService = new CompTWSService extended with {

150 Port setupConf : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

151

152 Property MessagePattern = "REQR

153 BookPayCC_setupConf = BookPayCC_setupConf_sendReq -> BookPayCC_setupConf_p1

154 BookPayCC_setupConf_p1 = BookPayCC_setupConf_p2 [] BookPayCC_setupConf_p3

155 BookPayCC_setupConf_p2 = BookPayCC_setupConf_getRes -> BookPayCC_setupConf_OK

156 BookPayCC_setupConf_p3 = BookPayCC_setupConf_getFault -> BookPayCC_setupConf_FAULT

157 BookPayCC_setupConf_OK = BookPayCC_PaymentCC

158 BookPayCC_setupConf_FAULT = BookPayCC_PaymentCC";

159

160 Property Messages : TMessages = {

161 [MessageId = "BookPayCC_setupConf_sendReq";MessageData = {

162 [DatumId = "userName";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

163 [DatumId = "password";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

164 [MessageId = "BookPayCC_setupConf_getRes";MessageData = {

165 [DatumId = "success";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};] ,

166 [MessageId = "BookPayCC_setupConf_getFault";MessageData = {

167 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

168

169 Property BindTime = Run;

170 Property BindingOtherAdd = Yes;

171 Property BindingOtherRemove = Yes;

172 Property BindingSelfAdd = No;

173 Property BindingSelfRemove = No;

174 Property DataContinuity = Sporadic;

175 Property InOurControlDomain = No;

253

176 Property Reentrant = Yes;

177 Property SendsFirstMessage = No;

178 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

179 Property EndPointAddressList : TEndPointAddresses = {"www.BookPayCC/setupConf"};

180 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

181 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

182 Property WsdlDocRefs : TWsdlDocs = {"www.BookPayCC.com/WSDL"};

183 }

184

185 Port PaymentCC : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

186

187 Property MessagePattern = "REQR

188 BookPayCC_PaymentCC = BookPayCC_PaymentCC_sendReq -> BookPayCC_PaymentCC_p1

189 BookPayCC_PaymentCC_p1 = BookPayCC_PaymentCC_p2 [] BookPayCC_PaymentCC_p3

190 BookPayCC_PaymentCC_p2 = BookPayCC_PaymentCC_getRes -> BookPayCC_PaymentCC_OK

191 BookPayCC_PaymentCC_p3 = BookPayCC_PaymentCC_getFault -> BookPayCC_PaymentCC_FAULT

192 BookPayCC_PaymentCC_OK = BookPayCC_logout

193 BookPayCC_PaymentCC_FAULT = BookPayCC_logout";

194

195 Property Messages : TMessages = {

196 [MessageId = "BookPayCC_PaymentCC_sendReq";MessageData = {

197 [DatumId = "owner";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

198 [DatumId = "CCNumber";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

199 [DatumId = "amount";DatumRep = SOAP_Float;DatumStateScopeExpected = Private;],

200 [DatumId = "expirationDate";DatumRep = SOAP_Date;DatumStateScopeExpected = Private

;]};],

201 [MessageId = "BookPayCC_PaymentCC_getRes";MessageData = {

202 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

203 [MessageId = "BookPayCC_PaymentCC_getFault";MessageData = {

204 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

205

206 Property SendsFirstMessage = No;

207 Property Reentrant = Yes;

208 Property InOurControlDomain = No;

209 Property DataContinuity = Sporadic;

210 Property BindingSelfRemove = No;

211 Property BindingSelfAdd = No;

212 Property BindingOtherRemove = Yes;

213 Property BindingOtherAdd = Yes;

214 Property BindTime = Run;

215 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

216 Property EndPointAddressList : TEndPointAddresses = {"www.BookPayCC/PaymentCC"};

217 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

218 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

219 Property WsdlDocRefs : TWsdlDocs = {"www.BookPayCC.com/WSDL"};

220 }

221

222 Port logout : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

223

224 Property MessagePattern = "REQR

254

225 BookPayCC_logout = BookPayCC_logout_sendReq -> BookPayCC_logout_p1

226 BookPayCC_logout_p1 = BookPayCC_logout_p2 [] BookPayCC_logout_p3

227 BookPayCC_logout_p2 = BookPayCC_logout_getRes -> BookPayCC_logout_OK

228 BookPayCC_logout_p3 = BookPayCC_logout_getFault -> BookPayCC_logout_FAULT

229 BookPayCC_logout_OK = BookPayCC_Thread

230 BookPayCC_logout_FAULT = BookPayCC_Thread";

231

232 Property Messages : TMessages = {

233 [MessageId = "BookPayCC_logout_sendReq";MessageData = {

234 [DatumId = "userName";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

235 [MessageId = "BookPayCC_logout_getRes";MessageData = {

236 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

237 [MessageId = "BookPayCC_logout_getFault";MessageData = {

238 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

239

240 Property SendsFirstMessage = No;

241 Property Reentrant = No;

242 Property InOurControlDomain = No;

243 Property DataContinuity = Sporadic;

244 Property BindingSelfRemove = No;

245 Property BindingSelfAdd = No;

246 Property BindingOtherRemove = Yes;

247 Property BindingOtherAdd = Yes;

248 Property BindTime = Run;

249 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

250 Property EndPointAddressList : TEndPointAddresses = {"www.BookPayCC/logout"};

251 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

252 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

253 Property WsdlDocRefs : TWsdlDocs = {"www.BookPayCC.com/WSDL"};

254 }

255

256 Property CentralProcessDescription = "BookPayCC = BookPayCC_Thread

257 BookPayCC_Thread = BookPayCC_setupConf";

258

259 Property CentralDataRecords : Set {TCentralDataRecord} = {

260 [DatumID = "userName";DatumSemantics = "USER:ID";DatumScopeExhibited = Private;],

261 [DatumID = "password";DatumSemantics = "USER:KEY";DatumScopeExhibited = Private;],

262 [DatumID = "success";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private;],

263 [DatumID = "FaultData";DatumSemantics = "FAULT:DESCRIPTION";DatumScopeExhibited = Private

;],

264 [DatumID = "owner";DatumSemantics = "ACCOUNT:NAME";DatumScopeExhibited = Private;],

265 [DatumID = "CCNumber";DatumSemantics = "ACCOUNT:CARD:REFERENCE";DatumScopeExhibited =

Private;],

266 [DatumID = "amount";DatumSemantics = "FINANCE:VALUE";DatumScopeExhibited = Private;],

267 [DatumID = "expirationDate";DatumSemantics = "ACCOUNT:CARD:VALIDTO";DatumScopeExhibited =

Private;],

268 [DatumID = "accepted";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private ;]};

269

270 Property ComponentInOurControlDomain = No;

271 }

272

273

255

274 Component SpaceCCBuy : CompTWSService = new CompTWSService extended with {

275 Port login : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

276

277 Property MessagePattern = "REQR

278 SpaceCCBuy_login = SpaceCCBuy_login_sendReq -> SpaceCCBuy_login_p1

279 SpaceCCBuy_login_p1 = SpaceCCBuy_login_p2 [] SpaceCCBuy_login_p3

280 SpaceCCBuy_login_p2 = SpaceCCBuy_login_getRes -> SpaceCCBuy_login_OK

281 SpaceCCBuy_login_p3 = SpaceCCBuy_login_getFault -> SpaceCCBuy_login_FAULT

282 SpaceCCBuy_login_OK = SpaceCCBuy_checkCreditCard

283 SpaceCCBuy_login_FAULT = SpaceCCBuy_checkCreditCard";

284

285 Property Messages : TMessages = {

286 [MessageId = "SpaceCCBuy_login_sendReq";MessageData = {

287 [DatumId = "user";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

288 [DatumId = "password";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

289 [MessageId = "SpaceCCBuy_login_getRes";MessageData = {

290 [DatumId = "success";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};] ,

291 [MessageId = "SpaceCCBuy_login_getFault";MessageData = {

292 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

293

294 Property BindTime = Instantiation;

295 Property BindingOtherAdd = Yes;

296 Property BindingOtherRemove = Yes;

297 Property BindingSelfAdd = No;

298 Property BindingSelfRemove = No;

299 Property DataContinuity = Sporadic;

300 Property InOurControlDomain = No;

301 Property Reentrant = No;

302 Property SendsFirstMessage = No;

303 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

304 Property EndPointAddressList : TEndPointAddresses = {"www.SpaceCCBuy/login"};

305 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

306 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

307 Property WsdlDocRefs : TWsdlDocs = {"www.SpaceCCBuy.com/WSDL"};

308 }

309

310 Port checkCreditCard : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

311

312 Property MessagePattern = "REQR

313 SpaceCCBuy_checkCreditCard = SpaceCCBuy_checkCreditCard_sendReq ->

SpaceCCBuy_checkCreditCard_p1

314 SpaceCCBuy_checkCreditCard_p1 = SpaceCCBuy_checkCreditCard_p2 []

SpaceCCBuy_checkCreditCard_p3

315 SpaceCCBuy_checkCreditCard_p2 = SpaceCCBuy_checkCreditCard_getRes ->

SpaceCCBuy_checkCreditCard_OK

316 SpaceCCBuy_checkCreditCard_p3 = SpaceCCBuy_checkCreditCard_getFault ->

SpaceCCBuy_checkCreditCard_FAULT

317 SpaceCCBuy_checkCreditCard_OK = SpaceCCBuy_payByCC

318 SpaceCCBuy_checkCreditCard_FAULT = SpaceCCBuy_payByCC";

319

320 Property Messages : TMessages = {

321 [MessageId = "SpaceCCBuy_checkCreditCard_sendReq";MessageData = {

256

322 [DatumId = "owner";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

323 [DatumId = "cardNumber";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

324 [DatumId = "expDate";DatumRep = SOAP_Date;DatumStateScopeExpected = Private ;]};] ,

325 [MessageId = "SpaceCCBuy_checkCreditCard_getRes";MessageData = {

326 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

327 [MessageId = "SpaceCCBuy_checkCreditCard_getFault";MessageData = {

328 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

329

330 Property Reentrant = No;

331 Property SendsFirstMessage = No;

332 Property InOurControlDomain = No;

333 Property DataContinuity = Sporadic;

334 Property BindingSelfRemove = No;

335 Property BindingSelfAdd = No;

336 Property BindingOtherRemove = Yes;

337 Property BindingOtherAdd = Yes;

338 Property BindTime = Instantiation;

339 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

340 Property EndPointAddressList : TEndPointAddresses = {"www.SpaceCCBuy/checkCreditCard"};

341 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

342 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

343 Property WsdlDocRefs : TWsdlDocs = {"www.SpaceCCBuy.com/WSDL"};

344 }

345

346 Port payByCC : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

347

348 Property MessagePattern = "REQR

349 SpaceCCBuy_payByCC = SpaceCCBuy_payByCC_sendReq -> SpaceCCBuy_payByCC_p1

350 SpaceCCBuy_payByCC_p1 = SpaceCCBuy_payByCC_p2 [] SpaceCCBuy_payByCC_p3

351 SpaceCCBuy_payByCC_p2 = SpaceCCBuy_payByCC_getRes -> SpaceCCBuy_payByCC_OK

352 SpaceCCBuy_payByCC_p3 = SpaceCCBuy_payByCC_getFault -> SpaceCCBuy_payByCC_FAULT

353 SpaceCCBuy_payByCC_OK = SpaceCCBuy_logout

354 SpaceCCBuy_payByCC_FAULT = SpaceCCBuy_logout";

355

356 Property Messages : TMessages = {

357 [MessageId = "SpaceCCBuy_payByCC_sendReq";MessageData = {

358 [DatumId = "amount";DatumRep = SOAP_Float;DatumStateScopeExpected = Private ;]};] ,

359 [MessageId = "SpaceCCBuy_payByCC_getRes";MessageData = {

360 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

361 [MessageId = "SpaceCCBuy_payByCC_getFault";MessageData = {

362 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

363

364 Property BindTime = Instantiation;

365 Property BindingOtherAdd = Yes;

366 Property BindingOtherRemove = Yes;

367 Property BindingSelfAdd = No;

368 Property BindingSelfRemove = No;

369 Property DataContinuity = Sporadic;

370 Property InOurControlDomain = No;

371 Property Reentrant = No;

372 Property SendsFirstMessage = No;

373 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

257

374 Property EndPointAddressList : TEndPointAddresses = {"www.SpaceCCBuy/payByCC"};

375 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

376 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

377 Property WsdlDocRefs : TWsdlDocs = {"www.SpaceCCBuy.com/WSDL"};

378 }

379

380 Port logout : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

381

382 Property MessagePattern = "REQR

383 SpaceCCBuy_logout = SpaceCCBuy_logout_sendReq -> SpaceCCBuy_logout_p1

384 SpaceCCBuy_logout_p1 = SpaceCCBuy_logout_p2 [] SpaceCCBuy_logout_p3

385 SpaceCCBuy_logout_p2 = SpaceCCBuy_logout_getRes -> SpaceCCBuy_logout_OK

386 SpaceCCBuy_logout_p3 = SpaceCCBuy_logout_getFault -> SpaceCCBuy_logout_FAULT

387 SpaceCCBuy_logout_OK = SpaceCCBuy_Thread

388 SpaceCCBuy_logout_FAULT = SpaceCCBuy_Thread";

389

390 Property Messages : TMessages = {

391 [MessageId = "SpaceCCBuy_logout_sendReq";MessageData = {

392 [DatumId = "user";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

393 [MessageId = "SpaceCCBuy_logout_getRes";MessageData = {

394 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

395 [MessageId = "SpaceCCBuy_logout_getFault";MessageData = {

396 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

397

398 Property Reentrant = No;

399 Property SendsFirstMessage = No;

400 Property InOurControlDomain = No;

401 Property BindingSelfRemove = No;

402 Property BindingSelfAdd = No;

403 Property BindingOtherRemove = Yes;

404 Property BindingOtherAdd = Yes;

405 Property BindTime = Instantiation;

406 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

407 Property EndPointAddressList : TEndPointAddresses = {"www.SpaceCCBuy/logout"};

408 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

409 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

410 Property WsdlDocRefs : TWsdlDocs = {"www.SpaceCCBuy.com/WSDL"};

411 Property DataContinuity = Sporadic;

412 }

413

414 Property CentralProcessDescription = "SpaceCCBuy = SpaceCCBuy_Thread

415 SpaceCCBuy_Thread = SpaceCCBuy_login";

416

417 Property CentralDataRecords : Set {TCentralDataRecord} = {

418 [DatumID = "user";DatumSemantics = "USER:ID";DatumScopeExhibited = Private;],

419 [DatumID = "password";DatumSemantics = "USER:KEY";DatumScopeExhibited = Private;],

420 [DatumID = "success";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private;],

421 [DatumID = "FaultData";DatumSemantics = "FAULT:DESCRIPTION";DatumScopeExhibited = Private

;],

422 [DatumID = "owner";DatumSemantics = "ACCOUNT:NAME";DatumScopeExhibited = Private;],

258

423 [DatumID = "cardNumber";DatumSemantics = "ACCOUNT:CARD:REFERENCE";DatumScopeExhibited =

Private;],

424 [DatumID = "amount";DatumSemantics = "FINANCE:VALUE";DatumScopeExhibited = Private;],

425 [DatumID = "expDate";DatumSemantics = "ACCOUNT:CARD:VALIDTO";DatumScopeExhibited = Private

;],

426 [DatumID = "accepted";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private ;]};

427

428 Property ComponentInOurControlDomain = No;

429 }

430

431

432 Component SCENE_Framework : CompTWSIntermediary = new CompTWSIntermediary extended with {

433 Port In_login : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

434

435 Property MessagePattern = "REQR

436 SCENE_Framework_In_login = SCENE_Framework_In_login_getReq -> SCENE_Framework_Out_login

437 SCENE_Framework_In_login_p1 = SCENE_Framework_In_login_p2 [] SCENE_Framework_In_login_p3

438 SCENE_Framework_In_login_p2 = SCENE_Framework_In_login_sendRes ->

SCENE_Framework_In_login_OK

439 SCENE_Framework_In_login_p3 = SCENE_Framework_In_login_sendFault ->

SCENE_Framework_In_login_FAULT

440 SCENE_Framework_In_login_OK = SCENE_Framework_In_PaymentCC

441 SCENE_Framework_In_login_FAULT = SCENE_Framework_In_PaymentCC";

442

443 Property Messages : TMessages = {

444 [MessageId = "SCENE_Framework_In_login_getReq";MessageData = {

445 [DatumId = "userName";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

446 [DatumId = "password";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

447 [MessageId = "SCENE_Framework_In_login_sendRes";MessageData = {

448 [DatumId = "success";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};] ,

449 [MessageId = "SCENE_Framework_In_login_sendFault";MessageData = {

450 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

451

452 Property BindTime = Run;

453 Property BindingOtherAdd = Yes;

454 Property BindingOtherRemove = Yes;

455 Property BindingSelfAdd = No;

456 Property BindingSelfRemove = No;

457 Property DataContinuity = Sporadic;

458 Property InOurControlDomain = Yes;

459 Property Reentrant = No;

460 Property SendsFirstMessage = No;

461 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

462 Property EndPointAddressList : TEndPointAddresses = {"192.168.0.1/ In_Login"};

463 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

464 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

465 Property WsdlDocRefs : TWsdlDocs = {"192.168.0.1/ WSDL"};

466 }

467

468 Port In_PaymentCC : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

469

470 Property MessagePattern = "REQR

259

471 SCENE_Framework_In_PaymentCC = SCENE_Framework_In_PaymentCC_getReq ->

SCENE_Framework_Process_Branch

472 SCENE_Framework_In_PaymentCC_p1 = SCENE_Framework_In_PaymentCC_p2 []

SCENE_Framework_In_PaymentCC_p3

473 SCENE_Framework_In_PaymentCC_p2 = SCENE_Framework_In_PaymentCC_sendRes ->

SCENE_Framework_In_PaymentCC_OK

474 SCENE_Framework_In_PaymentCC_p3 = SCENE_Framework_In_PaymentCC_sendFault ->

SCENE_Framework_In_PaymentCC_FAULT

475 SCENE_Framework_In_PaymentCC_OK = SCENE_Framework_In_logout

476 SCENE_Framework_In_PaymentCC_FAULT = SCENE_Framework_In_logout";

477

478 Property Messages : TMessages = {

479 [MessageId = "SCENE_Framework_In_PaymentCC_getReq";MessageData = {

480 [DatumId = "owner";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

481 [DatumId = "CCNumber";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

482 [DatumId = "amount";DatumRep = SOAP_Float;DatumStateScopeExpected = Private;],

483 [DatumId = "expirationDate";DatumRep = SOAP_Date;DatumStateScopeExpected = Private

;]};],

484 [MessageId = "SCENE_Framework_In_PaymentCC_sendRes";MessageData = {

485 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

486 [MessageId = "SCENE_Framework_In_PaymentCC_sendFault";MessageData = {

487 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

488

489 Property BindTime = Run;

490 Property BindingOtherAdd = Yes;

491 Property BindingOtherRemove = Yes;

492 Property BindingSelfAdd = No;

493 Property BindingSelfRemove = No;

494 Property DataContinuity = Sporadic;

495 Property InOurControlDomain = Yes;

496 Property Reentrant = No;

497 Property SendsFirstMessage = No;

498 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

499 Property EndPointAddressList : TEndPointAddresses = {"192.168.0.1/ In_PaymentCC"};

500 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

501 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

502 Property WsdlDocRefs : TWsdlDocs = {"192.168.0.1/ WSDL"};

503 }

504

505 Port In_logout : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

506

507 Property MessagePattern = "REQR

508 SCENE_Framework_In_logout = SCENE_Framework_In_logout_getReq ->

SCENE_Framework_Out_logout

509 SCENE_Framework_In_logout_p1 = SCENE_Framework_In_logout_p2 []

SCENE_Framework_In_logout_p3

510 SCENE_Framework_In_logout_p2 = SCENE_Framework_In_logout_sendRes ->

SCENE_Framework_In_logout_OK

511 SCENE_Framework_In_logout_p3 = SCENE_Framework_In_logout_sendFault ->

SCENE_Framework_In_logout_FAULT

512 SCENE_Framework_In_logout_OK = SCENE_Framework_Thread

513 SCENE_Framework_In_logout_FAULT = SCENE_Framework_Thread";

260

514

515 Property Messages : TMessages = {

516 [MessageId = "SCENE_Framework_In_logout_getReq";MessageData = {

517 [DatumId = "userName";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

518 [MessageId = "SCENE_Framework_In_logout_sendRes";MessageData = {

519 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

520 [MessageId = "SCENE_Framework_In_logout_sendFault";MessageData = {

521 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

522

523 Property SendsFirstMessage = No;

524 Property Reentrant = No;

525 Property InOurControlDomain = Yes;

526 Property DataContinuity = Sporadic;

527 Property BindingSelfRemove = No;

528 Property BindingSelfAdd = No;

529 Property BindingOtherRemove = Yes;

530 Property BindingOtherAdd = Yes;

531 Property BindTime = Run;

532 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

533 Property EndPointAddressList : TEndPointAddresses = {"192.168.0.1/ In_Logout"};

534 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

535 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

536 Property WsdlDocRefs : TWsdlDocs = {"192.168.0.1/ WSDL"};

537 }

538

539 Port Out_login : PortTWSClientUnicast = new PortTWSClientUnicast extended with {

540

541 Property MessagePattern = "SOLI

542 SCENE_Framework_Out_login = SCENE_Framework_Out_login_sendReq ->

SCENE_Framework_Out_login_p1

543 SCENE_Framework_Out_login_p1 = SCENE_Framework_Out_login_p2 []

SCENE_Framework_Out_login_p3

544 SCENE_Framework_Out_login_p2 = SCENE_Framework_Out_login_getRes ->

SCENE_Framework_Out_login_OK

545 SCENE_Framework_Out_login_p3 = SCENE_Framework_Out_login_getFault ->

SCENE_Framework_Out_login_FAULT

546 SCENE_Framework_Out_login_OK = SCENE_Framework_In_login_p2

547 SCENE_Framework_Out_login_FAULT = SCENE_Framework_In_login_p3";

548

549 Property Messages : TMessages = {

550 [MessageId = "SCENE_Framework_Out_login_sendReq";MessageData = {

551 [DatumId = "userName";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

552 [DatumId = "password";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

553 [MessageId = "SCENE_Framework_Out_login_getRes";MessageData = {

554 [DatumId = "success";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};] ,

555 [MessageId = "SCENE_Framework_Out_login_getFault";MessageData = {

556 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

557

558 Property BindTime = Instantiation;

559 Property BindingOtherAdd = No;

560 Property BindingOtherRemove = No;

561 Property BindingSelfAdd = Yes;

261

562 Property BindingSelfRemove = Yes;

563 Property ChoiceGroup = "Service";

564 Property DataContinuity = Sporadic;

565 Property GroupChoiceMaker = Yes;

566 Property InOurControlDomain = Yes;

567 Property Reentrant = No;

568 Property SendsFirstMessage = Yes;

569 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

570 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

571 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

572 }

573

574 Port Out_paymentCC : PortTWSClientUnicast = new PortTWSClientUnicast extended with {

575

576 Property MessagePattern = "SOLI

577 SCENE_Framework_Out_PaymentCC = SCENE_Framework_Out_PaymentCC_sendReq ->

SCENE_Framework_Out_PaymentCC_p1

578 SCENE_Framework_Out_PaymentCC_p1 = SCENE_Framework_Out_PaymentCC_p2 []

SCENE_Framework_Out_PaymentCC_p3

579 SCENE_Framework_Out_PaymentCC_p2 = SCENE_Framework_Out_PaymentCC_getRes ->

SCENE_Framework_Out_PaymentCC_OK

580 SCENE_Framework_Out_PaymentCC_p3 = SCENE_Framework_Out_PaymentCC_getFault ->

SCENE_Framework_Out_PaymentCC_FAULT

581 SCENE_Framework_Out_PaymentCC_OK = SCENE_Framework_In_PaymentCC_p2

582 SCENE_Framework_Out_PaymentCC_FAULT = SCENE_Framework_In_PaymentCC_p3";

583

584 Property Messages : TMessages = {

585 [MessageId = "SCENE_Framework_Out_PaymentCC_sendReq";MessageData = {

586 [DatumId = "owner";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

587 [DatumId = "CCNumber";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

588 [DatumId = "amount";DatumRep = SOAP_Float;DatumStateScopeExpected = Private;],

589 [DatumId = "expirationDate";DatumRep = SOAP_Date;DatumStateScopeExpected = Private

;]};],

590 [MessageId = "SCENE_Framework_Out_PaymentCC_getRes";MessageData = {

591 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

592 [MessageId = "SCENE_Framework_Out_PaymentCC_getFault";MessageData = {

593 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

594

595 Property BindTime = Instantiation;

596 Property BindingOtherAdd = No;

597 Property BindingOtherRemove = No;

598 Property BindingSelfAdd = Yes;

599 Property BindingSelfRemove = Yes;

600 Property ChoiceGroup = "Service";

601 Property DataContinuity = Sporadic;

602 Property GroupChoiceMaker = No;

603 Property InOurControlDomain = Yes;

604 Property Reentrant = No;

605 Property SendsFirstMessage = Yes;

606 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

607 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

262

608 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

609 }

610

611 Port Out_checkCreditCard : PortTWSClientUnicast = new PortTWSClientUnicast extended with {

612

613 Property MessagePattern = "SOLI

614 SCENE_Framework_Out_checkCreditCard = SCENE_Framework_Out_checkCreditCard_sendReq ->

SCENE_Framework_Out_checkCreditCard_p1

615 SCENE_Framework_Out_checkCreditCard_p1 = SCENE_Framework_Out_checkCreditCard_p2 []

SCENE_Framework_Out_checkCreditCard_p3

616 SCENE_Framework_Out_checkCreditCard_p2 = SCENE_Framework_Out_checkCreditCard_getRes ->

SCENE_Framework_Out_checkCreditCard_OK

617 SCENE_Framework_Out_checkCreditCard_p3 = SCENE_Framework_Out_checkCreditCard_getFault ->

SCENE_Framework_Out_checkCreditCard_FAULT

618 SCENE_Framework_Out_checkCreditCard_OK = SCENE_Framework_Out_payByCC

619 SCENE_Framework_Out_checkCreditCard_FAULT = SCENE_Framework_Out_payByCC";

620

621 Property Messages : TMessages = {

622 [MessageId = "SCENE_Framework_Out_checkCreditCard_sendReq";MessageData = {

623 [DatumId = "owner";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

624 [DatumId = "CCNumber";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

625 [DatumId = "expirationDate";DatumRep = SOAP_Date;DatumStateScopeExpected = Private

;]};],

626 [MessageId = "SCENE_Framework_Out_checkCreditCard_getRes";MessageData = {

627 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

628 [MessageId = "SCENE_Framework_Out_checkCreditCard_getFault";MessageData = {

629 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

630

631 Property Reentrant = No;

632 Property SendsFirstMessage = Yes;

633 Property InOurControlDomain = Yes;

634 Property DataContinuity = Sporadic;

635 Property BindingSelfRemove = Yes;

636 Property BindingSelfAdd = Yes;

637 Property GroupChoiceMaker = No;

638 Property ChoiceGroup = "Service";

639 Property BindingOtherRemove = No;

640 Property BindingOtherAdd = No;

641 Property BindTime = Instantiation;

642 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

643 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

644 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

645 }

646

647 Port Out_payByCC : PortTWSClientUnicast = new PortTWSClientUnicast extended with {

648

649 Property MessagePattern = "SOLI

650 SCENE_Framework_Out_payByCC = SCENE_Framework_Out_payByCC_sendReq ->

SCENE_Framework_Out_payByCC_p1

651 SCENE_Framework_Out_payByCC_p1 = SCENE_Framework_Out_payByCC_p2 []

SCENE_Framework_Out_payByCC_p3

263

652 SCENE_Framework_Out_payByCC_p2 = SCENE_Framework_Out_payByCC_getRes ->

SCENE_Framework_Out_payByCC_OK

653 SCENE_Framework_Out_payByCC_p3 = SCENE_Framework_Out_payByCC_getFault ->

SCENE_Framework_Out_payByCC_FAULT

654 SCENE_Framework_Out_payByCC_OK = SCENE_Framework_In_PaymentCC_p2

655 SCENE_Framework_Out_payByCC_FAULT = SCENE_Framework_In_PaymentCC_p3";

656

657 Property Messages : TMessages = {

658 [MessageId = "SCENE_Framework_Out_payByCC_sendReq";MessageData = {

659 [DatumId = "amount";DatumRep = SOAP_Float;DatumStateScopeExpected = Private ;]};] ,

660 [MessageId = "SCENE_Framework_Out_payByCC_getRes";MessageData = {

661 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

662 [MessageId = "SCENE_Framework_Out_payByCC_getFault";MessageData = {

663 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

664

665 Property BindTime = Instantiation;

666 Property BindingOtherAdd = No;

667 Property BindingOtherRemove = No;

668 Property BindingSelfAdd = Yes;

669 Property BindingSelfRemove = Yes;

670 Property DataContinuity = Sporadic;

671 Property InOurControlDomain = Yes;

672 Property Reentrant = No;

673 Property SendsFirstMessage = Yes;

674 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

675 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

676 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

677 Property ChoiceGroup = "Service";

678 Property GroupChoiceMaker = No;

679 }

680

681 Port Out_logout : PortTWSClientUnicast = new PortTWSClientUnicast extended with {

682

683 Property MessagePattern = "SOLI

684 SCENE_Framework_Out_logout = SCENE_Framework_Out_logout_sendReq ->

SCENE_Framework_Out_logout_p1

685 SCENE_Framework_Out_logout_p1 = SCENE_Framework_Out_logout_p2 []

SCENE_Framework_Out_logout_p3

686 SCENE_Framework_Out_logout_p2 = SCENE_Framework_Out_logout_getRes ->

SCENE_Framework_Out_logout_OK

687 SCENE_Framework_Out_logout_p3 = SCENE_Framework_Out_logout_getFault ->

SCENE_Framework_Out_logout_FAULT

688 SCENE_Framework_Out_logout_OK = SCENE_Framework_In_logout_p2

689 SCENE_Framework_Out_logout_FAULT = SCENE_Framework_In_logout_p3";

690

691 Property Messages : TMessages = {

692 [MessageId = "SCENE_Framework_Out_logout_sendReq";MessageData = {

693 [DatumId = "userName";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

694 [MessageId = "SCENE_Framework_Out_logout_getRes";MessageData = {

695 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

696 [MessageId = "SCENE_Framework_Out_logout_getFault";MessageData = {

697 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

264

698

699 Property SendsFirstMessage = Yes;

700 Property Reentrant = No;

701 Property InOurControlDomain = Yes;

702 Property GroupChoiceMaker = No;

703 Property DataContinuity = Sporadic;

704 Property ChoiceGroup = "Service";

705 Property BindingSelfRemove = Yes;

706 Property BindingSelfAdd = Yes;

707 Property BindingOtherRemove = No;

708 Property BindingOtherAdd = No;

709 Property BindTime = Instantiation;

710 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

711 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

712 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

713 }

714

715 Property CentralDataRecords : Set {TCentralDataRecord} = {

716 [DatumID = "userName";DatumSemantics = "USER:ID";DatumScopeExhibited = Private;],

717 [DatumID = "password";DatumSemantics = "USER:KEY";DatumScopeExhibited = Private;],

718 [DatumID = "success";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private;],

719 [DatumID = "FaultData";DatumSemantics = "FAULT:DESCRIPTION";DatumScopeExhibited = Private

;],

720 [DatumID = "owner";DatumSemantics = "ACCOUNT:NAME";DatumScopeExhibited = Private;],

721 [DatumID = "CCNumber";DatumSemantics = "ACCOUNT:CARD:REFERENCE";DatumScopeExhibited =

Private;],

722 [DatumID = "amount";DatumSemantics = "FINANCE:VALUE";DatumScopeExhibited = Private;],

723 [DatumID = "expirationDate";DatumSemantics = "ACCOUNT:CARD:VALIDTO";DatumScopeExhibited =

Private;],

724 [DatumID = "accepted";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private ;]};

725

726 Property CentralProcessDescription = "SCENE_Framework = SCENE_Framework_Thread

727 SCENE_Framework_Thread = SCENE_Framework_In_login

728 SCENE_Framework_Process_Branch =

SCENE_Framework_Out_PaymentCC []

SCENE_Framework_Out_checkCreditCard";

729

730 Property ComponentInOurControlDomain = Yes;

731 }

732

733 Connector ConnTWS0 : ConnTWS = new ConnTWS extended with { }

734 Connector ConnTWS1 : ConnTWS = new ConnTWS extended with { }

735 Connector ConnTWS2 : ConnTWS = new ConnTWS extended with { }

736 Connector ConnTWS3 : ConnTWS = new ConnTWS extended with { }

737 Connector ConnTWS4 : ConnTWS = new ConnTWS extended with { }

738 Connector ConnTWS5 : ConnTWS = new ConnTWS extended with { }

739 Connector ConnTWS6 : ConnTWS = new ConnTWS extended with { }

740 Connector ConnTWS7 : ConnTWS = new ConnTWS extended with { }

741 Connector ConnTWS8 : ConnTWS = new ConnTWS extended with { }

742 Connector ConnTWS9 : ConnTWS = new ConnTWS extended with { }

743

744 Attachment CPClient.setupConf to ConnTWS0.role2;

265

745 Attachment SCENE_Framework.In_login to ConnTWS0.role1;

746 Attachment CPClient.PaymentCC to ConnTWS1.role1;

747 Attachment SCENE_Framework.In_PaymentCC to ConnTWS1.role2;

748 Attachment CPClient.logout to ConnTWS2.role1;

749 Attachment SCENE_Framework.In_logout to ConnTWS2.role2;

750 Attachment SCENE_Framework.Out_login to ConnTWS3.role1;

751 Attachment BookPayCC.setupConf to ConnTWS3.role2;

752 Attachment BookPayCC.PaymentCC to ConnTWS4.role2;

753 Attachment SCENE_Framework.Out_paymentCC to ConnTWS4.role1;

754 Attachment SCENE_Framework.Out_logout to ConnTWS5.role1;

755 Attachment BookPayCC.logout to ConnTWS5.role2;

756 Attachment SCENE_Framework.Out_login to ConnTWS6.role1;

757 Attachment SpaceCCBuy.login to ConnTWS6.role2;

758 Attachment SCENE_Framework.Out_checkCreditCard to ConnTWS7.role2;

759 Attachment SpaceCCBuy.checkCreditCard to ConnTWS7.role1;

760 Attachment SCENE_Framework.Out_payByCC to ConnTWS8.role2;

761 Attachment SpaceCCBuy.payByCC to ConnTWS8.role1;

762 Attachment SCENE_Framework.Out_logout to ConnTWS9.role2;

763 Attachment SpaceCCBuy.logout to ConnTWS9.role1;

764 }

E.2 Additional Tests

E.2.1 Omission Check

1 import families/ws_enhanced_01.acme;

2

3 System AdditionalTestOmission : ws_enhanced_01 = new ws_enhanced_01 extended with {

4

5 Component Client : CompTWSClient = new CompTWSClient extended with {

6 Port p1 : PortTWSClientSingle = new PortTWSClientSingle extended with {

7 Property MessagePattern = "SOLI

8 Client_p1 = Client_p1_sendReq -> Client_p1_p1

9 Client_p1_p1 = Client_p1_p2 [] Client_p1_p3

10 Client_p1_p2 = Client_p1_getRes -> Client_p1_OK

11 Client_p1_p3 = Client_p1_getFault -> Client_p1_FAULT

12 Client_p1_OK = Client_p4

13 Client_p1_FAULT = Client_p4";

14

15 Property Messages : TMessages = {

16 [MessageId = "Client_p1_sendReq";MessageData = {

17 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

18 [MessageId = "Client_p1_getRes";MessageData = {

19 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

20 [MessageId = "Client_p1_getFault";MessageData = {

21 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

22

23 Property BindTime = Instantiation;

24 Property BindingOtherAdd = No;

25 Property BindingOtherRemove = No;

26 Property BindingSelfAdd = Yes;

27 Property BindingSelfRemove = Yes;

28 Property DataContinuity = Sporadic;

266

29 Property InOurControlDomain = Yes;

30 Property Reentrant = No;

31 Property SendsFirstMessage = Yes;

32 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

33 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

34 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

35 }

36

37 Port p2 : PortTWSClientSingle = new PortTWSClientSingle extended with {

38 Property MessagePattern = "SOLI

39 Client_p2 = Client_p2_sendReq -> Client_p2_p1

40 Client_p2_p1 = Client_p2_p2 [] Client_p2_p3

41 Client_p2_p2 = Client_p2_getRes -> Client_p2_OK

42 Client_p2_p3 = Client_p2_getFault -> Client_p2_FAULT

43 Client_p2_OK = Client_Thread

44 Client_p2_FAULT = Client_Thread";

45

46 Property Messages : TMessages = {

47 [MessageId = "Client_p2_sendReq";MessageData = {

48 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

49 [MessageId = "Client_p2_getRes";MessageData = {

50 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

51 [MessageId = "Client_p2_getFault";MessageData = {

52 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

53

54 Property BindTime = Instantiation;

55 Property BindingOtherAdd = No;

56 Property BindingOtherRemove = No;

57 Property BindingSelfAdd = Yes;

58 Property BindingSelfRemove = Yes;

59 Property DataContinuity = Sporadic;

60 Property InOurControlDomain = Yes;

61 Property Reentrant = No;

62 Property SendsFirstMessage = Yes;

63 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

64 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

65 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

66 }

67

68 Port p3 : PortTWSClientSingle = new PortTWSClientSingle extended with {

69 Property MessagePattern = "SOLI

70 Client_p3 = Client_p3_sendReq -> Client_p3_p1

71 Client_p3_p1 = Client_p3_p2 [] Client_p3_p3

72 Client_p3_p2 = Client_p3_getRes -> Client_p3_OK

73 Client_p3_p3 = Client_p3_getFault -> Client_p3_FAULT

74 Client_p3_OK = Client_Thread

75 Client_p3_FAULT = Client_Thread";

76

77 Property Messages : TMessages = {

78 [MessageId = "Client_p3_sendReq";MessageData = {

267

79 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

80 [MessageId = "Client_p3_getRes";MessageData = {

81 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

82 [MessageId = "Client_p3_getFault";MessageData = {

83 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

84

85 Property BindTime = Instantiation;

86 Property BindingOtherAdd = No;

87 Property BindingOtherRemove = No;

88 Property BindingSelfAdd = Yes;

89 Property BindingSelfRemove = Yes;

90 Property DataContinuity = Sporadic;

91 Property InOurControlDomain = Yes;

92 Property Reentrant = No;

93 Property SendsFirstMessage = Yes;

94 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

95 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

96 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

97 }

98

99 Port p4 : PortTWSClientSingle = new PortTWSClientSingle extended with {

100 Property MessagePattern = "SOLI

101 Client_p4 = Client_p4_sendReq -> Client_p4_p1

102 Client_p4_p1 = Client_p4_p2 [] Client_p4_p3

103 Client_p4_p2 = Client_p4_getRes -> Client_p4_OK

104 Client_p4_p3 = Client_p4_getFault -> Client_p4_FAULT

105 Client_p4_OK = Client_p2

106 Client_p4_FAULT = Client_p2";

107

108 Property Messages : TMessages = {

109 [MessageId = "Client_p4_sendReq";MessageData = {

110 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

111 [MessageId = "Client_p4_getRes";MessageData = {

112 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

113 [MessageId = "Client_p4_getFault";MessageData = {

114 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

115

116 Property BindTime = Instantiation;

117 Property BindingOtherAdd = No;

118 Property BindingOtherRemove = No;

119 Property BindingSelfAdd = Yes;

120 Property BindingSelfRemove = Yes;

121 Property DataContinuity = Sporadic;

122 Property InOurControlDomain = Yes;

123 Property Reentrant = No;

124 Property SendsFirstMessage = Yes;

125 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

126 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

127 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

128 }

268

129

130 Property CentralDataRecords : Set {TCentralDataRecord} = {

131 [DatumID = "sendData";DatumSemantics = "sendData";DatumScopeExhibited = Private;],

132 [DatumID = "resultData";DatumSemantics = "resultData";DatumScopeExhibited = Private;],

133 [DatumID = "FaultData";DatumSemantics = "FAULT:DESCRIPTION";DatumScopeExhibited = Private

;]};

134

135 Property CentralProcessDescription = "Client = Client_Thread

136 Client_Thread = Client_p1 [] Client_p3";

137

138 Property ComponentInOurControlDomain = Yes;

139 }

140

141 Component Service : CompTWSService = new CompTWSService extended with {

142 Port p1 : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

143 Property MessagePattern = "REQR

144 Service_p1 = Service_p1_getReq -> Service_p1_p1

145 Service_p1_p1 = Service_p1_p2 [] Service_p1_p3

146 Service_p1_p2 = Service_p1_sendRes -> Service_p1_OK

147 Service_p1_p3 = Service_p1_sendFault -> Service_p1_FAULT

148 Service_p1_OK = Service_p2

149 Service_p1_FAULT = Service_p2";

150

151 Property Messages : TMessages = {

152 [MessageId = "Service_p1_getReq";MessageData = {

153 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

154 [MessageId = "Service_p1_sendRes";MessageData = {

155 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

156 [MessageId = "Service_p1_sendFault";MessageData = {

157 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

158

159 Property BindTime = Instantiation;

160 Property BindingOtherAdd = Yes;

161 Property BindingOtherRemove = Yes;

162 Property BindingSelfAdd = No;

163 Property BindingSelfRemove = No;

164 Property DataContinuity = Sporadic;

165 Property InOurControlDomain = Yes;

166 Property Reentrant = No;

167 Property SendsFirstMessage = No;

168 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

169 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

170 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

171 Property EndPointAddressList : TEndPointAddresses = {"www.Service.com/p1"};

172 Property WsdlDocRefs : TWsdlDocs = {"www.Service.com/WSDL"};

173 }

174

175 Port p2 : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

176 Property MessagePattern = "REQR

177 Service_p2 = Service_p2_getReq -> Service_p2_p1

178 Service_p2_p1 = Service_p2_p2 [] Service_p2_p3

179 Service_p2_p2 = Service_p2_sendRes -> Service_p2_OK

269

180 Service_p2_p3 = Service_p2_sendFault -> Service_p2_FAULT

181 Service_p2_OK = Service_p3

182 Service_p2_FAULT = Service_p3";

183

184 Property Messages : TMessages = {

185 [MessageId = "Service_p2_getReq";MessageData = {

186 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

187 [MessageId = "Service_p2_sendRes";MessageData = {

188 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

189 [MessageId = "Service_p2_sendFault";MessageData = {

190 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

191

192 Property BindTime = Instantiation;

193 Property BindingOtherAdd = Yes;

194 Property BindingOtherRemove = Yes;

195 Property BindingSelfAdd = No;

196 Property BindingSelfRemove = No;

197 Property DataContinuity = Sporadic;

198 Property InOurControlDomain = Yes;

199 Property Reentrant = No;

200 Property SendsFirstMessage = No;

201 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

202 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

203 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

204 Property EndPointAddressList : TEndPointAddresses = {"www.Service.com/p2"};

205 Property WsdlDocRefs : TWsdlDocs = {"www.Service.com/WSDL"};

206 }

207

208 Port p3 : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

209 Property MessagePattern = "REQR

210 Service_p3 = Service_p3_getReq -> Service_p3_p1

211 Service_p3_p1 = Service_p3_p2 [] Service_p3_p3

212 Service_p3_p2 = Service_p3_sendRes -> Service_p3_OK

213 Service_p3_p3 = Service_p3_sendFault -> Service_p3_FAULT

214 Service_p3_OK = Service_Thread

215 Service_p3_FAULT = Service_Thread";

216

217 Property Messages : TMessages = {

218 [MessageId = "Service_p3_getReq";MessageData = {

219 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

220 [MessageId = "Service_p3_sendRes";MessageData = {

221 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

222 [MessageId = "Service_p3_sendFault";MessageData = {

223 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

224

225 Property BindTime = Instantiation;

226 Property BindingOtherAdd = Yes;

227 Property BindingOtherRemove = Yes;

228 Property BindingSelfAdd = No;

229 Property BindingSelfRemove = No;

230 Property DataContinuity = Sporadic;

231 Property InOurControlDomain = Yes;

270

232 Property Reentrant = No;

233 Property SendsFirstMessage = No;

234 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

235 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

236 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

237 Property EndPointAddressList : TEndPointAddresses = {"www.Service.com/p3"};

238 Property WsdlDocRefs : TWsdlDocs = {"www.Service.com/WSDL"};

239 }

240

241 Port p4 : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

242 Property MessagePattern = "REQR

243 Service_p4 = Service_p4_getReq -> Service_p4_p1

244 Service_p4_p1 = Service_p4_p2 [] Service_p4_p3

245 Service_p4_p2 = Service_p4_sendRes -> Service_p4_OK

246 Service_p4_p3 = Service_p4_sendFault -> Service_p4_FAULT

247 Service_p4_OK = Service_Thread

248 Service_p4_FAULT = Service_Thread";

249

250 Property Messages : TMessages = {

251 [MessageId = "Service_p4_getReq";MessageData = {

252 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

253 [MessageId = "Service_p4_sendRes";MessageData = {

254 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

255 [MessageId = "Service_p4_sendFault";MessageData = {

256 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

257

258 Property BindTime = Instantiation;

259 Property BindingOtherAdd = Yes;

260 Property BindingOtherRemove = Yes;

261 Property BindingSelfAdd = No;

262 Property BindingSelfRemove = No;

263 Property DataContinuity = Sporadic;

264 Property InOurControlDomain = Yes;

265 Property Reentrant = No;

266 Property SendsFirstMessage = No;

267 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

268 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

269 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

270 Property EndPointAddressList : TEndPointAddresses = {"www.Service.com/p4"};

271 Property WsdlDocRefs : TWsdlDocs = {"www.Service.com/WSDL"};

272 }

273

274 Property CentralDataRecords : Set {TCentralDataRecord} = {

275 [DatumID = "sendData";DatumSemantics = "sendData";DatumScopeExhibited = Private;],

276 [DatumID = "resultData";DatumSemantics = "resultData";DatumScopeExhibited = Private;],

277 [DatumID = "FaultData";DatumSemantics = "FAULT:DESCRIPTION";DatumScopeExhibited = Private

;]};

278

279 Property CentralProcessDescription = "Service = Service_Thread

280 Service_Thread = Service_p1 [] Service_p4";

271

281

282 Property ComponentInOurControlDomain = Yes;

283 }

284

285 Component AnalysisControl : CompTWSAnalysisControl = new CompTWSAnalysisControl extended with {

286 Property ActiveAnalysisCentralDataStoreCorrect = true;

287 Property ActiveAnalysisCommissionMismatch = true;

288 Property ActiveAnalysisChoiceGroupsHaveChoiceMaker = true;

289 Property ActiveAnalysisCommissionPartialMatch = true;

290 Property ActiveAnalysisConcurrentCallsToThisPort = true;

291 Property ActiveAnalysisMessageDataTypesMatch = true;

292 Property ActiveAnalysisMessageExchangePatternsMatch = true;

293 Property ActiveAnalysisMessageExchangePatternsPartiallyMatch = true;

294 Property ActiveAnalysisMessageOverData = true;

295 Property ActiveAnalysisMessagePatternAndMessageListConcur = true;

296 Property ActiveAnalysisMessageUnderData1 = true;

297 Property ActiveAnalysisMessageUnderData2 = true;

298 Property ActiveAnalysisOmissionMismatch = true;

299 Property ActiveAnalysisOmissionPartialMatch = true;

300 Property ActiveAnalysisStateScopesMatch = true;

301 Property outputPath = "";

302 }

303

304 Connector ConnTWS0 : ConnTWS = new ConnTWS extended with { }

305 Connector ConnTWS1 : ConnTWS = new ConnTWS extended with { }

306 Connector ConnTWS2 : ConnTWS = new ConnTWS extended with { }

307 Connector ConnTWS3 : ConnTWS = new ConnTWS extended with { }

308

309 Attachment Client.p1 to ConnTWS0.role1;

310 Attachment Service.p1 to ConnTWS0.role2;

311 Attachment Service.p2 to ConnTWS1.role2;

312 Attachment Client.p3 to ConnTWS1.role1;

313 Attachment Service.p3 to ConnTWS2.role1;

314 Attachment Client.p2 to ConnTWS2.role2;

315 Attachment Service.p4 to ConnTWS3.role1;

316 Attachment Client.p4 to ConnTWS3.role2;

317 }

E.2.2 Cooperative Connector Check

1 import families/ws_enhanced_01.acme;

2

3 System AdditionalTestCooperative : ws_enhanced_01 = new ws_enhanced_01 extended with {

4

5 Component Broker : CompTWSIntermediary = new CompTWSIntermediary extended with {

6 Port c1 : PortTWSClientSingle = new PortTWSClientSingle extended with {

7 Property MessagePattern = "SOLI

8 Broker_c1 = Broker_c1_sendReq -> Broker_c1_p1

9 Broker_c1_p1 = Broker_c1_p2 [] Broker_c1_p3

10 Broker_c1_p2 = Broker_c1_getRes -> Broker_c1_OK

11 Broker_c1_p3 = Broker_c1_getFault -> Broker_c1_FAULT

12 Broker_c1_OK = Broker_s2

13 Broker_c1_FAULT = Broker_s2";

14

272

15 Property Messages : TMessages = {

16 [MessageId = "Broker_c1_sendReq";MessageData = {

17 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

18 [MessageId = "Broker_c1_getRes";MessageData = {

19 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

20 [MessageId = "Broker_c1_getFault";MessageData = {

21 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

22

23 Property BindTime = Instantiation;

24 Property BindingOtherAdd = No;

25 Property BindingOtherRemove = No;

26 Property BindingSelfAdd = Yes;

27 Property BindingSelfRemove = Yes;

28 Property DataContinuity = Sporadic;

29 Property InOurControlDomain = Yes;

30 Property Reentrant = No;

31 Property SendsFirstMessage = Yes;

32 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

33 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

34 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

35 }

36

37 Port c2 : PortTWSClientSingle = new PortTWSClientSingle extended with {

38 Property MessagePattern = "SOLI

39 Broker_c2 = Broker_c2_sendReq -> Broker_c2_p1

40 Broker_c2_p1 = Broker_c2_p2 [] Broker_c2_p3

41 Broker_c2_p2 = Broker_c2_getRes -> Broker_c2_OK

42 Broker_c2_p3 = Broker_c2_getFault -> Broker_c2_FAULT

43 Broker_c2_OK = Broker_Thread

44 Broker_c2_FAULT = Broker_Thread";

45

46 Property Messages : TMessages = {

47 [MessageId = "Broker_c2_sendReq";MessageData = {

48 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

49 [MessageId = "Broker_c2_getRes";MessageData = {

50 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

51 [MessageId = "Broker_c2_getFault";MessageData = {

52 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

53

54 Property BindTime = Instantiation;

55 Property BindingOtherAdd = No;

56 Property BindingOtherRemove = No;

57 Property BindingSelfAdd = Yes;

58 Property BindingSelfRemove = Yes;

59 Property DataContinuity = Sporadic;

60 Property InOurControlDomain = Yes;

61 Property Reentrant = No;

62 Property SendsFirstMessage = Yes;

63 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

64 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

273

65 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

66 }

67

68 Port c3 : PortTWSClientSingle = new PortTWSClientSingle extended with {

69 Property MessagePattern = "SOLI

70 Broker_c3 = Broker_c3_sendReq -> Broker_c3_p1

71 Broker_c3_p1 = Broker_c3_p2 [] Broker_c3_p3

72 Broker_c3_p2 = Broker_c3_getRes -> Broker_c3_OK

73 Broker_c3_p3 = Broker_c3_getFault -> Broker_c3_FAULT

74 Broker_c3_OK = Broker_Thread

75 Broker_c3_FAULT = Broker_Thread";

76

77 Property Messages : TMessages = {

78 [MessageId = "Broker_c3_sendReq";MessageData = {

79 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

80 [MessageId = "Broker_c3_getRes";MessageData = {

81 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

82 [MessageId = "Broker_c3_getFault";MessageData = {

83 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

84

85 Property BindTime = Instantiation;

86 Property BindingOtherAdd = No;

87 Property BindingOtherRemove = No;

88 Property BindingSelfAdd = Yes;

89 Property BindingSelfRemove = Yes;

90 Property DataContinuity = Sporadic;

91 Property InOurControlDomain = Yes;

92 Property Reentrant = No;

93 Property SendsFirstMessage = Yes;

94 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

95 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

96 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

97 }

98

99 Port s1 : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

100 Property MessagePattern = "REQR

101 Broker_s1 = Broker_s1_getReq -> Broker_s1_p1

102 Broker_s1_p1 = Broker_s1_p2 [] Broker_s1_p3

103 Broker_s1_p2 = Broker_s1_sendRes -> Broker_s1_OK

104 Broker_s1_p3 = Broker_s1_sendFault -> Broker_s1_FAULT

105 Broker_s1_OK = Broker_c1

106 Broker_s1_FAULT = Broker_c1";

107

108 Property Messages : TMessages = {

109 [MessageId = "Broker_s1_getReq";MessageData = {

110 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

111 [MessageId = "Broker_s1_sendRes";MessageData = {

112 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

113 [MessageId = "Broker_s1_sendFault";MessageData = {

114 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

115

274

116 Property BindTime = Instantiation;

117 Property BindingOtherAdd = Yes;

118 Property BindingOtherRemove = Yes;

119 Property BindingSelfAdd = No;

120 Property BindingSelfRemove = No;

121 Property DataContinuity = Sporadic;

122 Property InOurControlDomain = Yes;

123 Property Reentrant = No;

124 Property SendsFirstMessage = No;

125 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

126 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

127 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

128 Property EndPointAddressList : TEndPointAddresses = {"www.Broker.com/s1"};

129 Property WsdlDocRefs : TWsdlDocs = {"www.Broker.com/WSDL"};

130 }

131

132 Port s2 : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

133 Property MessagePattern = "REQR

134 Broker_s2 = Broker_s2_getReq -> Broker_s2_p1

135 Broker_s2_p1 = Broker_s2_p2 [] Broker_s2_p3

136 Broker_s2_p2 = Broker_s2_sendRes -> Broker_s2_OK

137 Broker_s2_p3 = Broker_s2_sendFault -> Broker_s2_FAULT

138 Broker_s2_OK = Broker_c2

139 Broker_s2_FAULT = Broker_c2";

140

141 Property Messages : TMessages = {

142 [MessageId = "Broker_s2_getReq";MessageData = {

143 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

144 [MessageId = "Broker_s2_sendRes";MessageData = {

145 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

146 [MessageId = "Broker_s2_sendFault";MessageData = {

147 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

148

149 Property BindTime = Instantiation;

150 Property BindingOtherAdd = Yes;

151 Property BindingOtherRemove = Yes;

152 Property BindingSelfAdd = No;

153 Property BindingSelfRemove = No;

154 Property DataContinuity = Sporadic;

155 Property InOurControlDomain = Yes;

156 Property Reentrant = No;

157 Property SendsFirstMessage = No;

158 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

159 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

160 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

161 Property EndPointAddressList : TEndPointAddresses = {"www.Broker.com/s2"};

162 Property WsdlDocRefs : TWsdlDocs = {"www.Broker.com/WSDL"};

163 }

164

165 Port s3 : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

275

166 Property MessagePattern = "REQR

167 Broker_s3 = Broker_s3_getReq -> Broker_s3_p1

168 Broker_s3_p1 = Broker_s3_p2 [] Broker_s3_p3

169 Broker_s3_p2 = Broker_s3_sendRes -> Broker_s3_OK

170 Broker_s3_p3 = Broker_s3_sendFault -> Broker_s3_FAULT

171 Broker_s3_OK = Broker_Thread

172 Broker_s3_FAULT = Broker_Thread";

173

174 Property Messages : TMessages = {

175 [MessageId = "Broker_s3_getReq";MessageData = {

176 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

177 [MessageId = "Broker_s3_sendRes";MessageData = {

178 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

179 [MessageId = "Broker_s3_sendFault";MessageData = {

180 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

181

182 Property BindTime = Instantiation;

183 Property BindingOtherAdd = Yes;

184 Property BindingOtherRemove = Yes;

185 Property BindingSelfAdd = No;

186 Property BindingSelfRemove = No;

187 Property DataContinuity = Sporadic;

188 Property InOurControlDomain = Yes;

189 Property Reentrant = No;

190 Property SendsFirstMessage = No;

191 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

192 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

193 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

194 Property EndPointAddressList : TEndPointAddresses = {"www.Broker.com/s3"};

195 Property WsdlDocRefs : TWsdlDocs = {"www.Broker.com/WSDL"};

196 }

197

198 Property CentralDataRecords : Set {TCentralDataRecord} = {

199 [DatumID = "sendData";DatumSemantics = "sendData";DatumScopeExhibited = Private;],

200 [DatumID = "resultData";DatumSemantics = "resultData";DatumScopeExhibited = Private;],

201 [DatumID = "FaultData";DatumSemantics = "FAULT:DESCRIPTION";DatumScopeExhibited = Private

;]};

202

203 Property CentralProcessDescription = "Broker = Broker_Thread

204 Broker_Thread = Broker_s1 [] Broker_s3 [] Broker_c3";

205

206 Property ComponentInOurControlDomain = Yes;

207 }

208

209 Component CompTWSAnalysisControl0 : CompTWSAnalysisControl = new CompTWSAnalysisControl

extended with {

210 Property ActiveAnalysisCentralDataStoreCorrect = true;

211 Property ActiveAnalysisCommissionMismatch = true;

212 Property ActiveAnalysisChoiceGroupsHaveChoiceMaker = true;

213 Property ActiveAnalysisCommissionPartialMatch = true;

214 Property ActiveAnalysisConcurrentCallsToThisPort = true;

215 Property ActiveAnalysisMessageDataTypesMatch = true;

276

216 Property ActiveAnalysisMessageExchangePatternsMatch = true;

217 Property ActiveAnalysisMessageExchangePatternsPartiallyMatch = true;

218 Property ActiveAnalysisMessageOverData = true;

219 Property ActiveAnalysisMessagePatternAndMessageListConcur = true;

220 Property ActiveAnalysisMessageUnderData1 = true;

221 Property ActiveAnalysisMessageUnderData2 = true;

222 Property ActiveAnalysisOmissionMismatch = true;

223 Property ActiveAnalysisOmissionPartialMatch = true;

224 Property ActiveAnalysisStateScopesMatch = true;

225 Property outputPath = "";

226 }

227

228 Connector ConnTWSCooperative0 : ConnTWSCooperative = new ConnTWSCooperative extended with { }

229 Connector ConnTWSCooperative1 : ConnTWSCooperative = new ConnTWSCooperative extended with { }

230 Connector ConnTWSCooperative2 : ConnTWSCooperative = new ConnTWSCooperative extended with { }

231 Connector ConnTWSCooperative3 : ConnTWSCooperative = new ConnTWSCooperative extended with { }

232 Connector ConnTWSCooperative4 : ConnTWSCooperative = new ConnTWSCooperative extended with { }

233 Connector ConnTWSCooperative5 : ConnTWSCooperative = new ConnTWSCooperative extended with { }

234 Attachment Broker.s1 to ConnTWSCooperative0.role1;

235 Attachment Broker.s2 to ConnTWSCooperative1.role1;

236 Attachment Broker.s3 to ConnTWSCooperative2.role1;

237 Attachment Broker.c1 to ConnTWSCooperative3.role1;

238 Attachment Broker.c2 to ConnTWSCooperative4.role1;

239 Attachment Broker.c3 to ConnTWSCooperative5.role1;

240 }

E.2.3 Stubborn Connector Check

1 import families/ws_enhanced_01.acme;

