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Abstract

Flood risk analysis is now fundamental to flood management decision making. It relies

on the use of computer models to estimate flood depths for given hydrological conditions.

The correct calculation of risks associated with different management options requires that

the uncertainty in the computer model output is carefully estimated. There are several

sources of uncertainty in flood models, including structural uncertainties in the model

representation of reality, uncertainty in model parameters, and observation errors. We

refer to the first of these as “model inadequacy”. The work described in this thesis con-

cerns the calibration of computer models to describe fluvial flooding, taking into account

model inadequacy and paying particular attention to the requirements of risk analysis

calculations.

A methodology which has had some success in other application areas is Bayesian model

calibration, using Gaussian process representation both for the error arising from model

inadequacy, and to emulate the computer model output. The effectiveness of this method-

ology is demonstrated for steady state flood models, both of a series of laboratory exper-

iments, and of a historical flood using a satellite image of flood outline for calibration.

Extension of the methodology to calibration of dynamic models using gauged data is not

straightforward, but is achieved for flood models by means of an emulator, which replaces

the computationally expensive hydrodynamic model with a time-dependent transfer func-

tion. This permits calibrated prediction of floods using historical gauged data, both in the

existing channel and after modelling potential modifications to the channel. It is shown

that calibration without inclusion of a model inadequacy function cannot match measured

data. Finally, application of the methodology is demonstrated in the context of a calcula-

tion of probability of inundation in the channel, both with and without modification.
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Chapter 1

Introduction

Since 1900, floods have affected 28.6 million people per year around the globe, caus-

ing an average 63,500 deaths per year, and giving rise to annual economic damage of

US$4bn. However, within the last 30 years, the annual death rate due to flooding has

been 7,000, while the mean number affected annually has been 94 million, with annual

costs of US$14bn. Natural disasters from other causes show a similar pattern when a

comparison is made between these time scales, that is the approximate tripling of lives

affected annually and of annual costs, while the numbers of lives lost has reduced, or

at worst remained constant (International Disaster Database, 2010). While the costs re-

ported do not take inflation into account, an increase in cost has been highlighted by the

insurance industry; costs of extreme weather events around the world have doubled each

decade since the 1970s (Coomber, 2006).

Indeed, there is a perception, arising from a number of factors, that flood risk is increas-

ing. There is some concern that flooding may increase as a result of the increased rainfall

intensity associated with a rise in global temperature. In addition, development of flood-

plains not only increases the property vulnerable to flooding, but inhibits drainage within

the floodplain, increasing the proportion of rainfall contributing to surface flow during

heavy storms. Flood defences for such developments may also increase the risk to prop-

erty damage by restricting the area of the floodplain available for the river in times of high

flow.

In England, the Environment Agency estimate that 2.4 million properties are at risk of

flooding from rivers and the sea, with annual economic damage estimated at £1billion

(Environment Agency, 2009a). In addition, substantial infrastructure services are in areas

at risk of flooding. Current annual spending on flood defences is £800million. In this

context, there is a need for reliable flood prediction not only for the improvement of flood

warnings, but also for for appropriate allocation of such resources. The execution of both

of these employs computer models.

Floods are routinely predicted using computer models, both for operational warnings, and

for risk analysis for planning, design and asset management. The requirements of a flood

1
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modelling system depends on the end use. The emphasis for operational warnings is on

speed for real time prediction. Real-time flood forecasting models can be either based on a

physical process description or purely on historical data analysis, will start from a known

state, and can be updated during operation by assimilation of weather and flood severity

data as they become available. Their efficacy is easily assessed.

Conversely, flood models for risk analysis need to be largely physical process based, as

such models take as a starting point an unknown state, and may be run for conditions

substantially different to those for which the model has been calibrated. While the repre-

sentation for forecasting involves predicting flood levels from weather conditions, a greater

diversity of modelling processes may be used for risk analysis, depending on the empha-

sis of the study. A risk analysis study may examine flood levels predicted from weather

conditions, or from upstream flow conditions. It may also take into account the effect of

climate change on the weather conditions. Flood severity data for such an application are

historical, and incorporated during calibration, and models do not need to be run in real

time. However, since the results concern an integral over the probability distribution of

an event and its consequences, assessment of the accuracy of such a study could only be

made by observation, under unchanged conditions, over an extended period of time, and

is thus difficult to achieve.

All computer models are limited in the accuracy of their predictions by the extent of

scientific understanding, by the complexity that it is feasible to implement in a model,

and by the data available to input into the modelling system. Uncertainties in computer

model output are thus inevitable, and it is important to be able to assess accurately the

uncertainty involved in the modelling process, whatever the purpose of a flood modelling

study. These uncertainties should be expressed as a probability distribution, since what

is acted upon is not generally the mean prediction, but one of its quantiles; an evacuation

warning will be issued if the probability of flooding is greater than some threshold, and

the probability distribution of a particular flood level being achieved is incorporated into

a risk analysis.

1.1 Risk analysis for decision making in flood defence plan-

ning

Risk analysis permits a direct comparison between the expected damage and the expen-

diture involved in different flood protection strategies, thus providing a rational basis for

flood management decision-making and allocation of resources. Indeed, both the UK gov-

ernment and the European Union require the drawing up of flood risk management plans

for all areas of significant flood risk (European Union, 2007, Office of Public Sector Infor-

mation, 2009, 2010), with a view to reducing the risk of adverse consequences according

to appropriate objectives.

During a period of high river flow, flood defence failure may occur, either through over-
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topping or through structural failure. Inundation of the floodplain will then result in

damage to property and life, depending on the water depth and possibly the flow rate in

the floodplain. In mathematical terms, if the water flow rate at some point in the river is

denoted Q, the event that the flood defence fails is φ and financial estimate of the dam-

age is denoted c(h), dependent on floodplain water height h, then the expected damage

is

E(c) =

∫
c(h) f(h|φ,Q) p(φ|Q) f(Q) dQ (1.1)

where f(h|φ,Q) is the probability density of floodplain water height h, conditional both on

flood defence failure φ and on river flow rate Q, p(φ|Q) is the probability of flood defence

failure, conditional on Q, and f(Q) is the probability density of Q. This distribution is to

be determined from available information, which includes historical field observations and

computer models.

The construction of a damage function c(h) is a complex problem, bringing together, as

it must, a wide range of consequences of inundation, including those for human health

and life, the environment, cultural heritage, economic activity and infrastructure. In this

study, the simplified approach is taken that the cost depends only on the exceedance of a

particular water height h0:

c(h) = 1 h > h0

= 0 h ≤ h0

Similarly, the failure of flood defences involves detailed structural complexities and uncer-

tainties, with weaknesses not able to be monitored, and deterioration mechanisms which

are not fully understood. As with the damage function, in this study, the complexities of

flood defence failure are by-passed, assuming that the conditional probability p(φ|Q) = 1,

and consequently that f(h|φ,Q) becomes f(h|Q).

Taking into account these simplifications, the expected damage is reduced to a probability

of inundation,

P (h > h0) =

∫
I(h > h0) f(h|Q) f(Q) dQ (1.2)

where I(·) is the indicator function, taking a value of 1 for positive argument, and 0

otherwise.

The distribution f(h|Q)is generally provided by a computer model. At its simplest, if Q

is taken to refer to the same location as h, it is the inverse of the rating curve, which

is usually expressed as a simple deterministic relationship, fitted to historical data. Such

relationships are well known to involve uncertainties, but are nonetheless routinely used for

estimating flow when only water height has been measured, for example. It is more usual to

regard Q as the flow at some upstream location. Since, however, evaluation of the integral

involves a knowledge of the distribution of the independent variable of integration, the

integral could be formed in terms of upstream water height, or of catchment rainfall.

The probability distribution f(h|Q) depends on a number of influences other than Q, and
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correct evaluation of the integral may depend on identifying these, characterising their

distributions and the dependence of h on them, and then integrating over their range.

Besides Q, a part is played by the antecedent conditions, the capacity of the channel

and the volume of inflow from lateral channels. In addition, it is necessary to estimate

the probability distribution of the upstream condition Q from the available information,

which includes both measured historical data and computer models. Both involve uncer-

tainties, which need to be taken into account. Data may only exist for a small number

of events; thus it is difficult to account for the full range of possible input conditions. In

addition to limited coverage, data may be subject to measurement error. Many parts of

the process are not directly observable, leading to substantial uncertainties in modelling

and prediction.

Uncertainties can be classified as aleatory or epistemic. Aleatory uncertainty, or natural

variability, is random, and is relatively straightforward to deal with; this can be handled

by increasing the number of points sampled in the evaluation of the integral (1.2). By

contrast, epistemic or knowledge uncertainty is much harder to detect and eliminate, as

this requires identification of its source within the model used to formulate the integral

for the probability of inundation. The problem is normally compounded in the calibration

of the model; by simply minimising the errors in model fit to the historical data, model

inadequacies are compensated by parameter bias, potentially weakening the predictive

capacity of the model.

Hall et al. (2003) listed a hierarchy of flood risk assessment approaches, to support a

range of flood risk management decisions. These range from a national flood risk assess-

ment, based on the standard of protection and the flood frequency curve, such as the one

outlined in their paper, to detailed local studies, using continuous hydraulic modelling.

Naturally, the more detailed the study, the more opportunity exists to examine the mod-

elling uncertainties involved. However, of those studies reported in the scientific literature

(Dawson et al., 2005; Apel et al., 2004, 2008; Di Baldassari et al., 2009), none examine

the uncertainty arising from the flood model itself, nor its calibration. Uncertainties exist

nonetheless, both in the structure of the model itself, and in the values of any parameters

used to tune the model for the river under examination.

1.2 Flood model calibration

Calibration is the process of finding the appropriate values of parameters for a computer

model. In some cases, these parameters represent physical quantities, and can be found by

independent measurements, but it often happens that the measurements cannot be made

at the appropriate scale, and thus cannot be used, or that parameters do not represent

physical quantities. Parameters must then be inferred by comparison of the model output

with historical data.

Historically, the values of such parameters were found manually by running the model with
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different parameters, and minimising some measure of fit of the model output to the data.

Naturally, different measures of fit would lead to different parameter values. Automation

of the process involves a numerical optimisation, but such techniques do not give rise to

probability distributions required by Equation (1.2). In addition, it has frequently been

found that a large number of parameterisations may lead to equally good model fit. This

implies that the choice of a single parameterisation provided by optimisation of this fit is

not the most appropriate means of model choice, as there is justification for considering a

range of values for each parameter.

These last two issues are addressed by Bayesian calibration, since the parameters them-

selves are treated as variables with their own distributions, thus placing an emphasis on

quantifying uncertainties, rather than maximising model fit. Bayesian analysis combines

in a rigorous way the prior beliefs of the user, the statistical model for the data, and the

data values themselves to lead to a distribution which may be used directly in Equation

(1.2) .

The most widely used method for the parameterisation of flood models is undoubtedly

the Generalised Likelihood Uncertainty Estimation (GLUE) method of Beven and Binley

(1992). This is equivalent to the Approximate Bayesian Computation method which is

currently receiving much interest from statistical and biological modellers (e.g. Beaumont

et al., 2002; Gaggiotti, 2010). Starting from a prior joint parameter distribution, usually

taken to be uniform uncorrelated univariate distributions on a limited range, the model

is run a large number of times, randomly sampling from these parameter ranges. The

model is evaluated by some convenient measure of fit, the generalised likelihood, and pa-

rameterisations leading to “non-behavioural” performance are discarded, according to a

criterion determined by the user. A distribution for the model output is then generated

by taking a weighted mean of the model outputs, the weights consisting of the measure

of agreement found, according to the generalised likelihood, for each parameterisation.

While the appropriate choice of likelihood the GLUE method can give rise to a rigorous

parameterisation, such as that demonstrated by Romanowicz et al. (1996), the relaxation

of the requirement to use such a carefully chosen likelihood, depending rigorously on a

plausible statistical data model, has both ensured the popularity of the method, and at-

tracted criticism from a number of authors (Montanari, 2005; Ewen et al, 2006; Mantovan

and Todini, 2006; Stedinger et al., 2008), on the grounds of arbitrariness and inconsistency

of the result.

It is important to consider the different error sources in the data model. Ewen et al.

(2006) showed by comparing the output from a reduced model to that of a more detailed

model, that oversimplifying some mechanisms leads to biassed parameter outputs. Much

of the literature on model calibration does not take into account different error sources,

and is thus flawed. This shortcoming also applies to the GLUE method.

Other more rigorous calibration methods have been suggested to overcome these deficien-

cies, in particular for models with time-series input and output, with a view to forecasting.

However, for risk analysis, and for modelling of flood extent using aerial or satellite images,



Chapter 1. Introduction 6

to date no adequate method has been developed.

In this context, a Bayesian calibration is required for flood inundation models, taking into

account all the sources of possible error. The method should be statistically rigorous,

should take into account the various sources of uncertainty in model output, and to be

appropriate for risk analysis. In addition, it should be able to be used with data arising

from river gauging, and from flood extent snapshots. This thesis concerns the development

of such a method.

1.3 Bayesian statistics

Statistical inference is the process of drawing conclusions about a system from a data sam-

ple randomly drawn from a population of some quantity of the system under investigation.

The data are generally analysed with reference to a statistical model of the assumed dis-

tribution of the population. The likelihood is defined as the distribution of the observed

data z, under the assumption of the statistical model, dependent on parameters θ.

L = f(z; θ)

Classically, characterisation of a modelled population is performed by maximisation of the

likelihood with respect to the model parameters θ. The Bayesian method is founded on the

concept that the distribution of a variable representing the quantity under investigation

is characterised not only by the available data, but also by the beliefs of the modeller

about the parameters of the distribution, based on his prior experience. In this case, the

parameters, instead of being assumed to have distinct values, are themselves considered

to have a distribution.

Thus, if the user’s belief is that the parameters θ of the system have a distribution f(θ)

(the prior distribution), and the data z have a distribution f(z|θ), defined by the statistical

model and conditional upon the parameters θ, then the conditional probability is given

by

f(z|θ) =
f(z, θ)

f(θ)

Equally, the probability distribution of the parameters, conditional on the data, can be

expressed as

f(θ|z) =
f(z, θ)

f(z)

Bayes’ theorem gives the probability of the parameters, conditional on the data, as fol-

lows:

f(θ|z) =
f(z|θ)f(θ)

f(z)

=
f(z|θ)f(θ)∫ (
f(z|θ)f(θ)

)
dθ

(1.3)
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The distribution f(θ|z) is known as the posterior distribution, and represents the synthesis

between the user’s prior beliefs f(θ), the statistical model f(z|θ), and the data. The use

of Bayes’ theorem provides a means of updating the user’s beliefs about the system in the

light of the data, and can be used recursively, as more data become available.

The distribution of the data has been described above by a model f(z|θ). However, the

parameters θ may be dependent on secondary parameters, φ, with a conditional model

f(θ|φ). This is known as a hierarchical model. The conditionality could be extended, with

φ dependent on further parameters, ψ. We then say that the distribution of parameters at

a given level is conditional on those at the next lower level, and given that conditionality,

is independent of parameters lower than that. We can thus specify the joint distribution

of the data and parameters as:

f(z, θ, φ) = f(z|θ) f(θ|φ) f(φ)

This construct permits us to consider the dependence of our data on both model output,

and different error sources; thus Huard and Mailhot (2006) described the sources of error

in modelled streamflow data using a physically-based model M , by the diagram in Figure

1.1, and were able to construct a hierarchical model to represent the measured data. The

data model shown in Figure 1.1 is described by the relationship

z = M(w + e, θ) + δ + ε (1.4)

where the observed data z are dependent on output of the model M(w + e, θ) at input

w+ e with parameters θ, subject to model structural error δ and observation error ε. The

research described in this thesis has been undertaken in the context of the model described

in Equation (1.4).

Measured 
data

w

z

True input
x

True output
y

Model

),( xM

e
Input error

Output error
 

Structural error

True 
process

Figure 1.1: Data dependency model (after Huard and Mailhot, 2006)

Identification of the three unknown quantities, input error e, structural error δ and output

error ε at each time step is a difficult problem, for which no solution has yet been achieved.

It relies on the ability to define a statistical distinction between them, since without this
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these unknown quantities cannot be individually identified. However, it is possible to

achieve a partial solution to this problem by taking a simplified data model.

1.4 Thesis structure

This chapter has given an overview of the motivation, aims, and statistical context of the

research undertaken. The research is described in further chapters, as follows.

Background to the research is provided in Chapter 2, which describes the models used

in flood prediction, and the simplifications that are necessary to make their use prac-

ticable, followed by a review of the relevant literature on calibration of hydrodynamic

models.

The methodology used is described in Chapter 3, followed by an example of its application

to an algebraic example. Chapters 4, 5, and 6 describe the application of the methodology

to examples of increasing complexity. These are a series of one-dimensional steady-state

laboratory experiments (Chapter 4), a steady-state model of a flood extent on the Thames

at Buscot, calibrated with satellite data (Chapter 5), and a dynamic model of the Severn

in the region of Shrewsbury, calibrated with gauged river stage data (Chapter 6).

Chapter 7 illustrates the application of the methodology in the comparison of the impact

of two hypothetical flood risk management schemes for the example on the Severn. The

thesis concludes with Chapter 8, giving an indication of the success of the methodology

with respect to the research aims, and suggesting avenues for extension of the investiga-

tion.
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Hydrological background

2.1 Introduction

The probability of inundation described in the Introduction (Equation (1.2)) is

P (h > h0) =

∫
I(h > h0) f(h|Q) f(Q) dQ .

As described in the Introduction, the probability integral may be formulated and evaluated

in terms of upstream flow, water height or catchment rainfall. The term f(h|Q), or

its equivalent, according to the input conditions used, gives downstream water height

conditional on upstream conditions, encapsulating the information to be derived both

from hydrological and hydraulic models and from measured data. Its evaluation requires

an understanding of the hydrological mechanisms being modelled, the types of models

being used and their limitations, and the limitations of the data used, as well as a sound

understanding of the statistical principles and techniques required. This chapter addresses

not only the area of hydrological and hydraulic modelling, providing a background to

the processes involved and the models used to describe them, but also the literature on

hydrological model calibration, highlighting the issues to be considered.

Flood production from precipitation involves a number of processes. These are non-linear

and their interaction complex. The dynamics and spatial distribution of runoff generation

depend on the hydraulic properties and storage capacities of highly heterogeneous natural

materials, including vegetation, soils and rocks. Runoff is driven primarily by gravity

and precipitation, modified by the mechanisms of evapotranspiration and movement of

water through porous media. Local surface or subsurface flow occurs when the volume of

water exceeds the local storage capacity, and connectivity of areas of local flow can lead

to larger-scale flow. Lower in the catchment, the flow dynamics within the channel may

make a more significant contribution to total water transport than the runoff generating

process.

The models describing the mechanisms of runoff production and channel flow are very

9



Chapter 2. Hydrological background 10

different. Runoff generation is described by rainfall-runoff, or hydrological models, while

the flow dynamics are described by routing, or hydraulic models. It is often the case that

the flow in the upper part of a catchment is described by a hydrological model, while

the flow lower in the catchment is described by a hydraulic model, although hydrological

models may account for the entire catchment.

While the work in this thesis concerns the calibration of hydraulic models, a large part

of the literature on model calibration concerns hydrological models, so a brief description

follows of the types of hydrological model. Following that, a description is given of the

known behaviour of channel and floodplain flow, and an overview of the models used to

describe these. The chapter concludes with a review of the relevant literature on calibration

of hydrological and hydraulic models.

2.2 Rainfall-runoff models

Freeze and Harlan (1969) suggested a blueprint for a physically based model of hydrolog-

ical catchment response to precipitation, including interception and evapotranspiration,

infiltration and soil moisture flow, groundwater, overland and channel flow. While such

models have been generated, they are costly to run, and require extensive data inputs. It

is thus often not realistic to represent the movement of water through a catchment in such

a detailed manner.

In spite of this blueprint, there is no consensus about the best way to achieve a simple

and effective description of the flow of subsurface water. This is partly because there

are many mechanisms at work, whose relative significance will differ according to the

catchment or part catchment, and according to the flow regime. The other major difficulty

in describing runoff formation is the lack of detailed information about soil structure and

behaviour.

One of the simplest rainfall-runoff models is the Nash cascade model (Nash, 1959), which

treats the catchment as a series of equally-sized reservoirs. The unknowns in the model are

the number of reservoirs and their total capacity. Since the model is not really a physical

description of the catchment behaviour, it may be extended to have a non-integer number

of reservoirs.

A more sophisticated type of model is the lumped conceptual catchment model. With

this type of model, the catchment is described as a single, aggregated entity, but different

mechanisms of water storage are described as reservoirs; hence there may be reservoirs

representing the water held in the canopy, the shallow soil, and deeper water storage.

Deterministic differential equations are used to represent the transfer of water between

these stores, as well as evaporation and runoff. While these relationships represent physical

concepts, there is no attempt to relate them to spatial locations within the catchment,

and the parameters used in the model do not represent actual physical quantities; thus

values must be found by calibration.
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Fiering developed a simple linear rainfall-runoff model for teaching purposes (Fiering,

1967); this has been used to demonstrate a number of calibration schemes, as it is a useful

example of the type of equations used in lumped catchment models. Fiering’s “abc” model

is as follows:

Qt = (1− a− b)rt + cSt

St+1 = (1− c)St + art

where r is the input rainfall volume, Q and S represent discharge and storage volume

respectively with discrete time index t, and parameters a, b and c are the proportions

of rainfall entering storage, and lost to evapotranspiration, and the proportion of water

leaving storage. The parameters a, b, and c are to be determined by calibration, subject

to the mass conservation condition a+ b ≤ 1.

There are many different conceptual rainfall-runoff models in use; modelling success has

been achieved by the incorporation of nonlinearities resulting from the saturation of in-

creasing area of the catchment, with this area being described probabilistically (Moore and

Clarke, 1981) or deterministically (Wood et al., 1992; Zhao, 1992; Todini, 1996), treating

the catchment as a collection of subcatchments, and solving simultaneously for the runoff

formation in each subcatchment, as well as the channel flow.

Sivapalan et al. (2003) contrasted the “bottom-up” and “top-down” approaches to rainfall-

runoff modelling. The “bottom-up” approach is that described above, where a concept

of the physical processes, inferred from physical understanding and from observation of

catchment behaviour, is translated into a system of mathematical equations, requiring

fitting of a number of parameters. The “top-down” approach infers the model structure

directly from the data, trying to identify the dominant processes at the catchment scale.

Young (e.g. 2003) suggested that the “bottom-up” approach leads to a model requiring

more parameters to be determined than the data quality can justify, and recommends a

“data-based mechanistic” approach, based on a statistical analysis of the input and output

data.

The most detailed rainfall-runoff models (Abbott et al., 1986; Ewen et al., 2000; Ciarapica

and Todini, 2002) are those which correspond to the original blueprint of Freeze and Harlan

(1969) to represent the spatial and temporal movement of surface and subsurface water

on a grid covering the entire catchment. Such models can be considered to be truly

physically based, but require large amounts of data to define the different characteristics

of the catchment properties. While much of this data may be obtained from databases of

material properties such as the HOST classification of soil types (Boorman et al., 1995),

some parameters represent sub-grid-scale processes, and thus need to be estimated (e.g.

Bathurst, 1986).
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2.3 Hydraulic models

2.3.1 Description of mechanisms in floodplain flow

Under normal conditions, a river flows within its channel. When the flow is too great to be

contained within the channel, it spills onto the floodplain, effectively using a new, broader

and more complex channel.

Even simple steady flow in a uniform, prismatic channel may involve three-dimensional

processes, as differential resistance leads to different velocities across the channel, and

the setting up of secondary flows (Knight and Shiono, 1996). The more complex geom-

etry of the floodplain, and resistance caused by vegetation and other obstacles leads to

more complex flow processes, involving different flow velocities in the channel and the

floodplain. In an effort to characterise these processes, many laboratory experiments have

been conducted, involving measurements of the shear stresses and secondary circulation

in steady-state flows in straight or meandering channels with uneven beds. Sellin (1964)

described vortices with vertical axes along the edge of the main channel, accounting for

the transfer of momentum between the channel and the slower-flowing floodplain. Ervine

et al. (1993) described horizontal vortices in meandering channels, initiated immediately

below the bend apex. Knight and Shiono (1996) pointed out that as the floodplain depth

increases, it effectively becomes a larger channel, and the velocities tend to equalise; the

impact of three-dimensional flow processes on the channel conveyance tends to be at its

greatest for the ratio of floodplain depth to main channel depth in the range 0.1-0.3.

2.3.2 Equations representing fluvial flow

Treating a fluid as a continuum, and averaging out terms representing small-scale eddies,

flow is described by the Navier Stokes equation of motion. Momentum balance for an

incompressible fluid gives the following:

ρ

(
∂u

∂t
+ u · ∇u

)
= ρF −∇p+∇ · T,

where u is the velocity at a point, ρ the density, p the pressure, F represents the external

forces, and T is the deviatoric stress tensor, representing the internal stresses in the fluid

arising from motion (Batchelor, 1967, p142). The terms on the left hand side of the

equation describes the change in momentum at a point in space and time.

Conservation of mass gives the continuity equation:

∂ρ

∂t
+∇ · (ρu) = 0

where clearly for an incompressible fluid the first term is zero.

These equations are difficult and costly to solve, not least because there is a discontinuity
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at the free water surface. For most purposes, acceptable approximations can be made

by assuming that the horizontal scale is much larger than the vertical scale, that the

vertical velocity component is small, and there is no variation of flow with depth, and by

integrating over the water depth. The resulting shallow water equations can be expressed

in terms of the flow below a surface of constant pressure in the fluid, such as the free

surface.

Making a further simplification, that the flow is predominantly in the longitudinal direction

of the channel, so that the velocity is uniform and the water surface horizontal across any

cross section perpendicular to the longitudinal axis, we arrive at the one-dimensional Saint

Venant equations (e.g. Chow et al., 1988, p281), which are shown below. The continuity

equation, representing mass conservation over a unit width is:

u
∂y

∂x
+ y

∂u

∂x
+
∂y

∂t
= 0

where u is the longitudinal velocity, and y the channel depth.

The momentum equation is:

∂u

∂t
+ u

∂u

∂x
+ g

∂y

∂x
− g(So − Sf ) = 0

where in addition and So is the slope of the channel bottom, Sf the friction slope, g

the gravitational constant. A further relation is needed to describe Sf ; this provides a

parameter to be determined.

These equations are known as the dynamic wave model, while ignoring the first two terms

of the momentum equation, the acceleration terms, leads to the diffusion (or non inertial)

wave model. Further simplification, ignoring the third term, the pressure force term, yields

the kinematic wave model. Kinematic wave models can make use of empirical equations

for steady flow, including the Manning, Chezy, and Darcy-Weisbach equations.

In practice, different simplifications of the Navier Stokes equations are needed to ade-

quately describe the flow in different environments. The kinematic wave model is only

suitable for rivers with significant bottom slope (> 0.1%), and overland flow, while the

diffusive wave model can include deceleration effects, but does not include a full descrip-

tion of backwater effects or reverse flows. Dynamic wave models are needed for rivers with

mild bottom slopes, tidal rivers, and those with reservoirs.

The majority of commercial codes for solving hydraulic equations use a one-dimensional

approximation for the channel flow. Two such codes are used in this study, which em-

ploy different adaptations of the Saint Venant equations to represent the different flow

behaviour in the channel and the floodplain. These are described below.
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2.3.2.1 LISFLOOD-FP

LISFLOOD-FP (Bates and de Roo, 2000) was developed to use as simple as possible a

representation of flood flow, to enable modelling over an extended floodplain, or to enable

sensitivity analysis. Flows in the channel and floodplain are represented by different sets

of equations, which are coupled. Channel flow is represented by the one dimensional Saint

Venant equations, this time expressed in terms of volumetric flow Q and cross-sectional

area A,
∂Q

∂x
+
∂A

∂t
= q (2.1)

where q is the flow into the channel from the floodplain or tributary channels, together

with a momentum equation (Manning’s equation),

So = Sf

Sf −
n2P 4/3Q2

A10/3
= 0

(2.2)

where as before So is the slope of the channel bottom, Sf the friction slope, and in addition

n is the friction parameter, Manning’s n, and

P is the wetted perimeter of the flow.

A rectangular channel cross-section is assumed. Flow over the floodplain is represented

by a network of two-dimensional rectangular storage cells, based on the DEM, and where

the flow rates between the cells are calculated by the equations:

dhi,j

dt
=
Qi−1,jx −Qi,jx +Qi,j−1y −Qi,jy

∆x∆y

Qi,jx =
h
5/3
flow

n

(
hi−1,j − hi,j

∆x

)1/2

∆y

(2.3)

where

hi,j is the water free surface height at node (i, j)

∆x and ∆y are the cell dimensions,

n is the effective grid scale friction parameter, Manning’s n, for the floodplain,

Qx and Qy are the volumetric flow rates between floodplain cells, with Qy defined analo-

gously to Qx, with superfices (·)i,j referring to the node (i, j), and

hflow, the flow depth, is the depth through which water can flow between two cells, and

is defined as the difference between the highest water free surface in the two cells and the

highest bed elevation.

