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Abstract

A tremendous number of microorganisms are known to interact with their animal hosts. The outcome
of the interactions between microbes and their animal hosts range from modulating the maintenance
of homeostasis to the establishment of processes leading to pathogenesis. Of the numerous species
known to inhabit humans, the great majority live on mucosal surfaces which are highly defended.
Despite their importance in human health, little is known about the molecular and cellular basis of

most host-microbe interactions across the tremendous diversity of mucosal-adapted microorganisms.

The ever-increasing availability of genome sequence data allows systematic comparative genomics
studies to identify proteins with potential important molecular functions at the host-microbe interface.
In this study, a genome-wide analysis was performed on 3,021,490 protein sequences derived from
867 complete microbial genome sequences across the three domains of cellular life. The ability of
microbes to thrive successfully in a mucosal environment was examined in relation to functional
genomics data from a range of publicly available databases. Particular emphasis was placed on the
extracytoplasmic proteins of microorganisms that thrive on human mucosal surfaces. These proteins

form the interface between the complex host-microbe and microbe-microbe interactions.

The large amounts of data involved, combined with the numerous analytical techniques that need
to be performed makes the study intractable with conventional bioinformatics. The lack of habitat
annotations for microorganisms further compounds the problem of identifying the microbial extra-
cytoplasmic proteins playing important roles in the mucosal environments. In order to address these
problems, a distributed high throughput computational workflow was developed, and a system for

mining biomedical literature was trained to automatically identify microorganisms’ habitats.

The workflow integrated existing bioinformatics tools to identify and characterise protein-targeting
signals, cell surface-anchoring features, protein domains and protein families. This study success-
fully demonstrated a large-scale comparative genomics approach utilising a system called Microbase

to harness Grid and Cloud computing technologies.

A number of conserved protein domains and families that are significantly associated with a spe-
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cific set of mucosa-inhabiting microorganisms were identified. These conserved protein regions of
which their functions were either characterised or unknown, were quite narrow in their coverage of
taxa distribution, with only a few protein domains more widely distributed, suggesting that mucosal
microorganisms evolved different solutions in their strategies and mechanisms for their survival in
the host mucosal environments. Metabolic and biological processes common to many mucosal mi-
croorganisms included: carbohydrate and amino acid metabolisms, signal transduction, adhesion to
host tissues or contents in mucosal environments (e.g. food remnants, mucins), and resistance to host
defence mechanisms. Invasive or virulence factors were also identified in pathogenic strains. Several
extracytoplasmic protein families were shared among prominent bacterial members of gut micro-
biota and microbial eukaryotes known to thrive in the same environment, suggesting that the ability
of microbes to adapt to particular niches can be influenced by lateral gene transfer. A large number
of conserved regions or protein families that potentially play important roles in the mucosa-microbe
interactions were revealed by this study. Several of these candidates were proteins of unknown func-
tion. The identified candidates were subjected to more detailed computational analysis providing
hypothesis for their function that will be tested experimentally in order to contribute to our under-

standing of the complex host-microbe interactions.

Among the candidates of unknown function, a novel M60-like domain was identified. The domain
was deposited in the Pfam database with accession number PF13402. The M60-like domain is
shared amongst a broad range of mucosal microorganisms as well as their vertebrate hosts. Bioin-
formatics analyses of the M60-like domain suggested a potential catalytic function of the conserved
motif as gluzincins metalloproteases. Targeting signals were detected across microbial M60-like-
containing proteins. Mucosa-related carbohydrate-binding modules (CBMs), CBM32 was also iden-
tified on several proteins containing M60-like domains encoded by known mucosal commensals and
pathogens. The co-occurrence of the CBMs and M60-like domain, as well as annotated potential
peptidase function unveiled a new functional context for the CBM, which is typically connected with
carbohydrate processing enzymes but not proteases. The CBM domains linked with members of
different protease families are likely to enable these proteases to bind to specific glycoproteins from
host animals further highlighting the importance of proteases and CBMs (CBM32 and CBM5_12) in

host-microbe interactions.
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Chapter 1

Introduction

Proteins form numerous different types of structures and perform virtually all cellular functions es-
sential for the survival of all cellular life forms. Hence, these polypeptides fundamentally determine
the overall phenotypes of organisms. Phenotypes are expressed through regulation in time and space
of protein expression and function. Knowing the subcellular localisation (space) of a protein is a fun-
damental information to determining its function [Gardy and Brinkman, 2006][Billion et al., 2006]
[Gardy, 2004]. For example, proteins located in cytoplasm can function as part of cytoskeleton or
translation processes. Extracytoplasmic (transmembrane, surface-anchored and secreted) proteins of
prokaryotes and microbial eukaryotes are known to play important roles in the interaction between
the microbes and their biotic and abiotic niches. The main functions of extracytoplasmic proteins
include nutrient acquisition, waste transport, degradation of extracellular compounds, binding to

substrates and cell membrane, as well as cell communication [Lin ef al., 2002].

In the human microbiota, extracytoplasmic proteins play crucial roles in the interaction with the host
including adhesion, invasion, signal transduction, evasion and modulating host immune responses
[Pallen and Wren, 2007][Niemann, 2004]. Interestingly, human microbial communities have wide-
ranging effects, from providing enormous benefits to our health to dramatic deterioration of our
normal physiology [Turnbaugh et al., 2007]. Human gastrointestinal microflora influence our normal
physiology by providing structural, protective and metabolic functions [O’Hara and Shanahan, 2006].
For example, some gut commensals are known to help the renewal and differentiation of gut epithelial
cells [Pull et al., 2005]. Some are involved in several metabolic pathways such as vitamin synthesis
and process polysaccharides that are not digestible by human [Martin et al., 2007][Béickhed et al., 2005].
In contrast, some pathogenic strains such as enterohaemorrhagic Escherichia coli (EHEC) and Enta-

moeba histolytica cause hemorrhagic colitis and amoebiasis, respectively [Loftus et al., 2005]



[Bielaszewska and Karch, 2005]. Experimentation and detailed studies are required to reveal impor-
tant protein or genotypic features, driving the dynamic processes of the host-microbe interactions
[Dethlefsen et al., 2007]. However, genomics provides data to generate hypotheses and guide ex-
perimental work. The human microbiome project is underway with the aim of gaining a better

understanding of these host-microbe interactions [Turnbaugh er al., 2007].

1.1 Motivation for this project

The human body is a habitat for miriads of microorganisms and they reside in a wide variety of
anatomical parts with, in particular, the skin and mucosal surfaces of the respiratory, gastroin-
testinal and urogenital tracts [Dethlefsen ef al., 2007][Costello ef al., 2009]. The human microflora
form site-specific communities. The composition of microbial communities of these sites also
varies considerably across individuals depending on their genetics [Benson et al., 2010], age, diet,
health status and medication history [Costello et al., 2009][Kuczynski et al., 2010]. Many mucosa-
associated microorganisms are able to grow in habitats with diverse substrates such as the gas-
trointestinal tract. Digestion of various food products requires a broad range of enzymes, many
of which are produced by the gut microbiota and are secreted or expressed on the cell surface
[Sonnenburg et al., 2005][Martens et al., 2008]. The efficiency of food processing is also influenced
by microbe-microbe interaction [Gill ez al., 2006]. In addition, the microbes must also deal with
environmental pressures controlled by the host such as the secretion of gastric acidic juices and en-
zymes, dynamic flushing of mucosal secretions, and defence mechanisms of the host immune system

[Nataro et al., 2005].

The adaptation of microbes to particular habitats is a factor that shapes particular expressions of
microorganisms’ protein profiles [Ren and Paulsen, 2005]. As observed by many studies, variations
of extracytoplasmic proteins are found across microorganisms in relation to the surrounding extra-
cellular environment [Goh et al., 2006][Rasko et al., 2005][McMeechan et al., 2005]. These adapta-
tions are driven by several evolutionary mechanisms such as gene duplication, gene loss, horizontal
gene transfer and genome rearrangement [Fraser-Liggett, 2005][Medini et al., 2008]. The genetic
basis of microorganism adaptation to a specific environment is typically poorly known. Partic-
ularly, the processes that enable a microorganism to thrive in mucosal environments, highly de-
fended host compartments, are also not well known. Another open research question is what makes
a particular microbe either colonise in a beneficial way, or aggressively invade and damage its hosts

[Dethlefsen et al., 2007][Turnbaugh et al., 2007].



The increased availability of complete genome sequence data for numerous organisms across the
three domains of cellular life allow more thorough comparative genomics study. Comparative ge-
nomics analyses can be carried out over a wide range of organisms with different traits to pinpoint sets

of genotypes or protein complements underlying specific phenotypes [Ahmed, 2009]. Several com-
parative studies have successfully inferred groups of functional protein domains or families that are
exclusively expressed on microbes in particular conditions or habitats [Goh et al., 2006][Liu et al., 2006].
Several of such studies were performed on a restricted set of taxa or taxonomic groups [Read ef al., 2003]
[O’Sullivan et al., 2009]. The work presented in this thesis has explored the potential associations
between proteomes and the ability of microorganisms to thrive in a host mucosal environment to
gain a better understanding of a molecular basis of host-microbe interactions. Of particular interest
are essential fundamental aspects of the physical interactions of microbes with host mucosal surface
barriers. To date, no published study has yet applied comparative genomics techniques to all domains

of cellular life for this purpose.

This study focussed on mucosal microorganisms and functional elements important for their survival
in highly-defended host mucosal environments. The extracytoplasmic proteomes of these microbes
represent one of the main interest of the study as they are at the interface of these complex host-
microbe interactions, as well as interactions between members of microbial communities. The study
covers a diverse range of microbial relationships with hosts (mutualism, symbiotic and parasitism)
as well as various mucosa-lined surfaces known as microbe-dwelling places such as the oral cavity,

gastrointestinal, respiratory, and urogenital tracts.

1.2 Project aims

The main aim of this project was to gain a better understanding of the structural diversity and evo-
lutionary forces that shape microbial extracytoplasmic proteomes across all forms of cellular life
(bacterial, archaeal and eukaryotic) in order to identify important functional elements mediating

host-microbe interactions.

The genome wide associations were performed between the extracytoplasmic protein complements
of microorganisms and the environment in which they reside. In particular, emphasis has been placed
on microorganisms that thrive on human mucosal surfaces. The results of the work will be used
to inform future laboratory based studies and to gain a better understanding of microbe-mucosa

interactions.

The working hypothesis is that analysis of a large number of annotated genome sequences throughout



the three domains of life will make identification of the extracytoplasmic proteome more sensitive
[Ahmed, 2009][Gardy, 2004]. Large numbers of taxa also make correlation analysis feasible to dif-
ferentiate important proteins found in specific microbial communities within an ecological niche
from other niches. These proteins are hypothesised to have presence or absence distribution patterns

or modulation of gene family sizes that correlate with a mucosal lifestyle of microorganisms.

An example of an overrepresentation of a particular set of protein-coding gene families in water-
living bacteria compared to non-waterborne free-living bacteria and host-associated bacteria was
published by Audic et al. [Audic et al., 2007]. In a more specific example for mucosal-associated or-
ganisms, the BspA-like proteins, sharing a specific type of leucine rich repeats (LRR), are distributed
among several known mucosal microbes across all three domains of life [Hirt ez al., 2002][Noél et al., 2010].
BspA is a surface protein functional characterised in Tannerella forsythensis, and some other taxa to
have an important role in the colonisation of mucosal tissues, binding between microbes and inducing

innate and adaptive host immune responses [Hirt et al., 2007][Noél et al., 2010].

1.3 Project objectives

o To identify through comparative analysis of protein contents, in particular, extracytoplasmic
protein regions either commonly conserved across, or unique to mucosal microorganisms. Hy-
potheses should be generated regarding the involvement of these proteins in interactions with

the host mucosa environment.

e To develop automated bioinformatics pipelines, using a Grid-based computational system to
manipulate and analyse the large amount of data derived from genome sequencing projects.
The pipeline was to integrate available genome databases, bioinformatics tools, algorithms
and other related biological knowledge to serve the needs of the project. The Grid-based
computational system would also be designed to allow updates to the computed data sets when

new completed genome sequence data is released.

e To classify microorganisms by their environment of predilection in which they thrive by mining
existing data from published literature. The results were to be used to allow comparative
analyses designed to contrast the protein contents of mucosal microbes with those thriving in

other environments.



1.4 Thesis structure

e Chapter 2 provides background and a literature review of previous work relating to this thesis.

e Chapter 3 describes the development of a high-throughput sequence analysis workflow used
to perform the identification of microbial extracytoplasmic proteins, the recognition of known

functional protein domains and the sequence homology search.

e Chapter 4 describes computational approaches for the identification of microbial extracyto-

plasmic proteins and presents the results of these analyses.

e Chapter 5 describes a procedure for the automated annotation of microorganisms’ habitat in-

formation using a text-mining approach.

e Chapter 6 presents analysis of the in silico identification and characterisation of mucosa-

associated proteins.

e Chapter 7 presents the bioinformatics analyses identifying a novel zinc-metalloprotease-like
domain in host-associate microbes. These analyses also suggest a new functional context for

carbohydrate binding modules.

e Chapter 8 discusses the overall approaches, results and potential future work.



Chapter 2

Background

2.1 Genomics

A genome sequence represents an entire nucleic acid-based genetic information of an organism and
is comprised of three major components: non protein-coding genes, protein-coding genes and regu-
latory elements. Proteins are the products of genes. Microbial phenotypes are typically driven by the
expression of protein-coding genes which mediate cellular mechanisms. These polypeptides express
functional units essential for the survival of organisms in response to challenges in their environment.
The combination and variation of genes and their products can cause noticeable differences among

organism phenotypes.

One of the aims of genome analysis is to infer the phenotypic potential of organisms. More specif-
ically, to gain a better understanding of the molecular functions of cells encoded by the genome
sequences. Genome databases are currently growing at an exponential rate (see Figure 2.1) due to
the advent of high-throughput sequencing technologies [Medini et al., 2008]. For example, the May
2010 release of the UniProtKB/TrEMBL protein database added 161,141 new sequences. The to-
tal number of sequence entries made available was 10,706,472, As a result, there is a tremendous

amount of genome and proteome data available for annotation and study.

In addition to the considerable amount of information already available, a large collection of new
genome sequence information from ongoing genome sequencing and metagenomics projects will
become available in the near future, in particular, for microbes colonising mammalian hosts (e.g.
Human Microbiome Project [Turnbaugh et al., 2007]). This information will be invaluable for under-

standing the roles of different microbial communities on the host mucosal environments [Flint ef al., 2008].

Thttp://www.ebi.ac.uk/uniprot/TrEMBLstats/, accessed 5th May 2010
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Figure 2.1: The growth of the UniProtKB/TrEMBL protein database. The number of well-annotated pro-
tein sequences deposited in the protein database grows dramatically at an exponential rate from 2004 until the
present time. This figure was obtained from http://www.ebi.ac.uk/uniprot/TrEMBLstats/ (accessed
5th May 2010).

Comparative genomics is one approach that can be used to investigate the associations between the
genotypic features and the phenotypes of microorganisms from various taxonomic groups, as well as

different ecological niches [Medini et al., 2008].

2.2 Human microbiome and mucosal surfaces

A complete set of microorganisms that inhabit in a particular habitat are known as microbiota
[Ley et al., 2008]. The human microbiome comprises a collection of genes of the microbiota that
live within the human body [Turnbaugh et al., 2007]. The human body harbours a tremendous num-
ber of diverse microorganisms. These normal flora are found on the human surfaces that are exposed
to the outside world, namely skin and mucosal surfaces. Microbial communities are also found on
the areas where skin and mucosal epithelium are joined (mucocutaneous zone), such as the anus,

nasal and ear cavities [Costello ef al., 2009].

2.2.1 Mucosa

Mucosa are protective layers coating several internal organs of vertebrates. The mucosa are cov-
ered or protected by a variety of secretions including mucus, immunoglobulins (mainly secreted
immunoglobulin A (SIgA)), antimicrobial substances (e.g. lysozyme, lactoferrin, defensins) as well
as normal flora

[Acheson and Luccioli, 2004]. This physical barrier is an interface to the external environment
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of several mammalian anatomical structures including the gastrointestinal tract (GIT), respiratory
tract (RT), mammary gland and urogenital tract (UGT) [Nagler-Anderson, 2001] [Vélez et al., 2007]
(see Figure 2.2). The mucosal surfaces mediate exchanges vital for human homeostasis and repro-
duction including food processing and absorption (GIT), gas exchanges (RT), and waste removal
(GIT, UGT). This barrier also a place where numerous and dynamic host-microbe interactions take

place.

Mucosal tissues of the human body
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Figure 2.2: Mucosa-lined organs of the human body. The human mucosa-lined regions include epithelial
membrane of urogenital, gastrointestinal and urinary tracts. Others are mammary gland and lachrymal gland
and conjunctiva. The figure was adapted from Immunology 7th edition by Garland Science 2008. Each human
organ part image were obtained from wikipedia’s public domain: http://en.wikipedia.org/wiki/File:
Man_shadow_anatomy.png.

One of the best understood mucosal environment is the human intestinal mucosa with several com-
ponents including mucus layer, glycocalyx (carbohydrate-rich coating), epithelial cells, Extracellular
matrix (ECM), lamina propria and muscularis mucosae (Figure 2.3) [Vélez et al., 2007]. The ECM
is composed of Type IV collagens laminins, fibronectin, tenascin-C, collagens and proteoglycans

[Vélez et al., 2007].

Mucus is mainly composed of mucins (high-molecular-weight glycoproteins) and minor compo-
nents of lipids. Mucins consist of peptide backbones and O-glycosidically linked carbohydrate side
chains. Studies of the composition of human gastric and bronchial mucins indicate the presence
of the amino acids and carbohydrates. These amino acids include threonine, serine, proline, aspar-

tic acid, leucine, glycine. The monosaccharides found to be enriches in mucins are fucose, man-



http://en.wikipedia.org/wiki/File:Man_shadow_anatomy.png
http://en.wikipedia.org/wiki/File:Man_shadow_anatomy.png

Lumen

Mucus layer
Glycocalyx

Epithelial
cells

ECM
Lamina propria

o) el o) o) ey §e

Mucosa
|

Muscularis
L mucosae

Submucosa

Figure 2.3: Overview of a mucosa architecture. The figure represents a simple model of the structure
of human intestinal mucosa. Adapted from Velez M et al 2007 [Vélez et al., 2007]. Mucosal surfaces are
comprised of several sub-layers. This surface separate the external environment from the internal vertebrate
organs. Multilayer of epithelial cell can be found on some other mucosa such as some part of the urinary tract
[Nataro et al., 2005].

nose, galactose, N-acetylgalactosamine, N-acetylglucosamine and sialic acid [Wagner et al., 1998]

[Bhattacharyya et al., 1988].

2.2.2 The human microbiota and microbiome

The human microbiota is known to vary greatly over time [Costello et al., 2009], depending on sev-
eral factors of the host such as age, genetics, the status of the immune system, and lifestyle (e.g.
diet) [Round and Mazmanian, 2009][Turnbaugh et al., 2007][Acheson and Luccioli, 2004]. Differ-
ent parts of the human anatomy harbour different microbial communities [Costello ef al., 2009]. The
majority of the biomass of microbiota is located on mucosal surfaces. In particular, the large intestine
is densely populated by microbial communities [O’Hara and Shanahan, 2006]. The human intestinal
mucosa has an enormous surface area of roughly 400 m? [Acheson and Luccioli, 2004].The esti-
mated number of cells of bacterial normal flora in a human body is in the region of 100 trillion. This
number is about 10 times the total number of human cells and most of these microbial communi-
ties are in the human intestine [Bickhed et al., 2005][Gill et al., 2006]. Interestingly, the human gut
microbiome may contains more than 100 times the number of protein-coding genes in the human
genome [Bickhed et al., 2005][Neish, 2009]. The human microbiome has provided us with impor-

tant functional features that contribute to our health status [Neish, 2009][Blum and Schiffrin, 2003].

The human microbiota are known to contribute to our health and disease status through the complex




host-microbe and microbe-microbe interactions (Figure 2.4 and 2.5). The human microbiota helps
maintain our normal physiology. For example, bacterial colonisation of the gut promotes the de-
velopment of our intestinal adaptive immune system [Round and Mazmanian, 2009]. An imbalance
in composition of the mucosal microbiota can disrupt physiological processes and lead to disease.
The study by Turnbaugh et al. (2006) indicated that changes in the two predominant bacterial di-
visions in the gut (Bacteriodetes and Firmicutes) is associated with obesity. An increase of the gut
microbiota increases the capacity to acquire energy from the diet and may contribute to obesity
[Turnbaugh et al., 2006]. Several studies have shown that disturbances in the bacterial microbiota
may underlie many disorders such as inflammatory bowel disease [Round and Mazmanian, 2009]
[Qin et al., 2010]. Recent molecular studies of the human gut microbiome reveal an immense di-
versity of the gut microbiota. Functions of prominent flora that are known to benefit the host body
were reviewed by O’Hara A.M. and Shanahan F. [O’Hara and Shanahan, 2006]. However, many of
the molecular mechanisms of host-microbe and microbe-microbe interactions, and their effects on
our physiology remain unknown [Dethlefsen ef al., 2007][Ahmed et al., 2007][Gill et al., 2006]. A
greater understanding of these complex interactions that underlie our homeostasis or pathophysiolog-
ical status would provide valuable knowledge, enabling us to exploit the beneficial impacts and exert
more control over the adverse effects. The understanding of how the human microbiota contribute to
our health as well as diseases could eventually lead to the developments of probiotics as well as new

therapeutic strategies [Sekirov ef al., 2010][Hattori and Taylor, 2009][Hooper and Gordon, 2001].

The Human Microbiome Project (HMP) was launched in 2007 with the aim of providing a better
understanding of the role of human microbiota on human biology in terms of their contribution to
health and disease [Turnbaugh er al., 2007]. One aspect of the HMP project is to employ a compar-
ative metagenomics approach to uncover the functional attributes of the microbiome. Microbiomes
from various body surfaces (i.e. skin and mucosal surfaces) of several individuals are being collected,

sequenced and analysed.

Based on 16S rRNA gene-sequence analysis, the human microbial communities have been found
to be dominated by Firmicutes, Bacteriodetes, Proteobacteria, and Actinobacteria bacterial phyla
[Dethlefsen et al., 2007][Costello et al., 2009]. Actinobacteria are found primarily on human skin,
Firmicutes and Bacteriodetes are predominant on human mucosal surfaces (see Figure 2.6). Bacte-
ria from the Firmicutes and Bacteriodetes phyla form the majority of the population found in hu-
man gut flora [Ley et al., 2008]. However, other bacterial phyla are also found in the human GIT
and UGT. These small proportions of bacterial phyla include Proteobacteria and Actinobacteria

[Dethlefsen et al., 2007]. Apart from bacterial species, the human microbiota also include archaea,
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Figure 2.4: Overview of the mucosa-microbe interactions. A schematic representation of some of the
complex interactions taking place at the mucosal surface include interactions between host cells or compo-
nents, and microorganisms, as well as among members of the microbiota. Host elements that interact with
microbes are mainly part of the host defence mechanisms such as macrophages, antimicrobial peptides, SIgA
and mucins. Cell communications and metabolic co-operation are important processes for the survival of local
microbial communities. Commensals also play important roles in defending their communities from invading

microbes including pathogenic strains.
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Figure 2.5: Molecular interactions of host, commensal and pathogenic microbes. The results of host-
microbe interaction affect homeostasis status of the host body. Commensals help maintaining host normal
physiology by, for instance, providing nutrients and boosting host defensive mechanisms. In return, the host
environment provides a good source of energy to these local microbial communities. Moreover, these normal
flora also act as secondary shields protecting their host from pathogens. The balance of these interactions is
required in order to maintain a healthy stage of the host.

microbial eukaryotes and viruses [Reyes ef al., 2010]. These human microbial communities must
adapt to live in a highly defended host environment. Studies of the large intestinal bacterial commu-
nities suggested that type and amount of host dietary intake have a major influence on the compo-
sition and metabolisms of various normal flora populations within the colon [Duncan et al., 2007].
Dietary intake can shape gut flora communities and can be explained by the substrate preferences and
competitive abilities among the gut microbial members [Flint et al., 2008]. The variety of substrates
originating from the host diet or mucus glycans influences the diversity of the ecological niches that

can be exploited by the gut communities [Sonnenburg et al., 2005].

2.2.3 Mucosal immunity

Vertebrates have evolved several defence mechanisms to protect themselves against foreign bod-
ies, including microorganisms. These mechanisms are known as innate and adaptive immunities.
The innate immunity is a non-specific defence system consisting of three main aspects: mechanical,
chemical and cellular [Murphy et al., 2007][Nataro et al., 2005]. The mechanical aspect includes

anatomical barriers (e.g., skin and mucosa) and movement of body parts (e.g. cilia, intestine) or
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Figure 2.6: Site-specific distributions of bacterial phyla in healthy humans. The size of the chart repre-
sents the average number of distinct microorganism species per individual based on 16S rRNA gene-sequence
survey. The average number per habitual site is shown in parenthesis. 3-11 healthy individuals per habitat
were studied. The coloured wedges indicate the proportion of bacterial species regarding different phyla. The
figure was derived from [Dethlefsen et al., 2007].

contents (mucus, fluids). The chemical aspect of the defence arises from antimicrobial proteins, en-
zymes and sensor systems that recognise patterns of molecules. The cellular component of the innate

immune system is composed of epithelial cells, phagocytes and normal flora [Nataro et al., 2005].

The most well known positive effects of human normal flora are the intestinal commensals. The
intestinal microflora provide a number of benefits to the human body. O’hara and Shanahan (2006)
group these beneficial effects into three categories: protective, structural and metabolic functions

[O’Hara and Shanahan, 2006] (Table 2.2).

Table 2.1: Mucosal innate immunity. Examples of different types of innate immunity found on human
mucosa. The mucosal immunity is classified into three types, mechanical, chemical and cellular. (Adapted
from [Murphy et al., 2007])

Gut | Lungs | Eyes/mose/oral | Vagina
. Epithelial cells jointed by tight junctions
Mechanical Peritalsis cilia movement Tears/Nasal cilia, | Urine flow
Saliva flow
Chemical Low pH, enzymes in tears and | Low pH
saliva (e.g. lysozyme)
Digestive enzymes
(pepsin, pancreatic
enzymes, bile acids)
Antimicrobial peptides
Cellular Normal flora (not for eyes), Host immune cells e.g., macrophages
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Table 2.2: Functions of human intestinal microflora beneficial to host body. This table provides examples
of the known beneficial functions of intestinal flora. These functions are classified into three groups: protective,
structural and metabolic functions. (Adapted from [O’Hara and Shanahan, 2006])

Functions Positive effects

Protective functions | pathogen displacement, nutrient competition, receptor competition,
production of anti-microbial factors e.g., bacteriocins, lactic acids
Structural functions | barrier fortification, induction of IgA, apical tightening of tight junc-
tions, immune system development

Metabolic functions | Control IEC differentiation and proliferation, metabolise dietary car-
cinogens, synthesise vitamins e.g., biotin, folate, Ferment non-
digestible dietary residue and endogenous epithelial-derived mucus, ion
absorption, salvage of energy

The adaptive immunity responds to specific foreign materials by learning and remembering the most
effective response to that particular material. This type of immune response is specific to each type

of antigen [Murphy et al., 2007].
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2.3 Microbial cell surfaces and protein translocations

The project described in this thesis performed an analysis of the extracytoplasmic proteomes from
a wide range of microorganisms including Archaea, Bacteria and microbial eukaryotes. Each group
of these organisms show differences in their cell surface structures and protein translocation mecha-

nisms. In this section, the following aspects are described:

e the major differences in the cell surface structure of Archaea, Bacteria and microbial eukary-
otes;

e the important functions of the microbial extracytoplasmic proteins;

e a summary of the known protein secretion systems.

2.3.1 Diversity of cell surface structure

The cell surface is a selectively permeable barrier and the physical boundary of a cell. The structure
of the cell surface is different across the diversity of all forms of cellular life. Prokaryotic and eukary-
otic organisms have very distinctive cell surface features. The cell surface comprises either one or two
membranes composed of lipids. There may also be a cell wall as the outermost layer. The chemical
composition and topology of each part varies across taxonomic groups. Membrane lipids are mainly
composed of carbon chains linked to glycerols. Membranes of both bacteria and eukaryotes, con-
tain straight carbon chains are attached to glycerol molecules by ester linkages [Alberts et al., 2007].
However, membrane lipids of archaea contain branched carbon chains that are bound to glycerol by
ether linkages [Golyshina and Timmis, 2005]. Cell walls of bacteria contain peptidoglycan, whereas
eukaryotic and archaeal cell walls lack peptidoglycan. Eukaryotic cell walls contain carbohydrates,
which differentiate them from prokaryotic cell walls, for instance, the cellulose cell wall of plants
[Lerouxel et al., 2006] and the chitin cell wall of fungi [de Nobel et al., 2000]. However, cell sur-
faces of some organisms such as Ferroplasma (archaea) [Golyshina and Timmis, 2005], Mycoplasma
(bacteria) [Desvaux et al., 2006], many microbial eukaryotes and animal cells do not have a cell wall.
On the other hand, a specific surface layer such as a glycocalyx or surface layer (S-layer) may coat
some bacterial and archaeal cells as well as animal cells [Frey, 1996]. The surface of Gram-negative
bacteria consists of two layers of lipid bilayer membranes, an inner and an outer membrane, and a
thin peptidoglycan layer in the periplasmic space [Alberts ef al., 2007]. In contrast, Gram-positive
bacteria have only one plasma membrane surrounded by a thick peptidoglycan cell wall, usually

containing teichoic acid [Desvaux er al., 2006]. The diversity of cell surfaces (Figure 2.7) parallels
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diversity in protein secretion pathways and also determines how surface proteins are anchored to the

cell surface.

2.3.2 Extracytoplasmic proteins

Expression of protein-coding gene sequences through regulation in time and space fundamentally
convey the overall phenotypes of an organism. Proteins are synthesised in the cytoplasm and then
either remain in this compartment, or are targeted to the cell surface or secreted to the external envi-
ronment. Knowledge of the subcellular localisation (space) of a protein provides a clue to determine
its biological function. For example, cytoplasmic proteins are more likely to be part of a cytoskeleton
or translation process, whereas several extracytoplasmic proteins are known to mediate interaction
between an organism and its surrounding environment. In this thesis, extracytoplasmic proteins in-
clude extracellular proteins (secreted or surface-anchoring proteins) as well as proteins exposed to
the non-cytoplasmic compartment such as transmembrane proteins and outer membrane proteins (see

Figure 2.8).

The main general functions of extracytoplasmic proteins of microorganisms include nutrient acqui-
sition, waste transport, signal transduction, membrane and protein binding, as well as degradation
of extracellular compounds. In terms of symbiosis and pathogenesis, these proteins are important
for adhesion and biofilm formation, signal transduction, pathogen interference, invasion, and eva-
sion. The microbial secreted proteins can act as enzymes involving the both microbes and host
metabolic processes. Particularly for mucosal-thriving microorganisms, extracytoplasmic proteins
are crucial, for instance, for degrading or binding to mucus, ECM proteins, epithelial cells and
modulating the host innate and adaptive immune systems [Hirt er al., 2002][Hirt et al., 2007]. Sev-
eral studies have showed that virulence factors were presented in the secretomes of pathogenic
strains [Trost ef al., 2005]. For example, for invasion (e.g. Internalin A and B of Listerria mono-
cytogenes [Trost et al., 2005][Marino et al., 2002]), for adhesion (e.g., TCP pili of Vibrio cholerae
[Herrington et al., 1988][Peterson and Mekalanos, 1988]), internalisation (e.g., invasin of Yersinia
pseudotuberculosis [Isberg and Falkow, 1985][Isberg et al., 1987]) and for defence against the host
immune system (e.g., exotoxins of Staphylococcus aureus [Dinges et al., 2000]). Some commen-
sal strains such as S. epidermidis’s extracellular serine proteases (Esp) have been shown to inhibit

biofilm formation and nasal colonisation by the pathogenic S. aureus [Iwase et al., 2010].
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Figure 2.7: The cell surface and membrane organisations of various prokaryotic and eukaryotic cells.
Surface proteins can be anchored on various components of the cell surface, including peptidoglycans, pro-
teins of the S-layer and the cell plasma membrane. The glycocalix of animal cells, for example, is made of
glycoproteins and glycolipids. Some microbial eukaryotes, such as Fungi, may have rigid cell wall made of
chitin. Some eukaryotes have life cycle stages made of cysts or spores which have rigid protective coats which

may consists of a mix of proteins, chitins, or other polysaccharides).
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structures. The cell surface structures of bacteria, archaea and microbial eukaryotes are shown. for each
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are provided. Terms mentioned in this diagram were used throughout this thesis.

2.3.3 Protein translocation mechanisms

Newly, synthesised proteins can be exported or translocated to various sites through one of several
transport pathways, depending on structure and chemical composition of the cell surface which differ
across the diversity of cellular life. Until now, several universal secretory systems have been well
characterised across all three kingdoms of life (see Table 2.3). Transmembrane proteins are anchored
to membranes by transmembrane helices (TMH) or as Beta-barrel proteins. However, some proteins
have anchoring features that allow them to attach to the surface layer, resulting in the bulk of the
protein being exposed extracellularly. Examples of such cell surface anchoring motifs are LPXTG
(Gram-positive bacteria), S-layer motifs (Gram-positive bacteria) and Glycosylposphatidylinositol

(GPI)-anchors (Eukaryotes) [Pallen et al., 2003][Billion et al., 2006][Biitikofer et al., 2001].

The major secretion systems (described in Table 2.3) imply the presence of some recognisable fea-
tures on the sequences themselves, allowing proteins to be targeted to a specific transport system.
These features are generally defined as targeting-signals [Alberts et al., 2007]. The trends of these
amino acid residue compositions enable protein subcellular localisation predictions to be made by
using computational methods to identify given sequence features. Moreover, depending on the cell
surface structure, surface proteins can be anchored in different ways. Some conserved functional
domains from well-characterised extracellular proteins can also be used to infer protein location.

Examples are listed in Table 2.4.

However, not all virulent proteins are secreted through a classical secretory pathway [Bendtsen et al., 2005b].
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Table 2.3: Summary of major protein secretion systems and their distribution among the three domains
of microbial cellular life. Sec = general or classical secretion pathway, Tat = twin-arginine translocation
pathway, T1SS = type 1 secretion system, T2SS = type 2 secretion system, T3SS = type 3 secretion system,
T4SS = type 4 secretion system, T5SS = type 5 secretion system, T6SS = type 6 secretion system

Secretory | Bacteria | Archaea | Eukaryote | Short description
system
Sec Yes Yes Yes Transports proteins from the cytoplasmic space across the cell
membrane into the extracellular compartment or topologically

Tat Yes Yes Yes (only | equivalent compartment

plastids) [Pohlschroder et al., 2005b][Pohlschroder et al., 2005a].

T1SS Yes No No Transports proteins from the cytoplasm directly to extracel-
lular space using ATP-binding cassette (ABC) transporters
[Lee and Schneewind, 2001].

T2SS Yes No No Transports proteins across or into the cell membrane either via the
Sec-dependant pathway or the Tat pathway [Pallen ef al., 2003].
T3SS Yes No No Injects proteins directly into the cytoplasmic space of other cells
via a pilus-like structure. A set of genes encoding protein sub-
units involved in the machinery of these systems is commonly
transferred horizontally between pathogenic bacteria (known as
Pathogenicity islands [Deng er al., 2004]). However, the type IV
system is not widely distributed among Gram-negative bacteria
[Pallen et al., 2003].

T4SS Yes No No
T5SS Yes No No The largest protein secretion system in Gram-negative bacteria.
Also called autotransporters since secreted proteins are forced by
an intrinsic activity of the substrate proteins. Proteins secreted
through this system possess N-terminal signal peptides, targeting
them to the Sec pathway before being translocated outside the cell
[Pallen et al., 2003].

T6SS Yes No No An important protein transportation system of virulent factors of
Gram-negative pathogenic bacteria [Bingle et al., 2008].
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Table 2.4: Summary of major protein features that indicate cell surface or secreted proteins. Example
are given for each feature. Available accession numbers are also listed.

Secretory signals

Short description

N-terminal targeting sig-
nals [Pallen et al., 2003]
[Pohlschroder et al., 2005a]
[Juncker et al., 2003]

Sec-signal sequences

A short sequence of hydrophobic amino acids targets nescent (unfolded)
proteins to Sec secretory pathway. Also known as the classical N-
terminal signal sequence distributed among all three domains of life

Tat-signal sequence

Shuttles folded proteins to the Tat secretory pathway. Consensus amino
acid sequence is [S/T]JRRxFLK.

Lipoprotein signal sequence (LPP)

Allows proteins to be exported and anchored covalently to the cell mem-
brane [Sutcliffe and Russell, 1995] [Juncker e al., 2003].

YSIRK (Pfam:PF04650) YSIRK is characterised as a motif of Staphylococal protein A. A motif
resembling [YF]SIRKxxxGxxS[VIA] appears at the start of the trans-
membrane domain. The motif facilitates a processing of signal peptide
in the protein precursors and protein secretion but is not necessarily re-
quired [Bae and Schneewind, 2003].

Anchoring structure

[Desvaux et al., 2006]
[Cabanes et al., 2002]
LPXTG motif (Pfam:PF00746)

Anchors proteins covalently to peptidoglycan of Gram-positive bacte-
rial cell wall [Pallen et al., 2003].

GW module (superfamily:22279)

The motif dipeptide Gly-Trp allows proteins to be anchored the bacte-
rial cell surface via the interaction between the conserved module and
lipoteichoic acids in Gram-positive bacterial walls. The domain, medi-
ated by the carboxy-terminus, is non-covalently attached to the pepti-
doglycan or cytoplasmic membrane [Marino ez al., 2002].

Alpha-helical
main

transmembrane do-

Usually contains a 15-30 hydrophobic amino acid residues long region
and followed by positively charged residues. Presented in most trans-
membrane proteins from all domains of life [Krogh ez al., 2001].

Beta-barrel motif

Beta-berrel is a known structural motif for several protein spanning
outer membrane of Gram-negative bacteria. The motif can also
be found in the outer membranes of mitochondria and chloroplasts.
Known beta-barrel structures contain between 8 and 22 beta strands
[Wimley, 2002].

LySM (Pfam:PF01476)

LySin Motif (LySM) domain allows proteins to bind to peptidoglycan.

CWBDI1 (Pfam:PF01473)

Non-covalent cell wall binding domain binds to the cell wall of Clostrid-
ium and Lactobacillus.

CWBD2

Non-covalent cell wall binding domain found in B. subtilis and C. diffi-
cile

S-layer motif (Pfam:PF00395)

Form strong binding non-covalent bond onto the cell surface pepti-
doglycan. Found in some archaea and bacteria [Billion et al., 2006]
[Desvaux et al., 2006].

PKD-like domain

Found as an anchor in Archaeal surface proteins as well as eukaryotic
membrane proteins.

GPI-anchored protein

GPI-anchored protein forms covalent bonds allowing a protein to
attach to the outer part of cell membrane. Found in most eu-
karyotes [Omaetxebarria ef al., 2007]. Also found as an important
key in host-microbe interaction as induce several host immune cells
[Biitikofer et al., 2001].

Examples of functional domain char-
acteristics of some on surface and ex-
tracellular proteins

Leucine-rich repeat (LRR)

Some LRR domains are expressed on the surface of prokaryotic
[Cabanes et al., 2002] and eukaryotic cells [Hirt ez al., 2002]. Four sub-
families of LRR (out of seven) are known to be characteristic on extra-
cellular proteins [Kobe and Kajava, 2001].

NLPC/P60 domain (Pfam:PF00877)

Found in several prokaryotic surface and

[Cabanes et al., 2002].

secreted proteins

Kringle domain

Presented in Béth kinetoplastid and apicomplexan extracellular proteins
[Templeton, 2007].




For example, ESAT-6 from M. tuberculosis is secreted without the presence of typical signal se-
quences [Bendtsen et al., 2005b][Bendtsen et al., 2005a]. Since eukaryotic cells contain several sub-
cellular organelles with each having their own specific membranes, translocation of proteins across
those membranes requires appropriate protein sorting, targeting and retention signals. Many eukary-
otic proteins with signal peptides are retained in membrane sealed organelles within the cell. A
correlation between the proportion of different secreted proteins and the similarity of the environ-
ments in which the bacteria dwell has been observed [Bendtsen et al., 2005a]. Lateral gene transfer
(LGT) of gene-encoding virulent proteins occurs among pathogenic bacteria sharing the same hosts
[Deng et al., 2004] [Hsiao, 2003] [Garcia-Vallve et al., 2003]. Data supporting LGT from prokary-
otic to and among parasitic protozoa have also been published [Hirt ez al., 2007] [Carlton et al., 2007]
[Andersson, 2009].
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2.4 Comparative genomics

Comparative genomics is a study of the association between genetic elements and organisms’ phe-
notypes by comparing the genome information across species or strains to identify both conserved
and divergent elements that express particular characteristic features of organisms. Comparative ge-
nomics studies can provide insights into the understanding of features that are essential for a species
to survive in a habitat, particularly its indigenous habitat [Lee ef al., 2008]. This section contains a
review of several comparative genomics works that were conducted using different data sources and

statistical techniques.

24.1 Microbial Genotype-phenotype association analysis

The availability of completed microbial genomes and their phenotypic annotation provide the op-
portunity to understand the genetic basis of a trait by revealing the pattern of variation in gene or
protein distribution [Jim, 2003]. The association between an organism’s genome data and its pheno-
typic trait provides clues for understanding elementary biological mechanisms. The co-occurrence of
genes and phenotypes were examined mostly based on combining phylogenetic profiles and pheno-
type profiles, followed by statistical approaches [Jim, 2003][Goh et al., 2006][Slonim ef al., 2006].
Several statistical models have been employed to evaluate genotype-phenotype association and to
pinpoint a significantly strong association or correlation between the genotypic information and traits

of interest. Previous studies have been reviewed and summarised as follows.

Jim et al. (2003) [Jim, 2003] shows that reliable associations of genes and simple specific traits such
as the presence of flagella or pili can be achieved by computing propensity scores, which allow less
conserved proteins among organisms sharing the observed phenotype to be discovered. However,
this approach seems to be limited by the frequency and specificity of the phenotype and whether the
phenotype can emerge from more than one mechanism [Jim, 2003]. Comprehensive statistical meth-
ods based on Pearson’s correlation coefficient and the hypergeometric distribution have proved suc-
cessful in identifying pairwise associations between phenotypic laboratory results and the functional
annotations of bacterial genomics contents (such as Cluster of Orthologous Groups (COGs), Gene
Ontology (GO) annotations, Pfam (PF) entries, Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways) [Goh et al., 2006][Liu ef al., 2006]. Slonim et al. (2006) introduced a computational
information-theoretic framework to extract clusters of genes that have a significant pairwise correla-
tion with an observed trait. In this study, gene-phenotype associations were estimated using a statisti-

cal method called mutual information [Slonim et al., 2006]. Their studies successfully demonstrated
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a systemic method for gathering phenotypic characteristics from the literature across a diverse set
of species in order to associate them with genotypes. The approach revealed many novel trait-gene

relationships, particularly for infectious disease-related genes [Korbel et al., 2005].

Liu et al. (2006) [Liu et al., 2006] correlates 63 microbial phenotypes among 59 prokaryotic species.
This study applied a hypergeometric distribution function to find the probabilities of correlations
between microbial phenotypes and functional genomics data. The genomics data included Pfam

protein domains, COGs, KEGG pathways and GO.

Several comparative genomics studies were conducted with the aim to reveal genotypic signatures

that differentiate human gut microbiome from the non-gut strains.

Lee et al. (2008) [Lee et al., 2008] compared two Bifidobacterium longum’s genomes: one intesti-
nal isolated and one cultured in the laboratory. The study identified regions of large deletion or
gene loss in the cultured strain. The deleted regions were experimentally illustrated to be suscep-
tible to deletion while growing outside the gut. These targeted gene sets are found uniquely in
the gut-isolated Bifidobacteria which is involved in diverse traits pertinent to the human intestinal
environment, specifically oligosaccharide and polyol utilization, arsenic resistance and lantibiotic

production.

Sullivan et al. (2009) [O’Sullivan et al., 2009] performed a comparative genomics study on 11 lac-
tic acid bacterial genomes: 5 isolated from the human gut environment; 3 from diary products and
3 found to be present in multiple niches. This study identifies a unique gene set common to the
gut-isolated species as well as the non-gut associated species by manual pairwise comparisons and
sequence homology searches using BLAST. The authors proposed a barcode of 9 genes for the indi-
cation of the organism’s ability to occupy a specific niche: 3 gut-specific genes and 6 diary-specific
genes. The lactic acid bacterial gut-specific genes are involved in bile salt hydrolysis and sugar
metabolism, while the diary-specific genes are part of proteolytic system and restriction/modification

system.

Recently, the number of completed microbial genomes deposited in the GenBank database passed
the 1,000 mark, and more than 1,000 others are currently in progress [Sayers et al., 2010]. As more
genome data becomes available, studying the loss and gain of entire groups of genes specific to a
given phenotypic description becomes more feasible, allowing easier and more fine-grained anal-
ysis of genotype-phenotype correlations. However, an automated-systematic framework for high-
throughput data analysis is required to manipulate the vast amounts of available data. Novel hy-

potheses can then be generated in silico and tested experimentally thereafter. An overview of high-
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throughput data analysis framework covered in this thesis is described in Section 2.8.4.

2.5 Microorganism-habitat information resources

Microorganisms play a significant role in symbiotic relationships ranging from commensalism, mu-
tualism to parasitism [Steinert ef al., 2000]. To gain greater insights into the mechanisms involved
in host-microbe interactions, it is essential to be able to contrast the genotypic features of microor-
ganisms from various sources where microbes live, including both host-associated and non-host en-

vironmental niches.

Correlating genome content with microorganisms’ ecological niches is of central importance to an
understanding of the relationship between genotypes and phenotypes. However, one of the important
limiting factors is assigning functional relevance to genome sequence data [Hirschman et al., 2008]
[Pallen and Wren, 2007]. The lack of resources providing information for genome sequence, such as
isolation sources, was recently specifically recognised by the Minimal information about a Genome
Sequence (MIGS) specifications [Field ef al., 2008]. In addition, several researchers have discussed

or applied initial approaches to address this issue [Hirschman et al., 2008][von Mering et al., 2007].

To date, there is no complete computationally-accessible, structured data source for information
regarding the habitat or isolation source of microorganisms whose genome sequence data is available.
The National Center for Biotechnology Information (NCBI)?> and the Genomes OnLine Database
(GOLD)? databases are two most well-known public resources where information describing taxa
can be obtained in the form of flat files. The information they provide includes isolation sources,
habitat, organisms’ morphology, motility, oxygen respiratory, endospore formation etc. However,
this textual information is not always accessible for every microorganism whose genome data are
available. More formally structured and detailed habitat information is important for comparative
genomics studies and hence is required. A proposed solution for obtaining habitat information for
the increasing number of organism-habitat pairs in an automated fashion to fulfil the need of a large-

scale comparative genomics study is discussed in Chapter 5.

2ftp://ftp.ncbi.nih.gov/genomes/genomepr j, accessed 10th May 2010
3http://wuw.genomesonline.org/, accessed 10th May 2010
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2.6 Text-mining for molecular biology researches

Text-mining or data-mining is the process of computationally deriving required information from
free-form text [Cohen and Hersh, 2005][Jensen et al., 2006]. The technique allows the application
of algorithms, statistics and data management methods to the vast amount of literature for the identi-
fication of needed information and relationships among entities of interest [Cohen and Hersh, 2005].
New knowledge can be revealed from connecting missing relationships between information

[Jensen et al., 2006].

As more biomedical and ecological researches are published, the underlying knowledge of the habi-
tats of microorganisms is expanding at an increasing rate. Text mining is a way to cope with this
information overload. The technique can be used to reveal the needed knowledge that would other-

wise be obscured by the large amount of information [Cohen and Hersh, 2005].

For example, the literature-mining software, Peregrine [van Haagen et al., 2009], was successfully
used to refer an undocumented interaction between two proteins. Enju” is a full text parsing tool
that was used to parse 70 million sentences in MEDLINE and extracted all the biomedical entities
and relationships such as protein-protein interactions. The results from this deep-parsing process
were then used as a data source for a semantically aware search tool, MEDIE?. Similarly, Ge-
neWays [Rzhetsky et al., 2004] employs a deep parsing tool, GENIES [Friedman ef al., 2001], to
extract biomedical knowledge of different types of binary relationships between genes, gene prod-

ucts, disease and drugs in signal transduction pathways [Sainani, 2008].

In the study covered in this thesis, text-mining techniques were employed to gain more information

of microorganisms and their habitats or isolation sources. More details are given in Chapter 5.

2.7 Classification of microorganisms habitats

In order to compare the genetic information of different microorganisms in relation to the envi-
ronments they reside in, external entities with similar physiochemical properties must be grouped
together that are considerably distinct from different ecological niches. For example, mucosa-
associated and non-mucosa-associated microorganisms would need to be distinguished so that sets

of protein families required for microbes to interact with mucosal surfaces can be inferred.

Ontologies allow standardisation of controlled terms and the integration of different sets of terms

“http://www-tsujii.is.s.u-tokyo.ac.jp/enju/index.html, accessed 5th December 2010
Shttp://www-tsujii.is.s.u-tokyo.ac.jp/medie/, accessed 5th December 2010
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or vocabularies. These defined terms are designed to be searchable, sharable and accessible by
both humans and software agents [Lord et al., 2003]. Terms may be defined related to each other
in a variety of ways, for example ‘is-a’ and ‘part-of” relations. Relations between terms may be
subjected to rule-based constraints, such as the types of terms that may be related by inference. For
example, if we defined that ‘lake’ ‘is-a’ ‘aquatic_environment’ and we know that organism_A lives
in a lake. By reasoning the defined class-relation, it could be inferred that organism_A lives in an

aquatic environment.

One well-known ontology used widely in the genomics research and bioinformatics communities is
the GO [Ashburner ef al., 2000]. The GO consortium has an aim to standardising the representa-
tion of genes or gene products across species [Ashburner ef al., 2000]. The GO provides controlled
vocabularies for biological processes, molecular functions, and cellular locations. These GO terms
might be related to each others with relationship ‘is-a’, ‘part-of” and ‘regulates’®, allowing GO terms

to be structured into Directed Acyclic Graphs (DAGs).

The Open Biomedical Ontologies (OBO) foundry [Smith et al., 2007] provides sets of biomedical
and bioinformatics -related ontologies. One such ontology is the Environment Ontology (EnvO)
[Smith and Varzi, 2002], which aims to define external entities or surrounding environments of a
biological sample, such as a habitat for a microorganism. The set of habitat vocabularies is divided
into several sections including host-associated or non-host associated physical material such as host
body fluid, soil, marine and extreme habitats. Several EnvO terms have been reused by the Habitat-
lite ontology. Habitat-lite is the first ontology that aims to create lists of terms describing habitats of

organisms. All terms were selected from EnvO to form appropriate high-level terms.

2.8 Bioinformatics applications

2.8.1 Protein subcellular localisation prediction tools

Several bioinformatics tools have been designed to identify subcellular locations of amino acid se-
quences. A number of approaches have been employed to suit a wide variety of secretory signals
commonly found in various extracytoplasmic proteins. These tools work with different cell surfaces
and protein translocation mechanisms of the different taxonomic groups (described in Table 2.3 and
2.4). The prediction tools considered for this study are described here. This section is divided into

two subsections: targeting signal predictors and protein subcellular localisation predictors.

Shttp://www.geneontology.org/G0.ontology.relations. shtml, accessed 10th May 2010
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Targeting signal predictors

The presence of some targeting signals and anchoring regions on peptide sequences allow the pre-
cursor proteins to be targeted to a specific protein transport system, generally defined as targeting-
signals. Some distinctive sequence patterns such as hydrophobic and high polar regions have been
found to enable proteins to be anchored to the cell membrane [Alberts et al., 2007]. Moreover, de-
pending on the cell surface structure, surface proteins can be anchored to the cell surface in different
ways. These conserved functional domains or motifs were described earlier in this chapter (Section
2.3.3). The trends of these amino acid residue compositions enable the prediction of protein subcel-
lular localisation by using computational methods to identify those recognisable features. Several
bioinformatics tools and algorithms have been developed to identify extracellular protein sequences

based on their primary amino acid sequence data.

TMHMM

TMHMM [Krogh et al., 2001] is one of the most widely-used tools to detect and locate TMH and
the orientation of transmembrane proteins in the lipid-bilayer membrane. TMH can be predicted
due to their distinctive patterns of hydrophobic and polar regions within the sequence, which allows
pattern searching and matching. TMHMM implements its predictions through a Hidden Markov
Model (HMM) algorithm.