2

3 System AdditionalTestStubborn : ws_enhanced_01 = new ws_enhanced_01 extended with {

4

5 Component Broker : CompTWSIntermediary = new CompTWSIntermediary extended with {

6 Port c1 : PortTWSClientSingle = new PortTWSClientSingle extended with {

7 Property MessagePattern = "SOLI

8 Broker_c1 = Broker_c1_sendReq -> Broker_c1_p1

9 Broker_c1_p1 = Broker_c1_p2 [] Broker_c1_p3

10 Broker_c1_p2 = Broker_c1_getRes -> Broker_c1_OK

11 Broker_c1_p3 = Broker_c1_getFault -> Broker_c1_FAULT

12 Broker_c1_OK = Broker_s2

13 Broker_c1_FAULT = Broker_s2";

14

15 Property Messages : TMessages = {

16 [MessageId = "Broker_c1_sendReq";MessageData = {

17 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

18 [MessageId = "Broker_c1_getRes";MessageData = {

19 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

20 [MessageId = "Broker_c1_getFault";MessageData = {

21 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

22

23 Property BindTime = Instantiation;

24 Property BindingOtherAdd = No;

25 Property BindingOtherRemove = No;

26 Property BindingSelfAdd = Yes;

277

27 Property BindingSelfRemove = Yes;

28 Property DataContinuity = Sporadic;

29 Property InOurControlDomain = Yes;

30 Property Reentrant = No;

31 Property SendsFirstMessage = Yes;

32 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

33 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

34 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

35 }

36

37 Port c2 : PortTWSClientSingle = new PortTWSClientSingle extended with {

38 Property MessagePattern = "SOLI

39 Broker_c2 = Broker_c2_sendReq -> Broker_c2_p1

40 Broker_c2_p1 = Broker_c2_p2 [] Broker_c2_p3

41 Broker_c2_p2 = Broker_c2_getRes -> Broker_c2_OK

42 Broker_c2_p3 = Broker_c2_getFault -> Broker_c2_FAULT

43 Broker_c2_OK = Broker_Thread

44 Broker_c2_FAULT = Broker_Thread";

45

46 Property Messages : TMessages = {

47 [MessageId = "Broker_c2_sendReq";MessageData = {

48 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

49 [MessageId = "Broker_c2_getRes";MessageData = {

50 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

51 [MessageId = "Broker_c2_getFault";MessageData = {

52 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

53

54 Property BindTime = Instantiation;

55 Property BindingOtherAdd = No;

56 Property BindingOtherRemove = No;

57 Property BindingSelfAdd = Yes;

58 Property BindingSelfRemove = Yes;

59 Property DataContinuity = Sporadic;

60 Property InOurControlDomain = Yes;

61 Property Reentrant = No;

62 Property SendsFirstMessage = Yes;

63 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

64 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

65 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

66 }

67

68 Port c3 : PortTWSClientSingle = new PortTWSClientSingle extended with {

69 Property MessagePattern = "SOLI

70 Broker_c3 = Broker_c3_sendReq -> Broker_c3_p1

71 Broker_c3_p1 = Broker_c3_p2 [] Broker_c3_p3

72 Broker_c3_p2 = Broker_c3_getRes -> Broker_c3_OK

73 Broker_c3_p3 = Broker_c3_getFault -> Broker_c3_FAULT

74 Broker_c3_OK = Broker_Thread

75 Broker_c3_FAULT = Broker_Thread";

76

278

77 Property Messages : TMessages = {

78 [MessageId = "Broker_c3_sendReq";MessageData = {

79 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

80 [MessageId = "Broker_c3_getRes";MessageData = {

81 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

82 [MessageId = "Broker_c3_getFault";MessageData = {

83 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

84

85 Property BindTime = Instantiation;

86 Property BindingOtherAdd = No;

87 Property BindingOtherRemove = No;

88 Property BindingSelfAdd = Yes;

89 Property BindingSelfRemove = Yes;

90 Property DataContinuity = Sporadic;

91 Property InOurControlDomain = Yes;

92 Property Reentrant = No;

93 Property SendsFirstMessage = Yes;

94 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

95 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

96 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

97 }

98

99 Port s1 : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

100 Property MessagePattern = "REQR

101 Broker_s1 = Broker_s1_getReq -> Broker_s1_p1

102 Broker_s1_p1 = Broker_s1_p2 [] Broker_s1_p3

103 Broker_s1_p2 = Broker_s1_sendRes -> Broker_s1_OK

104 Broker_s1_p3 = Broker_s1_sendFault -> Broker_s1_FAULT

105 Broker_s1_OK = Broker_c1

106 Broker_s1_FAULT = Broker_c1";

107

108 Property Messages : TMessages = {

109 [MessageId = "Broker_s1_getReq";MessageData = {

110 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

111 [MessageId = "Broker_s1_sendRes";MessageData = {

112 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

113 [MessageId = "Broker_s1_sendFault";MessageData = {

114 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

115

116 Property BindTime = Instantiation;

117 Property BindingOtherAdd = Yes;

118 Property BindingOtherRemove = Yes;

119 Property BindingSelfAdd = No;

120 Property BindingSelfRemove = No;

121 Property DataContinuity = Sporadic;

122 Property InOurControlDomain = Yes;

123 Property Reentrant = No;

124 Property SendsFirstMessage = No;

125 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

126 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

279

127 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

128 Property EndPointAddressList : TEndPointAddresses = {"www.Broker.com/s1"};

129 Property WsdlDocRefs : TWsdlDocs = {"www.Broker.com/WSDL"};

130 }

131

132 Port s2 : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

133 Property MessagePattern = "REQR

134 Broker_s2 = Broker_s2_getReq -> Broker_s2_p1

135 Broker_s2_p1 = Broker_s2_p2 [] Broker_s2_p3

136 Broker_s2_p2 = Broker_s2_sendRes -> Broker_s2_OK

137 Broker_s2_p3 = Broker_s2_sendFault -> Broker_s2_FAULT

138 Broker_s2_OK = Broker_c2

139 Broker_s2_FAULT = Broker_c2";

140

141 Property Messages : TMessages = {

142 [MessageId = "Broker_s2_getReq";MessageData = {

143 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

144 [MessageId = "Broker_s2_sendRes";MessageData = {

145 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

146 [MessageId = "Broker_s2_sendFault";MessageData = {

147 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

148

149 Property BindTime = Instantiation;

150 Property BindingOtherAdd = Yes;

151 Property BindingOtherRemove = Yes;

152 Property BindingSelfAdd = No;

153 Property BindingSelfRemove = No;

154 Property DataContinuity = Sporadic;

155 Property InOurControlDomain = Yes;

156 Property Reentrant = No;

157 Property SendsFirstMessage = No;

158 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

159 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

160 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

161 Property EndPointAddressList : TEndPointAddresses = {"www.Broker.com/s2"};

162 Property WsdlDocRefs : TWsdlDocs = {"www.Broker.com/WSDL"};

163 }

164

165 Port s3 : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

166 Property MessagePattern = "REQR

167 Broker_s3 = Broker_s3_getReq -> Broker_s3_p1

168 Broker_s3_p1 = Broker_s3_p2 [] Broker_s3_p3

169 Broker_s3_p2 = Broker_s3_sendRes -> Broker_s3_OK

170 Broker_s3_p3 = Broker_s3_sendFault -> Broker_s3_FAULT

171 Broker_s3_OK = Broker_Thread

172 Broker_s3_FAULT = Broker_Thread";

173

174 Property Messages : TMessages = {

175 [MessageId = "Broker_s3_getReq";MessageData = {

176 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

177 [MessageId = "Broker_s3_sendRes";MessageData = {

280

178 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

179 [MessageId = "Broker_s3_sendFault";MessageData = {

180 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

181

182 Property BindTime = Instantiation;

183 Property BindingOtherAdd = Yes;

184 Property BindingOtherRemove = Yes;

185 Property BindingSelfAdd = No;

186 Property BindingSelfRemove = No;

187 Property DataContinuity = Sporadic;

188 Property InOurControlDomain = Yes;

189 Property Reentrant = No;

190 Property SendsFirstMessage = No;

191 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

192 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

193 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

194 Property EndPointAddressList : TEndPointAddresses = {"www.Broker.com/s3"};

195 Property WsdlDocRefs : TWsdlDocs = {"www.Broker.com/WSDL"};

196 }

197

198 Property CentralDataRecords : Set {TCentralDataRecord} = {

199 [DatumID = "sendData";DatumSemantics = "sendData";DatumScopeExhibited = Private;],

200 [DatumID = "resultData";DatumSemantics = "resultData";DatumScopeExhibited = Private;],

201 [DatumID = "FaultData";DatumSemantics = "FAULT:DESCRIPTION";DatumScopeExhibited = Private

;]};

202

203 Property CentralProcessDescription = "Broker = Broker_Thread

204 Broker_Thread = Broker_s1 [] Broker_s3 [] Broker_c3";

205

206 Property ComponentInOurControlDomain = Yes;

207 }

208

209 Component CompTWSAnalysisControl0 : CompTWSAnalysisControl = new CompTWSAnalysisControl

extended with {

210 Property ActiveAnalysisCentralDataStoreCorrect = true;

211 Property ActiveAnalysisCommissionMismatch = true;

212 Property ActiveAnalysisChoiceGroupsHaveChoiceMaker = true;

213 Property ActiveAnalysisCommissionPartialMatch = true;

214 Property ActiveAnalysisConcurrentCallsToThisPort = true;

215 Property ActiveAnalysisMessageDataTypesMatch = true;

216 Property ActiveAnalysisMessageExchangePatternsMatch = true;

217 Property ActiveAnalysisMessageExchangePatternsPartiallyMatch = true;

218 Property ActiveAnalysisMessageOverData = true;

219 Property ActiveAnalysisMessagePatternAndMessageListConcur = true;

220 Property ActiveAnalysisMessageUnderData1 = true;

221 Property ActiveAnalysisMessageUnderData2 = true;

222 Property ActiveAnalysisOmissionMismatch = true;

223 Property ActiveAnalysisOmissionPartialMatch = true;

224 Property ActiveAnalysisStateScopesMatch = true;

225 Property outputPath = "";

226 }

227

281

228 Connector ConnTWSStubborn0 : ConnTWSStubborn = new ConnTWSStubborn extended with { }

229 Connector ConnTWSStubborn1 : ConnTWSStubborn = new ConnTWSStubborn extended with { }

230 Connector ConnTWSStubborn2 : ConnTWSStubborn = new ConnTWSStubborn extended with { }

231 Connector ConnTWSStubborn3 : ConnTWSStubborn = new ConnTWSStubborn extended with { }

232 Connector ConnTWSStubborn4 : ConnTWSStubborn = new ConnTWSStubborn extended with { }

233 Connector ConnTWSStubborn5 : ConnTWSStubborn = new ConnTWSStubborn extended with { }

234 Attachment Broker.s1 to ConnTWSStubborn0.role1;

235 Attachment Broker.s2 to ConnTWSStubborn1.role1;

236 Attachment Broker.s3 to ConnTWSStubborn2.role1;

237 Attachment Broker.c1 to ConnTWSStubborn3.role1;

238 Attachment Broker.c2 to ConnTWSStubborn4.role1;

239 Attachment Broker.c3 to ConnTWSStubborn5.role1;

240 }

E.2.4 Multiple Connectors Check

E.2.4.1 SpaceCCBuy

1 import families/ws_enhanced_01.acme;

2 System AdditionalTestMultipleConnectionsSpaceCCBuy : ws_enhanced_01 = new ws_enhanced_01 extended

with {

3

4 Component CPClient : CompTWSClient = new CompTWSClient extended with {

5 Port setupConf : PortTWSClientUnicast = new PortTWSClientUnicast extended with {

6 Property MessagePattern = "SOLI

7 CPClient_setupConf = CPClient_setupConf_sendReq -> CPClient_setupConf_p1

8 CPClient_setupConf_p1 = CPClient_setupConf_p2 [] CPClient_setupConf_p3

9 CPClient_setupConf_p2 = CPClient_setupConf_getRes -> CPClient_setupConf_OK

10 CPClient_setupConf_p3 = CPClient_setupConf_getFault -> CPClient_setupConf_FAULT

11 CPClient_setupConf_OK = CPClient_PaymentCC

12 CPClient_setupConf_FAULT = CPClient_PaymentCC";

13

14 Property Messages : TMessages = {

15 [MessageId = "CPClient_setupConf_sendReq";MessageData = {

16 [DatumId = "userName";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

17 [DatumId = "password";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

18 [MessageId = "CPClient_setupConf_getRes";MessageData = {

19 [DatumId = "success";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};] ,

20 [MessageId = "CPClient_setupConf_getFault";MessageData = {

21 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

22

23 Property BindTime = Instantiation;

24 Property BindingOtherAdd = No;

25 Property BindingOtherRemove = No;

26 Property BindingSelfAdd = Yes;

27 Property BindingSelfRemove = Yes;

28 Property ChoiceGroup = "CarPark";

29 Property DataContinuity = Sporadic;

30 Property GroupChoiceMaker = Yes;

31 Property InOurControlDomain = Yes;

32 Property Reentrant = No;

33 Property SendsFirstMessage = Yes;

34 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

282

35 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

36 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

37 }

38

39 Port PaymentCC : PortTWSClientUnicast = new PortTWSClientUnicast extended with {

40 Property MessagePattern = "SOLI

41 CPClient_PaymentCC = CPClient_PaymentCC_sendReq -> CPClient_PaymentCC_p1

42 CPClient_PaymentCC_p1 = CPClient_PaymentCC_p2 [] CPClient_PaymentCC_p3

43 CPClient_PaymentCC_p2 = CPClient_PaymentCC_getRes -> CPClient_PaymentCC_OK

44 CPClient_PaymentCC_p3 = CPClient_PaymentCC_getFault -> CPClient_PaymentCC_FAULT

45 CPClient_PaymentCC_OK = CPClient_logout

46 CPClient_PaymentCC_FAULT = CPClient_logout";

47

48 Property Messages : TMessages = {

49 [MessageId = "CPClient_PaymentCC_sendReq";MessageData = {

50 [DatumId = "owner";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

51 [DatumId = "CCNumber";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

52 [DatumId = "amount";DatumRep = SOAP_Float;DatumStateScopeExpected = Private;],

53 [DatumId = "expirationDate";DatumRep = SOAP_Date;DatumStateScopeExpected = Private

;]};],

54 [MessageId = "CPClient_PaymentCC_getRes";MessageData = {

55 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

56 [MessageId = "CPClient_PaymentCC_getFault";MessageData = {

57 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

58

59 Property BindTime = Instantiation;

60 Property BindingOtherAdd = No;

61 Property BindingOtherRemove = No;

62 Property BindingSelfAdd = Yes;

63 Property BindingSelfRemove = Yes;

64 Property ChoiceGroup = "CarPark";

65 Property DataContinuity = Sporadic;

66 Property GroupChoiceMaker = No;

67 Property InOurControlDomain = Yes;

68 Property Reentrant = No;

69 Property SendsFirstMessage = Yes;

70 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

71 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

72 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

73 }

74

75 Port logout : PortTWSClientUnicast = new PortTWSClientUnicast extended with {

76 Property MessagePattern = "SOLI

77 CPClient_logout = CPClient_logout_sendReq -> CPClient_logout_p1

78 CPClient_logout_p1 = CPClient_logout_p2 [] CPClient_logout_p3

79 CPClient_logout_p2 = CPClient_logout_getRes -> CPClient_logout_OK

80 CPClient_logout_p3 = CPClient_logout_getFault -> CPClient_logout_FAULT

81 CPClient_logout_OK = CPClient_Thread

82 CPClient_logout_FAULT = CPClient_Thread";

83

283

84 Property Messages : TMessages = {

85 [MessageId = "CPClient_logout_sendReq";MessageData = {

86 [DatumId = "userName";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

87 [MessageId = "CPClient_logout_getRes";MessageData = {

88 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

89 [MessageId = "CPClient_logout_getFault";MessageData = {

90 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

91

92 Property SendsFirstMessage = Yes;

93 Property Reentrant = No;

94 Property InOurControlDomain = Yes;

95 Property GroupChoiceMaker = No;

96 Property DataContinuity = Sporadic;

97 Property ChoiceGroup = "CarPark";

98 Property BindingSelfRemove = Yes;

99 Property BindingSelfAdd = Yes;

100 Property BindingOtherRemove = No;

101 Property BindingOtherAdd = No;

102 Property BindTime = Instantiation;

103 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

104 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

105 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

106 }

107

108 Property CentralDataRecords : Set {TCentralDataRecord} = {

109 [DatumID = "userName";DatumSemantics = "USER:ID";DatumScopeExhibited = Private;],

110 [DatumID = "password";DatumSemantics = "USER:KEY";DatumScopeExhibited = Private;],

111 [DatumID = "success";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private;],

112 [DatumID = "FaultData";DatumSemantics = "FAULT:DESCRIPTION";DatumScopeExhibited = Private

;],

113 [DatumID = "owner";DatumSemantics = "ACCOUNT:NAME";DatumScopeExhibited = Private;],

114 [DatumID = "CCNumber";DatumSemantics = "ACCOUNT:CARD:REFERENCE";DatumScopeExhibited =

Private;],

115 [DatumID = "amount";DatumSemantics = "FINANCE:VALUE";DatumScopeExhibited = Private;],

116 [DatumID = "expirationDate";DatumSemantics = "ACCOUNT:CARD:VALIDTO";DatumScopeExhibited =

Private;],

117 [DatumID = "accepted";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private ;]};

118

119 Property CentralProcessDescription = "CPClient = CPClient_Thread

120 CPClient_Thread = CPClient_setupConf";

121

122 Property ComponentInOurControlDomain = Yes;

123 }

124

125 Component SpaceCCBuy : CompTWSService = new CompTWSService extended with {

126 Port login : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

127 Property MessagePattern = "REQR

128 SpaceCCBuy_login = SpaceCCBuy_login_sendReq -> SpaceCCBuy_login_p1

129 SpaceCCBuy_login_p1 = SpaceCCBuy_login_p2 [] SpaceCCBuy_login_p3

130 SpaceCCBuy_login_p2 = SpaceCCBuy_login_getRes -> SpaceCCBuy_login_OK

131 SpaceCCBuy_login_p3 = SpaceCCBuy_login_getFault -> SpaceCCBuy_login_FAULT

132 SpaceCCBuy_login_OK = SpaceCCBuy_checkCreditCard

284

133 SpaceCCBuy_login_FAULT = SpaceCCBuy_checkCreditCard";

134

135 Property Messages : TMessages = {

136 [MessageId = "SpaceCCBuy_login_sendReq";MessageData = {

137 [DatumId = "user";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

138 [DatumId = "password";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

139 [MessageId = "SpaceCCBuy_login_getRes";MessageData = {

140 [DatumId = "success";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};] ,

141 [MessageId = "SpaceCCBuy_login_getFault";MessageData = {

142 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

143

144 Property BindTime = Instantiation;

145 Property BindingOtherAdd = Yes;

146 Property BindingOtherRemove = Yes;

147 Property BindingSelfAdd = No;

148 Property BindingSelfRemove = No;

149 Property DataContinuity = Sporadic;

150 Property InOurControlDomain = No;

151 Property Reentrant = Yes;

152 Property SendsFirstMessage = No;

153 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

154 Property EndPointAddressList : TEndPointAddresses = {"www.SpaceCCBuy/login"};

155 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

156 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

157 Property WsdlDocRefs : TWsdlDocs = {"www.SpaceCCBuy.com/WSDL"};

158 }

159

160 Port checkCreditCard : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

161 Property MessagePattern = "REQR

162 SpaceCCBuy_checkCreditCard = SpaceCCBuy_checkCreditCard_sendReq ->

SpaceCCBuy_checkCreditCard_p1

163 SpaceCCBuy_checkCreditCard_p1 = SpaceCCBuy_checkCreditCard_p2 []

SpaceCCBuy_checkCreditCard_p3

164 SpaceCCBuy_checkCreditCard_p2 = SpaceCCBuy_checkCreditCard_getRes ->

SpaceCCBuy_checkCreditCard_OK

165 SpaceCCBuy_checkCreditCard_p3 = SpaceCCBuy_checkCreditCard_getFault ->

SpaceCCBuy_checkCreditCard_FAULT

166 SpaceCCBuy_checkCreditCard_OK = SpaceCCBuy_payByCC

167 SpaceCCBuy_checkCreditCard_FAULT = SpaceCCBuy_payByCC";

168

169 Property Messages : TMessages = {

170 [MessageId = "SpaceCCBuy_checkCreditCard_sendReq";MessageData = {

171 [DatumId = "owner";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

172 [DatumId = "cardNumber";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

173 [DatumId = "expDate";DatumRep = SOAP_Date;DatumStateScopeExpected = Private ;]};] ,

174 [MessageId = "SpaceCCBuy_checkCreditCard_getRes";MessageData = {

175 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

176 [MessageId = "SpaceCCBuy_checkCreditCard_getFault";MessageData = {

177 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

178

179 Property Reentrant = No;

180 Property SendsFirstMessage = No;

285

181 Property InOurControlDomain = No;

182 Property DataContinuity = Sporadic;

183 Property BindingSelfRemove = No;

184 Property BindingSelfAdd = No;

185 Property BindingOtherRemove = Yes;

186 Property BindingOtherAdd = Yes;

187 Property BindTime = Instantiation;

188 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

189 Property EndPointAddressList : TEndPointAddresses = {"www.SpaceCCBuy/checkCreditCard"};

190 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

191 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

192 Property WsdlDocRefs : TWsdlDocs = {"www.SpaceCCBuy.com/WSDL"};

193 }

194

195 Port payByCC : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

196 Property MessagePattern = "REQR

197 SpaceCCBuy_payByCC = SpaceCCBuy_payByCC_sendReq -> SpaceCCBuy_payByCC_p1

198 SpaceCCBuy_payByCC_p1 = SpaceCCBuy_payByCC_p2 [] SpaceCCBuy_payByCC_p3

199 SpaceCCBuy_payByCC_p2 = SpaceCCBuy_payByCC_getRes -> SpaceCCBuy_payByCC_OK

200 SpaceCCBuy_payByCC_p3 = SpaceCCBuy_payByCC_getFault -> SpaceCCBuy_payByCC_FAULT

201 SpaceCCBuy_payByCC_OK = SpaceCCBuy_logout

202 SpaceCCBuy_payByCC_FAULT = SpaceCCBuy_logout";

203

204 Property Messages : TMessages = {

205 [MessageId = "SpaceCCBuy_payByCC_sendReq";MessageData = {

206 [DatumId = "amount";DatumRep = SOAP_Float;DatumStateScopeExpected = Private ;]};] ,

207 [MessageId = "SpaceCCBuy_payByCC_getRes";MessageData = {

208 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

209 [MessageId = "SpaceCCBuy_payByCC_getFault";MessageData = {

210 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

211

212 Property BindTime = Instantiation;

213 Property BindingOtherAdd = Yes;

214 Property BindingOtherRemove = Yes;

215 Property BindingSelfAdd = No;

216 Property BindingSelfRemove = No;

217 Property DataContinuity = Sporadic;

218 Property InOurControlDomain = No;

219 Property Reentrant = No;

220 Property SendsFirstMessage = No;

221 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

222 Property EndPointAddressList : TEndPointAddresses = {"www.SpaceCCBuy/payByCC"};

223 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

224 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

225 Property WsdlDocRefs : TWsdlDocs = {"www.SpaceCCBuy.com/WSDL"};

226 }

227

228 Port logout : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

229 Property MessagePattern = "REQR

230 SpaceCCBuy_logout = SpaceCCBuy_logout_sendReq -> SpaceCCBuy_logout_p1

286

231 SpaceCCBuy_logout_p1 = SpaceCCBuy_logout_p2 [] SpaceCCBuy_logout_p3

232 SpaceCCBuy_logout_p2 = SpaceCCBuy_logout_getRes -> SpaceCCBuy_logout_OK

233 SpaceCCBuy_logout_p3 = SpaceCCBuy_logout_getFault -> SpaceCCBuy_logout_FAULT

234 SpaceCCBuy_logout_OK = SpaceCCBuy_Thread

235 SpaceCCBuy_logout_FAULT = SpaceCCBuy_Thread";

236

237 Property Messages : TMessages = {

238 [MessageId = "SpaceCCBuy_logout_sendReq";MessageData = {

239 [DatumId = "user";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

240 [MessageId = "SpaceCCBuy_logout_getRes";MessageData = {

241 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

242 [MessageId = "SpaceCCBuy_logout_getFault";MessageData = {

243 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

244

245 Property Reentrant = No;

246 Property SendsFirstMessage = No;

247 Property InOurControlDomain = No;

248 Property BindingSelfRemove = No;

249 Property BindingSelfAdd = No;

250 Property BindingOtherRemove = Yes;

251 Property BindingOtherAdd = Yes;

252 Property BindTime = Instantiation;

253 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

254 Property EndPointAddressList : TEndPointAddresses = {"www.SpaceCCBuy/logout"};

255 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

256 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

257 Property WsdlDocRefs : TWsdlDocs = {"www.SpaceCCBuy.com/WSDL"};

258 Property DataContinuity = Sporadic;

259 }

260

261 Property CentralProcessDescription = "SpaceCCBuy = SpaceCCBuy_Thread

262 SpaceCCBuy_Thread = SpaceCCBuy_login";

263

264 Property CentralDataRecords : Set {TCentralDataRecord} = {

265 [DatumID = "user";DatumSemantics = "USER:ID";DatumScopeExhibited = Private;],

266 [DatumID = "password";DatumSemantics = "USER:KEY";DatumScopeExhibited = Private;],

267 [DatumID = "success";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private;],

268 [DatumID = "FaultData";DatumSemantics = "FAULT:DESCRIPTION";DatumScopeExhibited = Private

;],

269 [DatumID = "owner";DatumSemantics = "ACCOUNT:NAME";DatumScopeExhibited = Private;],

270 [DatumID = "cardNumber";DatumSemantics = "ACCOUNT:CARD:REFERENCE";DatumScopeExhibited =

Private;],

271 [DatumID = "amount";DatumSemantics = "FINANCE:VALUE";DatumScopeExhibited = Private;],

272 [DatumID = "expDate";DatumSemantics = "ACCOUNT:CARD:VALIDTO";DatumScopeExhibited = Private

;],

273 [DatumID = "accepted";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private ;]};

274

275 Property ComponentInOurControlDomain = No;

276 }

277

278 Component CompTWSAnalysisControl0 : CompTWSAnalysisControl = new CompTWSAnalysisControl

extended with {

287

279 Property ActiveAnalysisCentralDataStoreCorrect = true;

280 Property ActiveAnalysisCommissionMismatch = true;

281 Property ActiveAnalysisChoiceGroupsHaveChoiceMaker = true;

282 Property ActiveAnalysisCommissionPartialMatch = true;

283 Property ActiveAnalysisConcurrentCallsToThisPort = true;

284 Property ActiveAnalysisMessageDataTypesMatch = true;

285 Property ActiveAnalysisMessageExchangePatternsMatch = true;

286 Property ActiveAnalysisMessageExchangePatternsPartiallyMatch = true;

287 Property ActiveAnalysisMessageOverData = true;

288 Property ActiveAnalysisMessagePatternAndMessageListConcur = true;

289 Property ActiveAnalysisMessageUnderData1 = true;

290 Property ActiveAnalysisMessageUnderData2 = true;

291 Property ActiveAnalysisOmissionMismatch = true;

292 Property ActiveAnalysisOmissionPartialMatch = true;

293 Property ActiveAnalysisStateScopesMatch = true;

294 Property outputPath = "";

295 }

296

297 Connector ConnTWS3 : ConnTWS = new ConnTWS extended with { }

298 Connector ConnTWS4 : ConnTWS = new ConnTWS extended with { }

299 Connector ConnTWS5 : ConnTWS = new ConnTWS extended with { }

300 Connector ConnTWSStubborn0 : ConnTWSStubborn = new ConnTWSStubborn extended with { }

301 Attachment SpaceCCBuy.login to ConnTWS3.role2;

302 Attachment CPClient.setupConf to ConnTWS3.role1;

303 Attachment SpaceCCBuy.checkCreditCard to ConnTWS4.role2;

304 Attachment CPClient.PaymentCC to ConnTWS4.role1;

305 Attachment CPClient.logout to ConnTWS5.role1;

306 Attachment SpaceCCBuy.logout to ConnTWS5.role2;

307 Attachment SpaceCCBuy.payByCC to ConnTWSStubborn0.role1;

308 }

E.2.4.2 SpaceCCBuy Alternate

1 import families/ws_enhanced_01.acme;

2 System AdditionalTestMultipleConnectionsSpaceCCBuyAlternate : ws_enhanced_01 = new ws_enhanced_01

extended with {

3 Component CPClient : CompTWSClient = new CompTWSClient extended with {

4 Port setupConf : PortTWSClientUnicast = new PortTWSClientUnicast extended with {

5 Property MessagePattern = "SOLI

6 CPClient_setupConf = CPClient_setupConf_sendReq -> CPClient_setupConf_p1

7 CPClient_setupConf_p1 = CPClient_setupConf_p2 [] CPClient_setupConf_p3

8 CPClient_setupConf_p2 = CPClient_setupConf_getRes -> CPClient_setupConf_OK

9 CPClient_setupConf_p3 = CPClient_setupConf_getFault -> CPClient_setupConf_FAULT

10 CPClient_setupConf_OK = CPClient_PaymentCC

11 CPClient_setupConf_FAULT = CPClient_PaymentCC";

12

13 Property Messages : TMessages = {

14 [MessageId = "CPClient_setupConf_sendReq";MessageData = {

15 [DatumId = "userName";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

16 [DatumId = "password";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

17 [MessageId = "CPClient_setupConf_getRes";MessageData = {

18 [DatumId = "success";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};] ,

19 [MessageId = "CPClient_setupConf_getFault";MessageData = {

20 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

288

21

22 Property BindTime = Instantiation;

23 Property BindingOtherAdd = No;

24 Property BindingOtherRemove = No;

25 Property BindingSelfAdd = Yes;

26 Property BindingSelfRemove = Yes;

27 Property ChoiceGroup = "CarPark";

28 Property DataContinuity = Sporadic;

29 Property GroupChoiceMaker = Yes;

30 Property InOurControlDomain = Yes;

31 Property Reentrant = No;

32 Property SendsFirstMessage = Yes;

33 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

34 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

35 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

36 }

37

38 Port PaymentCC : PortTWSClientUnicast = new PortTWSClientUnicast extended with {

39 Property MessagePattern = "SOLI

40 CPClient_PaymentCC = CPClient_PaymentCC_sendReq -> CPClient_PaymentCC_p1

41 CPClient_PaymentCC_p1 = CPClient_PaymentCC_p2 [] CPClient_PaymentCC_p3

42 CPClient_PaymentCC_p2 = CPClient_PaymentCC_getRes -> CPClient_PaymentCC_OK

43 CPClient_PaymentCC_p3 = CPClient_PaymentCC_getFault -> CPClient_PaymentCC_FAULT

44 CPClient_PaymentCC_OK = CPClient_logout

45 CPClient_PaymentCC_FAULT = CPClient_logout";

46

47 Property Messages : TMessages = {

48 [MessageId = "CPClient_PaymentCC_sendReq";MessageData = {

49 [DatumId = "owner";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

50 [DatumId = "CCNumber";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

51 [DatumId = "amount";DatumRep = SOAP_Float;DatumStateScopeExpected = Private;],

52 [DatumId = "expirationDate";DatumRep = SOAP_Date;DatumStateScopeExpected = Private

;]};],

53 [MessageId = "CPClient_PaymentCC_getRes";MessageData = {

54 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

55 [MessageId = "CPClient_PaymentCC_getFault";MessageData = {

56 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

57

58 Property BindTime = Instantiation;

59 Property BindingOtherAdd = No;

60 Property BindingOtherRemove = No;

61 Property BindingSelfAdd = Yes;

62 Property BindingSelfRemove = Yes;

63 Property ChoiceGroup = "CarPark";

64 Property DataContinuity = Sporadic;

65 Property GroupChoiceMaker = No;

66 Property InOurControlDomain = Yes;

67 Property Reentrant = No;

68 Property SendsFirstMessage = Yes;

69 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

70 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

289

71 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

72 }

73

74 Port logout : PortTWSClientUnicast = new PortTWSClientUnicast extended with {

75 Property MessagePattern = "SOLI

76 CPClient_logout = CPClient_logout_sendReq -> CPClient_logout_p1

77 CPClient_logout_p1 = CPClient_logout_p2 [] CPClient_logout_p3

78 CPClient_logout_p2 = CPClient_logout_getRes -> CPClient_logout_OK

79 CPClient_logout_p3 = CPClient_logout_getFault -> CPClient_logout_FAULT

80 CPClient_logout_OK = CPClient_Thread

81 CPClient_logout_FAULT = CPClient_Thread";

82

83 Property Messages : TMessages = {

84 [MessageId = "CPClient_logout_sendReq";MessageData = {

85 [DatumId = "userName";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

86 [MessageId = "CPClient_logout_getRes";MessageData = {

87 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

88 [MessageId = "CPClient_logout_getFault";MessageData = {

89 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

90

91 Property SendsFirstMessage = Yes;

92 Property Reentrant = No;

93 Property InOurControlDomain = Yes;

94 Property GroupChoiceMaker = No;

95 Property DataContinuity = Sporadic;

96 Property ChoiceGroup = "CarPark";

97 Property BindingSelfRemove = Yes;

98 Property BindingSelfAdd = Yes;

99 Property BindingOtherRemove = No;

100 Property BindingOtherAdd = No;

101 Property BindTime = Instantiation;

102 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

103 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

104 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

105 }

106

107 Property CentralDataRecords : Set {TCentralDataRecord} = {

108 [DatumID = "userName";DatumSemantics = "USER:ID";DatumScopeExhibited = Private;],

109 [DatumID = "password";DatumSemantics = "USER:KEY";DatumScopeExhibited = Private;],

110 [DatumID = "success";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private;],

111 [DatumID = "FaultData";DatumSemantics = "FAULT:DESCRIPTION";DatumScopeExhibited = Private

;],

112 [DatumID = "owner";DatumSemantics = "ACCOUNT:NAME";DatumScopeExhibited = Private;],

113 [DatumID = "CCNumber";DatumSemantics = "ACCOUNT:CARD:REFERENCE";DatumScopeExhibited =

Private;],

114 [DatumID = "amount";DatumSemantics = "FINANCE:VALUE";DatumScopeExhibited = Private;],

115 [DatumID = "expirationDate";DatumSemantics = "ACCOUNT:CARD:VALIDTO";DatumScopeExhibited =

Private;],

116 [DatumID = "accepted";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private ;]};

117

118 Property CentralProcessDescription = "CPClient = CPClient_Thread

290

119 CPClient_Thread = CPClient_setupConf";

120

121 Property ComponentInOurControlDomain = Yes;

122 }

123

124 Component SpaceCCBuy : CompTWSService = new CompTWSService extended with {

125 Port login : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

126 Property MessagePattern = "REQR

127 SpaceCCBuy_login = SpaceCCBuy_login_sendReq -> SpaceCCBuy_login_p1

128 SpaceCCBuy_login_p1 = SpaceCCBuy_login_p2 [] SpaceCCBuy_login_p3

129 SpaceCCBuy_login_p2 = SpaceCCBuy_login_getRes -> SpaceCCBuy_login_OK

130 SpaceCCBuy_login_p3 = SpaceCCBuy_login_getFault -> SpaceCCBuy_login_FAULT

131 SpaceCCBuy_login_OK = SpaceCCBuy_checkCreditCard

132 SpaceCCBuy_login_FAULT = SpaceCCBuy_checkCreditCard";

133

134 Property Messages : TMessages = {

135 [MessageId = "SpaceCCBuy_login_sendReq";MessageData = {

136 [DatumId = "user";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

137 [DatumId = "password";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

138 [MessageId = "SpaceCCBuy_login_getRes";MessageData = {

139 [DatumId = "success";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};] ,

140 [MessageId = "SpaceCCBuy_login_getFault";MessageData = {

141 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

142

143 Property BindTime = Instantiation;

144 Property BindingOtherAdd = Yes;

145 Property BindingOtherRemove = Yes;

146 Property BindingSelfAdd = No;

147 Property BindingSelfRemove = No;

148 Property DataContinuity = Sporadic;

149 Property InOurControlDomain = No;

150 Property Reentrant = Yes;

151 Property SendsFirstMessage = No;

152 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

153 Property EndPointAddressList : TEndPointAddresses = {"www.SpaceCCBuy/login"};

154 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

155 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

156 Property WsdlDocRefs : TWsdlDocs = {"www.SpaceCCBuy.com/WSDL"};

157 }

158

159 Port checkCreditCard : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

160 Property MessagePattern = "REQR

161 SpaceCCBuy_checkCreditCard = SpaceCCBuy_checkCreditCard_sendReq ->

SpaceCCBuy_checkCreditCard_p1

162 SpaceCCBuy_checkCreditCard_p1 = SpaceCCBuy_checkCreditCard_p2 []

SpaceCCBuy_checkCreditCard_p3

163 SpaceCCBuy_checkCreditCard_p2 = SpaceCCBuy_checkCreditCard_getRes ->

SpaceCCBuy_checkCreditCard_OK

164 SpaceCCBuy_checkCreditCard_p3 = SpaceCCBuy_checkCreditCard_getFault ->

SpaceCCBuy_checkCreditCard_FAULT

165 SpaceCCBuy_checkCreditCard_OK = SpaceCCBuy_payByCC

166 SpaceCCBuy_checkCreditCard_FAULT = SpaceCCBuy_payByCC";

291

167

168 Property Messages : TMessages = {

169 [MessageId = "SpaceCCBuy_checkCreditCard_sendReq";MessageData = {

170 [DatumId = "owner";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

171 [DatumId = "cardNumber";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

172 [DatumId = "expDate";DatumRep = SOAP_Date;DatumStateScopeExpected = Private ;]};] ,

173 [MessageId = "SpaceCCBuy_checkCreditCard_getRes";MessageData = {

174 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

175 [MessageId = "SpaceCCBuy_checkCreditCard_getFault";MessageData = {

176 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

177

178 Property Reentrant = No;

179 Property SendsFirstMessage = No;

180 Property InOurControlDomain = No;

181 Property DataContinuity = Sporadic;

182 Property BindingSelfRemove = No;

183 Property BindingSelfAdd = No;

184 Property BindingOtherRemove = Yes;

185 Property BindingOtherAdd = Yes;

186 Property BindTime = Instantiation;

187 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

188 Property EndPointAddressList : TEndPointAddresses = {"www.SpaceCCBuy/checkCreditCard"};

189 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

190 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

191 Property WsdlDocRefs : TWsdlDocs = {"www.SpaceCCBuy.com/WSDL"};

192 }

193

194 Port payByCC : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

195 Property MessagePattern = "REQR

196 SpaceCCBuy_payByCC = SpaceCCBuy_payByCC_sendReq -> SpaceCCBuy_payByCC_p1

197 SpaceCCBuy_payByCC_p1 = SpaceCCBuy_payByCC_p2 [] SpaceCCBuy_payByCC_p3

198 SpaceCCBuy_payByCC_p2 = SpaceCCBuy_payByCC_getRes -> SpaceCCBuy_payByCC_OK

199 SpaceCCBuy_payByCC_p3 = SpaceCCBuy_payByCC_getFault -> SpaceCCBuy_payByCC_FAULT

200 SpaceCCBuy_payByCC_OK = SpaceCCBuy_logout

201 SpaceCCBuy_payByCC_FAULT = SpaceCCBuy_logout";

202

203 Property Messages : TMessages = {

204 [MessageId = "SpaceCCBuy_payByCC_sendReq";MessageData = {

205 [DatumId = "amount";DatumRep = SOAP_Float;DatumStateScopeExpected = Private ;]};] ,

206 [MessageId = "SpaceCCBuy_payByCC_getRes";MessageData = {

207 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

208 [MessageId = "SpaceCCBuy_payByCC_getFault";MessageData = {

209 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

210

211 Property BindTime = Instantiation;

212 Property BindingOtherAdd = Yes;

213 Property BindingOtherRemove = Yes;

214 Property BindingSelfAdd = No;

215 Property BindingSelfRemove = No;

216 Property DataContinuity = Sporadic;

217 Property InOurControlDomain = No;

218 Property Reentrant = No;

292

219 Property SendsFirstMessage = No;

220 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

221 Property EndPointAddressList : TEndPointAddresses = {"www.SpaceCCBuy/payByCC"};

222 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

223 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

224 Property WsdlDocRefs : TWsdlDocs = {"www.SpaceCCBuy.com/WSDL"};

225 }

226

227 Port logout : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

228 Property MessagePattern = "REQR

229 SpaceCCBuy_logout = SpaceCCBuy_logout_sendReq -> SpaceCCBuy_logout_p1

230 SpaceCCBuy_logout_p1 = SpaceCCBuy_logout_p2 [] SpaceCCBuy_logout_p3

231 SpaceCCBuy_logout_p2 = SpaceCCBuy_logout_getRes -> SpaceCCBuy_logout_OK

232 SpaceCCBuy_logout_p3 = SpaceCCBuy_logout_getFault -> SpaceCCBuy_logout_FAULT

233 SpaceCCBuy_logout_OK = SpaceCCBuy_Thread

234 SpaceCCBuy_logout_FAULT = SpaceCCBuy_Thread";

235

236 Property Messages : TMessages = {

237 [MessageId = "SpaceCCBuy_logout_sendReq";MessageData = {

238 [DatumId = "user";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

239 [MessageId = "SpaceCCBuy_logout_getRes";MessageData = {

240 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

241 [MessageId = "SpaceCCBuy_logout_getFault";MessageData = {

242 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

243

244 Property Reentrant = No;

245 Property SendsFirstMessage = No;

246 Property InOurControlDomain = No;

247 Property BindingSelfRemove = No;

248 Property BindingSelfAdd = No;

249 Property BindingOtherRemove = Yes;

250 Property BindingOtherAdd = Yes;

251 Property BindTime = Instantiation;

252 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

253 Property EndPointAddressList : TEndPointAddresses = {"www.SpaceCCBuy/logout"};

254 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

255 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

256 Property WsdlDocRefs : TWsdlDocs = {"www.SpaceCCBuy.com/WSDL"};

257 Property DataContinuity = Sporadic;

258 }

259

260 Property CentralProcessDescription = "SpaceCCBuy = SpaceCCBuy_Thread

261 SpaceCCBuy_Thread = SpaceCCBuy_login";

262

263 Property CentralDataRecords : Set {TCentralDataRecord} = {

264 [DatumID = "user";DatumSemantics = "USER:ID";DatumScopeExhibited = Private;],

265 [DatumID = "password";DatumSemantics = "USER:KEY";DatumScopeExhibited = Private;],

266 [DatumID = "success";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private;],

267 [DatumID = "FaultData";DatumSemantics = "FAULT:DESCRIPTION";DatumScopeExhibited = Private

;],

293

268 [DatumID = "owner";DatumSemantics = "ACCOUNT:NAME";DatumScopeExhibited = Private;],

269 [DatumID = "cardNumber";DatumSemantics = "ACCOUNT:CARD:REFERENCE";DatumScopeExhibited =

Private;],

270 [DatumID = "amount";DatumSemantics = "FINANCE:VALUE";DatumScopeExhibited = Private;],

271 [DatumID = "expDate";DatumSemantics = "ACCOUNT:CARD:VALIDTO";DatumScopeExhibited = Private

;],

272 [DatumID = "accepted";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private ;]};

273

274 Property ComponentInOurControlDomain = No;

275 }

276

277 Component CompTWSAnalysisControl0 : CompTWSAnalysisControl = new CompTWSAnalysisControl

extended with {

278 Property ActiveAnalysisCentralDataStoreCorrect = true;

279 Property ActiveAnalysisCommissionMismatch = true;

280 Property ActiveAnalysisChoiceGroupsHaveChoiceMaker = true;

281 Property ActiveAnalysisCommissionPartialMatch = true;

282 Property ActiveAnalysisConcurrentCallsToThisPort = true;

283 Property ActiveAnalysisMessageDataTypesMatch = true;

284 Property ActiveAnalysisMessageExchangePatternsMatch = true;

285 Property ActiveAnalysisMessageExchangePatternsPartiallyMatch = true;

286 Property ActiveAnalysisMessageOverData = true;

287 Property ActiveAnalysisMessagePatternAndMessageListConcur = true;

288 Property ActiveAnalysisMessageUnderData1 = true;

289 Property ActiveAnalysisMessageUnderData2 = true;

290 Property ActiveAnalysisOmissionMismatch = true;

291 Property ActiveAnalysisOmissionPartialMatch = true;

292 Property ActiveAnalysisStateScopesMatch = true;

293 Property outputPath = "";

294 }

295

296 Connector ConnTWS3 : ConnTWS = new ConnTWS extended with { }

297 Connector ConnTWS4 : ConnTWS = new ConnTWS extended with { }

298 Connector ConnTWS5 : ConnTWS = new ConnTWS extended with { }

299 Connector ConnTWSStubborn0 : ConnTWSStubborn = new ConnTWSStubborn extended with { }

300

301 Attachment SpaceCCBuy.login to ConnTWS3.role2;

302 Attachment CPClient.setupConf to ConnTWS3.role1;

303 Attachment CPClient.PaymentCC to ConnTWS4.role1;

304 Attachment CPClient.logout to ConnTWS5.role1;

305 Attachment SpaceCCBuy.logout to ConnTWS5.role2;

306 Attachment SpaceCCBuy.payByCC to ConnTWS4.role2;

307 Attachment SpaceCCBuy.checkCreditCard to ConnTWSStubborn0.role1;

308 }

E.2.4.3 BookPayCC

1 import families/ws_enhanced_01.acme;

2 System AdditionalTestMultipleConnectionsBookPayCC : ws_enhanced_01 = new ws_enhanced_01 extended

with {

3 Component CPClient : CompTWSClient = new CompTWSClient extended with {

4 Port setupConf : PortTWSClientUnicast = new PortTWSClientUnicast extended with {

5 Property MessagePattern = "SOLI

6 CPClient_setupConf = CPClient_setupConf_sendReq -> CPClient_setupConf_p1

294

7 CPClient_setupConf_p1 = CPClient_setupConf_p2 [] CPClient_setupConf_p3

8 CPClient_setupConf_p2 = CPClient_setupConf_getRes -> CPClient_setupConf_OK

9 CPClient_setupConf_p3 = CPClient_setupConf_getFault -> CPClient_setupConf_FAULT

10 CPClient_setupConf_OK = CPClient_PaymentCC

11 CPClient_setupConf_FAULT = CPClient_PaymentCC";

12

13 Property Messages : TMessages = {

14 [MessageId = "CPClient_setupConf_sendReq";MessageData = {

15 [DatumId = "userName";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

16 [DatumId = "password";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

17 [MessageId = "CPClient_setupConf_getRes";MessageData = {

18 [DatumId = "success";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};] ,

19 [MessageId = "CPClient_setupConf_getFault";MessageData = {

20 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

21

22 Property BindTime = Instantiation;

23 Property BindingOtherAdd = No;

24 Property BindingOtherRemove = No;

25 Property BindingSelfAdd = Yes;

26 Property BindingSelfRemove = Yes;

27 Property ChoiceGroup = "CarPark";

28 Property DataContinuity = Sporadic;

29 Property GroupChoiceMaker = Yes;

30 Property InOurControlDomain = Yes;

31 Property Reentrant = No;

32 Property SendsFirstMessage = Yes;

33 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

34 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

35 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

36 }

37

38 Port PaymentCC : PortTWSClientUnicast = new PortTWSClientUnicast extended with {

39 Property MessagePattern = "SOLI

40 CPClient_PaymentCC = CPClient_PaymentCC_sendReq -> CPClient_PaymentCC_p1

41 CPClient_PaymentCC_p1 = CPClient_PaymentCC_p2 [] CPClient_PaymentCC_p3

42 CPClient_PaymentCC_p2 = CPClient_PaymentCC_getRes -> CPClient_PaymentCC_OK

43 CPClient_PaymentCC_p3 = CPClient_PaymentCC_getFault -> CPClient_PaymentCC_FAULT

44 CPClient_PaymentCC_OK = CPClient_logout

45 CPClient_PaymentCC_FAULT = CPClient_logout";

46

47 Property Messages : TMessages = {

48 [MessageId = "CPClient_PaymentCC_sendReq";MessageData = {

49 [DatumId = "owner";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

50 [DatumId = "CCNumber";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

51 [DatumId = "amount";DatumRep = SOAP_Float;DatumStateScopeExpected = Private;],

52 [DatumId = "expirationDate";DatumRep = SOAP_Date;DatumStateScopeExpected = Private

;]};],

53 [MessageId = "CPClient_PaymentCC_getRes";MessageData = {

54 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

55 [MessageId = "CPClient_PaymentCC_getFault";MessageData = {

56 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

57

295

58 Property BindTime = Instantiation;

59 Property BindingOtherAdd = No;

60 Property BindingOtherRemove = No;

61 Property BindingSelfAdd = Yes;

62 Property BindingSelfRemove = Yes;

63 Property ChoiceGroup = "CarPark";

64 Property DataContinuity = Sporadic;

65 Property GroupChoiceMaker = No;

66 Property InOurControlDomain = Yes;

67 Property Reentrant = No;

68 Property SendsFirstMessage = Yes;

69 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

70 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

71 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

72 }

73

74 Port logout : PortTWSClientUnicast = new PortTWSClientUnicast extended with {

75 Property MessagePattern = "SOLI

76 CPClient_logout = CPClient_logout_sendReq -> CPClient_logout_p1

77 CPClient_logout_p1 = CPClient_logout_p2 [] CPClient_logout_p3

78 CPClient_logout_p2 = CPClient_logout_getRes -> CPClient_logout_OK

79 CPClient_logout_p3 = CPClient_logout_getFault -> CPClient_logout_FAULT

80 CPClient_logout_OK = CPClient_Thread

81 CPClient_logout_FAULT = CPClient_Thread";

82

83 Property Messages : TMessages = {

84 [MessageId = "CPClient_logout_sendReq";MessageData = {

85 [DatumId = "userName";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

86 [MessageId = "CPClient_logout_getRes";MessageData = {

87 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

88 [MessageId = "CPClient_logout_getFault";MessageData = {

89 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

90

91 Property SendsFirstMessage = Yes;

92 Property Reentrant = No;

93 Property InOurControlDomain = Yes;

94 Property GroupChoiceMaker = No;

95 Property DataContinuity = Sporadic;

96 Property ChoiceGroup = "CarPark";

97 Property BindingSelfRemove = Yes;

98 Property BindingSelfAdd = Yes;

99 Property BindingOtherRemove = No;

100 Property BindingOtherAdd = No;

101 Property BindTime = Instantiation;

102 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

103 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

104 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

105 }

106

107 Property CentralDataRecords : Set {TCentralDataRecord} = {

296

108 [DatumID = "userName";DatumSemantics = "USER:ID";DatumScopeExhibited = Private;],

109 [DatumID = "password";DatumSemantics = "USER:KEY";DatumScopeExhibited = Private;],

110 [DatumID = "success";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private;],

111 [DatumID = "FaultData";DatumSemantics = "FAULT:DESCRIPTION";DatumScopeExhibited = Private

;],

112 [DatumID = "owner";DatumSemantics = "ACCOUNT:NAME";DatumScopeExhibited = Private;],

113 [DatumID = "CCNumber";DatumSemantics = "ACCOUNT:CARD:REFERENCE";DatumScopeExhibited =

Private;],

114 [DatumID = "amount";DatumSemantics = "FINANCE:VALUE";DatumScopeExhibited = Private;],

115 [DatumID = "expirationDate";DatumSemantics = "ACCOUNT:CARD:VALIDTO";DatumScopeExhibited =

Private;],

116 [DatumID = "accepted";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private ;]};

117

118 Property CentralProcessDescription = "CPClient = CPClient_Thread

119 CPClient_Thread = CPClient_setupConf";

120

121 Property ComponentInOurControlDomain = Yes;

122 }

123

124 Component BookPayCC : CompTWSService = new CompTWSService extended with {

125 Port setupConf : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

126 Property MessagePattern = "REQR

127 BookPayCC_setupConf = BookPayCC_setupConf_sendReq -> BookPayCC_setupConf_p1

128 BookPayCC_setupConf_p1 = BookPayCC_setupConf_p2 [] BookPayCC_setupConf_p3

129 BookPayCC_setupConf_p2 = BookPayCC_setupConf_getRes -> BookPayCC_setupConf_OK

130 BookPayCC_setupConf_p3 = BookPayCC_setupConf_getFault -> BookPayCC_setupConf_FAULT

131 BookPayCC_setupConf_OK = BookPayCC_PaymentCC

132 BookPayCC_setupConf_FAULT = BookPayCC_PaymentCC";

133

134 Property Messages : TMessages = {

135 [MessageId = "BookPayCC_setupConf_sendReq";MessageData = {

136 [DatumId = "userName";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

137 [DatumId = "password";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

138 [MessageId = "BookPayCC_setupConf_getRes";MessageData = {

139 [DatumId = "success";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};] ,

140 [MessageId = "BookPayCC_setupConf_getFault";MessageData = {

141 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

142

143 Property BindTime = Run;

144 Property BindingOtherAdd = Yes;

145 Property BindingOtherRemove = Yes;

146 Property BindingSelfAdd = No;

147 Property BindingSelfRemove = No;

148 Property DataContinuity = Sporadic;

149 Property InOurControlDomain = No;

150 Property Reentrant = Yes;

151 Property SendsFirstMessage = No;

152 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

153 Property EndPointAddressList : TEndPointAddresses = {"www.BookPayCC/setupConf"};

154 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

155 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

156 Property WsdlDocRefs : TWsdlDocs = {"www.BookPayCC.com/WSDL"};

297

157 }

158

159 Port PaymentCC : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

160 Property MessagePattern = "REQR

161 BookPayCC_PaymentCC = BookPayCC_PaymentCC_sendReq -> BookPayCC_PaymentCC_p1

162 BookPayCC_PaymentCC_p1 = BookPayCC_PaymentCC_p2 [] BookPayCC_PaymentCC_p3

163 BookPayCC_PaymentCC_p2 = BookPayCC_PaymentCC_getRes -> BookPayCC_PaymentCC_OK

164 BookPayCC_PaymentCC_p3 = BookPayCC_PaymentCC_getFault -> BookPayCC_PaymentCC_FAULT

165 BookPayCC_PaymentCC_OK = BookPayCC_logout

166 BookPayCC_PaymentCC_FAULT = BookPayCC_logout";

167

168 Property Messages : TMessages = {

169 [MessageId = "BookPayCC_PaymentCC_sendReq";MessageData = {

170 [DatumId = "owner";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

171 [DatumId = "CCNumber";DatumRep = SOAP_String;DatumStateScopeExpected = Private;],

172 [DatumId = "amount";DatumRep = SOAP_Float;DatumStateScopeExpected = Private;],

173 [DatumId = "expirationDate";DatumRep = SOAP_Date;DatumStateScopeExpected = Private

;]};],

174 [MessageId = "BookPayCC_PaymentCC_getRes";MessageData = {

175 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

176 [MessageId = "BookPayCC_PaymentCC_getFault";MessageData = {

177 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

178

179 Property SendsFirstMessage = No;

180 Property Reentrant = Yes;

181 Property InOurControlDomain = No;

182 Property DataContinuity = Sporadic;

183 Property BindingSelfRemove = No;

184 Property BindingSelfAdd = No;

185 Property BindingOtherRemove = Yes;

186 Property BindingOtherAdd = Yes;

187 Property BindTime = Run;

188 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

189 Property EndPointAddressList : TEndPointAddresses = {"www.BookPayCC/PaymentCC"};

190 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

191 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

192 Property WsdlDocRefs : TWsdlDocs = {"www.BookPayCC.com/WSDL"};

193 }

194

195 Port logout : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

196 Property MessagePattern = "REQR

197 BookPayCC_logout = BookPayCC_logout_sendReq -> BookPayCC_logout_p1

198 BookPayCC_logout_p1 = BookPayCC_logout_p2 [] BookPayCC_logout_p3

199 BookPayCC_logout_p2 = BookPayCC_logout_getRes -> BookPayCC_logout_OK

200 BookPayCC_logout_p3 = BookPayCC_logout_getFault -> BookPayCC_logout_FAULT

201 BookPayCC_logout_OK = BookPayCC_Thread

202 BookPayCC_logout_FAULT = BookPayCC_Thread";

203

204 Property Messages : TMessages = {

205 [MessageId = "BookPayCC_logout_sendReq";MessageData = {

206 [DatumId = "userName";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

207 [MessageId = "BookPayCC_logout_getRes";MessageData = {

298

208 [DatumId = "accepted";DatumRep = SOAP_Bool;DatumStateScopeExpected = Private ;]};],

209 [MessageId = "BookPayCC_logout_getFault";MessageData = {

210 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

211

212 Property SendsFirstMessage = No;

213 Property Reentrant = No;

214 Property InOurControlDomain = No;

215 Property DataContinuity = Sporadic;

216 Property BindingSelfRemove = No;

217 Property BindingSelfAdd = No;

218 Property BindingOtherRemove = Yes;

219 Property BindingOtherAdd = Yes;

220 Property BindTime = Run;

221 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

222 Property EndPointAddressList : TEndPointAddresses = {"www.BookPayCC/logout"};

223 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

224 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

225 Property WsdlDocRefs : TWsdlDocs = {"www.BookPayCC.com/WSDL"};

226 }

227

228 Property CentralProcessDescription = "BookPayCC = BookPayCC_Thread

229 BookPayCC_Thread = BookPayCC_setupConf";

230

231 Property CentralDataRecords : Set {TCentralDataRecord} = {

232 [DatumID = "userName";DatumSemantics = "USER:ID";DatumScopeExhibited = Private;],

233 [DatumID = "password";DatumSemantics = "USER:KEY";DatumScopeExhibited = Private;],

234 [DatumID = "success";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private;],

235 [DatumID = "FaultData";DatumSemantics = "FAULT:DESCRIPTION";DatumScopeExhibited = Private

;],

236 [DatumID = "owner";DatumSemantics = "ACCOUNT:NAME";DatumScopeExhibited = Private;],

237 [DatumID = "CCNumber";DatumSemantics = "ACCOUNT:CARD:REFERENCE";DatumScopeExhibited =

Private;],

238 [DatumID = "amount";DatumSemantics = "FINANCE:VALUE";DatumScopeExhibited = Private;],

239 [DatumID = "expirationDate";DatumSemantics = "ACCOUNT:CARD:VALIDTO";DatumScopeExhibited =

Private;],

240 [DatumID = "accepted";DatumSemantics = "RESULT:FLAG";DatumScopeExhibited = Private ;]};

241

242 Property ComponentInOurControlDomain = No;

243 }

244

245 Component CompTWSAnalysisControl0 : CompTWSAnalysisControl = new CompTWSAnalysisControl

extended with {

246 Property ActiveAnalysisCentralDataStoreCorrect = true;

247 Property ActiveAnalysisCommissionMismatch = true;

248 Property ActiveAnalysisChoiceGroupsHaveChoiceMaker = true;

249 Property ActiveAnalysisCommissionPartialMatch = true;

250 Property ActiveAnalysisConcurrentCallsToThisPort = true;

251 Property ActiveAnalysisMessageDataTypesMatch = true;

252 Property ActiveAnalysisMessageExchangePatternsMatch = true;

253 Property ActiveAnalysisMessageExchangePatternsPartiallyMatch = true;

254 Property ActiveAnalysisMessageOverData = true;

255 Property ActiveAnalysisMessagePatternAndMessageListConcur = true;

299

256 Property ActiveAnalysisMessageUnderData1 = true;

257 Property ActiveAnalysisMessageUnderData2 = true;

258 Property ActiveAnalysisOmissionMismatch = true;

259 Property ActiveAnalysisOmissionPartialMatch = true;

260 Property ActiveAnalysisStateScopesMatch = true;

261 Property outputPath = "";

262 }

263

264 Connector ConnTWS0 : ConnTWS = new ConnTWS extended with { }

265 Connector ConnTWS1 : ConnTWS = new ConnTWS extended with { }

266 Connector ConnTWS2 : ConnTWS = new ConnTWS extended with { }

267

268 Attachment BookPayCC.setupConf to ConnTWS0.role1;

269 Attachment CPClient.setupConf to ConnTWS0.role2;

270 Attachment BookPayCC.PaymentCC to ConnTWS1.role2;

271 Attachment CPClient.PaymentCC to ConnTWS1.role1;

272 Attachment CPClient.logout to ConnTWS2.role1;

273 Attachment BookPayCC.logout to ConnTWS2.role2;

274 }

E.2.5 Multi Threading Check

1 import families/ws_enhanced_01.acme;

2 System AdditionalTestMultiThreadingSoli : ws_enhanced_01 = new ws_enhanced_01 extended with {

3 Component Client : CompTWSClient = new CompTWSClient extended with {

4 Port p1 : PortTWSClientSingle = new PortTWSClientSingle extended with {

5 Property MessagePattern = "SOLI

6 Client_p1 = Client_p1_sendReq -> Client_p1_p1

7 Client_p1_p1 = Client_p1_p2 [] Client_p1_p3

8 Client_p1_p2 = Client_p1_getRes -> Client_p1_OK

9 Client_p1_p3 = Client_p1_getFault -> Client_p1_FAULT

10 Client_p1_OK = Client_p2

11 Client_p1_FAULT = Client_p2";

12

13 Property Messages : TMessages = {

14 [MessageId = "Client_p1_sendReq";MessageData = {

15 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

16 [MessageId = "Client_p1_getRes";MessageData = {

17 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

18 [MessageId = "Client_p1_getFault";MessageData = {

19 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

20

21 Property BindTime = Instantiation;

22 Property BindingOtherAdd = No;

23 Property BindingOtherRemove = No;

24 Property BindingSelfAdd = Yes;

25 Property BindingSelfRemove = Yes;

26 Property DataContinuity = Sporadic;

27 Property InOurControlDomain = Yes;

28 Property Reentrant = Yes;

29 Property SendsFirstMessage = Yes;

30 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

31 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

300

32 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

33 }

34

35 Port p2 : PortTWSClientSingle = new PortTWSClientSingle extended with {

36 Property MessagePattern = "SOLI

37 Client_p2 = Client_p2_sendReq -> Client_p2_p1

38 Client_p2_p1 = Client_p2_p2 [] Client_p2_p3

39 Client_p2_p2 = Client_p2_getRes -> Client_p2_OK

40 Client_p2_p3 = Client_p2_getFault -> Client_p2_FAULT

41 Client_p2_OK = Client_Multi_Thread

42 Client_p2_FAULT = Client_Multi_Thread";

43

44 Property Messages : TMessages = {

45 [MessageId = "Client_p2_sendReq";MessageData = {

46 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

47 [MessageId = "Client_p2_getRes";MessageData = {

48 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

49 [MessageId = "Client_p2_getFault";MessageData = {

50 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

51

52 Property BindTime = Instantiation;

53 Property BindingOtherAdd = No;

54 Property BindingOtherRemove = No;

55 Property BindingSelfAdd = Yes;

56 Property BindingSelfRemove = Yes;

57 Property DataContinuity = Sporadic;

58 Property InOurControlDomain = Yes;

59 Property Reentrant = No;

60 Property SendsFirstMessage = Yes;

61 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

62 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

63 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

64 }

65

66 Port p3 : PortTWSClientSingle = new PortTWSClientSingle extended with {

67 Property MessagePattern = "SOLI

68 Client_p3 = Client_p3_sendReq -> Client_p3_p1

69 Client_p3_p1 = Client_p3_p2 [] Client_p3_p3

70 Client_p3_p2 = Client_p3_getRes -> Client_p3_OK

71 Client_p3_p3 = Client_p3_getFault -> Client_p3_FAULT

72 Client_p3_OK = Client_p4

73 Client_p3_FAULT = Client_p4";

74

75 Property Messages : TMessages = {

76 [MessageId = "Client_p3_sendReq";MessageData = {

77 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

78 [MessageId = "Client_p3_getRes";MessageData = {

79 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

80 [MessageId = "Client_p3_getFault";MessageData = {

81 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

82

301

83 Property BindTime = Instantiation;

84 Property BindingOtherAdd = No;

85 Property BindingOtherRemove = No;

86 Property BindingSelfAdd = Yes;

87 Property BindingSelfRemove = Yes;

88 Property DataContinuity = Sporadic;

89 Property InOurControlDomain = Yes;

90 Property Reentrant = Yes;

91 Property SendsFirstMessage = Yes;

92 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

93 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

94 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

95 }

96

97 Port p4 : PortTWSClientSingle = new PortTWSClientSingle extended with {

98 Property MessagePattern = "SOLI

99 Client_p4 = Client_p4_sendReq -> Client_p4_p1

100 Client_p4_p1 = Client_p4_p2 [] Client_p4_p3

101 Client_p4_p2 = Client_p4_getRes -> Client_p4_OK

102 Client_p4_p3 = Client_p4_getFault -> Client_p4_FAULT

103 Client_p4_OK = Client_Single_Thread

104 Client_p4_FAULT = Client_Single_Thread";

105

106 Property Messages : TMessages = {

107 [MessageId = "Client_p4_sendReq";MessageData = {

108 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

109 [MessageId = "Client_p4_getRes";MessageData = {

110 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

111 [MessageId = "Client_p4_getFault";MessageData = {

112 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

113

114 Property BindTime = Instantiation;

115 Property BindingOtherAdd = No;

116 Property BindingOtherRemove = No;

117 Property BindingSelfAdd = Yes;

118 Property BindingSelfRemove = Yes;

119 Property DataContinuity = Sporadic;

120 Property InOurControlDomain = Yes;

121 Property Reentrant = No;

122 Property SendsFirstMessage = Yes;

123 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

124 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

125 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

126 }

127

128 Property CentralDataRecords : Set {TCentralDataRecord} = {

129 [DatumID = "sendData";DatumSemantics = "sendData";DatumScopeExhibited = Private;],