Equations (2.3) embody the assumption that the flood spreading over the floodplain is a

function of gravity and topography.
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2.3.2.2 Hec-Ras

Hec-Ras is a commercially-used hydraulic modelling package written by the US Army

Corps of Engineers (2002). The one dimensional Saint Venant equations of motion are

adapted to allow for different conditions in the channel and floodplain as follows:

∂A

∂t
+
∂(ΦQ)

∂xc
+
∂[(1− Φ)Q]

∂xf
= 0

∂Q

∂t
+
∂(Φ2Q2/Ac)

∂xc
+
∂[(1− Φ)2Q2/Af ]

∂xf
+ gAc

[
∂z

∂xc
+ Sfc

]
+ gAf

[
∂z

∂xf
+ Sff

]
= 0

(2.4)

where

Q is the total flow, as before

Φ is the proportion of the total flow in the channel, =
Kc

Kc +Kf

Kc is the channel conveyance, (defined as
Q

S
1/2
fc

=
AcR

2/3

n
, incorporating Manning’s equa-

tion)

Kf is the floodplain conveyance,

z is the water surface height, and

cross-sectional area, A, and friction slope, Sf , are distinguished for the channel and flood-

plain by suffices c and f respectively.

The river path is determined by plan geometry and cross-sections specified by the user

across the channel and floodplain. An assumption is made that the water surface is

horizontal across the entire cross-section, and the equations are discretised, calculating

values at the cross-sections. Distance xc is measured along the assumed middle line of the

channel, under the assumption that the cross-sections are perpendicular to its direction,

and xf is the distance specified between the cross-sections. Cross-sections need to be

specified adequately close together to ensure that the river flow is adequately represented

by the one-dimensional model.

2.3.3 Data requirements of hydraulic models

Initial conditions are required for dynamic equations, as are boundary conditions at all

boundaries. These can be in the form of water level or flow time series. A simplified

relationship may be used for the downstream boundary condition, such as Manning’s

equation:

v =
1

n
R2/3S

1/2
0

where v is the cross-sectionally averaged velocity, R is the hydraulic radius, normally taken

to be the ratio between flow cross-sectional area and the wetted perimeter, S0 is the channel

slope, and n, Manning’s roughness coefficient, is the constant to be determined. This

boundary condition is an approximation, as Manning’s equation is used as a description
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of steady flow. It should thus be applied well below the reach where the model results are

required.

In addition to the flow conditions, it is necessary to have information both on the river

location and cross-sectional geometry, and on the floodplain elevation. Models differ in

their precise requirements of geometric data; for example, Hec-Ras requires cross-section

data extending over both the channel and the floodplain, while LISFLOOD assumes a

rectangular cross-section for the channel, but requires the floodplain to be specified by a

rasterised digital elevation map.

In general, the primary measurement of river discharge is stage, or water height, found by

recording the level of a float in a stilling well adjacent to the river, by pressure sensing,

or by reflection of an ultrasound signal from the river bed. It is much more difficult to

determine flow, as this involves estimating the velocity throughout the river cross section,

and integrating. Systematic measurement of flow is most easily undertaken at a weir,

where the river is constrained, and the bed shape is such that the variation of velocity

is well understood. In either case, measurements may be affected by weed growth, or by

bypassing of the measurement station in high flow conditions.

Since flow is difficult to measure, and can require installation and maintenance of so-

phisticated equipment, it is common for flow records to be determined by rating curve,

particularly at small measurement stations. This is a deterministic relationship between

values of stage and flow. Such relationships are often based on a limited number of mea-

surements, and may require extrapolation, particularly for modelling flood conditions.

In addition, the relationship between flow and stage frequently exhibits hysteresis, which

would be expected from the hydrodynamic equations, but which is not necessarily reflected

in the rating curve.

Measurements of the river cross-section are laborious and time consuming. It is frequently

the case that a hydraulic model is limited by the number and spacing of available cross-

sections. These cross-sections should also include information about the floodplain, partic-

ularly where there are man-made obstacles such as bridges and culverts. It is well known

that such structures significantly modify the upstream and downstream water levels, and

often the case that the simplified flow equations may not be valid in their neighbourhood,

but as their characteristics are often not well known, they are an additional source of

model structural uncertainty.

Although many different types of data are used as input into a hydraulic model, in general

for a one dimensional model the only parameter which is varied is the roughness parameter,

n, although this may be allowed to vary spatially. This parameter is used to account for

all the inadequacies of the data and model, as well as roughness of the river bed. It has

been shown in laboratory experiments (Ervine et al., 1993) that a significant difference in

value of Manning’s n is required to account for sinuous channels in a one dimensional flow

model.
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2.4 Discussion

It is evident from the foregoing description of hydrological and hydraulic models that

there are similarities as well as differences between the physical descriptions of rainfall-

runoff and channel routing. The differences are most obvious for the greatest spatial

aggregation represented in the rainfall runoff models, or indeed for the greatest detail in

the representation of the hydraulic models.

One very significant difference is in the way in which the models are used; rainfall-runoff

models tend to be used in continuous simulation over extended periods, whereas hydraulic

models are usually limited to event-based modelling. Even this difference is not strict;

Feyen et al. (2007) reported using a simple hydraulic model in continuous simulation;

while large distributed models are limited by computing resources in the modelling period

or spatial definition achievable.

In general the number of parameters used in rainfall-runoff models is greater than that

used in hydraulic models, partly since the variety of mechanisms being represented is

wider, but also because most of the inputs of a hydraulic model are considered fixed,

being of a geometric nature. However, while it is in principle possible to measure all the

necessary geometric data needed, this may not be realistically practicable, in particular as

such characteristics may be subject to morphological change. For both hydrological and

hydraulic models, the parameters may well not correspond to measurable entities; thus

calibration may be required.

A significant source of error in both hydrological and hydraulic models is the essentially

unknown information. In the case of hydrological models, this arises from the accuracy

with which rainfall can be determined. The problem arises in hydraulic models, where

flow measurements are dependent on a rating curve, and where gauging of lateral inflows

is insufficiently accurate, or non-existent.

While both types of models correspond to variable spatial domains, information may not

be available in sufficient spatial detail to properly describe the flow mechanisms. Thus,

for rainfall-runoff models, it is likely that the availability of spatially varying rainfall

measurements and of detailed understanding of spatial subsurface geometry is inadequate.

In the case of hydraulic models, geometrical descriptions of the river bed may not be

available in adequate detail.

The combination of inadequate data, an inability to model at a sufficiently broad range of

scales to capture all the relevant processes, and a lack of clarity as to which mechanisms are

dominant, must result in models which are in part inadequate to describe the processes

at work. Thus a calibration method is needed which takes into account the fact that

the modelling process is likely to be inadequate. In the review of literature on model

calibration which follows, an emphasis has been placed on identification of the sources of

model output error, and the implications of this for model calibration methodology.
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2.5 Characterisation of uncertainty sources for flood mod-

els

Ewen et al. (2006) classified the different sources of error in computer code outputs by

the stage in the modelling process at which they are introduced:

• model structural error, including conceptual and implementation errors,

• parameter error, including poor parameterisation, errors in parameterisation to com-

pensate for structural deficiency and errors due to inaccurate calibration data, and

• runtime error, from errors in input data and in misuse of the model and misinter-

pretation of its results.

By contrast, Kennedy and O’Hagan (2001a) listed the different sources of uncertainty in

computer code outputs in terms of where they may be introduced in a statistical model

of the outputs. Their list is as follows:

• parameter uncertainty,

• model inadequacy, where the model may not perfectly specify the process under

consideration,

• residual variability, the variability of the process starting from apparently identical

conditions,

• parametric variability, where the model is insufficiently detailed to describe the pro-

cess with a single parameter value,

• error in the observation of outputs for calibration purposes, and

• code uncertainty, because it may not be feasible to run the code for every possible

combination of parameters and input data.

An additional uncertainty, which was largely ignored by Kennedy and O’Hagan, though

not by Ewen et al., but is significant in hydrological modelling, is uncertainty in the

measurement of input data. At the very least, for hydraulic models, input measurement

errors may be expected to be of a similar order to the output measurement errors, having

a similar measurement mechanism. However, for hydrological models, the input is rainfall,

which is much more difficult to establish precisely over the entire catchment.

All parameterisations deal with output errors; while some studies have noted evidence for

heteroscedacity or autocorrelation in the output errors, suggesting transformations or the

incorporation of an autoregressive error model (e.g. Sorooshian and Dracup, 1980), the

autocorrelation at least may in fact be caused by inattention to other types of error. A

number of studies have been undertaken, concentrating on one or other error sources; a

review of these is given below. It should be noted that calibration of hydrological and hy-

draulic models is undertaken for three reasons, to understand the underlying mechanisms

of a process, to improve forecasting lead time and uncertainty, and to identify uncertainty
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for performing risk analysis. While the purpose of this study is the third of these aims,

the vast majority of the available literature reflects the first two. In undertaking a review

of the literature on calibration of hydrodynamic models, then, it is necessary to examine

studies which, while undertaken with a different purpose in mind, may have some relevance

to the current aim.

2.5.1 Parametric variability

Boyle et al. (2000) imitated manual model fitting procedure for transient streamflow mod-

els, in fitting separately portions of the hydrograph they describe respectively as “driven”,

“non-driven quick” and “non-driven slow” flows, using a multi-objective optimisation to

achieve a Pareto surface for the parameters. They reconciled the different parameterisa-

tions required for the different flow regimes, by choosing the parameter set on the Pareto

curve that gave the minimum bias in terms of overall mean flow. Wagener et al. (2003) ex-

tended the concept of parameterising different parts of the time series, by taking a moving

window, and distinguishing well-identified parameter ranges as the window moves, showing

that different parameters are better identified at different parts of the time series.

Many studies investigating parametric variability in dynamic models are related to the

Kalman filter (Kalman, 1960). This will be described later in the thesis, along with other

approaches designed specifically for time-varying models.

2.5.2 Structural uncertainty

A popular method of treating model structural uncertainty, which could be applied to

temporal or spatial data, involves averaging the output of different models, thus increasing

the number of mechanisms that can be treated. Georgakakos et al. (2004) demonstrated

that taking an unweighted mean of the output of a number of models improved model fit

compared with output from the individual models. This comparison was made within the

Distributed Model Intercomparison Project (Smith et al., 2004), using 11 models and 6

catchments.

Bayesian model averaging (BMA) is a technique used to combine models, while taking

into account their individual skills. Thus, if there are K models, Mk, (k = 1, . . . ,K) with

parameters θk, each predicting a quantity ∆, subject to data, D, the joint prediction is

(Hoeting et al, 1999):

P (∆|D) =
K∑
k=1

P (∆|Mk, D)P (Mk|D) where

P (Mk|D) =
P (D|Mk)P (Mk))∑K
l=1 P (D|Ml)P (Ml)

and

P (D|Mk) =

∫
P (D|θk,Mk)P (θk|Mk)dθk

(2.5)
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The posterior probability distribution is effectively a mean, weighted by the skill of the

individual models.

Neuman (2003) applied a simplification of this technique to a set of three pre-calibrated

models, and showed improved prediction skill. Duan et al. (2007) again used three com-

peting models, each previously calibrated using three different objective functions, the

Nash-Sutcliffe criterion, which is 1- the ratio of the error variance to the data variance

(Nash and Sutcliffe, 1970), a measure of absolute error, and a measure taking into ac-

count the heteroscedacity of the data. Taking note that streamflow is heteroscedastic,

they applied the methodology to data normalised using the Box-Cox transformation (Box

and Cox, 1964). Having shown that the BMA algorithm demonstrated the superiority of

different parameterisations at different parts of the time series, the authors went on to pa-

rameterise each model with different parts of the input data for each of three catchments,

again demonstrating improved skill. Rojas et al. (2008) combined Bayesian model averag-

ing with GLUE to undertake a full solution to Equation (2.5) for a groundwater flow model,

again comparing the effect of three different objective functions. They demonstrated the

feasibility of this technique, but noted that it is computationally expensive.

It should be noted that a model averaging technique is only as good as the individual mod-

els. If there is a common deficiency with all of the input models, no averaging technique

can lead to a good resultant model.

2.5.3 Input errors

Kavetski et al. (2002) and Huard and Maillot (2006) have shown that model parame-

terisation without accounting for input errors leads to biassed parameter estimates. In

a spatially aggregated catchment rainfall-runoff model, there is substantial uncertainty

in defining the input rainfall. This is because the monitoring of rainfall takes place at

individual locations, while a whole-catchment model requires input representing rainfall

throughout the catchment. Spatially aggregated rainfall is difficult to estimate in the face

of a sparse rainfall gauge network, which may not even overlap the catchment; Linsley et

al. (1988, p60) give an illustration of the estimation errors. For catchment rainfall-runoff

modelling, this is in fact a structural as well as an input error; different spatial rainfall

patterns will lead to different catchment response, which cannot be captured in a spatially

aggregated model.

The issue of input errors is not confined to rainfall-runoff models. In hydraulic modelling,

upstream model input is often in the form of flow, which may be subject to rating curve

errors. In addition, lateral inflow to the river is often not recorded for smaller tributaries;

when it is, it has to be introduced to the main model in the form of flow, which is again

likely to have been derived using a rating curve.

Kuczera et al. (2006) pointed out that in calibration of spatially aggregated rainfall-

runoff models, rainfall spatial distribution may vary from storm to storm, giving the effect

of volumetric errors in input rainfall. They thus proposed a multiplicative error model
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applied to the rainfall input, with different multipliers for each storm. The multipliers were

estimated simultaneously with other model parameters in a Bayesian regression analysis

(Kuczera et al., 2006, Kavetski et al., 2006).

Thyer et al. (2009) examined the influence of the time-scale used for the rainfall multi-

pliers, comparing the use of daily and storm-length multipliers. The use of daily rainfall

multipliers represents a significant increase in the number of parameters to be determined.

The authors noted that the output was insensitive to a significant number of the daily

rainfall multipliers, associated with days where there was low rainfall, and discarded these

in a preliminary analysis stage. In spite of this, they were only able to use a 2-year calibra-

tion period for the daily input error model, while for the storm-length error model, they

were able to use a 5-year calibration period. They demonstrated that their parameterisa-

tion of input errors represents a significant improvement in model fit, runoff distributional

consistency and in parameter consistency over a formulation without input error model.

They suggested that the daily rainfall input error model seemed more appropriate, but

suggested that for the catchment they used, the Horton catchment in New South Wales,

the evidence was not conclusive. However, it is possible, that for wetter catchments the

division of the rainfall record into storms, which was done in advance of the regression,

would be less obvious, and therefore more subjective.

Ajami et al. (2007) tried to combine a formulation of the input error problem with

Bayesian model averaging to account for structural errors; however, their statistical rea-

soning was flawed, as pointed out by Renard et al. (2009), as they had tried to analyse the

problem by solving only for the distributional parameters of the rainfall multipliers rather

than their actual values, leading to an ill-posed problem. Indeed, Renard et al. (2010)

examined the possibility of simultaneously modelling input and structural errors using the

regression formulation of Kuczera et al. (2006) but concluded that without adequate prior

information to distinguish the error sources, the problem is ill-posed.

The Bayesian Forecasting System of Krzysztofowicz is an alternative approach to the in-

corporation of both input errors and structural errors, in this case in a real-time flood

forecasting system, described in a series of papers (Krzysztofowicz, 1999, 2002; Krzyszto-

fowicz and Kelly, 2000; Krzysztofowicz and Herr, 2001). This is a Bayesian time series

river height prediction system, involving a hierarchy of precipitation and rainfall-runoff

models, and was formulated in a general manner, allowing for any plug-in precipitation

input and single stage rainfall-runoff model, and was implemented as a short-range real-

time forecasting system. The model structure allows for the hydrological model to be

processed under the assumption that the only uncertainties are those of data input, but

the parametric uncertainty of the hydrological model is incorporated further downstream

in the hierarchy. The transformation of the data to a Normal distribution, using an em-

pirical transformation based on historical data, besides ensuring that all assumptions are

supported, permits analytical solution of the model equations at each step, alternating

between data assimilation and stage prediction.

Price (2006) approached the problem of estimation of input errors in a hydraulic model.
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Reformulating the Saint Venant equations as functions of the lateral inflow q, a kine-

matic wavespeed, c0(Q) and an attenuation parameter a0(Q), the latter two described

in terms of the instantaneous channel inflow Q, the study found sub-optimal values for

these quantities as follows. Taking approximate values for c0(Q) and a0(Q), based on a

uniform cross-section river at uniform slope, the model was calibrated for a variable lateral

inflow. After smoothing the calculated values of the lateral inflow with a low-pass filter

for greater realism, the equations were then re-solved for the functions c0(Q) and a0(Q).

The methodology used highlights the identifiability problems between the functions of the

main channel flow and the lateral inflow.

2.6 Requirements of current research

It is clear from the foregoing, that although there has been much activity in the area of

calibration of hydrological and hydraulic models, the problem is far from solved.

A parameterisation method is required which is statistically coherent, treats different error

sources separately, is suitable for calibration with time series data, or with satellite images,

or both, and is also suitable for risk analysis; in other words produces a calibration which

is not conditional on the input time series.

A method which has been applied with some success in other fields is that proposed,

separately, by Craig et al. (2001) and Goldstein and Rougier (2004, 2006, 2009), and

by Kennedy and O’Hagan (2001a, 2001b). This method has been developed for computer

models with stationary output which varies over a spatial domain, and takes as its starting

point a description of model bias as a stochastic distribution, distributed as correlated

Gaussian, conditional on the locations where data measurements are made. The two

approaches differ in that that the method of Kennedy and O’Hagan uses a fully Bayesian

representation, fully specifying prior and posterior distributions, while the method of Craig

et al. (2001) and Goldstein and Rougier (2004, 2006) uses a Bayes Linear representation

(Goldstein and Wooff, 2007), which specifies only distribution means and variances, but

is quicker and more stable in computation.

The additional feature of this method is that it can easily incorporate an emulator for the

computer model being calibrated; this permits the undertaking of the model calibration,

and calibrated prediction, using a limited number of calls to the model, which makes a

significant saving in computational time for all but the simplest of models.

In the work which follows, the method of Kennedy and O’Hagan is applied to the cali-

bration of hydraulic models for fluvial flooding, using both satellite image and time series

measurements.
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Bayesian analysis of computer

code output

The methodology under investigation is one to calibrate deterministic computer models

in the presence of model structural inadequacy, and has been developed by Kennedy and

O’Hagan (2001a, 2001b), drawing on previous work by Sacks et al. (1989).

The data model considered is

z = M(x, θ) + δ(x) + ε

where the observed data z are related to the output of the model M(x, θ) at input x with

parameters θ, subject to errors caused by model structural inadequacy δ, and observation

ε.

Distinction is made between the contributions of model inadequacy and observation error

to observed data by considering that the observation errors are uncorrelated, while the

contribution of model structural error is not. Then, the parallel is drawn between obser-

vation errors, which can be described by a Normal distribution, and model inadequacy,

which is described by a Gaussian process, which assumes that the variation at a point

in physical space is Normal, but incorporates a covariance function to model the joint

variation through space.

This chapter shows how Gaussian process models can be employed in Bayesian model cal-

ibration to allow for model inadequacy, in the following steps. First, Gaussian processes

are described, and it is shown how they can be used for function interpolation and emula-

tion. The equations are then developed for Bayesian model calibration. It is shown how a

computationally expensive model can be replaced by a Gaussian process emulator, and the

equations are developed for calibration and for calibrated prediction. The Markov chain

Monte Carlo method is introduced for simulation from a probability distribution. Finally,

the methodology is demonstrated with respect to a simple algebraic example, identifying

potential pitfalls in its use for real problems.

23
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3.1 The use of Gaussian processes for interpolation and em-

ulation

A Gaussian process is a multivariate Normal distribution. Defined over a d-dimensional

space, a Gaussian process can be described in a hierarchical fashion as

y ∼ N(m(x), V (x, x′)) (3.1)

where the mean, m(x), and the covariance function, V (x, x′) are defined separately. For

a stationary process, it may be assumed that the covariance between the two points

x and x′ is dependent on their separation; thus, the covariance could be described as

σ2r(x− x′), where r is a correlation function, and r(0) = 1. As an example, one possible

function to describe the covariance between points evaluated at two locations x and x′ is

an autoregressive relationship,

V (x, x′) = σ2|x− x′|ρ. (3.2)

Another is the negative squared exponential function,

V (x, x′) = σ2exp
(
−(x− x′)TΩ(x− x′)

)
(3.3)

where Ω is a positive semidefinite matrix, often taken to be diagonal, under the assumption

that the different dimensions of the data are separable. In the above, the hyperparame-

ters σ2 representing variance, and the autoregressive coefficient ρ, in the case of Equation

(3.2), or in the case of Equation (3.3), the coefficients ω of Ω, representing rate of variation

(“roughness”, as described by Kennedy and O’Hagan) of the Gaussian process correction

term, are to be determined. This last form (Equation (3.3)) is useful to describe smoothly

varying functions, and has the advantage that all orders of derivatives exist and are con-

tinuous.

The properties of conditional Gaussian distributions are then used to describe the distri-

bution at other locations, dependent on the measured or modelled values, since if x, y are

partitioned into (x1, x2) and (y1, y2),(
y1

y2

)
∼ N

((
m(x1)

m(x2)

)
,

(
V11 V12

V21 V22

))

where (
V11 V12

V21 V22

)
=

(
V (x1, x

′
1) V (x1, x

′
2)

V (x2, x
′
1) V (x2, x

′
2)

)
then if y2 are known to have a value ỹ, the conditional distribution is given by (e.g.

Anderson, 1958, p36)

(y1|y2 = ỹ) ∼ N
(
m(x1) + V12V

−1
22 (ỹ −m(x2)), V11 − V12V −122 V21

)
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Figure 3.1 illustrates a Gaussian process, with mean sin(2πx), and covariance a one-

dimensional version of Equation (3.3), V (x, x′) = σ2 exp(−ω(x − x′)2), conditonal on

specific values of the mean function, under different assumptions for known values of the

“roughness” coefficient, ω. The values have been chosen for illustration; it can be seen that

as ω increases, the rate of variation of the individual Gaussian process draws increases;

while for large ω, the width of the 95% probability intervals away from known data points

is dependent on the standard deviation σ, for small ω the width is limited by the high

correlation between points in the x-direction.
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Figure 3.1: Illustration of a Gaussian process, with given values of ω and σ2, and known
mean function, conditional on given data points.

The mean function in Figure 3.1 was taken to be the known generating function for the

data points, to better illustrate the influence of the parameters ω and σ2. In practice,

the generating function is not known, so has to be estimated. This can be achieved

by describing it as a regression, m(·) = h(·)Tβ, where h(·) = (h1(·), h2(·), . . . , hp(·))T is

some suitable basis, and β = (β1, β2, . . . , βp)
T are regression coefficients to be determined.

Figure 3.2 shows a more realistic illustration of the Gaussian process, based on an analytic

solution for the conditional distribution subject to a maximum likelihood estimate for

the “roughness” coefficient. The calculations have been performed using the BACCO
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computer package (Hankin, 2005), and the equations are detailed in the Appendix at the

end of this chapter. In this case, the mean function of the Gaussian process is a regression

on the basis (1, x). The first frame in Figure 3.2 shows that the Gaussian process is not

well able to estimate the region of higher curvature away from the data points, but the

addition of a single extra point makes it possible to approximate the original data curve

sufficiently closely that the range of the Gaussian process is not visually evident.
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Figure 3.2: Estimated Gaussian approximation to given data points

3.2 The use of Gaussian processes for calibration

Suppose that a physical process ζ(x) is to be described, dependent on inputs x comprising

locations x1, · · · , xn, and using a model M(x, θ), which invokes parameters θ requiring

determination. It should be noted that θ does not necessarily include all the parameters

of model M ; some may be sufficiently well determined by other means that they are

included for the purposes of this analysis in x or even in M . The relationship between

the model and the physical process it represents can then be described at a location xi

by

ζ(xi) = M(xi, θ) + δ(xi)

where δ(x) represents the model inadequacy, dependent on the inputs x.

Ignoring for the time being any observation error in the inputs xi, the observed output zi

of the process ζ at xi can be described by

zi = M(xi, θ̃) + δ(xi) + εi (3.4)

where θ̃ is the “best estimate” value of the parameters θ, and ε represents observation
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error, assumed to be Gaussian, with zero mean and variance σ2e .

Kennedy and O’Hagan suggest that δ(x) and its prior distribution are conveniently de-

scribed as Gaussian processes. As in expression (3.1), we can say

δ(·) ∼ N(hδ(·)Tβδ, Vδ(·, ·))

where as before, the mean model inadequacy is described as a regression hδ(x)Tβδ on

some suitable basis functions hδ(·), and Vδ(·, ·) is a covariance function, described by

hyperparameters ψδ.

Let x = (xT1 , x
T
2 , . . . , x

T
n )T be the vector of locations where observations have been made.

Then the likelihood of the observed data is

L
(

(zi −M(xi, θ)) |θ, βδ, ψδ, σ2ε
)
∼ N (Hδ(xi, θ)βδ,Σ)

where

Hδ(x) is a matrix representing the regression basis describing the Gaussian process mean,

whose ith row is hδ(xi)
T

βδ are the regression parameters describing the Gaussian process mean

ψδ represents the parameters describing the Gaussian process covariance

σ2ε is the observation noise variance, and

Σ = Vδ ((x, θ), (x′, θ′))+σ2ε I is the covariance matrix, comprising the sum of the covariance

representing the model inadequacy function and that of the noise

Thus, subject to prior distributions f(θ, βδ, ψδ, σ
2
ε ) on θ, the regression parameters βδ,

the hyperparameters ψδ and the observation noise σ2ε , the posterior distribution is given

by

f
(
zi|θ, βδ, ψδ, σ2ε

)
∝

f(θ, βδ, ψδ, σ
2
ε )Σ

−1/2 exp

(
1

2
(zi −M(xi, θ)−Hδ(xi)βδ)

T Σ−1 (zi −M(xi, θ)−Hδ(xi)βδ)

)
(3.5)

3.2.1 Model specification when the computer model is expensive to eval-

uate

The solution of this equation requires repeated calls to the computer model, to evaluate it

with different parameter estimates during an iterative numerical solution process. If the

model is of any computational complexity, solution rapidly becomes prohibitive. Kennedy

and O’Hagan suggest that the answer to this is to replace the model in equation (3.4) by a

further Gaussian process, defined conditionally on the computer model output at a finite
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set of locations in the (input, parameter) space where it has been run; thus

η(x, θ) ∼ N(m(x, θ), V (x, x′)) and

η(x∗, θ) = M(x∗, θ)

at locations x∗ where the computer model has been run. The suggestion that the output

of a deterministic computer program can be described as a stochastic process is due to

McKay et al. (1979). Clearly, this is not the case, as repeated runs of a deterministic

program will yield the same output. However, before the program is run for a specific

input configuration the output is not known, but may be approximated given the output

of previous runs, under the assumption of smoothly varying output at locations x.

If the vector of computer program output is denoted y, and the observed data z, then

these can be described by

y = η(x∗, θ)

z = η(x, θ̃) + δ(x) + ε
(3.6)

where θ̃ is the unknown true value of θ. Distinguishing between the Gaussian pro-

cesses

η(x∗, θ) ∼ N
(
H1(x

∗, θ)β1, V1
(
(x∗, θ), (x∗

′
, θ′)

))
and

δ(x) ∼ N
(
H2(x)β2, V2(x, x

′)
)

where H1 and H2 are defined as the matrices whose ith rows are the regression bases

h1(xi, θi)
T and h2(xi)

T respectively, then Equation (3.6) becomes

y ∼ N
(
H1(x

∗, θ)β1, V1
(
(x∗, θ), (x∗

′
, θ′)

))
z ∼ N

(
H1(x, θ̃)β1, V1

(
(x, θ̃), (x′, θ̃)

))
+N

(
H2(x)β2, V2(x, x

′)
)

+N
(

0, σ2ε

)
Combining these two, define

d =

(
y

z

)
then

d ∼ N
(
Hβ, V

)
where

H =

(
H1(x

∗, θ) 0

H1(x, θ̃) H2(x)

)

β =

(
β1

β2

)
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and

V =

(
V1
(
(x∗, θ), (x∗

′
, θ′)

)
V1
(
(x∗, θ), (x′, θ̃)

)
V1
(
(x, θ̃), (x∗

′
, θ′)

)
V1
(
(x, θ̃), (x′, θ̃′)

)
+ V2

(
x, x′

)
+ σ2ε I

)
and H1 and H2 are defined above, and V1 and V2 are characterised by hyperparameter

sets ψ1 and ψ2 respectively.