LipoP

LipoP 1.0 [Juncker et al., 2003] is another signal peptide identification tool that predicts the presence
of a signal peptidase II (SPII) cleavage site found in lipoproteins, which SignalP is not capable of
detecting. The tool successfully employed a HMM to distinguish SPII cleavage sites from signal
peptidase I (SPI) cleavage sites. LipoP is trained with Gram-negative bacterial protein sequences
from organisms belonging to the two phyla Proteobacteria and Spirochetes. However, the tool is
also capable of predicting Gram-positive bacterial lipoproteins [Rahman ef al., 2008]. LipoP can
predict lipoproteins at an accuracy rate of 96.8% and 92.9% from a test set of Gram-negative and

Gram-positive bacteria, respectively.
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SignalP

SignalP [Dyrlovbendtsen, 2004] is a tool for detecting a protein targeting feature on an amino acid
sequence. Precursor proteins targeted to the Sec secretory pathways normally have an N-terminal
signal peptide that can be detected by SignalP. These proteins are typically characterised by an N-
terminal signal that can be recognised and cleaved by SPI. The tool provides two different options
for running the analysis: Neural Network (NN)- and HMM- based algorithms. The tool has been
trained with several bacterial and eukaryotic proteins, but not with archaeal proteins. It is reported
that SignalP-HMM is more sensitive in detecting signal peptides than SignalP-NN. Conversely,
SignalP-NN has a higher accuracy in predicting correct cleavage sites [Kall, 2004]. However, not
every protein predicted to have a signal peptide is identified as an extracellular protein. For example,
some proteins might have other retention signals, such as the ER retention signal, which holds the

protein in the ER in eukaryotes.

Phobius

Phobius [Kall, 2004] utilises a HMM to combine the prediction of N-terminal signal peptide (SP)
and TMH regions. This tool was developed to improve the accuracy of the discrimination of those
two hydrophobic features. Determining the presence of a SP also provides the correct prediction of
the transmembrane topology as it dictates that the N terminus of the mature transmembrane protein
is extracytoplasmic. Since SP and TMH are highly similar, SPs were often mis-predicted as TMH by
tools particularly trained to predict TMHs. When applied to the well-annotated human and E. coli
proteomes, Phobius has proved to drastically reduce the misclassification of the two hydrophobic
classes compared to SignalP and TMHMM. Phobius yielded fewer misclassifications of TMHs as
SPs and vice versa in relation to the compared methods. However, Phobius is less sensitive than

SignalP when predicting SP and cleavage sites.

Protein subcellular localisation predictors

BaCello

BaCelLo [Pierleoni et al., 2006], based on decision tree of binary Support Vector Machine (SVM),
has been shown to be one of the most efficient predictors for the cellular location of proteins in

eukaryotes, particularly, in animals, fungi and plants. The tool implements a specific predictor for
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individual eukaryotic kingdoms. Proteins are divided into five classes: secreted, cytoplasmic, nu-
clear, mithocondrial and chloroplastic proteins. The advantage of BaCell.o over other predictors is
that it considers information from the whole sequence as well as from both the N- and C-termini. It
also takes extracellular-exposed sequence features into consideration. It outperforms other methods

in predicting eukaryotic secreted proteins in terms of accuracy [Casadio et al., 2008].

PSORTD

PSORTDb [Gardy, 2004] is another well-known computational tool that uses a sequence-based SVM
method for predicting bacterial protein localisation. The tool implements a BLAST homology search
of proteins of known localisation. It also implements a set of analytical modules that run indepen-
dently to scan for particular signals, anchoring and extracellular-exposed sequence features (all fea-
tures described in Table 2). PSORTDb has been reported as the most precise tool for the identification
of cellular locations of both Gram-positive and -negative bacterial proteins [Gardy and Brinkman, 2006]

[Gardy, 2004].

At the time of this study, the tool requires ‘root’ access in order to install successfully on Linux
machine. Thus, it was not feasible to be run within a high-throughout framework, where a tool

would have needed to be installed automatically prior processing.

PSORTdb

PSORTdb 7 is a web-accessible data resource for bacterial protein subcellular localisation [Rey et al., 2005].
The database contains two sublocalisation databases, ePSORTdb and cPSORTdb. The former database

is composed of subcellular localisations of proteins based on an experimentally verified data set. The

latter database contains a pre-computed data set of proteins with their predicted subcellular localisa-

tions.

2.8.2 Detection of Protein signatures

One method to infer protein functions from a primary protein sequence is to search for known char-
acterised features such as motifs, patterns or functional domain regions. To date, several protein
signature recognition approaches have been developed to fulfil different aspects of sequence analysis

resulting in many independent algorithms and databases. These resources have different strengths

"http://db.psort.org, accessed 10th May 2010
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depending on the underlying analysis methods and objectives they were designed to meet. There-
fore, one of the best strategies for protein sequence analysis is to combine the search results from all

of these different approaches and databases.

InterProScan

InterProScan® [Zdobnov and Apweiler, 2001] is an application that integrates several protein signa-
ture recognition resources into one tool in order to identify previously known protein signatures. The
protein signatures can be detected by InterProScan include protein domains, families, and func-
tional sites deposited in the InterPro member databases. These member databases include SU-
PERFAMILY [Wilson et al., 2009], PROSITE [Hulo et al., 2006], Pfam [Finn et al., 2010], PRINTS
[Attwood, 2002], ProDom [Corpet et al., 1999], PIR-PSD [Barker et al., 1999], SMART

[Schultz et al., 2000], TIGRFAMs [Haft ef al., 2001] and HAMAP [Lima et al., 2009]. InterProScan
also provides a function to look up corresponding InterPro [Hunter et al., 2009] and Gene Ontology
[Ashburner ef al., 2000] annotations on a given protein sequence. The tool is available in both a
web-based form and a download for a local installation. InterProScan is a Perl-based program that
chains together other existing protein signature recognisers and relevant tools such as HMMER, Pat-

ternScan, ProfileScan, FPrintScan and gapped-BLASTP.

HMMER

HMMER’ [Eddy, 1998] is a software package for protein sequence analysis. The software includes
several functions built on the basis of HMM protein profiles. HMMER provides functions for: con-
structing an HMM-profile from a sequence alignment; searching a sequence or a sequence database
for particular HMM-profiles. The software is used as a core utility in the well-known public protein

family databases such as Pfam [Finn et al., 2010] and InterPro [Hunter et al., 2009].

2.8.3 Profile-profile comparisons

Protein sequences sharing < 30% identity tend to have significant functional differences [Todd er al., 2001].
However, the structure of the proteins can still be inferred for very distantly related proteins

[Zheng et al., 2005]. Therefore, for remotely homologous proteins, the structures and folds of a pro-

8http://www.ebi.ac.uk/Tools/InterProScan/, accessed 10th May 2010
9http://hmmer.wustl.edu/, accessed 10th May 2010
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tein can be used to infer of their structural models, potential active sites and substrate binding regions

[Soding et al., 2005].

HHpred server for remote homolog detection and 3D structure prediction

HHpred'? is a tool for protein sequence homology detection and structure prediction based on the
pairwise comparison of protein HMM profiles [Soding, 2005]. While most conventional sequence
search methods search sequence databases such as UniProt or the NR, HHpred searches alignment
databases such as Pfam, InterPro or SMART. The use of the HMM-HMM comparisons provides
sensitive results for finding remote homologs. The tool is easy to use and is faster than other protein

structure prediction servers (e.g. Profile Comparer, COMPASS and PROF_SIM).

2.8.4 High-throughput data analysis in bioinformatics

The last decade has seen a rapid increase in the number of completely sequenced genomes. This
tremendous amount of sequence data is flooding into genome databases (see Section 2.1), neces-
sitating the development of efficient tools for comparative genome sequence analysis. To utilise
the wealth of genomics data, a high-throughput computational framework is required to support se-
quence analyses and workflow enactment [Ahmed, 2009]. Grid and Cloud computing technologies
permit large numbers of computers to be used in parallel [Foster et al., 2001] [Andrade et al., 2006]

[Flanagan, 2009].

Grid and cloud computing

Grid computing permits multiple institutions to combine and share their computing resources

[Foster et al., 2001][Baker et al., 2002]. Users at a different institution are able to migrate their com-
putational work to take advantage of the spare capacity available at another institution [Frey ef al., 2002].
However, Grids are typically difficult to set up and maintain [Ibrahim et al., 2008]. In particu-
lar, security concerns often limit the ability of remote users to install domain-specific software
[McNab, 2003]. Users are typically given a restricted account that prohibits them from machine

administration and limits their resource usage [McNab, 2003].

In contrast to Grid computing, Cloud computing utilises remote computational power and is provided

on a commercial basis. Cloud computing providers generally do not provide access to the physical

Ohttp://toolkit.tuebingen.mpg.de/hhpred, accessed 10th May 2010
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hardware, rather, end-user software is executed within one or more virtual machines [Xu, 2010]
[Smith and Nair, 2005]. Virtual machines (VMs) are software processes that present a virtualised

hardware environment to applications [Smith and Nair, 2005].

Several VMs may execute at simultaneously on the same physical machine. The use of VMs offers a
number of advantages to both the provider and the user. For example, providers may offer numerous
configurations of virtual machines with different specifications in terms of number of CPUs or RAM.
Security risks are also migrated through the use of isolated VMs. For example, access to other users’
processes or files are not possible. Moreover, VMs allow users to have complete control over their
environment, permitting specialised software to be installed with no restrictions. Another advantage
of Cloud computing is the ability to expand and reduce the number of rented CPUs or storage capacity

as required [Xu, 2010].

Both Grid and Cloud technologies allow execution of high-throughput parallel computational tasks
over distributed computers on a network. As the size and complexity of a distributed computing sys-
tem increases, there is an increasing requirement for automated management systems to assist when
inevitable hardware or software component failures occur. Many Grid middleware implementations
such as Microbase [Wipat et al., 2004][Sun et al., 2005] and Globus [Foster and Kesselman, 1997]
[Foster, 2006] provide useful job management features such as notification services, workflow enact-

ment, resource discovery and provenance tracking.

Bioinformatics workflow

Complete genome sequence data are released rapidly and ever more genome sequencing projects are
getting underway. Comparative genomics of large-scale data sets across taxonomic groups facilitates
a better understanding of the structural diversity and evolutionary origin of proteome from various
perspectives. To establish a set of putative extracellular proteins from different taxonomic groups, a
number of approaches or tools would be required to predict a wide variety of secretory targeting sig-
nals, transmembrane regions and other well-characterised extracytoplasmic protein signatures. Such
a problem can be addressed using an e-Science approach where a computational infrastructure is
used to aid the integration of heterogeneous data sets or software through scientific workflows imple-
mented across a distributed computing framework [Craddock et al., 2008][Ahmed, 2009]. Workflow
is an approach that allows connections between a set of different execution units. Various tools can
be chained together and executed orderly one after another. Output from one step can be parsed and

passed to another step automatically.
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However, several issues must be considered when multiple independent tools are combined for an
efficient workflow. These issues include data compatibility between programs, and the computational
and logistical requirements of executing standalone programs or multiple instances of programs at

each workflow step.

Several workflow construction tools have been developed considering the issues above, such as, Tav-
erna. Taverna provides an alternative to ‘cut and paste’ content integration between bioinformatics

analysis websites, and reduces fragile screen-scraping integration scripts [Hull er al., 2006].

Taverna

Taverna'! [Hull ez al., 2006] is an application that provides a one point service for constructing and
running bioinformatics workflows. The application makes use of Web Service

[Neerincx and Leunissen, 2005] to enable the integration of programs and data sources. Web ser-
vices are an accepted industry standard that permits well-defined programmatic access to data sources
[Neerincx and Leunissen, 2005]. The services provided by autonomous third parties can be progra-
matically accessed over the network via Web Services. Therefore, the selected tools and databases
do not need to be installed locally on the user machine. Taverna also provides a Graphical User
Interface (GUI) to facilitate constructing and enacting workflows, as well as browsing the output of

workflows.

Microbase

Microbase [Flanagan, 2009][Wipat et al., 2004] is an event-driven, service-oriented, Grid system ca-
pable of executing analysis pipelines automatically. Microbase provides a modular framework that
facilitates the development of applications, allowing them to utilise Grid and Cloud resources. This
component-based computational system is designed to provide an environment for analysing large-
scale data in a high-throughput, distributed fashion. The system enables complex analysis pipelines
consisting of multiple analysis tools to be constructed. The framework also allows efficient au-
tomation of various steps of the analysis processes involving a research study, facilitating systematic

analyses.

Small-scale bioinformatics analyses may be performed manually in an ad-hoc manner by a researcher

using a single desktop computer. However, as the amount of data needing to be analysed increases,

Uhttp: //www.taverna.org.uk/, accessed 20th July 2010
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an automated, systematic approach becomes more desirable. The Microbase system provides pro-
grammers with a means to construct highly parallel analyses that can execute within Grid and Cloud

environments.

Microbase applications consist of one or more modules, termed ‘responders’. A responder consists
of two parts: a server-based program and a mobile program capable of migrating between comput-
ers. The server-based part is typically a Web Service and is responsible for task scheduling and
data management operations. For example, the server-based component may maintain a relational
database and service queries for data from other responders. The mobile program is responsible for
implementing computationally-intensive operations associated with generating the data set managed
by a particular responder, such as executing a bioinformatics application. Multiple copies of these
‘compute jobs’ may exist on multiple machines simultaneously, permitting a large computational

task to be performed in parallel [Flanagan, 2009].

Microbase consists of four main components [Flanagan, 2009]:

e A set of responders to perform the computational work and data management functions re-

quired by an analysis step.
e An event-based notification system to co-ordinate a set of responders.

e A job server that matches jobs to available machines. The job server also handles job failures

if they occur, and re-schedules failed jobs.

e A resource system stores output files produced by bioinformatics applications. The resource

system is also responsible for distributing program and data files to computers as necessary.

The Microbase architecture is shown in Figure 2.9. Each component will now be discussed in more

detail.

Microbase notification system

The notification service is responsible for informing responders of new events as they occur. For
example, an event could be created as a result of a new genome sequence becoming available for
analysis, or that a particular bioinformatics analysis task has completed. Therefore, a notification
event can be used as the trigger to start a set of computational work. The completion of that work
may then may be reported to other responders as a new notification event, which might trigger further
analyses to run. This approach allows for processing pipelines to be constructed that are composed

of a number of responders (see Section 2.8.4).
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Figure 2.9: Overview of the Microbase architecture. The notification system co-ordinates all system pro-
cesses, including the core Microbase services as well as user components. Users may add their own domain-
specific functionality to the system via components termed responders. Responders react to notification events
they are subscribed to. For example, if a BLAST or InterProScan responder receives a ‘new genome available’
message, then they will react by requesting that the appropriate computation is performed. This is achieved by
sending a ‘task description’ message, which is the forwarded to a Microbase job server. The server will then
assign an appropriate number of Grid or Cloud machines to complete the work. Program executable files and
data files are transferred to Grid and Cloud machines from the Microbase resource storage system. The file
transfer uses the BitTorrent protocol to efficiently transfer large files such as multi-gigabyte blast databases.
For example, a large cluster of machines can have a dynamically installed blast database in just a few minutes.
(Figure adapted from [Flanagan, 2009])
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Microbase responders

Microbase responders perform computational work and data management functions required by
bioinformatics tools. A responder is an application-specific management component. Each respon-
der wraps all the functionalities needed for a particular process including: an event listener for new
notifications; a compute job; and task splitter and distributor. The key concept of having such a
modular user-specific component like a responder is to allow a dynamic workflow to be formed and

to enable modification of the structure of that workflow over time.

A responder is executed corresponding to relevant notification events. Responders can communicate
with each other via an event-based notification system. Messages sent by a responder are typically
used to inform other responders of new data available to the system from an external source, or
from the completion of a processing operation. These messages can therefore be used to co-ordinate

multiple responders, permitting complex workflows to be formed.

A responder is typically responsible for handling the needs of a single analysis application. In order to
execute multiple analysis tools, multiple responders would need to be written. The set of independent

responders can be co-ordinated via event notifications to form the analysis pipeline.

Each responder contains a Web Service, allowing generated data to be exposed to other responders,

or to remote users and machines, located anywhere on the Internet if necessary.

Microbase job server

Job server component schedules and tracks jobs requested by a responder. Each job is implemented
by available machines in the computing environment, which are efficiently identified through the
Microbase job enactor. The job server provides feedback such as job statuses. The job server may

relaunch jobs if they fail, or sends out a notifications when jobs successfully complete.

Microbase resource system

The Microbase resource system is a permanent archive for software and data items, as well as a
scalable content distribution system. Every item is stored with a unique identifier, as well as a set of
tags that facilitate searching for content. For instance, a typical query may need to locate a particular
software package, with a certain version number for a particular operating system. The resource
system is designed to store every output file produced at each stage of a workflow. The developer of

Microbase believed that it was necessary to store each version of each application or data item for
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consistency and analysis repeatability reasons. The resource system is scalable, utilising a peer-to-

peer transfer protocol based on BitTorrent [Cohen, 2003] transfers.

2.9 Statistical analyses to correlate phenotype to genotype

2.9.1 Univariate analysis

The pairwise significance test is one of techniques used to find whether there is a statistically signif-
icant difference between two groups and that this difference is not likely to occur by random chance
alone. The Chi-square test is typically used to compare two independent categorical variables. For
example, to test whether a gene or protein domain is overrepresented in organisms from a given envi-
ronment, the two independent variables here would be a summary profile of the gene from different

sets of organisms from a given environment versus those from other environments.

Hypergeometric distribution

The hypergeometric test is a discrete univariate probability distribution. It is a statistical significance
test. The technique is similar to the chi-squared test for hypothesis test, but is more accurate for small
numbers (<6) [Lozupone et al., 2006]. The equation for the hypergeometric distribution is:
. = (DG
p(i>m|N,M,n)= Z R
= G)
As an example, to determine the probability of finding a genotypic feature in an organism with an
phenotypic feature by chance: N is defined as the total number of organisms and n is the number of
organisms with a given genotypic feature. M is the number of organisms expressing the phenotype,
and m is the number of organism that have both the genotypic feature and also express the phenotype.

The function provides the probability of finding a protein signature or domain in an organism by

chance.

To identify the direction of the association, the mean value (i) of the hypergeometric distribution
can be used as a reference. The mean value can be calculated by:

w=nxM/N

where n, M, N and m can be referred from the previous equation. The relationship of the two variables
is a positive correlation when m is bigger than p. On the other hand, the relationship is negative or

corresponds to an anti-correlation if m is smaller than u [Liu et al., 2006].
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Propensity score

Propensity score @ [Little and Rubin, 2000] is the probability of a unit in being assigned to a partic-

ular condition given a set of known covariates.

The propensity score which is referred to in this thesis was obtained from [Jim, 2003]:

o) (l) __ fraction of genomes with phenotype f that contain proteini __ t.y/Ty
f - fraction of genomes that contain protein i ~ n/N

where Ty is the number of genomes that exhibit a phenotype f, N is the total number of genomes, 7; ¢
is the number of genomes that both exhibit phenotype f and contain protein domain i, and #»; is the

total number of genomes that contain protein domain i.

2.9.2 Bivariate analysis

Bivariate analysis is a statistical technique that measures two variables at a time. Correlation is an

example of bivariate analysis which finds the strength of an association between two variables.

Pearson’s correlation coefficient

Pearson’s correlation coefficient is a widely used statistical technique to measure the degree of a
linear relationship between related variables. It is one of the most common statistical measures of

correlation and most successfully used method for finding genotype-phenotype association.
The formula of Pearson’s correlation coefficient (r) is defined as:

N
Z (le X )(ij - Yk)
j=1

N N
Z Z Yie — ¥i)?

Jj=1

Tik =

where r;; is the correlation strength between i and k. ¥ and X are the sample means of X and Y. 7y,
ranges from +1 to -1. The closer the correlation is to either +1 or -1, the stronger the positive and
negative relationships, respectively. A value of r;, near to 0 means that no correlation exists between

the two variables i and k.
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Mutual information

Mutual information is a another statistical technique used to estimate the association between two
random variables by measuring the mutual dependence of the two variables. The unit of this mea-
surement technique is naturally normalised between 0 and 1 bits. The lower the bit value, the less
information dependency between the two variables, whereas a high bit value implies a strong as-
sociation between the variables. The Mutual information can be applied to both continuous values
or discrete values [Slonim et al., 2006]. Slonim et al. (2006) use the empirical mutual informa-
tion to estimate mutual information between genes and phenotypes. As an example of estimating
mutual information between a protein domain and a phenotype of interest: N is an 2 X 2 count ma-
trix defined by given that a gene phylogenetic profile and a phenotype profile are known. N(1,1)
is the number of taxa with phenotype of interest and the protein domain. N(1,2) is the number
of taxa with the phenotype but without the protein domain. N(2,1) is the number of taxa without
the phenotype but with the protein domain. N(2,2) is the number of taxa without both the phe-
notype and the protein domain. The empirical mutual information between the two variables is

[Slonim et al., 2006][Cover and Thomas, 1991]:

) = § pny)
1(X:Y) —yeyg,exp( ,y)log(p(x p(y))

where p(x,y) = N(x,y)/sumy;yN(x,y) , p(x) = p(x,1) + p(x,2), and p(y) = p(1,y) + p(2,).
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Chapter 3

Development of a High-Throughput

Sequence Analysis Workflow

3.1 Introduction

Genome databases such as GenBank and UniProt have been growing at an exponential rate for the
last few years. The existing large number of complete genome sequences frequently requires re-
searchers to automate sequence data analyses in a systematic manner. The project described in
this thesis constitutes a large-scale comparative genomics study including approximately 3 million
protein sequences from more than 800 organisms whose complete genomes were available at the
beginning of the project. Genome information from all three domains of cellular life including bac-
teria, archaea and microbial eukaryotes are of interest in this study. Analysis at this scale requires
an automated, systematic approach in order to be feasible [Riley ef al., 2007] [Decker et al., 2001]
[Walter et al., 2009].

There are typically three considerations in the design of a high-throughput analysis: the ability to
co-ordinate multiple analysis tools and data flow between tools; high level data management to
ensure the completeness of result databases; and the overall computational speed. The establish-
ment of analysis workflows enables a sequence of independent software packages to be chained
together [Hull ef al., 2006]. Many approaches have been developed to reduce the computational
time of large-scale data of analysis tasks [Foster et al., 2001][Frey et al., 2002][Xu, 2010]. In order
to execute all of the required computational tasks within an acceptable time frame, highly parallel
computational techniques such as Grids [Foster ef al., 2001] or Clouds [Xu, 2010] are often em-

ployed [Karo ef al., 2001] [Walter et al., 2009] [Matsunaga et al., 2009]. These technologies allow
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computationally-intensive work to be distributed and shared amongst a cluster of computers.

Several existing bioinformatics tools were required to facilitate the investigation of the various fea-
tures of protein sequences. As a result, the project necessitated large amounts of computational time
to analyse the very large input data sets involved. Several workflows were developed to perform
these analyses utilising Grid and Cloud computing technologies, and to integrate the resulting data.
Workflows used to orchestrate several bioinformatics tools on distributed-computing systems are de-
scribed in this chapter. In later chapters (Chapter 4 and Chapter 6), the resulting integrated data sets

are analysed in order to formulate biological hypotheses.

3.1.1 Objectives

One of the main aims of the work presented in this thesis was to analyse a large number of pro-
tein sequences for the identification of features facilitating the mucosal lifestyle of microorganisms
(see Section 1.2, 1.3). The computational phase of the project involved the implementation of a
bioinformatics analysis workflow using a distributed-computing system. The objectives covered by
this chapter facilitate this aim by addressing the practical and logistical challenges associated with

building and maintaining large heterogeneous data sets. The objectives covered by this chapter are:

e to design and implement a bioinformatics workflow that combines various computational anal-
ysis processes in order to automate a large-scale processing of sequence data for the identifi-

cation of extracytoplasmic proteome and sequence features;

o to execute the workflow by using Cloud and Grid computing technologies in order to investi-

gate their suitability for large-scale bioinformatics analyses;

e to construct a set of interconnected databases in order to allow new knowledge to be extracted
from the raw workflow output data. These databases will be used as a foundation from which

further statistical analyses will be performed (discussed further in chapters 4 and 6).

3.2 Methods

A distributed computational framework called Microbase (see section 2.8.4) was employed to con-
struct a bioinformatics framework for genome data analysis. Microbase fulfilled the requirements
of this project since it facilitates the construction of bioinformatics workflows as well as providing

a distributed computing environment for processing multiple computational tasks in parallel. The

41



framework allows the use of idle desktop computers as well as dedicated servers for data processing.
Moreover, Microbase allows the use of relational databases as a structured data store to store out-
puts produced by an encapsulated bioinformatics tool. Therefore, Microbase was a highly suitable

framework for the large-scale analyses required by this project.

More than 3 million protein sequences were analysed by six different bioinformatics tools including:
TMHMM, SignalP, LipoP, InterproScan, BLASTP and HMMER. A relatively large amount of result
data was expected to be generated from the high-throughput computational workflows. It was there-
fore necessary to establish an efficient and organised data storing process. Relational databases were

used to store the results from each tool; one database per tool.

To construct a bioinformatics workflow, the project utilised a key functionality provided by Mi-
crobase, the event-based notification system (see Section 2.8.4). The workflow developer creates
components, called responders. Each responder encapsulates a user-specific functionality, for exam-
ple, bioinformatics tool such as BLAST, HMMER) (see Section 2.8.4). Each responder is registered
with the notification system such that it activates upon notification of specific event(s). A responder
is only triggered by the specific types of notification message(s) that it is registered to receive. A
message published by one responder can activate one or more responders that have registered their
interest in that event. As a result, an automated workflow can be established permitting data to flow

from one responder to the next. In the rest of this chapter, the following issues are discussed:

e an overview of the project’s sequence analysis workflow;

e 2a detailed discussion of the responders developed to perform various analysis processes and

the bioinformatics tools they encapsulated;

e an introduction to the relational database for storing the analysis results produced by the work-

flow, and its role in providing biological knowledge from the integrated result sets.

The Microbase system was deployed on Newcastle University servers as well as ordinary univer-
sity cluster room PCs. Amazon EC2 Cloud' resources were also used to execute automated high-

throughput scientific workflows in a systematic manner.

3.2.1 Opverview of the sequence analysis workflow

A series of project-specific responders were developed to encapsulate several bioinformatics tools for

performing various sequence analysis tasks (Figure 3.1). The overall project workflow was designed

1http ://aws.amazon.com/ec2/, accessed 15th December 2010
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to carry out a number of functions, including

e The automatic retrieval of sequence data from a public genome resource (NCBI %) and gener-

ation of a set of genomics input data for the downstream analysis processes.

e Processing the input sequence through various bioinformatics tools in order to predict protein
subcellular localisations, and to recognise protein domains. Protein similarity searches were

also performed.

e Extraction and transformation of relevant output from bioinformatics tools to feed into the later

stages of manual analysis involving various statistical approaches.

3.2.2 Design pattern for project-specific responders

Every responder developed for this project is comprised of two main components: a server-based data
management component that includes a Web Service and database; and a distributable computational

unit that executes on multiple worker machines.

The server-based data management component runs on dedicated hardware. This component re-
sponds to notification events which initiate the scheduling of computationally-intensive jobs

[Flanagan, 2009]. A ‘job’ represents an independent unit of computational work, such as a single
BLAST command line execution, to be distributed to and processed by a single worker machine.
A single notification event may result in the scheduling of many jobs. For example, the addition
of a single new genome sequence might trigger hundreds of BLAST executions in order to add to
an all-against-all comparison data set. In addition to job scheduling, the server-based component is
also responsible for the management of a responder-specific structured data store used to store the
output of its associated bioinformatics tool. Microbase employs Web services to mediate access to
the structured database, enabling analysis results to be parsed directly into the data storage for future

use [Flanagan, 2009].

3.2.3 Primary data acquisition and storage

Much bioinformatics data is made available in the form of free-form, or semi-structured text files.
These file are straightforward for human to read, but are inefficient for computers to query. In order

to extract the information stored in a flat file for storage in a structured database, the flat file must

2yww.ncbi.nlm.nih.gov, accessed 10th August 2010
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Figure 3.1: Summary of the protein sequence analysis workflow implemented as a set of Microbase
responders. Project-specific Microbase responders are presented as blue squares. All responders communi-
cate with their associated relational databases (purple cylinders) via their respective Web Service. The overall
workflow is divided into three stages: (1) input data preparation; (2) large-scale parallel processing; (3) result
filtering. The first stage of the workflow involves the Microbase ‘FileScanner’ and the ‘GenomeParser’ respon-
ders. These responders perform an automated retrieval of data from an FTP site, extract and parse the input
data into a relational database called the GenomePool (discussed in section 3.2.4). The second stage can be
divided conceptually into three pipelines for sequence data analysis. The responders in this stage encapsulate
various bioinformatics tools, such as TMHMM, InterProScan, and BLASTP, to perform different logically-
related and complementary analyses of large-scale input sequence data. The final stage is then invoked to
extract the relevant results for further analysis steps. These results are produced from the three pipelines in
the previous stage. An example of the result-filtering database, called PredExtDB, is used to store a list of
predicted extracytoplasmic proteins and their corresponding information (see Section 3.2.4). Each responder
developed for the workflow is described in more detail in Sections 3.2.3, 3.3 and 3.3.3.
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be processed by an appropriate parser. GenBank [Benson er al., 2009] provides a large repository of
genome information. Much of this data is made available through files on NCBI’s FTP site. However,
the information contained within GenBank-formatted files is difficult to obtain due to the plain-text
formatting (flat-file structure). For example, if the translation of a particular coding region was
required, each file would need to be scanned until a match was found. Therefore, there is a need to
extract data from the text file and transform the information into a structured form, enabling efficient
data querying. In this section, the processes of obtaining genome data files and reformatting the data
using the Microbase-provided and project-specific responders are described. These processes are

termed ‘FileScanner’ and ‘GenomeParser’, respectively.

Genome data acquisition

In order to obtain genome data files from an FTP site, an existing Microbase responder called the
FileScanner responder was utilised. FTP? is a protocol allowing computers to transfer files over
a network, such as the Internet. The FileScanner responder is responsible for detecting the arrival
of a new file on an FTP site and for passing the file into the Microbase resource system. In this
project, the FileScanner responder was configured to search for GenBank-formatted (gbk) files on
a local FTP site. The local FTP site holds GenBank files taken from the Reference Sequence (Ref-
Seq) [Pruitt ef al., 2009] NCBI FTP site 45,6 (accessed 11 February 2009). Genome fragments ac-
quired for use by this project include complete genome sequences of bacteria and archaeal chromo-
somes, plasmids, and eukaryotic chromosomes and their organelle genomes (if available). RefSeq
provides a non-redundant, curated set of sequences for transcripts, proteins and genomics DNAs

[Pruitt et al., 2005][Pruitt et al., 2009].

The complete or draft genome sequence data for some known mucosa-thriving eukaryotic microor-
ganisms were not available on the NCBI FTP site. The GenBank-formatted files for these organisms
were missing. Organisms with missing data files included: Entamoeba histolytica HM-1:IMSS, E.
dispar SAW760, Giardia lamblia ATCC 50803, Trichomonas vaginalis G3, Cryptococcus neofor-
mans var. neoformans B-3501A, Coccidioides immitis RS, Aspergillus terreus NIH2624, A. clava-
tus NRRL 1, Leishmania major strain Friedlin and L. braziliensis MHOM/BR/75/M2904. These
genome sequences were only accessible via the NCBI Web interface which is not ideal for large-scale

data retrieval due to its unreliability. An additional script was then developed in order to iteratively

Shttp://www.fags.org/rfcs/rfc959.html, accessed 20th November 2010
4ftp://ftp.ncbi.nih.gov/genomes/Bacteria, accessed 11st February 2009
Sftp://ftp.ncbi.nih.gov/genomes/Fungi, accessed 11st February 2009
Sftp://ftp.ncbi.nih.gov/genomes/Protozoa, accessed 11st February 2009
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retrieve genome information from the web interface using Entrez Programming Utilities (E-utilities)’
to complement the bulk of the data available in GenBank files. More than 100 records of contigs or
scaffolds were available for some organisms, so an additional step was required to merge those frag-
ments into fewer number of files to reduce the workload in the analysis workflow. For example, the
protist T vaginalis G3’s draft genome sequence encodes approximately 59,000 protein sequences
and is one of the most difficult to assemble due to genome repetition by a large number of massive
gene duplications [Carlton et al., 2007]. More than 20,000 files (contigs) were found to be derived
from the T. vaginalis genome. A smaller set containing 17 manually concatenated files in GenBank

format were then generated. These 17 GenBank-formatted files represent the 17,290 contigs.

The GenBank files downloaded from the FTP site were pooled together with the files generated
through querying the Web interface. For convenience, these files were placed into a locally-hosted
FTP site so that the Microbase FileScanner responder could be used without modification. The files
in this local FTP site were then detected by the FileScanner. For each GenBank file found, an event
notification message was fired. The downstream responders were then notified of the availity of
new data. In this project, messages from the FilScanner responder were configured to activate the

GenomeParser responder (more detail see Section 3.2.3).

Data extraction by GenomeParser Responder

The GenomeParser responder is responsible for extracting genome information from the plain text
files and storing it within an indexed, structured database for convenient access from other responders
or users. A structured in-house database, called the GenomePool, was developed to store all of
the genome information processed by this responder (see Section 3.2.4). A GenBank-formatted
genome file contains genome sequence information required for the project (details listed below).
For this project, protein sequence information is the centre of interest. The content in a GenBank-
formatted (.gbk) file is structured in a way that is easily readable for humans. The information is also

programmatically accessible with an appropriate parser.

The function of the GenomeParser responder is to await ‘new file’ event notifications received from
the FileScanner responder. When a new GenBank file is detected, the GenomeParser schedules a
compute job to run, which is responsible for parsing the plain text GenBank file and inserting the
contents into the GenomePool database (see section 3.2.4). Multiple files may be parsed at the

same time, allowing a degree of parallelisation. In addition to maintaining a structured data store,

Thttp://www.ncbi.nlm.nih.gov/books/NBK25501/, accessed 20th October 2010

46


http://www.ncbi.nlm.nih.gov/books/NBK25501/

the GenomeParser also generates two FASTA-formatted files for each GenBank file parsed: one
containing the whole genomic DNA sequence of a given genome file, and another containing gene-
coded protein sequences. The genomic DNA sequence was extracted from the ‘ORIGIN’ section in
the GenBank-formatted file, while protein sequences were extracted from ‘translation’ tagged lines
within ‘CDS’ sections. However, if an amino acid sequence on the ‘translation’ line was absent from
the GenBank file, then a RefSeq accession number for that gene product sequence was used as a
query to automatically fetch a corresponding gene-coded protein sequence from the Web interface to
RefSeq database. The generated FASTA files were stored in the Microbase resource system, ready

to be used by other responders.

Data set extraction

The GenomeParser parses GenBank-formatted files, and extract information relevant to this project,

which is then inserted into the GenomePool database. The information extracted is listed below:

o Metadata of a genome sequence: RefSeq accession number, version number.

e Taxonomic information: a scientific name of a source organism with a corresponding NCBI

taxon identifier and taxonomic lineage.

e Coding sequence information: start and stop codons, gene names, locus tags, gene ids, gene-

coded protein accessions and annotations;

e Sequence data: amino acid sequences of gene products, and nucleotide sequence(s) of the

genomic DNA for a given genome fragment.

A GenBank-formatted genome file normally contains one genomics element. This genome sequence
could be a complete plasmid genome, a complete chromosome, an eukaryotic organelle’s genome,
or a contig or scaffold of a draft genome. The data representing a single organism can therefore be
spread across more than one GenBank file. For example, two GenBank files exist for to Bacteroides
fragilis NCTC 9343: one is the complete genomic DNA sequence and another is a plasmid DNA

sequence.

GenomeParser notification message contents

Each time a GenBank file has been successfully parsed by the GenomeParser, a ‘new genome avail-
able’ notification event is published by the GenomeParser responder. This message is received si-

multaneously by registered downstream analysis responders (see section 3.3). The content of a ‘new
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genome available’ message consists of information from the GenBank file as well as metadata from
the GenomePool database that may be used by responders to trigger further down stream analy-
sis. The GenBank-extracted information provides biological meaning and standard references for a
genome fragment, whereas the GenomePool-generated metadata is useful as an internal reference
for a given sequence for use by the Microbase system or intermediate databases. For example, the
message content includes a RefSeq accession number which is a standard identifier and can be used
to gain more information about a sequence file from the public NCBI database. The message also
contains a GenomePool-generated protein-FASTA file identifier which is used by several Microbase
components as a reference to a particular FASTA-formatted file of protein sequences. The complete

content of a GenomePool notification message are as follows:

Message contents from a GenBank record

The contents listed in this section were obtained directly from the GenBank-formatted genome file.

e RefSeq accession® and version number”: this accession is provided by NCBI as a unique iden-
tifier for each genome sequence in the RefSeq database. A version number indicates the current
revision of the file. A new version number is assigned by NCBI once a new set of annotations
were added or any change to the sequence data was made. These identifiers were extracted
from a GenBank-formatted file where lines were tagged with ACCESSION and VERSION, re-

spectively.

e Taxon identifier: a reference number that specifies the taxonomic ranking of a given organism

in the NCBI taxonomy database.

e Organism name and taxonomic linage: this name represents a scientific name of an organ-
ism from which the genome was derived. The taxonomic lineage provides a summary of the
evolutionary origin of the organism. This information was extracted from lines tagged with

ORGANISM in a GenBank file.

e Genome description: this field was extracted from the DEFINITION tagged line from a GenBank-
formatted file. The field provides a brief textual description of the genome sequence, including
information such as source organisms, sequence names and a human-readable description of

the sequence’s functions.

8http://wuw.ncbi.nlm.nih.gov/refseq/key.html#accessions, accessed 20th October 2010
http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html, accessed 20th October 2010
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e Fragment type: this field was extracted from a GenBank file from the FEATURES section.
The type of genome fragment is usually noted within a subsection called ‘source’. By an
observation through all GenBank genomes files obtained for this project, genome fragment
types can be classified into the following category: genome; plasmid; chromosome; organelle;
and unknown. The ‘unknown’ type was assigned where no information of a genome fragment

type was provided in the file.

Message contents from the GenomePool database

In addition to data extracted from a GenBank file, the GenomrParser notification message also con-

tains the following fields from the GenomePool database:

e GenomePool fragment identifier: this identifier is generated by the GenomePool database once
a genome file has been stored. This fragment identifier can be considered as an in-house unique

identifier for a given genome file.

e Organism identifier: a reference number generated by the GenomePool database to be used
as an unique identifier of an organism whose genome sequences were stored in the in-house

database.

o File identifier: an identifier assigned by the Microbase FileScanner responder to each genome
file that was detected by the responder. Each identifier is therefore associated with an actual

file that has been deposited into the Microbase resource system.

o DNA FASTA file identifier: an identifier assigned by the GenomeParser responder to a FASTA
file containing the whole genomics DNA sequence for a given GenBank genome file. The file

was generated during the parsing process.

e Protein FASTA file identifier: an identifier assigned by the GenomeParser responder to a
FASTA file containing the gene-coded amino acid sequences derived from the genome. These
identifiers are used by downstream responders to retrieve a collection of protein sequences for

various sequence analyses.

3.2.4 GenomePool and analysis result databases

Several in-house relational databases were developed to deposit biological data produced by the

GenomeParser responder (see Section 3.2.3) and to store results from every sequence analysis tool
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used in the project. This section provides a detailed description of the main functionalities and prop-
erties of the project’s primary, secondary and tertiary databases which are populated by a series of
project-specific Microbase responders (see Section 3.3 for more details). The GenomePool is an in-
house primary database that was developed to store input sequence data to be analysed. Secondary
databases are used for storing the output produced from the project’s high-throughput analysis work-
flow (see Section 3.3). Finally, a database of predicted extracytoplasmic proteins is a tertiary data
store consisting of a selection of entries from the secondary databases. In this section, the primary
and the tertiary databases are described in detail, while the specific secondary databases are described

as necessary throughout the rest of the chapter.

GenomePool database

The GenomePool database (GPDB) is a structured relational database designed to be used as an in-
house repository of sequences and their annotations derived from public genome sequence databases.
Publicly available data files are read and information useful to this project is extracted and parsed into
the GPDB via the GenomeParser responder (see Section 3.2.3). The GPDB is a back-end data storage
for the GenomeParser responder. The GPDB has fields to store information contained in genome se-
quence files including the actual sequence data, associated metadata and annotations. Data stored in
the GPDB covers most of the information in the genome file including: locus tag, accession number,
version number, source organism, genome source (chromosome, plasmid, organelles), descriptions
of the genome fragment, the annotation of genes and proteins, and the actual sequence data. In
addition, the GPDB also stores all available information about genes and gene products including:
regions of biological significance and their annotations such as start and stop coding sequences, gene
orientation, gene name, locus tag, gene product, protein identifier and other sequence features an-
notated on the protein sequence. In this project, the GPDB stores sequence information read from

GenBank-formatted genome sequence data files, obtained from the RefSeq database.

The GPDB acts as a central database that links phenotypic information of microorganisms to various
aspects of their genotypic features predicted by various analysis processes. The GPDB may be used
either as a standalone repository of genome information, or as part of a larger pipeline. When used
within a processing pipeline, other pipeline components may query the GPDB via its Web Service

interface.
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Secondary databases

The secondary databases are responsible for storing sequence analysis results obtained from the
project’s analysis workflows. Data stored in these databases were obtained from various bioinfor-
matics tools implemented as part of the protein domain recognition pipeline (see section 3.3.1), ex-
tracytoplasmic protein prediction pipeline (see section 3.3.2) and the protein similarity searches (see
section 3.3.4). Each database was designed to store the output for a specific tool. These databases
provide links between sequence information or phenotypic profiles and various protein sequence fea-
tures. For example, number of transmembrane proteins across the taxa known to live in soil can be
summarised using the information in the TMHMM results database. In the TMHMM result database,
every protein with TMHMM prediction results are provided with their corresponding taxa of origin.
The taxa information can then be used to link the TMHMM prediction results with another database
that contains habitat information of the taxa. As a result, a mapping between microorganisms’ habi-

tats and the transmembrane sequence features can be made.

A database of predicted extracytoplasmic proteins

The predicted extracytoplasmic protein database (PredExtDB) is a structured relational database de-
veloped to store information about proteins with positive targeting and cell-surface anchoring feature
prediction. This integrated database stores results from various prediction tools in the extracyto-
plasmic identification pipeline (see Section 3.3.2). The strategy used to include proteins into the
PredExtDB is described later in section 3.3.3. The PredExtDB contains data of the predicted extra-
cytoplasmic proteins. Each result includes a protein accession, the name of the analysis tool yielding
the positive prediction and additional information about the result such as cleavage site, and topol-
ogy. Therefore, PredExtDB is a collection of candidate putative extracytoplasmic proteins including

transmembrane proteins, surface-associated proteins and secreted proteins (see Figure 2.8).

Instead of multiple queries, one per each result database of the prediction tools used, PredExtDB
allows a single query to return results from all prediction tools. Thus, PredExtDB reduces the time
needed to query a large and heterogeneous set of data of the protein subcellular localisation prediction

results.
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3.3 The sequence analysis pipelines developed in this project

Several bioinformatics tools were required in this project to provide information about protein se-
quence features. The sequence features of interest in this study included targeting signals, cell-
surface anchors, functional regions. In this project, the sequence analysis pipelines were developed
using Microbase as a framework. The pipelines chain together different bioinformatics tools and
allow the analysis the be done in an appropriate order. A pipeline contains a set of relevant tools.

Using Microbase enables several analysis pipelines to be processed in parallel.

A set of project-specific Microbase responders were developed in Java™ in order to perform the var-
ious analysis tasks required by this project. The main protein sequence analysis pipelines constructed
and implement in this project are: 1) a protein domain recognition pipeline; 2) extracytoplasmic pro-
tein prediction and filtering pipelines; 3) a protein similarity search pipeline. These pipelines consist
of a number of responders that wrap several bioinformatics tools, including InterProScan, HMMER,
SignalP, TMHMM, LipoP and BLAST. Computational work required by each of these tools proceeds
in parallel. In this project, all bioinformatics-tools required input files of FASTA-formatted protein
sequence data. Tool-specific analysis results generated by each responder were parsed into individ-
ual relational databases. Responders included in the analysis pipelines are described in detail in the

following subsections.

3.3.1 Protein domain recognition pipeline

Existing bioinformatic tools were employed to identify characterised protein signatures. InterProScan
was utilised to recognise well-characterised signatures in an integrated protein signature databases,
while newly characterised project-specific protein domains (see Section 7) were detected using HM-

MER.

The InterProScanProcessor responder

The InterProScanProcessor responder wraps InterProScan version 4.4. This program identifies any
known protein signatures including protein domains, motifs, families, functional sites, and GO term
annotations on a given protein sequence. An InterProScan process could take a relatively long time.
Running 100 protein sequences on InterproScan with all of the InterPro member databases (see
Section 2.8.2) took approximately 1 hour on a typical desktop computer with 2 CPUs, and 2 GB

of memory. In order to analyse several million protein sequences stored in the GPDB (see Sec-
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tion 3.4.1) within a reasonable amount of time, a restricted set of InterPro databases mainly as-
sociated with the characterisation of protein functions were used. As a result, InterProScan was
configured to implement algorithms to search for those protein signatures stored in the following
databases: Pfam database , SUPERFAMILY database , SMART and PROSITE databases. Options
to annotate the results with GO terms and to annotate the results with the corresponding InterPro en-
tries were switched on. The command line used was: iprscan -cli -format raw -altjobs -
iprlookup -goterms -appl hmmpfam -appl hmmsmart -appl superfamily -appl pattern-

scan -appl profilescan -appl seg —-i filename

The output files produced by InterProScan were parsed and then stored in a custom database named

‘InterPro result’ database (see Figure 3.2).
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Figure 3.2: A flowchart diagram illustrating the operation of the InterProScanProcessor responder. The
InterProScanProcessor responder is initiated by a ‘new genome available’ notification event. As a result, the
InterProScan event handler splits the new proteome into blocks of around 100 proteins. Each block forms
an InterProScan compute job entry. The jobs are then assigned to available worker computers, resulting in
requests for associated input files (FASTA format) from the Microbase resource system. Once a computer
receives its requested input files, the machine then executes InterProScan on the input protein sequences. On
completion, the InterProScan output file is parsed and stored into the InterProScan result database.
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The HmmerSearch responder

The HmmerSearch responder wraps HMMER 2.3.2. This responder is in charge of searching for a
given HMM protein profile in all protein sequence data stored in the GPDB. In this project, a poten-
tially novel mucosa-associated protein domain, termed M60-like domain was identified (discussed in
Chapter 7). The HMM profile for M60-like was used by the HmmerSearch responder to search for
the domain on all protein sequences in the GenomePool. The hmmsearch command was used with
the default setting. The inclusion e-value for the default setting was 10. This responder can be used

to search any new domain HMM profile that is not yet available in public databases.

3.3.2 The extracytoplasmic protein prediction pipeline

One of the goals of this project was to identify the putative microbial extracellular proteins of dif-
ferent microorganism’s cell surface organisations by using existing bioinformatics tools. In order to
make a universal prediction of extracytoplasmic proteins from primary amino acid sequences, sev-
eral protein subcellular localisation prediction algorithms and tools were employed to detect well-
characterised targeting signals and potential extracellular protein domains. These prediction tools
include SignalP, LipoP, and TMHMM. SignalP is a widely used prediction tool designed to predict
the N-terminal signal that targets precursor protein sequences to the Sec-pathway of both bacteria
and eukaryotes. LipoP predicts prokaryotic lipoproteins which are anchored on the cell surface.
TMHMM identifies alpha-helical transmembrane regions that allow proteins to be located through
a lipid bilayer cytoplasmic membrane present in all cellular life forms. In addition, InterProScan
was also employed to identify known extracellular or surface-associated protein signatures such as
LPXTG or sortase motifs, porins and outer membrane signatures. The workflow was designed to pro-
vide an appropriate decision route best suited to sequences based on the cellular structures of their
source organisms. For example, LipoP detects the presence of N-terminal signal peptidase II (SPII)
cleavage site to identify putative prokaryotic lipoproteins. However, LipoP does not provide mean-
ingful results for eukaryotic proteins so there is no point in processing eukaryotic proteins through

LipoP.

In addition to executing bioinformatics tools, the workflow also takes into account GO terms refer-
ring to known surface and secreted protein domains for consideration as potential extracytoplasmic
proteins. BLASTP searches were also employed as a strategy to identify sequences homologous to
experimentally verified extracytoplasmic proteins to provide evidence that these proteins might be

targeted the same subcellular localisation. The set of experimentally-verified extracytoplasmic pro-
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teins was derived from ePSORTdb v.2.0. Together, all the approaches used by the pipeline cover a
wide range of strategies to predict whether a given protein sequence is potentially secreted or exposed
to the surface of a cell. Each prediction tool was wrapped in a Microbase responder, allowing the
construction of an automated sequence analysis workflow. Implementations of the responders devel-
oped for this pipeline are now described in detail. The application of these responders is discussed

in Chapter 4.

It is notable that this study does not cover GPI anchors. A GPI anchor is a cell membrane anchor-
ing structure found in some surface proteins of most eukaryotes [Omaetxebarria et al., 2007]. Due
to several practical reasons, the pipeline does not include any software to detect GPI-anchored pro-
teins. First of all, GPI anchors are challenging to detect by both experimentally and computationally
[Eisenhaber et al., 1999][Eisenhaber et al., 2000]. Currently available GPI anchor prediction soft-
ware are organism specific and are therefore not reliable for all eukaryotes due to a limit set of
experimental data for a training purpose [Eisenhaber ef al., 1999]. Secondly, not every eukaryote
included in this study is known to possess GPI-anchored proteins e.g. T. vaginalis [Hirt et al., 2007].
Lastly, GPI-anchored proteins typically have N-terminal signal peptides and C-terminal hydropho-
bic regions [Howell et al., 1994][Eisenhaber et al., 1999]. Therefore, these proteins can be indirectly

detected by SignalP and TMHMM included in the pipeline developed in this project.

The extracytoplasmic protein prediction pipeline is composed of a set of ‘processing’ responders and
a ‘filtering’ responder. The processor responders execute different protein subcellular localisation
prediction tools and then parse the analysis result into structured databases. The result-filtering
responder was developed for the purpose of extracting all positively predicted protein sequences

identified by one or more responders.

The SignalPProcessor responder

The SignalPProcessor responder is responsible for executing the SignalP tool in order to predict the
presence of N-terminal signal peptides and their corresponding cleavage sites in protein sequences.

SignalP version 3.0 [Dyrlovbendtsen, 2004] was used by this responder.

Only the first 70 amino acid residues at the N-terminus of protein sequences were used as an input
to SignalP as recommended by the tool developers '°. The length limit was suggested based on
the finding that an N-terminal signal peptide is seldom longer than 45 amino acids [Nakai, 2000].

SignalP was configured to use both HMM and NN prediction algorithms. SignalP provide an option

0pttp://wuw.cbs.dtu.dk/services/SignalP/instructions. php, accessed accessed 20th October 2010
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to select the specific organism type being analysed (Gram+/Gram-/Euk). This selection results in
the use of an appropriate training data set for the tool’s algorithms. The SignalPProcessor responder
used for executing SignalP within the automated pipeline selects the appropriate SignalP options

based upon organisms taxonomy information stored in the GPDB (see Figure 3.3).

SignalP 3.0 was trained by the SignalP developers on sets of amino acid sequences from Gram-
positive and Gram-negative prokaryotes, as well as eukaryotes. However, many of the sequences
stored in the GPDB are encoded by several other organism groups including archaea, divergent eu-
karyotes, and known non Gram-staining bacteria such as Mycoplasma. Therefore, to process all
sequences from the GenomePool through the SignalPProcessor responder, information regarding an
organism’s type retrieved from the GPDB before SignalP is executed. This information is provided
by the the NCBI taxonomic lineage of the organism encoding the set of protein sequences to be

analysed (the value of the ORGANISM tag from the original GenBank file).

The first part of an organisms’ taxonomic annotation normally denotes its superkingdom level. This
information is checked by the SignalPProcessor responder to identify the source organism of a pro-
tein sequence as either a prokaryote or eukaryote. This inspection determines whether SignalP is
executed with the option euk, in case where the source organism is an eukaryote. On the other hand,
if a prokaryote is detected, SignalP is instructed to execute twice: once with the option gram-, and
the second time with the option gram+. Two runs were applied to all prokaryotic sequences includ-
ing sequences from archaea, Gram-staining bacteria and other non Gram-staining bacteria. At first
glance, running SignalP twice seems unnecessarily wasteful of compute resources. However, as the
run time for SignalP is not hugely computationally intensive, it was decided to simplify the design of
the responder by not taking account of the Gram-stain type. Moreover, for non Gram-staining bac-
teria, there is no appropriate command line option on SignalP. Executing SignalP twice on a set of
sequences provides a greater selections of prediction results for non Gram-staining prokaryotic pro-
tein sequences. SignalP has not been trained for use with non Gram-staining bacteria, and therefore
the prediction results of these proteins may not be as accurate as the results of Gram-staining bacte-
ria. However, these less accurate results may still be useful when integrated with evidence provided

by the other analysis tools used within this project.