130 [DatumID = "resultData";DatumSemantics = "resultData";DatumScopeExhibited = Private;],

131 [DatumID = "FaultData";DatumSemantics = "FAULT:DESCRIPTION";DatumScopeExhibited = Private

;]};

302

132

133 Property CentralProcessDescription = "Client = Client_Multi_Thread ||| Client_Multi_Thread

||| Client_Single_Thread

134 Client_Multi_Thread = Client_p1

135 Client_Single_Thread = Client_p3 ";

136

137 Property ComponentInOurControlDomain = Yes;

138 }

139

140 Component Service : CompTWSService = new CompTWSService extended with {

141 Port p1 : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

142 Property MessagePattern = "REQR

143 Service_p1 = Service_p1_getReq -> Service_p1_p1

144 Service_p1_p1 = Service_p1_p2 [] Service_p1_p3

145 Service_p1_p2 = Service_p1_sendRes -> Service_p1_OK

146 Service_p1_p3 = Service_p1_sendFault -> Service_p1_FAULT

147 Service_p1_OK = Service_p2

148 Service_p1_FAULT = Service_p2";

149

150 Property Messages : TMessages = {

151 [MessageId = "Service_p1_getReq";MessageData = {

152 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

153 [MessageId = "Service_p1_sendRes";MessageData = {

154 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

155 [MessageId = "Service_p1_sendFault";MessageData = {

156 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

157

158 Property BindTime = Instantiation;

159 Property BindingOtherAdd = Yes;

160 Property BindingOtherRemove = Yes;

161 Property BindingSelfAdd = No;

162 Property BindingSelfRemove = No;

163 Property DataContinuity = Sporadic;

164 Property InOurControlDomain = Yes;

165 Property Reentrant = Yes;

166 Property SendsFirstMessage = No;

167 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

168 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

169 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

170 Property EndPointAddressList : TEndPointAddresses = {"www.Service.com/p1"};

171 Property WsdlDocRefs : TWsdlDocs = {"www.Service.com/WSDL"};

172 }

173

174 Port p2 : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

175 Property MessagePattern = "REQR

176 Service_p2 = Service_p2_getReq -> Service_p2_p1

177 Service_p2_p1 = Service_p2_p2 [] Service_p2_p3

178 Service_p2_p2 = Service_p2_sendRes -> Service_p2_OK

179 Service_p2_p3 = Service_p2_sendFault -> Service_p2_FAULT

180 Service_p2_OK = Service_Upper_Thread

181 Service_p2_FAULT = Service_Upper_Thread";

182

303

183 Property Messages : TMessages = {

184 [MessageId = "Service_p2_getReq";MessageData = {

185 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

186 [MessageId = "Service_p2_sendRes";MessageData = {

187 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

188 [MessageId = "Service_p2_sendFault";MessageData = {

189 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

190

191 Property BindTime = Instantiation;

192 Property BindingOtherAdd = Yes;

193 Property BindingOtherRemove = Yes;

194 Property BindingSelfAdd = No;

195 Property BindingSelfRemove = No;

196 Property DataContinuity = Sporadic;

197 Property InOurControlDomain = Yes;

198 Property Reentrant = No;

199 Property SendsFirstMessage = No;

200 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

201 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

202 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

203 Property EndPointAddressList : TEndPointAddresses = {"www.Service.com/p2"};

204 Property WsdlDocRefs : TWsdlDocs = {"www.Service.com/WSDL"};

205 }

206

207 Port p3 : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

208 Property MessagePattern = "REQR

209 Service_p3 = Service_p3_getReq -> Service_p3_p1

210 Service_p3_p1 = Service_p3_p2 [] Service_p3_p3

211 Service_p3_p2 = Service_p3_sendRes -> Service_p3_OK

212 Service_p3_p3 = Service_p3_sendFault -> Service_p3_FAULT

213 Service_p3_OK = Service_p4

214 Service_p3_FAULT = Service_p4";

215

216 Property Messages : TMessages = {

217 [MessageId = "Service_p3_getReq";MessageData = {

218 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

219 [MessageId = "Service_p3_sendRes";MessageData = {

220 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

221 [MessageId = "Service_p3_sendFault";MessageData = {

222 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

223

224 Property BindTime = Instantiation;

225 Property BindingOtherAdd = Yes;

226 Property BindingOtherRemove = Yes;

227 Property BindingSelfAdd = No;

228 Property BindingSelfRemove = No;

229 Property DataContinuity = Sporadic;

230 Property InOurControlDomain = Yes;

231 Property Reentrant = Yes;

232 Property SendsFirstMessage = No;

233 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

304

234 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

235 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

236 Property EndPointAddressList : TEndPointAddresses = {"www.Service.com/p3"};

237 Property WsdlDocRefs : TWsdlDocs = {"www.Service.com/WSDL"};

238 }

239

240 Port p4 : PortTWSServiceSingle = new PortTWSServiceSingle extended with {

241 Property MessagePattern = "REQR

242 Service_p4 = Service_p4_getReq -> Service_p4_p1

243 Service_p4_p1 = Service_p4_p2 [] Service_p4_p3

244 Service_p4_p2 = Service_p4_sendRes -> Service_p4_OK

245 Service_p4_p3 = Service_p4_sendFault -> Service_p4_FAULT

246 Service_p4_OK = Service_Lower_Thread

247 Service_p4_FAULT = Service_Lower_Thread";

248

249 Property Messages : TMessages = {

250 [MessageId = "Service_p4_getReq";MessageData = {

251 [DatumId = "sendData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};],

252 [MessageId = "Service_p4_sendRes";MessageData = {

253 [DatumId = "resultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};] ,

254 [MessageId = "Service_p4_sendFault";MessageData = {

255 [DatumId = "FaultData";DatumRep = SOAP_String;DatumStateScopeExpected = Private ;]};]};

256

257 Property BindTime = Instantiation;

258 Property BindingOtherAdd = Yes;

259 Property BindingOtherRemove = Yes;

260 Property BindingSelfAdd = No;

261 Property BindingSelfRemove = No;

262 Property DataContinuity = Sporadic;

263 Property InOurControlDomain = Yes;

264 Property Reentrant = No;

265 Property SendsFirstMessage = No;

266 Property EndPointList : TEndPoints = {[Transport = HTTP1_0;Encoding = SOAP1_1 ;]};

267 Property FailureModesExpected : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

268 Property FailureModesExhibited : TFailureModes = {ContentFailures ,EarlyTimingFailures ,

LateTimingFailures ,HaltFailures ,ErraticFailures };

269 Property EndPointAddressList : TEndPointAddresses = {"www.Service.com/p4"};

270 Property WsdlDocRefs : TWsdlDocs = {"www.Service.com/WSDL"};

271 }

272

273 Property CentralDataRecords : Set {TCentralDataRecord} = {

274 [DatumID = "sendData";DatumSemantics = "sendData";DatumScopeExhibited = Private;],

275 [DatumID = "resultData";DatumSemantics = "resultData";DatumScopeExhibited = Private;],

276 [DatumID = "FaultData";DatumSemantics = "FAULT:DESCRIPTION";DatumScopeExhibited = Private

;]};

277

278 Property CentralProcessDescription = "Service = Service_Upper_Thread ||| Service_Upper_Thread

||| Service_Lower_Thread ||| Service_Lower_Thread

279 Service_Upper_Thread = Service_p1

280 Service_Lower_Thread = Service_p3 ";

281

305

282 Property ComponentInOurControlDomain = Yes;

283 }

284

285 Component AnalysisControl : CompTWSAnalysisControl = new CompTWSAnalysisControl extended with {

286 Property ActiveAnalysisCentralDataStoreCorrect = true;

287 Property ActiveAnalysisCommissionMismatch = true;

288 Property ActiveAnalysisChoiceGroupsHaveChoiceMaker = true;

289 Property ActiveAnalysisCommissionPartialMatch = true;

290 Property ActiveAnalysisConcurrentCallsToThisPort = true;

291 Property ActiveAnalysisMessageDataTypesMatch = true;

292 Property ActiveAnalysisMessageExchangePatternsMatch = true;

293 Property ActiveAnalysisMessageExchangePatternsPartiallyMatch = true;

294 Property ActiveAnalysisMessageOverData = true;

295 Property ActiveAnalysisMessagePatternAndMessageListConcur = true;

296 Property ActiveAnalysisMessageUnderData1 = true;

297 Property ActiveAnalysisMessageUnderData2 = true;

298 Property ActiveAnalysisOmissionMismatch = true;

299 Property ActiveAnalysisOmissionPartialMatch = true;

300 Property ActiveAnalysisStateScopesMatch = true;

301 Property outputPath = "";

302 }

303

304 Connector ConnTWS0 : ConnTWS = new ConnTWS extended with { }

305 Connector ConnTWS1 : ConnTWS = new ConnTWS extended with { }

306 Connector ConnTWS2 : ConnTWS = new ConnTWS extended with { }

307 Connector ConnTWS3 : ConnTWS = new ConnTWS extended with { }

308

309 Attachment Client.p1 to ConnTWS0.role1;

310 Attachment Service.p1 to ConnTWS0.role2;

311 Attachment Client.p3 to ConnTWS1.role1;

312 Attachment Client.p2 to ConnTWS2.role2;

313 Attachment Service.p4 to ConnTWS3.role1;

314 Attachment Client.p4 to ConnTWS3.role2;

315 Attachment Service.p2 to ConnTWS2.role1;

316 Attachment Service.p3 to ConnTWS1.role2;

317 }

306

Appendix F

External Analysis Descriptions and
Source Code

F.1 Class Group Outlines

There are 44 Java classes involved in the external analysis of this architectural style. They can

be divided into seven groups, these will now be outlined to give an overview of the purpose of the

classes.

F.1.1 External Analysis Main Classes

The first group includes those classes that Eclipse invokes when a particular external analysis is to

be evaluated, there are 15 such classes in total. To reduce duplication of code, many of the classes do

not themselves perform the analysis, but instead they use functions provided by classes in a shared

library. While the names of the classes closely relate to the mismatches they target, they are all

listed along with a brief description in Table F.1.

F.1.2 Message Pattern Comparison

The message pattern comparison class uses the ACME Interface classes to obtain data about the

system. It then uses its own lookup table to determine if the message exchange patterns match or

otherwise.

F.1.3 Message Comparison

Message comparison is carried out by four classes, Message Comparison, Message Mapping, Message

Vector and Message Data Mapping. The message comparison starts by constructing a list of message

mappings, mapping the IDs of the sent and received messages to allow them to be compared. This

307

Class(es) Description
Commission mismatch
Commission partial match
Omission mismatch
Omission partial match
Concurrent calls to this port

These five classes check for commission, omission
and concurrency mismatches. They all make use
of the CSP modelling group of classes, invoking the
CSP Model Builder with the choice of analysis and
passing it the IDs of the required architecture ele-
ments.

Message data types match
Message over data
Message under data 1
Message under data 2
State scopes match

These classes look for mismatches relating to the
semantics, data types and state scope assumptions
declared for each datum in each message exchanged
between a pair of ports. They all utilise a common
message comparison class, described below.

Message exchange patterns match
Message exchange patterns partially match

These classes compare the message exchanged pat-
terns declared in each port. They do this by in-
voking a common message pattern comparison class,
described below.

Central data store correct
Message pattern and message list concur

These classes confirm a chain of data references. One
checks that each message listed in the port message
pattern CSP has a reference in the messages list,
while the other checks that each datum in each mes-
sage has is referenced in the central data store. They
both perform their own analysis making use of the
ACME Interface classes to obtain data.

Choice groups have choice maker This class confirms that there is at least one port
designated as a choice maker for each choice group
on each component. It uses the ACME Interface to
obtain data.

Table F.1: The main classes providing external analysis to the style grouped according by similar
goals and the supporting classes they use.

308

is performed according to the data presented in Table 5.2 on page 82. Each message mapping is

stored using a message vector instance to capture direction and IDs.

Each individual data pair in the mapped messages are then mapped onto each other for compar-

ison, this mapping is recorded using the message data mapping class.

With the mappings in place the actual analysis required to check for data types and semantic

loads of the messages is carried out using the data extraction utils to obtain properties from the

ACME model. The one exception to this is the state scope assumptions which makes use of the

ACME interface classes that were developed later.

F.1.4 Data Extraction Utils

The data extraction utils are a set of static methods that reduce the syntactic load involved in

extracting data from the ACME Studio internal representation of a system.

F.1.5 CSP Modelling

The CSP modelling is managed by the CSP model builder class. This uses a number of other classes

as follows:

Element CSP data stores the CSP descriptions of each element after they have been extracted

from the system model and modified as needed;

CSP connector constructor stores the message IDs and their mappings to allow the connector

process to be constructed;

CSP hiding set constructor stores the messages and events for each element to facilitate the

hiding of these when required by the analysis being performed;

CSP memory constructor is used to construct the memory processes required when multiple

connectors are attached to a single port;

CSP thread counter constructor generates the process to monitor the number of concurrent

invocations of a port when checking for re entrance;

FDR results analyser parses the results returned by the FDR model checker and generates the

results and output returned to the user.

These analysis classes make use of the ACME interface to obtain data about the system being

modelled.

309

F.1.6 Acme Interface

The ACME interface class interrogates the system model presented by ACME studio and populates

instances of the component, port and connector classes. This provides a more convenient means to

obtain data about the system compared to the standard methods provided by ACME Studio for the

analysis classes.

F.1.7 Exceptions

There are two exception classes defined:

Reportable exception is used where the problem should not occur, such as required properties

not being present.

Acceptable exception allows analysis to terminate early when it is discovered that further inves-

tigation is not required. An example of this is when attempting to check the data types in

message number four of a message exchange pattern. If the patterns of the two ports con-

nected only share three messages then there is not a fourth message so the analysis uses the

acceptable exception to exit early and force an analysis passed result to be returned.

F.1.8 Reporting

The results are reported using two classes:

Analysis result is a class used by all the external analysis classes. It contains a boolean indicating

if an mismatch was found or not and also a string to hold a detailed description of the nature

of a failure;

Reporter handles the writing of the detailed analysis output files if an analysis fails.

F.1.9 Data Types

There are three classes to representing data types:

Safe Boolean represents the safe boolean type used to make explicit the situations where the value

is not defined;

Data Rep contains the representation of a datum and allows types to be compared for compati-

bility;

Data Semantics hold the semantics assigned to a datum and allows comparison for compatibility.

As semantics are represented as strings in this work, compatibility is judged by string equality.

310

F.1.10 Support

The final classes included are those that provide general support.

Helper contains the methods supporting the output of debugging information and also contains

the common methods used to write out CSP model files and to invoke the FDR model checker;

Look Up contains global static fields that are referenced by many of the classes for consistency;

Wait is used by some of the analysis to provide a small delay before evaluation commences, this

was to make the ACME Studio interface more responsive;

Active analysis checker is used by all external analysis classes to determine whether they should

perform their analysis or simply return a ‘pass’ result, again this was to improve performance

when required. This class uses the CompTWSAnalysisControl element, Figure F.1 in the style

to determine which analysis is active or not.

F.2 External analysis file outputs

The external analysis output a description of mismatches when found, there now follows an intro-

duction to each output.

F.2.1 Commission Mismatch / Partial Match

These outputs inform the user of the event trace that leads to a commission event. An example of

the format of output is as follows:

Broker attempted to send unexpected messages (commission events) in 1 traces.

Commision trace number 1

Broker c3 sendReq

Here the analysis found a single trace leading to a commission and that trace contained a single

message sent from the Broker component on port c3.

F.2.2 Omission Mismatch / Partial Match

These outputs inform the user of the trace observed by a component concluding in the expected

message that is not received:

================================

311

1 Component Type CompTWSAnalysisControl = {
2 Property ActiveAnalysisCommissionMismatch : boolean;
3 Property ActiveAnalysisCommissionPartialMatch : boolean;
4 Property ActiveAnalysisOmissionMismatch : boolean;
5 Property ActiveAnalysisOmissionPartialMatch : boolean;
6 Property ActiveAnalysisMessageExchangePatternsMatch : boolean;
7 Property ActiveAnalysisMessageExchangePatternsPartiallyMatch : boolean;
8 Property ActiveAnalysisConcurrentCallsToThisPort : boolean;
9 Property ActiveAnalysisCentralDataStoreCorrect : boolean;

10 Property ActiveAnalysisMessageDataTypesMatch : boolean;
11 Property ActiveAnalysisMessageOverData : boolean;
12 Property ActiveAnalysisMessageUnderData1 : boolean;
13 Property ActiveAnalysisMessageUnderData2 : boolean;
14 Property ActiveAnalysisStateScopesMatch : boolean;
15 Property ActiveAnalysisMessagePatternAndMessageListConcur : boolean;
16 Property ActiveAnalysisChoiceGroupsHaveChoiceMaker : boolean;
17 Property outputPath : string;
18

19 rule AnalysisCommissionMismatchActive =
20 invariant ActiveAnalysisCommissionMismatch;
21 rule AnalysisCommissionPartialMatchActive =
22 invariant ActiveAnalysisCommissionPartialMatch;
23 rule AnalysisOmissionMismatchActive =
24 invariant ActiveAnalysisOmissionMismatch;
25 rule AnalysisOmissionPartialMatchActive =
26 invariant ActiveAnalysisOmissionPartialMatch;
27 rule AnalysisMessageExchangePatternsMatchActive =
28 invariant ActiveAnalysisMessageExchangePatternsMatch;
29 rule AnalysisMessageExchangePatternsPartiallyMatchActive =
30 invariant ActiveAnalysisMessageExchangePatternsPartiallyMatch;
31 rule AnalysisConcurrentCallsToThisPortActive =
32 invariant ActiveAnalysisConcurrentCallsToThisPort;
33 rule AnalysisCentralDataStoreCorrectActive =
34 invariant ActiveAnalysisCentralDataStoreCorrect;
35 rule AnalysisMessageDataTypesMatchActive =
36 invariant ActiveAnalysisMessageDataTypesMatch;
37 rule AnalysisMessageOverDataActive =
38 invariant ActiveAnalysisMessageOverData;
39 rule AnalysisMessageUnderData1Active =
40 invariant ActiveAnalysisMessageUnderData1;
41 rule AnalysisMessageUnderData2Active =
42 invariant ActiveAnalysisMessageUnderData2;
43 rule AnalysisStateScopesMatchActive =
44 invariant ActiveAnalysisStateScopesMatch;
45 rule AnalysisMessagePatternAndMessageListConcurActive =
46 invariant ActiveAnalysisMessagePatternAndMessageListConcur;
47 rule AnalysisChoiceGroupsHaveChoiceMakerActive =
48 invariant ActiveAnalysisChoiceGroupsHaveChoiceMaker;
49 }

Figure F.1: This describes the component type used to switch on and off specific externals analysis
in a model.

312

[Broker s1 getReq]

Here a single omission trace is shown for a component that never receives the message Broker s1 getReq.

F.2.3 Concurrent Calls to this Port

This output simply confirms the result that two or more concurrent invocations of a non-reentrant

port occurred:

This port experienced two or more simultaneous invocations

F.2.4 Message Data Types Match

This output informs the user of the IDs of the data with mismatching types along with the actual

types sent and expected:

The data type (SOAP Int) of Foo in the sent message is not compatible with the data

type (SOAP Float) of Bar in the received message.

Here Foo has the data type SOAP Int which is not directly compatible with the SOAP Float

expected for the Bar parameter.

F.2.5 Message Over Data

This output informs the user of which datum in the sent message are not expected by the recipient:

The following data was sent but is not expected: owner

The following data was sent but is not expected: CCNumber

The following data was sent but is not expected: expirationDate

F.2.6 Message under Data 1

This informs the user that an expected item of data (Foo) is not in the sent message, but that an

interrogation of the sending component’s central data store indicates that data with the required

semantics does exist (Bar):

There is no data in the message sent to match Foo, but it does appear to be

available in the sending component in datumID Bar

F.2.7 Message under Data 2

This informs the user that an expected item of data (Foo) is not in the sent message, and that

an interrogation of the sending component’s central data store indicates that it does not contain a

313

suitable datum:

There is no data in the message sent to match Foo and it does not

appear to be available in the component

F.2.8 State Scopes Match

This analysis output reports each datum sent where the receiving component does not declare a

compatible scope for that datum:

The datum Foo sent in message Login has expected data scope Private,

this is not compatible with the exhibited state Shared of the message datum

Bar it maps to

Here the sending component expects the receiving component to keep the Foo private, but the

receiving component declares that it may share it.

F.2.9 Message Exchange Patterns Match

This analysis informs the user of mismatches caused by the choice of message exchange pattern,

there are a number of output results.

If the patterns partially match:

These patterns partially match thanks to one or more of them being in our control

domain

If the patterns mismatch:

The patterns differ and neither port is in our control domain

If the patterns do not agree on the direction of the first message:

The patterns simply do not match due to message passing directions

F.2.10 Message Exchange Patterns Partially Match

This is the partner analysis to the previous example. It has two different output messages depending

on the state of the mismatch.

If the patterns partially match then no output is produced. If the patterns mismatch:

The patterns differ and neither port is in our control domain

314

If the patterns do not agree on the direction of the first message:

The patterns simply do not match due to message passing directions

F.2.11 Central Data Store Correct

This analysis output informs the user if there are one or more data items in the messages that are

not declared in the central data store:

The message Datum Foo exists in message CounterMessage in this port

CounterPort but does not exist in the central data store.

F.2.12 Message Pattern and Message List Concur

This analysis output informs the user if there is either a message declared in the CSP pattern that

does not exist in the message list or vice versa.

If the message exists in the message pattern only:

the message Foo was found in the Message Exchange Pattern property but not

in the Messages

If the message exists in the messages list only:

the message Bar was found in the Messages property but not in the Message

Exchange Pattern

F.2.13 Choice Groups Have Choice Maker

This informs the user if there are any choice groups that have no choice maker:

The choice group Foo is without a choice maker

F.3 Message index numbers

In the style there are five rules that are repeated for each message in the message exchange pattern,

these check the data types, semantics sent and expected, and the state scope expectations. The style

labels the rules 1..4, however this does not help identify the message. Table F.2 presents a mapping

showing the indexes and which message in the sequence they refer to from the following list:

message The initial request message in a sequence;

response a normal response to the first message;

315

index ino rio reqr ioo

noti 1 message message message message

roo
1 messsage messsage messsage messsage
2 N/A fault fault fault

soli
1 messsage messsage messsage messsage
2 N/A fault response response
3 N/A N/A fault fault

ooi

1 messsage messsage messsage messsage
2 N/A fault fault fault
3 N/A N/A response response
4 N/A N/A N/A fault2

Table F.2: The message index numbers for each pairing of message exchange patterns.

fault1 a fault generated in response to the first message;

fault2 a fault generated in response to response to the first message.

F.4 Source Code

There now follows the complete source code for all the external analysis created in this work.

316

F.4.1 Acceptable Exception

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3 public c lass AcceptableExcept ion extends Exception {

4 public AcceptableExcept ion ()

5 {

6 super () ;

7 }

8

9 public AcceptableExcept ion (St r ing message)

10 {

11 super (message) ;

12 }

13

14 public AcceptableExcept ion (St r ing message , Throwable cause)

15 {

16 super (message , cause) ;

17 }

18

19 public AcceptableExcept ion (Throwable cause)

20 {

21 super (cause) ;

22 }

23 }

F.4.2 Active Analysis Checker

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3 import org . acmestudio . acme . element . IAcmeElement ;

4 import org . acmestudio . acme . element . IAcmeSystem ;

5 import org . acmestudio . acme . element . IAcmeComponent ;

6 import org . acmestudio . acme . element . property . IAcmeProperty ;

7 import org . acmestudio . acme . element . property . IAcmePropertyValue ;

8 import org . acmestudio . acme . core . type . IAcmeBooleanValue ;

9 import java . u t i l . Set ;

10 import java . u t i l . I t e r a t o r ;

11

12 import uk . ac . nc l . c j g . ws enhanced . common . ∗ ;

13

14

15

16

17 public c lass Act iveAnalys i sChecker {

18

19 /∗∗

20 ∗ This method t raver se s the Acme system model t i l l i t

f i nds an component of type

21 ∗ CompTWSAnalysisControl , which i t expects to f ind at the

very h i ghes t l e v e l . I t checks

22 ∗ the value of a property with the same name as the

parameter ruleIDInTheStyle . I t returns

23 ∗ the value of tha t property . I f no component of the

r i g h t type i s found , or i f no

24 ∗ property of the r i g h t name i s found , the method w i l l

return true .

25 ∗

26 ∗ @param ruleIDInTheStyle The name of the ru l e

27 ∗ @param elementRuleIsIn the element from which the ru l e was

invoked

28 ∗ @return The value of the Active Analysis f l ag , i f

found , otherwise true

29 ∗/

30 public stat ic boolean CheckI fAna ly s i s I sAct ive (St r ing

ruleIDInTheStyle , IAcmeElement e lementRule Is In) throws

Exception{

31

32 f ina l St r ing ana ly s i sCont ro l l e rType = "

CompTWSAnalysisControl " ;

33

34 // move up the t ree t i l l we get the IAcmeSystem ob j ec t

317

35 IAcmeElement theParent = elementRule I s In . getParent () ;

36 IAcmeSystem theSystem = null ;

37

38 while (! (theParent instanceof IAcmeSystem))

39 {

40 theParent = theParent . getParent () ;

41 i f (theParent == null | | ! (theParent instanceof

IAcmeElement)) return Boolean .TRUE;

42 }

43 theSystem = (IAcmeSystem) theParent ;

44

45 // get the l i s t o f a l l components in tha t system

46 // move through the l i s t t i l l we f ind one of the correc t

type

47 IAcmeComponent theAna ly s i sCont r o l l e r = null ;

48 Set theComponents = theSystem . getComponents () ; // maybe

should parameterize the se t here

49

50 I t e r a t o r i = theComponents . i t e r a t o r () ;

51 while (i . hasNext ())

52 {

53 IAcmeComponent thisComponent = (IAcmeComponent) i . next () ;

54 i f (thisComponent . dec laresType (ana ly s i sCont ro l l e rType))

55 {

56 th eAna ly s i sCont r o l l e r = thisComponent ;

57 break ;

58 }

59 }

60

61 i f (th eAna ly s i sCont r o l l e r == null) throw new

ReportableExcept ion (" No analysis controller component

found ") ;

62

63 // move through a l l p roper t i e s of the component to f ind the

one we are look ing for

64 // and return i t s va lue .

65

66 IAcmeProperty ana ly s i sAct ivePrope r ty =

theAna ly s i sCont r o l l e r . getProperty (ru leIDInTheStyle) ;

67 i f (ana ly s i sAct ivePrope r ty == null) throw new

ReportableExcept ion (" Property controlling this analysis

was not found ") ;

68 IAcmePropertyValue ana lys i sAct iveProper tyVa lue =

ana ly s i sAct ivePrope r ty . getValue () ;

69 i f (ana lys i sAct iveProper tyVa lue instanceof

IAcmeBooleanValue){

70 i f (((IAcmeBooleanValue) ana lys i sAct iveProper tyVa lue) .

getValue ())

71 {

72 return Boolean .TRUE;

73 }

74 else

75 {

76 return Boolean .FALSE;

77 }

78 }

79

80 throw new ReportableExcept ion (" The property controlling

this analysis did not have the type boolean ") ;

81 }

82

83 }

F.4.3 Acme Interface

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3 import java . u t i l . I t e r a t o r ;

4 import java . u t i l . L i s t ;

5 import java . u t i l .Map;

6 import java . u t i l . Set ;

7 import java . u t i l . TreeMap ;

318

8 import java . u t i l . TreeSet ;

9

10 import org . acmestudio . acme . core . type . IAcmeEnumValue ;

11 import org . acmestudio . acme . core . type . IAcmeRecordField ;

12 import org . acmestudio . acme . core . type . IAcmeRecordValue ;

13 import org . acmestudio . acme . core . type . IAcmeSetValue ;

14 import org . acmestudio . acme . core . type . IAcmeStringValue ;

15 import org . acmestudio . acme . element . IAcmeAttachment ;

16 import org . acmestudio . acme . element . IAcmeComponent ;

17 import org . acmestudio . acme . element . IAcmeConnector ;

18 import org . acmestudio . acme . element . IAcmeElement ;

19 import org . acmestudio . acme . element . IAcmePort ;

20 import org . acmestudio . acme . element . IAcmeRole ;

21 import org . acmestudio . acme . element . IAcmeSystem ;

22 import org . acmestudio . acme . element . property . IAcmeProperty ;

23

24 public c lass AcmeInterface {

25 public Set e lements ;

26 public Set conns ;

27 public Map<Str ing , Port> port s ;

28

29 public stat ic f ina l int SAFE BOOL TRUE = 0 ;

30 public stat ic f ina l int SAFE BOOL FALSE = 1 ;

31 public stat ic f ina l int SAFE BOOL EMPTY = 2 ;

32

33 public stat ic f ina l int DATUM SCOPE PRIVATE = 0 ;

34 public stat ic f ina l int DATUM SCOPE PUBLIC = 1 ;

35 public stat ic f ina l int DATUM SCOPE NO PREFERENCE = 2 ;

36

37 public AcmeInterface (IAcmeElement context) throws

ReportableExcept ion {

38 e lements = new TreeSet () ;

39 conns = new TreeSet () ;

40

41 i f (context instanceof IAcmeComponent) {

42 buildAcmeModelFromComponent ((IAcmeComponent) context) ;

43 }

44

45 i f (context instanceof IAcmePort) {

46 buildAcmeModelFromPort ((IAcmePort) context) ;

47 }

48

49 i f (context instanceof IAcmeConnector) {

50 buildAcmeModelFromConnector ((IAcmeConnector) context) ;

51 }

52

53 }

54

55 public void buildAcmeModelFromPort (IAcmePort thePort)

56 throws ReportableExcept ion {

57

58 IAcmeComponent theComponent = (IAcmeComponent) thePort .

getParent () ;

59 IAcmeSystem theSystem = (IAcmeSystem) theComponent .

getParent () ;

60 buildModelFromRoot (theSystem) ;

61 }

62

63 public void buildAcmeModelFromComponent (IAcmeComponent

theComponent)

64 throws ReportableExcept ion {

65

66 IAcmeSystem theSystem = (IAcmeSystem) theComponent .

getParent () ;

67 buildModelFromRoot (theSystem) ;

68 }

69

70 public void buildAcmeModelFromConnector (IAcmeConnector

theConnector)

71 throws ReportableExcept ion {

72 IAcmeSystem theSystem = (IAcmeSystem) theConnector .

getParent () ;

319

73 buildModelFromRoot (theSystem) ;

74 }

75

76 private void buildModelFromRoot (IAcmeSystem theSystem)

77 throws ReportableExcept ion {

78 Set allComponents = theSystem . getComponents () ;

79 Set a l lConnec to r s = theSystem . getConnectors () ;

80 Set tempPortSet = new TreeSet () ;

81 port s = new TreeMap<Str ing , Port>() ;

82 I t e r a t o r compIt = allComponents . i t e r a t o r () ;

83 while (compIt . hasNext ()) {

84 IAcmeComponent thisComponent = (IAcmeComponent) compIt .

next () ;

85 Component tempComp = populateComponentFromAcme (

thisComponent) ;

86

87 i f (tempComp != null) {

88 e lements . add (tempComp) ;

89

90 Set compPorts = thisComponent . getPorts () ;

91

92 I t e r a t o r po r t I t = compPorts . i t e r a t o r () ;

93 while (po r t I t . hasNext ()) {

94 IAcmePort th i sPor t = (IAcmePort) po r t I t . next () ;

95 Port tempPort = populatePortFromAcme (th i sPor t) ;

96 tempComp . addPort (tempPort) ;

97 tempPortSet . add (tempPort) ;

98 port s . put (th i sPor t . getQuali f iedName () , tempPort) ;

99 }

100 }

101 }

102

103 I t e r a t o r connIt = a l lConnec to r s . i t e r a t o r () ;

104 while (connIt . hasNext ()) {

105

106 IAcmeConnector th i sConnector = (IAcmeConnector) connIt .

next () ;

107 Connector tempConn = populateConnectorFromAcme (

thisConnector ,

108 tempPortSet , theSystem) ;

109 conns . add (tempConn) ;

110 }

111 }

112

113 private Connector populateConnectorFromAcme (IAcmeConnector

conn ,

114 Set thePorts , IAcmeSystem theSystem) throws

ReportableExcept ion {

115 // get type

116 boolean connIsCooperat ive ;

117 boolean connIsStubborn ;

118 boolean connIsUnicast ;

119 i f (conn . dec laresType (" ConnTWSCooperative ")) {

120 connIsCooperat ive = true ;

121 } else {

122 connIsCooperat ive = fa l se ;

123 }

124

125 i f (conn . dec laresType (" ConnTWSStubborn ")) {

126 connIsStubborn = true ;

127 } else {

128 connIsStubborn = fa l se ;

129 }

130

131 // get ID

132 St r ing id = conn . getName () ;

133

134 // get s e t of ports i t i s at tached to

135 St r ing port1ID = null ;

136 St r ing port2ID = null ;

137 Set r o l e s = conn . getRoles () ;

320

138 I t e r a t o r r o l e I t = r o l e s . i t e r a t o r () ;

139 int index = 1 ;

140

141 while (r o l e I t . hasNext ()) {

142 IAcmeRole th i sRo l e = (IAcmeRole) r o l e I t . next () ;

143 Set attachments = theSystem . getAttachments (th i sRo l e) ;

144 I t e r a t o r i = attachments . i t e r a t o r () ;

145 while (i . hasNext ()) {

146 IAcmeAttachment attach = (IAcmeAttachment) i . next () ;

147 IAcmePort th i sPor t = attach . getPort () ;

148 i f (index == 1) {

149 port1ID = th i sPor t . getQuali f iedName () ;

150 } else {

151 port2ID = th i sPor t . getQuali f iedName () ;

152 }

153 index++;

154 break ;

155 }

156 }

157

158 Port port2 = null ;

159 Port port1 = port s . get (port1ID) ;

160 i f (! connIsCooperat ive && ! connIsStubborn)

161 port2 = port s . get (port2ID) ;

162

163 // construct correc t type

164 i f (port1 == null) {

165 throw new ReportableExcept ion (" Connnector " + id

166 + " passed null for port1 ") ;

167 }

168 i f (connIsCooperat ive) {

169 return new Connector (id , port1 , Connector .

IS COOPERATIVE CONNECTOR) ;

170 } else i f (connIsStubborn) {

171 return new Connector (id , port1 , Connector .

IS STUBBORN CONNECTOR) ;

172 } else {

173 i f (port2 == null) {

174 throw new ReportableExcept ion (" Connnector " + id

175 + " passed null for port2 ") ;

176 }

177 return new Connector (id , port1 , port2) ;

178 }

179 }

180

181 private Component populateComponentFromAcme (IAcmeComponent

comp)

182 throws ReportableExcept ion {

183

184 // only process t h i s component i f i t i s not an ana ly s i s

contro l one

185

186 i f (comp . dec laresType (" CompTWSAnalysisControl ")) {

187 return null ;

188 }

189

190 Component thisComponent = new Component (comp . getName ()) ;

191

192 // get centra lProcessDescr ip t ion

193 IAcmeProperty cPD = comp . getProperty ("

CentralProcessDescription ") ;

194 i f (cPD == null)

195 throw new ReportableExcept ion (" Component " +

thisComponent . iD

196 + " has no CentralProcessDescription ") ;

197 try {

198 thisComponent . c en t r a lP ro c e s sDe s c r i p t i on = ((

IAcmeStringValue) (cPD

199 . getValue ())) . getValue () ;

200 } catch (Exception e) {

201 throw new ReportableExcept ion (

202 " the component "

321

203 + comp . getQual i f iedName ()

204 + " has no value defined for its central process

description ") ;

205 }

206

207 // get centralDataRecords

208 Set tempCDR = new TreeSet () ;

209 IAcmeProperty cDR = comp . getProperty (" CentralDataRecords ") ;

210 i f (cDR == null)

211 throw new ReportableExcept ion (" Component " +

thisComponent . iD

212 + " has no CentralDataRecords ") ;

213 Set cDRSet = null ;

214 try {

215 cDRSet = ((IAcmeSetValue) (cDR. getValue ())) . getValues () ;

216 } catch (Exception e) {

217 throw new ReportableExcept ion (" the component "

218 + comp . getQual i f iedName ()

219 + " has no value defined for its central data records

") ;

220 }

221

222 I t e r a t o r cDRSetIt = cDRSet . i t e r a t o r () ;

223 while (cDRSetIt . hasNext ()) {

224

225 IAcmeRecordValue th i sRecord = (IAcmeRecordValue) cDRSetIt

. next () ;

226

227 IAcmeRecordField th i sRecordF ie ld = thisRecord . g e tF i e l d ("

DatumID ") ;

228 Map centralDataRecord = new TreeMap () ;

229 thisComponent . centra lDataRecords . put (

230 ((IAcmeStringValue) (th i sRecordF ie ld . getValue ()))

231 . getValue () , centralDataRecord) ;

232

233 th i sRecordF ie ld = thisRecord . g e tF i e l d (" DatumSemantics ") ;

234 centralDataRecord . put (" DatumSemantics " ,

235 ((IAcmeStringValue) (th i sRecordF ie ld . getValue ()))

236 . getValue ()) ;

237

238 th i sRecordF ie ld = thisRecord . g e tF i e l d ("

DatumScopeExhibited ") ;

239 St r ing theValue = ((IAcmeEnumValue) th i sRecordF ie ld .

getValue ())

240 . getValue () ;

241

242 I n t eg e r tempInt = null ;

243

244 i f (theValue . tr im () . equa l s IgnoreCase (" private ")) {

245 tempInt = new I n t eg e r (DATUM SCOPE PRIVATE) ;

246 } else {

247 tempInt = new I n t eg e r (DATUM SCOPE PUBLIC) ;

248 }

249

250 centralDataRecord . put (" DatumScopeExhibited " , tempInt) ;

251 }

252

253 // get component in our contro l domain

254 IAcmeProperty iOCD = comp . getProperty ("

ComponentInOurControlDomain ") ;

255 i f (iOCD == null)

256 throw new ReportableExcept ion (" Component " +

thisComponent . iD

257 + " has no value for ComponentInOurControlDomain ") ;

258 St r ing iOCDVal = null ;

259 try {

260 iOCDVal = ((IAcmeEnumValue) (iOCD. getValue ())) . getValue ()

;

261 } catch (Exception e) {

262 throw new ReportableExcept ion (

263 " the component "

264 + comp . getQual i f iedName ()

322

265 + " has no value defined for its in our control

domain Property ") ;

266 }

267 i f (iOCDVal . tr im () . equa l s IgnoreCase (" YES ")) {

268 thisComponent . inOurControlDomain = true ;

269 } else i f (iOCDVal . tr im () . equa l s IgnoreCase (" NO ")) {

270 thisComponent . inOurControlDomain = fa l se ;

271 } else {

272 throw new ReportableExcept ion (" Component " +

thisComponent . iD

273 + " has no value for ComponentInOurControlDomain ") ;

274 }

275

276 return thisComponent ;

277 }

278

279 private Port populatePortFromAcme (IAcmePort port)

280 throws ReportableExcept ion {

281 Port th i sPor t = new Port (port . getName ()) ;

282

283 // get messagePattern

284 IAcmeProperty mP = port . getProperty (" MessagePattern ") ;

285 i f (mP == null)

286 throw new ReportableExcept ion (" Port " + th i sPor t . iD

287 + " has no Message Pattern defined ") ;

288

289 try {

290 th i sPor t . messagePattern = ((IAcmeStringValue) (mP.

getValue ()))

291 . getValue () ;

292 } catch (Exception e) {

293 throw new ReportableExcept ion (" the port "

294 + port . getQuali f iedName ()

295 + " has no value defined for its messagePattern

Property ") ;

296 }

297

298 // get messages

299

300 IAcmeProperty messages = port . getProperty (" Messages ") ;

301 i f (messages == null)

302 throw new ReportableExcept ion (" Port " + port .

getQual i f iedName ()

303 + " has no messages defined ") ;

304

305 IAcmeSetValue messagesSetValue = (IAcmeSetValue) messages .

getValue () ;

306 i f (messagesSetValue == null)

307 throw new ReportableExcept ion (" Port " + port .

getQual i f iedName ()

308 + " has no values in the message property ") ;

309 Set messagesSet = messagesSetValue . getValues () ;

310 I t e r a t o r messagesSet I t = messagesSet . i t e r a t o r () ;

311

312 while (messagesSet I t . hasNext ()) {

313 // get the message name and add a map to s tore the data

items i t

314 // contains

315 IAcmeRecordValue th i sRecord = (IAcmeRecordValue)

messagesSet I t

316 . next () ;

317

318 IAcmeRecordField messageIDRecord = thisRecord . g e tF i e l d ("

MessageId ") ;

319 i f (messageIDRecord == null)

320 throw new ReportableExcept ion (" Port " + port .

getQual i f iedName ()

321 + " has a message with no ID ") ;

322 St r ing messageID = ((IAcmeStringValue) messageIDRecord .

getValue ())

323 . getValue () ;

324 i f (messageID == null)

323

325 throw new ReportableExcept ion (" Port " + port .

getQuali f iedName ()

326 + " has a message with no ID ") ;

327

328 Map tempMessageMap = new TreeMap () ;

329 th i sPor t . messages . put (messageID , tempMessageMap) ;

330

331 // get the se t of data items and add each to the data map

332 IAcmeRecordField messageDataRecord = thisRecord

333 . g e tF i e l d (" MessageData ") ;

334 i f (messageDataRecord == null)

335 throw new ReportableExcept ion (" Port " + port .

getQual i f iedName ()

336 + " has a message with no Data ") ;

337

338 IAcmeSetValue MessageDataSetValue = (IAcmeSetValue)

messageDataRecord

339 . getValue () ;

340 i f (MessageDataSetValue == null)

341 throw new ReportableExcept ion (" Port " + port .

getQual i f iedName ()

342 + " has a message with no Data ") ;

343

344 Set MessageDataSet = MessageDataSetValue . getValues () ;

345 I t e r a t o r MessageDataSetIt = MessageDataSet . i t e r a t o r () ;

346

347 while (MessageDataSetIt . hasNext ()) {

348

349 // get the name of the data and then add a map to s tore

i t s

350 // proper t i e s

351 IAcmeRecordValue thisDataRecord = (IAcmeRecordValue)

MessageDataSetIt

352 . next () ;

353

354 L i s t f i e ldsFound = thisDataRecord . g e tF i e l d s () ;

355 St r ing f i e l d sFoundL i s t = " fields found list \n" ;

356 I t e r a t o r f f i = f i e ldsFound . i t e r a t o r () ;

357 while (f f i . hasNext ()) {

358 f i e l d sFoundL i s t += ((IAcmeRecordField) f f i . next ())

359 . getName () ;

360 }

361

362 IAcmeRecordField dataIDRecord = thisDataRecord

363 . g e tF i e l d (" DatumId ") ;

364 i f (dataIDRecord == null)

365 throw new ReportableExcept ion (" Port "

366 + port . getQuali f iedName ()

367 + " has a message with a datum with no ID field "

368 + " It actually contains \n" + f i e l d sFoundL i s t) ;

369 St r ing dataID = ((IAcmeStringValue) dataIDRecord .

getValue ()) . getValue () ;

370 i f (dataID == null)

371 throw new ReportableExcept ion (

372 " Port "

373 + port . getQuali f iedName ()

374 + " has a message with a datum with no ID

field value ") ;

375

376 Map tempDataMap = new TreeMap () ;

377 tempMessageMap . put (dataID , tempDataMap) ;

378

379 // get the data representa t ion property and add i t to

the map

380 IAcmeRecordField dataRepresentat ionRecord =

thisDataRecord

381 . g e tF i e l d (" DatumRep ") ;

382 i f (dataRepresentat ionRecord == null)

383 throw new ReportableExcept ion (

384 " Port "

385 + port . getQuali f iedName ()

324

386 + " has a message with a datum with no

representation ") ;

387 St r ing dataRepresentat ion = ((IAcmeEnumValue)

dataRepresentat ionRecord . getValue ())

388 . getValue () ;

389 i f (dataRepresentat ion == null)

390 throw new ReportableExcept ion (

391 " Port "

392 + port . getQuali f iedName ()

393 + " has a message with a datum with no

representation ") ;

394

395 tempDataMap . put (" DatumRep " , dataRepresentat ion) ;

396

397 // get the s t a t e scope property and add i t to the map

398 IAcmeRecordField dataScopeRecord = thisDataRecord

399 . g e tF i e l d (" DatumStateScopeExpected ") ;

400 i f (dataScopeRecord == null)

401 throw new ReportableExcept ion (

402 " Port "

403 + port . getQuali f iedName ()

404 + " has a message with a datum with no datum

scope stated ") ;

405 St r ing dataStateScope = ((IAcmeEnumValue)

dataScopeRecord . getValue ())

406 . getValue () ;

407 i f (dataStateScope == null)

408 throw new ReportableExcept ion (

409 " Port "

410 + port . getQuali f iedName ()

411 + " has a message with a datum with no datum

scope stated ") ;

412

413 tempDataMap . put (" DatumStateScopeExpected " ,

dataStateScope) ;

414 }

415 }

416

417 // get reentrant

418 IAcmeProperty r = port . getProperty (" Reentrant ") ;

419 i f (r == null)

420 throw new ReportableExcept ion (" Port " + port .

getQual i f iedName ()

421 + " is not explicit about whether it is reentrant ") ;

422 St r ing rValue = null ;

423

424 try {

425 rValue = ((IAcmeEnumValue) (r . getValue ())) . getValue () ;

426 } catch (Exception e) {

427 throw new ReportableExcept ion (" the port "

428 + port . getQuali f iedName ()

429 + " has no value defining if it is reentrant or not ")

;

430 }

431 i f (rValue . tr im () . equa l s IgnoreCase (" YES ")) {

432 th i sPor t . r e en t rant = true ;

433 } else i f (rValue . tr im () . equa l s IgnoreCase (" NO ")) {

434 th i sPor t . r e en t rant = fa l se ;

435 } else {

436 throw new ReportableExcept ion (" Port " + port .

getQual i f iedName ()

437 + " is not explicit about whether it is reentrant ") ;

438 }

439

440 // get i sUnicast − from type dec lared

441 i f (port . dec laresType (" PortTWSClientUnicast ")

442 | | port . dec laresType (" PortTWSServiceUnicast ")) {

443 th i sPor t . i sUn i c a s t = true ;

444 } else {

445 th i sPor t . i sUn i c a s t = fa l se ;

446 }

447

325

448 i f (th i sPor t . i sUn i c a s t) {

449 // get choice group − i f required

450 IAcmeProperty cG = port . getProperty (" ChoiceGroup ") ;

451 i f (cG == null)

452 throw new ReportableExcept ion (" Port " + port .

getQuali f iedName ()

453 + " has no choiceGroup defined ") ;

454 try {

455 th i sPor t . choiceGroup = ((IAcmeStringValue) (cG . getValue

()))

456 . getValue () ;

457 } catch (Exception e) {

458 throw new ReportableExcept ion (" port :"

459 + port . getQuali f iedName ()

460 + " has no value defined for its ChoiceGroup

property ") ;

461 }

462 // get choice group maker − i f required

463

464 IAcmeProperty gCM = port . getProperty (" GroupChoiceMaker ") ;

465 i f (gCM == null)

466 throw new ReportableExcept ion (" Port " + port .

getQual i f iedName ()

467 + " is not explicit about whether is a choice maker

") ;

468 St r ing gCMValue = null ;

469 try {

470 gCMValue = ((IAcmeEnumValue) (gCM. getValue ())) . getValue

() ;

471 } catch (Exception e) {

472 throw new ReportableExcept ion (

473 " the port "

474 + port . getQuali f iedName ()

475 + " has no value defined for its

ChoiceGroupMaker property ") ;

476 }

477 i f (gCMValue . tr im () . equa l s IgnoreCase (" YES ")) {

478 th i sPor t . choiceGroupMaker = true ;

479 } else i f (gCMValue . tr im () . equa l s IgnoreCase (" NO ")) {

480 th i sPor t . choiceGroupMaker = fa l se ;

481 } else {

482 throw new ReportableExcept ion (" Port " + port .

getQual i f iedName ()

483 + " is not explicit about whether is a choice maker

") ;

484 }

485 }

486 // get in our contro l domain

487

488 IAcmeProperty iOCD = port . getProperty (" InOurControlDomain ")

;

489 i f (iOCD == null)

490 throw new ReportableExcept ion (

491 " Port "

492 + th i sPor t . iD

493 + " is not explicit about whether it is in our

control domain ") ;

494 St r ing iOCDValue = ((IAcmeEnumValue) (iOCD. getValue ())) .

getValue () ;

495 i f (iOCDValue . tr im () . equa l s IgnoreCase (" YES ")) {

496 th i sPor t . inOurControlDomain = true ;

497 } else i f (iOCDValue . tr im () . equa l s IgnoreCase (" NO ")) {

498 th i sPor t . inOurControlDomain = fa l se ;

499 } else {

500 throw new ReportableExcept ion (

501 " Port "

502 + port . getQuali f iedName ()

503 + " is not explicit about whether it is in our

control domain ") ;

504 }

505

506 return th i sPor t ;

326

507 }

508

509 public St r ing toS t r i ng () {

510 St r ing toReturn = "" ;

511

512 toReturn += " the comps set has elements " + elements . s i z e

() + " \n" ;

513

514 I t e r a t o r i 1 = elements . i t e r a t o r () ;

515 while (i 1 . hasNext ()) {

516 Component thisComp = (Component) i 1 . next () ;

517 toReturn += " COMP : " + thisComp . toS t r i ng () ;

518 }

519

520 toReturn += " the conns set has elements " + conns . s i z e () +

" \n" ;

521

522 I t e r a t o r i 2 = conns . i t e r a t o r () ;

523 while (i 2 . hasNext ()) {

524 Connector thisConn = (Connector) i 2 . next () ;

525 toReturn += " CONN : " + thisConn . t oS t r i ng () ;

526 }

527

528 return toReturn ;

529 }

530 }

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3

4 /∗∗

5 ∗ A simple c l a s s to a l l the boolean r e s u l t o f the ana ly s i s

and any

6 ∗ s t r i n g report to be passed back to the c a l l i n g p lug in from

the code

7 ∗ tha t performed the ana ly s i s .

8 ∗/

9 public c lass Analys i sResu l t {

10

11 private boolean theResu l t ;

12 private St r ing theReport ;

13

14 public Analys i sResu l t (boolean theResult , S t r ing theReport)

15 {

16 this . theResu l t = theResu l t ;

17 this . theReport = theReport ;

18 }

19

20 public boolean getResu l t ()

21 {

22 return theResu l t ;

23 }

24

25 public St r ing getReport ()

26 {

27 return theReport ;

28 }

29

30 }

F.4.4 Central Data Store Correct

1 package uk . ac . nc l . c j g . ws enhanced ;

2

3 import java . u t i l . I t e r a t o r ;

4 import java . u t i l . L i s t ;

5 import java . u t i l .Map;

6 import java . u t i l . Set ;

7 import java . u t i l . Stack ;

8

9 import org . acmestudio . acme . core . IAcmeType ;

10 import org . acmestudio . acme . element . IAcmeComponent ;

327

11 import org . acmestudio . acme . environment . e r r o r . AcmeError ;

12 import org . acmestudio . acme . r u l e . node .

IExterna lAnalys i sExpress ionNode ;

13 import org . acmestudio . acme . r u l e . node . feedback .

AcmeExpressionEvaluationException ;

14

15 import uk . ac . nc l . c j g . ws enhanced . common . AcmeInterface ;

16 import uk . ac . nc l . c j g . ws enhanced . common . Act iveAnalys i sChecker ;

17 import uk . ac . nc l . c j g . ws enhanced . common . Ana lys i sResu l t ;

18 import uk . ac . nc l . c j g . ws enhanced . common . Component ;

19 import uk . ac . nc l . c j g . ws enhanced . common . Port ;

20 import uk . ac . nc l . c j g . ws enhanced . common . ReportableExcept ion ;

21 import uk . ac . nc l . c j g . ws enhanced . common . Reporter ;

22 import uk . ac . nc l . c j g . ws enhanced . common .Wait ;

23

24 public c lass Centra lDataStoreCorrect implements

IExterna lAnalys i sExpress ionNode {

25

26 @Override

27 public Object eva luate (IAcmeType arg0 , List<Object> arg1 ,

28 Stack<AcmeError> arg2) throws

AcmeExpressionEvaluationException {

29

30 // pause the ana ly s i s to a l low AcmeStudio to do something

other than

31 // ex terna l ana ly s i s

32

33 Wait . de layAna lys i s () ;

34

35 // ex t rac t data types from ana ly s i s ca l l , t h i s should be

passed

36 // a s i n g l e component

37 St r ing ruleID = " ActiveAnalysisCentralDataStoreCorrect " ;

38 IAcmeComponent theElement = null ;

39 Analys i sResu l t theResu l t = null ;

40

41 java . u t i l . I t e r a t o r i = arg1 . i t e r a t o r () ;

42

43 // ex t rac t the required model elements from the passed l i s t

44 try {

45 theElement = (IAcmeComponent) i . next () ;

46 } catch (Exception e) {

47 Reporter . r epor t (ruleID ,

48 " There was a problem extracting the required data : \n

" , e) ;

49 return Boolean .FALSE;

50 }

51

52 // check i f t h i s ru l e i s ac t i v e

53 try {

54 i f (! Act iveAnalys i sChecker . Check I fAna ly s i s I sAct ive (ruleID

,

55 theElement)) {

56 Reporter . r epor t (theElement , ruleID , "") ;

57 return Boolean .TRUE;

58 }

59 } catch (ReportableExcept ion rE) {

60 Reporter

61 . r epo r t (

62 theElement ,

63 ruleID ,

64 " There was a reportable Exception raised when

getting the activity status of this analysis :

\n" ,

65 rE) ;

66 return Boolean .FALSE;

67

68 } catch (Exception e) {

69 Reporter

70 . r epo r t (

71 theElement ,

72 ruleID ,

328

73 " There was a general Exception raised when

getting the activity status of this analysis :

\n" ,

74 e) ;

75 return Boolean .FALSE;

76 }

77

78 // perform the ana ly s i s

79 try {

80

81 // construct the acme in t e r f a c e and grab the required

port from i t

82 St r ing focusComponentID = theElement . getName () ;

83 AcmeInterface a i = new AcmeInterface (theElement) ;

84

85 // get the component from the in t e r f a ce and ex t rac t i t s

cen t ra l data

86 // s tore

87 // map keys , these are the datum IDs we need

88

89 Component thisComponent = null ;

90 boolean componentFound = fa l se ;

91 I t e r a t o r a l lE l ements = a i . e lements . i t e r a t o r () ;

92 while (a l lE l ements . hasNext ()) {

93 thisComponent = (Component) a l lE l ements . next () ;

94 i f (thisComponent . iD . equa l s IgnoreCase (focusComponentID)

) {

95 componentFound = true ;

96 break ;

97 }

98 }

99 i f (! componentFound)

100 throw new ReportableExcept ion (

101 " The required component was not found in the model "

) ;

102

103 Set componentDatumIDs = thisComponent . centra lDataRecords .

keySet () ;

104

105 // ex t rac t the se t of ports from th i s component and s t a r t

a loop to

106 // process each one

107

108 I t e r a t o r allComponentPorts = thisComponent . por t s . i t e r a t o r

() ;

109 boolean allDatumInMessagesFoundInCentralDataStore = true ;

110 St r ing r epo r tDe t a i l s = "" ;

111

112 while (allComponentPorts . hasNext ()) {

113 // get the datum id keys from with each message of t h i s

port ,

114 // compare each with the keys from the component

cen t ra l data

115 // store , they should e x i s t i f the data s tore i s

correc t .

116

117 Port th i sPor t = (Port) allComponentPorts . next () ;

118

119 I t e r a t o r th i sPortMessages = th i sPor t . messages . keySet ()

120 . i t e r a t o r () ;

121 while (th i sPortMessages . hasNext ()) {

122 St r ing thisMessage = (St r ing) th i sPortMessages . next ()

;

123 Map thisMessageData = (Map) th i sPor t . messages

124 . get (th isMessage) ;

125 I t e r a t o r th isMessageDataIt = thisMessageData . keySet ()

126 . i t e r a t o r () ;

127

128 while (th isMessageDataIt . hasNext ()) {

129 St r ing thisDatumID = (St r ing) thisMessageDataIt .

next () ;

130

329

131 boolean thisMessageDatumFound = fa l se ;

132 I t e r a t o r componentDatumIDsIt = componentDatumIDs

133 . i t e r a t o r () ;

134

135 while (componentDatumIDsIt . hasNext ()) {

136 St r ing thisComponentDatumID = (St r ing)

componentDatumIDsIt

137 . next () ;

138 i f (thisComponentDatumID

139 . equa l s IgnoreCase (thisDatumID)) {

140 thisMessageDatumFound = true ;

141 break ;

142 }

143 }

144

145 i f (! thisMessageDatumFound) {

146 allDatumInMessagesFoundInCentralDataStore = fa l se

;

147 r e po r tDe t a i l s += " The message Datum "

148 + thisDatumID

149 + " exists in message "

150 + thisMessage

151 + " in this port "

152 + th i sPor t . iD

153 + " but does not exist in the central data

store . \n" ;

154 }

155 }

156 }

157 }

158

159 theResu l t = new Analys i sResu l t (

160 allDatumInMessagesFoundInCentralDataStore ,

r e p o r tDe t a i l s) ;

161

162 } catch (ReportableExcept ion e) {

163 Reporter . r epor t (theElement , ruleID , e . getMessage ()) ;

164 return Boolean .FALSE;

165 } catch (Exception e) {

166 Reporter

167 . r epo r t (

168 theElement ,

169 ruleID ,

170 " There was an Exception raised performing the

analysis : \n" ,

171 e) ;

172 return Boolean .FALSE;

173 }

174

175 // report and return the r e s u l t s

176 Reporter . r epor t (theElement , ruleID , theResu l t . getReport ()) ;

177 i f (theResu l t . ge tResu l t () == true)

178 return Boolean .TRUE;

179 else

180 return Boolean .FALSE;

181

182 }

183

184 }

F.4.5 Choice Groups Have Choice Maker

1 package uk . ac . nc l . c j g . ws enhanced ;

2

3 import java . u t i l . I t e r a t o r ;

4 import java . u t i l . L i s t ;

5 import java . u t i l .Map;

6 import java . u t i l . Stack ;

7 import java . u t i l . TreeMap ;

8

9 import org . acmestudio . acme . core . IAcmeType ;

10 import org . acmestudio . acme . element . IAcmeComponent ;

330

11 import org . acmestudio . acme . environment . e r r o r . AcmeError ;

12 import org . acmestudio . acme . r u l e . node .

IExterna lAnalys i sExpress ionNode ;

13 import org . acmestudio . acme . r u l e . node . feedback .

AcmeExpressionEvaluationException ;

14

15 import uk . ac . nc l . c j g . ws enhanced . common . AcmeInterface ;

16 import uk . ac . nc l . c j g . ws enhanced . common . Act iveAnalys i sChecker ;

17 import uk . ac . nc l . c j g . ws enhanced . common . Ana lys i sResu l t ;

18 import uk . ac . nc l . c j g . ws enhanced . common . Component ;

19 import uk . ac . nc l . c j g . ws enhanced . common . Port ;

20 import uk . ac . nc l . c j g . ws enhanced . common . ReportableExcept ion ;

21 import uk . ac . nc l . c j g . ws enhanced . common . Reporter ;

22 import uk . ac . nc l . c j g . ws enhanced . common .Wait ;

23

24 public c lass ChoiceGroupsHaveChoiceMaker implements

25 IExterna lAnalys i sExpress ionNode {

26

27 @Override

28 public Object eva luate (IAcmeType arg0 , List<Object> arg1 ,

29 Stack<AcmeError> arg2) throws

AcmeExpressionEvaluationException {

30 // pause the ana ly s i s to a l low AcmeStudio to do something

other than

31 // ex terna l ana ly s i s

32

33 Wait . de layAna lys i s () ;

34

35 // ex t rac t data types from ana ly s i s ca l l , t h i s should be

passed

36 // a s i n g l e component

37 St r ing ruleID = " ActiveAnalysisChoiceGroupsHaveChoiceMaker "

;

38 IAcmeComponent theElement = null ;

39 Analys i sResu l t theResu l t = null ;

40

41 java . u t i l . I t e r a t o r i = arg1 . i t e r a t o r () ;

42

43 // ex t rac t the required model elements from the passed l i s t

44 try {

45 theElement = (IAcmeComponent) i . next () ;

46 } catch (Exception e) {

47 Reporter . r epor t (ruleID , " Some fo the required elements

required "

48 + "(the connector and both attached ports) were "

49 + " not passed by acme to the analysis : \n" , e) ;

50 return Boolean .FALSE;

51 }

52

53 // check i f t h i s ru l e i s ac t i v e

54 try {

55 i f (! Act iveAnalys i sChecker . Check I fAna ly s i s I sAct ive (ruleID

,

56 theElement)) {

57 Reporter . r epor t (theElement , ruleID , "") ;

58 return Boolean .TRUE;

59 }

60 } catch (ReportableExcept ion rE) {

61 Reporter

62 . r epo r t (

63 theElement ,

64 ruleID ,

65 " There was a reportable Exception raised when

getting the activity status of this analysis :

\n" ,

66 rE) ;

67 return Boolean .FALSE;

68

69 } catch (Exception e) {

70 Reporter

71 . r epo r t (

72 theElement ,

331

73 ruleID ,

74 " There was a general Exception raised when

getting the activity status of this analysis :

\n" ,

75 e) ;

76 return Boolean .FALSE;

77 }

78

79 // perform the ana ly s i s

80 try {

81 AcmeInterface a i = new AcmeInterface (theElement) ;

82

83 St r ing thisComponentId = theElement . getName () ;

84 Component thisComponent = null ;

85

86 I t e r a t o r a l lE l ements = a i . e lements . i t e r a t o r () ;

87 while (a l lE l ements . hasNext ()) {

88 Component tempComp = (Component) a l lE l ements . next () ;

89 i f (tempComp . iD . equa l s IgnoreCase (thisComponentId)) {

90 thisComponent = tempComp ;

91 break ;

92 }

93 }

94

95 i f (thisComponent == null)

96 throw new Exception (

97 " The component was not found in the AcmeInterface ")

;

98

99 I t e r a t o r a l l P o r t s I t = thisComponent . por t s . i t e r a t o r () ;

100

101 Map<Str ing , Boolean> groups = new TreeMap<Str ing , Boolean

>() ;

102 boolean unicastWithNoGroup = fa l se ;

103 St r ing r epo r tDe t a i l s = "" ;

104

105 while (a l l P o r t s I t . hasNext ()) {

106 Port th i sPor t = (Port) a l l P o r t s I t . next () ;

107

108 i f (th i sPor t . i sUn i c a s t) {

109 i f (th i sPor t . choiceGroup == null

110 | | th i sPor t . choiceGroup . equa l s IgnoreCase (""))

111 unicastWithNoGroup = true ;

112 else {

113 i f (! groups . containsKey (th i sPor t . choiceGroup))

114 groups . put (th i sPor t . choiceGroup , new Boolean (

115 th i sPor t . choiceGroupMaker)) ;

116 else i f (th i sPor t . choiceGroupMaker)

117 groups . put (th i sPor t . choiceGroup , new Boolean (true

)) ;

118 }

119 }

120 }

121

122 boolean allGroupsHaveChoiceMaker = true ;

123

124 I t e r a t o r groups I t = groups . keySet () . i t e r a t o r () ;

125 while (g roups I t . hasNext ())

126 {

127 St r ing groupKey = (St r ing) groups I t . next () ;

128 Boolean thisGroupHasChoiceMaker = groups . get (groupKey) ;

129 i f (! thisGroupHasChoiceMaker . booleanValue ())

130 {

131 allGroupsHaveChoiceMaker = fa l se ;

132 r e po r tDe t a i l s += " The choice group " + groupKey + "

is without a choice maker \n" ;

133 }

134 }

135

136 i f (! allGroupsHaveChoiceMaker | | unicastWithNoGroup)

137 theResu l t = new Analys i sResu l t (false , r e p o r tDe t a i l s) ;

138 else

332

139 theResu l t = new Analys i sResu l t (true , r e p o r tDe t a i l s) ;

140 } catch (ReportableExcept ion e) {

141 Reporter . r epor t (theElement , ruleID , e . getMessage ()) ;

142 return Boolean .FALSE;

143 } catch (Exception e) {

144 Reporter

145 . r epo r t (

146 theElement ,

147 ruleID ,

148 " There was an Exception raised performing the

analysis : \n" ,

149 e) ;

150 return Boolean .FALSE;

151 }

152

153 // report and return the r e s u l t s

154 Reporter . r epor t (theElement , ruleID , theResu l t . getReport ()) ;

155 i f (theResu l t . ge tResu l t () == true)

156 return Boolean .TRUE;

157 else

158 return Boolean .FALSE;

159 }

160 }

F.4.6 Commission Mismatch

1 package uk . ac . nc l . c j g . ws enhanced ;

2

3 import java . u t i l . ArrayList ;

4 import java . u t i l . L inkedList ;

5 import java . u t i l . L i s t ;

6 import java . u t i l . Stack ;

7

8 import org . acmestudio . acme . core . IAcmeType ;

9 import org . acmestudio . acme . element . IAcmeComponent ;

10 import org . acmestudio . acme . environment . e r r o r . AcmeError ;

11 import org . acmestudio . acme . r u l e . node .