Thus the likelihood is

L
(
d|θ, β, ψ1, ψ2, σ

2
ε

)
∝ V −1/2 exp

(
1

2

(
d−H(x)β

)T
V −1

(
d−H(x)β

))
(3.7)

3.2.2 Integrating out the linear regression

Solution of Equation (3.5) or Equation (3.7) requires integrating out the parameters βδ

and the hyperparameters ψδ, and σ2ε . Solution is facilitated by removal of the regression

coefficients βδ since these are often highly correlated with each other (if more than one) and

with the θ parameters. Higdon et al. (2004) scale the problem to remove the β parameters,

effectively taking point estimates from pre-analysis, and allowing the Gaussian processes

to absorb the distributional uncertainty. The approach taken by Kennedy and O’Hagan

(2001a, 2001b) is to integrate out the β parameters under the assumption of an improper

uniform prior distribution, and to solve the problem conditionally on this assumption.

Taking expression (3.5) and recognising that

(
z −H(x)β

)T
Σ−1

(
z −H(x)β

)
= (β − β̂)TH(x)TΣ−1H(x)(β − β̂) + constant terms

where β̂ = (H(x)TΣ−1H(x))−1H(x)TΣ−1z is the classical least squares solution to the

linear equation z −H(x)β ∼ N(0,Σ) (e.g. O’Hagan and Forster, 2004), expression (3.5)

can then be integrated with respect to βδ leading to

L
(
z|θ, ψδ, σ2ε

)
∝ W

1/2

Σ1/2
exp

(
1

2
(z −M(x, θ)−Hδ(x)β̂δ)

TW−1(z −M(x, θ)−Hδ(x)β̂δ)

)
(3.8)

where

βδ ∝ N(β̂δ,W), with

β̂δ =WHT
δ Σ−1z, and

W =
(
HT
δ Σ−1Hδ

)−1

A similar treatment of expression (3.7) leads to

L
(
d|θ, ψ1, ψ2, σ

2
ε

)
∝ W 1/2

Σ1/2
exp

(
1

2
(d−H(x)β̂)TW−1(d−H(x)β̂)

)
(3.9)
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where

β ∝ N(β̂,W ), with

β̂ = WHTV −1d, and

W =
(
HTV −1H

)−1

3.2.3 Specification of priors

Other than the prior on the regression parameters β, the remaining priors needed to specify

the problem are the priors on the computer model parameters θ, the hyperparameters

ψ of the model inadequacy and the emulator if included, and of the observation error

variance, σ2ε . Under the assumption that the observation error is a function only of the

data recording mechanism, and that error values are uncorrelated and independent of the

data values, its variance should be fairly well known from the observation mechanism. It

is to be expected that the prior on the parameters are independent of the priors on the

model inadequacy, and both of these are expected to be independent of the priors on the

emulator.

3.2.4 Solution of equations

Kennedy and O’Hagan point out that analytical solution of Equation (3.9) is not feasible,

and instead find the hyperparameters by optimisation. Although they derive an expression

for the distribution of the computer model parameters θ conditional on these optimal

values, they do not evaluate it, concentrating instead on the calibrated prediction of the

output. This solution method has been implemented in R (R Development Core Team,

2009) by Hankin (2005) for a smooth covariance function (Equation (3.3)), using Markov

chain Monte Carlo (described in Section 3.3 below) to evaluate the posterior distribution

of the computer model parameters θ.

The alternative is to simulate from the complete posterior distribution (Equation (3.8)

or Equation (3.9)) by MCMC. This is the approach primarily taken in this study. The

Markov chain is constructed with reference to the logs of the hyperparameters, firstly

because the transformation ensures positive values of the hyperparameters, and secondly

because the hyperparameter values can vary by several orders of magnitude.

3.2.5 Calibrated prediction

Once the conditional posterior distribution of the data has been found by simulation,

output of the process can be estimated at any input location x†, using the form of the

conditional Gaussian distribution. Thus, for the formulation with direct calls to the com-
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puter model (Equations (3.8)),

E
(
ζ(x†)|z, θ, ψδ, σ2ε

)
= M(x†, θ) + hδ(x

†, θ)T β̂δ + τ(x†, θ)TΣ−1
(
z −M(x, θ)−Hδ(x, θ)β̂δ

)
Var

(
ζ(x†)|z, θ, ψδ, σ2ε

)
= Vδ(x

†, x†)− τ(x†, θ)TΣ−1τ(x†, θ) + ΛTWΛ

(3.10)

where in addition to variables previously defined

Λ =
(
hδ(x

†, θ)−Hδ(x, θ)
TΣ−1τ(x†, θ)

)
, and

τ(x†, θ) = Vδ
(
(x†, θ), (x, θ)

)
The formulation where the computer model is replaced by an emulator (Equations (3.9))

proceeds similarly:

E
(
ζ(x†)|d, θ, ψ, σ2ε

)
= h(x†, θ)T β̂ + t(x†, θ)TV −1

(
d−H(x, θ)β̂

)
Var

(
ζ(x†)|d, θ, ψ, σ2ε

)
= V1

(
(x†, θ), (x†, θ)

)
+ V2(x

†, x†)− t(x†, θ)TV −1t(x†, θ) + LTWL

(3.11)

where

L =
(
h(x†, θ)−H(x, θ)TV −1t(x†, θ)

)
,

h(x†, θ) =

(
h1(x

†, θ)

h2(x
†)

)
, and

t(x†, θ) =

(
V1
(
(x†, θ), (x, θ)

)
V1
(
(x†, θ), (x∗, θ)

)
+ V2

(
(x†, x∗)

) ) ,

and the other variables are as defined previously.

The conditional posterior expectation and variance are combined to give the unconditional

expectation and variance of the required quantity. The computation is implemented using

Markov chain Monte Carlo, which is described below.

3.3 Markov chain Monte Carlo

Many problems formulated in the Bayesian paradigm, as this one, are not amenable to

analytical description of the posterior distribution. Under these circumstances, the poste-

rior distribution must be characterised by simulation. This can be done by Monte Carlo

methods, by random draws from the prior distribution, accepting these with probabil-

ity proportional to the likelihood. However, the most efficient way of simulating from

a distribution is by taking a Markov process, whose equilibrium distribution is that of

the posterior distribution we wish to simulate, and drawing from this process. A Markov

process is a sequence, with the property that any member is dependent only on the im-
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mediately preceeding member of the sequence:

P (Xi|X1, X2, · · · , Xi−1) = P (Xi|Xi−1)

Transition from one member of the chain to the next is characterised by a transition kernel,

thus:

P (Xi+1|Xi) = P (Xi|Xi−1)

If a Markov chain is both irreducible, and aperiodic, that is, if it is possible for the chain

to reach every part of the parameter space in a finite number of transition steps from any

starting point, then it is ergodic; in other words, it has a limiting stationary distribution.

This property enables a Markov chain to be used to simulate from a target distribution;

once the chain has achieved the stationary distribution, all further members will belong

to the distribution, permitting simulation from it. A sufficient condition for the chain

to have a specified invariant distribution f(·) is for it to possess the property of detailed

balance; that is that

f(θ)P (φ|θ) = f(φ)P (θ, |φ) for all θ, φ in the parameter space Θ (3.12)

3.3.1 Metropolis Hastings algorithm

The Metropolis Hastings algorithm (Metropolis et al., 1953; Hastings 1970) provides a

simple way to ensure that a Markov chain possesses the detailed balance property. Given

the current state of the chain, Xi, a proposal X∗ is generated from a proposal distribution

q(Xi, X
∗). This proposal is accepted with probability

α{Xi, X
∗} = min

(
1,
f(X∗)q(Xi|X∗)
f(Xi)q(X∗|Xi)

)
, (3.13)

and becomes the next member of the chain, Xi+1; otherwise, Xi+1 is set to Xi. The

transition kernel density is K(Xi, X
∗) = q(Xi, X

∗)α(Xi, X
∗);. It can easily be seen that

this transition kernel satisfies the detailed balance equation (3.12), with f as an invariant

distribution; thus convergence is guaranteed. In addition, it is not necessary to compute

the denominator in Bayes equation (1.3), as if the detailed balance property holds, this

cancels out from the acceptance relationship, Equation (3.13).

Different proposal distributions q(·|·) can be used. A common choice is to take X∗ =

Xi + ε, where ε is a random increment independent of Xi. This is known as random walk

Metropolis-Hastings algorithm, and the distribution of ε is commonly taken as uncorrelated

multivariate Normal.

Although convergence to the target distribution is guaranteed by the Metropolis Hastings

scheme, this does not imply that convergence will occur in a reasonable number of iter-

ations. The variance of the proposal increment ε needs to be prespecified, and too small

a step leads to inadequate exploration of the parameter space, while too large a stepsize

results in a small acceptance rate at Equation (3.13). Common practice is to run short
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pilot chains, to ensure that the stepsize is appropriate. Although Roberts et al. (1997)

suggested that for multivariate Normal distributions, the optimal acceptance rate to per-

mit adequate exploration of the parameter space and reasonable convergence rates, should

be approximately 23%, in reality, for more complex distributions, a lower rate has to be

accepted. For a multivariate distribution, different step sizes may well be required in each

dimension. For highly correlated or skewed variable distributions, it is best to apply the

algorithm to transformed variables.

3.3.2 MCMC diagnostics

One difficulty with using MCMC methods, is to know how long the chain has to be. Al-

though convergence to a stationary distribution is guaranteed by the Metropolis Hastings

scheme, there is no theoretical indication as to how long this will take. In addition, when

proposal distributions are based on the current state of the chain, it can be expected that

there is significant autocorrelation in the chain, affecting the length required for an effec-

tive estimate of the parameter distributions. Apart from visual inspection of the chains,

their cumulative sums and their correlations, a number of methods have been suggested

to identify the length of the “burn-in” period, and to estimate the sample size required

for effective estimation of distributional properties (e.g. Cowles and Carlin, 1996). The

CODA package (Best, Cowles and Vines, 1995) incorporates several of these for analysis

of the output chain.

A test for stationarity of the chain was proposed by Geweke (1992), who used spectral

methods to compare the means of the first 10% and the last 50% of the chain under the

assumption that the two parts of the chain are asymptotically independent. This method

is applied to a single variable at a time.

Gelman and Rubin (1992) pointed out that it may not be possible to detect very slow

convergence from a single chain, while by taking independent chains starting at a sample

of points, convergence to a single distribution gives greater confidence. They proposed

a diagnostic based on the comparison of the covariances of individual chains and the

covariances between chains.

Raftery and Lewis (1996) proposed an estimator for the length of chain necessary to

estimate a quantile of the posterior distribution with the required confidence. Taking the

qth quantile u of a distribution U of a function of the parameters in the chain, they form

a new chain Z : zt = I(U ≤ u), where I(·) is the indicator function. While Zt is not a

Markov chain, it can be expected to behave like one if thinned to every kth value, for large

enough k; the Raftery and Lewis algorithm gibbsit identifies the lowest value of k required,

and uses this to estimate both the length of the burn-in period, and the chain length for

estimation of the required quantile. It should be noted that the estimate may change if

the chain is extended, so new estimates must be calculated, until they are shorter than

the actual chain length.

R-CODA (Plummer et al., 2006) implements a modified version of the method of Heidel-
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berger and Welch (1981) to examine the autocorrelation behaviour of the chain, fitting

a generalised linear model to the lower part of the spectrum, and making it possible to

estimate the effective length of the chain.

It is generally considered that no method for analysing MCMC performance is foolproof,

and it is considered prudent to use a number of methods in parallel, to ensure the validity

of the MCMC output.

An example of the problems which can occur in MCMC is demonstrated in Figures 3.3,

showing the chains and 3.4, showing their correlations. This is in fact a solution to the toy

example described in the next section, but with deliberately poor step sizes for the proposal

distributions, and without integrating out the regression parameter. Thus, the variables

are the parameter θ, the regression parameter β, the log model inadequacy “roughness”

parameter ωδ, and the log variances for the model inadequacy σ2δ and the observation noise

σ2ε , with priors taken as uniform on a limited range (see Table 3.1), to be able to see the

posterior distributions. The fact that this is a comparatively straightforward distribution

can be seen in that the variable values settle down almost immediately into distributions

seen thoughout the rest of the chain.

Table 3.1: Prior ranges for MCMC example
variable range

θ [ -1, 5 ]
βδ [ -6, 6 ]

log(ωδ) [ -2, 6 ]
log(σ2δ ) [-18, 5 ]
log(σ2ε ) [-18, -2]

The first two variables, θ and β can be seen to be highly correlated, both from the corre-

lation plots, and also the symmetry between their chains. This results in a low acceptance

rate of the proposal, giving rise to the step-like behaviour seen in the first two chains,

and the irregular appearance of the corresponding distributions shown in the the diagonal

plots in the correlation figure. The third and fourth variables log(ωδ) and log(σ2δ ) are

poorly identified; the posterior distributions can be seen to be strongly influenced by the

priors. The proposal step size given to log(ωδ) is larger than that given to log(σ2δ ); this

is responsible for the very different appearance of the chains. By contrast with the other

variables, the chain for log(σ2ε ) is fairly well behaved. Lastly, there are positions in the

chain where all of the variables stop moving together, resulting in local isolated peaks in

the correlation plots, and while at about 8500 this appears to be associated with extreme

values of θ and β, this is not always the case. This last behaviour occurred for calibration

problems in a number of applications of the methodology, and while the length of these

flat patches in the current example is not large, for more difficult problems it can become

extended.
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Figure 3.3: Example chains to show MCMC problems
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Figure 3.4: Example correlations corresponding to the chains in Figure 3.3: Upper right,
pairwise correlation; Diagonal, individual variable density; Lower left, 2-dimensional den-
sity plots

3.3.3 Refinements of the Metropolis-Hastings algorithm

A refinement to the simple random walk Metropolis Hastings algorithm described above

was suggested by Haario et al. (2001). This algorithm uses the empirical covariance of the

entire chain, up to the current point, to inform the (still multivariate Normal) distribution

of the increment ε for the proposal. Thus the increment for each variable is appropriate to

the scale of variation of that variable. It is necessary to use the entire chain to generate the

proposal distribution to maintain ergodicity; Andrieu and Thoms (2008) pointed out that
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a necessary condition for this is that the adaptations to the proposal distribution vanish

as the step number i → ∞. Marshall et al. (2004) observed that the adaptive algorithm

of Haario et al. (2001) provides substantial improvement in convergence properties over a

simple random walk Metropolis Hastings algorithm in the calibration of a rainfall-runoff

model.

Vrugt and co-workers have implemented two MCMC methods, designed to simulate from

difficult distributions, both employing parallel and interacting chains; each of these in-

corporates a number of performance-improving characteristics. The first of these (Vrugt

et al., 2003) draws inspiration both from the algorithm of Haario et al. (1999, 2001),

and from the successful shuffled complex evolution optimisation method of Duan et al.

(1992), running a number of parallel chains. In a reflection of the work of Duan et al.,

the algorithm maintains a “complex” of candidate points for each chain, which are used

to choose the next point in each of the parallel chains. The method of choosing a new

point reflects the early algorithm of Haario et al. (1999) in using the mean and covariance

last m members of the complex to base the multivariate Normal candidate distribution

for the new point. As in the work of Duan et al., the complexes are periodically shuffled,

so that the chains are not independent. The algorithm appears fast and efficient, but is

flawed, since it uses the covariance of the last m members of the chain to calculate the new

candidate point. Haario et al. (2001) pointed out this flaw in their earlier work, proving

that it contravenes the conditions necessary to ergodicity of the chain.

A second algorithm, DREAM (Vrugt et al., 2008), was introduced to tackle larger param-

eter sets encountered when solving explicitly for input errors in hydrological models. It

incorporates a number of separate methods to improve the robustness and convergence

speed of the Metropolis-Hastings algorithm. As with the previous method, the inspira-

tion for the proposal distribution came from the optimisation literature. The differential

evolution method (ter Braak, 2006) involves running parallel chains, but updating each

one using the difference between a randomly chosen pair from the others. DREAM goes

one step further, using the mean of the differences between a number of randomly chosen

pairs of separate chains. In the case where the proposal is rejected, DREAM employs the

delayed rejection algorithm of Haario et al. (2006), rejecting the update only if a second,

less stringent acceptance test is failed. In addition, Vrugt et al. note that this method

admits the possibility of a single chain which is substantially different from the rest of

the population, and replace such chains with others which are more similar. The method

appears fast and efficient.

In the work described in this thesis, both of the algorithms described above by Vrugt

have been used at different times, in model development. It proved helpful to have access

to more robust and efficient codes at the stage where the models were not completely

specified. However, all the results in shown the thesis have been achieved with a simple

random walk Metropolis-Hastings code, with fixed time step, since, correctly specified,

the problems here do not present such a difficult task for a Markov chain Monte Carlo

code.
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3.4 Application: simple algebraic example

The methodology is illustrated with respect to a simple algebraic example. Data were

generated by the process

y = ex − 1

in the range x ∈ [0, 1]. The computer program used to describe the data follows the

relationship

y = θx2

where θ is the parameter to be determined. Observations were measured at each of 5

points, (0.1, 0.3, 0.5, 0.7, 0.9), subject to additive Gaussian noise. Initially, the simulator

was used directly in the calculations, solving the model described in Equations (3.5), (3.8)

and (3.10). The regression basis for the model inadequacy function was taken to be (x),

and a smooth covariance was chosen, as in Equation (3.3). The equations were solved,

using MCMC, for the the parameter θ and the logs of the variables ω, σ2δ and σ2ε , and to

estimate the calibrated prediction of the generating process.

Prior distributions are summarised in Table 3.2, and were chosen as follows: for the

parameter θ, it was assumed that the final value would be approximated by the value

found in a classical least squares solution to the equation y = θx2, using the data; thus

θ ∼ N(1.94, 1). It was assumed that the data standard deviation was in the region of 0.05,

and the model inadequacy standard deviation was assumed to be approximately twice this;

thus log(σ2δ ) ∼ N(−4.6, 2), and log(σ2ε ) ∼ N(−6, 2). In order to make an initial judgement

of the “roughness” parameter ωδ, a range was taken by comparison with representations

of zero-mean Gaussian processes (Figure 3.5), following the suggestion of Oakley (2002);

thus log(ωδ) ∼ N(2.3, 2).
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Figure 3.5: Reference Gaussian processes for use in determining prior distributions for
“roughness” values: three realisations of each.

Calibration was undertaken with two measurements at each data point, subject to noise

of standard deviation 0.05. Posterior distributions were found by simulating from dis-
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Table 3.2: Prior and posterior distributions for calibration

variable prior distribution posterior mean
posterior

standard deviation

θ N(1.94, 1) 1.31 0.48
βδ 0.50 0.17

log(σ2δ ) N(−4.6, 2) -5.43 1.26
corresponds to
σ̂δ = 0.066

log(ωδ) N(2.3, 2) 2.00 2.58

log(σ2ε ) N(−6, 2) -4.81 0.65
corresponds to
σ̂ε = 0.090

tribution given by Equation (3.8), using a chain of length 20000. None of the problems

demonstrated in Figures 3.3 and 3.4 were experienced to any significant extent; chains

and correlations in this case are shown in Figures 3.6 and 3.7. Note that there are here

only four variables represented, since the regression coefficient βδ has been integrated out

of Equation (3.8).
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Figure 3.6: Chains for toy example

Posterior distributions are summarised in Table 3.2. The posterior distribution of the

parameter θ has mean 1.31 and standard deviation 0.48 (Figure 3.8), and is very different

from the estimate by classical methods, which corresponds with the prior mean.

Calibrated prediction was performed by conservatively discarding the first quarter of each

chain, and for each remaining member, calculating its contribution to the calibrated pre-

diction, using Equation (3.10). It is clear that the calibrated prediction follows the data

closely (Figure 3.9a), with the mean width of the 95% prediction interval 0.065.

For comparison, the analysis was repeated with 4 measurements at each data point (Figure

3.9b). In this case, the posterior mean of θ was lower, at 1.11, and standard deviation was

0.37. The estimated noise standard deviation was somewhat reduced, at σ̂ε = 0.068, with

the mean width of the 95% prediction interval 0.041.

It should be noted that the interpretation of the prediction interval in Bayesian statistics



Chapter 3. Bayesian analysis of computer code output 39

theta

−2 2 6

0.017 0.17

−6 −4 −2

0
1

2
3

0.012

−
2

2
6 log(omegad)

0.18 0.038

log(sigsqd)

−
10

−
4

0

0.09

0 1 2 3

−
6

−
4

−
2

−10 −6 −2

log(sigsqe)

Figure 3.7: Correlations corresponding to the chains in Figure 3.6: Upper right, pairwise
correlation; Diagonal, individual variable density; Lower left, 2-dimensional density plots

is different to that used in classical statistics. Since the solution of the Bayes’ scheme leads

to a probability distribution for the required variables, this is most easily comprehended

in relation to the original research question by specifying the mean of the distribution, and

an interval within which the variable lies, with a specified probability p. By contrast, the

confidence interval of classical statistics is the interval within which the mean lies, with

probability p.

3.4.1 Identifiability of the solution with sparse data

The above solutions to the calibration problem were undertaken with replicated data,

and demonstrated that replication provides sufficient data to identify adequately the noise

variance. A more realistic test of the type of situation which may be encountered in

practice in calibration of a hydraulic model, is an example where only one measurement is

able to be made at each data point. Solving the calibration problem in this case is much

more difficult, illustrating identifiability issues in the formulation.

Poor identifiability occurs when the data do not support full identification of the param-

eters. In the case of the Kennedy and O’Hagan formulation, there may be difficulties in

distinguishing between the model inadequacy function and the observation error on the

measured output data, as originally suggested by Wynn (2001). Even when a parameter

is poorly identified by the data, the problem is not necessarily ill-posed; provided that

the prior distributions are adequately precisely defined, it is still possible to achieve a

solution.
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Figure 3.9: Calibrated prediction of algebraic example, for a) 10 data points and b) 20
data points

In order to try and find out what influences the identifiability of the hyperparameters,

the likelihood (Equation (3.8)) was calculated on a grid of values of log(ωδ), log(σ2δ ) and

log(σ2ε ), taking values of β and θ corresponding to the classical least squares solution.

Figure 3.10 represents two series of slices through the (log(ωδ), log(σ2δ ), log(σ2ε ))-space, the

first row parallel to the log(σ2ε )-plane, and the second to the log(σ2δ )-plane for a given

realisation. It can be seen that there appear to be two competing solutions, for log(σ2δ ) ≈
−6, log(ωδ) ≈ 2.5, and log(σ2ε ) < −10, and the second for log(σ2δ ) ≈ −6, log(ωδ) ≈ 1.5, and

log(σ2ε ) ≈ −7.5, interpreting the residual with different proportions of model inadequacy

and noise.

Further investigation of the likelihoods in this way revealed that for a number of realisa-

tions, one or other of the hyperparameters appeared to be unidentifiable. This appears

to happen when one of the σ2 variables is at least 2 orders of magnitude greater than the

other. In this case, the smaller σ2 value makes little difference to the total variance. If
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Figure 3.10: Greyscale plot of the likelihood over a 3-dimensional grid of hyperparameter
values

the smaller value is σ2δ , then ωδ is also unidentifiable.

There are two other causes for the non-identifiability of ωδ. The first is that with a large

enough value of ωδ, a one dimensional inadequacy function is indistinguishable from the

noise. Thus, for a spacing of 0.1 between data points, there is little effective difference be-

tween uncorrelated noise, and correlated noise with a “roughness” of > O
(

1
0.12

)
= O(100);

that is (log(ωδ) > 5). In addition, it should be noted that using a log parameterisation for

the hyperparameters may have the consequence that log(ωδ) is not well defined for small

ωδ, for example.

It has already been noted that where there are identifiability problems in the specification

of a Bayesian problem, it can still be well-posed if the priors are adequately specified.

However, the solution will follow the information in the prior, more or less closely, accord-

ing to how much information is in the likelihood. This was demonstrated in the third and

fourth variables of the MCMC example in Figures 3.3 and 3.4.

In the full solution of the problem, with a single data point at each of 5 equally spaced

locations (noise variance 0.05), Normal priors, variance 100 for the parameters and 10 for

the log hyperparameters, the posterior distributions of the parameter θ, the discrepancy

β, and the noise variance σ2ε were reasonably well determined, and not much influenced by

the prior. However, the hyperparameters of the inadequacy function, σ2δ and ωδ were quite

strongly influenced by the prior means. In addition, the priors had considerable influence

on the posterior prediction intervals, as shown in Table 3.3 below:

Table 3.3: Parameters affecting the posterior credible interval

increase in no increase in
posterior credible interval posterior credible interval

θ variance
σ2δ mean β variance
σ2δ variance ωδ mean
σ2ε mean ωδ variance

σ2ε variance
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3.4.2 Use of an emulator to represent the computer program

For the purposes of comparison, an emulator was used to represent the “computer pro-

gram” - in this case, the algebraic example, y = θx2. The “computer program” was run for

selected values of x and θ, and a regression was performed on the output values. Kennedy

and O’Hagan recommend using the simplest possible regression basis that is supported by

the data, suggesting that in many cases it is sufficient to use the mean computer output

value; that is, the regression basis is simply (1). This is in contrast to the approach of

Rougier et al. (2009), who point out that the better the regression basis, the less the effect

of the choice of an inappropriate covariance function. In this case, the basis (1, x, θ) has

been taken.

It is advisable to test the accuracy of the emulator away from the points at which the

computer program has been run. In this case, since there are two independent variables, it

is not so simple to visualise the emulator error over the entire domain. Instead, a selection

of points has been chosen in the domain, and the emulator error has been calculated

for those. As for Figure 3.2, the calculations have been performed using the BACCO

package.

The first frame of Figure 3.11 shows a contour map of the emulator mean response surface,

identifying points where the computer program has been run, and where the emulator error

has been tested. The second frame shows the 95% error range compared with the exact

function at a number of validation points that were not used for training, marked in

Figure 3.11a by circles. It can be seen that both the mean error and the uncertainty in

the emulator are low, but are higher further away from data points, particularly close to

the edge of the domain where the prediction intervals expand rapidly.

3.4.3 Experimental design

When characterising computer code output to construct an emulator, it is necessary to

decide at which input values the the code should be run in order to ensure that the

emulator faithfully represents the computer code output throughout the input domain.

This question was discussed by Sacks et al (1989), although no solution was offered in the

context of emulator formulation.

The issue of deriving statistics from output of computer code sample runs was discussed by

McKay et al. (1979), who devised the Latin hypercube sampling strategy. This concerns

the choice of a sample of size N from a K dimensional input domain [0, 1]K . For each

dimension k ∈ {1, . . . ,K}, the value of the ith sample (i ∈ {1, . . . , N}) is taken to be

at
πk(i)− U(0, 1)

N

where U(·, ·) refers to the uniform distribution, and πk(i) refers to the ith member of a

permutation of the N intervals, the suffix emphasizing that a different permutation is

taken for each dimension k. McKay et al. showed that a Latin hypercube sample provides
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Figure 3.11: Testing the code emulator: a) contour map of the emulator mean response
surface; solid points are where the code has been run, circles are points where the emulator
accuracy has been tested, b) 95% prediction interval for the emulator at locations labelled
in a (central points are true code output values)

a more efficient estimator of the mean and variance of the computer code output than a

random sample of the same size. Owen (1994) showed that the variance of estimates is

reduced when the covariance of the samples is controlled. In practice, what is often done

is to generate a large number of Latin hypercube samples, and to choose the one where

the arrangement of the samples is optimal in some sense, such as the minimum Euclidean

distance between samples. The Latin hypercube sampling scheme is extremely successful,

and widely used (indeed to generate the sample shown in Figure 3.11a). However, in the

choice of samples for emulator generation, other issues may be relevant.

One such issue is the decision at what scale sampling is to be undertaken. For example,

where the sample is to be used to generate a Gaussian process emulator, if samples are

taken too close together the resulting covariance matrix becomes ill-conditioned. However,

the samples must be taken sufficiently closely to ensure that the emulator can represent

the variability of the computer code output.

An exploratory approach proposed by Morris (1991) involves taking a sample, which could

be a Latin hypercube sample, and taking a secondary sample, by making small perturba-

tions to the locations of the original sample members, allowing an assessment of the local

sensitivity to the different parameters. Campolongo et al. (2007) suggested that Morris’

sample scheme should be optimised in the knowledge of the secondary sampling criteria

such as spread of the points, and suggested that this optimisation renders unnecessary the

use of a Latin hypercube scheme.