SignalP provides a number of options regarding the data formatting of it output. The ‘short’ output
format was used for this work. All fields from the output were parsed from the generated output files,
and stored in a relational database. The prediction results from SignalP were utilised by a result-filter

responder in a later workflow step (see Section 3.3.3).
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The TMHMMProcessor responder

The TMHMM algorithm is employed to predict alpha helical transmembrane regions on protein
sequences; TMHMM version 2.0 [Krogh ef al., 2001] was used for this project. The TMHMMPro-

cessor responder executes the TMHMM algorithm.

All protein sequences in the GenomePool from all three domains of cellular life were processed by
this responder (see Figure 3.4). The prediction results generated in the ‘short’ output format were

parsed and inserted into a structured database.

The LipoPProcessor responder

The LipoPProcessor responder is responsible for executing the LipoP on appropriate protein se-
quences (see Figure 3.5). LipoP is designed to predict N-terminal lipoprotein signal peptide cleavage
sites. LipoP was trained with a Gram-negative bacterial data set, but can also detect Gram- positive
lipoproteins. In this work, LipoP was used to analyse prokaryote proteins. The tool was also applied
to archaeal proteins, since lipoproteins can also be found in archaea [Eichler and Adams, 2005].

LipoP version 1.0 was used for the analyses carried out in this work [Juncker ef al., 2003].

The developers of LipoP recommend that only the first 60 N-terminus amino acids from protein
sequences are used as input to the tool in order to prevent erroneous events. The superkingdom of
an organism from which a protein derived was checked using the organism’s taxonomic lineage as
stored in the GPDB (see Section 3.3.2 for more details). All prediction results were generated in the
‘short’ output format and then parsed into a database. The ‘short’ output format a tabular format that

is straightforward to parse.

The SCLBIlastPProcessor responder

Another technique that may be used to identify potential extracytoplasmic protein candidates is the
inference through sequence similarity. If a primary protein sequence was homologous to a known
extracytoplasmic sequences, then there is a possibility that the two sequences might have the same

localisation site [Gardy, 2004].

The SCLBIastPProcessor responder employs BLAST (version 2.2.19) to query input sequences
against sets of proteins with known subcellular-localisations. BLASTP is used to search every
protein sequence stored in the GPDB against a database of experimentally verified bacterial outer

membrane and extracellular protein sequences were derived from the ePSORT database (see Figure
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3.6)(see Background section 2.8.1 for more details). The set of experimentally verified sequences in-
clude proteins classified in ePSORTdb (v.2.0) as being ‘Cellwall’, ‘Extracellular’, ‘Outer membrane’,

‘Periplasmic/outermembrane’, or ‘CytoplasmicMembrane/Cellwall’.

A cut-off e-value of 1 x10~* was used for running the BLASTP program in the pipeline. The search
results were obtained in the ‘m8’ format; a tabular format that is straightforward to parse. All fields

in the BLAST output file were parsed and stored in a relational database for further analyses.
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Figure 3.3: A flowchart diagram illustrating the operation of the SignalPProcessor responder. The Sig-
nalPProcessor responder is initiated by a ‘new genome available’ notification event. As a result, the SignalP
event handler component produces a list of SignalP jobs for the new fragment of protein sequences. The Sig-
nalP event handler considers primary protein sequences from prokaryotes and eukaryotes differently. Given
a set of eukaryotic proteins, a SignalP job with the appropriate eukaryotic command line switch was gener-
ated. In the case of non-eukaryotic (bacterial and archaeal) protein sequences, two separate SignalP jobs were
generted: one with the Gram-positive command line option, and the other with the Gram-negative options
set. Jobs are assigned by Microbase to an available worker machines. The computers request the appropriate
input files (FASTA format) from the Microbase resource system. Once request input files are retrieved, the
machines then executes the SignalP software with the assigned command line options for the input protein
sequences. Once the processing has completed, the SignalP output files are parsed and stored in the SignalP
result database.

59




4 N\
TmhmmProcessor responder / Notification
Tmhmm event| _ event received
handling |~ 'new genome
available'
a Tmhmm
/ job available / ( >

Resource system

processing (a whole genome)

Tmhmm i o
ul""lllllmuuu | [ aieineihitls ﬁ

Y

a Tmhmm "'-—————"’

output

available < Y

\ /
y

Parse the TMHMM database

result into >

database Tmhmm output for

S J all proteins

Figure 3.4: A flowchart diagram illustrating the operation of the TMHMMProcessor responder. The
TMHMMProcessor responder is initiated by a ‘new genome available’ notification event. As a result, the
TMHMM event handler component produces a TMHMM job to analyse the protein sequences encoded by each
genome fragment. TMHMM jobs are then assigned to available computers by Microbase. Necessary input
files (FASTA format) are requested from the Microbase resource system. Worker machines then execute the
TMHMM algorithm on the input protein sequences. When processing has completed, the generated TMHMM
output files are parsed and stored in the TMHMM result database.
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Figure 3.5: A flowchart diagram illustrating the operation of the LipoPProcessor responder. The LipoP-
Processor responder is initiated by a ‘new genome available’ notification event. The LipoP event handler
component only generates Microbase jobs for prokaryotic proteins since eukaryotes do not have N-terminal
lipid anchors. LipoP was only designed to identify prokaryotic lipoproteins. As a result, the LipoP event
handler produces a LipoP job for each proteome encoded by a given prokaryotic genome. These jobs are then
assigned to an available worker computers, resulting the necessary input files (FASTA format) being trans-
ferred from the Microbase resource system. The worker machines then execute the LipoP software on the
input protein sequences. On process completion, the LipoP output files are parsed and stored in the LipoP
result database.
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Figure 3.6: A flowchart diagram illustrating the operation of the SCLBlastPProcessor responder. The
SCLBIlastPProcessor responder is initiated by a ‘new genome available’ notification event. The BLASTP event
handler component produces a SCL-BLASTP job for all the protein sequences. The job is then assigned to
an available worker machine. The appropriate input files (FASTA format) are requested from the Microbase
resource system, and the machines then execute the BLASTP algorithm on the input protein sequences. The
input sequences were queried against a set of experimentally verified extracytoplasmic proteins obtained from
ePSORTdb version 2.0. Extracytoplasmic proteins include proteins that have been verified to be located on the
cell wall, the outer membrane, cytoplasmic membrane, periplasmic space, or are extracellular. When BLASTP
works is completed, the output files are parsed and stored in the SCL-BLASTP result database.
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3.3.3 The extracytoplasmic proteome filtering responder

The responder described in the previous sections are responsible for executing variety of protein se-
quence analysis tools. As a results, a set of independent result databases are populated that contain
analysis results for proteins stored in the GPDB. Not every protein is of interest to this study. The
extracytoplasmic proteome filtering responder is responsible for extracting all positive results pro-
duced by the various bioinformatics tools described in the previous section. For a given protein, the
results from each prediction tool were assessed to determine whether the protein should be included
in the ‘Predicted Extracytoplasmic Protein Database’ (PredExtDB) (see Section 3.2.4). A summary
of the targeting features from each analysis tool for each putative extracytoplasmic protein is stored

in the PredExtDB (see Figure 3.7).

The extracytoplasmic proteome filtering responder was designed to process protein localisation pre-
dictions from archaea, bacteria and microbial eukaryotes for the purpose of filtering out cytoplasmic
protein sequences, or sequences without any cell surface targeting signals. Prediction results from
the bioinformatics tools incorporated into the workflows described in the previous sections (Section
3.3.2, 3.3.1) were processed by this responder. Appropriate localisation evidence was selected for
each protein, based on the taxonomic group of the source organism and their cell surface structures.
For example, a protein from a Gram-positive organism might be assessed based on the result from

the SignalP program executed with option gram+.

The filtering responder is initiated by a user-generated notification event. Once triggered, a list of
genome fragment accessions is read from the GPDB. Each accession number is used as an in-
put query to extract associated information from the various prediction result (secondary) databases
generated by the extracytoplasmic protein prediction pipeline 3.3.2), and the InterProScanProcessor
responder (see Section 3.3.1). To determine whether a particular protein is included in the Pre-
dExtDB, a number of tool-specific filtering strategies are employed. The result filtering strategy for
each tool and the implications for different organism types (eukaryote, archaea, Gram-negative and

Gram-positive bacteria) are described below.

e SignalP result filtering: This filtering step is responsible for recruiting all candidate exported
proteins into the PredExtDB. Firstly, the accession number is checked against a local copy of
the NCBI taxonomic database to initially identify its organism superkingdom as a prokaryote
or eukaryote. If the genome is derived from prokaryote, further investigation is performed to
determine whether it is a Gram-positive or Gram-negative bacteria, or neither. The information

of bacterial gram staining was checked against a locally-installed copy of the GOLD genome
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Figure 3.7: A flowchart diagram illustrating the operation of the Extracytoplasmic proteome filtering
responder. All sequence analysis results were filtered in order to include the proteins that are likely to be
extracytoplasmic proteins into the PredExtDB for further analysis.

information database. For a given genome accession number, the appropriate SignalP results
are extracted from the secondary database containing SignalP prediction results. The extracted
results are then checked for a positive prediction. SignalP results were considered ‘positive’ if
an N-terminal signal peptide was predicted to be present by either the NN or HMM algorithms
(Figure 3.8).

e TMHMM result filtering: The purpose of the TMHMM result filtering step is to select proteins
that are likely to be transmembrane-located and store them into the PredExtDB. Given a
genome accession number, the associated TMHMM prediction results are extracted from the
TMHMM job executions. A result for a particular protein is considered as ‘positive’ if at least
one alpha-helix region was predicted. An overview of the data flow for this process is shown

in Figure 3.9.

e LipoP result filtering: The LipoP result filtering step is responsible for filtering candidate mi-
crobial lipoproteins or secreted proteins into the PredExtDB. A protein is considered as a
putative lipoprotein if the protein was predicted by LipoP to have an N-terminal cleavage site
that is recognised by SPII. The LipoP prediction results were obtained from the LipoP result

database (see Figure 3.10).
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e SCL-BLASTP result filtering: The SCL-BLASTP filtering step was designed to identify se-
quences that are highly similar and by extension, potentially homologous to experimentally
verified extracytoplasmic proteins obtained from the ePSORTdb. The inclusion criteria used
were an e-value cutoff of 1 x 10~ and a requirement that the length of both query and subject
sequences must range from 80-120% of each other. An overview of the data flow is shown in

Figure 3.11

e Surface-associated protein domain and GO term result filtering: a protein sequence is filtered
if the sequence was annotated to own at least one of the sequence features listed in Table 3.1.

Protein domains were used to referred to GO terms.

65



SignalP database

SignalP output

for all proteins Extracytoplasmic proteome

filtering responder

3

4 X

SignalP output

Other
D protein

select output select output from select output from
from Euk option Gm+ option Gm- option

e

nnDprediction = yes OR hmmSpredicion = yes

Proteins with predicted
N-terminal signal peptides

N / J

SignalP filtering )
process

PredExtDB
database

Positive SignalP
output

Store a short description of:
- Algorithms (NN/HMM)

- Options of the trainning set (Euk/Gm+/Gm-)

- Predicted clevage site

Figure 3.8: A flowchart diagram illustrating the operation of the SignalP result filtering responder.
Depending on the taxonomic group an organism belongs to, its proteins may have been analysed by SignalP
either one or two times. The SignalP result filtering process was designed to iterate over the entire collection of
protein sequences and query the appropriate SignalP results from the SignalP database. If a protein sequence
came from an eukaryote, Gm+ or Gm-, then the SignalP database was queried for results generated with the
euk, gram+, gram- command line options, respectively. If a protein sequence was from any other taxonomic
group, then the SignalP database was queried for results generated with the gram+ and gram- settings. A
protein was considered to have a positively-predicted N-terminal signal peptide, if either the NN or HMM
algorithms reported a positive prediction. The ‘nnDprediction” and ‘hmmSprediction’ fields were were used
as inclusion criteria for the NN and HMM algorithms, respectively. ‘nnDprediction’ is a summarised NN-
prediction result based on a score used as the criteria for discrimination of secretory and non-secretory proteins.
‘hmmSprediction’ is the prediction result based on the probability score of a signal anchor calculated using
HMM. The positive SignalP results that met these criteria were parsed into the PredExtDB with their predicted
cleavage site, algorithm and training dataset option used.
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Figure 3.9: A flowchart diagram illustrating the operation of the TMHMM result filtering process. All
TMHMM results were filtered in order to remove the proteins that are not likely to be transmembrane-located.
TMHMM results with a positive ‘predicted helix’ value were copied into the PredExtDB for further analysis.

67




Extracytoplasmic proteome

— T filtering responder
\ / 4 . . .
LipoP filtering process

LipoP database R LipoP

'{ output
LipoP output for all

prokaryotic proteins

\ /

~N

Y

Predicted feature type = Spll

N <>

PredExtDB
database LipoP predicted
< surface/secreted
LipoP predicted / proteins
surface/secreated
protein output N J
¥

Store a short description of:
- Predicted cleavage site

Figure 3.10: A flowchart diagram illustrating the operation of the LipoP result filter process. Filtering
LipoP results involved copying predicted lipoproteins into the PredExtDB. Each prediction result from the
LipoP database was examined. Proteins predicted to have features that could be recognised to be processed by
signal peptidase II (Spll) were regarded as positive predictions.
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Figure 3.11: A flowchart diagram illustrating the operation of the SCL-BLAST result filter process.
This result filtering process attempted to find only sequences that were highly similar to an experimentally-
verified extracytoplasmic protein. Suitable proteins were then copied into the PredExtDB. A protein was
considered as a potential homologs of a known extracytoplasmic proteins if its BLAST hit e-value was less
than 1 x 10~ and the length of the query sequence fell within 80-120% of the length of the subject sequence
(known extracytoplasmic sequence).
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Table 3.1: Protein motifs and Gene Ontology term known to presented on extracytoplasmic proteins.
These protein signatures were used by the result filtering responder as criteria to consider a protein sequence
as a putative extracellular protein. The protein motifs were obtained from various public databases containing
protein signatures. The entry accessions represent accession numbers of particular protein signatures from the
different databases. The first 2-3 alphabets in the accessions denote the database from which the signature was
derived; PS = Prosite entry, PF = Pfam entry, SSF = Superfamily entry, GO = Gene ontology entry.

Feature description Entry accessions
Gram-negative bacterial outer membrane/extracellular motifs
General diffusion Gram-negative porins signature PS00576
Enterobacterial virulence outer membrane protein signature PS00694, PS00695
Fimbrial biogenesis outer membrane usher protein signature PS01151
Bacterial type II secretion system protein D signature PS00875
Aspartyl proteases, omptin family signature PS00834, PS00835
OmpA-like domain PS01068
Aerolysin type toxins signature PS00274
Hemolysin-type calcium-binding region signature PS00330
Gram-positive bacterial Cell wall/extracellular motifs
S-layer homology PS51272
Staphylococcal enterotoxin/Streptococcal pyrogenic exotoxin signature PS00277, PS00278
Staphylocoagulase repeat signature PS00429
Thermonuclease domain profile PS50830
Other known protein features characterizing surface/secreted protein
Bacterial extracellular solute-binding proteins PS01037, PS01039, PS01040
Leucine rich repeat PF00560
M protein motif PF00746
Sortase motif PF04203
LPXTG motif PS50847
GW domain SSF82057
NLPC P60 PF00877
LYSM protein PF01476
Extracellular-related GO terms (cellular component)
Extracecllular region/space GO0:0005576, GO:0044421,
GO:0005615
Extracellular matrix GO0:0031012
Cell surface GO:0009986
Cell wall GO:0005618
Gram negative cell wall GO0:0009276
Outer membrane G0:0009279, GO:0019867
Outer membrane periplasmic G0:0030288
Extrinsic to membrane GO:0019898

3.3.4 Responders for protein similarity search

The BLAST algorithm (version 2.2.19) was employed for sequence similarity searches. All protein
sequences in the GPDB were subject to two separate searches. Two responders were developed in

order to perform: 1) an all-vs-all search; 2) a search against all proteins from RefSeq database.

The all-against-all BLASTP responder

The all-vs-all BLASTP responder is responsible for performing bi-directional BLASTP search of

all proteins in the GPDB against each other. Given the large number of protein sequences (approxi-

70



mately 3 million sequences), an immense amount of computational effort is required. It is not feasible
to execute this analysis on a single computer [Gardner et al., 2006][Shah et al., 2007]. The respon-
der splits the task into more manageable units of work. The pairwise comparison of each proteome
is defined as an individual Microbase job. Once the computational work has been split into jobs,
Microbase is responsible for overseeing the job execution. On completion of these jobs, result data is
passed back to the BLAST responder. The data from each job is collated and inserted into a relational
database for future use. The all-vs-all BLASTP responder is in charge of performing bi-directional
BLASTP search of all proteins in the GPDB against each other. The all-vs-all BLASTP e-values gen-
erated by this responder were used at a later stage as sequence similarity scores to construct protein

clusters (see Chapter 6, Section 6.2.2).

all-vs-RefSeq BLASTP responder

Similar to the all-vs-all BLASTP responder described above (see Section 3.3.4), the all-vs-Refseq
BLASTP responder is responsible for splitting a large amount of computational work into jobs of a
reasonable size for performing BLASTP searches on Microbase worker machines. This responder
ensures that every protein stored in the GPDB is searched against the set of proteins in the NCBI
RefSeq database. The pre-formatted BLAST database of the NCBI protein reference sequences was
downloaded from the NCBI FTP site!! (accessed 25 October 2009). The all-vs-RefSeq BLASTP re-
sults were used to identify protein sequences that are statistically associated with mucosal organisms

(see Chapter 6, Section 6.2.2).

3.4 Results

This section describes statistical reports of the total genome sequence information in the GPDB and
the performance of the sequence analysis workflows using the Microbase framework. A summary
of the analysis results generated from each responder-encapsulated bioinformatics tools is also pro-

vided.

3.4.1 The GenomePool database

The GPDB contains 3,127 complete genome sequences and contigs from 867 microorganisms in-

cluding archaea, bacteria and selected microbial eukaryotes. The total number of protein sequences

ftp://ftp.ncbi.nih.gov/blast/db
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Table 3.2: Summary of data incorporated in the GenomePool database. Number of organisms, genome
sequences and protein-coding gene sequences were summarised in relation to the three domains of cellular life.
The asterisk includes bacterial and archaeal chromosomes, as well as plasmids when present, and eukaryotic
chromosomes and organelle genomes. In some cases, genome sequence data are spread over a number of
contigs and/or scaffolds in so called draft genomes — in particular, for large eukaryotic genomes with important
fractions of repetitive sequences.

Number of Archaea Bacteria Eukaryote Total
Microorganisms 55 780 32 867
Genome fragments* 80 1,556 1,491 3,127

Protein sequences 133,026 2,616,075 272,389 3,021,490

stored in the GPDB is 3,021,490. Bacterial protein sequences account for a major proportion (86.6%)
of the sequences deposited in the GPDB. Out of the the 3 million sequences, roughly 23% are from
the Gram-positive bacterial group (members of phyla Actinobacteria, Firmicutes and Tenericutes).
64% of the sequences belong to the Gram-negative bacterial group (members of bacterial phyla that
are not in the Gram-positive group) (see Figure 3.12). Approximately 10% and 4% of the proteins
are from microbial eukaryotes and archaea, respectively. Not surprisingly, the most common phyla in
the GPDB are Proteobacteria and Firmicutes, respectively. Genome sequences of these two bacterial
phyla are abundantly available since their members are predominantly found to be associated with hu-
mans as either pathogens or mutualists. There are approximately 2.6 times (421:159) more taxa from
Proteobacteria than those from Firmicutes. These two phyla account for 66.8% of the genomes in the
GPDB. 3.6% are from microbial eukaryotes (protist and fungi) while 6.3% are archaeal genomes.
The number and distribution of genomes in the GPDB are shown in Table 3.2 and Figure 3.12,
respectively. Other bacterial phyla include Actinobacteria, Tenericutes, Acidobacteria, Aquificae,
Bacteroidetes, Chlamydiae, spirochaetes, Thermi, Verrucomicrobia, Dictyglomi, Elusimicrobia, Fu-
sobacteria, Nitrospirae and Planctomycetes. Archaeal genomes include 36 taxa from Euyarchaeota,
17 taxa from Crenarchaeota, and one of each of Korarchaeota and Nanoarchaeota. Genomes from
microbial eukaryotes included in the GPDB covered Fungi and Protists. The Fungi genomes se-
quences comprise 15 members of Ascomycota; 4 members of Basidiomycota; and 1 member of
Microsporidia. While Protist sequences are derived from 4 members of Apicomplexa; 4 members of

Euglenozoa; 2 members of Entamoebidae; and one of each of Diplomonadida and Parabasalidea.

3.4.2 Performance of the sequence analysis workflows using Microbase

Microbase has facilitated multiple bioinformatics tools to be distributed across 74 desktop cluster
machines at Newcastle University. Eight responders were developed during the study in order to

analyse the large number of proteins sequence in an automatic manner. The overall time spent to
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Figure 3.12: A summary of the number of taxa whose proteomes were included in the GenomePool
database, with respect to their taxonomic groups. In total, the study contains genomes and corresponding
proteomes from 867 microorganisms ranging from prokaryotes to eukaryotes. The number above each bar
represents the total number of microorganisms species or strains whose genome sequence data were retrieved
from RefSeq and stored in the GenomePool database. Taxa were grouped by high-level taxonomic classifica-
tions. Organism classes were also grouped with respect to their cell surface structures and their evolutionary
distance in the global phylogenetic tree shown in [Ciccarelli et al., 2006] (Eukaryotes, Archaea, Gram-positive
and Gram-negative bacteria). Other bacteria include Dictyglomi, Elusimicrobia, Fusobacteria, Nitrospirae and
Planctomycetes.
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analyse protein sequences was reduced by using Microbase. Microbase therefore provides a signif-
icant advantage over the use of a single desktop machine to perform the various analysis processes.
However, the extent of the speedup achieved varies between applications and primarily depends on
the computational usage pattern of the application. For example, the Microbase FileScanner re-
sponder, which scans an FTP site and transfers new files to the resource system does not perform
any CPU intensive work, and therefore does not speed up dramatically when parallelised. Simi-
larly, the GenomeParser responder which reads GenBank file and parses sequence information into
the database does not require high level of computational usage. The computational demands of
these two responders is relatively low compared to other tools which require high computational
demands, such as InterProScan or BLASTP (see Figure 3.13). A summary of the performance of
all the responders is shown in Table 3.3. 3,153 GenBank-formatted genome files (jobs processed by
the GenomeParser responder) describing the genomes of 867 microorganisms were parsed into the
GPDB, resulting in 3,021,490 protein sequences. These protein sequences were the input data for the
analysis pipelines (see Table 3.2). Using Microbase with 40 worker nodes, the process of populating
the GPDB with complete genome sequences from 867 microorganisms from the three domains of life
took 26 hours. After the GPDB had been populated, computational works for the TMHMM, SignalP,
LipoP, InterProScan, BLASTP-pairwise and BLASTP-RefSeq tools could be processed in parallel.
The responders responsible for executing these tools split the 3 million protein sequences into more
manageable blocks of 100-1,000 sequences. The exact size of the blocks are responder-specific, de-
pending on a particular tool limitations or compute time required to process a block of sequences.
For example, the SignalP tool has a limit of 2,000 sequences and 200,000 amino acids allowed per
execution'?, which if exceeded, results in a crash of the execution. The SignalP responder was set
to execute 150 sequences per job to ensure a successful execution. The InterProScan responder was
configured to process 100 sequences per job. InterProScan does not have a limitation on the number
of sequences per input file, but the 100 sequence limit was applied in order to allow InterProScan
jobs to complete within a reasonable amount of time (approximately 1 hour) without anticipated in-
terference from regular users of the cluster machines. In total 101,943 compute jobs were produced
by six sequence analysis responders. The hundred-thousand analysis jobs running different bioinfor-
matics tools were assigned to 27-74 worker nodes on the Condor Grid system [Frey et al., 2002] at
Newcastle University, as well as the Amazon Cloud computing resource [Xu, 2010]. By exploiting
high-throughput distributed computing resources, all the jobs were successfully completed within 2

months and all analysis results produced were stored in structured databases associated with each re-

2http://www.cbs.dtu.dk/services/SignalP/, accessed 20th October 2010
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sponder. This duration includes the CPU usage for tool execution as well as additional time required
for Microbase custom tasks such as input and output file management and automated software instal-
lation. The total ‘wall clock’ time spent for each responder to complete all jobs and an estimated total
CPU usage time (computing time) for an ordinary machine to complete all the jobs is summarised in
Table 3.3. Overall, InterProScan processes makes the most advantage of the distributed computing
system: 5 years of computational time required to process 3 million sequences was reduced to 16
days of ‘wall clock’ time. Likewise, for BLASTP work, the amount of active time for processing
approximately 26,000 BLASTP-pairwise and BLASTP-refseq jobs was also reduced significantly.
The less CPU intensive programs such as LipoP, TMHMM and SignalP required 4 hours, 11 hours

and 31 hours, respectively to complete the analysis on 27-74 cluster machines.
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Figure 3.13: Average CPU usage of 10 Amazon EC2 machines running BLASTP jobs over a 12-hour
period. Lines denote CPU usage (%) of worker nodes during that period.

3.4.3 Protein domain organisation prediction results

Protein sequences that contain known features or signatures predicted by InterProScan were identi-
fied. The results were obtained from the protein domain recognition pipeline, in particular, from the
InterProScan result database produced by the InterProScanProcessor responder (see Section 3.3.1).
The proportions of proteins carrying at least one known signatures to all the proteins included in the
study was computed for every organism. The average of these proportions were calculated and sum-
marised into taxonomic groups (see Figure 3.14). Protein carrying domain(s) were counted based on
the entries of protein domain from InterPro database excluding the highly repetitive regions predicted

by Seg [?]. For all taxonomic groups, an average of 76% of the sequences were predicted to have at
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Table 3.3: Timing information of the Microbase responders developed for this project. ‘Total CPU usage
time’ or total computing time shows the estimated time that a typical desktop computer might spend processing
a particular task. A typical machine in this case refers to a desktop computer with specifications similar to the
following: Intel core 2 (6300) duo 1.86 GHz CPU, 2GB memory. The ‘total active time’ column refers to
the amount of time spent on software installation, input/output file management as well as job computation
time and represents the ‘wall clock’ time take to complete each task as would be measured by a user with a
stopwatch. For the FileScanner, GenomeParser and TMHMM responders, one Microbase job is created for
each genome file. For the other responders, the number of jobs is determined by the responder-specific setting
for the number of protein sequences allowed per job. ‘-’ indicates that all the protein sequences annotated in a

particular genome fragment file formed a single job.

Responder Total Maximum Average Total CPU us- Total active Average
jobs protein time for age time time number
sequences a  success- of ma-
permitted  ful job chines
per job execution used
(mins)
FileScanner 3,153 - 0.01 27.99 mins 26 hrs 19
GenomeParser 3,153 - 0.32 16.67 hrs 26 hrs 40
TMHMM 2,892 - 1.88 3.78 days 11 hrs 74
SignalP 41,091 150 0.08 2.27 days 1 day 7 hrs 37
LipoP 2,941 1,500 0.04 1.93 hrs 4 hrs 27
InterProScan 31,924 100 68.12 1,510.15 days 16 days 15 60
hrs
SCL-BlastP 2,900 - 0.34 16.67 hrs 3 hrs 45
Hmmer-m60-like 2,900 - 0.06 2.78 hrs 2.5 hrs 48
BlastP-pairwise 22,801 - 1.44 22.81 days 17 days Shrs 40
BlastP-refseq 2,942 200 81.38 166.26 days 7days 11 hrs 40
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least one known sequence signature. Protein sequences from protists have the lowest average number
of the fraction of proteins with known signatures (around 58%). The two organisms in the protist
dataset with the lowest fraction of proteins of known signatures are 7. vaginalis G3 and Giardia
lamblia ATCC 50803 with proportions of 30% and 43%, respectively. The notably low fractions of
proteins carrying known sequence signatures in the 7. vaginalis proteome data set might be because
this organisms has a relatively large proteome size (59,518 gene-coded protein sequences) as a result
of a recent massive expansion of gene families [Carlton er al., 2007]. However, it also reflects how

little is known about the proteomes of these two vertebrate mucosa pathogens.

3.4.4 Extracytoplasmic protein identification results

The prediction results of extracytoplasmic proteins from proteins derived more than 800 microbial
proteomes were summarised in this section. The results were derived from the extracytoplasmic pro-
tein prediction pipeline described previously (see Section 3.3.2). For each responder in the pipeline,
the results generated by the associated bioinformatics tools were stored in a responder-specific struc-
tured database. The proportions of proteins predicted to have an alpha helical transmembrane, Sec

signal peptides and lipoprotein signal peptides were estimated (see Figures 3.15, 3.16, 3.17.).

TMHMM prediction results

The prediction results produced by the TMHMMProcessor responder were stored in the TMHMM
results database. In total, 698,134 sequences were predicted positive by TMHMM. Proteins carrying
an alpha-helix transmembrane region are found in a range of 13-34% for bacterial proteomes, 16-26%
for archaeal proteomes, and 14-22% for protist and fungi proteomes with some outliers. Trichomonas
vaginalis G3 appears to have the lowest proportion of proteins carrying alpha-helix transmembrane

regions due to the massive proteome size mentioned earlier (see Section 3.4.3).

SignalP prediction results

563,941 sequences had positive SignalP predictions. Members of Proteobacteria show the most
heterogeneity in the fractions of proteomes carrying Sec signal peptides, with an average of approx-
imately 22%, a minimum of 2% and a maximum of 37%. As shown in Figure 3.16, the phylum
Proteobacteria contains several outliers compared to other groups. The presence of these outliers

could be a result of the total number of Proteobacteria in the analysis being markedly higher (n=420)
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Figure 3.14: A boxplot displaying proportion of proteomes carrying known protein signatures from
InterPro database. The vertical axis contains the boxplots for different taxonomic groups. The horizontal
axis represents the average proportion of known protein signatures present in the proteomes of each taxonomic
group. InterPro protein signatures were predicted by InterProScan. The proportion of proteins carrying at least
one known signatures to all the proteins included in the study was computed for every organism. The resulting
proportions were plotted with respect to organism taxonomic groups. The lower and upper edges of each box
indicate the 25th and 75th percentiles, respectively, of the values found in a particular taxonomic group. The
vertical line in each box indicates the median value of the data. The ends of the horizontal lines (whiskers)
indicate the minimum and maximum data values. The whisker extends to a maximum of one quarter of the
data unless outliers are present. Outliers are shown by open circles. Asterisks denote extreme outliers. n=
number of taxa, leint= Leptospira interrogans serovar Lai str. 56601, riaka= Rickettsia akari str. Hartford ,
ehcha= Ehrlichia chaffeensis str. Arkansas, anpha= Anaplasma phagocytophilum HZ , riric= Rickettsia rick-
ettsii str. Towa, bdbac= Bartonella bacilliformis KC583 , ortsu= Orientia tsutsugamushi str. Ikeda , ricon=
Rickettsia conorii str. Malish 7 , bupse= Burkholderia pseudomallei , hache= Hahella chejuensis KCTC 2396
, thsp= Thauera sp. MZ1T , cobur= Coxiella burnetii RSA 331 , buaph= Buchnera aphidicola, bacic= Bau-
mannia cicadellinicola str. Hc (Homalodisca coagulata) , wigio= Wigglesworthia glossinidia endosymbiont of
Glossina brevipalpis, miaer= Microcystis aeruginosa NIES-843 , acmar= Acaryochloris marina MBIC11017
, capro= Candidatus Protochlamydia amoebophila UWE2S5 , caazo= Candidatus Azobacteroides pseudotri-
chonymphae genomovar. CFP2 , casul= Candidatus Sulcia muelleri GWSS , asyei= Aster yellows witches’-
broom phytoplasma AYWB , caphy= Candidatus Phytoplasma australiense , urure,lasal=Lactobacillus sali-
varius UCC118 plasmids, onyei= Onion yellows phytoplasma OY-M , bilon=Bifidobacterium longum DJO10A
plasmid pDOJH10L, fraln= Frankia alni ACN14a , ruxyl= Rubrobacter xylanophilus DSM 9941 , trvag= Tri-
chomonas vaginalis G3 , gilam= Giardia lamblia ATCC 50803 (Giardia intestinalis ATCC 50803), trbru=
Trypanosoma brucei TREU927 , magri= Magnaporthe grisea 70-15 , necra= Neurospora crassa ORT4A.
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Figure 3.15: A boxplot displaying proportion of proteomes carrying alpha helical transmembrane do-
mains in different phyla. The transmembrane proteins were predicted by the TMHMM tool. The interpreta-
tion of a boxplot is described in Figure 3.14. n= number of taxa, Thsp= Thauera sp. MZ1T, buaph=Buchnera
aphidicola str. SA (Acyrthosiphon pisum), ehcha= Ehrlichia chaffeensis str. Arkansas, frnov=Francisella
novicida U112 , frtul= Francisella tularensis subsp. Holarctica, anmar= Anaplasma marginale str. Florida,
ehrum= Ehrlichia ruminantium str. Welgevonden, str. Gardei, ripro= Rickettsia prowazekii str. Madrid E,
miaer= Microcystis aeruginosa NIES-843, acmar= Acaryochloris marina MBIC11017, casul= Candidatus
Sulcia muelleri GWSS, clpha= Clostridium phage phiSM101, caphy= Candidatus Phytoplasma mali, ighos=
Ignicoccus hospitalis KIN4/1, trvag= Trichomonas vaginalis G3, plfal= Plasmodium falciparum 3D7.
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than other phyla. Members of Proteobacteria also cover a broader range of microbial life styles, for

example, free-living, marine, terrestrial, host-dependent, or intracellular pathogens.
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Figure 3.16: A boxplot displaying proportion of proteomes carrying the classical Sec signal peptides in
different phyla. Sec signal peptides were predicted by SignalP. The interpretation of a boxplot is described in
Figure 3.14. n= number of taxa, thlet= Thermotoga lettingae TMO, buaph= Buchnera aphidicola, bacic= Bau-
mannia cicadellinicola str. Hc (Homalodisca coagulata) , cablo= Candidatus Blochmannia floridanus , riric=
Rickettsia rickettsii str. *Sheila Smith’, ricon= Rickettsia conorii str. Malish 7, rican= Rickettsia canadensis str.
McKiel, woend= Wolbachia endosymbiont, wigio= Wigglesworthia glossinidia endosymbiont of Glossina bre-
vipalpis, stmal= Stenotrophomonas maltophilia R551-3, bdbac= Bdellovibrio bacteriovorus HD100, capro=
Candidatus Protochlamydia amoebophila UWE25, chcav= Chlamydophila caviae GPIC, casul= Candidatus
Sulcia muelleri GWSS, biani= Bifidobacterium animalis subsp. lactis ADO1, clmic= Clavibacter michiganen-
sis subsp. michiganensis NCPPB 382, trvag= Trichomonas vaginalis G3.

LipoP prediction results

63,468 sequences were positively predicted as lipoproteins by LipoP. The proportion of putative
lipoproteins found in archaea ranges from approximately 0.03-2.9%, whereas bacterial proteomes
appear to have much wider range of 0.3 to 12.6%. The phylum Bacteriodetes has the widest range of
the proportion of lipoprotiens (1.3-12.5%) followed by Spirochaetes (1.7-7.8%) with an outlier. The
results support the finding of Bendtsen 2005 [Bendtsen, 2005] showing that members of the phylum
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Bacteriodetes exports more lipoproteins than other phyla.
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Figure 3.17: A boxplot displaying proportion of proteomes carrying lipoprotein signal peptides in
different phyla. Lipoproteins were predicted by LipoP. The interpretation of a boxplot is described in
Figure 3.14. n= number of taxa, myabs=Mycobacterium abscessus, capro=Candidatus Protochlamydia
amoebophila UWE25, chtha=Chloroherpeton thalassium ATCC 35110, ighos=Ignicoccus hospitalis KIN4/1,
urure=Ureaplasma urealyticum serovar 10 str. ATCC 33699, clphy=Clostridium phytofermentans 1SDg ,
aclai=Acholeplasma laidlawii PG-8A, socel=Sorangium cellulosum ’So ce 56°, bdbac=Bdellovibrio bac-
teriovorus HD100, hynep=Hyphomonas neptunium ATCC 15444, sadeg=Saccharophagus degradans 2-40,
myxan=Myxococcus xanthus DK 1622, shwoo=Shewanella woodyi ATCC 51908, bodut=Borrelia duttonii Ly.

3.5 Discussion

To date, more than 1,000 completed genome entries have been made available in the GenBank
database and new completed sequences or updated versions of existing sequences are being added on
a daily basis. The bioinformatics workflows implemented using Microbase are capable of detecting
when new sequences are released, downloading and parsing data into the structured database. The

system also enables the processing of these sequences through a variety of tools.

The benefit of using a system such as Microbase is that each step is run automatically, without the

need for human intervention. The system manages various aspects of running computational analy-
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ses such as automatically distribute of computational tasks to available worker machines, installing
necessary software, staging input data files, executing the necessary bioinformatics software and fi-
nally managing the output data. When time spent for management and program execution steps are
taken into consideration, such analytical processes could take several years if performed manually on
a typical desktop computer. By using Microbase, a computationally intensive task can be split into
several easier to manage chunks and can be distributed across several machines to execute in parallel.
This feature significantly reduces the amount of chronological time taken to run compute-intensive
analysis tasks on large amounts of data such as InterProScan and BLASTP pairwise all-vs-all ho-
mology searches on all 3,021,490 protein sequences in the GPDB. Other advantages include the fact
that new sequences can be added into the system at any time and triggering further secondary or ter-
tiary analyses. New results can be generated through the addition of new genomes and incorporated

incrementally without recomputing the whole data set.

Although developing the responder-based system requires additional programming effort beyond
simply automating a set of commands via scripts, the approach provides a highly modular system
that allows the independent responders to be re-used. Several of the responders developed during this
project are currently in active use by other bioinformatics research projects, such as AptaMEMS-ID
[McNeil et al., 2010]. The database components of the system are also reusable. In addition, the
system also facilitates storage of the results (plain-text) in a structures form in relational databases
enabling efficient querying. The output data from each tool can be integrated using a standard ap-
proach. In this project, the analysis results can be published as a pre-computed protein subcellular
localisation prediction dataset, allowing large scale comparative genomics of extracytoplasmic pro-

teins across the three domains of microbial organisms.

High-throughput bioinformatics workflow on Cloud VS Grid computing

High-throughput bioinformatics analysis workflows often require a reliable database server for stor-
ing primary sequence data, analysis results, as well as metadata generated by the system itself. In
contrast, reliable worker machines are not required, but provide benefits in terms of increased effi-
ciency. The greater the number of reliable machines available to process computing tasks, the more
benefit can be gained from the Grid-based high-throughput computing system. Microbase allows the

use of both Cloud and Grid computing resources.

The Condor Grid computing resource at Newcastle University are desktop machines which are avail-

able when no user is logged on or the CPU load is low. Microbase jobs running on these machines
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are terminated as soon as the machine is required by other users. Therefore, the jobs best suited to
the Condor resource are short-running jobs since long-running jobs might be terminated before they
complete. The termination of a job before completion effects the progress of that job. In contrast, the
Cloud resource consists of dedicated hardware, and is guaranteed to be available at all time. Cloud-
based machines are therefore suitable for long-running jobs without interruption. Moreover, Cloud
hardware usually has higher specification in term of disk space, memory and network bandwidth than
typical desktop machines. Therefore, Cloud-based machines are ideally suited to jobs that require a

considerable amount of data staging, for example large BLAST database files.

The use of a high-throughput computing framework was shown to reduce the time required for the
analysis of a large-scale sequence data set significantly. Running InterProScan on 100 protein se-
quences using an average desktop computer can take up to an hour (average 45 minutes) depending
on the length of the input sequences. Using Microbase, one InterPro job responsible for an anal-
ysis of 100 protein sequences took 1 hour and 8 minutes on average excluding the handling time
spent before and after a job execution (Table 3.3). Since worker nodes in the Condor Grid comput-
ing environment are shared with other users, long-running jobs may be frequently interrupted, and
therefore take much longer to complete than an equivalent job executing on a dedicated machine.
In Microbase, additional time is spent preparing a worker node. Such preparation processes include
software installation, input file retrieval and output file transfers. Including the preparation and file
transfer processes, the total node active time for processing all the 31,924 InterProScan jobs on an
average of 27 machines in the Newcastle University’s cluster machines was 16 days and 15 hours.
It would therefore take approximately 5 years to analyse the 3 million proteins in this project using
InterProScan on a single desktop machine that is not shared by several users. Microbase has been
shown to speed up a large-scale protein sequence analysis as all the project-related responders’ jobs

concerning GPDB construction and sequence analyses were completed within 2 months.

Challenges in integrating bioinformatics tools into a high-throughput computational workflow.

Numerous protein subcellular localisation prediction tools are available and new approaches are be-
ing developed to increase the accuracy of these tools. Different approaches and methodologies have
been established with the main aim to increase the accuracy level of the predictions. In order for
a tool to be integrated into Microbase, a machine-usable interface, such as a command line (down-
loadable as a standalone version) or web service interface is required. The vast majority of analysis

tools needed for this project were available in one or both of these forms. However, some tools
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such as BaCelLo [Pierleoni et al., 2006] are only available online via a web-based human-accessible
interface. While it may be possible to implement an adaptor to utilise the tool, such methods are
often difficult to implement and maintain, and are often unreliable. Therefore, although BaCelLo
is publicly available, and has been shown to slightly outperforms other tools such as TargetP, it is

currently not an option to incorporate it into a Microbase pipeline.

PSORTDb version 2.0 is an example of a bioinformatics tool that, in theory provides a desirable set
of functionality to predict protein sublocalisation, but for practical reasons was not feasible to use
in Microbase. The tool required several dependency libraries, which in turn required administrator
access to configure and install. Many of the machines available for processing the analysis at New-
castle University are production machines running a standard set of software. Therefore, it was not
feasible to make major alterations to these machines in case the PSORTb requirements interfered

with the standard campus software.

3.6 Conclusions

Several protein sequence analysis workflows that employ an event-based distributed computing sys-
tem (Microbase) has been successfully developed. The resulting system allows large-scale compu-
tationally intensive bioinformatics tasks to be performed simultaneously on a number of machines.
The workflows constructed are capable of analysing large amount of genomics data and executing
a variety of bioinformatics tools. The computational tasks generated by the workflows were simul-
taneously distributed to CPUs on the Amazon Cloud computing system and Newcastle University
cluster machines. The speed of running this large-scale sequence analysis was improved by about 60
times over the time that would have been needed to execute the analysis on a single computer. All
the analysis finished within a few months by using a set of 40-80 machines rather than the estimated
time of 5 years by using a single desktop computer. By exploiting high-throughput computing, where

multiple machines work in parallel, the computational part of this project was completed in 2 months.

The Microbase system is highly modular, allowing workflows to be extended with new tools in
a relatively straightforward manner. The workflow in this study can be reused in a larger set of
genomes or extended to execute other standalone bioinformatics tools with minimal effort. Not only
can the analysis be re-executed if necessary at any time, but also new data can be automatically
integrated with an existing data set without re-computing or repeating already completed analyses.
The working Microbase system automates the process of producing bioinformatics datasets, allowing

a biologist to analyse the data without having to worry about developing computing infrastructure
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such as the installation and execution of software or output data integration. The bioinformatics
workflows developed using a high-throughput computing framework have proven to be satisfactory
for facilitating post-genomics studies requiring actions to be performed in a systematic and automated
fashion. This approach should continue to be useful in a field where the amount of data to be analysed

increases exponentially every few months.
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Chapter 4

Computational Approaches to the
Identification of Microbial

Extracytoplasmic Proteins

4.1 Introduction

Microbial extracytoplasmic proteins including secreted, surface-associated, and transmembrane pro-
teins (see Figure 2.8) mediate key processes underlying in host-microbe interactions of both mutu-
alistic and parasitic microbial partners [Pallen and Wren, 2007] [Turnbaugh et al., 2007]. The ex-
tracytoplasmic proteomes of pathogenic strains are known to play a role as virulence factors that
mediate the pathogenesis in the host body [Dreisbach er al., 2010]. These factors include proteins
involved in, for instance, quorum sensing, cell adhesion, secretion systems and toxin production
[Barczak and Hung, 2009] [Lebeis and Kalman, 2009]. Targeting microbial virulence therefore pro-
vides an alternative or complementary strategy to the development of antibiotic treatment

[Clatworthy et al., 2007] [Cegelski et al., 2008]. Moreover, a pathogen’s extracytoplasmic proteomes
are potentially good targets for biomarkers for diagnostic assays and vaccine development

[Pajon et al., 2006] [Lee et al., 2003] [Lin et al., 2002]. A recent study of the surface proteomes of
several different Staphylococcus aureus strains has shown a high degree of variability of the surface

proteins between the strains [Dreisbach er al., 2010].

One of the main focuses of this project was to perform an in silico functional analysis on microbial
extracytoplasmic proteins in order to identify proteins that are important for the survival of microbes

in the host body. The study includes a large number of proteins from multiple groups of microorgan-
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isms. In order to acquire a relatively high quality set of candidate extracytoplasmic proteins from ap-
proximately three million sequences derived from both prokaryotes and microbial eukaryotes, there
was a need for an approach to computationally identify extracytoplasmic proteomes of microorgan-
isms with various cell surface structures and chemical properties. Ideally, such an approach should

provide a large number of potential extracytoplasmic protein candidates.

Numerous bioinformatics tools exist for predicting protein subcellular localisation, each of which has
different benefits and flaws. The diversity of cell surface structures also complicates the prediction of
protein location. It is therefore non-trivial to precisely identify extracytoplasmic proteins computa-
tionally since there are several mechanisms and pathways that target particular proteins through cell
membranes (see Section 2.3.3). Different groups of organisms typically use different mechanisms of
protein translocation through a cell membrane. These mechanisms are different depending on types

of organisms and their membrane structures (see Section 2.3.1).

Many prediction tools have been developed for the identification of specific targeting signals, such
as SignalP for prediction of N-terminal signal peptides [Dyrlovbendtsen, 2004] and TMHMM for
the identification of alpha-helix transmembrane regions [Krogh et al., 2001]. Several well-known
protein-targeting signal predictors have been trained with a set of proteins from a limited group of
taxa. For example, SignalP was trained with experimentally-verified cytoplasmic protein sequences
and with sequences containing N-terminal signal peptides. Firmicutes and Gracilicutes protein se-
quences were used as Gram-positive and Gram-negative bacterial protein training data sets, respec-
tively [Dyrlovbendtsen, 2004]. Some tools integrate several algorithms and techniques in order to
achieve a high performance in the prediction of protein sublocalisation. Most of the tools have been
designed to work with sequences from either eukaryotes or prokaryotes, but not both. PSORTb
is a prediction tool that combines several algorithms in order to identify multiple targeting signal
features and also to predict potential subcellular localisations for prokaryotic proteins. However,
PSORTb was designed to emphasize positive predictive value over sensitivity (average at 96% pos-
itive predictive value, 64% sensitivity in the data set originally published in [Gardy, 2004] with the

tool).

In this study, a workflow combining different programs, determination criteria, methods and strate-
gies was developed. An initial aim of developing this identification workflow was to construct a
system that can be used with primary amino acid sequence data from all three domains of life and
provide a relatively high quality of prediction results. Another purpose of the workflow was to
computationally generate an initial list of potential candidate extracytoplasmic proteins to serve the

needs of a high-throughput sequence analysis in the post-genomics era. Further workflows were also
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constructed to distinguish surface-associated and secreted proteins from transmembrane and other

proteins in periplasmic space.

This chapter includes a description of the approach used to generate an initial list of potential candi-
date extracytoplasmic proteins and the approaches used to identify cellular location of the extracyto-
plasmic proteins. The performance of the extracytoplasmic protein identification workflow was then
evaluated. Finally, this chapter reports the application of the workflow to the Bacillus extracytoplas-
mic proteome. Extracytoplasmic protein domains identified as shared or being predominant among

Bacillus species are also reported.

4.2 Materials and methods

Several existing high performance prediction tools were employed to identify putative extracytoplas-
mic proteins in a data set of three million protein sequences from both prokaryotes and microbial
eukaryotes. A computational workflow incorporating these existing tools was constructed to auto-
mate the process of extracytoplasmic protein identification. This workflow was developed using the

distributed-computing framework, Microbase (see Section 2.8.4).

The work in this chapter utilises data generated from the sequence analysis workflows described in
Chapter 3 (Section 3.3.2, 3.3.3). This data mainly consists of prediction results from several well
known bioinformatics tools, SignalP, LipoP, TMHMM, InterProScan and BLASTP, used to identify
targeting-signals and other protein sequence signatures. The process of executing these tools on
the input protein sequences and obtaining the analysis outcomes is also described in Chapter 3 (see
Section 3.3). This section describes the strategy used to construct a workflow for the identification

and classification of microbial extracytoplasmic proteins.

4.2.1 The extracytoplasmic protein identification workflow

The extracytoplasmic protein identification workflow was developed to generate a list of candidate
proteins by considering the results from the analysis workflows described in Chapter 3 (Section 3.3.2,
3.3.3). In this workflow, the results from each sequence analysis tool employed were considered with
respect to the types of organism that each tool was trained with, or suitable for. All positive predic-
tions were stored in the in-house database developed as part of this project, PredExtDB (discussed
in Section 3.2.4). The technical procedure of filtering results into the PredExtDB was described

earlier in Chapter 3 (Section 3.3.3). Here, the inclusion criteria for the acquisition of putative ex-
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tracytoplasmic proteins into the PredExtDB was described. Proteins were considered as putative

extracytoplasmic proteins (i.e., stored in PredExtDB) if they had any of the following features:

e an alpha-helix transmembrane region(s) predicted by TMHMM,;
e a N-terminal signal peptide cleavage site predicted by SignalP;
o a feature type signal peptidase II (Spll) predicted by LipoP;

e homology to any known experimentally-verified extracytoplasmic proteins from the data set
derived from ePSORT using BLASTP searches with an e-value less than 1 x 10~°. The length
of the query protein must also be within a range of 80-120% of the experimentally-tested

extracellular proteins;

e possession of any known functional domain typically exposed to extracellular space including

the surface-associated domains listed in Table 3.1;

e possession of surface or membrane-associated GO terms listed in Table 3.1.

A summary of the strategy used to classify a protein as ‘extracytoplasmic’ is shown in Figure 4.1.

4.2.2 Extracytoplasmic protein classification workflows

The focus of this project originally was to study the microbial surface proteome and secretome (ex-
tracellular proteins; see Figure 2.8). Given the list of putative extracytoplasmic protein candidates
from the previous workflow (see Section 4.2.1), extracellular proteins had to be differentiated from
transmembrane proteins as well as other proteins in the peptidoglycan layer. Therefore, further com-
putational workflows were constructed in order to classify the initial list of candidate extracellular
proteins in more detail. Three workflows were designed to handle microbes with different types
of cell surface structures: Gram-negative bacterial, Gram-positive bacterial and eukaryotic micro-
bial cell surface. In this study, the workflow designed for Gram-positive bacterial proteins was also
applied to proteins derived from Archaea. This strategy was used because archaeal cell surfaces typ-
ically comprise of one lipid bilayer membrane, similar to Gram-positive bacteria. A combination of
results from several prediction tools was used to group proteins into classes depending on the con-
sistency of the predictions. Putative extracellular proteins were classified into six different classes
depending on targeting signals predicted by the tools described in the Section 3.3. These classes rep-

resent artificial categories of extracytoplasmic proteins taking into account the presence of evidence
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Figure 4.1: Flow chart for the identification of extracytoplasmic proteins. A protein sequence was consid-
ered as extracytoplasmic and added to a list of putative extracytoplasmic proteins if at least one of the criteria
listed in the square box is evaluated to be true. The inclusion criteria are positive prediction results from LipoP,
SignalP, TMHMM, SCL-BLASTP and surface-associated protein domains and Gene Ontology (GO) terms.
Notes in brackets represent results considered as positive predictions. The BLASTP search was performed
against the set of known experimentally-verified extracytoplasmic proteins obtained from ePSORTdb. Surface
or membrane-associated protein domains and GO terms are listed in Table 3.1. All the results were stored in
the predicted extracellular protein database (PredExtDB) developed as part of this project (see Section 3.2.4).
SPII = Signal peptidase II, SPI = Signal peptidase I, SCL = subcellular localisation, len = length
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supporting their localisation outside the cytoplasmic space. Therefore, these categories may not nec-
essary reflect the actual cellular location of the proteins. The six classes of extracytoplasmic proteins
are described in the following list. It is important to note that protein sequences were classified as
a series of steps, and therefore each sequence can only belong to one class type. The classification
process for a particular protein stops once a sequence is assigned to a class. The classes are listed

beow.

e Multiple-TM protein: sequences with more than one alpha-helix transmembrane region pre-

dicted by TMHMM.

e One-TM protein: sequences with one predicted transmembrane segment located after the N-

terminal targeting signal cleavage site predicted by SignalP or LipoP.

e Lipoprotein: sequences with SPII cleavage sites predicted by LipoP without a predicted trans-

membrane region after the cleavage site;

e Sec-pathway protein: sequences with SPI cleavage sites predicted by SignalP with no pre-
dicted transmembrane regions after the cleavage site. Proteins in this class can be regarded as
being exported from cytoplasm, which can then become secreted or surface anchored proteins.
GPI-anchoring proteins are potentially assigned to this class due to the presence of the signal

peptide.

e Proteins with extracellular domains: sequences with predicted surface-associated protein sig-

natures or GO terms predicted by InterProScan.

e Sequences homologous to verified extracytoplasmic proteins: sequences that are highly similar
to experimentally verified bacterial extracytoplasmic proteins identified by BLASTP with an

e-value cutoff of 1E-9 and whose sequence length is within 80-120% of the hit subject.