IExterna lAnalys i sExpress ionNode ;

12 import org . acmestudio . acme . r u l e . node . feedback .

AcmeExpressionEvaluationException ;

13

14 import uk . ac . nc l . c j g . ws enhanced . common . AcceptableExcept ion ;

15 import uk . ac . nc l . c j g . ws enhanced . common . Act iveAnalys i sChecker ;

16 import uk . ac . nc l . c j g . ws enhanced . common . Ana lys i sResu l t ;

17 import uk . ac . nc l . c j g . ws enhanced . common . CSPConnectorConstructor

;

18 import uk . ac . nc l . c j g . ws enhanced . common . CSPHidingSetConstructor

;

19 import uk . ac . nc l . c j g . ws enhanced . common . CSPModelBuilder ;

20 import uk . ac . nc l . c j g . ws enhanced . common . FDRResultsAnalyzer ;

21 import uk . ac . nc l . c j g . ws enhanced . common . Helper ;

22 import uk . ac . nc l . c j g . ws enhanced . common . ReportableExcept ion ;

23 import uk . ac . nc l . c j g . ws enhanced . common . Reporter ;

24 import uk . ac . nc l . c j g . ws enhanced . common .Wait ;

25

26 public c lass CommissionMismatch implements

IExterna lAnalys i sExpress ionNode {

27

28 @Override

29 public Object eva luate (IAcmeType arg0 , L ist<Object> arg1 ,

30 Stack<AcmeError> arg2) throws

AcmeExpressionEvaluationException {

31

32 // pause the ana ly s i s to a l low AcmeStudio to do something

other than

33 // ex terna l ana ly s i s

34

35 Wait . de layAna lys i s () ;

36

37

38

333

39 // ex t rac t data types from ana ly s i s ca l l , t h i s should be

passed

40 // a s i n g l e component

41 St r ing ruleID = " ActiveAnalysisCommissionMismatch " ;

42 IAcmeComponent theElement = null ;

43 Analys i sResu l t theResu l t = null ;

44

45 java . u t i l . I t e r a t o r i = arg1 . i t e r a t o r () ;

46

47 // ex t rac t the required model elements from the passed l i s t

48 try {

49 theElement = (IAcmeComponent) i . next () ;

50 } catch (Exception e) {

51 Reporter . r epor t (ruleID ,

52 " There was a problem extracting the required data : \n

" , e) ;

53 return Boolean .FALSE;

54 }

55

56 // check i f t h i s ru l e i s ac t i v e

57 try {

58 i f (! Act iveAnalys i sChecker . Check I fAna ly s i s I sAct ive (ruleID

,

59 theElement)) {

60 Reporter . r epor t (theElement , ruleID , "") ;

61 return Boolean .TRUE;

62 }

63 } catch (ReportableExcept ion rE) {

64 Reporter

65 . r epo r t (

66 theElement ,

67 ruleID ,

68 " There was a reportable Exception raised when

getting the activity status of this analysis :

\n" ,

69 rE) ;

70 return Boolean .FALSE;

71

72 } catch (Exception e) {

73 Reporter

74 . r epo r t (

75 theElement ,

76 ruleID ,

77 " There was a general Exception raised when

getting the activity status of this analysis :

\n" ,

78 e) ;

79 return Boolean .FALSE;

80 }

81

82 // perform the ana ly s i s

83 try {

84

85 St r ing outputPath = "/ home / carl / analysisModel . csp " ;

86

87 L i s t fdrRawResults = new LinkedList<Str ing >() ;

88 St r ing focusCompID = theElement . getName () ;

89 int ana ly s i sCho i c e = CSPModelBuilder .ANALYSIS DEADLOCK;

90

91

92 ArrayList theModel = CSPModelBuilder . buildModel (

ana lys i sCho ice ,

93 focusCompID , null , theElement) ;

94

95 St r ing theCSPModel = (St r ing) theModel . get (0) ;

96 CSPHidingSetConstructor hidCon = (CSPHidingSetConstructor

) theModel

97 . get (1) ;

98 CSPConnectorConstructor connCon = (

CSPConnectorConstructor) theModel

99 . get (2) ;

100

334

101 Helper . writeModelToFile (theCSPModel , outputPath) ;

102 fdrRawResults = Helper . processCSPModel (outputPath , 100) ;

103

104 FDRResultsAnalyzer ra = new FDRResultsAnalyzer (

ana lys i sCho ice ,

105 hidCon , focusCompID , connCon) ;

106 ra . submitDeadlockTraces (fdrRawResults) ;

107

108 // ra . repoart r e s u l t s i s true i f the ana ly s i s f a i l e d ,

whi le the ana ly s i s

109 // r e s u l t expects a f a i l e d ana ly s i s to return f a l s e .

110 i f (ra . r epo r tResu l t ())

111 {

112 theResu l t = new Analys i sResu l t (false , ra . r e p o r tDe t a i l s

()) ;

113 }

114 else

115 {

116 theResu l t = new Analys i sResu l t (true , ra . r e p o r tDe t a i l s ()

) ;

117 }

118

119 // theResu l t = MessageComparison . dataTypesMatch (port1 ,

port2 ,

120 // theMessageIndex) ;

121 } catch (ReportableExcept ion e) {

122 Reporter . r epor t (theElement , ruleID , e . getMessage ()) ;

123 return Boolean .FALSE;

124 } catch (Exception e) {

125 Reporter

126 . r epo r t (

127 theElement ,

128 ruleID ,

129 " There was an Exception raised performing the

analysis : \n" ,

130 e) ;

131 return Boolean .FALSE;

132 }

133

134 // report and return the r e s u l t s

135 Reporter . r epor t (theElement , ruleID , theResu l t . getReport ()) ;

136 i f (theResu l t . ge tResu l t () == true)

137 return Boolean .TRUE;

138 else

139 return Boolean .FALSE;

140 }

141

142 }

F.4.7 Commission Partial Match

1 package uk . ac . nc l . c j g . ws enhanced ;

2

3 import java . u t i l . ArrayList ;

4 import java . u t i l . L inkedList ;

5 import java . u t i l . L i s t ;

6 import java . u t i l . Stack ;

7

8 import org . acmestudio . acme . core . IAcmeType ;

9 import org . acmestudio . acme . element . IAcmeComponent ;

10 import org . acmestudio . acme . environment . e r r o r . AcmeError ;

11 import org . acmestudio . acme . r u l e . node .

IExterna lAnalys i sExpress ionNode ;

12 import org . acmestudio . acme . r u l e . node . feedback .

AcmeExpressionEvaluationException ;

13

14 import uk . ac . nc l . c j g . ws enhanced . common . Act iveAnalys i sChecker ;

15 import uk . ac . nc l . c j g . ws enhanced . common . Ana lys i sResu l t ;

16 import uk . ac . nc l . c j g . ws enhanced . common . CSPConnectorConstructor

;

17 import uk . ac . nc l . c j g . ws enhanced . common . CSPHidingSetConstructor

;

335

18 import uk . ac . nc l . c j g . ws enhanced . common . CSPModelBuilder ;

19 import uk . ac . nc l . c j g . ws enhanced . common . FDRResultsAnalyzer ;

20 import uk . ac . nc l . c j g . ws enhanced . common . Helper ;

21 import uk . ac . nc l . c j g . ws enhanced . common . ReportableExcept ion ;

22 import uk . ac . nc l . c j g . ws enhanced . common . Reporter ;

23 import uk . ac . nc l . c j g . ws enhanced . common .Wait ;

24

25 public c lass CommissionPartialMatch implements

IExterna lAnalys i sExpress ionNode {

26

27 @Override

28 public Object eva luate (IAcmeType arg0 , List<Object> arg1 ,

29 Stack<AcmeError> arg2) throws

AcmeExpressionEvaluationException {

30

31 // pause the ana ly s i s to a l low AcmeStudio to do something

other than

32 // ex terna l ana ly s i s

33

34 Wait . de layAna lys i s () ;

35

36

37

38 // ex t rac t data types from ana ly s i s ca l l , t h i s should be

passed

39 // a s i n g l e component

40 St r ing ruleID = " ActiveAnalysisCommissionPartialMatch " ;

41 IAcmeComponent theElement = null ;

42 Analys i sResu l t theResu l t = null ;

43

44 java . u t i l . I t e r a t o r i = arg1 . i t e r a t o r () ;

45

46 // ex t rac t the required model elements from the passed l i s t

47 try {

48 theElement = (IAcmeComponent) i . next () ;

49 } catch (Exception e) {

50 Reporter . r epor t (ruleID ,

51 " There was a problem extracting the required data : \n

" , e) ;

52 return Boolean .FALSE;

53 }

54

55 // check i f t h i s ru l e i s ac t i v e

56 try {

57 i f (! Act iveAnalys i sChecker . Check I fAna ly s i s I sAct ive (ruleID

,

58 theElement)) {

59 Reporter . r epor t (theElement , ruleID , "") ;

60 return Boolean .TRUE;

61 }

62 } catch (ReportableExcept ion rE) {

63 Reporter

64 . r epo r t (

65 theElement ,

66 ruleID ,

67 " There was a reportable Exception raised when

getting the activity status of this analysis :

\n" ,

68 rE) ;

69 return Boolean .FALSE;

70

71 } catch (Exception e) {

72 Reporter

73 . r epo r t (

74 theElement ,

75 ruleID ,

76 " There was a general Exception raised when

getting the activity status of this analysis :

\n" ,

77 e) ;

78 return Boolean .FALSE;

79 }

336

80

81 // perform the ana ly s i s

82 try {

83

84 St r ing outputPath = "/ home / carl / analysisModel . csp " ;

85

86 L i s t fdrRawResults = new LinkedList<Str ing >() ;

87 St r ing focusCompID = theElement . getName () ;

88 int ana ly s i sCho i c e = CSPModelBuilder .

ANALYSIS DEADLOCK PARTIAL;

89

90

91 ArrayList theModel = CSPModelBuilder . buildModel (

ana lys i sCho ice ,

92 focusCompID , null , theElement) ;

93

94 St r ing theCSPModel = (St r ing) theModel . get (0) ;

95 CSPHidingSetConstructor hidCon = (CSPHidingSetConstructor

) theModel

96 . get (1) ;

97 CSPConnectorConstructor connCon = (

CSPConnectorConstructor) theModel

98 . get (2) ;

99

100 Helper . writeModelToFile (theCSPModel , outputPath) ;

101 fdrRawResults = Helper . processCSPModel (outputPath , 100) ;

102

103 FDRResultsAnalyzer ra = new FDRResultsAnalyzer (

ana lys i sCho ice ,

104 hidCon , focusCompID , connCon) ;

105 ra . submitDeadlockTraces (fdrRawResults) ;

106

107 // ra . repoart r e s u l t s i s true i f the ana ly s i s f a i l e d ,

whi le the ana ly s i s

108 // r e s u l t expects a f a i l e d ana ly s i s to return f a l s e .

109 i f (ra . r epo r tResu l t ())

110 {

111 theResu l t = new Analys i sResu l t (false , ra . r e p o r tDe t a i l s

()) ;

112 }

113 else

114 {

115 theResu l t = new Analys i sResu l t (true , ra . r e p o r tDe t a i l s ()

) ;

116 }

117

118 // theResu l t = MessageComparison . dataTypesMatch (port1 ,

port2 ,

119 // theMessageIndex) ;

120 } catch (ReportableExcept ion e) {

121 Reporter . r epor t (theElement , ruleID , e . getMessage ()) ;

122 return Boolean .FALSE;

123 } catch (Exception e) {

124 Reporter

125 . r epo r t (

126 theElement ,

127 ruleID ,

128 " There was an Exception raised performing the

analysis : \n" ,

129 e) ;

130 return Boolean .FALSE;

131 }

132

133 // report and return the r e s u l t s

134 Reporter . r epor t (theElement , ruleID , theResu l t . getReport ()) ;

135 i f (theResu l t . ge tResu l t () == true)

136 return Boolean .TRUE;

137 else

138 return Boolean .FALSE;

139 }

140

141 }

337

F.4.8 Component

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2 import java . u t i l . I t e r a t o r ;

3 import java . u t i l .Map;

4 import java . u t i l . Set ;

5 import java . u t i l . TreeMap ;

6 import java . u t i l . TreeSet ;

7

8 public c lass Component implements Comparable<Component>{

9 public St r ing iD ;

10 public St r ing c en t r a lP r o c e s sDe s c r i p t i on ;

11 public boolean inOurControlDomain ;

12 public Set por t s ;

13 public Map centra lDataRecords = new TreeMap () ;

14

15 public Component (S t r ing iD)

16 {

17 this . iD = iD ;

18 port s = new TreeSet () ;

19 }

20

21 public void addPort (Port thePort)

22 {

23 port s . add (thePort) ;

24 thePort . ch i ldOf = this ;

25 }

26

27 public int compareTo (Component other)

28 {

29 return this . iD . compareTo (other . iD) ;

30 }

31

32 public St r ing toS t r i ng ()

33 {

34 St r ing toReturn ="" ;

35 toReturn += " ID " + iD + " \n" ;

36 toReturn += " Central process \n " +

cen t r a lP ro c e s sDe s c r i p t i on + " \n" ;

37 toReturn += " in our control domain \n " +

inOurControlDomain + " \n" ;

38 toReturn += " has ports : \n" ;

39 I t e r a t o r i 1 = port s . i t e r a t o r () ;

40 while (i 1 . hasNext ())

41 {

42 Port th i sPor t = (Port) i 1 . next () ;

43 toReturn += th i sPor t . t oS t r i ng () ;

44 }

45

46 return toReturn ;

47 }

48

49 }

F.4.9 Concurrent Calls To This Port

1 package uk . ac . nc l . c j g . ws enhanced ;

2

3 import java . u t i l . ArrayList ;

4 import java . u t i l . L inkedList ;

5 import java . u t i l . L i s t ;

6 import java . u t i l . Stack ;

7

8 import org . acmestudio . acme . core . IAcmeType ;

9 import org . acmestudio . acme . core . type . IAcmeEnumValue ;

10 import org . acmestudio . acme . element . IAcmeComponent ;

11 import org . acmestudio . acme . element . IAcmePort ;

12 import org . acmestudio . acme . element . property . IAcmeProperty ;

13 import org . acmestudio . acme . environment . e r r o r . AcmeError ;

14 import org . acmestudio . acme . r u l e . node .

IExterna lAnalys i sExpress ionNode ;

338

15 import org . acmestudio . acme . r u l e . node . feedback .

AcmeExpressionEvaluationException ;

16

17 import uk . ac . nc l . c j g . ws enhanced . common . Act iveAnalys i sChecker ;

18 import uk . ac . nc l . c j g . ws enhanced . common . Ana lys i sResu l t ;

19 import uk . ac . nc l . c j g . ws enhanced . common . CSPConnectorConstructor

;

20 import uk . ac . nc l . c j g . ws enhanced . common . CSPHidingSetConstructor

;

21 import uk . ac . nc l . c j g . ws enhanced . common . CSPModelBuilder ;

22 import uk . ac . nc l . c j g . ws enhanced . common . FDRResultsAnalyzer ;

23 import uk . ac . nc l . c j g . ws enhanced . common . Helper ;

24 import uk . ac . nc l . c j g . ws enhanced . common . ReportableExcept ion ;

25 import uk . ac . nc l . c j g . ws enhanced . common . Reporter ;

26 import uk . ac . nc l . c j g . ws enhanced . common .Wait ;

27

28 public c lass ConcurrentCal lsToThisPort implements

29 IExterna lAnalys i sExpress ionNode {

30

31 @Override

32 public Object eva luate (IAcmeType arg0 , List<Object> arg1 ,

33 Stack<AcmeError> arg2) throws

AcmeExpressionEvaluationException {

34

35 // pause the ana ly s i s to a l low AcmeStudio to do something

other than

36 // ex terna l ana ly s i s

37

38 Wait . de layAna lys i s () ;

39

40 // ex t rac t data types from ana ly s i s ca l l , t h i s should be

passed

41 // a s i n g l e component

42 St r ing ruleID = " ActiveAnalysisConcurrentCallsToThisPort " ;

43 IAcmePort theElement = null ;

44 Analys i sResu l t theResu l t = null ;

45

46 java . u t i l . I t e r a t o r i = arg1 . i t e r a t o r () ;

47

48 // ex t rac t the required model elements from the passed l i s t

49 try {

50 theElement = (IAcmePort) i . next () ;

51 } catch (Exception e) {

52 Reporter . r epor t (ruleID ,

53 " There was a problem extracting the required data : \n

" , e) ;

54 return Boolean .FALSE;

55 }

56

57 // check i f t h i s ru l e i s ac t i v e

58 try {

59 i f (! Act iveAnalys i sChecker . Check I fAna ly s i s I sAct ive (ruleID

,

60 theElement)) {

61 Reporter . r epor t (theElement , ruleID , "") ;

62 return Boolean .TRUE;

63 }

64 } catch (ReportableExcept ion rE) {

65 Reporter

66 . r epo r t (

67 theElement ,

68 ruleID ,

69 " There was a reportable Exception raised when

getting the activity status of this analysis :

\n" ,

70 rE) ;

71 return Boolean .FALSE;

72

73 } catch (Exception e) {

74 Reporter

75 . r epo r t (

76 theElement ,

339

77 ruleID ,

78 " There was a general Exception raised when

getting the activity status of this analysis :

\n" ,

79 e) ;

80 return Boolean .FALSE;

81 }

82

83 // perform the ana ly s i s

84 try {

85 // f i r s t check for a reentrant port , these can not f a i l

the ana ly s i s

86 // so simply return a true

87

88 IAcmeProperty reent rantProper ty = theElement

89 . getProperty (" Reentrant ") ;

90 St r ing r e ent rant = ((IAcmeEnumValue) reent rantProper ty .

getValue ())

91 . getValue () ;

92 i f (r e en t rant . equa l s IgnoreCase (" yes ")) {

93 // no need to proceed with the ana lys is , j u s t return

true ;

94 theResu l t = new Analys i sResu l t (true , "") ;

95 } else {

96

97 St r ing outputPath = "/ home / carl / analysisModel . csp " ;

98 L i s t fdrRawResults = new LinkedList<Str ing >() ;

99

100 St r ing focusPortID = theElement . getName () ;

101 St r ing focusPortParentCompID = ((IAcmeComponent)

theElement

102 . getParent ()) . getName () ;

103

104 int ana ly s i sCho i c e = CSPModelBuilder .

ANALYSIS THREAD SPEC REFINEMENT;

105

106 ArrayList theModel = CSPModelBuilder . buildModel (

ana lys i sCho ice ,

107 focusPortParentCompID , focusPortID , theElement) ;

108

109 St r ing theCSPModel = (St r ing) theModel . get (0) ;

110 CSPHidingSetConstructor hidCon = (

CSPHidingSetConstructor) theModel

111 . get (1) ;

112 CSPConnectorConstructor connCon = (

CSPConnectorConstructor) theModel

113 . get (2) ;

114

115 Helper . writeModelToFile (theCSPModel , outputPath) ;

116 fdrRawResults = Helper . processCSPModel (outputPath , 100)

;

117

118 FDRResultsAnalyzer ra = new FDRResultsAnalyzer (

ana lys i sCho ice ,

119 hidCon , focusPortParentCompID , connCon) ;

120 ra . submitRefinementTraces (fdrRawResults) ;

121

122 // ra . repoart r e s u l t s i s true i f the ana ly s i s f a i l e d ,

whi le the

123 // ana ly s i s

124 // r e s u l t expects a f a i l e d ana ly s i s to return f a l s e .

125 i f (ra . r epo r tResu l t ()) {

126 theResu l t = new Analys i sResu l t (false , ra .

r e p o r tDe t a i l s ()) ;

127 } else {

128 theResu l t = new Analys i sResu l t (true , ra . r e p o r tDe t a i l s

()) ;

129 }

130

131 // theResu l t = MessageComparison . dataTypesMatch (port1 ,

port2 ,

132 // theMessageIndex) ;

340

133 }

134 } catch (ReportableExcept ion e) {

135 Reporter . r epor t (theElement , ruleID , e . getMessage ()) ;

136 return Boolean .FALSE;

137 } catch (Exception e) {

138 Reporter

139 . r epo r t (

140 theElement ,

141 ruleID ,

142 " There was an Exception raised performing the

analysis : \n" ,

143 e) ;

144 return Boolean .FALSE;

145 }

146

147 // report and return the r e s u l t s

148 Reporter . r epor t (theElement , ruleID , theResu l t . getReport ()) ;

149 i f (theResu l t . ge tResu l t () == true)

150 return Boolean .TRUE;

151 else

152 return Boolean .FALSE;

153 }

154

155 }

F.4.10 Connector

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3 import java . u t i l .Map;

4

5 public c lass Connector implements Comparable<Connector> {

6 St r ing iD ;

7 Port r1 ;

8 Port r2 ;

9 // pub l i c s t a t i c f i n a l boolean IS GOLDEN CONNECTOR = true ;

10 // pub l i c s t a t i c f i n a l boolean NOTGOLDENCONNECTOR = f a l s e ;

11 public stat ic f ina l int IS COOPERATIVE CONNECTOR = 1 ;

12 public stat ic f ina l int IS COMMONCONNECTOR = 2 ;

13 public stat ic f ina l int IS STUBBORN CONNECTOR = 3 ;

14 //boolean isGolden ;

15 int connType ;

16

17 public Connector (S t r ing iD , Port r1 , Port r2) {

18 this . iD = iD ;

19 this . r1 = r1 ;

20 this . r2 = r2 ;

21 // t h i s . isGolden = NOTGOLDENCONNECTOR;

22 this . connType = IS COMMONCONNECTOR;

23

24 r1 . attachedTo . add (this) ;

25 r2 . attachedTo . add (this) ;

26 }

27

28 public Connector (S t r ing iD , Port r1 , int connType) {

29 this . iD = iD ;

30 this . r1 = r1 ;

31 this . r2 = null ;

32 this . connType = connType ;

33

34 r1 . attachedTo . add (this) ;

35 }

36

37 public int compareTo (Connector other) {

38 return this . iD . compareTo (other . iD) ;

39 }

40

41 public St r ing toS t r i ng () {

42 St r ing toReturn = " a conn called " ;

43

44 toReturn += " conn id : \n" ;

45 toReturn += "" + iD + " \n" ;

341

46

47 toReturn += " port1 \n" ;

48 toReturn += "" + r1 . iD + " \n" ;

49

50 toReturn += " connector type (as an int , 1 = cooperative

, 2 = common , 3 = stubborn) \n" ;

51 toReturn += "" + connType + " \n" ;

52

53 i f (connType == IS COMMONCONNECTOR) {

54 toReturn += " port 2 \n" ;

55 toReturn += "" + r2 . iD + " \n" ;

56 }

57 return toReturn ;

58 }

59 }

F.4.11 CSP Connector Constructor

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3 import java . u t i l . I t e r a t o r ;

4 import java . u t i l . Set ;

5 import java . u t i l . TreeSet ;

6

7 public c lass CSPConnectorConstructor {

8

9 private f ina l St r ing connectorProcessID = " CONN " ;

10 private Set rowDataTuples = new TreeSet<ConnectorDataTuple>()

;

11

12 public St r ing getConnectorProcessID () {

13 return connectorProcessID ;

14 }

15

16 public void addSentMessage (St r ing ConnectorID , St r ing sentMsg

,

17 int mEPIndex , int connType , boolean

portInOurControlDomain) {

18 Helper . writeDebug (" trying to add a set msg " + sentMsg + "

/n") ;

19

20 addPartDataTuple (ConnectorID , sentMsg , null , mEPIndex ,

connType ,

21 portInOurControlDomain , fa l se) ;

22 }

23

24 public void addReceivedMessage (St r ing ConnectorID , St r ing

recvMsg ,

25 int mEPIndex , int connType , boolean

portInOurControlDomain) {

26 Helper . writeDebug (" trying to add a recv msg " + recvMsg +

" /n") ;

27

28 addPartDataTuple (ConnectorID , null , recvMsg , mEPIndex ,

connType ,

29 false , portInOurControlDomain) ;

30 }

31

32 public St r ing getConnector () {

33

34 I t e r a t o r rowElements = rowDataTuples . i t e r a t o r () ;

35 St r ing conn = connectorProcessID + " = " ;

36

37 ConnectorDataTuple f i r s t = (ConnectorDataTuple) rowElements

. next () ;

38 i f (f i r s t != null) {

39 conn += f i r s t . getRow () ;

40 }

41

42 while (rowElements . hasNext ()) {

43 ConnectorDataTuple th i sTuple = (ConnectorDataTuple)

rowElements

342

44 . next () ;

45 conn += " [] " + thisTuple . getRow () ;

46 }

47 return conn ;

48 }

49

50 public boolean isMessageUnderOurControl (S t r ing msgId)

51 throws ReportableExcept ion {

52 I t e r a t o r i = rowDataTuples . i t e r a t o r () ;

53 while (i . hasNext ()) {

54 ConnectorDataTuple thisOne = (ConnectorDataTuple) i . next

() ;

55

56 i f (thisOne . tupleContainsMessage (msgId)) {

57 return thisOne . tupleContainsMessageUnderOurControl () ;

58 }

59

60 }

61 throw new ReportableExcept ion (

62 " Message not found when attempting to determine if is

it under our control or not , problem with the data

handling of the external analysis somewhere ") ;

63 }

64

65 public boolean isReceivedMessageUnderOurControl (S t r ing msgId)

66 throws ReportableExcept ion {

67 I t e r a t o r i = rowDataTuples . i t e r a t o r () ;

68 while (i . hasNext ()) {

69 ConnectorDataTuple thisOne = (ConnectorDataTuple) i . next

() ;

70

71 i f (thisOne . tupleContainsMessage (msgId)) {

72 Helper . writeDebug (" found a tuple that contains this

message , recv under control = " + thisOne .

tupleContainsReceivedMessageUnderOurControl ()) ;

73 return thisOne .

tupleContainsReceivedMessageUnderOurControl () ;

74 }

75

76 }

77 throw new ReportableExcept ion (

78 " Message not found when attempting to determine if is

it under our control or not , problem with the data

handling of the external analysis somewhere ") ;

79 }

80

81 private void addPartDataTuple (S t r ing ConnectorID , S t r ing

sentMsg ,

82 St r ing recvMsg , int mEPIndex , int connType ,

83 boolean sentContro l , boolean recvContro l) {

84 ConnectorDataTuple newTuple = new ConnectorDataTuple (

ConnectorID ,

85 sentMsg , recvMsg , mEPIndex , connType , sentContro l ,

86 recvContro l) ;

87 i f (rowDataTuples . conta in s (newTuple)) {

88 I t e r a t o r e lements = rowDataTuples . i t e r a t o r () ;

89 boolean found = fa l se ;

90 while (e lements . hasNext () && ! found) {

91 ConnectorDataTuple th i sTuple = (ConnectorDataTuple)

e lements

92 . next () ;

93 i f (th i sTuple . compareTo (newTuple) == 0) {

94 found = true ;

95 i f (sentMsg != null) {

96 th i sTuple . setSentMsg (sentMsg) ;

97 th i sTuple . s e tSentContro l (sentContro l) ;

98 }

99 i f (recvMsg != null) {

100 th i sTuple . setRecvMsg (recvMsg) ;

101 th i sTuple . setRecvControl (recvContro l) ;

102 }

343

103 }

104 }

105 } else {

106 rowDataTuples . add (newTuple) ;

107 }

108

109 }

110

111 private class ConnectorDataTuple implements Comparable<

ConnectorDataTuple> {

112 private St r ing connectorID = null ;

113 private St r ing sentMsg = null ;

114 private St r ing recvMsg = null ;

115 private boolean sentUnderOurControl ;

116 private boolean recvUnderOurControl ;

117 private int mEPIndex = −1;

118 private int connType ;

119

120 public ConnectorDataTuple (S t r ing connectorID , St r ing

sentMsg ,

121 St r ing recvMsg , int mEPIndex , int connType ,

122 boolean sentUnderControl , boolean recvUnderControl) {

123 this . connectorID = connectorID ;

124 this . sentMsg = sentMsg ;

125 this . recvMsg = recvMsg ;

126 this . mEPIndex = mEPIndex ;

127 this . connType = connType ;

128 this . sentUnderOurControl = sentUnderControl ;

129 this . recvUnderOurControl = recvUnderControl ;

130 }

131

132 public St r ing getConnectorID () {

133 return connectorID ;

134 }

135

136 public St r ing getSentMsg () {

137 return sentMsg ;

138 }

139

140 public St r ing getRecvMsg () {

141 return recvMsg ;

142 }

143

144 public int getMEPIndex () {

145 return mEPIndex ;

146 }

147

148 public void setSentMsg (St r ing sentMsg) {

149 this . sentMsg = sentMsg ;

150 }

151

152 public void se tSentContro l (boolean c t r l) {

153 this . sentUnderOurControl = c t r l ;

154 }

155

156 public void setRecvMsg (St r ing recvMsg) {

157 this . recvMsg = recvMsg ;

158 }

159

160 public void setRecvControl (boolean c t r l) {

161 this . recvUnderOurControl = c t r l ;

162 }

163

164 public boolean sentUnderControl () {

165 return sentUnderOurControl ;

166 }

167

168 public boolean recvUnderControl () {

169 return recvUnderOurControl ;

170 }

171

172 public boolean tupleContainsMessage (St r ing msg) {

344

173

174 Helper . writeDebug (" sent message = " + sentMsg) ;

175 Helper . writeDebug (" Recv message = " + recvMsg) ;

176

177 i f (sentMsg != null && sentMsg . equa l s (msg))

178 return true ;

179

180 i f (recvMsg != null && recvMsg . equa l s (msg))

181 return true ;

182

183 return fa l se ;

184 }

185

186 public boolean tupleContainsMessageUnderOurControl () {

187

188 i f (sentUnderOurControl | | recvUnderOurControl)

189 return true ;

190 else

191 return fa l se ;

192

193 }

194

195 public boolean tupleContainsReceivedMessageUnderOurControl

() {

196 return recvUnderOurControl ;

197 }

198

199 public St r ing getRow () {

200 St r ing row = "" ;

201 Helper . writeDebug (" the connector type value passed is "

+ connType) ;

202

203 i f (connType == Connector .IS COMMONCONNECTOR) {

204 Helper . writeDebug (" common type processed ") ;

205 i f (sentMsg == null) {

206 row += " faux -> " ;

207 } else {

208 row += sentMsg + " -> " ;

209 }

210

211 i f (recvMsg == null) {

212 row += " faux -> " + connectorProcessID + "\n" ;

213 } else {

214 row += recvMsg + " -> " + connectorProcessID + " \n" ;

215 }

216 } else i f (connType == Connector .IS STUBBORN CONNECTOR) {

217 Helper . writeDebug (" stubborn type processed ") ;

218 i f (sentMsg == null) {

219 row += " faux -> " + recvMsg + " -> " +

connectorProcessID + " \n" ;

220 } else {

221 row += sentMsg + " -> STOP \n" ;

222 }

223 } else {

224 Helper . writeDebug (" coop type processed ") ;

225 i f (sentMsg == null) {

226 row += recvMsg + " -> " + connectorProcessID + " \n" ;

227 } else {

228 row += sentMsg + " -> " + connectorProcessID + " \n" ;

229 }

230 }

231 return row ;

232 }

233

234 public int compareTo (ConnectorDataTuple other) {

235 St r ing th i s ID = connectorID + mEPIndex ;

236 St r ing otherID = other . connectorID + other . mEPIndex ;

237 return th i s ID . compareTo (otherID) ;

238 }

239 }

240 }

345

F.4.12 CSP Hiding Set Constructor

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3 import java . u t i l . ArrayList ;

4 import java . u t i l . Comparator ;

5 import java . u t i l . HashMap ;

6 import java . u t i l . I t e r a t o r ;

7 import java . u t i l .Map;

8 import java . u t i l . Set ;

9 import java . u t i l . TreeSet ;

10

11 public c lass CSPHidingSetConstructor {

12

13 private Map messages = new HashMap() ;

14 private Map t r i g g e r s = new HashMap() ;

15 public stat ic f ina l int SENT MESSAGE = 0 ;

16 public stat ic f ina l int RECEIVED MESSAGE = 1 ;

17

18 public void addMessage (S t r ing compID , St r ing message , int

d i r e c t i o n) {

19 i f (! messages . containsKey (compID)) {

20 messages . put (compID ,

21 new TreeSet<ArrayList>(new msgDataComparator ())) ;

22 }

23 Set va lueSet = (TreeSet) messages . get (compID) ;

24 ArrayList temp = new ArrayList () ;

25 temp . add (null) ;

26 temp . add (null) ;

27 temp . s e t (0 , message) ;

28 temp . s e t (1 , new I n t eg e r (d i r e c t i o n)) ;

29 va lueSet . add (temp) ;

30 }

31

32 public boolean compHasTriggers (S t r ing compID) {

33 Set keySet = t r i g g e r s . keySet () ;

34 return keySet . conta in s (compID) ;

35 }

36

37 public boolean otherThanCompHasTriggers (S t r ing compID)

38 {

39 Set keySet = t r i g g e r s . keySet () ;

40 i f (keySet . conta in s (compID))

41 return (keySet . s i z e ()>1) ;

42 else

43 return (keySet . s i z e ()>0) ;

44 }

45

46 public boolean sysHasTr iggers () {

47 Set keySet = t r i g g e r s . keySet () ;

48 i f (keySet . s i z e () == 0)

49 return fa l se ;

50 else

51 return true ;

52 }

53

54 public void addTrigger (S t r ing compID , St r ing t r i g g e r) {

55 i f (! t r i g g e r s . containsKey (compID)) {

56 t r i g g e r s . put (compID , new TreeSet ()) ;

57 }

58 Set va lueSet = (TreeSet) t r i g g e r s . get (compID) ;

59 va lueSet . add (t r i g g e r) ;

60 }

61

62 public St r ing getMessagesForComp (St r ing compID) {

63 St r ing theL i s t = "" ;

64 Set compMsgs = (TreeSet) messages . get (compID) ;

65 I t e r a t o r msgIt = compMsgs . i t e r a t o r () ;

66

67 ArrayList msgData = (ArrayList) msgIt . next () ;

68 i f (msgData != null) {

69 th eL i s t = (St r ing) msgData . get (0) ;

346

70 }

71

72 while (msgIt . hasNext ()) {

73 msgData = (ArrayList) msgIt . next () ;

74 th eL i s t += " , " + (St r ing) msgData . get (0) ;

75 }

76 return th eL i s t ;

77 }

78

79 public St r ing getTriggersForComp (St r ing compID) {

80 St r ing theL i s t = "" ;

81 Set compTriggers = (TreeSet) t r i g g e r s . get (compID) ;

82 I t e r a t o r t r g I t = compTriggers . i t e r a t o r () ;

83

84 St r ing f i r s t = (St r ing) t r g I t . next () ;

85 i f (f i r s t != null) {

86 th eL i s t = f i r s t ;

87 }

88

89 St r ing th i sTrg = null ;

90 while (t r g I t . hasNext ()) {

91 th i sTrg = (St r ing) t r g I t . next () ;

92 th eL i s t += " , " + thisTrg ;

93 }

94 return th eL i s t ;

95 }

96

97 public St r ing getMesagesNotForComp (St r ing compID) {

98 Set compIDs = messages . keySet () ;

99 I t e r a t o r compIDIt = compIDs . i t e r a t o r () ;

100

101 St r ing theMessages = "" ;

102 boolean f i r s t = true ;

103 St r ing th i s ID ;

104 while (compIDIt . hasNext ()) {

105 th i s ID = (St r ing) compIDIt . next () ;

106 i f (! th i s ID . equa l s (compID . trim ())) {

107

108 St r ing compMsgs = getMessagesForComp (th i s ID) ;

109

110 i f (f i r s t) {

111 f i r s t = fa l se ;

112 theMessages += compMsgs ;

113 } else {

114 theMessages += " , " + compMsgs ;

115 }

116 }

117 }

118 return theMessages ;

119 }

120

121 public Set getAl lMessagesAndTriggers () {

122 Set a l lEvent s = new TreeSet () ;

123

124 Set compIDs = messages . keySet () ;

125 I t e r a t o r compIDIt = compIDs . i t e r a t o r () ;

126 St r ing th i s ID ;

127 while (compIDIt . hasNext ()) {

128 th i s ID = (St r ing) compIDIt . next () ;

129 Set compMsgs = (TreeSet) messages . get (th i s ID) ;

130 I t e r a t o r compMsgsIt = compMsgs . i t e r a t o r () ;

131 while (compMsgsIt . hasNext ()) {

132 ArrayList thisMsgData = (ArrayList) compMsgsIt . next () ;

133 a l lEvent s . add ((St r ing) thisMsgData . get (0)) ;

134 }

135 }

136

137 compIDs = t r i g g e r s . keySet () ;

138 compIDIt = compIDs . i t e r a t o r () ;

139 while (compIDIt . hasNext ()) {

140 th i s ID = (St r ing) compIDIt . next () ;

141 Set compTrgs = (TreeSet) t r i g g e r s . get (th i s ID) ;

347

142 I t e r a t o r compTrgsIt = compTrgs . i t e r a t o r () ;

143 while (compTrgsIt . hasNext ()) {

144 a l lEvent s . add ((St r ing) compTrgsIt . next ()) ;

145 }

146 }

147

148 return a l lEvent s ;

149 }

150

151 public St r ing getTriggersNotForComp (St r ing compID) {

152 Set compIDs = t r i g g e r s . keySet () ;

153 I t e r a t o r compIDIt = compIDs . i t e r a t o r () ;

154

155 St r ing theTr igge r s = "" ;

156 boolean f i r s t = true ;

157 St r ing th i s ID ;

158 while (compIDIt . hasNext ()) {

159 th i s ID = (St r ing) compIDIt . next () ;

160 i f (! th i s ID . equa l s (compID . trim ())) {

161 Set compTrgs = (TreeSet) t r i g g e r s . get (th i s ID) ;

162 I t e r a t o r compTrgsIt = compTrgs . i t e r a t o r () ;

163 while (compTrgsIt . hasNext ()) {

164 i f (! f i r s t) {

165 theTr igge r s += " , " ;

166 } else {

167 f i r s t = fa l se ;

168 }

169 theTr igge r s += (St r ing) compTrgsIt . next () ;

170 }

171 }

172 }

173 return theTr igge r s ;

174 }

175

176 public St r ing getAl lMessages () {

177 St r ing messageList = "" ;

178 boolean f i r s t = true ;

179 Set compIDs = messages . keySet () ;

180 I t e r a t o r compIDIt = compIDs . i t e r a t o r () ;

181 while (compIDIt . hasNext ()) {

182 St r ing compID = (St r ing) compIDIt . next () ;

183 i f (f i r s t) {

184 messageList += " faux , " + getMessagesForComp (compID) ;

185 f i r s t = fa l se ;

186 } else {

187 messageList += " , " + getMessagesForComp (compID) ;

188 }

189 }

190 return messageList ;

191 }

192

193 public St r ing g e tA l lT r i g g e r s () {

194 St r ing t r i g g e r L i s t = "" ;

195 boolean f i r s t = true ;

196 Set compIDs = t r i g g e r s . keySet () ;

197 I t e r a t o r compIDIt = compIDs . i t e r a t o r () ;

198 while (compIDIt . hasNext ()) {

199 St r ing compID = (St r ing) compIDIt . next () ;

200 i f (f i r s t) {

201 t r i g g e r L i s t += getTriggersForComp (compID) ;

202 f i r s t = fa l se ;

203 } else {

204 t r i g g e r L i s t += " , " + getTriggersForComp (compID) ;

205 }

206 }

207 return t r i g g e r L i s t ;

208 }

209

210 public St r ing getChannels () {

211 St r ing channelDec = " channel " ;

212

213 // add messages

348

214 channelDec += getAl lMessages () ;

215

216 i f (sysHasTr iggers ()) {

217 // add t r i g g e r s

218 channelDec += " , " + ge tA l lT r i g g e r s () + " \n" ;

219 }

220

221 return channelDec ;

222

223 }

224

225 public Set getSetMessagesForComp (St r ing compID) {

226 Set compMsgData = (TreeSet) messages . get (compID) ;

227 Set theMessages = new TreeSet () ;

228 I t e r a t o r i = compMsgData . i t e r a t o r () ;

229

230 while (i . hasNext ()) {

231 ArrayList th isData = (ArrayList) i . next () ;

232 theMessages . add ((St r ing) thisData . get (0)) ;

233 }

234 return theMessages ;

235 }

236

237 public Set getSetMessagesDataForComp (St r ing compID) {

238 return (TreeSet) messages . get (compID) ;

239 }

240

241 public c lass msgDataComparator implements Comparator<

ArrayList> {

242 public int compare (ArrayList f i r s t , ArrayList second) {

243 St r ing f i rstName = (St r ing) f i r s t . get (0) ;

244 St r ing secondName = (St r ing) second . get (0) ;

245

246 return f i rstName . compareTo (secondName) ;

247 }

248 }

249

250 }

F.4.13 CSP Memory Constructor

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2 import java . u t i l . ArrayList ;

3 import java . u t i l . HashMap ;

4 import java . u t i l . I t e r a t o r ;

5 import java . u t i l .Map;

6 import java . u t i l . Set ;

7 import java . u t i l . TreeSet ;

8

9 public c lass CSPMemoryConstructor {

10 private Map memoryMaps = new HashMap() ;

11

12 public void addChoiceMaker (St r ing compID , St r ing groupID ,

St r ing message ,

13 St r ing targetID) {

14 addRecord (compID , groupID , message , targetID , true) ;

15 }

16

17 public void addChoiceFol lower (St r ing compID , St r ing groupID ,

18 St r ing message , S t r ing target ID) {

19 addRecord (compID , groupID , message , targetID , fa l se) ;

20 }

21

22 private void addRecord (St r ing compID , St r ing groupID , St r ing

message ,

23 St r ing targetID , boolean choiceMaker) {

24 Map thisComponent = null ;

25 Map thisGroup = null ;

26 ArrayList th i sTarge t = null ;

27 Set messages = null ;

28

29 // check for and add component i f required

349

30

31 i f (! memoryMaps . containsKey (compID)) {

32 memoryMaps . put (compID , new HashMap()) ;

33 }

34 thisComponent = (HashMap) memoryMaps . get (compID) ;

35

36 // check for and add group i f required

37 i f (! thisComponent . containsKey (groupID)) {

38 thisComponent . put (groupID , new HashMap()) ;

39 }

40 thisGroup = (HashMap) thisComponent . get (groupID) ;

41

42 // check for and add ta rge t i f required

43 i f (! thisGroup . containsKey (target ID)) {

44 ArrayList temp = new ArrayList (2) ;

45 temp . add (0 , new TreeSet ()) ;

46 temp . add (1 , new TreeSet ()) ;

47 thisGroup . put (targetID , temp) ;

48 }

49 th i sTarge t = (ArrayList) thisGroup . get (targetID) ;

50

51 i f (choiceMaker) {

52 messages = (Set) th i sTarge t . get (0) ;

53 } else {

54 messages = (Set) th i sTarge t . get (1) ;

55 }

56 // j u s t add the message to the se t

57 messages . add (message) ;

58 }

59

60 public St r ing getComponentMemProcess (S t r ing compID) {

61

62 St r ing baseName = getComponentMemProcessID (compID) ;

63 St r ing componentMemoryProcesses = "" ;

64 St r ing componentMemoryProcessInterleave = null ;

65 Map i n i t i a l P r o c e s s e s = new HashMap() ;

66 Map choicesMadeProcesses = new HashMap() ;

67

68 // get value from compID

69

70 Map compIDValue = (Map) memoryMaps . get (compID) ;

71

72 // get s e t of groupIDs

73

74 Set groupIDKeys = compIDValue . keySet () ;

75 I t e r a t o r groupIDIt = groupIDKeys . i t e r a t o r () ;

76

77 while (groupIDIt . hasNext ()) {

78 St r ing thisGroupID = (St r ing) groupIDIt . next () ;

79 Map groupIDValue = (Map) compIDValue . get (thisGroupID) ;

80

81 // setup name and choice process s t r i n g

82 St r ing choiceMakerProcessName = baseName + "_" +

thisGroupID ;

83 St r ing choiceMakerProcessUnnamed = "" ;

84

85 // add choice maker to in t e r l e a v in g

86 i f (componentMemoryProcessInterleave == null) {

87 componentMemoryProcessInterleave = baseName + " = "

88 + choiceMakerProcessName ;

89 } else {

90 componentMemoryProcessInterleave += " ||| "

91 + choiceMakerProcessName + " \n" ;

92 }

93

94 // get s e t of t a r ge t IDs

95 Set targetIDKeys = groupIDValue . keySet () ;

96 I t e r a t o r t a rge t IDI t = targetIDKeys . i t e r a t o r () ;

97 boolean f i r s t = true ;

98 while (t a rg e t IDI t . hasNext ()) {

99 St r ing thisTargetID = (St r ing) ta rge t IDI t . next () ;

100 ArrayList targetIDValue = (ArrayList) groupIDValue

350

101 . get (th isTargetID) ;

102 Set choiceMakers = (Set) targetIDValue . get (0) ;

103 I t e r a t o r cho iceMakers I t = choiceMakers . i t e r a t o r () ;

104

105 St r ing choiceMakerTargetProcess =

choiceMakerProcessName + "_"

106 + thisTargetID ;

107

108 while (cho iceMakers I t . hasNext ()) {

109 St r ing theMessage = (St r ing) cho iceMakers I t . next () ;

110 i f (f i r s t) {

111 choiceMakerProcessUnnamed += " = " + theMessage

112 + " -> " + choiceMakerTargetProcess + "\n" ;

113 f i r s t = fa l se ;

114 } else {

115 choiceMakerProcessUnnamed += " [] " +

theMessage

116 + " -> " + choiceMakerTargetProcess + "\n" ;

117 }

118 }

119 }

120

121 componentMemoryProcesses += choiceMakerProcessName

122 + choiceMakerProcessUnnamed + "\n \n" ;

123

124 // now get the choice f o l l ower messages and create t h e i r

processes

125

126 // get s e t of t a r ge t IDs

127 targetIDKeys = groupIDValue . keySet () ;

128 t a rg e t IDI t = targetIDKeys . i t e r a t o r () ;

129

130 while (t a rg e t IDI t . hasNext ()) {

131 St r ing thisTargetID = (St r ing) ta rge t IDI t . next () ;

132 ArrayList targetIDValue = (ArrayList) groupIDValue

133 . get (th isTargetID) ;

134 Set cho i c eFo l l owe r s = (Set) targetIDValue . get (1) ;

135 I t e r a t o r cho i c eFo l l owe r s I t = cho i c eFo l l owe r s . i t e r a t o r ()

;

136

137 St r ing cho i ceFo l lowerTargetProces s =

choiceMakerProcessName

138 + "_" + thisTargetID ;

139 St r ing cho i c eFo l l owerProce s s = new St r ing (

140 cho i ceFo l l owerTargetProces s) ;

141 cho i c eFo l l owerProce s s += choiceMakerProcessUnnamed + "\

n" ;

142

143 // add ta rge t choice f o l l owe r s

144 f i r s t = true ;

145 while (cho i c eFo l l owe r s I t . hasNext ()) {

146 St r ing theMessage = (St r ing) cho i c eFo l l owe r s I t . next ()

;

147 cho i c eFo l l owerProce s s += " [] " + theMessage + "

-> "

148 + cho iceFo l l owerTargetProces s + "\n" ;

149

150 }

151 componentMemoryProcesses += cho i c eFo l l owerProce s s + " \

n" ;

152 }

153 }

154 componentMemoryProcesses += " \n" +

componentMemoryProcessInterleave ;

155 return componentMemoryProcesses ;

156 }

157

158 private St r ing getMapValue (St r ing key) {

159 return null ;

160 }

161

162 public St r ing getComponentMemProcessID (St r ing compID) {

351

163 return compID + " _ChoiceMemory " ;

164 }

165

166 public St r ing synchProcessAndMemoryProcess (S t r ing processID ,

St r ing compID) {

167

168 boolean f i r s t = true ;

169

170 St r ing toReturn = processID + " [| {| " ;

171 Map thisComp = (Map) memoryMaps . get (compID) ;

172 Set groups = thisComp . keySet () ;

173 I t e r a t o r groupIt = groups . i t e r a t o r () ;

174 while (groupIt . hasNext ()) {

175 St r ing groupID = (St r ing) groupIt . next () ;

176 Map thisGroup = (Map) thisComp . get (groupID) ;

177 Set t a r g e t s = thisGroup . keySet () ;

178 I t e r a t o r t a r g e t I t = t a r g e t s . i t e r a t o r () ;

179 while (t a r g e t I t . hasNext ()) {

180 St r ing targetID = (St r ing) t a r g e t I t . next () ;

181 ArrayList targetData = (ArrayList) thisGroup . get (

targetID) ;

182

183 Set choiceMakers = (Set) targetData . get (0) ;

184 I t e r a t o r choiceMakerIt = choiceMakers . i t e r a t o r () ;

185 while (choiceMakerIt . hasNext ()) {

186 St r ing thisMessage = (St r ing) choiceMakerIt . next () ;

187 i f (! f i r s t) {

188 toReturn += " , " + thisMessage ;

189 } else {

190 toReturn += " " + thisMessage ;

191 f i r s t = fa l se ;

192 }

193 }

194

195 Set cho i c eFo l l owe r s = (Set) targetData . get (1) ;

196 I t e r a t o r cho i c eFo l l owe r I t = cho i c eFo l l owe r s . i t e r a t o r () ;

197 while (cho i c eFo l l owe r I t . hasNext ()) {

198 St r ing thisMessage = (St r ing) cho i c eFo l l owe r I t . next ()

;

199 i f (! f i r s t) {

200 toReturn += " , " + thisMessage ;

201 } else {

202 toReturn += " " + thisMessage ;

203 f i r s t = fa l se ;

204 }

205 }

206 }

207 }

208 toReturn += " |} |] " + getComponentMemProcessID (compID) ;

209 return toReturn ;

210 }

211

212 }

F.4.14 CSP Model Builder

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3 import java . u t i l . ArrayList ;

4 import java . u t i l . HashMap ;

5 import java . u t i l . I t e r a t o r ;

6 import java . u t i l .Map;

7 import java . u t i l . Set ;

8 import java . u t i l . TreeSet ;

9

10 import org . acmestudio . acme . element . IAcmeElement ;

11

12 public c lass CSPModelBuilder {

13

14 private stat ic ArrayList modelData ;

15

16 public stat ic f ina l int ANALYSIS DEADLOCK = 9 ;

352

17 public stat ic f ina l int ANALYSIS DEADLOCK PARTIAL = 10 ;

18 public stat ic f ina l int ANALYSIS COMPONENT REFINEMENT = 50 ;

19 public stat ic f ina l int ANALYSIS COMPONENT REFINEMENT PARTIAL

= 51 ;

20 public stat ic f ina l int ANALYSIS DEADLOCK OMISSION SUPPORT =

57 ;

21 public stat ic f ina l int ANALYSIS THREAD SPEC REFINEMENT = 1 ;

22

23 public stat ic ArrayList buildModel (int s e l e c t edAna ly s i s ,

24 St r ing focusComponentID , St r ing focusPortID , IAcmeElement

context)

25 throws ReportableExcept ion {

26

27 modelData = new ArrayList () ;

28

29 // workaround as s e t t i n g an i n i t i a l s i z e for the a r r y a l i s t

i sn t working

30 // : (

31 modelData . add (null) ;

32 modelData . add (null) ;

33 modelData . add (null) ;

34 modelData . add (null) ;

35

36 ElementCSPData eleData = new ElementCSPData () ;

37 modelData . s e t (0 , new St r ing ()) ; // System

38 modelData . s e t (1 , new St r ing ()) ; // connector

39 modelData . s e t (2 , e leData) ; // elements

40 modelData . s e t (3 , new St r ing ()) ; // asse r t i ons

41

42 CSPConnectorConstructor connCon = new

CSPConnectorConstructor () ;

43 CSPHidingSetConstructor hidCon = new

CSPHidingSetConstructor () ;

44 CSPMemoryConstructor memCon = new CSPMemoryConstructor () ;

45 CSPThreadCounterConstructor threadCon = new

CSPThreadCounterConstructor () ;

46

47 // s imp l i f i e d acme in t e r f a ce to grab a l l required data

48 AcmeInterface a i = new AcmeInterface (context) ;

49

50 // process each component

51 Set allComps = a i . e lements ;

52 I t e r a t o r al lCompsIt = allComps . i t e r a t o r () ;

53 while (al lCompsIt . hasNext ()) {

54 // process each port on t h i s component

55 Component thisComp = (Component) al lCompsIt . next () ;

56

57 St r ing compCSP = new St r ing (thisComp .

c en t r a lP ro c e s sDe s c r i p t i on) ;

58 St r ing [] compCSPSplit = compCSP . s p l i t ("\n") ;

59

60 // add component CSP to data s t ruc ture

61

62 boolean thisCompHasUnicastPorts = fa l se ;

63

64 Set a l l P o r t s = thisComp . por t s ;

65 I t e r a t o r a l l P o r t s I t = a l lP o r t s . i t e r a t o r () ;

66

67 while (a l l P o r t s I t . hasNext ()) {

68 Port th i sPor t = (Port) a l l P o r t s I t . next () ;

69 Helper . writeDebug (" CSPBuilder processing data from

from port "

70 + th i sPor t . iD) ;

71

72 i f (th i sPor t . i sUn i c a s t) {

73 thisCompHasUnicastPorts = true ;

74 }

75

76 St r ing portCSP = new St r ing (th i sPor t . messagePattern) ;

77 St r ing [] portCSPSplit = portCSP . s p l i t ("\n") ;

78 Map msgData = duplicateAndGetMessages (portCSPSplit ,

79 th i sPor t . attachedTo , th i sPort , threadCon , memCon) ;

353

80

81 Set messages = msgData . keySet () ;

82 I t e r a t o r msgI te rator = messages . i t e r a t o r () ;

83

84 while (msgI te rator . hasNext ()) {

85 St r ing msgName = ((St r ing) msgI te rator . next ()) . tr im ()

;

86 ArrayList msgValue = (ArrayList) msgData . get (msgName)

;

87

88 // add message to Connector

89

90 St r ing sentRecv = (St r ing) msgValue . get (0) ;

91 int mepIndex = ((In t eg e r) msgValue . get (1)) . intValue ()

;

92 St r ing connID = (St r ing) msgValue . get (2) ;

93 int connType = ((In t eg e r) msgValue . get (4)) . intValue ()

;

94

95 i f (sentRecv . equa l s IgnoreCase (" sent ")) {

96 connCon . addSentMessage (connID , msgName , mepIndex ,

97 connType , th i sPor t . inOurControlDomain) ;

98 hidCon . addMessage (thisComp . iD , msgName ,

99 CSPHidingSetConstructor .SENT MESSAGE) ;

100 } else {

101 connCon . addReceivedMessage (connID , msgName ,

mepIndex ,

102 connType , th i sPor t . inOurControlDomain) ;

103 hidCon . addMessage (thisComp . iD , msgName ,

104 CSPHidingSetConstructor .RECEIVED MESSAGE) ;

105 }

106

107 // add message to hid ing s e t s

108

109 // add faux t r i g g e r s to counter and hiding se t

110 addTriggersToHidingSetAndCounter (th i sPor t . ch i ldOf . iD ,

111 th i sPor t . iD , portCSPSplit , threadCon , hidCon) ;

112

113 // recombine the portCSPSplit and add to the

114 // element data

115

116 St r ing newPortCSP = "" ;

117

118 for (int index = 0 ; index < portCSPSplit . l ength ;

index++) {

119 newPortCSP += portCSPSplit [index] + " \n" ;

120 }

121 e leData . addPort (thisComp . iD , th i sPor t . iD , newPortCSP)

;

122 }

123 }

124

125 // add memory process to the component here

126 St r ing newCentralCSP = processCentralCSP (compCSPSplit ,

memCon

127 . getComponentMemProcessID (thisComp . iD) , thisComp . iD ,

128 memCon, thisCompHasUnicastPorts) ;

129

130 e leData . addComponent (thisComp . iD , newCentralCSP) ;

131 }

132

133 // construct system model

134

135 St r ing system = const ructSys (eleData , hidCon , connCon) ;

136 modelData . s e t (0 , system) ;

137

138 // add the connector

139 modelData . s e t (1 , connCon . getConnector ()) ;

140

141 // This i s where we w i l l de f ine the ana ly s i s

142

143 modelData . s e t (3 , g e tAna ly s i sAs s e t i on s (s e l e c t edAna ly s i s ,

354

144 focusComponentID , focusPortID , memCon, hidCon ,

threadCon)) ;

145

146 St r ing theModel = "" ;

147 theModel += (St r ing) modelData . get (0) + " \n" ;

148 theModel += (St r ing) modelData . get (1) + " \n" ;

149 theModel += ((ElementCSPData) modelData . get (2)) .

getAl lElements ()

150 + " \n" ;

151 theModel += (St r ing) modelData . get (3) ;

152

153 ArrayList toReturn = new ArrayList () ;

154 toReturn . add (null) ;

155 toReturn . add (null) ;

156 toReturn . add (null) ;

157

158 toReturn . s e t (0 , theModel) ;

159 toReturn . s e t (1 , hidCon) ;

160 toReturn . s e t (2 , connCon) ;

161 return toReturn ;

162 }

163

164 private stat ic St r ing ge tAna ly s i sAs s e t i on s (int

s e l e c t edAna ly s i s ,

165 St r ing focusComponentID , St r ing focusPortID ,

166 CSPMemoryConstructor memCon, CSPHidingSetConstructor

hidCon ,

167 CSPThreadCounterConstructor threadCon) {

168

169 St r ing ana l y s i sA s s e r t i o n s = "" ;

170

171 i f (s e l e c t e dAna l y s i s == ANALYSIS DEADLOCK

172 | | s e l e c t e dAna l y s i s == ANALYSIS DEADLOCK PARTIAL) {

173 // j u s t a s se r t the system i s f r ee from deadlock

174 // system renamed so we can hide a l l t r i g g e r s

175 ana l y s i sA s s e r t i o n s += " ANALYSIS_SYSTEM = SYSTEM \\{| " ;

176 ana l y s i sA s s e r t i o n s += hidCon . g e tA l lT r i g g e r s () ;

177 ana l y s i sA s s e r t i o n s += " |} \n" ;

178 ana l y s i sA s s e r t i o n s += " assert ANALYSIS_SYSTEM :[deadlock

free [F]] \n" ;

179 }

180

181 i f (s e l e c t e dAna l y s i s == ANALYSIS DEADLOCK OMISSION SUPPORT)

{

182 // j u s t a s se r t the system i s re f ined by the s p e c i f i e d

183 // component , consider ing only those messages at i t s

184 // in t e r f a ce

185

186 ana l y s i sA s s e r t i o n s += " COMP_ONLY_SYSTEM = SYSTEM \\{| " ;

187 ana l y s i sA s s e r t i o n s += hidCon . getMesagesNotForComp (

focusComponentID) ;

188

189 i f (hidCon . otherThanCompHasTriggers (focusComponentID))

190 ana l y s i sA s s e r t i o n s += " , "

191 + hidCon . getTriggersNotForComp (focusComponentID) ;

192

193 i f (hidCon . compHasTriggers (focusComponentID))

194 ana l y s i sA s s e r t i o n s += " , "

195 + hidCon . getTriggersForComp (focusComponentID) ;

196 ana l y s i sA s s e r t i o n s += " |} \n" ;

197

198 ana l y s i sA s s e r t i o n s += " assert COMP_ONLY_SYSTEM :[deadlock

free [F]] \n" ;

199 }

200

201 i f (s e l e c t e dAna l y s i s == ANALYSIS COMPONENT REFINEMENT) {

202 // j u s t a s se r t the system i s re f ined by the s p e c i f i e d

203 // component , consider ing only those messages at i t s

204 // in t e r f a ce

205

206 ana l y s i sA s s e r t i o n s += " assert SYSTEM \\{| " ;