It is sometimes useful to be able to choose sample points sequentially, for example, in the

case where it is decided that another set of model runs can be made to increase emulator



Chapter 3. Bayesian analysis of computer code output 44

accuracy. The concept of space-filling sequences was introduced by Halton (1960), while

Sobol (1998) showed that use of such non-random sequences is a more efficient base for

Monte Carlo simulations than random draws, but noted that the number of sampling

points should be increased by doubling. An alternative approach to increasing the size of

a sample was suggested by Sallaberry et al. (2008), who proposed a method of increasing

the size of a Latin hypercube sample to a multiple of the original sample size by generating

a new Latin hypercube sample, and subdividing the interval size so that the samples do

not interfere.

3.4.4 Effect of the choice of regression basis on solution behaviour

An investigation has been made of the dependence of the calibrated prediction on the

choice of regression bases for the emulator and the model inadequacy function. In inter-

polation, provided that there are no excessively large gaps between the data points (either

code outputs in emulator generation, or measured data points), the Gaussian process fol-

lows the data, and its mean is unaffected by the regression basis, while the variance can be

reduced by increasing the data. However, in extrapolation, the Gaussian process follows

the regression, deviating from the trend of the data at a rate depending on the “rough-

ness” coefficient, ω, and the solution adequacy thus depends on the regression basis, for

both emulation and calibration.

Figure 3.12 shows calibrated prediction for four cases, using the same data and priors (for

the calibration) as the example in Section 3.4. The first frame shows the same solution

as the first frame of Figure 3.9, extending the extrapolation further for illustration. In

this case, the calibrated mean eventually follows the path y = E(θ)x2 + E(β)x where

E(θ) = 1.31 and E(β) = 0.50. The rate at which the calibrated mean approaches this

asymptote is determined by E( 1√
ω

), the length scale of the model inadequacy Gaussian

process, in this case, 0.50. The second frame shows the equivalent solution when an

emulator is used to represent the computer program, solving equations (3.9), taking a

regression basis (1, x, θ) for the model inadequacy, and priors ω1 ∼ N(, ), σ21 ∼ N(, ). It

can be seen that the asymptote for the calibrated mean is linear, following y = E(β1,1) +

E(β1,θ)θ + (E(β1,x) + E(β2))x,

where

E(β1,1) = −0.68

E(β1,θ) = 0.69

E(β1,x) = 2.28

E(β2) = 0.60

This behaviour is even more marked in the third frame, where the emulator regression

basis is taken as 1 instead of (1, x, θ). The asymptote for the calibrated mean is y =

E(β1,1) + E(β2)x,

where

E(β1,1) = 1.59
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Figure 3.12: Effect of different emulator and model inadequacy regression bases on the
calibrated prediction in extrapolation: a)calibration only, model inadequacy basis (x); b)
emulator basis (1, x, θ), model inadequacy basis (x); c) emulator basis (1), model inade-
quacy basis (x); d) emulator basis (1, x, θ), model inadequacy basis (x3)

E(β2) = 0.58.

It should be noted that the calibrated mean is just starting to approach the direction

of the asymptote at the right hand side of the frame. The rate of approach depends

on the size of the hyperparameters ω1 and ω2; the smaller these are, the more slowly

the calibrated prediction will approach its asymptote. In this case E(ω1) = 1.83 and

E(ω2) = 12.61; Figure 3.5 indicates that the corresponding variability of the Gaussian

process is not large.
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The fourth frame in Figure 3.12 shows the effect of an inappropriate regression basis for

the model inadequacy. Although the calibrated prediction is almost identical to that of

the other three cases presented here within the range of the data, in extrapolation the

calibrated mean departs from reality, while the prediction limits increase rapidly.

3.5 Summary

The methodology of Kennedy and O’Hagan (2001a, 2001b) has been presented, for the

emulation and calibration of computer models using Gaussian process description of the

emulator and model inadequacy. The equations have been set out for computer model cal-

ibration both with and without use of an emulator. The method has been demonstrated

in terms of a simple algebraic example, firstly without emulator, and some practical issues

have been raised over the identifiability of the model inadequacy function and observation

errors. Finally, an indication has been given of the practical issues involved in the mod-

elling choices involved in the additional use of an emulator. In the next three chapters, the

methodology will be applied to three practical examples of flood models, demonstrating

further the capabilities and difficulties of the method.

3.6 Appendix: Use of BACCO to estimate a Gaussian pro-

cess emulator

The method used in the BACCO code (Hankin, 2005) to estimate a Gaussian process

emulator is due to Oakley and O’Hagan (2002). They take as a model for the computer

output d, observed at n input values x = (xT1 , . . . , x
T
n )T , a Gaussian process, where

η(x) ∼ N(m(x), V (x, x′)) with

m(x) = HTβ,

H =


h(x1)

...

h(xn)


V (x, x′) = σ2c(x, x′), and

c(x, x′) = exp
(
−(x− x′)TΩ(x− x′)

)
,

where Ω is a positive semidefinite matrix, and other variables were defined earlier in the

chapter. Further, taking a prior on β and σ2 as

p(β, σ2) ∝ σ−
1
2
(r+q+2) exp

(
−(β − b)TB−1(β − b) + a

2σ2

)
,

where q is the dimensionality of β and a, r, b and B are to be determined by expert

elicitation, they show that at an unobserved input value x, the computer model output
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has distribution
η(x)−m∗(x)

σ̂
√
c∗(x, x′)

|d,Ω ∼ tr+n,

a multivariate t-distribution where

m∗(x) = h(x)T β̂ + t(x)TA−1(d−Hβ̂)

c∗(x, x′) = c(x, x′)− t(x)TA−1t(x′) +
{
h(x)T − t(x)TA−1H

}
B∗
{
h(x)T − t(x)TA−1H

}T
t(x)T = (c(x, x1) . . . , c(x, xn)) , HT =

(
hT (x1), . . . , h

T (xn)
)

,

A =


1 c(x1, x2) · · · c(x1, xn)

c(x2, x1) 1
...

...
. . .

c(xn, x1) · · · 1

 ,

β̂ = B∗(B−1z +HTA−1d), σ̂2 =
a+ bTB−1b+ dTA−1d− β̂(B∗)−1β̂

n+ r − 2

B∗ = (B−1z +HTA−1H)−1, dT = (η(x1), · · · , η(xn))

The specification then depends on an estimate for the matrix of “roughness” coefficients,

Ω. Assuming a single scale, ω, so that Ω = ωIq, this can be found by maximising the

likelihood,

L(ω|y) = σ̂−
(n−q)

2 |A|−
1
2 |HTA−1H|−

1
2

The standard weak prior p(β, σ2) ∝ σ−2 (Jeffreys, 1961), is a special case of the above,

taking B = 0, a = 0 and r = −q. This is used in BACCO. However, in the case where the

above prior on β and σ2 is not appropriate, or the problem cannot be specified so that the

variance is described by a single scale over different dimensions, the above semi-analytical

description is not applicable, and the parameters of the emulator are found by Markov

chain Monte Carlo.



Chapter 4

Calibration of steady state

laboratory experiments

4.1 Introduction

The previous chapter outlined a methodology for Bayesian calibration of computer models,

and demonstrated this in the context of a simple algebraic example. This chapter and

the following two demonstrate the application of the methodology to hydraulic models.

The work described in this chapter concerns the calibration of a steady state flow model

using data obtained in large scale laboratory experiments. The model used is Manning’s

equation, which is a simple algebraic relationship, so that the use of an emulator is not

necessary for calibration. In tightly controlled laboratory conditions, measurement error

is small, but since the model does not adequately describe the data, a model inadequacy

function is required.

The experiments examined the effect of a number of variables on the relationship between

flow and depth. These have been introduced successively into the formulation of the

model inadequacy, requiring the development of increasingly complex regression basis

functions.

4.2 Experimental data

The Flood Channel Facility (Knight and Sellin, 1987) was established during the 1980s

and 1990s at Wallingford as a cooperative venture between a number of University de-

partments, jointly funded by SERC and Hydraulics Research Ltd at Wallingford, with a

view to improving the understanding of the hydraulic processes involved in out-of-bank

river flows. Three series of experiments were undertaken; on rigid straight channels, on

rigid meandering channels, and on straight channels with mobile boundaries. This study

is concerned with modelling the first of these experimental series.

48
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The experimental flume was constructed in concrete, 56m long, and with total width

10m (Figure 4.1, downloaded from http://www.flowdata.bham.ac.uk/fcfa-photos.shtml).

The central channel was trapezoidal, with a depth of 0.15m, and a fixed gradient of

nominally 1 in 1000. Horizontal floodplains were allowed on both sides of the channel,

and floodplain widths, and channel and floodplain sideslopes, were able to be varied.

In addition, it was possible to vary the roughness of the floodplain by the insertion of

obstacles. The facility was instrumented to measure water levels, discharge, boundary

shear stress, velocity profiles and turbulence.

A single test series was undertaken of in-bank flow, consisting of measurements for flows

at a number of different levels. For out-of-bank flow, several test series were measured. In

this context, the most convenient to use were series involving variation of the floodplain

width, and the slope of the channel sides.

Figure 4.1: View of the Flood Channel Facility experimental setup.

4.3 Hydraulic model

The model used in this analysis is Manning’s equation:

v =
1

n
R2/3S1/2 (4.1)

where

v is the cross-sectionally averaged velocity

R is the hydraulic radius, which is normally taken to be the ratio between flow cross-

sectional area and the wetted perimeter
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S is the channel slope, and

n, Manning’s roughness coefficient, is the constant to be determined.

This relationship is in frequent use, and tables of Manning’s n have been compiled for

different channel and floodplain characteristics (e.g. Chow et al., 1988).

The geometry of the experimental setup is shown in Figure 4.2; thus for water level y, the

cross-sectional area is given by:

A = (2b+ y s)y y ≤ h

= (2b+ h s)h+ (2bw + (y − h) s)(y − h) y > h

and the wetted perimiter by

P = 2(b+ y
√

1 + s2) y ≤ h

= 2(y
√

1 + s2 + (bw − h s)) y > h

where the variables are defined in Figure 4.2. This makes it possible to reformulate

Equation (4.1), describing the velocity as a function of the stage and the experimental

geometry. Since the required relationship is normally that between discharge and stage, a

mean velocity can be defined as v =
q

A
, where q is the discharge and A is the cross-sectional

area, as above.

Figure 4.2: Geometry of the Flood Channel Facility experimental setup for half channel
width.

4.4 Stage discharge relationship with varying floodplain width

The dataset used here is drawn from four series of experiments; one in-bank, and three out-

of-bank, with varying floodplain half-widths of 1.65m, 3.15m, and 5m, and are made avail-

able on the website http://www.flowdata.bham.ac.uk. Channel half-width (b) is 0.75m,

bankfull depth (h) is 0.15m and the channel slope (s) is 1. The model assumption is that

of one-dimensional flow, with the consequent neglect of the possibility that the longitudi-

nal velocity varies over the cross-section. When the model is used to plot the discharge
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as a function of water height, or stage, there is a discontinuity at bankfull height, y = h,

where a small increase ∆y in y beyond y = h gives an instantaneous increase in flow

cross-sectional area of ∆y(bw − b− h s). This corresponds to the discontinuity in channel

width, in addition to the unrealistic assumption that the depth over the floodplain can

be infinitesimally small. However, while results of experiments (Figure 4.3a) do show a

discontinuity, it is considerably smaller than that predicted by the model, indicating that

the model is inadequate to describe this behaviour. The error between the measured data

and the model output, fitted by least squares fit to the in-bank data, is shown in Figure

4.3b, illustrating that the greatest discrepancy between the model and data occurs when

the flow is just out of bank, as might be expected since at low depths, floodplain resistance

has the greatest impact.
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Figure 4.3: Comparison of measured data with model predictions: a) least-squares best
fit of Manning’s equation for different floodplain widths b) error in measured data, by
comparison with least squares fit to inbank data

4.4.1 Variation of flow with depth

Recall that the data model being used is

z = M(x, θ) + δ(x) + ε

where the observed data z are related to the output of the model M(x, θ) at input x with

parameters θ, subject to errors caused by model structural inadequacy δ, and observation

ε.

Recall that the model inadequacy δ(x) is described as a Gaussian process,

N(hδ(x)Tβδ, Vδ(x, x
′))



Chapter 4. Calibration of steady state laboratory experiments 52

Referring to Figure 4.3b, it seems reasonable to describe a model inadequacy function

separately for the in-bank and out-of-bank flows. The data were initially examined for

a single floodplain width (bw=3.15m). Apart from the data points close to depth 0.25m

(for which no explanation is available from the descriptions of the experimental results), it

seems reasonable to take a linear regression model for the out-of-bank flows; thus (1, y−h)

was taken for the regression basis, defined for y > h only, effectively making the assumption

that the model is unbiassed for in-bank flow. In addition, a smooth covariance was assumed

for the flow values as a function of depth; Vδ(y, y
′) = σ2δ exp(−ωδy |y − y′|2). It was

assumed that the in-bank and out-of-bank flows were uncorrelated; however, σ2δ and ωδy

were assumed to have the same value for both in-bank and out-of-bank flows.

Calibration was performed for a single floodplain width (bw=3.15m), using Equations

(3.8), that is using the model directly without an emulator. Calculation was performed

using the logs of all variables, including the parameter θ (Manning’s n), and distributional

priors used are given in Table 4.1. Note that the regression parameters β1 and β2 have

improper uniform priors. The table also shows the moments of the posterior distributions.

It should be noted that in this analysis, the depth range was not scaled to [0, 1]. Thus,

the mean of the hyperparameter ωδy should be scaled by a factor of approximately 0.06

to be compatible with the reference curves in Figure 3.5.

Table 4.1: Prior and posterior distributions for calibration with respect to depth

prior posterior posterior
variable distribution mean standard deviation

log(θ) N(−4.6, 1.52) -4.7 0.12
β1 U(−∞,∞) 0.12 0.04
β2 U(−∞,∞) -1.6 0.89

log(ωδy) N(5, 22) 5.6 0.66
log(σ2δ ) N(−7, 22) -7.3 1.0
log(σ2ε ) N(−12, 32) -13.2 1.0

The posterior distribution of the parameter Manning’s n is symmetric, with mean 0.0094,

and standard deviation 0.0011. Calibrated prediction of the input data is shown in Figure

4.4, where frame (a) shows the calibrated prediction, and frame (b) shows the difference

between the calibrated prediction and the output of Manning’s equation, using the value

of Manning’s n found by least squares fit to the in-bank data, permitting a more detailed

scrutiny of the prediction. Like the data, the calibrated mean shows a small apparent

discontinuity at the bankfull level; however, the prediction interval, which is elsewhere

except in extrapolation extremely narrow, reflecting low errors in laboratory experiment

output, shows a local increase at the bankfull level, indicating some uncertainty in the

correction for the step model. This is clearly related to the large posterior “roughness”

hyperparameter. The calibrated mean in extrapolation continues the trend of the data,

but the prediction interval increases rapidly, reflecting similar behaviour seen in the toy

example in Figure 3.12.
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Figure 4.4: Bayesian calibrated prediction using data for a single floodplain width using
a model inadequacy: a) calibrated prediction; b) difference between calibrated prediction
and Manning’s equation, fitted to the in-bank data.

4.4.2 Variation of flow with depth and floodplain half-width

If the discharge q is taken as a function of both y (height) and bw (full channel half width),

it is possible to use all of the data in Figure 4.3a. Calibration was performed using two

data sets, in order to predict the third. This is a potentially problematic formulation, as

the bw-dependence is estimated on only two values.

As in the case for a single floodplain width, the model inadequacy regression basis was

defined only for out-of-bank depths. Three basis functions were taken, (1, (y − h), bw),

defined for y > h. It is not clear whether this is an appropriate regression basis, since

Figure 4.3b does not give the impression that the dependence on bw is linear, and regression

analysis bears this out. However, with so few data series, it is difficult to choose an

appropriate measure for the dependency.

As in the previous example, the covariance was defined separately for in-bank and out-of-

bank flows. Two covariance relationships were needed;

Vδ((y, bw), (y′, b′w)) = σ2δ exp(−ωδy(y − y′)2), for in-bank flows, and (4.2a)

Vδ((y, bw), (y′, b′w)) = σ2δ exp(−ωδy(y − y′)2 − ωδbw(bw − b′w)2), for out-of-bank flows.

(4.2b)

As in the previous example, the covariance between in-bank and out-of-bank flows was

assumed to be 0.

Two calibrations were performed, in each case using two of the out-of-bank datasets, to

predict the results of the third dataset. In the first case, calibration data corresponded to
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flood plain half-width of 1.65m and 5m, and calibrated prediction was made for bw=3.15m.

In the second case, calibration undertaken with data measured at bw=1.65m and bw=3.15m

was used to predict the relationship q(h) at bw=5m.

Prior and posterior distributions are given in Table 4.2. The same prior distributions were

taken as in the single dimensional case, with the addition of a prior on log(ωδbw); however,

it was found that while a reasonably vague prior log(ωδbw) ∼ N(5, 22) was adequate in

the case where the validation data corresponded to bw=5m (case (b) in Table 4.2), a

tighter prior was required where there was a larger interval between the floodplain width

calibration data (case(a)), to avoid a bimodal posterior distribution, a possible outcome

for a large enough posterior “roughness” in the bw-dimension.

Table 4.2: Prior and posterior distributions for calibration with respect to depth and
floodplain half-width

prior posterior posterior posterior posterior
variable distribution mean st. deviation mean st. deviation

case(a)/case(b) case (a) case (a) case (b) case (b)

log(θ) N(−4.6, 1.52) -4.6 0.07 -4.5 0.04
β1 U(−∞,∞) 0.06 0.04 0.04 0.02
β2 U(−∞,∞) 0.02 0.009 0.02 0.006
β3 U(−∞,∞) -0.72 0.53 -0.22 0.27

log(ωδy) N(5, 12)/N(5, 22) 5.5 0.64 6.1 0.68
log(ωδbw) N(−3, 22) -5.8 0.84 -3.0 0.80
log(σ2δ ) N(−7, 22) -7.1 0.83 -8.0 0.75
log(σ2ε ) N(−12, 32) -10.8 0.55 -112.9 0.55

In both cases the posterior distribution of θ is fairly symmetric, with a mean of 0.01, and

small standard deviation. Calibrated prediction is shown in Figure 4.5. In both cases,

there is good agreement between the calibrated prediction for the unseen floodplain width

and the validation data (coloured points). The results of the calibrated prediction show

a slightly wider prediction interval than in the single-dimensional case, and a bias in the

extrapolation case (Figure 4.5b) of the mean prediction, just above the bankfull level.

Interestingly, the spike in the prediction uncertainty at bankfull is smaller than the one-

dimensional example, while the uncertainty in in-bank prediction is slightly larger.
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Figure 4.5: Calibrated prediction: calibration undertaken using data from two floodplain
widths, and comparing the calibrated prediction with the third. Validation dataset a)
bw=3.15m b) bw=5m.

4.4.3 Variation of flow with depth, floodplain half-width, and channel

side slope
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Figure 4.6: FCF straight channel exper-

imental design

A further extension to the calibration can be

made with inclusion of experiments undertaken

varying channel sideslopes. There is a problem

in doing this, caused by the design of the original

experiments. The design is shown in Figure 4.6.

While the design permits assessment of varia-

tion of flow with respect to changes in floodplain

width, or of channel bank slope, it is not possible

to assess their effect simultaneously. Thus, while

it is possible to undertake the calibration with

respect to both variables, nothing can be said

about any interaction which may exist between

these variables.

In addition, while it may be expected that variation of the river channel sideslope may

alter the inbank flow as well as the out-of-bank flow, measurements were not taken of the

inbank flow for different sideslope values. The solution for this exercise, was to take the

inbank measurements for the middle sideslope value, and attribute them to all sideslope

values.

The model inadequacy regression basis was again defined for out-of-bank flow only, as
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(1, y−h, bw, s), where s is the tangent to the sideslope. As before, the covariance structure

for the model inadequacy was considered to have two parts, relating to in-bank and out-

of-bank flow; these parts of the model inadequacy were assumed to be uncorrelated. The

covariance structure for out of bank flow was taken to be the smooth structure

Vδ((y, bw, s), (y
′, b′w, s

′)) = σ2δ exp(−ωδy(y − y′)2 − ωδbw(bw − b′w)2 − ωδs(s− s′)2)

Two possible covariance structures were considered for inbank flow:

Vδ(y, bw, s), (y
′, b′w, s

′)) = σ2δ exp(−ωδy(y − y′)2), and (4.3a)

V (δ(y, bw, s), (y
′, b′w, s

′)) = σ2δ exp(−ωδy(y − y′)2 − ωδs(s− s′)2) (4.3b)

Calibration of the Manning equation was performed for both of these covariance structures,

in order to assess their effect on the results. The prior distributions (Table 4.3) were the

same as those used in the previous case, with the tighter prior distribution for ωδbw and a

similar prior distribution for ωδs .

Table 4.3: Prior and posterior distributions for calibration with respect to depth, floodplain
half-width and channel side slope tangent

prior posterior posterior posterior posterior
variable distribution mean st. deviation mean st. deviation

case (a) case (a) case (b) case (b)

log(θ) N(−4.6, 1.52) -4.6 0.08 -4.6 0.08
β1 U(−∞,∞) 0.011 0.058 0.012 0.056
β2 U(−∞,∞) 0.021 0.014 0.020 0.013
β3 U(−∞,∞) -0.15 0.65 -0.19 0.64
β4 U(−∞,∞) 0.015 0.016 0.015 0.015

log(ωδy) N(6, 22) 5.5 0.71 5.5 0.69
log(ωδbw) N(−3, 12) -2.8 0.55 -2.8 0.57
log(ωδs) N(−3, 12) -2.2 0.59 -2.3 0.72
log(σ2δ ) N(−7, 22) -6.1 0.84 -6.2 0.78
log(σ2ε ) N(−12, 32) -11.6 0.56 -11.6 0.58

It can be seen from Table 4.3 that the calibration of these two models appears identical.

The posterior distributions of θ are similarly almost identical, with mean 0.01 and standard

deviation 0.0009. It is not surprising, then, that in general the calibrated prediction of the

input data for both models is at first sight identical. Indeed, the calibrated prediction for

the entire range has only been shown for the first case, for floodplain halfwidth bw=3m,

in Figure 4.7ai). The effect of the different floodplain channel slopes on the out-of-bank

flow is merely a translational effect of the relationship.

However, close inspection of the calibrated prediction of the input data for the two models

shows a substantial difference in the prediction interval in the inbank flow (Figure 4.7aii

and b), with the larger prediction interval coinciding with a dependency in the covariance

structure on the additional variable, s. The difference in prediction interval cannot be

resolved without additional data.
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Figure 4.7: Calibrated prediction for floodplain half-width bw=3m., comparing the effect
of in-bank covariance structures in Equations: ai) and aii) (4.3a) and b) (4.3b)

4.4.4 Comment

During the development of these models, the β parameters were not integrated out of the

equations, and the solution was found by integrating the full equations (3.5) including the

regression coefficients explicitly. The posterior distributions were much more difficult to

simulate from, and in particular were sensitive to redundancy in the regression basis for

the model inadequacy mean, and errors in the specification of the covariance structure.

For example, in the case where the flow q was modelled as a function of depth y and flood-

plain half-width bw, regression analysis of the out-of-bank measurements also indicated

dependence on the product, (y − h)bw, as well as on the single variates (1, (y − h), bw).

However, inclusion of this term in the basis led to non-identifiability of the parameter

Manning’s n, whose posterior distribution then became dependent entirely on the prior

distribution. Further investigation of the input data locations in the (y, bw) plane showed

that the product bw(y− h) is highly correlated with flow depth (y− h) (correlation 0.92),

indicating that this fourth term in the regression basis is redundant.

4.5 Taking into account experimental errors

4.5.1 Observation errors in the experimental programme

The foregoing analysis has been undertaken without reference to the experimental errors

reported in the measurement of the data. Although the experimental programme was more

complex, the two quantities used in this analysis are water height above the channel base,
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and total discharge. Other measurements implicit in this analysis are those of geometry

of the experimental rig, and their errors are assumed to be small.

Myers and Brennan (1990) reported that the water depth was measured by digital gauges

over stilling wells connected to tapping points in the channel bed, and reading to the

nearest 0.01mm. In addition, they reported that discharge was measured by orifice plate

meters installed in the mains supplying the upstream end of the model, although they

did not give a value for the accuracy of this measurement. It is however clear from

the reports of these experiments, both by Myers and Brennan, and by other authors,

that the primary adjustable quantity in the experiments was the flowrate, and that other

quantities were measured and validated with respect to this quantity. This understanding

led to the definition of a very small prior for the variance of the flowrate data in the above

analysis.

4.5.2 Including input errors in the calibration

While in practice the input errors in the experimental program analysed in this chapter

are small, the theory is discussed below for the inclusion of these errors in the Bayesian

formulation.

The formulation used in this analysis is to take discharge as a function of water depth,

where the main measurement errors are in the independent variable, water depth. The

model of Kennedy and O’Hagan (2001a), and indeed of Craig et al. (2001) and Goldstein

and Rougier (2004, 2006) do not allow for errors in the independent variable in the calibra-

tion. This is a simplification of reality. Clearly, no input errors are required in emulator

formulation. However, in calibration both the input and output data are measured, and

are thus subject to measurement errors. Given calibration under the assumption of no

input errors, Kennedy and O’Hagan (2001b) allow for uncertainty in the input data on

the calibrated prediction, but focus on the ability to achieve an analytical solution for the

mean and variance of properties of the distribution of z(x).

However, for the purposes of finding a probability of inundation, the full distribution of

the process is required. Expressions were given in Equations (3.10) for the expectation

E
(
ζ(x†)|z, θ, ψδ, σ2ε

)
and variance Var

(
ζ(x†)|z, θ, ψδ, σ2ε

)
of the process, which are Normal,

conditional on the parameter value. If however further calibrated output is required, for

input whose measured value is x†, but whose actual value is uncertain, then the required

distribution, rather than being ζ(x†), is in fact ζ(X|x†), whereX is a random variable, with

distribution ζ(X|x†). Then, assuming conditional Normality of the calibrated prediction

so that the distribution f
(
ζ(x†)|z, θ, ψδ, σ2ε

)
is determined by Equation (3.10), the output

value is found by integrating this conditional distribution with respect to f(X|x†), before

summing over the Markov chain to arrive at a posterior distribution.

E
(
ζ(X|x†, z)

)
=

∫∫∫
θ,ψδ,σ2

ε

{∫
X
f
(
ζ(X|z, θ, ψδ, σ2ε

)
f(X|x†) dX

}
f(θ, ψδ, σ

2
ε ) dθ dψδ dσ

2
ε
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It should be noted, however, that if the input errors are significant, they should be taken

into account in the calibration. This is the situation which has been addressed in the

BATEA project (Kuczera et al., 2006, Kavetski et al., 2006, Thyer et al., 2009, Renard

et al., 2010), giving rise to a large numbers of unknowns to be solved for, as this involves

an unknown variable for each input measurement used. As has been noted previously,

Renard et al. (2010) have found that the input and structural errors are unidentifiable

when both are specified in a rainfall-runoff model.

Calibration in presence of input errors is more complicated than under the assumption of

no input errors. Starting from Equation (1.4),

z = M(w + e, θ) + δ(w + e) + ε

the data model now contains additional unknowns to be estimated. Besides the parameters

θ, the hyperparameters for the model inadequacy function δ and the output observation

noise ε, there are also not only hyperparameters for the input error distribution, e, but

the input error values themselves at each measurement location w. The expression for the

Gaussian process for the model inadequacy becomes more complicated;

δ(w + e) ∼ N
(
h(w + e)β, V

(
(w + e), (w′ + e′)

))
If it is assumed that the errors on the input are small relative to the differences between

the input values, then the covariance could be approximated by V
(
w,w′

)
. It would not

be feasible to integrate out the regression parameters β, necessitating their estimation by

MCMC simultaneously with the other variables.

4.6 Summary

The work described in this chapter concerns the calibration of simple steady state flow

models using laboratory data, as a simple application of the Kennedy and O’Hagan calibra-

tion methodology. The nature of the model inadequacy necessitated a correction function

defined over part of the input domain. By including the output of successively larger

numbers of experiments, it has been possible to develop increasingly complex regression

bases.

The treatment of input errors has been discussed, although not demonstrated.

The following two chapters concern the calibration of flood models, using historical flood

data, where it can be expected that the data contain greater errors, and the inadequacies

of the model structure are larger and more complex.