The first step of the classification workflow differentiates transmembrane proteins from secreted and
surface proteins. The prediction results from the N-terminal targeting signal and transmembrane
predictors from SignalP, LipoP and TMHMM were considered at this stage. TMHMM and SignalP
have a well-known weakness resulting from their dependence on finding a region of hydrophobic
residues to determine alpha-helix transmembrane regions and N-terminal signal peptides. This com-
mon recognition pattern between the tools leads to overlap between the two types of predictions
[Lao et al., 2002][Krogh ef al., 2001]. For example, the hydrophobic core of a signal peptide is fre-

quently mistakenly predicted as a putative helix transmembrane segment by TMHMM. Likewise,
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SignalP reports many false positive results due to the exclusion of a transmembrane domain pre-
diction [Menne et al., 2000]. For this reason, results from the transmembrane topology and signal
peptide prediction methods were combined to allow the differentiation of the true transmembrane

protein from sequences with targeting signals and no predicted helix.

Combining the results from these algorithms requires several transformation steps. Firstly, sequences
that are predicted to have more than one helix by TMHMM must be extracted. These filtered se-
quences were then marked as putative multiple-transmembrane (multiple-TM) proteins. Next, pre-
dicted N-terminal targeting signals and predicted one-helix sequences must be discriminated. Se-
quences with N-terminal targeting signals predicted by LipoP or SignalP were checked for the pres-
ence of any helix region located N-terminally to the signal peptide cleavage site. If no helix region
exists, the sequence was classified as an N-terminal signal targeting protein: either a lipoprotein if
identified by LipoP or a Sec-pathway protein predicted if detected by SignalP. If a helix segment
was predicted after the signal peptide cleavage site, the sequence was classified as a putative one-
transmembrane (one-TM) protein. The workflow developed in this project considered the prediction
results from LipoP prior to taking into account the SignalP prediction results because LipoP was
developed particularly to distinguish the SPII-cleaved proteins (lipoprotein) from the SPI-cleaved

proteins [Juncker et al., 2003].

The developers of the SignalP, LipoP and TMHMM tools focused on relatively limited sets of organ-
isms considering the much wider range of taxonomic groups analysed in this project [Dyrlovbendtsen, 2004]
[Juncker et al., 2003] [Krogh et al., 2001]. Relying on only the predictions from these algorithms for
all the protein sequences included in this project therefore may not be optimal for the broad range of
organisms used in this project. To maximise the number of true positive predictions of extracytoplas-
mic proteins, surface-associated protein domain annotations and GO terms identified by InterProScan
were also incorporated. A list of the surface-associated protein domains and GO terms taken into ac-
count for this step is shown in Table 3.1. Sequences annotated with any of the surface-associated

domains or GO terms were classified as proteins with extracellular domains.

The final stage of the workflow examined the sequences that were not yet filtered by any of the steps
described earlier. This step considered the positive results from the SCL-BLASTP search (described
in Section 3.3.2 and Section 3.3.3). The remaining sequences had no predicted targeting signals,
transmembrane helices, or known surface-associated protein domains but were highly similar to
known experimentally-verified extracytoplasmic proteins. These sequences have a BLAST e-value of
< 1E-9 and the length of the sequences was within 80-120% of the experimentally-tested extracellular

proteins.
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The extracytoplasmic protein location classification results of proteins from the use of the workflow

is discussed in detail in the following sections.

Approach for classifying Gram-negative bacterial extracytoplasmic proteins

The workflow described above was applied for the classification of Gram-negative extracytoplasmic
proteins into six classes (Figure 4.2). This approach was applied to Gram-negative bacterial proteins
or proteins from other non Gram-staining prokaryotes with an outer membrane. This group of organ-
isms includes Bacteroidetes, Proteobacteria, Spirochaetes, Chlamydiae, Acidobacteria, Aquificae,

Chlorobi, Chloroflexi, Cyanobacteria, Thermi, Thermotogae, Verrucomicrobia.

Approach for classifying Gram-positive bacterial and archaeal extracytoplasmic proteins

For Gram-positive bacterial proteins, the workflow classified the putative extracytoplasmic sequences
into six classes (Figure 4.4). In this workflow, the results from SignalP were considered as an
additional step in the lipoprotein identification in order to reduce false positives that may have
been introduced by LipoP. In general, the length of a signal peptide of a lipoprotein is shorter
than that of a Sec-type secretory protein [Juncker ef al., 2003] [Tjalsma et al., 2000]. Since LipoP
was trained with a set of known Gram-negative lipoproteins, but none from Gram-positive bacteria
[Juncker et al., 2003]. In our workflow for Gram-positive bacterial proteins, a protein was classified
as a lipoprotein if there was a positive prediction by both LipoP and SignalP. The strategy here was to
use the ability of SignalP to predict a hydrophobic region that is located prior to the cleavage site. In
this workflow, LipoP was used to provide a prediction of a SPII cleavage site (c-region), while Sig-
nalP results were employed to ensure the presence of an N-terminal hydrophobic region (h-region).
The cross-validation was performed by using SignalP prior classifying sequences as lipoproteins in

order to increase the true positive prediction of Gram-positive lipoproteins (see Section 4.3.1).

During the course of this project, it was observed that LipoP sometimes misreports Gram-positive
sequences as lipoproteins due to the presence of a potential c-region, but these sequences actually
do not contain the h-region. Such sequences should not be classified as lipoproteins since the signal
sequence can be characterised by the presence of the h-region as well as the c-region. For example,
the B. subtilis’ prephenate dehydratase' (EC:4.2.1.51) encoded by PheA gene, is involved in amino
acid biosynthesis that would need to take place in the bacterial cytoplasm [Wipat ez al., 1996]. In

addition, the protein was not recognised as an extracellular protein by the review on the secretome of

Thttp://www.genome . jp/dbget—bin/www_bget?bsu:BSU27900, accessed 20th May 2010
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Figure 4.2: ExCyt protein classification pipeline for Gram-negative bacteria. Putative ExCyt proteins were
identified using the results from TMHMM, SignalP, LipoP, SCL-BLASTP (searching against a set of exper-
imentally verified surface-associated proteins) and surface-associated protein domain/GO terms annotations.
The set of predicted ExCyt proteins were retrieved from our analysis database. A protein was systematically
classified into one of six different classes: 1) Transmembrane (TM) protein if more than two helices were iden-
tified; 2) Lipoprotein if the SPII cleavage site was predicted by LipoP without a TM located after the cleavage
site; 3) Secreted protein via the Sec pathway if predicted positive by SignalP but either no TM domain was
predicted, or a predicted TM domain was located N-terminally to the signal peptide (SP) cleavage site; 4)
Protein with a single TM domain if a TM domain was identified without a SPI or SPII cleavage site or the TM
domain was located C-terminally to the cleavage site; 5) Protein with surface-associated domains/GO terms
if annotated as such; 6) SCL-BLAST Protein if a BLAST hit with an e-value < 1E-9 by the SCL-BLASTP
analysis was present. Each putative ExCyt protein can only be classified into one of the six defined classes
(the first classification that matches). Data storage for each class is shown in purple. Yellow squares represent
processing steps. Yes/No decisions made for each step throughout the classification pipeline are highlighted
in green and red, respectively. Arrows show direction of the workflow.

94




Bacillus subtilis carried out by Tjalsma et al. [Tjalsma ez al., 2004]. The Bacillus PheA protein has a
positive LipoP prediction, however, no h-region was detected on the PheA protein using SignalP (see
Figure 4.3). In this case, the result from SignalP showed no evidence for an h-region. Therefore, it
can be concluded that PheA is less likely to be a lipoprotein candidate even though LipoP indicated

the presence of SPII cleavage site on the sequence.
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Figure 4.3: The graphical result from SignalP-HMM prediction on B. subtilis’ prephenate dehydratase.
This figure suggests an absence of hydrophobic region (h-region) on the N-terminal of protein sequence.
However, the sequence is predicted positive by LipoP as a putative lipoprotein with a SPII cleavage site at
amino acid position 19-20.

The Gram-positive lipoprotein predictions based on the combination of results from LipoP and Sig-

nalP are shown in the result section (Section 4.3.1).

To date, very few prediction tools are specifically designed to predict archaeal protein subcellular
localisations and none of them work in a standalone or programmatically automate-able manner.
When identifying of archaeal extracytoplasmic proteins, the workflow mainly relied on the same
prediction tools and workflow developed for Gram-positive bacterial proteins. The same work-
flow was used for proteins from both prokaryotic groups due to the commonality between their
cell surface. The overall structure of archaeal cell surfaces are similar to Gram-positive bacteria;
they have a single plasma membrane with or without a cell wall, but lack an outer membrane and
periplasmic space [Ellen et al., 2010][Golyshina and Timmis, 2005]. A bioinformatics study of a
subset of archaeal proteins with putative signal-peptides has suggested the characteristics of the sig-
nal peptides are more similar to bacterial signal peptides than eukaryotic ones [Bardy ef al., 2003].
Moreover, several studies have proposed the existence of lipoproteins in various archaeal species
[Albers and Driessen, 2002][Kokoeva et al., 2002][Mattar et al., 1994]. Therefore, the workflow de-
veloped in this project for Gram-positive bacterial project was also applied to archaeal proteins as

well as Gram-positive bacterial proteins. Gram-positive bacterial organisms here include Actinobac-
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teria, Firmicutes and Tenericutes.
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Figure 4.4: Extracytoplasmic (ExCyt) protein classification pipeline for Gram-positive bacteria. Putative
Excyt proteins were identified from TMHMM, SignalP, LipoP, SCL-BLASTP (search against a set of experi-
mentally verified surface-associated proteins) and surface-associated protein domain or GO terms annotations.
The set of predicted ExCyt proteins were retrieved from the analysis database, PredExtDB. A protein was
systematically classified into one of six different classes: 1) Transmembrane (TM) protein if more than two
helices were identified; 2) Lipoprotein if the SPII cleavage site was predicted by LipoP without a TM located
after the cleavage site and with either a predicted N-terminal signal peptide by SignalP-HMM or SignalP-NN
with a Smean score > 0.5; 3) Secreted protein via the Sec pathway if predicted positive by SignalP but no TM
domain predicted, or a predicted TM region is located prior to the N-terminal signal peptide (SP) cleavage site;
4) Protein with a single TM domain if a TM domain was identified without being SignalP/Lipoprotein positive
or a TM was located C-terminally to the cleavage site; 5) Protein with surface-associated domains/GO terms
if annotated as such; 6) SCL-BLASTP protein if having a BLASTP hit with an e-value < 1E-9 by the SCL-
BLASTP analysis. Each putative ExCyt protein can only be classified into one of the six defined classes as
determined by the described pipeline. Data storage for each class is shown in purple. Yellow squares represent
processing steps. Yes/No decisions made for each step throughout the classification pipeline are highlighted
in green and red, respectively. Arrows show directions of the workflow.

Approach for classifying eukaryotic microbial extracytoplasmic proteins

Since microbial eukaryotic extracytoplasmic proteins have no lipoprotein signal peptides, the se-
quences were classified into five classes, disregarding the lipoprotein classification. No tools for pre-
dicting GPI-anchored proteins were included in this workflow for the reasons described in Section

3.3.2. The workflow assigns eukaryotic protein sequence into one of the following classes: multiple-

96




TM class, one-TM class, Sec-pathway class, surface-associated protein domains and GO terms class
and homologs of verified extracytoplasmic membrane class (Figure 4.5). The eukaryotic-specific
GPI-anchored proteins were anticipated to be classified into one of the extracytoplasmic class, either

the Sec-pathway or TM classes.
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Figure 4.5: Extracytoplasmic (ExCyt) protein classification pipeline for microbial eukaryotes. Putative ExCyt
proteins resulting from TMHMM, SignalP, SCL-BLASTP (searches against a set of experimentally verified
surface-associated proteins) and surface-associated protein domain/GO terms annotations. The set of predicted
ExCyt proteins were retrieved from our analysis database. A protein was systematically classified into five
different classes: 1) Transmembrane (TM) protein if more than two helices were identified; 2) Secreted protein
via the Sec pathway if predicted positive by SignalP but no TM region was predicted, or a predicted TM domain
was located prior to the N-terminal signal peptide (SP) cleavage site; 3) Protein with a single TM domain if
a TM domain was identified without a positive SignalP result, or the TM was located C-terminally to the
SP cleavage site; 4) Protein with surface-associated domains/GO terms if annotated as such; 5) SCL-BLAST
Protein if a BLAST hit with an e-value < 1E-9 by SCL-BLASTP analysis. Each putative ExCyt protein can
only be classified into one of the five defined classes as determined by the described pipeline. Data storage for
each class is shown in purple. Yellow squares represent processing steps. Yes/No decisions made for each step
throughout the classification pipeline are highlighted in green and red, respectively. Arrows show the direction
of the workflow.

4.2.3 Performance evaluation of the extracytoplasmic protein identification workflow

To evaluate the performance of the universal extracytoplasmic protein identification workflow, results
yielded from the workflow were cross-checked with a set of proteins whose subcellular localisation

have been experimentally verified. A set of 12,896 verified protein sequences was obtained from
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ePSORT database (ePSORTdb) version 3 (accessed 28th March 2010) [Rey er al., 2005]. This list
contains proteins from archaea and bacteria. It is important to note that the list from ePSORTdb
does not contain eukaryotic proteins. To perform a fair test, the sequences which were not included
in this project (i.e., those proteins not available in the GPDB) were removed from the set of veri-
fied sequences, resulting in 9,265 remaining sequences. The resulting list was comprised of 6,745
cytoplasmic (cyto) proteins and 2,520 extracytoplasmic (non-cyto) proteins (see Table 4.1 for more
details). Proteins were assigned as ‘cyto’ if they were shown to be only located in the cytoplasmic
space, whereas the tag ‘non-cyto’ was assigned if a protein was exported from cytoplasmic space.
The latter case included proteins which were experimentally verified to be translocated to the cyto-
plasmic membrane, periplasmic, outer membrane and extracellular spaces (secreted). To simplify
the process of evaluation, the taxonomic groups described in this section were classified based on
the organism group classification used in the ePSORTdb. ePSORTdD classifies prokaryotes into 5
groups: archaea, Gram-negative bacteria (Gm-), Gram-positive bacteria (Gm+), Gm- without outer
membrane (Gm-/OM-), and Gm+ with outer membrane (Gm+/OM+). Notably, the nomenclature of
the Gram-staining classification used in ePSORTdb is different from the nomenclature used by this
study. In this project, Gm+ and Gm- were assigned to bacteria with respect to the bacterial taxo-
nomic classification (see Figure 3.12), the cell surface structure was represented in the taxonomic
classes (bacterial phylum), and the evolutionary relatedness of each phylum on the recent global
phylogenetic tree was constructed based on universal protein families [Ciccarelli ef al., 2006]. The
differences between the Gram-staining annotation between this project and the ePSORTdb can be
seen. For example, Gm+/OM+ class in the ePSORTdb comprises some members of Deinococci phy-
lum, e.g. Deinococcus radiodurans and Deinococcus geothermalis DSM 11300. These organisms
were classified as Gm- by this project. In this project, the Tenericutes phylum was considered to be
a Gm+, whereas ePSORTdb refers to this phylum as Gm-/OM-. Tenericutes was assigned the Gm+
class in this project because its bacterial members have single cell membrane and they are more

closely related to the Firmicutes phylum whose members are known Gm+.

Performance evaluation metric

The metric used to perform the evaluation relied on four basic values — true positives (TP), false
negatives (FN), false positives (FP) and true negatives (TN). To assess the performance of the work-
flow in term of identifying extracytoplasmic proteins, these statistics were calculated as shown in

Table 4.2.
Positive predictive value was calculated as TP / (TP + FP), where as sensitivity (recall) was calcu-
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Table 4.1: The number of proteins with an experimentally verified subcellular localisation obtained
from ePSORTdb. These numbers were used as a baseline to assess the performance of the project’s ex-
tracytoplasmic protein identification workflow. Organism groups noted in the table were obtained from the
classification used in the ePSORTdb. CW = Cellwall, C = Cytoplasmic, CM = Cytoplasmic membrane, EC =
Extracellular, OM = Outer membrane, P = Periplasmic, Gm- = Gram-negative bacteria, Gm+ = Gram-positive
bacteria, OM- = no outer membrane.

Experimental Archaea | Gm- | Gm-/ | Gm+ | Gm+/ | Total
localisation OM- OM+

Ccw 14 - - 40 |0 54
CW, EC 1 - - 5 0 6
C - 4,942 | 106 1,658 | 39 6,745
C,CM - 39 [0 35 |0 74
CM 51 1,152 | 15 250 |1 1,469
CM, CW - - - 21 0 21
EC 9 177 |0 73 |0 259
oM - 298 | - - - 298
OM, EC - 35 |0 - 35
P - 264 | 0 - - 264
P, CM - 33 |0 - - 33
P, OM - 7 - - - 7
Total 75 6,947 | 121 2,082 | 40 9,265

Table 4.2: Basic values used to evaluate the performance of the extracytoplasmic protein identification
workflow. Cyto = Cytoplasmic, Non-cyto = Non-cytoplasmic, TN = True positive, FN = False negative, TP =
True positive, FP = False positive.

Actual localisation Predicted localisaion

Cyto Non-cyto
Cyto TN FP
Non-cyto FN TP

lated as TP / (TP + FN). Positive predictive value reflects the ability of the workflow to generate
correct predictions. For example, a 95% positive predictive value would mean that for 100 predicted
extracytoplasmic sequences, five are FPs or cytoplasmic. Sensitivity represents the ability of the
workflow to identify all TPs or extracytoplasmic proteins. For example, 95% sensitivity indicates
that for 100 actual extracytoplasmic sequences, five will be predicted as FNs or cytoplasmic proteins

[Gardy and Brinkman, 2006].

4.3 Results

In this section, the outcomes of applying the workflows described in the previous section to the

proteomes included in this study were presented. The performance of the workflows were evaluated
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by comparing the results to the set of proteins of known protein localisation. This section includes an
application use case for the results generated from the workflows described in this chapter and chapter
3 to gain a greater understanding of the extracytoplasmic proteomes of the selected 24 Bacillus

strains.

4.3.1 Comparison of the classification results to experimentally verified protein local-

isation

To evaluate the specificity and sensitivity of our protein subcellular identification approach, the re-
sults yielded from the workflow were compared with the experiment data of protein location derived
from ePSORTdb (see Section 4.2.3). The experimental data set was used to measure the quality of

the approaches used in this study for archaeal, Gram-positive and Gram-negative bacterial proteins.

The performance evaluation of the universal extracytoplasmic protein identification workflow

The performance evaluation of the universal extracytoplasmic protein identification workflow showed
that it is possible to make a reliable prediction of extracytoplasmic proteins from the workflow de-
scribed in this chapter. The performance was measured in comparison with the five currently avail-
able experimental data sets containing a total of 9,265 prokaryotic protein sequences (see methods
Section 4.2.3). It is also important to note that the term ‘extracytoplasmic proteins’ used in this
study are proteins located in any subcellular site, except the cytoplasmic space (see Figure 2.8). The
performance of the workflow was calculated based on five experimental data sets in order to take
into account the differences in the cell surface structures of distantly-related prokaryotes. The five
data sets obtained from ePSORTdb were archaeal, Gm+, Gm-, Gm+/OM+ and Gm-/OM-. Positive
predictive value and sensitivity of the workflow were computed for these five organism groups. The
overall positive predictive value reached 100%, 90.8%, 95.2%, and 87.5% for each group respec-
tively, except for Gm+/OM+ data set which had only 25% positive predictive value. The low positive
predictive value of Gm+/OM+ prediction might be due to the very low number of extracytoplas-
mic proteins in the experimental data set (only one protein was verified to be on the cytoplasmic
membrane; see Table 4.1). The sensitivities of the workflow were: 90.7%, 86.6%, 88.7%, 93.3%
and 100%, respectively for each data set. Further details are shown in Table 4.3. Based on the per-
formance evaluation using experimentally verified protein data sets, it was difficult to evaluate the
performance of the workflow on the archaeal protein data set as there were only a small numbers

(75) of archaeal proteins with experimentally verified locations.
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Table 4.3: Performance of the project’s workflow for the identification of extracytoplasmic proteins. TN
= True positive, FN = False negative, TP = True positive, FP = False positive, Gm- = Gram-negative bacteria,
Gm+ = Gram-positive bacteria, OM- = no outer membrane.

Organismgroup TP FP TN FN Positive predictive value Sensitivity

Archaea 68 0 0 7 100.00% 90.67%
Gm- 1,779 89 4,853 226 95.24% 88.73%
Gm-/OM- 14 2 104 1 87.50% 93.33%
Gm+ 367 37 1,621 57 90.84% 86.56%
Gm+/OM+ 1 3 36 0 25.00% 100.00%

Bacillus subtilis lipoprotein prediction

To evaluate the performance of the workflow for the identification of Gram-positive lipoproteins,
the results from the Gram-positive workflow were cross-checked with a list of putative B. subtilis
lipoproteins proposed by Tjalsma et al [Tjalsma et al., 2000]. The list of lipoproteins from Tjalsma et
al’s study combined experimentally-verified lipoproteins and a list of putative lipoproteins that were
identified by manually checking for regions likely to be lipoprotein signal peptides. In our workflow,
proteins were identified as Gram-positive lipoproteins if their sequence had positive predictions from

both LipoP and SignalP (see Section 4.2.2).

Eighty-six out of 114 B. subtilis lipoproteins identified in the paper [Tjalsma et al., 2000] were clas-
sified as lipoproteins by the workflow developed in this project. The workflow recognised eight
more lipoproteins (YusW, Yscb, yfKR, Med, yddJ, ylol, yybP, YIbC) that were not listed as putative
lipoproteins by Tjalsma et al. Ten lipoproteins (CtaC, SpolllJ, QoxA, YdiK, YhaR, YkoH, YqJG,
YtrF, YwnJ, YybM) from B. subtilis predicted by Tjalsma et al. containing multiple alpha-helix
membrane regions were assigned to the ‘TM’ class by the workflow. These proteins in the “TM’
class were therefore regarded as putative transmembrane proteins with multiple alpha-helical seg-
ments. It is noteworthy that only the first two proteins were also predicted to have an SPII cleavage
site by LipoP. However, if these results from both sources were true, this discrepancy may suggest

that these proteins possess more than one membrane-anchoring feature.

The YmzC protein was assigned into the one-TM class because it was predicted to have an N-terminal
hydrophobic region of 21 amino acids by TMHMM (with predicted topology : i13-340) and negative
predictions by LipoP and SignalP with Gram-positive option selected. This protein was identified
as a putative lipoprotein by Tjalsma et al. The protein also contains the twin arginine motif at the
N-domain of the signal peptide, suggesting the export of the protein via the Tat pathway rather than

the classical Sec pathway [Tjalsma ez al., 2000][Cristébal et al., 1999].
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Performance of the comprehensive extracytoplasmic protein classification workflow

The results of the comprehensive extracytoplasmic protein classification workflow were compared
to the localisation of protein sequences from the same experimental data sets described in the previ-
ous section (Section 4.3.1). The mapping result is shown in Table 4.4. Roughly 79% (1264/1597)
of proteins that were experimentally proven to be localised on prokaryotic cytoplasmic membranes
(CM) were classified as transmembrane proteins (multiple-TM or one-TM classes) by the workflow.
Approximately 10.6% (169) of the verified CM proteins were systematically grouped into other ex-
tracytoplasmic protein classes including Sec-pathway, lipoprotein and proteins with known surface-
associated domains. The remaining 10.4% (164) were not predicted as putative extracytoplasmic by

the workflow.

Notably, the workflow did not incorporate any tool specifically intended for identifying Gram-negative
bacterial outer membrane (OM) beta-barrel proteins, so it is worthwhile to examine the outcome. The
detection of OM proteins relied on the SCL-BLASTP search and protein signatures and domains of
known OM proteins (see Table 3.1). Approximately, 97.4% (331/340) of the verified OM proteins
were predicted as putative extracytoplasmic proteins by the workflow. Most of them were classified
as Sec-pathway proteins. Some OM proteins were predicted to have lipoprotein signal peptides, and
a few were predicted to have alpha-helix transmembrane regions. The rest were filtered by the work-
flow as extracytoplasmic proteins with known surface-associated domains or GO terms (see Table
4.4). From the results, it was noticeable that most of the OM proteins were exported via the Sec path-
way due to the presence of Sec signal peptides. This characteristic of the beta-barrel outer membrane
proteins has already been observed by other studies [Bagos ef al., 2004a][Bagos et al., 2004b]. The
presence of alpha-helix regions in the OM proteins might be due to the fact that some OM proteins

are known to possess alpha-helical hydrophobic regions [Noppa et al., 2001][Bunikis ez al., 1995].

The aim of the project was to identify extracytoplasmic proteins regardless of where they are located.
The approaches used and workflows developed in this chapter cover 88.5% (2229/2520) of the extra-
cytoplasmic proteins from verified archaeal and bacterial proteins with various cell surface structures.
The remaining 11.5% (291) of the verified extracytoplasmic proteins that were not identified as ex-
tracytoplasmic proteins by the workflow were investigated manually. It appears that 227 of these
proteins were Gram-negative bacterial proteins of which 87, 72 and 26 are verified as cytoplasmic
membrane, extracellular and periplasmic proteins, respectively. Five were verified OM proteins and
33 were identified in both cytoplasmic and CM, whereas four were presented as either OM or extra-

cellular. This finding suggests that several Gram-negative bacterial extracytoplasmic proteins are not
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exported via the classical Sec pathway nor do they have any alpha-helix transmembrane segments
or other detectable surface-associated features. This might be due to the variation of Gram-negative
bacterial secretory machinery. For example, many virulence-related proteins secreted through type
III secretory system and other non-classical secretory pathways do not have any well-conserved re-

gions nor recognisable targeting signal sequences [Samudrala et al., 2009][Arnold et al., 2009].

Furthermore, the performance of the workflow in the classification of transmembrane proteins (‘TM’
class) ranged from 81-96% positive predictive value and 84-92% sensitivity for different prokaryote
groups (see Table 4.5 for more details). It is important to note that the transmembrane proteins class
here were defined by TMHMM, detecting the presence of alpha helices. These proteins are mostly
located on the cytoplasmic membrane (inner membrane) of the Gram-negative bacteria. For proteins
localised on the Gram-negative outer membrane, they are typically presented with beta-barrel or

particular motifs (see Table 3.1).

For the proteins classified as putative secreted and surface-anchoring proteins (‘Sec’ class), 12%
(96/786) of the predicted Sec-class proteins were experimentally verified as cytoplasmic proteins.
The Sec-class included sequences with SignalP predicted positives with no predicted alpha-helix
membranes and were not predicted as lipoproteins. The positive predictive value of the workflow
for the identification of secreted and surface proteins were 61%, 73% and 80% for Gm+, Gm- and
archaea, respectively. The sensitivity of these groups of organisms were 74%, 82% and 46%, respec-

tively (see Table 4.6).
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Table 4.4: Results of the classification of extracytoplasmic proteins (‘ext’) using the project’s compre-
hensive workflow in relation to the data set of the experimentally verified protein sublocalisation. extblst
= ‘ext’ predicted by SCL-BLASTP, extdom = ‘ext’ predicted by having surface-associated protein domains
or gene ontology terms, lipo = ‘ext’ having signal peptidase II cleavage site, Sec = ‘ext’ having signal pep-
tidase I cleavage site, TM = ‘ext’ having at least one putative alpha-helix transmembrane region(s), Gm- =
Gram-negative bacteria, Gm+ = Gram-positive bacteria, OM- = no outer membrane, CW = Cellwall, C = Cy-
toplasmic, CM = Cytoplasmic membrane, EC = Extracellular, OM = Outer membrane, P = Periplasmic, OM-
= no outer membrane.

Predicted extracytoplasmic classes
Experimental extblst extdom lipo Sec TM | Total
localisation
Archaea
CM - - - 4 43 47
CW - - - 6 8 14
CW, EC - - - 1 - 1
EC - - - 4 2 6
Gm-
C - 3 5 61 20 89
C,CM - - - 5 3 8
CM - 1 14 78 972 | 1,065
P - - 7 226 5 238
P, CM - 4 2 10 16 32
P, OM - - 6 - 1 7
EC - 9 1 81 14 105
oM 1 6 60 223 3 293
OM, EC - 1 1 26 3 31
Gm-/OM-
C - - - 2 - 2
CM - 1 1 1 11 14
Gm+
C - 2 - 30 5 37
C,CM - - - 5 22 27
CM - - 10 20 191 221
CM, CW - - 2 11 5 18
CwW - 4 1 24 8 37
CW, EC - - - 5 - 5
EC - - - 56 3 59
Gm+/OM+
C - - - 3 - 3
CM - - - - 1 1
Total 1 31 110 882 1,336 | 2,360
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Table 4.5: Performance of the project’s extracytoplasmic classification workflow for the identification
of transmembrane proteins. The results of the classified transmembrane sequences were compared to the
experimentally-verified cytoplasmic membrane (excluding Gram-negative outer membrane proteins). Gm-
= Gram-negative bacteria (excluding the Gm-/OM- data set), Gm+ = Gram-positive bacteria (excluding the
Gm+/OM+ data set), TP = true positive, FP = false positive, FN = false negative.

Organism group TP FP FN Positive predictive value  Sensitivity

Archaea 43 10 4 81.13% 91.49%
Gm- 992 45 119 95.66% 89.26%
Gm+ 218 16 40 93.16% 84.50%

Table 4.6: Performance of the project’s extracytoplasmic classification workflow for the identification
of secretome and surface proteins. The results of the classified secreted and surface protein sequences were
compared to the experimentally-verified cell wall, extracellular and Gram-negative outer membrane proteins.

Organism group TP FP FN Positive predictive value  Sensitivity

Archaea 11 4 13 73.33% 45.83%
Gm- 664 167 150 79.90% 81.57%
Gm+ 103 67 36 60.59% 74.10%

4.3.2 Large-scale extracellular protein classification

The workflows were applied to 3,021,490 protein sequences in the GenomePool database to identify
putative extracytoplasmic sequences and their potential specific extracytoplasmic localisations. Fig-
ure 4.6 summarises the proportion of predicted extracytoplasmic proteins across different groups of
microorganisms. Table 4.7 provides a summary of the organism types and classes, referring to the
subcellular locations of the protein sequences classified using the workflow described in this chapter.
Based on the proteomes included in this study, the fractions of putative extracytoplasmic proteins
across the four groups of microorganisms were estimated to be 24.6%, 25.9%, 31%, and 34.6% for

microbial eukaryotes, archaea, Gram-positive bacteria and Gram-negative bacteria, respectively.

The “TM’ class accounted for the largest fraction of the putative extracytoplasmic proteins in all four
organism groups. The fraction of the transmembrane proteins ranged from 15.3% in the microbial
eukaryote group to 20.8% in the Gram-positive bacterial group (see Figure 4.7). The percentages of
the fractions presented here were computed in proportion to all protein sequences in each group of
organisms. The results indicated that Gram-negative bacteria and archaea carry a relatively similar
proportion of alpha-helix transmembrane proteins: 19% and 18.7% of the proteome data set, respec-
tively. These transmembrane proteins are typically translocated from cytoplasm to the cytoplasmic
membrane via the universal Sec pathway. The proteins exported via the classical Sec pathway were
classified into the ‘Sec’ class which included several extracytoplasmic proteins such as cell surface-

anchoring, Gram-negative outer membrane, and periplasmic proteins.
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Table 4.7: Summary of protein sequences assigned to different classes by the extracytoplasmic classifi-
cation workflow. The workflow was applied to all protein sequences deposited in the GenomePool database.
The results were shown in relation to organism groups depending on the major cell surface structures. The
Gram-positive group includes members of bacterial phyla Actinobacteria, Firmicutes and Tenericutes. Other
bacterial phyla are considered to belong to the Gram-negative group. The number of sequences were counted
based on the sequence classes assigned by the project workflow. extprot = putative extracellular cytoplasmic
proteins, extblast = ‘extprot’ predicted by SCL-BLASTP, extdom = ‘extprot’ predicted by having surface-
associated protein domains or gene ontology terms, lipo = ‘extprot’ having signal peptidase II cleavage site,
Sec = ‘extprot’ having signal peptidase I cleavage site, TM = ‘extprot’ having at least one putative alpha-helix
transmembrane region(s), Gm- = Gram-negative bacteria, Gm+ = Gram-positive bacteria.

Organism group Total proteins ™ Sec lipo extdom extblast Total extprot
Gm+ 693,402 144,290 55,092 13,911 1,648 14 214,955
Gm- 1,922,673 365,395 249,166 44,630 5,903 100 665,194
Eukaryotic 272,389 41,743 24,510 - 866 2 67,121
Archaea 133,026 24,826 7,975 1,527 170 1 34,499
Total 3,021,490 576,254 336,743 60,068 8,587 117 981,769

The ‘Sec’ class contained approximately 6%, 8%, 9% and 13% of the proteome of archaea, Gram-
positive bacteria, microbial eukaryotes, and Gram-negative bacteria, respectively (see Figure 4.7).
Notably, the Gram-negative bacterial group carried a slightly higher fraction of Sec-signal proteins
without alpha-helical transmembrane regions than those from other microorganism groups. These
proteins could contribute in the Type II or V protein secretion systems which are found predom-
inantly in the Gram-negative bacteria (see Section 2.3.3). It is known that Gram-negative bacte-
rial proteins located on outer membrane often contain beta-barrel transmembrane regions. These
outer-membrane proteins are often exported from cytoplasm across the inner membrane by the
Sec pathway before forming a beta-barrel sheet and inserting themselves into the outer membrane
[Wimley, 2003][Cullen, 2004]. On the other hand, predicted ‘Sec-pathway’ sequences for Gram-
positive bacteria could be secreted to the extracellular space or located or anchored on a peptidogly-
can layer. In the case of eukaryotic microbial proteins predicted as ‘Sec-pathway’, many of these
proteins could be either extracellular proteins or might instead be retained in cytoplasmic organelles
such as endoplasmic reticulum or golgi [Dyrlovbendtsen, 2004]. Likewise, predicted ‘transmem-
brane’ eukaryotic proteins would also include sequences located on the membrane of the organelles
in eukaryotic cells as well as the cytoplasmic cell membrane. Lipoproteins were predicted in very
narrow ranges of 1.2%-2.3% across archaeal and bacterial proteomes. Nearly the same proportions
of putative lipoproteins were observed in Gram-positive and Gram-negative bacterial proteomes (2%

and 2.3%, respectively).

Moreover, based on the extracytoplasmic protein prediction workflows, there was a strong posi-
tive correlation between the proteome size and the size of alpha helical transmembrane proteins

(R* > 0.89) among all group of microorganisms (see Figure 4.8). Likewise, the positive correla-
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Figure 4.6: A boxplot displaying proportions of predicted extracytoplasmic proteins in different phyla.
The vertical axis contains the boxplots for different taxonomic groups. The horizontal axis represents the
average proportion of the predicted extracytoplasmic proteins across the total number of protein sequences
in a given taxonomic group. A proportion was calculated into percentage for each organism. Extracytoplas-
mic proteins were predicted by a combination of results obtained from several bioinformatics tools including
TMHMM, SignalP, LipoP, InterProScan, and BLASTP as described in Section 4.2.1. The resulting proportions
were plotted with respect to organism taxonomic groups. The lower and upper edges of each box indicate the
25th and 75th percentiles, respectively, of the values found in a particular taxonomic group. The vertical line in
each box indicates the median value of the data. The ends of the horizontal lines (whiskers) indicate the mini-
mum and maximum data values. The whisker extends to a maximum of one quarter of the data unless outliers
are present. Outliers are shown by open circles. Asterisks denote extreme outliers. n=number of taxa. buaph=
Buchnera aphidicola str. Tuc7 (Acyrthosiphon pisum), Buchnera aphidicola str. Sg (Schizaphis graminum),
Buchnera aphidicola str. Cc (Cinara cedri), Buchnera aphidicola str. Bp (Baizongia pistaciae), Buchnera
aphidicola str. APS (Acyrthosiphon pisum), Buchnera aphidicola str. 5A (Acyrthosiphon pisum), Buchnera
aphidicola (Cinara cedri), acbau = Acinetobacter baumannii ATCC 17978, bacic= Baumannia cicadellini-
cola str. He (Homalodisca coagulata), cablo= Candidatus Blochmannia floridanus , Candidatus Blochman-
nia pennsylvanicus str. BPEN, wiglo= Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis,
ortsu= Orientia tsutsugamushi str. Ikeda, syaci = Syntrophus aciditrophicus SB, thsp= Thauera sp. MZ1T,
woend= Wolbachia endosymbiont of Drosophila melanogaster , phlum= Photorhabdus luminescens subsp.
laumondii TTO1, caves= Candidatus Vesicomyosocius okutanii HA (Candidatus Vesicomyosocius okutanii str.
HA) ,lebif= Leptospira biflexa serovar Patoc strain *Patoc 1 (Ames)’, shloi= Shewanella loihica PV-4, shsed=
Shewanella sediminis HAW-EB3, shsp= Shewanella sp. MR-4, shwoo= Shewanella woodyi ATCC 51908 ,
sadeg= Saccharophagus degradans 2-40, stmal= Stenotrophomonas maltophilia R551-3, bdbac= Bdellovibrio
bacteriovorus HD100, miaer= Microcystis aeruginosa NIES-843, trery= Trichodesmium erythraeum IMS101,
acmar= Acaryochloris marina MBIC11017, sysp= Synechococcus sp. WH 8102, casul= Candidatus Sulcia
muelleri GWSS, trvag =Trichomonas vaginalis G3.
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Figure 4.7: Proportions of extracytoplasmic proteins among all of the protein sequences across different
types of organisms. The proportions are shown as percentages of the predicted extracytoplasmic proteins in
a given class across the total number of protein sequences in a particular organism group. The Gram-positive

group (Gm+) included members of bacterial phyla Actinobacteria, Firmicutes and Tenericutes. Other bacterial
phyla were considered as Gram-negative group (Gm-).
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tion was observed between the proteome size and the size of ‘Sec-pathway’ proteins (R> > 0.73).
The results suggest that the larger the number of sequences in a proteome, the greater the num-
ber of cytoplasmic membrane proteins and proteins carrying Sec-signal peptides. The weaker pos-
itive correlations were observed between the proportion of predicted lipoproteins and proteome
size (0.60 < R? < 0.63) across archaea and Gram-positive bacteria. The least positive correlation
(R?> = 0.31) was found between the fraction of lipoproteins and proteome size of the Gram-negative
data set. For the eukaryotic data set, Trichomonas vaginalis G3’s proteome was excluded from the
plot in Figure 4.8 to remove an extreme outlier as the genome encodes approximately 59,518 protein-
coding genes. The size of the T vaginalis G3 proteome is extremely large compared to those from the
other microbial eukaryotes (ranges from 403 to 13,331 protein sequences) in this study. Nonetheless,
the Trichomonas’ proteome appeared to contain the smallest fraction of extracytoplasmic proteins

(11.7%) according to the results from the workflow developed in this project (see Figure 4.6).
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Figure 4.8: The correlation between the numbers of extracytoplasmic proteins and the total number of
protein sequences is shown for five groups of microorganisms. The predicted extracytoplasmic proteins
were classified into lipoprotein, alpha-helix transmembrane proteins and Sec-pathway proteins. Note that
Sec-pathway class included proteins that possess Sec-signal peptides and have not yet been classified into
the lipoprotein or the transmembrane class. The X-axis shows the total number of protein sequences in each
proteome. The Y-axis denotes number of sequences predicted as putative extracytoplasmic proteins. This plot
excludes an extreme outlier i.e. Trichomonas vaginalis G3’s proteome data set.
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4.3.3 Extracytoplasmic proteome prediction of Bacillus spp. using the Microbase

workflows

In this section, an application use case is demonstrated that makes use of the results generated from
the workflow described in the previous sections. An analysis of 24 proteomes of Bacillus spp. was

performed that covered all the completed Bacillus genomes available at the time of study.

Bacillus spp. is a rod-shaped, spore-forming Gram-positive bacteria belonging to the phyla Firmi-
cutes. The Bacillus members appear as both being free-living and being associated with hosts. They
also exhibit differences in terms of host range and virulence. Some Bacillus species are pathogenic
to insects or vertebrates. Phylogenetic analysis of the 16sRNA demonstrated a close relationship
among some Bacillus species that are considered as host-associated and pathogenic in some insects
and mammals. This group of genetically closely-related Bacillus species, known as the Bacillus
cereus group, includes B. cereus, B. anthracis, B. thuringiensis, B. weihenstephanensis, B. cytotox-
icus and B. mycoides [Kolstg et al., 2009] (see Figure 4.9). The first three species are known to
be pathogenic to mammals or insects, whereas the last two species and the members of non-cereus
group are generally regarded as non-pathogenic soil bacteria (see Figure 4.9 for the list of non-cereus
group’s members). The term ‘cereus group’ is used to refer to this closely-related Bacillus species

throughout this section.

The variation within the Bacillus species in terms of their ecological niches and symbiosis raises
several interesting questions. For example, what is the diversity of the extracytoplasmic proteomes
within the Bacillus species and how were the proteomes influenced by different ecological and evo-
lutionary forces. In particular, what are the features that facilitate the cereus group’s members in
their interactions with hosts in comparison to the free-living non-cereus species. The availability of
the genomes and the corresponding protein-coding gene sequences of the Bacillus species of both

groups stimulated interest in the comparisons of their protein contents.

Genome sequences used for the analysis of the Bacillus’ extracytoplasmic proteins

An analysis was performed on 57 Bacillus complete chromosomal and plasmid genomes from 24
Bacillus strains corresponding to 125,564 protein sequences being analysed in the workflow. The
RefSeq genome data files were downloaded in GenBank (.gbk) format from the RefSeq database
(on 27 July 2009). The 24 Bacillus taxa with complete genome sequences that were included in the

analysis are shown in Table 4.8.
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Figure 4.9: Phylogenetic relationships among Bacilli members. Relationships among 57 Bacillus species
based on 16S ribosomal DNA (rDNA) sequences. Alicyclobacillus acidocaldarius was used as an outgroup to

root the tree. (Source: Klost et al. 2009 [Kolstg et al., 2009]; more details of the phylogenetic tree construction
can be found in the source paper)
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Table 4.8: List of organisms and genomes used for the Bacillus proteome analysis. The RefSeq genome
accession numbers are indicated. Bacillus genome information were derived from GOLD database. Asterisks
indicate pathogenic strains.

Cereus group

B. anthracis str. Ames

B. anthracis str. CDC

684*

B. cereus 03BB102*

B. cereus AH820*

NC_003997

NC_012581,
NC_012577

NC_012472, NC_012473

NC_011773,
NC_011777, NC_011776

NC_012579,

Host, Soil

NC_011771,

Non-pathogen

Cause anthrax

Blood of an infected
human

Cause pneumonia

Periodontal pocket Cause food poison-
of a patient with ing

marginal periodon-

titis

B. cereus ATCC 14579*

B. cereus E33L*

NC_004722, NC_004721

NC_006274,
NC_007105,
NC_007106, NC_007107

NC_007103,
NC_007104,

Soil

Soil

Cause food poison-
ing

Swab of a zebra car-  Cause food poison-
cass ing

B. cereus Q1

NC_011969,
NC_011971

NC_011973,

Soil, Oil fields

Deep-subsurface oil
reservoir

Non-pathogen

Severe human tis- Cause sotto disease

B. thuringiensis serovar
konkukian str. 97-27*

B. weihenstephanensis
KBAB4*

NC_005957, NC_006578

Host, Soil

Soil

NC_010184,  NC_010180,
NC_010181,  NC_010182,
NC_010183

sue necrosis

- Non-pathogen

B.  amyloliquefaciens
FZB42

NC_009725

Rhizosphere-
colonizing,
Soil

Soil Non-pathogen

B. halodurans C-125

NC_002570,

Soil, Fresh wa-
ter

- Alkalophile

B. pumilus SAFR-032

NC_009848

Soil

Spacecraft As-
sembly Facility at
NASA Jet Propul-
sion Laboratory

Biomass degrader
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General observations

The proportions of the extracytoplasmic proteomes of 24 Bacillus subspecies were 34.2%=+5% (see
Table 4.9 and Figure 4.11). The smallest extracellular proteome (31.6%) was B. halodurans C-125,
whereas the largest (36.5%) was B. thuringiensis serovar konkukian str. 97-27. The proteome size
of the cereus group’s species was significantly larger than the non-cereus members (p-value < 0.05).
The increase in extracytoplasmic proteome size increases with increase in proteome size with a strong
positive correlation (R? = 0.98) (see Figure 4.10). The strong correlation between the extracytoplas-
mic proteome size and the proteome size from this study corroborated the finding of Gomi et al.
[Gomi et al., 2005a] whose secretome analysis observed the same pattern in Gram-positive bacteria.
Gomi et al. predicted secreted and transmembrane proteins using a prediction tool called SOSUI and
SOSUlIsignal. These predictors rely purely on the physical properties of amino acid sequences and
statistical analysis [Hirokawa et al., 1998][Gomi et al., 2005b]. However, this result contradicts the
observations made by Song et al. [Song et al., 2009] who found no correlation between the size of
Gram-positive bacterial proteome and secretome from their study. However, Song et al. employed
a different application, ExProt, to establish protein sets of belonging to the secretome. ExProt iden-
tifies the secretome by the presence of a bacterial lipoprotein motif (PS00013) and a signal peptide
cleavage site for SPI through a amino acid position neural network and weight matrix algorithms
[Saleh er al., 2001]. This prediction tool excluded the proteins with a helix transmembrane domain
and other known extracellular-associated domains which are included in our study. It was notable
that all these assumptions, regarding the correlation of the size of whole proteome and extracytoplas-
mic proteins, were undertaken based on different strategies used to identify the bacterial secretome

in silico.
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Table 4.9: The proteome fractions of Bacillus’ putative extracytoplasmic proteins. The predicted extra-
cytoplasmic proteins of 24 Bacillus subspecies/strains were classified into 5 categories according to the Gram-
positive classification workflow (see Figure 4.3). Asterisks indicate pathogenic strains. ExCyt= Extracyto-
plasmic proteins, Lipoprotein= putative lipoprotein, multiple-TM= proteins carrying at least 2 alpha-helical
transmembrane regions, one-TM= proteins with one alpha-helix region, Sec-pathway=secreted proteins (car-
rying Sec signal peptides and not TM proteins), ExtDom protein= proteins carrying extracellular domain(s)

and not yet classified in any category.

Name Proteome Total multiple-TM  one-TM  Lipoprotein  Sec-pathway ExtDom
size predicted protein
Excyt (%)
Cereus group
B. anthracis str. A0248 5291 1842 (34.8) 1098 204 143 365 29
B. anthracis str. Ames 5311 1870 (35.2) 1126 207 140 369 30
B. anthracis str. ‘Ames An- 5584 1963 (35.2) 1166 225 146 398 31
cestor’
B. anthracis str. CDC 684 5902 2060 (34.9) 1204 247 153 416 40
B. anthracis str. Sterne 5287 1889 (35.7) 1182 176 143 347 36
B. cereus 03BB102 5621 2002 (35.6) 1172 235 155 403 36
B. cereus AH187 5758 1998 (34.7) 1170 242 156 405 40
B. cereus AH820 5810 2043 (35.2) 1207 234 119 457 32
B. cereus ATCC 10987 5844 2059 (35.2) 1181 289 149 410 36
B. cereus ATCC 14579 5255 1823 (34.7) 1092 196 145 345 44
B. cereus B4264 5408 1923 (35.6) 1126 207 163 400 35
B. cereus E33L 5641 2049 (36.3) 1243 189 162 419 36
B. cereus G9842 5857 2001 (34.2) 1142 245 166 421 39
B. cereus Q1 5488 1888 (34.4) 1141 191 135 385 42
B. cytotoxicus NVH 391-98 3844 1275 (33.2) 757 116 96 288 24
B.  thuringiensis  serovar 5197 1913 (36.8) 1192 163 158 367 36
konkukian str. 97-27
B. thuringiensis str. AlHakam 4798 1652 (34.4) 971 166 133 351 37
B. weihenstephanensis 5653 2005 (35.5) 1191 201 173 409 33
KBAB4
Non-cereus group
B. amyloliquefaciens FZB42 3693 1206 (32.7) 734 102 78 256 19
B. clausii KSM-K16 4096 1343 (32.8) 838 99 143 232 23
B. halodurans C-125 4066 1315 (32.3) 767 160 106 235 31
B. licheniformis ATCC 14580 4196 1390 (33.1) 852 119 95 287 28
(DSM 13)
B. licheniformis ATCC 14580 4178 1402 (33.6) 840 119 98 316 28
(DSM 13) (2)
B. pumilus SAFR-032 3681 1234 (33.5) 729 133 86 264 21
B. subtilis subsp. subtilis str. 4105 1381 (33.6) 829 111 94 306 27

168
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Figure 4.10: The proportions of extracytoplasmic protein classes among all protein sequences across all
Bacillus species included in the analysis. Linear correlations (R?) were calculated using Pearson’s correlation
coefficient.

It appeared that there was a statistically significant difference in the extracytoplasmic proteome size
between the cereus group and the non-cereus group (p-value < 0.05) which was probably because
the members of cereus generally have a larger proteome size. Unquestionably, the extracytoplasmic
proteome size of the pathogenic Bacillus was considerably greater in size than the non-pathogenic
Bacillus species with a statistically significant (p-value < 0.05) (see Figure Figure 4.11). This find-
ing corresponds with a previous experimental study indicating the abundance of surface proteins in
Bacillus strains with S-layers [Mignot et al., 2001]. Again, our finding disputed the study by Song et
al [Song et al., 2009], finding that there was no correlation between secretome size of Gram-positive

bacteria and pathogenicity.

It is also important to note that ‘pathogenicity’ or ‘virulence’ are terms used to describe microorgan-

isms that are known to be able to disturb normal host physiology, or cause malfunctions in the host

body. There is still considerable ambiguity over the meaning of the term [Casadevall and Pirofski, 2001].
Moreover, some microorganisms that are generally considered as non-pathogenic strains may actu-

ally cause disease to other organisms and these links may have not yet been discovered [Holden ef al., 2004].

In this study, the term ‘pathogenicity’ was assigned to Bacillus spp. based on the genome informa-
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tion derived from the GOLD database” by considering whether a strain is capable of causing diseases

(Table 4.8).

Bacillus extracytoplasmic proteome

In this section, the differences across the Bacilli extracytoplasmic proteome data sets was investi-
gated in more detail, in particular, the contrast between the Bacillus cereus group and the non-cereus
group. The majority of the Bacillus extracytoplasmic proteomes were predicted to have a helix
transmembrane region and N-terminal signal peptide cleavage sites by either SPI or SPII. The rest
appeared to possess well-known Gram-positive surface-associated motifs or domains including: S-
layer motif (PF00395), LPXTG anchoring motif (PF00746, PS50847), LysM domain (PF01476),
or other known-characterised extracellular protein signatures such as LRR motif (PF00560), NLPC
P60 (PFO0877), putative cell wall binding repeat (PF01473). A summary of number of these domains
found across Bacillus strains are shown in Table 4.10. Interestingly, some of these surface-associated
domains are significantly over-represented across the members of the Bacillus cereus group, sug-
gesting a larger surface proteome among the cereus group than the non-cereus group. The S-layer
homology domain (SLH; PFO0395 or InterPro (IPR)001119) not only co-occurs significantly with
the members of cereus group (p-value 1 x10~%), it also appears to be enhanced among the cereus
species (p-value 1.76 x1072%). Likewise, the surface protein from proteins with the Gram-positive
bacterial LPXTG anchoring domain (PS50847 or IPRO01899) are enriched within the cereus group
(p-value 2.73 x10~4).

Bacillus S-layer homology domain protein

The Surface Layer Homology (SLH) domains mediate association of SLH-domain-bearing proteins
non-covalently to the polymers of the secondary cell wall of Gram-positive bacteria [Lee et al., 2003]
[Schiffer and Messner, 2005]. These typical essential cell wall polymers such as teichoic, teichuronic
acids, lipoteichoic acids or lipoglycans, serve as an anchoring structure for the SLH motif. Several
S-layer proteins have been characterised as virulence factors required for pathogenesis, for instance,
internalin from Listeria monocytogenes and B. cereus and PspA from Streptococcus pneumoniae

[Navarre and Schneewind, 1999] [Fedhila et al., 2006].