355

207 ana l y s i sA s s e r t i o n s += hidCon . getMesagesNotForComp (

focusComponentID) ;

208 i f (hidCon . sysHasTr iggers ())

209 ana l y s i sA s s e r t i o n s += " , " + hidCon . g e tA l lT r i g g e r s () ;

210 ana l y s i sA s s e r t i o n s += " |} [T= " + focusComponentID ;

211 i f (hidCon . compHasTriggers (focusComponentID)) {

212 ana l y s i sA s s e r t i o n s += " \\{| " ;

213 ana l y s i sA s s e r t i o n s += hidCon

214 . getTriggersForComp (focusComponentID) ;

215 ana l y s i sA s s e r t i o n s += " |} \n" ;

216 }

217 }

218

219 i f (s e l e c t e dAna l y s i s == ANALYSIS THREAD SPEC REFINEMENT) {

220 // construct a new system synchronis ing on counter events

221 // asse r t t h i s i s re f ined by the counter spec

222 ana l y s i sA s s e r t i o n s += " channel Max \n \n" ;

223

224 ana l y s i sA s s e r t i o n s += " SYSTEM_COUNTED = SYSTEM [| {| " ;

225 ana l y s i sA s s e r t i o n s += threadCon . getCounterTriggersForPort

(

226 focusComponentID , focusPortID) ;

227 ana l y s i sA s s e r t i o n s += " |} |] " + threadCon .

getCounterProcessName ()

228 + " \n \n" ;

229

230 ana l y s i sA s s e r t i o n s += threadCon . getCounterProcess (

focusComponentID ,

231 focusPortID)

232 + "\n \n " ;

233

234 ana l y s i sA s s e r t i o n s += threadCon . getCounterSpec (

focusComponentID ,

235 focusPortID , hidCon)

236 + " \n \n" ;

237

238 ana l y s i sA s s e r t i o n s += " assert " + threadCon .

getCounterSpecName ()

239 + " [T= SYSTEM_COUNTED \n" ;

240

241 }

242 return ana l y s i sA s s e r t i o n s ;

243 }

244

245 private stat ic St r ing const ructSys (ElementCSPData eleData ,

246 CSPHidingSetConstructor hidCon , CSPConnectorConstructor

connCon) {

247 boolean f i r s t = true ;

248 St r ing compsLine = " COMPS = " ;

249 Set compIDs = eleData . getCompIDs () ;

250 I t e r a t o r compIDIt = compIDs . i t e r a t o r () ;

251 while (compIDIt . hasNext ()) {

252 St r ing compID = (St r ing) compIDIt . next () ;

253 i f (f i r s t) {

254 compsLine += compID + " " ;

255 f i r s t = fa l se ;

256 } else {

257 compsLine += " ||| " + compID ;

258 }

259 }

260 compsLine += " \n" ;

261

262 St r ing sysLine = " SYSTEM = COMPS [| {| " ;

263 sysL ine += hidCon . getAl lMessages () ;

264 sysL ine += " |} |] " + connCon . getConnectorProcessID () ;

265

266 St r ing channelDec = hidCon . getChannels () ;

267

268 return channelDec + " \n " + compsLine + " \n " + sysLine +

" \n" ;

269 }

270

356

271 private stat ic void addTriggersToHidingSetAndCounter (S t r ing

compID ,

272 St r ing portID , St r ing [] thePattern ,

273 CSPThreadCounterConstructor threadCon ,

274 CSPHidingSetConstructor hidCon) {

275 i f (! thePattern [0] . tr im () . equa l s IgnoreCase (" soli ")

276 && ! thePattern [0] . tr im () . equa l s IgnoreCase (" reqr ")) {

277 addNonMessageTrigger (compID , portID , thePattern [2] ,

278 CSPThreadCounterConstructor .DEC TRIGGER, threadCon ,

hidCon) ;

279 }

280 }

281

282 private stat ic void addNonMessageTrigger (S t r ing compID ,

St r ing portID ,

283 St r ing theLine , int tr iggerType ,

284 CSPThreadCounterConstructor threadCon ,

285 CSPHidingSetConstructor hidCon) {

286

287 St r ing [] t h eL in eSp l i t = theLine . s p l i t (" ") ;

288 St r ing theTr igger = theL in eSp l i t [2] ;

289

290 i f (t r iggerType == CSPThreadCounterConstructor . INC TRIGGER)

{

291 threadCon . addIncEvent (compID , portID , theTr igger) ;

292 } else {

293 threadCon . addDecEvent (compID , portID , theTr igger) ;

294 }

295

296 hidCon . addTrigger (compID , theTr igger) ;

297 }

298

299 private stat ic Map duplicateAndGetMessages (S t r ing []

thePattern ,

300 Set theConnectors , Port th i sPort ,

301 CSPThreadCounterConstructor threadCon ,

CSPMemoryConstructor memCon) {

302

303 Map msgData = new HashMap() ;

304

305 i f (thePattern [0] . tr im () . equa l s IgnoreCase (" noti ")) {

306 thePattern [LookUP .CSP INDEX NOTI SENDREQ] =

duplicateMsgsOnLine (

307 thePattern [LookUP .CSP INDEX NOTI SENDREQ] ,

theConnectors ,

308 th i sPort , true , LookUP .MESSAGE INDEX REQUEST, msgData

,

309 CSPThreadCounterConstructor . INC TRIGGER, threadCon ,

memCon) ;

310 }

311

312 i f (thePattern [0] . tr im () . equa l s IgnoreCase (" roo ")) {

313 thePattern [LookUP .CSP INDEX ROO SENDREQ] =

duplicateMsgsOnLine (

314 thePattern [LookUP .CSP INDEX ROO SENDREQ] ,

theConnectors ,

315 th i sPort , true , LookUP .MESSAGE INDEX REQUEST, msgData

,

316 CSPThreadCounterConstructor . INC TRIGGER, threadCon ,

memCon) ;

317 thePattern [LookUP .CSP INDEX ROO GETFAULT] =

duplicateMsgsOnLine (

318 thePattern [LookUP .CSP INDEX ROO GETFAULT] ,

theConnectors ,

319 th i sPort , false , LookUP .MESSAGE INDEX FAULT, msgData ,

320 CSPThreadCounterConstructor .NOT TRIGGER, threadCon ,

memCon) ;

321 }

322

323 i f (thePattern [0] . tr im () . equa l s IgnoreCase (" soli ")) {

357

324 thePattern [LookUP .CSP INDEX SOLI SENDREQ] =

duplicateMsgsOnLine (

325 thePattern [LookUP .CSP INDEX SOLI SENDREQ] ,

theConnectors ,

326 th i sPort , true , LookUP .MESSAGE INDEX REQUEST, msgData

,

327 CSPThreadCounterConstructor . INC TRIGGER, threadCon ,

memCon) ;

328 thePattern [LookUP .CSP INDEX SOLI GETRES] =

duplicateMsgsOnLine (

329 thePattern [LookUP .CSP INDEX SOLI GETRES] ,

theConnectors ,

330 th i sPort , false , LookUP .MESSAGE INDEX RESPONSE,

msgData ,

331 CSPThreadCounterConstructor .DEC TRIGGER, threadCon ,

memCon) ;

332 thePattern [LookUP .CSP INDEX SOLI GETFAULT] =

duplicateMsgsOnLine (

333 thePattern [LookUP .CSP INDEX SOLI GETFAULT] ,

theConnectors ,

334 th i sPort , false , LookUP .MESSAGE INDEX FAULT, msgData ,

335 CSPThreadCounterConstructor .DEC TRIGGER, threadCon ,

memCon) ;

336 }

337

338 i f (thePattern [0] . tr im () . equa l s IgnoreCase (" ooi ")) {

339 thePattern [LookUP .CSP INDEX OOI SENDREQ] =

duplicateMsgsOnLine (

340 thePattern [LookUP .CSP INDEX OOI SENDREQ] ,

theConnectors ,

341 th i sPort , true , LookUP .MESSAGE INDEX REQUEST, msgData

,

342 CSPThreadCounterConstructor . INC TRIGGER, threadCon ,

memCon) ;

343 thePattern [LookUP .CSP INDEX OOI GETFAULT] =

duplicateMsgsOnLine (

344 thePattern [LookUP .CSP INDEX OOI GETFAULT] ,

theConnectors ,

345 th i sPort , false , LookUP .MESSAGE INDEX FAULT, msgData ,

346 CSPThreadCounterConstructor .NOT TRIGGER, threadCon ,

memCon) ;

347 thePattern [LookUP .CSP INDEX OOI GETRES] =

duplicateMsgsOnLine (

348 thePattern [LookUP .CSP INDEX OOI GETRES] ,

theConnectors ,

349 th i sPort , false , LookUP .MESSAGE INDEX RESPONSE,

msgData ,

350 CSPThreadCounterConstructor .NOT TRIGGER, threadCon ,

memCon) ;

351 thePattern [LookUP .CSP INDEX OOI SENDFAULT2] =

duplicateMsgsOnLine (

352 thePattern [LookUP .CSP INDEX OOI SENDFAULT2] ,

theConnectors ,

353 th i sPort , true , LookUP .MESSAGE INDEX FAULT2, msgData ,

354 CSPThreadCounterConstructor .NOT TRIGGER, threadCon ,

memCon) ;

355 }

356

357 i f (thePattern [0] . tr im () . equa l s IgnoreCase (" ino ")) {

358 thePattern [LookUP .CSP INDEX INO GETREQ] =

duplicateMsgsOnLine (

359 thePattern [LookUP .CSP INDEX INO GETREQ] ,

theConnectors ,

360 th i sPort , false , LookUP .MESSAGE INDEX REQUEST,

msgData ,

361 CSPThreadCounterConstructor . INC TRIGGER, threadCon ,

memCon) ;

362 }

363

364 i f (thePattern [0] . tr im () . equa l s IgnoreCase (" rio ")) {

365 thePattern [LookUP .CSP INDEX RIO GETREQ] =

duplicateMsgsOnLine (

358

366 thePattern [LookUP .CSP INDEX RIO GETREQ] ,

theConnectors ,

367 th i sPort , false , LookUP .MESSAGE INDEX REQUEST,

msgData ,

368 CSPThreadCounterConstructor . INC TRIGGER, threadCon ,

memCon) ;

369 thePattern [LookUP .CSP INDEX RIO SENDFAULT] =

duplicateMsgsOnLine (

370 thePattern [LookUP .CSP INDEX RIO SENDFAULT] ,

theConnectors ,

371 th i sPort , true , LookUP .MESSAGE INDEX FAULT, msgData ,

372 CSPThreadCounterConstructor .NOT TRIGGER, threadCon ,

memCon) ;

373 }

374

375 i f (thePattern [0] . tr im () . equa l s IgnoreCase (" reqr ")) {

376 thePattern [LookUP .CSP INDEX REQR GETREQ] =

duplicateMsgsOnLine (

377 thePattern [LookUP .CSP INDEX REQR GETREQ] ,

theConnectors ,

378 th i sPort , false , LookUP .MESSAGE INDEX REQUEST,

msgData ,

379 CSPThreadCounterConstructor . INC TRIGGER, threadCon ,

memCon) ;

380 thePattern [LookUP .CSP INDEX REQR SENDRES] =

duplicateMsgsOnLine (

381 thePattern [LookUP .CSP INDEX REQR SENDRES] ,

theConnectors ,

382 th i sPort , true , LookUP .MESSAGE INDEX RESPONSE,

msgData ,

383 CSPThreadCounterConstructor .DEC TRIGGER, threadCon ,

memCon) ;

384 thePattern [LookUP .CSP INDEX REQR SENDFAULT] =

duplicateMsgsOnLine (

385 thePattern [LookUP .CSP INDEX REQR SENDFAULT] ,

theConnectors ,

386 th i sPort , true , LookUP .MESSAGE INDEX FAULT, msgData ,

387 CSPThreadCounterConstructor .DEC TRIGGER, threadCon ,

memCon) ;

388 }

389

390 i f (thePattern [0] . tr im () . equa l s IgnoreCase (" ioo ")) {

391 thePattern [LookUP .CSP INDEX IOO GETREQ] =

duplicateMsgsOnLine (

392 thePattern [LookUP .CSP INDEX IOO GETREQ] ,

theConnectors ,

393 th i sPort , false , LookUP .MESSAGE INDEX REQUEST,

msgData ,

394 CSPThreadCounterConstructor . INC TRIGGER, threadCon ,

memCon) ;

395 thePattern [LookUP .CSP INDEX IOO SENDFAULT] =

duplicateMsgsOnLine (

396 thePattern [LookUP .CSP INDEX IOO SENDFAULT] ,

theConnectors ,

397 th i sPort , true , LookUP .MESSAGE INDEX FAULT, msgData ,

398 CSPThreadCounterConstructor .NOT TRIGGER, threadCon ,

memCon) ;

399 thePattern [LookUP .CSP INDEX IOO SENDRES] =

duplicateMsgsOnLine (

400 thePattern [LookUP .CSP INDEX IOO SENDRES] ,

theConnectors ,

401 th i sPort , true , LookUP .MESSAGE INDEX RESPONSE,

msgData ,

402 CSPThreadCounterConstructor .NOT TRIGGER, threadCon ,

memCon) ;

403 thePattern [LookUP .CSP INDEX IOO GETFAULT2] =

duplicateMsgsOnLine (

404 thePattern [LookUP .CSP INDEX IOO GETFAULT2] ,

theConnectors ,

405 th i sPort , false , LookUP .MESSAGE INDEX FAULT2, msgData

,

359

406 CSPThreadCounterConstructor .NOT TRIGGER, threadCon ,

memCon) ;

407 }

408

409 return msgData ;

410 }

411

412 private stat ic St r ing duplicateMsgsOnLine (St r ing theLine ,

413 Set theConnectors , Port th i sPort , boolean sent , int

mepIndex ,

414 Map msgData , int t r i ggerVa lue ,

415 CSPThreadCounterConstructor threadCon ,

CSPMemoryConstructor memCon) {

416

417 // there i s something going on with the lead ing spaces on

the f i r s t l i n e

418 // so t ry ing a trim to get r id of them

419 St r ing temp = theLine . tr im () ;

420 // Helper . writeDebug (” the l i n e trimmed . . . agian ” + temp) ;

421 St r ing [] l i n e S p l i t = temp . s p l i t (" ") ;

422

423 St r ing newLine = l i n e S p l i t [0] + " " + l i n e S p l i t [1] ;

424 St r ing message = l i n e S p l i t [2] ;

425 St r ing commonEnd = l i n e S p l i t [3] + " " + l i n e S p l i t [4] ;

426 St r ing otherCompID = null ;

427

428 I t e r a t o r i = theConnectors . i t e r a t o r () ;

429 boolean f i r s t = true ;

430

431 while (i . hasNext ()) {

432 Connector thisCon = (Connector) i . next () ;

433

434 St r ing messageID = "" ;

435

436 Helper . writeDebug (" about to look at " + thisCon . iD

437 + " which has conntype " + thisCon . connType) ;

438

439 i f (thisCon . connType == Connector .IS COMMONCONNECTOR) {

440 // Helper . writeDebug (” A normal connector ”) ;

441 Port r1 = thisCon . r1 ;

442 Port r2 = thisCon . r2 ;

443 i f (r1 == th i sPor t) {

444 otherCompID = r2 . ch i ldOf . iD ;

445 } else {

446 otherCompID = r1 . ch i ldOf . iD ;

447 }

448

449 messageID = message + "_" + otherCompID ;

450

451 i f (f i r s t) {

452 newLine += " " + messageID + " " + commonEnd ;

453 f i r s t = fa l se ;

454 } else {

455 newLine += " [] " + messageID + " " + commonEnd ;

456 }

457

458 ArrayList msgDataValue = genMsgData (sent , mepIndex ,

thisCon . iD ,

459 otherCompID , Connector .IS COMMONCONNECTOR) ;

460

461 msgData . put (message + "_" + otherCompID , msgDataValue) ;

462 } else i f (thisCon . connType == Connector .

IS STUBBORN CONNECTOR) {

463 messageID = new St r ing (message) ;

464

465 newLine += " " + messageID + " " + commonEnd ;

466 ArrayList msgDataValue = genMsgData (sent , mepIndex ,

thisCon . iD ,

467 null , Connector .IS STUBBORN CONNECTOR) ;

468 msgData . put (message , msgDataValue) ;

469 } else {

470 messageID = new St r ing (message) ;

360

471

472 newLine += " " + messageID + " " + commonEnd ;

473 ArrayList msgDataValue = genMsgData (sent , mepIndex ,

thisCon . iD ,

474 null , Connector .IS COOPERATIVE CONNECTOR) ;

475 msgData . put (message , msgDataValue) ;

476 }

477 // add to t r i g g e r constructor i f needed

478

479 i f (t r i gg e rVa lue == CSPThreadCounterConstructor .

INC TRIGGER) {

480 threadCon . addIncEvent (th i sPor t . ch i ldOf . iD , th i sPor t . iD ,

481 messageID) ;

482 }

483

484 i f (t r i gg e rVa lue == CSPThreadCounterConstructor .

DEC TRIGGER) {

485 threadCon . addDecEvent (th i sPor t . ch i ldOf . iD , th i sPor t . iD ,

486 messageID) ;

487 }

488

489 // add message to memory constructor i f the port i f

required

490 i f (th i sPor t . i sUn i c a s t) {

491

492 i f (th i sPor t . choiceGroupMaker && mepIndex == 1) {

493 memCon. addChoiceMaker (th i sPor t . ch i ldOf . iD ,

494 th i sPor t . choiceGroup , messageID , otherCompID) ;

495 } else {

496 memCon. addChoiceFol lower (th i sPor t . ch i ldOf . iD ,

497 th i sPor t . choiceGroup , messageID , otherCompID) ;

498 }

499 }

500

501 }

502

503 return newLine ;

504 }

505

506 private stat ic ArrayList genMsgData (boolean sent , int

mepIndex ,

507 St r ing connectorID , S t r ing targetID , int connType) {

508 ArrayList toReturn = new ArrayList (5) ;

509

510 // workaround as a r r a y l i s t s i z e i n i t i l z i n g i sn t working

511 toReturn . add (null) ;

512 toReturn . add (null) ;

513 toReturn . add (null) ;

514 toReturn . add (null) ;

515 toReturn . add (null) ;

516

517 i f (sent) {

518 toReturn . s e t (0 , " sent ") ;

519 } else {

520 toReturn . s e t (0 , " recv ") ;

521 }

522

523 toReturn . s e t (1 , new I n t eg e r (mepIndex)) ;

524 toReturn . s e t (2 , connectorID) ;

525 toReturn . s e t (3 , target ID) ;

526 toReturn . s e t (4 , new I n t eg e r (connType)) ;

527

528 return toReturn ;

529 }

530

531 private stat ic St r ing processCentralCSP (St r ing [] compCSPSplit

,

532 St r ing memoryProcess , S t r ing compID , CSPMemoryConstructor

memCon,

533 boolean componentHasUniCastPort) {

534 // get and rename process names from l i n e 0

535 St r ing [] l i n e 0 = compCSPSplit [0] . s p l i t (" ") ;

361

536 Set uniqueNames = new TreeSet () ;

537 St r ing thisName ;

538 St r ing theNewProcesses = "" ;

539 // i f the comp has unicast ports then we need a memory

540 // process

541 // process IDs are at 2 ,4 , 6 , 8 . . . e tc

542 // e . g comp = p1 | | | p2 | | | p3

543 i f (componentHasUniCastPort) {

544 for (int index = 2 ; index < l i n e 0 . l ength ; index += 2) {

545 thisName = l i n e 0 [index] ;

546 St r ing newName = thisName . trim () + " _withMemory " ;

547 i f (! uniqueNames . conta in s (newName)) {

548 uniqueNames . add (newName) ;

549 theNewProcesses += newName

550 + " = "

551 + memCon. synchProcessAndMemoryProcess (thisName ,

552 compID) + " \n \n" ;

553 }

554 l i n e 0 [index] = newName ;

555 }

556

557 theNewProcesses += memCon. getComponentMemProcess (compID)

+ " \n" ;

558 }

559

560 // recombine the s p l i t o r i g i na l process , adding spaces back

into l i n e 0

561 // and then add the new processes and return to the c a l l i n g

process

562 // to be inc luded in the data s t ruc ture .

563

564 St r ing newCentralCSP = "" ;

565

566 newCentralCSP += l i n e 0 [0] ;

567

568 for (int index = 1 ; index < l i n e 0 . l ength ; index++) {

569 newCentralCSP += " " + l i n e 0 [index] ;

570 }

571

572 newCentralCSP += " \n" ;

573

574 for (int index = 1 ; index < compCSPSplit . l ength ; index++) {

575 newCentralCSP += compCSPSplit [index] + " \n" ;

576 }

577

578 newCentralCSP += theNewProcesses ;

579 return newCentralCSP ;

580 }

581 }

F.4.15 CSP Thread Counter Constructor

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2 import java . u t i l . I t e r a t o r ;

3 import java . u t i l .Map;

4 import java . u t i l . Set ;

5 import java . u t i l . TreeMap ;

6 import java . u t i l . TreeSet ;

7

8 public c lass CSPThreadCounterConstructor {

9

10 public stat ic f ina l int NOT TRIGGER = 0 ;

11 public stat ic f ina l int INC TRIGGER = 1 ;

12 public stat ic f ina l int DEC TRIGGER = 2 ;

13 public stat ic f ina l St r ing ThreadCounterProcess = "

ThreadCounterProcess " ;

14 public stat ic f ina l St r ing ThreadCounterProcessName = "

ThreadCounterProcessSpec " ;

15

16 private Map incEvents = new TreeMap () ;

17 private Map decEvents = new TreeMap () ;

18

362

19 // pr1 iva te Set incEvents = new TreeSet () ;

20 // pr i va t e Set decEvents = new TreeSet () ;

21

22 public void addIncEvent (S t r ing compID , St r ing portID , St r ing

eventID) {

23

24 Set incSe t = getRequiredSet (incEvents , compID , portID) ;

25 i n cSe t . add (eventID) ;

26 }

27

28 public void addDecEvent (St r ing compID , St r ing portID , S t r ing

eventID) {

29 Set decSet = getRequiredSet (decEvents , compID , portID) ;

30 decSet . add (eventID) ;

31 }

32

33 public St r ing getCounterTriggersForPort (S t r ing compID , St r ing

portID) {

34 Set incSe t = getRequiredSet (incEvents , compID , portID) ;

35 Set decSet = getRequiredSet (decEvents , compID , portID) ;

36

37 St r ing t r i g g e r s = "" ;

38

39 I t e r a t o r i t = incSe t . i t e r a t o r () ;

40 t r i g g e r s += (St r ing) i t . next () ;

41 while (i t . hasNext ())

42 {

43 t r i g g e r s += " , " + (St r ing) i t . next () ;

44 }

45

46 i t = decSet . i t e r a t o r () ;

47 while (i t . hasNext ())

48 {

49 t r i g g e r s += " , " + (St r ing) i t . next () ;

50 }

51

52 return t r i g g e r s ;

53 }

54

55 public St r ing getCounterProcess (S t r ing compID , St r ing portID)

{

56

57 Set incSe t = getRequiredSet (incEvents , compID , portID) ;

58 Set decSet = getRequiredSet (decEvents , compID , portID) ;

59

60 St r ing theProcess = getCounterProcessName () + " = " ;

61

62 I t e r a t o r i n c I t = incSe t . i t e r a t o r () ;

63 theProces s += (St r ing) i n c I t . next () + " -> " +

getCounterProcessName ()

64 + "1 \n" ;

65

66 while (i n c I t . hasNext ()) {

67 theProces s += " [] " + (St r ing) i n c I t . next () + " -> "

68 + getCounterProcessName () + "1 \n" ;

69 }

70

71 I t e r a t o r dec I t = decSet . i t e r a t o r () ;

72 while (dec I t . hasNext ()) {

73 theProces s += " [] " + (St r ing) dec I t . next () + " -> "

74 + getCounterProcessName () + " \n" ;

75 }

76

77 theProces s += getCounterProcessName () + "1 = " ;

78

79 i n c I t = incSe t . i t e r a t o r () ;

80 theProces s += (St r ing) i n c I t . next () + " -> " +

getCounterProcessName ()

81 + "2 \n" ;

82

83 while (i n c I t . hasNext ()) {

84 theProces s += " [] " + (St r ing) i n c I t . next () + " -> "

363

85 + getCounterProcessName () + "2 \n" ;

86 }

87

88 dec I t = decSet . i t e r a t o r () ;

89 while (dec I t . hasNext ()) {

90 theProces s += " [] " + (St r ing) dec I t . next () + " -> "

91 + getCounterProcessName () + " \n" ;

92 }

93

94 theProces s += getCounterProcessName () + "2 = Max -> STOP " ;

95

96 return theProcess ;

97 }

98

99 public St r ing getCounterProcessName () {

100 return ThreadCounterProcess ;

101 }

102

103 public St r ing getCounterSpecName () {

104 return ThreadCounterProcessName ;

105 }

106

107 public St r ing getCounterSpec (S t r ing compID , St r ing portID ,

108 CSPHidingSetConstructor hidCon) {

109

110 Set a l lEvent s = hidCon . getAl lMessagesAndTriggers () ;

111

112 St r ing theSpec = getCounterSpecName () + " = " ;

113

114 I t e r a t o r even t I t = a l lEvent s . i t e r a t o r () ;

115 theSpec += (St r ing) event I t . next () + " -> " +

getCounterSpecName ()

116 + " \n" ;

117

118 while (even t I t . hasNext ()) {

119 theSpec += " [] " + (St r ing) event I t . next () + " -> "

120 + getCounterSpecName () + " \n" ;

121 }

122

123 return theSpec ;

124 }

125

126 private Set getRequiredSet (Map parentMap , St r ing compID ,

St r ing portID) {

127 i f (! parentMap . containsKey (compID)) {

128 parentMap . put (compID , new TreeMap ()) ;

129 }

130 Map theComp = (Map) parentMap . get (compID) ;

131

132 i f (! theComp . containsKey (portID)) {

133 theComp . put (portID , new TreeSet ()) ;

134 }

135 return (Set) theComp . get (portID) ;

136 }

137 }

F.4.16 Data Extraction Utils

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3 import java . i o . Pr intWriter ;

4 import java . u t i l . ArrayList ;

5 import java . u t i l . I t e r a t o r ;

6 import java . u t i l . L i s t ;

7 import java . u t i l . Set ;

8

9 import org . acmestudio . acme . core . type . IAcmeEnumValue ;

10 import org . acmestudio . acme . core . type . IAcmeRecordField ;

11 import org . acmestudio . acme . core . type . IAcmeRecordValue ;

12 import org . acmestudio . acme . core . type . IAcmeSetValue ;

13 import org . acmestudio . acme . core . type . IAcmeStringValue ;

14 import org . acmestudio . acme . element . IAcmeComponent ;

364

15 import org . acmestudio . acme . element . IAcmePort ;

16 import org . acmestudio . acme . element . property . IAcmeProperty ;

17

18 /∗∗

19 ∗ This c l a s s contains u t i l i t i e s to handle ex t rac t ing the data

from the ACME

20 ∗ model . This i s to encourage reuse and make the ana ly s i s more

c l ear

21 ∗/

22 public c lass DataExtract ionUt i l s {

23

24 public stat ic St r ing getPortCSP (IAcmePort thePort) throws

Exception {

25

26 IAcmeProperty portCSP = thePort . getProperty (" MessagePattern

") ;

27 i f (portCSP == null)

28 throw new ReportableExcept ion (" The port has no CSP

property ") ;

29

30 St r ing tempDebug = " **** dataextract : getPortCsp **** \n" ;

31 tempDebug += ((IAcmeStringValue) (portCSP . getValue ())) .

getValue () + "\n \n" ;

32 tempDebug += ((IAcmeStringValue) (portCSP . getValue ())) .

getValue () . tr im () + "\n \n" ;

33 Helper . writeDebug (tempDebug) ;

34 return ((IAcmeStringValue) (portCSP . getValue ())) . getValue ()

. tr im () ;

35

36 }

37

38 public stat ic L i s t getMessageNamesFromCSP(IAcmeStringValue

theCSP)

39 throws Exception {

40 // t h i s vers ion accepts the raw AcmeStringValue

41 // and c a l l s the vers ion tha t takes the CSP Str ing

42 // i t s e l f

43 return getMessageNamesFromCSP ((theCSP . getValue ())) ;

44

45 }

46

47 public stat ic St r ing getMessageNameFromCSPAtLine (St r ing

theCSP ,

48 int lineNumber) throws Exception {

49

50 St r ing [] c spLines = theCSP . s p l i t ("\n") ;

51 Helper . writeDebug (cspLines + "\n \n") ;

52 i f (cspLines . l ength > lineNumber)

53 return getNameFromCSPLine (cspLines [lineNumber]) ;

54 else

55 return null ;

56 }

57

58 public stat ic L i s t getMessageNamesFromCSP(St r ing theCSP)

throws Exception {

59

60 St r ing [] c spLines = theCSP . s p l i t ("\n") ;

61

62 L i s t nameList = new ArrayList () ;

63

64 // ex t rac t f i r s t l ine , t h i s t e l l s us the pat tern type

65 St r ing patternType = cspLines [0] ;

66

67 i f (patternType . equa l s IgnoreCase (" noti ")) {

68 nameList . add (getNameFromCSPLine ((S t r ing) (cspLines [LookUP .

CSP INDEX NOTI SENDREQ]) . tr im ())) ;

69 Helper . writeDebug (nameList . t oS t r i ng ()) ;

70 return nameList ;

71 }

72

73 i f (patternType . equa l s IgnoreCase (" ino ")) {

365

74 nameList . add (getNameFromCSPLine ((S t r ing) (cspLines [LookUP .

CSP INDEX INO GETREQ]) . tr im ())) ;

75 Helper . writeDebug (nameList . t oS t r i ng ()) ;

76 return nameList ;

77 }

78

79 i f (patternType . equa l s IgnoreCase (" roo ")) {

80 nameList . add (getNameFromCSPLine ((S t r ing) (cspLines [LookUP .

CSP INDEX ROO SENDREQ]) . tr im ())) ;

81 nameList . add (getNameFromCSPLine ((S t r ing) (cspLines [LookUP .

CSP INDEX ROO GETFAULT]) . tr im ())) ;

82 Helper . writeDebug (nameList . t oS t r i ng ()) ;

83 return nameList ;

84 }

85

86 i f (patternType . equa l s IgnoreCase (" rio ")) {

87 nameList . add (getNameFromCSPLine ((S t r ing) (cspLines [LookUP .

CSP INDEX RIO GETREQ]) . tr im ())) ;

88 nameList . add (getNameFromCSPLine ((S t r ing) (cspLines [LookUP .

CSP INDEX RIO SENDFAULT]) . tr im ())) ;

89 Helper . writeDebug (nameList . t oS t r i ng ()) ;

90 return nameList ;

91 }

92

93 i f (patternType . equa l s IgnoreCase (" soli ")) {

94 nameList . add (getNameFromCSPLine ((S t r ing) (cspLines [LookUP .

CSP INDEX SOLI SENDREQ]) . tr im ())) ;

95 nameList . add (getNameFromCSPLine ((S t r ing) (cspLines [LookUP .

CSP INDEX SOLI GETRES]) . tr im ())) ;

96 nameList . add (getNameFromCSPLine ((S t r ing) (cspLines [LookUP .

CSP INDEX SOLI GETFAULT]) . tr im ())) ;

97 Helper . writeDebug (nameList . t oS t r i ng ()) ;

98 return nameList ;

99 }

100

101 i f (patternType . equa l s IgnoreCase (" reqr ")) {

102 nameList . add (getNameFromCSPLine ((S t r ing) (cspLines [LookUP .

CSP INDEX REQR GETREQ]) . tr im ())) ;

103 nameList . add (getNameFromCSPLine ((S t r ing) (cspLines [LookUP .

CSP INDEX REQR SENDRES]) . tr im ())) ;

104 nameList . add (getNameFromCSPLine ((S t r ing) (cspLines [LookUP .

CSP INDEX REQR SENDFAULT]) . tr im ())) ;

105 Helper . writeDebug (nameList . t oS t r i ng ()) ;

106 return nameList ;

107 }

108

109 i f (patternType . equa l s IgnoreCase (" ooi ")) {

110 nameList . add (getNameFromCSPLine ((S t r ing) (cspLines [LookUP .

CSP INDEX OOI SENDREQ]) . tr im ())) ;

111 nameList . add (getNameFromCSPLine ((S t r ing) (cspLines [LookUP .

CSP INDEX OOI GETRES]) . tr im ())) ;

112 nameList . add (getNameFromCSPLine ((S t r ing) (cspLines [LookUP .

CSP INDEX OOI GETFAULT]) . tr im ())) ;

113 nameList . add (getNameFromCSPLine ((S t r ing) (cspLines [LookUP .

CSP INDEX OOI SENDFAULT2]) . tr im ())) ;

114 Helper . writeDebug (nameList . t oS t r i ng ()) ;

115 return nameList ;

116 }

117

118 i f (patternType . equa l s IgnoreCase (" ioo ")) {

119 nameList . add (getNameFromCSPLine ((S t r ing) (cspLines [LookUP .

CSP INDEX IOO GETREQ]) . tr im ())) ;

120 nameList . add (getNameFromCSPLine ((S t r ing) (cspLines [LookUP .

CSP INDEX IOO SENDRES]) . tr im ())) ;

121 nameList . add (getNameFromCSPLine ((S t r ing) (cspLines [LookUP .

CSP INDEX IOO SENDFAULT]) . tr im ())) ;

122 nameList . add (getNameFromCSPLine ((S t r ing) (cspLines [LookUP .

CSP INDEX IOO GETFAULT2]) . tr im ())) ;

123 Helper . writeDebug (nameList . t oS t r i ng ()) ;

124 return nameList ;

125 }

366

126 throw new ReportableExcept ion (" The CSP pattern type was not

recognised ") ;

127 }

128

129 public stat ic St r ing getPatternTypeFromCSP (St r ing theCSP)

throws Exception {

130

131 St r ing [] c spLines = theCSP . s p l i t ("\n") ;

132 St r ing thePattern = cspLines [0] ;

133 return thePattern . tr im () ;

134

135 }

136

137 private stat ic St r ing getNameFromCSPLine (St r ing theLine)

throws Exception {

138

139 // the message names are the second token on any l i n e

140 // tha t has a name

141 // the name i s always the 3rd token on the message l i n e s of

the template

142 // t h i s means index 2 of the s p l i t l i n e

143 // the trim was added to remove any odd white spaces added

in ACME as these ge t counted as tokens

144 Helper . writeDebug (theLine + " \n") ;

145 St r ing [] temp = theLine . tr im () . s p l i t (" ") ;

146 Helper . writeDebug (temp [2] + " \n") ;

147 return temp [2] ;

148 }

149

150 public stat ic TSafeBoolean getSendsFirstMessage (IAcmePort

thePort)

151 throws Exception {

152 IAcmeProperty sendsF i r s tProper ty = thePort

153 . getProperty (" SendsFirstMessage ") ;

154 St r ing theValue = ((IAcmeEnumValue) s endsF i r s tProper ty .

getValue ())

155 . getValue () ;

156

157 i f (theValue . equa l s IgnoreCase (" yes ")) {

158 return new TSafeBoolean (TSafeBoolean .YES) ;

159 } else i f (theValue . equa l s IgnoreCase (" no ")) {

160 return new TSafeBoolean (TSafeBoolean .NO) ;

161 }

162

163 return new TSafeBoolean (TSafeBoolean .UNDEFINED) ;

164 }

165

166 public stat ic Set getMessageSet (IAcmePort thePort) throws

Exception {

167 IAcmeProperty messages = thePort . getProperty (" Messages ") ;

168 i f (messages == null)

169 throw new ReportableExcept ion (" Port has no messages

property ") ;

170 return ((IAcmeSetValue) messages . getValue ()) . getValues () ;

171 }

172

173 public stat ic IAcmeRecordValue getMessageFromSet (Set

messageSet ,

174 St r ing msgName) throws Exception {

175 I t e r a t o r i = messageSet . i t e r a t o r () ;

176 while (i . hasNext ()) {

177 IAcmeRecordValue thisMessage = (IAcmeRecordValue) i . next

() ;

178 i f (getMessageIDFromMessage (th isMessage) . equa l s IgnoreCase

(msgName)) {

179 return th isMessage ;

180 }

181 }

182 throw new ReportableExcept ion (" Message id " + msgName

183 + " was not found in the message set ") ;

184 }

185

367

186 public stat ic IAcmeRecordValue getMessageFromPort (S t r ing

messageID ,

187 IAcmePort thePort) throws Exception {

188 Set theMessageSet = getMessageSet (thePort) ;

189 return getMessageFromSet (theMessageSet , messageID) ;

190 }

191

192 public stat ic int getNumberOfDatumInMessage (IAcmeRecordValue

theMessage)

193 throws Exception {

194 // message i s a record , the f i n a l part of which i s a se t of

datum , i t

195 // i s the ca rd ina l i t y of t h i s s e t (MessageData) tha t we

need to f ind

196 Set messageDataSet = getMessageDataSetFromMessage (

theMessage) ;

197 return messageDataSet . s i z e () ;

198 }

199

200 public stat ic IAcmeRecordValue

getTMessageDatumFromMessageAtIndex (

201 IAcmeRecordValue theMessage , int index) throws Exception

{

202 Set messageDataSet = getMessageDataSetFromMessage (

theMessage) ;

203 I t e r a t o r i = messageDataSet . i t e r a t o r () ;

204 int counter = 0 ;

205 while (i . hasNext ()) {

206 IAcmeRecordValue thisDatum = (IAcmeRecordValue) i . next () ;

207 i f (counter == index) {

208 return thisDatum ;

209 }

210 counter++;

211 }

212 throw new ReportableExcept ion (" There is no TMessageDatum at

index "

213 + index) ;

214 }

215

216 public stat ic St r ing getDatumIDFromTMessageDatum(

217 IAcmeRecordValue theMessageDatum) throws Exception {

218 IAcmeRecordField theIDFie ld = theMessageDatum . ge tF i e l d ("

DatumId ") ;

219 i f (theIDFie ld == null)

220 throw new ReportableExcept ion (

221 "A datum in a message does not have a DatumID ") ;

222 IAcmeStringValue theID = (IAcmeStringValue) (theIDFie ld .

getValue ()) ;

223 return theID . getValue () ;

224 }

225

226 public stat ic TDataRep getTDataRepFromTMessageDatum(

227 IAcmeRecordValue theMessageDatum) throws Exception {

228 IAcmeRecordField theF i e ld = theMessageDatum . ge tF i e l d ("

DatumRep ") ;

229 i f (theF i e ld == null)

230 throw new ReportableExcept ion (

231 "A TMessageDatum in a message has no Datum Rep

defined ") ;

232 IAcmeEnumValue theDataRep = (IAcmeEnumValue) (theF i e ld .

getValue ()) ;

233 return new TDataRep(theDataRep) ;

234 }

235

236 private stat ic Set getMessageDataSetFromMessage (

IAcmeRecordValue theMessage)

237 throws Exception {

238 Helper . debug (" debug - ingetMessageDataSetFromMessage " , "

theMessage "

239 + theMessage) ;

240 IAcmeRecordField f i e l dCon ta i n i ngSe t = theMessage

241 . g e tF i e l d (" MessageData ") ;

368

242 i f (f i e l dCon ta i n i ngSe t == null)

243 throw new ReportableExcept ion (

244 "A message does not have a MessageDataProperty ") ;

245 IAcmeSetValue propertyMessageDataSet = (IAcmeSetValue) (

f i e l dCon ta i n i ngSe t

246 . getValue ()) ;

247 return propertyMessageDataSet . getValues () ;

248 }

249

250 public stat ic St r ing getMessageIDFromMessage (IAcmeRecordValue

theRecord)

251 throws Exception {

252 IAcmeRecordField msgIDField = theRecord . g e tF i e l d (" MessageId

") ;

253 i f (msgIDField == null)

254 throw new ReportableExcept ion ("A message has a null

MessageID ") ;

255 return ((IAcmeStringValue) msgIDField . getValue ()) . getValue

() ;

256 }

257

258 public stat ic Set getCentralDataRecordsFromComponent (

259 IAcmeComponent theComponent) throws Exception {

260 IAcmeProperty theProperty = theComponent

261 . getProperty (" CentralDataRecords ") ;

262 i f (theProperty == null)

263 throw new ReportableExcept ion (

264 " The component has no CentralDataRecordsProperty ") ;

265 IAcmeSetValue thePropertyValue = (IAcmeSetValue)

theProperty . getValue () ;

266 return thePropertyValue . getValues () ;

267 }

268

269 public stat ic IAcmeRecordValue

getCentralDataRecordFromRecords (

270 St r ing datumID , Set theRecords) throws Exception {

271 I t e r a t o r i = theRecords . i t e r a t o r () ;

272

273 while (i . hasNext ()) {

274 IAcmeRecordValue th i sRecord = (IAcmeRecordValue) i . next ()

;

275 i f (getDataIDFromCentralDataRecord (th i sRecord) .

equa l s IgnoreCase (

276 datumID)) {

277 return th i sRecord ;

278 }

279 }

280 throw new ReportableExcept ion (" No CentralDataRecord found

with ID "

281 + datumID) ;

282 }

283

284 public stat ic St r ing getDataIDFromCentralDataRecord (

285 IAcmeRecordValue theRecord) throws Exception {

286 IAcmeRecordField theF i e ld = theRecord . g e tF i e l d (" DatumID ") ;

287 i f (theF i e ld == null)

288 throw new ReportableExcept ion ("A CentralDataRecord has no

DatumID ") ;

289 return ((IAcmeStringValue) (theF i e ld . getValue ())) . getValue

() ;

290 }

291

292 public stat ic TDataSemantics

getDataSemanticsFromCentralDataRecord (

293 IAcmeRecordValue theRecord) throws Exception {

294 IAcmeRecordField theF i e ld = theRecord . g e tF i e l d ("

DatumSemantics ") ;

295 i f (theF i e ld == null)

296 throw new ReportableExcept ion (

297 "A CentralDataRecord has not DatumSemantics ") ;

298 return new TDataSemantics (theF i e ld . getValue ()) ;

299 }

369

300

301 public stat ic TDataRep getDataRepFromMessage (IAcmeRecordValue

theMessage ,

302 St r ing datumID) throws Exception {

303

304 IAcmeRecordField datumSetRecordField = theMessage

305 . g e tF i e l d (" MessageData ") ;

306 i f (datumSetRecordField == null)

307 throw new ReportableExcept ion (

308 "A message has no MessageData Property ") ;

309 IAcmeSetValue datumSetValue = (IAcmeSetValue)

datumSetRecordField

310 . getValue () ;

311 Set datumSet = datumSetValue . getValues () ;

312

313 // i t e r a t e through the se t to f ind the requ ire datum

314

315 I t e r a t o r i = datumSet . i t e r a t o r () ;

316

317 IAcmeRecordValue theDatumRecord = null ;

318

319 while (i . hasNext ()) {

320 IAcmeRecordValue thisDatumRecord = (IAcmeRecordValue) i .

next () ;

321

322 St r ing thisDatumName = getDatumIDFromTMessageDatum(

thisDatumRecord) ;

323 i f (thisDatumName . equa l s IgnoreCase (datumID)) {

324 return getTDataRepFromTMessageDatum(thisDatumRecord) ;

325 }

326 }

327 throw new ReportableExcept ion (" There was no datum found

with ID "

328 + datumID + " in a message ") ;

329 }

330

331 public stat ic TDataSemantics getDatumSemanticsFromComponent (

St r ing datumID ,

332 IAcmeComponent theComponent) throws Exception {

333 Set centra lDataRecords = getCentralDataRecordsFromComponent

(theComponent) ;

334 IAcmeRecordValue datumRecord =

getCentralDataRecordFromRecords (datumID ,

335 centra lDataRecords) ;

336 return getDataSemanticsFromCentralDataRecord (datumRecord) ;

337 }

338 }

F.4.17 Element CSP Data

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2 import java . u t i l . ArrayList ;

3 import java . u t i l . I t e r a t o r ;

4 import java . u t i l .Map;

5 import java . u t i l . Set ;

6 import java . u t i l . TreeMap ;

7

8 public c lass ElementCSPData {

9

10 private Map al lE lements ;

11

12 public ElementCSPData () {

13 a l lE l ements = new TreeMap () ;

14 }

15

16 public void addComponent (S t r ing compID , St r ing theCSP) {

17

18 i f (! a l lE l ements . containsKey (compID)) {

19 ArrayList temp = new ArrayList (2) ;

20

21 //workround as a r r a y l i s t s i z e i n i t i a l i z a t i o n not working

22 temp . add (null) ;

370

23 temp . add (null) ;

24

25 temp . s e t (0 , theCSP) ;

26 temp . s e t (1 , new TreeMap ()) ;

27 a l lE l ements . put (compID , temp) ;

28 }

29 else

30 {

31 ArrayList compData = (ArrayList) a l lE lements . get (compID) ;

32 compData . s e t (0 , theCSP) ;

33 }

34 }

35

36 public void addPort (S t r ing compID , St r ing portID , St r ing

portCSP) {

37 addComponent (compID , null) ;

38

39 // check for template id on f i r s t l ine , and s t r i p i t

40 St r ing [] c spLines = portCSP . s p l i t (" \n") ;

41 St r ing [] l i n e 0 = cspLines [0] . s p l i t (" ") ;

42 St r ing cspToAdd="" ;

43 i f (l i n e 0 . l ength == 1)

44 {

45 for (int i =1; i<cspLines . l ength ; i++)

46 {

47 cspToAdd += cspLines [i] + " \n" ;

48 }

49 }

50 else

51 {

52 for (int i =0; i<cspLines . l ength ; i++)

53 {

54 cspToAdd += cspLines [i] + " \n" ;

55 }

56 }

57

58 ArrayList compData = getCompData (compID) ;

59 i f (compData == null) {

60 addComponent (compID , null) ;

61 compData = getCompData (compID) ;

62 }

63

64 Map portMap = (Map) compData . get (1) ;

65 portMap . put (portID , cspToAdd) ;

66 }

67

68 private ArrayList getCompData (St r ing compID) {

69 i f (a l lE l ements . containsKey (compID)) {

70 return (ArrayList) a l lE l ements . get (compID) ;

71 }

72 return null ;

73 }

74

75 public St r ing getAl lElements () {

76

77 St r ing toReturn = "" ;

78

79 Set compIDs = al lE lements . keySet () ;

80 I t e r a t o r compIt = compIDs . i t e r a t o r () ;

81 while (compIt . hasNext ()) {

82 // add component

83 St r ing thisCompID = (St r ing) compIt . next () ;

84 ArrayList compData = (ArrayList) a l lE l ements . get (

thisCompID) ;

85 toReturn += (St r ing) compData . get (0) + "\n \n " ;

86

87 // add ports

88 Map portsMap = (Map) compData . get (1) ;

89 Set portIDs = portsMap . keySet () ;

90 I t e r a t o r po r t I t = portIDs . i t e r a t o r () ;

91

92 while (po r t I t . hasNext ()) {

371

93 St r ing portKey = (St r ing) po r t I t . next () ;

94 St r ing portCSP = (St r ing) portsMap . get (portKey) ;

95 toReturn += portCSP + " \n \n " ;

96 }

97 }

98 return toReturn ;

99 }

100

101 public Set getCompIDs ()

102 {

103 return a l lE l ements . keySet () ;

104 }

105

106 }

F.4.18 FDR Results Analyzer

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3 import java . u t i l . ArrayList ;

4 import java . u t i l . Comparator ;

5 import java . u t i l . I t e r a t o r ;

6 import java . u t i l . L inkedList ;

7 import java . u t i l . L i s t ;

8 import java . u t i l .Map;

9 import java . u t i l . Set ;

10 import java . u t i l . TreeSet ;

11

12 public c lass FDRResultsAnalyzer {

13

14 private List<List> deadLockTraces ;

15 private List<List> re f inementTraces ;

16 private boolean deadLockFailed ;

17 private boolean r e f inementFa i l ed ;

18 private boolean ana lys i sCheckFa i l ed ;

19 private boolean ana lys i sCheckProcessed ;

20 private St r ing ana ly s i sCheckDeta i l s ;

21 private int s e l e c t e dAna l y s i s ;

22 private CSPHidingSetConstructor hidCon ;

23 private CSPConnectorConstructor connCon ;

24 private St r ing compID ;

25

26 public FDRResultsAnalyzer (int s e l e c t edAna ly s i s ,

27 CSPHidingSetConstructor hidCon , S t r ing compID ,

28 CSPConnectorConstructor connCon) {

29 deadLockTraces = new LinkedList<List >() ;

30 re f inementTraces = new LinkedList<List >() ;

31 ana lys i sCheckProcessed = fa l se ;

32 ana ly s i sCheckDeta i l s = "" ;

33 this . hidCon = hidCon ;

34 this . compID = compID ;

35 this . s e l e c t e dAna l y s i s = s e l e c t e dAna l y s i s ;

36 this . connCon = connCon ;

37 }

38

39 public void submitRefinementTraces (List<Str ing> f d rRe su l t s) {

40 int index = 0 ;

41 I t e r a t o r<Str ing> i t = fd rRe su l t s . i t e r a t o r () ;

42

43 // get boolean r e s u l t

44 while (i t . hasNext () && index < 3) {

45 index++;

46 i t . next () ;

47 }

48

49 St r ing fd rResu l t = i t . next () ;

50

51 i f (fd rResu l t . tr im () . equa l s IgnoreCase (" xfalse ")

52 | | f d rResu l t . tr im () . equa l s IgnoreCase (" false ")) {

53 r e f inementFa i l ed = true ;

54 re f inementTraces = readResu l t s (i t) ;

55 } else {

372

56 r e f inementFa i l ed = fa l se ;

57 }

58 }

59

60 public void submitDeadlockTraces (List<Str ing> f d rRe su l t s) {

61

62 int index = 0 ;

63

64 I t e r a t o r<Str ing> i t = fd rRe su l t s . i t e r a t o r () ;

65

66 // get boolean r e s u l t

67 while (i t . hasNext () && index < 3) {

68

69 index++;

70 i t . next () ;

71 }

72

73 St r ing fd rResu l t = i t . next () ;

74 i f (fd rResu l t . tr im () . equa l s IgnoreCase (" xfalse ")

75 | | f d rResu l t . tr im () . equa l s IgnoreCase (" false ")) {

76 deadLockFailed = true ;

77 deadLockTraces = readResu l t s (i t) ;

78 } else {

79 deadLockFailed = fa l se ;

80 }

81 }

82

83 private List<List> readResu l t s (I t e r a t o r theResu l t s) {

84 L i s t th i sTrace = null ;

85 List<List> examples = new LinkedList () ;

86 while (theResu l t s . hasNext ()) {

87 St r ing th i sL in e = (St r ing) theResu l t s . next () ;

88 // assumes the f i r s t l i n e with be a BEGIN TRACE

89 boolean endTrace = fa l se ;

90 i f (th i sL in e . s tartsWith (" BEGIN TRACE ")) {

91 th i sTrace = new LinkedList<Str ing >() ;

92 examples . add (th i sTrace) ;

93 } else {

94 i f (! t h i sL in e . s tartsWith (" END TRACE ")) {

95 th i sTrace . add (th i sL in e . tr im ()) ;

96 } else {

97 // do nothing for an end trace l i n e

98 }

99 }

100 }

101 return examples ;

102 }

103

104 public Boolean repor tResu l t () throws ReportableExcept ion {

105

106 i f (ana lys i sCheckProcessed) {

107

108 return ana lys i sCheckFa i l ed ;

109 } else {

110

111 i f (s e l e c t e dAna l y s i s == CSPModelBuilder .

ANALYSIS DEADLOCK PARTIAL) {

112 processDeadLockCheck (true) ;

113 }

114

115 i f (s e l e c t e dAna l y s i s == CSPModelBuilder .ANALYSIS DEADLOCK

) {

116 processDeadLockCheck (fa l se) ;

117 }

118

119 i f (s e l e c t e dAna l y s i s == CSPModelBuilder .

ANALYSIS THREAD SPEC REFINEMENT) {

120 processThreadCheck () ;

121 }

122

123 i f (s e l e c t e dAna l y s i s == CSPModelBuilder .

ANALYSIS COMPONENT REFINEMENT) {

373

124 processOmissionCheck (fa l se) ;

125 }

126

127 i f (s e l e c t e dAna l y s i s == CSPModelBuilder .

ANALYSIS COMPONENT REFINEMENT PARTIAL) {

128 processOmissionCheck (true) ;

129 }

130 return ana lys i sCheckFa i l ed ;

131 }

132 }

133

134 public St r ing r epo r tDe t a i l s () throws ReportableExcept ion {

135

136 i f (ana lys i sCheckProcessed) {

137

138 return ana ly s i sCheckDeta i l s ;

139 } else {

140

141 i f (s e l e c t e dAna l y s i s == CSPModelBuilder .

ANALYSIS DEADLOCK PARTIAL) {

142 processDeadLockCheck (true) ;

143 }

144

145 i f (s e l e c t e dAna l y s i s == CSPModelBuilder .ANALYSIS DEADLOCK

) {

146 processDeadLockCheck (fa l se) ;

147 }

148

149 i f (s e l e c t e dAna l y s i s == CSPModelBuilder .

ANALYSIS THREAD SPEC REFINEMENT) {

150 processThreadCheck () ;

151 }

152

153 i f (s e l e c t e dAna l y s i s == CSPModelBuilder .

ANALYSIS COMPONENT REFINEMENT) {

154 processOmissionCheck (fa l se) ;

155 }

156

157 i f (s e l e c t e dAna l y s i s == CSPModelBuilder .

ANALYSIS COMPONENT REFINEMENT PARTIAL) {

158 processOmissionCheck (true) ;

159 }

160 return ana ly s i sCheckDeta i l s ;

161 }

162 }

163

164 private void processDeadLockCheck (boolean f o rPart ia lMatch)

165 throws ReportableExcept ion {

166

167 St r ing d e t a i l s = "" ;

168 int f a i l u r eCount = 0 ;

169

170 // go through each trace searching for those tha t end in

171 // a message in t h i s components in t e r f a ce

172 Set thisCompsMsgs = hidCon . getSetMessagesForComp (compID) ;

173

174 I t e r a t o r t r a c e I t = deadLockTraces . i t e r a t o r () ;

175

176 while (t r a c e I t . hasNext ()) {

177 St r ing temp = "" ;

178 L i s t th i sTrace = (L i s t) t r a c e I t . next () ;

179 I t e r a t o r th i sT ra c e I t = th i sTrace . i t e r a t o r () ;

180 St r ing thisMessage = "" ;

181 while (t h i sT ra c e I t . hasNext ()) {

182 th isMessage = ((St r ing) th i sT ra c e I t . next ()) . tr im () ;

183 temp += thisMessage + " " ;

184 }

185 // check i f f i n a l message i s part of t h i s components

in t e r f a ce

186

187 i f (thisCompsMsgs . conta in s (th isMessage)) {

188

374

189 i f ((fo rPart ia lMatch && connCon

190 . isMessageUnderOurControl (th isMessage))

191 | | (! fo rPart ia lMatch && ! connCon

192 . isMessageUnderOurControl (th isMessage))) {

193 ana lys i sCheckFa i l ed = true ;

194 f a i l u r eCount++;

195 d e t a i l s += " =================================== \n "

;

196 d e t a i l s += " Commission trace number " + fa i lu r eCount

197 + " \n \n" ;

198 d e t a i l s += temp + " \n \n" ;

199 }

200 }

201 }

202

203 i f (ana lys i sCheckFa i l ed) {

204 ana ly s i sCheckDeta i l s += compID

205 + " attempted to send unexpected messages (commision

events) in "

206 + fa i lu r eCount + " traces ." ;

207 ana ly s i sCheckDeta i l s += d e t a i l s ;

208 }

209 ana lys i sCheckProcessed = true ;

210 }

211

212 private void processThreadCheck () {

213 // r e s u l t i s based en t i r e l y on refinement r e s u l t

214 ana lys i sCheckFa i l ed = re f inementFa i l ed ;

215 i f (ana lys i sCheckFa i l ed)

216 ana ly s i sCheckDeta i l s += " This port experienced two or

more simultaneous invocations " ;

217 ana lys i sCheckProcessed = true ;

218 }

219

220 private void processOmissionCheck (boolean f o rPart ia lMatch)

221 throws ReportableExcept ion {

222

223 Set reducedDeadLocks = reduceDeadLockTraces (deadLockTraces)

;

224 Set reducedRef inements = reduceRef inementTraces (

re f inementTraces) ;

225

226 ana lys i sCheckFa i l ed = fa l se ;

227 St r ing d e t a i l s = "" ;

228

229 I t e r a t o r r e f i n e I t = reducedRef inements . i t e r a t o r () ;

230 while (r e f i n e I t . hasNext ()) {

231 L i s t th i sRef inement = (L i s t) r e f i n e I t . next () ;

232 // s t a r t conf ident and look for counterexample

233 boolean exampleConfident = true ;

234

235 // get the l a s t message in the refinement f a i l u r e and

determine

236 // i f i t i s under our control , t h i s de f ines whether i t i s

considered

237 // fur ther or not , true i s considered for p a r t i a l match ,

f a l s t

238 // i s considered for mismatch .

239

240 St r ing msgID = (St r ing) th i sRef inement

241 . get (th i sRef inement . s i z e () − 1) ;

242

243 Helper

244 . writeDebug (" The last message in the refinement was "

245 + msgID) ;

246 Helper . writeDebug (" This is the list representing the

refinement "

247 + thisRef inement) ;

248

249 Helper

250 . writeDebug (" selected analysis is partial "

375

251 + (s e l e c t e dAna l y s i s == CSPModelBuilder .

ANALYSIS COMPONENT REFINEMENT PARTIAL)) ;

252 Helper

253 . writeDebug (" selected analysis is mismatch "

254 + (s e l e c t e dAna l y s i s == CSPModelBuilder .

ANALYSIS COMPONENT REFINEMENT)) ;

255

256 // boolean tempBool =

257 // ((connCon . isReceivedMessageUnderOurControl (msgID) &&

258 // se l ec t edAna ly s i s ==

259 // CSPModelBuilder .ANALYSIS COMPONENT REFINEMENT PARTIAL)

260 // | | (! connCon . isReceivedMessageUnderOurControl (msgID)

&&

261 // se l ec t edAna ly s i s ==

262 // CSPModelBuilder .ANALYSIS COMPONENTREFINEMENT)) ;

263

264 // Helper . writeDebug (” r e s u l t s in ” +tempBool) ;

265

266 i f ((connCon . isReceivedMessageUnderOurControl (msgID) &&

se l e c t e dAna l y s i s == CSPModelBuilder .

ANALYSIS COMPONENT REFINEMENT PARTIAL)

267 | | (! connCon . isReceivedMessageUnderOurControl (msgID)

&& se l e c t e dAna l y s i s == CSPModelBuilder .