Chapter 5

Calibration of a steady state flood

model

5.1 Introduction

The work in this and the following chapter concerns the calibration of fluvial flood models

using historical flood data. The models used are the hydraulic models described in Chap-

ter 2, which solve the partial differential equations representing flow in the channel and

floodplain. Although the models used in this thesis are simple, and thus inadequate to

describe the flow in geometrically complex channels, they take sufficiently long to execute

that emulators are required to make the calibration manageable. The data too, measured

under flood conditions, can be expected to contain significant errors.

This chapter concerns the calibration of a steady state model of a flood on the river Thames

at Buscot, in December 1992. The flood coincided with an overpass of the ERS-1 remote

sensing satellite, so calibration can be undertaken with reference to the resulting SAR

image, which gives a map of the flood extent. The flood has been modelled, using steady

state simulations, with the LISFLOOD-FP package, giving depths across the floodplain

which can be compared with the satellite image.

The results obtained in this chapter were found using the MCMC formulation described

before. However, as in Chapter 4, demonstration of the emulator has been obtained

using the BACCO computer package (Hankin, 2005), which has implemented the emulator

formulation of Oakley and O’Hagan (2002) in R (R Development Core Team, 2009); these

equations were detailed in Section 3.6. Much of the work in this chapter has been reported

in Hall et al. (2011), although the calibration results there were achieved using BACCO.

It is thus possible to compare the results of the full calibration using MCMC, with those

achieved using optimisation to find the hyperparameters, as described by Kennedy and

O’Hagan (2001b) and implemented in BACCO.

60
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Figure 5.1: Digital elevation map of the study region, with river course superimposed;
direction of flow, left to right

5.2 Flood model

The LISFLOOD-FP package, used to model the flood, was described in Chapter 2. The

model has been applied to a region of 3.8 x 2.4 km, with a low-lying floodplain on the

left bank. The river reach is bounded upstream by a gauged weir, and reasonably well-

contained at the downstream end. Thus, upstream discharge was taken as the value

corresponding to the gauged flow at the time of the satellite overpass. Downstream outflow

is given by the weir equation, based on the slope of the given bed dimensions.

A 50km resolution DEM was used (Figure 5.1) to describe the floodplain topography, with

a vertical accuracy of 0.25m. The channel depth and width are assumed uniform in the

model; these and other geometrical values were provided by the Environment Agency. The

model was set up by Aronica et al. (2002), who point out that a dynamic simulation was

unnecessary, in view of the short reach and broad hydrograph involved.

The parameters to be determined through calibration are the roughness coefficients of

the channel and floodplain. Werner et al. (2005), using GLUE, demonstrated a lack of

sensitivity to using spatially varying roughness parameters in a floodplain with mixed

vegetation, while Hall et al. (2005) used global sensitivity analysis to show that this

model is not sensitive to floodplain roughness coefficient. Consequently, calibration has

been undertaken with regard to a uniform channel roughness coefficient.
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Figure 5.2: Flood extent, obtained from processed SAR data

5.3 Calibration data

The calibration data were provided from radar imagery, and processed by Horritt et al.

(2001) to form a binary image of inundated and non-inundated areas (Figure 5.2). Mis-

classification is possible in some green fields which give a similar low backscatter to the free

water surface. Equally, it is possible to misclassify flooded area as non-inundated, where

the water surface is wind-roughened, although this was thought to be a lesser problem in

this instance.

Given that the output of LISFLOOD-FP is a map of water surface height, there are two

ways in which this can be related to the processed SAR data. Aronica et al. (2002) used the

binary radar image to calibrate the LISFLOOD-FP model using GLUE, by classifying the

model output array as inundated and non-inundated, and devising a measure of goodness

of fit of these binary images. This measure is

F =

∑
i,j{(di,j = 1) ∧ (mi,j = 1)}∑
i,j{(di,j = 1) ∨ (mi,j = 1)}

where (di,j = 1) and (mi,j = 1) are the events that pixel (i, j) is inundated, according

to the data and model output respectively. Woodhead (2007) undertook a statistically

coherent calibration of the model, using Bayesian techniques and the same binary data

image, investigating a number of binary data models, but without considering model

structural uncertainty.

An alternative is to identify from the data the water surface height at the flood shoreline,

and compare this with the water surface heights predicted by LISFLOOD-FP.

The accuracy with which water heights can be recovered from the superposition of a

flood outline onto a DEM depends not only on the resolution and accuracy, but also on
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Figure 5.3: Modelled flood extent for different values of Manning’s n

the slope of the DEM; in the limit, the bounds to the water height at the shoreline are

the height of the DEM at the pixel at the water’s edge, and the height of the lowest

adjacent non-inundated pixel. The uncertainty on the water height at the shoreline has

been reduced (Hall et al., 2011) by incorporating information from an ensemble of 638

model runs with randomly chosen values of Manning’s n in the interval [0.01, 0.1]. For

each shoreline location of the data, those runs in the ensemble were taken whose output

wet/dry classification in the nine immediately adjacent pixels matched those of the data.

The water height taken for that shoreline point was the mean value from those runs.

This technique allows the model to interpolate between regions where the shoreline water

height is more and less well-defined. The resulting flood elevations, defined at locations

illustrated in Figure 5.4b, are shown in Figure 5.4a.

5.4 Calibration

5.4.1 Emulator construction

Running the model with different values of the roughness parameter gives flood extents

both greater and less than those found from the satellite data (Figure 5.3). A small

number of the ensemble of 638 model runs was taken, ensuring that the range of their

predicted flood extent spans the inundation range found from the satellite data. Figure

5.4c illustrates the water surface profiles at the left bank obtained from these selected

runs, which span reasonably well the observations shown in Figure 5.4a.

In order to construct an emulator in (x, y, n) space, a random sample of 40 water surface

elevations was taken from these selected runs, at points on the boundaries of the model

output flood outline. The projection of these points onto the spatial plane is shown in

Figure 5.4d. Note that these points are concentrated near the boundaries of the flooded

area rather than being uniformly distributed over the plane. This has been done, recog-

nising that emulator errors increase away from the design points, as it is here that the

emulator is required to be most accurate in order to make best use of the observation data

and also to generate accurate flood predictions. Note too, that the right bank is steeper

than the left bank, so the right shoreline changes little with varying roughness parameter,
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Figure 5.4: LISFLOOD calibration and emulation data a) Flood water elevation inferred
from the SAR flood outline image b) Points where flood elevation values were extracted
from SAR observations c) Typical LISFLOOD water surface profiles, at different values
of Manning’s n d) Points used to construct the LISFLOOD emulator

and thus emulator design points appear to be spatially closer together on the right bank.

An alternative method for emulator design would have been to have taken a Latin hy-

percube of training points over the (x, y, n)-plane, extrapolating the water surface, using

distance-weighted averaging, from the shoreline to the edge of the domain. This has been

tried, but since the water surface is very smooth, has made little difference. The number

of design points is limited by the stability of the covariance matrix. If the design points

are taken too close together, then the covariance matrix becomes singular. The use of

pivoted Choleski decomposition or singular value decomposition permits the number of

design points to be increased, firstly since these are robust decomposition methods, and

secondly, as an approximation can be made by discarding the smallest eigenvalues. Care

should be taken however, as the exclusion of small eigenvalues in the covariance matrix

smoothes the solution, which may be undesirable.

Regression analysis of the model output at the emulator design points suggests linear

dependence on x, and on the parameter, Manning’s n. Dependence on y is not significant.

A smooth covariance function has been assumed, reflecting our belief about the water

surface.

For illustration, the emulator has been produced using BACCO. Improper vague priors
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were used for all variables, and the calculated regression coefficients were (0.58, -0.78,

0.46) in (1, x, n), the optimised emulator variance was 0.011, while the log(“roughness”)

coefficients were (-5.62, 19.2, -3.94) in (x, y, n)-space. Emulator output has been compared

with LISFLOOD runs not used in the emulator construction. This is difficult to visualise,

as the emulator error is defined as a distribution for every point in the three dimensional

(x, y, n)-space. Figure 5.5 shows the absolute error in mean emulator prediction, and the

standard deviation of the predicted emulator uncertainty plotted on the spatial plane,

compared with output from three LISFLOOD runs not used to train the emulator, whose

values of Manning’s n are close to, midway between, and outside the range of the training

runs. The scale of the mean error is large, but investigation has shown that this is not

due to the choice of training points, but rather to the nature of the model output. While

it might be expected that the water surface varies gradually and smoothly along the

reach, Figure 5.6 shows the deviation of the model output from this assumption, which

is considerable at some locations close to the shore line, or to the edge of the domain.

Figure 5.5 also shows that the uncertainty in the emulator prediction increases away from

the training runs.
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Figure 5.5: Absolute error in mean emulator prediction, and standard deviation of the
predicted emulator uncertainty for three different values of Manning’s n: close to, in
between, and away from the training runs. Values of test runs and training runs are
illustrated
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Figure 5.6: Deviation of model output from linear slope
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Bastos and O’Hagan (2009) discuss the validation of Gaussian process emulators. Given

the correlated nature of the emulator output, they suggest calculating the Mahablanobis

distance between the emulator output with the computer model output. Oakley and

O’Hagan (2002) note that the emulator errors are distributed as a multivariate t-distribution,

with mean m∗(x) and variance σ̂2c∗(x, x′) given in Section 3.6. For a multivariate emula-

tor, √
q − p

σ̂1
√
q − p− 2

Q−T
(
m∗(x, y, n)−M(x, y, n)

)
∼ tq−p (5.1)

where q is the number of points, p is the number of regression parameters, and Q is a ma-

trix such that QQT = C∗, the correlation matrix defined by C∗i,j = c∗(xi, x
′
j), with c∗(x, x′)

defined in Section 3.6. The simplest formulation for Q is generally the Choleski decompo-

sition of C∗. However, if the points represented in the correlation matrix C∗ are too close

together, this matrix becomes numerically unstable, so an alternative decomposition was

used, determining the eigendecomposition of the matrix C∗ using singular value decomposi-

tion.
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Figure 5.7: Emulator error distribution; with super-

imposed t distribution with 5 degrees of freedom.

The distribution was found as fol-

lows. Taking the ensemble of 638

model runs, a number of draws

were made in the (x, y, n) space, in

a Latin hypercube, and spaced as

far as possible from each other and

from the training locations. Those

points where the water surface was

not above the DEM were then dis-

carded, and the expression on the

left of Equation (5.1) was calcu-

lated. In view of the numerical dif-

ficulties found in determining Q, it was infeasible to apply this process for more than

approximately 100 points at a time, so in order to have a reliable estimate of the distribu-

tion, the calculation was repeated until the total sample was 2037 points. The degrees of

freedom should, however be related to the number of runs used to generate the emulator,

giving a theoretical t distribution with 5 degrees of freedom. The transformed differences

have mean 0.051, standard deviation 1.877 corresponding to a t distribution with 3 degrees

of freedom (Figure 5.7).

5.4.2 Calibration

In the absence of any evidence pointing towards greater complexity, the chosen regression

basis for the model inadequacy, as for the emulator, is a linear spatial and parameter

dependence, this time on (x, y, n), and the covariance is assumed smooth. Note that while

the computer model output is that of a water level, when this is above the land surface,
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both the emulator and the calibration spread across the entire spatial domain.

Calibration has been undertaken using a subset of the data; initially 26 data points, spread

along the shoreline at both sides of the flooded river, and for comparison, with 61 data

points. The prior distributions were as shown in Table 5.1. Specification of prior distri-

butions for the noise variance is not straightforward. The Bayesian methodology requires

that the prior distributions represent the best knowledge of the technical expert. How-

ever, in this case the observation data have been derived by a complex process; first the

interpretation of satellite images into binary images, followed by translation into water

heights. It was felt that the standard deviation of the error could be considered to be

somewhere between 10cm and 25cm. If, however, the assumption were taken, that the

water level should vary linearly with distance along the x-direction, the residual variance

of the data would imply an error standard deviation of approximately 35cm. Accordingly,

four different prior distributions were taken for the observation error, Normal distributions

with means corresponding to each of these values, but small standard deviations, and a

more vague distribution, which encompassed all possibilities. Bearing in mind the sensi-

tivity found for the posterior prediction interval of the toy example to prior distribution

on model inadequacy variance (Table 3.3), this was also investigated, but had little effect

on the calibration and calibrated prediction.

Table 5.1: Prior and posterior distributions for calibration

prior posterior mean and (st. deviation)
variable distribution comment 26 data points 61 data points

n N(.0265, .02242) 0.027 (0.012) 0.028 (0.013)
β1 emulator (const) 0.62 (0.07) 0.61 (0.07)
β2 emulator (x) -0.77 (0.09) -0.78 (0.10)
β3 emulator (n) 0.44 (0.07) 0.44 (0.07)
β4 inadequacy (x) 0.33 (0.18) 0.29 (0.23)
β5 inadequacy (y) -0.68 (0.32) -0.63 (0.42)

log(ω1x) N(3.5, 22) 2.57 (0.35) 2.44 (0.35)
log(ω1y) N(2.5, 22) 2.84 (0.58) 2.88 (0.58)
log(ω1θ) N(2, 22) 1.59 (0.47) 1.46 (0.46)
log(ω2x) N(2, 1.42) 2.07 (1.19) 4.13 (0.66)
log(ω2y) N(2, 1.42) 2.52 (1.38) 5.11 (0.76)
log(σ21) N(−4.5, 22) -4.71 (0.37) -4.62 (0.40)
log(σ22) N(−4.5, 1.42) -5.32 (1.10) -4.05 (0.49)

log(σ2ε ) N(−4.5, 0.12) mean ↔ σ=0.35m
N(−5.23, 0.12) mean ↔ σ=0.25m
N(−7.06, 0.12) mean ↔ σ=0.10m
N(−5.23, 22) mean ↔ σ=0.25m -6.15 (0.44) -5.72 (0.42)

Distributional means and standard deviations for posterior distributions are given in

Table 5.1 for the cases with vague prior distributions. Emulation and calibration for

both datasets leads to posterior emulator parameterisation very similar to that found by

BACCO. The differences in posterior parameterisation of the model inadequacy function
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are largest when looking at the “roughness” coefficients, log(ω2x) and log(ω2y); these are

somewhat larger for the cases with 61 data points than those with 26 data points. In ad-

dition, the model inadequacy variance is slightly larger for the cases with 61 data points.

It is also noticeable that the standard deviations for the model inadequacy regression

parameters are large, indicating that it may have been better to have calibrated with a

zero model inadequacy mean in this case. The posterior mean observation error variance

corresponds to an observation error standard deviation of 16cm in the case with 26 data

points, and 20cm in the case with 61 data points.

As regards the effect of prior observation error distribution, the distribution of the posterior

observation error variance follows the prior closely when the prior is specified with a small

variance. However, the model inadequacy variance and “roughness” in both x and y

directions increase with decreasing prior observation error variance (although the range is

rather less than the difference between the cases with different data sets), indicating that

the variability is interpreted as model inadequacy when the solution is constrained.

The calibrated prediction of the input data is shown, for each of the eight cases, in Figure

5.8. From the first column of the output water profiles, it can be seen that the mean profiles

appear somewhat uneven, reflecting the uneven path of the shorelines. In particular,

there is an apparent step in elevation at approximately 800m along the left bank. This

corresponds to the end of the branching area of inundation seen in Figure 5.2, at a low-

lying area on the DEM; the shoreline has been defined (Figure 5.4a) to be at each position

on the x-axis, the extrema of the inundated area on the y-axis, thus giving rise to the step

seen in Figure 5.4a and Figure 5.8. With hindsight, it may have been more appropriate to

define the axis along the centre-line of the river, as would be natural for a one-dimensional

model. This would certainly have been the case for a reach which did not lie conveniently

along the x-axis, but the benefits of the additional notational complexity were less obvious

in this case.

The second issue to appear from the first column of output, is that the width of the

prediction interval reduces with reducing prior mean observation error; indeed, the third

and fourth results (Figure 5.8ci and di), appear to be plausible in predicting a profile

which could have given rise to the observed data.

Looking at the second column of results, however, the picture is not so clear. These runs

have been done with more data points, showing greater scatter, and in particular there are

two apparently low values on the left bank at approximately 700m along the reach, and a

series of three apparently high values on the right bank,at approximately 2500m. It can

be seen in the first three frames in the second column (Figure 5.8aii, bii and cii) that the

predicted mean water height profile follows the data increasingly closely with decreasing

prior observarion error variance. The fourth case (dii) looks fairly close to the second (bii),

unsurprising since the posterior observation error estimates are similar.

What is not clear, is whether the fourth profile (Figure 5.8dii) follows the data implausibly

closely, indicating that for this problem there may be an issue of identifiability between
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Figure 5.8: Prediction of water levels along the measured shorelines, with different prior
assumptions about measurement error, and numbers of data points: a) mean error 35cm,
precise distribution, b) mean error 25cm, precise distribution, c) mean error 10cm, precise
distribution, d) mean error 25cm, vague distribution, i) 26 data points, ii) 61 data points

the observation error and the model inadequacy function (Wynn, 2001), which can only

be resolved by a tight specification of the observation error prior mean. An alternative
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interpretation would be that the excursions from a smooth profile are real; the low values

on the left bank near 700m correspond with the jump in the shoreline location, while the

high values on the right bank occur close to the steep bank section (Figure 5.1, where

the data processing may be susceptible to greater errors in the translation from binary to

height data. In any case, since this methodology distinguishes between model inadequacy

and observation error on the grounds of correlation, it may be unreasonable to expect a

strict separation between the two where there are sequences of points deviating from the

mean line.
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Figure 5.9: Probability of inundation

5.5 Comparison of results with previous work

By combining the predicted water profile from the case ci with the DEM, it is possible to

produce a map of probability of inundation across the entire domain (Figure 5.9). This can

be compared with the flood likelihood map for the same event generated by Aronica et al.

(2002) who used GLUE (Figure 5.10). The images are similar, although some difference

may be expected from the difference in preparation of the data: the Aronica et al. (2002)

analysis predicted binary flood inundation on a 50m grid, whereas the current analysis has

been performed in terms of depths, making it more likely to show small areas of isolated

inundation.

Aronica et al. (2002) noted the sensitivity of their prediction to the choice of threshold

for discarding “non-behavioural” runs. This corresponds with the analysis of GLUE by

Montanari (2005), who undertook a systematic examination of the dependency of GLUE

model parameterisation on the assumptions commonly taken in its application. The re-
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sults in the previous section illustrate that the Bayesian predictions are equally sensitive

to modelling assumptions, in this case the prior distribution of observation error. How-

ever, it is more natural to express a prior belief in the distribution of observation error,

which is a physical consequence of the quality of the observation process, than in the

behavioural threshold used in GLUE, which does not correspond to a physical quantity.

Moreover, the results generated here can strictly be referred to as predictive probabilities

of flooding, whilst the results presented by Aronica et al. (2002) are relative measures of

agreement which do not correspond to a carefully constructed statistical model. Clearly,

the comparison between the two methods is based on a single example, moreover one

where the existence of model inadequacy is not obvious from the hydraulic model output,

but the current Bayesian method has the advantage of a coherent statistical analysis, and

the potential of handling more substantial model bias.

Figure 5.10: Probability of inundation obtained by Aronica et al. (2002)

5.6 Alternative emulator formulations for multivariate model

output

The problem of the flood extent model could be classed as one of multivariate output. A

number of methods have been explored to deal with multivariate output in the context of

the formulation of Kennedy and O’Hagan; the chief issue being that the dimensionality

of the calibration problem can easily become unwieldy. Rougier (2008) has classified a

number of methods for dealing with emulators for multivariate output. Of these two are

particularly suitable for the flood extent model. One is the approach used here. The

other is the use of principal components analysis, suggested independently by Higdon et

al. (2008a), and by McNeall (2008).

Principal components analysis is a technique involving linear transformation, which can

be applied to a correlated set of zero mean vectors, to yield an orthogonal vector set.

The transformation is unique (to scaling) and invertible. The orthogonal set, known
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as eigenvectors, can be ordered by the eigenvalues, each of which contains the variance

of the set in the direction of the related eigenvector. This provides the key to the use

of the technique for dimensionality reduction, when the variance in some directions can

be considered small enough to be ignored. The technique effectively involves projection

of the data matrices onto the hyperplane which will explain the significant part of the

variation.

Higdon et al. (2008a) and McNeall (2008) have used this technique to formulate empirical

emulators for their high-dimensional model output. It would be possible to transform

the data in a similar way, and conduct the entire analysis in the transformed space, but

instead the data is introduced untransformed. This ensures straightforward treatment

of uncorrelated noise, but raises the issue of the cross-covariance between transformed

emulator runs and untransformed data. Higdon et al. sidestepped this issue by assuming

zero cross-covariance without comment.

The use of principal components analysis has been explored for the generation of an

emulator for the Buscot flood model, although not for calibration. To simplify the problem,

computer model output was preprocessed to extend the specified water surface beyond the

point at which it intersects the DEM to the edge of the domain. A stratified sample of runs

was then drawn from the range of Manning’s n, and the entire extended water surface was

used for that parameter value, comprising 48× 76 = 3648 data points for each parameter

value. A complete transformation reduces the dimensionality of the problem from 3648 to

the number of parameter values chosen. Discarding dimensions with insignificant variance

will reduce the size of the problem still further. Thus, taking 6 runs with a spread of input

parameter values, and applying principal components analysis, Table 5.6 shows that 98.7%

of the variance is explained by the first principalcomponent. An emulator was formulated

with a single principal component, yielding results similar to those already shown.

The potential advantage of this emulator formulation is in condensing information from

an extensive flood domain to a few principal components, easing the eventual calibration

study. While the method is particularly useful in fields where the model output values

contain underlying structure, such as the global spatial distribution of climate variables of

McNeall’s study (2008), it could equally be used in the case of an extensive flood domain,

where it might not be appropriate to describe the model output by a few individual points,

as has been done in this comparatively small calibration study.

Table 5.2: Variance explained by different numbers of principal components for a flood
model emulator

Number of principal components 1 2 3 4 5 6

Percentage of total variance 98.69 0.70 0.55 0.06 0.00 0.00
Cumulative percentage 98.69 99.38 99.94 100.00 100.00 100.00
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5.7 Summary

The application has been presented of the calibration methodology of Kennedy and O’Hagan

to a steady state flood model, using satellite data. This has been demonstrated in the

case of a model, using LISFLOOD-FP, of a reach of the river Thames, near Buscot. The

application necessitated the construction of an emulator for the model, to speed up the

calibration. A number of methodological choices have been discussed and demonstrated,

and sensitivity of the calibration to prior distributions was examined. It was particularly

noted that attention must be paid to the prior estimate of observation error variance, as

this does affect the prediction interval, and hence, any inundation probability based on

it.

In spite of this weakness, this calibration of a steady-state flood model on flood extent

data illustrates a significant step forward, since the only other studies reported in the

literature of flood model calibration based on flood extent data use a rather unsatisfactory

method, leaving the uncertainties embodied in a poorly justified probability of inundation.

With the increasing availability of satellite images, the calibration of flood models using

such information may be expected to become more prevalent, and the introduction of an

effective calibration method is thus important.



Chapter 6

Calibration of a dynamic flood

model

6.1 Introduction

This chapter concerns the calibration of a dynamic flood model using historical data. Most

flood models are dynamic, reflecting the evolution of the flood wave. Time series of gauged

river stage or flow data are far more freely available than satellite images, such as that

used for calibration in the previous chapter. Aerial images, similarly, are rarely available

until well after the peak of the flood. It is thus important to be able to calibrate dynamic

models.

The model calibration methodology based on Gaussian process representation of emulator

and model inadequacy function was conceived for static computer models, or computer

models where the output can be captured as a snapshot. A number of extensions to the

Gaussian process emulator have been proposed for time-varying output, but none are so

far sufficiently promising to be attractive as a starting point for calibration of output from

a dynamic model, using dynamic data. The chapter begins with a brief review of these

extensions in the context of time series methods used in the calibration of dynamic models,

followed by a description of an emulator approach transforming the time-varying problem

to one which can be treated in an analogous manner to the static model.

The approach to dynamic emulation is applied to a dynamic model of a reach of the

river Severn, near Shrewsbury. Flows on this river reach have been previously modelled,

with both gauged records (Romanowicz et al., 2008) and satellite images of flood extent

(Bates et al., 2004) used for calibration. The work presented here is the first development

of a Bayesian calibration method for dynamic flood models that explicitly incorporates

model structural inadequacy. Part of this work has been reported in Manning and Hall

(2010).

74
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6.2 Calibration of dynamic models

Most calibration methods for spatially varying models can be adapted for calibration of

dynamic models, by treating time as another spatial dimension. However, this leads to a

high-dimensional problem. Recursive methods, where the estimates are updated one step

at a time, are often more suitable for forecasting, permitting assimilation of new data as it

becomes available. These methods lend themselves to the identification of models whose

parameter values vary with time, although this is not a necessity. Moreover, recursive

methods can be particularly efficient, using the current time series value as a starting

point for estimation of the value at the next time point.

A popular and efficient method for recursive time-series estimation is the Kalman filter,

which has also inspired related methods. The Kalman filter (Kalman, 1960) is a recursive

algorithm designed to solve the linear time series problem:

xt = Fxt−1 +Dut−1 + wt−1

yt = Mxt + εt
(6.1)

where ut is the input, xt the state variable vector, and yt the observed value at time t,

with system noise wt and observation noise εt. The assumed system model is represented

by matrices F and D, while M represents the relationship between the system variables xt

and the observed variables yt. Given the covariance of the observation errors, the Kalman

filter alternates between predicting the state at the next time step, and its covariance,

and updating the prediction, using the deviation of the data from that forecast, under the

assumption of multivariate Normal errors. The Kalman filter is most commonly thought of

as a technique for data assimilation in forecasting, but can also be applied as a smoother,

to provide the optimal estimate of the state xt at all values of t in the observed series

t ∈ [0, T ], under the assumption of uncorrelated Gaussian observation noise.

An alternative derivation is the Dynamic Linear Model of Harrison and Stevens (1976),

who started from a Bayesian standpoint, but effectively used the Kalman filter to solve

their models. The context of their work (West and Harrison, 1989), is in data models

which do not necessarily have exogenous time series input, while the Kalman filter was

derived expressly to interpret systems with time series input and output.

The Kalman filter represents a linear model with known parameters, but an extension,

the ensemble Kalman filter (Evensen, 2003), and its associated smoother (Evensen and

van Leeuwen, 2000), allow for model nonlinearity by using an ensemble of model states to

estimate the state covariance. This permits simultaneous estimation of the system states

and the model parameters, which need not be constant, and has been successfully applied

in the assimilation of river flow data (Moradkhani et al., 2005a, Todini, 2008).

Drécourt et al. (2006) described a version of the ensemble Kalman filter, designed to

allow for bias in model predictions, while Kollat et al. (2008) combined such a bias-

aware ensemble Kalman filter with sequential Gaussian simulation (Deutsch and Journel,



Chapter 6. Calibration of a dynamic flood model 76

1992), which assumes a spatial Gaussian field, forming a spatio-temporal model, and

demonstrated the spatio-temporal modelling method with respect to the assimilation of

monitoring data in a three-dimensional groundwater experiment.

The ensemble Kalman filter still makes an approximation to a nonlinear system model, only

taking into account the first two moments of the distribution. The particle filter provides

a closer approximation to such a system model, enabling greater accuracy and stability

(Moradkhani et al., 2005b). The model solved by the particle filter can be generalised

from Equations (6.1) to

xt = f(xt−1) + d(ut−1) + wt−1

yt = m(xt) + εt ,

where the system and observation models are now allowed to be nonlinear, and it is not

necessary to make the assumption that the noise series wt and εt are Gaussian. Bayesian

solution of the model equations results in an intractable posterior distribution; simulation

from this distribution is achieved by tracking the behaviour of particles, or points sampled

from the state space.

It could be said that the identification of model parameters which vary with time, often the

outcome of recursive time series estimation, points to a structural inadequacy of the spec-

ified model to describe the system under investigation. A number of studies have similar

aims in investigating the structural uncertainty in dynamic models; by identifying parallel

time-dependent structures, and relating them to the original constant parameter model,

it is possible to detect structural weaknesses in the original physics-based model.

The data-based mechanistic (DBM) methodology of Young (2003) has Kalman filters

at its core. Many of Young’s transfer function models involve the use of a nonlinear

state-dependent transformation of the input data, followed by a linear transfer function

model. This is a flexible and efficient model, which has been demonstrated in a number

of flood catchments (e.g. Young, 2003, Romanowicz et al., 2008). It is also possible to use

Young’s nonlinear transfer function to replace the original, physics-based model, effectively

providing an emulator for it (Beven et al., 2009).

Stigter and Beck (2004) developed a recursive prediction error algorithm, as an alternative

to the extended Kalman filter, with the additional flexibility that it can be used for

nonlinear as well as linear models, and used this to estimate parameters for a water-quality

model for the river Calder. Lin and Beck (2007a, 2007b) synthesized the algorithm with

the data-driven techniques of Young, using the parallels between the approaches to identify

model structures for enviromental processes.