SLH domains were presented across almost all Bacillus spp. at a higher proportion compared to

other anchoring domains annotated on the proteomes. Interestingly, members of the cereus group

Thttp://wuw.genomesonline.org, accessed 20th August 2010
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contain a noticeably greater number of SLH domains (10-24) than the non-cereus group (0-1) (p-
value 1.8 x1072%). These values suggest a phylogenic origin for the presence of S-layer proteins
and possibly an ecological pressure. For the B. anthracis’ surface proteome study, it was suggested
that S-layer proteins represent 15% of the cell surface proteins and therefore synthesising S-layer

proteins is energy consuming [Fouet, 2009].

The distribution of the SLH domain across the Bacillus species immediately raises a question of
whether SLH-containing protein sequences carry important protein features evolved among the cereus
members or if these surface proteins are involved in host-Bacillus interactions, particularly virulence.
Therefore, Bacillus proteins possessing this SLH cell-surface anchoring domain were investigated in
more detail in terms of their molecular functions according to other known features possessed by
these proteins. The 338 proteins were found to have at least one SLH domain and at most three

domains.

The Bacillus proteins with SLH domains are annotated as: putative penicillin-binding domain; cell-
wall hydrolase/autolysin; peptidoglycan endo-beta N-acetylglucosaminidase and N-acetylmuramoyl-
L-alanine amidase fusion; S-layer protein EA1; S-layer protein Sap precursor; Ig domain-containg
protein; crystal protein; internalin; N-acetylmuramoyl-L-alanine amidase; iron transport-associated
domain-containing protein; GW repeat-containing protein; NEAr transporter and hypothetical pro-
teins. Internalin from B. cereus ATCC14579, was considered as a virulence factor during an infection
of the bacteria in insect larvae, Galleria mellonella [Fedhila et al., 2006]. The NEAr transporter or
NEAT domain, exclusive to Gram-positive bacteria, has a role in heam binding for the acquisition
of iron from the host body. The domain was believed to involved in an iron transporter because
the NEAT-domain encoding genes were located adjacent to genes coding components of the Fe**
siderophore transporter [Grigg et al., 2007][Andrade et al., 2002]. Some of these Bacillus S-layer
protein are hypothetical. However, these hypothetical proteins may contain as yet unidentified con-
served functional regions that might be important to their survival in specific environments. These
proteins are therefore still of interest in terms of how they are an advantage to a particular group of
organisms. Particularly, in this case, how these hypothetical proteins could assist in the adaptation
of the cereus species to a host body. A novel M60-like protein domain is described later (Chap-
ter 7) that has been found in several hypothetical proteins and is potentially important for several

mucosa-associated microorganisms for interacting with their hosts.

Protein domains possessed by the S-layer proteins of the cereus group’s members is shown in Table
4.11. These functional domains play roles in drug resistance (e.g. Beta-lactamase-related), protein-

protein interaction (e.g. Leucine-rich repeat), peptidoglycan catabolic process (e.g N-acetylmuramoyl-
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L-alanine amidase, family 2), membrane transport (e.g. NEAr transporter), and pathogenesis (e.g.

Immunoglobulin E-set).

Several protein domains found on the S-layer proteins also appear to be over-represented among the

cereus species (marked by ‘*’ in Table 4.12).
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4.3.4 Identification of extracytoplasmic protein domains shared or predominant among

Bacillus species

This section demonstrates the use of data obtained from the project’s Microbase workflows (de-
scribed in Chapter 3) and the workflows described earlier in this chapter. The aim of the work
presented here was to reveal important protein features that are potentially involved in host-microbe
interactions and the adaptation to the respective life-styles of the different Bacillus spp. The fo-
cus was placed particularly on features of the Bacillus’ extracytoplasmic proteome because they are

microbial components that interface with the host environment.

Approximately, 20-25% of the identified protein-coding gene sequences did not contain any known
InterPro protein domains published at the time of the study (see Figure 4.11). Within the proportion
of proteins with no identified conserved regions, roughly 8-13% are predicted Bacillus extracytolas-
mic proteins. To examine whether the current protein domain profiles of known conserved protein
features can be used to distinguish different Bacillus species included in this study, the relation-
ship among Bacillus species based on their protein domain profiles was investigated. If the domain
profile-based relationship reflected the known model of phylogenetic relationships among Bacillus
species based on 16S rDNA, it could be concluded that different phenotypes of Bacillus must be

determined by the presence of some of these annotated protein domains.

As aresult, a hierarchy clustering of all Bacillus species using a number of InterPro domains anno-
tated by InterProScan on each Bacillus proteome data set was generated (see Figure 4.13). Interest-
ingly, the relationship of Bacillus with respect to the domain profiles corresponds to the phylogenetic
tree generated using 16S rDNA sequences (see Figure 4.9). Like the 16S rDNA phylogenetic tree,
the members of the Bacillus cereus group were clustered in one clade and separated clearly from the
non-cereus species. This result indicates that, for the Bacillus species, InterPro domain composition
can be used as a guideline for their phylogenetic relationships. This is not surprising as protein se-
quences and their functional components are products of gene-coding DNA sequences. However, a
sufficient number of known protein signatures among the proteome data set is required for a reliable
suggestion of the phylogenetic relationship. In this case, it seemed that the Bacillus’ InterPro domain
profiles have a satisfactory level of information that can be employed for further investigation of the

differences in the Bacillus phenotypes or their ability to thrive in different environments.

In the next step, the analysis to identify protein domains (InterPro entries) that discriminate the bac-
teria of the cereus group from the non-cereus group was performed. The hypergeometric test (see

Section 2.9.1) was used as a significance test to evaluate the probability that an InterPro domain

125



Cluster dendrogram with AU/BP values (%)

160
|

au bp
o 1001100
Q 4
- 5 100 [ 100 1001100
@©
4 »
1
o
@ 99 [ 08 T 5
o <
o
= 8- @ m
=) -
2 g_ ‘>)‘ > g
- D5 o o E 32
< - 5952 x B 8 o 1001100
E‘—VNI B9 <
o - TELSI oDy o
s {2 295uWeER
m§eO0®P2T 8L 23y 33
® 388 LD smggcyglE o 2
< = y
M m I @ mgé&mg o @
o < O =
m 2 g 5
g5
0 m

Distance: euclidean
Cluster method: complete

Figure 4.13: Relationship of Bacillus spp. based on their normalised Interpro domain composition.
Staphylococcus aureus’s data set was used as an outgroup. The hierarchical cluster was computed using
the complete linkage clustering method and Euclidean distance based similarity. Values on the edges of
the clustering are p-values (%). Red values are AU (Approximately Unbiased) p-values, and green val-
ues are BP (Bootstrap) values. BantAmes= B. anthracis str. Ames, Bamy= B. amyloliquefaciens FZB42,
BantAO02= B. anthracis str. A0248, BantAmA= B. anthracis str. ‘Ames Ancestor’, BantCD= B. anthracis str.
CDC684, BantSt= B. anthracis str. Sterne, BcerO3BB= B. cereus 03BB102, BcerAH187= B. cereus AH187,
BcerAH820= B. cereus AH820, BcerAT109= B. cereus ATCC10987, BcerAT145= B. cereus ATCC14579,
BcerB4264= B. cereus B4264, BcerE33L= B. cereus E33L, BcerG9842= B. cereus G9842, BcerQ= B. cereus
Ql, Bcla= B. clausii KSM-K16, Beyt= B. cytotoxicus NVH391-98, Bhal= B. halodurans C-125, Blic= B.
licheniformis ATCC14580 (DSM13), Bpum= B. pumilus SAFR-032, Bsub= B. subtilis subsp. subtilis str. 168,

BthuHak= B. thuringiensis str. Al Hakam, BthuKon= B. thuringiensis serovar konkukian str. 97-27, Bwei= B.
weihenstephanensis KBAB4
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occur preferentially among members of one group. The hypergeometric mean value was calculated
to determine the direction of these associations (i.e associated to cereus or non-cereus group). This
statistical technique was applied to identify the association of both the co-occurrence and the abun-
dance of a domain in the Bacillus groups. The co-occurrence evaluation considers the presence and
absences of a domain in the bacterial groups, whereas the abundance (enrichment) analysis takes
into account the number of domains among members of each Bacillus group. Pearson’s correlation
coefficient (see Section 2.9.2) was also employed to measure a linear relationship between a do-
main and the two Bacillus groups. These statistical techniques were applied to all 3,078 InterPro
entries annotated on at least one of a Bacillus protein-coding gene sequence. The entries found to be
over-represented among the cereus group as well as expressed on the extracytoplasmic proteins were
shown (see Table 4.12). The distribution of these domains across Bacillus species is illustrated in a

heatmap (see Figure 4.14).

Not surprisingly, domains known to be involved in pathogenesis or virulence were found signifi-
cantly among the cereus group members, for instance, Bacillus PapR (IPR09239), hemolysin. PapR
peptides promote the expression of the PIcR regulon, a regulator that activates various virulence fac-
tors in B. cereus and B. thuringiensis [Slamti and Lereclus, 2002]. Other known virulence-associated
domains predominant across cereus members included Leukocidin / porin (IPR016183), Leukocidin
/ haemolysin (IPR01340), and thiol-activated cytolysin (IPR001869). Many other domains func-
tion as proteases and some of these are known as virulence factors e.g. thermolysin (IPR013856,
IPR0O01570), viral enhancin, collagenase (IPR0O13510, IPR013661), fungalysin (IPR0O01842), ar-
chaeal and bacterial peptidase (IPR0O07280), peptidase M4 and M36 (IPR011096), and peptidase
S15 (IPR000383, IPR0O13736). Several antibiotic-resistance protein domains were also identified
including penicillin amidase (IPR002692), and Beta-lactamase class B (IPR0O01018). As discussed
earlier (Section 4.3.3), several bacterial cell wall anchor were identified including SLH (discussed

previously, Section 4.3.3), and surface protein from Gram-positive cocci (IPR001899).

In addition, domains known to be involved in bacterial adhesion to mammal or insect or plant sur-
faces were also predominant among the cereus bacteria. These domains include bacterial adhesion
(IPR0O08966), collagen-binding surface protein Cna-like (IPR008454), bacterial cellulose-binding
family II (IPR0O01919), bacterial pullanase-associated protein (IPR005323), and chitin-binding do-
main 3 (IPR004302). Domains regarded as being involved in transport were also found, such as
amino acid transporter (IPR0O13057), short chain fatty acid transporter (IPRO06160), TGF-beta re-
ceptor, type I/II (IPR0O18456, IPR000109), Branched-chain amino acid transport system II carrier
protein (IPR004685), Ferrous iron transport protein (IPR0O11619, IPR011640), ATPase K+ trans-
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porter (IPR004623, IPR003820), Zinc/iron permease (IPR0O03689), Nicotinamide mononucleotide
transporter (IPR006419), and Ion transport 2 (IPR0O13099). Some domains serve as a binding site for
protein-protein interaction (e.g. WDA40 repeat (IPR001680) and Leucine-rich repeat (IPR001611)).
Using our approach, we have identified several proteins of unknown function that are dominantly pre-
sented among the cereus group (see Table 4.13). These unknown-function domains could be subject
to further study for their specific involvement in host-microbe interactions or particular environment

adaptations of the cereus bacteria.
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Table 4.12 List of InterPro (IPR) entries that are overrepresented across extracytoplasmic proteins of
the Bacillus cereus group’s members compared to those in the non-cereus group. The IPR entries listed
here are domains with known functions and annotated mainly on putative extracellular proteins of the Bacillus

cereus group (> 50%). ‘extprot’ shows fractions of putative extracytoplasmic proteins that possess a partic-

ular domain in all proteins annotated with the domain in the cereus’s species. An asterisk denotes domains

found on S-layer proteins. These domains have either a significant co-occurrence p-value (‘co_pvalue’) or

an abundance p-value (‘pvalue’) of < 0.01, therefore the null hypothesis of no association is rejected. The

p-values (uncorrected) were calculated using the hypergeometric test. ‘pvalue’ indicates the probability of the

abundance of a domain within the cereus group, whereas ‘co_pvalue’ denotes the probability that a domain

is present in members of the cereus group. ‘corr’ represents correlation scores measuring a linear relation-

ship between numbers of a given domain and the two groups of Bacillus spp. The closer the score to 1, the
higher the strength of the linear correlation between that domain and the cereus bacteria. The correlation score
was computed using Pearson’s correlation coefficient. This score reflects the over-representation of a domain

among the cereus group. The distribution of each domain across Bacillus species is shown in Figure 4.14.
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InterPro extprot| C NC pvalue co_pvalue | corr. | description
entry (%)
Hydrolase activity
Peptidase S45, penicillin amidase 94 17 | 0 7.65 x1073 | 1.66 x107> | 0.91 | IPR002692
Beta-lactamase, class B, conserved site 88 17 1 3.43 x1072 2.62 x10~* | 0.80 | IPRO01018
Beta-lactamase-related 61 291 | 29 | 2.47 x10713 1.00 0.89 | IPR0O01466*
Phospholipase C/P1 nuclease, core 100 18 | 0 574 x1073 | 2.08 x107° | 1.00 | IPR008947
Phospholipase C, zinc-binding, prokaryotic 100 18 | 0 5.74 x10~3 | 2.08 x10~¢ | 1.00 | IPRO01531
Phospholipase C, phosphatidylinositol-specific | 100 19 | 2 5.62 x1072 | 2.13 x1073 | 0.63 | IPRO00909
, X region
N-acetylmuramoyl-L-alanine amidase, family 2 | 51 109 | 15 1.90 x10~* | 2.80 x10~!' | 0.79 | IPR002502*
Transport activity
Protein transport
Amino acid transporter, transmembrane 100 21 1O 243 x1073 1.65 x1073 | 0.57 | IPRO13057
Branched-chain amino acid transport system II | 100 114 | 9 3.11 x1077 | 2.80 x10~! | 0.95 | IPR004685
carrier protein
Ferrous iron transport
Ferrous iron transport protein B, C-terminal 100 32 |2 3.61 x1073 | 3.95 x10~* | 0.84 | IPR0O11640
Ferrous iron transport protein B, N-terminal 100 47 | 2 1.03 x107* | 3.95 x10~* | 0.84 | IPRO11619
NEAr transporter 96 91 | 4 573 x107% | 2.13 x1073 | 0.83 | IPRO06635*
Potassium transporting ATPase
ATPase, K+ transporting, A subunit 100 18 [0 5.74 x1073 | 2.08 x10~® | 1.00 | IPRO04623
ATPase, K+ transporting , KdpC subunit 100 18 | 0 574 x1073 | 2.08 x107® | 1.00 | IPR003820
Zinc/iron permease 100 18 | 0 574 x1073 | 2.08 x107® | 1.00 | IPR003689
Other transports
Short chain fatty acid transporter 100 17 | 2 8.12 x1072 | 2.13 x1073 | 0.69 | IPRO06160
AmiS/Urel transporter 100 18 | 0 574 x1073 | 1.66 x10™> | 0.85 | IPR003211
Anaerobic c4-dicarboxylate membrane trans- | 100 18 | 0 574 x1073 | 2.08 x10~° | 1.00 | IPRO04668
porter
Nicotinamide  mononucleotide  transporter | 100 14 | 0 1.81 x1072 | 6.86 x10™* | 0.70 | IPRO06419
PnuC
PhoU 50 36 | 5 238 x1072 | 2.77 x1073 | 0.78 | IPRO08170
Killing of cells of another organism
Leukocidin/porin 100 18 | 0 574 x1073 | 3.57 x10~3 | 0.54 | IPR016183
Leukocidin/haemolysin 100 16 |0 1.02 x1072 | 3.57 x1073 | 0.54 | IPRO01340
Peptidase activity
Peptidase M36, fungalysin 100 18 | 0 5.74 1073 | 2.08 x10~° | 1.00 | IPR001842
Peptidase MOA/MOB, collagenase C-terminal 100 48 | 0 1.06 x10°% | 2.08 x10~° | 0.80 | IPRO13510
Peptidase MOA/MIB, N-terminal 100 46 | 0 1.87 x107° | 2.08 x107® | 0.87 | IPRO13661
Peptidase S15 88 17 | 0 7.65 x1073 | 1.66 x10~> | 0.91 | IPRO00383
Propeptide, peptidase M4 and M36 96 108 | 3 1.22 x10710 | 395 x107* | 0.93 | IPR0O11096
Peptidase M4, thermolysin C-terminal 100 92 |3 1.25 1078 | 3.95 x10~* | 0.92 | IPRO01570
Peptidase M4, thermolysin 100 89 |3 1.61 x107% | 3.95 x10~* | 0.91 | IPRO13856




InterPro extprot| C NC pvalue co_pvalue | corr. | description
entry (%)
Peptidase, archaeal and bacterial C-terminal 100 61 |3 1.64 x107> | 2.77 x10~3 | 0.82 | IPR007280
Peptidase S15/CocE/NonD, C-terminal 82 17 | 0 7.65 x1073 | 1.66 x107> | 0.91 | IPR013736
Peptidase M60, viral enhancin protein 92 12 | 0 321 x1072 | 7.14 x1073 | 0.52 | IPR004954
Binding
Carbohydrate binding
Cellulose-binding, family II, bacterial type 100 18 [0 574 x1073 | 2.08 x107® | 1.00 | IPRO01919
Bacterial pullanase-associated protein 100 17 | 1 3.43 x1072 | 2.62 x10~* | 0.80 | IPR005323
Chitin-binding, domain 3 100 42 |5 8.71 x1073 | 7.00 x10~2 | 0.80 | IPR004302
Protein binding
Collagen-binding surface protein Cna-like, B | 97 7 | 6 2.89 x107> | 7.00 x10=2 | 0.70 | IPRO08454
region
TIMP-like, OB-fold 100 14 10 1.81 x1072 | 6.86 x10~* | 0.70 | IPRO08993
Leucine-rich repeat 100 33 10 7.78 x107° | 1.66 x10™> | 0.89 | IPROOI611*
Cholesterol binding
Thiol-activated cytolysin 100 17 | 0 7.65 x1073 | 1.66 x10™> | 0.91 | IPRO01869
Cell surface binding
S-layer homology region 100 338 | 1 6.36 x10~* | 3.95 107 | 0.90 | IPRO0O1119*
Surface protein from Gram-positive cocci, an- | 100 183 | 17 1.64 x107° 1 0.84 | IPR0O01899
chor region
Cell adhesion
Adhesion, bacterial 84 86 | 6 335 x107% | 7.00 x10~2 | 0.71 | IPR0O08966
Biosynthetic process
Fatty acid hydroxylase 100 18 | 0 574 x1073 | 1.66 x107> | 0.85 | IPR006694
Poly-beta-hydroxybutyrate polymerase, N- | 94 18 | 0 574 x1073 | 2.08 x107° | 1.00 | IPR010941
terminal
Others
Integral membrane protein 1906 100 18 | O 5.74 x1073 | 2.08 x107® | 1.00 | IPRO10178
Glycerophosphoryl diester phosphodiesterase, | 100 18 | 0 574 x1073 | 2.08 x10~® | 1.00 | IPR018476
membrane domain
Flagellar basal body FlaE 100 18 | 0 574 x1073 | 2.08 x107° | 1.00 | IPRO11491
Bacillus PapR 100 17 | 0 7.65 x1073 | 1.66 x10™> | 0.91 | IPR009239
Acid phosphatase (Class B) 100 17 | 0 7.65 x1073 | 1.66 x107> | 0.91 | IPR005519
YhhN-like 100 18 | 0 5.74 x1073 | 2.08 x10~¢ | 1.00 | IPRO12506
Lysylphosphatidylglycerol syn- | 100 18 | 1 272 1072 | 3.95 x107> | 0.90 | IPR005242
thetase/UPF0104
GPR1/FUN34/yaaH 100 17 | 1 3.43 x1072 | 2.62 x10~* | 0.80 | IPRO00791
Glutaredoxin active site 100 17 | 0 7.65 x1073 | 1.66 x107> | 0.91 | IPRO11767
PKD 100 |43 |1 4.85x107> | 3.95x107 | 0.86 | IPRO00601
Respiratory-chain NADH dehydrogenase, sub- | 100 18 | O 5.74 x1073 | 2.08 x107® | 1.00 | IPRO18086
unit 1, conserved site
Respiratory-chain NADH dehydrogenase, sub- | 100 18 | 0 574 x1073 | 2.08 x107® | 1.00 | IPR001694
unit 1
NADH-ubiquinone/plastoquinone oxidoreduc- | 100 18 | 0 5.74 x1073 | 2.08 x107° | 1.00 | IPRO01457
tase, chain 6
Tonotropic glutamate receptor 100 46 | 0 1.87 x107% | 2,50 x10~* | 0.67 | IPR001320
HPP 100 15 |0 1.36 x1072 | 2.50 x10~* | 0.76 | IPRO07065
NERD 64 25 | 2 1.68 x1072 | 6.68 x1072 | 0.59 | IPRO11528
NADH-ubiquinone/plastoquinone oxidoreduc- | 100 17 | 0 7.65 x1073 1.66 107> | 0.91 | IPR000440
tase, chain 3
PepSY-associated TM helix 100 17 | 3 1.35 x1071 | 2.13 x1073 | 0.47 | IPR005625
Transcription factor TFIIB related 100 14 |0 1.81 x1072 | 6.86 x10~% | 0.70 | IPRO00812
Membrane bound O-acyl transferase, MBOAT 100 44 | 5 6.10 x1073 | 7.00 x10=2 | 0.72 | IPR004299
WDA40 repeat 54 79 |9 3.09 x107* | 7.00 x10=2 | 0.80 | IPR0O01680
Bacterial SH3-like region 88 184 | 18 3.77 x107° | 2.80 x10~! | 0.89 | IPR0O03646*
SH3, type 3 87 188 | 20 122 x107% | 2.80 x10~! | 0.86 | IPR013247*
L-lactate dehydrogenase, active site 96 54 | 7 4.93 x1073 1.00 1.00 | IPRO18177
Table 4.12
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Table 4.13: List of unknown-function InterPro entries predominant across extracytoplasmic proteins of
the Bacillus cereus group’s members compared to those in the non-cereus group. See Table 4.12 for a
detailed description.

InterPro extprot| C NC pvalue co_pvalue | corr. | description

entry (%)

IPR0O10380 100 46 0 1.87 x107° | 2.08 x107° | 0.85 | Protein of unknown function DUF975
IPR0O10390 | 100 38 |0 1.86 X107 | 2.08 x107% | 0.93 | Protein of unknown function DUF990
IPR0O10539 100 19 0 431 x1073 | 2.08 x107° | 0.93 | Protein of unknown function DUF1112
IPR009323 | 100 18 | 0 5.74 x10~3 | 2.08 x10~% | 1.00 | Protein of unknown function DUF979
IPR0O10398 100 18 0 5.74 x1073 | 2.08 x10~° 1.00 | Protein of unknown function DUF997
IPRO10387 | 100 18 | 0 5.74 x1073 | 2.08 x1076 | 1.00 | Protein of unknown function DUF988
IPR0O01434 | 82 73 |1 1.5x107% | 3.95x107> | 0.79 | Protein of unknown function DUF11
IPRO12452 | 93 69 | 2 3.95 x1077 | 3.95 x107> | 0.80 | Protein of unknown function DUF1657
IPR0O18639 100 17 0 7.65 x1073 | 1.66 x10™> | 0.91 | Protein of unknown function DUF2062
IPRO11397 | 100 31 1 1.10 x1073 | 3.95 x10~> | 0.86 | Uncharacterised conserved protein UCP033101
IPR010374 100 17 0 7.65 x1073 | 1.66 x10~> | 0.91 | Protein of unknown function DUF969
IPRO18383 | 100 18 1 272 x1072 | 3.95 107> | 0.90 | Uncharacterised protein family UPF0324
IPR0O00612 | 100 16 | 0 1.02 x1072 | 7.49 x10~> | 0.83 | Uncharacterised protein family UPF0057
IPR012963 100 18 4 7.10 x10~% | 3.95 x10~* | 0.87 | Protein of unknown function DUF1700
IPR007563 100 18 2 6.78 x1072 | 3.95 x10™* | 0.80 | Protein of unknown function DUF554
IPR0O07163 | 100 18 | 2 6.78 x10~2 | 3.95 x10~* | 0.80 | Protein of unknown function DUF368
IPR0O06837 | 100 18 | 2 6.78 x1072 | 3.95 x10~* | 0.80 | Protein of unknown function DUF610, YibQ
IPR009825 | 100 18 1 272 %1072 | 2.62 x10™* | 0.75 | Protein of unknown function DUF1393
IPR0O03848 | 76 87 | 3 2.67 x1078 | 2.77 x10~3 | 0.98 | Protein of unknown function DUF218
IPR009959 100 20 1 1.69 x1072 | 2.80 x10~3 | 0.60 | Protein of unknown function DUF1486
IPR005226 | 100 17 | 2 8.12 x1072 | 2.13 x1073 | 0.70 | Conserved hypothetical protein CHP00245
IPRO12873 | 100 13 | 0 241 x1072 | 1.65 x1073 | 0.65 | Protein of unknown function DUF1672
IPR009732 100 19 2 5.62 x1072 | 6.68 x10~2 | 0.56 | Protein of unknown function DUF1304

4.4 Discussion

Many algorithms and strategies exist to aid the prediction of protein subcellular localisation. How-
ever, every tool has different advantages and disadvantages. To our knowledge, a specific prediction
tool is normally not applicable to proteins from all taxa for which genome data exists. The approach
used in this study employed several well-known bioinformatics tools to facilitate the prediction of
all potential extracytoplasmic protein sequences among the three domains of microbial cellular life.
The tools included in the workflow were carefully selected taking the variation of microorganisms’
surface structures into consideration. The prediction results from each tool were considered sequen-
tially using appropriate workflows designed to suit each type of microbial cell surface. Constructing
a bioinformatics workflow to perform a selective integration of results from various tools has been
shown to provide a considerably high performance (positive predictive value 87-100%, sensitivity
86-93%) in the prediction of extracytoplasmic proteins across proteomes from different groups of
organisms with distinctive cell-surface structures. Combining results from different targeting signal
predictions allows the differentiation of the extracytoplasmic protein sequence according to the pres-

ence of their targeting features. For example, in this study, it was possible to distinguish sequences
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Figure 4.14: A heatmap dendrogram showing the distribution of InterPro protein domains predominant
among the members of the Bacillus cereus group. Rows represent InterPro domains that are listed in Table
4.12. Columns denote different Bacillus species. Each cell is colourised based on the number of protein
sequences (unnormalised) possessing that protein domain in that organism’s proteome. The brighter the colour,
the larger the number. 132




with alpha-helical transmembrane from lipoproteins. Furthermore, cell-surface anchoring proteins
were also identified. This kind of detailed description would not have been feasible with the use of

any single prediction tool available at the time of study.

Several limitations were identified in the strategy used for the construction of the identification and
classification of extracytoplasmic proteins workflows. For example, the workflow did not utilise any
tool specifically designed to predict transmembrane beta-barrels of the Gram-negative bacteria outer
membrane proteins (e.g. [Freeman and Wimley, 2010]). Nevertheless, most of the known Gram-
negative outer membrane proteins were identified by the presence of the N-terminal signal peptides
detectable by SignalP. Moreover, several Gram-negative bacterial outer-membrane proteins possess-
ing known outer membrane domains (listed in Table 3.1) were also classified into a set of putative

extracytoplasmic proteins by the workflow.

In addition, it is known that features specific to Mycobacterium surface and secreted proteins might
be falsely detected by the standard bacterial protein predictors trained with Gram-positive and Gram—negative
bacteria [Rashid et al., 2007]. Therefore, a tool trained specifically with Mycobacterium proteins
could be added to the workflow in future. Such a tool may significantly improve the workflow’s

accuracy.

The workflow did not cover the identification of Gram-negative proteins secreted via the type III
secretion system, where sequence patterns are not easily recognisable as there is no clear common
sequence pattern. Recently, several works have been conducted that attempt to develop such a tool for
this complicated pattern recognition [Arnold ez al., 2009][Samudrala ef al., 2009]. These new tools

could be easily accommodated by the workflow in the future.

Even though the workflows represented in this chapter did not provide a specific cellular localisation
prediction for a protein sequence, the concept of workflow construction could easily be expanded to
do so. By utilising Microbase, a loosely-coupled collection of components that together form a dis-
tributed computation system, new components or bioinformatic tools could be added to the existing
workflows. Microbase allows workflow step reconstruction or rearrangement to suit different study’s
purposes. For example, tools to predict protein subcellular localisation such as PSORTb could be
integrated to the workflow to aid a more precise identification of protein locations. The workflow
developed in this study was not designed to predicted the exact protein subcellular location but in-
stead focus on the identification of a general extracytoplasmic location including transmembrane,

cell surface and secreted proteins.

The application use case illustrated the use of the identification results generated by the extracytoplas-
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mic protein identification and classification workflows and showed how to gain a greater understand-
ing of biological questions relating to extracytoplasmic proteins. In the case of the Bacillus’ pro-
teome analysis, the approach used was capable of detecting several protein sequence features known
to be specific or abundant in members of the Bacillus cereus group including functional domains
involved in cell-surface anchoring, amino acid and peptide utilization, antibiotic resistance, and host

interactions (e.g adhesion, colonisation, protein interactions, pathogenesis) [Han ez al., 2006].

4.5 Conclusions

With the current growth of public sequence databases and the speed of genome sequencing, high-
throughput prediction methods have become increasingly important. The approach used in this study
has demonstrated to fulfil the need of a high-throughput sequence analysis workflow in the post-
genomics era. The workflows developed performed well in terms of accuracy and sensitivity for
the prediction of extracytoplasmic proteins among archaea, bacteria (both Gram-positive and Gram-
negative), and microbial eukaryotes. The workflow allows an automatic classification of 981,672
putative extracytoplasmic proteins across 867 microorganisms into appropriate classes with respect
to the presence of known targeting or anchoring features. The end results from the workflows de-
scribed in this chapter, together with the results of the protein domain recognition workflow imple-
mented using the high-throughput computational framework described in the previous chapter have
provided valuable outcomes in terms of biological meaning as shown by the analysis of the Bacil-
lus proteome data set. Several domains dominant in the cereus species are known to facilitate the
microbe’s ability to thrive in animal host environments or cause disease in the host body. For in-
stance, the chitin-binding domain and collagen-binding proteins might be specific to microbes that
interact with insects or vertebrates, respectively. The NEAr transporter, a heam-binding iron uptake,
is abundant in the cereus group. The PapR domain regulates various virulence factors, and is only
found across the pathogenic cereus group. Moreover, the results from the Bacillus’ extracytoplasmic
proteome analysis indicate several conserved regions of unknown function that might be important

in the Bacillus-host interaction.
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Chapter 5

Microorganism-Habitat Annotation

5.1 Introduction

In order to allow association analyses between protein domains or families and microorganisms thriv-
ing in a given habitat(s), information describing the isolation source or known habitat of an organ-
isms is required. This information then enables a comparison of genomes from organisms adapted
to different ecological niches to be performed. However, obtaining such information is a significant
challenge due to the lack of a well-organised resource containing habitat or isolation source informa-
tion for the microorganisms whose genome sequence data have been made available. Typically, only
limited and patchy information of microorganisms is accessible via major public genome data centre
such as the NCBI and GOLD databases (see section 2.5). Moreover, the availability of information
relating to the habitat of a microorganism is frequently under-specified. Nevertheless, there is no
data source for habitat-microorganism information allowing programmatic access; it is implausible
to obtain habitat annotation computationally when large numbers of genome sequences are available

to be studied.

Hence, there is a need to assemble the microbe-habitat information in an ad hoc fashion from various
sources independently from the genome sequence data to be analysed [Ahmed, 2009][Field ef al., 2008].
Due to the large numbers of taxa for which genome sequence data are available, and their increase on
daily basis, there is an urgent need to be able to describe the habitat for each taxon in an automated

and consistent fashion [Hirschman et al., 2008].

Published literature was considered as a primary resource to fulfil this task and were suggested as the
most detailed resources for information relating organisms’ niches [Hirschman et al., 2008]. This

type of information is rarely found in the abstract of publications, necessitating a full-text search.
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Several examples of successful uses of text-mining in biomedical research (e.g. [Groth er al., 2008]
[van Haagen et al., 2009] [Rzhetsky et al., 2008]) prompted us to consider the text-mining approach
as useful for extracting habitats or isolation sources of microorganisms used in our genome-wide

study.

In addition, habitat terms must also be classified with a set of controlled vocabularies representing
widely used terms referring to a generic type of ecological niche, as well as more specialised terms
where necessary. A stable set of controlled vocabularies referring microorganisms’ niches does not
yet exist. Several projects are working toward this goal, including Environment Ontology ! (EnvO)
and Habitat-Lite [Hirschman et al., 2008] 2. However, there is currently no standard set of concepts
for the classification of low level habitat terms into high level classes that differentiate properties of

habitats either geographically or anatomically.

Since this project aimed to identify gene-encoding protein sequences that are specific to mucosal-
lined niches, one habitat of particular interest for this project is human mucosa, and more gener-
ally the mucosal surfaces of animals. In particular for organism-associated habitats, there is a need
for hierarchical sub-classifications, providing appropriated anatomical differentiation. A detailed
anatomical habitat classification can be constructed by integrating high-level classes of an anatomy
ontology or controlled vocabularies [Hirschman et al., 2008]. To our knowledge, no one has ex-
tended a habitat ontology to describe host parts such as human parts or organs or tissue (like mucosa)
(e.g. [Baldock and Burger, 2005]) or any other host parts and environmental habitat such as lakes,
soils etc. [von Mering et al., 2007]. The work described in this chapter addresses the development of
a suitable ontology, covering both organism-associated and environmental types of habitat to some

level of detail.

5.1.1 Objectives

The aims of the work presented in this chapter were to: 1) develop a specific text-mining tool to
extract a set of microorganism-habitat attributes from the vast amount of available literature; 2)

construct a set of common terms used to refer to habitats of microorganisms.

For the purpose of differentiating mucosa-associated habitat terms from others, a project-specific
habitat ontology was constructed in order to: 1) provide consistent high level guidelines for the

habitat classification, taking into account geographical and anatomical characteristics; 2) allow the

Thttp://www.environmentontology.org/, accessed 21st April 2010.
*http://gensc.org/gc_wiki/index.php/Habitat-Lite, accessed accessed 21st April 2010.
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utilisation of a rule-based approach to facilitate automatic classification of the habitat terms obtained

from the text-mining.

This chapter includes:

the manual microbe-habitat annotations available from public genome resources;
the development of a text-mining tool to extract microorganism-habitat information;
the performance of the text-mining tool developed;

the development of a project-specific habitat ontology;

the classification of habitat terms using ontological reasoning and results obtained.

5.1.2 Terminology

The following terminology is used throughout this chapter.

Habitat: from Hirschman et al. 2008 [Hirschman ez al., 2008] “the place or environment where

an organism naturally or normally lives and grows”.

Isolation source: a natural source where microorganisms were isolated from, including a
anatomical regions infected by pathogenic microbes and body secretions containing either

symbiotic or pathogenic strains.

Mucosa-lined surface: vertebrate epithelial surfaces covered by mucous membrane. Often
found on various body cavities that are exposed to the external environment e.g. intestinal

lumen, oral cavity, genital area. (See Figure 2.3 for human mucosa surfaces)

Mucosa-associated microorganisms: a microorganism is labelled as mucosa-associated if there
is an evidence showing that at least one of these statements is true: they grow on or colonise
mucous membranes; a mucosal environment is a part of their life cycle; they are pathogenic
on or through mucosal surfaces; they were isolated from a mucosa-associated area. Some
organisms may have multiple habitat such as Vibrio spp. (sea water and human digestive

tract).
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5.2 Materials and methods

5.2.1 Manual microbe-habitat annotation using public databases

Genome sequence information or information about organisms can be retrieved from two well-known
genome databases, the NCBI 3 and the GOLD databases *. These public genome databases provide
relatively similar information relating to genomes and the phenotype of source organisms. However,
NCBI genome information is provided in two separate file formats for prokaryotic and eukaryotic
genomes, respectively; slightly different kind of information provided in each file type. Therefore, for
practical reasons, the genome information from the GOLD database (downloaded 22th october 2009)
was used in this project since the information is provided in a homogenous form for both prokaryotic
and eukaryotic genomes. The homogenous form of the data from the GOLD database facilitates data
parsing and integration with other data sets in the project. Fields considered to determine habitats or
isolation sources of a microorganism are ‘isolation site’, ‘body sample site or subsite’, ‘body product’
and ‘disease’. The ‘habitat’ field was also considered even though this field is often empty. The
‘isolation site’ field provides a relatively detailed description of genome isolation sources. The ‘body
sample site or subsite’ and ‘body products’ contains useful anatomical information and secretion
products of animal hosts. The ‘disease’ field sometimes contains specific terms related to a disease
which can be used to infer isolation sources where pathogenic species or strains thrive or colonise.
This field often provides an indication of the ability of certain microbes to infect vertebrate hosts
through mucosa-lined surfaces. These fields were used as a primary source of knowledge for habitat

information of a microorganism included in this project.

In this study, terms considered as mucosa-associated and stated in the derived GOLD genome infor-

mation are listed as follows.

e Mucosa-related digestive parts: gingival, dental, periodontal, oral, mouth, intestinal, rumen,
caecum, appendix, gastric, enteric, saliva, fecal, feces, periodontitis, gastroenteritis, colitis,

diarrhea, food poisoning, botulism, cholera, dysenteria, thyphoid.
e Urogenital parts: urogenital, vaginal, genital, urinary, bladder, gonorrhea, trichomoniasis
e Respiratory parts: airway, respiratory, pulmonary, sinusitis, pneumonia, tuberculosis, anthrax

e Other parts: eye, ear, mammary gland, ocular, otitis.

3ftp://ftp.ncbi.nih.gov/genomes/genomeprj, accessed 21st April 2010
“http://www.genomesonline.org/, accessed 21st April 2010
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If any of the GOLD fields listed above contained any of the project mucosa-associated terms, the
microorganism linked with those terms was assigned as a mucosa-associated microorganism. Other-
wise, microorganisms were assigned to other ecological niches, based on the information provided
in the relevant fields. Other habitats often stated in the GOLD fields were, for instance, soil, plant,

hot spring, sea, sediment etc.

5.2.2 Text-mining to extract microbe-habitat information

The goal of using text-mining techniques is to efficiently discover microorganism-habitat pairs by
automatic integration and analysis of the literature, rather than a conservative approach of manually
searching and reading through the text. It is anticipated that the text-mining approach will lead to the

discovery of many true positive attributes and to enrich existing habitat annotation [Cohen and Hunter, 2008].

The first step towards that goal was for the text-mining tool to recognise key entities such as organism
scientific names and terms referring to habitat or isolation source of microorganisms. The next
step was to extract organism-habitat relation pairs from published literature. This task presents new
challenges for text-mining: there is no prior standard annotated corpora to serve as training data for
machine learning algorithms, or to provide a gold standard for evaluation; and information of interest
frequently appears in the main text rather than the abstract of the publications [Levow, 2010, pers.

comm.].

As a result, new corpus materials were developed with an aim of training and evaluating these con-
cepts of interest based on the annotation of full text in the literature [Levow, 2010, pers. comm.]. The
accelerated annotation (Acela) interface [Tsuruoka et al., 2008] was used for interactive annotations
of text for both microorganisms and habitat entities, as well as organism-habitat relation pairs. This
interface allows for interactive and iterative training of a machine learning classifier to recognise a
specific entity class or concept. This tool has proven most useful for concepts which appear least
frequently in the corpus by directing attention to the relatively few sentences in which most concepts

are likely to appear [Levow, 2010, pers. comm.].

Corpus creation and annotation

For the microorganism-habitat corpus, two classes of entity including microorganisms and habitat
or isolation source, were annotated for the key entity recognition step. Manual exploration was

carried out of various patterns of explicit habitat-associated sentences in numerous publications for
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taxa-habitat pairs of both host- and non host-associated microorganisms. The list of manual taxa-
habitat annotations containing approximately 57 taxa-habitat pairs from 20 publications (shown in
Appendix B) was initially used as a seed for the initial training of the text-mining system. Annotator
instances of the Acela for the two classes were created. A new set of sentence examples in which
interesting terms were labelled based on the initial state of the classifier were presented through the
Acela interface for human validation or correction. Annotation results were used iteratively to train
the classifier interactively. The annotation was performed via the interface to label instances until an

estimated coverage over 99% was achieved [Levow, 2010, pers. comm.].

The criteria used by an expert to train the machine learning system to extract terms referring to the
scientific names of microorganisms and terms inferring the isolation source or habitat of a microbe

are described below.

Microorganism entity

The text mining system was able to tag organism terms where sentences contained sufficient infor-

mation to identify the organism:

e Organisms could be tagged where the scientific name of microorganisms was specified to at
least the Genus level. Microorganisms include bacteria, archaea, microbial eukaryotes. Specie,
strain, and serovar entries are also tagged if they are present. Examples of terms tagged for

this entity are E. coli, Campylobacter spp., and Trichomonas vaginalis.

e Organism terms could also be tagged where sentences also contain habitat or isolation infor-
mation, in addition to the organism. For example, the microorganism name was tagged for the
sentence: ‘Bacteroides salyersae sp. nov. isolated from clinical specimens of human intestinal

origin’.

Habitat entity

The following types of sentence may be utilised by the text-mining system for the annotation of terms

relating to the habitat or isolation source of a microbe:

e Context-related, or a reference to a habitat or isolation source of an organism e.g. ‘Isolation

and distribution of bartonellae in wild rodents in Japan’.
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e Habitat-related terms used as an adjective describing an organism e.g. ‘oral Campylobacter’,

‘rumen bacteria’, ‘rodent-associated Bartonella febrile illness’.

e Terms representing isolation source of an organism e.g. ‘The cases included a breast abscess
caused by Campylobacter rectus and a non-group A beta-hemolytic Streptococcus in a patient
with lymphoma, a liver abscess caused by Campylobacter curvus and an alpha-hemolytic
streptococcus in a patient with complicated ovarian cancer, and a postobstructive bronchial
abscess caused by C. curvus and group C beta-hemolytic Streptococcus constellatus in a pa-

tient with lung cancer’.

e Terms not associated directly with disease e.g. ‘respiratory tract infection’, ‘diarrhea’, and

‘periodontal disease’.

o If the habitats or isolation sources are another organism species, the terms were tagged with
their common name or Genus name without the species names e.g. ‘microbeA was isolated

from Apodemus spp.’.

Recognition approaches for the text-mining

In order for the text-mining system to recognise terms representing the interest entities, two ap-
proaches were employed for the recognition approach: a dictionary-based approach; and a hybrid
machine learning approach with dictionary information. The work presented in this section was de-
signed and conducted in collaboration with text-mining experts from the National Centre for Text

Mining (NaCTeM) at the University of Manchester (see Figure 5.1).

Terminological resources

For both entities of interest, lexical resources were constructed based on a combination of curated
domain ontologies and a list of terms from existing resources. Resources for microorganism scientific
names were obtained from the NCBI taxonomy® and the ‘List of Prokaryotic names with Standing
in Nomenclature’ (LPSN)’. All scientific names from these resources were extracted. The names
were then converted into standardised forms covering different typical variability for the term. For

example, the tags representing taxonomic levels, such as ‘subsp.’, ‘str.”, ‘strain’, were removed from

Shttp://www.nactem.ac.uk/, accessed 10th December 2010
Shttp://ncbi.nlm.nih.gov/taxonomy, accessed accessed 21st April 2010
Thttp://www.bacterio.net, accessed accessed 21st April 2010
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Figure 5.1: Flowchart summarising the text-mining system developed for extracting microbe-habitat
attributes from literature. This work was done in collaboration with text-mining experts from the National
Centre for Text Mining (NaCTeM) at the University of Manchester. The yellow star denotes the step conducted
by the text-mining experts. The other aspected depicted in the diagram were performed as a collaboration
between the author and the text-mining experts. The author provided initial seed documents and annotated the
results from the text-mining system through the Accelerated annotation (Acela) interface. The annotated data
was then used to train the system. The annotation, extraction and training steps were iteratively cycled until
the system performance reached a satisfactory level. The technique for the extraction (recognition) of terms in
microorganism and habitat entities is a hybrid machine learning approach with dictionary information.
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the name. As a result, the term list for microorganism entity comprises 52,715 entries for 12,256

distinct organisms.

For the habitat entity, 135 terms referring to habitats/isolation sources from the GOLD database were
used as the main resource (accessed 17 August 2008). This set of habitat terms was further enhanced
with 12,0668 entries containing names of animals, organs and body parts extracted from the UMLS

Metathesaurus ®.

5.2.3 Classifying habitat term-based to knowledge-based

The previous section describes a collaborative work with NaCTeM regarding the development of a
text-mining tool to extract microbe-habitat information. This section represents the work performed

by the author of this thesis upon the developing of a habitat ontology.

In order to standardise the text-mined terms referring to habitats into a set of controlled vocabular-
ies capturing generic types of microorganisms’ niches, an ontology containing terms representing
generic classes of microorganisms’ habitats was developed. These terms permit high level differen-
tiation between physical and chemical properties of habitats, either geographically or anatomically.
These generic classes may have a relationship indicating parenthood and childhood between the
terms. One term can have multiple subclasses. For example, ‘Aquatic’ and ‘Terrestrial’ are two
high-level generic terms referring to two very different ecological properties. The former term rep-
resents a water-related space, while the latter concerns area relating to land or earth. ‘Aquatic’ can
be sub-classified into ‘Saline water’ and ‘Freshwater’. These two subclasses share the properties
of a water-based habitat with their parent, but allow divergent sub-properties to be represented; in
this case, the presence or absence of salt. Moreover, a subclass can have multiple inferred parent
classes. For example, ‘RespiratoryPart’ class is asserted under ‘AnatomicalPart’, and have a prop-
erty of being lined with mucosa. Therefore, the ‘RespiratoryPart’ class is also has an inferred parent
as ‘MucosaLlining’ habitat as the ‘MucosaLining’ is defined by any organism part that is lined with

mucosa.

The high-level habitat terms were carefully selected by considering the information contained in
the GOLD fields. These generic terms include some second level terms from the Habitat-Lite on-
tology, version 0.3 [Hirschman er al., 2008]. Habitat-Lite was the first ontology to establish con-
cepts for describing high-level terms relating a limited set of habitats of organisms. The concepts in

Habitat-Lite form a simple hierarchy of a single type of relationship, providing a light-weight set of

8http://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/index.html,  accessed
21st April 2010
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terms describing habitats. Several terms were also adopted from the Environment Ontology (EnVo)

[Morrison and Field, 2010] which partly covers terms describing habitats.

Apart from providing a standard generic classes of microorganisms’ habitats, the ontology developed
in this project was also to represent a lexical resource of common terms used to referred to habitats
isolation sources of microorganisms. Therefore, these terms were assigned as synonyms or labels of
the corresponding sibling generic classes. For example, ‘Marine’ and ‘Sea’ are both considered as

synonyms of ‘Saline water’ which is considered as a generic habitat class.

The project-specific ontology was developed in the Web Ontology Language (OWL) using Protege
(4.0). Protege is an ontology editor and knowledge-base framework [Rubin et al., 2007]. The rea-
soning algorithm, Pallet version 1.5.2, was employed as an OWL reasoner to reason and query the

information in the ontology.

5.3 Results

5.3.1 Manual microbe-habitat annotation

In this section, the results of microbe-habitat annotation performed manually by using information
from the GOLD database is summarised. The results presented in this section were used for com-
putationally identify genotypic features over-represented in a group of microorganisms in relation to

their ecological niches (see Chapter 6). The section is divided into two parts:

e Mucosa VS non-mucosa microorganisms annotation: strategies used and the results of classi-

fying microbes into mucosa and non-mucosa associated;

o Comprehensive microbe-habitat classification: an overview of the classification of microor-

ganisms based on the information from the GOLD database.

Mucosa VS non-mucosa microorganisms classification

The focus of this study was primarily to distinguish microorganisms that are able to thrive in a
mucosal environment from others. Therefore, to identify if a microbe is mucosa-thriving, the in-
formation relating to animal host-associated isolation sources such as body site, body secretion and
diseases were the first information to be considered. Free-living microbes were also labelled as

‘mucosa-associated’ if they cause disease to animal hosts via mucosa surfaces, even though they are
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known to live in multiple environments. For example, Vibrio cholera 0395 was noted as a cause
of pandemic food poisoning but originates from aquatic environments [Nelson ez al., 2009]. Mi-
croorganisms were classified as ‘non-mucosa-associated’ if there is no information of their isolation
sources that can be attributed to mucosa-lined niches. Some microorganisms with ambiguous isola-
tion information in terms of whether it is related to mucosal surfaces, were not assigned to either of
the classes. For example, some microorganisms were only provided with disease information such
as "Toxemia" or "Septicemia". Additionally, some taxa with unclear or complicated life cycles that
involved animal hosts were also not included in the classification process. These organisms include,

for instance, the members of Bacillus cereus group and Leishmania spp.

As a result, 203 out of 867 microorganisms in the GenomePool database (GPDB) were classified
as mucosa-associated organisms (see Figure 5.2). This data set contains both allochthonous and
autochthonous residents of mucosa-lined niches. The set of non mucosa-associated contains 320

taxa from the GPDB, leaving approximately one third (344) of microorganisms unclassified.

Microbe-habitat classification

In this section, organisms are categorised based on their taxonomic groups and their associations with
high-level habitat terms (see Figure 5.3). For taxa considered to be host-associated microorganisms,
their roles in the relationships with hosts were assigned where possible. These roles include terms
such as ‘pathogen’ and ‘symbiont’. The term ‘pathogen’ is assigned to microorganisms that are
known to be free-living as well as known to cause disease when interacting with a host body. The
role ‘symbiont’ is assigned to microorganisms that naturally inhabit a host body and are known to

stabilise the host physiology.

Approximately 15% (126/867) of the total number of taxa in the GPDB have no information relating
their isolation sources in the GOLD database. These taxa were therefore classified into ‘unknown

source’ and were not used in the genotype-habitat association analysis.

5.3.2 Microbe-habitat information discovered through a text-mining approach

A text-mining system for the automated discovery of microbe-habitat pairs from available literature
was developed. We collaborated with text-mining experts at the NaCTeM with the aim of developing
a high-throughput system that would remove the need for manual annotation. Different techniques
for the recognition of two different types of entities: microorganisms’ names and habitat terms were

investigated. The annotations generated by the system were verified based on the author’s biological
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Figure 5.2: Summary of the number and the distribution of taxa included in the mucosa-associated
microorganisms classification. The taxa-habitat annotation was performed manually based on the genome
information derived from the GOLD database. The X-axis represents the number of microorganisms species
or strains. Red bars indicate mucosa-associated taxa, while blue bars represent non mucosa-associated taxa.
Mucosa-associated microorganisms are presented in Archaea, Bacteria, Fungi and Protists. The largest pro-
portion of mucosa-associated taxa are in Proteobacteria-Gamma and Firmicutes.
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Figure 5.3: Summary of the number of taxa classified by their habitats or isolation sources. The
taxa-habitat annotation was performed manually based on the genome information derived from the GOLD
database. The X-axis represents the number of microorganisms species/strains isolated from a given habitat or
isolation source. A taxa can be annotated with more than one source type if it was found in multiple sources.
Mucosa-lined environments are shown in the red square where ‘ugt’ is urogenital tract; ‘rt’ is respiratory tract;
and ‘git’ is gastrointestinal tract). For the mucosa-associated environment, host-microbe relationships were
also categorised into ‘symbiont’ and ‘pathogen’ where possible.
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knowledge and the context of sentences extracted. For the organism tagging, the conditional random
fields (CRF) approach outperformed the dictionary-based approach (F-measures 63% and 80%, re-
spectively). The CRF technique employed machine-learning strategies [Levow, 2010, pers. comm.].
The result also indicated that the restriction of annotation to organisms within habitat contexts has a
significant impact, as proved by the improvement in precision rate yielded by the machine learning
setting (data not shown). The habitat recognition was shown to be challenging; none of the tech-
niques returned satisfied results (F-measures ranged between 50-56%) [Levow, 2010, pers. comm.].
The errors made by the system indicate both false negatives and false positives with the same words
(e.g. human, water). In particular, there were issues with the generalisation over adjectival forms of
the terms referring to habitats, such as ‘extraoral’ [Levow, 2010, pers. comm.]. Running the system
on a dataset of 9,265 full text documents from the Open Access subset of PubMed Central from 2007
resulted in a relatively high degree of false-positive pairs. However, some true positive results can

also be obtained and already appear to provide promising outcomes (see Appendix C).

5.3.3 The development of a habitat ontology

The word ‘habitat’ was defined as an abstract term used to indicate a role of any physical spaces or
object that is a place of residence to any living organism. By this definition, any existing object in the
universe could be referred to as a habitat of something. In order to produce a sensible and practical
habitat ontology to serve the needs of this project, we investigated terms stated in the GOLD database
that provide habitat information. Terms commonly used to describe the same or similar ecological
niches with respect to their general physical and chemical properties were grouped together. Generic
habitat terms, or so called the entity classes, were created based on the consideration of the common
property of each group and the usage of the classes in the later stages of the project. In other words,

these generic terms were selected with our interest and the project’s research questions in mind.