ANALYSIS COMPONENT REFINEMENT)) {

268

269 Helper . writeDebug (" Processing this received message ")

;

270

271 I t e r a t o r deadLockIt = reducedDeadLocks . i t e r a t o r () ;

272 while (deadLockIt . hasNext ()) {

273 L i s t thisDeadLock = (L i s t) deadLockIt . next () ;

274

275 Helper

276 . writeDebug (" about to check the refinement

against this deadlock "

277 + thisDeadLock) ;

278

279 i f (deadLockTraceMatchesRefinementHead (thisRef inement

,

280 thisDeadLock)) {

281 Helper

282 . writeDebug (" it was found to match so the

counter example is found ") ;

283 exampleConfident = fa l se ;

284 break ;

285 }

286 }

287

288 i f (exampleConfident) {

289 ana lys i sCheckFa i l ed = true ;

290 d e t a i l s += " ================================ \n" ;

291 d e t a i l s += thisRef inement . t oS t r i ng () ;

292 d e t a i l s += " \n \n" ;

293 }

294 }

295 }

296

297 ana ly s i sCheckDeta i l s += d e t a i l s ;

298 ana lys i sCheckProcessed = true ;

299 }

300

301 private boolean deadLockTraceMatchesRefinementHead (L i s t

ref inementTrace ,

302 L i s t deadLockTrace) {

303

304 St r ing dlTrace = "" ;

305 St r ing r fTrace = "" ;

306 I t e r a t o r d l = deadLockTrace . i t e r a t o r () ;

307 while (d l . hasNext ()) {

308 dlTrace += " ," + (St r ing) d l . next () ;

309 }

310

376

311 I t e r a t o r r f = ref inementTrace . i t e r a t o r () ;

312

313 // and odd loop to make sure we add a l l but the

314 // l a s t event to the trace

315 St r ing temp = (St r ing) r f . next () ;

316 while (r f . hasNext ()) {

317 r fTrace += " ," + temp ;

318 temp = (St r ing) r f . next () ;

319 }

320

321 Helper . writeDebug (" The rf trace as a string " + rfTrace) ;

322 Helper . writeDebug (" The dl trace as a string " + dlTrace) ;

323

324 i f (r fTrace . equa l s (dlTrace))

325 Helper . writeDebug (" These traces are found to be equal ") ;

326 else

327 Helper . writeDebug (" These traces are found to be not equal

") ;

328

329 i f (r fTrace . equa l s (dlTrace)) {

330 return true ;

331 } else {

332 return fa l se ;

333 }

334 }

335

336 private Set reduceDeadLockTraces (L i s t o r i g i n a l) {

337 Set reducedDeadLocks = new TreeSet (new TraceComparator ()) ;

338 I t e r a t o r i t = o r i g i n a l . i t e r a t o r () ;

339 L i s t thisDeadLock ;

340 I t e r a t o r deadLockIt ;

341 while (i t . hasNext ()) {

342 boolean newListPopulated = fa l se ;

343 L i s t temp = new LinkedList () ;

344

345 thisDeadLock = (L i s t) i t . next () ;

346 deadLockIt = thisDeadLock . i t e r a t o r () ;

347 St r ing th i sEvent ;

348 while (deadLockIt . hasNext ()) {

349 th i sEvent = (St r ing) deadLockIt . next () ;

350 i f (! th i sEvent . tr im () . equa l s IgnoreCase (" _tau ")) {

351 temp . add (th isEvent) ;

352 newListPopulated = true ;

353 }

354 }

355

356 i f (newListPopulated) {

357 reducedDeadLocks . add (temp) ;

358 }

359 }

360 return reducedDeadLocks ;

361 }

362

363 private Set reduceRef inementTraces (List<List> o r i g i n a l) {

364 Set reducedRef inements = new TreeSet (new TraceComparator ())

;

365

366 I t e r a t o r i t = o r i g i n a l . i t e r a t o r () ;

367 L i s t th i sRef inement ;

368 I t e r a t o r r e f i n ement I t ;

369 while (i t . hasNext ()) {

370 boolean newListPopulated = fa l se ;

371 boolean newListEndsReceivedMessage = fa l se ;

372 L i s t temp = new LinkedList () ;

373

374 th i sRef inement = (L i s t) i t . next () ;

375 r e f i n ement I t = thisRef inement . i t e r a t o r () ;

376 St r ing th i sEvent ;

377 while (r e f i n ement I t . hasNext ()) {

378 th i sEvent = (St r ing) r e f i n ement I t . next () ;

379 i f (! th i sEvent . tr im () . equa l s IgnoreCase (" _tau ")) {

380 temp . add (th isEvent) ;

377

381 newListPopulated = true ;

382 i f (i s InRece ivedMessages (th i sEvent)) {

383 newListEndsReceivedMessage = true ;

384 } else {

385 newListEndsReceivedMessage = fa l se ;

386 }

387 }

388

389 }

390

391 i f (newListEndsReceivedMessage && newListPopulated) {

392 reducedRef inements . add (temp) ;

393 }

394 }

395 return reducedRef inements ;

396 }

397

398 public c lass TraceComparator implements Comparator<List> {

399 public int compare (L i s t l1 , L i s t l 2) {

400 return l 1 . t oS t r i ng () . compareTo (l 2 . t oS t r i ng ()) ;

401 }

402 }

403

404 private boolean i s InRece ivedMessages (S t r ing theEvent) {

405 Set msgsData = hidCon . getSetMessagesDataForComp (compID) ;

406

407 I t e r a t o r msgIt = msgsData . i t e r a t o r () ;

408 ArrayList th isData ;

409 St r ing thisMsg ;

410 while (msgIt . hasNext ()) {

411 th isData = (ArrayList) msgIt . next () ;

412 thisMsg = ((St r ing) thisData . get (0)) . tr im () ;

413 i f (theEvent . tr im () . equa l s IgnoreCase (thisMsg)) {

414 return true ;

415 }

416 }

417 return fa l se ;

418 }

419 }

F.4.19 Helper

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3 import java . i o . BufferedReader ;

4 import java . i o . Buf feredWriter ;

5 import java . i o . F i l e ;

6 import java . i o . F i l eWr i t e r ;

7 import java . i o . InputStreamReader ;

8 import java . i o . Pr intWriter ;

9 import java . u t i l . L inkedList ;

10 import java . u t i l . L i s t ;

11

12 public c lass Helper {

13

14 private stat ic Buf feredWriter currentStream = null ;

15

16 public stat ic void debug (St r ing name , St r ing toOutput) {

17 try {

18 PrintWriter p = new PrintWriter (name) ;

19 p . p r i n t l n (toOutput) ;

20 p . f l u s h () ;

21 } catch (Exception e) {

22 }

23

24 }

25

26 public stat ic void openDebug (St r ing f i l e ID) {

27

28 i f (currentStream != null) {

29 try {

30 currentStream . c l o s e () ;

378

31 } catch (Exception e) {

32 System . e r r . p r i n t l n (" Error write : " + e . getMessage ()) ;

33 }

34 }

35

36 try {

37 Fi l eWr i t e r f s t ream = new Fi l eWr i t e r ("/ home / carl /" +

f i l e ID) ;

38 currentStream = new Buf feredWriter (f s t ream) ;

39 } catch (Exception e) {

40 System . e r r . p r i n t l n (" Error write : " + e . getMessage ()) ;

41 }

42 }

43

44 public stat ic void writeDebug (St r ing toWrite) {

45 try {

46 currentStream . wr i t e (toWrite + " \n") ;

47 currentStream . f l u s h () ;

48 } catch (Exception e) {

49 System . e r r . p r i n t l n (" Error write : " + e . getMessage ()) ;

50 }

51 }

52

53 public stat ic void closeDebug () {

54

55 try {

56 currentStream . c l o s e () ;

57 } catch (Exception e) {

58 System . e r r . p r i n t l n (" Error write : " + e . getMessage ()) ;

59 }

60

61 }

62

63 public stat ic L i s t processCSPModel (S t r ing outputPath , int

maxExamples) {

64

65 L i s t fdrRawResults = new LinkedList () ;

66 St r ing fdrcmd = " fdrBatchMode " ;

67 St r ing fdrExampleMax = "" + maxExamples ;

68 St r ing modelLocation = outputPath ;

69 St r ing toRun = fdrcmd + " " + fdrExampleMax + " " +

modelLocation ;

70

71 try {

72 St r ing l i n e ;

73 Process p = Runtime . getRuntime () . exec (toRun) ;

74 BufferedReader input = new BufferedReader (new

InputStreamReader (p

75 . getInputStream ())) ;

76 while ((l i n e = input . readLine ()) != null) {

77 fdrRawResults . add (l i n e) ;

78 }

79 input . c l o s e () ;

80 } catch (Exception e) {

81 System . e r r . p r i n t l n (" Error execute : " + e . getMessage ()) ;

82 }

83 return fdrRawResults ;

84 }

85

86 public stat ic void writeModelToFile (S t r ing theCSPModel ,

S t r ing outputPath) {

87 try {

88 Fi l eWr i t e r f s t ream = new Fi l eWr i t e r (outputPath) ;

89 Buf feredWriter out = new Buf feredWriter (f s t ream) ;

90 out . wr i t e (theCSPModel) ;

91 out . c l o s e () ;

92 } catch (Exception e) {

93 System . e r r . p r i n t l n (" Error write : " + e . getMessage ()) ;

94 }

95 }

96

97 }

379

F.4.20 Look Up

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3 public c lass LookUP {

4

5 // index numbers app l i ed to the messsages the exchanges we

consider

6 public stat ic f ina l int MESSAGE INDEX REQUEST = 1 ;

7 public stat ic f ina l int MESSAGE INDEX RESPONSE = 2 ;

8 public stat ic f ina l int MESSAGE INDEX FAULT = 3 ;

9 public stat ic f ina l int MESSAGE INDEX FAULT2 = 4 ;

10

11

12

13 // l i n e numbers where the messages can be found in the

message exchange

14 // pat tern templates

15 public stat ic f ina l int CSP INDEX NOTI SENDREQ = 1 ;

16

17 public stat ic f ina l int CSP INDEX INO GETREQ = 1 ;

18

19 public stat ic f ina l int CSP INDEX ROO SENDREQ = 1 ;

20 public stat ic f ina l int CSP INDEX ROO GETFAULT = 5 ;

21

22 public stat ic f ina l int CSP INDEX RIO GETREQ = 1 ;

23 public stat ic f ina l int CSP INDEX RIO SENDFAULT = 5 ;

24

25 public stat ic f ina l int CSP INDEX SOLI SENDREQ = 1 ;

26 public stat ic f ina l int CSP INDEX SOLI GETRES = 3 ;

27 public stat ic f ina l int CSP INDEX SOLI GETFAULT = 4 ;

28

29 public stat ic f ina l int CSP INDEX REQR GETREQ = 1 ;

30 public stat ic f ina l int CSP INDEX REQR SENDRES = 3 ;

31 public stat ic f ina l int CSP INDEX REQR SENDFAULT = 4 ;

32

33 public stat ic f ina l int CSP INDEX OOI SENDREQ = 1 ;

34 public stat ic f ina l int CSP INDEX OOI GETRES = 5 ;

35 public stat ic f ina l int CSP INDEX OOI GETFAULT = 4 ;

36 public stat ic f ina l int CSP INDEX OOI SENDFAULT2 = 9 ;

37

38 public stat ic f ina l int CSP INDEX IOO GETREQ = 1 ;

39 public stat ic f ina l int CSP INDEX IOO SENDRES = 6 ;

40 public stat ic f ina l int CSP INDEX IOO SENDFAULT = 5 ;

41 public stat ic f ina l int CSP INDEX IOO GETFAULT2 = 8 ;

42

43 }

F.4.21 Message Comparison

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3 import java . u t i l . ArrayList ;

4 import java . u t i l . I t e r a t o r ;

5 import java . u t i l . L i s t ;

6 import java . u t i l .Map;

7 import java . u t i l . Set ;

8

9 import org . acmestudio . acme . core . type . IAcmeRecordValue ;

10 import org . acmestudio . acme . core . type . IAcmeStringValue ;

11 import org . acmestudio . acme . element . IAcmeComponent ;

12 import org . acmestudio . acme . element . IAcmeConnector ;

13 import org . acmestudio . acme . element . IAcmePort ;

14

15 public c lass MessageComparison {

16

17 private stat ic f ina l int UNDER DATA 1 = 0 ;

18 private stat ic f ina l int UNDER DATA 2 = 1 ;

19 private stat ic f ina l int OVERDATA = 2 ;

20 private stat ic f ina l int DATATYPESMATCH = 3 ;

21

380

22 public stat ic Analys i sResu l t messageUnderData1 (IAcmePort

port1 ,

23 IAcmePort port2 , int messageIndex) throws Exception {

24 return messageDataAnalysis (port1 , port2 , messageIndex ,

25 MessageComparison .UNDER DATA 1) ;

26 }

27

28 public stat ic Analys i sResu l t messageUnderData2 (IAcmePort

port1 ,

29 IAcmePort port2 , int messageIndex) throws Exception {

30 return messageDataAnalysis (port1 , port2 , messageIndex ,

31 MessageComparison .UNDER DATA 2) ;

32 }

33

34 public stat ic Analys i sResu l t messageOverData (IAcmePort port1 ,

35 IAcmePort port2 , int messageIndex) throws Exception {

36 return messageDataAnalysis (port1 , port2 , messageIndex ,

37 MessageComparison .OVERDATA) ;

38 }

39

40 public stat ic Analys i sResu l t dataTypesMatch (IAcmePort port1 ,

41 IAcmePort port2 , int messageIndex) throws Exception {

42 return messageDataAnalysis (port1 , port2 , messageIndex ,

43 MessageComparison .DATATYPESMATCH) ;

44 }

45

46 public stat ic Analys i sResu l t stateScopesMatch (IAcmeConnector

conn ,

47 IAcmePort port1 , IAcmePort port2) throws Exception {

48 return s ta t eScopeAna ly s i s (conn , port1 , port2) ;

49 }

50

51 private stat ic Analys i sResu l t s ta t eScopeAna ly s i s (

IAcmeConnector conn ,

52 IAcmePort port1 , IAcmePort port2) throws Exception {

53 // generate an AcmeInterface from one of the ports

54 AcmeInterface a i = new AcmeInterface (conn) ;

55

56 // get parentComponent for each port

57 IAcmeComponent comp1 = (IAcmeComponent) port1 . getParent () ;

58 IAcmeComponent comp2 = (IAcmeComponent) port2 . getParent () ;

59 St r ing comp1ID = comp1 . getName () ;

60 St r ing comp2ID = comp2 . getName () ;

61

62 boolean a l lScopesCompat ib le = true ;

63 St r ing r epo r tDe t a i l s = "" ;

64

65 for (int messageIndex = 0 ; messageIndex < 4 ; messageIndex

++) {

66 MessageMapping thisMessageMapping = new MessageMapping (

port1 ,

67 port2 , messageIndex) ;

68

69 i f (thisMessageMapping . getSentMessage () == null) {

70 // no more mappings for t h i s pair of ports , e x i t the

loop

71 break ;

72 }

73

74 // get the message names

75 St r ing sentMsgName = ((IAcmeStringValue) (

thisMessageMapping

76 . getSentMessage ()) . g e tF i e l d (" MessageId ") . getValue ())

77 . getValue () ;

78 St r ing recvMsgName = ((IAcmeStringValue) (

thisMessageMapping

79 . getReceivedMessage ()) . g e tF i e l d (" MessageId ") . getValue

())

80 . getValue () ;

81

82 // get the port names

381

83 St r ing sendingPortID = thisMessageMapping . getSendingPort

()

84 . getName () ;

85 St r ing rece iv ingPort ID = thisMessageMapping .

getRece iv ingPort ()

86 . getName () ;

87

88 // get the component names

89 St r ing sendingComponentID = thisMessageMapping

90 . getSendingComponent () . getName () ;

91 St r ing receivingComponentID = thisMessageMapping

92 . getReceivingComponent () . getName () ;

93

94 // get the same elements from the acme in t e r f a c e

95 Component sendingComp = null ;

96 Component receivingComp = null ;

97 Port sendingPort = null ;

98 Port r e c e i v i ngPo r t = null ;

99 I t e r a t o r a l lE l ements = a i . e lements . i t e r a t o r () ;

100

101 while (a l lE l ements . hasNext ()) {

102 Component thisOne = (Component) a l lE l ements . next () ;

103 i f (thisOne . iD . equa l s IgnoreCase (sendingComponentID)) {

104 sendingComp = thisOne ;

105 I t e r a t o r p o r t s I t = sendingComp . por t s . i t e r a t o r () ;

106 while (p o r t s I t . hasNext ()) {

107 Port th i sPor t = (Port) p o r t s I t . next () ;

108 i f (th i sPor t . iD . equa l s IgnoreCase (sendingPortID)) {

109 sendingPort = th i sPor t ;

110 break ;

111 }

112 }

113 }

114 i f (thisOne . iD . equa l s IgnoreCase (receivingComponentID))

{

115 receivingComp = thisOne ;

116 I t e r a t o r p o r t s I t = sendingComp . por t s . i t e r a t o r () ;

117 while (p o r t s I t . hasNext ()) {

118 Port th i sPor t = (Port) p o r t s I t . next () ;

119 i f (th i sPor t . iD . equa l s IgnoreCase (rece iv ingPort ID))

{

120 r e c e i v i ngPo r t = th i sPor t ;

121 break ;

122 }

123 }

124 }

125 }

126

127 i f (sendingComp == null | | receivingComp == null

128 | | sendingPort == null | | r e c e i v i ngPo r t == null) {

129 throw new ReportableExcept ion (

130 " We could not extract the elements required to

perform this analysis from the acme interface

model ") ;

131 }

132

133 L i s t messageDataMappings = generateMessageDataMappings (

134 thisMessageMapping . getSentMessage () ,

thisMessageMapping

135 . getSendingComponent () , thisMessageMapping

136 . getReceivedMessage () , thisMessageMapping

137 . getReceivingComponent ()) ;

138

139 // message data mapping a l lows us to get mappings between

the sent

140 // and

141 // rece ived message datum , t h i s forms the l i n k between

the two

142 // components , we can then compare the s t a t e scope

assumptions of

143 // each

382

144 // datum in the message descr ip t i on with the datum

descr ip t i on in

145 // the

146 // opposing component

147

148 // get the required sent message

149

150 Map sentMessage = (Map) sendingPort . messages . get ("

sentMsgName ") ;

151 i f (sentMessage == null)

152 throw new Exception (" Unable to find the message that

was sent ") ;

153

154 I t e r a t o r messageMappingIt = messageDataMappings . i t e r a t o r

() ;

155 while (messageMappingIt . hasNext ()) {

156 MessageDataMapping thisMapping = (MessageDataMapping)

messageMappingIt

157 . next () ;

158

159 Map sentMessageDatum = (Map) sentMessage . get (

thisMapping

160 . getSentMsgDatumID ()) ;

161 St r ing expectedMessageDatumState = (St r ing)

sentMessageDatum

162 . get (" DatumStateScopeExpected ") ;

163

164 Map receivedMessageDatum = (Map) receivingComp .

centra lDataRecords

165 . get (thisMapping . getReceivedMsgDatumID ()) ;

166 St r ing exhibitedMessageDatumState = (St r ing)

receivedMessageDatum

167 . get (" DatumScopeExhibited ") ;

168

169 i f (! StateScopeComparison .

exhibitedCompatibleWithExpected (

170 exhibitedMessageDatumState ,

expectedMessageDatumState)) {

171 a l lScopesCompat ib le = fa l se ;

172 r e po r tDe t a i l s += " The datum "

173 + thisMapping . getSentMsgDatumID ()

174 + " sent in message "

175 + sentMsgName

176 + " has expected data scope "

177 + expectedMessageDatumState

178 + " , this is not compatible with the exhibited

state "

179 + exhibitedMessageDatumState

180 + " of the message datum "

181 + thisMapping . getReceivedMsgDatumID ()

182 + " it maps to \n" ;

183 }

184 }

185 }

186 return new Analys i sResu l t (a l lScopesCompatib le ,

r e p o r tDe t a i l s) ;

187 }

188

189 private stat ic Analys i sResu l t messageDataAnalysis (IAcmePort

port1 ,

190 IAcmePort port2 , int messageIndex , int analys i sType)

191 throws Exception {

192 St r ing toReport = "" ;

193 boolean analysisPassedOK = true ;

194

195 // get parentComponent for each port

196 IAcmeComponent comp1 = (IAcmeComponent) port1 . getParent () ;

197 IAcmeComponent comp2 = (IAcmeComponent) port2 . getParent () ;

198

199 // get csp for each port

200 St r ing port1CSP = DataExtract ionUt i l s . getPortCSP (port1) ;

201 St r ing port2CSP = DataExtract ionUt i l s . getPortCSP (port2) ;

383

202

203 // get d i r ec t i on for each port

204 TSafeBoolean por t1SendsF i r s t = DataExtract ionUt i l s

205 . getSendsFirstMessage (port1) ;

206 TSafeBoolean por t2SendsF i r s t = DataExtract ionUt i l s

207 . getSendsFirstMessage (port2) ;

208

209 MessageMapping thisMessageMapping = new MessageMapping (

port1 , port2 ,

210 messageIndex) ;

211

212 // generate the MessageDataMapping

213 L i s t messageDataMappings = generateMessageDataMappings (

214 thisMessageMapping . getSentMessage () , thisMessageMapping

215 . getSendingComponent () , thisMessageMapping

216 . getReceivedMessage () , thisMessageMapping

217 . getReceivingComponent ()) ;

218

219 // ”UnderData” Analysis

220 i f (analys i sType == MessageComparison .UNDER DATA 1

221 | | analys i sType == MessageComparison .UNDER DATA 2) {

222 // check for −1 mappings in the rece ived messages

223 // ind i ca t ing expected data missing

224 I t e r a t o r i = messageDataMappings . i t e r a t o r () ;

225 while (i . hasNext ()) {

226 MessageDataMapping thisMapping = (MessageDataMapping) i

. next () ;

227 i f (thisMapping . getReceivedMsgDatumMapping () ==

MessageDataMapping . DatumNotMatched) {

228 St r ing matchingDatumID = searchForMatchingSemantics (

229 thisMapping . getReceivedMsgDatumID () ,

230 thisMessageMapping . getSendingComponent () ,

231 thisMessageMapping . getReceivingComponent ()) ;

232 i f (analys i sType == MessageComparison .UNDER DATA 1

233 && ! matchingDatumID . equa l s IgnoreCase ("")) {

234 analysisPassedOK = fa l se ;

235 toReport += " There is no data in the message sent

to match "

236 + thisMapping . getReceivedMsgDatumID ()

237 + " , but it does appear to be available in the

sending component "

238 + " in datum ID " + matchingDatumID +" \n" ;

239 } else i f (analys i sType == MessageComparison .

UNDER DATA 2

240 && matchingDatumID . equa l s IgnoreCase ("")) {

241 analysisPassedOK = fa l se ;

242 toReport += " There is no data in the message sent

to match "

243 + thisMapping . getReceivedMsgDatumID ()

244 + " and it does not appear to be available in

the component . \n" ;

245 }

246 }

247 }

248 }

249

250 i f (analys i sType == MessageComparison .OVERDATA) {

251 // check for −1 mappings in the sent messages

252 // ind i ca t ing data sent tha t i s not expected

253 I t e r a t o r i = messageDataMappings . i t e r a t o r () ;

254 while (i . hasNext ()) {

255 MessageDataMapping thisMapping = (MessageDataMapping) i

. next () ;

256 i f (thisMapping . getSentMsgDatumMapping () ==

MessageDataMapping . DatumNotMatched) {

257 analysisPassedOK = fa l se ;

258 toReport += " The following data was sent but is not

expected : "

259 + thisMapping . getSentMsgDatumID () + " \n" ;

260 }

261 }

262 }

384

263

264 i f (analys i sType == MessageComparison .DATATYPESMATCH) {

265 // check for sent data mappings > −1 then compare

266 // the data types of both data items

267 I t e r a t o r i = messageDataMappings . i t e r a t o r () ;

268 while (i . hasNext ()) {

269 MessageDataMapping thisMapping = (MessageDataMapping) i

. next () ;

270 i f (thisMapping . getReceivedMsgDatumMapping () > −1

271 && thisMapping . getSentMsgDatumMapping () > −1) {

272 TDataRep dataTypeSent = DataExtract ionUt i l s

273 . getDataRepFromMessage (thisMessageMapping

274 . getSentMessage () , thisMapping

275 . getSentMsgDatumID ()) ;

276 TDataRep dataTypeExpected = DataExtract ionUt i l s

277 . getDataRepFromMessage (thisMessageMapping

278 . getReceivedMessage () , thisMapping

279 . getReceivedMsgDatumID ()) ;

280

281 i f (! dataTypeSent . compatibleWith (dataTypeExpected)) {

282 analysisPassedOK = fa l se ;

283 toReport += " The data type ("

284 + dataTypeSent

285 + ") of "

286 + thisMapping . getSentMsgDatumID ()

287 + " in the sent message is not compatible with

the data type ("

288 + dataTypeExpected + ") of "

289 + thisMapping . getReceivedMsgDatumID ()

290 + " in the received message . \n" ;

291 }

292 }

293 }

294 }

295 return new Analys i sResu l t (analysisPassedOK , toReport) ;

296 }

297

298 private stat ic L i s t generateMessageDataMappings (

299 IAcmeRecordValue sentMessage , IAcmeComponent sendingComp ,

300 IAcmeRecordValue expectedMessage , IAcmeComponent

receivingComp)

301 throws Exception {

302 L i s t theMappings = new ArrayList () ;

303

304 // f i r s t check mappings from sender to rece iver , adding −1

to those

305 // with no match .

306

307 int numberDatumSent = DataExtract ionUt i l s

308 . getNumberOfDatumInMessage (sentMessage) ;

309 int numberDatumExpected = DataExtract ionUt i l s

310 . getNumberOfDatumInMessage (expectedMessage) ;

311

312 boolean [] sentMatched = new boolean [numberDatumSent] ;

313 boolean [] expectedMatched = new boolean [numberDatumExpected

] ;

314 for (int i = 0 ; i < numberDatumSent ; i++)

315 sentMatched [i] = fa l se ;

316 for (int i = 0 ; i < numberDatumExpected ; i++)

317 expectedMatched [i] = fa l se ;

318

319 // loop to compare a l l datum in the two messages

320

321 for (int sent Idx = 0 ; sent Idx < numberDatumSent ; sent Idx++)

{

322 IAcmeRecordValue sentMessageDatum = DataExtract ionUt i l s

323 . getTMessageDatumFromMessageAtIndex (sentMessage ,

sent Idx) ;

324 St r ing sentDatumID = DataExtract ionUt i l s

325 . getDatumIDFromTMessageDatum(sentMessageDatum) ;

326

385

327 for (int expectedIdx = 0 ; expectedIdx <

numberDatumExpected ; expectedIdx++) {

328 i f (! sentMatched [sent Idx] && ! expectedMatched [

expectedIdx]) {

329

330 // get IDs of the sent / rece ived Datum

331

332 TDataSemantics sentSemant ics = DataExtract ionUt i l s

333 . getDatumSemanticsFromComponent (sentDatumID ,

334 sendingComp) ;

335

336 IAcmeRecordValue expectedMessageDatum =

DataExtract ionUt i l s

337 . getTMessageDatumFromMessageAtIndex (

338 expectedMessage , expectedIdx) ;

339 St r ing expectedDatumID = DataExtract ionUt i l s

340 . getDatumIDFromTMessageDatum(expectedMessageDatum

) ;

341 TDataSemantics expectedSemantics =

DataExtract ionUt i l s

342 . getDatumSemanticsFromComponent (expectedDatumID ,

343 receivingComp) ;

344

345 i f (sentSemant ics . compatibleWith (expectedSemantics))

{

346 sentMatched [sentIdx] = true ;

347 expectedMatched [expectedIdx] = true ;

348

349 theMappings . add (new MessageDataMapping (sentDatumID ,

350 expectedIdx , expectedDatumID , sent Idx)) ;

351 }

352 }

353 }

354 // check i f the sent data was matched , add a

messagedatamapping to

355 // say t h i s

356

357 i f (! sentMatched [sent Idx]) {

358 theMappings . add (new MessageDataMapping (sentDatumID , −1,

359 " noMatch " , s ent Idx)) ;

360 }

361 }

362

363 // map any unmapped rece i ver datum to −1

364 for (int expectedIdx = 0 ; expectedIdx < numberDatumExpected

; expectedIdx++) {

365 i f (! expectedMatched [expectedIdx]) {

366 IAcmeRecordValue expectedMessageDatum =

DataExtract ionUt i l s

367 . getTMessageDatumFromMessageAtIndex (expectedMessage

,

368 expectedIdx) ;

369 St r ing expectedDatumID = DataExtract ionUt i l s

370 . getDatumIDFromTMessageDatum(expectedMessageDatum) ;

371 theMappings . add (new MessageDataMapping (" noMatch " ,

expectedIdx ,

372 expectedDatumID , −1)) ;

373 }

374 }

375 return theMappings ;

376 }

377

378 private stat ic St r ing getSentMessageNameForIndex (St r ing

theCSP , int theIndex)

379 throws Exception {

380 L i s t theMessages = DataExtract ionUt i l s .

getMessageNamesFromCSP(theCSP) ;

381 I t e r a t o r i = theMessages . i t e r a t o r () ;

382 int counter = 1 ;

383

384 while (i . hasNext ()) {

385 St r ing theMessageName = (St r ing) i . next () ;

386

386 i f (counter == theIndex) {

387 return theMessageName ;

388 }

389 counter++;

390 }

391 return null ;

392 }

393

394 private stat ic St r ing searchForMatchingSemantics (S t r ing

datumID ,

395 IAcmeComponent componentToSearch , IAcmeComponent

receivingComponent)

396 throws Exception {

397 Set rece iv ingCentra lData = DataExtract ionUt i l s

398 . getCentralDataRecordsFromComponent (receivingComponent)

;

399 IAcmeRecordValue f i r s tDataRecord = DataExtract ionUt i l s

400 . getCentralDataRecordFromRecords (datumID ,

rece iv ingCentra lData) ;

401 TDataSemantics semanticsToFind = DataExtract ionUt i l s

402 . getDataSemanticsFromCentralDataRecord (f i r s tDataRecord)

;

403

404 Set centralDataToSearch = DataExtract ionUt i l s

405 . getCentralDataRecordsFromComponent (componentToSearch) ;

406

407 I t e r a t o r i = centralDataToSearch . i t e r a t o r () ;

408

409 while (i . hasNext ()) {

410 IAcmeRecordValue th i sRecord = (IAcmeRecordValue) i . next ()

;

411

412 i f (DataExtract ionUt i l s .

getDataSemanticsFromCentralDataRecord (

413 th i sRecord) . compatibleWith (semanticsToFind)) {

414 return DataExtract ionUt i l s

415 . getDataIDFromCentralDataRecord (th i sRecord) ;

416 }

417 }

418 return "" ;

419 }

420 }

F.4.22 Message Data Mapping

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3 public c lass MessageDataMapping {

4

5 public stat ic f ina l int DatumNotMatched = −1;

6

7 private St r ing sentMsgDatumID , receivedMsgDatumID ;

8 private int sentMsgDatumMapsToReceivedMsgIndex ,

9 receivedMsgDatumMapsToSentMsgIndex ;

10

11 public MessageDataMapping (St r ing sentMsgDatumID ,

12 int sentMsgDatumMapsToReceivedMsgIndex , S t r ing

msg2DatumID ,

13 int receivedMsgDatumMapsToSentMsgIndex) {

14 this . sentMsgDatumID = sentMsgDatumID ;

15 this . sentMsgDatumMapsToReceivedMsgIndex =

sentMsgDatumMapsToReceivedMsgIndex ;

16 this . receivedMsgDatumID = msg2DatumID ;

17 this . receivedMsgDatumMapsToSentMsgIndex =

receivedMsgDatumMapsToSentMsgIndex ;

18 }

19

20 public St r ing getSentMsgDatumID () {

21 return sentMsgDatumID ;

22 }

23

24 public St r ing getReceivedMsgDatumID () {

387

25 return receivedMsgDatumID ;

26 }

27

28 public int getSentMsgDatumMapping () {

29 return sentMsgDatumMapsToReceivedMsgIndex ;

30 }

31

32 public int getReceivedMsgDatumMapping () {

33 return receivedMsgDatumMapsToSentMsgIndex ;

34 }

35

36 }

F.4.23 Message Data Types Match

1 package uk . ac . nc l . c j g . ws enhanced ;

2

3 import java . u t i l . L i s t ;

4 import java . u t i l . Stack ;

5

6 import org . acmestudio . acme . core . IAcmeType ;

7 import org . acmestudio . acme . element . IAcmeConnector ;

8 import org . acmestudio . acme . element . IAcmePort ;

9 import org . acmestudio . acme . environment . e r r o r . AcmeError ;

10 import org . acmestudio . acme . r u l e . node .

IExterna lAnalys i sExpress ionNode ;

11 import org . acmestudio . acme . r u l e . node . feedback .

AcmeExpressionEvaluationException ;

12

13 import uk . ac . nc l . c j g . ws enhanced . common . AcceptableExcept ion ;

14 import uk . ac . nc l . c j g . ws enhanced . common . Act iveAnalys i sChecker ;

15 import uk . ac . nc l . c j g . ws enhanced . common . Ana lys i sResu l t ;

16 import uk . ac . nc l . c j g . ws enhanced . common . MessageComparison ;

17 import uk . ac . nc l . c j g . ws enhanced . common . ReportableExcept ion ;

18 import uk . ac . nc l . c j g . ws enhanced . common . Reporter ;

19 import uk . ac . nc l . c j g . ws enhanced . common .Wait ;

20

21 public c lass MessageDataTypesMatch implements

IExterna lAnalys i sExpress ionNode {

22

23 @Override

24 public Object eva luate (IAcmeType arg0 , L ist<Object> arg1 ,

25 Stack<AcmeError> arg2) throws

AcmeExpressionEvaluationException {

26

27 // pause the ana ly s i s to a l low AcmeStudio to do something

other than

28 // ex terna l ana ly s i s

29 Wait . de layAna lys i s () ;

30

31

32 // ex t rac t data types from ana ly s i s ca l l , t h i s should be

passed two

33 // ports and

34 // an in teger

35 St r ing ruleID = null ;

36 St r ing ruleIDNoMessageNumber = "

ActiveAnalysisMessageDataTypesMatch " ;

37 IAcmeConnector theElement = null ;

38 IAcmePort port1 = null ;

39 IAcmePort port2 = null ;

40 I n t eg e r theMessageIndex = null ;

41 Analys i sResu l t theResu l t = null ;

42

43 java . u t i l . I t e r a t o r i = arg1 . i t e r a t o r () ;

44

45 // ex t rac t the required model elements from the passed l i s t

46 try {

47 theElement = (IAcmeConnector) i . next () ;

48 port1 = (IAcmePort) i . next () ;

49 port2 = (IAcmePort) i . next () ;

50 theMessageIndex = (In t eg e r) i . next () ;

388

51 ru leID = ruleIDNoMessageNumber + " - msg " + theMessageIndex

;

52 } catch (Exception e) {

53 Reporter . r epor t (ruleID ,

54 " There was a problem extracting the required data : \n

" , e) ;

55 return Boolean .FALSE;

56 }

57

58 // check i f t h i s ru l e i s ac t i v e

59 try{

60 i f (! Act iveAnalys i sChecker . Check I fAna ly s i s I sAct ive (

61 ruleIDNoMessageNumber , theElement)) {

62 Reporter . r epor t (theElement , ruleID , "") ;

63 return Boolean .TRUE;

64 }

65 } catch (ReportableExcept ion rE){

66 Reporter

67 . r epo r t (

68 theElement ,

69 ruleID ,

70 " There was a reportable Exception raised when getting

the activity status of this analysis : \n" ,

71 rE) ;

72 return Boolean .FALSE;

73

74 } catch (Exception e){

75 Reporter

76 . r epo r t (

77 theElement ,

78 ruleID ,

79 " There was a general Exception raised when getting

the activity status of this analysis : \n" ,

80 e) ;

81 return Boolean .FALSE;

82 }

83

84 // perform the ana ly s i s

85 try {

86 theResu l t = MessageComparison . dataTypesMatch (port1 , port2

,

87 theMessageIndex) ;

88 } catch (AcceptableExcept ion e) {

89 theResu l t = new Analys i sResu l t (true , "") ;

90 } catch (ReportableExcept ion e) {

91 Reporter . r epor t (theElement , ruleID , e . getMessage ()) ;

92 return Boolean .FALSE;

93 } catch (Exception e) {

94 Reporter

95 . r epo r t (

96 theElement ,

97 ruleID ,

98 " There was an Exception raised performing the

analysis : \n" ,

99 e) ;

100 return Boolean .FALSE;

101 }

102

103 // report and return the r e s u l t s

104 Reporter . r epor t (theElement , ruleID , theResu l t . getReport ()) ;

105 i f (theResu l t . ge tResu l t () == true)

106 return Boolean .TRUE;

107 else

108 return Boolean .FALSE;

109 }

110 }

F.4.24 Message Exchange Patterns Match

1 package uk . ac . nc l . c j g . ws enhanced ;

2

3 import java . u t i l . L i s t ;

389

4 import java . u t i l . Stack ;

5

6 import org . acmestudio . acme . core . IAcmeType ;

7 import org . acmestudio . acme . element . IAcmeConnector ;

8 import org . acmestudio . acme . environment . e r r o r . AcmeError ;

9 import org . acmestudio . acme . r u l e . node .

IExterna lAnalys i sExpress ionNode ;

10 import org . acmestudio . acme . r u l e . node . feedback .

AcmeExpressionEvaluationException ;

11

12 import uk . ac . nc l . c j g . ws enhanced . common . Act iveAnalys i sChecker ;

13 import uk . ac . nc l . c j g . ws enhanced . common . Ana lys i sResu l t ;

14 import uk . ac . nc l . c j g . ws enhanced . common .

MessagePatternComparison ;

15 import uk . ac . nc l . c j g . ws enhanced . common . ReportableExcept ion ;

16 import uk . ac . nc l . c j g . ws enhanced . common . Reporter ;

17 import uk . ac . nc l . c j g . ws enhanced . common .Wait ;

18

19 public c lass MessageExchangePatternsMatch implements

20 IExterna lAnalys i sExpress ionNode {

21

22 stat ic int counter = 0 ;

23

24 @Override

25 public Object eva luate (IAcmeType arg0 , List<Object> arg1 ,

26 Stack<AcmeError> arg2) throws

AcmeExpressionEvaluationException {

27

28 // pause the ana ly s i s to a l low AcmeStudio to do something

other than

29 // ex terna l ana ly s i s

30

31 Wait . de layAna lys i s () ;

32

33 // ex t rac t data types from ana ly s i s ca l l , t h i s should be

passed

34 // a s i n g l e component

35 St r ing ruleID = " ActiveAnalysisMessageExchangePatternsMatch

" ;

36 IAcmeConnector theElement = null ;

37 Analys i sResu l t theResu l t = null ;

38

39 java . u t i l . I t e r a t o r i = arg1 . i t e r a t o r () ;

40

41 // ex t rac t the required model elements from the passed l i s t

42 try {

43 theElement = (IAcmeConnector) i . next () ;

44 } catch (Exception e) {

45 Reporter . r epor t (ruleID ,

46 " There was a problem extracting the required data : \n

" , e) ;

47 return Boolean .FALSE;

48 }

49

50 // check i f t h i s ru l e i s ac t i v e

51 try {

52 i f (! Act iveAnalys i sChecker . Check I fAna ly s i s I sAct ive (ruleID

,

53 theElement)) {

54 Reporter . r epor t (theElement , ruleID , "") ;

55 return Boolean .TRUE;

56 }

57 } catch (ReportableExcept ion rE) {

58 Reporter

59 . r epo r t (

60 theElement ,

61 ruleID ,

62 " There was a reportable Exception raised when

getting the activity status of this analysis :

\n" ,

63 rE) ;

64 return Boolean .FALSE;

390

65

66 } catch (Exception e) {

67 Reporter

68 . r epo r t (

69 theElement ,

70 ruleID ,

71 " There was a general Exception raised when

getting the activity status of this analysis :

\n" ,

72 e) ;

73 return Boolean .FALSE;

74 }

75

76 // perform the ana ly s i s

77 try {

78

79 St r ing focusCompID = theElement . getName () ;

80

81 int comparisonAssessment = MessagePatternComparison

82 . compareMessagePatternsInPorts (theElement) ;

83

84 switch (comparisonAssessment) {

85 case MessagePatternComparison .PATTERNSMATCH:

86 theResu l t = new Analys i sResu l t (true , "") ;

87 break ;

88 case MessagePatternComparison .PATTERNS PARTIALLY MATCH:

89 theResu l t = new Analys i sResu l t (false , " These patterns

partially match thanks to one or more of them being

in our control domain ") ;

90 break ;

91 case MessagePatternComparison .PATTERNSMISMATCH:

92 theResu l t = new Analys i sResu l t (false , " The patterns

differ and neither port is in our control domain ") ;

93 break ;

94 default :

95 theResu l t = new Analys i sResu l t (false , " The patterns

simply do not match due to message passing

directions ") ;

96 break ;

97 }

98 } catch (ReportableExcept ion e) {

99 Reporter . r epor t (theElement , ruleID , e . getMessage ()) ;

100 return Boolean .FALSE;

101 } catch (Exception e) {

102 Reporter

103 . r epo r t (

104 theElement ,

105 ruleID ,

106 " There was an Exception raised performing the

analysis : \n" ,

107 e) ;

108 return Boolean .FALSE;

109 }

110

111 // report and return the r e s u l t s

112 Reporter . r epor t (theElement , ruleID , theResu l t . getReport ()) ;

113 i f (theResu l t . ge tResu l t () == true)

114 return Boolean .TRUE;

115 else

116 return Boolean .FALSE;

117 }

118

119 }

F.4.25 Message Exchange Patterns Partially Match

1 package uk . ac . nc l . c j g . ws enhanced ;

2

3 import java . u t i l . L i s t ;

4 import java . u t i l . Stack ;

5

391

6 import org . acmestudio . acme . core . IAcmeType ;

7 import org . acmestudio . acme . element . IAcmeConnector ;

8 import org . acmestudio . acme . environment . e r r o r . AcmeError ;

9 import org . acmestudio . acme . r u l e . node .

IExterna lAnalys i sExpress ionNode ;

10 import org . acmestudio . acme . r u l e . node . feedback .

AcmeExpressionEvaluationException ;

11

12 import uk . ac . nc l . c j g . ws enhanced . common . Act iveAnalys i sChecker ;

13 import uk . ac . nc l . c j g . ws enhanced . common . Ana lys i sResu l t ;

14 import uk . ac . nc l . c j g . ws enhanced . common .

MessagePatternComparison ;

15 import uk . ac . nc l . c j g . ws enhanced . common . ReportableExcept ion ;

16 import uk . ac . nc l . c j g . ws enhanced . common . Reporter ;

17 import uk . ac . nc l . c j g . ws enhanced . common .Wait ;

18

19 public c lass MessageExchangePatternsPartial lyMatch implements

20 IExterna lAnalys i sExpress ionNode {

21

22 @Override

23 public Object eva luate (IAcmeType arg0 , List<Object> arg1 ,

24 Stack<AcmeError> arg2) throws

AcmeExpressionEvaluationException {

25

26 // pause the ana ly s i s to a l low AcmeStudio to do something

other than

27 // ex terna l ana ly s i s

28

29 Wait . de layAna lys i s () ;

30

31 // ex t rac t data types from ana ly s i s ca l l , t h i s should be

passed

32 // a s i n g l e component

33 St r ing ruleID = " ActiveAnalysisMessageExchangePatternsMatch

" ;

34 IAcmeConnector theElement = null ;

35 Analys i sResu l t theResu l t = null ;

36

37 java . u t i l . I t e r a t o r i = arg1 . i t e r a t o r () ;

38

39 // ex t rac t the required model elements from the passed l i s t

40 try {

41 theElement = (IAcmeConnector) i . next () ;

42 } catch (Exception e) {

43 Reporter . r epor t (ruleID ,

44 " There was a problem extracting the required data : \n

" , e) ;

45 return Boolean .FALSE;

46 }

47

48 // check i f t h i s ru l e i s ac t i v e

49 try {

50 i f (! Act iveAnalys i sChecker . Check I fAna ly s i s I sAct ive (ruleID

,

51 theElement)) {

52 Reporter . r epor t (theElement , ruleID , "") ;

53 return Boolean .TRUE;

54 }

55 } catch (ReportableExcept ion rE) {

56 Reporter

57 . r epo r t (

58 theElement ,

59 ruleID ,

60 " There was a reportable Exception raised when

getting the activity status of this analysis :

\n" ,

61 rE) ;

62 return Boolean .FALSE;

63

64 } catch (Exception e) {

65 Reporter

66 . r epo r t (

392

67 theElement ,

68 ruleID ,

69 " There was a general Exception raised when

getting the activity status of this analysis :

\n" ,

70 e) ;

71 return Boolean .FALSE;

72 }

73

74 // perform the ana ly s i s

75 try {

76

77 St r ing focusCompID = theElement . getName () ;

78

79 int comparisonAssessment = MessagePatternComparison

80 . compareMessagePatternsInPorts (theElement) ;

81

82 switch (comparisonAssessment) {

83 case MessagePatternComparison .PATTERNSMATCH:

84 theResu l t = new Analys i sResu l t (true , "") ;

85 break ;

86 case MessagePatternComparison .PATTERNS PARTIALLY MATCH:

87 theResu l t = new Analys i sResu l t (true , "") ;

88 break ;

89 case MessagePatternComparison .PATTERNSMISMATCH:

90 theResu l t = new Analys i sResu l t (false , " The patterns

differ and neither port is in our control domain ") ;

91 break ;

92 default :

93 theResu l t = new Analys i sResu l t (false , " The patterns

simply do not match due to message passing

directions ") ;

94 break ;

95 }

96 } catch (ReportableExcept ion e) {

97 Reporter . r epor t (theElement , ruleID , e . getMessage ()) ;

98 return Boolean .FALSE;

99 } catch (Exception e) {

100 Reporter

101 . r epo r t (

102 theElement ,

103 ruleID ,

104 " There was an Exception raised performing the

analysis : \n" ,

105 e) ;

106 return Boolean .FALSE;

107 }

108

109 // report and return the r e s u l t s

110 Reporter . r epor t (theElement , ruleID , theResu l t . getReport ()) ;

111 i f (theResu l t . ge tResu l t () == true)

112 return Boolean .TRUE;

113 else

114 return Boolean .FALSE;

115 }

116

117 }

F.4.26 Message Mapping

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3 import java . u t i l . ArrayList ;

4 import java . u t i l . I t e r a t o r ;

5 import java . u t i l . L i s t ;

6 import java . u t i l .Map;

7 import java . u t i l . TreeMap ;

8

9 import org . acmestudio . acme . core . type . IAcmeRecordValue ;

10 import org . acmestudio . acme . element . IAcmeComponent ;

11 import org . acmestudio . acme . element . IAcmePort ;

12

393

13 public c lass MessageMapping {

14

15 private IAcmeComponent sendingComp , receivingComp ;

16 private IAcmePort sendingPort , r e c e i v i ngPo r t ;

17 private IAcmeRecordValue sentMessage , rece ivedMessage ;

18 private St r ing sentMessageName , receivedMessageName ;

19 private int messageIndex ;

20

21 public stat ic f ina l int NO MAPPING = −1;

22

23 public MessageMapping (IAcmePort port1 , IAcmePort port2 , int

messageIndex)

24 throws Exception {

25 int sendCSPIndex = NO MAPPING;

26 int receiveCSPIndex = NO MAPPING;

27

28 // get the CSP

29

30 St r ing csp1 = DataExtract ionUt i l s . getPortCSP (port1) ;

31 St r ing csp2 = DataExtract ionUt i l s . getPortCSP (port2) ;

32

33 // get the pat tern types

34 St r ing cspPattern1 = DataExtract ionUt i l s .

getPatternTypeFromCSP (csp1) ;

35 St r ing cspPattern2 = DataExtract ionUt i l s .

getPatternTypeFromCSP (csp2) ;

36

37 // temporary vars un t i l we determine who sends t h i s ac tua l

message

38

39 IAcmeComponent sendsFirstComp = null ;

40 IAcmePort s endsF i r s tPor t = null ;

41 St r ing sendsFirstCSP = null ;

42 St r ing sendsFirstCSPPattern = null ;

43 IAcmeComponent rece ivesFirstComp = null ;

44 IAcmePort r e c e i v e sF i r s tPo r t = null ;

45 St r ing rece ive sF i r s tCSP = null ;

46 St r ing rece ivesF i r s tCSPPatte rn = null ;

47

48 St r ing sendingCSP = null ;

49 St r ing receivingCSP = null ;

50 // map ports and component to send and rece ive

51

52 i f (i sSendF i r s tPat t e rn (cspPattern1) == true

53 && isSendF i r s tPat t e rn (cspPattern2) == fa l se) {

54 sendsFirstComp = (IAcmeComponent) port1 . getParent () ;

55 s endsF i r s tPor t = port1 ;

56 sendsFirstCSP = csp1 ;

57 sendsFirstCSPPattern = cspPattern1 ;

58 rece ivesFirstComp = (IAcmeComponent) port2 . getParent () ;

59 r e c e i v e sF i r s tPo r t = port2 ;

60 r ece ive sF i r s tCSP = csp2 ;

61 rece ivesF i r s tCSPPatte rn = cspPattern2 ;

62 }

63

64 i f (i sSendF i r s tPat t e rn (cspPattern1) == fa l se

65 && isSendF i r s tPat t e rn (cspPattern2) == true) {

66 sendsFirstComp = (IAcmeComponent) port2 . getParent () ;

67 s endsF i r s tPor t = port2 ;

68 sendsFirstCSP = csp2 ;

69 sendsFirstCSPPattern = cspPattern2 ;

70 rece ivesFirstComp = (IAcmeComponent) port1 . getParent () ;

71 r e c e i v e sF i r s tPo r t = port1 ;

72 r ece ive sF i r s tCSP = csp1 ;

73 rece ivesF i r s tCSPPatte rn = cspPattern1 ;

74 }

75

76 i f (i sSendF i r s tPat t e rn (cspPattern1) == i sSendF i r s tPat t e rn (

cspPattern2)) {

77 throw new ReportableExcept ion (

78 " Both ports want to send first or both ports want to

receive first .") ;

394

79 }

80

81 sentMessageName = null ;

82 sentMessage = null ;

83 receivedMessageName = null ;

84 rece ivedMessage = null ;

85

86 // get the required re l evant message indexes

87 L i s t indexMappingsForThesePatterns =

getMessageVectorsForThesePatterns (

88 sendsFirstCSPPattern , rece ivesFi r s tCSPPattern ,

sendsFirstCSP ,

89 r ece ive sF i r s tCSP) ;

90

91 i f (messageIndex > indexMappingsForThesePatterns . s i z e ())

92 throw new AcceptableExcept ion (" This message pairing has

no message at this index number ") ;

93 I t e r a t o r i = indexMappingsForThesePatterns . i t e r a t o r () ;

94 int counter = 0 ;

95 while (i . hasNext ()) {

96 counter++;

97 MessageVector th isMessageVector = (MessageVector) i . next

() ;

98 i f (counter == messageIndex) {

99

100 sentMessageName = thisMessageVector . getSentMessageID () ;

101 receivedMessageName = thisMessageVector .

getrece ivedMessageID () ;

102

103 i f (th isMessageVector . d i r e c t i on I sFromSendsF i r s t ()) {

104 sendingComp = sendsFirstComp ;

105 sendingPort = sendsF i r s tPor t ;

106 sendingCSP = sendsFirstCSP ;

107

108 receivingComp = rece ivesFirstComp ;

109 r e c e i v i ngPo r t = r e c e i v e sF i r s tPo r t ;

110 receivingCSP = rece ive sF i r s tCSP ;

111

112 i f (th isMessageVector . getSendsFirstCSPIndex () !=

MessageVector .NO MAPPING INDEX) {

113 sendCSPIndex = thisMessageVector

114 . getSendsFirstCSPIndex () ;

115 }

116

117 i f (th isMessageVector . getRece ivesFirstCSPIndex () !=

MessageVector .NO MAPPING INDEX) {

118 receiveCSPIndex = thisMessageVector

119 . getRece ivesFirstCSPIndex () ;

120 }

121 } else {

122 sendingComp = rece ivesFirstComp ;

123 sendingPort = r e c e i v e sF i r s tPo r t ;

124 sendingCSP = rece ive sF i r s tCSP ;

125

126 receivingComp = sendsFirstComp ;

127 r e c e i v i ngPo r t = sendsF i r s tPor t ;

128 receivingCSP = sendsFirstCSP ;

129

130 i f (th isMessageVector . getSendsFirstCSPIndex () !=

MessageVector .NO MAPPING INDEX) {

131 sendCSPIndex = thisMessageVector

132 . getRece ivesFirstCSPIndex () ;

133 }

134

135 i f (th isMessageVector . getRece ivesFirstCSPIndex () !=

MessageVector .NO MAPPING INDEX) {

136 receiveCSPIndex = thisMessageVector

137 . getSendsFirstCSPIndex () ;

138 }

139 }

140 sentMessage = DataExtract ionUt i l s . getMessageFromPort (

141 sentMessageName , sendingPort) ;

395

142 rece ivedMessage = DataExtract ionUt i l s .

getMessageFromPort (

143 receivedMessageName , r e c e i v i ngPo r t) ;

144 }

145 }

146 }

147

148 private stat ic boolean i sS endF i r s tPat t e rn (St r ing cspPattern)

{

149 // setup map

150 Map sendOrReceive = new TreeMap () ;

151 sendOrReceive . put (" noti " , " send ") ;

152 sendOrReceive . put (" roo " , " send ") ;

153 sendOrReceive . put (" soli " , " send ") ;

154 sendOrReceive . put (" ooi " , " send ") ;

155 sendOrReceive . put (" ino " , " receive ") ;

156 sendOrReceive . put (" rio " , " receive ") ;

157 sendOrReceive . put (" reqr " , " receive ") ;

158 sendOrReceive . put (" ioo " , " receive ") ;

159

160 St r ing patternDir = (St r ing) sendOrReceive

161 . get (cspPattern . toLowerCase ()) ;

162

163 i f (patternDir . equa l s (" send ")) {

164 return true ;

165 } else {

166 return fa l se ;

167 }

168 }

169

170 private L i s t getMessageVectorsForThesePatterns (S t r ing

senderCSPPattern ,

171 St r ing receiverCSPPattern , S t r ing senderCSP , St r ing

receiverCSP)

172 throws Exception {

173

174 i f (senderCSPPattern . equa l s IgnoreCase (" noti ")) {

175 i f (rece iverCSPPattern . equa l s IgnoreCase (" ino ")) {

176 L i s t l = new ArrayList () ;

177 l . add (new MessageVector (LookUP .CSP INDEX NOTI SENDREQ,

178 LookUP .CSP INDEX INO GETREQ, true , senderCSP ,

179 receiverCSP)) ;

180 return l ;

181 } else i f (rece iverCSPPattern . equa l s IgnoreCase (" rio ")) {

182 L i s t l = new ArrayList () ;

183 l . add (new MessageVector (LookUP .CSP INDEX NOTI SENDREQ,

184 LookUP .CSP INDEX RIO GETREQ, true , senderCSP ,

185 receiverCSP)) ;

186 l . add (new MessageVector (MessageVector .NO MAPPING INDEX,

187 LookUP .CSP INDEX RIO SENDFAULT, false , senderCSP ,

188 receiverCSP)) ;

189 return l ;

190 } else i f (rece iverCSPPattern . equa l s IgnoreCase (" reqr ")) {

191 L i s t l = new ArrayList () ;

192 l . add (new MessageVector (LookUP .CSP INDEX NOTI SENDREQ,

193 LookUP .CSP INDEX REQR GETREQ, true , senderCSP ,

194 receiverCSP)) ;

195 l . add (new MessageVector (MessageVector .NO MAPPING INDEX,

196 LookUP .CSP INDEX REQR SENDRES, false , senderCSP ,

197 receiverCSP)) ;

198 l . add (new MessageVector (MessageVector .NO MAPPING INDEX,

199 LookUP .CSP INDEX REQR SENDFAULT, false , senderCSP ,

200 receiverCSP)) ;

201 return l ;

202

203 } else {

204 L i s t l = new ArrayList () ;

205 l . add (new MessageVector (LookUP .CSP INDEX NOTI SENDREQ,

206 LookUP .CSP INDEX IOO GETREQ, true , senderCSP ,

207 receiverCSP)) ;

208 l . add (new MessageVector (MessageVector .NO MAPPING INDEX,

209 LookUP .CSP INDEX IOO SENDFAULT, false , senderCSP ,

396

210 receiverCSP)) ;

211 l . add (new MessageVector (MessageVector .NO MAPPING INDEX,

212 LookUP .CSP INDEX IOO SENDRES, false , senderCSP ,

213 receiverCSP)) ;

214 l . add (new MessageVector (MessageVector .NO MAPPING INDEX,

215 LookUP .CSP INDEX IOO GETFAULT2, true , senderCSP ,

216 receiverCSP)) ;

217 return l ;

218

219 }

220 } else i f (senderCSPPattern . equa l s IgnoreCase (" roo ")) {

221 i f (rece iverCSPPattern . equa l s IgnoreCase (" ino ")) {

222 L i s t l = new ArrayList () ;

223 l . add (new MessageVector (LookUP .CSP INDEX ROO SENDREQ,

224 LookUP .CSP INDEX INO GETREQ, true , senderCSP ,

225 receiverCSP)) ;

226 l . add (new MessageVector (LookUP .CSP INDEX ROO GETFAULT,

227 MessageVector .NO MAPPING INDEX, false , senderCSP ,

228 receiverCSP)) ;

229 return l ;

230 } else i f (rece iverCSPPattern . equa l s IgnoreCase (" rio ")) {

231 L i s t l = new ArrayList () ;

232 l . add (new MessageVector (LookUP .CSP INDEX ROO SENDREQ,

233 LookUP .CSP INDEX RIO GETREQ, true , senderCSP ,

234 receiverCSP)) ;

235 l . add (new MessageVector (LookUP .CSP INDEX ROO GETFAULT,

236 LookUP .CSP INDEX RIO SENDFAULT, false , senderCSP ,

237 receiverCSP)) ;

238 return l ;

239 } else i f (rece iverCSPPattern . equa l s IgnoreCase (" reqr ")) {

240 L i s t l = new ArrayList () ;

241 l . add (new MessageVector (LookUP .CSP INDEX ROO SENDREQ,

242 LookUP .CSP INDEX REQR GETREQ, true , senderCSP ,

243 receiverCSP)) ;

244 l . add (new MessageVector (LookUP .CSP INDEX ROO GETFAULT,

245 LookUP .CSP INDEX REQR SENDFAULT, false , senderCSP ,

246 receiverCSP)) ;

247 l . add (new MessageVector (MessageVector .NO MAPPING INDEX,

248 LookUP .CSP INDEX REQR SENDRES, false , senderCSP ,

249 receiverCSP)) ;

250 return l ;

251 } else {

252 L i s t l = new ArrayList () ;

253 l . add (new MessageVector (LookUP .CSP INDEX ROO SENDREQ,

254 LookUP .CSP INDEX IOO GETREQ, true , senderCSP ,

255 receiverCSP)) ;

256 l . add (new MessageVector (LookUP .CSP INDEX ROO GETFAULT,

257 LookUP .CSP INDEX IOO SENDFAULT, false , senderCSP ,

258 receiverCSP)) ;

259 l . add (new MessageVector (MessageVector .NO MAPPING INDEX,

260 LookUP .CSP INDEX IOO SENDRES, false , senderCSP ,

261 receiverCSP)) ;

262 l . add (new MessageVector (MessageVector .NO MAPPING INDEX,

263 LookUP .CSP INDEX IOO GETFAULT2, true , senderCSP ,

264 receiverCSP)) ;

265 return l ;

266 }

267 } else i f (senderCSPPattern . equa l s IgnoreCase (" soli ")) {

268 i f (rece iverCSPPattern . equa l s IgnoreCase (" ino ")) {

269 L i s t l = new ArrayList () ;

270 l . add (new MessageVector (LookUP .CSP INDEX SOLI SENDREQ,

271 LookUP .CSP INDEX INO GETREQ, true , senderCSP ,

272 receiverCSP)) ;

273 l . add (new MessageVector (LookUP .CSP INDEX SOLI GETRES ,

274 MessageVector .NO MAPPING INDEX, false , senderCSP ,

275 receiverCSP)) ;

276 l . add (new MessageVector (LookUP .CSP INDEX SOLI GETFAULT,

277 MessageVector .NO MAPPING INDEX, false , senderCSP ,

278 receiverCSP)) ;

279 return l ;

280 } else i f (rece iverCSPPattern . equa l s IgnoreCase (" rio ")) {

281 L i s t l = new ArrayList () ;

397

282 l . add (new MessageVector (LookUP .CSP INDEX SOLI SENDREQ,

283 LookUP .CSP INDEX RIO GETREQ, true , senderCSP ,

284 receiverCSP)) ;

285 l . add (new MessageVector (LookUP .CSP INDEX SOLI GETFAULT,

286 LookUP .CSP INDEX RIO SENDFAULT, false , senderCSP ,

287 receiverCSP)) ;

288 l . add (new MessageVector (LookUP .CSP INDEX SOLI GETRES ,

289 MessageVector .NO MAPPING INDEX, false , senderCSP ,

290 receiverCSP)) ;

291 return l ;

292 } else i f (rece iverCSPPattern . equa l s IgnoreCase (" reqr ")) {

293 L i s t l = new ArrayList () ;

294 l . add (new MessageVector (LookUP .CSP INDEX SOLI SENDREQ,

295 LookUP .CSP INDEX REQR GETREQ, true , senderCSP ,

296 receiverCSP)) ;

297 l . add (new MessageVector (LookUP .CSP INDEX SOLI GETRES ,

298 LookUP .CSP INDEX REQR SENDRES, false , senderCSP ,

299 receiverCSP)) ;

300 l . add (new MessageVector (LookUP .CSP INDEX SOLI GETFAULT,

301 LookUP .CSP INDEX REQR SENDFAULT, false , senderCSP ,

302 receiverCSP)) ;

303 return l ;

304 } else {

305 L i s t l = new ArrayList () ;

306 l . add (new MessageVector (LookUP .CSP INDEX SOLI SENDREQ,

307 LookUP .CSP INDEX IOO GETREQ, true , senderCSP ,

308 receiverCSP)) ;

309 l . add (new MessageVector (LookUP .CSP INDEX SOLI GETRES ,

310 LookUP .CSP INDEX IOO SENDRES, false , senderCSP ,

311 receiverCSP)) ;

312 l . add (new MessageVector (LookUP .CSP INDEX SOLI GETFAULT,

313 LookUP .CSP INDEX IOO SENDFAULT, false , senderCSP ,

314 receiverCSP)) ;

315 l . add (new MessageVector (MessageVector .NO MAPPING INDEX,

316 LookUP .CSP INDEX IOO GETFAULT2, true , senderCSP ,

317 receiverCSP)) ;

318 return l ;

319 }

320 } else {

321 i f (rece iverCSPPattern . equa l s IgnoreCase (" ino ")) {

322 L i s t l = new ArrayList () ;

323 l . add (new MessageVector (LookUP .CSP INDEX OOI SENDREQ,

324 LookUP .CSP INDEX INO GETREQ, true , senderCSP ,

325 receiverCSP)) ;

326 l . add (new MessageVector (LookUP .CSP INDEX OOI GETFAULT,

327 MessageVector .NO MAPPING INDEX, false , senderCSP ,

328 receiverCSP)) ;

329 l . add (new MessageVector (LookUP .CSP INDEX OOI GETRES,

330 MessageVector .NO MAPPING INDEX, false , senderCSP ,

331 receiverCSP)) ;

332 l . add (new MessageVector (LookUP .CSP INDEX OOI SENDFAULT2

,

333 MessageVector .NO MAPPING INDEX, true , senderCSP ,

334 receiverCSP)) ;

335 return l ;

336 } else i f (rece iverCSPPattern . equa l s IgnoreCase (" rio ")) {

337 L i s t l = new ArrayList () ;

338 l . add (new MessageVector (LookUP .CSP INDEX OOI SENDREQ,

339 LookUP .CSP INDEX RIO GETREQ, true , senderCSP ,

340 receiverCSP)) ;

341 l . add (new MessageVector (LookUP .CSP INDEX OOI GETFAULT,

342 LookUP .CSP INDEX RIO SENDFAULT, false , senderCSP ,

343 receiverCSP)) ;

344 l . add (new MessageVector (LookUP .CSP INDEX OOI GETRES,

345 MessageVector .NO MAPPING INDEX, false , senderCSP ,

346 receiverCSP)) ;

347 l . add (new MessageVector (LookUP .CSP INDEX OOI SENDFAULT2

,

348 MessageVector .NO MAPPING INDEX, true , senderCSP ,

349 receiverCSP)) ;

350 return l ;

351 } else i f (rece iverCSPPattern . equa l s IgnoreCase (" reqr ")) {

398

352 L i s t l = new ArrayList () ;

353 l . add (new MessageVector (LookUP .CSP INDEX OOI SENDREQ,

354 LookUP .CSP INDEX REQR GETREQ, true , senderCSP ,

355 receiverCSP)) ;

356 l . add (new MessageVector (LookUP .CSP INDEX OOI GETFAULT,

357 LookUP .CSP INDEX REQR SENDFAULT, false , senderCSP ,

358 receiverCSP)) ;

359 l . add (new MessageVector (LookUP .CSP INDEX OOI GETRES,

360 LookUP .CSP INDEX REQR SENDRES, false , senderCSP ,

361 receiverCSP)) ;

362 l . add (new MessageVector (LookUP .CSP INDEX OOI SENDFAULT2

,

363 MessageVector .NO MAPPING INDEX, true , senderCSP ,

364 receiverCSP)) ;

365 return l ;

366 } else {

367 L i s t l = new ArrayList () ;

368 l . add (new MessageVector (LookUP .CSP INDEX OOI SENDREQ,

369 LookUP .CSP INDEX IOO GETREQ, true , senderCSP ,

370 receiverCSP)) ;

371 l . add (new MessageVector (LookUP .CSP INDEX OOI GETFAULT,

372 LookUP .CSP INDEX IOO SENDFAULT, false , senderCSP ,

373 receiverCSP)) ;

374 l . add (new MessageVector (LookUP .CSP INDEX OOI GETRES,

375 LookUP .CSP INDEX IOO SENDRES, false , senderCSP ,

376 receiverCSP)) ;

377 l . add (new MessageVector (LookUP .CSP INDEX OOI SENDFAULT2

,

378 LookUP .CSP INDEX IOO GETFAULT2, true , senderCSP ,

379 receiverCSP)) ;

380 return l ;

381 }

382 }

383 }

384

385 public IAcmeComponent getSendingComponent () {

386 return sendingComp ;

387 }

388

389 public IAcmeComponent getReceivingComponent () {

390 return receivingComp ;

391 }

392

393 public IAcmePort getSendingPort () {

394 return sendingPort ;

395 }

396

397 public IAcmePort getRece iv ingPort () {

398 return r e c e i v i ngPo r t ;

399 }

400

401 public IAcmeRecordValue getSentMessage () {

402 return sentMessage ;

403 }

404

405 public IAcmeRecordValue getReceivedMessage () {

406 return rece ivedMessage ;

407 }

408

409 }

F.4.27 Message Over Data

1 package uk . ac . nc l . c j g . ws enhanced ;

2

3 import java . u t i l . L i s t ;

4 import java . u t i l . Stack ;

5

6 import org . acmestudio . acme . core . IAcmeType ;

7 import org . acmestudio . acme . element . IAcmeConnector ;

8 import org . acmestudio . acme . element . IAcmePort ;

9 import org . acmestudio . acme . environment . e r r o r . AcmeError ;

399

10 import org . acmestudio . acme . r u l e . node .