Reichert and Mieleitner (2009) proposed a method to identify which model parameters

should be considered variable, suggesting that single variables, or groups of variables be

replaced by a time-dependent, stochastic parameter. The stochasticity is described by an

Ornstein-Uhlenbeck process, which permits short-term variation from the parameter mean

value, depending on a characteristic correlation time and an asymptotic variance. Setting
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the parameters for the Ornstein-Uhlenbeck process to appropriate values, the model pa-

rameters are estimated by Bayesian regression, with a significant reduction in errors taken

to imply that the data justify the replacement of the parameter under examination with a

stochastic parameter in the original model. The analysis can be repeated for all variables

in the model, to find out which, if any, should be considered time-dependent.

6.3 Extensions of the Kennedy and O’Hagan methodology

to time-varying problems

A number of different approaches have been suggested to extend the Kennedy and O’Hagan

approach to time-varying problems. Not all of these have been demonstrated in the context

of calibration, as some emulation formulations are quite cumbersome.

The first approach applies to those problems where the input can be characterised by a set

of scalar parameters. In this case it is possible to treat the time domain as an additional

spatial dimension, and to emulate and calibrate in the same way as the foregoing examples.

It can be seen that this approach may limit the length of the output time series which

can be treated. An extension of this approach is thus to transform the model output

into a more parsimonious domain. Higdon et al. (2008b) used Principal Components

Analysis to reduce the dimensionality of a heat conduction problem in the time domain,

in a similar approach to that of Paragraph 5.6 in the previous chapter. McNeall (2008) and

Wilkinson (2010) both used Principal Components Analysis to reduce the dimensionality

of time varying output from earth system models of intermediate complexity. Bayarri et

al. (2007) used wavelet transformations to describe the complex time-series output from

a model for vehicle crashworthiness. In both cases, the transformation was undertaken

off-line, and the analysis proceeded on the basis of this transformation. In the case of the

study of Bayarri et al., the analysis was done in the domain of the transformed output. In

neither case, however, was the input also high-dimensional, such as a time series.

A second approach to emulation of time-varying models, which has not been demonstrated

in the context of calibration, is to train an emulator to describe a single step of the

computer model, and to emulate a time-varying output by simulation through repeated

application of the single-step emulator. This approach has been used independently by

Bhattacharya (2007), and by Conti et al. (2009), with slightly different implementations

concerning the locations where the emulator is to be evaluated - Bhattacharya defined a

grid, and Conti et al. chose points as they arose - and which simulated emulator values are

used to condition subsequent evaluations. Both implementations are rather cumbersome.

Conti et al. claim that their emulator is more efficient than that of Bhattacharya, but

demonstrated it for only 25 time-steps of a simple rainfall-runoff model.

Little et al. (2004) used Bayes Linear modelling, while Liu and West (2009) used fully

Bayes analysis, to combine the Gaussian process methodology with a time-varying au-

toregressive Dynamic Linear Model (West and Harrison, 1989), to form a temporo-spatial
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calibration. These approaches offer greater speed than that of Bhattacharya and of Conti

et al., but replaces the Gaussian process representation in the time domain with one which

is expressly designed for time series analysis. However, as with the models of Higdon et

al. (2008b), McNeall (2008), Wilkinson (2010) and Bayarri et al. (2007), neither formula-

tion allowed for time series input. For hydrological applications, the autoregressive model

would need to be replaced by an autoregressive model with exogenous inputs, to account

for forcing. In this case, this approach would resemble that of Kollat et al. (2008), who

combined a bias-aware ensemble Kalman filter with a spatial model based on a Gaussian

process.

The approach taken in this study is determined by the application, involving the evaluation

of Equation (1.2) in the Introduction, where the probability of downstream inundation is

integrated over all possible upstream input conditions. In particular, having calibrated

the hydraulic model for a given input hydrograph, the calibrated prediction is needed for

other input hydrographs. The most parsimonious method of evaluation of this integral

would be to couch the effect of the catchment on the upstream hydrograph as a transfer

function. This is the approach taken in this study, and calibration has been performed in

the transformed space, in a similar way to the study of Bayarri et al. (2007).

6.4 Flood model

The dynamic calibration methodology is developed here in the context of a dynamic flood

model of the river Severn, in the region around Shrewsbury. The Severn and its chief

tributary in its upper reaches, the Vyrnwy, rise in the Welsh mountains in an area of

high rainfall and steep slopes. Below their confluence, the profile is much shallower, and

flooding is a frequent issue in the centres of population along its course.

The area under study concerns a 22 km reach of the river Severn below the confluence

with the Vyrnwy and above Shrewsbury (Figure 6.11). At its upstream point, Montford,

long-term records exist of 15-minute measurements of both stage and discharge, although

the Environment Agency (2010) note that the discharge measurements are not reliable at

high flows, and recommend use of discharge values obtained from the stage using a rating

curve. Similarly, records of river stage have been kept at Welsh Bridge in the centre of

Shrewsbury.

The model of the river Severn used in this study was originally set up by the Environment

Agency, using Hec-Ras, a commercially-used hydraulic modelling package developed by the

US Army Corps of Engineers (2002), and described in Section 2.3.2.2. This was applied to

a 60km reach from Montford to well below Shrewsbury. Upstream boundary conditions are

provided by hourly gauged stage at Montford, while initial flow conditions along the reach

were specified as the upstream gauged flow at the beginning of the modelled time frame.

Downstream boundary condition was provided by the normal depth equation (Manning’s

1Data obtained from EDINA (Edinburgh University Data Library).
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Figure 6.1: Digital elevation map of the Severn catchment in the area around Shrewsbury,
with the river course superimposed, and gauging stations marked in red. Modelled flood
relief channel in Shrewsbury marked with dotted line.

equation), relating flow to slope.

Taking the historical record at Montford for the period of high flow from 15th January

to 7th March 2002, Hec-Ras has been run for a number of (constant) values of Manning’s

n for the channel. As in the previous study the value for the floodplain roughness was

not varied, since the output was found to be insensitive to floodplain roughness. Figure

6.2 shows both the gauged stage at Montford, and the model output at Welsh Bridge

in Shrewsbury, together with gauged stage. It can be seen that no parameter value will

enable the model to reproduce the output data.

6.5 Calibration

6.5.1 Emulator construction

The emulator chosen for this river reach is due to Romanowicz et al. (2008). This is

a nonlinear transfer function, consisting of an ARX model (autoregressive model with

exogenous input), applied to the output of a nonlinear transformation of the upstream

stage measurement. An ARX model can be described as a relationship between an input

time series xt, t = 1, · · · , n and output time series yt, t = 1, · · · , n as follows:

yt = a1yt−1 + a2yt−2 + · · ·+ apyt−p + b0xt−l + b1xt−l−1 + · · · bqxt−l−q + εt

where l refers to the lag between input and output, and εt is an uncorrelated noise series.

The model to be used to describe the relationship between input and output is the most

parsimonious model justified by the data. In this case, since a nonlinear transformation is

applied to the input data before formulating the ARX model, the model order is described
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Figure 6.2: a) Gauged upstream stage at Montford, 15th Jan - 7th Mar 2002, b) Output
of Hec-Ras model, with input of gauged upstream stage, for different values of Manning’s
n, compared with gauged downstream stage at Welsh Bridge in Shrewsbury, showing that
no value of the parameter will allow the model output to correspond with the data

by p = 1, q = 0 in the above, giving

yt = ayt−1 + bxt−l + εt (6.2)

Heuristic justification for the choice of such a nonlinear transfer function can be demon-

strated with respect to Figure 6.3. If the linear ARX model, Equation 6.2, is applied

to the scaled upstream stage (Figure 6.2a), and taking the lag to be 0, the output yt is

approximately linearly related to the exogenous input xt (Figure 6.3a). If, however, the

input is, for example, squared before applying the ARX model, so that the relationship

is

yt = ayt−1 + bx2t + εt (6.3)

then the relationship between the input and output (Figure 6.3b) is clearly nonlinear.

A plot of the downstream measured hydrograph against the upstream hydrograph (Fig-
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Figure 6.3: Heuristic motivation for emulator strategy: a) input-output plot, when output
is determined by Equation (6.2); b) input-output plot, when output is determined by
Equation (6.3)
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Figure 6.4: Input-output plots: a) downstream v. upstream gauged stage (relative to
local data- 47mAOD and 52mAOD respectively); b) downstream stage v. transformed
upstream gauged stage

ure 6.4a), demonstrates a nonlinear relationship. The modelling method suggested by

Romanowicz et al. is to find a nonlinear function b(·) so that yt and b(xt−l) are related

by the first order ARX model yt = ayt−1 + xt−lb(xt−l). Figure 6.4b shows the effect of

applying an appropriate transformation b(xt−l) on the linearity of the relationship with yt.

It should be noted that the hysteretic effect seen in Figure 6.4a is due to the lag between

the upstream and downstream signal. Choice of an appropriate lag reduces the ampli-

tude of the “loops” in the relationship, while straightening is effected by the nonlinear

transformation.

Romanowicz et al. (2008) used the function SDP of the CAPTAIN time series analysis

toolbox (Taylor et al., 2007) to determine the nonlinear transformation. This method

involves reordering the input and output data in terms of increasing output stage, and

solving for a variable-parameter ARX model with respect to the stage rather than with

respect to time. The reordering yields a smooth parameter variation with respect to

the input stage. The resulting parameter variation is in effect a non-parametric function
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of input data values; in order to use it further, a parametric model has to be fitted to

this.

In this study, instead of using the SDP function, the nonlinearity is described as a de-

terministic spline function of the upstream stage, so that b(xt) = b(xt|xτ , τ = 1, . . . , nτ ).

The function values b(xτ ) at the spline knots are found using the transfer function iden-

tification routine RIV from the CAPTAIN toolbox as an inner loop of an optimisation,

as illustrated in Figure 6.5. The lag used is that which minimises the fitting error for the

optimal model.

Figure 6.5: Schematic of identification procedure for nonlinear transfer function

Applying this procedure to the hydraulic model input and output for different values of

the parameter Manning’s n, and also for the upstream and downstream gauged stage,

leads to such a representation for each case. These are shown in Figure 6.6. It should be

noted that the stage is defined for this transformation relative to a local datum, and the

choice of data at the two gauges is significant in this transformation. Data were chosen

to ensure that the scaled nonlinear function
b(xτ )

1− a
was nearly constant through the range

of xτ , as this reduced the numerical errors at later stages of the analysis, caused by trend

in the scaled nonlinear function swamping the effects of a change in shape. Local data

were chosen as large as possible, while ensuring that the relative stages were positive at

all times.

Once parameters have been identified for the autoregressive function a and the spline

knot values b(xτ ), time series can be recovered by application of the model yt = ayt−1 +

xt−lb(xt−l) to the upstream hydrograph, x1, · · · , xn. This has been done, both for the

calibration period, and for a validation period, 25th October - 15th December, 2002 (Figure

6.7). Agreement between the recovered time series and the output of the hydraulic model

is good for both time periods, and all values of Manning’s n. Root-mean-squared error

is 0.026m, 0.046m, 0.069m and 0.080m respectively for the four cases illustrated for the

calibration period, and 0.027m, 0.043m, 0.080m, and 0.105m respectively for the cases

for the validation period. This error represents a baseline error in calibration, as the

calibration exercise and further analysis is based on the emulator.
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ent values of Manning’s n and for data: a) nonlinear function values,
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, and b)

autoregressive coefficient, a.
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Figure 6.7: Comparison with hydraulic model output of time series recovered from non-
linear functions and autoregressive coefficients applied to the upstream hydrographs, for
a) time period (15th January to 7th March 2002) used for estimation and b) validation
time period (25th October - 15th December, 2002).

Three formulations have been investigated, to use the above transformation as an emulator.

They are described below.
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6.5.1.1 Gaussian process emulator, with calibration in the time domain

In what follows in this section, the spline described above and the CAPTAIN package

are not used. Instead, a Gaussian process is invoked to serve the purpose of the spline,

defining the time-domain nonlinearity in a stochastic manner. In this formulation, the

conditioning points of the Gaussian process serve a similar purpose to spline knots.

If xt and ηt(θ) are time series, representing measured upstream river level, and calculated

downstream river level from the hydraulic model with parameter θ, assume that the model

runs can be represented by an ARX model with input nonlinearity, as follows:

ηt(θ) = a(θ)ηt−1(θ) + xt−lb(xt−l, θ) (6.4)

where xt−lb(xt−l, θ) is represented by a Gaussian process.

Simultaneous estimation of ηt(θ) and b(xt−l, θ) for all time values requires the covariance

matrix Σi,j =
∑
t

ηt−iηt−j . This covariance matrix is not easy to formulate in the context of

model (6.4); for the simplified model where ηt(θ) = a(θ)ηt−1(θ)+εt, where εt is uncorrelated

Gaussian noise, the covariance matrix would be Σi,j = σ2a (a(θ))|i−j| (cf. Equation 3.2).

Equally, for the model ηt(θ) = xt−lb(xt−l, θ), the covariance could be reasonably taken as

Σi,j = σ2b exp
(
−ω(xi − xj)2

)
(cf. Equation 3.3). However, the formulation of a covariance

expression is more complicated for the model (6.4) where both of the terms a(θ)ηt−1(θ)

and xt−lb(xt−l, θ) are present.

Dropping the function arguments and invoking the Gaussian process b′t = xt−lb(xt−l, θ)

for clarity, the value ηt can be rewritten as follows:

ηt = aηt−1 + b′t

= a2ηt−2 + ab′t−1 + b′t

= arηt−r +
r−1∑
s=0

asb′t−s

The covariance term is then

∑
t

ηtηt−r = ar
∑
t

η2t−r +
∑
t

r−1∑
s=0

asb′t−sηt−r

It is not obvious how to evaluate the final cross term
∑
asb′t−sηt−r, since b′t−s and ηt−r

are correlated, so it must be eliminated. This is only feasible if b′ represents a zero mean

Gaussian process; however since in reality this is not the case, the cross terms cannot

be eliminated, and the covariance cannot be evaluated. This formulation is thus not

practicable. It is possible that the analysis could have been reformulated to estimate

the calibration recursively thriough time. Young (1984) pointed out that the inability

to formulate the covariance relationship correctly is one reason why recursive time-series

estimation is to be preferred.
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The inability to formulate the emulator in the time domain has consequences for the

estimation of noise error in calibration. Under these circumstances, calibration has to be

undertaken in the transformed domain of the autoregressive coefficient and the spline knot

values.

If the autoregressive coefficient a and the spline knot values b(xτ ) are found by optimisation

as described in Section 6.5.1 with reference to Figure 6.5, then the estimation errors are

minimised during the optimisation, without taking into account any prior knowledge.

Since the same procedure is used for both the hydraulic model output and the measured

data, the process of transforming from the time domain to the domain of the autoregressive

coefficient and the spline knot values does not in itself allow for measurement error. If now

the calibration is performed in the transformed domain, error estimation is undertaken

in this domain. However, the structure of the estimated error, transformed back into the

time domain, is no longer that of Gaussian noise.

6.5.1.2 Gaussian process emulator for the spline knot values, with calibration

in the transformed domain

An alternative representation of the transformation described in Section 6.5.1.1 above,

is to take two Gaussian processes in the domain of the autoregressive coefficients a(θ)

and the scaled nonlinear function values at the spline knots
b(xτ , θ)

1− a(θ)
respectively, defining

suitable mean functions as in previous examples. Examination of the variation represented

in Figure 6.6 indicates that the scaled function values do not vary independently with

parameter θ. Thus, a two-dimensional Gaussian process is invoked for the scaled nonlinear

function values:

ηb(xτ , θ) ∼ N
(
Hb(xτ , θ)βb, Vb

)
where

Vb
(
(xτ , θ), (x

′
τ , θ
′)
)

= σ2bexp
(
−ωbx(xτ − x′τ )2 − ωbθ(θ − θ′)2

)
The autoregressive coefficient depends on θ alone:

ηa(θ) ∼ N
(
Ha(θ)βa, Va

)
where

Va
(
θ, θ′

)
= σ2aexp

(
−ωa(θ − θ′)2

)
Emulation is undertaken in the domain of these Gaussian processes, using for data out-

put from an optimisation based on the CAPTAIN package. However, to avoid stability

problems in subsequent recovery of the time series, ηa is defined in terms of an arctanh

transformation of the data, a′ = arctanh(a); this transformation is also implicit in ηb,

which is defined in terms of the transformed data b′′ =
b

1− a′
. As in previous examples,

the parameters βb, ωbx, ωbθ, σ
2
b , βa, ωa and σ2a are to be estimated by MCMC. An assump-
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tion is made that the scaled nonlinear functions are uncorrelated with the autoregressive

coefficient, so that there are in effect two independent emulators. This last assumption is

an over-simplification of the reality; it has been seen empirically that the values at different

knot points have different correlation with a.

Referring to Figure 6.6, regression bases are taken as (1, xτ , x
2
τ , θ) for the nonlinear func-

tions, and (1, (θ − 1.5)−2) for the autoregressive coefficients. Defining the parameter θ as

100 * Manning’s n, the emulator equations were solved for the logs of the hyperparame-

ters. Prior and posterior distributions are given in Table 6.1; note that the distributions

for the ω values are tighter than for the other variables. This reflects sensitivity of the

solution to these values, in particular to the value of ωbx.

Table 6.1: Prior and posterior distributions for emulation

Variable
prior posterior posterior

distribution mean standard deviation

βb1 0.70 0.01
βbx -0.13 0.00
βbx2 0.06 0.00
βbθ 0.01 0.04
βa1 -0.42 0.04

βa(θ−1.5)−2 0.05 0.02

log(ωbx) N(0, 12) -0.25 0.44
log(ωbθ) N(−1, 12) -1.83 0.39
log(ωaθ) N(0, 0.72) -0.12 0.79
log(σ2b ) N(−4.6, 22) -6.31 0.46
log(σ2a) N(−4.6, 22) -2.76 0.87

As in previous examples, the emulator errors and variance are calculated for particular

points in (x, θ). Figure 6.8 shows the 95% prediction intervals for three values of Manning’s

n, midway between pairs of values where the hydraulic model has been run, compared

with validation output from the hydraulic model. It can be seen, as in calibration output

in previous chapters, that the uncertainty increases with distance from the spline knot

values. In this case, the variation of the error variance appears more pronounced, since

the emulator model does not include observation noise. Note that the widths of the

prediction intervals never quite shrink to zero in Figure 6.8, as the Manning’s n values are

between the spline knots. The root mean variances for the nonlinear functions in Figure

6.8 are all 0.0094, with standard deviations on the autoregressive coefficients of 0.060,

0.101 and 0.109 respectively.

It should be noted that unlike the toy example described in Chapter 3, the variance of

the posterior distribution depends heavily on the prior distributions for the “roughness”

coefficients ω. These are also not easy to determine using the reference curves in Figure

3.5 (and allowing for scaling) for comparatively small values of ω. The prior distributions

here were chosen, since they gave comparatively small posterior variances for the nonlinear

function and autoregressive coefficients. Needless to say, a small variance in the transfer
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function coefficients can be expected to translate into a small variance in the output time

series.
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Figure 6.8: Predicted a) nonlinear functions and b) autoregressive coefficients for values of
Manning’s n between those used to construct the emulator, compared with values obtained
directly from the hydraulic model output

Transformation to the time domain has been achieved by simulation, as follows. For

each retained member of the Markov chain, estimates are calculated of the conditional

means

E
(
ηb(x

†
τ , θ
†)|b′′(xτ , θ), βb, ωbx, ωbθ, σ2b

)
and E

(
ηa(θ

†)|a′(θ), βa, ωa, σ2a
)

and variances

Var
(
ηb(x

†
τ , θ
†)|b′′(xτ , θ), βb, ωbx, ωbθ, σ2b

)
and Var

(
ηa(θ

†)|a′(θ), βa, ωa, σ2a
)

of the nonlinear function and (arctanh) autoregressive coefficient values, where we recall

that a′(θ) = arctanh (a(θ)) and b′′(xτ , θ) =
b(xτ , θ)

1− a′(θ)
. Values of ηb(x

†
τ , θ†) and ηa(θ

†)

can be drawn from these distributions, and a number of such draws used to evaluate a

conditional time series, using the time series model, ηt(θ) = tanh(ηa(θ))ηt−1(θ) +xt−l(1−
tanh(ηa(θ)))ηb(xt−l, |xτ , θ). A full conditional distribution is achieved by repeating the

process for each member of the Markov chain. In practice, only one draw is needed

from each conditional distribution, as further draws do not add to the accuracy of the

unconditional distribution. Statistics of the output time series are then calculated from the

ensemble of the output distributions at each time value. Use of the arctanh transformation

for a ensures that the simulated conditional time series remain stable, even when the mean

and variance of ηa are not small.

On transformation to the time domain, use of the scaling in the calculation of b′′ =
b(·)

(1− a′)
ensures that the errors are comparatively small, by minimising the impact of the

uncertainty in a. However, Figure 6.9 shows that the emulation errors are not negligible,

in particular for the curve with the higher Manning’s n value; the mean of the 95% inter-

quantile range of the three curves are 0.107m, 0.154m and 0.267m respectively, although
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Figure 6.9: Predicted time series for values of Manning’s n away from those used to
construct the emulator, compared with hydraulic model output for a) original time period
(15th January to 7th March 2002) and b) validation time period (25th October - 15th
December, 2002).

the root mean squared error of the median time series with regard to the output of the

hydraulic model are 0.031m, 0.052m and 0.063m respectively. For the validation period,

the equivalent values for the 95% inter-quantile ranges are 0.086m, 0.122m and 0.213m,

while the root mean squared errors of the median time series are 0.025m, 0.052m and

0.070m. The prediction range increases, not with mean predicted stage, but with the

slope of the predicted stage. Figure 6.10 shows the relationship between the prediction

range and the slope of the predicted stage, with a 2-hour lag, for Manning’s n = 0.045,

for both time periods considered, indicating a strong linear dependence. This is consistent

with error caused by uncertainty in the autoregressive coefficient, which will affect the

timing of the predicted peak.

The errors in extrapolation have not been estimated. This is because the hydraulic model

failed to compute outside the range which had been used for emulator construction.

There is some potential confusion in this formulation between the representation of the

nonlinear functions as splines b(xt|xτ , τ = 1, . . . , nτ ), and the variation of the knot values

b(xτ ) as Gaussian process functions of (x, θ). This would have been avoided if it had been

possible to represent the nonlinear functions as Gaussian processes, as was proposed in

Section 6.5.1.1.
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Figure 6.10: 95% prediction interval for Manning’s n = 0.045, compared with the slope of
the predicted stage for a) original time period (15th January to 7th March 2002) and b)
validation time period (25th October - 15th December, 2002).

6.5.1.3 Spline emulator, with calibration in the transformed domain

Avoiding the difficulty in specification of prior distributions for the “roughness” coeffi-

cients, and confusion in switching between spline and Gaussian process representation of

the nonlinear functions, the transformation can simply be represented by a pair of spline

functions, the arctanh of the autoregressive coefficient depending simply on θ and the

scaled nonlinear function depending on both x and θ, again using for data output from

optimisations based on the CAPTAIN package. This is a deterministic representation,

and makes no allowance for the errors in determination of the original values, or of the in-

terpolation errors for different θ values. For comparison with Figures 6.8 and 6.9, Figures

6.11 and 6.12 show the equivalent projection of the spline functions for parameter values

away from those used to construct the splines. While there are no estimates involved in

these projections, a very slight disagreement between the spline projections for high input

stage in Figure 6.11 is reflected in a slight underestimate in the peaks of the output time

series in Figure 6.12a.

6.5.2 Calibration

Calibration has been undertaken separately using the last two of the emulator formulations

described above. As with these emulator formulations, calibration is undertaken in the
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Figure 6.11: Projected a) nonlinear functions and b) autoregressive coefficients, for values
of Manning’s n between those used to construct the spline, compared with values obtained
directly from the hydraulic model output
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Figure 6.12: Projected time series for values of Manning’s n away from those used to
construct the spline, compared with hydraulic model output for a) original time period
(15th January to 7th March 2002) and b) validation time period (25th October - 15th
December, 2002).

transformed domain of the scaled nonlinear function and autoregressive coefficient, shown

in Figure 6.6.
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6.5.2.1 Calibration with Gaussian process emulator

As in the steady state flooding example, the emulator and model inadequacy are jointly

estimated. However, in formulating the calibration no model inadequacy has been allowed

for in the autoregressive coefficient, since a one-dimensional variable does not provide

sufficient information to estimate such a quantity. Joint calibration of two quantities, one

of which is estimated without model inadequacy, implies that there is a direct trade-off

between the estimated parameter value and the posterior variance of that quantity. It is

noted that the emulator analysis already resulted in a large uncertainty on the estimate

of the autoregressive coefficient.

The model used is as follows:

d =


yb

ya

zb

za

 ∼ N(Hβ, V ) (6.5)

where

H =


H1b 0 0

0 H1a 0

H1b 0 H2b

0 H1a 0


β =

 β1

β2

β3

 and

V
(
(x, θ), (x′, θ′)

)
=


Σ1b 0 Σ1b 0

0 Σ1a 0 Σ1a

Σ1b 0 Σ1b + Σ2b + σ2εbI 0

0 Σ1a 0 σ2εa


where definitions are analogous to those in Chapter 5. Note that there are three regres-

sion basis submatrices, H1a, H1b and H2b, two for the emulators for the autoregressive

coefficient and the nonlinear function, and one for the model inadequacy for the nonlinear

function. Similarly, the covariance matrices Σ1b and Σ2b refer to the emulator and model

inadequacy for the nonlinear function. Σ1a refers to the variance of the autoregressive

model, while σ2εb and σ2εa are scalar quantities arising from ARX model representation

errors in the nonlinear function and autoregressive coefficient respectively. The interpre-

tation of σ2εb and σ2εa as physical quantities are difficult, as they refer to a transformed

variables, and are difficult to understand in the transformed space.

Once again, the input data are transformed to a′ = arctanh(a) and b′′ =
b

1− a′
. The

regression bases for the emulator are h1b = (1, x, x2, θ) for the nonlinear function, and
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h1a = (1, (θ − 1.5)−2) for the autoregressive coefficient, while for the model inadequacy

h2b = (1, x) has been used for the nonlinear function. The covariance functions are taken

to be smooth as in Equation (3.3), with different hyperparameters for each of the three

covariance functions. These hyperparameters are to be estimated, together with the pa-

rameter θ and the variance of two sources of error, σ2εb for inaccuracies in finding the

nonlinear functions, and σ2εa for the autoregressive coefficient. Prior and posterior distri-

butions for the parameter θ (=100 * Manning’s n) and the log hyperparameters are shown

in Table 6.2.

Table 6.2: Prior and posterior distributions for calibration (first method)

Variable
prior posterior posterior

distribution mean standard deviation

β1b1 0.60 0.09
β1bx -0.02 0.01
β1bx2 0.02 0.05
β1bθ 0.01 0.01
β1a1 -0.42 0.21

β1a(θ−1.5)−2 0.05 0.04

β2b1 -0.13 0.08
β2bx 0.03 0.02
θ N(3.5, 0.52) 3.23 0.39

log(ω1bx) N(0, 12) -0.32 0.42
log(ω1bθ) N(−1, 12) -2.02 0.39
log(ω1aθ) N(0, 0.72) -0.12 0.69
log(ω2bx) N(0, 1.42) -1.06 1.14
log(σ21b) N(−4.6, 22) -5.70 0.41
log(σ21a) N(−4.6, 22) -2.79 0.83
log(σ22b) N(−4.6, 22) -6.09 1.55
log(σ2εb) N(−4.6, 22) -8.85 1.05

log(σ2εa) N(−4.6, 22) -5.12 1.82

Calibrated prediction of the input data yields the posterior distributions shown in Figure

6.13 for the parameter, Manning’s n, for the nonlinear functions and the autoregressive

coefficient. The root mean variance of the estimate for the nonlinear function is 0.014, with

a mean error with respect to the transformed output data of 0.0012, while the standard

deviation of the estimate for the autoregressive function is 0.094 with a mean error with

respect to the autoregressive coefficient associated with the data of 0.013. Transformation

to the time domain is done in much the same way as the transformation of the emulator

estimate, and has again been done for both the calibration and validation time series

(Figure 6.14). For the calibration period, the mean of the 95% inter-quantile range is

0.2m, although the root mean squared error of the median time series with regard to the

output of the hydraulic model is 0.004m. For the validation period, the equivalent value

for the 95% inter-quantile range is 0.15m, while the root mean squared error of the median

time series is 0.017m.
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Figure 6.13: Calibrated prediction, using first calibration method, for a) nonlinear func-
tion, b) autoregressive coefficient a and c) predictive distribution for Manning’s n
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Figure 6.14: Calibrated prediction for stage at Welsh Bridge in Shrewsbury, using first
calibration method, compared with model predictions and observed data: a) time period
used in calibration, b) validation time period

6.5.2.2 Spline emulator

Use of a deterministic spline to encode the model output makes the problem much easier, as

there is no uncertainty associated with the emulator. Once more, the calibration problem

may be formulated in the domain of the autoregressive coefficients and nonlinear functions,

this time without emulator uncertainty, referencing the spline functions directly. As with
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the formulation in section 6.5.2.1 above, calibration is performed simultaneously for the

autoregressive coefficient and nonlinear function, again, with a model inadequacy for the

nonlinear function, but not for the autoregressive coefficient.