As aresult, the habitat ontology developed in this project expanded the existing Habitat-Lite ontology
(V.0.3) by integrating other terms that can also be described as a place where microorganisms may
thrive. The main focus was to cover terms denoting host anatomical-related niches in details in order
to support the requirements of this project; namely, the inference of mucosa-associated environments
where appropriate. Two other main entities were added to the Habitat-Lite. These entities are: a
basic ontology describing animal anatomical location and types of organism hosts. The structure
and entity class names of the anatomical ontology developed as part of this project was inspired by,

and adopted terms from other existing anatomical ontologies, including the Foundational Model of
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Anatomy (FMA)? Ontology, and Common Anatomy Reference Ontology (CARO)'’. The adapted
anatomy entity, designed to facilitate the later analysis stages of this project, focuses mainly on
vertebrates and in particular human anatomy. The anatomy entity is composed of classes describing
8 major human anatomical parts and 2 other classes denoting types of the surface epithelium; mucosa
and non-mucosa (see Figure 5.4). The terms representing anatomical parts, commonly found as a
niche and lined with a mucous membrane, can be inferred to be the ‘MucosaLining’ class. As a result,
the ontology can be queried using terms found from the GOLD database or from information mined
from the literature. Terms will be automatically classified into appropriated habitat generic classes if
the terms are assigned as labels of an appropriate entity class. For example, ‘RespiratoryPart’ entity
class can be inferred as ‘Mucosalining’ habitat, a term assigned as labels of the ‘RespiratoryPart’

class such as ‘Lungs’ is also therefore referred as the ‘MucosaLining’ habitat.

Another entity present in the habitat ontology developed represents types of organism hosts. The
concept classes composing the organism type entity were selected on the basis of types of organisms
commonly reported as hosts. The relationships between each class were chosen with the NCBI
taxonomic classification in mind. The entity represented four main high-level classes: ‘Animal’,
‘Plant’, ‘Protist’ and ‘RoledOrganism’ (see Figure 5.5). The ‘RoledOrganism’ class was introduced
in order to allow the organism to be presented with a role ‘host’ which can be then inferred as
‘OrganismAssociatedHabitat’ in the habitat entity. Every subclasses in the ‘RoledOrganism’ class
are still organisms, even though conceptually has a role as host. The ‘OrganismAssociatedHabitat’

class can be then defined by any organism that has ‘host’ role.

As a result, the project-specific ontology represents knowledge of microorganisms’ habitats of both
environmental and host-anatomical niches. The inferred model of the habitat entity is shown in

Figure 5.6.

5.4 Discussion

5.4.1 Microorganism-habitat information in public sources

Manual organism-habitat annotations were performed in order to generate a data set for training the
machine-learning text mining algorithm. One interesting point that arose from this manual annotation

was that detailed information of the sources or niches for particular microorganisms for which the

9http://obo.svn.sourceforge.net/viewvc/obo/fma—conversion/t:runk/fmaQ_obo.obo, accessed 21st
April 2010

Ohttp://obo.cvs.sourceforge.net/viewve/obo/obo/ontology/anatomy/caro/caro.obo, accessed 2lst
April 2010
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Figure 5.4: The anatomy entity represented in the habitat ontology developed for this project. Both
asserted and inferred models of the anatomy entity are shown. The asserted model represents classes and their
relations before the application of a reasoner. The inferred model illustrates the classes and their relations after
a logical reasoner has processed the asserted model. Dark yellow nodes represent defined classes, i.e. classes
with constraints associated with them in order to facilitate automated inference. Executing a reasoner over the
asserted model to produce a new, inferred hierarchy has certain advantages. For example, the reasoner has
inferred that concepts such as ‘Eye’ and ‘UrogenitalPart’ are mucosa-lined, whereas concepts such as ‘Skin’
are not mucosa-lined. Automated inference techniques allow the asserted model to be checked for consistency,
as well as suggesting links between concepts that may not have been explicitly added by the author.
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Figure 5.5: The organism entity represented in the habitat ontology developed for this project. The
diagram represents asserted models of the entity. The inferred model is not shown as no inference was made.
Dark yellow nodes represent defined classes. See Figure 5.4 for the meanings of asserted and inferred models.
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Figure 5.6: The habitat ontology developed for this project. The inferred relationships between high-level
generic habitat classes are shown. Dark yellow nodes represent defined classes. Each class represents an
abstract microorganism habitat, rather than a specific habitat; for example, the class ‘UrogenitalPart’ would
represent terms referring habitats such as ‘bladder’, ‘urethra’ and ‘uterus’. Some class names were obtained

from the Habitat-lite ontology V.0.3 and are marked with ‘*’. See Figure 5.4 for the meanings of asserted and
inferred models.




genome sequence is available, is often poorly defined in the literature if mentioned at all. Therefore,
the information about the environment or niche where an organism resides is generally obtained from
fundamental knowledge of the ecological study of that organism, but may not necessarily correspond

to a specific organism strain from which the genome sequence data was derived.

The information about a microorganisms’ habitat provided in public databases does not cover all
those organisms for which complete genome sequence data is available. Moreover, the ‘habitat’
field in the GOLD database is frequently empty. Due to the lack of direct habitat terms specifying
mucosal environments, manual annotation of microbe-habitat data from disease fields were used to
specify whether a microbe is mucosa-associated. Computational text-mining is an approach that can
potentially overcome this problem, allowing more terms referring to habitats to be acquired from the

literature.

The information about the habitats of organisms available in the public database is human microbe-

centric and does not provide as much information for other animal or environmental microbes.

5.4.2 Text-mining for the microbe-habitat annotation

The recognition of habitat terms by the text-mining system was shown to be particularly challenging.
A very wide range of class definitions including animal, anatomy, and environment terms of both

noun and adjective forms are present as habitats or isolation sources [Levow, 2010, pers. comm.].

Further refinements to the text mining tool could be made. For example, the system could be trained
with a greater number of documents in order to further tune the system, improving both accuracy and
sensitivity of detections. Removing terms that are not likely to be habitat-related such as ‘process’,
‘test’, and ‘helix’ (see Appendix C) from the dictionary used as a resource of habitat terms might
also reduce the number of false positive values. The addition of more specific terms that are not yet
present in the dictionary, such as ‘mucosa’, ‘gut’, and ‘fallopian-tube’, should improve the ability of

the tool to extract specific habitat terms.

5.4.3 The habitat ontology as an aid to inferring knowledge

The use of an ontology facilitates the representation of knowledge into concept classes and rich
relationships between the concepts. This formal representation also allows machine readable and
programmatic access, permitting concepts to be automatically reasoned over based on their prop-

erties within the domain. Therefore, new knowledge and relationships can be inferred based on
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the asserted knowledge provided by the developer. The framework enables the expansion of con-
cepts representing knowledge. New terms can be easily added to the appropriate generic or concept
class(es). Similarly, new concepts can be added into the ontology to suit a research interest. Even
though the ontology has not been used practically with a large term set. it has been tested with a

small scale and yielded a relatively good results (data not shown).

In order to classify habitat terms not yet presented in the ontology, these new terms must be added
into the domain. The method to complement these terms to the domain is subjected to an on-going

investigation.

5.5 Conclusions

This study highlights the lack of a well-structured, coherent source of data relating to microbe-
habitat information that is amenable to automated querying techniques. The information available in
the widely used public genome databases, such as GOLD and NCBI, is growing at a much slower
rate than the exponentially increasing number of complete genome sequences. There is therefore a
lack of verifiable metadata about many genome sequences. This metadata, carrying isolation source
characteristics or other important characteristics such as the phenotypes of the source organisms, is
an important key to allow the association of genome content to habitats. The work presented in this
chapter has shown how this limitation can be overcome to some extent, through the text-mining of
free-text from multiple publications into a structured ontology. The results from the genotype-habitat
associations (presented in the next chapter) provide a better understanding of the genotypic features

that are involved in the survival of a microbe in particular ecological niches.

The use of text-mining techniques to obtain microbe-habitat annotations is one of the first systematic,
automated methods developed to obtain microorganism-habitat information scattered throughout the
literature. The investigation and experimentation with a text-mining system for extracting this in-
formation provides a proof-of-principle that could become a feasible means of obtaining habitat
information with future work. The work to date has investigated the application of entity recognition
techniques to support the automatic extraction of microorganism names and terms referring their
habitats. The annotation corpora for these novel key entities were created through the use of the

Acela interface, which reduces the complexities involved in manual annotation.

A prototype ontology for organising and reasoning over the habitats of microorganisms has been
developed. The ontology represented generic classes for the habitat of both environmental- and

anatomical-related habitats. Each of these habitat entity classes holds a set of terms or controlled
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vocabularies referring to that class providing a lexical resource for terms referring microorganisms’
habitat. This is the lexical resource for microorganisms’ habitat terms that is back-ended with an
ontology that is capable of inferring a mucosa-lined habitat based on which body part of vertebrate

host was selected.

In summary, this work has contributed to facilitating large-scale comparative genomics studies where

the ecological niches of microbes are the key focus of the research question.
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Chapter 6

In silico Identification and
Characterisation of Mucosa-associated

Proteins

6.1 Introduction

The ever-increasing availability of genomics data provides an opportunity to perform detailed com-
parative genomics studies. A comparison of both multiple DNA and protein sequences can reveal po-
tentially interesting genotypic differences among species [Boekhorst et al., 2006][Cornell et al., 2007]
or between the microbial communities that inhabit different environments [O’Sullivan et al., 2009]
[Kurokawa ef al., 2007]. Identifying sets of protein-encoding genes correlated with particular niches
can lead to a better understanding of the underlying molecular functions that facilitate the survival of

microbes in different ecological context.

Environmental properties vary in different microbial niches. Upon entering a new environment, mi-
crobes encounter multiple ecological forces that drive natural selection to allowing them to adapt to
the new environment [Lin ef al., 2002][Bellgard et al., 2009]. In order to survive, microorganisms
may modulate their patterns of gene expression to adapt rapidly to their surroundings, tolerate vari-
ous external stresses as well as acquire energy and nutrients from a suitable source [Peterson, 2002]
[Houot ef al., 2010] [Rosenbach et al., 2010] [Dietrich et al., 2003]. The longer term of microorgan-
isms’ adaptation strategy to thrive in an ecological niche can occur by altering the genome comple-
ment through a number of evolutionary events including gene loss, gene family expansion, lateral or

horizontal gene transfer, and mutation [Bellgard et al., 2009] [Ren and Paulsen, 2005].
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The resulting microbial community will attempt to successfully adapt to the environment by altering
both patterns of regulation of its existing gene repertoire and by modifying its genetic complement.
For example, a mucosa microbial community has particular requirements for optimal fitness. These
organisms require appropriate cell surface components to attach to the slippery mucous membrane
and to avoid rapid wash outs associated with these environments. It is also vital to have a collection
of enzymes that allow the use of available substrates as a source of energy and nutrition. Evasion ma-
chineries are also required to elude host macrophages and other immune responses [Ley et al., 2006].
Proteins that perform these key functions and biological processes facilitate the ability to competi-
tively thrive in that environment. These protein-coding sequences are likely to be conserved by sub-
sequent generations and adopted by new inhabitants [Xu et al., 2007]. The adoption of the key geno-
typic features from one microbe to others that live in the same space or habitat and are not from parent
to offspring is known as horizontal or lateral gene transfer [Dutta and Pan, 2002][Keeling and Palmer, 2008].
This type of evolutionary event occurs due to selective pressures present in a given ecological condi-
tion and can contribute to the ability of microbes to adapt and evolve to survive [Bellgard et al., 2009]

[Guénola et al., 2006] [Salyers et al., 2004].

A tremendous number of microorganisms are known to naturally inhabit vertebrate mucosa sur-
faces such as the gastrointestinal and urogenital tracts. Firmicutes and Bacteroidetes comprise
the majority of the microbiome in the human gastrointestinal tract [Rajilic-Stojanovic¢ et al., 2007]
[Ahmed et al., 2007] [Wang et al., 2003]. These bacteria normally have a mutualistic relationship
with the host body include nutrient processing, vitamin synthesis and development of a functional
immune system [Turnbaugh et al., 2007]. For example, Bacteroides thetaiotamicron metabolise and
import indigestible dietary polysaccharides and provide short-chain fatty acids absorbable by the host
[Biackhed er al., 2005][Flint ef al., 2008]. Several key elements allowing microbes to successfully
thrive on the host-mucosa surfaces have been revealed in the last decade primarily in individual or-
ganisms [Acheson and Luccioli, 2004]. For example, the starch utilisation system (sus) was discov-
ered in B. thetaiotamicron. The sus comprises enzymes and transporters involved in the metabolism

of indigestible carbohydrates passed to our distal intestine [Martens et al., 2009].

In this chapter, the distribution of known protein signatures (protein families or motifs) in the avail-
able complete microbial genome sequences for which their isolation sources are known was investi-
gated. The investigation was performed in order to identify the protein attributes that are significantly
co-occur or are expanded among the known mucosa-thriving microbes. The analysis of their poten-

tial functionality and involvement in mucosa-microbe interactions were also carried out.

A genome-wide analysis was performed to identify microbial proteins that have important molecular
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functions at the host-microbe interface. This analysis involved 3,021,490 protein sequences derived
from 867 complete microbial genomes across the domains of cellular life. In this chapter, the ability
of microbes to thrive in a mucosal environment was examined in relation to the available functional
genomics data. The data generated from the project-specific workflows was further analysed by
combining with the microorganism-habitat annotations. The integration analysis results are presented

in this chapter.

The chapter is divided into two parts. The first part investigates the functional analysis of the pro-
tein domains that are statistically associated with mucosa-related life style of microorganisms. The

second part concerns the identification of protein families shared among mucosa-thriving microbes.

6.2 Materials and methods

Comparative genomics was employed to identify candidate proteins that are likely to allow microbes
to colonise and thrive in vertebrate mucosal environments. Two approaches were used to determine
protein elements specific to mucosa-associated microorganisms. In the first approach, statistical anal-
yses (i.e, association analysis, significance calculation) were performed to associate protein domains
with a set of known mucosal microorganisms. The second approach involved clustering extracy-
toplasmic protein sequences based on their sequence similarities. Clusters containing proteins that
were considered to be mucosa-associated were then identified. The first approach allows the identi-
fication of mucosa-associated domains from a set of previously known conserved regions, while the
latter approach allows the discovery of new conserved regions associated to mucosal microorgan-
isms. The identified conserved regions were then investigated further in order to generate hypotheses
regarding their contribution to the survival of microbes in mucosal environments. The following

sections describe these approaches in more detail.

6.2.1 Identification of mucosa-associated protein domains

To identify associations between protein domains and the habitat of microorganisms, a hypergeo-
metric distribution test (see Section 2.9.1) was applied to all 8,423 InterPro (IPR) domains presented
on 867 microorganisms’ proteomes stored in the GenomePool database. The domain annotation re-
sults were produced by executing InterProScan as part of a high-throughput analysis workflow (see
Chapter 3, Section 3.3.1). The habitat of organisms was annotated using information derived from

the GOLD database ' (downloaded 22" October 2009) (See Section 5.2.1 and 5.3.1).

"http://www.genomesonline.org/, accessed 20th August 2010
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Association analysis

The association analysis was used to determine the co-occurrence and the abundance of protein do-
mains and the mucosal niches of microorganisms. To perform the association analysis, each taxa
was assigned a binary classification. This classification either denotes the presence of that organism
within a mucosal niche as a mutualist or pathogen, or alternatively indicates that there is no evidence
of habitation in a mucosal environment. The classification was assigned to taxa according to the in-
formation available in the GOLD database. Three-hundred and forty-four taxa had isolation sources

that were ambiguous. These taxa were removed from the analysis.

The hypergeometric test was used to assess the probability of finding a given protein domain in the
test set in relation to the reference set. This statistical test was performed to assess two aspects of the
mucosa-protein associations: the co-occurrence of the InterPro entries and mucosal microorganisms;
and the abundance or expansion of the InterPro entries among mucosal microbes. The former aspect
uncovers conserved protein sequence regions originating from lateral gene transfer (LGT) or gene
loss events, whereas the latter case identifies functional regions arising from gene expansion or in
combination with LGT events. The co-occurrence evaluation takes into account the presence or
absence of a protein domain among mucosal and non-mucosal microorganisms. The abundance
assessment takes into consideration the number of a given protein domain found across the two sets
of microorganisms. More specifically for the co-occurrence assessment, hypergeometric probability
distribution provides the probability (co-occurrence p-value) of observing the number of organisms
within the test set (mucosa-associated microbes) with a given protein domain compared to the number
habitat-classified organisms with that protein domain (reference set). To determine the abundance
of a protein domain, the hypergeometric distribution provides the chance (abundance p-value) of
observing the number of a given domain within the test set in comparison to the total number of that

domain found in the reference set.

Moreover, the linear correlations between the protein domains and the ability of microorganisms
to thrive on a mucosa-lined niche was also evaluated. The Pearson’s product moment correlation
coefficient (see Section 2.9.2) was employed to measure the correlation scores of each pair of a

domain and the ability of microbes to thrive in mucosal environments.

Domain clustering

The abundance of IPR domains for each taxa were counted. Given a particular protein domain, these

abundance values were normalised to have a mean of zero and a variance of one. A normalised value
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is a measure of relative abundance and depletion of a given domain across organisms. The data were
clustered according to the profile of the protein domains by using Euclidean distance metric from the
Cluster 3.0 application [de Hoon et al., 2004]. Java Treeview [Saldanha, 2004] was used to visualise

the results in a heatmap with the correspond dendrogram of variables.

Functional analysis and biological interpretation of protein domains

Domain descriptions from the InterPro database were used as a source of function information for
each IPR domain of interest. If present, the GO term annotations of a protein domain were also
employed for the identification of the three GO categories including: biological process, molecular
function and cellular component. BiNGO [Maere et al., 2005], a Cytoscape plug-in to assess GO
term enrichment, was used to find statistically over-represented GO terms in a given set of InterPro
protein domains. BiNGO was configured to use the hypergeometric test for the statistical test with
an false discovery rate (FDR) correction for multiple testing. The significance level for inclusion was
set to 0.05. The reference background annotations included the IPR domains of microorganisms in

the data set from which the interested domains were identified as of interest.

6.2.2 Identification of mucosa-associated extracytoplasmic protein families

The purpose of the approach described in Section 6.2.1 was to identify mucosa-associated genetic
elements from the set of previously known conserved protein regions represented in the InterPro
database. However, it is anticipated that many more conserved regions have not yet been charac-
terised, and are therefore not covered by any public protein domain databases. To address this issue,
protein families of a set of known mucosa-thriving microbes were examined for their distribution
among other mucosal microorganisms. The distribution of protein sequences among other mucosal
organisms was evaluated by performing BLASTP searches of the sequences against all protein se-
quences in the RefSeq database. If the hit results from the all-vs-RefSeq BLASTP were significantly
widely distributed across mucosa-dwelling organisms, it can be inferred that the function of the query
protein might be associated with microbes’ survival in mucosal environments. Applying this evalu-
ation analysis on every protein sequence, the outcome therefore provides a list of candidate protein
sequences that are potentially specific to mucosal microorganisms regarding the existence of their ho-
mologs across mucosa-associated taxa. Based on the construction of protein families and the known
mucosa-associated protein candidate list, it is possible to identify groups of evolutionarily related

extracytoplasmic proteins putatively shared across mucosal microbes. These homologous groups or
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protein families were then investigated further in order to determine their potential contribution to the
adaptation of microbes to survive in mucosal environments. The approach allows the identification of
groups of evolutionarily related proteins shared across mucosal microbes. From the protein families,
it is then possible to reveal (where appropriate) the as yet undefined conserved regions that might
be important for the survival of microbes in mucosal environments. The construction of the protein
families focused on extracytoplasmic proteins of the 75 known mucosa-thriving microbes. The pro-
teomes were from six different bacterial phyla: 5 Actinobacteria, 7 Bacteroidetes, 11 Chlamydiae,
15 Firmicutes, 1 Fusobacteria, 31 Proteobacteria, and 5 different protists (see Appendix D). In total
82,863 putative extracytoplasmic protein sequences out of 285,047 gene-coding protein sequences

from the 75 organisms were included in the protein family construction.

Protein family construction

The set of 75 mucosa-adhering microbial extracytoplasmic proteomes of both mutualists and pathogens
was clustered using OrthoMCL [Li ef al., 2003]. A pairwise all-against-all BLASTP analysis was
performed using these proteomes to provide similarity scores between protein sequences. Protein
sequences were then clustered into families based on their sequence similarity. The BLASTP pair-
wise results were retrieved from the in-house database storing output from the project Microbase

workflow that executed the protein similarity searches (see Section 3.3.4).

OrthoMCL was employed to perform the clustering of homologous proteins with the inclusion crite-
ria of a BLASTP e-value cut-off of < 1 x 10~ and a percent identity cut-off of 50%. MCL was used

with an inflation rate 1.5.

Identification of proteins overrepresented in mucosal microorganisms

To investigate the distribution of homologous sequences from other mucosal microorganisms not in-
cluded in the 75 proteome data set, BLASTP was employed to search the 75 proteomes against all
the sequences in RefSeq database. For each query sequence, BLAST hits with an e-value of < 107>
were investigated to determine whether their source organisms were mucosa-associated taxa. The
hit source taxa were summarised in two different ways: the number of known mucosal organisms
including both microbes and eukaryotic hosts (based on the information from the GOLD database);
and the total number of taxa with a BLAST hit. If several proteins from the same taxon had posi-
tive BLAST hits, then these hits were counted as one. Based on these numbers, the p-value of the

finding a hit sequence from the mucosal organisms by chance was calculated by using the hyperge-
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ometric distribution test. Hypergeometric mean values (see Section 2.9.1) were then used to infer
the direction of the protein-mucosa association. The query sequences with a p-value of < 1 x 1072
with positive associations to mucosal microbes were considered as the proteins specific to mucosal

microorganisms and therefore potentially important for the mucosa-microbe interactions.

Functional annotation of protein clusters

BLASTP was used to examine the functional differences across the generated protein families. The
similarity searches were performed on sequences in each family against a set of proteins of known
functional annotations from Clusters of Orthologous Groups (COG) [Tatusov et al., 2000] for the
prokaryotic proteins, and the eukaryotic Orthologous Groups (KOG) [Tatusov et al., 2003] for the
proteins of microbial eukaryotes. The best BLAST hits and with an e-value threshold of less than
1 x1071° for all sequences in a cluster were used to assign the COG or KOG family to a protein

cluster.

6.3 Results

6.3.1 Comparative genomics to reveal niche-specific protein domains

The distribution of each of 8,423 IPR domains on all 867 microorganisms was investigated to ex-
amine their conservation and abundance among microorganisms from different niches. The hyper-
geometric test was used to identify significant associations between protein domains and particular
habitats. This method revealed several sets of IPR domains to be significantly associated with dif-
ferent ecological niches. Among the 8,000 IPR domains, 231 were determined to be significantly
associated with organisms thriving in a mucosal environment (co-occurrence p-value < 10~*). The
set of 231 domains were conserved mainly among microorganisms isolated from mucosal environ-
ments (see Figure 6.1). The specification of the 231 mucosa-associated domains were found to be
spread across different type of mucosa niches. Moreover, different types of symbiotic relationships
(i.e., pathogenic, mutual) between the microbe and host appear to have different sets of conserved
domains. For example, inhibitors of vertebrate lysozyme (IPR014453) are found exclusively among

pathogenic Proteobacteria.

Some domains that are significantly overrepresented in soil-living microorganisms are also predom-
inant in gastrointestinal tract pathogens as several soil-based organisms are pathogenic to mammal

hosts once coming into contact with mucosa surfaces. For example, Bacillus cereus is regarded
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Figure 6.1: Distribution of InterPro domains from microorganisms in different habitats. The heatmap
dendrogram shows the abundance of the domains in microorganisms from different habitats, calculated using
a (centered-mean) normalisation of the percent coverage of the selected protein domains across the differ-
ent habitats of the taxa. Different symbiosis relationships (pathogenic or mutual) between of microbes and
host-associated habitats were also indicated where possible. The IPR domains significantly associated with
taxa surviving on mucosal surfaces were selected, as well as the contrasting set of domains that are strongly
associated with soil-dwelling microbes. For a given domain, red shows a larger proportion of taxa having
that domain and living in a given habitat, whereas green shows smaller proportion of taxa that have that do-
main. The hierarchical clustering was performed using the complete linkage method and Euclidean distance
based similarity. Numbers in brackets indicate the number of organisms living in a particular habitat that
were analysed. PTS=sugar phosphotransferase system, Ani=animal, Hum=human, git=gastrointestinal tract,
rt=respiratory tract, ugt=urogenital tract, pat= pathogen, sym=symbiont, sedi=sediment. Of particular interest
are the domains shown to the left of the diagram. These domains are present mainly in the organisms that
are associated with mucosal surfaces. In contrast, the domains to the right of the diagram are present more in
microorganisms that are isolated from other environments.
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as a soil-dwelling microbe, but several strains of B. cereus are occasionally found as the cause of
diarrhoea in humans [Arnesen et al., 2008]. The overall functions of the soil-associated protein do-
mains were investigated further in relation to their GO annotations. Soil-specific protein domains
are involved in the biosynthesis of a coenzyme (pantothenate), nitrogen compounds and the histidine
family amino acids (see Figure 6.2). The significant molecular functions of these protein domains
plays a role in electron carrier activity, histidinol dehydrogenase activity, copper ion binding and
iron-sulphur cluster binding. A detailed analysis of mucosa-specific protein domains is described in

the next section.
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Figure 6.2: GO terms overrepresented among soil-associated protein domains. A set of 161 InterPro pro-
tein domains were found to significantly coexist with microorganisms isolated from soil (p-value < 1 x107).
White nodes are GO terms with no significant enrichment, but are included because they have a significant
child term. The size of each node is proportional to the number of nodes in the data set with a given GO term.

6.3.2 Protein domains overrepresented in mucosa-thriving microbes

This section describes the detailed analysis of mucosa-specific protein domains. All mucosa-thriving
and non-mucosa-dwelling microbes from across the three domains of cellular life were used. Where
multiple strains of a particular species exist, only one of the most well-known strain was selected.
In the case where different strains are isolated from different sources, one well-known strain of each

isolation source was included. These processes was performed in order to reduce noise and bias that
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may occur by several copies of nearly identical genome sequences. As a result, after the removal
of the redundant proteomes, 463 microorganism proteomes remained, of which 122 were annotated
as mucosal-thriving microbes and 341 were marked as non-mucosa associated taxa (see Figure 6.3).
In total, there are 8,243 InterPro entries annotated on the selected 463 microorganism proteomes

included in this analysis.
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Figure 6.3: Distribution of 463 microbial mucosal and non-mucosal taxa across the NCBI taxonomic
classification. Red shows the number of mucosa-thriving taxa, whereas blue indicates the number of non-
mucosa taxa. The proteomes of both mucosa and non-mucosa microorganisms included in the analysis are
distributed across taxonomic tree. Notably, most of taxa are Proteobacteria and Firmicutes.

The association and functional analyses of protein domains overrepresented in mucosa-thriving

microorganisms

This section describes the approach that was used to investigate the overall molecular functions
common across the microorganisms capable of thriving on mucosa-lined niches. The association
analysis in this section was performed on a wide set of microorganism proteomes including the data
set from bacteria, archaea and microbial eukaryotes. Localisation of protein sequences were not
taken into account in this analysis. A significance test was applied and an association score was
computed for each InterPro entry to determine if the entry was significantly present in the mucosal

taxa compared to the occurrence of the entry among the non-mucosa taxa.
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Figure 6.4 shows the distribution of all 8,243 InterPro domains across mucosal and non-mucosa taxa
with respect to the percent coverage that a given domain occurs in both sets of taxa. At a cutoff
(uncorrected) p-value of < 1 x10~* (see Figure 6.5), 231 InterPro domain entries appeared to be
statistically associated with microbes thriving in a mucosal environment. The direction of the associ-
ation was determined by a Hypergeometric mean value (see Section 2.9.1) and Pearson’s correlation
coefficient (see Section 2.9.2). A more stringent p-value was also considered in order to remove false
negatives that may occur from the multiple hypothesis test. Using a cut-off p-value 1 x107), 119
out of 231 InterPro entries had passed this cut-off value. To investigate the biological meaning of
these mucosa-associated protein domains, Gene Ontology (GO) terms enrichment assessment was
performed to pinpoint GO terms that were overrepresented. Interestingly, the result set obtained by
using both cut-off p-values provides the same overview of GO term enrichment with a slight differ-
ence in their p-values yielded from the GO enrichment analysis. Summary results from the GO terms
enrichment analysis are shown in Figures 6.6, 6.7 and 6.8 for cellular component, biological process

and molecular function, respectively.

The results show that domains that are overrepresented among mucosa-thriving microbes are pos-
sessed by cell membrane and cell wall proteins. Those protein sequences appear to be involved
mainly in carbohydrate and amine transport activities, especially sugar transport via the phospho-
transferase system (PTS)[Postma ef al., 1993]. They are also generally involved in cell communica-
tion, signal transductions establishment of localisation, and biological regulation [Houot et al., 2010]
[Gosset, 2005] [Vadeboncoeur and Pelletier, 1997]. The PTS is one of the main carbohydrate trans-
port systems in bacteria[Postma et al., 1993]. Interestingly, when using a less stringent p-value cut-
off (< 1 x1072) for the inclusion criteria of protein domains for the GO terms enrichment analysis,
terms under cellular metabolic processes such as carbohydrate and alcohol metabolic processes also
appeared to be overrepresented among the mucosal taxa data set. This interpretation of the results
obtained corresponds with the recent metagenomics analysis of the human distal gut microbiome
which identified the biodegradation of complex sugars and glycans as an important function for life
of gut bacteria [Gill et al., 2006]. From our analysis, the results suggest that the functions involved
with the carbohydrate transport may also be important among the non-gut mucosa-thriving microbes
as well, since the PTS-related protein domains are distributed across mucosa-associated microor-
ganisms both symbionts and pathogens (see Figure 6.1). The PTS-related domains were found in
microorganisms known to be able to thrive in human oral, urogenital and respiratory tracts (see Fig-
ure 6.17). The results suggest that the PTS is an important system that enables bacteria to respond

to the availability of carbohydrate substrates by using them as preferred carbon sources. The PTS
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transports sugars aiding to the microorganisms’ survival in carbohydrate-rich environments such as

mucosa-coated surfaces [Houot ef al., 2010] [Gosset, 2005] [Vadeboncoeur and Pelletier, 1997].
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Figure 6.4: Distribution of 8,243 InterPro domain entries among the set of mucosa-thriving taxa and
non mucosa-associated taxa. Plots represent InterPro protein domains. The X-axis and Y-axis are percent-
ages of known mucosa-thriving and non mucosa-associated microorganisms that have a given protein domain,
respectively. The colours of the plots show the level of significance p-values obtained from the association
analysis. The colour representing the level of p-value is shown in the text box below the plot.

In addition to the protein domains significantly associated with mucosa-thriving microbes, the do-
mains that were significantly negative or were underrepresented in the mucosal taxa were also inves-
tigated. The domains deprived in mucosal microbes compared to the set of non-mucosal microbes are
mainly proteins associated with plastids and chloroplasts. These proteins are involved in activities
involving inorganic compounds such as metal, copper-ion and vitamin binding activities as well as
catalytic activities including oxidoreductase, ligase and carboxy-lyase activities. The overall biolog-
ical process of these non-mucosa associated protein domains are vitamin, cofactor and heterocycle
metabolic processes as well as metabolic processes for carbon utilisation, response to external stim-
ulus and oxidation reduction such as electron transport. One explanation for this variety may be that

the non-mucosal taxa set were free living microbes that survive in soil, plants, marine environments,
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Figure 6.5: Plots of protein domains showing a positive association with mucosal microorganisms. The
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cutoff p-value used as an inclusion criteria to declare protein domains as significant associations.
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Figure 6.6: Cellular component GO terms overrepresented among InterPro protein domains that were
statistically significantly associated with mucosal taxa. These GO terms are enriched among the set of IPR
domains marked in blue in Figure 6.4. White nodes are terms with no significant enrichment, but are included
because they have a significant child term. The size of each node is proportional to the number of nodes in the

data set with a given GO term.
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Figure 6.7: Biological process GO terms overrepresented among InterPro protein domains that were
statistically significantly associated with mucosal taxa. These GO terms are enriched within the set of IPR
domains marked in blue in Figure 6.4.
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Figure 6.8: Molecular function GO terms overrepresented among InterPro protein domains that were
statistically significantly associated with mucosal taxa. These GO terms are enriched within the set of IPR
domains marked in blue in Figure 6.4.

168




deep seas and hot springs. These microorganisms therefore acquire energy from various sources
depending on their surrounding environment. However, carbohydrate and amino acid transport and

metabolic processes were not overrepresented among these free-living microbes.
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Figure 6.9: GO terms underrepresented among InterPro protein domains that were statistically signif-
icantly associated with mucosal taxa compared to the non-mucosa proteome data set. This GO graph
represents the GO term enrichment among the set of InterPro entries plotted in red in the Figure 6.4 (i.e., those
with a p-value < 1 x10~* and has a negative association with mucosal organism data set).

Detailed functional analysis of the identified mucosa-associated protein domains

Investigations into the 231 mucosa-associated domains in order to identify their major functions and
involvement in mucosa-microbe interactions were then carried out. Interestingly, these 231 domains
not only co-occur with microorganisms that can thrive on host mucosa surfaces, but also they appear
to be abundant among the mucosal microorganisms (abundance p-value ranging from 1073 to 10~°7)
(see Table 6.1, 6.2, Appendix G). All of these domains have patchy distribution among a specific
taxonomic group of the annotated mucosal microorganisms (see Figure 6.10), suggesting specific

groups of taxa have exclusive sets of protein domains.

Most of the identified domains are specific to bacteria. For example, PTS-related domains were dis-
tributed across Gram-positive bacteria and some Gram-negative bacterial phyla but are not found in

microbial eukaryotes or archaea. Inhibitors of vertebrate lysozyme (IPR014453) are found exclu-
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Figure 6.10: Distribution of mucosa-associated protein domains across microbial taxa. The heatmap
dendrogram shows a normalised percentage coverage of each domain across different taxa. Each column
represents an InterPro protein domain. Taxa (rows) were split into two different groups (Mucosal and non-
mucosal taxa) in respect to their ability to thrive on mucosal surfaces. The colour coding indicates enrichment
(red) and depletion (green) of a domain in a given taxa in relation to other taxa having that domain. Black
shows an absence of a domain. The heatmap shows that these domains are overrepresented among taxa known
to thrive in mucosal environments, particularly, mucosa-associated Proteobacteria-Gamma and Firmicutes.
The domains are shown in blue circle in Figure 6.4.

170




sively among Proteobacteria (alpha, beta and gamma) whose members are often known as mucosa-
associated pathogens. Among the 231 strongly mucosa-associated IPR domains, 19 entries were
found to be shared across members of the three domains of life (archaea, bacteria and eukaryotes).
Several were involved in DNA and RNA metabolic processes. The Glycosyl hydrolase family 32
(IPR0O13189, IPR013148, IPR001362) performs glycolysis activity by hydrolysing O-glycosyl com-
pounds. This family appeared across eukaryotes (Kinetoplastida, Parabasalidea, Ascomycota, Basid-
iomycota), and bacteria (Halobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Dictyoglomi,
Proteobacteria, Planctomycetes, Fusobacteria, Chloroflexi, Tenericutes, Thermotogae, Spirochaetes,
and Verrucomicrobia). Most of the microbes carrying the Glycosyl hydrolase family 32 domain are
able to thrive on various host mucosa surfaces. For example, Brachyspira murdochii DSM 1256 is
considered as a swine intestinal commensal; Fusobacterium nucleatum subsp. polymorphum ATCC
10953 is associated with human periodontal disease; Corynebacterium urealyticum is known to cause
human urinary tract infection; Vibrio cholerae is a gastrointestinal pathogen; and Trichomonas vagi-
nalis G3 is known as a sexually transmitted parasite that is able to colonise human urogenital tract
mucosa [Hirt et al., 2002]. Other interesting domains that are significantly overrepresented in mu-
cosal microorganisms and also distributed across the three domains of life were Peptidase C69,
dipeptidase A (IPR005322) and bacterial adhesion (IPR0O08966). More details of these domains

are described in Section 6.4.1.

Out of 231 IPR domains, 64 (27.7%) domains that are strongly associated with mucosa-dwelling mi-
crobes were of unknown function (see Appendix G), whereas 84 (36.4%) IPR domains were charac-
terised but as yet not annotated with GO terms (see Table 6.3). The remaining 83 mucosa-associated
IPR domains were annotated with GO terms, of which 53 domains were annotated with the GO bio-
logical process terms that were statistically overrepresented within mucosa-thriving microorganisms

(with co-occurrence p-value < 1 X 1072) (see Table 6.1 and 6.2).

Using the approach described in this section, several known proteins domains assisting the survival
of microbes on mucosal environment were identified. These domains are involved with a num-
ber of processes such as sensing carbohydrate-enriched environment, carbohydrate metabolic pro-
cesses, sugar translocation, adhesion, responding to acidity and other stress conditions, proteolysis,
host anti-bacterial inhibition, and pathogenesis. Opacity-associated protein A (OapA; IPR013731,
IPR0O07340) was a characterised domain that was identified by the approach described above (see
Section 6.2.1) as a mucosa-associated protein domain (co-occurrence p-value 3.3 x 107>, abundance
p-value 8.9 x108). OapA is known to contribute to efficient colonisation of Haemophilus influenzae

to the nasopharyngeal mucosa. The choloylglycine hydrolase domain (IPR003199) is a known gut-
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specific domain that was also identified by the approach used in this study as a mucosa-associated
domain with significant co-occurrence and abundance p-values (co-occurrence p-value 1.9 x 1074,

abundance p-value 6.9 x107°).

The domains involved in phosphoenolpyruvate-dependent PTS appear to play a major role in the
signal transduction and carbohydrate transport among mucosa-thriving bacteria. Not surprisingly,
the PTS regulation domain, PRD, was also observed as a highly abundant mucosa-associated do-
main (co-occurrence p-value = 3 x 1077, abundance p-value = 2.8 x1072%). The PRDs, common
in Gram-positive bacteria, are found in both bacterial transcriptional anititerminators and activators
which are modulated by phospholyration [Stiilke ez al., 1998]. In the presence of PTS substrates
(carbohydrates), the PRD-containing regulators activate the expression of operons or genes involved
in carbohydrate transport by the PTS. While lacking an inducer, the PRD regulator stimulates the
generation of PTS substrates. The PRD regulator has been found to be inhibited in the presence of a

rapid metabolisable carbon source [Stiilke er al., 1998].
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Table 6.1: A list of mucosa-associated IPR domains annotated with overrepresented GO biolog-
ical process. These GO biological processes terms were overrepresented in the GO term enrichment

analysis of IPR domains, with a co-occurrence p-value < 1 x1072. The entries were categorised

based on their corresponding GO terms.
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GO Biological process IPR entry | co- abundance correlation
occurrence p-value score
p-value

Phosphoenolpyruvate-dependent sugar phosphotrans-

ferase system (PTS) (3.36 x10~14)

PTS, lactose/cellobiose-specific IIB subunit IPRO03501 | 9.21 x10™° | 1.45 x107% | 0.24

PTS, mannose/fructose/sorbose family IID component IPRO04704 | 6.14 x10~7 1.05 1072 | 0.27

PTS, sorbose-specific IIC subunit IPRO04700 | 5.80 x10~7 | 3.26 x10726 | 0.27

PTS, glucitol/sorbitol-specific IIA component IPRO04716 | 1.67 x10~7 1.67 x107° 0.26

PTS, sorbose subfamily ITB component IPR004720 | 1.03 x10~7 | 320 x1072% | 0.27

PTS, galactitol-specific IIC component IPRO04703 | 825 x107° | 575 x107° | 0.21

PTS, sugar-specific permease EIIA 1 domain IPRO01127 | 7.38 x10=® | 1.69 x10~23 | 0.24

PTS, EIIB component, type 3 IPRO13012 | 4.74 x10°° | 534 x10~'1 | 0.15

PTS, lactose/cellobiose-specific IIA subunit IPRO03188 | 4.66 x10~° 1.10 x107° 0.15

PTS, EIIB IPRO01996 | 3.08 x10°° | 1.60 x10~*0 | 0.26

Sorbitol phosphotransferase enzyme II, N-terminal IPRO11618 | 2.23 x10~° 3.49 x1077 0.23

Sorbitol phosphotransferase enzyme II, C-terminal IPRO11638 | 2.23 x107° 221 x1077 0.22

PTS, enzyme II sorbitol-specific factor IPRO04699 | 2.23 x107% | 3.49 x1077 | 0.23

PTS, EIIB component, type 2 IPRO13011 | 3.03 x107> | 931 x107%7 | 0.26

Other carbohydrate transport (1.40 x 10~ 13)

Maltose operon periplasmic IPRO10794 | 2.28 x107° | 2,10 x107° | 0.22

ABC transporter, maltose/maltodextrin import, MalK IPRO15855 | 1.14 x10~° 1.25 x107° 0.25

amino acid and carboxylic acid transport (4.26 x107°)

Branched-chain amino acid transport system II carrier protein | IPR004685 | 5.16 x10~'0 | 9.71 x10~12 | 0.22

ABC transporter, methionine import, ATP-binding protein, | IPR017908 | 1.75 x10~° 8.91 x10~7 0.20

MetN, C-terminal

Anaerobic c4-dicarboxylate membrane transporter IPR0O04668 | 1.45 x10~° 6.39 10716 | 0.30

Sodium/glutamate symporter IPRO04445 | 6.73 x107/ 1.28 x107° 0.19

chromosome condensation (6.67 x10~%)

Prokaryotic chromosome segregation and condensation pro- | IPR007385 | 8.75 x10~10 | 1.81 x10~° 0.31

tein MukE

Prokaryotic chromosome segregation and condensation pro- | IPR007406 | 2.90 x10~'0 | 6.24 1010 | 0.32

tein MukB, N-terminal

Histone H1-like nucleoprotein HC2 IPR009970 | 2.92 x10~° 2.62 x107° 0.24

Glucose metabolic process

Phosphoglucose isomerase (PGI) IPRO01672 | 5.30 x107 7.24 x1073 0.13

Phosphoglucose isomerase, conserved site IPRO18189 | 3.41 x107° 9.13 x1073 0.11

Pyruvate formate-lyase, PFL IPRO04184 | 2.53 x107° | 7.65 x10712 | 0.21

Other monosaccharide metabolic process

L-fucose isomerase, C-terminal IPRO04216 | 3.63 x107° 6.77 X107 0.19

Other carbohydrate metabolic process

Mannose-6-phosphate isomerase, type I IPRO01250 | 5.00 x10~7 | 1.55 x107% | 0.22

Putative N-acetylmannosamine-6-phosphate epimerase IPR007260 | 1.18 x10~? 3.26 x10710 | 0.31

Glucosamine/galactosamine-6-phosphate isomerase IPRO06148 | 2.45 x107 3.05 x10~7 0.20

Glycoside hydrolase, family 32 IPRO01362 | 4.76 x107> | 6.03 x10~* | 0.09

Glucosamine-6-phosphate isomerase, conserved site IPRO18321 | 7.29 x10~7 8.24 x1078 0.24

4-alpha-L-fucosyltransferase IPR009993 | 9.36 107> 8.82 x1073 0.19

Other transport and establishment of localization (2.62

x1076)

GlpT transporter IPRO00849 | 2.04 x10~'" | 1.45 x10~'8 | 0.31

Putative sugar-specific permease, SgaT/UlaA IPR007333 | 1.25 x10~!11 | 5,18 x1071¢ | 0.33

ABC transporter, thiamine, ATP-binding protein IPR005968 | 2.38 x10~% | 559 x107% | 0.28

Type III secretion system needle protein IPRO11841 | 3.41 x107° 4.36 x10~7 0.24

D-lactate dehydrogenase, membrane binding, C-terminal IPRO15409 | 1.71 x107° 434 x10°° 0.22

Salmonella/Shigella invasion protein E IPR003520 | 1.07 x107 9.43 x10~° 0.23




GO Biological process IPR entry | co- abundance correlation
occurrence p-value score
p-value

Nucleoside:H+ symporter IPRO04740 | 9.40 x107> 1.37 x10~7 0.19

Invasion protein B IPR003065 | 8.09 x107> 6.96 x 107> 0.21

Porin, LamB type IPR003192 | 6.17 x10~> | 3.81 x10~'! | 0.17

Nicotinamide mononucleotide transporter PnuC IPRO06419 | 4.53 x107 2.57 x1074 0.15

Na-translocating NADH-quinone reductase subunit A IPR008703 | 2.90 x107 1.03 x1073 0.13

Other signal transduction (2.85 x107°)

PhoQ Sensor IPRO15014 | 1.38 x107° 1.29 x107° 0.22

Other regulation of cellular process (1.61 x10~2%)

S-ribosylhomocysteinase (LuxS) IPR0O03815 | 3.04 x10~3 6.10 x10~7 0.26

PRD IPRO11608 | 3.01 x10~7 | 2.76 x1072* | 0.16

Phage antitermination Q-like IPR010534 | 4.13 x10~° 4.94 10719 | 0.20

Regulation modulator SeqA IPRO05621 | 7.15x107> | 1.26 x10™* | 0.18

Methionine repressor MetJ IPR002084 | 4.67 x107> 5.76 x107 0.19

Eukaryotic transcription factor, Skn-1-like, DNA-binding IPRO08917 | 1.43 x107 9.32 x1078 0.20

Other biological regulation (6.98 x10~2)

Inhibitor of vertebrate lysozyme IPRO14453 | 4.50 x10~7 1.38 x10~° 0.23

CutC IPR005627 | 1.09 x107% | 6.89 x107¢ | 0.22

Table 6.1: A list of mucosa-associated IPR domains annotated with overrepresented GO biological pro-

cess.
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Table 6.2: A list of mucosa-associated IPR domains annotated with GO terms. These GO biolog-
ical process terms were not overrepresented in the GO term enrichment analysis of IPR domains with
co-occurrence p-value < 1 x 1072, The entries were sorted by the GO terms representing biological
process and molecular function.

gen IpaD
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Description IPR entry | co- abundance corre- | GO-Biological GO-Molecular
occurrence p-value lation | process function
p-value score
Citrate lyase, alpha | IPR006472 | 9.26 x 10> 3.24 x10~* 0.16 acetyl-CoA citrate CoA-
subunit metabolic pro- | transferase activity
cess
Aspartate—ammonia IPRO04618 | 4.12 1074 | 1.07 x10~'2 | 0.37 asparagine biosyn- | aspartate-ammonia
ligase thetic process ligase activity
Lysozyme subfamily | IPRO13338 | 4.97 x1078 1.09 x10~10 | 0.22 cell wall metabolic | hydrolase activity
2 process
Ribonucleotide IPR000358 | 2.33 x10~7 248 x1072 0.21 deoxyribonucleoside | ribonucleoside-
reductase diphosphate diphosphate reduc-
metabolic pro- | tase activity
cess
DNA mismatch repair | IPRO18140 | 1.77 x107> 1.33 x107 0.21 DNA modification DNA binding, en-
protein MutH, con- donuclease activity
served region
DNA polymerase III- | IPR009052 | 1.38 x10~ 1.58 x1077 0.21 DNA replication DNA binding,
theta, bacterial DNA-directed
DNA polymerase
activity
DNA polymerase | IPRO15199 | 6.34 x10~° 1.22 x10~8 0.29 DNA replication DNA binding,
III, delta subunit, DNA-directed
C-terminal DNA polymerase
activity
DNA polymerase III, | IPR004615 | 3.72 x107 438 x1073 0.20 DNA replication DNA-directed
psi subunit DNA polymerase
activity, 3’-5’ ex-
onuclease activity
Ribonucleotide IPRO13554 | 4.11 x10~7 2.84 x107° 0.22 DNA replication ribonucleoside-
reductase N-terminal diphosphate re-
ductase  activity,
protein binding
DNA replication | IPRO08865 | 2.84 x107 220 x107 0.20 DNA  replication | DNA binding
terminus  site-binding termination
protein
Fumarate reductase, | IPR003418 | 1.31 x10~° 3.33 x107? 0.30 fumarate metabolic
D subunit process
Dihydrofolate reduc- | IPR001796 | 1.03 x107 1.13 x1073 0.17 glycine biosyn- | dihydrofolate
tase region thetic process, | reductase activity
nucleotide biosyn-
thetic process
Leucine operon leader | IPRO12570 | 2.05 x107> | 1.77 x107> | 0.22 | leucine  biosyn-
peptide thetic process
Cof protein IPRO001S0 | 1.17 x107® | 2.55 1072 | 0.28 | metabolic process | hydrolase activity
Glycerate kinase IPRO04381 | 4.49 x107 1.18 x10~4 0.16 organic acid phos- | glycerate kinase ac-
phorylation tivity
Radical-activating en- | IPR001989 | 3.56 x10~° 5.83 10714 | 0.22 oxygen and reac- | oxidoreductase ac-
zyme, conserved site tive oxygen species | tivity, 4 iron, 4 sul-
metabolic process fur cluster binding
Bordetella pertussis | IPR0O03898 | 8.09 x 107> 6.96 X107 0.21 pathogenesis
toxin A
Enterotoxin, bacterial | IPR008992 | 1.30 x107% | 4.78 x10~2% | 0.15 | pathogenesis
Invasion plasmid anti- | IPR009483 | 3.88 x 107> 336 X107 0.21 pathogenesis




Glycoside hydrolase, | IPR002053 | 6. 4.47 x10~11 ) peptidoglycan/cellwa| lysozyme activity
family 25 catabolic process

Peptidyl-prolyl  cis- | IPR000774 . . . protein folding
trans isomerase,
FKBP-type, N-
terminal

Peptidase C69, dipep- | IPR005322 | 1.62 x10~ 6.59 x10~11 | 0.18 proteolysis dipeptidase activity
tidase A
Acid shock IPR0O09435 | 1.41 10 | 4.17 x10~" | 024 | response toacidity | |

Thr operon leader | IPRO11720 | 5.18 x107° 451 x107° 0.23 threonine  biosyn-
peptide thetic process

Table 6.2: A list of mucosa-associated IPR domains annotated with GO terms.
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Table 6.3: A list of selected mucosa-associated IPR domains without GO term annotation. (A
complete list is shown in Appendix F) Given a null hypothesis of no association between an InterPro
(IPR) domain and mucosa-thriving microorganisms, a tests based on the hypergeometric distribu-
tion yielded significant p-values. Therefore, these IPR domains significantly co-occurred with the

mucosa-thriving microorganisms.

Description IPR entry | co- abundance corre-
occurrence p-value lation
p-value score

Uracil-DNA glycosylase, active site IPRO18085 | 3.16 x10~12 | 1.23 x107° | 0.30

Prokaryotic chromosome segregation and condensation protein | IPR005582 | 2.90 x10~10 | 6.24 x10~10 | 0.32

MukF

dsDNA mimic, putative IPRO07376 | 8.75 x10~10 | 6.15 x10710 | 0.31

Fumarate reductase, subunit C IPR003510 | 1.31 x107? 3.33 x107° 0.30

Acid phosphatase (Class B) IPR005519 | 2.12 x10~° | 9.12 x10~10 | 0.29

NLPA lipoprotein IPRO04872 | 3.30 x10~2 | 5.00 x10~° | 0.18

Tryptophan/tyrosine permease IPRO18227 | 7.29 x10~° 1.16 10710 | 0.23

Cyd operon protein YbgE IPRO11846 | 3.34 x10~% | 478 x10=8 | 0.28

Mannitol repressor IPRO07761 | 3.34 x107% | 2.01 x10710 | 0.27

Phosphomannose isomerase, type I, conserved site IPR0O18050 | 3.34 x10~7 245 x1078 0.26

Antimicrobial peptide resistance and lipid A acylation PagP IPR009746 | 4.20 x10~7 1.10 x1076 0.22

Porin, general diffusion Gram-negative, conserved site IPRO13793 | 4.50 x10~7 1.70 x10720 | 0.24

C4-dicarboxylate anaerobic carrier-like IPRO18385 | 6.22 x10~/ 6.93 x10~13 | 0.24

Tryptophan/tryrosine permease, conserved site IPRO13061 | 6.58 x10~7 2.50 x10712 | 0.25

Adhesion, bacterial IPR008966 | 2.08 x107° | 3.29 x10~°7 | 0.23

Tonotropic glutamate receptor IPRO01320 | 8.61 x10°® | 1.50 x10~'1 | 0.21

Phosphotransferase system EIIB/cysteine phosphorylation site | IPRO18113 | 9.07 x107° 3.65 x10738 | 0.25

DNA damage-inducible protein Dinl-like IPRO10391 | 9.96 x10~® | 1.58 x10~' | 0.20

Amino acid transporter, transmembrane IPR0O13057 | 1.08 x107° 7.38 x1071% | 0.08

Haemolysin expression modulating, HHA IPRO07985 | 1.38 107> | 2.61 x10~'5 | 0.23

Glycosyltransferase sugar-binding region containing DXD mo- | IPR007577 | 1.50 x107> 1.96 x10~'1 | 0.20

tif

Tetratricopeptide TPR-3 IPRO11716 | 1.88 x10~> | 6.12 x10~'" | 0.26

Chlamydia polymorphic membrane, middle domain IPRO11427 | 2.05 x10™> | 1.27 x107% | 0.21

Phosphotransferase system, EIIC component, type 1 IPRO13013 | 2.27 x107° 1.43 x10736 | 0.25

Pili assembly chaperone, conserved site IPRO18046 | 3.18 X107 | 1.02 x1073% | 0.24

Opacity-associated protein A, N-terminal IPRO13731 | 3.08x107> 8.93x1078 0.21

FimH, mannose-binding IPR0O15243 | 3.88 x107> | 7.23 x1077 | 0.21

Mycoplasma MFES transporter IPRO11699 | 3.88 x107° 7.23 x1077 0.21

Glycosyl transferase, family 8 IPR002495 | 4.26 x107> | 9.27 x10720 | 0.26

YidE/YbjL duplication IPRO06512 | 5.51 x107> | 1.46 x10710 | 0.22

Prophage minor tail Z IPRO10633 | 8.09 x10™> | 1.23 x107° | 0.17

Prophage tail fibre N-terminal IPRO13609 | 8.09 x107> | 8.58 x10~1* | 0.20

Phosphotransferase system, EIIC component, type 2 IPRO13014 | 8.84 x107 571 x10726 | 0.27

CbID like pilus biogenesis initiator IPRO10888 | 8.09 x10~> | 6.96 x10~°> | 0.21

Secretion monitor IPR009502 | 1.38 x107> | 1.29 x107> | 0.22

Table 6.3: A list of selected mucosa-associated IPR domains without GO term annotation.