IExterna lAnalys i sExpress ionNode ;

11 import org . acmestudio . acme . r u l e . node . feedback .

AcmeExpressionEvaluationException ;

12

13 import uk . ac . nc l . c j g . ws enhanced . common . AcceptableExcept ion ;

14 import uk . ac . nc l . c j g . ws enhanced . common . Act iveAnalys i sChecker ;

15 import uk . ac . nc l . c j g . ws enhanced . common . Ana lys i sResu l t ;

16 import uk . ac . nc l . c j g . ws enhanced . common . MessageComparison ;

17 import uk . ac . nc l . c j g . ws enhanced . common . ReportableExcept ion ;

18 import uk . ac . nc l . c j g . ws enhanced . common . Reporter ;

19 import uk . ac . nc l . c j g . ws enhanced . common .Wait ;

20

21 public c lass MessageOverData implements

IExterna lAnalys i sExpress ionNode {

22

23 @Override

24 public Object eva luate (IAcmeType arg0 , List<Object> arg1 ,

25 Stack<AcmeError> arg2) throws

AcmeExpressionEvaluationException {

26

27 // pause the ana ly s i s to a l low AcmeStudio to do something

other than

28 // ex terna l ana ly s i s

29 Wait . de layAna lys i s () ;

30

31 St r ing ruleID = null ;

32 St r ing ruleIDNoMessageNumber = "

ActiveAnalysisMessageOverData " ;

33 IAcmeConnector theElement = null ;

34 IAcmePort port1 = null ;

35 IAcmePort port2 = null ;

36 I n t eg e r theMessageIndex = null ;

37 Analys i sResu l t theResu l t = null ;

38

39 java . u t i l . I t e r a t o r i = arg1 . i t e r a t o r () ;

40

41 // ex t rac t the required model elements from the passed l i s t

42 try {

43 theElement = (IAcmeConnector) i . next () ;

44 port1 = (IAcmePort) i . next () ;

45 port2 = (IAcmePort) i . next () ;

46 theMessageIndex = (In t eg e r) i . next () ;

47 ru leID = ruleIDNoMessageNumber + " - msg " + theMessageIndex

;

48 } catch (Exception e) {

49 Reporter . r epor t (ruleID ,

50 " There was a problem extracting the required data : \n

" , e) ;

51 return Boolean .FALSE;

52 }

53

54 // check i f t h i s ru l e i s ac t i v e

55 try{

56 i f (! Act iveAnalys i sChecker . Check I fAna ly s i s I sAct ive (

57 ruleIDNoMessageNumber , theElement)) {

58 Reporter . r epor t (theElement , ruleID , "") ;

59 return Boolean .TRUE;

60 }

61 } catch (ReportableExcept ion rE){

62 Reporter

63 . r epo r t (

64 theElement ,

65 ruleID ,

66 " There was a reportable Exception raised when

getting the activity status of this analysis : \

n" ,

67 rE) ;

68 return Boolean .FALSE;

69

70 } catch (Exception e){

71 Reporter

400

72 . r epo r t (

73 theElement ,

74 ruleID ,

75 " There was a general Exception raised when getting

the activity status of this analysis : \n" ,

76 e) ;

77 return Boolean .FALSE;

78 }

79

80 // perform the ana ly s i s

81 try {

82 theResu l t = MessageComparison . messageOverData (port1 ,

port2 ,

83 theMessageIndex) ;

84 } catch (AcceptableExcept ion e) {

85 theResu l t = new Analys i sResu l t (true , "") ;

86 } catch (ReportableExcept ion e) {

87 Reporter . r epor t (theElement , ruleID , e . getMessage ()) ;

88 return Boolean .FALSE;

89 } catch (Exception e) {

90 Reporter

91 . r epo r t (

92 theElement ,

93 ruleID ,

94 " There was an Exception raised performing the

analysis : \n" ,

95 e) ;

96 return Boolean .FALSE;

97 }

98

99 // report and return the r e s u l t s

100 Reporter . r epor t (theElement , ruleID , theResu l t . getReport ()) ;

101 i f (theResu l t . ge tResu l t () == true)

102 return Boolean .TRUE;

103 else

104 return Boolean .FALSE;

105 }

106

107 }

F.4.28 Message Pattern Comparison

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3 import java . u t i l . I t e r a t o r ;

4 import java . u t i l . L inkedList ;

5 import java . u t i l . L i s t ;

6

7 import org . acmestudio . acme . element . IAcmeConnector ;

8

9 public c lass MessagePatternComparison {

10 public stat ic f ina l int PATTERNSMATCH = 0 ;

11 public stat ic f ina l int PATTERNS PARTIALLY MATCH = 1 ;

12 public stat ic f ina l int PATTERNSMISMATCH = 2 ;

13 public stat ic f ina l int PATTERN DIRECTIONS WRONG = 3 ;

14

15 public stat ic int compareMessagePatternsInPorts (

IAcmeConnector theConnector)

16 throws ReportableException , Exception {

17

18 St r ing connectorID = theConnector . getName () ;

19

20 // bu i l d the acme in t e r f a ce

21 AcmeInterface a i = new AcmeInterface (theConnector) ;

22

23 // get the acme in t e r f a ce vers ion of t h i s connector

24 I t e r a t o r connIT = a i . conns . i t e r a t o r () ;

25 Connector thisConn = null ;

26 boolean found = fa l se ;

27 while (connIT . hasNext ()) {

28 thisConn = (Connector) connIT . next () ;

29 i f (thisConn . iD . equa l s IgnoreCase (connectorID)) {

401

30 found = true ;

31 break ;

32 }

33 }

34 i f (! found)

35 throw new Exception (

36 " No connector with the correct name was found in the

Acme Interface ") ;

37

38 // get the two ports attached to t h i s connector

39 Port p1 ;

40 Port p2 ;

41

42 i f (thisConn . r1 == null)

43 throw new ReportableExcept ion (

44 " Role 1 on this connector does not have a port

attached ") ;

45 else

46 p1 = thisConn . r1 ;

47

48 i f (thisConn . r2 == null)

49 throw new ReportableExcept ion (

50 " Role 2 on this connector does not have a port

attached ") ;

51 else

52 p2 = thisConn . r2 ;

53

54 // ex t rac t t h e i r mep and contro l s t a tu s

55 St r ing [] p1MEP = p1 . messagePattern . s p l i t ("\n") ;

56 St r ing [] p2MEP = p2 . messagePattern . s p l i t ("\n") ;

57 boolean p1InOurControl = p1 . inOurControlDomain ;

58 boolean p2InOurControl = p2 . inOurControlDomain ;

59

60 // get the f i r s t l i n e s and lookup the match s ta tu s

61 St r ing p1MEPType = p1MEP [0] . tr im () ;

62 St r ing p2MEPType = p2MEP [0] . tr im () ;

63

64 int basicPatternMatch = patternPairLookup (p1MEPType ,

p2MEPType) ;

65

66 i f (basicPatternMatch == PATTERNSMATCH)

67 return PATTERNSMATCH;

68

69 i f (basicPatternMatch == PATTERNS PARTIALLY MATCH) {

70 i f (p1InOurControl | | p2InOurControl)

71 return PATTERNS PARTIALLY MATCH;

72 else

73 return PATTERNSMISMATCH;

74 }

75

76 // i f reaches t h i s point then the d i r e c t i ons must be wrong

77 return PATTERN DIRECTIONS WRONG;

78 }

79

80 private stat ic int patternPairLookup (St r ing pattern1 , S t r ing

pattern2) {

81 List<Str ing> senderPatterns = new LinkedList<Str ing >() ;

82 senderPatterns . add (" noti ") ;

83 senderPatterns . add (" roo ") ;

84 senderPatterns . add (" soli ") ;

85 senderPatterns . add (" ooi ") ;

86

87 List<Str ing> r e c e i v e rPa t t e rn s = new LinkedList<Str ing >() ;

88 r e c e i v e rPa t t e rn s . add (" ino ") ;

89 r e c e i v e rPa t t e rn s . add (" rio ") ;

90 r e c e i v e rPa t t e rn s . add (" reqr ") ;

91 r e c e i v e rPa t t e rn s . add (" ioo ") ;

92

93 St r ing senderPattern ;

94 St r ing r e c e i v e rPa t t e rn ;

95

96 i f (senderPatterns . conta in s (pattern1 . tr im () . toLowerCase ())

402

97 && re c e i v e rPa t t e r n s . conta in s (pattern2 . tr im () .

toLowerCase ())) {

98 senderPattern = pattern1 . tr im () ;

99 r e c e i v e rPa t t e rn = pattern2 . tr im () ;

100 } else i f (senderPatterns . conta in s (pattern2 . tr im () .

toLowerCase ())

101 && re c e i v e rPa t t e r n s . conta in s (pattern1 . tr im () .

toLowerCase ())) {

102 senderPattern = pattern2 . tr im () ;

103 r e c e i v e rPa t t e rn = pattern1 . tr im () ;

104 } else {

105 // t h i s assumes the pat tern names have been input

correc t l y , e i t h e r

106 // way something i s wrong

107 return PATTERN DIRECTIONS WRONG;

108 }

109

110 i f (senderPattern . equa l s IgnoreCase (" noti ")) {

111 i f (r e c e i v e rPa t t e rn . equa l s IgnoreCase (" ino "))

112 return PATTERNSMATCH;

113 else

114 return PATTERNS PARTIALLY MATCH;

115 }

116

117 i f (senderPattern . equa l s IgnoreCase (" roo ")) {

118 i f (r e c e i v e rPa t t e rn . equa l s IgnoreCase (" rio "))

119 return PATTERNSMATCH;

120 else

121 return PATTERNS PARTIALLY MATCH;

122 }

123

124 i f (senderPattern . equa l s IgnoreCase (" soli ")) {

125 i f (r e c e i v e rPa t t e rn . equa l s IgnoreCase (" reqr "))

126 return PATTERNSMATCH;

127 else

128 return PATTERNS PARTIALLY MATCH;

129 }

130

131 // f i n a l case , sender must be ooi to reach here

132 i f (r e c e i v e rPa t t e rn . equa l s IgnoreCase (" ioo "))

133 return PATTERNSMATCH;

134 else

135 return PATTERNS PARTIALLY MATCH;

136 }

137 }

F.4.29 Message Pattern And Message List Concur

1 package uk . ac . nc l . c j g . ws enhanced ;

2

3 import java . u t i l . I t e r a t o r ;

4 import java . u t i l . L i s t ;

5 import java . u t i l .Map;

6 import java . u t i l . Set ;

7 import java . u t i l . Stack ;

8 import java . u t i l . TreeSet ;

9

10 import org . acmestudio . acme . core . IAcmeType ;

11 import org . acmestudio . acme . element . IAcmePort ;

12 import org . acmestudio . acme . environment . e r r o r . AcmeError ;

13 import org . acmestudio . acme . r u l e . node .

IExterna lAnalys i sExpress ionNode ;

14 import org . acmestudio . acme . r u l e . node . feedback .

AcmeExpressionEvaluationException ;

15

16 import uk . ac . nc l . c j g . ws enhanced . common . AcmeInterface ;

17 import uk . ac . nc l . c j g . ws enhanced . common . Act iveAnalys i sChecker ;

18 import uk . ac . nc l . c j g . ws enhanced . common . Ana lys i sResu l t ;

19 import uk . ac . nc l . c j g . ws enhanced . common . Component ;

20 import uk . ac . nc l . c j g . ws enhanced . common . DataExtract ionUt i l s ;

21 import uk . ac . nc l . c j g . ws enhanced . common . Helper ;

22 import uk . ac . nc l . c j g . ws enhanced . common . LookUP ;

403

23 import uk . ac . nc l . c j g . ws enhanced . common . Port ;

24 import uk . ac . nc l . c j g . ws enhanced . common . ReportableExcept ion ;

25 import uk . ac . nc l . c j g . ws enhanced . common . Reporter ;

26 import uk . ac . nc l . c j g . ws enhanced . common .Wait ;

27

28 public c lass MessagePatternAndMessageListConcur implements

29 IExterna lAnalys i sExpress ionNode {

30

31 private stat ic f ina l int MSG SETS EQUAL = 1 ;

32 private stat ic f ina l int MEP MSGS SUPERSET OF MESSAGES = 2 ;

33 private stat ic f ina l int MESSAGES SUPERSET OF MEP MSGS = 3 ;

34 private stat ic f ina l int BOTH SETS CONTAIN UNCOMMON MESSAGES

= 4 ;

35 private stat ic f ina l int SETS ARE DISJOINT = 5 ;

36

37 @Override

38 public Object eva luate (IAcmeType arg0 , List<Object> arg1 ,

39 Stack<AcmeError> arg2) throws

AcmeExpressionEvaluationException {

40 // pause the ana ly s i s to a l low AcmeStudio to do something

other than

41 // ex terna l ana ly s i s

42

43 Wait . de layAna lys i s () ;

44

45 // ex t rac t data types from ana ly s i s ca l l , t h i s should be

passed

46 // a s i n g l e component

47 St r ing ruleID = "

ActiveAnalysisMessagePatternAndMessageListConcur " ;

48 IAcmePort theElement = null ;

49 Analys i sResu l t theResu l t = null ;

50

51 java . u t i l . I t e r a t o r i = arg1 . i t e r a t o r () ;

52

53 // ex t rac t the required model elements from the passed l i s t

54 try {

55 theElement = (IAcmePort) i . next () ;

56 } catch (Exception e) {

57 Reporter . r epor t (ruleID ,

58 " There was a problem extracting the required data : \n

" , e) ;

59 return Boolean .FALSE;

60 }

61

62 // check i f t h i s ru l e i s ac t i v e

63 try {

64 i f (! Act iveAnalys i sChecker . Check I fAna ly s i s I sAct ive (ruleID

,

65 theElement)) {

66 Reporter . r epor t (theElement , ruleID , "") ;

67 return Boolean .TRUE;

68 }

69 } catch (ReportableExcept ion rE) {

70 Reporter

71 . r epo r t (

72 theElement ,

73 ruleID ,

74 " There was a reportable Exception raised when

getting the activity status of this analysis :

\n" ,

75 rE) ;

76 return Boolean .FALSE;

77

78 } catch (Exception e) {

79 Reporter

80 . r epo r t (

81 theElement ,

82 ruleID ,

83 " There was a general Exception raised when

getting the activity status of this analysis :

\n" ,

404

84 e) ;

85 return Boolean .FALSE;

86 }

87

88 // perform the ana ly s i s

89 try {

90

91 // construct the acme in t e r f a c e and grab the required

port from i t

92 St r ing focusPortID = theElement . getName () ;

93 St r ing focusPortParentComponentID = theElement . getParent

()

94 . getName () ;

95 AcmeInterface a i = new AcmeInterface (theElement) ;

96

97 Port thePort = null ;

98 boolean requiredPortFound = fa l se ;

99 I t e r a t o r allComponents = a i . e lements . i t e r a t o r () ;

100 while (allComponents . hasNext ()) {

101 Component thisComponent = (Component) allComponents .

next () ;

102 i f (thisComponent . iD

103 . equa l s IgnoreCase (focusPortParentComponentID)) {

104 I t e r a t o r componentPortsIt = thisComponent . por t s .

i t e r a t o r () ;

105 while (componentPortsIt . hasNext ()) {

106 thePort = (Port) componentPortsIt . next () ;

107 i f (thePort . iD . equa l s IgnoreCase (focusPortID)) {

108 requiredPortFound = true ;

109 break ;

110 }

111 }

112 }

113 i f (requiredPortFound)

114 break ;

115 }

116

117 i f (! requiredPortFound)

118 throw new ReportableExcept ion (

119 " The required port was not found in the model ") ;

120

121 // get message s t ruc ture names from the port

122 Set namesFromStructure = getMessageNamesFromMessages (

thePort . messages) ;

123 Set namesFromPattern = getMessageNamesFromPattern (thePort

. messagePattern) ;

124

125 CompareListsResult s t ruc tureF i r s tCheck = compareLists (

126 namesFromStructure , namesFromPattern , true) ;

127 CompareListsResult patternFirs tCheck = compareLists (

128 namesFromPattern , namesFromStructure , fa l se) ;

129

130 boolean noMismatchFound ;

131 i f (s t ruc tureF i r s tCheck . aMismatchWasFound ()

132 | | patternFirs tCheck . aMismatchWasFound ())

133 noMismatchFound = fa l se ;

134 else

135 noMismatchFound = true ;

136

137 boolean commonMessagesFound ;

138 i f (s t ruc tureF i r s tCheck . aCommonMessageWasFound ()

139 | | patternFirs tCheck . aCommonMessageWasFound ())

140 commonMessagesFound = true ;

141 else

142 commonMessagesFound = fa l se ;

143

144 St r ing r epo r tDe t a i l s = s t ruc tureF i r s tCheck . getReport ()

145 + patternFirs tCheck . getReport () ;

146

147 i f (! commonMessagesFound)

148 r e po r tDe t a i l s += " There were no common message names

found in the either property " ;

405

149

150 St r ing messageL i s t sAsStr ings = null ;

151 i f (! noMismatchFound) {

152 messageL i s t sAsSt r ings = " Messages found in Messages

property : \n" ;

153 I t e r a t o r nameIt = namesFromStructure . i t e r a t o r () ;

154 while (nameIt . hasNext ()) {

155 messageL i s t sAsSt r ings += (St r ing) nameIt . next () + "\n

" ;

156 }

157 messageL i s t sAsSt r ings += " Messages found in

MessagePattern property : \n" ;

158 nameIt = namesFromPattern . i t e r a t o r () ;

159 while (nameIt . hasNext ()) {

160 messageL i s t sAsSt r ings += (St r ing) nameIt . next () + "\n

" ;

161 }

162

163 r e po r tDe t a i l s += "\n" + messageL i s t sAsStr ings ;

164 }

165

166 theResu l t = new Analys i sResu l t (noMismatchFound ,

r e po r tDe t a i l s) ;

167

168 } catch (ReportableExcept ion e) {

169 Reporter . r epor t (theElement , ruleID , e . getMessage ()) ;

170 return Boolean .FALSE;

171 } catch (Exception e) {

172 Reporter

173 . r epo r t (

174 theElement ,

175 ruleID ,

176 " There was an Exception raised performing the

analysis : \n" ,

177 e) ;

178 return Boolean .FALSE;

179 }

180

181 // report and return the r e s u l t s

182 Reporter . r epor t (theElement , ruleID , theResu l t . getReport ()) ;

183 i f (theResu l t . ge tResu l t () == true)

184 return Boolean .TRUE;

185 else

186 return Boolean .FALSE;

187 }

188

189 private CompareListsResult compareLists (Set l1 , Set l2 ,

190 boolean f i r s tL i s tFromMessage sSt ruc ture) {

191 CompareListsResult t h i sRe su l t = new CompareListsResult () ;

192 I t e r a t o r l 1 I t = l1 . i t e r a t o r () ;

193 while (l 1 I t . hasNext ()) {

194 boolean thisMsgMatched = fa l se ;

195 St r ing l1msg = (St r ing) l 1 I t . next () ;

196 I t e r a t o r l 2 I t = l2 . i t e r a t o r () ;

197 while (l 2 I t . hasNext ()) {

198 St r ing l2msg = (St r ing) l 2 I t . next () ;

199 i f (l1msg . equa l s IgnoreCase (l2msg)) {

200 thisMsgMatched = true ;

201 t h i sRe su l t . foundACommonMessage () ;

202 break ;

203 }

204 }

205

206 i f (! thisMsgMatched) {

207 t h i sRe su l t . foundAMismatch () ;

208 t h i sRe su l t . addReportLine (" the message " + l1msg

209 + " was found in the ") ;

210 i f (f i r s tL i s tFromMessage sSt ruc ture)

211 t h i sRe su l t

212 . addReportLine (" Messages property but not in the

Message Exchange Pattern \n") ;

213 else

406

214 t h i sRe su l t

215 . addReportLine (" Message Exchange Pattern property

but not in the Messages \n") ;

216 }

217 }

218

219 return t h i sRe su l t ;

220 }

221

222 private Set<Str ing> getMessageNamesFromMessages (Map messages)

{

223 Set<Str ing> messageNames = messages . keySet () ;

224 return messageNames ;

225 }

226

227 private Set<Str ing> getMessageNamesFromPattern (St r ing

messagePattern)

228 throws ReportableException , Exception {

229 St r ing [] p a t t e r nSp l i t = messagePattern . s p l i t ("\n") ;

230 Set<Str ing> messageNames = new TreeSet () ;

231

232 St r ing pattern = pa t t e r nSp l i t [0] . tr im () ;

233

234 i f (pattern . equa l s IgnoreCase (" noti ")) {

235 messageNames . add (DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (

236 messagePattern , LookUP .CSP INDEX NOTI SENDREQ)) ;

237 }

238

239 i f (pattern . equa l s IgnoreCase (" ino ")) {

240 messageNames . add (DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (

241 messagePattern , LookUP .CSP INDEX INO GETREQ)) ;

242 }

243

244 i f (pattern . equa l s IgnoreCase (" roo ")) {

245 messageNames . add (DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (

246 messagePattern , LookUP .CSP INDEX ROO SENDREQ)) ;

247 messageNames . add (DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (

248 messagePattern , LookUP .CSP INDEX ROO GETFAULT)) ;

249 }

250

251 i f (pattern . equa l s IgnoreCase (" rio ")) {

252 messageNames . add (DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (

253 messagePattern , LookUP .CSP INDEX RIO GETREQ)) ;

254 messageNames . add (DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (

255 messagePattern , LookUP .CSP INDEX RIO SENDFAULT)) ;

256 }

257

258 i f (pattern . equa l s IgnoreCase (" reqr ")) {

259 messageNames . add (DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (

260 messagePattern , LookUP .CSP INDEX REQR GETREQ)) ;

261 messageNames . add (DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (

262 messagePattern , LookUP .CSP INDEX REQR SENDRES)) ;

263 messageNames . add (DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (

264 messagePattern , LookUP .CSP INDEX REQR SENDFAULT)) ;

265 }

266

267 i f (pattern . equa l s IgnoreCase (" soli ")) {

268 messageNames . add (DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (

269 messagePattern , LookUP .CSP INDEX SOLI SENDREQ)) ;

270 messageNames . add (DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (

271 messagePattern , LookUP .CSP INDEX SOLI GETRES)) ;

407

272 messageNames . add (DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (

273 messagePattern , LookUP .CSP INDEX SOLI GETFAULT)) ;

274 }

275

276 i f (pattern . equa l s IgnoreCase (" ooi ")) {

277 messageNames . add (DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (

278 messagePattern , LookUP .CSP INDEX OOI SENDREQ)) ;

279 messageNames . add (DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (

280 messagePattern , LookUP .CSP INDEX OOI GETRES)) ;

281 messageNames . add (DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (

282 messagePattern , LookUP .CSP INDEX OOI GETFAULT)) ;

283 messageNames . add (DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (

284 messagePattern , LookUP .CSP INDEX OOI SENDFAULT2)) ;

285 }

286

287 i f (pattern . equa l s IgnoreCase (" ioo ")) {

288 messageNames . add (DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (

289 messagePattern , LookUP .CSP INDEX IOO GETREQ)) ;

290 messageNames . add (DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (

291 messagePattern , LookUP .CSP INDEX IOO SENDRES)) ;

292 messageNames . add (DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (

293 messagePattern , LookUP .CSP INDEX IOO SENDFAULT)) ;

294 messageNames . add (DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (

295 messagePattern , LookUP .CSP INDEX IOO GETFAULT2)) ;

296 }

297

298 return messageNames ;

299 }

300

301 private class CompareListsResult {

302 private boolean aMismatchWasFound ;

303 private boolean aCommonMessageWasFound ;

304 private St r ing tempReportDetai ls ;

305

306 public CompareListsResult () {

307 aMismatchWasFound = fa l se ;

308 aCommonMessageWasFound = fa l se ;

309 tempReportDetai ls = "" ;

310 }

311

312 public void foundAMismatch () {

313 aMismatchWasFound = true ;

314 }

315

316 public void foundACommonMessage () {

317 aCommonMessageWasFound = true ;

318 }

319

320 public void addReportLine (S t r ing th i sL in e) {

321 tempReportDetai ls += th i sL in e + "\n" ;

322 }

323

324 public boolean aMismatchWasFound () {

325 return aMismatchWasFound ;

326 }

327

328 public boolean aCommonMessageWasFound () {

329 return aCommonMessageWasFound ;

330 }

331

332 public St r ing getReport () {

333 return tempReportDetai ls ;

334 }

408

335 }

336 }

F.4.30 Message Under Data 1

1 package uk . ac . nc l . c j g . ws enhanced ;

2

3 import java . u t i l . L i s t ;

4 import java . u t i l . Stack ;

5

6 import org . acmestudio . acme . core . IAcmeType ;

7 import org . acmestudio . acme . element . IAcmeConnector ;

8 import org . acmestudio . acme . element . IAcmePort ;

9 import org . acmestudio . acme . environment . e r r o r . AcmeError ;

10 import org . acmestudio . acme . r u l e . node .

IExterna lAnalys i sExpress ionNode ;

11 import org . acmestudio . acme . r u l e . node . feedback .

AcmeExpressionEvaluationException ;

12

13 import uk . ac . nc l . c j g . ws enhanced . common . AcceptableExcept ion ;

14 import uk . ac . nc l . c j g . ws enhanced . common . Act iveAnalys i sChecker ;

15 import uk . ac . nc l . c j g . ws enhanced . common . Ana lys i sResu l t ;

16 import uk . ac . nc l . c j g . ws enhanced . common . Helper ;

17 import uk . ac . nc l . c j g . ws enhanced . common . MessageComparison ;

18 import uk . ac . nc l . c j g . ws enhanced . common . ReportableExcept ion ;

19 import uk . ac . nc l . c j g . ws enhanced . common . Reporter ;

20 import uk . ac . nc l . c j g . ws enhanced . common .Wait ;

21

22 public c lass MessageUnderData1 implements

IExterna lAnalys i sExpress ionNode {

23

24 @Override

25 public Object eva luate (IAcmeType arg0 , List<Object> arg1 ,

26 Stack<AcmeError> arg2) throws

AcmeExpressionEvaluationException {

27

28 // pause the ana ly s i s to a l low AcmeStudio to do something

other than

29 // ex terna l ana ly s i s

30 Wait . de layAna lys i s () ;

31

32 St r ing ruleID = null ;

33 St r ing ruleIDNoMessageNumber = "

ActiveAnalysisMessageUnderData1 " ;

34 IAcmeConnector theElement = null ;

35 IAcmePort port1 = null ;

36 IAcmePort port2 = null ;

37 I n t eg e r theMessageIndex = null ;

38 Analys i sResu l t theResu l t = null ;

39

40 java . u t i l . I t e r a t o r i = arg1 . i t e r a t o r () ;

41

42 // ex t rac t the required model elements from the passed l i s t

43 try {

44 theElement = (IAcmeConnector) i . next () ;

45 port1 = (IAcmePort) i . next () ;

46 port2 = (IAcmePort) i . next () ;

47 theMessageIndex = (In t eg e r) i . next () ;

48 ru leID = ruleIDNoMessageNumber + " - msg " + theMessageIndex

;

49 } catch (Exception e) {

50 Reporter . r epor t (ruleID ,

51 " There was a problem extracting the required data : \n

" , e) ;

52 return Boolean .FALSE;

53 }

54

55 // check ru l e i s ac t i v e

56 try{

57 i f (! Act iveAnalys i sChecker . Check I fAna ly s i s I sAct ive (

58 ruleIDNoMessageNumber , theElement)) {

59 Reporter . r epor t (theElement , ruleID , "") ;

409

60 return Boolean .TRUE;

61 }

62 } catch (ReportableExcept ion rE){

63 Reporter

64 . r epo r t (

65 theElement ,

66 ruleID ,

67 " There was a reportable Exception raised when

getting the activity status of this analysis : \

n" ,

68 rE) ;

69 return Boolean .FALSE;

70

71 } catch (Exception e){

72 Reporter

73 . r epo r t (

74 theElement ,

75 ruleID ,

76 " There was a general Exception raised when getting

the activity status of this analysis : \n" ,

77 e) ;

78 return Boolean .FALSE;

79 }

80

81 // perform the ana ly s i s

82 try {

83

84 theResu l t = MessageComparison . messageUnderData1 (port1 ,

port2 ,

85 theMessageIndex) ;

86

87

88 } catch (AcceptableExcept ion e) {

89 theResu l t = new Analys i sResu l t (true , "") ;

90 } catch (ReportableExcept ion e) {

91 Reporter . r epor t (theElement , ruleID , e . getMessage ()) ;

92 return Boolean .FALSE;

93 } catch (Exception e) {

94 Reporter

95 . r epo r t (

96 theElement ,

97 ruleID ,

98 " There was an Exception raised performing the

analysis : \n" ,

99 e) ;

100 return Boolean .FALSE;

101 }

102

103

104 // report and return the r e s u l t s

105 Reporter . r epor t (theElement , ruleID , theResu l t . getReport ()) ;

106 i f (theResu l t . ge tResu l t () == true)

107 return Boolean .TRUE;

108 else

109 return Boolean .FALSE;

110 }

111

112 }

F.4.31 Message Under Data 2

1 package uk . ac . nc l . c j g . ws enhanced ;

2

3 import java . u t i l . L i s t ;

4 import java . u t i l . Stack ;

5

6 import org . acmestudio . acme . core . IAcmeType ;

7 import org . acmestudio . acme . element . IAcmeConnector ;

8 import org . acmestudio . acme . element . IAcmePort ;

9 import org . acmestudio . acme . environment . e r r o r . AcmeError ;

10 import org . acmestudio . acme . r u l e . node .

IExterna lAnalys i sExpress ionNode ;

410

11 import org . acmestudio . acme . r u l e . node . feedback .

AcmeExpressionEvaluationException ;

12

13 import uk . ac . nc l . c j g . ws enhanced . common . AcceptableExcept ion ;

14 import uk . ac . nc l . c j g . ws enhanced . common . Act iveAnalys i sChecker ;

15 import uk . ac . nc l . c j g . ws enhanced . common . Ana lys i sResu l t ;

16 import uk . ac . nc l . c j g . ws enhanced . common . MessageComparison ;

17 import uk . ac . nc l . c j g . ws enhanced . common . ReportableExcept ion ;

18 import uk . ac . nc l . c j g . ws enhanced . common . Reporter ;

19 import uk . ac . nc l . c j g . ws enhanced . common .Wait ;

20

21 public c lass MessageUnderData2 implements

IExterna lAnalys i sExpress ionNode {

22

23 @Override

24 public Object eva luate (IAcmeType arg0 , List<Object> arg1 ,

25 Stack<AcmeError> arg2) throws

AcmeExpressionEvaluationException {

26

27 // pause the ana ly s i s to a l low AcmeStudio to do something

other than

28 // ex terna l ana ly s i s

29 Wait . de layAna lys i s () ;

30

31 St r ing ruleID = null ;

32 St r ing ruleIDNoMessageNumber = "

ActiveAnalysisMessageUnderData2 " ;

33 IAcmeConnector theElement = null ;

34 IAcmePort port1 = null ;

35 IAcmePort port2 = null ;

36 I n t eg e r theMessageIndex = null ;

37 Analys i sResu l t theResu l t = null ;

38

39 java . u t i l . I t e r a t o r i = arg1 . i t e r a t o r () ;

40

41 // ex t rac t the required model elements from the passed l i s t

42 try {

43 theElement = (IAcmeConnector) i . next () ;

44 port1 = (IAcmePort) i . next () ;

45 port2 = (IAcmePort) i . next () ;

46 theMessageIndex = (In t eg e r) i . next () ;

47 ru leID = ruleIDNoMessageNumber + " - msg " + theMessageIndex

;

48 } catch (Exception e) {

49 Reporter . r epor t (ruleID ,

50 " There was a problem extracting the required data : \n

" , e) ;

51 return Boolean .FALSE;

52 }

53

54 // check i f t h i s ru l e i s ac t i v e

55 try{

56 i f (! Act iveAnalys i sChecker . Check I fAna ly s i s I sAct ive (

57 ruleIDNoMessageNumber , theElement)) {

58 Reporter . r epor t (theElement , ruleID , "") ;

59 return Boolean .TRUE;

60 }

61 } catch (ReportableExcept ion rE){

62 Reporter

63 . r epo r t (

64 theElement ,

65 ruleID ,

66 " There was a reportable Exception raised when

getting the activity status of this analysis : \

n" ,

67 rE) ;

68 return Boolean .FALSE;

69

70 } catch (Exception e){

71 Reporter

72 . r epo r t (

73 theElement ,

411

74 ruleID ,

75 " There was a general Exception raised when getting

the activity status of this analysis : \n" ,

76 e) ;

77 return Boolean .FALSE;

78 }

79

80 // perform the ana ly s i s

81 try {

82 theResu l t = MessageComparison . messageUnderData2 (port1 ,

port2 ,

83 theMessageIndex) ;

84 } catch (AcceptableExcept ion e) {

85 theResu l t = new Analys i sResu l t (true , "") ;

86 } catch (ReportableExcept ion e) {

87 Reporter . r epor t (theElement , ruleID , e . getMessage ()) ;

88 return Boolean .FALSE;

89 } catch (Exception e) {

90 Reporter

91 . r epo r t (

92 theElement ,

93 ruleID ,

94 " There was an Exception raised performing the

analysis : \n" ,

95 e) ;

96 return Boolean .FALSE;

97 }

98

99 // report and return the r e s u l t s

100 Reporter . r epor t (theElement , ruleID , theResu l t . getReport ()) ;

101 i f (theResu l t . ge tResu l t () == true)

102 return Boolean .TRUE;

103 else

104 return Boolean .FALSE;

105 }

106

107 }

F.4.32 Message Vector

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3 public c lass MessageVector {

4

5 public stat ic f ina l St r ing NO MAPPING = " -1" ;

6 public stat ic f ina l int NO MAPPING INDEX = −1;

7 private int sendsFirstCSPIndex , rece ivesF i r s tCSPIndex ;

8 private St r ing sentMessageID , receivedMessageID ;

9 private boolean f romSendsFirst ;

10

11 public MessageVector (int sendsFirstCSPIndex , int

rece ivesFirstCSPIndex , boolean f romSendsFirst , S t r ing

sendsFirstCSP , St r ing rece ive sF i r s tCSP) throws Exception

{

12 this . sendsFirstCSPIndex = sendsFirstCSPIndex ;

13 this . r ece ivesF i r s tCSPIndex = rece ivesF i r s tCSPIndex ;

14 this . f romSendsFirst = fromSendsFirst ;

15 // get the correc t message IDs accounting for the d i r ec t i on

of the message .

16

17 St r ing tempDebug = " Message Vector Creator : \n " ;

18 tempDebug+= " sends first csp index " +

sendsFirstCSPIndex + "\n" ;

19 tempDebug += " receivesFirst csp index " +

rece ivesF i r s tCSPIndex + "\n" ;

20 tempDebug += " sendsfirstCSP \n " + sendsFirstCSP +"\n" ;

21 tempDebug += " receivedfirstCSP \n" + rece ive sF i r s tCSP +"\n"

;

22

23

24 i f (f romSendsFirst)

25 {

412

26 sentMessageID = DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (sendsFirstCSP ,

sendsFirstCSPIndex) ;

27 receivedMessageID = DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (rece ivesFir s tCSP ,

rece ivesF i r s tCSPIndex) ;

28 }

29 else

30 {

31 receivedMessageID = DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (sendsFirstCSP ,

sendsFirstCSPIndex) ;

32 sentMessageID = DataExtract ionUt i l s .

getMessageNameFromCSPAtLine (rece ivesFir s tCSP ,

rece ivesF i r s tCSPIndex) ;

33 }

34

35 tempDebug +=" sentMessageID " + sentMessageID + "\n" ;

36 tempDebug +=" receivedMessageID " + receivedMessageID + "\n

" ;

37

38 Helper . writeDebug (tempDebug) ;

39

40 }

41

42

43 public int getSendsFirstCSPIndex () {

44 return sendsFirstCSPIndex ;

45 }

46

47 public int getRece ivesFirstCSPIndex () {

48 return rece ivesF i r s tCSPIndex ;

49 }

50

51 public boolean d i r e c t i on I sFromSendsF i r s t () {

52 return f romSendsFirst ;

53 }

54

55 public St r ing getSentMessageID () {

56 return sentMessageID ;

57 }

58

59 public St r ing getrece ivedMessageID () {

60 return receivedMessageID ;

61 }

62 }

F.4.33 Omission Mismatch

1 package uk . ac . nc l . c j g . ws enhanced ;

2

3 import java . u t i l . ArrayList ;

4 import java . u t i l . L inkedList ;

5 import java . u t i l . L i s t ;

6 import java . u t i l . Stack ;

7

8 import org . acmestudio . acme . core . IAcmeType ;

9 import org . acmestudio . acme . element . IAcmeComponent ;

10 import org . acmestudio . acme . environment . e r r o r . AcmeError ;

11 import org . acmestudio . acme . r u l e . node .

IExterna lAnalys i sExpress ionNode ;

12 import org . acmestudio . acme . r u l e . node . feedback .

AcmeExpressionEvaluationException ;

13

14 import uk . ac . nc l . c j g . ws enhanced . common . Act iveAnalys i sChecker ;

15 import uk . ac . nc l . c j g . ws enhanced . common . Ana lys i sResu l t ;

16 import uk . ac . nc l . c j g . ws enhanced . common . CSPConnectorConstructor

;

17 import uk . ac . nc l . c j g . ws enhanced . common . CSPHidingSetConstructor

;

18 import uk . ac . nc l . c j g . ws enhanced . common . CSPModelBuilder ;

19 import uk . ac . nc l . c j g . ws enhanced . common . FDRResultsAnalyzer ;

413

20 import uk . ac . nc l . c j g . ws enhanced . common . Helper ;

21 import uk . ac . nc l . c j g . ws enhanced . common . ReportableExcept ion ;

22 import uk . ac . nc l . c j g . ws enhanced . common . Reporter ;

23 import uk . ac . nc l . c j g . ws enhanced . common .Wait ;

24

25 public c lass OmissionMismatch implements

IExterna lAnalys i sExpress ionNode {

26

27 @Override

28 public Object eva luate (IAcmeType arg0 , List<Object> arg1 ,

29 Stack<AcmeError> arg2) throws

AcmeExpressionEvaluationException {

30 // pause the ana ly s i s to a l low AcmeStudio to do something

other than

31 // ex terna l ana ly s i s

32

33 Wait . de layAna lys i s () ;

34

35 // ex t rac t data types from ana ly s i s ca l l , t h i s should be

passed

36 // a s i n g l e component

37 St r ing ruleID = " ActiveAnalysisOmissionMismatch " ;

38 IAcmeComponent theElement = null ;

39 Analys i sResu l t theResu l t = null ;

40

41 java . u t i l . I t e r a t o r i = arg1 . i t e r a t o r () ;

42

43 // ex t rac t the required model elements from the passed l i s t

44 try {

45 theElement = (IAcmeComponent) i . next () ;

46 } catch (Exception e) {

47 Reporter . r epor t (ruleID ,

48 " There was a problem extracting the required data : \n

" , e) ;

49 return Boolean .FALSE;

50 }

51

52 // check i f t h i s ru l e i s ac t i v e

53 try {

54 i f (! Act iveAnalys i sChecker . Check I fAna ly s i s I sAct ive (ruleID

,

55 theElement)) {

56 Reporter . r epor t (theElement , ruleID , "") ;

57 return Boolean .TRUE;

58 }

59 } catch (ReportableExcept ion rE) {

60 Reporter

61 . r epo r t (

62 theElement ,

63 ruleID ,

64 " There was a reportable Exception raised when

getting the activity status of this analysis :

\n" ,

65 rE) ;

66 return Boolean .FALSE;

67

68 } catch (Exception e) {

69 Reporter

70 . r epo r t (

71 theElement ,

72 ruleID ,

73 " There was a general Exception raised when

getting the activity status of this analysis :

\n" ,

74 e) ;

75 return Boolean .FALSE;

76 }

77

78 // perform the ana ly s i s

79 try {

80

81

414

82

83 St r ing outputPath = "/ home / carl / analysisModel . csp " ;

84 St r ing focusCompID = theElement . getName () ;

85

86

87

88 // perform the deadlock port ion of t h i s ana ly s i s

89

90 L i s t fdrRawResultsDeadLock = new LinkedList<Str ing >() ;

91 St r ing outputPath2 = "/ home / carl / output2 . csp " ;

92

93 // themodel 0 = s t r ing csp model

94 // themodel 1 = CSPHidingSetConstructor

95 ArrayList theModelDeadLock = CSPModelBuilder . buildModel (

96 CSPModelBuilder .ANALYSIS DEADLOCK OMISSION SUPPORT,

focusCompID , null , theElement) ;

97

98 St r ing theCSPModelDeadLock = (St r ing) theModelDeadLock .

get (0) ;

99 CSPHidingSetConstructor hidCon = (CSPHidingSetConstructor

) theModelDeadLock

100 . get (1) ;

101 CSPConnectorConstructor connCon = (

CSPConnectorConstructor) theModelDeadLock

102 . get (2) ;

103 Helper . writeDebug (theCSPModelDeadLock) ;

104 Helper . writeModelToFile (theCSPModelDeadLock , outputPath) ;

105 fdrRawResultsDeadLock = Helper . processCSPModel (outputPath

, 100) ;

106

107 // perform the refinement port ion of t h i s ana ly s i s

108

109 L i s t fdrRawResultsRefinement = new LinkedList<Str ing >() ;

110 ArrayList theModelRefinement = CSPModelBuilder . buildModel

(

111 CSPModelBuilder .ANALYSIS COMPONENT REFINEMENT,

focusCompID , null , theElement) ;

112

113 St r ing theCSPModelRefinement = (St r ing)

theModelRefinement . get (0) ;

114 Helper . writeDebug (theCSPModelRefinement) ;

115 Helper . writeModelToFile (theCSPModelRefinement ,

outputPath2) ;

116 fdrRawResultsRefinement = Helper . processCSPModel (

outputPath2 , 100) ;

117

118 FDRResultsAnalyzer ra = new FDRResultsAnalyzer (

CSPModelBuilder .ANALYSIS COMPONENT REFINEMENT,

119 (CSPHidingSetConstructor) hidCon , focusCompID ,

connCon) ;

120

121 Helper . openDebug (focusCompID +"_"+ ruleID + ". txt ") ;

122

123 Helper . writeDebug (" Deadlock raw retuls : " +

fdrRawResultsDeadLock) ;

124 Helper . writeDebug (" refinement raw retuls : " +

fdrRawResultsRefinement) ;

125 ra . submitDeadlockTraces (fdrRawResultsDeadLock) ;

126 ra . submitRefinementTraces (fdrRawResultsRefinement) ;

127

128 // ra . repoart r e s u l t s i s true i f the ana ly s i s f a i l e d ,

whi le the ana ly s i s

129 // r e s u l t expects a f a i l e d ana ly s i s to return f a l s e .

130 i f (ra . r epo r tResu l t ())

131 {

132 theResu l t = new Analys i sResu l t (false , ra . r e p o r tDe t a i l s

()) ;

133 }

134 else

135 {

415

136 theResu l t = new Analys i sResu l t (true , ra . r e p o r tDe t a i l s ()

) ;

137 }

138

139 Helper . closeDebug () ;

140

141 } catch (ReportableExcept ion e) {

142 Reporter . r epor t (theElement , ruleID , e . getMessage ()) ;

143 return Boolean .FALSE;

144 } catch (Exception e) {

145 Reporter

146 . r epo r t (

147 theElement ,

148 ruleID ,

149 " There was an Exception raised performing the

analysis : \n" ,

150 e) ;

151 return Boolean .FALSE;

152 }

153

154 // report and return the r e s u l t s

155 Reporter . r epor t (theElement , ruleID , theResu l t . getReport ()) ;

156 i f (theResu l t . ge tResu l t () == true)

157 return Boolean .TRUE;

158 else

159 return Boolean .FALSE;

160

161 }

162

163 }

F.4.34 Omission Partial Mismatch

1 package uk . ac . nc l . c j g . ws enhanced ;

2

3 import java . u t i l . ArrayList ;

4 import java . u t i l . L inkedList ;

5 import java . u t i l . L i s t ;

6 import java . u t i l . Stack ;

7

8 import org . acmestudio . acme . core . IAcmeType ;

9 import org . acmestudio . acme . element . IAcmeComponent ;

10 import org . acmestudio . acme . environment . e r r o r . AcmeError ;

11 import org . acmestudio . acme . r u l e . node .

IExterna lAnalys i sExpress ionNode ;

12 import org . acmestudio . acme . r u l e . node . feedback .

AcmeExpressionEvaluationException ;

13

14 import uk . ac . nc l . c j g . ws enhanced . common . Act iveAnalys i sChecker ;

15 import uk . ac . nc l . c j g . ws enhanced . common . Ana lys i sResu l t ;

16 import uk . ac . nc l . c j g . ws enhanced . common . CSPConnectorConstructor

;

17 import uk . ac . nc l . c j g . ws enhanced . common . CSPHidingSetConstructor

;

18 import uk . ac . nc l . c j g . ws enhanced . common . CSPModelBuilder ;

19 import uk . ac . nc l . c j g . ws enhanced . common . FDRResultsAnalyzer ;

20 import uk . ac . nc l . c j g . ws enhanced . common . Helper ;

21 import uk . ac . nc l . c j g . ws enhanced . common . ReportableExcept ion ;

22 import uk . ac . nc l . c j g . ws enhanced . common . Reporter ;

23 import uk . ac . nc l . c j g . ws enhanced . common .Wait ;

24

25 public c lass OmissionPartialMatch implements

IExterna lAnalys i sExpress ionNode {

26

27 @Override

28 public Object eva luate (IAcmeType arg0 , L ist<Object> arg1 ,

29 Stack<AcmeError> arg2) throws

AcmeExpressionEvaluationException {

30

31 // pause the ana ly s i s to a l low AcmeStudio to do something

other than

32 // ex terna l ana ly s i s

416

33

34 Wait . de layAna lys i s () ;

35

36 // ex t rac t data types from ana ly s i s ca l l , t h i s should be

passed

37 // a s i n g l e component

38 St r ing ruleID = " ActiveAnalysisOmissionPartialMatch " ;

39 IAcmeComponent theElement = null ;

40 Analys i sResu l t theResu l t = null ;

41

42 java . u t i l . I t e r a t o r i = arg1 . i t e r a t o r () ;

43

44 // ex t rac t the required model elements from the passed

l i s t

45 try {

46 theElement = (IAcmeComponent) i . next () ;

47 } catch (Exception e) {

48 Reporter . r epor t (ruleID ,

49 " There was a problem extracting the required data :

\n" , e) ;

50 return Boolean .FALSE;

51 }

52

53 // check i f t h i s ru l e i s ac t i v e

54 try {

55 i f (! Act iveAnalys i sChecker . Check I fAna ly s i s I sAct ive (

ruleID ,

56 theElement)) {

57 Reporter . r epor t (theElement , ruleID , "") ;

58 return Boolean .TRUE;

59 }

60 } catch (ReportableExcept ion rE) {

61 Reporter

62 . r epo r t (

63 theElement ,

64 ruleID ,

65 " There was a reportable Exception raised when

getting the activity status of this

analysis : \n" ,

66 rE) ;

67 return Boolean .FALSE;

68

69 } catch (Exception e) {

70 Reporter

71 . r epo r t (

72 theElement ,

73 ruleID ,

74 " There was a general Exception raised when

getting the activity status of this

analysis : \n" ,

75 e) ;

76 return Boolean .FALSE;

77 }

78

79 // perform the ana ly s i s

80 try {

81

82 St r ing outputPath = "/ home / carl / analysisModel . csp " ;

83 St r ing focusCompID = theElement . getName () ;

84

85

86

87 // perform the deadlock port ion of t h i s ana ly s i s

88

89 L i s t fdrRawResultsDeadLock = new LinkedList<Str ing >() ;

90 St r ing outputPath2 = "/ home / carl / output2 . csp " ;

91

92 // themodel 0 = s t r ing csp model

93 // themodel 1 = CSPHidingSetConstructor

94 ArrayList theModelDeadLock = CSPModelBuilder . buildModel

(

417

95 CSPModelBuilder .ANALYSIS DEADLOCK OMISSION SUPPORT,

focusCompID , null , theElement) ;

96

97 St r ing theCSPModelDeadLock = (St r ing) theModelDeadLock .

get (0) ;

98 CSPHidingSetConstructor hidCon = (

CSPHidingSetConstructor) theModelDeadLock

99 . get (1) ;

100 CSPConnectorConstructor connCon = (

CSPConnectorConstructor) theModelDeadLock

101 . get (2) ;

102

103 Helper . writeDebug (theCSPModelDeadLock) ;

104

105 Helper . writeModelToFile (theCSPModelDeadLock , outputPath

) ;

106 fdrRawResultsDeadLock = Helper . processCSPModel (

outputPath , 100) ;

107

108 // perform the refinement port ion of t h i s ana ly s i s

109

110 L i s t fdrRawResultsRefinement = new LinkedList<Str ing >()

;

111 ArrayList theModelRefinement = CSPModelBuilder .

buildModel (

112 CSPModelBuilder .ANALYSIS COMPONENT REFINEMENT,

focusCompID , null , theElement) ;

113

114 St r ing theCSPModelRefinement = (St r ing)

theModelRefinement . get (0) ;

115

116 Helper . writeDebug (theCSPModelRefinement) ;

117 Helper . writeModelToFile (theCSPModelRefinement ,

outputPath2) ;

118 fdrRawResultsRefinement = Helper . processCSPModel (

outputPath2 , 100) ;

119

120 FDRResultsAnalyzer ra = new FDRResultsAnalyzer (

CSPModelBuilder .

ANALYSIS COMPONENT REFINEMENT PARTIAL,

121 (CSPHidingSetConstructor) hidCon , focusCompID ,

connCon) ;

122

123

124 //Helper . openDebug(focusCompID +” ”+ ruleID + ”. t x t ”) ;

125 Helper . writeDebug (" Deadlock raw retuls : " +

fdrRawResultsDeadLock) ;

126 Helper . writeDebug (" refinement raw retuls : " +

fdrRawResultsRefinement) ;

127

128

129 ra . submitDeadlockTraces (fdrRawResultsDeadLock) ;

130 ra . submitRefinementTraces (fdrRawResultsRefinement) ;

131

132 // ra . repoart r e s u l t s i s true i f the ana ly s i s f a i l e d ,

whi le the ana ly s i s

133 // r e s u l t expects a f a i l e d ana ly s i s to return f a l s e .

134

135

136 i f (ra . r epo r tResu l t ())

137 {

138 theResu l t = new Analys i sResu l t (false , ra .

r e p o r tDe t a i l s ()) ;

139 }

140 else

141 {

142 theResu l t = new Analys i sResu l t (true , ra . r e p o r tDe t a i l s

()) ;

143 }

144

145 //Helper . closeDebug () ;

146

418

147 } catch (ReportableExcept ion e) {

148 Reporter . r epor t (theElement , ruleID , e . getMessage ()) ;

149 return Boolean .FALSE;

150 } catch (Exception e) {

151 Reporter

152 . r epo r t (

153 theElement ,

154 ruleID ,

155 " There was an Exception raised performing the

analysis : \n" ,

156 e) ;

157 return Boolean .FALSE;

158 }

159

160 // report and return the r e s u l t s

161 Reporter . r epor t (theElement , ruleID , theResu l t . getReport ()

) ;

162 i f (theResu l t . ge tResu l t () == true)

163 return Boolean .TRUE;

164 else

165 return Boolean .FALSE;

166

167 }

168

169 }

F.4.35 Port

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2 import java . u t i l . I t e r a t o r ;

3 import java . u t i l .Map;

4 import java . u t i l . Set ;

5 import java . u t i l . TreeMap ;

6 import java . u t i l . TreeSet ;

7

8

9 public c lass Port implements Comparable<Port> {

10

11 public St r ing iD ;

12 public St r ing messagePattern ;

13 public boolean r e en t rant ;

14 public boolean i sUn i c a s t ;

15 public St r ing choiceGroup ;

16 public boolean choiceGroupMaker ;

17 public boolean inOurControlDomain ;

18 public Set attachedTo ;

19 public Component ch i ldOf ;

20 public Map messages = new TreeMap () ;

21

22 public Port (S t r ing iD)

23 {

24 this . iD = iD ;

25 attachedTo = new TreeSet () ;

26 }

27

28 public int compareTo (Port other)

29 {

30 Port otherPort = (Port) other ;

31 return this . iD . compareTo (otherPort . iD) ;

32 }

33

34 public St r ing toS t r i ng ()

35 {

36 St r ing toReturn = "" ;

37

38 toReturn += "/n /n port id \n" ;

39 toReturn += iD ;

40 toReturn += " messagePatterb \n" ;

41 toReturn += "" + messagePattern + " \n" ;

42 toReturn += " reentrant \n" ;

43 toReturn += "" +reent rant + " \n" ;

44 toReturn += " is unicast \n" ;

419

45 toReturn += "" + i sUn i ca s t + " \n" ;

46 toReturn += " choice group \n" ;

47 toReturn += "" + choiceGroup + " \n" ;

48 toReturn += " choicegroupmaker \n" ;

49 toReturn += "" + choiceGroupMaker + " \n" ;

50 toReturn += " in our control domian \n" ;

51 toReturn += "" + inOurControlDomain + " \n" ;

52 toReturn += " attached to " + attachedTo . s i z e () + " \n" ;

53

54 I t e r a t o r i = attachedTo . i t e r a t o r () ;

55 while (i . hasNext ())

56 {

57 Connector c = (Connector) i . next () ;

58 toReturn += " conn : " + c . iD + " \n" ;

59 }

60

61 return toReturn ;

62 }

63

64 }

F.4.36 Reportable Exception

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3 public c lass ReportableExcept ion extends Exception {

4 public ReportableExcept ion ()

5 {

6 super () ;

7 }

8

9 public ReportableExcept ion (St r ing message)

10 {

11 super (message) ;

12 }

13

14 public ReportableExcept ion (St r ing message , Throwable cause)

15 {

16 super (message , cause) ;

17 }

18

19 public ReportableExcept ion (Throwable cause)

20 {

21 super (cause) ;

22 }

23 }

F.4.37 Reporter

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3 import java . i o . F i l e ;

4 import java . i o . Pr intWriter ;

5 import java . u t i l . I t e r a t o r ;

6 import java . u t i l . Set ;

7

8 import org . acmestudio . acme . core . type . IAcmeStringValue ;

9 import org . acmestudio . acme . element . IAcmeComponent ;

10 import org . acmestudio . acme . element . IAcmeElement ;

11 import org . acmestudio . acme . element . IAcmeSystem ;

12 import org . acmestudio . acme . element . property . IAcmeProperty ;

13 import org . acmestudio . acme . element . property . IAcmePropertyValue ;

14

15 public c lass Reporter {

16

17 /∗∗

18 ∗ Outputs the report to a f i l e named <qualifiedElementName

>.<RuleName>. t x t

19 ∗ The f i l e w i l l be placed in the path descr ibed in the

ana ly s i s contro l

20 ∗ element .

21 ∗

420

22 ∗ I f the report i s the empty Str ing ”” then the f i l e w i l l be

de l e t ed i f i t

23 ∗ e x i s t s .

24 ∗

25 ∗ @param theElement

26 ∗ The ar ch i t e c t u ra l element from which the ru l e

was invoked

27 ∗ @param theReporte

28 ∗ The report to be dumped , unceremoniously into

the t e x t f i l e

29 ∗/

30

31 private stat ic f ina l St r ing BASE PATH = "/ home / carl /

acmeOutput /" ;

32

33 public stat ic void r epor t (IAcmeElement theElement , S t r ing

ruleID ,

34 St r ing theReport) {

35

36 St r ing elementID = theElement . getQuali f iedName () ;

37 // Str ing fu l lOutputPath = getOutputPath (theElement) +

elementID + ”.”

38 St r ing ful lOutputPath = BASE PATH + elementID + "."

39 + ruleID + ". txt " ;

40 outputReport (ful lOutputPath , theReport) ;

41 }

42

43 public stat ic void r epor t (S t r ing ruleID , St r ing theReport) {

44 St r ing ful lOutputPath = BASE PATH + ruleID + ". txt " ;

45 outputReport (ful lOutputPath , theReport) ;

46 }

47

48 public stat ic void r epor t (IAcmeElement theElement , S t r ing

ruleID ,

49 St r ing reportNote , Exception theException) {

50

51 St r ing elementID = theElement . getQual i f iedName () ;

52 // Str ing fu l lOutputPath = getOutputPath (theElement) +

elementID + ”.”

53 St r ing ful lOutputPath = BASE PATH + elementID + "."

54 + ruleID + ". Exception . txt " ;

55 St r ing theReport = reportNote ;

56 theReport += getExcept i onDeta i l s (theException) ;

57 // StackTraceElement [] theStackTrace = theException .

getStackTrace () ;

58 // for (in t i =0; i<theStackTrace . l eng th ; i++)

59 // {

60 // theReport += ”\n ” + theStackTrace [i] ;

61 // }

62 outputReport (ful lOutputPath , theReport) ;

63 }

64

65 public stat ic void r epor t (S t r ing ruleID , St r ing reportNote ,

66 Exception theException) {

67 St r ing ful lOutputPath = BASE PATH + ruleID + ". Exception .

txt " ;

68 St r ing theReport = reportNote ;

69 theReport += getExcept i onDeta i l s (theException) ;

70 // StackTraceElement [] theStackTrace = theException .

getStackTrace () ;

71 // for (in t i =0; i<theStackTrace . l eng th ; i++)

72 // {

73 // theReport += ”\n ” + theStackTrace [i] ;

74 // }

75 outputReport (ful lOutputPath , theReport) ;

76 }

77

78 private stat ic St r ing ge tExcept i onDeta i l s (Exception

theException) {

79 St r ing th eDe ta i l s = "" ;

80 th eDe ta i l s += " The Cause : " + theException . getCause () + "

\n" ;

421

81 th eDe ta i l s += " toString : " + theException + " \n" ;

82

83 StackTraceElement [] theStackTrace = theException .

getStackTrace () ;

84 for (int i = 0 ; i < theStackTrace . l ength ; i++) {

85 th eDe ta i l s += "\n " + theStackTrace [i] ;

86 }

87

88 return th eDe ta i l s ;

89 }

90

91 private stat ic void outputReport (S t r ing thePath , S t r ing

theReport) {

92 i f (theReport . equa l s IgnoreCase ("")) {

93 F i l e f i l eToDe l e t e = new F i l e (thePath) ;

94 try {

95 f i l eToDe l e t e . d e l e t e () ;

96 } catch (Exception e) {

97 try {

98 PrintWriter pw = new PrintWriter (

99 BASE PATH + " reporter - report - exception . txt ") ;

100 pw. p r i n t l n (e) ;

101 pw. f l u s h () ;

102 } catch (Exception ee) {

103 }

104 }

105 } else {

106 try {

107 PrintWriter pw = new PrintWriter (thePath) ;

108 pw. p r i n t l n (theReport) ;

109 pw. f l u s h () ;

110 } catch (Exception e) {

111 try {

112 PrintWriter pw = new PrintWriter (

113 BASE PATH + " reporter - report - exception . txt ") ;

114 pw. p r i n t l n (e) ;

115 pw. f l u s h () ;

116 } catch (Exception ee) {

117 }

118 }

119 }

120 }

121

122 private stat ic St r ing getOutputPath (IAcmeElement

e lementRuleI s In) {

123 try {

124 f ina l St r ing ana ly s i sCont ro l l e rType = "

CompTWSAnalysisControl " ;

125

126 // move up the t ree t i l l we get the IAcmeSystem ob j ec t

127 IAcmeElement theParent = elementRuleI s In . getParent () ;

128 IAcmeSystem theSystem = null ;

129

130 while (! (theParent instanceof IAcmeSystem)) {

131 theParent = theParent . getParent () ;

132 i f (theParent == null | | ! (theParent instanceof

IAcmeElement))

133 return " BASE_PATH " ;

134 }

135 theSystem = (IAcmeSystem) theParent ;

136

137 // get the l i s t o f a l l components in tha t system

138 // move through the l i s t t i l l we f ind one of the correc t

type

139 IAcmeComponent theAna ly s i sCont r o l l e r = null ;

140 Set theComponents = theSystem . getComponents () ; // maybe

should

141 // parameterize the

142 // se t here

143

144 I t e r a t o r i = theComponents . i t e r a t o r () ;

145 while (i . hasNext ()) {

422

146 IAcmeComponent thisComponent = (IAcmeComponent) i . next

() ;

147 i f (thisComponent . dec laresType (ana ly s i sCont ro l l e rType))

{

148 th eAna ly s i sCont r o l l e r = thisComponent ;

149 break ;

150 }

151 }

152

153 i f (th eAna ly s i sCont r o l l e r == null)

154 return " BASE_PATH " ;

155

156 // move through a l l p roper t i e s of the component to f ind

the one we

157 // are look ing for

158 // and return i t s va lue .