Thus, the model used is:

d =

(
zb

za

)
−

(
b′′(xτ , θ)

a′(θ)

)
∼ N

(
Hβ, V

)
(6.6)

where

H =

(
Hδb

0

)

β =

(
βb

0

)
and

V ((x, θ), (x∗, θ∗)) =

(
Σδb + σ2εbI 0

0 σ2εa

)

and b′′(xτ , θ) and a′(θ) are the spline functions embodying the transfer functions, respec-

tively the scaled nonlinear functions and the transformed autoregressive coefficients. Other

definitions are analogous to those in Chapter 5.

As before, the regression basis for the model inadequacy hδb(x) = (1, x) has been used for

the nonlinear function. The covariance functions are taken to be smooth, as in Equation

(3.3). These hyperparameters are to be estimated, together with the parameter θ, and the

variance of two sources of error, σ2εb for inaccuracies in finding the nonlinear functions, and

σ2εa for the autoregressive coefficient. Prior and posterior distributions for the parameter

θ and the log hyperparameters are given in Table 6.3.

Table 6.3: Prior and posterior distributions for calibration (second method)

Variable
prior posterior posterior

distribution mean standard deviation

βδb1 -0.14 0.02
βδbx 0.09 0.02
θ N(3.5, 0.52) 3.59 0.35

log(ωδbx) N(0, 1.42) -0.81 1.22
log(σ2δb) N(−4.6, 22) -5.23 1.69
log(σ2εb) N(−4.6, 22) -6.30 1.38
log(σ2εa) N(−4.6, 22) -8.53 0.93

Calibrated prediction of the input data yields the posterior distributions shown in Figure

6.15 for the parameter, Manning’s n, for the nonlinear functions and the autoregressive

coefficient. The root mean variance of the estimate for the nonlinear function is 0.014,

with a root mean squared error with respect to the transformed output data of 0.0006,

while the standard deviation of the estimate for the autoregressive function is 0.109 with a

mean error with respect to the autoregressive coefficient associated with the data of 0.028.
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Transformation to the time domain is done in much the same way as the transformation

of the emulator estimate, and has again been done for both the calibration and validation

time series (Figure 6.16). For the calibration period, the mean of the 95% inter-quantile

range is 0.2m, although the root mean squared error of the median time series with regard

to the output of the hydraulic model is 0.006m. For the validation period, the equivalent

value for the 95% inter-quantile range is 0.15m, while the root mean squared error of the

median time series is 0.018m.
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Figure 6.15: Calibrated prediction, using second calibration method, for a) nonlinear
function, b) autoregressive coefficient a and c) predictive distribution for Manning’s n

A comparison between the predictive distributions for Manning’s n in Tables 6.3 and 6.3

indicates at first sight that the distributions are different. In addition, the distribution in

Figure 6.13c is positively skewed, while that in Figure 6.15c is negatively skewed. However,

further analysis shows that the two posterior distributions are not significantly different.

The width of the posterior intervals is in addition influenced by the vague prior distribution

on the parameter. With more information about the river reach, it would be possible to

specify a tighter prior distribution. There thus appears to be little to choose between the

output of the two calibration methods detailed above. However, the second calibration

method has been chosen for further use, for simplicity.

6.6 Discussion

In applying the foregoing analysis to further examples, it is necessary to consider the

resilience of the uncertainty estimates to a number of implementational and methodological

choices. These include the choice of time interval for the calibration data and the choice of

spline knot position, the stability of the calibration to input noise, and to the determination

of lag in the ARX model.



Chapter 6. Calibration of a dynamic flood model 96

0 200 400 600 800 1000 1200

48
49

50
51

52

time,h

D
ow

ns
tr

ea
m

 s
ta

ge
, m

A
O

D

a)

0 200 400 600 800 1000 1200

48
49

50
51

52

time,h

D
ow

ns
tr

ea
m

 s
ta

ge
, m

A
O

D

b)

c(
0,

 1
) data

model output
95% prediction interval

Figure 6.16: Calibrated prediction for stage at Welsh Bridge in Shrewsbury, using second
calibration method, compared with model predictions and observed data: a) time period
used in calibration, b) validation time period

6.6.1 Stability of the emulator formulation to spline knot position and

to lag value

In order to check the stability of the optimisation calculation, it was repeated for 5, 7,

9, and 11 equally spaced spline knots, and at different lag values. It was found that the

scaled spline values were stable to the number of knots, although 5 knots appeared to be

somewhat coarse for the shape of the curve. The autoregressive coefficient was also stable,

provided that the calculation was done with the correct lag.

However, if a lag was used other than the optimal lag identified for the transfer function, it

was found that the autoregressive coefficient could change as the number of knot locations

were increased. In addition, with a suboptimal lag, the autoregressive coefficient was not

stable to uncorrelated noise, added to the input hydrograph, before running the hydraulic

model. In this case, if the test was repeated using a number of different noise series, there

appeared to be two groups of a values; however, the spline values, scaled by (1− a), were

always stable.

This instability of the calculation when undertaken with the wrong lag, highlights a prob-

lem with the assumption of uniform lag. Since the emulator is constructed by running an

optimisation to find the nonlinear spline function and autoregressive coefficient for each
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Manning’s n value, repeating the calculation at different lags to find the best one, the

optimal lag is found to increase with increasing Manning’s n. The emulator, however,

has not been constructed to allow for different lags at different Manning’s n values. In

the construction of the emulator, therefore, a compromise lag is chosen, giving a subop-

timal solution for some Manning’s n values, but which leads to consistent autoregressive

coefficients.

Application of this emulator to a longer reach may give rise to difficulties in the choice of a

compromise lag. While the difference between lags for different Manning’s n values is not

great for the reach between Montford and Welsh Bridge, it can be expected to increase for

a longer reach. This is illustrated in Table 6.4, which shows the optimal lags found from

linear ARX(1,0) models applied to Hec-Ras input and output for this reach, and for the

reach between Montford and Buildwas, a further 35km downstream.

Table 6.4: Lag found in best ARX(1,0) model applied to Hec-Ras output

Manning’s n
lag at Welsh Bridge lag at Buildwas

(hours) (hours)

.02 0 7

.03 2 10

.04 4 12

.05 5 15

6.6.2 Comparison with Bayesian calibration, without model inadequacy

In order to understand the impact of a model inadequacy representation, a simple Bayesian

calibration has been performed in the time domain, using the spline emulator instead of

embedding the hydraulic model in the calibration. The data model used was:

et = zt −
(
a(θ)zt−1 + xt−lb(xt−l, θ)

)
∼ N(0, σ2)f(e|θ, σ2, a, b)

L(et|θ, σ2) ∝
1

σn
exp

(∑
e2t

2σ2

)

Manning's n
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Figure 6.17: Posterior distribution of param-

eter Manning’s n, found with simple calibra-

tion method

Priors for θ and σ2 were the same as those

in the other calibrations in this chapter.

The posterior distribution for θ is very

narrow (Figure 6.17), with mean 0.0274,

and standard deviation 0.0003. The com-

parative narrowness of the distribution re-

flects the lack of a model inadequacy func-

tion, since in the other formulations exam-

ined in this thesis, it could be said that the

model inadequacy function has weakened
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the model parameter identifiability. Bearing in mind this narrow distribution, it is not

surprising that the calibrated prediction is sufficiently narrow, that the 95% prediction

interval cannot be seen at the scale of Figure 6.18; the mean standard deviation is 0.12m

for the calibration period and 0.08m for the validation period. In spite of this narrow

prediction interval, it is plain that the model does not fit the data, as was already evident

from Figure 6.2. This is thus a case of an over-fitted model; the effect of the calibration

with model inadequacy is effectively to prevent over-fitting.
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Figure 6.18: Calibrated prediction for stage at Welsh Bridge in Shrewsbury, using simple
calibration method, compared with model predictions and observed data: a) time period
used in calibration, b)validation time period

6.7 Channel modification

The object of using a physically based flow model is to be able to analyse the effect of

future physical changes in the channel, including options for flood risk management. Thus

it is necessary to consider whether the calibration method is applicable to situations where

there has been a modification to the river channel. It is possible to use the hydraulic model

to simulate flow in the modified channel, but the new channel model cannot be separately

calibrated, because the modified channel has not been observed. Instead, it is necessary

to use the existing calibration. The difference in the application comes in the calibrated

prediction. In Chapter 5, the expected value for the calibrated prediction ζ(x†) at input

location x†, in the case where an emulator is not used, conditional on data z, parameters
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θ, model inadequacy hyperparameters ψδ and observation noise variance σ2ε , is given by

Equation (3.10), repeated below:

E
(
ζ(x†)|z, θ, ψδ, σ2ε

)
= M(x†, θ)+hδ(x

†, θ)T β̂δ+τ(x†, θ)TΣ−1
(
z −M(x, θ)−Hδ(x, θ)β̂δ

)
where

τ(x†, θ) = Vδ
(
x†, θ), (x, θ)

)
, with (x, θ) referring to the locations where the data z have

been collected,

Σ = Vδ (x, θ), (x′, θ′)) + σ2ε I is the covariance matrix, and

Vδ ((x, θ), (x′, θ′)) is the covariance matrix representing the model inadequacy alone.

Now suppose that the modified model is denoted M. Then the expected value for the

calibrated prediction is given by

E
(
ζ(x†)|z, θ, ψδ, σ2ε

)
=M(x†, θ)+hδ(x

†, θ)T β̂δ+τ(x†, θ)TΣ−1
(
z −M(x, θ)−Hδ(x, θ)β̂δ

)
The variance of the conditional calibrated prediction remains unchanged, being given

by

Var
(
ζ(x†)|z, θ, ψδ, σ2ε

)
= Σ− τ(x†, θ)TΣ−1τ(x†, θ) + ΛTWΛ (6.7)

where the elements of the second correction term are

W, the covariance matrix of the regression coefficients βδ, and

Λ, defined by
(
hδ(x

†, θ)− τ(x†, θ)TΣ−1Hδ(x, θ)
)
.

In order to find the calibrated prediction in practice, the conditional distribution for ζ(x†)

must be found for each member of the Markov chain; the mean of the unconditional

calibration is given by

E
(
E
(
ζ(x†)|z, θ, ψδ, σ2ε

))
while the variance is

Var
(
E
(
ζ(x†)|z, θ, ψδ, σ2ε

))
+ E

(
Var

(
ζ(x†)|z, θ, ψδ, σ2ε

))
(6.8)

Predicted time series are recovered as before, by simulation of the output, drawing from

the conditional posterior distributions of the autoregressive coefficient and spline knot

values, and filtering the input waveform for each member of the Markov chain.

As an illustration of the application of the calibration to a modified channel, consider

a relief channel in Shrewsbury itself, crossing the neck of the meander, illustrated by

a dotted line in Figure 6.1. Note that this is not a realistic option for flood relief; the

Environment Agency recommended increasing upstream storage in the Welsh mountains to

protect the entire catchment (Environment Agency, 2009b). However, the use of this relief

channel provides an illustration of the methodology. The relief channel has been modelled

in Hec-Ras, using two different cross sections: a triangular cross-section, of depth 5m

and ground-level width 6m, and a rectangular cross section of depth 5m and ground-level

width 10m. Figure 6.19 shows the calibrated prediction for (a) the original channel, (b) the
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triangular cross-section relief channel, and (c) the rectangular cross-section relief channel.

The equivalent predictions for the time series are shown in Figure 6.20.

Note that although the expression (6.7) for the conditional variance remains the same,

the total unconditional variance (6.8) is the sum of the mean of the (unaltered) variance

and the variance of the (altered) mean; thus the variance of the unconditional estimates

in Figure 6.20 are not the same.

1 2 3 4 5 6 7

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Upstream stage, m

S
ca

le
d 

no
nl

in
ea

r 
fu

nc
tio

n 
b/

(1
−

a)

 ai)

1 2 3 4 5 6 7

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Upstream stage, m

S
ca

le
d 

no
nl

in
ea

r 
fu

nc
tio

n 
b/

(1
−

a)

 bi)

1 2 3 4 5 6 7

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Upstream stage, m

S
ca

le
d 

no
nl

in
ea

r 
fu

nc
tio

n 
b/

(1
−

a)

 ci)

● ● ● ● ●

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
Autoregressive coefficient, a

● ● ● ● ● ● ● ● ● ●

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
Autoregressive coefficient, a

● ● ● ● ● ● ● ● ● ●

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
Autoregressive coefficient, a

● ● ● ● ●

aii) bii) cii)

●

Data Model output 95% prediction interval

Figure 6.19: Calibrated prediction for a) original river channel, b) channel modified with
triangular relief channel and c) channel modified with rectangular relief channel: i) non-
linear function and ii) autoregressive coefficient

It is questionable whether the prediction intervals for these modifications are plausible.

In Figure 6.19c the transformed model output for low stage varies much less than those

for the unmodified channel, calling into question the large translation at low stage for the

calibrated prediction in the context of more major modification. Similarly, in the time

domain (Figure 6.20), where the predicted outputs are compared with the outputs for the

modified models, the predicted output in case (c) is for most of the time period below

the lowest model output. However, without other information, from another model for

example, since there are clearly no observations of the modified channel, it is impossible

to say how large a perturbation to the original model is justifiable.

Other authors have considered the translation of the outcome of a calibration to a different

model. Bayarri et al. (2007), in their calibration of vehicle crashworthiness, translated

the results of the calibration from one vehicle to another, and demonstrated success in

their calibration by comparison with subsequent measurements. However, it is clear that

the practicality of extrapolation of a model is problem-dependent. Goldstein and Rougier

(2009) suggested the principle of “reification”, where the outcome of a model could be

compared in a thought experiment to a more complex model, which may or may not

physically exist. The two models are compared by using an emulator for the original model,
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Figure 6.20: Calibrated prediction for a) original river channel, b) channel modified with
triangular relief channel and c) channel modified with rectangular relief channel

which can be extended to account for the additional complexity of the second model, using

Bayes Linear analysis to relate the models to the data. House (2009) applied the reification

principle to a rainfall-runoff model, comparing the output of a reduced complexity rainfall-

runoff model to the full model at a particular time. 67% of the outputs from complete

model runs were contained within the 95% prediction interval from the reified model,

indicating some success for the reification method. However, the choices made in the

extension of the emulator are based on expert judgement about the expected alterations

to the model output. Under some circumstances, it may be difficult to anticipate the

difference in output arising from an extended model.

6.8 Summary

A methodology has been presented in this chapter for the calibration of dynamic flood

models using an emulator suggested by Romanowicz et al. (2008), in the form of a transfer

function. This has been demonstrated with respect to a hydraulic model for a reach of the

river Severn above Shrewsbury, with gauged river stage data from a historical flood. A
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number of algorithmic choices have been examined, and the robustness of the calibration

methodology has been explored in terms of a number of its variables.

The methodology used involves performing the calibration in the domain of the transfer

function. This choice suffers from the problem that observation noise is estimated in

the domain of the transfer function parameters, and will no longer have the structure of

uncorrelated Gaussian noise on retransformation to the time domain. In addition, the

uncertainty accrued in translating from the time domain to the domain of the transfer

function is ignored in the analysis.

Bayesian calibration of the hydraulic model, using the emulator but not the model inad-

equacy function, results in a calibrated prediction which underestimates the peak events,

demonstrating the efficacy of the model inadequacy representation in counteracting the

model bias towards lower peaks.

The emulator has been shown to form an effective transfer function for this river reach, by

applying it to a different flood event. However, application of the calibration to a model

representing modifications to the river reach is more problematical, as it is not clear under

what circumstances the model calibration and model inadequacy can be transferred to

unobserved situations.

The transfer function emulator and calibration approach have been chosen for ease of in-

corporation of calibrated prediction into a flood risk calculation; this will be demonstrated

in the next chapter.



Chapter 7

Use of calibrated prediction in

calculating probability of

inundation

7.1 Introduction

The previous three chapters have demonstrated, for different types of models, how the

Bayesian calibration methodology can be used to provide a calibrated prediction for flood

model output, taking into account model inadequacy. However, the motivation of this

study is to provide a means of incorporating the uncertainties in flood model calibration

into a risk analysis study. The work in this chapter outlines, for the dynamic model of the

Severn presented in the previous chapter, how the calibrated predictions from that model

may be used to provide a probability of inundation.

Reformulating the statement of expected damage in expression (1.1) in the introduction

to this thesis in terms of water height, the expected damage E(c) is

E(c) =

∫
h
c(h)φ(h)f(h)dh

where the height of water at some point in a river or floodplain is denoted h, and the

damage function is denoted c(h), φ(h) is the probability of a failure of the flood defence

system at water height h, and f(h) is the probability density of h. The distribution f(h)

is to be determined from available information, which includes historical field observations

and computer models.

As before, taking the approach that failure of flood defence is inevitable when a threshold

water height is exceeded, and that damage is a fixed cost once the flood defence has failed,

103
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then the expected damage is proportional to the probability of inundation:

P (h > h0) =

∫
h
I(h > h0)f(h)dh

=

∫ ∞
h=h0

f(h)dh

In this case, where the model used to predict water height is conditional on the upstream

water height the integral can be further developed:

P (h > h0) = P (h > h0|h†)P (h†)

where h† is the upstream water height. Thus,

P (h > h0) =

∫
h†
I(h > h0)f(h|h†)f(h†)dh† (7.1)

Evaluation of the integrand is then reduced to two problems; evaluation of the two distri-

butions f(h|h†) and f(h†). The second of these two is known as the flood frequency curve,

and an approach to this is described in section 7.2. The first of these distributions is to

be evaluated with reference to synthetic upstream waveforms, for which downstream cali-

brated prediction can be evaluated. The treatment of the synthetic upstream waveforms is

dealt with in section 7.3. Subsequently, the probability of inundation can be evaluated for

both the existing channel, and a proposed alteration to the channel, as described in section

6.7. A sensitivity analysis is then performed, to identify which parts of the model are most

influential, and a comparison is made with the simple calibration of section 6.6.2.

7.2 Flood frequency curve

The Flood Estimation Handbook (Robson and Reed, 1999) gives a set of statistical proce-

dures for the estimation of flood frequency in a catchment. Robson and Reed recommend

estimating separately the median annual maximum daily mean flow, and fitting a “growth

curve” or extreme value distribution to the scaled data. Although this separation is un-

necessary when dealing with data from a single catchment, the reason for it becomes more

obvious when it is recognised that many catchments do not have a long record of annual

maximum flows. Robson and Reed recommend that when the flood frequency of interest

is smaller than the reciprocal of half of the length of reliable record, data are combined

from different catchments to extend the record. The recommended threshold frequency

in this procedure is a rule of thumb, resulting from the increasing prediction interval with

decreasing frequency. While care must be taken to pool data from catchments with similar

characteristics, errors are reduced when the data are first scaled by the median annual

maximum flow.

Using the methodology set out in the Flood Estimation Handbook gives a frequency curve

for upstream daily mean flow; this then has to be converted to upstream daily peak
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flow using a methodology such as that of Fill and Steiner (2003), and for this study a

further conversion would be required for peak height, with the aid of a rating curve. Both

procedures add extra layers of uncertainty. However, since the fitting of a flood frequency

curve is not the main thrust of this study, a simpler methodology is used here, fitting an

extreme value distribuition to the annual maxima of instantaneous upstream river peak

heights.

A Generalised Extreme Value distribution (Coles, 2001, p 48) gives the probability that

the level z will be exceeded in any given year, and is described by:

G(z) = exp

−
[
1 + ξ

(
z − µ
σ

)]−1

ξ

 (7.2)

where the parameters µ represents the location, σ the spread, and ξ the shape of the

curve. This distribution has been fitted to the available records of instantaneous stage

at Montford, which stretch from 1952 to 2008, comprising 55 complete years of data.

Parameter estimates are given in Table 7.1. The annual probability of exceedance p is

usually described by its reciprocal, the return period, so the flood height dependence on

return period is found by substituting G(zp) = 1− p into Equation (7.2), giving

zp = µ− σ

ξ
[1− {−log(1− p)}−ξ]

zp is called the return level associated with the return period 1
p , and is exceeded by the

annual maximum in any particular year with probability p. A return period plot is shown

in Figure 7.1.

Table 7.1: Parameter estimates for Generalised Extreme Value function fitted to historical
annual maxima of flood height at Montford

Variable Mean
Standard

error

µ, location 5.5332 0.08761
σ, scale 0.5741 0.06404
ξ, shape -0.2557 0.11471

7.3 Synthetic upstream data

The integral in expression (7.1) needs to be evaluated over all possible input conditions.

The section above has dealt with the distribution of peak height, but it is important

to investigate to what extent the shape of the hydrograph around the peak influences

the probability of inundation. If variables χ describing peak shape are influential on the

probability of inundation, the integral (7.1) should be rewritten incorporating the variables
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Figure 7.1: Variation of flood height with return period at Montford, as predicted by fitted
Generalised Extreme Value model

χ, thus:

P (h > h0) =

∫
h†

∫
χ
I(h > h0)f(h|h†, χ)f(h†, χ)dχ dh† (7.3)

A sensitivity analysis has been undertaken with regard to characteristics of peak shape.

This involves identifying the extent of upstream time series required before and after

the peak to capture all dependencies, and a parameterisation of relevant shape indica-

tors.

7.3.1 Selection of appropriate window length for flood peak

Figure 7.2 shows the annual peaks of river height at Montford, from 1952 to 2007, inclusive,

scaled for comparison, and centred in a 20-day window. It is clear that while some of the

peaks are isolated, such as 1971 and 1972, most of the others have nearby subsidiary

peaks. In order to examine the proximity at which a subsidiary peak does not affect

the output, synthetic curves have been constructed to represent the peak shape, and

truncated at varying distances before and after the peak, substituting different constant

water heights for the truncated sections. These synthetic waveforms were then introduced

to the calibrated model for the transfer function representing the river section, and the

sensitivity was examined of the quantiles of the predicted output peak height to the

truncation window of the input peak.

The synthetic input peaks were constructed with reference to the annual maximum peaks

of 1960 and 1995, both of which appear to be fairly isolated (Figure 7.3). A power curve

is used for the rising limb, while the falling limb is represented by the difference between
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Figure 7.2: Flood height at Montford, at annual maximum peaks (scaled by maximum
height), for a window of 10 days before and after the peak

two exponentials, thus:

xrising = 1− a (tp − t)b

xfalling = c exp(−d(t− t0))− e exp(−f(t− t0))

where

tp is the location of the peak, and

a, b, c, d, e, f and t0 are constants to be chosen.

Synthetic curves are used to avoid the interference of irregularities found in real data.

These synthetic curves are scaled to have peak height 7m above local datum (a peak

height with annual probability of 0.016), have then been truncated at (72, 48, 36, 24, 12)

hours before the peak, and (60, 36, 24, 12, 8, 4) hours after the peak, with the remaining

parts of the curve replaced by values of 2,4, or 6. One example of this is shown in Figure

7.4.

Given a truncated input waveform, a distribution of predicted output waveforms can be

found from the calibrated model as follows. For each member of the Markov chain, a draw

is made from the posterior conditional distribution of the autoregressive coefficient and

nonlinear function spline values. These are then used to form a transfer function which is

applied to the truncated synthetic waveforms, chosen using Monte Carlo sampling. Taking
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Figure 7.3: Scaled data for annual maximum peaks in 1960 and 1995, comapred with
synthetic waveforms used for sensitivity analysis
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Figure 7.4: Illustration of the truncation of the flood peak waveform used in the sensitivity
analysis

together the elements of the Markov chain to represent the posterior distribution, and

Monte Carlo samples from the distributions of the predicted transfer function coefficients,

a distribution of output peaks results for each truncated waveform. 5%, 50% and 95%

quantiles of this distribution were taken, and compared with similar distributions for the

untruncated input waveform. The differences at each of these quantiles are shown in Table

7.2. From this it was determined that the input waveform could be truncated 36 hours

before and 24 hours after the peak.
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Table 7.2: Maximum difference in quantile peak height (m), for truncated compared with
untruncated upstream waveform

Quantile
Length Length after peak

before peak 60 hours 36 hours 24 hours 12 hours 8 hours 4 hours

0.025

72 bours 0.000 0.000 0.000 0.000 0.001 0.064
48 hours 0.009 0.009 0.009 0.009 0.009 0.060
36 hours 0.022 0.022 0.022 0.022 0.022 0.058
24 hours 0.070 0.070 0.070 0.070 0.070 0.070
12 hours 0.187 0.187 0.187 0.187 0.187 0.215

0.5

72 bours 0.000 0.000 0.000 0.000 0.000 0.013
48 hours 0.001 0.001 0.001 0.001 0.001 0.013
36 hours 0.004 0.004 0.004 0.004 0.004 0.012
24 hours 0.017 0.017 0.017 0.017 0.017 0.017
12 hours 0.166 0.166 0.166 0.166 0.166 0.166

0.975

72 bours 0.000 0.000 0.000 0.000 0.000 0.000
48 hours 0.000 0.000 0.000 0.000 0.000 0.000
36 hours 0.001 0.001 0.001 0.001 0.001 0.001
24 hours 0.006 0.006 0.006 0.006 0.006 0.006
12 hours 0.059 0.059 0.059 0.059 0.059 0.059

7.3.2 Parameterisation of peak shape

The rising and falling limbs of the annual maximum peaks, truncated to 36 hours before

and 24 hours after the peak, have been modelled separately. Recognising that the rising

slope can be steep, and can occur in a short space of time, at any time in the 36 hours

before the peak, the rising limb has been modelled with a logistic curve (Equation 7.4),

while the falling limb is modelled by a power curve (Equation 7.5). Expressions for the

water heights, as a function of time are thus:

x = x− +
(xp − x−)

1 + exp

(
−γ
(
t− t0
tp − t−

)) (7.4)

x = xp − (xp − x+)

(
t− tp
t+ − tp

)δ
(7.5)

where

t represents time and x represents upstream peak height, with suffices (·)p referring to

peak time, and (·)− and (·)+ to 36 hours before and 24 hours after the peak respectively,

and

t0, γ and δ are parameters to be determined.

The effectiveness of these functions to represent the rising and falling limbs of the histor-

ical annual peaks is shown in Figure 7.5. While it can be seen that the falling limb is

well represented, the rising limb is approximated in most, but not all cases, if preceding
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Figure 7.5: Scaled flood height at Montford, at annual maximum peaks, for a window of
36 hours before and 24 hours after the peak. Hydrograph model superimposed.

secondary peaks are ignored.

The sensitivity of the downstream peak height has been assessed to the peak shape param-

eters x− and x+ (given peak height xp), and t0, γ and δ. It was found that downstream

peak height was sensitive to all of these parameters; however, it was most sensitive to the

parameters x− and x+ representing height before and after the peak.

7.3.3 Joint distributions for peak characteristic parameters

The evaluation of integral (7.1) requires a joint distribution to be found of all the vari-

ables describing distribution of peak height and upstream shape, namely, xp, ∆− =

1 − x−
xp
, ∆+ = 1 − x+

xp
, t0, γ and δ. In order to evaluate the integral, it is necessary

to characterise both the marginal distributions of the independent variates, and their

correlations.

Since the number of annual maximum peaks is limited, marginal distributions and cor-
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relations of the parameters describing peak shape have been estimated from the monthly

maximum peaks. Discarding those months where the maximum peak is overshadowed by

the adjacent month’s peak, and those where the models were not able to well estimate the

peak shape, there remained a sample of 540 peaks.

The marginal distributions were characterised empirically, by interpolation between the

percentiles of the data. However, it was considered that while some of the variables were

bounded at the upper end, others were not; the nature of the tails is listed in Table 7.3. For

each of those distributions whose tails were unbounded, a Generalised Pareto distribution

was fitted to the highest 5% of the data. This distribution

G(u) = 1− ζ
{

1 +
ξ(u− uo)

σ

}−1/ξ
, u > uo

where the model is defined above threshold uo by parameters ζ, σ and ξ. The threshold

is taken here to be the 95th centile of the observed data.