Analysis of mucosal protein domains of secretomes and surface proteomes

Microbial cell surface proteins exist at the interface between the microorganism and the host mucosal

environment. The surface proteome is an important factor in the survival strategy of microorganisms

in the host body. To gain a better understanding of the functional perspective of the surface pro-

teome and secretome of microorganisms thriving mucosal environments, the mucosa-associated IPR
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domains located on extracytoplasmic proteins were investigated further. To identify key features that
are shared across a board range of mucosal microorganisms, the distribution of the putative extracy-
toplasmic mucosa-associated protein domains were also investigated. Out of 231 identified mucosa-
associated IPR domains, more than 107 entries (47%) were found on extracytoplasmic proteins.
Eighty-eight entries were found on 95-100% putative extracytoplasmic proteins of all sequences car-
rying that domain, whereas 19 entries found on 50-94% extracytoplasmic proteins (see Table 6.4
and Appendix H). The putative extracellular proteins were identified using the project identification

workflow developed in this project (discussed in Chapter 4).

The results showed that most of the domains were presented in Bacterial members, and several are
exclusive to a particular bacterial phylum. For example, the PhoQ Sensor (IPR015014) is unique to

members of Proteobacteria-gamma.

For the set of strongly mucosa-associated domains, only two entries, IPRO10619 and IPR008966,
located on extracytoplasmic proteins were distributed across Archaea, Bacteria and Eukaryotes. The
widely distributed mucosa-associated domains, suggesting the importance of these domains for the
survival of microorganisms in mucosal environments. The former entry has not yet been charac-
terised. It might be worth carrying out a further detailed investigation of the involvement of this
conserved region in the context of mucosa-microbe interactions. The latter widely distributed sur-

face mucosa-associated domain (IPR008966) was characterised as a bacterial adhesin.
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6.3.3 Clustering analysis of extracytoplasmic proteins of mucosa-thriving microbes

As aresult of clustering putative extracytoplasmic proteins from a set of 75 mucosa-thriving microor-
ganisms (see Table 6.5), 8,895 clusters of similar protein sequences were identified with a BLAST
e-value of < 1 x107> and percent identity of > 50. Out of all 82,863 extracytoplasmic proteins,
73,686 were grouped into 8,895 clusters of either paralogous or orthologous protein pairs, leaving
the remaining 9,177 sequences unclustered. The biggest protein family has a membership of 746
paralogous proteins from 7. vaginalis. All of these T. vaginalis’ paralogous proteins are annotated
as hypothetical proteins with no known function. Highly similar sequences derived from the same
taxa were considered as paralogs, whereas orthologs were classed as homologous sequences from
different taxa. About half of the protein families contained at least one member regarded as a pro-
tein overrepresented in mucosal organisms. Mucosa-specific proteins were identified by similarity
searches (using a BLASTP search with cut-off e-value of 1 x1077) resulting in hits to a significant
number of known mucosa-associated organisms (at the p-value cut-off of 1 x 1072) (see method

Section 6.2.2).

Approximately 85% (7538/8895) of the protein families comprised of members from a single taxo-
nomic classification (see Table 6.6). Seventy-five taxa included in the clustering analysis were from
eleven different taxonomic classes according to the GOLD database taxonomic classification (see
Figure 6.11). These eleven taxonomic classes included were Chlamydiae, Fusobacteria, Firmicutes,
Actinobacteria, Bacteroidetes, Epsilon-Proteobacteria, Gamma-Proteobacteria, Apicomplexa, Enta-
moebidae, Parabasalidea, and Diplomonadida. Bacteroidetes proteins appeared to have the highest
number of single-class clusters (singleton), followed by those from Gamma-Proteobacteria, Enta-
moebidae, Firmicutes and Parabasalidea, respectively (see Figure 6.12). These families represent the
exclusive set of extracytoplasmic proteins within the organisms’ groups that are specific to particular
groups of mucosal microbial communities. These results suggest that there is a high degree of varia-
tion across the Bacteroidetes group-specific families (see Appendix E). This high degree of diversity
might result from the more diverse subgroups, at the ‘Genus’ level of the Bacteroidetes data set in
contrast to other taxonomic classes. Moreover, this variation might reflects the different adaptation
of the Bacteroidetes to specific conditions or niches [Sonnenburg et al., 2010]. The families from
the Gamma-Proteobacteria revealed a large number of different homologous groups even though the
proteins were taken from various strains of one specie (e.g. Escherichia coli). The diversity of the E.
coli extracytoplasmic protein family is notably greater than those of the Firmicutes class (see Figure
6.12), which included various species from the Genus Lactobacillus. This result suggests that the

high level of variation seen in the extracytoplasmic proteomes of the E. coli strains might reflect the
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Table 6.5: Summary of the number of proteins from the clustering analysis of extracytoplasmic proteins
from 75 known mucosa-thriving microorganisms.

Number of proteins analysed (from 75 mucosa-thriving microbes) 285,047
Number of putative extracytoplasmic proteins 82,863
of which:
significantly associated with mucosa organisms (p-value < 1 x10~2) 37,070
Number of extracytoplasmic protein cluster after clustering 8,895 (73,686 proteins)
of which:
contain at least one protein significantly associated with mucosa microbes 4,377
no protein signatures detected by InterProScan 2,735
Number of clusters without domain annotation and contains at least one protein 916
significantly associated with mucosa microbes
Number of extracytopasmic proteins not clustered 9,177

Table 6.6: The number of extracytoplasmic protein cluster counted based on the number of taxonomic
class presented. The taxonomic classes used here were obtained from the GOLD database taxonomic classifi-
cation. The 75 taxa included in the clustering analysis are originated from eleven taxonomic classes. None of
the clusters are shared among all 11 classes. Not surprisingly, most of the proteins clusters are shared within
one or two classes.

Number of taxo- Number of clusters
nomic class pre-
sented in the clus-

ter

1 7538
2 769
3 307
4 158
5 62
6 37
7 17
8 3

9 2
10 2
Total 8895

ability of these microbes to thrive in diverse host environments. The E. coli strains included in the
data set are known commensals or pathogens in many mucosa-lined niche environments such as the

human intestine and urogenital tract, as well as avian lungs [Kaper, 2005][Rasko et al., 2008].

183



FROTEOBACTERIA-GAMMR
FROTISTS-APICOMPLE XA
FROTISTS-DIPLOMONADIDA
FROTISTS-FPARRBASALIDER
FROTISTS-ENTAMOEBIDAE

FROTEOEACTERIA-EPSILON

BRCTEROIDETES
CHLAMYDIAE
FUSOBACTERIA
FIRMICUTES

ACTINOBACTERIA

Bacteri ukaryotes

Bacterial
specific

Broadly
distributed

paJjeys
ajoAieyna-ajohieyo.id

Figure 6.11: Dendrogram of 8,895 extracytoplasmic protein families across 11 taxonomic classes. The
protein clusters were grouped based on their distribution pattern across the taxonomic classification. The
outstanding patterns of interest are annotated in the blue text. Most of the families were derived from within a
taxonomic class. Only a small proportion of the families are distributed across the bacterial taxonomic classes,
and even no family contain members from all 11 taxonomic groups. The maximum number of classes found
distributed in two clusters are 10.
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Figure 6.12: The number of extracytoplasmic protein families exclusive to a particular taxonomic
classes. Each family was evaluated for being a protein from a mucosa-associated family. A family was
considered as mucosa-associated if at least one member of that family was identified as mucosa-specific pro-
tein. A protein sequence was determined whether it is mucosa-specific based on the BLASTP search against
RefSeq (see Section 6.2.2 for more detail).
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Not surprisingly, most of clusters with pair taxonomic classes are either among bacteria or among mi-
crobial eukaryotes (see Figure 6.13). Several clusters were shared between a pair of members of the
prominent gut bacterial phyla communities (Bacteroidetes, Firmicutes, Actinobacteria, Proteobac-
teria). Some of the paired-class clusters contained members from both prokaryotes and eukaryotic

microbes, suggesting lateral gene transfers between microorganisms sharing the same niches.

Other pairs** | 1
{PROTISTS-APICOMPLEXA,PROTISTS-DIPLOMONADIDA}
*{PROTEOBACTERIA-GAMMA,PROTISTS-DIPLOMONADIDA}
*{PROTEOBACTERIA-GAMMA,PROTISTS-APICOMPLEXA}
*{FIRMICUTES,PROTISTS-DIPLOMONADIDA}
{CHLAMYDIAE,FUSOBACTERIA}
*{ACTINOBACTERIA,PROTISTS-PARABASALIDEA}
*{ACTINOBACTERIA,PROTISTS-ENTAMOEBIDAE}
*{FIRMICUTES,PROTISTS-ENTAMOEBIDAE}
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Figure 6.13: The number of extracytoplasmic protein families exclusive to two particu-
lar taxonomic classes. “*” denotes pairs of eukaryotic and prokaryotic classes. “RE repre-
sents [FIRMICUTES,PROTISTS-APICOMPLEXA], [PROTEOBACTERIA-EPSILON,PROTISTS-
ENTAMOEBIDAE], [CHLAMYDIAE ,PROTEOBACTERIA-EPSILON], [CHLAMYDIAE PROTISTS-
APICOMPLEXA], [CHLAMYDIAE,PROTISTS-DIPLOMONADIDA]

Twenty-four clusters appeared to comprise of members from all four protist classes (Aplicomplexa,
Diplomonadida, Entamoebidae, and Parabasalidea) (see Figure 6.14). A lower proportion of families

were shared across several bacterial and the eukaryotic classes compared to families of shared either

within bacteria or eukaryotes (see Figure 6.11).
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Figure 6.14: The number of extracytoplasmic protein families with shared members from more than
two taxonomic classes. This chart only represents the distribution patterns of taxonomic classes for which
more than nine clusters were found.

Cluster of widely distributed extracytoplasmic proteins

None of the clusters (see method Section 6.2.2) were shared across 75 known mucosa-thriving mi-
crobes included in the analysis. Two protein clusters (cluster_4 and cluster_67) that have the widest
distribution of organisms contained proteins from 10 of the 11 taxonomic classes (see Figure 6.15).
Cluster_4 contains 165 protein sequences from all classes except Diplomonadida (Giardia lamblia
ATCC 50803). Among these 165 sequences, 78 (47.3%) were identified as mucosa-associated pro-
teins (p-value < 1 x1072) by a significant proportion of BLASTP hits (against RefSeq; e-value < 1
x 107) to protein members of known mucosa-associated organisms. Based on the sequence similar-
ity search against sequences in the COG database (see Method, Section 6.2.2), all members of this
family were highly similar to proteins in COG1132 (ATPase and permease components of ABC-type
multidrug transport system) and KOG0256 (1-aminocyclopropane-1-carboxylate synthase) with the
best BLAST hit e-value < 1 x107'%. Both COG and KOG families are annotated to be involved in

defence and signal transduction mechanisms, respectively.

Cluster_67 contains 55 members, of which 18 (55%) were identified as mucosa-associated, from
all classes except from Fusobacteria. Using the same approach to assign function to the cluster,

the cluster was annotated with COG1028, COG0300, COG4221 and KOG4367 (see Figure 6.15).
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These clusters of orthologs are poorly characterised. The other five protein clusters were found
to share proteins from 8-9 taxonomic classes. These broadly distributed extracytoplasmic protein
families were part of transporter and metabolisms of inorganic ion, lipid and coenzymes as well as

post-translational modification, protein turnover and chaperones.

Protein clusters shared across prokaryotes and eukaryotes

Lateral gene transfer (LGT) allows organisms to incorporate genetic materials from taxa that are not
their direct ancestors. Genes acquired through LGT may facilitate the adaptation of organisms to
survive in a certain environment [Bellgard et al., 2009]. For example, several antibiotics resistance
genes are proposed to be transferred horizontally among gut microbiota [Salyers er al., 2004]. The
sequence identity of more than 99% is shown among some of these resistance genes from different
species of both Gram-positive and Gram-negative bacteria [Gupta et al., 2003]. Hence, LGT may
contribute to the adaptation of microorganisms to survive in a specific niche [Bellgard et al., 2009]

[Xu et al., 2007].

A considerable number of LGTs have been inferred to have taken place among prokaryotes as well as
unicellular eukaryotes and across domains of life [Dutta and Pan, 2002][Keeling and Palmer, 2008].
Therefore, genes encoding extracytoplasmic proteins that are distributed across known mucosa-
thriving prokaryotes and microbial eukaryotes might be a result of LGT. Such proteins could be

involved in critical mechanisms for the survival of the microbes in the host mucosal environment.

Several extracytoplasmic protein clusters contain at least one protein from a known mucosa-thriving
prokaryote as well as a mucosa-thriving microbial eukaryote (see Figure 6.16). Functional annotation
based on COGs/KOGs revealed that most of the protein members these prokaryote-eukaryote clusters
involve in transports and metabolisms of carbohydrate, inorganic ion and amino acids. Several others
have no known specific functions. A few others were annotated as proteins involving in defense

mechanisms, cell wall and membrane biogenesis, transcription and signal transduction.

Sets of protein clusters with no known protein domains

To reveal potentially important functional regions required by host-microbe interactions that have not
yet identified, the extracytoplasmic protein families of the 75 known mucosa-thriving microorgan-
isms were examined for families with no known protein signatures. Families whose members were
not annotated with any known protein signatures can be considered to be clusters of proteins with

potential new conserved regions.

188



FROTEOBACTERIA-EPSILON
FUSOBACTERIA
FROTISTS-DIPLOMONADIDA
EACTEROIDETES
ACTINOBACTERIA
FROTEOBACTERIA-GAMMA
FROTISTS-APICOMPLE XA
FROTISTS-PARRBASALIDER
FROTISTS-ENTAMIEEIDAE

FIRMICUTES

2
:

cluster 4 (78:165) 47%
ABC-type multidrug transport
system, ATPase and permease

components (COG1132 [V])

(16:72) 22%
ATP-dependent zinc protease
(COG0465 [0])

cluster_67(18:55) 33%

(COG1028 [IQR], COG0300 [R],
C0G4221 [R])

(2:40) 5%
Dinucleotide-utilizing enzymes
involved in molybdopterin and

thiamine biosynthesis family2
(COG0476 [H])
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Cation transport ATPase
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Cation transport ATPase
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Phosphatidylglycerophosphate
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Figure 6.15: Heatmap of the seven protein clusters with the widest taxonomic distribution. For each en-
try, a description is given and the COG number is given. The letters in the square brackets refer to the functional
categories as defined in the COG database: [P]=Inorganic ion transport and metabolism, [O]=Posttranslational
modification, protein turnover, chaperones, [R]=General function prediction only, [H]=Coenzyme transport
and metabolism ,[I]=Lipid transport and metabolism ,[V]=Defense mechanisms. COG1028 = Dehydroge-
nases with different specificities related to short-chain alcohol dehydrogenases, COG0300 = Short-chain de-
hydrogenases of various substrate specificities, COG4221 = Short-chain alcohol dehydrogenase of unknown

specificity.
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than 50% of protein members of each of the clusters listed here were identified to be overrepresented among
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and microbial eukaryotes that are known to thr

For each COG entry, a description is given and the COG number is

given. The letters in the square brackets refer to the functional categories as defined in the COG database (see

Appendix M). NOC = not on COG. NOC:endo-alpha-mannosidase was assigned to one of the cluster due to

the annotation of a protein from the Bacteroidetes.

mucosal microorganisms (see 6.2.2) .
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Table 6.7: Summary of the number of mucosa-associated extracytoplasmic protein families that have
no known protein domain in relation to their taxonomic class distribution. ‘*’ denotes a shared cluster
between members of microbial eukaryotic and prokaryotic classes.

distribution Number cluster
BACTEROIDETES 257
FIRMICUTES 195
PROTEOBACTERIA-GAMMA 166
PROTEOBACTERIA-EPSILON 110
CHLAMYDIAE 72
ACTINOBACTERIA 63
PROTISTS-ENTAMOEBIDAE 14
PROTISTS-PARABASALIDEA 12
FIRMICUTES, FUSOBACTERIA 5
ACTINOBACTERIA, FIRMICUTES 4
BACTEROIDETES, FIRMICUTES 4
BACTEROIDETES, PROTEOBACTERIA-GAMMA 4
FUSOBACTERIA 2
ACTINOBACTERIA, BACTEROIDETES 1
BACTEROIDETES, FIRMICUTES, FUSOBACTERIA 1
*BACTEROIDETES, PROTISTS-PARABASALIDEA (endo-alpha-mannosidase) 1
FIRMICUTES, PROTEOBACTERIA-EPSILON 1
FIRMICUTES, PROTEOBACTERIA-GAMMA 1
PROTISTS-APICOMPLEXA, PROTISTS-ENTAMOEBIDAE 1
PROTISTS-DIPLOMONADIDA, PROTISTS-ENTAMOEBIDAE, PROTISTS-PARABASALIDEA 1
PROTISTS-ENTAMOEBIDAE, PROTISTS-PARABASALIDEA 1
Total 916

Among the 8,895 identified extracytoplasmic protein families, one third (2,735) of the families
consisted solely of members that do not possess any known protein domains or signatures (using
InterProScan search excluding regions of low complexity segment). Among the 2,735 clusters,
916 contained at least one protein sequence regarded as significantly mucosa-associated (see Ta-
ble 6.5). Interestingly, most of these so called mucosa-specific uncharacterised protein families are
sequences from one individual taxonomic class of the prominent human gut microbiome including
Bacteroidetes, Firmicutes, Proteobacteria. These taxonomic classes appeared to have relatively high

numbers of clusters of no known protein signatures (110-257 clusters) (see Table 6.7).

Several of the single-class protein clusters had no members possessing any known protein signatures,
suggesting how little is known about the key components or mechanisms involved in the host-microbe

interaction among each particular taxonomic class of naturally mucosa-thriving microbes.

Among the mucosa-specific uncharacterised extracytoplasmic protein families of multiple taxonomic
classes, one particular family stood out because the members are common to the gut bacterial com-
mensals B. thetaiotaomicron VPI-5482 and the urogenital tract parasite Trichomonas vaginalis G3
(see Table 6.8). This family contains 4 protein homologs, 3 paralogs from 7. vaginalis and one from
the Bacteroides specie. Interestingly, even though no characterised conserved InterPro domains were

found, the Bacteroidetes gene product was annotated as an endo-alpha-mannosidase.
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Table 6.8: A list of extracytoplasmic mucosa-associated protein families with no known domains. Mem-
bers of these clusters were derived from at least 2 taxonomic classes. ‘*’ denotes a commonality between
members of microbial eukaryotic and prokaryotic classes.

clusterid distribution class count taxon count gi count
3125 BACTEROIDETES,FIRMICUTES,FUSOBACTERIA 3 6 6
4452 PROTISTS-DIPLOMONADIDA,PROTISTS- 3 4 4
ENTAMOEBIDAE,PROTISTS-PARABASALIDEA
409 BACTEROIDETES, PROTEOBACTERIA-GAMMA 2 26 28
509 BACTEROIDETES, PROTEOBACTERIA-GAMMA 2 25 25
1074 FIRMICUTES, PROTEOBACTERIA-GAMMA 2 22 22
2046 FIRMICUTES, FUSOBACTERIA 2 10 10
2193 FIRMICUTES, FUSOBACTERIA 2 9 9
2410 ACTINOBACTERIA, FIRMICUTES 2 8 8
3148 BACTEROIDETES, FIRMICUTES 2 6 6
3244 PROTISTS-ENTAMOEBIDAE, PROTISTS- 2 3 5
PARABASALIDEA

3592 FIRMICUTES, FUSOBACTERIA 2 5 5
3856 *BACTEROIDETES, PROTISTS-PARABASALIDEA 2 2 4
3895 FIRMICUTES, FUSOBACTERIA 2 3 4
4040 FIRMICUTES, FUSOBACTERIA 2 4 4
4228 FIRMICUTES, PROTEOBACTERIA-EPSILON 2 4 4
4435 BACTEROIDETES, FIRMICUTES 2 4 4
4695 ACTINOBACTERIA, FIRMICUTES 2 2 3
4954 ACTINOBACTERIA, FIRMICUTES 2 3 3
5050 BACTEROIDETES, FIRMICUTES 2 3 3
5368 BACTEROIDETES, FIRMICUTES 2 3 3
5418 PROTISTS-APICOMPLEXA, PROTISTS-ENTAMOEBIDAE 2 3 3
6786 BACTEROIDETES, PROTEOBACTERIA-GAMMA 2 2 2
8029 ACTINOBACTERIA, BACTEROIDETES 2 2 2
8278 ACTINOBACTERIA, FIRMICUTES 2 2 2
8474 BACTEROIDETES, PROTEOBACTERIA-GAMMA 2 2 2
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6.4 Discussion

In this chapter, the aim was to identify genotypic features (protein domains and clusters) that are
overrepresented across mucosa-thriving microorganisms. Such features might contribute to specific
adaptations of the microbes to the mucosal environments [Sonnenburg et al., 2010]. In particular,
these analyses focused on microbial extracytoplasmic proteins that are known to play important
roles in the host-microbe and microbe-microbe interactions. Several protein domains and clusters

were identified in this study that are overrepresented among mucosal microorganisms.

Two types of functional annotation were used in order to gain insight into the potential functional
relevance of identified protein domains and clusters. GO terms associated to protein domains were
used to identify the function categories enriched across mucosal-associated domains. In addition,
COG and KOG functional annotations were used to assign possible functions to mucosa-associated
protein clusters. The analysis of proteins domains provides the identification of potential mucosa-
associated known conserved protein regions. The domain-based analysis was complemented with the
protein clustering analysis. The clustering analysis allows the identification of potential new protein

domains from a set of mucosa-associated clusters of homologous extracytoplasmic proteins.
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Figure 6.17: Heatmap showing the distribution of extracytoplasmic mucosa-associated protein
domains across an organisms’ origin of isolation. Domains listed (vertical axis) are overrepre-
sented among mucosa-associated taxa. Different habitat groups are listed on the horizontal axis.
Both axes are grouped according to the distribution pattern. Interesting, several domains are encoded
by different taxa from various mucosal environments. For example, the domains involving in phos-
photransferase system (PTS) are presented in taxa known as human gastrointestinal, respiratory and
urogenital tracts. ‘git’=gastrointestial tract, ‘ugt’=urogenital tract and ‘rt’=respiratory tract.
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6.4.1 Functional characterisation of genotypic features overrepresented in microbes

successfully thriving in mucosal environments

By studying the IPR domains associated with mucosa-associated microorganisms (as defined in Sec-
tion 5.1.2) it is possible to define a set of putative functional features that would be required to inhabit
a mucosal habitat. In this section, the identified functional features of mucosa-associated protein do-
mains are described. Host mucosal surfaces are naturally covered with mucus. These anatomical
barriers are normally enriched with carbohydrates and proteins (see Section 2.2.1). Mucosa surfaces
are important interfaces between host internal systems and the external environment. This interface
acts as the first protective barrier consisting of a range of physicochemical, and biological defence
mechanisms. In order for microorganisms to survive and be able to thrive in such highly-protected
environments, microorganisms must be able to access and process nutrients efficiently and at the
same time avoid the host defences including the innate and adaptive immune system. The ability to
adhere to the specific host cells, tissues or contents in the mucosal environment such as mucus, ECM,
saliva, food, faeces, or other host secretions, is also required for the long term survival of microbes

in particular niches.

To survive in a specific environment, microorganisms must be able to locate and occupy an optimal
niche. Pathogenic strains able to infect hosts via mucosal surfaces are normally equipped with el-
ements facilitating adhesion to the host surfaces, evasion from the immune systems, and invasion
to host cells or tissues [Acheson and Luccioli, 2004] [van der Velden et al., 1998] [Peterson, 2002].
In particular, if the microbes originate from different types of habitat before entering the mucosal
environment, the invaders need to be able to adapt to survive and thrive successfully in that new
environment[Peterson, 2002]. For example, mechanisms for sensing and reacting appropriately to a
carbohydrate-riched environment would promote their chance of survival[Houot et al., 2010]. Some
pathogens take advantage of the host immune response processes by adapting themselves to tolerate

various defensive mechanisms [Cho et al., 2006] [Acheson and Luccioli, 2004].

Carbohydrate transport and metabolic processes

Based on the results of the analysis, domains involved in carbohydrate transport and metabolic pro-
cesses were identified as expected [ Vadeboncoeur and Pelletier, 1997]. More specific cases of an ex-
clusive carbohydrate utilisation are illustrated in the mammalian intestinal commensals. Some mam-
malian ruminal bacteria such as B. thetaiotaomicron and Ruminococcus flavefaciens are known to be

capable of utilising insoluble structural polysaccharide substrates such as plant cell wall. B. thetaio-
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taomicron, in particular, can forage on both dietary and host glycans when dietary polysaccharides

are not available [Martens et al., 2008] [Flint et al., 2008] [Martens et al., 2009] [Miller et al., 2009].

Carbohydrate metabolism is essential for carbon and energy sources. Many mucosa-associated bacte-
ria are equipped with a specific major carbohydrate transport system, the phosphoenolpyruvate:sugar
phosphotransferase system (PTS). Several studies have demonstrated the role of PTS in the control of
carbohydrate transport and sugar metabolism in mucosa-associated bacteria including oral, upper res-
piratory tract, and gastrointestinal tract microbial communities [Vadeboncoeur and Pelletier, 1997]
[Bramley and Kornberg, 1987] [Houot ef al., 2010]. The PTS is widely distributed across diverse
bacterial phyla including the prominent human-specific bacterial phyla such as Actinobcteria, Bac-

teriodetes, Firmicutes and Proteobacteria.

In the human intestine, a wide range of indigestible dietary plant-associated glycans are conveyed
from the upper gut to the large intestine, where the substrates are utilised by the colon commensal
communities. SusD (IPR012944; abundance p-value 2.83 x 10~ 113, co-occurrence p-value 0.005),
part of the Bacteriodetes starch utilisation system (Sus) complex, is an outer membrane protein re-
quired for the binding of starch to the bacterial cell surface at an early stage of the starch utilisation
process [Cho and Salyers, 2001]. Although, the co-occurrence p-value does not pass the cut-off co-
occurrence p-value (1 x 10™%) used, the significant abundance p-value suggests the expansion of the
SusD protein family in the mucosal microorganisms. The expansion of protein family suggesting
the importance of the Sus system in the Bacteriodetes. The SusD domain was mainly abundant in
Bacteroidetes phylum, especially among members of normal human gut microbiota. Although, the
SusD protein homologs, termed RagB, were identified among the species causing periodontal dis-
eases (e.g. Porphyromonas gingivalis and P. endodontalis), no sign of protein family expansion was
found in the oral pathogenic species in contrast to the gut commensals [Curtis ez al., 1999]. The
study of RagB in P. gingivalis suggested that the protein presented on the cell surface is involved in

virulence, although the exact function is still unknown [Nagano et al., 2007] [Curtis et al., 1999].

From the clustering analysis, one cluster of proteins (endo-alpha-mannosidase, hydrolysis of O-
glycosyl bond ?) shared between Bacteroides and Trichomonas vaginalis could be involved in man-
nose metabolism. It is potentially of interest since mannose represents a substantial fraction of mucin

carbohydrate moieties of gastric and bronchus mucins [Wagner et al., 1998] (see Section 2.2.1).

Zhttp://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.101, accessed 20th August 2010
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Peptidase and amino acid transport

Several mucosal microorganisms are known to depend on the exogenous amino acids. For exam-
ple, the intestinal Lactobacillus johnsonii NCC 533 possess a number of duplicated amino acid
permeases, peptidase and amino acid transporters to compensate for their lack of genes involved
in amino acid biosynthetic pathways [Pridmore er al., 2004]. The organism appears to depend en-
tirely on the host or other local microbes to provide the necessary amino acids for their growth.
Microbial secreted and surface proteases may play role in host innate and adaptive immune evasion,
extracellular protein hydrolysis and promote adhesion to the mucosal surfaces [Weiser et al., 2003]

[Pridmore et al., 2004].

In this study, several amino acid transports, surface peptidases and amino acid permeases were
identified as overrepresented in microbes dwelling in mucosal environments. Several of these pro-
teins are distributed across at least two domains of life. For example, a sodium/glutamate sym-
porter (IPR004445; co-occurrence p-value 6.73 x 1077, abundance p-value 1.28 x 10~%) and trypto-
phan/tyrosine permease (IPR018227) were found among bacteria and archaea known to be associated
with mucosal environments. The sodium/glutamate symporter is a sodium-dependent glutamate up-
take. The domain is found among known mucosa-associated archaea (Methanosarcina spp.) and
bacterial phyla including Actinobacteria, Bacteroidetes, Proteobacteria, Spirochaetes, Firmicutes,

Fusobacteria, and Verrucomicrobia.

Tryptophan/tyrosine permease (IPRO18227; co-occurrence p-value 7.29 x 10~%, abundance p-value
1.16 x10719) is a transporter of aromatic amino acids, mediating cellular import of thryptophan or
tyrosine. The domain was found to be encoded by the maB gene of Haemophilus influenzae, a mu-
cosal pathogen [Martin et al., 1998]. The tmaB gene is part of the tryptophanase (tna) operon, and
has been extensively studied in E. coli. The tna operon encodes genes involved in tryptophanase
activity, allowing the thryptophan to be used as a carbon and nitrogen source, resulting in the pro-
duction of indole, pyruvate and ammonia [Newton and Snell, 1964]. The study by Martin K. ez al.
[Martin et al., 1998] suggested that the tna operon may have been acquired by lateral gene transfer.
The Thryptophan/tyrosine permease domain was found across bacterial phyla including Actinobac-
teria, Bacteroidetes, Chlamydiae, Proteobacteria and Firmicutes. The domain was also detected in

the non-pathogenic intestinal amoeba, Entamoeba dispar SAW760.

Dipeptidase A is a domain that are distributed widely across the three domains of cellular life. Most
of the taxa possessing dipeptidase A are known to thrive in a mucosal environment (IPR005322; co-

occurrence p-value 1.6 x 107>, abundance p-value 6.6 x10~'!). The dipeptidase A is a member of
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MEROPS Peptidase family C69, clan PB (MER002163)3. The domain appears to be abundant among
Lactobacillus spp. (2-10 copies of the domain). The protein is part of the complex proteolytic system

required to obtain essential amino acids [Vesanto et al., 1996].

Signal transduction

Signal transduction is essential to enable microorganisms to sense external stimuli and generate
appropriate cellular responses. The role of signalling and rewiring gene expression networks is
a rapid adaptive strategy of microorganisms to survive in an environment [Dietrich ez al., 2003]

[Cases et al., 2003] [Rosenbach et al., 2010].

The PhoQ sensor domain (IPR015014) is a part of the PhoPQ system, a classical two-component
signalling system [Cho et al., 2006]. In the case of the animal gut pathogen, S. typhimurium, PhoPQ
promotes virulence by increasing bacterial tolerance to host antimicrobial peptides and within acid-
ified macrophage phagosomes [Prost and Miller, 2008]. The S. typhimurium protein with the PhoQ
sensor domain is in the inner membrane and is activated when the bacteria are phagocytosed by the
host macrophages or by direct interaction with antimicrobial peptides [Cho et al., 2006]. The sensor
responds to the depletion of Mg?* or Ca>*, as well as to acidic conditions in the external environment
[Prost and Miller, 2008] [Bearson et al., 1998] [Cho et al., 2006]. The PhoQ domain is restricted to
Proteobacteria-Gamma, particularly pathogens e.g. Shigella spp., Yersinia spp., pathogenic E.coli,
Pseudomonas spp., Klebsiella spp.. Based on these data, it is suggested that the PhoQ-containing
proteins might have important roles for mucosa-associated intracellular pathogen to adapt rapidly in

the host cells during infection.

The ToxR regulatory system in V. cholera is another example of known bacterial signal transduction
for promoting bacterial survival with in hosts. ToxR coordinates the expression of colonisation and
virulence genes in response to specific host signals. The regulatory cascades of the ToxR regulon are
not yet well understood [Peterson, 2002]. The ToxR regulon consists of a set of membrane protein
sensors for sensing the change of pH, temperature and osmolarity as well as the presence of mucus
and bile. However, there are no protein domains related to ToxR presented in the version of InterPro
database used in this study. This might be a reason why no ToxR-related domains were detected by
this study. The next chapter 7 describes a newly defined domain that is presented in one of the V.

cholera’s accessory colonisation factors where expression are regulated by the ToxR.

PTS in Vibrio cholera is another complex system proven to be important as a signal transduction

3http://merops.sanger.ac.uk/cgi-bin/famsum?family=C69, accessed 20th August 2010
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mechanism used in response to carbohydrate availability, aiding colonisation of the pathogen on gut
mucosal surfaces [Houot et al., 2010]. In particular, V. cholera senses intestinal mucus as chemo-
taxins directing the bacteria to move toward the intestinal surfaces and initiating the secretion of

proteases capable of degrading mucus [Houot ef al., 2010].

Adhesion and colonisation

Motility and attachment to host cells or tissues are important for microbes to move to an optimal
environment to initiate and maintain colonisation [Niemann, 2004]. Flagella are structural features
of some bacteria that provide the possibility for effective movement as well as adhesion to host
[Miron et al., 2001][Bouguenec, 2005]. Colonisation of mucosal surfaces may also be supported by
pili or fimbria [Chen et al., 2009][Althouse e al., 2003]. Moreover, some microorganisms aggregate
themselves to each other to form a biofilm which enables their attachment to the host or abiotic
surfaces [Houot ef al., 2010]. The biofilm also contributes to the microbial resistance to host immune

system and antibiotics [Anderson and OToole, 2008][Hgiby ef al., 2010].

Fimbria (or Pili) are another structural feature found on the surface of some bacteria. This appendage
facilitates the attachment of the microbe to host surfaces. In some bacteria, fimbriae are required for
colonisation to initiate biofilm formations or during infection. Fimbriae are also known as a virulence
support factor [Abraham ef al., 1998]. An expansion of fimbrial proteins occurred among mucosal-
thriving Proteobacteria-Gamma data set (abundance p-value 4.64 x10~77), suggesting that these

structural features play an important role for survival in vertebrate hosts.

The bacterial adhesion domain (IPR008966)* is overrepresented among mucosa-thriving microor-
ganisms (co-occurrence p-value 2.1 x 107, abundance p-value 3.3 x107°7). The domain was found
in several adhesin proteins. Several protein domains that are regarded as members of this adhe-
sion domain include collagen-binding domain [Symersky et al., 1997], fibrinogen-binding domain
[Ponnuraj et al., 2003], fimbrial adhesin lectin domain [Buts et al., 2003], Mannose-binding adhesin

[Hung ef al., 2002] and PapG adhesin [Dodson et al., 2001].

Microbial adhesins mediating the binding of extracellular pathogens to bind host extracellular ma-
trix proteins are known as MSCRAMMs (microbial surface components recognising adhesive matrix
molecules) [Patti and Hook, 1994]. Several bacterial MSCRAMMSs play an important role in the de-
velopment of infection. An example of bacterial adhesins facilitating the adherence of bacteria to

vertebrate tissues or mucosa-lined epithelium during pathogenesis including collagen-binding ad-

“http://www.ebi.ac.uk/interpro/IEntry?ac=IPR0O08966, accessed 20th August 2010
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hesins found in Staphylococcus aureus (IPRO08456; co-occurrence p-value 0.06, abundance p-value

0.003) [Symersky et al., 1997].

Mannose-binding adhesin (FimH, IPR015243) (co-occurrence p-value 3.9 x 107>, abundance p-
value 7.2 x1077) located at the tip of the fimbrillum is an example of bacterial substrate-specific
adhesins found on the surface of both commensal and pathogenic Gammaproteobacterial including
E. coli strains, Klebsiella pneumoniae strains, Proteus mirabilis and Shigella spp.. Mannose is a

constituent of gastric and bronchus mucins [Wagner et al., 1998] (see Section 2.2.1).

MUCin-Binding Protein domain (MucBP; PF06458, IPR009459) (abundance p-value 9 x 10~18) was
described as a mucus binding component of Lactobacilli. This domain is found across Gram-positive
mucosa-thriving bacteria including Lactobacilli, Streptococaceae and Cryptobacterium curtum. In
particular, MucBP is abundant in gut-specific Lactobacillus spp. (abundance p-value 3.2 x1077).
Repetition of this domain in the same protein suggests increased affinity of adhesins for mucins in
the lactic acid bacteria [Boekhorst ef al., 2006]. Several proteins containing the MucBP domains
were predicted to be involved in binding to mucins or the degradation of complex polysaccharides or

mucus-associated glycosylation moieties [Boekhorst ef al., 2006].

Lysozyme domain, subfamily 2 (IPR0O13338)(co-occurrence p-value 5 x 108, abundance p-value 1.1
x10719), found in Actenobacteria, Firmicutes and Proteobacteria, was shown to hydrolase peptido-

glycan and facilitate the formation of flagella rod in Salmonella typhimurium [Nambu et al., 1999].

Resistance factors to host defence mechanisms

In order to counter the host defence mechanisms, microbes require stress tolerance factors that pro-
vide an advantage in combating against antibacterial compounds, and other stressful conditions in the
mucosa environment (e.g. extreme of pH). A variety of commensal and pathogenic Enterobacteria,
for example, often encounter acidic stress conditions in the host body [Seputiene et al., 2003]. Pro-
teins encoding acid tolerance genes such as acid shock proteins (ASPs) were found across symbiotic
and pathogenic intestinal and urogenital Enterobacteria (see Figure 6.17). ASPs have been shown to
increase the ability of microbes to response and survive in an acidic environment [Seputiene ef al., 2003].
The acid shock domain (IPR009435) was identified in this study to co-occur and be abundant among
Enterobacteria that are able to thrive on mucosal surfaces (co-occurrence p-value 1.4 x 1076, abun-

dance p-value 4.2 x1077).

Conjugated bile salt acid hydrolases (CBAHs), another example of a microbial resistance factor, are

enriched among gut microbiota of both bacteria and archaea [Jones e al., 2008]. CBAHs contain a
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choloylglycine hydrolase domain suggested to be significantly abundant among microbes annotated
as mucosal inhabitants (IPR003199; co-occurrence p-value 0.0002, abundance p-value 6.9 x 1079).
The enzyme was demonstrated to enhance the survival of gut-associated microbes in vitro by mediat-
ing the tolerance of microbes to the host bile acid [Jones et al., 2008]. This domain does not pass the
cut-off co-occurrence p-value used (1 x 10~#) for filter out the potential mucosa-associated domains,
however, the occurrence p-value is on a border line. This might imply that the method and the cut-off

p-value used is quite conservative.

Secreted Immunoglobulin A (sIgA) is an important antibody in mucosal immunity. IgA is the major
immunoglobulin found in mucous secretions from saliva glands, mammary glands, gastrointesti-
nal and respiratory epithelium [Acheson and Luccioli, 2004]. IgA endopeptidase (Peptidase S6,
IPR000710) is an example of the bacterial host-immune evasion found across Proteobacteria (Beta,
Gamma and Epsilon), pathogens and mutualists of human oral, gastrointestinal tract, respiratory and
urogenital tracts (see Figure 6.17). The IgA endopeptidase domain is identifed as mucosa-associated

in this study, with co-occurrence p-value 1.1 x 107>, abundance p-value 9.3 x 1078,

Other resistance factors identified by the analysis conducted in this study included host immune
evasion factors such as vertebrate lysozyme inhibitor [Abergel ef al., 2007] and antimicrobial peptide
(AMP) resistance or lipid A acylation PagP domain (IPR009746; co-occurrence p-value 4.2 x 1077,
abundance p-value 1.1 x10~%) [Hwang et al., 2002]. Both factors mediate AMP resistance and act
as virulent factors. The domains are distributed exclusively among pathogenic mucosa-associated

Proteobacteria.

Some mutualists are known to secrete interference factors that increase their resistance to the invasion
of some pathogenic strains. This process allows the commensals to sustain their occupancy of the
local host environment and also benefits the host with increased protection against pathogens. For
example, extracellular serine protease (Esp) from Staphylococcus epidermidis, the dominant com-
mensal bacteria in the human nasal cavity, was recently discovered to have an inhibition affect on

biofilm formation and nasal colonisation by the pathogenic S. aureus [Iwase et al., 2010].
6.4.2 Diversity of survival strategies across mucosa-associated microbial taxonomic
groups

Several of the identified extracytoplasmic mucosa-associated protein domains are presented in a spe-
cific taxonomic group (see Table 6.4, Appendix H). The restricted taxonomic distribution of these

conserved regions might be due to the specific adaptation of microbes in particular conditions. Dif-
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ferent groups of mucosa-associated microbes employ different strategies to achieve the functional
key features described above. However, the common aim of these actions is to sustain colonisation
in the host mucosal environment. The mucosa-associated domains identified in this study are typi-
cally distributed amongst a restricted set of taxonomic groups, regardless of whether their members
are pathogenic or commensal species (see Figure 6.10). No protein domain was found that was
present in all annotated mucosal-associated microbes. These phenotypic characteristics included re-
sponse to acid shock (IPR009435; discussed earlier) and the presence of a CblD like pilus biogenesis
initiator (IPRO10888) (see Table 6.4). These two features are specific to mucosa-associated Beta-
and Gamma-Proteobacteria. These examples illustrate that each group of the mucosal microbes may
have their own mechanisms, shared within a restricted set of taxa, to allow them to survive in mu-
cosal niches. However, it is also important to note that the analysis was performed based on protein
domains that were already known or characterised. It is therefore possible that there are some con-
served functional regions that have not yet discovered and that these might be shared across a wide

range of mucosa-associated microbes from different taxonomic groups.

Mucosa-thriving eukaryotic microbes may utilise different strategies from the bacteria, yet, ele-
ments involved in carbohydrate metabolic process are also overrepresented across mucosal eukary-
otic microbes. The glycosyl transferase family 35 (GT35; IPR0O00811) was found across all known
mucosa-thriving microbial eukaryotes of both Fungi and Protozoa including Candida, Cryptosporid-
ium, Entamoeba, Trichomonas and Giardia (see Appendix A for the list of eukaryotic taxa). En-
zymes from the GT35 family are known to possess glycogen or starch phosphorylase activity >
(EC 2.4.1.1)[Park er al., 2010]. GT35 is also widely distributed across known mucosa-associated
prokaryotes and plant pathogens. Glycosyl transferase, family 31 (GT31) is found across human
parasitic protozoa including Trichomonas, Cryptosporidium, Entamoeba. GT31 comprises enzymes
with a number of known activities: N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase,
beta-1,3-galactosyltransferase, fucose-specific beta-1,3-N-acetylglucosaminyltransferase, and globotrio-

sylceramide beta-1,3-GalNAc transferase [Park et al., 2010].

The analysis performed in this study revealed numerous conserved functional features that were ei-
ther specific to mucosal niches or beneficial to microbes in a carbohydrate-rich or vertebrate host
environment. Several known protein signatures of either well-characterised or uncharacterised pro-
teins were shown to be well conserved across microbial species known to associate with mucosal
environments either as commensals or pathogens. It would therefore be worthwhile in the future to

investigate in more detail the domains of unknown function identified in this study. The character-

Shttp://www.cazy.org/GT35.html, accessed 20th August 2010
Shttp://wuw.cazy.org/GT31.html, accessed 20th August 2010
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isation of these candidate mucosa colonisation domains could lead to a better understanding of the

complex mucosa-microbe interactions.

6.4.3 Lateral gene transfer among prokaryotes and microbial eukaryotes sharing

mucosal niches

The apparent restricted distribution of several mucosa-associated protein domains across taxonomic
classes, particularly prokaryotes and eukaryotes, suggests that lateral gene transfer (LGT) plays
an important role for survival among specific mucosa commensals and pathogens [Ragan, 2001]
[Andersson, 2009]. The combination of specific functional genotypic features across mucosal mi-
crobes from different taxonomic classes were important factors for distinguishing mucosa-associated
microbes from other microbes from the same classes. Several of these functional elements were
found to be conserved across several mucosa-associated microbes from different and distant taxo-
nomic classes could be explained by LGT. The high-biodiversity and density of microbial commu-
nities within mucosal environments, particularly in the human intestinal tract, provides favourable
conditions for direct interactions between microbes. An explosive amplification of transposon fam-
ily among the gut microbial communities also suggests the LGT between the gut microbiota

[Kurokawa et al., 2007]. The genetic elements that provide great benefit for the survival of mi-
crobes in a particular condition might be strongly selected for and maintained after LGT. For ex-
ample, an arise of LGT between organisms was suggested in a case of antibiotics resistance genes
[Fitzgerald et al., 2001], and genes involved in metabolic enzymes of the substrates enriched in an
environment [Guénola ef al., 2006] [Hehemann et al., 2010]. The invaders are able to evolve with

these essential genetic materials for survival in such a specific condition or environment.

6.4.4 Mucosa-associated protein domains and clusters of unknown function

Many of the domains and clusters identified in this study are unknown function, indicating how much
more needs to be discovered about the roles of microbiota in our health and disease. Several of the
unknown function protein domains are presented in a restricted taxonomic groups might be due to

the specific adaptation in a particular condition.

Among the unknown function of protein clusters, several of them do not have any defined conserved
regions. They represent candidates of important function to thrive in mucosal environment, there-
fore might be interesting to identify their function. Further detailed bioinformatics analysis, such

as network-based prediction of protein function [James et al., 2009][Sharan et al., 2007], can per-
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formed to generate hypotheses about their functions. These in silico analyses can be combined with
web-lab experiments including gene expression pattern in different conditions [Martens ef al., 2008],

transposon mutagenesis for connecting phenotype to gene [Goodman et al., 2009].

6.4.5 Future perspective

The mucosal domain analysis results represents a proof of principle that association analysis can be
used to characterise important molecular functions of microorganisms for their survival in a partic-
ular habitat. Several protein domains were identified that are already known to be essential for the
microbes during their interaction with host mucosal environments. Moreover, some of the results
from this study agree with a recent publication reporting the discovery of conserved regions across a

newly sequenced random shotgun human gut metagenomic data set [Ellrott ef al., 2010].

The results presented in this chapter could be complemented by more fined-grain analysis in which
mutualistic and pathogenic taxa are contrasted [Rasko et al., 2008]. Such analyses might provide
additional insights into the molecular basis of microbial factors that are beneficial to our health as
well as involved in the pathogenesis, respectively. It is noticeable that so far, each particular group of
bacterial commensals provide different benefit to hosts. Of the dominant nasal cavity commensals, S.
epidermidis has been shown to release an interference factor that has an inhibitory role on the nasal
colonisation and biofilm formation of pathogenic S. aureus [Iwase et al., 2010]. Similar scenarios
can be seen in the pathogenic strains which have adverse effects on the host body through different
strategies and mechanisms. Several known gut Gamma-proteobacterial pathogens are equipped with
enterotoxins [Chapman et al., 2006]. Therefore, proteins that are unique or exclusively presented

within a species or strains are worth investigating.

Beyond providing a global view of the molecular functions of mucosal microorganisms, particularly
for the gut microbiome, an extensive list of the mucosa-associated protein domains and families
established by this work enables future studies of both laboratory and computational experiments.
These studies will lead to a better understanding of the vertebrate host-microbe interactions. For
example, the clusters of unknown protein domains containing mucosa-associated proteins identified
in this study can be used as a guide to narrow down a list of candidate of uncharacterised proteins

that are potentially involved in the survival of microbes in a mucosal environment.

The approach used in this study is able to identify features overrepresented in a broad range of anno-
tated mucosa-thriving microbes, as well as restricted groups of microbes. The approach discovered

protein domains unique to some phyla that are known to cause disease via mucosal surfaces, such as
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Chlamydia and Mycoplasma. Several virulence factors specific to those exclusive bacterial groups
were shown in the list of mucosa-associated protein features (see Table 6.4 and Appendix H). How-
ever, these features are not necessary associated with the mucosa-thriving ability of the microbes. For
example, some mucosal pathogens might have multiple hosts or interact with several other environ-
ments such as Yersinia spp. and Chalmydia spp [Pallen and Wren, 2007]. Domains that are shared
among several mucosal phyla are more likely to play an important role in the long-term survival of a

microbe in the mucosal environment.

The taxa included for the clustering analysis in this study was restricted to 75 known mucosa-thriving
taxa. It would be interesting to perform the clustering analysis with additional genomes in order to
expand the views of the distribution of the extracytoplasmic proteomes among mucosal microbes.
Increasing the number of taxa sampling, the more meaningful comparative genomics analysis results

can be obtained [Tatusov et al., 2003].

Finally, several protein domains and proteins of unknown function were identified as mucosa-associated
elements. These findings reinforce the notion that there are still many more important functional fea-
tures to be discovered among mucosal microorganisms. Furthermore, several metagenomics studies
of the human gut microbiome have revealed large fraction of functionally uncharacterised proteins
[Ellrott et al., 2010][Kurokawa et al., 2007]. These findings would contribute to the prioritisation of
future more detailed bioinformatics analyses and functional characterisation through experimental

works.

6.5 Conclusions

The comparative analysis performed in this study has revealed conserved functional elements that
are potentially important for microorganisms to survive in vertebrate mucosal environments. The
study highlighted some principles of the mucosa-microbe interactions from the perspective of micro-
bial extracytoplasmic proteomes. The approach not only identifies known traits that are important
for the survival of microbes in the mucosal environments, it also reveals previously unidentified,
‘novel’ conserved protein regions, that are potentially specific to mucosal microorganisms. In order
to initiate and sustain successful colonisation of the highly defended host mucosal niches, microbes
must possess a combination of features performing a variety of biological processes and molecular
functions. These features include the ability to metabolise and transport carbohydrates and proteins
which are the typical substrates found in mucosal environments. Signal transduction in response to

environmental cues, such as host immune responses and changes in nutrients concentration, is also
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a feature essential for the mucosal microbes. The highly-defended host immune system presents
various environmental pressures for both commensal and pathogenic mucosal microbial communi-
ties. Therefore, resistance factors enabling the microbes to survive these external stresses are also
required. Another feature facilitating the successful habitation of mucosal environments is the abil-
ity of the microbes to move and colonise the host surfaces. Some mucosal microbes are found to
be equipped with sugar- or mucin- binding adhesins. Several of these microbes have flagella or
fimbria which facilitate their movement and attachment to the host surfaces. Gene duplication and
lateral gene transfer are important evolutionary events driving the evolution of mucosa-associated
microorganisms. Indeed, several mucosa-associated protein families have undergone dramatically
gene duplication events with over 50 paralogs encoded in a single genome. Several key features in-
volved in specific metabolisms appear in both prokaryotes and distantly related microbial eukaryotes,
suggesting the genes were acquired via LGT. Several of these features are likely to enable microbes
to become specialised to mucosal environments and are therefore necessary, but may not sufficient,

for a survival of a microbe in a specific mucosal ecological niche.
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Chapter 7

A novel zinc-metalloprotease-like
domain in host-associated microbes and
a new functional context for

carbohydrate binding modules

7.1 Introduction

Trichomonas vaginalis is a mucosa-associated microbial eukaryote, which causes the most common,
non-viral, sexually transmitted infection (STI) [Schwebke and Burgess, 2004][Johnston and Mabey, 2008].
The completed draft genome sequence of 7. vaginalis G3 was recently published [Carlton et al., 2007],
and initial annotations of the 7. vaginalis genome have reported a set of candidate surface proteins
potentially involved in host-pathogen interactions that are similar to sequences with known microbial
surface proteins [Carlton et al., 2007][Hirt et al., 2007]. One family of T. vaginalis candidate surface
proteins showed significant sequence similarity to a Entameoba histolytica immuno-dominant pro-
tein in BLAST searches [Hirt ef al., 2007]. The immuno-dominant variable surface antigen identified
in E. histolytica, a parasite of the human lower digestive tract [Edman et al., 1990], was experimen-
tally shown to be recognised by more than 70% of immune sera from patients with an amoebic
abscess [Edman et al., 1990]. In E. histolytica, the immuno-dominant protein was hypothesised to
act as a parasite surface receptor for the phagocytosis of human apoptotic cells, and proteomics anal-
ysis of the parasite phagosomes indicating the protein was located in the phagosomes during the

invasion process [Marion and Guillén, 2006]. However, the function of the E. histolytica immuno-
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dominant surface protein is currently unknown. The presence of candidate surface proteins with
sequence features shared between two mucosal parasite members of distant major eukaryotic lin-
eages [Adl et al., 2005] raised the question of whether these related sequences are shared among
organisms that thrive on animal hosts and whether these proteins could play an important role in

host-microbes interactions.