159

160 IAcmeProperty ana ly s i sAct ivePrope r ty =

theAna ly s i sCont r o l l e r

161 . getProperty (" outputPath ") ;

162 i f (ana ly s i sAct ivePrope r ty == null)

163 return " BASE_PATH " ;

164 IAcmePropertyValue ana lys i sAct iveProper tyVa lue =

ana ly s i sAct ivePrope r ty

165 . getValue () ;

166

167 i f (ana lys i sAct iveProper tyVa lue instanceof

IAcmeStringValue)

168 return ((IAcmeStringValue) ana lys i sAct iveProper tyVa lue)

169 . getValue ()

170 + "/" ;

171

172 // the de f au l t act ion w i l l return an empty path .

173 return " BASE_PATH " ;

174 } catch (Exception e) {

175 // something went wrong , return an empty s t r i ng to a l low

something

176 // to be output , t h i s should be rep laced with a d i f f e r e n t

d e f au l t

177 // su i t a b l e for whoever i s using t h i s s t u f f

178 return BASE PATH;

179 }

180 }

181

182 }

F.4.38 State Scopes Comparison

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3 public c lass StateScopeComparison {

4

5 public stat ic boolean exhibitedCompatibleWithExpected (St r ing

exh ib i ted , S t r ing expected)

6 {

7 // de f ine the compatib le matches , a l l other combinations

are considered incompatib le

8

9 i f (expected . equa l s IgnoreCase (" NoPreference "))

10 return true ;

11

12 i f (expected . equa l s IgnoreCase (exh ib i t ed))

13 return true ;

14

15 return fa l se ;

16 }

17

18 }

F.4.39 State Scopes Match

423

1 package uk . ac . nc l . c j g . ws enhanced ;

2

3 import java . u t i l . L i s t ;

4 import java . u t i l . Stack ;

5

6 import org . acmestudio . acme . core . IAcmeType ;

7 import org . acmestudio . acme . element . IAcmeConnector ;

8 import org . acmestudio . acme . element . IAcmePort ;

9 import org . acmestudio . acme . environment . e r r o r . AcmeError ;

10 import org . acmestudio . acme . r u l e . node .

IExterna lAnalys i sExpress ionNode ;

11 import org . acmestudio . acme . r u l e . node . feedback .

AcmeExpressionEvaluationException ;

12

13 import uk . ac . nc l . c j g . ws enhanced . common . Act iveAnalys i sChecker ;

14 import uk . ac . nc l . c j g . ws enhanced . common . Ana lys i sResu l t ;

15 import uk . ac . nc l . c j g . ws enhanced . common . MessageComparison ;

16 import uk . ac . nc l . c j g . ws enhanced . common . ReportableExcept ion ;

17 import uk . ac . nc l . c j g . ws enhanced . common . Reporter ;

18 import uk . ac . nc l . c j g . ws enhanced . common .Wait ;

19

20 public c lass StateScopesMatch implements

IExterna lAnalys i sExpress ionNode {

21

22 @Override

23 public Object eva luate (IAcmeType arg0 , List<Object> arg1 ,

24 Stack<AcmeError> arg2) throws

AcmeExpressionEvaluationException {

25

26 // pause the ana ly s i s to a l low AcmeStudio to do something

other than

27 // ex terna l ana ly s i s

28

29 Wait . de layAna lys i s () ;

30

31 // ex t rac t data types from ana ly s i s ca l l , t h i s should be

passed

32 // a s i n g l e component

33 St r ing ruleID = " ActiveAnalysisCentralDataStoreCorrect " ;

34 IAcmeConnector theElement = null ;

35 IAcmePort port1 = null ;

36 IAcmePort port2 = null ;

37 Analys i sResu l t theResu l t = null ;

38

39 java . u t i l . I t e r a t o r i = arg1 . i t e r a t o r () ;

40

41 // ex t rac t the required model elements from the passed l i s t

42 try {

43 theElement = (IAcmeConnector) i . next () ;

44 port1 = (IAcmePort) i . next () ;

45 port2 = (IAcmePort) i . next () ;

46 } catch (Exception e) {

47 Reporter

48 . r epo r t (

49 ruleID ,

50 " Some fo the required elements required "

51 +"(the connector and both attached ports) were "

52 + " not passed by acme to the analysis : \n" ,

53 e) ;

54 return Boolean .FALSE;

55 }

56

57 // check i f t h i s ru l e i s ac t i v e

58 try {

59 i f (! Act iveAnalys i sChecker . Check I fAna ly s i s I sAct ive (ruleID

,

60 theElement)) {

61 Reporter . r epor t (theElement , ruleID , "") ;

62 return Boolean .TRUE;

63 }

64 } catch (ReportableExcept ion rE) {

424

65 Reporter

66 . r epo r t (

67 theElement ,

68 ruleID ,

69 " There was a reportable Exception raised when

getting the activity status of this analysis :

\n" ,

70 rE) ;

71 return Boolean .FALSE;

72

73 } catch (Exception e) {

74 Reporter

75 . r epo r t (

76 theElement ,

77 ruleID ,

78 " There was a general Exception raised when

getting the activity status of this analysis :

\n" ,

79 e) ;

80 return Boolean .FALSE;

81 }

82

83 // perform the ana ly s i s

84 try {

85

86 theResu l t = MessageComparison . stateScopesMatch (theElement

, port1 , port2) ;

87

88 } catch (ReportableExcept ion e) {

89 Reporter . r epor t (theElement , ruleID , e . getMessage ()) ;

90 return Boolean .FALSE;

91 } catch (Exception e) {

92 Reporter

93 . r epo r t (

94 theElement ,

95 ruleID ,

96 " There was an Exception raised performing the

analysis : \n" ,

97 e) ;

98 return Boolean .FALSE;

99 }

100

101 // report and return the r e s u l t s

102 Reporter . r epor t (theElement , ruleID , theResu l t . getReport ()) ;

103 i f (theResu l t . ge tResu l t () == true)

104 return Boolean .TRUE;

105 else

106 return Boolean .FALSE;

107

108 }

109 }

F.4.40 T Data Rep

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3 import org . acmestudio . acme . core . type . IAcmeEnumValue ;

4 import org . acmestudio . acme . element . property . IAcmePropertyValue ;

5

6 public c lass TDataRep implements Comparable<TDataRep>{

7

8 private St r ing theValue ;

9

10 public TDataRep (IAcmePropertyValue propertyFromStyle)

11 {

12 theValue = ((IAcmeEnumValue) propertyFromStyle) . getValue () ;

13 }

14

15 public int compareTo (TDataRep theOther)

16 {

17 // there i s no natura l order to these enumerated values , so

the

425

18 // natura l s t r i n g value w i l l be used

19

20 return theValue . compareTo (theOther . theValue) ;

21 }

22

23 public boolean compatibleWith (TDataRep theOther)

24 {

25 i f (this . compareTo (theOther) == 0) return true ;

26 else return fa l se ;

27 }

28

29 public St r ing toS t r i ng ()

30 {

31 return theValue ;

32 }

33

34 }

F.4.41 T Data Semantics

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3 import org . acmestudio . acme . core . type . IAcmeStringValue ;

4 import org . acmestudio . acme . element . property . IAcmePropertyValue ;

5

6 public c lass TDataSemantics implements Comparable<

TDataSemantics>{

7

8 private St r ing theSemantics ;

9

10 public TDataSemantics (IAcmePropertyValue theSemantics)

11 {

12 // The semantics are simply a s t r i ng in t h i s vers ion

13 this . theSemantics = ((IAcmeStringValue) theSemantics) .

getValue () ;

14 }

15

16 public St r ing toS t r i ng () {

17 return " The semantics are : " + theSemantics ;

18 }

19

20 public int compareTo (TDataSemantics theOther)

21 {

22 return theSemantics . compareToIgnoreCase (theOther .

theSemantics) ;

23 }

24

25 public boolean compatibleWith (TDataSemantics theOther)

26 {

27 i f (this . compareTo (theOther)==0) return true ;

28 else return fa l se ;

29 }

30 }

F.4.42 T Safe Boolean

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3 public c lass TSafeBoolean {

4

5 public stat ic f ina l int UNDEFINED = 0 ;

6 public stat ic f ina l int YES = 1 ;

7 public stat ic f ina l int NO = 2 ;

8

9 private int s t a t e ;

10

11 public TSafeBoolean (int theState)

12 {

13 s t a t e = theState ;

14 }

15

16 public boolean hasState (int stateToCheckFor)

426

17 {

18 return s t a t e == stateToCheckFor ;

19 }

20 }

F.4.43 Wait

1 package uk . ac . nc l . c j g . ws enhanced . common ;

2

3 /∗∗

4 ∗

5 ∗ @author car l , extended from the Wait c l a s s tha t can be found

at java−t i p s . org

6 ∗

7 ∗ ht tp ://www. java−t i p s . org/ java−se−t i p s / java . lang/pause−the−

execut ion . html

8 ∗/

9

10 public c lass Wait {

11 public stat ic void oneSec () {

12 try {

13 Thread . currentThread () . s l e e p (1000) ;

14 } catch (Inter ruptedExcept ion e) {

15 e . pr intStackTrace () ;

16 }

17 }

18

19 public stat ic void manySec (long s) {

20 try {

21 Thread . currentThread () . s l e e p (s ∗ 1000) ;

22 } catch (Inter ruptedExcept ion e) {

23 e . pr intStackTrace () ;

24 }

25 }

26

27 public stat ic void de layAna lys i s () {

28 try {

29 Thread . currentThread () . s l e e p (100) ;

30 } catch (Inter ruptedExcept ion e) {

31 e . pr intStackTrace () ;

32 }

33 }

34

35 }

427

Appendix G

Traces Tables

This appendix presents the complete set of message traces for the “sensible” combinations of port

types, i.e. those where one port expects to send the first message (outbound) while the other port

expects to receive the first message (inbound). These include both the natural combinations of ports,

such as out-only to in-only but also those combinations where the are only a few or no individual

traces in common.

There are four graphs included, each focussing on a single type of outbound port and representing

its interactions with the four inbound port types. The purpose of the tables are to indicate, for each

pairing of port types, if they have any common traces and also if they have any divergent traces.

A divergent trace, labelled ‘Dx’, is one where the expectations of one of the ports exceeds the

expectations of the other. This may be in terms of sending unexpected messages, commission, or

expecting non-existent messages, omission.

This data is used as a look-up by the two external analysis classes concerned with detecting

mismatch between the message exchange patterns of two connected ports

Here is a legend of the symbols used to represent the messages (Msg.) and origins (Orig.) in the

tables:

Evie
G

amble17
.9

.2
00

9 Message names

req The initial message sent in the pattern, termed here the request though the term ‘notifi-

cation’ may be more apt in the cases where no response is expected.

res The response message to the request.

flt A fault message generated in response to the request.

flt2 A fault message generated as a result of the response to the earlier request.

Evie
G

amble17
.9

.2
00

9 Origins

ob ‘outbound’, this is a message that will be sent from the outbound port at this point in the

trace

428

ib ‘inbound’, this is a message that will be sent from the inbound port at this point in the

trace

obd ‘outbound desires’, this is a message that the outbound port would like to send at this

point in the trace, this message is not expected by the inbound port and so is not allowed

ibd ‘inbound desires’, this is a message that the inbound port would like to send at this point

in the trace, this is a message that is not expected by the outbound port and so is not

allowed

obdi ‘outbound desires inbound’, this is a message that the outbound port desires that the

inbound port sends to it at this point in the trace, this message is not included in the

inbound port’s message exchange pattern and so will not be sent

ibdo ‘inbound desires outbound’, this is a message that the inbound port desires that the

outbound port sends to it at this point in the trace, this message is not included in the

outbound port’s message exchange pattern and so will not be sent

Traces of Notification with ...
ID Msg. Orig. Msg. Orig. Msg. Org.

In-only
T1 req ob

Robust-in-only
T1 req ob
D1 req ob flt ibd

Request-response
D2 req ob res ibd
D3 req ob flt ibd

In-optional-out
T1 req ob
D1 req ob res ibd
D2 req ob flt ibd
D3 req ob res ibd flt2 ibdo

Table G.1: The traces between a notification port and all four inbound port types.

429

Traces of Robust-out-only with ...
ID Msg. Orig. Msg. Orig. Msg. Org.

In-only
T1 req ob
D1 req ob flt ibd

Robust-in-only
T1 req ob
T2 req ob flt ib

Request-response
D2 req ob res ibd
T1 req ob flt ib

In-optional-out
T1 req ob
D1 req ob res ibd
T2 req ob flt ib
D2 req ob res ibd flt2 ibdo

Table G.2: The traces between a robust-out-only port and all four inbound port types.

Traces of Solicit-response with ...
ID Msg. Orig. Msg. Orig. Msg. Org.

In-only
D1 req ob res ibd
D2 req ob res ibd

Robust-in-only
D1 req ob res ibd
T1 req ob flt ib

Request-response
T1 req ob res ib
T2 req ob flt ib

In-optional-out
T1 req ob res ib
T2 req ob flt ib
D2 req ob res ib flt2 ibdo

Table G.3: The traces between a solicit-response port and all four inbound port types.

430

Traces of Out-optional-in with ...
ID Msg. Orig. Msg. Orig. Msg. Org.

In-only
T1 req ob
D1 req ob res obdi
D2 req ob flt obdi
D3 req ob res obdi flt2 obd

Robust-in-only
T1 req ob
D1 req ob res obdi
T2 req ob flt ib
D2 req ob res obdi flt2 obd

Request-response
T1 req ob res ib
T2 req ob flt ib
D1 req ob res ib flt2 obd

In-optional-out
T1 req ob
T2 req ob res ib
T3 req ob flt ib
T4 req ob res ib flt2 ob

Table G.4: The traces between an out-optional-in port and all four inbound port types.

431

Appendix H

CSP Introduction

The formal process algebra CSP (Communicating Sequential Processes) is used in this work:

Evie
G

amble17
.9

.2
00

9 to represent the message passing choreography expected by an individual component; and

Evie
G

amble17
.9

.2
00

9 to assess the resulting system for certain types of mismatch.

This appendix gives a non-formal introduction to the parts of CSP that are employed by the style.

This is not intended to be a tutorial as such, but should afford the reader sufficient appreciation of

the syntax and meaning to be able to understand the CSP described.

H.1 Model Definition

H.1.1 Linear Process Definition

The most basic CSP concept is the process and the most simple processes are linear sequences of

events. For example:

PROC A =̂ a → b → Stop

This defines a process called PROC A that performs an event a then performs an event b and

finally acts like the special CSP process STOP. The stop process is predefined in CSP and it refuses

to perform any events.

Processes can call other user defined processes as well:

PROC B =̂ a → b → PROC C

PROC C =̂ c → Stop

Here when the events a and b have been performed PROC A then acts like PROC C and

performs event c before stopping. The names of the processes are not significant other than being

432

identifiers and the fact that the system is defined using two processes is also not significant. The

following process behaves identically:

PROC D =̂ a → b → c → Stop

H.1.2 Concurrency

CSP supports the definition of systems with multiple concurrently executing processes. There are

two constructs to represent this, parallel and interleaved.

H.1.2.1 Interleaved

The simplest form of concurrency is interleaved. Here a processes is defined as acting like two or

more other processes and those processes are independent of each other. For example:

PROC E =̂ a → b → Stop

PROC F =̂ b → c → Stop

PROC INTERLEAVE =̂ PROC E ||| PROC F

The process PROC INTERLEAVE acts as if both PROC A and PROC B are running but each

each step in the execution only one of them can perform an event. This means an observer of the

system would witness the following execution traces:

1. a,b,b,c

2. a,b,c,b

3. b,a,b,c

4. b,c,a,b

H.1.2.2 Alphabetised Parallel

The second form on concurrency is alphabetized parallel. In this case a process is defined as acting

like two others but unlike interleaved, where the processes are independent, here the two processes

can be forced to synchronise on any events in either of their alphabets. Synchronising means that

each event in the synchronisation set must be performed by both processes simultaneously. If one of

the processes reaches a point where it must next perform an event in the synchronisation set then

it will be blocked from performing that event until the other process is also willing to perform it.

The previous example system can be altered to be parallel and synchronised on the b event

instead of interleaved as follows:

433

PROC E =̂ a → b → Stop

PROC F =̂ b → c → Stop

PROC PARALLEL =̂ PROC E |[b]|PROC F

As before the PROC PARALLEL process acts as if both PROC A and PROC B are running

except that in this case both processes must partake in any b events, so an observer of the system

would see only a single trace for this system:

1. a,b,c

In the previous interleaved case there were four unique traces, now there is only a single trace.

The reasons for this are entirely because of the need to synchronise on the b event. This means that

the PROC B process can no longer perform the first event in the system trace as it must wait for

PROC A to be also willing to perform it, so traces 3 and 4 above are not possible. Then once the

b event has been performed PROC A can only perform Stop leaving PROC B to perform c. The

result is that trace 2 from the interleaving is not possible and leaves the single trace possible with

this system.

H.1.3 Process Branching

The above represents very basic processes that include no choice in the sequence of events to perform.

CSP has two mechanisms to introduce branching into a process, these are internal choice and external

choice. Both mechanisms allow the description of a process that, for example, performs event a then

either performs b or c. Both operators are shown below, internal choice first and then external

choice:

INT CHOICE =̂ a → (b → Stop

u c → Stop)

EXT CHOICE =̂ a → (b → Stop

2 c → Stop)

The difference between them lies in whether the first event on a branch is considered before a

branch is selected or not.

The internal mechanism does not consider the first event on a branch before the branch is chosen.

The result of this is that the process may then follow a branch where the system is not willing to

perform the first event at that point in the trace. For example:

434

PROC OTHER =̂ a → c → Stop

INT CHOICE =̂ a → (b → Stop

u c → Stop)

SYSTEM INT =̂ PROC OTHER |[a, b, c]| INT CHOICE

The result of this composition are two traces:

1. a, c

2. a

In the first trace the internal choice happened to select a branch that performed the c event

expected by the other process and so the trace continued to the end. However in the second trace the

internal choice selected the other branch and attempted to perform a b event, this could not happen

as the parallel process could only perform a c and so the process deadlocked where deadlocking is

described later.

If, on the other hand, a system was produced using the external choice process as below:

PROC OTHER =̂ a → c → Stop

EXT CHOICE =̂ a → (b → Stop

2 c → Stop)

SYSTEM EXT =̂ PROC OTHER |[a, b, c]|EXT CHOICE

Then only a single trace would be observed:

1. a, c

Here, only the branch that leads to an event that the system is willing to allow is followed and

so the system does not deadlock.

The external choice could then be described as being cooperative as it only attempts to perform

an event that the system will allow. For the purpose of the analysis in this work, external choice is

used exclusively as this allows the branch choices to be influenced by the environment and in doing

so allows exploration of all possible branches of the conversation tree of a system.

H.2 Model Analysis

H.2.1 Deadlock

Deadlock is a concept that is not unique to CSP. A system is said to be deadlocked if all processes

are waiting for some other process to perform some operation and as such the system makes no

progress. An example of a system that deadlocks is represented by the following CSP:

435

PROC A =̂ a → c → b → Stop

PROC B =̂ b → c → Stop

PROC PARALLEL =̂ PROC A |[b, c]|PROC B

In this system PROC B initially wants to perform event b, but as this is part of the synchro-

nisation set it cannot until PROC A is willing to. Because of this the only event that can initially

occur is a performed by PROC A. This leaves PROC A wanting to perform event c, however c is

part of the synchronisation set and so PROC A must wait until PROC B is also willing to perform

it. At this point the system is said to be deadlocked as both processes are waiting for the other to

be willing to perform different events and so the system will never progress.

The FDR model checker can be instructed to determine if a model can enter a deadlock state

using the following assertion:

assert PROC PARALLEL [deadlock free[F]]

Placing this statement into the above model would return a “false” result, showing that the

system is not deadlock free and providing the trace including all events performed that lead to the

deadlock condition, which in this case is simply the event a.

H.2.2 Traces Refinement

An assertion about traces refinement in CSP is a assertion about whether the traces of one process

are subset-equal to the traces of a specification.

For example if a specification process is defined as:

SPEC =̂ a → SPEC

2 b → SPEC

Then the specification includes all traces that only include as and bs.

If the following process and assertion are then considered:

PROC 0 =̂ a → PROC 0

SPEC vMUTPROC 0

The result of the assertion is true as as PROC 0 defines a trace consisting wholly of as.

If the following process and assertions are then added:

436

PROC 1 =̂ a → b → c → PROC 1

SPEC vMUTPROC 1

SPEC vMUTPROC 1 \ c

Then the first of the two assertions would be false as PROC 1 contains the even c in its traces.

The second assertion, however, would be true as the c events produced by the process are now

hidden and so the resulting trace is identical to one of the specification traces.

The important point is that one process is a refinement of another so long as all its traces exist in

the set of traces defined by the specification. Thus refinement does not guarantee that two processes

are equal. To show equality of traces between two processes a two way refinement is required. For

example, given two processes P 1 and P 2 traces equality can be demonstrated by the following

two assertions being true:

P 1 vMUTP 2

P 2 vMUTP 1

H.3 Summary

The above summarises all the CSP principles used in this work, however a more complete CSP

description may be found in Schneider‘[Sch00].

437

Appendix I

CSP Templates

This appendix is split into three sections. The first presents the derivation of the port CSP templates

from the natural language W3C descriptions. The second section shows the principles behind altering

the port CSP templates to link ports together to form simple conversation flows. The final section

shows templates for the central CSP and shows how these templates can be used in concert with

the port CSP templates to allow multi-threading, branching and looping type conversation flows.

I.1 Port CSP Templates

This first section shows the derivation CSP templates that are employed in the messagePattern

property of each port.

The derivations start with the textual description provided by the W3C [W3C06c, W3C06f].

From this a simple graphical representation is shown to make the interpretation of the pattern

explicit. Then the refinement of the templates takes place, starting with a specification that matches

graphical view and adding detail until the final templates are shown.

The final part of each derivation shows the assertions that were made to demonstrate that a

composition of a pair of templates behaves identically to the specification.

For completeness the FDR version of the templates are also included to show the syntax that

would actually be employed by the user of the style.

I.1.1 Notification - One-way

I.1.1.1 Template Derivation

Starting with the simplest patterns, here are the W3C description of the notification message ex-

change pattern:

1. A message:

438

Evie
G

amble17
.9

.2
00

9 indicated by a Interface Message Reference component whose message label is “out” and

direction is “out”

Evie
G

amble17
.9

.2
00

9 sent to some node N

The logical pair to the notification pattern is the in-only pattern, its text description is given

below:

1. A message:

Evie
G

amble17
.9

.2
00

9 indicated by a Interface Message Reference component whose message label is “In” and

direction is “in”

Evie
G

amble17
.9

.2
00

9 received from some node N

This pattern consists of only a single message, shown graphically below:

Caller Callee

Pattern Variation 1
Notification

A simple specification that represents this behaviour is as follows:

SIMPLE SPEC NOTI =̂ Notification → Stop

The simple specification can then be expanded to include the separate ‘send message’ and ‘receive

message’ events that the analysis requires. This results in the following specification.

SPEC NOTI =̂ sendNote → getNote → Stop

The events relevant to the two port types are then teased apart to leave a template for the

notification pattern (NOTI) and then one for the in-only pattern (INO):

NOTI =̂ sendNote → NOTI OK

NOTI OK =̂ Stop

INO =̂ getNote → INO OK

INO OK =̂ Stop

439

The notification / in-only message patterns are one of those where it is required to add in a faux

event to indicate the point at which the conversational thread leaves the port1. This is done by

adding a decThread event after the sending / receiving of the initial message as follows

NOTI =̂ sendNote → NOTI p1

NOTI p1 =̂ decThread → NOTI OK

NOTI OK =̂ Stop

INO =̂ getNote → INO p1

INO p1 =̂ decThread → INO OK

INO OK =̂ Stop

To demonstrate that a composition of the templates behaves identically to the specification, the

following system is constructed and model checked. Note that because the faux decThread events

have been added to the final templates, these must be hidden to show that the traces are identical.

αNOTI = sendNote

αINO = getNote

PORTS NOTI =̂ NOTI ||| INO

CONN NOTI =̂ sendNote → getNote → CONN NOTI

COMPOSED NOTI =̂ PORTS NOTI |[αNOTI , αINO]|CONN NOTI

COMPOSED NOTI \ decThread vMUTSPEC NOTI

SPEC NOTI vMUTCOMPOSED NOTI \ decThread

Both assertions in the above model are found to be true and in so doing show that the traces of

the system composed of the two templates and connector are identical to those of the specification.

I.1.1.2 Actual Templates and Useage

When used in ACME Studio the templates differ from those presented above in that they require

the name of the pattern to be included on the first line. The actual templates to be used then are

as follows along with a guide to the lines and how they can be modified.

1 not i

2 NOTI = sendNote −> NOTI p1

3 NOTI p1 = decThread −> NOTI OK

4 NOTI OK = STOP

1Further details regarding the need for these extra faux events may be found in Section 5.2.2.9 on page 112.

440

1. Line 1 contains the template ID, this should not be altered;

2. All instances of “NOTI”, except that one line 1, should be replaced with the “<componentID>-

<portID>”.

3. “sendNote” should be replaced with the ID of the message this port sends;

4. “STOP” should be replaced with the ID where the process flows after this port.

1 ino

2 INO = getNote −> INO p1

3 INO p1 = decThread −> INO OK

4 INO OK = STOP

1. Line 1 contains the template ID, this should not be altered;

2. All instances of “INO”, except that one line 1, should be replaced with the “<componentID>-

<portID>”.

3. “getNote” should be replaced with the ID of the message this port receives;

4. “STOP” should be replaced with the ID where the process flows after this port.

I.1.2 Robust-out-only - Robust-in-only

I.1.2.1 Template Derivation

The second pair of message exchange patterns presented are the robust-out-only / robust-in-only

pairing. The W3C description of the robust-out-only message exchange pattern is as follows:

1. A message:

Evie
G

amble17
.9

.2
00

9 indicated by a Interface Message Reference component whose message label is “Out” and

direction is “out”

Evie
G

amble17
.9

.2
00

9 sent to some node N

...
...

Any message, including the first in the pattern, MAY trigger a fault message, which MUST

have opposite direction.

The W3C description of the matching robust-in-only pattern is as follows:

1. A message:

Evie
G

amble17
.9

.2
00

9 indicated by a Interface Message Reference component whose message label is “In” and

direction is “in”

441

Evie
G

amble17
.9

.2
00

9 received from some node N

...
...

Any message, including the first in the pattern, MAY trigger a fault message, which MUST

have opposite direction.

This pattern has two paths. The first is identical to the previous pattern, with just a single

message sent. The second includes a fault message returned in response to the original message, as

shown below:

Caller Callee

Pattern Variation 1
Notification

Pattern Variation 2
Notification

Fault

A specification that matches the above pattern is as follows:

SIMPLE SPEC ROO =̂ Notification → (Fault → Stop

2 Stop)

Expanding on SIMPLE SPEC ROO to show the individual send and receive events gives this

specification:

SPEC ROO =̂ sendNoti → getNoti → (sendFault → getFault → Stop

2 Stop)

SPEC ROO can then be teased apart to give a description for the robust-out-only (ROO) and

robust-in-only (RIO) ports:

ROO =̂ sendNoti → (ROO OK

2 getFault → ROO FAULT)

ROO OK =̂ Stop

ROO FAULT =̂ Stop

RIO =̂ getNoti → (RIO OK

u sendFault → RIO FAULT)

RIO OK = Stop

RIO FAULT = Stop

442

These patterns also require a faux event to be inserted to give a detectable point at which

the conversational thread leaves the port. Adding these gives the following templates for the port

patterns.

ROO =̂ sendNoti → (ROO p1

ROO p1 =̂ decThread → ROO p2

ROO p2 =̂ ROO p3 2 ROO p4

ROO p3 =̂ ROO OK

ROO p4 =̂ getFault → ROO FAULT

ROO OK =̂ Stop

ROO FAULT =̂ Stop

RIO =̂ getNoti → (RIO p1

RIO p1 =̂ decThread → RIO p2

RIO p2 =̂ RIO p3 2 RIO p4

RIO p3 =̂ RIO OK

RIO p4 =̂ sendFault → RIO FAULT

RIO OK =̂ Stop

RIO FAULT =̂ Stop

Again, the templates are composed into a system to demonstrate that they behave identically to

the specification.

αROO = {sendNoti , getFault}

αRIO = {getNoti , sendFault}

PORTS ROO =̂ ROO ||| RIO

CONN ROO =̂ sendNoti → getNoti → CONN ROO

2 sendFault → getFault → CONN ROO

COMPOSED ROO =̂ PORTS ROO |[αROO , αRIO]|CONN ROO

COMPOSED ROO \ decThread vMUTSPEC ROO

SPEC ROO vMUTCOMPOSED ROO \ decThread

443

I.1.2.2 Actual Templates and Useage

Below are the templates correctly formatted for use in the style along with notes regarding their

usage.

1 roo

2 ROO = sendNoti −> ROO p1

3 ROO p1 = decThread −> ROO p2

4 ROO p2 = ROO p3 [] ROO p4

5 ROO p3 = ROOOK

6 ROO p4 = getFault −> ROO FAULT

7 ROOOK = STOP

8 ROO FAULT = STOP

1. Line 1 contains the template ID, this should not be altered;

2. All instances of “ROO”, except that on line 1, should be replaced with the “<componentID>-

<portID>”.

3. “sendNoti” should be replaced with the ID of the message this port sends;

4. “getFault” should be replaced with the ID of the message this port might receive;

5. “STOP” on line 7 should be replaced with the ID where the process flows after this in the case

where no fault message is received;

6. “STOP” on line 8 should be replaced with the ID where the process flows after this in the case

where a fault message is received.

1 r i o

2 RIO = getNot i −> RIO p1

3 RIO p1 = decThread −> RIO p2

4 RIO p2 = RIO p3 [] RIO p4

5 RIO p3 = RIO OK

6 RIO p4 = sendFault −> RIO FAULT

7 RIO OK = STOP

8 RIO FAULT = STOP

1. Line 1 contains the template ID, this should not be altered;

2. All instances of “RIO”, except that one line 1, should be replaced with the “<componentID>-

<portID>”.

3. “getNoti” should be replaced with the ID of the message this port receives;

4. “sendFault” should be replaced with the ID of the fault message this port might send;

5. If the conversation thread is to leave this port before returning to complete the pattern, then

the “RIO p1” at the end of line 2 should be replaced with the ID of the process to be invoked;

444

6. “STOP” on line 7 should be replaced with the ID where the process flows if this port does not

send a fault message.

7. “STOP” on line 8 should be replaced with the ID where the process flows after this port sends

a fault message;

I.1.3 Solicit-Response - Request-Response

I.1.3.1 Template Derivation

The next patterns considered are the solicit-response / request-response patterns. The W3C de-

scription of solicit-response follows:

1. A message:

Evie
G

amble17
.9

.2
00

9 indicated by a Interface Message Reference component whose message label is

“Out”and direction is “out”

Evie
G

amble17
.9

.2
00

9 sent to some node N

2. A message:

Evie
G

amble17
.9

.2
00

9 indicated by a Interface Message Reference component whose message label is

“In” and direction is “in”

Evie
G

amble17
.9

.2
00

9 sent from node N

...
...

Any message after the first in the pattern MAY be replaced with a fault message, which

MUST have identical direction.

Here is the description of the matching request-response pattern:

1. A message:

Evie
G

amble17
.9

.2
00

9 indicated by a Interface Message Reference component whose message label is

“In” and direction is “in”

Evie
G

amble17
.9

.2
00

9 received from some node N

2. A message:

Evie
G

amble17
.9

.2
00

9 indicated by a Interface Message Reference component whose message label is

“Out” and direction is “out”

Evie
G

amble17
.9

.2
00

9 sent to node N

...
...

Any message after the first in the pattern MAY be replaced with a fault message, which

MUST have identical direction.

445

These patterns have two paths through them, a request message followed by a response or a

request followed by a fault message. This is shown graphically below:

Caller Callee

Pattern Variation 1

Request

Pattern Variation 2

Request

Response

Fault

This is then converted into the following simple specification:

TRIV SPEC SOLI =̂ Request → (Response → Stop

2 Fault → Stop)

The simple specification is then expanded to show the individual message transmissions and

receipts as follows:

SPEC SOLI =̂ sendReq → getReq → (sendRes → getRes → Stop

2 sendFault → getFault → Stop)

Once again the specification is dissected and distributed into shorter lines resulting in templates

for the solicit-response (SOLI) and request-response (REQR) patterns. These two patterns are the

only ones that do not need any additional events adding to indicate when the conversation thread

leaves the port and so no further modification are necessary:

SOLI =̂ sendReq → SOLI P1

SOLI P1 =̂ SOLI P2 2 SOLI P3

SOLI P2 =̂ getRes → SOLI OK

SOLI P3 =̂ getFault → SOLI FAULT

SOLI OK =̂ Stop

SOLI FAULT =̂ Stop

REQR =̂ getReq → REQR P1

REQR P1 =̂ REQR P2 2 REQR P3

REQR P2 =̂ sendRes → REQR OK

REQR P3 =̂ sendFault → REQR FAULT

REQR OK =̂ Stop

REQR FAULT =̂ Stop

446

The templates can be demonstrated to behave identically to the earlier specification by construc-

tion a system as follows and presenting it to the FDR model checker:

αSOLI = setsendReq , getRes, getFault

αREQR = setgetReq , sendRes, sendFault

CONN SOLI =̂ sendReq → getReq → CONN SOLI

2 sendRes → getRes → CONN SOLI

2 sendFault → getFault → CONN SOLI

PORTS SOLI =̂ SOLI ||| REQR

COMPOSED SOLI =̂ PORTS SOLI |[αSOLI , αREQR]|CONN SOLI

COMPOSED SOLI vMUTSPEC SOLI

SPEC SOLI vMUTCOMPOSED SOLI

I.1.3.2 Actual Templates and Useage

1 s o l i

2 SOLI = sendReq −> SOLI p1

3 SOLI p1 = SOLI p2 [] SOLI p3

4 SOLI p2 = getRes −> SOLI OK

5 SOLI p3 = getFaul t −> SOLI FAULT

6 SOLI OK = STOP

7 SOLI FAULT = STOP

1. Line 1 contains the template ID, this should not be altered;

2. All instances of “SOLI”, except that one line 1, should be replaced with the “<componentID>-

<portID>”.

3. “sendReq” should be replaced with the ID of the message this port sends;

4. “getRes” should be replaced with the ID of the normal response message this port receives;

5. “getFault” should be replaced with the ID of the fault message this port might receive;

6. If the process is to break out of this port, as described later, then the “SOLI p1” at the end

of line 2 should be replaced with the ID of the port to be moved to;

7. “STOP” on line 6 should be replaced with the ID where the process flows after this in the case

where no fault message is received;

8. “STOP” on line 7 should be replaced with the ID where the process flows after this in the case

where a fault message is received.

447

1 r eqr

2 REQR = getReq −> REQR p1

3 REQR p1 = REQR p2 [] REQR p3

4 REQR p2 = sendRes −> REQROK

5 REQR p3 = sendFault −> REQR FAULT

6 REQROK = STOP

7 REQR FAULT = STOP

1. Line 1 contains the template ID, this should not be altered;

2. All instances of “REQR”, except that one line 1, should be replaced with the “<componentID>-

<portID>”.

3. “getReq” should be replaced with the ID of the message this port receives;

4. “sendRes” should be replaced with the ID of the message this normally sends;

5. “sendFault” should be replaced with the ID of the fault message this port may send;

6. “STOP” on line 6 should be replaced with the ID where the process flows after this in the case

where no fault message is sent;

7. “STOP” on line 7 should be replaced with the ID where the process flows after this in the case

where a fault message is sent.

I.1.4 Out-optional-in - In-optional-out

The final pair of patterns are the out-optional-in / in-optional-out pairing. The description of

out-optional-in follows:

1. A message:

Evie
G

amble17
.9

.2
00

9 indicated by a Interface Message Reference component whose message label is “Out” and

direction is “out”

Evie
G

amble17
.9

.2
00

9 sent to some node N

2. An optional message:

Evie
G

amble17
.9

.2
00

9 indicated by a Interface Message Reference component whose message label is “In” and

direction is “in”

Evie
G

amble17
.9

.2
00

9 sent from node N

...
...

Any message, including the first in the pattern, MAY trigger a fault message, which MUST

have opposite direction.

448

The description of the in-optional-out pattern follows:

1. A message:

Evie
G

amble17
.9

.2
00

9 indicated by a Interface Message Reference component whose message label is “In” and

direction is “in”

Evie
G

amble17
.9

.2
00

9 received from some node N

2. An optional message:

Evie
G

amble17
.9

.2
00

9 indicated by a Interface Message Reference component whose message label is “Out” and

direction is “out”

Evie
G

amble17
.9

.2
00

9 sent to node N

...
...

Any message, including the first in the pattern, MAY trigger a fault message, which MUST

have opposite direction.

This pattern has four paths through it. The first is a single message with no response. The

second path is a message with a normal response while the third is a message with a fault message

returned. The final path extends the second path, allowing the port receiving the response message

to respond with a fault message if required. These patterns are shown below.

Caller Callee

Pattern Variation 1
Request

Pattern Variation 2
Request

Response

Pattern Variation 3
Request

Fault1

Pattern Variation 4

Request

Fault2

Response

This is represented by the following specification:

SIMPLE SPEC OOI =̂ Request → (Stop

2 Fault1→ Stop

2 Response → (Fault2→ Stop

2 Stop))

449

The simple specification can then be expanded to represent all message send and receive events

as follows:

SPEC OOI =̂ sendReq → getReq → (Stop

2 sendFault1→ getFault1→ Stop

2 sendRes → getRes → (sendFault2→ getFault2→ Stop

2 Stop))

After separating out the messages each port sends and receives the following templates for the

out-optional-in (OOI) and in-optional-out (IOO) patterns can be found:

OOI =̂ sendReq → OOI p1

OOI p1 =̂ OOI p2 2 OOI p3 2 OOI p4

OOI p2 =̂ getFault → OOI FAULT

OOI p3 =̂ getRes → OOI p5

OOI p4 =̂ OOI NORES

OOI p5 =̂ OOI p6 2 OOI p7

OOI p6 =̂ OOI RES

OOI p7 =̂ sendFault2→ OOI RESFAULT

OOI FAULT =̂ Stop

OOI RES =̂ Stop

OOI RESFAULT =̂ Stop

OOI OK =̂ Stop

IOO =̂ getReq → IOO p1

IOO p1 =̂ IOO p2 2 IOO p3 2 IOO p4

IOO p2 =̂ IOO OK

IOO p3 =̂ sendFault → IOO FAULT

IOO p4 =̂ sendRes → IOO p5

IOO p5 =̂ IOO p6 2 IOO p7

IOO p6 =̂ getFault2→ IOO RESFAULT

IOO p7 =̂ IOO RES

IOO OK =̂ Stop

IOO FAULT =̂ Stop

IOO RESFAULT =̂ Stop

IOO RESOK =̂ Stop

450

The out-optional-in and in-optional-out patterns both require a faux event to be included to act

as the point at which the conversational thread leaves the port. Adding this results in the following

two templates:

OOI =̂ sendReq → OOI p1

OOI p1 =̂ decThread → OOI p2

OOI p2 =̂ OOI p3 2 OOI p4 2 OOI p5

OOI p3 =̂ getFault → OOI FAULT

OOI p4 =̂ getRes → OOI p6

OOI p5 =̂ OOI NORES

OOI p6 =̂ OOI p7 2 OOI p8

OOI p7 =̂ OOI RES OOI p8 =̂ sendFault2→ OOI RESFAULT

OOI FAULT =̂ Stop

OOI RES =̂ Stop

OOI RESFAULT =̂ Stop

OOI OK =̂ Stop

IOO =̂ getReq → IOO p1

IOO p1 =̂ decThread

IOO p2

IOO p2 =̂ IOO p3 2 IOO p4 2 IOO p5

IOO p3 =̂ IOO OK

IOO p4 =̂ sendFault → IOO FAULT

IOO p5 =̂ sendRes → IOO p6

IOO p6 =̂ IOO p7 2 IOO p8

IOO p7 =̂ getFault2→ IOO RESFAULT

IOO p8 =̂ IOO RES

IOO OK =̂ Stop

IOO FAULT =̂ Stop

IOO RESFAULT =̂ Stop

IOO RESOK =̂ Stop

Once again, the templates can be demonstrated to be correct to the specification by constructing

the following system and evaluating the assertions:

451

αOOI = {sendReq , getRes, getFault , sendFault2}

αIOO = {getReq , sendRes, sendFault1, getFault2}

PORTS OOI =̂ OOI ||| IOO

CONN OOI =̂ sendReq → getReq → CONN OOI

2 sendRes → getRes → CONN OOI

2 sendFault → getFault → CONN OOI

2 sendFault2→ getFault2→ CONN OOI

COMPOSED OOI =̂ PORTS OOI |[αOOI , αIOO]|CONN OOI

COMPOSED OOI \ decThread vMUTSPEC OOI

SPEC OOI vMUTCOMPOSED OOI \ decThread

I.1.4.1 Actual Templates and Useage

1 oo i

2 OOI = sendReq −> OOI p1

3 OOI p1 = decThread −> OOI p2

4 OOI p2 = OOI p3 [] OOI p4 [] OOI p5

5 OOI p3 = getFault −> OOI FAULT

6 OOI p4 = getRes −> OOI p6

7 OOI p5 = OOI NORES

8 OOI p6 = OOI p7 [] OOI p8

9 OOI p7 = OOI RES

10 OOI p8 = sendFault2 −> OOI RESFAULT

11 OOI FAULT = STOP

12 OOI NORES = STOP

13 OOI RES = STOP

14 OOI RESFAULT = STOP

1. Line 1 contains the template ID, this should not be altered;

2. All instances of “OOI”, except the one line 1, should be replaced with the “<componentID>-

<portID>”.

3. “sendReq” should be replaced with the ID of the message this port sends;

4. “getRes” should be replaced with the ID of the normal response message this port receives;

5. “getFault” should be replaced with the ID of the fault message this port might receive;

6. “sendFault2” should be replaced with the ID of the fault message this port might send;

7. If the conversation is to break out of this port, then the “OOI p2” on line 3 should be replaced

with the name of the process to move to. It is this point and not “OOI p1” as this ensure

that the faux event decThread is executed and thus keeps the thread counting correct;

452

8. “STOP” on line 11 should be replaced with the ID where the process flows after this in the

case this port receives a fault message;

9. “STOP” on line 12 should be replaced with the ID where the process flows after this in the

case where this port does not receive any response;

10. “STOP” on line 13 should be replaced with the ID where the process flows after this in the

case where this port receives a normal response message;

11. “STOP” on line 14 should be replaced with the ID where the process flows after this in the

case where this port has to send a fault message.

1 i oo

2 IOO = getReq −> IOO p1

3 IOO p1 = decThread −> IOO p2

4 IOO p2 = IOO p3 [] IOO p4 [] IOO p5

5 IOO p3 = IOO OK

6 IOO p4 = sendFault −> IOO FAULT

7 IOO p5 = sendRes −> IOO p6

8 IOO p6 = IOO p7 [] IOO p8

9 IOO p7 = getFault2 −> IOO RESFAULT

10 IOO p8 = IOO RES

11 IOO OK = STOP

12 IOO FAULT = STOP

13 IOO RESFAULT = STOP

14 IOO RES = STOP

1. Line 1 contains the template ID, this should not be altered;

2. All instances of “IOO”, except the one line 1, should be replaced with the “<componentID>-

<portID>”.

3. “getReq” should be replaced with the ID of the message this port receives;

4. “sendRes” should be replaced with the ID of the normal response message this port sends;

5. “sendFault” should be replaced with the ID of the fault message this port might send;

6. “getFault2” should be replaced with the ID of the fault message this port might receive;

7. “STOP” on line 11 should be replaced with the ID where the process flows after this in the

case this port receives a request but does not send any response ;

8. “STOP” on line 12 should be replaced with the ID where the process flows after this in the

case where this sends a fault message in response to the request;

9. “STOP” on line 13 should be replaced with the ID where the process flows after this in the

case where this port sends a normal response but then receives a fault message;

453

10. “STOP” on line 14 should be replaced with the ID where the process flows after this in the

case where this port sends a normal response and does not receive a resulting fault message.

I.2 Port Template Linking

One of the motivations behind the port CSP templates was to make explicit how and where they are

to be modified to represent how the conversational thread might flow between ports on a component.

Two types of flow are implemented by altering the names in the port CSP templates, these are

“sequential flow” and “breaking out”.

I.2.1 Sequential Flow

A sequential flow is where, after passing through the message exchange pattern of one port the

choreography moves onto another port and there is no choice about the identity of that port.

This will be illustrated with a simple client-server example. In this example both the client and

server has ports labelled A and B and both components expect to interact on port A and then on

port B. A UML sequence diagram indicating this behaviour can be seen in Figure I.1.

:Client :Service:Client :Service

Port A Req

Port A Res

Port B Req

Port B Res

Figure I.1: A sequential flow where both components expect to interact on port A and then port B

Only the client CSP will be shown as the server has a similar structure.

The central CSP of the client causes port A to be active initially:

CLIENT =̂ CLIENT THREAD

CLIENT THREAD =̂ PORT A

Port A on the client has been modified so that the two end points point to the next port in the

sequence, in this case PORT B :

454

PORT A =̂ getReq → PORT A p1

PORT A p1 =̂ PORT A p2 2 PORT A p3

PORT A p2 =̂ sendRes → PORT A OK

PORT A p3 =̂ sendFault → PORT A FAULT

PORT A OK =̂ PORT B

PORT A FAULT =̂ PORT B

Port B is the end of the conversation and returns the client back to its starting point, which is

this case is the CLIENT THREAD process:

PORT B =̂ sendReq → PORT B p1

PORT B p1 =̂ PORT B p2 2 PORT B p3

PORT B p2 =̂ getRes → PORT B OK

PORT B p3 =̂ getFault → PORT B FAULT

PORT B OK =̂ CLIENT THREAD

PORT B FAULT =̂ CLIENT THREAD

Such a component will loop through the two ports indefinitely.

I.2.2 Breaking Out

The second type of flow implemented purely within the port CSP is breaking out. This is where,

after receiving a message a port directs the conversation toward another port and awaits a response

before completing its interaction. An example of such a situation would be a broker or mediator as

described in the car parking example in Chapter 6. An illustration of such a breakout is shown in

Figure I.2.

:Client :Broker :Service:Client :Broker :Service

Port A Req

Port B Req

Port B Res

Port A Res

Figure I.2: A break out flow where a message received by a port triggers the invocation of another
port on the same component to obtain a result.

In this example the CSP included in the BROKER component is highlighted. Its central CSP

455

makes port A initially active:

BROKER =̂ BROKER THREAD

BROKER THREAD =̂ PORT A

In this case port A receives a message and then has to invoke port B, this is achieved by altering

the name at the end of the first line in the actual CSP. Normally in the template this line would

direct the process to PORT A p1 however now it breaks out of this pattern and move of PORT B

instead.

PORT A =̂ getReq → PORT B

PORT A p1 =̂ PORT A p2 2 PORT A p3

PORT A p2 =̂ sendRes → PORT A OK

PORT A p3 =̂ sendFault → PORT A FAULT

PORT A OK =̂ BROKER THREAD

PORT A FAULT =̂ BROKER THREAD

No change is needed to the CSP of port B to receive the thread from port A, however the two

outcomes at the end of the template are altered. Instead of pointing to the next port in the sequence

as in the previous example now they point so they invoke the relevant message in port A. specifically

the port B outcome PORT B OK points to PORT A p2 which sends a normal response to the

client while the PORT B FAULT outcome points to PORT A p3 to send a fault back to the client.

PORT B =̂ sendReq → PORT B p1

PORT B p1 =̂ PORT B p2 2 PORT B p3

PORT B p2 =̂ getRes → PORT B OK

PORT B p3 =̂ getFault → PORT B FAULT

PORT B OK =̂ PORT A p2

PORT B FAULT =̂ PORT A p3

I.3 Central CSP Templates

While much of the detail concerning the interactions of a component are described in the port CSP,

the central CSP dictates more coarse grained properties such as how many threads of control a

component possesses and what those threads are initially willing to do.

456

I.3.1 Single Thread

The simplest of the central CSP templates applies when a component has only a single thread of

control and that thread is initially only willing to interact on a single port.

The client component described earlier in the sequential flow example, shown in Figure I.1 uses

this template. In that example the client component was initially only willing the interact on port

A, its central CSP is as follows:

CLIENT =̂ CLIENT THREAD

CLIENT THREAD =̂ PORT A

The first line in this description starts by defining a process with the same ID as the component

in which it exists. This process is defined as behaving as CLIENT THREAD. This named process

is then defined on the second line as behaving as PORT A.

In effect this defines a process called CLIENT that behaves as PORT A and so contains what

looks initially like redundant definitions, however this structure is important when multiple threads

are considered, as will be described later.

In terms of altering this template to fit a component:

1. All instances of the string CLIENT should be replaced with the ID of the component in which

this central CSP exists;

2. PORT A should be replaced with the ID of the first port the component wished to interact

upon.

I.3.2 Single Thread With Choice of Ports

The first extension of the previous case is a component with a single thread of control but the thread

is willing to interact on one of two or more ports initially.

An example of such a component could be a service that provides two distinct functions A and

B but the functions are mutually exclusive. In this case a client may choose to interact with A or B

as shown in Figure I.3.

:Client :Service:Client :Service

Port A Req

Port A Res

:Client :Service:Client :Service

Port B Req

Port B Res

Figure I.3: Sequence diagrams representing the choices of port offered by the service component.

457

In this case the service component would contain the following central CSP:

SERVICE =̂ SERVICE THREAD

SERVICE THREAD =̂ PORT A 2 PORT B

The structure here is identical to the previous example, the only difference being that SER-

VICE THREAD is defined as having a choice of behaving as PORT A or as PORT B. If further

port choices were available to the thread then these can be appended to the list separated by the

external choice operator as below:

SERVICE =̂ SERVICE THREAD

SERVICE THREAD =̂ PORT A 2 PORT B 2 PORT C

In terms of altering this template to fit a component:

1. All instances of the string SERVICE should be replaced with the ID of the component in

which this central CSP exists;

2. PORT A,PORT B and PORT C should be replaced with the IDs of the initially active ports,

adding as many IDs as required.

I.3.3 Multiple Identical Threads

The other extension of the initial central CSP is to consider a component that has multiple identical

threads of control, where identical refers to the choreography the thread expects.

Returning once again to the initial sequential flow example where the client component contained

a single thread that was initially willing to interact on port A. A version of this component that

contains two threads of control can be defined by using the following central CSP:

CLIENT =̂ CLIENT THREAD ||| CLIENT THREAD

CLIENT THREAD =̂ PORT A

The additional thread is created by adding an additional reference to the CLIENT THREAD

process to the component description line, the references are separated by the interleave operator to

indicate that they do not synchronise on any events.

The modifications to specialise this template for a particular component are identical to those

listed in the sequential flow section with one addition. To add additional identical threads to the

component, add the required number of references to CLIENT THREAD separated by interleave

operators as shown below:

458

CLIENT =̂ CLIENT THREAD ||| CLIENT THREAD ||| CLIENT THREAD

CLIENT THREAD =̂ PORT A

At this point it is possible to see why the central CSP includes the seemingly redundant separation

of between defining a process with the component name that simply invokes one or more instances

of a thread process. If in the above example the outcomes of port A directed the process flow back

up to CLIENT then the process would move back to its initial state of being ready to interact on

port A, but at the same time two new process threads would be created that would also be ready

to interact on port A. These duplicate threads would in fact be created each time and invocation

of port A completes. This creates a situation where the process will attempt to create an infinite

number of threads making model checking impossible. However if the outcomes of port A direct the

process to the CLIENT THREAD process then this has the effect to returning the conversation to

its original point but without the side effect of creating extra threads and thus allowing the model

checking to complete.

I.3.4 Multiple Diverse Threads

In the single thread with multiple choice example earlier it was assumed that the two functions A

and B were mutually exclusive and so only a single thread was provided. If this is not the case then

it might be desirable to offer both functions simultaneously. Such behaviour is defined in the central

CSP as follows:

SERVICE =̂ SERVICE THREAD A ||| SERVICE THREAD B

SERVICE THREAD A =̂ PORT A

SERVICE THREAD B =̂ PORT B

The key points in this template are firstly that a definition is needed for the start point of each

thread of control. In this case the processes SERVICE THREAD A and SERVICE THREAD B

perform this function. The second key point is that the processes are then referenced on the first

line and are separated by interleave operators. There should be one reference for each instance of

a thread of each type that will exist in the component, for example the following would define a

service component with one thread A and two thread Bs:

SERVICE =̂ SERVICE THREAD A ||| SERVICE THREAD B ||| SERVICE THREAD B

SERVICE THREAD A =̂ PORT A

SERVICE THREAD B =̂ PORT B

459

It should be noted that neither the order in which the thread instances are referenced on the

first line nor the order in which they are defined on the followings are significant.

I.3.5 Branching

A branching flow is one where after executing the message exchanges associated with one port the

conversation may then interact one of two or more ports. A simple example would be a service that

after interacting on port A, which could be a login, allows the use of functions B or C. In this case

the method shown above for describing a process that starts with the option of choosing one of two

ports cannot help as the process has already moved beyond that point. Instead the suggestion is to

make an alteration to both the port A CSP and add an entry to the central CSP.

The CSP in port A would be as follows:

PORT A =̂ getReq → PORT A p1

PORT A p1 =̂ PORT A p2 2 PORT A p3

PORT A p2 =̂ sendRes → PORT A OK

PORT A p3 =̂ sendFault → PORT A FAULT

PORT A OK =̂ SERVICE BRANCH

PORT A FAULT =̂ SERVICE THREAD

The two outcome lines, PORT A OK and PORT A FAULT are pointed to a new process called

SERVICE BRANCH rather than to a specific port. The central CSP for this port would then be:

SERVICE =̂ SERVICE THREAD

SERVICE THREAD =̂ PORT A

SERVICE BRANCH =̂ PORT B 2 PORT C

So the actual branching of the process flow takes places in the SERVICE BRANCH process in

the central CSP rather than in the port CSP.

I.3.6 Looping

Looping can be represented in the style in a very similar way to branching. An example of its

use would be a catalogue service that requires a login on port A, then allows zero or more uses of

a function on port B before finally expecting a client to logout. This behaviour is represented in

Figure I.4.

The central CSP of the client component would consist of a single thread that starts by wanting

to interact on the login port. The central CSP also includes a LOGGED IN process that is part of

460

:Client :Catalogue:Client :Catalogue

log in

ok / flt

browse

data / flt

0–* times0–* times

log out

Figure I.4: Sequence diagram showing how a service might expect a conversation to flow if it included
looping.

the looping construct, this will be described later.

CLIENT =̂ CLIENT THREAD

CLIENT THREAD =̂ LOG IN

LOGGED IN =̂ BROWSE 2 LOG OUT

The first active port on the client, LOG IN, gives and example of how the process flow can

be differently directed based upon the type of message returned. In this case if a normal response

message is received then the process moves onto a process named LOGGED IN, while if a fault

message is returned the client returns to the initial point in the choreography as defined in the

process CLIENT THREAD.

LOG IN =̂ login → LOG IN p1

LOG IN p1 =̂ LOG IN p2 2 LOG IN p3

LOG IN p2 =̂ ok → LOG IN OK

LOG IN p3 =̂ flt → LOG IN FAULT

LOG IN OK =̂ LOGGED IN

LOG IN FAULT =̂ CLIENT THREAD

The LOGGED IN process allows a choice of two processes, BROWSE or LOG OUT. Assuming

the browse option is taken then the process will follow the that port’s CSP:

461

BROWSE =̂ browse → BROWSE p1

BROWSE p1 =̂ BROWSE p2 2 BROWSE p3

BROWSE p2 =̂ data → BROWSE OK

BROWSE p3 =̂ flt → BROWSE FAULT

BROWSE OK =̂ LOGGED IN

BROWSE FAULT =̂ LOGGED IN

The key point of this CSP is that both outcomes direct the conversation to follow the LOGGED IN

process once again. This again allows a choice of whether to browse or logout. The process may

follow the browse option zero or more times before following the logout option. The logout port

uses the notification pattern and simply sends a single message to the catalogue before performing

the faux decThread discussed earlier and then returning the process to the initial state as defined in

CLIENT THREAD.

LOG OUT =̂ logout → LOG OUT p1

LOG OUT p1 =̂ decThread → LOG OUT OK

LOG OUT OK =̂ CLIENT THREAD

This concludes a description of all the templates and constructs required to utilise the style.

	Acknowledgements
	Publications
	Abstract
	Motivation and Introduction
	Thesis and Goals
	[CG6]Assumptions of the Work
	Structure of the Thesis

	Background
	Web Services and SOA
	Description and Interoperability

	Software Architecture
	Description Languages
	Summary of ADLs
	Why ACME was selected

	Styles
	Characteristics

	Mismatch
	Avoidance and Resolution
	Web Services Composition
	Architectural Scope

	Summary

	Minimal Web Service Architectural Style
	What is a Minimal Web Service?
	Characteristics Relevant to the Web Services Based Architectural Style
	Characteristics Irrelevant to the Style Description
	Summary

	Describing the Minimal Style in ACME & Armani
	Ports and Data Structures
	Components
	Connector
	Configuration Rules

	Summary

	Web Service Architectural Mismatches
	Davis, Gamble and Payton
	System Characteristics
	Control Characteristics
	Data Characteristics

	DeLine
	Gacek
	Yakimovich, Bieman and Basili
	Summary

	Enhanced Web Service Architectural Style
	Requirements for the Style
	Defining the Enhanced Style
	Port to Port Scope
	Message Exchange Pattern Description
	Message Contents
	Message Mapping
	Message Exchange Patterns
	State Scope
	Data Continuity
	Failure Modes
	Connector Binding Time
	End Points

	Component to [CG]EnvironmentSystem Scope
	Basic CSP System Model
	Basic Conversational Analysis: Commission
	Basic Conversational Analysis: Omission
	Cooperative Connectors
	Stubborn Connectors
	Multiple Connections
	Multi-threading
	Complications and Interleaving
	No Explicit Pattern Termination
	Patterns with Optional Non-explicit Endings

	Architecture Elements
	Components
	Ports
	Connectors

	Type Checking

	Summary

	Case Study and Evaluation
	ACME Studio Graphical View Key
	Case Study to Evaluate the Minimal Style
	Section Summary

	Case Studies to Evaluate the Enhanced Style
	Car Parking
	Initial Configuration and Mismatches
	Section Summary

	Additional Tests : Omission
	Additional Tests: Cooperative Connector
	Additional Tests: Stubborn Connector
	Section Summary

	Additional Tests: Multiple Connectors
	Additional Tests: Multi Threading
	Section Summary

	Mismatch Coverage by Examples

	Evaluating Mismatch Detection in the Enhanced Style
	Depth
	Section Summary

	Dependancies
	False Results
	Hidden Commission
	False Commission/Hidden Omission
	Hidden Omission
	[CG]Potentially False Omission
	Omission Partial Match/Mismatch
	String Properties Correctly Populated
	[CG]Global Type Checking Rules
	[CG]Discussion

	Meaningful Results
	Armani Only Rules
	Armani and External Analysis Rules

	[CG2]Scope of the Enhanced Style

	Summary

	Further Work
	Style Related
	Static Properties
	Model Checked Properties
	Style Implementation

	SOA Related
	Characteristic Publication
	Missing Properties

	Conclusions
	Key Contributions
	Architectural Styles and Results
	Generalising
	[CG7]Reflections upon the Work
	Final Conclusions

	Glossary
	Bibliography
	ACME Studio Introduction
	ACME Architecture Description Language
	Armani Predicate Language
	External Analysis
	ACME Studio and ACME Libs

	Minimal Style Description
	Complete ACME Descriptions of Minimal Style Scenario
	Enhanced Style Description
	Rules for using the style
	Port message pattern naming
	Message naming
	Forbidden message name

	The Style Definition

	Complete ACME Descriptions of Enhanced Style Scenarios
	Car Parking Scenario
	Initial Configuration
	Final Configuration

	Additional Tests
	Omission Check
	Cooperative Connector Check
	Stubborn Connector Check
	Multiple Connectors Check
	SpaceCCBuy
	SpaceCCBuy Alternate
	BookPayCC

	Multi Threading Check

	External Analysis Descriptions and Source Code
	Class Group Outlines
	External Analysis Main Classes
	Message Pattern Comparison
	Message Comparison
	Data Extraction Utils
	CSP Modelling
	Acme Interface
	Exceptions
	Reporting
	Data Types
	Support

	External analysis file outputs
	Commission Mismatch / Partial Match
	Omission Mismatch / Partial Match
	Concurrent Calls to this Port
	Message Data Types Match
	Message Over Data
	Message under Data 1
	Message under Data 2
	State Scopes Match
	Message Exchange Patterns Match
	Message Exchange Patterns Partially Match
	Central Data Store Correct
	Message Pattern and Message List Concur
	Choice Groups Have Choice Maker

	Message index numbers
	Source Code
	Acceptable Exception
	Active Analysis Checker
	Acme Interface
	Central Data Store Correct
	Choice Groups Have Choice Maker
	Commission Mismatch
	Commission Partial Match
	Component
	Concurrent Calls To This Port
	Connector
	CSP Connector Constructor
	CSP Hiding Set Constructor
	CSP Memory Constructor
	CSP Model Builder
	CSP Thread Counter Constructor
	Data Extraction Utils
	Element CSP Data
	FDR Results Analyzer
	Helper
	Look Up
	Message Comparison
	Message Data Mapping
	Message Data Types Match
	Message Exchange Patterns Match
	Message Exchange Patterns Partially Match
	Message Mapping
	Message Over Data
	Message Pattern Comparison
	Message Pattern And Message List Concur
	Message Under Data 1
	Message Under Data 2
	Message Vector
	Omission Mismatch
	Omission Partial Mismatch
	Port
	Reportable Exception
	Reporter
	State Scopes Comparison
	State Scopes Match
	T Data Rep
	T Data Semantics
	T Safe Boolean
	Wait

	Traces Tables
	CSP Introduction
	Model Definition
	Linear Process Definition
	Concurrency
	Interleaved
	Alphabetised Parallel

	Process Branching

	Model Analysis
	Deadlock
	Traces Refinement

	Summary

	CSP Templates
	Port CSP Templates
	Notification - One-way
	Template Derivation
	Actual Templates and Useage

	Robust-out-only - Robust-in-only
	Template Derivation
	Actual Templates and Useage

	Solicit-Response - Request-Response
	Template Derivation
	Actual Templates and Useage

	Out-optional-in - In-optional-out
	Actual Templates and Useage

	Port Template Linking
	Sequential Flow
	Breaking Out

	Central CSP Templates
	Single Thread
	Single Thread With Choice of Ports
	Multiple Identical Threads
	Multiple Diverse Threads
	Branching
	Looping