Table 7.3: Nature of marginal distributions for variables describing flood peak shapes

Variable Lower tail Upper tail

yp bounded unbounded
y− bounded bounded
y+ bounded bounded
t0 bounded bounded
γ bounded unbounded
δ bounded unbounded

Simulating from the joint distribution for the flood peak heights and the other variables

requires knowledge not only of their marginal distributions, but also of their correlation.

Correlated covariates are to be generated by postmultiplying Normal random variates with

the Choleski decomposition of the covariance matrix of appropriately transformed data.

Accordingly, the parameter distributions were transformed to Normal, to investigate their

correlation. Figure 7.6 is a scatterplot matrix of the transformed variables, showing the

correlations between each pair. The figure has been greyscale coded for the height of the

flood peak, with darker points referring to the characteristics of higher flood peaks.

It can be seen that the correlation is not constant for all peak heights; indeed it changes

sign for correlation of the scaled heights before and after the peak with the peak height.

There are three ways in which this could be addressed; the first would be to transform the

data once more, to a set of variables with more consistent correlations, bearing in mind

that the parameters are required to simulate realistic flood peaks. The second approach

would be to identify copula functions to model the changing covariance directly. The

third approach, which has been used here, is to partition the data into subsets with stable

correlations. After investigation, correlations have been performed for peak height centile

intervals of {(0,0.2), (0,0.3), (0.1,0.4), (0.2,0.5), (0.3,0.6), (0.4,0.7), (0.5,0.8), (0.6,0.9),

(0.7,1), (0.8,1)}. These overlapping intervals provided as large as possible a data set

from which to model the correlations, while significance tests showed that for the most
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Figure 7.6: Correlation of transformed variables describing the flood peak shape at Mont-
ford. Darker shades correspond to higher peaks.

part there was not a significant difference between the correlation coefficients of adjacent

overlapping intervals, ensuring that the change was gradual. The correlations were used

for all variables, with the peak height in the intervals {(0,0.1), (0.1,0.2), (0.2,0.3), (0.3,0.4),

(0.4,0.5), (0.5,0.6), (0.6,0.7), (0.7,0.98, (0.8,0.9), (0.9,1)} respectively (Figure 7.7).
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Figure 7.7: Choice of covariance matrix for correlated variables.

Use of the different correlation matrices alone, for different parts of the distribution is not

adequate to ensure the correct correlation between the variates, and marginal distributions

have to be used which correspond to the correlation matrices. On generating a random
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sample, transforming, and transforming the correlated sample back to physical units using

the appropriate marginal distribution, an appropriately correlated sample can be drawn.

An example is shown in Figure 7.3.3, indicating that the method is well able to represent

the covariance structure.
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Figure 7.8: Correlation of simulated transformed variables describing the flood peak shape
at Montford. Darker shades correspond to higher peaks.

7.4 Probability of inundation

Given these model parameters, the integral in Equation (7.3) is repeated here:

P (h > h0) =

∫
h†

∫
χ
I(h > h0)f(h|h†, χ)f(h†, χ)dχ dh†

However, the estimate of the downstream water height, h, is dependent not only on the

upstream peak height, h† and peak shape parameters χ, but also on the calibration, and

in particular on the parameters and hyperparameters ψ of the statistical model used for

the calibration; thus

P (h > h0) =

∫
h†

∫
χ

∫
ψ
I(h > h0)f(h|h†, χ, ψ)f(h†, χ)f(ψ)dψ dχ dh† (7.6)

This integral is evaluated as follows. For each iteration, six random numbers are drawn

from the Normal distribution. The first of these represents flood peak height, and its

level determines the covariance matrix for the peak shape parameters, as described in
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the previous section. The vector of random variates is transformed to a correlated set by

postmultiplying the vector by the Choleski decomposition of the covariance matrix. The

correlated variates are then transformed from Normal to their empirical marginal distri-

butions. The distribution for peak height is the Generalised Extreme Value distribution

whose fitted parameters are listed in Table 7.1, while the distributions of the other vari-

ables are the marginal distributions found from the historical monthly flood peaks. With

these variables, an input waveform is generated. A downstream waveform is the result of

filtering this input waveform using a transfer function derived from the calibration process,

in the same way that a calibrated prediction was found, using the procedure described in

Section 6.5.1.2, and repeated below.

Recall that during the calibration process, a Markov chain is generated embodying the

distributions of the parameters and hyperparameters of the statistical data model. For

each member of this Markov chain, estimates are calculated of the conditional means

E
(
ηb(x

†
τ , θ
†)|b′′(xτ , θ), βb, ωbx, ωbθ, σ2b

)
and E

(
ηa(θ

†)|a′(θ), βa, ωa, σ2a
)

and variances

Var
(
ηb(x

†
τ , θ
†)|b′′(xτ , θ), βb, ωbx, ωbθ, σ2b

)
and Var

(
ηa(θ

†)|a′(θ), βa, ωa, σ2a
)

of the nonlinear function and (arctanh) autoregressive coefficient values describing the

calibrated transfer function. Values of ηb(x
†
τ , θ†) and ηa(θ

†) are drawn from these dis-

tributions, which are used to filter the input waveform, using the time series model,

ηt(θ) = tanh(ηa(θ))ηt−1(θ) + xt−l(1 − tanh(ηa(θ)))ηb(xt−l, |xτ , θ). A positive contribu-

tion is made to the integral from a draw of the variates representing the shape of the

input waveform and a member drawn from the Markov chain, if the output waveform,

ηt(θ) at any point exceeds the threshold level h0.

The integral has been evaluated with regard to the indicator water levels set by the

Environment Agency. A flood warning is issued to at risk properties when the recorded

water level at Welsh Bridge is 3.15m above datum; this is upgraded to a severe flood

warning when the water level reaches 4.5m above datum (Environment Agency, 2007).

The integral was evaluated both for the existing channel, and using the smaller of the two

modifications described in Section 6.7, for both flood warning levels.

Figure 7.9 illustrates the convergence of the probability of inundation to a final value, with

an increasing number of draws from the distribution of input waveform shape parameters.

Means and standard deviations are given in Table 7.4 of the annual probability of issuing

the two levels of flood warning, both before and after modification. At both levels, the

modification would result in a reduction of the annual probability.
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Figure 7.9: Probability of issuing a flood warning at Welsh Bridge in Shrewsbury, for
unmodified and modified channels.

Table 7.4: Annual probability of issuing flood warnings, before and after channel modifi-
cation

Mean

Flood warning, unmodified channel 0.72
Flood warning, modified channel 0.56

Severe flood warning, unmodified channel 0.11
Severe flood warning, modified channel 0.05

7.5 Sensitivity analysis

In order to find which are the most important factors in the probability of inundation

calculation, a sensitivity analysis was conducted. The sensitivity measure used is a variance

ratio method for determining the most important factors in the evaluation of a function.

If a function y is dependent on inputs x = x1, · · · , xn, then a first order measure of the

sensitivity of y to input xi is (McKay,1995)

Si =
V (E(y|xi = x̃i))

V (y)
(7.7)

V (E(y|xi = x̃i)) is known as the variance of conditional expectation.

Evaluation of the sensitivity of the probability of inundation integral (7.6) to the in-

put variables is not a practicable option, as these are integrated out of the expression.

The sensitivity measure is thus required of the predicted downstream peak flood height

f(h|h†, χ, ψ) to upstream peak height and shape, Manning’s n, the regression parameters

β for the model inadequacy function, which were introduced explicitly into the calibration
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for the purpose of this sensitivity analysis, variances and the other hyperparameters for

the model. These are the same variates as the probability of inundation calculation, with

the addition of the model inadequacy regression parameters.

It should be noted that the sensitivity analysis used here has been formulated under the

implicit assumption that the function y is a deterministic one, while the conditional pre-

dicted peak downstream flood height is a stochastic function, being derived from posterior

Gaussian processes. Oakley and O’Hagan (2004) used a Gaussian process emulator to

increase the speed of sensitivity analysis calculations for expensive deterministic computer

simulators. This analysis could be adapted to the predicted Gaussian processes arising

from a calibration exercise, such as those undertaken in Chapters 4 and 5. The conditional

predicted peak downstream flood height derived in Chapter 6 arises from filtering the input

data with the posterior transfer function, so its distribution is a finite sum of Gaussian

processes, and is thus a Gaussian process. The analysis of Oakley and O’Hagan could

thus be used to examine the sensitivity of the predicted downstream peak flood height to

upstream peak height and shape and Manning’s n. However, in this instance a sensitivity

analysis is required which includes not only the input conditions and the model parameter

but also the additonal parameters introduced in the calibration. The method of Oakley

and O’Hagan does not allow for this. An alternative approach was taken by Degasperi and

Gilmore (2008), who reported the sensitivity analysis of a stochastic biochemical model,

by examining the changes in histogram distance between different realisations. Marrel et

al. (2010) undertook a sensitivity analysis of stochastic models by jointly modelling the

mean and variance, comparing the performance of Gaussian processes with Generalised

Linear Models and Generalised Additive Models.

To evaluate the first order sensitivity measure, correlated random variates are drawn

on a replicated modified Latin hypercube scheme. The modification to the usual Latin

hypercube scheme is as follows. Recall that the choice of a sample of size N from a K

dimensional input domain [0, 1]K . For each dimension k ∈ {1, . . . ,K}, the value of the ith

sample (i ∈ {1, . . . , N}) is taken to be at

πk(i)− U(0, 1)

N

where U(·, ·) refers to the uniform distribution, and πk(i) refers to the ith member of a

permutation of the N intervals, the suffix emphasizing that a different permutation is taken

for each dimension k. In this case, the sample values are given by:

πk(i)− 0.5

N

A replicated Latin hypercube scheme involves repeating this scheme R times, so that there

are NR samples of the variates.

Iman and Conover (1982) suggested a method for generating correlated variables under a

Latin hypercube scheme. The method hinges on the rank correlation, and the fact that a

random draw of the variates can be transformed to have a correlation C by postmultiplying
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by C, the Choleski decomposition of C. Iman and Conover suggest that a Latin hypercube

L is drawn for the set of variates, using the appropriate marginal distributions. For each

column, the rank of each member is found. Let R be the matrix of Normal quantiles

corresponding to the ranks. If R were uncorrelated, then the matrix RC would have the

appropriate correlation between the variates. However, R will not be uncorrelated, so its

empirical rank correlation D must be found, and D, the Choleski decomposition; D−1RC
will have the required rank correlation. The final step is to reorder the individual columns

of the original matrix L to have the same rank order as this new matrix. It is then

a Latin hypercube with approximately the appropriate rank correlation. Note that the

correlation scheme described in Section 7.3.3 was effected using variates transformed to

Normal distributions. A minor modification is made here, transforming the variates to

a Uniform distribution to define the correlation, thus ensuring the distribution tails are

better sampled.

Evaluation of these first order sensitivity indices for a replicated correlated Latin hypercube

of m = 100 levels and r = 5000 replications (Table 7.5, first column), shows that the

output of the conditional posterior is indeed sensitive to the upstream peak height, and

to a far lesser extent, to the peak shape parameters. However, the first order indices

indicate no sensitivity, either to the model parameter, or to the parameters characterising

the model inadequacy. A similar evaluation (Table 7.5, second column), using the simple

calibration of Section 6.6.2 without model inadequacy, does not show sensitivity to the

model parameter, either. It appears that the contribution of the upstream peak height

swamps all other relationships, as one might expect.

Table 7.5: First order sensitivity analysis

Variable Full model Emulator only

yp 0.96 1.01
∆− 0.11 0.1
∆+ 0.15 0.12
t0 0.09 0.1
γ 0.16 0.15
δ 0.33 0.32
θ 0 0
β1 0 -
β2 0 -
ωb 0 -
σ2a 0 -
σ2b 0 -
σ2ε 0 0

In an effort to overcome the swamping effect of peak height on the sensitivity analysis, first

order sensitivity was calculated for specific upstream peak height, for heights at different

quantiles of the distribution. However, in this case, the sensitivity to all variables was ex-

tremely low. It should be noted that the sensitivity analysis is designed for functions with

deterministic output, while the predicted downstream height in this case is a stochastic
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quantity, resulting in lower sensitivities being found.

A more realistic test is to investigate the sensitivity of the downstream peak height to the

upstream flood peak shape parameters and to the parameters of the nonlinear transfer

function; that is the autoregressive coefficient and the spline values at different water

heights, representing the calibrated model. The output of this sensitivity analysis is shown

in Table 7.6, where it can be seen that the downstream peak height sensitivity changes

with upstream peak height, and is greatest at that part of the spline corresponding to the

upstream peak height.

7.6 Summary

This chapter has shown how the output from the calibrated prediction may be used to

formulate a probability of inundation for a risk calculation. In addition to the posterior

distribution of the parameters and hyperparameters from the calibration exercise, the

probability of inundation depends on the distribution of upstream peak heights and peak

shapes. By combining all of these uncertain factors it is possible to generate a probability

of flooding (in this case the probability of exceeding a flood warning trigger level) that

takes into account all of the sources of uncertainty in the flooding prediction.

The sensitivity has been explored, of the prediction of downstream peak height, condi-

tional on the upstream peak height and shape, and on the statistical model. It has been

demonstrated that the downstream peak height is sensitive to different parts of the sta-

tistical model at different upstream peak heights, a sensitivity not available for a more

simple calibration.
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Table 7.6: First order sensitivity analysis, conditional on upstream peak height

Peak height
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

quantile
Peak height (m) 5.24 5.42 5.58 5.73 5.89 6.05 6.25 6.52 6.73

∆− 0 0 0 0 0 0 0 0 0
∆+ 0 0 0 0 0 0 0 0 0
t0 0 0 0 0 0 0 0 0 0
γ 0 0.01 0.01 0.01 0 0 0 0 0
δ 0 0 0 0 0 0 0 0 0
a 0.09 0.12 0.12 0.14 0.13 0.11 0.08 0.06 0.05

b(1m) 0 0 0 0 0 0 0 0 0.01
b(1.2m) 0.01 0.01 0.01 0.01 0 0 0 0.01 0.01
b(1.4m) 0.02 0.02 0.02 0.01 0 0 0.01 0.01 0.01
b(1.6m) 0.01 0.01 0.01 0.01 0 0 0.01 0.01 0
b(1.8m) 0 0 0 0 0 0 0 0 0
b(2m) 0.01 0.01 0.01 0.01 0 0 0 0.01 0.01
b(2.2m) 0.03 0.03 0.03 0.02 0.01 0 0.01 0.02 0.02
b(2.4m) 0.04 0.04 0.04 0.03 0.01 0 0.01 0.03 0.03
b(2.6m) 0.04 0.03 0.03 0.02 0.01 0 0.01 0.03 0.04
b(2.8m) 0.03 0.02 0.02 0.02 0.01 0 0 0.02 0.04
b(3m) 0.03 0.02 0.02 0.02 0.01 0 0 0.02 0.04
b(3.2m) 0.03 0.02 0.02 0.02 0.01 0 0 0.02 0.04
b(3.4m) 0.03 0.03 0.03 0.02 0.01 0 0 0.02 0.04
b(3.6m) 0.04 0.04 0.03 0.03 0.02 0 0.01 0.03 0.04
b(3.8m) 0.06 0.05 0.05 0.04 0.02 0 0.01 0.04 0.04
b(4m) 0.08 0.08 0.08 0.06 0.02 0 0.03 0.05 0.04
b(4.2m) 0.07 0.08 0.07 0.05 0.02 0 0.04 0.05 0.02
b(4.4m) 0.03 0.04 0.03 0.02 0 0.01 0.03 0.02 0
b(4.6m) 0.01 0 0 0 0.01 0.01 0.01 0 0.01
b(4.8m) 0.17 0.12 0.1 0.09 0.05 0.01 0.01 0.06 0.08
b(5m) 0.36 0.33 0.27 0.21 0.1 0.01 0.05 0.15 0.14
b(5.2m) 0.82 0.42 0.35 0.28 0.12 0.01 0.08 0.18 0.15
b(5.4m) 0.44 0.84 0.46 0.29 0.15 0.02 0.09 0.19 0.16
b(5.6m) 0.29 0.33 0.77 0.48 0.14 0.03 0.07 0.16 0.13
b(5.8m) 0.13 0.12 0.1 0.54 0.57 0.06 0.03 0.08 0.07
b(6m) 0 0 0 0.02 0.18 0.7 0.12 0.02 0
b(6.2m) 0.12 0.12 0.11 0.06 0.05 0.04 0.67 0.12 0.06
b(6.4m) 0.19 0.19 0.17 0.13 0.04 0 0.12 0.55 0.14
b(6.6m) 0.16 0.15 0.14 0.11 0.05 0 0.03 0.48 0.61
b(6.8m) 0.09 0.08 0.07 0.06 0.03 0 0.01 0.06 0.55
b(7m) 0.05 0.04 0.03 0.03 0.02 0 0 0.06 0.11



Chapter 8

Conclusions and recommendations

for further work

8.1 Introduction

The study described in this thesis has demonstrated a methodology for calibration of flood

models which includes known information about measurement accuracy, allows for model

bias, is statistically coherent and can be used with models and data of different types.

While the literature abounds with calibration methods, this one is particularly suitable

for use in risk analysis, which is one of the most important purposes of flood modelling.

Risk analysis has particular requirements in terms of model calibration; the calibration

method must produce a probability distribution, and this must have statistical credibility.

It is also important that the method should allow the input of upstream conditions other

than those used for calibration.

The formulation of the current method allows not only an emulator to increase the speed

of the calculation, but also a model inadequacy function to allow for bias. In the spa-

tial domain and in the transformed time domain, both the emulator for the flood model

output, and the model inadequacy are described as Gaussian processes. These are corre-

lated Gaussian distributions, defined at any point in space, time and parameter space, but

conditioned on the known model output at locations in this domain where model output

has been obtained, and on measurements, where it is assumed that there is some under-

standing of model error. The method has been used with some success in other fields of

application.

The study has been conducted through calibration of three hydraulic models of increasing

complexity. Calibration of all of these involved estimation of a single parameter, the

channel roughness, Manning’s n.

120
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8.1.1 Analytical model

The first application of the methodology concerned calibration of steady state laboratory

experiments, using an analytical hydraulic model which was clearly inadequate to describe

the physical processes. In this simple case, where there was no need for an emulator, it was

possible to concentrate on the formulation of the model inadequacy representation, whose

flexibility arises from the formulation as the sum of a regression relationship and a corre-

lated Gaussian distribution. The analytical model exhibited a step behaviour which was

not evident in experimental measurements, and it was shown that this behaviour needed to

be represented both in the regression relationship and in the correlation structure. As more

experimental series were included, a greater sophistication was required for the regression

basis for the model inadequacy function to account for increasing dimensionality, while

the complexity of the correlation structure increased more slowly. Eventually, however,

lack of data made it impossible to specify the correlation structure completely.

The ability to describe flow as a function of stage naturally leads to the suggestion that

this method could be used for the determination of rating curves, an area where there has

been much activity, and where the results are of everyday use in practice.

8.1.2 Steady-state flood model

The demonstration of calibration of a two dimensional steady-state flood model using in-

formation from a satellite image represents a straightforward application of the Bayesian

calibration methodology, incorporating a simple emulator for the level of the water surface.

The resulting map of inundation probability is comparable with previous results in the

literature. This example demonstrated the issue of identifiability of the observation error

and model inadequacy, illustrating the need to have prior knowledge of the observation

error variance, an issue which was noted by Wynn (2001). However, the proposed method

is superior to previous work on this topic which has been based upon the GLUE method-

ology, and requires subjective judgment with regard to an arbitrary threshold which does

not have any physical significance.

The calibration of the steady state flood model could have been made more general by

including not only the roughness parameter but also the upstream flow in the calibration.

As formulated, flow was taken as given, being the quantity measured at the time of

the satellite overpass. However, a more thorough investigation would have couched the

upstream flow as a parameter to be determined, and the analysis could thus have furnished

an estimate of the accuracy of the measurement. While to do so would have exacerbated

the identifiability problem, it is commonplace in flood modelling practice to update the

flow estimate as part of the calibration process, so the Bayesian procedure provides a

statistical framework within which to formalise this practical necessity.

One issue which was raised in the calibration of the two dimensional steady-state flood

model is as follows. Computation of the Gaussian processes describing the posterior dis-
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tribution of the water surface involves inversion of the covariance matrix, conditioned on

the locations of the output from the flood model, and measured data. In practice, this

matrix is unstable if computer output or data are used for locations which are too close

together, so it may well not be possible to use all of the available data in calibration.

A second issue which appeared in this example, is that the covariance structure inves-

tigated was not able to accommodate model variability over a number of spatial scales.

Kennedy and O’Hagan (2001a) did attempt to investigate other structures, such as a

Matèrn correlation function, noting that the Gaussian correlation function did show a

tendency to smooth the model output, but found no significant difference between the

structures they investigated.

8.1.3 Dynamic flood model

Using the same methodology for calibration of a dynamic flood model presents a con-

siderably larger challenge than the previous examples, since the Gaussian process rep-

resentation is essentially spatially inspired, being derived from geostatistical techniques.

Two significant differences arise when dealing with the output of time-varying rather than

spatially-varying models; one is that rate of change of the output may be more rapid by

comparison with the time scale of interest, and the second is that the dependency in the

output is on historical information alone, whereas spatial models involve dependency in

any spatial direction. These complications are compounded when an emulator or a model

inadequacy function are to be identified. Thus, the solutions proposed in the literature

involve treating the time domain as another spatial dimension for models with simple

variation, or creating emulators and model inadequacy function for a single step of the

computer model. An alternative is to use time series methods for the time domain, and

to link the time series with Gaussian process techniques. However, care is required in this

last approach, since the end goal is not forecasting, but risk analysis, where calibrated

prediction is required for the full distribution of possible input time series.

The method chosen here is to parameterise the transfer function from input to output time

series, and to define the model inadequacy in terms of this parameterisation. It did not

prove feasible to apply the calibration directly in the time domain, so the parameterisation

of the transfer function was done off-line, and calibration was performed directly in the

domain of the parameterisation. The resulting calibration problem reduces to the same

class of spatial problems as the previous examples. By separating the transfer function pa-

rameterisation from the calibration, and in particular by using optimisation to perform the

parameterisation, the errors were minimised during the process, thus overriding any prior

knowledge which may exist about observation error variance, and potentially introducing

bias in the model parameterisation.

The calibration of this model was found to be influenced by the prior distribution of a

parameter in the Gaussian process covariance matrix representing the smoothness of the

parameterisation of the transfer function. While this is easy to estimate when the transfer
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function parameterisation is fairly irregular, it is less so for a smooth transfer function.

This represents a potential weakness of the method.

Two features are required for a calibration method to be suitable for risk analysis. The

first is that the calibrated model should be capable of being applied to input time series

other than the time series used in calibration. This was ensured by defining the model

inadequacy in terms of a transfer function, and was demonstrated for a second, validation

time period. The second requirement is that the calibration can be extended to a per-

turbed model to be able to compare different flood management options, or other future

changes. The demonstration of this capability was less convincing, as it would require

a more complex model to validate the perturbation, in order to determine what size of

perturbation it is feasible to use. A coherent comparison would employ a formal combi-

nation of the output from the different computer models. Kennedy and O’Hagan (2000)

suggested a method of combining the output from computer programs at different levels

of complexity, while Rougier et al. (2009) demonstrated the combination of ensembles of

model output from different climate models, using Gaussian process emulators.

8.1.4 Risk calculation

Once it has been demonstrated that calibrated prediction can be produced for other inputs

than that used in calibration, it becomes feasible to undertake a risk analysis. In the case

of this thesis, the probability of inundation for an existing channel was compared with a

modified channel.

Some effort was required to characterise the possible input states, in other words the

historical upstream flow patterns, and to determine appropriate statistical distributions

for the parameters that described these flow patterns. A sensitivity analysis showed that

the output peak flood height is dependent on the entire upstream flood peak. For a given

flood peak, dependency on other uncertain quantities that determine flood depth is more

complex. Where no model inadequacy has been included, predicted output peak height

depends directly on the model calibration parameter, in this case Manning’s n. However,

where there is a model inadequacy function, dependence of the predicted output peak

height is sensitive to several input factors, including the parameters defining the model

inadequacy function, indicating that its contribution to the calibrated prediction, and

therefore to the risk analysis, is significant.

8.1.5 General comments

Other than optimisation, the automatic calibration method currently in most widespread

use in hydrology is the Generalised Likelihood Uncertainty Estimation method of Beven

and Binley (1992). The relaxation of the necessity of a formal likelihood in this method,

and the possibility of discarding model runs deemed non-behavioural, means that the

method is easy to use, but also that its results are somewhat arbitrary. In addition, the
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failure of the method to distinguish between different error sources potentially leads to

biassed parameterisations.

The difficulty of the calibration problem is indicated by the fact that no calibration

methodology has been adopted that addresses the well-known deficiences of GLUE. While

the Bayesian methodology proposed and demonstrated in this thesis appears to offer a clear

improvement over GLUE for the calibration of steady state models using satellite image

information, comparison of the steady state calibration using the current methodology

with one undertaken using GLUE does not show a large difference in the flood probability

map. This similarity could be used as an argument that the difficulties in applying the

current method are not justified by an obvious difference in the results. However, the

example of calibration of a dynamic model of the river Severn shows a clear advantage for

a method which can incorporate bias correction.

It cannot be denied that there are difficulties in using the current method. The statistical

model equations take some effort to understand, and are not straightforward to program.

The use of Markov chain Monte Carlo is undeniably not straightforward, and cannot be

entirely automated, although the flood extent model does not pose a difficult problem for

the calculation method. Covariance matrix stability is a significant problem for adjacent

input or output locations, and necessitates the discarding of model output or, more seri-

ously, of data. The choice of prior distributions did not pose a difficult problem for the

most part, although it did require some thought.

The greatest need for model calibration in hydrology is for calibration of dynamic models,

using gauged data. The work in this thesis represents a partial solution of this problem.

No other calibration study of a physically based hydrological model has demonstrated bias

correction, and at the same time produced output suitable for risk analysis.

Integral to the current dynamic calibration methodology is the definition of an emula-

tor. While an emulator is not an absolute necessity for model calibration, it is not really

practicable to calibrate a complex physically-based spatio-temporal model without one.

However, the emulator used here, while both parsimonious and effective, has posed difficul-

ties in the formulation of the error model in the time domain, undermining the statistical

credibility of the calibration method.

8.2 Recommendations for further work

The study in this thesis has demonstrated a feasible method for calibration of hydraulic

models in the presence of model inadequacy, and has indicated how this calibration method

can be incorporated in a risk analysis calculation. However, in order to be of significant

practical use in the improvement of risk analysis, a number of issues need to be ad-

dressed:

Calibration has been demonstrated separately using spatial data, and using temporally

varying gauged data. Pappenberger et al. (2005) noted an improvement in parameter
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determination where both spatial and temporal data are used for calibration.

Model inadequacy represents a major potential source of bias in the output of a calibration.

However, there are other sources of bias which have not been addressed in this study. In

particular, the calibration and output of a model is affected by errors in the determination

of input forcing. This error source is most significant where the model input is rainfall,

which varies spatially to an extent that it cannot be precisely determined by a typical

raingauge network, or flow, which may be determined by rating curve thus introducing

bias, or where there is significant unmeasured lateral inflow. Naturally, there may well

be an identifiability issue here, because of the number of uncertain quantities relative to

the information contained in the observations (Renard et al., 2010). Problems of identi-

fiability represent a fundamental limitation in the absence of more, and more accurate,

observations.

The proposed methodology should be extended to different types of models; specifically

rainfall-runoff models, where the input is rainfall, and the model represents the hydro-

logical behaviour of the entire catchment, thus allowing a broader range of flood defence

measures to be considered. Besides the issue of input errors, another potential problem

with the calibration of rainfall-runoff models is the number of parameters used in these

models. It is likely that the distributions of some of these parameters may be correlated,

causing further difficulties in solution.

A full risk analysis requires consideration of long term consequences of processes of change;

this necessitates analysis of the impacts of climate change. To address these processes,

analysis will entail a sequence of models; climate change models, a rainfall model, a

rainfall-runoff model, a hydraulic model, a model of flood defence failure, and a model

of propagation of a flood wave through the floodplain. Each of these modelling stages will

introduce uncertainties and errors into the final risk calculation. The errors need to be

propagated through the modelling cascade.

It was demonstrated that in the extension of the calibration to a modified channel, it is

unclear at what point a modification is too large for the calibration to remain credible.

Under these circumstances, it would be helpful to use a second model, possibly a more

complex one, as arbitrator. Kennedy and O’Hagan (2000) considered the use of a simpler

model to serve as an emulator for a more complex model. An alternative might be to

calibrate two models in parallel, using the more complex model to inform the emulation

and calibration of the simpler model.

Finally, the work in this thesis has concentrated on the contribution of fluvial flood models

to flood risk analysis. Similar techniques can be used for calibration of other models, both

for risk analysis, and for other applications.
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