In silico characterisation of proteins related to immuno-dominant proteins from the parasitic proto-
zoa revealed a novel mucosa-associated protein domain, we named ‘M60-like’. The name ‘M60-like’
was used due to the finding that the new domain is distantly related to a characterised protease fam-
ily, M60-metallopeptidase enhancin (Pfam:PF03272). The M60-like protein domain was detected
among microorganisms inhabiting mucosa-lined niches, as well as animal hosts possessing mucosal
epithelial layers. Bioinformatics analyses of the M60-like domain identified a conserved motif with
a potential catalytic function relating to a gluzincins metalloprotease. Extracellular or cell-surface
targeting signals were detected in microbial proteins carrying M60-like domains, indicating that the
proteins are either secreted or expressed on the cell surface. Mucosa-related Carbohydrate-Binding
Module (CBM), CBM32 and CBM5_12, were also identified on several M60-like-containing pro-
teins encoded by known mucosal inhabitants or pathogens. The co-occurrence of the CBMs and
M60-like domain reveals a new functional context for CBMs, which have previously been associated

with carbohydrate processing enzymes, but not proteases.

A M60-like HMM profile was constructed and deposited in the Pfam database with accession PF13402!.
This chapter describes the novel M60 protein domain, which may be of interest to future studies
addressing the context of host-microbe interactions or mucosal colonisation, as well as targeting

molecules for the conserved gluzincin metallopeptidase.

7.2 Methods

7.2.1 Sequence similarity search and HMM profile generation

To identify proteins related to the 7. vaginalis Immuno-dominant variable surface antigen-like pro-
teins, a homolog of the T. vaginalis protein (NCBI accession: XP_001313628.1; GI1123449825;
UniProt Accession: A2F335) was used as a query to perform a PSI-BLAST search against the NCBI
RefSeq database (search date: January 20th, 2010). Only the first 500 amino acids were found to

be conserved across a broad range of taxa. This conserved region was then used to perform the

"https://pfamsvn.sanger.ac.uk/svn/pfam/trunk/Data/Families/PF13402/, accessed 15th December
2010
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PSI-BLAST search. A multiple sequence alignment of all the PSI-BLAST (one iteration) hit protein
sequences with an e-value cut-off 1 x10~* were retrieved from the BLAST server. The segment of
the aligned conserved sequences corresponding to positions 131-431 of the 7. vaginalis query se-
quence was identified as the most conserved region across the alignment. Sequences annotated with
M60-enhancin domains (PF03272) were removed from the alignment to ensure that there was no
overlap between the new domain and enhancin protein family. Sequences with identity level > 80%
were considered as highly-related and the shortest one was removed from the alignment. After the
sequences were removed, 68 sequences remained in the alignment [Bateman, 2010, pers. comm.].
HMMER3? [Eddy, 1998] was then employed to generate and calibrate a new HMM profile, named

M60-like, from the alignment of the conserved region.

In order to identify CBM5_12 and CBM32 domains on protein sequences containing M60-like do-
mains, the HMM profiles representing CBMS5_12 (SSF51055) and CBM32 were derived from SU-
PERFAMILY database [Wilson et al., 2009]. For the CBM32 profile, five HMM models (0036212,
0036298, 0043558, 0043559, 0047789) from the SUPERFAMILY were used. Each model was an-
notated as ‘Discoidin domain (FAS8C, coagulation factor 5/8 C-terminal domain)’. These five mod-
els are part of the ‘Galactose-binding domain-like superfamily’ (SSF49785). For the CBM5_12
HMM profile, three SUPERFAMILY HMM models representing the SSF51055 (0035067, 0036915,
0036705) were used.

7.2.2 Detection of functional protein regions in proteins containing M60-like domains

Phobius and TMHMM 2.0 were employed to detect extracellular-targeting N-terminal signal peptide
and alpha-helix transmembrane regions. LipoP 1.0 was used to predict an N-terminal signal peptidase
II cleavage site of a lipoprotein candidate. InterProScan version 4.4 was used to search for other

characterised protein domains and motifs. The default parameters were used for every tool.

7.2.3 Protein profile HMM searches

HMMER3 was used to search M60-like HMM profile against proteins in RefSeq database (data
obtained on 21" January 2010 from ftp://ftp.ncbi.nih.gov/blast/db, containing 9,662,677 protein se-
quences). The HMM profiles of M60-like, CBM32 and CBM5_12 were also searched over an anno-
tated protease library retrieved from the MEROPS database (file obtained 2nd May 2010, containing

*http://hmmer.wustl.edu/, accessed Ist December 2010
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177,390 sequences). The ‘hmmsearch’ command was used to search the profiles against both the

RefSeq and MEROPS protein sequences. An e-value of < 1 x 1073 was used as an inclusion criteria.

7.2.4 Protein profile-profile searches

To perform HMM-HMM profile comparisons between the M60-like profile and other known HMM
profiles, HHPred server (see Background section 2.8.3) running with HHSearch version 1.6.0.0 was
used to search InterPro database version 16.2. The ‘global alignment’ option was used to search for

potential homologous protein domains.

7.2.5 Associating the M60-like domain to microbial mucosal-related lifestyle

To investigate the significance of the association between the presence of an M60-like domain
(genotype) and mucosal-related lifestyle (phenotype) of microorganisms, the probability of the co-
occurrence between the protein domain and the phenotypic feature was calculated using the hyper-
geometric distribution function (see section 2.9.1). The hypergeometric test was used to assess the
probability of finding the M60-like protein domain in the annotated mucosa-associated microbes

compared to the number of other habitat-classified organisms with the protein domain.

The number of organisms that are known to be associated with animal hosts or to be more spe-
cific, vertebrate mucosa surfaces, can be summarised (Figure 7.1, more details in Appendix I). These
numbers were summarised considering information about the habitat or isolation source of microor-

ganisms according to the GOLD database (derived 22nd October 2009),

The equation for the hypergeometric distribution is:

P(iZWlIN,M,n):i(i)(n:i)

=W

Of the total number of microorganisms with completed genome sequences in the RefSeq database,
455 (N) have habitat information that can be used to determine whether an organism is able to thrive
on or penetrate through vertebrate mucosa surfaces. The number of these microorganism with an
M60-like domain annotated was 62 (n). The number of microorganisms known to thrive on or infect
host through mucosal surfaces was 197 (M). Of these 197 taxa, 45 (m) taxa possess at least one
M60-like domain. As a result, the probability (p-value) of observing the association of the M60-like
domain and the ability of microbe to thrive on mucosal surface is 3.7 x 10~ (see Figure 7.1). This

genotype-phenotype association may have either a positive or negative direction, which represent
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the presence or absence of the M60-like domain facilitating the mucosal lifestyle of microbes. To
determine the type of this association, the mean value (i) of the hypergeometric distribution was

calculated (see Section 2.9.1). The mean value can be calculated by:

L=nxM/N

Where, m > (i) shows a positive association and m < (u) illustrates a negative association. In our
case, (1) is 26.8 (62*197/455) which is less than 45 (m). It can be concluded that the presence of an
M60-like domain can be associated with the mucosal phenotype of microbes, and this association is

statistically significant.

The same approach was also applied to find whether there is a positive association between the M60-
like domain and animal-host associated microorganisms. Given the number of organisms with a
complete genome sequence for which habitat or isolation source information is available (N), N is
654. The number of these microorganisms with M60-like domains (n) was 78. The total number of
microorganisms known to associate with animals (M) was 320. The number of microorganisms that
have both phenotype and genotype was 61 (m). As a result, p-value of the association of M60-like
and animal-associated microbes was 3.5 x 10~ (see Figure 7.1). In this case, i is 38.2 (78%320/654)
which is also less than 61 (m). This result suggests a significant positive association between the

presence of the M60-like domain in the animal-associated microorganisms.

7.3 Results

7.3.1 Identification of the M60-like protein domain and construction of HMM profile

To identify a potential conserved region of the surface immuno-dominant proteins, a set of proteins
from T. vaginalis [Carlton et al., 2007][Hirt et al., 2007], that share sequence features with the pro-
tein from Entamobea histolytica [Edman et al., 1990] on the basis of BLASTP hits, was used as
a query to perform BLASTP search. The following most significant hits included proteins from
bacteria known to be able to thrive on mammalian mucosal surfaces including: Mycoplasma pene-
trans (a Mollicute) a human mucosa pathogen that can infect the urogenital and respiratory tracts;
[Sasaki et al., 2002] and Clostridium perfringens (a Firmicute) that can infect the digestive tract of

various mammals [Brynestad and Granum, 2002] as well as mammalian sequences.

Performing one-iteration PSI-BLAST search with an e-value cut-off of less than 1 x 1074, 552 hits

to protein sequences from 333 different species and strains. The hit list was characterised by a highly
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Figure 7.1: Significance scores of the association of the M60-like domain and host-associated microbes.
The M60-like domain is significantly associated with microbes living on animal hosts, in particular vertebrate
mucosa surfaces. The association values were calculated using hypergeometric test. The p-value produced
from the test represents the probability of finding the M60-like domain in the test set in relation to the reference
set. To assess whether there is a significant association between the domain and mucosa-associated taxa, the
number of mucosa-associated taxa was used as a test set compared to the number of taxa of that are either
non-mucosa or mucosa associated. The association between the domain and host-associated microorganisms
was also evaluated. The number of animal host-associated taxa was used as a test set in relation to the number
of all taxa with known habitats as a reference set.

patchy taxonomic distribution containing a broad mix of eukaryotes, bacteria and baculoviruses.
The largest hit lists for a given taxon are from 7. vaginalis and Bacteroides caccae, with 26 and 16

sequences, respectively.

An alignment of the PSI-BLAST hit results showed that residues at position 100-500 at the N-
terminus of the 7. vaginalis query protein sequence (RefSeq accession: XP_001313628, 1247 residues)
co-aligned with sub-regions of related sequences from other mucosa-associated organisms (see Fig-
ure 7.2). However, no known functional motifs or domains were detected in the corresponding
segment when scanning the query sequence against an InterPro integrated database of protein do-
mains and functional sites. The absence of recognised features on the broadly conserved regions
suggested the discovery of a potentially new protein domain. A more specific HMM profile of the
M60-like protein domain was generated based on a multiple sequence alignment of the conserved
region (length of 198 amino acids) of the non-redundant sequences from similar proteins retrieved

from one-iteration of PSI-BLAST hit results (Appendix K).

To investigate the features of the conserved sequence region, a multiple sequence alignment was gen-
erated with the sequences from the PSI-BLAST hit list that maximised site homology and removed
highly similar and partial sequences (see Section 7.2.1 for details) over the conserved segments. This

process resulted in an alignment composed of 387 columns across 68 sequences that was used to

213



Distribution of 101 Blast Hits on the Query Sequence

Mouse over to see the defline, click to show alignments

Color key for alignment scores

<40 40-50 80-200 =200
Qu e ry
1 1 1 1 1 1
q 200 400 600 300 1000 1200

Figure 7.2: The M60-like conserved region from the BLASTP search results. The Trichomonas M60-like
protein (XP_001313628.1; GI1123449825) was used as the query for the PSI-BLAST search (1 iteration). The
blue box highlights a well-conserved region across proteins from other host-associated microorganisms, in
particular, mucosa-associated microbes. This conserved region had not yet been previously characterised.
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generate a new profile of a protein domain. The new protein domain was then deposited in Pfam

with the accession number PF134023.

7.3.2 The M60-like domain is related to the M60-enhancin Zn-metalloproteases

HMMER was used to search with the newly generated M60-like HMM profile the RefSeq protein
database (retrieved date: 20th January 2010). This search identified 523 significant hits (e-values <
1 x1077) derived from 322 taxa. Taxa annotated with the M60-like domains included members of
seven major bacterial taxa (124 Firmicutes, 144 Proteobacteria, 18 Bacteroidetes, 3 Verrucobacteria,
2 Actinobacteria, 1 Planctomycetes, 1 Tenericutes), and eukaryotic taxa (14 Metazoa, 3 Fungi, 2

Amoebozoa, 2 Apicomplexa, 1 Parabasala and 1 Choanozoa) (see Appendix J).

The vast majority of identified proteins containing M60-like domains, 489 entries (93.5%), possessed
the minimal HEXXH zincin motif that was aligned to each other in a global alignment (Appendix
K). This motif is characteristic of a broad range of functionally characterised Zn-metallopeptidases
with the two histidine residues being ligands of a catalytic Zn™ atom and a glutamate representing
the single catalytic residue [Jongeneel ef al., 1989][Bode et al., 1993][Gomis-Riith, 2003]. An addi-
tional conserved glutamic acid residue was also aligned across the related sequences and was found
within 28 residues C-terminally to the zincin motif defining the pattern HEXXHX...E (Appendix
K). The conserved consensus HEXXH(8,28)E motif is suggestive of a gluzincin-like family of Zn-
metallopeptidases, where the second conserved glutamate potentially acts as a third protease zinc

ligand [Hooper, 1994].

The presence of gluzincin sequence features in the M60-like domain prompted us to search the
MEROPS database with the newly generated M60-like profile [Rawlings er al., 2008] to investigate
the presence of the domain in known proteases. Using HMMER to perform the search with a cut-off
e-value < 1 x 1073, 38 positive MEROPS entries were found for the M60-like domains. Twenty-one
are members of the family M60 unassigned peptidase (enhancin), while the remaining 17 entries are
annotated as enhancin-like peptidases (see Table 7.1 and Appendix L). The predicted regions of M60-
like domains on the proteases identified by HMMER partially overlap with the regions responsible
for peptidase activity. The 38 sequences from the MEROPS database with a positive HMMER result
were then analysed with InterProScan to determine whether an M60-enhancin (PF03272) was also
present. Only three of MEROPS sequences did not hit the M60-enhancin domain; these were the
MEROPS hits with the top three HMMER scores (see Table 7.1).

Shttps://pfamsvn.sanger.ac.uk/svn/pfam/trunk/Data/Families/PF13402/, accessed 15th December
2010
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Table 7.1: MEROPS proteases encoding M60-like domains. The table contains MEROPS identifiers with
their descriptions. Scores and e-values of the three most significant hits resulting from a HMMER search of the
M60-like profile are shown (See Appendix L for a complete hit list). Carbohydrate-binding modules (CBMs)
are also listed (if present) with their predicted locations.

Merops ID | Description Organism M60-like score e-value CBM
start-end
MER151941 | family M60 unassigned pepti- | Bacillus cereus | 82-377 310.5 | 1.1 x10~°T | none

dases (peptidase unit: 223-427)
from GB:ACK98449

MER150257 | family M60 unassigned pepti- | Bacillus cereus | 75-370 2922 | 2.5 x107%¢ | CBM32
dases (peptidase unit: 209-420) 449-591
from GB:ACK63685
MER111749 | family M60 unassigned pepti- | Akkermansia 100-403 229.5 | 5.1 x107%7 | none
dases (peptidase unit: 250-458) | muciniphila
from GB:ACD04464

The presence of the HEXXHX(8,28)E pattern in 92% (482/523) of the M60-like positive RefSeq
sequences (including the E. histolytica entry), was found in a range of proteins annotated as M60-
enhancin from the PSI-BLAST search. Together with the 38 enhancin-like proteins in the MEROPS
database which possessed the M60-like profile, the evidence strongly suggests that M60-like positive

proteins are proteases.

To further investigate this possibility, HMM-HMM profile comparison of the M60-like and M60-
enhancin was performed using HHPred [Soding, 2005]. Significant hits for the M60-like domain
were recovered for several profiles by searching all databases available on the HHPred server. The
first hit corresponds to a domain with no known assigned function. The second and third hits corre-
spond to M60-enhancin proteases where the aligned positions between the M60-like and the M60-
enhancin profiles included the motif HEXXHX(8,28)E (Figure 7.3). Taken together, these different
considerations also support the hypothesis that the M60-like domain corresponds to a newly identi-

fied Zn-metallopeptidase family that is distantly related to the M60-enhancin family.

7.3.3 The M60-like protein domain is widely distributed across host-associated or-

ganisms

The 523 protein sequences containing the M60-like profile were derived from 322 taxa across bacte-
ria and eukaryotes. The majority of taxa encoding proteins with M60-like domains are microorgan-
isms known to be either commensals, mutualists or pathogens of animal hosts including vertebrate
mucosa or invertebrate digestive tracts (chitin-containing) (see Appendix J). Some species are able
to thrive on both insect and mammalian hosts, for example, Yersinia enterocolitica

[Heermann and Fuchs, 2008]. Indeed, a highly significant positive association between the M60-like
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Hit Prob E-value P-value Score
PTHR15730 EXPERIMENTAL AUTOIMM 100.0 3.6E-44 0 367.7
| PF03272 Enhancin 100.0 1.5E-39 3.5E-44 319.8 |
SUPFAM0037477 Metalloproteases 74.8 1.1 2.7E-05 32.9

0 ss_pred CCCCcceEEECCCCEEEEE~--eCCCCCceEEEEeecCCCeccccccccCCCeceEEEEeeCCeEEEeccCCCEEEEEeCC
Q PF13402 (M60-like) 1 GSRQSAGVWIPAREVAYVH--GLSSDDTVMIAMADNLTGRVNHENALNRPPRVS/SFNGVEASNGFKVPYGGSVYITLGS 78 (302)
0 Consensus 1 ~~~g~TCiya~~Ge~i~V~mmmmmmmmmmnn frmmmm b L-~g-n~i~~p~GCG~iyi-~~~ 78 (302)
R T ST S B T AT
T Consensus 27 B~R~~1lg~il~a~~~i~ipr~m~~mmmmmnn t1rlLNnd~~tE~ G sVpFvd~~~ 93 (775)
T PF03272 (enhancin) 27 EDRQPI.GY I PANTK RIRQNNPNFVGP TLR.INNDRNTEK SITVNNEWVTISVQEDSVPFVDTPY 93 (775)
T ss_pred cCCccCCEEECCCCEEEEEecCCCCCCCeEEEEecCCCCCeE=mmmmmmmmmmnn EEEecCccEEEEcccceEEEEeeee
0 ss_pred ===CCc-~--eEEEEecceeECceEecCCCCEEREEEEERhCCCCEEEEECCCEEEEEEERREhhhh=~~hcCERHEEEER
Q PF13402 (M60-like) 79 ---KES---AQVSFGGSATAAP!NFITSATEGSW TTPEESDAP TET VGKRFSYTTTTAG KGHS-~~EVDVLENTKQOF 149 (302)
0 Consensus 79 A At Sl Prfrrgemtomewemm Lo R R cedeeeleeee 149 (302)
. I I IAPE S MEETAETE
T Consensus 94 ~mmmmmman Vommimmmmnn Lp~ P ——— fa~le~~~i~1LVP~~dKk~~1m~~mmmmn~ 1-~L~~~Y 172 (775)
T PF03272 (enhancin) 94 GDNSDGEYEVEYE!TGEHKP! PVYRKGONE-SDFFSEWDDSDSPFAFIEGDR QL1 VPPADKNY  RNKDDTD DELNDFY 172 (775)
T ss_pred cCCCCCcEEEEEEeCCCccccCEEEeCCCE-HEEEEhhhheCCceEEEEcCeEEEEeCHRhEEEERhhhccCCHEEEERRE
0 ss_pred HEE |
Q PF13402 (M60-like) 150 DLFTIGVNEFYGRDGVSGAHK!FTDSAPELEYQNIRLVDDIQISIGSAHSGYPVISTSFPROKSSLFKATDNW! LGHE 229 (302)
Q Consensus 150 d~ii~~~~~ L G G e WG 229 (302)
R S O I e S + |+
T Consensus 173 ~~Ii~~Yd~1~GL~~~~mmmmmn n~~~Kky F~KAD~~G~G~AYY~~~~~ A~grmgmmm nWg~1 245 (775)
T PF03272 (enhancin).73 245 (775)
T ss_pred
o] ss_pred hcecece=-ecCCCcepenhhBEEEEEEEBhceececccCCHmmmmmnnnaaHHEEERhcecCecceccCCEEENhEEEE-H
Q PF13402 (M60-like) 230 NVVGAGE['ANNVLALYTQERNTGDMPRIKVS TNATEWANGDEPWADGTNADRLNFFG-Q 296 (302)
Q Consensus 230 e e B NTNNL 8 L e e o d~~~~L~mf~-Q 296 (302)
R R P R R e
T Consensus 246 it bl EPW-NI~~d~yQ~~~~~~~ @ Wly~~Grr~~ve~~i~mmmmm L 4 325 (775)
T PF03272 (enhancin)246 [H5YDFGFTRNDPYLGE|/WNNTLADRYQYTY/NPDERQQ! GW.YDNGKRERVERN NNL.IDNNKPFDSWDLREKLIFFTHI 325 (775)
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Figure 7.3: Profile-profile alignments of the M60-like domain and M60-enhancin profile. The profile
alignment was derived from a HHpred search against all protein signature databases, with an M60-like domain
alignment used to generate the HMM profile. The top three hit list are shown at the top of the figure. The
alignment of M60-like and M60-enhancin HMM profiles are shown. The HEXXH...E catalytic motif were
highlighted in square boxes. This motif is well conserved across the two profiles suggesting catalytic function
of both protein profiles. The profile alignment consists of ‘SS_pred’ lines representing secondary sequence
structures predicted by PSIPRED, as well as ‘consensus’ lines showing the consensus sequences of the M60-
like domains and the corresponding hit domains. Amino acid residues are marked in capital letters when they
occur over 60% of the corresponding alignment, and in lower case when they are presented greater than 40%
of the alignment. Tilda indicates unconserved columns. The line in between the two consensus sequences
shows the match quality and is defined as follows: ‘=" very bad match, ‘-’ bad, . neutral, ‘+’ good match and
‘I” very good match.
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Figure 7.4: The bit scores for RefSeq proteins hit by a PSI-Blast search (e-value /e 1x107>) were plot-
ted against the corresponding bit scores of the HMMER search with the M60-like profile (e-value /e
1x107°). HMMER and PSI-BLASTP were used to identify proteins containing an M60-like domain. The
PSI-BLAST search was performed using the 7. vaginalis G3 (XP_001313628.1) sequence as a query. The
scores from the HMMER search (Y axis) were plotted against hit results from the PSI-BLAST search (X
axis). Sequences that are hit with M60-enhancin identified using HMMPfam are coloured based on the the
e-values of the hit results. The entries without an M60-enhancin domain (i.e., no HMMPfam hits) are coloured
blue. The entries with an M60-enhancin domain are coloured according to their hit e-value ranges. Numbers
in brackets in the graph legend represent the total number of entries in each range. The majority of the pro-
teins appear to have a hit to an M60-like domain and no hit to an M60-enhancin domain (blue diamonds).
Some proteins are predicted to have an M60-like domain as well as a strong e-value indicating the presence
of an M60-enhancin domain (red and yellow diamonds). However, these proteins have low HMMER and
PSI-BLAST hits scores, suggesting a distant relation between the two domains.
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domain, and animal host-associated microorganisms as well as mucosa-associated microorganisms
was observed (Table 7.1). Approximately 10 bacterial taxa with M60-like positive proteins are known
as free-living microorganisms or plant pathogens with no evidence for being associated with animal
hosts such as Pseudomonas syringae, Uncinocarpus reesii (Appendix J). A total of 14 taxa encoding
M60-like domains are animals (Appendix J) that possess mucosal surfaces such as human, cow and

fish.

7.3.4 Variation of pathogenicity of Escherichia M60-like proteins family

Among 322 taxa encoding the M60-like protein domain, 32 sequences are originated from Gram-
negative, non-spore forming bacteria Escherichia species. Three sequences are from Escherichia sp.
(strain 1_1_43, 3_2_53FAA and 4_1_40B), which are commonly found in human intestinal tract.
Twenty-seven sequences were derived from Escherichia coli, one from E. fergusonii ATCC 35469,
and one from E. albertii. E. albertii and some particular strains of E. coli can cause infections, partic-
ularly, on mucosa surfaces of vertebrates. E. coli strains and E. fergusonii ATCC 35469 are known as
members of normal gastrointestinal flora in mammals. Some strains of these species are known to be
pathogenic in various mucosal niches, including the gastrointestinal, urogenital and respiratory tracts
of both mammals (especially human) and avians [Kaper, 2005][Farmer et al., 1985][Rasko et al., 2008].
M60-like protein families are found in some E. coli that cause intestinal disease including en-
teroaggregative E. coli (EAEC) strain 101-1; Enteropathogenic E. coli (EPEC) strain E22, E110019
(atypical EPEC); Enterotoxigenic E. coli (ETEC) strain E24377A, B7A; Enteroinvasive E. coli
(EIEC) strain 53638. One of major E. coli strains causing extraintestinal infections and which also
encodes the M60-like domain is uropathogenic E. coli (UPEC), including strains 536, F11, and
UTI89. Moreover, the M60-like protein family was also detected in E. coli APECO1, described as
an avian pathogenic E. coli (APEC). The other three E. coli strains encoding M60-like domains are
known as normal gastrointestinal microflora including strain HS, K-12 substr. MG1655, and W3110
[Blattner, 1997][Kaper, 2005][Rasko et al., 2008].

7.3.5 M60-like containing protein sequences possessing carbohydrate binding mod-

ules

Several proteins containing M60-like domains possess other well-characterised protein domains and
features (Table 7.2), including several features associated with cell surface or secreted proteins

such as signal peptides (SP); transmembrane domains (TMD); and prokaryotic lipoprotein domains.
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Table 7.2: Pfam entries annotated on proteins containing M60-like domains. Total number of each entry
found is shown.

Domain description Pfam accession | count
Coagulation factor 5/8 type, C-terminal PF00754 88
Peptidase M60, viral enhancin protein PF03272 83
Glycosyl hydrolase family 98, putative carbohydrate-binding module PF08305 46
Fibronectin, type I11 PF00041 38
Carbohydrate-binding family V/XII PF02839 25
Uncharacterised sugar-binding PF07554 19
Pyrrolo-quinoline quinone repeat PF01011 13
Bacterial Ig-like PF(07523 11
Leucine-rich repeat PF00560 5
Ricin B lectin PF00652 4
S-layer homology region PF00395 3
Surface protein from Gram-positive cocci, anchor region PF00746 2
tRNA pseudouridine synthase PF01416 2
Bacterial Ig-like, group 2 PF02368 2
Leucine-rich repeat, adjacent PF08191 2
Metallophosphoesterase PF00149 1
Dockerin type 1 PF00404 1
DNA gyrase/topoisomerase IV, subunit A, C-terminal beta-pinwheel PF03989 1
Collagen-binding surface protein Cna-like, B region PF05738 1

Several protein domains that function in cell adhesion or carbohydrate binding were detected in
160 proteins containing M60-like domains (see Table 7.3 and 7.4). These well-characterised do-
mains included a galactose-binding like domain (GBD)(IPR008979:SSF49785), a coagulation factor
5/8 type, C-terminal (IPR000421:PS50022, PF00754), and the carbohydrate-binding family V/XII
(IPR003610:SM00495, SSF51055, PF02839). The latter two are also annotated as CBM members of
the CBM32 [Abbott et al., 2008] and CBM5_12, respectively in the CAZy database*[Park ez al., 2010].

Of the 98 CBM-containing M60-like proteins, 80 are from microbes that are known to colonise mam-
malian mucosal surfaces, including the gastrointestinal (GI) or urogenital (UG) tract. Some are well
known members of the human GI tract microbiota [Gordon et al., 2005][Hattori and Taylor, 2009]
including Bacteroides caccae, B. fragilis and B. thetaiotaomicron. Several others are thought to
be mainly free-living (can be isolated from the environment) but can be pathogenic when in con-
tact with mammalian mucosal surfaces or the digestive tracts of insects. These organisms include
Bacillus cereus [Slamti and Lereclus, 2002][Arnesen et al., 2008], Yersinia enterocolitica subsp. en-

terocolitica 8081 [Thomson et al., 2006], and C. perfringens [Brynestad and Granum, 2002].

The domain CBM5_12 or Chitin-binding domain type 3 (Pfam:PF02839, SMART:SM00495) was
detected on the M60-like proteins from insect pathogens (Table 7.3) such as Paenibacillus larvae
subsp. larvae BRL-230010 and Bacillus thuringiensis serovar israelensis ATCC 35646. Likewise, the

co-occurrence of M60-like and CBM32 domains was identified on proteins from mucosa-associated

4www.cazy.org/CAZY/, accessed 10th December 2010
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Figure 7.5: A schematic representation of the domain organisation of proteins containing both an M60-
like domain and a carbohydrate-binding module (CBM) from B. thetaiotaomicron VPI-5482, E. histolyt-
ica HM-1:IMSS, T. vaginalis G3 and B. thuringiensis ATCC 35646. These microorganisms are prokary-
otic and eukaryotic vertebrate mucosal microbes and insect gut pathogens, respectively. The three protein
sequences have features indicating that the M60-like and CBM domains are potentially exposed to the ex-
tracellular space due to the presence of either a signal peptide or transmembrane domain. The CBM32 is
commonly present in M60-like proteins derived from bacterial microbes associated with vertebrate mucosal
environments, while the CBM5_12 is often present in the proteins from insect gut pathogens.

221




Table 7.3: List of organism species possessing M60-like proteins that have carbohydrate-binding do-
mains from the CBM5_12 family. The number of strains and protein sequences that possess M60-like do-
mains are shown. Several of these species are known to interact with insects (see Appendix J).

organisms Total strain  Total sequence
Bacillus cereus’ 9 9
Bacillus mycoides DSM 2048 1 1
Bacillus thuringiensis® 6 8
Bacillus weihenstephanensis KBAB4 1 1
Clostridium botulinum? 5 5
Paenibacillus larvae subsp. larvae BRL-230010 1 1
Yersinia aldovae ATCC 35236 1 1
Yersinia enterocolitica subsp. enterocolitica 8081 1 1
Yersinia mollaretii ATCC 43969 1 1
Yersinia ruckeri ATCC 29473 1 1

1 172560W,AH1134,AH603,AH621,ATCC  10876,BDRD-ST196,F65185,Rock3-
28,Rock4-2

2 Bt407,serovar berliner ATCC 10792,serovar israelensis ATCC 35646,serovar
kurstaki str. T03a001,serovar monterrey BGSC 4AJ1,serovar thuringiensis str.
T01001

3 A2 st Kyoto,B1 str. Okra,Ba4 str. 657,Bf,F str. Langeland

microorganisms (Table 7.4).

In addition, several M60-like proteins are annotated with a galactose-binding domain (GBD) which
is classified as a superfamily containing the CBM32 domain. These proteins are from parasitic pro-
tozoa, Entamoeba histolytica HM-1:IMSS and T. vaginalis G3, and some are from non-pathogenic
commensal microbiota of the human GI tract including Akkermansia muciniphila, B. caccae and E.

dispar.

The CBMs are typically located on enzymes processing polysaccharides [Shoseyov et al., 20006]
[Boraston et al., 2004]. HMMER was used to search the MEROPS database for any other known
proteases also possessing either a CBM32 or a CBM5_12 domain. As a result, 182 proteins from
22 peptidase families were found to contain CBM32 domains (Table 7.5), and 33 proteins from 7

peptidase families were identified that possess the CBM5_12 domains (Table 7.6).

7.3.6 Microbial proteins with M60-like domains possess features of extracellular pro-

teins

The majority of M60-like containing protein sequences from known mucosal-associated microor-
ganisms were predicted to have either an N-terminal SP, TMD or lipoprotein. The presence of a
SP or lipoprotein suggests extracytoplasmic localisation, while a TMD enables the anchoring of a
protein to cell membrane lipid bilayers. Topological inference for the putative transmembrane pro-

teins encoding M60-like domains, indicates that the domains are exposed to the extracellular milieu.
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Table 7.4: List of organism species possessing M60-like proteins that have carbohydrate-binding do-
mains from CBM32 family. Number of strains and protein sequences that possess M60-like domains are
shown. Several of these species are known as human gut normal flora. Some are regarded as pathogenic to
vertebrate hosts via the host mucosa surfaces (see Appendix J).

organisms Total strain  Total sequence
Bacillus cereus? 10 10
Bacillus thuringiensis® 4 6
Bacteroides caccae ATCC 43185 1 9
Bacteroides finegoldii DSM 17565 1 1
Bacteroides fragilis® 3 3
Bacteroides plebeius DSM 17135 1 1
Bacteroides sp.* 3 5
Bacteroides thetaiotaomicron VPI-5482 1 4
Clostridium bartlettii DSM 16795 1 1
Clostridium botulinum® 2 2
Clostridium difficile QCD-32g58 1 1
Clostridium hathewayi DSM 13479 1 1
Clostridium hiranonis DSM 13275 1 1
Clostridium perfringens® 9 15
Clostridium sp. 7_2_43FAA 1 1
Eggerthella lenta DSM 2243 1 1
Eubacterium dolichum DSM 3991 1 1
Sphingobacterium spiritivorum’ 2 4
Trichomonas vaginalis G3 1 2

I AH1134,AH676,ATCC10876,B4264,m1550,MM3,Rock1-15,Rock]1-
3,Rock3-28,Rock 3-29

2 Bt407,IBL200,serovar beliner ATCC10,serovar thuringiensis str. T01001

33 1 _12,NCTC9343,YCH46

41.1.62.1.163_2_5

5 El str. ‘BoNT E Beluga’,E3 str. Alaska E43

6 ATCC 13124,B str. ATCC 3626,C str. JGS1495,CPE str. F4969,D str.
JGS1721,E str. JGS1987 NCTC 8239,SM101,str. 13

7 ATCC 33300,ATCC 33861
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Table 7.5: MEROPS entries annotated with CBM32 domains. The total number of MEROPS entries found
for each protease family are shown.
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Table 7.6: MEROPS entries annotated with CBMS5_12 domains. The total number of MEROPS entries
found for each protease family are shown.
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Therefore, M60-like domains are likely to be presented on the cell surface or are secreted and there-
fore interact with extracellular substrates, either from the host or other members of the microbiota.
Prokaryotic membrane lipoprotein lipid attachment domains (PROSITE:PS51257) were detected in
some M60-like proteins from free-living microorganisms, often found to be toxic to the host through
the mucosal surfaces e.g. Vibrio parahaemolyticus, V. cholerae. In contrast, extracellular-associated
sequence features were not detected on M60-like proteins from any eukaryotic hosts, known plant
pathogens (Pseudomonas syringae), and some animal pathogens such as Yersinia pseudotuberculo-

SiS.

7.4 Discussion

7.4.1 M60-like as a potential zinc metalloprotease and enhancin-related protein fam-

ily

A range of evidence, when considered together, strongly supports the hypothesis that the M60-like
domain is a new metalloprotease. Firstly, the presence of the extended consensus HEXXHX(8,28)E
motif, suggests that the M60-like domain could be considered as a gluzincin metalloprotease. Bac-
terial and mammalian gluzincins include thermolysins, endopeptidase-24.11, angiotensin converting
enzymes and aminopeptidases, with the length of an inserted region between the second H and E
ranging from 24-64 amino acids [Hooper, 1994]. However, none of the consensus sequences of these
gluzincins peptidases correspond to the consensus region found among the proteins possessing M60-
like domains. Secondly, using profile-profile comparisons, the M60-enhancin protease family was
detected as a remote homologue to the M60-like profile. Although it is difficult to predict functions
from distant homologous protein sequences, the structural similarity of the two protein families can
be inferred [Soding et al., 2005]. However, to date, no three-dimensional structure of any member
of the M60-enhancin family has been produced. Enhancins are enzymes that degrade mucin-like
substrates and were originally discovered in Trichoplusia ni baculovirus and granulovirus proteins
[Wang and Granados, 1997]. Enhancins were shown to promote viral infection in the lepidopterous
insect. The viral enzymes have been shown to have a degrading activity both in vivo and in vitro and
were classified as metalloproteases (Family M60, clan MA; subclan MA(E)) possessing the classical
HEXXH motif [Wang and Granados, 1997] [Lepore et al., 1996]. Taken together, these data strongly
support the hypothesis that the M60-like domain represents a new gluzincin zinc-metalloprotease. In
addition, the M60-like candidate metalloproteinase can be classified into clan MA, subclan MA(E)

according to the MEROPS peptidase classification schema by both molecular structure and homol-
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ogy.

7.4.2 Carbohydrate-binding domains on proteins possessing M60-like domains

For vertebrates, mucus layers produced by epithelial cells are a physical surface barrier facing
the external environment of several organs such as the GI tract, respiratory tract and UG tract
[Nagler-Anderson, 2001] [Vélez et al., 2007] (see Figure 2.2). Similarly, the invertebrate digestive
tract also possesses a protective mucin-like layer and in the insect gut this is called a peritrophic
membrane. Unlike vertebrate mucins, a major component of invertebrate peritrophic membranes is a
chitin rich matrix [Wang and Granados, 1997]. Both vertebrate and invertebrate barriers play impor-
tant roles in protecting the digestive tract from microbial infections, as well as promoting digestion
processes [Turnbaugh et al., 2006][Flint et al., 2008]. Therefore, in order for a microbe to colonise
or penetrate these protective barriers, physical interactions and enzymes capable of processing these

components are required.

Several proteins possessing M60-like domains encoded by insect pathogens contained a carbohydrate-
binding module family V/XII (CBM5_12;CMBS5 and CBM12). The CBM5_12 domains are defined
as chitin-binding modules and are found mainly as components of bacterial chitinases and other
different carbohydrate degrading enzymes [Brun et al., 1997][Ikegami et al., 2000]. Several insect-
infecting pathogens encode chitinases to penetrate through the chitin barriers [Wang and Granados, 1997]
[Abbott ef al., 2008] [Sampson and Gooday, 1998]. The presence of a C-terminal CBM5_12 on the
M60-like proteins of the Gram-positive, spore-forming insect pathogens P. larvae and B. thuringien-
sis suggests that these proteins are able to bind to the chitin-rich peritrophic membrane and to degrade
protein components through the M60-like potential peptidase. The M60-like-CBMS5_12 proteins are
also predicted to possess a SP, suggesting these proteins might be facing the extracellular space either

as a cell surface or secreted protein.

P. larvae is a causative agent for American foulbrood (AFB) disease of honeybee larvae. Young bee
larvae are susceptible to the infection by ingesting spores from virulent strains of P. larvae. The
spores geminate in the gut of the bee larvae and cause disease in the larvae host [Qin et al., 2006].
Metalloproteases were reported to be involved in the pathogenicity of AFB [Anttnez ef al., 2009].
The predicted extracellular M60-like-CBM5_12 protein from the bee pathogen has chitin adhesion
abilities. The M60-like domain on this protein also contains a HEXXH. .. .E gluzincin metallopep-
tidase motif, suggesting that the protein is a potential virulence factor involved in bacteria-insect

interactions.
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While, CBM5_12 was a feature found on the insect’s proteins carrying M60-like domains, carbohydrate-
binding module family 32 (CBM32) sequences were detected on many of vertebrate pathogens en-
coding M60-like proteins. CBM32s are found in wide range of microorganisms, particularly, plant
and animal pathogens. Ligand targets of the CBM32 range from plant polysaccharides to eukaryotic

complex glycans [Abbott ef al., 2008].

Surprisingly, this study reveals CBM-like sequences linked to a predicted zinc-metallopeptidase
rather than carbohydrate-active enzymes [Boraston et al., 2004]. These findings reveal a new func-
tional context of CBMs. Their role is likely to enable the attachment of peptidases to glycoproteins,
such as host mucosal surface barriers, thus contributing to the ability of microbes to attach to, and

degrade, host mucins.

In addition, some experimental and microarray data has been reported on two M60-like proteins from
V. cholera and B. thetaiotaomicron VPI-5482, respectively. Hughes ef al. [Hughes et al., 1994] have
shown that a mutation of the V. cholera acfD gene, that encodes an accessory colonization factor
ActD precursor (M60-like protein), dramatically decreases the microorganism’s motility. Based on
microarray data, the M60-like protein (BT_4244) from the gut-derived B. thetaiotaomicron VPI-5482
is upregulated when the bacterial cells are exposed to mucin [Martens ef al., 2008]. The B. thetaio-
taomicron protein is encoded by a gene that is known to be part of the bacterial starch utilisation

system (SUS) [Martens et al., 2008].

7.5 Conclusions

A novel protein domain, named M60-like, was identified and defined. The domain represents a po-
tentially novel family of extracellular metalloproteases that is hypothesised to play an important role
in animal host-microbe interactions. The M60-like domain is shared across a broad range of prokary-
otic and eukaryotic mucosa-thriving symbiotic and pathogenic microorganisms, as well as mucosa-
possessing eukaryotic hosts. Mucosal niches for microbes encoding M60-like domains include the
human urogenital tract, vertebrate gastrointestinal tract and respiratory tract and the insect gut. In sil-
ico characterisation of proteins possessing M60-like domains derived from mucosal microorganisms
revealed a possible novel proteolytic activity ascribed to the domain. The conserved HEXXH(8,28)E
motif and the relationship of the M60-like HMM profile to the enhancin domain indicate that the pro-
teins are gluzincin zinc metalloproteases. Moreover, several lines of evidence suggested that extra-
cellular localisation of the M60-like proteins. A subset of the microbial M60-like domain-containing

proteins can further be characterised by the presence of the CBM32 or CBM5_12. The proteins
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containing M60-like-CBM32 domains were mainly encoded by the genomes of microbes dwelling
on vertebrate mucosal surfaces, including important commensals and pathogens. In contrast, M60-
like-CBM5_12-containing proteins were detected in insect-infecting bacteria. A novel functional
context for CBMs was also identified, which are typically connected with carbohydrate-processing
enzymes but not proteases. The CBM domains linked with proteases are likely to enable various
proteases to bind to specific glycoproteins from host mucosal surfaces (e.g. mucus, glycocalyx), fur-
ther highlighting the importance of CBMs and proteases in host-microbe interactions. In conclusion,
the M60-like domain may be involved in a specific host-microbe interaction processes. Mucosal mi-
crobial surface proteins play multiple essential roles in initiating and sustaining the colonisation of
the heavily defended mucosa. The M60-like domain may play roles in adhesion, degradation of the
ECM or peritrophic membranes, invasion, or killing of host immune cells. The identified structure
features of the M60-like protein highlight this protein as a candidate for future laboratory studies ad-
dressing their function importance in the context of mucosa-microbe interactions and colonisation.
The results described in this chapter are a good example of what can be achieved through detailed
bioinformatics analyses for the purpose of hypothesis generation regarding the functionality of un-
characterised proteins. The analysis performed in this chapter could be applied to a range of protein
domains of unknown function or uncharacterised conserved protein regions that were identified in

Chapter 6.
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Chapter 8

Conclusions, Discussion and Future

Work

8.1 Overview of different aspects of the project

8.1.1 A high-throughput sequence analysis workflow

This study has demonstrated the application of Grid and Cloud technologies to bioinformatics work-
flows for the analysis of 867 microbial proteomes. The high-throughput workflows performed a
large-scale analysis of 3,021,490 protein sequences in order to predict extracytoplasmic proteins,
detect sequence signatures and search for sequence similarity. The extracytoplasmic protein predic-
tion pipeline was designed to process proteomes from different cell surface structures (e.g. archaea,
Gram-positive and Gram-negative bacteria, as well as microbial eukaryotes) by automatically apply-

ing a selected set of prediction tools and strategies.

The workflow was developed using Microbase and is fully automated with minimal human effort re-
quired for the installation of bioinformatics software, computational task distribution and execution,
and result compilation and storage. Moreover, the workflow can be reused and could potentially be
modified or extended to facilitate other requirements of further analyses. In deed, a number of com-
ponents of the sequence analysis workflow developed during this study are currently actively used
in another research project (AptaMEMS-ID) [McNeil et al., 2010], for the identification of unique

surface proteins of infectious microorganisms such as Staphylococcus spp.
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8.1.2 Microbe-habitat annotation

Information about organism habitats or isolation sources was required in order to identify functional
features specific to mucosa-thriving microbes. There is currently no comprehensive habitat informa-
tion available in public databases. The richest source of accessible organism-habitat information is
published literature. However, free-text publications are not immediately computationally-accessible
for large-scale comparative genomics studies and the collection of relevant scientific literature is too
large for manual annotations to be feasible. Therefore, exploitation of this information requires the
development of an automated annotator tool, based on a text-mining approach. In order to standard-
ise vocabularies referring to the habitats of microorganisms, a prototype habitat ontology designed
to describe environmental and host-associated habitats was constructed. This ontology focused on
providing definitions of animal anatomical niches, particularly mucosa-lined cavities, and other en-

vironmental habitats.

8.1.3 Comparative genomics and the identification of the genotypic features overrep-

resented to mucosal microorganisms

The comparative genomics study performed in this study revealed a contrast in the distribution of
known conserved protein domains between known mucosa-thriving and microorganisms from other
habitats. The genotypic features associated with a mucosal environment were identified by testing
the statistical significance of either the co-occurrence or the abundance of those elements among
microorganisms annotated to thrive on mucosal surfaces. Some of the identified protein domains
correspond to known to be involved in promoting the survival, or aiding pathogenicity of microbes
in the highly-defended mucosa. However, a number of protein domains with unknown function were
identified that could potentially play various important roles in the complex interaction of microbes

and the host mucosal environment.

Several groups of homologous extracytoplasmic proteins from known mucosa-thriving microbes
were identified within and between prominent gut commensals (Bacteriodes, Firmicutes and Pro-
teobacteria) as well as bacteria and microbial eukaryotes from other mucosal surfaces. Many of
these extracytoplasmic protein families do not possess any previously identified conserved region,
and in most cases their functions are unknown. The patchy taxonomic distribution of both the iden-
tified candidate mucosa-associated protein domains and protein families suggests that lateral gene
transfer of these genetic elements played an important role in the evolution of mucosa-associated

microbes.
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Based on the identified mucosa-associated extracytoplasmic protein domains with known functions,
these elements appear to be involved in several processes. These processes include carbohydrate or
amino acid transports, metabolic processes, attachment to host tissues or other substrates in the en-
vironment, signal transduction and cell communication, and resistance to host defence mechanisms.

For pathogenic strains, these functions also include various invasive and virulence factors.

8.1.4 A novel host-associated catalytic protein domains

Finally, a novel protein domain, named M60-like, was identified and deposited in Pfam database
(accession PF13402). The M60-like domain was shown to be encoded by animal hosts and host-
associated microorganisms. These microorganisms include insect-related and mucosa-associated
commensals and pathogens. Detailed bioinformatics analyses have suggested that proteins possess-
ing M60-like domain are new candidate extracellular proteases that could assist microbial survival
and colonisation on mucosa surfaces. A potential catalytic function of the conserved gluzincins met-
alloprotease motif was found as part of the M60-like domain. These analyses also identified the
co-occurrence of the M60-like domain and the carbohydrate-binding modules (CBMs) on the same
protein sequences, revealing a new functional context for the CBMs, which are typically connected
with carbohydrate processing enzymes, but not proteases. This finding further emphasise the impor-

tance of extracellular proteases and CBMs in host-microbe interactions.

8.2 Discussion

8.2.1 Advantages and challenges in using the high-throughput analysis workflow

The sequence analysis workflow developed during this project has served the needs of a large-scale
comparative genomics study. In this project the workflow was used to identify microbial extracy-
toplasmic elements, from microbiota that interact with host mucosa surfaces. Such an extensive
genotype-habitat correlation analysis has not previously been performed for mucosal microbes, due
to existing analysis capacity limitations and the lack of good quality (and sometimes non-existent)
habitat annotations of taxa. Therefore, this study provides new insights into the biological signifi-
cance of the genotypic features important for microorganisms to successfully thrive in host mucosal

environments.

The workflow is highly automated, a feature that facilitates the analysis of large data sets, but also

brings new challenges. Errors in the system, such as when incorrect or corrupt input data automat-
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ically retrieved from public databases is given to the system, can be difficult to detect. Automated
analysis can also produce some errors that may not be detected easily given the scale of data. To
address these issues, automated systematic cross-checking methods were implemented on various

parts of the project’s workflow output on a regular basis.

Using Microbase reduces the time required for processing large amounts of data. The use of a
processing pipeline reduces human intervention, allowing comparative genomics studies to be per-
formed in an automated fashion. Analysis of the protein sequence data across all three domains of
life was completed within a reasonable time frame (three months), providing up-to-date analysis re-
sults based on data available at that time. In total, five years of compute time was used. New and
updated genome sequence data can be incrementally added into the workflow, facilitating further

dynamic comparative studies when new sequence data becomes available.

The ability to chain together any project-specific functionality to form an analysis pipeline that can
be processed in a distributed computing system provides a framework for an automated large-scale
genomics analysis in the post-genomics era. The analysis pipeline developed for this project may be

used as a base from which other projects can extend and enhance its functionality in the future.

8.2.2 Challenges in identifying microbial eukaryotic extracytoplasmic proteins

The high-throughput extracytoplasmic protein prediction pipeline developed during this study repre-
sents a novel set of workflows that integrates existing targeting-signal prediction tools for the analy-
sis of protein sequences from all three domains of microbial life. The pipeline efficiently identified
prokaryotic extracytoplasmic proteins from primary sequence data. However, the performance of
the system in the prediction of microbial eukaryotic proteins has not yet been investigated due to
the difficulty in finding accessible experimentally-verified subcellular localisation data for micro-
bial eukaryotic protein data sets, as well as the complexity due to different cellular organisations.
Furthermore, the computational identification of extracytoplasmic proteins of microbial eukaryotes
is challenging, as these organisms have complex endomembrane systems with many distinct or-
ganelles. Therefore, targeting signals or anchoring features could potentially be found on proteins

derived from and specific to these organelles.

8.2.3 Statistical analysis for the genotype-phenotype association

The bioinformatics approach used in this study allows an exploration of microbial components across

different environments through the use of existing genome data and the available information about
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their natural habitats or sources from which they were isolated. At the time of conducting this
study, availability of isolation source information of complete genome sequences and proteomes was
limited. The comparative genomics and multivariate analysis used in this study have proved to be
valuable approaches. The use of a hypergeometric distribution as a significance test has resulted
in a meaningful list of conserved elements known to be important for the survival of microbes in
a particular ecological niche. Large numbers of candidate mucosa-associated proteins and protein
domains were identified. Several of these protein-coding genes’ functions are unknown or uncharac-
terised. This work therefore provides a list of candidate genes to prime further investigations, both
computational and biological. The investigation provides an insight into the understanding of host-
microbe interactions from the microbial genomics perspective. These new insights might provide
opportunities to develop new probiotic and prebiotic substances as well as new therapeutic agents

[Jia et al., 2008][Sekirov et al., 2010].

The quality of the results in terms of sensitivity and specificity is anticipated to increase as more pre-
cise and complete information about habitat or isolation source of microorganisms becomes avail-
able. A more detailed repository of microorganism habitat data can be acquired by extracting the
relevant information from the published literature. The initial training of a machine learning ap-
proach for the development of automated text-mining tools capable of capturing microbe-habitat
pairs was initiated during the course of this study. This work fulfils the need for developing the
automatic capture of metadata referring habitats of microorganisms, to serve the growing number
of genomics and metagenomic projects [Hirschman ez al., 2008]. Another aspect to be considered
in parallel with the metadata mining is the standardisation of vocabularies as control terms repre-
senting different (ecological) properties of microorganisms. The prototype microorganism habitat
ontology developed in this study, together with the automatic capture of microbe-habitat information
aids meaningful comparisons for studying the associations between habitat and genotypic features.
Additionally, the ontology and text-mined metadata together should enable a systematic analysis
in a comparative genomics study where large amounts of available genome data are included and
habitat information is the key focus of the research questions. A clear example can be seen in our
study where a more thorough association analysis of genetic materials and ecological properties of
microorganisms can be performed. In particular, the approach could be applied to more specific
mucosa-lined niches, such as a comparison between ‘colon’ and ‘urogenital tract’, as well as among
other potentially non-mucosal ecological niches. The study could be conducted effectively once high

quality of habitat information are obtained.
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8.2.4 Choices of statistical methods

Several large-scale research programs have been initiated to investigate the human microbiome with a
current emphasis on the gut (e.g. [Martens ef al., 2009][Ellrott et al., 2010][Hattori and Taylor, 2009]),
resulting from the availability of initial sequence data from the Human Microbiome Project (HMP)
[Turnbaugh et al., 2007][Consortium et al., 2010] and Metagenomics of the Human Intestinal Tract
(MetaHIT) consortium [Qin ef al., 2010]. However, the study described in this thesis represents an
expanded analysis of all vertebrate mucosa microbial communities, mostly the human microbiome
and pathogens, rather than being restricted to specific areas of the body. The statistical approach as
well as the analysis workflow can potentially be used to integrate existing complete genome data with
new sequence data from the metagenomics projects once it becomes available. Sequence data from a
metagenomics project will provide accurate information about the isolation source of the sequences

which should allow the comparative study of more specific body sites within or between individuals.

During the course of this project, several s